AUTOMATED PARKING AND PAYMENT
SYSTEM USING LICENSE PLATE AND
VEHICLE ATTRIBUTE RECOGNITION

WITH MULTIMODAL Al MODELS

YONG TING WEI

UNIVERSITI TUNKU ABDUL RAHMAN

AUTOMATED PARKING AND PAYMENT SYSTEM USING
LICENSE PLATE AND VEHICLE ATTRIBUTE RECOGNITION
WITH MULTIMODAL Al MODELS

YONG TING WEI

A project report submitted in partial fulfilment of the
requirements for the award of Bachelor of Software
Engineering (Honours)

Lee Kong Chian Faculty of Engineering and Science
Universiti Tunku Abdul Rahman

September 2025

DECLARATION

I hereby declare that this project report is based on my original work except for
citations and quotations which have been duly acknowledged. | also declare that

it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Name Yong Ting Wei

ID No. . 2200787

Date :16/10/2025

COPYRIGHT STATEMENT

© 2025, Yong Ting Wei. All right reserved.

This final year project report is submitted in partial fulfilment of the
requirements for the degree of Bachelor of Software Engineering (Honours) at
Universiti Tunku Abdul Rahman (UTAR). This final year project report
represents the work of the author, except where due acknowledgement has been
made in the text. No part of this final year project report may be reproduced,
stored, or transmitted in any form or by any means, whether electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of the author or UTAR, in accordance with UTAR’s Intellectual
Property Policy.

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor, Lee Ming Jie,
for his invaluable advice, continuous guidance, and patience throughout the
development of this final year project. His encouragement and constructive
feedback have been instrumental in ensuring the successful completion of this

work.

I would also like to extend my appreciation to my moderator, Kelwin Tan
Seen Tiong, for providing constructive comments and support during the

evaluation stages.

In addition, | wish to thank the faculty and departmental members from Lee
Kong Chian Faculty of Engineering and Science and the Department of
Computing for creating a pleasant and supportive environment that enabled me

to carry out my research effectively.

Finally, 1 would like to thank my family and friends for their encouragement,
patience, and support during this journey.

ABSTRACT

As of October 2023, Malaysia recorded over 36.3 million registered vehicles,
highlighting the need for more efficient and intelligent parking solutions.
Traditional parking systems, which rely on physical tickets, RFID tags, and e-
wallets, often lead to congestion, delays, and security vulnerabilities. This
project proposes an Al-powered parking payment system that integrates
License Plate Recognition (LPR) with Vehicle Attribute Recognition using the
Gemini 2.5 Flash multimodal large language model (LLM), complemented by
a mobile application designed for drivers, operators, and administrators. The
recognition module, developed in Python, was tested using a ground truth
dataset of 20 real vehicle images from Roboflow in a simulated environment.
Each image was passed directly to the Gemini model to extract license plates
and vehicle attributes such as make, model, and color. Recognition was
incorporated into two system points: (1) a mobile app feature allowing users to
auto-fill vehicle details via photo uploads, and (2) simulated parking facility
entry and exit points where vehicle identity was verified against a backend
database for automated payment processing. The mobile app was written with
Laravel, React Native, and PostgreSQL, and it offers role-based features
including vehicle registration, payment tracking, and operational oversight.
Testing showed an 85% accuracy for full multi-attribute recognition, with
individual accuracies of 95% for license plates, 100% for color and make, and
90% for model detection. Average recognition processing time was 2.495
seconds per image upload. While entry and exit recognition were simulated, the
system successfully demonstrated automated vehicle verification and payment
workflows. The mobile application facilitated seamless user interactions and
system management. Limitations include reliance on free-tier Al services,
absence of real-time hardware integration, and limited analytics capabilities.
This project illustrates the feasibility of leveraging multimodal LLMs and
mobile platforms to create ticketless, contactless, and fraud-resistant parking
solutions, contributing to Malaysia’s digital transformation and smart city

initiatives.

Keywords: artificial intelligence; license plate recognition; vehicle attribute

recognition; smart parking; fraud prevention; multimodal LLMSs; smart city

Subject Area: QA75.5-76.95 Electronic computers. Computer science

DECLARATION

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

TABLE OF CONTENTS

LIST OF TABLES
LIST OF FIGURES

LIST OF SYMBOLS / ABBREVIATIONS
LIST OF APPENDICES

CHAPTER

1 INTRODUCTION

11
1.2
1.3

1.4

1.5

1.6

General Introduction

Importance of the Study

Problem Statement

1.3.1 Performance Limitation of Current LPR
Solutions

1.3.2 Security Risks and Unauthorized
Transactions Using LPR

1.3.3 Inefficiency in Existing Parking Systems

Aim and Objectives

1.4.1 Project Aim

1.4.2 Project Objectives

Project Solution

1.5.1 Automated Parking Payment System with
LPR and Vehicle Attribute Recognition

1.5.2 Parking Management Application

Project Approach

1.6.1 Research Approach

Vi

Vi
Xii
XVi
XXiii

XXV

NN N

A A A b O W

(o2 @ > IR & 2 B S

1.7

1.6.2 Development Approach

Scope and Limitations of the Study

1.7.1 System Modules

1.7.2 Target Users

1.7.3 Out-of-Scope

1.7.4 Project Limitations

1.7.5 Development Tools, Languages, and

Frameworks

LITERATURE REVIEW

2.1
2.2

2.3

2.4
2.5

2.6

2.7

Introduction

Why Improve Current License Plate And Vehicle

Attribute Recognition?

Traditional Approaches to License Plate and

Vehicle Attribute Recognition

2.3.1 Manual Observation

2.3.2 Traditional License Plate Recognition

Machine Learning (ML) Approaches

Deep Learning (DL) Approaches

2.5.1 Deep Learning in Vehicle Detection

2.5.2 Instance Segmentation in Vehicle and
License Plate Recognition

2.5.3 Deep Learning for OCR in LPR

2.5.4 Deep Learning for Vehicle Attribute
Recognition

2.5.5 Summary

Large Language Models (LLMs)

2.6.1 Multimodal LLMs

Review of Similar Parking Payment Application

2.7.1 Touch ‘n Go eWallet

2.7.2 JomParking

2.7.3 ParkEasy

2.7.4 Flexi Parking

vii

© ©O© 0o N N

10

10
11
11

11

12
12
12
13
14
14

20
22

24
29
30
30
35
35
39
40
41

viii

2.7.5 Summary and Comparison of EXxisting

Applications 42
2.8 Software Development Methodologies 45
2.8.1 Waterfall Model 46
2.8.2 lterative and Incremental Development
(11D) Model 47
2.8.3 Agile Methodologies 48
2.8.4 Summary and Comparison of
Methodologies 50
2.9 Development Framework 52
2.9.1 Frontend Framework 52
2.9.2 Backend Framework 57
2.9.3 Database 60
METHODOLOGY AND WORK PLAN 63
3.1 Introduction 63
3.2 Software Development Methodology: Scrum
Methodology 63
3.2.1 Phase 1: Initiation 63
3.2.2 Phase 2: Planning and Estimation 64
3.2.3 Phase 3: Sprint Execution 65
3.2.4 Phase 4: Review and Retrospective 66
3.2.5 Phase 5: Finalization and Release 67
3.2.6 Justification for Scrum Methodology 67
3.3 Project Planning and Scheduling 68
3.3.1 Work Breakdown Structure (WBS) 68
3.3.2 Gantt Chart 72
3.4 Development Tools and Techniques 75
3.4.1 Tools and IDEs 75
3.4.2 Languages 76
3.4.3 Software Frameworks 77
3.4.4 Database 78
3.5 Summary 79

PROJECT SPECIFICATION 80

4.1
4.2

4.3

4.4

4.5
4.6
4.7

Introduction

Fact Finding

4.2.1 Responses on Google Form Questionnaire

Survey
Requirement Specification
4.3.1 Functional Requirements
4.3.2 Non-functional Requirements
Use Case Modelling
4.4.1 Use Case Diagram
4.4.2 Use Case Description
Interface Flow Diagram
Initial Prototype
Preliminary run on Vehicle Detection
Segmentation
4.7.1 Overview
4.7.2 Experimental Setup and Results

SYSTEM DESIGN

5.1
5.2

5.3

5.4

5.5
5.6

Introduction

System Architecture Design
5.2.1 Front-end Architecture
5.2.2 Back-end Architecture

Database Architecture

and

5.3.1 Database Entity Relationship Diagram

(ERD)
5.3.2 Database Schema
5.3.3 Collection Description
Data Flow Diagram
5.4.1 Context Diagram
5.4.2 DFD Level-0 Diagram
Activity Diagram
User Interface Design
5.6.1 Driver Mobile Interface
5.6.2 Web Interface

80
80

81
102
102
103
106
106
107
131
134

142
142
142
144
144
144
145
146
147

148
149
167
169
169
170
171
179
179
210

5.6.3 Parking Operator Web Interface
5.6.4 Admin Web Interface

SYSTEM IMPLEMENTATION

6.1
6.2

6.3

6.4

6.5

6.6

Introduction

Backend Implementation

6.2.1 Authentication and Authorization

6.2.2 Database Integration (PostgreSQL)

6.2.3 Real-Time Communication (Reverb and
Pusher-js)

Frontend Implementation

6.3.1 Navigation Structure (React Navigation)

6.3.2 Local Storage (Async Storage)

6.3.3 Data Visualization

6.3.4 Location Services (Expo-Location)

Al & Detection Module

6.4.1 Python-Uvicorn Service Setup

6.4.2 Gemini 2.5 Flash Integration

6.4.3 Vehicle Detection Setup and Workflow

Development and Deployment Environment

6.5.1 NGROK for Local Testing

Conclusion

SYSTEM TESTING

7.1
7.2

7.3

7.4
7.5

Introduction

Traceability between Use Cases, Functional
Requirements, and Test Cases

7.2.1 Use Case Table

7.2.2 Functional Requirements Table

API Testing

7.3.1 Summary of API Test Cases

Traceability Matrix

Performance Evaluation of Vehicle Recognition

7.5.1 Evaluation Methodology

213
227
235
235
235
235
236

237
238
238
238
239
240
241
241
241
242
243
243
244
245
245

245
245
246
248
248
268
269
269

7.6 Evaluation of Auto Payment via Vehicle
Recognition

7.7 Usability Test
7.7.1 Test Scenarios of Usability Test
7.7.2 Results of Usability Test

7.8 User Acceptance Testing (UAT)

7.9 Conclusion

8 CONCLUSION AND RECOMMENDATIONS

8.1 Introduction

8.2 Objectives Achievement

8.3 Project Limitations

8.4 Recommendations for Future Work

REFERENCES

APPENDICES

Xi

270
270
271
272
273
274
275
275
275
276
277
279
285

LIST OF TABLES

Table 2.1: Table of comparison of segment models

Table 2.2: Table of accuracy results between LLMs (AlDahoul et al.,
2024)

Table 2.3: Table of comparison between LLMs

Table 2.4: Table of comparison between existing parking applications
Table 2.5:Table of differences between methodologies compared

Table 2.6: Table of differences between frontend frameworks compared
Table 2.7: Table of differences between backend frameworks compared
Table 2.8: Table of differences between the databases compared

Table 4.1: Functional Requirements.

Table 4.2: Non-functional Requirements.

Table 4.3: Use case description of login.

Table 4.4: Use case description of Register.

Table 4.5: Use case description of Manage Vehicles

Table 4.6: Use case description of Manage Payment Methods

Table 4.7: Use case description of View Dashboard

Table 4.8: Use case description of View Nearby Parking Lot Details
Table 4.9: Use case description of View Nearby EV Chargers

Table 4.10: Use case description of View Parking Transaction History
Table 4.11: Use case description of View EV Reservation

Table 4.12: Use case description of Auto-Transaction of Parking Fee

Table 4.13: Use case description of Submit Support Tickets

xii

22

33

34

43

51

56

59

62

102

103

107

108

109

112

113

115

116

118

119

120

121

Table 4.14: Use case description of Request Change to Parking Lot
Details

Table 4.15: Use case description of Manage Support Tickets

Table 4.16: Use case description of Approve Pending Requests from
Operators

Table 4.17: Use case description of Manage User Accounts
Table 4.18: Use case description of Manage Own Profile
Table 5.1: Users Schema

Table 5.2: Companies Schema

Table 5.3: EV Charger Types Schema

Table 5.4: EV Chargers Schema

Table 5.5: EV Reservations Schema

Table 5.6: Notifications Schema

Table 5.7: Parking Lots Schema

Table 5.8: Parking Zones Schema

Table 5.9: Parking Rates Schema

Table 5.10: Parking Sessions Schema

Table 5.11: Vehicles Schema

Table 5.12: Payment Methods Schema

Table 5.13: Support Tickets Schema

Table 5.14: Support Ticket Messages Schema

Table 5.15: Pending Actions Schema

Table 5.16: Collections Description Table

Table 6.1: Key Methods Used in the Authentication and Authorization
Flow

Table 6.2: Vehicle Attribute Normalization

Xiii

122

124

125

127

129

149

152

153

154

155

156

157

158

159

160

162

163

164

165

166

167

236

242

Table 7.1:

Table 7.2:

Table 7.3:

Table 7.4:

Table 7.5:

Table 7.6:

Table 7.7:

Table 7.8:

Table 7.9:

Table 7.10:

Table 7.11:

Table 7.12:

Table 7.13:

Table 7.14:

Table 7.15:

Table 7.16:

Table 7.17:

Table 7.18:

Table 7.19:

Table 7.20:

Table 7.21:

Table 7.22:

Table 7.23:

Table 7.24:

Use Case Table

Funstional Requirements Table
Summary of API Test Cases and Results
Test Case of User Registration

Test Case of User Login (Successful)

Test Case of User Login (Failed — Wrong Credentials)

Test Case of View Profile Information

Test Case of Update Profile Information
Test Case of View Vehicles

Test Case of Add Vehicles

Test Case of Update Vehicle Information
Test Case of Delete Vehicle

Test Case of View Payment Methods

Test Case of Add Payment Method

Test Case of Delete Payment Method

Test Case of View Driver Dashboard

Test Case of View Parking Operator Dashboard
Test Case of View Admin Dashboard

Test Case of View Nearby Parking Lots
Test Case of View Parking History

Test Case of View EV Charger Information
Test Case of Create EV Reservation

Test Case of View EV Reservations

Test Case of Operator Setup

Xiv

245

246

248

250

250

251

251

252

252

253

253

253

254

254

255

255

256

256

257

257

258

258

259

259

Table 7.25:

Table 7.26:

Table 7.27:

Table 7.28:

Table 7.29:

Table 7.30:

Table 7.31:

Table 7.32:

Table 7.33:

Table 7.34:

Table 7.35:

Table 7.36:

Table 7.37:

Table 7.38:

Table 7.39:

Table 7.40:

Table 7.41:

Test Case of Operator Manage Parking Lot Details (Create,
Update, Delete)

Test Case of Submit Support Ticket

Test Case of View Support Ticket

Test Case of Send Support Ticket Messages

Test Case of View Support Ticket Messages

Test Case of Admin View Support Ticket

Test Case of Admin Send Support Ticket Messages
Test Case of Admin View Support Ticket Messages
Test Case of Admin View User Accounts

Test Case of Admin Edit User Account

Test Case of Admin Add User Account

Test Case of Admin View Operator Requests

Test Case of Admin Approve Operator Requests
Traceability Matrix Table

Test Scenarios of Usability Test

Test Scenarios of Usability Test

Summary of UAT Feedback and Actions

XV

261

261

262

262

263

263

264

264

265

265

266

267

267

268

271

273

274

LIST OF FIGURES

Figure 1.1: High-Level Flow Diagram of LPR and Vehicle Attribute
Model

Figure 1.2 Parking Management System Architecture Flowchart
Figure 2.1: Faster R-CNN network structure (Ren et al., 2017)
Figure 2.2: YOLO architecture (Wu, 2018)

Figure 2.3: SSD architecture (Cao et al., 2020)

Figure 2.4: CNN architecture diagram (Phung and Rhee, 2018)

Figure 2.5: ViT Architecture and Transformer Encoder (H. Meybodi et
al., 2021)

Figure 2.6: Multitask learning framework (Ranjan et al., 2016)
Figure 2.7: TNG eWallet Parking Search Result

Figure 2.8: TNG eWallet LPR Parking Register Vehicle Steps (Wong,
2025)

Figure 2.9: TNG eWallet QR Parking Pay Screen (Rozlan, 2023)
Figure 2.10: Waterfall Methodology (Burtescu et al., 2014)
Figure 2.11: 11D Methodology (Burtescu et al., 2014)
Figure 2.12: Scrum Methodology (Korkut, 2023)

Figure 3.1: Overview of project timeline

Figure 3.2: Project initiation timeline

Figure 3.3: Planning and design timeline

Figure 3.4: Development and Sprints Timeline Overview
Figure 3.5: Sprint 1 timeline

Figure 3.6: Sprint 2 timeline

Figure 3.7: Sprint 3 timeline

Figure 3.8: Sprint 4 timeline

XVi

15

18

19

25

26

27

36

37

38

46

47

49

72

72

73

73

73

73

73

74

Xvii

Figure 3.9: Sprint 5 timeline 74
Figure 3.10: Final Integration and Testing Timeline 74
Figure 3.11: Project Closure Timeline 74
Figure 4.1: Pie Chart of Respondents’ Age Group 82
Figure 4.2: Pie Chart of Respondents’ Gender 82
Figure 4.3: Bar Chart of Types of Vehicles Owned by Respondents 83
Figure 4.4: Pie Chart of Respondents’ Frequency of Driving 84

Figure 4.5: Bar Chart of Respondents’ Purpose for Using their Vehicle 85

Figure 4.6: Pie Chart of Respondents’ Frequency of Using Paid Parking
Facilities 86

Figure 4.7: Bar Chart of Respondents’ Preferred Parking Payment
Methods 87

Figure 4.8: Bar Chart of Issues Faced by Respondents with Current
Parking Payment Systems 88

Figure 4.9: Column Chart of Respondents’ Rating on Parking Payment
Transaction Speed 89

Figure 4.10: Column Chart of Respondents’ Rating on Parking Payment
Transaction Convenience 90

Figure 4.11: Bar Chart of Respondents’ Dissatisfaction with Current
Parking Payment System 91

Figure 4.12: Bar Chart of Respondents’ Suggested Improvements for
Parking Payment System 92

Figure 4.13: Pie Chart of Respondents’ Familiarity with Vehicle
Recognition System 93

Figure 4.14: Pie Chart of Respondents’ Experience Using License Plate
Recognition Parking Systems 94

Figure 4.15: Pie Chart of Respondents’ Willingness to Use Vehicle
Recognition System for Parking Payments 95

Figure 4.16: Bar Chart of Respondents’ Concerns Regarding Al-Powered
Vehicle Recognition System 96

Figure 4.17: Bar Chart of Features Respondents Want in an Al-Powered
Parking Payment System

Figure 4.18: Pie Chart of the Importance of a Mobile App for Managing
Parking Payments

Figure 4.19: Pie Chart of Respondents’ Trust in Al System for Handling
Parking Payments

Figure 4.20: Pie Chart of Respondents’ Need for an “Emergency Stop
Transaction” Feature

Figure 4.21: Pie Chart of Respondents’ Preference for Real-Time
Parking Transaction Notifications

Figure 4.22: Use case diagram of Vehicle Parking Payment Application.
106

Figure 4.23: Interface flow diagram of the proposed system for drivers

Figure 4.24: Interface flow diagram of the proposed system for parking
operators

Figure 4.25: Interface flow diagram of the proposed system for admin
Figure 4.26: Login Page on mobile

Figure 4.27: Login Page on desktop

Figure 4.28: Register Page on mobile

Figure 4.29: Register Page on desktop

Figure 4.30: Driver Dashboard page on mobile

Figure 4.31: Continued Driver Dashboard page on mobile
Figure 4.32: Driver Dashboard page on desktop

Figure 4.33: Operator Dashboard page on mobile

Figure 4.34: Continued Operator Dashboard page on mobile
Figure 4.35: Operator Dashboard page on desktop

Figure 4.36: Admin Dashboard page on mobile

Figure 4.37: Continued Admin Dashboard page on mobile

Xviil

97

98

99

100

101

131

132

133

134

134

135

135

136

137

137

138

139

139

140

141

Figure 4.38: Admin Dashboard page on desktop

Figure 4.39: The result from the detection and segmentation.
Figure 5.1: System Architecture Design.

Figure 5.2: Entity Relationship Diagram for the System Database
Figure 5.3: Context Diagram

Figure 5.4: DFD Level 0 Diagram

Figure 5.5: Activity Diagram of Login Account

Figure 5.6: Activity Diagram of Register Account

Figure 5.7: Activity Diagram of Operator Setup

Figure 5.8: Activity Diagram of View Nearby Parking Lots
Figure 5.9: Activity Diagram of Reserve Nearcy EV Chargers
Figure 5.10: Activity Diagram of Add Parking Lot

Figure 5.11: Activity Diagram of Edit Parking Lot

Figure 5.12: Activity Diagram of Review Pending Actions

Figure 5.13: Activity Diagram of Automated Payment During Exit of

Parking Lot
Figure 5.14: Login Page
Figure 5.15: Forgot Password Page
Figure 5.16: Register Page
Figure 5.17: Drawer Navigation
Figure 5.18: Driver Dashboard

Figure 5.19: Toaster Notification after Payment

Figure 5.20: Nearby Parking Lot Location Permission and Loading

Screen
Figure 5.21: Nearby Parking Lots List View

Figure 5.22: Nearby Parking Lots Details

XiX

141

143

145

148

169

170

171

172

173

174

175

176

176

177

178

179

180

181

182

183

184

185

186

187

Figure 5.23:
Figure 5.24:
Figure 5.25:
Figure 5.26:
Figure 5.27:
Figure 5.28:
Figure 5.29:
Figure 5.30:
Figure 5.31:
Figure 5.32:
Figure 5.33:
Figure 5.34:
Figure 5.35:
Figure 5.36:
Figure 5.37:
Figure 5.38:
Figure 5.39:
Figure 5.40:
Figure 5.41:
Figure 5.42:
Figure 5.43:
Figure 5.44:
Figure 5.45:
Figure 5.46:

Figure 5.47:

Nearby Parking Lots Map View
Nearby Parking Lot Filters

Nearby EV Reservation List View
Available EV Reservation Details
Vehicle Selection for EV Reservation
Nearby EV Reservation Map View
EV Reservation Filter

EV Reservation Active and History
Parking Transaction History
Parking Transaction History Details
Parking Transaction Filter

Profile Page Basic Info Tab

Profile Page Notifications Tab
Profile Page Security Tab

Profile Page Change Password
Profile Page Vehicles Tab

Profile Page Add Vehicles

Profile Page Payments Tab

Profile Page Add Payment Method
Support Tickets Page

Create New Ticket

View and Send Support Ticket Message

Landing Page
Login Page

Forgot Password Page

XX

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

211

Figure 5.48:
Figure 5.49:
Figure 5.50:
Figure 5.51:
Figure 5.52:
Figure 5.53:
Figure 5.54:
Figure 5.55:
Figure 5.56:
Figure 5.57:
Figure 5.58:
Figure 5.59:
Figure 5.60:
Figure 5.61:
Figure 5.62:
Figure 5.63:
Figure 5.64:
Figure 5.65:
Figure 5.66:
Figure 5.67:
Figure 5.68:
Figure 5.69:
Figure 5.70:
Figure 5.71:

Figure 5.72:

Register Page

Operator Company Setup Page

Operator Stripe Setup Page

Operator Parking Lot Setup Page

Operator Setup Review Page

Operator Setup Successful Page

Drawer Navigation

Parking Operator Dashboard

Parking Management Dashboard

Parking Management Dashboard Add Parking Lot
Parking Management Dashboard Edit Parking Lot
Parking Management Dashboard Zone Tab
Parking Management Dashboard Add Zone
Parking Management Dashboard Edit Zone
Parking Management Dashboard Rates Tab
Parking Management Dashboard Add Rate Plan
Parking Management Dashboard Edit Rate Plan
Parking Management Dashboard EV Chargers Tab
Parking Management Dashboard Add EV Charger
Parking Management Dashboard Edit EV Charger
Parking Management Dashboard Actions Made
Operator Profile Page

Operator Profile Page Notifications Tab

Operator Profile Page Security Tab

Operator Profile Page Company Tab

XXi

212

213

213

214

214

215

215

216

217

217

218

218

219

219

220

220

221

221

222

222

223

223

224

224

225

Figure 5.73:
Figure 5.74:
Figure 5.75:
Figure 5.76:
Figure 5.77:
Figure 5.78:
Figure 5.79:
Figure 5.80:
Figure 5.81:
Figure 5.82:
Figure 5.83:
Figure 5.84:
Figure 5.85:

Figure 5.86:

Figure 5.87

Support Tickets Page

Create New Ticket

View and Send Support Ticket Message
Drawer Navigation

Admin Dashboard

Admin Pending Actions Management
Admin Pending Actions Details

Admin User Management

Admin User Management User Details View
Admin User Management Add New User
Admin Profile Page

Admin Profile Page Notifications Tab
Admin Profile Page Security Tab

Admin Support Ticket Management

: Admin View and Send Support Ticket Message

Figure 7.1: Vehicle Recognition System Benchmark Results

Figure 7.2: Vehicle Recognition and Auto Payment Results

podll

225

226

226

227

228

229

230

231

231

232

232

233

233

234

234

269

270

Al
AVR
CNN
CRNN
LLM
LPR
NMS
OCR
RDBMS
RFID
ROI
RPN
SAM
SDG
SSD
TNG
VIT
WBS
YOLO

LIST OF SYMBOLS / ABBREVIATIONS

Artificial Intelligence

Automatic Vehicle Recognition
Convolutional Neural Network
Convolutional Recurrent Neural Network
Large Language Model

License Plate Recognition
Non-Maximum Suppression

Optical Character Recognition

Relational Database Management System
Radio Frequency Identification

Region of Interest

Region Proposal Network

Segment Anything Model

Sustainable Development Goals

Single Shot Multibox Detector

Touch ‘n Go

Vision Transformer

Work Breakdown Structure

You Only Look Once

ol

XXiv

LIST OF APPENDICES

Appendix A: Vehicle Recognition Benchmark Result 285
Appendix B: System Usability Test Results 289

CHAPTER 1

INTRODUCTION

1.1 General Introduction

As of October 2023, the number of registered vehicles in Malaysia has exceeded
the country’s population, with over 36.3 million vehicles recorded
(Nuradzimmah Daim, 2023). With rapid urbanization and increasing vehicle
ownership, the need for efficient smart parking solutions has become
increasingly critical. However, many existing systems still rely on outdated
methods, such as physical parking tickets, Touch ‘n Go (TNG) cards, eWallets,
debit and credit cards, Radio Frequency ldentification (RFID)-based payments,
and even manual kiosks.

A major issue with the current parking systems in Malaysia is
congestion at parking entry and exit points. These delays are often caused by
the need to stop the vehicle completely to insert a ticket or pay with cash, faulty
card readers, and slow RFID scans. These problems not only inconvenience
drivers but also disrupt traffic flow within parking facilities. Additionally, many
users forget to reload their TNG cards or eWallets, resulting in failed
transactions and further delays.

While LPR technology is gradually being adopted in some modern
parking systems to offer a more convenient and quicker experience, it introduces
a new challenge, which is license plate fraud. Criminals may clone or tamper
with license plates to avoid payment or gain unauthorized access to parking
areas, which weakens the reliability and security of LPR-based systems.

This project aims to address these challenges by developing an
Artificial Intelligence (Al)-powered parking payment system that utilizes fixed
cameras at parking entrances and exits to automatically recognize license plates
along with key vehicle attributes, such as make, model, and color, and process
payments without the need for manual intervention. By combining license plate
recognition with vehicle attribute verification, the system enhances security and
helps prevent fraud cases, which are potential vulnerabilities in traditional LPR-

based systems.

By eliminating the need for physical cards, parking tickets, eWallets,
RFID stickers, or manual kiosks, the proposed system supports Malaysia’s
digitalization and smart mobility initiatives. It offers a fully automated,
ticketless, and contactless parking payment experience, significantly improving
operational efficiency, strengthening security, and improving overall user

convenience in modern parking management.

1.2 Importance of the Study
The development of an automated parking payment system using LPR and
Vehicle Attribute Recognition offers practical and social benefits by addressing
major challenges in urban parking. By integrating Al technologies like
multimodal Large Language Models (LLMs), this system enhances the
efficiency, security, and convenience of parking systems. This research can
address the issues of long wait times and inefficiencies in traditional parking
methods. Moreover, it aims to reduce human error, minimize fraud, and
streamline the payment process, contributing to improved user satisfaction.
The system directly contributes to several United Nations Sustainable
Development Goals (SDGs), creating a positive impact on the world. For SDG
9 (Industry, Innovation and Infrastructure), it promotes resilient infrastructure
through cutting-edge Al applications while fostering innovation in smart city
technologies. In terms of SDG 11 (Sustainable Cities and Communities), the
system's ability to reduce congestion and improve parking efficiency supports
the creation of more inclusive, safe, and sustainable urban spaces. The solution
also advances SDG 16 (Peace, Justice and Strong Institutions) by implementing
transparent, fraud-resistant systems that enhance accountability in public
services and strengthen institutional trust. These benefits position automated
parking management as a key component in building smarter, more sustainable

cities for the future.

1.3 Problem Statement
The adoption of cashless payment solutions has significantly improved parking
management systems in Malaysia. However, various challenges remain,

affecting efficiency, security, and user convenience.

1.3.1 Performance Limitation of Current LPR Solutions

Although LPR technology is being implemented in some parking systems, many
of the LPR solutions struggle with accuracy and adaptability in real-world
conditions. Environmental factors, such as low-light conditions, motion blur,
and obstructed or damaged plates, severely affect LPR performance. For
example, LPR systems often struggle during nighttime or in poorly lit
environments where image quality is compromised. Additionally, when
vehicles are moving at high speeds or plates are dirty or partially blocked,
motion blur and distortion further reduce the accuracy of license plate detection.
Other than environmental factors, the wide variety of license plate designs,
differing in size, color, font style, and layout across regions, can complicate the
detection and recognition process. LPR systems often struggle when exposed to

designs not present in their training datasets.

1.3.2 Security Risks and Unauthorized Transactions Using LPR

Security is a critical concern in automated parking systems, particularly when it
comes to vehicle theft, unauthorized use, and fraud. Traditional LPR systems
rely solely on plate numbers for identification, without cross-checking
additional vehicle attributes such as make, model, and color. This lack of multi-
attribute verification allows fraudulent vehicles with cloned plates to bypass
detection. For example, a person could clone a legitimate vehicle’s license plate
by copying the plate number and placing it on a different vehicle. This cloned
vehicle can then enter the parking facilities, as the LPR system recognizes the
cloned plate as valid, leading to the transaction being processed under the
original vehicle’s plate number and deducting the payment from the original

vehicle owner’s account.

1.3.3 Inefficiency in Existing Parking Systems

Malaysia’s parking systems often rely on outdated technologies such as physical
parking tickets and cards, eWallets, RFID tags, and manual kiosks. These
methods require vehicles to stop for validation or payment, leading to
congestion at entry and exit points. Technical issues like malfunctioning card

readers, slow RFID scans, or insufficient eWallet balance further delay the

process, frustrating users and reducing system efficiency. The need to carry

RFID tags, cards, or cash also contributes to user dissatisfaction.

14 Aim and Objectives

1.4.1 Project Aim

This project aims to develop an automated parking payment system that
integrates multimodal LLMs for LPR and Vehicle Attribute Recognition. By
combining LPR with additional vehicle attributes such as make, model, and
color through multimodal Al models, the system will enhance transaction
security and accuracy. Additionally, a parking management app will be
developed to allow users to manage their parking sessions, view transaction
history, and make payments seamlessly. This approach eliminates the need for
manual payment methods, reduces congestion, and strengthens the overall
security of Malaysia’s parking infrastructure.

1.4.2 Project Objectives
1. To examine license plate and vehicle attribute approaches and review
similar applications.
2. To develop an automated parking payment system that integrates
multimodal LLMs for license plate and vehicle attribute recognition.

3. To develop a parking management application.

1.5 Project Solution

The proposed solution aims to address the limitations of traditional parking
payment systems by integrating advanced multimodal LLMs for license plate
and vehicle attribute recognition. This solution will not only improve the
accuracy and efficiency of vehicle identification but also enhance security by
verifying multiple vehicle attributes beyond the license plate, such as make,

model, and color.

151 Automated Parking Payment System with LPR and Vehicle
Attribute Recognition
The system will use multimodal LLMs trained on both LPR and vehicle attribute

recognition. The LLMs will process real-time data from cameras at entry and

exit points of parking facilities to automatically identify vehicles, verify their
license plates, and cross-check additional attributes, such as make, model, and
color. This will allow for seamless automated transactions without the need for
manual intervention, and also reduce the risk of fraud and increase the speed of

the payment process.

Start

h

v
i' Image Inpur .-'
v

h

Use Gemini 2.5 Flash for

License Plate and Vehicle

Attribute Recognition using
Prompt Engineering

JSON Result (Plate,
Make, Model, Color)

h J

Mormalize Results

¥

Return Vehicle
Information

¥

End

Figure 1.1: High-Level Flow Diagram of LPR and Vehicle Attribute Model

1.5.2 Parking Management Application

A dedicated mobile app will be developed for users to manage their vehicles,
register their license plates, and track parking transactions. The app will allow
users to link vehicles to their accounts, view parking history, and manage
payment preferences. An emergency stop feature will also be included, enabling
users to disable automated payments immediately if their vehicle is stolen or
used without authorization. In addition, parking operators can also use the

application as it provides tools to manage parking lot details, set or adjust

parking rates, and perform analytical reviews of transaction data. This helps

both users and the parking operators manage their tasks more easily.

Frontend Backend

HTTP requests Request
& responses _—
I e ”
~

Mobile and Browsers

View

[el

Response

L)
React Native Laravel
Web A PostgreSQL
Access
Response Response
f = s@®
-2

Users

Car park
entry & exit

Vehicle plate
number and
attributes

Auto-transaction

Y

—> *
@ Vehicle image

Gemini 2.5
Flash

LPR & Vehicle Recognition

Figure 1.2 Parking Management System Architecture Flowchart

1.6 Project Approach

1.6.1 Research Approach

The research explores various approaches, starting with traditional methods that
use simple image processing for plate detection. It then examines machine
learning techniques that improve automation and accuracy. The study further
investigates deep learning techniques, including deep neural networks for
vehicle detection, image segmentation, and Optical Character Recognition
(OCR) for reading plates and identifying vehicle attributes like make, model,
and color. Finally, the research looks into Multimodal LLMs, which combine
image and text processing to enhance recognition accuracy and fraud detection,
making them particularly effective in dynamic environments like toll booths and
parking areas.

A critical part of the research also involves analyzing existing parking
applications to identify strengths and limitations. By reviewing these
applications, the study will gain insights into the operational challenges and user
experience, helping to shape the design of the proposed system. Furthermore,
research into development tools and frameworks will help select the best

technologies for the project’s implementation.

Additionally, a questionnaire survey will be conducted as part of
quantitative research. The survey will gather data from users of current parking
systems to understand their preferences, the challenges they face, and their
perceptions of automated parking payment solutions. This data will offer
valuable insights into the real-world applicability, effectiveness, and user
acceptance of the proposed system, ensuring that it meets the needs and

expectations of the target users.

1.6.2 Development Approach

The development approach for this project will be based on the Scrum
methodology. Although the team consists of a single developer, the principles
of Scrum will still be applied to structure the development process effectively.
The project will be broken down into smaller, manageable tasks that can be
completed in short, time-boxed intervals known as sprints, typically lasting one
to two weeks. Each sprint will start with a planning phase, where objectives and
tasks for the upcoming period are defined. Daily stand-up meetings, even if brief,
will be used to assess progress, address challenges, and ensure that the project
stays on track. At the end of each sprint, a review will be conducted to assess
the deliverables and make adjustments based on feedback or new insights. The
project backlog will be maintained to track tasks and features, which will be
prioritized based on the system’s requirements and objectives. This approach
will allow for continuous improvement of the system, incorporating feedback
and ensuring that all aspects of the application, from vehicle recognition to the
user interface, are developed efficiently and meet the necessary specifications.
By applying Scrum principles, the development process will remain flexible,
enabling the project to adapt to any challenges or changes in scope while

ensuring steady progress and the delivery of a functional system.

1.7 Scope and Limitations of the Study

The scope and limitations of this study outline the key components and
boundaries of the project. This section will cover the specific modules addressed,
the target users, and the development tools, languages, and frameworks
employed in the project. It will also discuss the project limitations, including
any constraints in functionality or technology, as well as aspects that are

intentionally out of scope for this research. This provides a clear understanding
of the project's focus while acknowledging areas that fall outside its current

Scope.

1.7.1 System Modules
The system consists of several key modules, each tailored to specific user roles,

ensuring that all users can perform their tasks efficiently.

1.7.1.1 Driver Module

This module is designed for vehicle owners and general users. It includes
functionalities such as vehicle registration, license plate management, viewing
parking availability, transaction history, and managing payment methods. The
module supports integration with the automated recognition system to enable

seamless entry and exit based on license plate and vehicle attribute detection.

1.7.1.2 Parking Operator Module

This module allows authorized parking operators to register and manage parking
facilities. Operators can input and update parking lot details, edit pricing rates,
and monitor the operational performance of their lots through analytical tools.
The system ensures that any updates to lot information or pricing are subject to

admin approval for validation and standardization.

1.7.1.3 Admin Module

The admin module provides centralized control of the system. It includes
features for managing user accounts for both drivers and operators, approving
or rejecting parking operator registrations, and verifying changes to parking lot
information or rates. This module also includes analytics and reporting tools for

overall system monitoring.

1.7.1.4 Multimodal LLM-based License Plate and Vehicle Attribute
Recognition Module

This module uses multimodal large language models to perform automated

recognition of license plates and vehicle attributes such as make, model, and

color. It enhances security and reduces fraud by cross-verifying plate numbers

with vehicle attributes. The system leverages image and text understanding

capabilities of LLMs to ensure high accuracy in diverse real-world

environments, such as low light or obstructed views.

1.7.2

Target Users

The system is designed to serve three main types of users.

(i)

(i)

(iii)

1.7.3

Drivers. These are the primary end-users who use the application to
register their vehicles, manage payment preferences, view transaction
history, and receive support for any parking-related issues. The system
aims to simplify their parking experience through automated license
plate recognition and secure payment handling.

Parking Operators. These users represent parking lot management
entities. They will use the system to register and manage their parking
lots, set parking rates, and view analytics related to usage and revenue.
Operators can also raise support tickets and handle operational queries
through the system.

Administrators. The admin role is responsible for overseeing the
platform. This includes managing user accounts, approving or rejecting
parking operator registrations and rate changes, monitoring system
analytics, and resolving submitted support tickets. Administrators

ensure that the platform remains secure, fair, and operationally efficient.

Out-of-Scope

The following aspects are beyond the scope of this project.

(i)

(i)

Face Recognition or Biometric Authentication. The project will focus
solely on LPR and Vehicle Attribute Recognition, without incorporating
biometric authentication methods such as facial recognition.

Hardware Implementation. The project does not involve the
development or integration of physical devices such as cameras, sensors,
or gate control systems. It will assume that the image inputs are already

captured and available for processing.

10

1.7.4 Project Limitations
While this project aims to enhance parking automation using Al-based LPR and
Vehicle Attribute Recognition, it is subject to the following limitations.

(1) Simulation Environment. The system will be developed and tested in a
simulated environment for academic purposes. Real-world deployment
factors such as network infrastructure, environmental unpredictability,
and large-scale user traffic are not fully considered.

(i) Hardware Constraints. The system will not include physical installation
of cameras or sensors. Instead, pre-recorded images or uploaded data
will be used for testing the LPR and vehicle attribute modules.

1.7.5 Development Tools, Languages, and Frameworks

This project will utilize a combination of tools and frameworks across both
frontend and backend development. Visual Studio Code will serve as the
primary code editor. The frontend will be developed using React Native Web,
allowing for cross-platform access via both mobile and desktop browsers. The
backend will be built using Laravel, a PHP framework, while PostgreSQL will
be used for the database system. For Al-based recognition, Gemini 2.5 Flash, a
multimodal large language model, is employed to identify license plates and

vehicle attributes by processing both visual and textual inputs.

11

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter reviews key technologies and methods related to license plate and
vehicle attribute recognition, with a focus on their role in automated parking
systems. It covers traditional, machine learning, deep learning, and emerging
large language model-based approaches. In addition, it examines existing
parking payment applications, relevant software development practices, and
development frameworks to provide a foundation for system design and

implementation.

2.2 Why Improve Current License Plate And Vehicle Attribute
Recognition?

License plate recognition and vehicle attribute recognition are important for
systems like toll payments, parking management, traffic monitoring, and law
enforcement. However, many current systems still face problems, especially in
real-world conditions such as poor lighting, unclear images, occlusion, or
different plate formats. Traditional methods often make mistakes and may not
recognize important vehicle details like the make, model, or color. With the
growing number of vehicles worldwide, which is estimated to surpass 2 billion
by 2040, the demand for more reliable and scalable recognition systems is
increasing (Manzoor, Morgan and Bais, 2019). Therefore, there is a clear need
to improve existing LPR and vehicle recognition technologies to make them
more accurate, reliable, and suitable for real-time use. This section explains the
problems with current systems, compares older methods with newer Al-based
approaches, and shows why better solutions are needed.

12

2.3 Traditional Approaches to License Plate and Vehicle Attribute
Recognition

2.3.1 Manual Observation

One of the earliest ways to identify vehicles was by having officers or staff
visually check vehicles and record them down, or match the license plate
numbers with existing vehicle registration databases to find details of the
vehicle, such as the car's make, model, and owner. Some places still use this
method, especially where automated systems are not available. However,
manual checks are often unreliable because humans make mistakes, get tired, or
struggle with poor lighting, bad weather, or fast-moving traffic. It’s also slow
and not practical for busy areas or smart city systems, where quick and accurate

identification is needed.

2.3.2 Traditional License Plate Recognition

Traditional LPR systems are based on conventional computer vision techniques.
They follow a step-by-step process that includes capturing an image, extracting
the feature or region of interest (ROI), preprocessing by grayscale conversion
and noise reduction, license plate localization, character segmentation, and OCR
using template matching or rule-based logic (Nadira Muda et al., 2007;
Abdullah et al., 2021).

A major drawback is that these systems rely heavily on hand-crafted
features and are generally optimized for specific types of license plates. For
example, template matching works well when characters on the plate are
standardized in font and spacing, but tends to fail when dealing with non-
standard formats, stylized fonts, or variations in character alignment
(Montazzolli and Jung, 2018). In practice, these systems struggle with several
real-world challenges, including occlusions, motion blur, low-resolution images,
and plate distortions caused by camera angles or vehicle speed (Zherzdev and
Gruzdev, 2018).

Furthermore, traditional LPR systems cannot identify vehicle attributes
such as make, model, or color, which limits their use in more complex
surveillance and intelligent transportation applications. Their dependency on a

single modality, which is usually a 2D grayscale image, also makes them less

13

robust in dynamically changing environments, especially those involving bad
lighting or weather conditions (Abdullah et al., 2021).

Due to these limitations, research has gradually shifted toward Al-
based approaches, which offer greater flexibility, scalability, and robustness in

diverse real-world conditions.

2.4 Machine Learning (ML) Approaches

Machine learning techniques were one of the first approaches to be applied to
Automatic Vehicle Recognition (AVR) systems. These methods focus on
handcrafted feature extraction, where specific visual patterns are manually
engineered and then used for classification tasks. ML models have been widely
applied in vehicle make and model recognition (VMMR), particularly in
constrained or controlled environments.

The main handcrafted feature descriptors used in ML-based systems
are Scale-Invariant Feature Transform (SIFT), Speeded-Up Robust Features
(SURF), and Histogram of Oriented Gradients (HOG). SIFT identifies unique
keypoints by finding local extremes in scale-space and describes them using
gradient histograms. It works well across different scales, rotations, and
moderate viewpoint transformations (Lowe, 2004). SURF, a faster alternative
to SIFT, locates key points in an image by analyzing distinctive features such
as edges, corners, and blobs. It uses integral images and an approximate Hessian
matrix to quickly detect keypoints while remaining stable against scale and
rotation (Bay, Tuytelaars and VVan Gool, 2006). HOG focuses on analyzing the
gradients and orientation of pixel intensity changes in an image, making it
effective for identifying object shapes such as vehicle outlines (Dalal and Triggs,
2005). These features are typically extracted from segmented vehicle regions
and then passed to machine learning algorithms used for classification, such as
Support Vector Machines (SVM), K-Nearest Neighbors (KNN), random forest,
or multi-layer perceptron (MLP) for vehicle type or model classification.

In the context of VMMR, handcrafted feature-based ML systems have
shown reasonable performance in scenarios with good lighting, minimal

occlusion, and consistent viewpoints. Their simplicity, low computational

14

overhead, and interpretability make them suitable for embedded or resource-
limited environments (Aly, 2008).

However, ML-based methods have several limitations. These methods
require significant effort in feature engineering and may not capture complex
features effectively. They also lack the adaptability to complex, real-world
conditions such as varying lighting, occlusions, and diverse vehicle models
(Sochor, Spafihel and Herout, 2017). Moreover, separating feature extraction
and classification steps prevents the system from being optimized, which often
leads to weaker recognition performance in challenging conditions. Due to these
limitations, ML approaches are increasingly being replaced or supplemented by
deep learning models that automatically learn hierarchical feature

representations from raw data, offering superior generalization and accuracy.

2.5 Deep Learning (DL) Approaches

Deep learning techniques have significantly advanced the performance of AVR,
particularly in LPR and Vehicle Attribute Recognition (VAR). These methods
eliminate the need for manual feature engineering by allowing models to learn

directly from image data.

2.5.1 Deep Learning in Vehicle Detection

Obiject detection models for autonomous vehicles are categorized into one-stage
and two-stage detectors, each with distinct advantages and trade-offs in terms
of speed and precision. This section reviews well-known models in both
categories, focusing on their architectures, strengths, and applications in vehicle

detection.

2.5.1.1 Two-Stage Detectors

Two-stage detectors are object detection algorithms that use a two-step process
for detecting objects in images, offering high accuracy but requiring more
computational resources than one-stage detectors. In the first stage, the
algorithm generates potential ROIs in the image that might contain objects. This
is done using techniques like Selective Search or Region Proposal Networks

(RPN) (Gayen et al., 2024). These regions, called region proposals, narrow

15

down the areas in the image that are most likely to contain an object, reducing
the search space for the next step. The second stage involves classifying each
region proposal to determine if it contains an object and then refining the
bounding box around the object (Gayen et al., 2024). The model predicts
adjustments to the coordinates of the proposed bounding box to improve its
accuracy. Two-stage detectors offer higher accuracy, especially for small object
detection, as they focus computational resources on promising regions.
However, they tend to be slower and more resource-intensive than one-stage

detectors.

2.5.1.1.1 Faster R-CNN

Faster R-CNN is a widely adopted and powerful two-stage object detection
framework that improves both speed and accuracy over earlier region-based
Convolutional Neural Network (CNN) models. It is particularly known for its
ability to accurately localize and classify objects in an image by combining a
RPN with a Fast R-CNN detection head in a single and unified architecture
(Figure 2.1).

classifier

pt‘tﬁpl‘?/ /
Region Proposal Network :
"Eu ure maps

oy lavers

y Y 4

Figure 2.1: Faster R-CNN network structure (Ren et al., 2017)

16

The architecture of Faster R-CNN is divided into two main stages. First,
an input image is passed through a backbone convolutional neural network, such
as VGG16 or ResNet, to extract a feature map. This feature map is then fed into
the RPN, which slides over the map to generate multiple anchor boxes of
varying scales and aspect ratios. For each anchor, the RPN predicts an
objectness score, which indicates the presence of an object, and performs
bounding box regression to refine the coordinates. To reduce redundancy, Non-
Maximum Suppression (NMS) is applied to eliminate overlapping proposals,
resulting in a set of high-confidence candidate regions (Ren et al., 2017).

In the second stage, these candidate regions are fed into the Fast R-
CNN module. Through a ROI pooling layer, each region is converted into a
fixed-size feature vector regardless of its original shape. These vectors are then
passed through fully connected layers that perform two tasks, which are
classifying the object and further refining its bounding box. Faster R-CNN
enables end-to-end training of both the RPN and the Fast R-CNN detector,
allowing for joint optimization through backpropagation. The loss function
combines classification loss from the RPN’s objectness scores and bounding
box regression loss for both the RPN and the Fast R-CNN detection network,
ensuring simultaneous learning of region proposals and object detection for
improved accuracy (Ren et al., 2017).

The final output of Faster R-CNN includes predicted class labels,
bounding box coordinates, and confidence scores for each detected object. Due
to its efficient design, which reuses features between the RPN and Fast R-CNN,
the model significantly outperforms earlier methods that relied on slow proposal
algorithms like Selective Search. It typically achieves reasonable speeds of 5 to
17 frames per second while also maintaining high accuracy, depending on the
complexity of the network and the hardware used (Ren et al., 2017). Its robust
performance has made it a benchmark for object detection tasks, including

applications like vehicle detection, face recognition, and surveillance.

17

2.5.1.2 One-Stage Detectors

One-stage detectors are object detection algorithms that simplify the object
detection process by eliminating region proposal generation, which is common
in two-stage detectors (Gayen et al., 2024). One-stage detectors directly predict
the location of objects and their corresponding class labels in a single step. This
is achieved using a single feed-forward, fully convolutional network that
outputs both bounding boxes and object classifications for all potential objects
in the image (Carranza-Garcia et al., 2021).

One-stage detectors are known for their speed and efficiency. These
models process the entire image at once, predicting object classes and bounding
box locations for every region of the image simultaneously. This approach
makes them much faster than two-stage detectors, as they do not require the
additional step of generating region proposals. However, one-stage detectors
traditionally faced challenges due to the imbalance between objects of interest
and background in images, which could negatively impact detection accuracy
(Carranza-Garcia et al., 2021).

25121 Y0OLO

You Only Look Once (YOLO) is a deep learning algorithm designed for real-
time object detection, known for its unique architecture and efficient processing.
Unlike traditional object detection methods that involve separate steps for
region proposal and classification, YOLO uses a single CNN that processes the
entire image in one pass, simplifying the pipeline.

YOLO’s architecture (Figure 2.2) is based on the GoogLeNet image
classification model. The network contains 24 convolutional layers and two
fully connected layers, making it almost 5 times larger than the ZF-5 used in
SPP-Net and Faster R-CNN (Wu, 2018). The process in YOLO starts with
image input, where the original image is fed into the system. Following this, a
preprocessing step is carried out, which involves resizing the image to a suitable
dimension and dividing it into an S x S grid, which prepares the image for
analysis by the neural network.

18

,.__]-._I
y K\
LLF] r—
3t
|E_] o Jl y —
m B e EL \
N
USSP Y w— N
L F: " \
- 24 - As 7 s y
= 7 7 ¥
K3 W FLTY FTE) 7] Tora o a0v =
Conv. Layer Conv. Layer Comv. Layers Conv. Layers Conv. Layers Comv. Layers Conn. Layer Conn. Layer
TuF xbd-er2 3I=3x192 1=1x128 Tx1x256 7 .y 1=1x512 * AxIx1024
Mexposl Laysr Maxpos| Layer 3x3x284 3x3x812 3x3x1024 22321024
25222 2u2-2 I1x12256 112512 31024

IxIn512 IxIx1024 3xIx 102452
Maspecl Laysr Maguis] Layer
2x22:2 Zx2e2

Figure 2.2: YOLO architecture (Wu, 2018)

Next, the image passes through a CNN that includes several layers such
as convolutional layers, pooling layers, fully connected layers, and dropout
layers. Each grid cell is then responsible for predicting bounding boxes and class
probabilities. A bounding box includes five parameters: the x and y coordinates
representing the center of the box, the width (w) and height (h) relative to the
full image, and a confidence score (Kang et al., 2025).

For every predicted box, a confidence score is calculated to estimate
how likely it is that the box contains an object and how accurate the predicted
location is. This confidence score is based on how much the predicted box
overlaps with the actual object (measured using Intersection over Union, or 1oU).
In addition, each grid cell also predicts the probability that the object belongs to
a certain class. By combining the confidence score and the class probability, the
model determines the overall likelihood that a particular object is correctly
detected and classified.

After processing by the convolutional neural network, the model
outputs a set of predictions, which are then refined in a post-processing step.
This includes applying NMS to eliminate overlapping bounding boxes and
retain only the most confident detections. The remaining, most confident
predictions are then combined and mapped back onto the image to produce the
final output, which shows the detected objects along with their corresponding

bounding boxes and class labels (Kang et al., 2025).

19

2.5.1.2.2 Single Shot Multibox Detector (SSD)

SSD, also known as Single Shot Multibox Detector, is a widely used deep
learning framework for real-time object detection that strikes a strong balance
between speed and accuracy. As a one-stage detector, SSD performs object
localization and classification in a single forward pass through the network,
making it significantly faster than two-stage detectors like Faster R-CNN.

The SSD architecture (Figure 2.3) consists of three primary
components. First, it uses a base network, often adapted from established CNN
models such as VGG16, to extract features from input images. Second, it
includes a feature extractor that utilizes multiple layers of feature maps at
different resolutions, allowing the model to detect objects of varying sizes.
Finally, the detection layer comprises convolutional layers that predict both

bounding box coordinates and class scores (Cao et al., 2020).

VCG16

Fealure extraction

1
1
1
:
300 i
1
1
1
1
1
1

5
n
n
g
g
)
z
g
=1
E
%z
X
g
-
o
Z

Classification and regression

5 k 1
512 5 256 256
Conve Convy Conwd 2 Comyd 2 Convil 2 Convll 2 Detection result

Figure 2.3: SSD architecture (Cao et al., 2020)

The input image is first resized to a standard resolution, such as
300%300 or 512x512 pixels, to maintain consistency. This image is then passed
through the base network, which generates feature maps at various levels. These
maps represent different levels of abstraction, from low-level textures in earlier
layers to high-level object representations in deeper layers. This makes it
possible to detect objects of various sizes across different layers (Cao et al.,
2020).

SSD relies on these multi-scale feature maps to handle objects of
different sizes effectively. Lower layers, such as Conv4 3, detect smaller
objects using finer detail, while higher layers, such as Conv7, focus on larger,
more abstract features. At each location in the feature maps, SSD defines several

default anchor boxes of various shapes and sizes. For each anchor, the model

20

predicts two things which are the class confidence scores for every object class
and bounding box offsets that fine-tune the predicted box location (Cao et al.,
2020).

During training, SSD uses a combined loss function, which is a
localization loss (Smooth L1) for bounding box accuracy and a classification
loss (Softmax) to match predicted classes with the ground truth. During
inference, NMS is applied to remove redundant boxes, keeping only the most

confident predictions (Cao et al., 2020).

2.5.2 Instance Segmentation in Vehicle and License Plate Recognition
Instance segmentation is a powerful computer vision technique that combines
object detection and semantic segmentation to identify and outline objects at the
pixel level with unique segmentation masks (Kattenborn et al., 2021). Unlike
semantic segmentation, which treats all objects of a class as a single group,
instance segmentation can distinguish and segment each object individually,
even in cases of overlapping or occluded objects. This makes it particularly
useful in complex situations where multiple vehicles or license plates appear
close. Instance segmentation algorithms operate in two main stages. First, they
detect objects within an image using an object detection model, which typically
involves drawing bounding boxes around objects such as vehicles or license
plates. Next, a segmentation model produces pixel-wise masks that accurately
outline the shape and boundaries of each object. This approach enables precise
separation of objects from both the background and nearby instances of the same
class.

2.5.2.1 YOLOVS Seg

YOLOvV8 Seg is an advanced instance segmentation model developed by
Ultralytics as part of the YOLO family. It extends the capabilities of object
detection by incorporating pixel-level segmentation for each detected object.
This means that in addition to drawing bounding boxes around objects such as
vehicles or license plates, YOLOvV8 Seg also generates precise segmentation
masks that outline the shape of each object instance (Ultralytics, 2023a). The

model operates in real-time and is optimized for applications that require both

21

speed and accuracy, such as traffic monitoring, license plate recognition, and
autonomous driving systems. YOLOvV8 Seg supports training and inference on
custom datasets, allowing developers to fine-tune it for specific classes relevant

to their project.

2.5.2.2 Segment Anything (SAM)

The Segment Anything Model (SAM), developed by Meta Al, is a promptable
segmentation model designed to segment any object in an image, even without
class labels or prior training on specific objects. SAM can generate
segmentation masks in response to user-provided prompts, such as clicks,
bounding boxes, or even text descriptions. It uses a powerful image encoder and
a flexible prompt encoder to handle a wide range of inputs and produce high-
quality masks. One of SAM's most notable features is its ability to perform zero-
shot segmentation, meaning it can generalize to new, unseen objects at inference
time (Ultralytics, 2023b). This makes it highly versatile for research, labeling
tools, and applications that require segmentation without being limited to
predefined object classes. However, SAM is not designed for real-time tasks

and does not include object detection capabilities.

2.5.2.3 Comparison of Segmentation Model
Although both YOLOvV8 Seg and SAM are used for segmentation tasks, they
are built for different objectives and perform differently in practical scenarios.
YOLOV8 Seg is trained to detect and segment predefined object classes, such
as vehicles or license plates, in a single, end-to-end pipeline. This makes it
especially suitable for high-speed applications where both accuracy and
performance are critical, such as smart parking systems. In contrast, SAM is a
prompt-based segmentation model designed for general-purpose segmentation
across a wide range of domains as it can segment objects it has never seen during
training. However, it is not optimized for real-time processing and lacks built-
in object detection, meaning it must be combined with other models to
automatically identify and segment specific objects.

In summary, YOLOvV8 Seg excels in scenarios where speed,

automation, and predefined object classes are essential, while SAM is more

22

suited for exploratory or manual segmentation tasks where flexibility and
generality are required. For this project, where the goal is to automatically
identify and segment vehicles and license plates in real-time, YOLOVS8 Seg is a

more practical and efficient choice.

Table 2.1: Table of comparison of segment models

Feature YOLOVS8 Seg Segment Anything
(SAM)
Task Instance segmentation | Promptable
and detection segmentation only
Real-time performance | Yes No as it is slower and

more complex

Predefined classes Yes No

Requires prompts No Yes

Use Case Real-time tasks with | Interactive or general
known classes segmentation

2.5.3 Deep Learning for OCR in LPR

Optical Character Recognition plays a crucial role in LPR by converting
detected license plate images into readable alphanumeric text. While traditional
OCR techniques were widely used in earlier systems, modern LPR applications
are increasingly adopting deep learning-based OCR methods due to their
superior performance in handling distorted, low-resolution, or variably styled
license plates. This section explores three widely used OCR approaches, which
are Tesseract OCR, CRNN, and Transformer-based models.

25.3.1 Tesseract OCR

Tesseract is a popular open-source OCR engine developed by HP and
maintained by Google. It primarily uses a traditional rule-based and pattern-
matching approach, making it lightweight and easy to implement. Recent
versions, such as those from 4.0 onwards, incorporate a Long Short-Term
Memory (LSTM) neural network, enhancing recognition accuracy on distorted
or variably spaced text (Tesseract Documentation, n.d.). In LPR systems,

23

Tesseract has been used for recognizing characters on plates due to its support
for multiple languages and high configurability.

However, Tesseract’s performance is limited even in newer versions when
dealing with real-world license plates that contain noise, blur, occlusions, or
stylized fonts (Sporici, Cusnir and Boiangiu, 2020). It also lacks deep contextual
modeling, which can lead to misrecognition of visually similar characters such
as ‘0’ and ‘O’ or ‘8" and ‘B’. Despite its limitations, Tesseract is still widely
used in lightweight or edge applications, and it is sometimes combined with
modern object detection models in hybrid LPR systems to balance efficiency

and cost.

2.5.3.2 CRNN

The Convolutional Recurrent Neural Network (CRNN) is a deep learning
architecture specifically designed for sequence-based tasks like OCR. It
combines convolutional layers for feature extraction, recurrent layers, typically
LSTM, for sequence modeling, and a transcription layer using Connectionist
Temporal Classification (CTC) loss to generate text predictions without
requiring pre-segmented characters (Shi, Bai and Yao, 2017).

In LPR, CRNN has been widely adopted due to its ability to handle
irregular character spacing, stylized fonts, and even cursive or partially occluded
text (Shi, Bai and Yao, 2017). Its end-to-end trainable structure allows it to
generalize well across different plate styles and layouts. Moreover, its moderate
computational footprint makes it suitable for real-time applications in resource-
constrained environments. Nevertheless, CRNNs may face limitations when
handling complex layouts or sequences that require deeper contextual
understanding, where attention-based models like Transformers have shown

superior performance.

2.5.3.3 Transformers
Transformer-based OCR models, such as TrOCR and Donut, have recently
emerged as cutting-edge solutions for document and scene text recognition.

These models use self-attention mechanisms to model global dependencies in

24

the text sequence, enabling the recognition of complex, distorted, or noisy text
(Lietal., 2021).

In the context of LPR, transformers can accurately transcribe license
plates even under challenging conditions, such as low lighting, occlusion, or
irregular fonts, without requiring character segmentation. Their ability to
process entire sequences in parallel, unlike sequential models like RNNs, also
enhances speed and scalability, making them highly effective for real-time
applications (Tao et al., 2024). Furthermore, their multimodal capabilities also
allow better integration with vision-language models, making them suitable for
advanced applications in smart transportation and automated surveillance
systems.

However, despite their superior accuracy and flexibility, transformer-
based models often require substantial computational resources, including high
memory usage and processing power (Tabani et al., 2021). This presents
practical deployment challenges, especially on edge devices or in resource-
constrained environments where low latency and efficiency are crucial. In such
scenarios, lighter alternatives like CRNNs may be more suitable due to their

reduced model size and hardware demands (Khan et al., 2024).

2.5.4 Deep Learning for Vehicle Attribute Recognition

Vehicle attribute recognition, which involves make, model, and color, relies on
deep learning models to handle complex and fine-grained classification tasks.
These models work well in extracting and understanding detailed features from

images, crucial for recognizing vehicles in diverse real-world conditions.

2.5.4.1 CNN-based Models

Convolutional Neural Networks (CNNs) have been a foundation in image
recognition tasks, including vehicle attribute classification. CNNs such as
ResNet, VGG, and EfficientNet are widely adopted due to their ability to learn
hierarchical spatial features, which are crucial for distinguishing vehicle
attributes like make, model, and color. In particular, CNNs are skilled at

recognizing fine-grained details, such as the shape of a vehicle’s logo, the style

25

of headlights, or unique design cues in the grille and bumpers, which are the
elements that are often crucial for distinguishing between similar vehicle models.

The structure of CNNs is typically composed of multiple layers. One
of the layers is the convolutional layers that extract features from the input
image by applying filters. Another layer is the pooling layers that down-sample
the image to reduce computational complexity while retaining important
features. Finally, the fully connected layers combine features extracted at
different layers to make final predictions, such as vehicle make, model, and
color (Xia, Feng and Zhang, 2016).

Fully
Convolution Connected
Input Pooling __..--=~ g
1 o
O
O
o .O':".'f

\)\)
i Y

Feature Extraction Classification

Figure 2.4: CNN architecture diagram (Phung and Rhee, 2018)

The success of CNNs in vehicle recognition can be attributed to their
local receptive fields, which allow the network to focus on small, localized
patterns, such as the texture of a car logo or the shape of the wheels. Moreover,
the deep architectures of models like ResNet, which utilize skip connections,
allow them to learn from a large number of layers without losing critical
information through vanishing gradients (He et al., 2016). EfficientNet, which
balances depth, width, and resolution for optimal performance, has shown
significant improvements in terms of accuracy and efficiency (Tan and Le,
2019).

26

2.5.4.2 ViT-based Models

Vision Transformers (ViTs) represent a more recent development in image
recognition, shifting away from traditional convolutional operations to a
transformer-based approach, which was initially designed for natural language
processing (Han et al., 2023). ViTs have shown great success in image
classification tasks due to their ability to capture long-range dependencies
across the entire image. This capability makes them effective at understanding
the contextual relationships between different parts of an image (Han et al.,
2023). This is especially useful in tasks like recognizing subtle differences in
vehicle attributes, where distinguishing between visually similar makes or
models is essential.

In contrast to CNNs, which apply convolutional filters over the entire
image, ViTs divide the image into non-overlapping patches and treat each patch
as a "token™ in a sequence. These “tokens” are passed through a series of
transformer layers that use self-attention mechanisms (Figure 2.5) to assign
different levels of importance to each token (Han et al., 2023). This allows the
model to focus on crucial regions of the image, such as specific design features,
vehicle logos, or color patterns, which are essential for fine-grained vehicle

make or model recognition.

Transformer Encoder

Class Label

Zp
Transformer Encoder]
Patch + Position ¥
Embeddings_’El:l H] H:I H]
de[Linear Projection using matrix E]
P p p
Ful Fuz *un Multi Head Self-

[Split to Patches & Flatten Patches into Vectors J

Attention (MSA)

!

‘ Rest Part X,

Rest Part

l

ty

‘ Rest Part | Xu+1

Rest Part.

[

bus1

Z,

Figure 2.5: VIT Architecture and Transformer Encoder (H. Meybodi et al.,
2021)

27

Furthermore, ViTs excel at handling global contextual information,
which allows them to capture intricate details in vehicle design, such as subtle
differences in headlight shape, grille patterns, or logo positioning. This ability
allows ViTs to outperform traditional CNN models in certain tasks, particularly
when dealing with large datasets or images where understanding both local and

global features is necessary to distinguish between similar vehicle types.

2.5.4.3 Multitask Learning (MTL)

Multitask Learning (MTL) involves training a single model to predict multiple
related outputs simultaneously. The fundamental idea behind MTL is that by
sharing information across related tasks, the model can learn more generalizable
and robust representations (Figure 2.6), thereby improving overall performance
(Ruder, 2017). This approach is particularly effective when the tasks are related
and can benefit from shared knowledge, a concept known as inductive transfer,
where learning one task helps improve learning in another (Caruana, Pratt and
Thrun, 1997).

D
1 \‘. lf !
0o, Y l..'ll By
: \\) /-
E 'fr I'u Bz ’.Ebk Specific
fr |"| H Parametars
b —— A
o,/ f \
Input Demains B, Sharad

Pararmeters —
8,

Figure 2.6: Multitask learning framework (Ranjan et al., 2016)

In the context of vehicle attribute recognition, MTL is often used to
predict attributes such as make, model, and color within a unified model
architecture. Instead of training separate models for each attribute, MTL
leverages a shared feature extractor, usually a convolutional backbone, to learn
general patterns such as edges, contours, and textures. These shared features are
then passed through task-specific branches that refine predictions for each
output (Caruana, Pratt and Thrun, 1997). This design allows the model to exploit
commonalities across tasks while preserving the flexibility to specialize in each

attribute.

28

Another important aspect of MTL is parameter sharing, which is
typically implemented using either hard or soft sharing techniques. In hard
sharing, the model uses a common set of parameters, known as a shared
backbone, while soft sharing allows different models to have their parameters
but introduces constraints to encourage similarity (Caruana, Pratt and Thrun,
1997). Regardless of the approach, this shared learning process increases the
model's efficiency and robustness across tasks.

MTL offers several advantages in vehicle recognition. It reduces model
complexity by combining multiple tasks into a single network and decreases
training and inference time compared to running separate models. Moreover,
since many vehicle attributes are naturally correlated, for example, specific
models may come in limited colors or shapes, MTL can learn to capture these
interdependencies, resulting in more accurate predictions and improved
generalization.

However, MTL also has challenges. A major issue is negative transfer,
which occurs when learning unrelated or poorly aligned tasks together will
negatively affect overall model performance (Ruder, 2017). For example,
predicting color, which is a low-level feature, and identifying the vehicle make,
which may depend on high-level shape semantics, could conflict if not properly
balanced. This challenge can be mitigated through strategies such as weighted
loss functions or dynamic task balancing are often used to ensure that one task
does not dominate the learning process (Cipolla, Gal and Kendall, 2018;
Kongyoung, Macdonald and Ounis, 2020).

2.5.4.4 Fine-Grained Classification
Vehicle attribute recognition is fundamentally a fine-grained classification task,
as it requires distinguishing between highly similar vehicle makes, models, and
colors that often exhibit only subtle visual differences. Unlike coarse
classification, where the goal might simply be to recognize a car versus a truck,
fine-grained classification is more precise by noticing small visual details (Yang
et al., 2018).

To handle this, fine-grained classification focuses on small,

discriminative features, such as the shape of headlights, grille patterns, bumper

29

contours, logo positioning, or even color hues. These details are usually found
in small parts of the image, and detecting them requires high-resolution input
and advanced deep learning models, especially CNNs or ViTs.

Deep learning models are suitable for this task because they can extract
hierarchical and local features, which are essential for capturing subtle intra-
class differences. Moreover, training these models on large, diverse datasets
improves their ability to generalize and recognize vehicle variants across
different viewpoints, lighting conditions, and occlusions, which are common
challenges in real-world environments such as parking lots. By using fine-
grained classification, vehicle attribute recognition systems can achieve high
accuracy in identifying specific vehicle types, which is crucial for applications

such as intelligent parking management.

255 Summary

Deep learning approaches for LPR and vehicle attribute recognition involve
several key stages: detection, segmentation, OCR, and attribute classification.
For detection, YOLO and SSD are fast, while Faster R-CNN offers higher
accuracy but is slower. Segmentation models like YOLOvV8 Seg and Segment
Anything help isolate license plates and vehicle features. For OCR, Tesseract
OCR and CRNN are common, with transformer models showing better
accuracy and reliability. In vehicle attribute recognition, CNNs, ViT, and
techniques like multitask learning improve the recognition of vehicle details like
make, model, and color.

As outlined in the proposed solution, this project will utilize
multimodal LLMs to perform license plate and vehicle attribute recognition.
Unlike traditional deep learning models that rely on separate components for
each task, multimodal LLMs provide an integrated approach capable of
handling detection, segmentation, OCR, and classification within a unified
framework. While deep learning models remain efficient and widely adopted,
LLMs offer greater flexibility, contextual understanding, and scalability. A
hybrid approach may further enhance accuracy and reliability by combining the
strengths of both.

30

2.6 Large Language Models (LLMs)

Large Language Models (LLMs) are a subset of deep learning models designed
to understand and generate human-like text based on massive amounts of data.
These models are typically built using the Transformer architecture introduced
by Vaswani et al. (2017), which uses mechanisms such as self-attention to
capture dependencies between tokens across varying distances, enabling
context-aware representation of words. It also uses positional encoding to
capture contextual relationships between words in a sequence, which is a critical
factor since the Transformer lacks inherent sequential processing. LLMs are
pre-trained on diverse text corpora using an autoregressive objective, where the
model learns to predict the next word in a sequence by adjusting millions to
billions of parameters to minimize prediction error. Once pre-trained, these
models can be fine-tuned or prompted to perform a wide range of tasks, such as
question answering, translation, summarization, and dialogue generation. This
adaptability has driven their widespread use in natural language processing,

computer vision, and multimodal Al systems.

2.6.1 Multimodal LLMs

Multimodal Large Language Models (LLMs) extend traditional language
models by using multiple input types, such as text, images, audio, or video at
the same time. Unlike traditional LLMs that only work with text, multimodal
models combine information from various sources to perform tasks like
describing images, answering questions about pictures, or reading documents
with both text and visuals. This is done by connecting different types of
encoders, such as visual or audio encoders, with the language by feeding the
output from these encoders as prefix tokens into a frozen language model

(Tsimpoukelli et al., n.d.).

2.6.1.1 GPT-40

GPT-40 is a multimodal large language model developed by OpenAl. It is part
of the GPT (Generative Pre-trained Transformer) family of models and is
designed to handle both text and image inputs, which is a significant
advancement in Al. GPT-40 builds upon the architecture of GPT-4 by

31

incorporating improved reasoning abilities and a larger scale, enabling it to
understand and generate more refined responses across a variety of tasks. The
model uses a combination of self-attention mechanisms and positional encoding
to process and generate text, while also leveraging ViTs for visual input
processing (Chiang, 2024). Unlike previous versions of GPT, GPT-40 can
perform complex multimodal tasks, such as interpreting images and generating
text-based descriptions or answering questions based on visual content. Its
ability to handle both text and image inputs is underpinned by a unified model

architecture that merges these modalities through shared representations.

2.6.1.2 Gemini 2.0 Flash

Gemini 2.0 Flash is a multimodal large language model developed by Google
DeepMind, optimized for speed and efficiency while maintaining robust
capabilities in processing both textual and visual inputs. As part of the second
generation in the Gemini series, Gemini 2.0 Flash is more advanced than its
predecessors by delivering faster inference times and streamlined memory
usage, which makes it highly suitable for real-time applications. It utilizes
vision-language pre-training and enhanced cross-attention mechanisms to align
image and text inputs effectively, enabling high-quality responses across
multimodal tasks. Despite its lightweight nature compared to larger Gemini
models, Gemini 2.0 Flash excels in tasks such as visual question answering,
image captioning, and multimodal reasoning, demonstrating significant
improvements in processing speed without compromising accuracy. Its design
prioritizes low latency, making it particularly well-suited for mobile and edge

deployments where both speed and context-aware responses are critical.

2.6.1.3 Claude 3.5

Claude 3.5 Sonnet is a multimodal large language model developed by
Anthropic. It builds upon the Claude 3 model family, introducing enhanced
performance across various tasks, including coding, visual reasoning, and
complex instruction following. It integrates both text and image processing
capabilities, which allows the model to perform complex tasks that require

reasoning across multiple types of data, such as visual question answering,

32

image captioning, and generating detailed descriptions based on visual inputs.
By using advanced ViTs and cross-modality attention mechanisms, Claude 3.5
can analyze images and combine them with textual information, enhancing its

ability to understand and respond to tasks that involve both texts and images.

2.6.1.4 LLMs on License Plate Recognition

Although Gemini 1.5 has been deprecated for new projects as of April 29, 2025,
its performance remains relevant for comparison. For character-level accuracy,
GPT-40 demonstrates the highest character-level accuracy at 97.1%, correctly
identifying 1,700 out of 1,751 tested characters (AlDahoul et al., 2024). This
excellent performance indicates that GPT-40 is highly adept at recognizing text
from images. It is particularly well-optimized for complex OCR tasks, including
situations with poor image quality or diverse fonts. Meanwhile, both model
from Gemini 1.5, including Flash and Pro, achieves a 93.8% character-level
accuracy, identifying 1,643 out of 1,751 tested characters (AlDahoul et al.,
2024). While it falls behind GPT-4o, it still represents strong performance. The
gap suggests that GPT-40 may be more specialized for text recognition tasks,
but Gemini 1.5 remains a competent model for general OCR tasks. It’s
particularly effective in processing and reasoning with multimodal inputs and
can still handle various text recognition scenarios efficiently. Lastly, Claude 3.5
achieves a 92.8% character-level accuracy, correctly identifying 1,625 out of
1,751 tested characters (AlDahoul et al., 2024). While slightly lower than both
GPT-40 and Gemini 1.5, Claude 3.5’s accuracy is still solid. It is adequate for
many OCR applications but may not be as precise in extracting text from images
as the other two models, particularly in complex or low-quality scenarios.

In LPR, GPT-40 demonstrates the best performance with an 86% plate-
level accuracy, recognizing 222 out of 258 plates (AlDahoul et al., 2024). Its
strong performance suggests that the model is well-optimized for tasks
involving visual input and complex plate recognition scenarios. Next, Gemini
1.5 Pro achieves a 71.7% plate-level accuracy, recognizing 185 out of 258 plates
(AlDahoul et al., 2024). While this is lower than GPT-4o, it still demonstrates
reasonable performance. Despite this, it remains a viable option for applications

where plate recognition is not the sole focus but is still required. The Gemini

33

1.5 Flash model performs slightly better than the Pro in license plate recognition,
with a 77.5% plate-level accuracy, recognizing 200 out of 258 plates (AlDahoul
et al., 2024). This result indicates that the Flash variant is optimized for speed
without a significant sacrifice in accuracy. The Flash model’s focus on real-time
applications allows it to strike a balance between recognition accuracy and
processing efficiency. Lastly, Claude 3.5 achieves a 72.1% plate-level accuracy,
recognizing 186 out of 258 plates (AlDahoul et al., 2024). Although its
performance is still lower than GPT-40 and Gemini 1.5 models, it still shows
reasonable capability in recognizing plates. Additionally, Claude 3.5 is known
for its speed, operating at twice the pace of its predecessor, making it ideal for
scenarios where quick processing is more critical than achieving the highest

recognition accuracy.

Table 2.2: Table of accuracy results between LLMs (AlDahoul et al., 2024)

Results GPT-40 Gemini 1.5 | Gemini 1.5 | Claude 3.5
Flash Pro

Character- 97.1% 93.8% 93.8% 92.8%

Level

Accuracy

Plate-Level | 86% 77.5% 71.7% 72.1%

Accuracy

2.6.1.5 LLMs on Vehicle Attribute Recognition

At present, there is no existing research that specifically explores the use of
LLMs for Vehicle Attribute Recognition, such as identifying a vehicle’s make,
model, color, or license plate directly from images. While multimodal LLMs
like GPT-40, Gemini, and Claude 3.5 have demonstrated capabilities in
understanding both text and images, most studies and practical applications
involving vehicle attribute recognition still rely on traditional computer vision
models, such as CNNs, YOLO, or Transformers like ViT, rather than LLMs.
This indicates a research gap, where the application of multimodal LLMs to

vehicle attribute recognition remains largely unexplored. The potential for these

34

models to handle such tasks, especially when fine-tuned on relevant datasets,

presents an emerging opportunity for future research.

2.6.1.6 Comparison of the Multimodal LLMs

GPT-40, Gemini 2.0 Flash, and Claude 3.5 are all multimodal models capable
of handling both text and image inputs. GPT-40 offers strong language
generation and recently introduced fine-tuning with images, making it suitable
for tasks like vehicle attribute recognition. Gemini 2.0 Flash also supports fine-
tuning through Google Cloud's Vertex Al, excelling in real-time image and text
processing, but may incur higher costs due to cloud-based services. Claude 3.5,
while strong in text generation and ethical Al, is less mature in image processing
and lacks robust fine-tuning capabilities for images, making it less ideal for
image-heavy tasks like vehicle recognition. Overall, GPT-40 and Gemini 2.0
Flash are more suited for vehicle recognition, offering flexible fine-tuning with
images, while Claude 3.5 is better suited for text-focused or ethical Al

applications.
Table 2.3: Table of comparison between LLMs
Feature GPT-40 Gemini 2.0 Flash | Claude 3.5
Developed by OpenAl Google Anthropic
DeepMind
Input Modalities | Text, image, | Text, image, | Text, image
audio code
Output Text, audio Text Text
Modalities
Fine-Tuning Available via | Available via | Available vie
with Images OpenAl API Google Cloud’s | Claude.ai
Vertex Al
Strengths Strong language | High Focus on safety
understanding performance and strong text
with fine-tuning | with cloud | generation
support scalability

35

Limitations Cloud-based Cloud-based, Limited image

which can be | may incur costs | processing &

costly fine-tuning
options
Pricing Input price of | Input price of | Input price of

$2.50 per million | $0.75 per million | $1.50 per million
tokens, and | tokens, and | tokens, and
output price of | output price of | output price of
$10.00 per | $3.00 per million | $6.00 per million
million tokens. | tokens. tokens.

Context length is
128,000 tokens.
API Availability | Yes Yes Yes

2.7 Review of Similar Parking Payment Application
This section reviews similar parking payment applications, focusing on their

features, technologies, and functionalities.

2.7.1 Touch ‘n Go eWallet

Touch 'n Go eWallet (TNG eWallet) is a Malaysian digital wallet and online
payment platform established in July 2017 through a joint venture between
Touch 'n Go and Ant Financial Services Group (Touch 'n Go, n.d. b). The app
supports a wide range of digital transactions, including payments using QR
codes, bill payments, mobile top-ups, money transfers, and ticket purchases for
various transport services and events. It is also closely integrated with
transportation services, enabling payments for tolls, e-hailing, and car-sharing
through features like RFID and PayDirect.

In the context of parking, TNG eWallet offers multiple solutions to
enhance convenience and automation. Users can access LPR-enabled parking
zones where license plates are automatically recognized for entry and exit, use
QR code parking at supported facilities, pay for street parking, and purchase
insurance coverage that protects against unexpected incidents while their

vehicle is parked.

36

3449

< Search

% LPR Parking

Parking

@ﬁ Parkinsure

QR Parking

ﬁ Street Parking

Figure 2.7: TNG eWallet Parking Search Result

2.7.1.1 LPR Parking (License Plate Recognition)

TNG eWallet's LPR Parking feature allows for seamless, ticketless entry and
exit at participating parking facilities. Upon arrival at an LPR-enabled parking
lot, cameras automatically recognize your vehicle's license plate, lifting the
barrier without the need for a physical ticket or card. Upon exit, the system
calculates the parking fee and deducts it directly from your eWallet balance
(Touch ’n Go, n.d. a).

To activate it, users should tap on "LPR Parking", select “Add vehicle
now”, and follow the instructions shown to perform the registration of the
vehicle. Users will need to agree to auto-debit terms and confirm with their 6-
digit PIN. Lastly, users will get a push notification once the registration for LPR
Parking is successful. A user can register up to 10 vehicles under their account
and manage their LPR settings individually. While there is no minimum balance
required to enter an LPR-enabled parking lot, sufficient funds must be available
in the eWallet before exiting to avoid delays. Currently, the LPR Parking feature
is available in only 12 locations, and they are working to add in more car parks
in Malaysia that support LPR technology (Touch ’n Go, n.d. a).

37

LPR Parking

Pay for parking without

’:ﬁ = b
cash, card or queueing ﬁ'
=

Vehicles ol
by
e e @
e plat
il be automatically .
il o w
= «©
Additienal notes
Enable LPR to pay parking @ "yure e
automatically from eWallet
Add all registered vehicles now 1o enjoy a seamiess parking = Bk e
payment on your next visit.
] Benefits of LPR parking
g
~E N ®) | o neod o open your window
- a— gt
n and Condition t
ar of 1 o r d 1o Lsa b s = Skip the queus
/
- ! { Add vehicle
Close
—_— — —

Figure 2.8: TNG eWallet LPR Parking Register Vehicle Steps (Wong, 2025)

2.7.1.2 QR Parking

The QR Parking feature enables a smooth and ticketless parking payment
experience through TNG eWallet. Instead of using physical tickets, users scan
a QR code at both the entry and exit points of the parking facility. When a user
enters a parking facility, the parking reader scans the user’s QR code via the
eWallet’s “Pay” function. This process is repeated during exit, allowing the
system to calculate the duration of the parking session. If a payment is required,
the fee is automatically deducted from the user's eWallet balance, and a payment
notification is sent to the user. Although there is no minimum balance required,
it is advisable to maintain sufficient funds in the eWallet to ensure successful
payment processing. If the balance is insufficient at the time of exit, the barrier

gate will remain closed until payment is completed (Touch 'n Go, n.d. c).

38

Figure 2.9: TNG eWallet QR Parking Pay Screen (Rozlan, 2023)

2.7.1.3 Street Parking

Touch 'n Go (TNG) eWallet offers a convenient and cashless solution for on-
street parking payments across various municipalities in Malaysia. This feature
eliminates the need for physical parking meters or paper tickets, allowing users
to manage their parking sessions directly through the TNG eWallet app. The
app utilizes the device's location services to identify nearby parking zones. This
system is currently operational in multiple areas, including Kuala Lumpur,
Selangor, Putrajaya, Kota Bharu, and Subang Jaya, among others. Users are
advised to check the list of participating local councils within the app to ensure
coverage in their desired parking location (Touch ’n Go, n.d. d).

To use the street parking payment feature, users can tap on “Street
Parking” within the “Transport” section or search for it on the TNG eWallet app.
The app uses GPS to detect nearby supported parking zones. To begin, users
must register their vehicle number plate within the app, which will be used to
associate and track the parking session with the correct vehicle. Once the vehicle
is registered, users can select their parking location and specify the desired
duration for their parking session. Depending on the regulations set by the local
authority, parking may be booked by the hour or by the day. The app will display
the available booking options and the corresponding fees based on the selected
zone. These fees are determined by the respective municipal councils and may
vary by location and duration. After reviewing the parking details, users can
confirm the booking. The parking fee is then automatically deducted from the

user’s eWallet balance. A booking is only confirmed once payment is

39

successfully processed, and a confirmation screen will appear to indicate that
the session has started. Users must ensure sufficient balance is available in the
eWallet before booking. In addition, the app allows users to monitor their active
parking sessions and, if necessary, extend the duration without returning to their
vehicle (Touch 'n Go, n.d. d).

2.7.1.4 Parklnsure

TNG Parklnsure is a Personal Accident (PA) insurance or takaful subscription
plan offered by Touch 'n Go, designed to provide additional coverage on top of
standard motor insurance when using Touch 'n Go cards at TNG-enabled
parking sites. It offers protection for incidents occurring within parking
compounds, including accidental death or permanent disablement, loss or
damage of personal belongings due to accidents, snatch theft, forcible car break-
ins, and car accidents. The plan is provided by Allianz General Insurance
Company (Malaysia) Berhad for conventional insurance and Zurich General
Takaful Malaysia Berhad for takaful coverage (Touch ’n Go, n.d. e). Users can
subscribe to Parklnsure through the Insurance section or search for it on the
Touch 'n Go eWallet app. The plan costs RM5 per month and is renewed
monthly. To be eligible for coverage, users must link their Touch 'n Go card to
the Parkinsure plan and use the same card to enter and exit TNG-enabled

parking sites.

2.7.2 JomParking

JomParking is a smart parking app developed in Malaysia that provides a
cashless and convenient solution for both on-street and off-street parking. By
combining digital payments with real-time parking management, the app
removes the need for physical tickets or cash, making parking much easier for
users.

For on-street parking, the app uses GPS to detect the user's current
location. Users select their vehicle and desired parking duration, then confirm
the transaction. A countdown timer displays the remaining time, and a
notification is sent 15 minutes before expiration. This gives users the chance to

extend their parking remotely without needing to go back to their vehicle. On-

40

street parking is supported in only nine areas managed by local councils
(JomParking, n.d. b).

For off-street parking, users select the parking zone within the app. A
QR code is generated, which is scanned at the entrance and exit of the parking
facility. The parking fee is automatically deducted from the user's token balance
upon exit. JomParking also offers monthly parking passes for specific zones,
providing a convenient solution for regular commuters (JomParking, n.d. b).
Off-street parking is supported at prominent locations such as Terminal
Bersepadu Selatan (TBS) and Gurney Mall @ Residensi UTMKL in Kuala
Lumpur (Apple, n.d. b).

Other helpful features include compound management, where users
can view and pay parking fines directly in the app. The app also supports
multiple vehicle registrations under one account, making it suitable for users
who own or manage more than one car. All parking transactions are recorded
within the app, allowing users to track their parking activities and payments.
JomParking provides reminders for vehicle insurance renewals and real-time
notifications for session expiry, payment confirmations, and promotional
updates.

JomParking operates on a token-based system, where users purchase
tokens using various payment methods such as online banking, credit/debit
cards, or e-wallets. These tokens are then used to pay for parking sessions,

monthly passes, and compounds (JomParking, n.d. a).

2.7.3 ParkEasy
ParkEasy is a Malaysian mobile application designed to help users find and
reserve parking spots ahead of time, especially in shopping malls and
commercial areas. One of its main features is the parking reservation system,
where users can select their location and reserve a parking spot ahead of time.
ParkEasy also supports electric vehicle (EV) charging bay reservations,
allowing EV owners to book charging spots in advance.

Furthermore, users can easily manage their reservations within the app,

including checking and canceling reservations. The app provides clear

41

navigation instructions to the reserved parking spot and uses a parking lock
system to ensure the spot remains available until the user's arrival.

Moreover, the app operates on a credit-based system, where users can
purchase credits to make reservations. Payments can be made using credit or
debit cards and online banking. New users receive free credits upon registration,
and more credits can be earned through referral programs and promotional codes.
ParkEasy also provides free insurance coverage against break-ins or theft for
users parking at participating malls, offering an added layer of security
(ParkEasy, 2016).

Lastly, ParkEasy offers memberships such as Shell Recharge Gold,
MyEVOC, and BonusLink (ParkEasy, n.d.). Shell Recharge Gold gives users
longer reservation grace periods and cheaper charging rates at Shell Recharge
stations. The MyEVOC membership provides special benefits for EV owners,
making it easier and more convenient to charge their vehicles. With BonusL.ink,
users can earn points for every transaction made through the ParkEasy app by

linking their accounts.

2.7.4 Flexi Parking

Flexi Parking is a Malaysian mobile app developed by Leading Innovative
Technologies and Systems Sdn Bhd (LITS). It helps users pay for both on-street
and off-street parking easily without the need for physical coupons or tickets.
The app supports over 40 municipal councils across 9 states, including popular
areas like Selangor, Smart Selangor Parking, and Kuala Lumpur, Wilayah
Parking (Apple, n.d. a). With its wide coverage, users can pay for parking in
multiple areas using just one app.

Parking in Flexi Parking can be paid in just two steps, which are
choosing the vehicle number and selecting the parking duration. Flexi Parking
supports multiple languages, including Bahasa Malaysia, English, and Chinese,
to suit different users (Apple, n.d. a). It also keeps all receipts in digital form,
making it easy to check past transactions or email them when needed.

Flexi Parking works on a prepaid credit system, where users top up
credits in advance using online banking, debit or credit cards, and other payment

methods. One account can manage up to 10 vehicles, making it convenient for

42

families or businesses. The app also allows users to pay for parking compounds
issued by some municipal councils directly through the app, avoiding the need
to visit payment counters (Apple, n.d. a).

In addition to regular parking, the app offers monthly parking passes
for up to six months. It also supports gated off-street parking through QR code
scanning and LPR. Notifications are sent when parking time is about to expire,
helping users avoid getting fined. GPS is used to help users select the correct
municipal council based on their location, reducing the chance of mistakes

during payment (Apple, n.d. a).

2.7.5 Summary and Comparison of Existing Applications

Each of the four parking payment applications offers unique features but also
has its limitations. TNG eWallet offers a comprehensive cashless system with
options like LPR, QR-based entry, and pay-on-the-spot methods, while also
offering rewards and ParklInsure coverage. It also supports multiple vehicles of
up to ten per account. However, its LPR functionality is currently limited to only
twelve locations, and users must maintain enough eWallet balance, which may
cause delays if funds are insufficient.

JomParking is recognized for its user-friendly interface, token-based
payment system, and useful features such as insurance renewal reminders,
compound management, and support for up to ten vehicles. It also lets users
extend parking sessions remotely and offers monthly passes. However, its
token-based system may confuse new users. Additionally, it does not provide
guaranteed spot availability and lacks insurance coverage.

ParkEasy distinguishes itself through its advance reservation system,
which includes electric vehicle (EV) charging bay bookings, and further
increases its value by offering insurance against theft or break-ins. In addition,
membership programs such as Shell Recharge Gold, MyEVOC, and BonusLink
offer users additional benefits. While these features are appealing, ParkEasy’s
coverage is limited, and users may also encounter situations where a reserved
parking space is still occupied if the previous user does not leave on time.

Flexi Parking provides the widest coverage nationwide, supporting

over 40 municipal councils across nine states. It enables LPR and QR-based

43

parking, offers monthly passes, compound payments, and multiple vehicle
support for up to ten vehicles, and includes Flexi Protect insurance. Its
additional features, such as multi-language support and digital receipts, further
improve accessibility and usability. However, the application’s limitations
include the risk of credit expiration, dependence on participating municipal
councils, and the potential discontinuation of services in certain areas.

In conclusion, each app has strengths and weaknesses. TNG eWallet
and JomParking provide reliable cashless payment systems, but both are limited
in terms of coverage and guaranteed parking availability. ParkEasy is strong in
reservation and electric vehicle (EV) services, though its use is restricted mainly
to certain locations. Flexi Parking has the widest coverage across Malaysia, but
it faces challenges such as credit expiry and dependence on participating

municipal councils.

Table 2.4: Table of comparison between existing parking applications

Application Touch ‘n Go | Jom Parking | ParkEasy Flexi Parking
Name eWallet
Payment Cashless, with | Cashless, Cashless, Cashless,
Method payments token-based | credit-based | credit-based
deducted system with | system for | system with
directly from | options such | both methods
the eWallet | as QR code, | reservations | such as LPR,
balance using | pay-on-the- | and on-the- | QR code,
methods such | spot, or | spot pay-on-the-
as LPR, QR | monthly payments. spot, or
code, or pay- | passes. monthly
on-the-spot. passes.
Parking On-street and | On-street On-street On-street and
Types off-street and off- | and off- | off-street
Supported street street
Multiple Up to 10| Up to 10| Multiple Up to 10
Vehicle vehicles vehicles vehicles vehicles
Management under one

44

account (not

explicitly
mentioned)
Location Limited (12 | Limited, Limited Extensive
Coverage locations for | dependent (Multiple
LPR) on local Malaysian
council states)
decisions
Booking /| No No Parking and | No
Reservation EV charging
reservations
allowed
Rewards & | Occasional Promotional | Partnerships | Promotions
Promotions | rewards and | campaigns, | with brands | such as free
cashback including for credits
free tokens | exclusive
and special | promotions
offers, and
partnership
with brands
Insurance Yes, with | No Yes Yes, with
Coverage ParkInsure Flexi Protect
Token /| No Yes Yes Yes
Credit
System
Compouds Yes Yes No Yes
payment
What stands | Comprehensive | User Parking Broad
out payment friendly reservations | geographic
system with | interface, and EV | coverage
multiple provides features (supports
parking reminders over 40
for vehicle municipal

45

methods and | insurance councils
rewards renewals across 9
states)
Limitations | Currently only | No Limited Limited to
12 locations for | guaranteed | locations, certain
LPR system spot reserved councils and
availability | spaces may | may be
& no | still be | discontinued,
insurance occupied by | credit
coverage previous expiration
users risk
2.8 Software Development Methodologies

Software development methodologies are structured approaches used to plan,
manage, and control the development of software systems. Each methodology
defines how a project should be carried out by outlining steps, roles,
responsibilities, communication standards, activities, and expected deliverables
throughout the software development life cycle. These stages include
requirements gathering, planning, analysis, design, implementation, testing,
deployment, and maintenance. The wide variety of methodologies available
allows teams and organizations to select the one that best suits their specific
needs, depending on factors like project size, complexity, timeline, team
structure, and the level of flexibility required.

Selecting the right methodology is a crucial decision in any software
project, as it can significantly impact cost, timeline, quality, and user
satisfaction. However, there is no one-size-fits-all solution, as each project has
unique goals and constraints. Therefore, it is important to study and compare
different approaches to determine the most effective one for a specific context.
Successful outcomes often rely on adopting a management structure that aligns

with project needs and objectives.

46

2.8.1 Waterfall Model

Research
Planning
Design
Development |
Testing
Feedback |
[

Setup [

Maintenance |

Figure 2.10: Waterfall Methodology (Burtescu et al., 2014)

The Waterfall Model is widely known as the earliest approach to software
development. The concept was introduced by Winston W. Royce in 1970 and
gained prominence throughout the 1970s and 1980s (A.K.M Zahidul Islam and
Ferworn, 2020). It is often referred to as a “top-down” or “linear sequential”
development model. The model is heavily inspired by traditional engineering
and construction workflows.

One of the key characteristics of the Waterfall Model is its linear
sequential flow, where each phase flows into the next like a waterfall with no
overlapping or iteration between phases. Each phase must be fully completed
with clearly defined deliverables before proceeding to the next. This model
relies heavily on documentation, which supports each stage of the process
(A.K.M Zahidul Islam and Ferworn, 2020). Since all planning and design are
done at the beginning, the process becomes predictable (Burtescu et al., 2014).
However, it will be difficult to make changes or feedback once development has
started. Feedback from stakeholders usually happens only after the system has
been built and tested.

The Waterfall Model has several advantages. It is simple and easy to

understand, which makes it suitable for teams with limited experience or

47

resources. The clearly defined stages make the process easy to manage and
implement. Additionally, the structured schedule makes it easier to allocate time
and resources for each phase (Vishal Chandra, 2015).

However, the model also has multiple drawbacks. One of the main
disadvantages is its inflexibility and rigid structure, which makes it difficult to
revisit earlier phases for corrections or improvements. The lack of feedback
between phases means that errors or misunderstandings might only be
discovered late in the development cycle, leading to costly and time-consuming
revisions. Moreover, since each phase must be completed before the next begins,
any delays or issues can significantly affect the project schedule (Vishal
Chandra, 2015).

2.8.2 Iterative and Incremental Development (11D) Model

ITERATION 1 ITERATION 2 ITERATION N
Planning Planning Planning
Design Design Design
Research Foedback Feodback Faedback Setup Maintenance

Developmant Davelopment Developmant

Testing Testing Testing

Figure 2.11: 11D Methodology (Burtescu et al., 2014)

The Iterative and Incremental Development model is a development approach
where the software is built step-by-step through iterative design and incremental
delivery. Development starts with a basic version of the system based on initial
requirements. After each iteration, feedback is collected from the project owner
or stakeholders, and necessary changes or enhancements are made. The model
is improved and extended in each cycle without discarding previous work
(Burtescu et al., 2014). The model emphasizes design over documentation and
ensures that feedback is received after each iteration is completed. This helps
maintain alignment with user expectations and project goals throughout
development (Burtescu et al., 2014).

In iterative design, requirements and designs are revised throughout the

development lifecycle, emphasizing continuous improvement. The team

48

continuously learns and adapts based on what is built, tested, and observed in
each cycle. This feedback loop allows the team to identify areas of improvement,
correct misunderstandings, and make informed decisions for the next iteration.
In doing so, the system evolves to better match user expectations. In incremental
design, the system is delivered in parts. Each part adds new functionality, and
these parts are tested independently before being integrated (Suhasini Gadam,
2023). While early increments may have limited functionality, they are fully
operational. As more increments are added, the system gradually becomes a
complete and functional application (Saeed et al., 2019). This ongoing
development allows potential issues to be detected early, reducing the risk of
costly revisions later in the process.

The 1ID model offers key advantages such as early delivery of a
working product, allowing users to provide feedback from the beginning. This
frequent feedback loop helps align the system with actual user needs. The model
is flexible, making it ideal for projects with changing requirements, and it
supports early issue detection, which improves risk management. Continuous
testing across iterations also enhances overall software quality.

However, 11D also comes with drawbacks. Frequent changes can lead
to scope creep, causing the project to exceed its original goals. Planning
becomes complex when future requirements are unclear, and the repeated cycles
may demand more time and resources. Additionally, rushed iterations can result
in technical debt if code quality is compromised, and poor planning may cause

integration issues between increments.

2.8.3 Agile Methodologies

Agile methods were developed to address challenges in traditional software
development, especially in fast-changing environments. These methodologies
emphasize flexibility, collaboration, and iterative development, making them
ideal for projects where requirements evolve over time. According to Miller
(2001), Agile breaks projects into short, manageable steps, eliminating
unnecessary work and enabling quick fixes. It prioritizes teamwork and

communication over rigid processes.

49

2.8.3.1 Scrum

L] e i
- Sprint Execution ‘ ! Bally Serum

Sprint

/ Automation
Sprint Review _ (
Meeting

SCRUM

METHODOLOGY sprint
B
acklog
Sprint Retrospective ————————— @

Figure 2.12: Scrum Methodology (Korkut, 2023)

sprint
" Planning meeting

Usable
Software

Scrum is an agile, lightweight framework created for managing complex
product development, especially in software engineering. The concept was first
introduced by Hirotaka Takeuchi and Ikujiro Nonaka in 1986. Unlike the
traditional Waterfall model, which relies on sequential stages, Scrum supports
iterative and incremental development, allowing teams to adapt quickly to
changing requirements (Apoorva Srivastava, Sukriti Bhardwaj and Shipra
Saraswat, 2017).

The Scrum methodology is based on three main roles: the Product
Owner, Scrum Master, and the Development Team. The Product Owner decides
what needs to be built and sets the priorities. The Scrum Master helps the team
follow Scrum rules and clears up any problems they face. The Development
Team is a group of skilled members who work together to build and deliver a
part of the product at the end of each sprint (Sakshi Sachdeva, 2016).

A key element of Scrum is the sprint, a time-boxed iteration typically
ranging from one to four weeks, where the team works to complete a part of the
product. Each sprint begins with a Sprint Planning meeting where the team
defines the Sprint Goal and selects items from the product backlog to be
completed. Throughout the sprint, the team participates in daily Scrum meetings
to discuss progress, identify obstacles, and coordinate efforts. At the end of each
sprint, the team holds a Sprint Review to present the increment to stakeholders
for feedback and a Sprint Retrospective to reflect on the process and identify

areas for improvement (Sakshi Sachdeva, 2016).

50

The advantages of Scrum include its adaptability, which makes it
suitable for dynamic project environments where requirements frequently
change. It also improves communication through regular team meetings and
stakeholder involvement. This leads to early and continuous delivery of
software, with faster feedback and adjustments. Additionally, Scrum is cost-
effective because it identifies and resolves issues early in the process, reducing
the need for expensive rework. The methodology also improves product quality
through continuous testing and integration, ensuring that each increment meets
the desired standards.

Scrum also has some challenges, including requiring a skilled and self-
managing team for successful adoption, making it difficult to use in
organizations with rigid hierarchies or insufficient training. Moreover, misuse
or partial adoption of Scrum practices, often referred to as "ScrumBut", can
reduce its effectiveness (Sakshi Sachdeva, 2016). Scrum also doesn’t include
detailed engineering practices, so teams often combine it with other methods
like Extreme Programming (XP) (Sakshi Sachdeva, 2016). For big or complex
projects, using Scrum alone can be difficult, and extra frameworks like SAFe or

Nexus may be needed.

2.8.4 Summary and Comparison of Methodologies
The Waterfall model is most suitable for projects with well-defined, stable
requirements and a clear end goal. It is ideal in environments where detailed
planning can be done upfront and changes during development are unlikely.
Industries such as healthcare, aerospace, and defense often favor Waterfall due
to its emphasis on formal documentation, regulatory compliance, and structured
processes. Waterfall works best when the project scope, timeline, and budget
are fixed and when stakeholders can finalize requirements early in the process.
However, it is not suited for projects where requirements may evolve, as it offers
little flexibility and delays feedback until late in the development cycle. This
makes it less appropriate for complex, dynamic, or user-driven projects.

11D is most suitable for projects where requirements are expected to
evolve or when the final product is not fully defined at the beginning. It is ideal

for uncertain projects, exploratory development, or when early delivery of core

51

features is critical. By delivering the software in smaller, manageable
increments, 11D supports continuous feedback and quicker issue resolution,
making it beneficial in time-sensitive or innovation-driven contexts. It is also
useful when future improvements are anticipated after initial deployment.
However, IID may not be the best choice for projects that require a rigid
structure, fully defined deliverables from the start, or a lot of planning upfront.
Without careful control, the flexibility of 11D can lead to integration challenges
and uncontrolled changes in scope.

Scrum is most effective in fast-paced, complex projects where
requirements are likely to change frequently. It is suitable for projects that focus
on adaptability, close collaboration, and frequent delivery of working software.
It works best for projects that rely on regular customer feedback and team-based
decisions, especially when teams are cross-functional and self-organizing.
However, Scrum may not suit projects with fixed scope, rigid deadlines, or
limited team freedom. It also requires a certain level of Agile experience and
defined roles like Scrum Master and Product Owner, which may not be practical
in smaller or more traditional teams. In such cases, alternative methodologies

may offer a better fit.

Table 2.5:Table of differences between methodologies compared

Waterfall 11D Scrum
Development Linear and | Build in | Agile, iterative,
Style sequential increments and | and time-boxed
improve in
iterations
Flexibility Very low Medium Very high
User Only at the | Moderate Very high
Involvement beginning and | (feedback after | (constant
end increments) feedback every
sprint)
Risk High risk (late | Moderate (issues | Low (issues
Management discovery of | found after each | found early and
issues) increment)

52

corrected
quickly)
Delivery Single delivery at | Partial ~delivery | Working product
the end after each | delivered at the
increment end of each sprint
Time Estimation | Predictable (if | Moderate Unpredictable
requirements are
stable)
Project Type | Best for clear, | Good for | Best for complex,
Suitability fixed evolving changing projects
requirements, requirements,
small projects medium projects
2.9 Development Framework

Choosing the right frameworks for the frontend, backend, and database is
essential for building an efficient, scalable, and maintainable application. The
frontend determines how users interact with the app, the backend handles the
business logic and data processing, and the database stores and retrieves the data.
In this section, we will compare different frameworks and tools to evaluate their

suitability for developing a web and mobile app for a parking payment system.

29.1 Frontend Framework
2.9.1.1 React Native (with React Native for Web)
React Native is an open-source framework developed by Meta that enables
developers to build cross-platform mobile applications using JavaScript and
React. Unlike traditional web-based frameworks, React Native uses native
components instead of HTML elements, allowing applications to achieve near-
native performance on both Android and iOS platforms while maintaining a
single shared codebase. This approach simplifies development and reduces
maintenance effort compared to creating separate native apps for each platform.
React Native operates by bridging JavaScript code to native mobile
components, ensuring that applications deliver smooth performance and a

consistent user experience. The framework supports features such as hot

53

reloading, flexible styling, and integration with native modules, which enhance
development efficiency and scalability. Because of its architecture, developers
can reuse a significant portion of code across multiple platforms while still
having the flexibility to implement platform-specific features when needed.

In addition to mobile platforms, React Native can be extended to
support web development through React Native for Web. This library bridges
React Native components to the React DOM, enabling the same codebase to run
seamlessly in web browsers. It allows developers to build applications that
function consistently across web and mobile without rewriting core logic. React
Native for Web leverages modern React features such as function components
and hooks, and converts native components into standard web elements while
maintaining their layout and design behavior. This makes it a practical choice
for projects that require both mobile and web interfaces with a unified user
experience.

Overall, React Native (with React Native for Web) provides a powerful
and flexible solution for cross-platform application development. It offers the
performance and feel of native mobile apps while maintaining the adaptability
of web technologies. Major companies such as Meta, Microsoft, and Shopify
use React Native for their production applications, demonstrating its reliability

and scalability for real-world use.

2.9.1.2 Flutter
Flutter is an open-source Ul framework developed by Google for building cross-
platform applications from a single codebase. It allows developers to create
applications for Android, i0S, web, and desktop platforms using the Dart
programming language. Flutter’s key advantage lies in its high-performance
rendering engine, known as Skia, which allows it to draw Ul elements directly
on the screen rather than relying on native platform components. This approach
ensures consistent appearance and performance across platforms.

Flutter provides a rich set of customizable widgets, enabling
developers to create visually appealing and highly responsive interfaces. Its hot
reload feature allows developers to instantly view code changes without

restarting the application, which significantly speeds up the development and

54

debugging process. Flutter also includes a powerful layout system that supports
adaptive design, ensuring that applications function well on devices with
different screen sizes and resolutions.

For web development, Flutter compiles Dart code to JavaScript,
allowing applications to run efficiently in modern browsers. Although Flutter’s
web support continues to evolve, it already enables the deployment of
lightweight and visually consistent web interfaces that share the same business
logic and Ul design as mobile apps. This makes it an attractive option for
projects aiming to achieve a unified design system across multiple platforms.

Overall, Flutter offers an efficient and versatile framework for building
cross-platform applications with a single codebase. Its strong performance,
expressive Ul components, and growing community make it a leading choice

for both mobile and web application development.

2.9.1.3 lonic React
lonic React is a hybrid application development framework that integrates the
lonic Ul library with the React ecosystem to build cross-platform web and
mobile applications. It uses standard web technologies, such as HTML, CSS,
and JavaScript, to create applications that run in a WebView for mobile or
directly in a web browser. lonic is designed with a mobile-first approach and
provides a native-like look and feel through a rich collection of pre-built,
mobile-optimized Ul components, as well as tools for navigation, routing,
gestures, and animations. It works well with popular JavaScript frameworks like
React, Angular, and Vue, making it ideal for developers already familiar with
these technologies (Haire, n.d.). This approach enables developers to maintain
a single codebase for multiple platforms, reducing development time and effort.
lonic React emphasizes Ul consistency through its pre-built and
customizable components that follow modern mobile design principles such as
Material Design and iOS Human Interface Guidelines. The framework
integrates with Capacitor, a native runtime that allows access to device hardware
features like the camera, GPS, and file system. This enables web-based
applications to function more like native mobile apps while maintaining the

flexibility of web technologies.

55

For web deployment, lonic React applications can run directly in
browsers with minimal modification, making it suitable for projects that
prioritize rapid development and easy maintenance. However, since it relies on
a WebView for mobile platforms, its performance may not match that of fully
native or compiled frameworks like React Native or Flutter. Despite this, lonic
React remains a popular choice for developing applications that need to reach
both web and mobile users efficiently.

In summary, lonic React provides a balanced solution between web
flexibility and mobile accessibility, making it ideal for applications that require

cross-platform compatibility without complex native development.

2.9.1.4 Summary and Comparison of Frontend Framework

When comparing React Native, Flutter, and lonic React, several key factors
influence their suitability for cross-platform development. React Native excels
in scenarios where developers aim to build mobile and web applications with a
shared codebase using the React ecosystem. It provides near-native performance
by bridging JavaScript components to native platform APIs. Its ability to extend
to the web through React Native for Web makes it suitable for teams seeking a
unified development experience across platforms.

Flutter is best suited for applications requiring high performance,
custom Uls, and complex animations. Since it compiles directly to native code,
Flutter delivers smooth performance and a consistent Ul across devices.
However, its larger app size and the need to learn the Dart language can pose
challenges for developers who are new to the framework.

lonic React, on the other hand, provides an accessible entry point for
developers familiar with web technologies such as HTML, CSS, and JavaScript.
It enables rapid development for both mobile and web applications through a
single codebase and integrates with Capacitor for accessing native device
features. However, as it primarily relies on WebView rendering, it may not
match the performance of frameworks that compile to native code, especially in
graphically intensive applications.

Overall, React Native offers the best balance between performance and

code reusability, Flutter delivers superior native-like performance with

56

flexibility in design, and lonic React provides simplicity and fast development

cycles for web-oriented teams.

Table 2.6: Table of differences between frontend frameworks compared

Feature React Native Flutter lonic React
Programming | JavaScript ~ with | Dart JavaScript with
Language React syntax HTML, CSS, and
React
Performance | Good with native- | Excellent with | Moderate as
feel native-like speed, | WebView-based

especially on | and may be slightly

mobile slower for complex
apps
Ul Look Native look on | Consistent Ul | Web-style Ul
web and mobile across platforms

with custom

widgets
Learning Easy if familiar | Steeper as need | Easiest if familiar
Curve with React to learn Dart and | with web

Flutter structure | development and

React
App Size Moderate Larger as Flutter | Light as it relies on
bundles its | the browser’s

rendering engine | engine

Web Support | Supported via | Available but | Excellent, designed

React Native for | still maturing for web-first

Web applications
Mobile Strong native | Strong native | Supported via
Support performance for | performance for | WebView with

Android and iOS | Android and iOS | Capacitor bridge

Use Case Best for apps with | Priority on | Priority on rapid
shared mobile & | beautiful Ul, | development, web-

animation-heavy | first experience

57

web code wusing | apps, and term

React scalability

2.9.2 Backend Framework

2.9.2.1 NestJS

NestJS is a framework for building server-side applications with Node.js. It is
built with TypeScript and also supports regular JavaScript. NestJS stands out
because it provides a clear structure for organizing applications, making it easier
to manage and scale large projects. The framework follows a modular approach,
where the code is divided into modules, controllers, and services. This helps
separate responsibilities within the application, making the code cleaner and
more maintainable. NestJS is inspired by Angular’s architecture, so developers
familiar with Angular may find it easier to learn. NestJS uses Express as its
default web server, but developers can also choose Fastify for better
performance. While Nest adds a layer of abstraction, it still allows full access to
the Express or Fastify features. Additionally, it supports modern programming
styles like object-oriented, functional, and functional reactive programming
(NestJS, n.d.). NestJS also offers a strong foundation for building reliable and
scalable applications and is suitable for teams that value clean architecture,
maintainability, and good development practices.

Despite that, NestJS has some limitations. It has a steep learning curve,
particularly for developers unfamiliar with TypeScript or advanced
programming concepts. It also requires a lot of repetitive code, which can feel
unnecessary for small projects. Additionally, NestJS may introduce some
performance overhead due to its use of decorators and abstraction layers. Lastly,
its community is still growing, which can make finding solutions for specific

issues more challenging compared to more established frameworks.

2.9.2.2 Laravel

Laravel is a modern PHP framework known for its elegant syntax and powerful
features that simplify web application development. It follows the Model-View-
Controller (MVC) pattern, helping developers organize their code and maintain

separation of concerns. Laravel offers built-in tools for routing, session

58

management, caching, authentication, and more, reducing the need for third-
party packages. It also provides robust security features, such as protection
against SQL injection, CSRF, and XSS, ensuring secure applications out of the
box (Sehouli, 2025). One of Laravel's key strengths is its scalability. The
framework is designed to handle large workloads and can be easily scaled
horizontally using distributed caching systems like Redis (Laravel, n.d.).
Laravel also supports task scheduling and job queues, making it easier to
manage background processes such as email sending or file uploads. With a
large and active community, Laravel also benefits from a rich ecosystem of
packages and resources. The framework also supports unit testing and provides
tools for debugging and error handling, enhancing the overall developer
experience.

However, Laravel's main disadvantage is its performance, as it tends to
be heavier than other PHP frameworks, which may cause slower response times
in high-traffic applications. The learning curve can also be steep for beginners,
especially with the large number of the framework’s features and tools.
Laravel’s heavy reliance on third-party packages can also lead to extra
dependencies, making it harder to manage as the project grows. Additionally,
deploying Laravel can be more complicated than other frameworks as it requires

specific server environments and tools.

2.9.2.3 Summary and Comparison of Backend Framework

NestJS and Laravel are both powerful frameworks, but they fit different
ecosystems and use cases. NestJS is a TypeScript-based framework built on
Node.js, ideal for scalable, high-performance applications, especially those
requiring microservices, APIs, and real-time features. It's well-suited for
developers familiar with JavaScript/TypeScript and offers flexibility and
modularity. However, it has a steeper learning curve and might be more
complex for beginners. Meanwhile, Laravel is a PHP-based framework that
focuses on rapid development with an elegant syntax and a robust set of built-
in tools like Eloquent ORM, Blade templating, and Artisan CLI. It is best for
web applications and traditional server-rendered projects. Laravel’s ease of use,

59

excellent documentation, and strong ecosystem make it great for developers

who prefer PHP.

Table 2.7: Table of differences between backend frameworks compared

Feature NestJS Laravel

Approach Structured, modular, and | MVC framework
built for scalability

Performance High performance Good

Development

Slower for small projects

Fast development with lots

complex applications

Speed but faster for large-scale | of built-in tools
applications
Scalability Excellent scalability with | Scalable but requires manual
built-in support configuration for advanced
features
Built-in Features | Many Many
Learning Curve Steeper Moderate
Database Supports TypeORM or | Eloquent ORM that is built-
Integration Sequelize for ORM in for smooth database
integration
Ecosystem Built on Node.js, uses npm | Huge PHP ecosystem with
but with additional tooling | tools like Composer, Laravel
and structure Mix, Eloquent ORM
Testing Built-in testing tools like | Built-in testing tools like
Jest PHPUnit
Use Case Best for large-scale, | Best for full-stack web
enterprise-level, or | applications, especially with

a database and admin panel

60

2.9.3 Database

2.9.3.1 MySQL

MySQL is a popular open-source relational database management system
(RDBMS) widely used for storing and managing data. It is reliable, fast, scalable,
and easy to use, making it essential for high-traffic apps like Facebook, Netflix,
Uber, Airbnb, Shopify, and Booking.com (Erickson, 2024). MySQL stores data
in tables organized by schemas and uses SQL (Structured Query Language) for
querying and managing data. It supports ACID transactions, ensuring data
consistency even during system failures, and can handle a large number of
concurrent connections. As MySQL is open source, it allows developers to
freely access and modify its code, making it a cost-effective solution for both
small projects and enterprise-level systems. It supports a variety of data types,
including traditional SQL data and JSON, enabling flexibility in how data is
stored and accessed. MySQL also scales efficiently, with native replication and
failover features that ensure high availability and performance under demanding
conditions. Over its nearly 30-year history, MySQL has developed a robust
community that continually improves the system. It is compatible with various
programming languages like Java, Python, and PHP, and is known for its easy
setup and management. MySQL’s flexibility, low cost, and support for both
SQL and NoSQL applications make it a reliable choice for developers across
various industries (Erickson, 2024).

However, MySQL has some limitations, including a lack of advanced
features for complex queries, recursive operations, and certain joins, which can
be restrictive for complex applications. It also doesn't fully comply with SQL
standards, leading to potential compatibility issues when migrating to other
databases. MySQL is also less extensible than systems like PostgreSQL,
limiting customization options for developers. While it offers some JSON
support, MySQL's NoSQL capabilities are weaker compared to databases like
MongoDB or PostgreSQL, making it less suitable for handling unstructured or

semi-structured data.

61

2.9.3.2 PostgreSQL

PostgreSQL is a powerful, open-source object-relational database system that
extends SQL and is known for its reliability, data integrity, and extensibility.
Major companies such as Apple, IMDB, Instagram, Reddit, Skype, Spotify, and
Twitch use PostgreSQL due to its powerful features, flexibility, scalability, and
cost-effectiveness (Romanowski, 2020). It is ACID-compliant, compatible with
all major operating systems, and offers robust features such as the PostGIS
geospatial extender for better spatial data handling. PostgreSQL is highly
extensible and allows developers to define custom data types, functions, and
even use different programming languages without recompiling the database. It
adheres closely to SQL standards and supports advanced features like indexing,
multi-version concurrency control, and parallel query processing. PostgreSQL
also offers strong disaster recovery capabilities, including write-ahead logging,
replication, and point-in-time recovery. Security features include robust
authentication methods and access controls, while its extensibility allows for a
wide range of customizations, including stored functions and foreign data
wrappers (The PostgreSQL Global Development Group, n.d.). With its
scalability and ability to manage large data sets, PostgreSQL is widely used in
both small and enterprise-level applications.

However, However, PostgreSQL's advanced features can lead to
performance overhead, making it less optimal for read-heavy applications. It
can also be complex to configure and manage, requiring more effort and
expertise to optimize the system, which could lead to longer setup times and
higher maintenance costs. Additionally, PostgreSQL has a steeper learning

curve due to its extensive features, making it more challenging for beginners.

2.9.3.3 Summary and Comparison of Database

When comparing MySQL and PostgreSQL, the main differences are their
features, performance, and extensibility. MySQL is better for applications that
need fast read operations, as it offers faster performance and easier management,
making it ideal for applications like e-commerce platforms and websites with
high traffic. Its simplicity and speed make it a good choice for small to medium-

sized projects. Meanwhile, PostgreSQL, which is known for its advanced

62

features and scalability, performs well in complex applications requiring high

data integrity, custom data types, and extensibility. It is fully SQL-compliant,

supports complex queries, and provides great disaster recovery features, making

it ideal for large-scale applications, analytical processing, or geospatial data.

Table 2.8: Table of differences between the databases compared

Feature MySQL PostgreSQL
Type Relational DBMS Obiject-relational
DBMS
Performance Fast for read-heavy | Better for complex
operations queries & write-heavy

Data Integrity

Decent (less strict)

Strong (strict ACID

compliance)
Complex Queries Basic joins & subqueries | Advanced joins,
supported CTEs, window
functions
Geolocation (GIS) Basic support via | Advanced with
MySQL Spatial | PostGIS
Extensions
Ease of Setup Simple Slightly more complex

63

CHAPTER 3
METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter outlines the methodology and work plan for the parking system
project. It covers the chosen methodology, which will guide the project’s
development process, as well as the Work Breakdown Structure (WBS), which
breaks the project into smaller tasks. A Gantt chart is provided to visualize the
project timeline and track progress. Additionally, the chapter discusses the
development tools and techniques that will be utilized throughout the project to

ensure efficient and effective implementation.

3.2 Software Development Methodology: Scrum Methodology

The software development of the Parking Payment System for License Plate and
Vehicle Attribute Recognition will adopt the Scrum methodology. Scrum was
chosen due to its flexibility, iterative nature, and ability to adapt to evolving
requirements, which is important in this project with the integration of advanced
Al techniques. The development is divided into Sprints, with each producing

usable increments or improvements of the system.

3.2.1 Phase 1: Initiation

The first phase involves initiating the project by clearly defining the overall
vision. The objective of this project is to build a system that automates parking
transactions through license plate and vehicle attribute recognition powered by
multimodal Al models. This system aims to streamline the parking experience
for drivers and parking operators by leveraging advanced Al technologies to
enable seamless, secure, and efficient payment processing.

The key stakeholders for this project include drivers, parking operators,
and system administrators. Drivers will use the system to view parking rates,
activate auto-payments, and check their parking history. Parking operators will
use the system to monitor parking activity through dashboards and reports, as
well as manage parking rates and related details. System administrators will use

64

the system to manage account approvals, review support tickets, and oversee
changes requested by parking operators.

Although Scrum methodology is traditionally used for team-based
development, its practices are adapted in this project for a single-developer
environment. The Scrum roles are assigned where the developer takes on the
responsibilities of both the Scrum Master and Developer roles, while the
supervising lecturer or the developer assumes the role of Product Owner. This
approach ensures that the project remains organized, iterative, and focused on
delivering incremental improvements.

An initial Product Backlog is created based on the outlined project
scope. Key features in the Product Backlog include user account registration,
vehicle registration, activation of auto-payment, viewing of parking rates, fraud
prevention mechanisms, support ticket submission and management,
management of parking zones by operators, user account management by
administrators, and analytical dashboards for both operators and administrators.
This initial backlog forms the foundation for planning and prioritizing tasks

during the subsequent phases of the project.

3.2.2 Phase 2: Planning and Estimation
In the Planning and Estimation phase, the development process begins by
conducting Sprint Planning sessions to prioritize the items listed in the Product
Backlog. Each feature or requirement is evaluated based on its importance and
contribution to the overall project vision, ensuring that critical functionalities
are addressed early in the development cycle.

Major features are broken down into smaller, manageable User Stories
to make the development tasks clearer and more achievable. For example, a
User Story might be framed as "As a driver, | want to register my vehicle so |
can activate auto-payment.” This method allows for a user-centered approach,
ensuring that all system functionalities align closely with real-world needs and
user expectations.

Effort estimation is then carried out for each User Story using story
points or simple relative sizing. This helps in understanding the complexity and

workload associated with each task, helping in better Sprint planning and time

65

management. Each Sprint is set to a duration of two weeks to ensure consistent
development and allow for regular reviews and adjustments.

Sprint Goals are established at the beginning of each Sprint to provide
clear direction and focus. These goals might include completing specific
modules such as the vehicle registration flow, implementing basic login and
authentication functionality, or integrating early versions of the multimodal Al
recognition system. Setting clear Sprint Goals helps ensure that each Sprint
moves the project closer to completion.

Additionally, the phase involves creating a WBS to break down the
project into manageable tasks and a Gantt chart to schedule and track these tasks.
These help ensure effective project management and provide a clear visual
timeline to monitor progress, leading to better organization, resource allocation,
and timely project completion. The development tools for the project should
also be decided, including programming languages, frameworks, and Al model
libraries. It also involves system design, where it defines functional and non-
functional requirements, creates use case diagrams and use case descriptions to
outline system interactions, designs interface flow diagrams to map user
interactions, and develops user interface prototype designs to visualize the final

product.

3.2.3 Phase 3: Sprint Execution

The Sprint Execution phase focuses on implementing the features defined
during Sprint Planning. Development activities are initiated by working on both
backend and frontend components. Backend development includes creating
modules for account management, payment handling, support ticketing, and
data analytics. These backend services are the foundation that supports secure
transactions, user management, and operational reporting for both drivers and
parking operators. Meanwhile, frontend development is carried out to build
intuitive and responsive mobile application interfaces. Separate but
complementary interfaces are designed for drivers and parking operators,
ensuring that each user group can access the functionalities they require. Besides
that, user experience and usability are prioritized to enhance system

performance and promote widespread adoption.

66

Another part of this phase includes the integration of multimodal Al
models for license plate and vehicle attribute recognition. The system
incorporates Al models to automatically identify vehicles and activate auto-
payment. Significant efforts are made to ensure that the Al components are
robust and capable of operating under real-world conditions. Prompt
engineering techniques are applied to optimize model performance, ensuring
reliable operation under real-world conditions. Data preprocessing, model
evaluation, and backend integration further strengthen the Al component,
supporting accurate recognition and smooth automated parking transactions.
Moreover, Daily Scrum meetings are conducted in this phase to monitor
development progress, identify and resolve any obstacles, and adjust task
priorities as necessary. Even as a solo developer, brief daily reflections are held
to assess completed work, plan upcoming tasks, and ensure that the Sprint
remains on track. Throughout the Sprint, the Sprint Backlog is continuously
updated to reflect the current status of tasks, allowing for better tracking,

transparency, and management of the development workflow.

3.2.4 Phase 4: Review and Retrospective
At the end of each Sprint, a Sprint Review is conducted to evaluate the progress
made and demonstrate the completed features, where the key functionalities are
presented to gather feedback. Feedback may be collected from the supervising
lecturer acting as the Product Owner, project moderator during the presentation,
or from mock users simulating the roles of drivers and parking operators. This
feedback is crucial for validating the system’s functionality and ensuring that
the development remains aligned with user needs and project objectives.
Following the Sprint Review, a Sprint Retrospective is held to reflect
on the overall development process. During the retrospective, the project
examines what aspects of the Sprint went well, what challenges were
encountered, and what areas require improvement. This continuous reflection
helps identify workflow obstacles and shape better practices for future Sprints.
Action items are documented at the end of each retrospective session. These
may include steps such as improving testing procedures, enhancing user

interface designs, optimizing Al model performance, or refining project

67

management approaches. The lessons learned and adjustments made during this
phase contribute significantly to the continuous improvement of the system
throughout the project lifecycle.

3.2.5 Phase 5: Finalization and Release

In the Finalization and Release phase, the primary focus is on completing all
necessary testing and preparing the system for deployment. Comprehensive
system testing is conducted, covering functional tests to verify the correct
operation of features, usability tests to ensure a smooth and intuitive user
experience, and performance tests to evaluate the accuracy and robustness of
the multimodal Al models for license plate and vehicle attribute recognition.
Any issues identified during testing are addressed immediately to ensure a
refined and reliable system.

Once testing is completed, the mobile application prototype is finalized
and deployed, ready for demonstration and evaluation purposes. Alongside the
deployment, essential documentation such as user guides, technical
documentation, and the final project report is prepared to support users and
stakeholders in understanding and operating the system. These documents serve
to enhance the project's professionalism and completeness.

A final presentation and system demonstration are conducted to
showcase the project’s outcomes. This provides an opportunity to highlight key
features, demonstrate the effectiveness of the Al models, and explain how the
system meets the original project objectives. Other than software deliverables,
research findings from developing and evaluating the License Plate and Vehicle
Attribute Recognition models are included in the final report. This ensures that
both the practical implementation and research findings are documented and

presented as part of the project's completion.

3.2.6 Justification for Scrum Methodology

Scrum is selected as the methodology for this project because it provides a
flexible and structured approach that suits the project's needs. Scrum’s iterative
approach enables the quick development of key modules while managing the

growing complexity of integrating multimodal Al models. Since fine-tuning and

68

testing the Al components often bring new challenges, using Scrum helps the
team adapt quickly during development.

Furthermore, Scrum’s focus on incremental delivery ensures that a
working prototype is always ready for demonstration and feedback. This
continuous delivery of functional features helps detect issues early and align the
system more closely with stakeholder expectations. Each Sprint produces
tangible outcomes that can be evaluated and improved, enhancing the quality
and robustness of the final system.

Another key advantage of Scrum is its flexibility in accommodating
changes. Since the performance of Al models might require frequent
adjustments based on real-world test results, and the need to refine app
functionalities to meet user feedback, Scrum’s flexibility allows these changes
to be integrated smoothly without disrupting overall project progress. This
makes Scrum a highly effective and practical choice for managing the technical
and research needs of the project.

3.3 Project Planning and Scheduling

In order to plan and organize the project effectively, project planning tools such
as the WBS and Gantt chart will be used. The WBS will help break down the
overall project into smaller, manageable tasks to ensure that all necessary work
is clearly defined. The Gantt chart will be used to schedule these tasks over time,
providing a visual timeline that helps track progress and ensure timely
completion. Together, these tools will support better organization, resource

management, and project control.

3.3.1 Work Breakdown Structure (WBS)
0.0 Development for License Plate and Vehicle Attribute Recognition Using
Multimodal Al Models
1.0 Project Initialization
1.1 Identify the Importance of the Project
1.2 Identify Problems
1.2.1 Analyze Problem Background
1.2.2 List Problem Statements

69

1.3 Define Project Aim and Objectives
1.4 Propose Project Solution and Approach
1.5 Define Project Scope and Limitations
1.6 Conduct Literature Review
1.6.1 Research on License Plate and Vehicle Attribute Recognition
Systems
1.6.2 Research on Existing Parking Systems and Applications
1.7 Identify Stakeholders
1.8 Requirement Gathering and Elicitation
1.8.1 Questionnaire
1.8.1.1 Plan Questionnaire
1.8.1.2 Request and Obtain Ethical Clearance
1.8.1.3 Distribute Questionnaire
1.8.1.4 Analyze and Interpret Data Collected
2.0 Planning and Design
2.1 Select Software Development Methodology
2.2 Schedule Project Activities
2.2.1 Create Work Breakdown Structure (WBS)
2.2.2 Create Gantt Chart
2.3 Define Functional and Non-Functional Requirements
2.4 Create Use Case Diagrams and Descriptions
2.5 Design Flow Diagrams
3.0 Development and Sprints
3.1 Sprint1
3.1.1 Sprint Planning
3.1.2 Sprint Execution
3.1.2.1 Al Recognition and Classification Research
3.1.2.1.1 License Plate and Vehicle Attribute
Recognition
3.1.2.1.1.1 Recognition Segmentation
3.1.3 Sprint Testing
3.1.3.1 Perform Bug Fixing and Regression Testing
3.1.4 Sprint Review

70

3.1.5 Sprint Retrospective
3.2 Sprint 2
3.2.1 Sprint Planning
3.2.2 Sprint Execution
3.2.2.1 Al Recognition and Classification Research
3.2.2.1.1 License Plate and Vehicle Attribute
Recognition
3.2.2.1.1.1 Integrating LLM for
Classification
3.2.2.2 Al Model Evaluation and Tuning
3.2.3 Sprint Testing
3.2.3.1 Perform Bug Fixing and Regression Testing
3.2.4 Sprint Review
3.2.5 Sprint Retrospective
3.3 Sprint 3
3.3.1 Sprint Planning
3.3.2 Sprint Execution
3.3.2.1 Account Management Module
3.3.2.1.1 Registration
3.3.2.1.2 Login
3.3.2.1.3 Manage Profile
3.3.2.2 Parking Operator Module
3.3.2.2.1 Register Parking Lot Information
3.3.2.2.2 Manage Parking Lot
3.3.2.2.3 Analytics
3.3.2.2.3.1 View Dashboard
3.3.3 Sprint Testing
3.3.3.1 Perform Unit Testing
3.3.3.2 Perform Integration Testing
3.3.3.3 Conduct UI/UX Testing
3.3.3.4 Perform Bug Fixing and Regression Testing
3.3.4 Sprint Review
3.3.5 Sprint Retrospective

71

3.4 Sprint4
3.4.1 Sprint Planning
3.4.2 Sprint Execution
3.4.2.1 Driver Module
3.4.2.1.1 Vehicle Management Module
3.4.2.1.1.1 Register Vehicle
3.4.2.1.1.2 Manage Vehicle
3.4.2.1.2 Parking Payment System
3.4.2.1.2.1 Auto-Payment Activation
3.4.2.1.2.2 Emergency Stop Transactions
3.4.2.1.3 Parking History Management
3.4.2.1.3.1 View Parking History
3.4.2.1.4 Parking Information View
3.4.2.1.5 Manage Payment Methods
3.4.3 Sprint Testing
3.4.3.1 Perform Unit Testing
3.4.3.2 Perform Integration Testing
3.4.3.3 Conduct UI/UX Testing
3.4.3.4 Perform Bug Fixing and Regression Testing
3.4.4 Sprint Review
3.4.5 Sprint Retrospective
3.5 Sprint5
3.5.1 Sprint Planning
3.5.2 Sprint Execution
3.5.2.1 Admin Module
3.5.2.1.1 Manage User Account
3.5.2.1.2 Operator Account Approval
3.5.2.1.3 Operator Request Approval
3.5.2.1.4 Analytics
3.5.2.1.4.1 View Dashboard
3.5.2.2 Notifications and Alerts Module
3.5.2.3 Support Ticket System
3.5.3 Sprint Testing

72

3.5.3.1 Perform Unit Testing
3.5.3.2 Perform Integration Testing
3.5.3.3 Conduct UI/UX Testing
3.5.3.4 Perform Bug Fixing and Regression Testing
3.5.4 Sprint Review
3.5.5 Sprint Retrospective
4.0 Final Integration and Testing
4.1 Perform API Testing
4.2 Perform User Acceptance Testing (UAT)
4.3 Perform Bug Fixing
5.0 Project Closure
5.1 Documentation Finalization
5.2 Handover and Presentation
5.2.1 Prepare Final Project Presentation
5.2.2 Schedule and Conduct Handover Meeting with Stakeholders
5.2.3 Handover Project Code and Documentation to Relevant Teams
5.3 Project Retrospective and Lessons Learned
5.3.1 Conduct Retrospective Meeting
5.3.2 Document Lessons Learned and Best Practices

3.3.2 Gantt Chart

- Tosk Name ' iy |
Mon 10f2/T5 Mo 2I/jT
Meon 24/3/25 Fil 18/8/25 —
Meon 18/4/25 Mo 13/8/15

Mon LAfB/TS Th 28/8/25 =
Fi29/8/25 FiS/925 —
FAS/9/25 Fe13fof8 —]

Figure 3.1: Overview of project timeline

- St - Fihd .
Man 10/2/35 Men 23/4[15

Mon 1012125 Wed 12/2/25
Wban 102425 Fr 18/2/15
Men 10/2/25 14235

Figure 3.2: Project initiation timeline

73

24

Tak s ovara saora 1ape
WES + Moge =+ TaskName = Durstien » Start - Frish - T oWTWLT EMOTIW T F R L MOT OWT B £ MPoWTE
20 = « Planning and Design 20 days Mon 24/3/25 Fii 18/4/25
21 4 Select Saftware Development Metbodology > davi Man 34f3/25 il 28/3(25 P
22 4 = Schadule Project Actvities & days Tha 27/3(15 Thu 3/4/15 —
221 = Create Wark Breakdown Structure (WBS) 4 days Thu 27/3(25 Tue 1/4/25 —
2232 = Create Gaat Chart S ey Tue 1f4f35 Thu 3/4/25 —
23 = Define Fsctional snd Non-Fuasctional Requirements 4 dsys Fri4fafIs Wed9/efs _——
2.4 = Create Use Case Dingrams and Descriptions oy Tue BIAf25 Thu 17/4/25 _
25 a Desiga Flow Dingrams 3days Wed 16/4/25 Fil 18/4/25 —
Tagk r 35 May 7 Jun 25 i '25 Bug ‘25
WBS ~ Mode = Task Name ~ Duration - Start = Finish wil s 33 30 6 132027 4 18 (15 2 @ 6 13 W W 3| W7
3.0 = « Development and Sprints 91 days Man 14/4/25 Mon 18/8/25
3.1 = - Sprint 1 1ldays Men 14/4/25 Sat 26/4/25 [=—="]
3.2 » Sprint 2 11 days Mon 2/6/25 Sat 14/6/25 —
33 - - Sprint 3 15 days Sun 15/6/25 Thu 3/7/25 —
3.4 - Sprint 4 17 days Fridf7/25 Mon 28/7/25 —
35 = - Sprint § 15 days Tue 28/7/235 Men 18/8/25 —
Tatk 13 Apr s 0 Apr '35 7 fpr 35
WBS ~ Mode ~ « Duration -~ Start « Finish =[5 M T W T F § S MTWTF S §MTWT
31 & « Sprint | 11 days Mon 14/4/25 Sat 26/4/25
311 & Sprint Plaming 2 days. Mon 14/3/25 Tue 15/4/25 R
3.1.2 bd « Sprint Execution 9 days Tue 15/4/25 Fri 25/4/25
3Lzl & + Al Recogmition and Classification Research 9 days Tue 15/4/25 Fri 25/4/25
31211 4 License Plate and Vehicle Anribute Recognition 9 days Tue 15/4/25 Fri 25/4/25
31211 & Recogmition Segmentation 9 days Tue 15/4/25 Fri 25/4/25
3.1.3 bd « Sprint Testing 9 days Tue 15/4/25 Fri 25/4/25 T
3131 & Perform Bug Fixing and Regression Testing Gdays Fri18/a/25 Fri 25/4/25 I
314 Sprint Review 1 day Sa1 26/4/25 San 26/4/25 [
s & Spriat 1 day Sat 26/4/25 Sat 26/4/2% -

Figure 3.5: Sprint 1 timeline

WES oLt < | TaskName e R s .. v
3.2 E3 + Sprint 2 11 days Mon 2/6/25 Sat 14/6/25
321 & Sprint Planning 2 days Mon 2/6/25 Tue 3/6/25
322 + Sprint Execution 9 days Tue3/6/25 Fril3/6/25
3221 aAIR ition and C| R h 9 days Tue 3/6/25 Fri13/6/25
32211 + License Plate and Vehicle Attribute Recognition 4 days Tua3/6/25 Fri6/6/25
32211 Integrating LLM for Classification 4 days Tue 3/6/25 Fri 6/5/25
32212 & Al Model Evaluation ad Tuning & days FAG6/25 Fril3fe/2s
123 & + Sprint Testing & days Sat7/6/25 Fri13/6/25
3231 & Perform Bug Fixing and Regression Testing & days Sat7/6/25 Fril3fe/2s
EEX I Sprint Review 1day Sat14/6/25 Sat 14/6/25
325 & Sprint Retrospective 1day Sat 14/6/25 Sat 14/6/25
Figure 3.6: Sprint 2 timeline
Task
WBS * Moge = TaskName = | Duration = Start = Finish
3.3 = + Sprint 3 22daye Sun 15/6/25 Mon 14/7/25
331 = Sprint Planning 2 days Sun 15/6/25 Mon 16/6/25
3.3.2 = + Sprint Execution 17 daye Tue 17/6/25 Wed 9/7/25
3.3.2.1 & + Account Management Module 6 days Tue 17/6/25 Tue 24625
33211 & Registration 1 day Tue 17/6/25 Tue 17/6/25
33212 & Login 2 days Wed 18/6/25 Thu 19/6/25
33213 & Manage Profile 3 days Fri20f6/25 Tue 24f6/25
3322 & + Parking Operator Module 5 days Wed 25/6/25 Mon 7/7/25
33221 & Register Parking Lot Information 4 days Wed 25/6/25 Sun 25/6/25
33222 & Manage Parking Lot 5 days Sun 29/6/25 Thu 3/7/25
33223 + Analytics 3 days Thu3/7/25 Mon7/7/25
EERRER IS S View Dashboard 3 days Thu3/7/25 Mon 7/7/25
3.3.3 = 4 Sprint Testing 10 days Tue 1/7/25 Sat12/7/25
2331 = Parform Unit Testing 10 days Tue 1/7/25 Sar12/7/25
3.3.3.2 = Perform Integration Testing 7 days Sar5/7/25 Sar12/7/25
3.3.33 = Conduet ULUX Testing 10 days Tue 1/7/25 Sar12/7/25
3.3.34 = Perform Bug Fixing and Regression Testing 10 days Tue 1/7/25 Sat12/7/25
3134 = Sprint Review 1 day Sun 13/7/25 5un 13/7/25
335 # Sprint Retrospective 1 day Mon 14/7/25 Mon 14/7/25

15 Jun 25
S M| T |W|T

8 Jun 25
S S M T W T |F|§

Figure 3.7: Sprint 3 timeline

~ Bl 912151821 24|27 303 69 12

Task

74

Asgust 2025

WS - Moge ~ Task Name - Duration = Stant - Finish - 9 1215 18|21 24 27 302 5 8 1N 14
3.4 rd + Sprint 4 22 days Tue 15/7/25 Wed 13/8/25
34,1 = Sprint Planning 2 days Tue 15/7/25 Wed 16/7/25]
3.4.2 = + Sprint Execution 18 days Thu 17/7/25 Sun 10/8/25 [———————]
3.4.2.1 = « Driver Module 18 days Thu 17/7/25 Sun 10/8/25 [—————]
34211 7 » Vehicle Management Module 5 days Thu 17/7/25 Wed 23/7/25 ——
342111 & Register Vehicle 3 days Thu 17/7/25 Mon 21/7/25 —
342112 & Manage Vehicle 2 days Tue 22/7/25 Wed 23/7/25 -
34212 & + Parking Payment System 7 days Thu 24/7/25 Fri1/ef25 —_—
342121 & Auto-Payment Activation & days Thu 24/7/25 Thu 31/7/25 —
342122 & Emergency Stop Transactions 2 days Thu 31/7/25 Fri 1/8/25 il
34213 = + Parking History Management 3 days Fri1f8f25 Tue 5/8/25 [——|
342131 View Parking History 3 days Sat2/8/25 Tue 5/8/25 T—
34214 Parking Information View 3 days Tue 5/8/25 Thu 7/8/25 —
34215 & Manage Payment Methods 2 days Fri#/8/25 Sun 10/8/25 (=]
3.4.3 fd « Sprint Testing 14 days ‘Wed 23/7/25 Mon 11/8/25 [— |
3431 = Perform Unit Testing 14 days Wed 23/7/25 Mon 11/8/25]
3.4.3.2 = Perform Integration Testing o days Wed 30/7/25 Mon 11/8/25 I
3.4.3.3 = Conduet ULUX Testing 14 days Wed 23/7/25 Mon 11/8/25 I——
3.4.3.4 = Perform Bug Fixing and Regression Testing 14 days Wed 23/7/25 Mon 11/8/25]
3.4.4 o Sprint Review 1day Tue 12/8/25 Tue 12/8/2% -
345 = Sprint Retrospective 1 day Wed 13/8/25 Wed 13/8/25 "
Figure 3.8: Sprint 4 timeline
Task s Septesnber 2025
WES = Mode = Task Name = | Duration » Start = Finish - F & W17 20 232 W@ 14 T |0
= + Sprint 5 22 days Wed 13/8/25 Thu 11/8/25
= Sprint Plamming 2 days. Wed 13/8/25 Thu 14/8/25 [
= 4 Sprint Execution 17 days Fril5/8/25 Mon Bf9/25 [————— |
= + Admin Module 14 days Fril5/8/25 Wed 3/9/25 [———
= Manage User Account 3 days Fri15/8/25 Tue 19/8/25 —
= Operator Account Approval S days Wed 20/8/25 Tue 26/8/25 T—
= Operator Request Approval 5 days Mon 25/8/25 Fri 29/8/25 —
35214 5 + Analytics 3 days Sat30/8/25 Tue2/9/25 =
52141 & View Dashboard 3 days 5at30/8/25 Tue 2/9/25 —
3522 = Notifications and Alerts Module 2 days Tue 2/9/25 Wed 3/9/25 -
3523 fd Support Ticket System 3 days. Thu 4/8/25 Mon 8/8/25 —
3.5.3 = « Sprint Testing 12 days Mon 25/8/25 Tue 9/8/25 [————]
= Perform Unit Testing 12 days Mon 25/8/25 Tue 9/9/25 I
= Perform Integration Testing 5 days Wed 3/9/25 Tue 9/9/25 [
= Conduet UVUX Testing 12 days Mon 25/8/25 Tue 9/9/25 I
= Perform Bug Fixing and Regression Testing 12 dayx Mon 25/8/25 Tue 9/9/25 I——
= Sprint Review 1 day Wed 10/9/25 Wed 10/9/25]
= Sprint Retrospective 1day Thu 11/9/25 Thu 11/9/25 m
Figure 3.9: Sprint 5 timeline
Task
wes = Mode = | Task Name w | Duraiion » Stari = Finish - FW T F 5 M T W T F 5
a0 'f + Final Integration and Testing 6 days Fri12/9/25 Fri19/9/25 e
41 » Perform API Testing 2 days Fril2/8/35 Mon 15/9/25 —
4.2 » Perform User Acceptance Testing (UAT) 4 days Fri12/9/25 Wed 17/9/25 —
4.3 b Perform Bug Fixing G days Fri12/9/25 Fri 19/9/25 [m e |
Figure 3.10: Final Integration and Testing Timeline
Task 75 S HSep T 21 5ep 28
Wes - Mode = Task Name = Duracon « Start - Frsh w BT E:S STMIT W T Fis S M F 55 M T W ¥
50 = = Project Closure 16 days Fris/9/25 69
51 = Documentation Finalization 11 davs FAiS/9/25 Fril9/9/25
52 = + Handover and Fresentation & days Fril9/af25 P 28/9/25)
521 - Prepare Final Project Bresentation & days F 190/ Fri 26/0/25 Py
5.2.2 = Schedule and Condoct Handover Meeting with 1 day Fi26/9/25 Fri26/%/25 -
Smkcholders
5,23 - d ‘}r‘mdm“ Project Code and Documentation 1o Relevant 1 day Fri 2609025 Fri 260925 -
waims
53 = + Project Retrospective and Lessons Leamed 2 days Thu 25/9/25 Fri 26/9/25 —
5.3.1 t Condiset Refrospective Meeting 1day The 25/9(25 Thu 25/9/25 v
532 = Document Lessons Leamed amd Best Practices 1day Fri 260925 Fri 26/9/25 -

Figure 3.11: Project Closure Timeline

75

3.4 Development Tools and Techniques

3.4.1 Toolsand IDEs

3.4.1.1 Enterprise Architecture

Enterprise Architecture (EA) is a conceptual blueprint that shapes the structure
and operation of an organization. It helps to determine how an organization can
effectively achieve its current and future goals (Alexander Gillis, n.d.). In this
project, Enterprise Architecture will be used to design and organize the system
in a clear and structured way. It will guide how different parts of the system
connect and work together. To support this, charts such as use case diagrams
and flowcharts will be created. Use case diagrams will show how users interact
with the system, while flowcharts will map out the steps and processes within
the system. This approach will make it easier to plan, develop, and manage the

system efficiently.

3.4.1.2 Visual Studio Code

Visual Studio Code (VS Code) is a lightweight but powerful source code editor
developed by Microsoft. It supports a wide range of programming languages
and comes with built-in features such as debugging, version control integration,
and intelligent code completion (Visual Studio Code, n.d.). In this project,
Visual Studio Code will be used as the main integrated development
environment (IDE) for writing, editing, and managing code for both the frontend
and backend components. Additionally, VS Code offers many extensions that
assist in coding by providing syntax highlighting, code formatting, snippets, and
Al-powered suggestions, which help to improve development efficiency and

code quality.

3.4.1.3 Gitand GitHub

Git is a version control system that allows developers to track changes in their
codebase over time. It helps manage different versions of the project, making it
easy to identify and fix issues. On the other hand, GitHub is a cloud-based
platform that hosts Git repositories and provides a space for developers to
collaborate on code by sharing and managing their repositories. In this project,

I will use Git and GitHub to track changes, manage versions, and maintain a

76

history of the project to easily reference older versions of the code when needed.
I will also use branches to test new functionalities without affecting the main
codebase. Additionally, GitHub will act as a backup, ensuring the project is
securely stored and accessible from anywhere. These tools will help streamline
development, improve organization, and provide a safe, collaborative

environment for the project in the future.

3.4.2 Languages

3.4.2.1 Python

Python is a flexible and powerful language used widely in machine learning and
Alln this project, it is used mainly for prompt engineering to interact with
multimodal models, enabling recognition of license plates and vehicle attributes.
It also supports essential tasks such as data preprocessing, model evaluation,

and API integrations to ensure smooth system functionality.

3.4.2.2 HTML, CSS, JavaScript

HTML, CSS, and JavaScript are the basic tools for web development. These
technologies will be used for developing the frontend of the parking payment
system, ensuring that the user interface (Ul) is visually appealing, functional,
and interactive across both mobile and desktop platforms. HTML will provide
the basic structure of the web pages, defining elements such as headers, forms,
and buttons. CSS will be used for styling, ensuring that the application has a
responsive design that adapts to different screen sizes and devices. JavaScript
will bring interactivity to the frontend, handling tasks like form validation,

dynamic content updates, and user interactions.

3.423 SQL

SQL (Structured Query Language) is a standard programming language used to
manage and manipulate relational databases. It allows users to perform tasks
such as querying data, inserting, updating, and deleting records in a database. In
this project, SQL will be used to manage the data associated with the parking
system. It will store user information and manage parking records. SQL will

also have efficient data retrieval and querying, like fetching a user’s transaction

77

history or checking parking space availability. SQL will ensure data integrity,
providing a secure and consistent way to store and manipulate the system’s

information.

3.4.3 Software Frameworks

3.4.3.1 React Native

In this project, React Native is used as the primary frontend framework for
developing both mobile and web applications using a shared codebase. React
Native enables the development of mobile applications for Android and iOS
using JavaScript and React, while maintaining native-like performance and
interface consistency. To extend the application’s reach to web browsers, the
project also integrates React Native for Web, which allows React Native
components to be rendered on the web through React DOM. This approach
ensures that the application maintains a consistent user interface and
functionality across both mobile and web platforms without the need to build
separate applications. By adopting this framework, the project benefits from
reduced development time, easier maintenance, and a cohesive user experience
across multiple platforms. React Native’s reusable components and modular
structure also enhance scalability and performance, making it an ideal choice

for cross-platform development.

3.4.3.2 Laravel

Laravel is an open-source PHP web framework that follows the MVC
architecture and is known for its elegant syntax, scalability, and developer-
friendly features. It includes built-in tools for database management,
authentication, routing, and security, making it ideal for backend development.
I will use Laravel for the backend of the parking system because of its ability to
efficiently handle user accounts, vehicle registration, payment transactions, and
data processing. Its also integrates with PostgreSQL to ensure reliable data

management.

78

3.4.3.3 EXxpo

Expo is an open-source framework and platform built around React Native that
makes it easier to develop cross-platform applications. It includes a range of
tools and services to help developers build, deploy, and quickly test apps for
iOS, Android, and the web using a single JavaScript or TypeScript codebase.
Expo includes features like a built-in development server, over-the-air (OTA)
updates, and pre-configured native modules, such as camera, notifications, and
biometrics, which reduces complex native code setup (Kwiatkowski, 2024). In
this project, Expo is used alongside React Native and React Native for Web to
streamline development across both mobile and web platforms. It simplifies
testing and debugging across devices, supports fast iteration through its
development tools, and provides easy integration with native features without
requiring manual configuration of native code. Overall, Expo enhances
development efficiency and ensures a smooth deployment process across all
supported platforms.

3.4.4 Database

3.4.4.1 PostgreSQL

PostgreSQL is an open-source, relational database management system known
for its scalability, reliability, and advanced data handling capabilities. For the
LPR and vehicle attribute recognition in a parking system, PostgreSQL is an
ideal choice due to its ability to efficiently manage large volumes of structured
data, handle complex queries, and store interrelated data like vehicle registration
details and transaction histories. Its support for advanced data types like JSON
is useful for storing vehicle attributes, while its strong security features ensure
data protection. Additionally, PostgreSQL integrates well with Laravel, making
it suitable for building and managing the backend of the parking system and its
Al components.

79

3.5 Summary

This chapter outlines the methodology, WBS, Gantt chart, and tools and
technologies used in the development of the parking system project. The Scrum
methodology is adopted for iterative development and continuous feedback
through short sprints, ensuring flexibility and efficient task management. A
WBS was created to break the project into manageable tasks, while a Gantt chart
visually tracks the project timeline, ensuring timely completion. For the
development process, Enterprise Architecture (EA) guides the overall system
design, Visual Studio Code (VS Code) serves as the primary integrated
development environment (IDE), and Git with GitHub is used for version
control and team collaboration. The frontend will be developed using React
Native, which supports both mobile and web platforms through React Native
for Web. Expo is used to facilitate cross-platform development, testing, and
access to native device features. The backend will be powered by Laravel,
integrated with PostgreSQL for secure and efficient data management, while

Python will handle license plate recognition and vehicle attribute identification.

80

CHAPTER 4
PROJECT SPECIFICATION

4.1 Introduction

This chapter presents the project specification, which was developed based on
the analysis of data collected through both primary and secondary research.
Using the insights gathered, the system requirements are defined, followed by
the construction of requirement specifications, use case diagrams, interface flow
diagrams, and initial user interface designs. A preliminary experiment on
vehicle detection and segmentation is also included to evaluate the feasibility of
the proposed approach. Altogether, this chapter provides a comprehensive
overview of the system’s expected functionalities, design structure, and

technical foundation.

4.2 Fact Finding
This project uses both primary and secondary data collection methods to support
the system analysis and development phases. For primary data collection, an
online questionnaire was created and distributed through Google Forms to
gather insights from Malaysian vehicle owners and drivers, who are the main
target users of the proposed system. The questionnaire aims to gather insights
on vehicle usage, commuting habits, challenges faced by road users regarding
current parking payment systems, and user perceptions of automated parking
payment systems using vehicle recognition technology. It is also designed to
understand user expectations for a multimodal Al-based vehicle recognition
system.

For secondary data collection, a literature review explored existing
LPR technologies, vehicle attribute recognition methods, and their applications
in automated parking systems. Sources included journal articles, research papers,
case studies, and technical documentation on both traditional and Al-driven
approaches, such as machine learning, deep learning, and LLMs. Additionally,
commercial parking solutions were reviewed to benchmark current systems.

Software development methodologies and frameworks were also examined to

81

guide the system’s implementation. This review provided insights into the
proposed system's current capabilities, limitations, and opportunities.

Both of these data collection methods were important in defining the
scope and direction of the project. The primary data highlighted user preferences,
experiences, and expectations regarding parking payment systems, while the
secondary data provided insights into existing technologies and Al-based
vehicle recognition methods. These findings will guide the development to be
more practical and user-focused in addressing common issues of current parking

systems.

4.2.1 Responses on Google Form Questionnaire Survey

The questionnaire was distributed over social media platforms and messaging
apps to ensure a wide reach and cost-effective data collection. A total of 31
responses were collected. The questionnaire was divided into four sections,

consisting of 21 questions in total.

4.2.1.1 Section A: Demographics of Respondents

In this section, demographic information is collected to understand the
background of the respondents, including factors such as age, gender, and
vehicle ownership. This helps provide context for analyzing the responses and

identifying any trends or patterns based on different user groups.

82

What is your age group?
31 responses

@ Under 18
® 18-24

25-34
® 3544
@ 45-54

@ 5564
@ 65 or older

Figure 4.1: Pie Chart of Respondents’ Age Group

The first question of the questionnaire collects the age of the
respondents. As shown in Figure 4.1, the majority of respondents, which is
67.7%, fall within the 18 to 24 age group. The second largest group is aged
between 45 and 54, making up 19.4% of the total responses. Meanwhile, the 55
to 64 and 25 to 34 age groups have the lowest representation, with only three
(9.7%) and one (3.2%) respondents respectively. No responses were recorded
from the under-18 or 35 to 44 age categories. Overall, the data shows that all

respondents are aged 18 and above.

What is your gender?
31 responses

@ Male
® Female

Prefer not to say
@ Others

Figure 4.2: Pie Chart of Respondents’ Gender

The majority of respondents are female, making up 48.4% of the total.
Meanwhile, 45.2% of respondents are male, and 6.5% preferred not to disclose
their gender. No respondents selected the "Others" option. Overall, the results
show a nearly equal gender distribution among respondents.

83

What types of vehicles do you own?
31 responses

Car 24 (77.4%)
Motorcycle

Truck

SUv

Van 0 (0%)

None 5(16.1%)

Figure 4.3: Bar Chart of Types of Vehicles Owned by Respondents

The majority of respondents own a car, making up 77.4% of the total.
SUVs are the next most commonly owned vehicle at 16.1%. Meanwhile, 16.1%
of respondents also reported that they do not own any vehicle. However, they
are still relevant to the survey, as they may use a family member’s vehicle.
Motorcycles are the least owned type among the options provided, with only
9.7% of respondents. Additionally, there were no respondents who own a truck
or van, as both categories received 0%. This suggests that private cars are the

most preferred mode of transportation among the respondents.

84

How frequently do you drive or use a vehicle?
31 responses

@ Daily

@ Afew times a week
A few times a month

@ Rarely

@ No vehicle

19.4%

Figure 4.4: Pie Chart of Respondents’ Frequency of Driving

The majority of respondents, which is 54.8%, reported that they drive
daily, showing a high level of reliance on their vehicles for transportation. 19.4%
of respondents drive rarely, suggesting occasional use of their vehicle.
Meanwhile, 12.9% of respondents drive a few times a month, while another 12.9%
drive a few times a week, showing moderate but less frequent vehicle use. These
lower frequencies may be due to the higher number of younger respondents in
the survey, such as university students who live in hostels without a car but drive
when they return to their hometowns. Lastly, no respondents indicated that they
do not own a vehicle, showing that all participants in this survey drive or have
access to a vehicle. This chart highlights varying levels of vehicle use among

the respondents, with daily driving being the most common.

85

For what purposes do you primarily use your vehicle?
31 responses

Daily commuting 27 (87.1%)

Business use

Long-distance travel 7 (22.6%)

Ride-sharing (Grab/Taxi) 2 (6.5%)

Leisure 14 (45.2%)

Figure 4.5: Bar Chart of Respondents’ Purpose for Using their Vehicle

The most common purpose for using a vehicle is daily commuting,
which is 87.1% of respondents. It indicated that the majority of respondents rely
on their vehicle for regular travel to work, school, or other daily activities. 45.2%
of respondents use their vehicle for leisure, suggesting that a significant portion
of respondents also use their vehicle for recreational purposes. 22.6% of
respondents use their vehicle for long-distance travel, while 16.1% use it for
business purposes. Finally, 6.5% of respondents reported using their vehicle for
ride-sharing services such as Grab or Taxi, showing a smaller but relevant
portion of respondents using their vehicle in the ride-hailing market. This
suggests that most respondents use their vehicles primarily for commuting, with

leisure and travel also being important reasons.

86

4.2.1.2 Section B: Difficulties in the Existing Parking Payment System

How often do you park in paid parking facilities (shopping malls, offices, residential buildings,

etc.)?
31 responses

@ Every day

@ Afew times a week
A few times a month

@ Rarely

Figure 4.6: Pie Chart of Respondents’ Frequency of Using Paid Parking
Facilities

The largest group, with 29% of total responses, reported using paid
parking a few times a month, indicating occasional use of such facilities. 25.8%
of respondents use paid parking every day, indicating that a significant portion
of respondents likely rely on paid parking for daily commuting or work-related
travel. 22.6% use paid parking a few times a week, suggesting moderate usage
of such facilities. The remaining 22.6% of respondents reported using paid
parking rarely, showing that for some, paid parking is not a regular necessity.
This distribution highlights that paid parking is commonly used, especially by
those who commute daily or have frequent parking needs. The lower usage of
paid parking facilities among some respondents may be due to the younger age
group, who may not use paid parking as frequently as working adults.

87

What payment methods do you prefer for parking?

31 responses

Touch n' Go Card 28 (90.3%)

Credit/Debit Card 13 (41.9%)

Parking ticket (Pay at Kiosk) 4 (12.9%)

Monthly pass (Season Parking) 3(9.7%)

Mobile application payment (e.g.
Sunway Super App Smart Park...
eWallet (TNG eWallet, GrabPay,
Boost, etc)

5 (16.1%)

15 (48.4%)

0 10 20 30

Figure 4.7: Bar Chart of Respondents’ Preferred Parking Payment Methods

The majority of respondents, which is 90.3%, prefer using the Touch

'n Go card, making it the most popular method. It is then followed by eWallets

like TNG eWallet, GrabPay, and Boost, which are used by 48.4% of respondents.

Credit or debit card payments are also fairly common at 41.9%. Other methods

include mobile app payments (e.g., Sunway Super App Smart Park) at 16.1%,

paying at kiosks using a parking ticket at 12.9%, and monthly passes or season

parking at 9.7%. This suggests that digital and contactless payments are more

favored over traditional methods like kiosk payments or monthly passes.

88

What issues have you faced when using parking payment systems?

31 responses

Long queues at payment kiosk 13 (41.9%)
Lost/damaged parking ticket

Insufficient balance in TNG car... 16 (51.6%)

13 (41.9%)

12 (38.7%)

14 (45.2%)

17 (54.8%)

QR code or scanner issues
Inconvenient Payment Methods
Lack of payment options
Technical issues

Poor Security

High parking charges 21 (67.7%)

None

0 5 10 15 20 25

Figure 4.8: Bar Chart of Issues Faced by Respondents with Current Parking
Payment Systems

The most frequently reported issue with parking payment systems was
high parking charges, which were 67.7% of total responses. This suggests that
parking price remains a major concern for users. Technical issues were the
second most common problem, affecting 54.8% of respondents and indicating
that system reliability is a significant area for improvement. Additionally, 51.6%
of participants reported problems due to insufficient balance in their TNG Card
or eWallet, highlighting the need for easier ways to check and manage balance.
Other commonly faced issues include a lack of payment options at 45.2%, long
queues at payment kiosks at 41.9%, QR code or scanner issues at 41.9%, and
inconvenient payment methods at 38.7%, all of which suggest both physical and
digital aspects of the payment process need refinement. Less frequent issues,
such as lost or damaged parking tickets and poor security, were each reported
by 16.1% of respondents. Only 6.5% of participants indicated they faced no
issues at all, implying that the majority encounter some form of difficulty when

using parking payment systems.

89

Rate the speed of transaction of the parking payment system on a scale of 1 to 5.
31 responses

20

15 16 (51.6%)

8 (25.8%)

1(3.2%)

Figure 4.9: Column Chart of Respondents’ Rating on Parking Payment
Transaction Speed

The majority of respondents, which is 51.6%, rated the transaction
speed as 4, indicating that they find the process to be fairly fast and acceptable
for daily use. Another 25.8% chose a neutral score of 3, suggesting that while
the speed is not problematic, it may not be particularly efficient either.
Meanwhile, 16.1% rated the speed as 2, pointing to noticeable delays or
inefficiencies in some payment systems. A small portion of respondents rated
the speed as 1 (very slow) and 5 (very fast), both at 3.2%. These findings reflect
that although a large portion of drivers are relatively satisfied with the
transaction speed, there remains a need to optimize the system further.
Improving processing speed through automation or better system design could

improve the overall parking payment experience for drivers.

90

Rate the convenience of the parking payment system on a scale of 1to 5.
31 responses

20

15 16 (51.6%)

7 (22.6%)

2 (6.5%)

Figure 4.10: Column Chart of Respondents’ Rating on Parking Payment

Transaction Convenience

The majority of respondents, which is 51.6%, rated the transaction
convenience as 4, indicating that they find the payment process somewhat
convenient. Following that, 22.6% of respondents chose a neutral score of 3,
suggesting that while the transaction is neither particularly convenient nor
inconvenient, improvement is still needed. Meanwhile, a smaller portion of 16.1%
rated the convenience as 2, which points to some dissatisfaction or challenges
faced by respondents with the current system. Only 6.5% of respondents rated
the system as a 5, which represents very convenient, indicating that while some
drivers find the system convenient, it is not the case for the majority of drivers.
Additionally, 3.2% of respondents rated the system as a 1, which means very
inconvenient, highlighting that there are still drivers who experience significant
difficulties when using the current parking payment system. This suggests that
while the majority of drivers find the system overall convenient, there is
potential for improvement. Enhancing the system’s convenience could help in
addressing the concerns of those who rated it as less convenient. Improvements
could focus on simplifying the transaction process, reducing wait times, or

introducing more user-friendly interfaces.

91

What do you dislike about the current parking payment system?
31 responses

Having to queue at kiosks or

; 14 (45.2%)
barriers

Needing to carry physical cards/

0,
tickets 16 (51.6%)

Parking payment failures (e.g.,

0
insufficient balance, faulty read... 21 (87.7%)

Security risks (e.g., lost tickets

8 (25.8%
being misused) {)

Need to make sure | have

0y
enough balance in my card 1(3.2%)

Figure 4.11: Bar Chart of Respondents’ Dissatisfaction with Current Parking
Payment System

The most common issue reported by 21 respondents (67.7%) is parking
payment failures, such as insufficient balance or faulty card readers, which often
lead to delays and inconvenience. The second most frequent dissatisfaction,
selected by 16 respondents (51.6%), is the need to carry physical cards or tickets.
This can be inconvenient for drivers who may forget their cards or have to
manage multiple cards for different parking locations. Having to queue at kiosks
or barriers was also a major dissatisfaction reported by 14 respondents (45.2%).
This suggests that delays during peak hours or in high-traffic areas give a
negative experience to drivers. Security risks, such as the misuse of lost tickets,
were selected by 8 respondents (25.8%). This shows that drivers are not only
concerned about convenience but also the safety and reliability of the current
systems. Additionally, 1 respondent (3.2%) selected the "Others" option and
mentioned the hassle of ensuring sufficient balance on a card before entering a
parking facility. This further emphasizes the limitations of prepaid card systems

and the potential benefit of real-time balance tracking or auto top-up features.

92

Which improvements would you like to see in the current parking payment system?

31 responses

Contactless payment 22 (7T1%)

Elimination of physical parking... 18 (58.1%)
Faster & more efficient paymen... 26 (83.9%)
Show real-time availability 13 (41.9%)
More payment options 15 (48.4%)
Discounts for frequent users 16 (51.6%)
Improved security 11 (35.5%)

Higher system reliability 17 (54.8%)

Figure 4.12: Bar Chart of Respondents’ Suggested Improvements for Parking
Payment System

The most highly requested improvement is faster and more efficient
payment processing, with 83.9% of respondents selecting this option. This
highlights the importance of minimizing delays during entry and exit, possibly
through better system integration or automation. Contactless payment methods
were also a popular choice, which was chosen by 71% of respondents. It
indicates a strong demand for more hygienic and convenient payment
experiences. Following closely, eliminating the need for physical parking
tickets was chosen by 58.1%, reflecting a preference for digital or app-based
alternatives that reduce the hassle of handling or losing tickets. Other
suggestions include increasing system reliability (54.8%) and offering discounts
for frequent users (51.6%), both showing a need for consistent system
performance and customer loyalty benefits. More payment options, such as
eWallets, mobile apps, or credit cards, were selected by 48.4% of respondents,
suggesting that flexibility in payment is also important to users. Additionally,
41.9% of respondents would like real-time availability displays, which could
help drivers better plan and reduce time spent searching for parking. Finally,
improved security was selected by 35.5%, indicating that users also value safer,

more trustworthy payment systems.

93

4.2.1.3 Section C: Exposure to Technologies for Automated Parking
Payment

Are you familiar with vehicle recognition systems (e.g., Al-based license plate detection)?

31 responses

@ Yes, | have used/seen them before

@ | have heard about them but never used
them

No, | am not aware of such technology

Figure 4.13: Pie Chart of Respondents’ Familiarity with Vehicle Recognition
System

A majority of respondents (74.2%) expressed that they have used or
seen vehicle recognition systems before, suggesting a widespread exposure to
the technology. A smaller portion (16.1%) has heard of these systems but has
not used them, suggesting some awareness but limited direct experience. The
remaining 9.7% are unaware of vehicle recognition technology, highlighting
that there are still individuals unfamiliar with this emerging technology. Overall,
this indicates a high level of awareness and experience among respondents, but

also shows that there is room for greater adoption and familiarity.

94

Have you ever used an automated parking system where license plate recognition is used for entry

and exit?
31 responses

@ Yes, and | found it convenient

@ Yes, but | faced issues with plate
detection/payment

No, | have never used such a system

Figure 4.14: Pie Chart of Respondents” Experience Using License Plate

Recognition Parking Systems

The chart shows that 74.2% of respondents have used a license plate
recognitio parking system and found it convenient, indicating a generally
positive experience with the technology. A smaller portion, 9.7%, have used
LPR systems but encountered issues with plate detection or payment, suggesting
that while the technology has been adopted, there are still challenges to be
addressed. The remaining 16.1% have never used such a system, highlighting
that there is still a segment of users unfamiliar with LPR parking systems. This
suggests that while LPR technology is gaining popularity, there is still room for

improvement and greater adoption.

95

Would you be open to using a vehicle recognition system for parking payments?
31 responses

@ VYes, it would be convenient

@ Maybe, depending on security &
reliability
No, | prefer existing payment methods

Figure 4.15: Pie Chart of Respondents’ Willingness to Use Vehicle

Recognition System for Parking Payments

The chart indicates that a majority of respondents (83.9%) would be
willing to use a vehicle recognition system for parking payments, expressing
that convenience is important to them. A smaller portion (12.9%) expressed
limited interest and is dependent on the security and reliability of the system.
Only 3.2% of respondents preferred to stick with existing payment methods and
were unwilling to use a vehicle recognition system for parking payments. This
suggests that most respondents are open to adopting vehicle recognition systems
if they offer practical benefits like convenience and ease of use. While there is
a positive response to the system, concerns around security and reliability must

still be addressed to ensure more acceptance.

96

What concerns do you have about an Al-powered vehicle recognition system?
31 responses

Privacy concerns (my vehicle

17 (54.8%
data being stored) (b)

Security risks (fraudulent vehicle

0,
oniry) 19 (61.3%)

Accuracy of license plate

0
detection 19 (61.3%)

Integration with existing payment

13 (41.9%)
systems

None, | would trust this system

Figure 4.16: Bar Chart of Respondents’ Concerns Regarding Al-Powered
Vehicle Recognition System

The primary concern among respondents regarding Al-powered
vehicle recognition systems is security, with 61.3% expressing worries about
fraudulent vehicle entry. With an equal percentage of 61.3%, the accuracy of
license plate detection is also another significant concern. Inaccuracies could
lead to errors in billing, processing delays, and misidentification, affecting user
trust and system reliability. Privacy concerns, specifically about vehicle data
being stored, were also raised by 54.8% of respondents. Additionally, 41.9% are
concerned about how well the system integrates with existing payment methods.
Only 3.2% of respondents indicated they would trust the system without any
concerns. This highlights that while there is interest in Al-powered systems,
addressing privacy, security, and accuracy concerns will be crucial to gaining

wider acceptance.

97

4.2.1.4 Section D: User Expectations for Al-powered Parking System

What features would you like in an Al-powered parking payment system?

31 responses

Automatic parking fee deduction
based on license plate recognit...
A mobile app to register my
vehicle, track payments, and m...
A feature to disable auto-
payments if my vehicle is stolen
Ability to receive parking receipts
via email/app

Integration with eWallets, debit/
credit cards, and bank transfers
Support for multiple vehicles —
Ability to link and manage multi...

17 (54.8%)
20 (64.5%)
18 (58.1%)

15 (48.4%)

19 (61.3%)

14 (45.2%)

0 5 10 15 20

Figure 4.17: Bar Chart of Features Respondents Want in an Al-Powered
Parking Payment System

The most popular feature is a mobile app to register vehicles, track
payments, and manage parking history (64.5%). This highlights the demand for
a simpler and accessible way to handle parking tasks. The next popular feature
is the integration of various payment methods, such as eWallets, debit/credit
cards, and bank transfers (61.3%). This reflects the importance of flexible and
smooth payment options. Other highly requested features include automatic
parking fee deduction based on license plate recognition (54.8%) and the ability
to disable auto-payments if a vehicle is stolen (58.1%). This indicates concerns
around security and the need for convenience in managing payments.
Additionally, 48.4% of respondents would like to receive parking receipts via
email or app, showing a preference for digital records. Lastly, 45.2% of
respondents would like to manage multiple vehicles under one account, further
emphasizing the desire for a more user-friendly, multi-functional system. These
preferences demonstrate the need for a comprehensive, secure, and flexible

solution that meets the diverse needs of users.

98

How important is a mobile app for managing parking payments? (to register vehicle, view

transaction history, check parking rates and more features)
31 responses

@ Very important — | want full control via an
app

@ Somewhat important — | may use it
occasionally
Not important — | prefer automatic
transactions without an app

Figure 4.18: Pie Chart of the Importance of a Mobile App for Managing

Parking Payments

The majority of respondents (51.6%) consider a mobile app "very
important” for managing parking payments, as they desire full control over their
parking payments through the app. This reflects a preference for greater
convenience and autonomy in managing parking transactions. A smaller portion
of respondents (38.7%) find the app "somewhat important,” indicating that they
might use the app occasionally but are not as dependent on it. Lastly, a minority
of respondents (9.7%) view the app as "not important” and prefer automatic
transactions without an app, suggesting that they favor a more straightforward
payment experience. This chart emphasizes the importance of offering a mobile
app for managing parking payments, while also highlighting that some users

still prefer fully automated methods.

99

Would you trust an Al system to handle your parking payments automatically?
31 responses

@ VYes, if it is secure and accurate

® Maybe, but | need manual override
options
No, | prefer manual payments

Figure 4.19: Pie Chart of Respondents’ Trust in Al System for Handling

Parking Payments

The majority of respondents (67.7%) are open to trusting an Al system
for handling parking payments, provided it is secure and accurate. This shows
that most users are willing to adopt Al technology if it offers reliability and
safety. Meanwhile, 32.3% of respondents are more cautious as they would trust
the system only if manual override options are available. This suggests a need
for flexibility and user control within the system. Notably, none of the
respondents rejected the idea entirely, showing a general openness toward Al-

driven solutions for parking payments.

100

Would you use an "Emergency Stop Transaction" feature to disable auto-payments in case of fraud
or theft?

31 responses

@ Yes, this is an essential feature

@ Maybe, but | need more details on how it
works

No, | don't think it's necessary

Figure 4.20: Pie Chart of Respondents’ Need for an “Emergency Stop

Transaction” Feature

The majority of respondents (74.2%) believe that an “Emergency Stop
Transaction” feature is essential. This shows that there is strong support for
having the ability to immediately stop parking payments in urgent situations,
such as vehicle theft or unauthorized use. Meanwhile, 25.8% of respondents
expressed interest but would like more information about how the feature works,
suggesting clearer policies and transparency could help increase confidence.
Notably, no respondents dismissed the need for this feature, indicating overall
support for having added safety and control measures within the parking
payment system.

101

Would you like real-time notifications about your parking transactions (e.g., entry, exit, fee

deductions)?
31 responses

@ Yes, via mobile app natifications
@ Yes, via SMS or email
No, | don't need notifications

Figure 4.21: Pie Chart of Respondents’ Preference for Real-Time Parking

Transaction Notifications

Most respondents (61.3%) prefer to receive real-time parking
transaction notifications through mobile app alerts, showing a strong demand
for instant updates. Another 32.3% prefer notifications via SMS or email,
suggesting that while they value updates, they may not actively use mobile apps
or prefer more traditional channels. Only 6.5% indicated that they do not require
any notifications, as they may prioritize simplicity or find frequent notifications
unnecessary or intrusive. Overall, the majority want to stay informed about their
parking activities through some sort of notification. The chart also highlights
the importance of offering flexible notification options to suit different user

preferences and enhance overall user engagement.

102

4.3 Requirement Specification
4.3.1 Functional Requirements
Table 4.1: Functional Requirements.

ID Functional Requirement

FR1 | The system shall allow drivers and parking operators to register user

accounts.

FR2 | The system shall allow drivers, parking operators, and admins to log

in securely.

FR3 | The system shall allow drivers, parking operators, and admins to

manage their own profile information.

FR4 | The system shall allow drivers to manage one or more vehicles.

FR5 | The system shall allow drivers to manage the auto-transaction
settings for parking through license plate and vehicle attribute

recognition using multimodal Al.

FR6 | The system shall allow drivers, parking operators, and admins to

view dashboards personalized to their roles.

FR7 | The system shall allow drivers to view nearby parking information.

FR8 | The system shall allow drivers to view their parking history.

FR9 | The system shall allow drivers to view nearby EV charger

information.

FR10 | The system shall allow drivers to make EV reservations.

FR11 | The system shall allow drivers to view their EV reservations.

FR12 | The system shall allow drivers to manage their payment methods.

FR13 | The system shall process automatic parking fee transactions when

drivers exit a parking lot.

FR14 | The system shall provide drivers with notifications and alerts related

to transactions.

FR15 | The system shall require parking operators to set up parking rates,
parking lot details, and all relevant information during the
registration process.

FR16 | The system shall allow parking operators to update and manage
parking lot details, which will be reviewed and approved by the

admin.

103

FR17 | The system shall allow drivers and parking operators to submit

support tickets for system-related issues.

FR18 | The system shall allow admins to manage accounts for drivers and

parking operators.

FR19 | The system shall require admin approval for new parking operator
accounts before they can start managing parking lots, rates, and other

features.

FR20 | The system shall require admin approval for any changes made to
parking rates, parking zones, or other features requested by parking
operators.

FR21 | The system shall allow admins to manage support tickets submitted

by drivers or parking operators.

4.3.2 Non-functional Requirements

Table 4.2: Non-functional Requirements.

ID Non-functional Requirements Category of NFR

NFR1 | The system shall achieve a minimum of
90% accuracy in license plate

recognition under optimal conditions.

NFR2 | The system shall correctly match vehicle
attributes (e.g., color, make, model) with
a minimum accuracy rate of 90% under Accuracy

optimal conditions.

NFR3 | The system shall ensure that auto-
payments are only triggered when both
the license plate and registered vehicle

attributes are correctly recognized.

NFR4 | The system shall respond to user actions
within 2 seconds under normal network

conditions.
Performance

NFR5 | The system shall process license plate
recognition and return a decision within

5 seconds at the point of entry/exit.

104

NFR6

The system shall be compatible with
modern web browsers, including
Chrome, Firefox, Edge, and Safari, for
the website, and compatible with
Android and i0S platforms for the
mobile application.

NFR7

The system shall integrate with third-
party payment gateways and support
APIs for external system access (e.g.,

payment services).

Compatability

NFR8

The system shall enforce authentication
and role-based access control for drivers

and parking operators.

NFR9

The system shall maintain accurate and

tamper-proof records of transactions

NFR10

All sensitive data, like user credentials,
personal data, and payment information,
shall be encrypted using AES-256

encryption or higher.

NFR11

The application shall adhere to relevant
data protection regulations to safeguard
user privacy and ensure the security of

personal data.

Security

NFR12

The system shall provide a user-friendly,
simple, and intuitive interface with clear

icons, buttons, and navigation.

NFR13

When an error occurs, the system shall
display clear and understandable error

messages.

Usability

NFR14

The system shall be able to store and
retrieve user data accurately without loss

or corruption.

Reliability

105

NFR15

The system shall follow a modular
architecture to facilitate future
enhancements and updates, with a
structured and maintainable codebase
that adheres to established coding

standards and industry best practices.

Maintainability

NFR16

The system shall be designed to easily
accommodate additional parking lots or
parking zones as the system expands,
without requiring significant changes to

the infrastructure.

NFR17

The system shall be designed to
accommodate future growth in user

base, traffic, and transaction volume.

Scalability

106

4.4 Use Case Modelling
4.4.1 Use Case Diagram

uc Vehide Parking Payment Application /

Vehicle Parking Payment Application

Manage Auto-Transactions
Manage Vehicle

«extend»

extension points
When driver want te stop or
reactivate auto-transactiol

View Parking

Transaction History

View EV Reservation

iew Nearby Parking View Nearby EV
Lot Details Chargers.

.
Auto-Transaction of

Parking Fee Payment Gateway

Drivers

View Dashboard ‘Submit Support
Tickets LPR and Vehicle Attribute

Model

et Up Parking Rates and Othel

Information
extension points
If role is parking operator
e
«wextends»

Register Account

Request Changes to
Parking Lot Details

Parking Operators Manage Payment Methods

Manage Own Profile

«extend»

extension points
If role is driver, and driver wants
to manage payment methods

Manage Support
Tickets

Manage User
Accounts

Admins Approve Pending

Requests from
Operators

Figure 4.22: Use case diagram of Vehicle Parking Payment Application.

107

4.4.2 Use Case Description

Table 4.3: Use case description of login.

Use Case Name: Login ID: UC-1 | Importance
Level: High

Primary Actor: Drivers, Parking | Use Case Type: Detail, Real

Operators, Admin

Stakeholders and Interests: N/A

Brief Description: Allows Admins, Parking Operators, and Drivers to securely

access the system based on their assigned roles.

Trigger: The actor initiates the login process by selecting login on the home
page of the platform.

Relationships:
Association : Driver, Parking Operator, Admin
Include : -
Extend T-

Generalization: -

Normal Flow of Events:
1. The actor navigates to the login page.
2. The system prompts the user to enter their login credentials.
. The actor enters their login credentials.

3
4. The system verifies the credentials. Continue S-1
5. The actor is redirected to their dashboard.

6

. The login session is initiated.

Sub-flows:
S-1: Perform4.1or4.2or4.30r4.4
4.1 If invalid credentials, the system displays an error message
and prompts the user to re-enter their credentials. Continue to
flow 3.
4.2 If valid credentials, the actor successfully logs in to their
account. Continue to flow 5.

108

4.3 If unapproved parking operators, the system displays a
pending approval message. Continue to flow 3.
4.4 If the actor does not have an account, UC-2 will be performed.

Alternate/Exceptional Flows:

Assumptions:

Table 4.4: Use case description of Register.

Use Case Name: Register ID: UC-2 | Importance
Level: High

Primary Actor: Drivers, Parking | Use Case Type: Detail, Real
Operators

Stakeholders and Interests: N/A

Brief Description: Allows Drivers and Parking Operators to create a new
account on the platform.

Trigger: The actor initiates the register process by selecting register on the

home page of the platform.

Relationships:

Association : Driver, Parking Operator

Include : -

Extend : Set Up Parking Rates and Other Related
Information

Generalization: -

Normal Flow of Events:

1. The actor navigates to the register page.

2. The system prompts the user to enter the required information,
including email and password.

3. The actor enters their required information and submits the registration
form.

4. The system validates the credentials. Continue S-1

5. The system creates a new user account.

6. The actor is redirected to their dashboard.

109

7. The login session is initiated.

Sub-flows:
S-1: Perform4.1or4.2 or4.3
4.1 If invalid input, the system displays an error message and
prompts the user to re-enter the required information.
Continue to flow 3.
4.2 If valid input, the actor successfully registered their account.
Continue to flow 5.

4.3 If the actor is a parking operator, proceed to E-1.

Alternate/Exceptional Flows:
E-1:
4.3.1 The system prompts the parking operator to enter required
information for parking lots information.
4.3.2 The parking operator enters the required parking lots
information and submits the registration form.
4.3.3 The system prompts a message stating to wait for admin
approval. Continue to flow 1.
Assumptions:

Table 4.5: Use case description of Manage Vehicles

Use Case Name: Manage Vehicles ID: UC-3 | Importance
Level: High
Primary Actor: Driver Use Case Type: Detail, Real

Stakeholders and Interests: N/A

Brief Description: Allows driver to register their vehicles for auto-transaction

for parking payments.

Trigger: The driver wants to register their vehicles into the application.

Relationships:
Association : Drivers
Include :-

Extend : Manage Auto-Transaction

110

Generalization: -

Normal Flow of Events:

1. The driver navigates to the “manage vehicle” screen.

2. The system displays the currently registered vehicles if they exist, and
prompts the user to add, edit, delete or manage auto-transaction of
vehicles. Continue S-1.

3. The system updates the records of the vehicle.

4. The system will display a message showing that the action performed

is successful.

Sub-flows:
S-1: Perform2.1or2.20r230r2.4
2.1 If driver selects to add vehicle, the system request vehicle
information.

2.1.1 The user enters the required vehicle details, including
vehicle type, license plate, make, model, and color,
and submit the registration form.
2.1.1.1 If invalid input, the system displays an error

message and prompts the driver to re-enter the
required information. Continue to flow 2.
2.1.1.2 If valid input, the vehicle is successfully
registered.
2.2 If driver selects to edit vehicle, the system request vehicle
information for modification.

2.2.1 The user enters the required vehicle information.

2.2.1.1 If invalid input, the system displays an error
message and prompts the driver to re-enter the
required information. Continue to flow 2.
2.2.1.2 If valid input, the vehicle detail is modified.
Continue to flow 3
2.2.2 If the enter selects to manage payment methods of the

vehicle, perform UC-5.

111

2.3 If driver selects to delete vehicle method, the system prompts
a confirmation message.
2.3.1 If the driver selects confirm, the vehicle will be
removed. Continue to flow 3.
2.3.2 If the driver selects cancel, the process will stop.
Continue to flow 2.
2.4 If the driver selects to manage auto-transaction settings,

proceed to E-1

Alternate/Exceptional Flows:
E-1: Perform 2.4.10r 2.4.2
2.4.1 If the auto-transactionis active and the driver wants to
stop, the system will prompt a confirmation message.
2.4.1.11f the driver selects confirm, the auto-
deduction will be deactivated.
2.4.1.1.1 The driver receives a notification
regarding the stop. Continue to
flow 3.
2.4.1.2 If the driver selects cancel, the process will
stop. Continue to flow 2.
2.4.2 If the auto-transaction is deactivated and the driver
wants to reactivate, the system will prompt a
verification step.
2.4.2.1 If verification successful, the auto-transaction
will be reactivated.
2.4.2.1.1 The driver receives a notification
regarding the reactivation.
Continue to flow 3.
2.4.2.2 If the driver selects cancel, the process will
stop. Continue to flow 2.
Assumptions:
A. Actor is an authenticated user.

B. Driver can only edit or delete the specific vehicle when it is registered

112

Table 4.6: Use case description of Manage Payment Methods

Use Case Name: Manage Payment Methods ID: UC-4 | Importance
Level: High

Primary Actor: Driver Use Case Type: Detail, Real

Stakeholders and Interests: N/A

Brief Description: Allows the driver to add, modify, or delete their payment
methods. This use case extends Manage Own Profile (UC-

16) when the actor is a Driver.

Trigger: The driver wants to manage their payment methods.

Relationships:
Association : Drivers
Include : -
Extend 1-

Generalization: -

Normal Flow of Events:

1. The driver selects “Manage Payment Methods™” from their profile
page.

2. The system displays the driver’s current payment methods if they exist,
and prompts the user to add, edit, or delete payment methods. Continue
S-1.

3. The system updates the records of payment methods.

4. The system will display a message showing that the action performed

is successful.

Sub-flows:
S-1: Perform 2.1 or 2.2 or 2.3
2.1 If the driver selects to add payment methods, the system
requests payment method information.
2.1.1 The wuser enters the required payment method

information.

113

2.1.1.1 If invalid input, the system dis
message and prompts the driver

plays an error

to re-enter the

required information. Continue to flow 2.1.

2.1.1.2 If valid input, the payment method is added.

Continue to flow 3.

2.2 If the driver selects to edit payment methods, the system

displays the selected payment method information available

for modification.

2.2.1 The wuser enters the required payment method

information for modification.
2.2.1.1 If invalid input, the system dis

message and prompts the driver

plays an error

to re-enter the

required information. Continue to flow 2.2.

2.2.1.2 If valid input, the payment method is modified.

Continue to flow 3.

2.3 If the driver selects to delete a payment method, the system

prompts a confirmation message.
2.3.1 If the driver selects confirm, the payme

be removed. Continue to flow 3.

nt method will

2.3.2 If the driver selects cancel, the process will stop.

Continue to flow 2.

Alternate/Exceptional Flows:

Assumptions:

A. Actor is an authenticated user.

Table 4.7: Use case description of View Dashboard

Use Case Name: View Dashboard ID: UC-5 | Importance
Level: High
Primary Actor: Driver, Parking Operator, | Use Case Type: Detail, Real

Admin

Stakeholders and Interests: Drivers want to see their current sessions,
reservations, and statistics for better tracking and planning. Parking Operators
want to monitor operational metrics, financial performance, and live parking

114

status. Admin wants to oversee the entire system, user activities, resources,
and growth trends.

Brief Description: Allows the actor to view their personalized dashboard
showing role-specific information, statistics, and quick

actions.

Trigger: The actor logs into the system and navigates to the Dashboard screen.

Relationships:
Association : Drivers
Include : -
Extend T-

Generalization: -

Normal Flow of Events:
1. The actor logs in and navigates to the Dashboard screen.
2. The system checks the actor’s role. Continue to S-1.
3. The actor browses the dashboard and interacts with available quick

actions or analytics.

Sub-flows:
S-1: Perform 2.1 or 2.2 or 2.3

2.1 If the role is Driver, the system displays the appropriate
dashboard content for drivers, which includes current parking
sessions, EV charging reservations, stats such as total
sessions, total spent, sessions this month, and usage trends,
and quick info and actions, continue to flow 3.

2.2 If the role is Parking Operator, the system displays the
appropriate dashboard content for parking operators, which
includes parking lots overview, parked today count, today’s
revenue, occupancy rate and average duration, customer
analysis and revenue trends, peak hour analysis, live parking
status, and current parking rates, continue to flow 3.

2.3 If the role is Admin, the system displays the appropriate

dashboard content for admins, which includes total users,

115

parking lots, EV chargers in the system, quick actions, alerts,
growth trends, parking usage statistics, and user breakdowns,

continue to flow 3.

Alternate/Exceptional Flows:
A. If system data sync fails, the system shows a “Data temporarily
unavailable” message with a retry option.
B. If the actor does not have proper role permissions, the system restricts

access and displays “Unauthorized access”.

Assumptions:
A. Actor is an authenticated user and has a valid role assigned.
B. Dashboard data is updated in real-time or near real-time to ensure

accuracy.

Table 4.8: Use case description of View Nearby Parking Lot Details

Use Case Name: View Nearby Parking Lot | ID: UC-6 | Importance
Details Level: High

Primary Actor: Driver Use Case Type: Detail, Real

Stakeholders and Interests: N/A

Brief Description: Allows the driver to view details of nearb parking lots to

facilitate parking decisions.

Trigger: Driver wants to view parking lot details

Relationships:
Association : Drivers
Include : -
Extend 1-

Generalization: -

Normal Flow of Events:
1. The driver navigates to the “parking lots” screen.
2. The system requests permission to access the driver’s current location.
Continue S-1

3. If permission is granted, the system retrieves the driver’s location.

116

4. The system checks if there is any parking lots available. Continue S-2

5. The system displays the list of nearby parking lots on a map or list
view.

6. The driver browses the list or map to view available parking lots.

7. The driver can select to view the details of the specific parking lot.

8. The system will display the details of the specific parking lot, including

the location, rate, zones, and more.

Sub-flows:
S-1: Perform 2.1 or 2.2
2.1 If the driver denies location permission, the system cannot
display nearby parking lot.
2.2 If the driver accepts location permission, the system retrieves
the driver’s location, continue to flow 3.
S-2: Perform 3.1 or 3.2
3.1 If there is no parking lots available, the system displays a
message showing no parking lots and redirect to previous
screen.

3.2 If there are parking lots, continue to flow 4.

Alternate/Exceptional Flows:

Assumptions:
A. Actor is an authenticated user.
B. Parking lot data is synced with the system in real-time for accurate
availability.

Table 4.9: Use case description of View Nearby EV Chargers

Use Case Name: View Nearby EV Chargers ID: UC-7 | Importance
Level: High

Primary Actor: Driver Use Case Type: Detail, Real

Stakeholders and Interests: N/A

117

Brief Description: Allows the driver to view details of nearby EV chargers,
including availability, type, and location, to facilitate
charging decisions.

Trigger: The driver wants to check EV charger availability.

Relationships:
Association : Drivers
Include : -
Extend 1-

Generalization: -

Normal Flow of Events:

1. The driver navigates to the “EV Reservation” screen.

2. The system requests permission to access the driver’s current location.
Continue to S-1.

3. The system checks if there are any EV chargers available. Continue to
S-2.

4. The system displays the list of nearby EV chargers on a map or list
view.

5. The driver browses the list or map to view available chargers.

6. The driver can select a specific EV charger to view detailed
information.

7. The system displays the details of the charger, including Charger type,

location, and availability status.

Sub-flows:
S-1: Perform 2.1 or 2.2
2.1 If the driver denies location permission, the system cannot
display nearby EV chargers.
2.2 If the driver accepts location permission, the system retrieves
the driver’s location, continue to flow 3.
S-2: Perform 3.1 or 3.2
3.1 If there are no chargers available, the system displays a
message indicating “No EV chargers available”.

3.2 If there are chargers available, continue to flow 4.

118

Alternate/Exceptional Flows:
A. If a charger’s status changes while viewing (e.g., from available to
reserved), the system updates the display in real-time.
Assumptions:
A. Actor is an authenticated user.
B. EV charger data is synced with the system in real-time for accurate
availability.

Table 4.10: Use case description of View Parking Transaction History

Use Case Name: View Parking Transaction | ID: UC-8 | Importance

History Level: High

Primary Actor: Driver Use Case Type: Detail, Real

Stakeholders and Interests: N/A

Brief Description: Allows driver to view parking their parking transaction
history.

Trigger: Driver wants to view their parking transaction history.

Relationships:
Association : Drivers
Include : -
Extend D

Generalization: -

Normal Flow of Events:
1. The driver navigates to the “parking history” screen
2. The system checks if there is any parking history available. Continue
S-1
The system displays the list of parking histories to the user.
The driver views the list of parking histories.

The driver can select to view the details of the specific parking history.

o o~ w

The system will display the details of the specific parking history,
including the transaction fee, timestamp, parking location, zones,

reference number, status, and payment method used.

119

Sub-flows:
S-1: Perform 2.1 or 2.2
2.1 If there is no parking history available, the system displays a
message showing no parking history and redirect to previous
screen.

2.2 If there are parking histories, continue to flow 3.

Alternate/Exceptional Flows:

Assumptions:
A. Actor is an authenticated user.

Table 4.11: Use case description of View EV Reservation

Use Case Name: View EV Reservation ID: UC-9 | Importance
Level: High
Primary Actor: Driver Use Case Type: Detail, Real

Stakeholders and Interests: N/A

Brief Description: Allows the driver to view their EV charging reservation
history, separated into active reservations (reserved and
ongoing) and past reservations.

Trigger: Driver wants to view their EV charging reservations.

Relationships:
Association : Drivers
Include : -
Extend D

Generalization: -

Normal Flow of Events:
1. The driver navigates to the “EV Reservation” screen
2. The system checks if there is any EV reservations associated with the
driver. Continue S-1
3. The system displays two sections, which are Active Reservations that
show reservations with status reserved or ongoing, and Past

Reservations that show completed, expired, or cancelled reservations.

120

4. The driver browses through active or past reservations.

5. The driver can select a specific reservation to view detailed
information.

6. The system displays details of the reservation, including reservation

time, charger type, location, zone, EV details, and current status.

Sub-flows:
S-1: Perform 2.1 or 2.2
2.1 Ifthereare no EV reservations, the system displays a message
“No reservations found” and redirects to the previous screen.

2.2 If there are EV reservations, continue to flow 3.

Alternate/Exceptional Flows:

Assumptions:
A. Actor is an authenticated user.
B. Reservation data is synced with the system in real-time for accurate

availability and status.

Table 4.12: Use case description of Auto-Transaction of Parking Fee

Use Case Name: Auto-Transaction of Parking | ID: UC-10 | Importance

Fee Level: High

Primary Actor: Driver Use Case Type: Detail, Real

Stakeholders and Interests: Payment Gateway

Brief Description: Allows driver to pay for their parking automatically.

Trigger: When driver exits the parking lot through the gate sensor and the

vehicle recognition is successfully performed.

Relationships:
Association : Drivers
Include : -
Extend D

Generalization: -

121

Normal Flow of Events:

1. The driver’s vehicle is scanned by the exit gate sensors.

2. Vehicle recognition is successful.

3. The system calculates the total parking fee based on entry and exit
timestamps, and the parking location and rates.

4. The system initiates auto-transaction using linked payment methods.
Continue to S-1.

5. The system will send a notification regarding the success of transaction
to the drivers .

6. Transaction detail is saved to history.

Sub-flows:
S-1: Perform 3.1 or 3.2
3.1 If auto-transaction is unsuccessful, the system will send a
notification regarding the failure to the user.
3.2 If auto-transaction is successful, the payment is confirmed.

Continue to flow 4.

Alternate/Exceptional Flows:

Assumptions:
A. Actor is an authenticated user.
B. Driver anable the auto-transaction in the application
C. Linked a valid payment method
D. Vehicle recognition is successfully performed.

Table 4.13: Use case description of Submit Support Tickets

Use Case Name: Submit Support Tickets ID: UC-11 | Importance
Level: High

Primary Actor: Drivers, Parking | Use Case Type: Detail, Real
Operators

Stakeholders and Interests: N/A

122

Brief Description: Drivers and Parking Operators are able to submit support
tickets when they faced any issues or bugs from the

application.

Trigger: When there is an issue or bug that drivers and parking operators

would like to submit to admin to resolve.

Relationships:
Association : Driver, Parking Operator
Include : -
Extend 1-

Generalization: -

Normal Flow of Events:

1. The actor navigates to the “Support” page.

2. Actor selects "Submit New Ticket".

3. The system displays a form, prompting the user to enter the details of
the issue faced, including subject, category and description.

4. The actor enters their required information and submits the support
ticket form.

5. The system validates the input. Continue to S-1.

6. The system creates a support ticket.

7. Confirmation message is displayed

Sub-flows:
S-1: Perform 5.1 or 5.2
5.1 If invalid input, the system displays an error message and
prompts the user to re-enter the required information.
Continue to flow 4.
5.2 Ifvalid input, continue to flow 6.

Alternate/Exceptional Flows:

Assumptions:

A. Actor is an authenticated user.

Table 4.14: Use case description of Request Change to Parking Lot Details

123

Use Case Name: Request Change to Parking | ID: UC-12 | Importance
Lot Details Level: High

Primary Actor: Parking Operators Use Case Type: Detail, Real

Stakeholders and Interests: N/A

Brief Description: Allows parking operator to request change to parking lot
details. These changes are subject to admin review and
approval. If a parking lot is marked as inactive, no further
parking sessions or auto-transactions will be allowed for

that location.

Trigger: The parking operator have to make some changes to the information

of parking lots.

Relationships:
Association : Parking Operators
Include : -
Extend 1-

Generalization: -

Normal Flow of Events:

1. The parking operator navigates to the “My Parking Lots” page.

2. The system displays the available parking lots of the parking operator,

3. The parking operator selects a parking lot and clicks “Request
Change”.

4. The system displays a form with editable fields such as parking name,
address, operating hours, pates, contact info, and status.

5. Operator modifies the desired fields and submit the request. Continue
to S-1

6. System prompts a message stating to wait for admin’s approval and
records the request as “Pending Approval”.

Sub-flows:
S-1: Perform 5.1 or 5.2
5.1 If invalid input, the system displays an error message and
prompts the driver to re-enter the required information.

Continue to flow 5.

124

5.2 If valid input, the payment method is added. Continue to flow
6.

Alternate/Exceptional Flows:

Assumptions:
A. Actor is an authenticated user.
B. Parking operator have existing parking lot as they set up during

registration and approved by admin.

Table 4.15: Use case description of Manage Support Tickets

Use Case Name: Manage Support Tickets ID: UC-13 | Importance
Level: High
Primary Actor: Admin Use Case Type: Detail, Real

Stakeholders and Interests: N/A

Brief Description: Enables the admin to view, respond to, and manage all
support tickets submitted by drivers and parking operators.
Admins can update ticket status, provide responses, and

close resolved tickets.

Trigger: The admin want to manage the support tickets submitted by drivers

and parking operators.

Relationships:
Association : Admin
Include : -
Extend 1-

Generalization: -

Normal Flow of Events:
1. The admin navigates to the “Support Tickets” page.

2. The system checks if there are support tickets. Continue to S-1.

125

3. The system displays a list of submitted tickets, including status that are
open, in progress, resolved, and closed, while also offering filter by
status, user type, and submission date.

4. The admin selects a ticket to view full details, including ticket id,
submitter name and role, issue category, subject, and message.

5. The admin writes a response.

6. The admin updates the ticket status.

7. The system will send notification of the response to the users.

Sub-flows:
S-1: Perform 2.1 or 2.2
2.1 If there is no support ticket available, the system displays a
message showing no support ticket and redirect to previous
screen.

2.2 If there are support tickets, continue to flow 3.

Alternate/Exceptional Flows:

Assumptions:
A. Actor is an authenticated user.

B. Admin cannot respond to ticket that is closed.

Table 4.16: Use case description of Approve Pending Requests from Operators

Use Case Name: Approve Pending Requests | ID: UC-14 | Importance
from Operators Level: High

Primary Actor: Admin Use Case Type: Detail, Real

Stakeholders and Interests: Admin wants to ensure only legitimate operators
and valid changes are approved. Parking Operators want their accounts and

submitted changes to be processed efficiently.

Brief Description: Allows the Admin to review, approve, or reject pending
requests submitted by parking operators. Pending requests
can include new operator account applications or change

requests (e.g., parking rate adjustments, lot capacity

126

updates, enabling/disabling EV chargers, or marking a lot

inactive).

Trigger: When there are pending requests (account approvals or parking

change requests) that require admin action.

Relationships:

Association : Admin
Include :-
Extend

Generalization: -

Normal Flow of Events:

6.
7.
8.
9.

The admin navigates to the Pending Requests page.

The system checks if there are any pending requests. Continue to S-1.
The system displays a list of pending requests (e.g., operator accounts,
parking changes) with filter options (e.g., request type, status,
submission date).

The admin selects a request to view details.

The system displays full request details (e.g., operator info, requested
change, justification, timestamp).

The admin decides to approve or reject the request. Continue to S-2.
The system displays a message showing the action is successful.

The system updates the status of the request accordingly.

The system sends a notification to the operator regarding the decision.

Sub-flows:
S-1: Perform2.1or 2.2

2.1 Ifthere is no pending parking change request, the system displays

a message showing no pending request and redirect to previous

screen.

2.2 If pending requests exist, continue to flow 3.

S-2: Perform 6.1 or 6.2

6.1 If the admin selects Approve, the system finalizes the approval

(account is activated or parking change applied). Continue to flow
1.

127

6.2 If the admin selects reject, the system will prompt a confirmation
message.
4.2.1 If the admin confirms, the system rejects the request.
Continue to flow 7.
4.2.2 If the admin selects cancel, the process stops. Continue to
flow 5.

Alternate/Exceptional Flows:

Assumptions:
A. Actor is an authenticated user.

B. Operators must have submitted requests through the system.

Table 4.17: Use case description of Manage User Accounts

Use Case Name: Manage User Accounts ID: UC-15 | Importance
Level: High
Primary Actor: Admin Use Case Type: Detail, Real

Stakeholders and Interests: N/A

Brief Description: Allows the Admin to view, search, add, edit, and manage
all driver and parking operator accounts in the system.
Admins can create new user accounts, update existing
profiles, deactivate/reactivate ~ accounts, monitor
suspicious or inactive users, and manage other admins

when necessary.

Trigger: The admin want to manage user accounts.

Relationships:
Association > Admin
Include : -
Extend D

Generalization: -

Normal Flow of Events:
1. The admin navigates to the “User Accounts” page.

2. The system checks if there are any users. Continue to S-1.

128

3. System displays a list of all registered accounts with filters by user
role, account status, registration date, and search by email, name, or id.

4. The admin can select a specific account to view full profile

5. The system displays the full profile, including name, email, contact
info, role, login history, and status.

6. Admin can perform actions. Continue to S-2

Sub-flows:
S-1: Perform 2.1 or 2.2
2.1 Ifthere is no users, the system displays a message showing no
users and redirect to previous screen.
2.2 If there are users, continue to flow 3.
S-2: Perform 6.1 or 6.2 or 6.3 or 6.4
6.1 If admin select to deactivate a user, a confirmation message
will be prompted
6.1.1 If admin select confirm, the status of the user will
switch to deactivated.
6.1.2 If admin select cancel, the process stops. Continue to
flow 5.
6.2 If admin select to reactivate a user, a confirmation message
will be prompted
6.2.1 If admin select confirm, the status of the user will
switch to active.
6.2.2 If admin select cancel, the process stops. Continue to
flow 5.
6.3 If admin selects Add New User, the system displays a
registration form (name, email, role, password, etc.).
6.3.1 The admin fills in details and submits.
6.3.2 The system validates input and creates the new
account.
6.3.3 The new user appears in the user list.
6.4 If admin selects Edit Profile, the system displays an editable
form with user details.

6.4.1 The admin updates and submits changes.

129

6.4.2 The system validates and saves changes.
6.4.3 A success message is displayed, and the updated
profile is shown.

Alternate/Exceptional Flows:

A. Ifinvalid inputs are entered when adding/editing a user, the system
displays error messages and requests corrections.

B. If an attempt is made to deactivate the last active system admin, the
system blocks the action and shows a warning.

Assumptions:

A. Actor is an authenticated user.

Table 4.18: Use case description of Manage Own Profile

Use Case Name: Manage Own Profile ID: UC-16 | Importance
Level: High

Primary Actor: Driver, Parking Operator, | Use Case Type: Detail, Real
Admin

Stakeholders and Interests: N/A

Brief Description: Allows users of all roles to view and update their personal
profile information, including name, contact details, and
password. Ensures that user data stays accurate and
current. Drivers can also extend this functionality to

manage their payment methods.

Trigger: The actors want to manage their own profile.

Relationships:

Association : Driver, Parking Operator, Admin
Include : -
Extend : UC-4 Manage Payment Methods (only for Driver)

Generalization: -

Normal Flow of Events:

1. The actor navigates to the “Profile” page.

130

2. The system displays the actor’s current profile information, including
full name, email, phone number, and role. If actor is Driver, proceed
to E-1.

3. Actor edits desired fields and submit changes.

4. The system validates the input. Continue to S-1.

5. System displays confirmation message.

Sub-flows:
S-1: Perform 4.1 or 4.2
4.1 If invalid input, the system displays an error message and
prompts the actor to re-enter the required information.
Continue to flow 2.
4.2 If valid input, the system saves the updated profile. Continue

to flow 5.

Alternate/Exceptional Flows:
E-1: Perform 2.1 or 2.2
2.1 If the actor is a Driver, the system displays an additional
option: “Manage Payment Methods.”
2.1.1 The driver may choose to add, edit, or delete payment
methods (UC-4).
2.1.1.1 On completion, control returns to the Manage
Own Profile step 2.
Assumptions:
A. Actor is an authenticated user.

4.5

Interface Flow Diagram

Home Page

h 4

Login Account

h 4

Register Account

S

Dashboard with
analytics

A A F W

131

h J

h J

h J

Support

EV Reservations

F Y

History

.| Parking Transaction

h 4

MNearby Parking Lots

h J

b

¥

My Vehicles

Payment Methods

Figure 4.23: Interface flow diagram of the proposed system for drivers

Home Fage

132

Login Account

—

A

Register Account

Dashboard with
analytics
A A A
. J ¥
Parking Lots Profile
Management

Support

F
¥

Y

Set Up Parking Lot

Figure 4.24: Interface flow diagram of the proposed system for parking

operators

Home Page

Login Account

h 4

133

Dashboard with |,
analytics -
A A A
h 4 h 4 ¥
User Accounts N Profile < > Pending Change P
Management Reguest

h 4

FY

Pending Operators

Support Tickets
Management

Figure 4.25: Interface flow diagram of the proposed system for admin

4.6 Initial Prototype

n EasyParkGo

Login
Enter your credentials to access your
account

Email

Enter your email

Password

Enter your password

Don't have an account? Register

© 2025 EasyParkGo. All rights reserved.

Figure 4.26: Login Page on mobile

n EasyParkGo
Login
Bttt yuns croch s
Email
ey sl
Password
Erder your pessword

& 2025 EavyParkGo. A rights resenied

Figure 4.27: Login Page on desktop

me Login

134

u EasyParkGo

Create an Account

Fill out the form below to create your
account

Name

Enter your full name

Email

Enter your email

Password

Enter your password

Account Type

@ Driver
(O Parking Operator

Already have an account? Login

Figure 4.28: Register Page on mobile

Create an Account

Fill out the form below to create your account

Name

Figure 4.29: Register Page on desktop

135

136

n EasyParkGo
Dashboard

Profile Information

abc

abc@dds.com

Driver

Welcome, abc!

This is your EasyParkGo
dashboard where you can

manage all your driver

Figure 4.30: Driver Dashboard page on mobile

137

®

My Vehicles

Register and manage your
vehicles

View

C,

Active Parking

View your current parking
session

View

)

Figure 4.31: Continued Driver Dashboard page on mobile

n EasyParkGo Home Dashboard & abc
Dashboard
Profile Information Welcome, abc!
abe
Th ParkGo d] wt 1] 1

abc@dds.com

Oriver

® © O

My Vehicles Active Parking Parking History
Register and manage your vehicles View your current parking session View your past parking sessions
Viaw Viaw Viaw

© ©

Payment Methods Awailable Parking Support
Manage your payment options Find parking spaces near you Get help with any issues
Vi Vi Vi

Figure 4.32: Driver Dashboard page on desktop

138

n EasyParkGo

Dashboard

Profile Information

operator

operator@example.com

Parking Operator

Welcome, operator!

This is your EasyParkGo
dashboard where you can

manage all your operator

Figure 4.33: Operator Dashboard page on mobile

139

My Parking Lots

Manage your parking
locations

View

Pending Requests

View parking change requests

View

d

Figure 4.34: Continued Operator Dashboard page on mobile

n EasyParkGo Home Dashboard & operator

Dashboard

Profile Information Welcome, operator!

operator This is your EasyParkGo dashboard where you can manage all your operator features
operator@example.com

Parking Operatar

My Parking Lots Pending Requests Analytics
Manage your parking locations View parking change requests View parking usage statistics
View View View

Support

Get help with any issues

View

Figure 4.35: Operator Dashboard page on desktop

140

n EasyParkGo =
Dashboard

Profile Information

admin

admin@example.com

Administrator

Welcome, admin!

This is your EasyParkGo
dashboard where you can
manage all your admin

Figure 4.36: Admin Dashboard page on mobile

141

(o)
(!

User Accounts

Manage all system users

View

Pending Operators

Approve new operator
accounts

View

A

Parkina Chanaes
Figure 4.37: Continued Admin Dashboard page on mobile

n EasyParkGo Home Dashboard & admin
Dashboard
Profile Information Welcome, admin!
° admin £ S s
his is your EazyParkGo dashbostd where you can manage ail yout admin featue
Admirestrator
2) @
User Accounts Pending Operators Parking Changes
Aanage all system users Approve new operator account Approve changes to parking lots
View WView Wiarar
dll 2
Analytics Support Tickets
WView WViewe

Figure 4.38: Admin Dashboard page on desktop

142

4.7 Preliminary run on Vehicle Detection and Segmentation

4.7.1 Overview

This section outlines a preliminary experiment conducted to assess the
effectiveness of vehicle detection and segmentation using the YOLOv8 model
family. Specifically, YOLOv8 and YOLOv8-Seg were employed to detect and
segment vehicles in a custom dataset comprising 50 real-world images sourced
online. The primary objective was to evaluate the models' capability to
accurately identify and isolate vehicle instances under diverse conditions,
including varying angles, lighting, and backgrounds. The results from this initial
test serve as an early benchmark for detection accuracy, segmentation quality,
and model responsiveness, guiding further refinement of the vehicle recognition

pipeline for real-world applications.

4.7.2 Experimental Setup and Results

The preliminary experiment utilized the YOLOv8 and YOLOv8-Seg models to
evaluate vehicle detection and segmentation performance. A total of 50 real-
world images were manually collected from online sources, featuring various
environments, lighting conditions, and vehicle angles to reflect practical usage
scenarios. The models, pre-trained on the COCO dataset, were run using the
official Ultralytics YOLOvV8 implementation in Python. No additional fine-
tuning was performed. Each image was processed individually to record several
key metrics, which are the number of vehicles detected, the number of
segmentation instances, the confidence scores for detections and segmentations,
and the largest segment ratio, defined as the size of the largest segmented
vehicle area relative to the image dimensions. Since there were no predefined
or labeled data, the analysis focused on the models' raw output to evaluate their
initial effectiveness in real-world conditions.

The models detected an average of 1.78 vehicles and produced 1.92
segmentations per image, indicating generally accurate detection with slight
over-segmentation. The average largest segment covered 39.18% of the image
area, suggesting effective focus on primary vehicle regions. Detection
confidence averaged 63.42%, while segmentation confidence was slightly

higher at 69.15%, reflecting moderate to strong model certainty. Overall, the

143

results indicate reliable initial performance, with room for further refinement

through model tuning and dataset expansion.

Overall

Statistics:

Total images processed: 58

Average
bverage
Average
Average

Average

detected vehicles per image: 1.78
segmentation count per image: 1.92
largest segment ratio: 39.18%
detection confidence: 6£3.42%

segmentation confidence: 69.15%

Figure 4.39: The result from the detection and segmentation.

144

CHAPTER 5
SYSTEM DESIGN

51 Introduction
This chapter describes the architecture design of the system, which includes the

frontend, backend, and their communication.

5.2 System Architecture Design

The ParkPal system separates frontend and backend components for efficient
operation. The frontend consists of mobile and web applications for drivers,
parking operators, and admins, built with Expo, React Native, and React Native
Web, allowing management of vehicles, parking sessions, payments, and
support tickets.

The backend includes a Laravel PHP server, which handles CRUD
operations on a PostgreSQL database, manages users, processes parking
transactions, handles notifications, and integrates with Stripe for automatic
payments. A Python/Uvicorn server performs Al-based license plate and vehicle
attribute recognition using Gemini Flash 2.5, supporting driver vehicle
registration and automatic parking fee processing.

NGROK is used for exposing backend servers during development but
does not perform backend operations. In operation, frontend requests are
processed by Laravel, interacting with the database, Stripe, and the Python
server for Al tasks, then returning responses and notifications to users. This
architecture ensures secure transactions, real-time updates, and automated

parking fee collection.

145

System Architecture Design

g ™\ ' 3\
Frontend RS >
Drivers, Parking Operators, Admin _’ CRUD
ParkPal Application < ——
Expo - React Native & React 4)
Native Web RS
PostgreSQL
& J Backend
Laravel PHP Server
4 N\ Python/Uvicorn Server
Responsi prompi
Stripe
Request result
_ J \. J Gemini 2.5
Flash

Figure 5.1: System Architecture Design.

5.2.1 Front-end Architecture

The frontend of the ParkPal application is developed using React Native and
React Native Web, providing a consistent interface across mobile and web
platforms. React Native components are dynamic elements that respond to state
changes, user interactions, and component events, such as button clicks or text
entry. The main entry point, index.js, registers the root component (App) using
registerRootComponent from Expo, ensuring that the application environment
is correctly initialized whether running in Expo Go or a native build. The App.js
file contains the <NavigationContainer> and sets up the main stack navigator
for routing across screens.

State management and authentication are handled via the
<AuthProvider> context, while persistent navigation state is stored in
AsyncStorage to restore user sessions across app launches. The app also
integrates real-time notifications through Pusher and Echo, allowing drivers to
receive updates on payment events immediately. Client-side rendering ensures
that all Ul components, such as <View>, <Text>, and <Image>, are executed
on the device, providing a responsive and interactive experience. This
architecture allows seamless interaction with backend services, efficient state
handling, and real-time updates while maintaining a single codebase for

multiple platforms.

146

In React Native, the Ul is rendered on the client side, meaning it is
executed directly on the mobile device. During installation, the necessary native
code and bundled JavaScript components are deployed on the device. When the
application is launched, the React Native runtime executes the JavaScript
bundle, rendering Ul components and enabling real-time interactions, such as
vehicle registration, parking session management, and automatic payment
transactions.

React Native communicates with the device’s native components via a
bridge, connecting the JavaScript thread (which executes the app logic) and the
native thread (which handles rendering). Data is serialized in JSON format to
pass between threads, providing a native-like experience while using a single
codebase for multiple platforms. This architecture reduces the need to develop
separate applications for iOS and Android and distributes rendering tasks to the
client, lowering server workload.

The project uses Expo as a development framework to streamline
bundling and deployment. Developers can connect a mobile device via a QR
code or URL to load the JavaScript bundle directly from the development
machine. Expo simplifies testing and reduces resource consumption by

eliminating the need for virtual devices during development.

5.2.2 Back-end Architecture

The backend of ParkPal consists of a Laravel PHP server as the main backend,
supported by a Python/Uvicorn server for Al processing. The Laravel server
handles requests from both mobile and web applications, performing CRUD
(Create, Read, Update, Delete) operations on a PostgreSQL database. It
manages user accounts, parking sessions, notifications, and integrates with
Stripe for payment processing.

The Python/Uvicorn server performs specialized Al tasks, including
license plate and vehicle attribute recognition. There are two main flows for
image processing. First, during driver vehicle registration, drivers upload
vehicle images through the mobile app, which are sent to the Python server. The

server communicates with Gemini Flash 2.5 to extract attributes such as license

147

plate, make, model, and color. The results are then returned to the Laravel
backend for storage in PostgreSQL.

Second, for automatic parking fee processing, images of vehicles
captured at parking lots are sent directly to the Python server for recognition via
Gemini Flash 2.5. The processed results are returned to the Laravel backend to
calculate parking fees, process payments through Stripe, and send notifications
to drivers.

For development and mobile testing, NGROK is used to expose the
backend servers to the internet, allowing devices to connect remotely. Overall,
the backend processes HTTP requests from the frontend, interacts with the
database, communicates with Stripe and the Al service, and returns responses

to the frontend, ensuring real-time updates and efficient system operation.

53 Database Architecture

The system utilizes PostgreSQL as its primary RDBMS due to its robustness,
scalability, and strong support for complex queries and data integrity.
PostgreSQL is well-suited for handling structured data, relationships, and
transactional operations, which are essential for managing users, vehicles,
reservations, parking lots, and EV charger information in the application.

The database is designed following relational principles, ensuring that
entities such as users, parking lots, EV chargers, and reservations are
represented as separate tables with clearly defined relationships. For instance, a
users table maintains personal and authentication details, while vehicles are
linked to users through foreign key constraints. Similarly, reservations and
ev_chargers tables are associated with users and parking locations to track
bookings, availability, and occupancy in real time.

This relational design supports data consistency, integrity, and
scalability. Constraints such as primary keys, foreign keys, and unique indices
are applied to prevent invalid or duplicate data. Additionally, PostgreSQL’s
support for advanced features like JSONB fields allows flexible storage for
dynamic or semi-structured data, such as parking lot metadata or EV charger

specifications, without compromising query performance.

148

By leveraging PostgreSQL, the system ensures reliable data
management for real-time operations, complex filtering and searching, and
future extensibility, enabling efficient handling of both transactional and

analytical requirements for the parking and EV reservation platform.

5.3.1 Database Entity Relationship Diagram (ERD)

Figure 5.2 shows the Entity Relationship Diagram (ERD) for the system
database. It illustrates the entities and their relationships, which form the
foundation for the database schema implemented in PostgreSQL. The ERD
defines how data is logically structured and interconnected within the system,
ensuring referential integrity, data consistency, and efficient query performance.

Figure 5.2: Entity Relationship Diagram for the System Database

149

The relationships among entities such as users, vehicles, parking
sessions, and payments enable accurate tracking of parking activities, vehicle
entries and exits, and corresponding financial transactions. Supporting entities
such as notifications, support tickets, and pending actions provide functionality
for user communication, issue management, and administrative approvals.

The database design follows normalization principles to minimize
redundancy and improve data integrity, while maintaining flexibility for future
system expansion. For example, modular entities such as EV chargers,
companies, and payment gateways can be easily extended or modified without
disrupting existing relationships. This relational structure ensures seamless
integration between the Laravel backend and other system components,
supporting reliable and scalable data operations throughout the parking

management system.

5.3.2 Database Schema

The database schema defines the logical structure of the system’s data as
implemented in PostgreSQL. It specifies the tables, fields, data types, and
relationships derived from the Entity Relationship Diagram (ERD).

Table 5.1: Users Schema

_ Descriptio
Column Type Default Constraints
n
) o Primary
id bigint NOT NULL
key
User’s full
full_name varchar(255) NOT NULL
name
Identity
ic varchar(255) NOT NULL card
number
] Email
email varchar(255) NOT NULL
address

150

) o Email
email_verified | o
) timestamp verification
a
B timestamp
Hashed
password varchar(255) NOT NULL
password
Must be
driver, Type of
user_type varchar(255) | "driver” rver yP
parking_oper | user
ator, admin
] Google
google _id varchar(255)
OAuth ID
Linked
. .. company
company_id bigint)
(if
applicable)
stripe_account Stripe
_ varchar(255)
_id account ID
_ Stripe
stripe_onboard _
’ boolean false onboarding
e
status
Contact
phone_number | varchar(255)
number
o Profile
profile_picture | varchar(255)]
Image URL
2FA
two_factor_en
boolean false enabled
abled
flag
o Email
notification_e e .
_ boolean true notification
mail
s enabled
o SMS
notification_s e
boolean false notification
ms
s enabled

151

o Push
notification_pu o
" boolean false notification
S

s enabled
Must be
pending_setu
P,
pending_appr
"pending_ i Account
status varchar(255)] oval, active,
setup i i status
Inactive,
rejected,
suspended,
deactivated
)] Last login
last_login_at timestamp)
timestamp
o Last login
last_login_ip | varchar(255)
IP address

)) Count of

failed_login_at | _ _
integer 0 failed login
tempts
attempts
Timestamp
last_password_ | of last
timestamp
change_at password
change
remember_tok Remember
varchar(100)
en me token
created_at timestamp Creation
timestamp
updated_at timestamp Last update

timestamp

Table 5.2: Companies Schema

152

] Descriptio
Column Type Default Constraints
n
_ o Primary
id bigint NOT NULL
key
varchar(255 Company
name NOT NULL
) name
o varchar(255 Registratio
registration_no
) n number
varchar(255 Company
address
) address
) varchar(255 Contact
contact_email _
) email
varchar(255 Contact
contact_phone
) phone
] Payment
gateway_account_i | varchar(255
g) gateway
account ID
Must be one
of pending,
ifi Company
varchar(255 | "pending verified,
status) . rejected, account
suspended, status
deactivate
d
_ Creation
created_at timestamp)
timestamp
) Last update
updated_at timestamp

timestamp

Table 5.3: EV Charger Types Schema

153

Column Type Default Constraints | Description
id bigint NOT NULL | Primary key
Must be
Type 1, | Type of
connector_type varchar(255) Type 2, | charger
CHAdeMO, connector
CCS, Tesla
Type of
Must be AC 7P)
current_type varchar(255) electric
or DC
current
Power
power_output_kw | numeric(6,2) output in
kw
Must be
) Charger
status varchar(255) | "active®™ | gctive oOr
]] type status
Inactive
_ Creation
created_at timestamp _
timestamp
_ Last update
updated_at timestamp

timestamp

Table 5.4: EV Chargers Schema

154

Column Type Default Constraints | Description
id bigint NOT NULL | Primary key
charger type | Foreign key to
" bigint NOT NULL | ev_charger_ty
! pes
arking_zone Foreign key to
p- 9 bigint NOT NULL -g Y
_id parking zone
o varchar(25 Charger
identifier o
5) identifier
Must be
available,
varchar(25 | *availabl | reserved, | Current status of
status . '
5) e in use. charger
out_of ord
er
Must be
lifecycle_stat | varchar(25) _
"active” active or | Lifecycle status
us 5)]]
Inactive
_ Creation
created_at timestamp)
timestamp
) Last update
updated_at timestamp

timestamp

Table 5.5: EV Reservations Schema

155

Column Type Default Constraints | Description
id bigint NOT NULL | Primary key
User making
user_id bigint NOT NULL | the
reservation
) o Reserved
ev_charger_id | bigint NOT NULL
charger
Vehicle
vehicle_id bigint being
charged
Must be
reserved,
active, Reservation
status varchar(255) | "reserved®
completed, | Status
cancelled,
expired
_ _ Start time of
start_time timestamp)
reservation
]] Check-in
checked_in_at | timestamp _
timestamp
end_time timestamp End time
] Creation
created_at timestamp _
timestamp
_ Last update
updated_at timestamp

timestamp

Table 5.6: Notifications Schema

156

Column Type Default Constraints | Description
id uuid NOT NULL | Primary key
Type of
type varchar(255) NOT NULL o
notification
Model type
notifiable_type | varchar(255) NOT NULL | being
notified
ID of the
notifiable_id bigint NOT NULL | notified
entity
) Notification
data json NOT NULL
content
Timestamp
) when
read_at timestamp L
notification
was read
) Creation
created_at timestamp _
timestamp
) Last update
updated_at timestamp

timestamp

Table 5.7: Parking Lots Schema

157

Constraint | Descriptio
Column Type Default
S n
_ o NOT Primary
id bigint
NULL key
) o NOT Owning
company_id bigint
NULL company
) NOT Name of
parking_lot_name | varchar(255))
NULL parking lot
NOT Street
address varchar(255)
NULL address
it har(255) NOT Cit
ci varchar [
Y NULL Y
NOT
postcode varchar(255) Postal code
NULL
NOT
state varchar(255) State
NULL
_ numeric(10,7 Latitude
latitude _
) coordinate
_ numeric(10,7 Longitude
longitude :
) coordinate
Must be
basement,
. "open- multi- Type of
parking_type varchar(255) . _
arr storey, parking
open-air,
valet
) Total
total_parking_bay | NOT
integer number of
S NULL
bays
. . . Opening
opening_time time

hour

158

))) Closing
closing_time time
hour
: 2417
is_24 7 boolean false o
availability
Must be
pending,
"pending
status varchar(255) | . approved, | Lot status
rejected,
suspended
. Creation
created_at timestamp _
timestamp
) Last update
updated_at timestamp _
timestamp
Table 5.8: Parking Zones Schema
Column Type Default Constraints | Description
id bigint NOT NULL | Primary key
_) o Related
parking_lot_id | bigint NOT NULL _
parking lot
zone_name varchar(255) NOT NULL | Zone name
_ Number of
bay_count integer 0 _
bays in zone
o Optional
description text o
description
Must be
status varchar(255) | "active” active or | Zone status
inactive
) Creation
created_at timestamp _
timestamp
_ Last update
updated_at timestamp _
timestamp

Table 5.9: Parking Rates Schema

159

Column Type Default Constraints | Description
id bigint NOT NULL | Primary key
)) o Zone for this
parking_zone_id | bigint NOT NULL
rate
. - Rate
identifier varchar(255) L
identifier
. Start hour of
start_hour integer NOT NULL
rate
_ End hour of
end_hour integer
rate
rate numeric(8,2) NOT NULL | Rate amount
Must be
weekday,
rate_type varchar(255) | “weekday* Type of rate
weekend,
holiday
Must be
status varchar(255) | "active” active or | Rate status
inactive
_ Creation
created_at timestamp _
timestamp
_ Last update
updated_at timestamp

timestamp

Table 5.10: Parking Sessions Schema

160

Constraint o
Column Type Default Description
S
id bigint NOT Pri k
[igin rimary ke
: NULL e
) o NOT User who
user_id bigint
NULL parked
vehicle_id bigint Vehicle used
king_lot_id bigi NoT Parking |
arking_lot_I igint arking lot
p g_fot_ g NULL g
_ _ o Zone parked
parking_zone_id bigint)
in
payment_method_ | Payment
_ bigint
id method used
]) NOT Entry
entry_time timestamp)
NULL timestamp
o) Exit
exit_time timestamp)
timestamp
Duration of
duration_minutes | integer parking in
minutes
numeric(8,2 _
total_amount) Total paid
]) Payment
paid_at timestamp]
timestamp
Must be
ongoing,
varchar(255 | ongoing | completed .
status)) Session status
cancelled
, Failed

161

Sensor/metho
varchar(255 _
entry_detected by) d detecting
entry
Sensor/metho
) varchar(255 _
exit_detected by) d detecting
exit
varchar(255 Payment
payment_reference
) reference ID
) varchar(255 Receipt
receipt_number
) number
Additional
remarks text
notes
. Creation
created_at timestamp)
timestamp
) Last update
updated_at timestamp

timestamp

Table 5.11: Vehicles Schema

162

Column Type Default Constraints | Description
id bigint NOT NULL | Primary key
) o Owner user
user_id bigint NOT NULL D
Must be car,
] Type of
vehicle_type | varchar(255) | “"car*” motorcycle,)
vehicle
truck
Vehicle
make varchar(255) NOT NULL
brand
Vehicle
model varchar(255) NOT NULL
model
color varchar(255) NOT NULL | Vehicle color
_ Registration
license_plate | varchar(255) NOT NULL
plate
: Default
is_default boolean false _
vehicle flag
)] Active
is_active boolean true _
vehicle flag
] Creation
created_at timestamp]
timestamp
_ Last update
updated_at timestamp

timestamp

Table 5.12: Payment Methods Schema

163

Column Type Default Constraints | Description
id bigint NOT NULL | Primary key
) o Owner user
user_id bigint NOT NULL D
Must be
d, Payment
type varchar(255) car Y
ewal let, method type
bank
. Provider
provider varchar(255) NOT NULL
name
Last 4 digits
card_last_four | varchar(255) of card (if
card)
] Card expiry
card_expiry varchar(255)
date
) E-wallet
ewallet_id varchar(255) L
identifier
Default
is_default boolean false payment
method
Tokenized
token varchar(255) _
payment info
. Creation
created_at timestamp _
timestamp
_ Last update
updated_at timestamp

timestamp

Table 5.13: Support Tickets Schema

164

) Descriptio
Column Type Default | Constraints
n
id bigint NOT NULL | Primary key
User who
user_id bigint NOT NULL | created
ticket
) varchar(255 Ticket
subject NOT NULL)
) subject
o Detailed
description text NOT NULL o
description
Must be Tow, |
o varchar(255 | "medium Ticket
priority . medium, o
) priority
high, urgent
Must be open,
varchar(255 in_progress | Ticket
status "open”
) . resolved, | status
closed
_ o Admin
assigned_admin_i | _
d bigint assigned to
ticket
) Resolution
resolved_at timestamp _
timestamp
) Attached
attachments json]
files
) Creation
created_at timestamp _
timestamp
_ Last update
updated_at timestamp

timestamp

Table 5.14: Support Ticket Messages Schema

165

Column Type Default Constraints | Description
id bigint NOT NULL | Primary key
support_ticket_id | bigint NOT NULL | Linked ticket
. . Sender user
user_id bigint
ID
Message
message text NOT NULL
content
)) Flag if
Is_admin boolean false)
admin sent
_ Optional
attachments json
attachments
_ Creation
created_at timestamp _
timestamp
_ Last update
updated_at timestamp

timestamp

Table 5.15: Pending Actions Schema

166

Column Type Default Constraints | Description
id bigint NOT NULL | Primary key
) . Action
user_id bigint NOT NULL | .
initiator
_ Model type
entity_type | varchar(255) NOT NULL
affected
ID of
entity_id bigint affected
entity
Must be
. create, .
action varchar(255) Action type
update,
deactivate
data json New data
old_data json Previous data
Must be
ending, .
status varchar(255) | "pending*® P 9 Action status
approved,
rejected
reviewed_by | bigint Reviewer ID
_ _ Review
reviewed_at | timestamp)
timestamp
_ Reviewer
review_notes | text
notes
_ Creation
created_at timestamp]
timestamp
_ Last update
updated_at timestamp

timestamp

167

5.3.3 Collection Description

This section provides detailed descriptions of the database tables used in the

system. Each table is explained in terms of its purpose.

Table 5.16: Collections Description Table

Table Name Description / Use
Stores all registered users, including drivers,
parking operators, and admins, along with
users
their authentication and notification
preferences.
Stores information about companies that
companies manage parking lots, including contact info

and account status.

company_change_requests

Tracks requests by users to update company
information, with review and approval

workflow.

ev_charger_types

Stores types of EV chargers, their connector

type, power, current type, and status.

ev_chargers

Represents individual EV chargers in parking
zones, linked to charger types and their

current availability.

ev_reservations

Records reservations of EV chargers by users,

including start/end times and status.

notifications

Stores notifications sent to users or other
entities, including type, content, and read

status.

parking_lots

Contains information about parking lots,
including company ownership, location, type,
capacity, and operational hours.

parking_zones

Subdivisions of parking lots (zones) with bay

counts, descriptions, and status.

168

parking_rates

Stores rate information for parking zones,
including time slots, rate amount, and type
(weekday/weekend/holiday).

parking_sessions

Tracks parking usage by users, including
entry/exit times, duration, payment info, and
status.

vehicles

Stores details about user vehicles, including
type, make/model, color, license plate, and

active/default status.

payment_methods

Stores user payment methods, including card,
e-wallet, or bank, with provider info and

default flag.

payment_gateways

Stores company-linked payment gateway
information, API credentials, webhook

settings, and verification status.

support_tickets

Tracks support tickets submitted by users,
including subject, description, priority, status,

and assigned admin.

support_ticket_messages

Stores individual messages within support
tickets, including sender, message content,
and attachments.

pending_actions

Tracks user-initiated actions that require
admin review, including

create/update/deactivate operations.

password_reset_tokens

Stores tokens for resetting user passwords,

linked to user email and creation timestamp.

5.4
54.1

Data Flow Diagram

Context Diagram

Notification

w

Support Response

Transaction History Information

View Pending Changes Request

Driver .

EV Reservation Session Information
e

< Nearty EV Charger Information
Nearby Available Parking Information
Dashboard Information

Login Credentials

Pariing Session Information

Account Information

Login Credentials

Information

Vehicle Information

EV Request

Payment Method Information
Support Request

View Nearby Parking Lot Request

View Nearby EV Charger Request

Profile Information

Settings Preferences
View Dashboard Request
View EV.

View Transackion History Request

ParkPal Parking Management (with
Vehicle

y \{

Information

Setup Information

169

Profile Information

Settings Preferences
Support Request

Change Request

View Request

%

/

View Dashboard Request

Parking Operator

Account Information

Dashboard Information

Support Response

Changs Response

Pending Changes Status

Login Credentials

Profile Information

Pending Approval Response

Account

Actions

New User Information,

Support Reply

View Dashboard Request

View Pending Actions Request

view

Account Information

Dashboard Information

Pending Actions Information

User Information

Support Request

Pending Actions Information

Admin

Figure 5.3: Context Diagram

5.4.2

0
i Trangacion
[t

s

i
riory

DFD Level-0 Diagram

170

Sumpart
Rempare

Sumt
)

Do itamstin

Fequst
Soppet

o Lo Crsient

e
. Satup ot
— - e 0
j— | oo |
Forectietes T = al
i — o e ——
i |
P o
et e
e oS
iom e
s i Wy I fcwem b ot Eredeniah romnston
. View Transackion History Request It Prefic. 1
i
I
50 Parkarg Opercior L
Ve
e s
e
“ e wenrnans
- e
[— o civg
[s ot | e et
I ———
i ‘ 10
e
R G e
oa Rewes
i

—
e —

L —

p—
s

[
Crvats EV
Rm’lmm

EvRasan
Request

tarmalon

;

ET)
v oscanen,

v ensigeryoss

(oo e

o

oy
veies e

sonaton e ot

FaringLot
hometon

prores
S ! [or] e < || S
Pareng Seasicn |
i
P e
et
N
i e
F
e
s ,
=
e
e | -
e M s
Wolieaton y Request Venicie Recognition | satnzamon
i
Megpage T’ “ Sysien it
[T e s

‘Sand Nottcann

Figure 5.4: DFD Level 0 Diagram

55 Activity Diagram

Login Account

User

ParkPal

Enter Login
Credentials

Show Login Page

Verify Login

Credentials

Show Error
Message

(=
&
®

Figure 5.5: Activity Diagram of Login Account

171

172

Register Account
User (Driver/Parking Operator) ParkPal

Enter Registration
Informatien

Verify Registration
Information

Show Error
Message

user type is

user type is driver parking operator

Create User
Account

Logi n@

Navigate to
Operator Setup,

Figure 5.6: Activity Diagram of Register Account

Operator Setup

Parking Operator

ParkPal

Show company

registration form

»| Verify company info

Enters company info

Show eror message

Show Stripe Account’

Register Stripe
Account

Registration

Enters Parking Lot

Fails
o/ Show Parking Lot
Success - Regisfration
Verify Parking Lot
Information Information
Show eror r

Confirms All
Information

Valid

Show Summary Page

Store in pending
actions and wait for

admin approval.

Figure 5.7: Activity Diagram of Operator Setup

173

View Nearby Parking Lots

Driver

ParkPal

Allow location

Request location
permission

Check location

permission stafus

Show Nearby Parking

permission

Lots

Figure 5.8: Activity Diagram of View Nearby Parking Lots

174

Reserve Nearby EV Chargers

Driver

ParkPal

Allow location

If denied

Request location
permission

permission

Select Parking Lot
that consist wanted

Check location
permission status

Y

l’ w—lf granted

Show Nearby Parking
EV

Lots with Availabl
Chargers

EV Charger

Select EV Charger

Reserve the EV

Update the status of

Charger

If reservation
expires

pdate the status of
selected EV Charger
to expired

ted EV Charger

to reserve

If user arrive
to charger and
tap im here

< > button

pdate the status of
selected EV Charger
to active

Figure 5.9: Activity Diagram of Reserve Nearcy EV Chargers

175

Add Parking Lot

Parking Operator

ParkPal

Enter Parking Lot
Information

Show Error

Message

Show Add Parking
Lot Form

Verify Parking Lot
Information

Store in pending
action table for
admin to review

Figure 5.10: Activity Diagram of Add Parking Lot

Edit Parking Lot

Parking Operator

ParkPal

Enter Parking Lot
Information

Y

Show Error

Message

Show Edit Parking

Verify Parking Lot

Lot Form

Information

Store in pending
action table for
admin to review

Figure 5.11: Activity Diagram of Edit Parking Lot

176

Review Pending Actions

Admin

ParkPal

Select an action item

Show lists of all

to view details

pending actions
ade by operator:

Show the action

details

Select an action

Update pending

Approve

h

action status to
approved

action status to
rejected

Store the data
into respective
tables

Figure 5.12: Activity Diagram of Review Pending Actions

177

178

Automated Payment During Exit of Parking Lot
Admin ParkPal License Plate and Vehicle Recognition System

Receive images as
input

User exits parking lot

Prepare Prompt and
Config for Gemini 2.5
Flash

Call Gemini Model

Success Fails

Mormalize data

(plate,color, Wait
make,model)
Wehicle not
registered

Skip

Retrieve session

Calculate Fee

Process Payment

Receive Mofification
Object

User notified Update

Figure 5.13: Activity Diagram of Automated Payment During Exit of Parking
Lot

179

5.6 User Interface Design

5.6.1 Driver Mobile Interface

ParkPal
Welcome Back! ¥

Sign in to manage your parkin

Email Address

Password

ccount? Sign up

Figure 5.14: Login Page

This is the Login page of the ParkPal mobile application, where users (drivers)
enter their email and password to access their account. Users who forgot their

password can click “Forgot Password?”, and new users can tap “Sign Up” to
create a new account.

180

Forgot Password?

and we'll send

Figure 5.15: Forgot Password Page

This is the Forgot Password page, where users can enter their email to receive a
password reset link. They can reset their password through the link, or tap “Back

to Login” to cancel the operation.

ParkPal
Create Account ;7

Full Name

IC Number

Email Address

User Type

= Driver

Password

181

Full Name
211 %

IC Number

B

Email Address

User Type

Driver

Password

0

Confirm Password

0
1

t? Signin

Figure 5.16: Register Page

This is the Registration page, where users can create an account by entering their

personal information and agreeing to the terms and conditions and privacy

policy. Users who already have an account can click the “Sign in” link to log in.

182

2:33 % BT IR 100]

ParkPal

Dashboard

Nearby Parking Lots

EV Reservation 477)

Parking History Est. Cost
My Profile

) Support ed

RA (VBP 3477)

= Logout 2]

Figure 5.17: Drawer Navigation

This is the Drawer Navigation, which allows users to access other pages. Users
can also view their name and role, and log out directly through the drawer.

183

21 % 00 21% wil = [21% wil = @D
= @ ParkPal = a el = 6 ParkPal
R
18 & & 7
Welcome Back! . & 7 ¢ &
Your parking dashboard 81 RM 453 81
g S e EV Find Support
Charger Parking
ﬁ Current Parking Session
Locatio Vehicle Quick Actions
Test Lot 11 NISSAN ALMERA ul Usage Trends
Zone: Zone A (VBP 3477) =
i &
urat EV Find Support Missthitage
13h 55m Charger Parking
EV Charging Reserved ul Usage Trends
Test Lot 12
Zone Zone A Monthly Usage
34
Charger 12-2 ¢
Type 2 + AC » 22 kW 26 Swipe B B3 to switch chart:
o i Quick Info
bErsl RGN e B 4 ‘I*I]-SZSA-\I;IHAI:A;ERA (VBP 3477)
‘o
i Payment Methat
a No default payment method
swipe €3 B3 to switch charts
= & kr Notifc
5 All caught up!
81 RM 453 81 il Quick Info
al Sessions otal Spent his Mont

Figure 5.18: Driver Dashboard

The Driver Dashboard provides an overview of the driver’s parking and EV
activities. It displays the current parking session, reserved EV charging slots,
and key statistics. Users can access quick actions for common tasks, view usage
trends through interactive charts (switching between weekly and monthly

views), and see quick informational summaries at a glance.

184

12:37 % w FT&@

Payment Successful

Your payment of RM5.50 was received.

Welcome Back! .
Your parking dashboard

J current Parking Session
Location Vehicle

Test Lot 21 NISSAN ALMERA
Zone: Zone A (VBP 3477)

Duration Est. Cost
519h 44m RM 781.00
12

(
- EV Charging Reserved
Test Lot 11
Zone Zone B
Charger 6-1

Type 1+ AC - 7.20 KW

Thu, Sep 25, 2025

Vehicle NISSAN ALMERA (VBP 3477)

\
11
& ® k7
ar DA AT77 1

Figure 5.19: Toaster Notification after Payment

After a driver exits the parking lot and the simulated payment is successfully
processed, the system displays a toaster notification to confirm completion. This
notification appears instantly on the driver’s screen, showing details such as the
total parking fee, payment status, and session summary. It provides users with
real-time feedback, ensuring they are informed of the successful transaction.

185

219 % il T @D 2190 il = @D

6 ParkPal

I
s
=
]
If

Allow "Expo Go" to use
your location?
The app shows you the current

location on a map and makes it
available when you request it

2)

T S
4 Precise: On v_\»°
Y= et ‘o,
) (e}
RS 4:,(0 JAL
DV‘O Vi Nc"ﬂm
g &
_? Pasar Malam 4
‘F‘g Sungai Long
& — Finding nearby parking lots...
A
K
AN
Allow Once

Allow While Using App

Don't Allow

Figure 5.20: Nearby Parking Lot Location Permission and Loading Screen

Upon first use, the Nearby Parking Lots page prompts the user to grant location
access. Once permission is granted, the system may display a loading screen
while fetching nearby parking lot data.

186

2:119% all = (0

E 6Parkl’al
Nearby Parking

® Within 5km radius

List Map = Filter
1 parking lot found
y

Test Lot 11

? 3.4km away

Available Spaces Starting Rate

69/100 RM 1.50/hr
Type Distance
Multi Storey 3.4km

EV Chargers
<+ 9/30 Available

\

Figure 5.21: Nearby Parking Lots List View

The Nearby Parking Lots page displays a list of available parking lots near the

user. Users can filter the results, switch to a map view, and view directions to
their chosen parking lot.

Test Lot 11 % Test Lot 11 <,
? 3.4km away ? 3.4km away

Multi Storey 3.4km

Plenty Available

69 of 100 spaces available U Operating Hours

08:00:00 - 22:00:00

; i Currently 0 Closed
? Location Details

Address

123 Test Street @ Zones & Rates
Type Distance
Multi Storey 3.4km Zone Zone A

First hour:

Hour 3+:

= . First hour: RM

) Operating Hours
08:00:00 - 22:00:00 Zone Zone B
Currently @ Closed First hour:

Hour 3+:

First hour

@& Zones & Rates

DL EV Charging Stations

First hour:
Hour 3+:
First hour:

Figure 5.22: Nearby Parking Lots Details

9 of 30 chargers available

187

Clicking on a parking lot card from the Nearby Parking Lot page opens the

parking lot details, including available zones and their rates. If EV Chargers are

present for the lot, the number of EV Chargers available is also displayed.

188

2194 il & 0

E 6 ParkPal
Nearby Parking

® Within 5km radius
List Map = Filter

1 parking lot found

ht

B52

Remember You

BT

BMC Mall - Cheras @

Cheras

Mall - 45
= JETE]
latan @ ; WEI
o MRT Bukit

erin Mall | Ny \?ﬁkuﬂg (KG31)

|

~00
O

- A

Figure 5.23: Nearby Parking Lots Map View

Switching to the map tab displays a map with pins marking the locations of
nearby parking lots. Tapping a pin opens the parking lot details, including zones,

rates, and available EV charging stations, as described previously.

189

Filters Done

Search Radius

7 >
1km 2km (Bkm \ 10km
N =

15km

Parking Type
.'/J.- -\-\- .
I.\ All Types /I Basement Multi-storey

Open Air Valet

Maximum Rate (RM/hour)

Enter max rate

Has EV Charging

@ Available Only

Reset Apply Filters

Figure 5.24: Nearby Parking Lot Filters

The filtering feature allows users to refine nearby parking lot results based on
several criteria, such as search radius (1 km to 15 km), parking type, maximum
rate, availability of EV charging, and currently available lots. Users can also

reset all filters to return to the default view.

190

2199 all = {0

— 6 ParkPal

EV Reservations

Find and reserve charging stations

© ® B

Nearby Active History

i= List [G = Filters C, Refresh

Test Lot 11

3.4km away

3 Test Street
Type 2 CHAdeMO CCs Tesla Type 1

9/9 chargers available

Test Lot 12
7.6km away

13 Test Street
Type 1 Type 2 CHAdeMO ccs Tesla

10/10 chargers available

Test Lot 21

7.8km away

sy T .
242718581 Sireat

Type 1 Type 2 CHAdeMO CCS Tesla

Figure 5.25: Nearby EV Reservation List View

The EV Reservation List page displays parking lots with available EV chargers.
It shows the number of chargers available at each location and the types of

chargers offered, allowing users to select a suitable option for reservation.

191

Test Lot 11 X

3.4km away
123 Test Street

EV Chargers (9/9)

4 St
Type 2 Available

Power: 22kW Type: Type 2 Current: AC

Reserve This Charger

CHAdeMO Available

Power: 50kW Type: CHAdeMO Current: DC

Reserve This Charger

CCs Available

Power: 50kW Type: CCS Current: DC

Reserve This Charger

Tesla Available

Power: 150kW Type: Tesla Current: DC

Figure 5.26: Available EV Reservation Details

Clicking on an EV reservation item opens a detailed view of all available
chargers at that parking lot. Each charger includes detailed information, such as
type, power output, and current availability, allowing users to choose the most
suitable charger for reservation.

192

Reserve EV Charger X

CHAdeMO
Test Lot 11

CHAdeMO 50kwW Zone Zone A

Select Vehicle (Optional)

[NISSAN ALMERA (VBP 3477)

Proton Saga (VV 7935)

Reservation will start when you check in at the charger.

Cancel Reserve Charger

Figure 5.27: Vehicle Selection for EV Reservation

After clicking “Reserve This Charger,” the driver can select which of their

registered vehicles to use for the reservation.

193

22199 all = @0

— 6 ParkPal

EV Reservations

Find and reserve charging stations

© ® B

Mearby Active History

= List m = Filters C, Refresh

B116 =

B19

Vg
V4

/' Kajang

e e
'\ Bandar A
W, -)
Batt Bang| /N
III'. [Semenyih

\ \ B3 @
-Google \ A

Figure 5.28: Nearby EV Reservation Map View

The EV Reservation map view displays pins for parking lots with available EV
chargers. Tapping a pin opens the reservation details, showing all available

chargers and their specifications, allowing users to make a reservation directly
from the map.

194

Search Filters X

Search Radius

s

Connector Type

Type 1 Type 2 CHAdeMO CES

Tesla

Clear All Filters

Figure 5.29: EV Reservation Filter

The EV Reservation filtering feature allows users to refine the list of available
chargers based on search radius and connector types. This helps drivers quickly
find chargers that are both nearby and compatible with their vehicle. Users can
also clear all filters to return to the default view.

195

2:55 0 ofl F 00

2:56 W T Rl 100]
2:56 % all F @
= @ Parkpal = 6 ParkPal o
= a ParkPal
BV Haseruatiing EV Reservations EV Reservations
Find and reserve charging stations Find and reserve charging stations 7
Find and reserve charging stations
o m =
@ C) B @ c] B ® o B
Nearby Active Histary Nearby Active History Fidacks e - =
2 tory
Upcoming Reservations R TR
VBP 3477 Charger 12-2 campleted
S e S
Test Lot 11
€ Started Ended
3 . 10 92!
Ongoing Sessions DEAN iHsEAN
Sep 18, 2025 Sep 14, 2025
2:41 AM
Expires in 45m 8s Charger12-2 Sogsing ——
Test Lot 12 Power: 22 kW
Connector: Type 2 "
Power: 22 kW
Session Started :‘éi%’:';l__ALMERA
2:16 PM S
NI$SAN ALMERA Session duration: 12h 39m 10s
VBP 3477
Power: 22 kW
Ongoing Sessions NISSAN ALMERA
/6P 347
Charger 12-2 ongoing W
Test Lot 12

Figure 5.30: EV Reservation Active and History

The EV Reservation also shows the upcoming, ongoing, and past reservations.
The Active tab displays both upcoming reservations, showing the time
remaining until expiration (1-hour limit), and ongoing reservations, showing the
current session duration. The History tab shows past reservations. All

reservations display the associated vehicle, parking lot, and EV charger details.

196

2:2449 ull T (D

6 ParkPal

Transaction History a

80 transactions

" Completed RM 15.00
© Test Lot 12

£ NISSAN ALMERA (VBP 3477)

® 5h

17 Sep 2025 at 2:55PM

View Details >

X s RM 0.00
© Test Lot 12

& NISSAN ALMERA (VBP 3477)

@ NJ/A

£ 17 Sep 2025 at 11:05AM

View Details >

© Test Lot 11

&= NISSAN ALMERA (VBP 3477)
® 3h

16 Sep 2025 at 8:34 AM

Figure 5.31: Parking Transaction History

The Parking Transaction History page displays a list of past parking transactions.
Each entry includes the transaction status, parking lot, vehicle used, duration,
date and time, and amount paid, giving users a clear record of their parking

activities.

197

Transaction Details » Transaction Details x
Receipt: RCPT-AQOPDJ Receipt: RCPT-AQPDJ
Address 123 Test Street

. Total Amount

&= Vehicle Details

@ Location Details Make & Model NISSAN ALMERA
License Plate VBP 3477

Parking Lot Test Lot 12
Color GRAY

Zone Zone A

Address 123 Test Street

© Time Details

& Vehicle Details Entry Time 17 Sep 2025 at 2:55PM
Exit Time 17 Sep 2025 at 7:55PM

Make & Model NISSAN ALMERA
Duration 5h

License Plate VBP 3477

Color GRAY

s Payment Details

© Time Details Payment Visa
Methad
Entry Time 17 Sep 2025 at 2:55PM Reference PAY-20021
Exit Time 17 Sep 2025 at 7:55PM

Figure 5.32: Parking Transaction History Details

Clicking “View Details” on a transaction opens an in-depth view, showing the
parking lot location, vehicle information, time details, and payment information

(if available), providing a comprehensive overview of the transaction.

198

X Filter Transactions X Filter Transactions
Transaction Status 41 Al Ttansections \/
&) All Transactions v @ Completed
@ Completed (@ Ongoing
@ Ongoing ® Cancelled
® Cancelled @ Failed
() Failed
Date Range
From Date To Date
Date Range
Select Date Select Date
From Date To Date
ick Filt
Select Date Select Date Witck Ftars
Today Last 7 Days Last 30 Days
Quick Filters

Apply Filters Apply Filters

Figure 5.33: Parking Transaction Filter

The Transaction History page includes filters that allow users to refine
transactions by status and date range. It also provides quick date range options

for faster access to recent transactions.

199

2:12* al T mm

6 ParkPal

Driver 1
DRIVER

L) Notifications &) Security

Personal Information Edit

Full Name

Driver 1

Email

driveri@example.com

Phone Number

01712340001

IC Number

456789123001

Figure 5.34: Profile Page Basic Info Tab

Under the Basic Info tab, users can view their personal information, including
full name, email, phone number, and IC number. The IC number is displayed as

read-only and cannot be edited, while the other fields can be updated as needed.

200

218 % ull F D

= a ParkPal

Driver 1
DRIVER

2 Basic Info £\ Notifications & security

Notification Preferences

Email Notifications ()
Receive notifications via email

for bookings, payments, and
updates

SMS Notifications

D Get text messages for important
updates and reminders

Push Notifications o
Q Receive push notifications in the

mobile app

Figure 5.35: Profile Page Notifications Tab

Under the Notifications tab, users can manage their notification preferences.
They can toggle options for receiving alerts via email, SMS, or push

notifications according to their preferences.

201

2118 % all ¥ @D

= 6 ParkPal

Driver 1
DRIVER
& Basic Info £\ Notifications M

Password Change Password

Two-Factor Authentication

Add an extra layer of security to your
account

Account Security

Last login: 17/09/2025
Last password change: 18/06/2025
Account status: Active

Figure 5.36: Profile Page Security Tab

Under the Security tab, users can change their password and toggle two-factor
authentication for enhanced account security. This tab also displays relevant
account security information to keep users informed about their account

protection status.

202

2:18 % all 00
= 6 ParkPal
Driver 1
DRIVER
driveri@example.com
2 Basic Info £\ Notifications

Password Change Password

Current Password

Enter current password <o

New Password

Enter new password ©

Confirm New Password

Confirm new password <

Twin-Fartar Auithanticatinn

Figure 5.37: Profile Page Change Password

To update their password, users must enter their current password, choose a new
password, and confirm the new password. This ensures that password changes

are secure and verified.

203

4:52* all = EEE

= 6 ParkPal

Driver 1
DRIVER
driveri@example.com

&) Security £ Payments
My Vehicles + Add Vehicle

VBP 3477
MNISSAN ALMERA

VV 7935
Proton Saga

[Set Default] { Stop]

Figure 5.38: Profile Page Vehicles Tab

The Vehicles tab displays all vehicles registered by the user. Users can add new
vehicles, edit or delete existing ones, mark a vehicle as default, or stop a vehicle
in case of suspected fraud.

204

Add Vehicle X

Capture Vehicle

Take a clear photo of your vehicle to register it
in the app

Vehicle Type

{ Car (Only supported type)

Make

e.g., Honda

Model

e.g., Civic

Color

e.g., White

License Plate

Figure 5.39: Profile Page Add Vehicles

When adding a vehicle, users can either manually enter the vehicle details or
use the camera to capture a photo. The system will extract information such as

make, model, color, and license plate from the image to simplify the process.

205

2118 % ull T @D

= a ParkPal

Driver 1
DRIVER

[5 Security &= Vehicles B Payments

Payment Methods

Visa
=

wrEr 4242

Set Default

Figure 5.40: Profile Page Payments Tab

In the Payment Methods tab, users can add new payment methods, set a default
method for transactions, and delete existing payment methods as needed.

206

Add Payment Method X

Payment Type
@ Credit/Debit Card
E-Wallet
Bank Account

Provider

Visa Mastercard

American Express

Last 4 Digits

1234

Expiry (MM/YY)

12/25

Cancel Add Method

Figure 5.41: Profile Page Add Payment Method

When adding a payment method, users must provide the payment type, provider,
last four digits of the card, and expiry date. This ensures the system has the

necessary information to process transactions securely.

207

2:47 % all T @D

— @ ParkPal

Support Tickets e
Hello Driver 1, get help with your parking
[open]

Driver 5 App Crash

Driver 5 reports app crashing

{1 message

Driver 5 Billing Issue "IN PROGRESS

Driver 5 billed wrongly

(O 1 message

Figure 5.42: Support Tickets Page

The Support Ticket page displays a list of all tickets submitted by the driver.
Users can view the status of existing tickets and create new tickets to report
ISsues or request assistance.

208

Create New Ticket X

Subject *

Brief description of your issue

Description *

Priority

Low High

Cancel Create Ticket

Figure 5.43: Create New Ticket

When creating a new support ticket, the driver is required to enter the ticket type,
subject, detailed description, and select a priority level. This ensures the issue is

properly categorized and addressed promptly.

209

2:24 4 ol ? m
— 6 ParkPal
Support Tickets °
Hello Driver 1, get help with your parking

& Driver 5 App Crash

Driver 5 reports app crashing

D CD

Hello, | need help: Driver 5 App Crash

Acknowledged, we are investigating
your issue: Driver 5 App Crash

Thanks, waiting for update on ticket #1.

Figure 5.44: View and Send Support Ticket Message

The Support Ticket Messages feature functions like a text messaging system,
allowing drivers and support staff to communicate within each ticket. Users can

send and receive messages, providing updates, clarifications, and responses
related to their submitted issues.

210

5.6.2 Web Interface

@ ParkPal

ParkPal

Smart Parking Solutions

Features

-y i 20

For Drivers For Operators For Admins

Ready to Get Started?

Join thousands of users who are already using our smart

parking solution.

Figure 5.45: Landing Page

The Landing Page serves as the first screen of the ParkPal website, providing
users with an overview of the app’s main features. It offers quick navigation to
key sections such as Login, Registration, and introductory information about the

app’s services.

211

ParkPal
Welcome Back! &

Figure 5.46: Login Page

This is the Login page of the ParkPal website, where users (parking operators
and admins) enter their email and password to access their account. Users who
forgot their password can click “Forgot Password?”, and new users can tap

“Sign Up” to create a new account.

Forgot Password?

Figure 5.47: Forgot Password Page

This is the Forgot Password page, where users can enter their email to receive a
password reset link. They can reset their password through the link, or tap “Back

to Login” to cancel the operation.

212

ParkPal

Create Account #

IC Number

Email Address

Email Address

User Type

£ Driver

Password

Confirm Password

Figure 5.48: Register Page

This is the Registration page, where users can create an account by entering their
personal information and agreeing to the terms and conditions and privacy

policy. Users who already have an account can click the “Sign in” link to log in.

213

5.6.3 Parking Operator Web Interface

Company Registration

Company Information
Tl us about your compa

=
Figure 5.49: Operator Company Setup Page

There are 4 steps in the Operator Setup. In the first section of Operator Setup,
parking operators enter their company details, including the company name,
registration number, address, email, and phone number. This information is

required to complete the initial setup of the operator account.

Company Registration
0—0

Payment Gateway

S e st

Figure 5.50: Operator Stripe Setup Page

In the second section, parking operators link their Stripe account to enable
payment processing. This allows the system to handle transactions securely and
ensures that parking fees can be collected and managed efficiently.

214

Company Registration
Parking Lots
Add your parking facilies
Parking Lot 1
Pusteode
55555
act state
u Farking Type
Open Air v
@ Q
s =
Zone 1
0
o
Parking Rotes
e
o ey
£V Chargers {Opsional) [cmee

Figure 5.51: Operator Parking Lot Setup Page

In the third section, parking operators enter details about their parking lot,
including the lot name, zones, and rates for each zone. Information about EV
chargers can also be added if available. Operators can add multiple lots if they

manage more than one location.

Company Registration
0—0—0—-0

Review & Submit
— o beforesubmiting

Company Information

quaug

Parking Lots (1)

Lot ABC

Figure 5.52: Operator Setup Review Page

215

In the final section, parking operators can review all the information they have
entered, including company details, Stripe connection, and parking lot
information. This allows them to verify and confirm the accuracy of their data

before completing the setup process.

4

Registration Submitted!

 your submission. Your company registration has

You will rec: an email

t for admin appre

notification once your account is reviewed

Figure 5.53: Operator Setup Successful Page

After submitting the setup, a confirmation page is displayed indicating that the
registration has been submitted. The message informs the operator that admin
approval is required before the account becomes active. Operator can then be
redirected back to the login page.

ParkPal = 6 ParkPal

Parking Operator Dashboard

Manage your parking facilties

Parking Lot Management

& Profile

7w [P] - ® & 4
Parking Lots Parked Today Today's Revenue Occupancy Rate Ayg Duration
3 189 RM0.00 26.4% 3h 25m
Minsgd iots Vehicles Total connings 237201 bays Per sasicn
<" Parking Management Customer Analysis
Support Tickets EV Chargers Active Reservations 30
6 60 19 Repeat Users (30d)
0

Figure 5.54: Drawer Navigation

This is the Drawer Navigation, which allows users to access other pages. Users
can also view their name and role, and log out directly through the drawer.

= 6Parkpal
Parking Operator Dashboard
. = Refiesh
P o (4 4
Parking Lots Parkea Tod Today's Reveue Qecupaney Rate #vg Duratian
3 189 26.4% 3h 25m
Parking Management El Customer Analysis
6 60 19 ‘57\4»4\39> 300)
0
100.0%
7 Rewenue Trends B Peak Hours Analysis
Dy m Marsly
i FUDUBUTEES S S S
£ Live Parking Status

Test Lot Test Lot 12 H

2 sue s

69 100 31% 78 100 22% 1 1 0%
Zone State
z Zona B z z
il Current Parking Rates

..... -

Figure 5.55: Parking Operator Dashboard

216

The Parking Operator Dashboard provides an overview of parking operations

and performance. It includes statistics, customer analysis, revenue trends (with

tabs for daily, weekly, and monthly views), peak hour analysis, live parking

status, and current parking rates. This allows operators to monitor and manage

their parking lots effectively.

217

= @ ParkPal

Parking Management Dashboard

Company: ABC Sdn Bhd

Overview

Parking Lots

Test Lot 11 spproase Test Lot 12 sppraved H spproved

247 s

0

Management Dashboard

The Parking Management Dashboard displays all parking lots managed by the
operator, along with their details. Operators can click on a lot to view its zones,
rates, and any associated EV chargers. An overview section provides summary
insights for quick reference. All changes and actions made within this dashboard
require admin approval before taking effect.

Add Parking Lot

- Select Type --

L Open 2477

Opening Time

Figure 5.57: Parking Management Dashboard Add Parking Lot

Operators can add a new parking lot by entering its name, address, latitude and
longitude, parking type, total number of parking bays, and opening and closing
times. There is also an option to set the parking lot as open 24/7 for convenience.
Once submitted, the new parking lot requires admin approval before it becomes

active.

218

Edit Parking Lot

Figure 5.58: Parking Management Dashboard Edit Parking Lot

Operators can update an existing parking lot’s details, including name, address,
latitude and longitude, parking type, total parking bays, and opening and closing
times, with the option to set it as open 24/7. All edits must be submitted for

admin approval before the changes take effect.

Test Lot 11 e

123 Test Street

0 wilayah Persetartuan
ey Spaces: 100 Hours; 0800 - 22010

Actions Made

Figure 5.59: Parking Management Dashboard Zone Tab

Clicking on a parking lot opens its detailed view, organized into tabs for Zones,
Rates, and EV Chargers. The Parking Zones tab displays a list of all zones
within the lot, along with key details for each zone, allowing operators to
manage and review their parking areas efficiently.

219

Figure 5.60: Parking Management Dashboard Add Zone
Operators can update the details of a parking zone, including its name,
associated parking lot, number of parking bays, and a description. All changes

must be submitted for admin approval before they take effect.

Edit Zone

Figure 5.61: Parking Management Dashboard Edit Zone

Operators can edit a parking zone using the same fields, such as name,
associated parking lot, number of bays, and description. All edits must be

submitted for admin approval before taking effect.

220

Rate Plans

Rate Plan 1 Rate Plan 2 . Rate Plan 3 e

After hour 2 Duratio Altar hour D

Zone: Zone® Zane Zone® Zane ZaneB
Weekday Rt Type Weckend

Afver hour 2 Duration: Atter hour ©
M 200 A R 150 Ra RM 300

Edit Defete i Delete. Edit Delete.

Figure 5.62: Parking Management Dashboard Rates Tab

The Rates tab displays all parking rates associated with the lot and their
corresponding zones. Key details such as rate type, applicable zone, and pricing
are shown. Operators can view, add, or edit rates, with all changes requiring
admin approval before taking effect.

Add Rate Plan

Barking Zona

Zane &

Rate Type

- Select Type -

Start Hour

o

Rate (R per howr)

Rate Structure Examples:

“san

Figure 5.63: Parking Management Dashboard Add Rate Plan

Operators can add a new rate plan by specifying the associated zone, rate type,
start and end hours, and the rate amount. Once submitted, the new rate plan

requires admin approval before it becomes active.

221

Edit Rate Plan

Parking Zone

Zone A

Figure 5.64: Parking Management Dashboard Edit Rate Plan

Operators can edit an existing rate plan using the same fields, including zone,
rate type, start and end hours, and rate amount. All edits must be submitted for

admin approval before they take effect.

Charger 12 e Charger 13 ot ol nter
5 Typel Iype: Typel
===== - 120k Pawer T20kw

Zone A Zore Zona A

Charger 2-2 inuse Charger 2-3 out et order

Trpe 2 Type: Type2
2001w P 2000w
ik ac

Zone Zore: Zone A

el e

Figure 5.65: Parking Management Dashboard EV Chargers Tab

The EV Chargers tab displays all EV chargers associated with the parking lot,
including key details such as charger type, power rating, availability, and
associated zone. Operators can view, add, or edit chargers, with all changes

requiring admin approval before taking effect.

222

Figure 5.66: Parking Management Dashboard Add EV Charger

Operators can add a new EV charger by specifying the charger identifier,
associated zone, type, and status. Once submitted, the new charger requires

admin approval before it becomes active.

Edit EV Charger

Eharger identi e

Figure 5.67: Parking Management Dashboard Edit EV Charger

Operators can edit an existing EV charger using the same fields, which are
charger identifier, associated zone, type, and status. All edits must be submitted

for admin approval before taking effect.

223

Figure 5.68: Parking Management Dashboard Actions Made

Operators can review the actions they have performed within the system and
view detailed information for each action. This allows them to track changes
they have made and monitor the status of submissions pending admin approval.

Parking Operator 1
PARKING OPERATOR. Rofresn

ratortGexamplo.com

Personal Information

zzzzzz

Parking Operator 1 operator] @example.com

Phone Number 1€ Nurmber

01234567891 98765432109

Figure 5.69: Operator Profile Page

The Basic Info tab displays the user’s personal information, including full name,
email, phone number, and IC number. While the name, email, and phone
number can be updated, the IC number is read-only and cannot be changed.

224

= 6 ParkPal
Parking Operator 1
PARKING GPRERATOR Retiesh
: .
Motif
«©
g S Norcaions o)

Figure 5.70: Operator Profile Page Notifications Tab

Under the Notifications tab, users can manage their notification preferences.
They can toggle options for receiving alerts via email, SMS, or push

notifications according to their preferences.

= ﬁl’arkpal
° Parking Operator 1
PARKING OPERATER

Two-Facter Authentication

Figure 5.71: Operator Profile Page Security Tab

Under the Security tab, users can change their password and toggle two-factor
authentication for enhanced account security. This tab also displays relevant
account security information to keep users informed about their account

protection status.

° Parking Operator 1
PARKING OPERATOR

Address

Contact Email Contact Phone

0123456789

225

Registration Numiser (55N

Figure 5.72: Operator Profile Page Company Tab

The Company tab displays the operator’s company information, including

company name, registration number, address, email, and phone number. Users

can view and update these details as needed.

= 6 ParkPal

Support Tickets

Hello Parking Operator 1, get help with your parking experience

Your Tickets

Operator 2 Rate lssue

Select a ticket

Figure 5.73: Support Tickets Page

The Support Ticket page displays a list of all tickets submitted by the driver.

Users can view the status of existing tickets and create new tickets to report

ISsues or request assistance.

226

Create New Ticket

Subject *

Figure 5.74: Create New Ticket

When creating a new support ticket, the driver is required to enter the ticket
type, subject, detailed description, and select a priority level. This ensures the

issue is properly categorized and addressed promptly.

= a ParkPal
Support Tickets

Hello Parking Operator 1, get help with your parking expesience

Your Tickets Operator 2 Rate Issue

- Operator 2 ca

‘Gperator 2 Rate Issuz

Operater 2 c2enat update rates

Figure 5.75: View and Send Support Ticket Message

The Support Ticket Messages feature functions like a text messaging system,
allowing drivers and support staff to communicate within each ticket. Users can
send and receive messages, providing updates, clarifications, and responses
related to their submitted issues.

227

5.6.4 Admin Web Interface

Figure 5.76: Drawer Navigation

This is the Drawer Navigation, which allows users to access other pages. Users

can also view their name and role, and log out directly through the drawer.

228

= ﬁl’arkl’a\
Admin Dashboard
n 39 a4 8 75
+ Quick Actions & Alerts
it Prosy Tkats
o |
4 0
Inactive Users
T
' User Growth Trend il Weekly Parking Usage
4 0 1
Inacive Users B0+)
7
4 User Growth Trend i Weekly Parking Usage
'
a'm B

2 User Breakdown

31 T 1

Figure 5.77: Admin Dashboard

The Admin Dashboard provides an overview of system performance and user
activity. It displays key statistics, alerts, and user growth trends. Weekly parking
usage is visualized to monitor demand patterns, while a user breakdown gives
insights into different user types, helping admins manage and oversee the
system effectively.

229

E ﬁ ParkPal

Pending Actions Management

and manage operator e

\\\\\

Pending v AlTypes v | AllActions

Pending Actions Refresh

;;;;;

Figure 5.78: Admin Pending Actions Management

This section allows admins to view all pending actions submitted by operators,
including additions, updates, or deletions related to companies, parking lots,
zones, rates, and EV chargers. Admins can view details of each action and
choose to approve or reject them. The interface also provides filtering options
to easily locate specific actions.

230

Action Details

Entiny Type
Parking Lut

Requested Changes vs Current Data

Fictd Current
paridng lot_name Testiot 11

addrass. 123 Test Street

Wiayah Persekutian

0084551

ulti-storey

Figure 5.79: Admin Pending Actions Details

Admins can view the full details of each pending action submitted by operators.
Any changes compared to the current data are highlighted, allowing admins to
easily identify modifications before approving or rejecting the action. Admins

can choose to either approve or reject the action directly from this view.

231

User Management

Manage system users, roles, and permissions

Total Users Active Usars

= 39 20

User Type Status

AllTypes v alsttuses

User Management

Frking sperator

. Pending Approval

Company

¥ AN Companies

Suspended

View Edit Resst

mFigure 5.80: Admin User Management

This section allows admins to view all users in the system along with relevant

statistics. Admins can filter users, add new accounts, edit existing ones, and

view detailed information for each user to manage the system effectively.

User Details

HC Narnber
123152354323

Phone Number
Not provided

Statue
pding eyl

Falled Login Amtempts

Figure 5.81: Admin User Management User Details View

Admins can access a detailed view of each user’s account. This comprehensive

view helps admins monitor user activity and manage accounts effectively.

232

Create New User

Figure 5.82: Admin User Management Add New User

In this section, admins can create new user accounts, including adding other
admin accounts since admins cannot self-register. Required details are entered

during account creation to ensure proper setup and access control.

- O

Admin User
iy Refroch
admin@examplecom

Personal Information Edit

Admin User admin@example.com

PhoneMumbee I Number

01112343678 123456789012

Figure 5.83: Admin Profile Page

The Basic Info tab displays the user’s personal information, including full name,
email, phone number, and IC number. While the name, email, and phone

number can be updated, the IC number is read-only and cannot be changed.

233

Rafrash

Figure 5.84: Admin Profile Page Notifications Tab

Under the Notifications tab, users can manage their notification preferences.
They can toggle options for receiving alerts via email, SMS, or push

notifications according to their preferences.

= 6Pﬂrk%l
Admin User
ADMIN

Two-Factor Authentication o)

Account Security

............

Figure 5.85: Admin Profile Page Security Tab

Under the Security tab, users can change their password and toggle two-factor
authentication for enhanced account security. This tab also displays relevant
account security information to keep users informed about their account

protection status.

234

= 6 ParkPal

Support Ticket Management
Ticket Overview

12 L] 2 6 2 -36h
Total Tick T Resahued ah Priorit nasigned v Resolatio

Al Statuses v Al prisrities

Support Tickets (12)

Help
i PR OB
Help
by P

Figure 5.86: Admin Support Ticket Management

Admins can view all support tickets submitted by users, along with relevant
statistics. The system provides filtering options to easily locate specific tickets

and monitor the status of user-reported issues.

Support Tickets (12) Help

Help
by P

dosed

Figure 5.87: Admin View and Send Support Ticket Message

Within each support ticket, admins can send and receive messages with users,
similar to a text messaging system. This allows admins to provide updates,

request clarifications, and respond to user-reported issues efficiently.

235

CHAPTER 6
SYSTEM IMPLEMENTATION

6.1 Introduction

This chapter explains how the ParkPal system was implemented to create a
working prototype. The implementation includes the backend, frontend, and Al-
based vehicle recognition using the Gemini 2.5 Flash model. The backend was
developed using Laravel and PostgreSQL to handle user authentication, data
management, and system logic. The frontend, built with React Native, provides
a user-friendly interface for drivers and administrators. A Python module was
integrated to detect vehicle license plates and attributes automatically. Tools
such as NGROK and Expo were also used to support testing and cross-platform
development. Overall, this chapter describes how the system design was

transformed into a functional and integrated solution.

6.2 Backend Implementation

6.2.1 Authentication and Authorization

The parking management system uses Bearer token authentication powered by
Laravel Sanctum to ensure secure and scalable authentication. When a user
successfully logs in or registers, the backend generates a unique Bearer token
using Sanctum. This token is then sent to the client application and included in
the Authorization header of all subsequent API requests in the following format:
Authorization: Bearer <token>.

Passwords are hashed using Laravel’s Hash facade (Bcrypt) before
being stored in the database. This ensures that even if the database is
compromised, plain-text passwords are never exposed. During login, the system
verifies the provided password by comparing it with the hashed version stored
in the database using Hash::check.

The system also supports token revocation. When a user logs out, their
current access token is invalidated (currentAccessToken()->delete()),
preventing further use of that token. Additionally, the system updates the
last_login_at field on successful login to track account activity.

236

For authorization, each Bearer token contains user-specific information
and is tied to a particular account. Access to different parts of the system is
controlled using role-based middleware, including driver, parking_operator,
and admin. This ensures that each type of user only has access to the features
and data appropriate for their role. For example, parking operators must
complete a company setup and obtain admin approval before being granted full
access, while suspended or rejected operators are blocked from using the system.

Table 6.1: Key Methods Used in the Authentication and Authorization Flow

Method Library / Middleware | Usage

Hash::make Laravel Hash (Bcrypt) | Hashes plain-text passwords for

secure storage in the database.

Hash::check Laravel Hash (Bcrypt) | Compares a plain-text password
with its hashed version.

createToken Laravel Sanctum Generates a new Bearer token for

user authentication.

auth:sanctum | Laravel Sanctum Ensures only authenticated

middleware requests with valid tokens can
access APIs.

role:driver/ Custom Middleware Restricts access to routes based on

operator/ user role.

admin

currentAccess | Laravel Sanctum Revokes a user’s current token

Token()-> during logout.

delete()

6.2.2 Database Integration (PostgreSQL)
To interact with PostgreSQL, the backend is implemented using the MVC
(Model-View-Controller) architecture provided by Laravel. This design
separates the application into three main components.

The models define the structure and relationships of database tables in
PostgreSQL. Models represent entities such as users, parking lots, reservations,
and transactions, and provide an interface to perform database operations. The

237

controllers handle the logic for processing requests, interacting with Models,
and preparing responses for the frontend. Controllers manage CRUD (Create,
Read, Update, Delete) operations and implement business rules such as
reservation validation, payment processing, and user role management. In this
system, the Views are represented by the React Native frontend, which retrieves
and displays data provided by the backend.

To facilitate communication between the frontend and backend, Axios
is used as a promise-based HTTP client. Axios sends HTTP requests (GET,
POST, PUT, PATCH, DELETE) from the React Native application to the
Laravel backend API. This enables the frontend to perform CRUD operations
on PostgreSQL data, streamlining the interaction between the mobile/web
interface and the server.

By combining PostgreSQL with Laravel’s MVC architecture, the system
achieves a structured, maintainable, and scalable design while ensuring efficient
data storage, retrieval, and processing for all application modules. PostgreSQL’s
robust ACID compliance and indexing capabilities also ensure data consistency
and efficient query performance, especially for large datasets such as transaction

records and parking sessions.

6.2.3 Real-Time Communication (Reverb and Pusher-js)

The system employs Reverb and Pusher-js to enable real-time updates on the
admin dashboard. Using Pusher’s private channels, the dashboard subscribes to
events such as DashboardUpdated, which triggers immediate updates to metrics
without requiring manual page refreshes. This allows administrators to view up-
to-date information on total users, active users, parking lot availability, EV
charger status, and high-priority alerts. Reverb simplifies event handling and
ensures smooth communication between the frontend and backend. In addition,
cleanup routines are implemented to safely leave channels and stop event

listeners, preventing memory leaks or duplicate updates during prolonged usage.

238

6.3 Frontend Implementation

6.3.1 Navigation Structure (React Navigation)

In the Park Pal mobile app for drivers, React Navigation is used to manage all
navigation flows. The app implements a combination of stack and drawer
navigators to create a nested navigation system.

The drawer navigator serves as the main navigation system. It provides
access to primary screens such as the driver dashboard, available parking lots,
EV reservations, transaction history, profile, and support tickets. The drawer is
hidden by default to save screen space, and can be opened by tapping a menu
button located in the top-left corner of the home screen header.

The stack navigator allows navigation between secondary pages and
supports typical forward/backward navigation within the app. The drawer
navigator is nested as the initial screen of the stack navigator, ensuring that users
can access the main menu from anywhere in the app.

This combination of stack and drawer navigation creates a smooth and
intuitive user experience, allowing drivers to move seamlessly between the

dashboard, reservations, transaction history, and other key features.

6.3.2 Local Storage (Async Storage)

In the Park Pal mobile application, Async Storage is utilized as a local key-value
storage system for maintaining essential user data on the device. This includes
authentication tokens and user profile information, allowing the app to persist
the user’s login state between sessions.

When a user logs in, the authentication token and user data are saved
to Async Storage. This ensures that even if the app is closed or the device is
restarted, the driver remains logged in. Upon reopening the app, the stored token
and user data are retrieved automatically to authenticate the user without
requiring manual login.

During logout, the token and user data are removed from Async
Storage, effectively ending the session. Additionally, Async Storage is used
throughout the app for temporarily storing other session-related data, such as
selected chargers or reservation details.

239

By leveraging Async Storage, the app provides a seamless user
experience, keeping the driver logged in and retaining necessary session data
until the user explicitly logs out or the data is cleared.

6.3.3 Data Visualization

6.3.3.1 React Native Chart Kit

In the development of the Driver Dashboard, react-native-chart-kit is used to
create visual representations of parking and vehicle usage data. The library
provides an easy way to integrate charts such as line charts and bar charts
directly into the mobile app, helping drivers understand their parking behavior
and usage trends over time.

This react-native-chart-kit is chosen for its simplicity and pre-built
components, allowing for rapid chart integration without extensive
customization. While it may not offer as many advanced options as other
charting libraries, it provides responsive and clear visualizations that meet the
needs of the dashboard.

In this application, two primary chart types are implemented. The
Monthly Usage Line Chart displays the total parking sessions per month,
helping drivers see trends in their parking activity over the past months.
Meanwhile, the Weekly Usage Bar Chart shows weekly parking activity,
providing a quick overview of short-term usage patterns.

Both charts are encapsulated within reusable ChartCard components
and receive usage data from custom hooks like useDriverDashboardData. These
charts appear in the driver’s dashboard, allowing them to monitor their parking
habits at a glance. The charts are interactive and scrollable horizontally, giving
drivers an intuitive way to switch between monthly and weekly views.

By using react-native-chart-kit, the dashboard delivers visual insights
that improve driver awareness of parking patterns, enabling better planning and

efficient use of parking resources.

240

6.3.3.2 Recharts

Both the admin and parking operator dashboards use Recharts to render
complex datasets into interactive visualizations. On the admin dashboard, area
charts, line charts, and bar charts display trends such as user growth, weekly
parking usage, and high-priority tickets. Custom tooltips and legends enhance
data readability and highlight critical insights, while responsive containers
ensure charts adapt to different screen sizes.

For parking operators, Recharts is employed to visualize revenue
trends, occupancy rates, EV reservations, and peak-hour analyses. The
dashboard provides interactive components such as period selectors, which
allow users to switch between daily, weekly, or monthly data views. Live status
cards summarize parking lot availability and occupancy, while quick action
cards provide one-click access to ticket management, EV charger management,
and reservation oversight. Together, these visualizations transform raw data into
actionable insights, supporting efficient decision-making for both

administrators and operators.

6.3.4 Location Services (Expo-Location)

The mobile application leverages Expo Location to capture and manage the
driver’s real-time geographic coordinates. Within custom hooks such as
useNearbyParkingLots and useEvReservations, the system requests foreground
location permissions on iOS and Android devices. Once granted, the app
retrieves high-accuracy GPS coordinates using
Location.getCurrentPositionAsync, which are then stored in the local state as
userLocation. On the web, the system falls back to the browser’s
navigator.geolocation API for location access.

These coordinates are critical for dynamically querying nearby parking
lots and EV chargers, allowing the application to calculate distances, filter
results by radius, and sort by availability or proximity. The location data also
supports reservation management, enabling the app to check whether a user can
access a charger or parking space on time. Default coordinates (e.g., central
Kuala Lumpur) are used as a fallback when permissions are denied or location

retrieval fails, ensuring continuous functionality. Overall, Expo Location

241

provides a seamless and cross-platform method for integrating real-time

geolocation into the driver experience.

6.4 Al & Detection Module

6.4.1 Python-Uvicorn Service Setup

Uvicorn serves as the ASGI server for running the Python backend that powers
vehicle detection and recognition. It processes requests sent from the Laravel
backend, such as analyzing parking lot images to extract vehicle license plates
and attributes using the Gemini Flash 2.5 model. Uvicorn’s high-performance,
asynchronous capabilities make it well-suited for handling multiple Al
inference requests efficiently, ensuring real-time responses during vehicle entry

and exit.

6.4.2 Gemini 2.5 Flash Integration

The system integrates Gemini 2.5 Flash, an LLM, to perform vehicle detection
from uploaded images. This module extracts key vehicle attributes, such as
license plate number, make, model, and color, which are then used to facilitate
parking reservation and verification.

The detection process is implemented in Python and interacts with the
Gemini 2.5 Flash API. The Python service acts as a middleware between the
LLM and the Laravel backend, ensuring smooth data flow between the Al
inference output and database storage. Each uploaded vehicle image is sent to
the model with a structured prompt requesting a JSON-formatted output. Once
the response is received, the module performs normalization of the detected
attributes as stated in the table below.

Gemini 2.5 Flash was chosen over the earlier Gemini 2.0 version,
which has since been deprecated and is no longer actively supported. Tulsee
Doshi (2025) mentioned that the newer release provides faster response times
and cost-efficiency, excelling at high-volume, latency-sensitive tasks, which is
suitable for our system. By adopting Gemini 2.5 Flash, the system benefits from
improved stability, compatibility with the latest API features, and long-term
reliability.

242

Table 6.2: Vehicle Attribute Normalization

Attribute Normalization Method Example
License plate Cleans invalid characters and|"abc 123" —
converts text to uppercase. "ABC 123"

Make and model | Capitalizes and formats strings | "toyota corolla™ —

consistently. "Toyota Corolla"
Color Maps different color names to a | "burgundy" —
standardized set of colors. "red"

The vehicle detection module integrates with the backend to
automatically capture vehicle details during entry and exit at the parking lot.
This reduces manual entry errors and ensures accurate tracking of vehicles,
while detection times are logged for performance monitoring. This integration
enhances the app’s capabilities, allowing automated recognition of vehicles.

6.4.3 Vehicle Detection Setup and Workflow

The vehicle recognition component was implemented using the Gemini 2.5
Flash model integrated with a Python-Uvicorn service. The purpose of this
module is to automatically extract vehicle information (license plate, make,

model, and color) from captured images at the parking lot entry point.

6.4.3.1 Data Collection and Preparation

A total of 20 real vehicle images were collected from Roboflow, representing
various makes, models, and colors under different lighting conditions. To
evaluate detection performance, a ground truth dataset was manually prepared,
recording the actual license plate number, make, model, and color for each
image. It serves as a benchmark to assess the system’s accuracy.

243

6.4.3.2 Detection Workflow
The detection and matching process follows the steps below.
1. Capture vehicle image at entry (simulated using Roboflow dataset
images).
2. Send image to the Python server hosting Gemini 2.5 Flash API.
3. Extract attributes which are license plate, make, model, and color.
4. Normalize attributes for consistency (e.g., uppercase plates,
standardized colors).
5. Match results with the registered user and vehicle records in the
PostgreSQL database.
6. Create a new record in the parking_sessions table.
7. On exit, the system updates session details, calculates the parking fee,

processes payment (simulated), and sends a driver notification.

6.4.3.3 System Integration Overview

The mobile frontend (React Native) allows users to initiate or view parking
sessions. It communicates with the Laravel backend via HTTP requests (Axios),
which interacts with PostgreSQL for all CRUD operations. For Al-based
detection, the Laravel backend forwards captured images to the Python service
for inference, receives JSON responses with detected attributes, and stores them

in the database.

6.5 Development and Deployment Environment

6.5.1 NGROK for Local Testing

NGROK is used during development to expose the locally running backend
servers (Laravel and Python) to the internet through secure tunnels. This makes
it possible for the Expo-based mobile app to communicate with the backend
services in real time, even when they are hosted on local machines. NGROK
provides temporary public URLs for both the Laravel API and the Python Al
server, ensuring seamless testing across physical devices without manual server

deployment.

244

6.6 Conclusion

In conclusion, the implementation of the ParkPal system successfully combines
web, mobile, and Al technologies into a cohesive platform for smart parking
management. The integration of Laravel and PostgreSQL ensures secure and
reliable backend operations, while React Native provides a unified and
responsive frontend experience. Real-time communication through Reverb and
Pusher-js enhances system interactivity, and the Al detection module powered
by Gemini 2.5 Flash automates vehicle recognition with satisfactory accuracy.
The use of NGROK, Expo, and modular architecture also facilitated efficient
testing and deployment across devices. Overall, the implementation
demonstrates the feasibility and practicality of an intelligent parking
management system capable of improving user convenience, operational
efficiency, and automation through modern cross-platform and Al-driven

technologies.

245

CHAPTER 7
SYSTEM TESTING

7.1 Introduction

This chapter presents the testing results for the ParkPal Parking Management
System. The system testing involves API testing, usability testing, and user
acceptance testing (UAT) to ensure the overall functionality, usability, and
reliability of the application. Additionally, a traceability matrix is produced,
linking the use cases, functional requirements, and test cases to ensure that all

functionalities are properly validated.

7.2 Traceability between Use Cases, Functional Requirements, and
Test Cases
Testing is a crucial stage of the software development lifecycle as it ensures that
the system meets the expectations of end-users while maintaining functionality
and quality. To achieve this, a traceability matrix is developed to establish the
relationship between use cases, which describe how users interact with the
system, functional requirements that specify what the system must deliver, and
test cases, which verify whether the requirements and use cases are satisfied.
This mapping ensures that all intended features are covered during testing,

improving maintainability, consistency, and reliability across the application.

7.2.1 Use Case Table
The following table displays the use cases, including their IDs and names.
Table 7.1: Use Case Table

Use Case ID | Use Case Name

UCl1 Login

ucC2 Register

UC3 Manage Vehicles

uc4 Manage Payment Methods

UC5 View Dashboard

uC6 View Nearby Parking Lot Details
ucC7 View Nearby EV Chargers

246

ucs View Parking Transaction History

uco9 View EV Reservations

UC10 Auto-Transaction of Parking Fee

UC11 Submit Support Tickets

UCi12 Request Change to Parking Lot Details
UC13 Manage Support Tickets

UC14 Approve Pending Requests from Operators
UC15 Manage User Accounts

UC16 Manage Own Profile

7.2.2 Functional Requirements Table
The following table outlines the functional requirements that describe the

expected functionalities of the system.

Table 7.2: Funstional Requirements Table

Functional
Requirement | Description
ID
Rl The system shall allow drivers and parking operators to
register user accounts.
The system shall allow drivers, parking operators, and
FRe admins to log in securely.
The system shall allow drivers, parking operators, and
RS admins to manage their own profile information.
The system shall allow drivers to manage one or more
PRa vehicles.
The system shall allow drivers to manage the auto-
FR5 transaction settings for parking through license plate and
vehicle attribute recognition using multimodal Al.
“R6 The system shall allow drivers, parking operators, and
admins to view dashboards personalized to their roles.
The system shall allow drivers to view nearby parking
mRT information.

247

FR8 The system shall allow drivers to view their parking
history.
cRo The system shall allow drivers to view nearby EV charger
information.
FR10 The system shall allow drivers to make EV reservations.
The system shall allow drivers to view their EV
PR reservations.
— The system shall allow drivers to manage their payment
methods.
FR13 The system shall process automatic parking fee
transactions when drivers exit a parking lot.
FR14 The system shall provide drivers with notifications and
alerts related to transactions.
The system shall require parking operators to set up
FR15 parking rates, parking lot details, and all relevant
information during the registration process.
The system shall allow parking operators to update and
FR16 manage parking lot details, which will be reviewed and
approved by the admin.
FR17 The system shall allow drivers and parking operators to
submit support tickets for system-related issues.
The system shall allow admins to manage accounts for
FRI8 drivers and parking operators.
The system shall require admin approval for new parking
FR19 operator accounts before they can start managing parking
lots, rates, and other features.
The system shall require admin approval for any changes
FR20 made to parking rates, parking zones, or other features
requested by parking operators.
ROt The system shall allow admins to manage support tickets
submitted by drivers or parking operators.

248

7.3 API Testing

API testing is an essential part of this system’s validation process. It ensures that
the application programming interfaces (APIs) work correctly in terms of
functionality, reliability, performance, and security. Since the system relies
heavily on APIs to manage user authentication, parking transactions, EV
reservations, and administrative operations, testing these endpoints is critical to
achieving a reliable application.

For this project, Postman was used to perform manual API testing.
Postman allows developers to send HTTP requests to the server and verify the
responses. Additionally, during front-end development, the network tab of
browser developer tools (or React Native debugging tools) was used to monitor
API calls in real time. This allows verification of request payloads, response
data, status codes, and error handling directly from the client side.

The backend server was developed in Laravel and exposes endpoints
that interact with the database to perform CRUD operations and business logic
for drivers, parking operators, and administrators. All APls were tested
according to their intended functional requirements. Each test case includes the
test case ID, description, endpoint, request method, test scenario, test data,
expected result, and actual result.

By combining Postman testing with network tab inspection, the
system’s API responses were validated both from the server perspective and
from the client-side interaction, ensuring correctness, consistency, and

reliability of the application.

7.3.1 Summary of API Test Cases

The table below provides a summary of the API test cases executed for this

project.
Table 7.3: Summary of API Test Cases and Results
Test Case ID | Test Case Name Status
TCO001 User Registration Pass

TC002 User Login (Successful) Pass

249

User Login (Failed — Wrong

TCO003 Pass
Credentials)
TCO004 View Profile Information Pass
TCO005 Update Profile Information Pass
TCO006 View Vehicles Pass
TCO007 Add Vehicle Pass
TCO008 Update Vehicle Information Pass
TCO009 Delete Vehicle Pass
TCO010 View Payment Methods Pass
TCO011 Add Payment Method Pass
TC012 Delete Payment Method Pass
TCO013 View Driver Dashboard Pass
TCO14 View Parking Operator Pass
Dashboard
TCO015 View Admin Dashboard Pass
TCO016 View Nearby Parking Lots Pass
TCO017 View Parking History Pass
TCO018 View EV Charger Information | Pass
TCO019 Create EV Reservation Pass
TCO020 View EV Reservations Pass
TC021 Operator Setup Pass
TC022 Operator Manage Parking Lot Pass
Details
TC023 Submit Support Ticket Pass
TC024 View Support Ticket Pass
TC025 Send Support Ticket Messages | Pass
TC026 View Support Ticket Messages | Pass
TC027 Admin View Support Ticket Pass
TC028 Admin Send Support Ticket Pass
Messages
TC029 Admin View Support Ticket Pass

Messages

250

TCO030 Admin View User Accounts Pass

TCO031 Admin Edit User Account Pass

TC032 Admin Add User Account Pass

TCO033 Admin View Operator Pass

Requests
TC034 Admin Approve Operator Pass
Requests
Table 7.4: Test Case of User Registration
Test Case ID TCO001 Actual Result Pass
Test Case Title | Test Case of User Registration
Model User
Controller AuthController
Method POST
Endpoints http://${API_BASE_URL}/register
Involved
Test Scenario | Test Data Expected Result Actual
Result
User completes | 1. full_name 1. JSON object | 1. JSON
and submits the | 2. ic with message object
registration 3. email 2. User created. with
form with | 4. password message
personal 5. password_confi 2. User
information. rmation created.
6. user_type

Table 7.5: Test Case of User Login (Successful)

Test Case ID TC002 Actual Result Pass
Test Case Title | Test Case of User Login (Successful)

Model User

Controller AuthController

Method POST

251

Endpoints http://${AP1_BASE_URL}/login

Involved

Test Scenario | Test Data Expected Result Actual Result

User logs in|1. email 1. JSON object|1. JSON object
with valid | 2. password with success with success
credentials. message. message.

2. Authentication | 2. Authentication

token returned. token returned.

Table 7.6: Test Case of User Login (Failed — Wrong Credentials)

Test Case ID TCO003 Actual Result Pass

Test Case Title | Test Case of User Login (Failed — Wrong Credentials)

Model User

Controller AuthController

Method POST

Endpoints http://${AP1_BASE_URL}/login

Involved

Test Scenario | Test Data Expected Result Actual Result

User attempts | 1. email 1. JSON object|1. JSON object

login with | 2. password with error with error

invalid message. message.

credentials. 2. Authentication | 2. Authentication
denied. denied.

Table 7.7: Test Case of View Profile Information

Test Case ID TCO004 Actual Result Pass

Test Case Title | Test Case of View Profile Information

Model User

Controller ProfileController

Method GET

Endpoints http://${AP1_BASE_URL}/profile
Involved

Test Scenario | Test Data Expected Result Actual Result

252

User retrieves | - 1. JSON object|1. JSON object
their profile with user with user
information. profile details. profile details.
Table 7.8: Test Case of Update Profile Information
Test Case ID TCO005 Actual Result Pass
Test Case Title | Test Case of Update Profile Information
Model User
Controller ProfileController
Method PUT
Endpoints http://${AP1_BASE_URL}/profile
Involved
Test Scenario | Test Data Expected Result Actual Result
User updates | 1. full name | 1. JSON object | 1. JSON object
profile details. | 2. email with success with success
3. phone_nu message and message and
mber updated profile. updated
profile.
Table 7.9: Test Case of View Vehicles
Test Case ID TCO006 Actual Result Pass
Test Case Title | Test Case of View Vehicles
Model Vehicle
Controller ProfileController
Method GET
Endpoints http://${AP1_BASE_URL}/vehicles
Involved

Test Scenario

Test Data

Expected Result

Actual Result

Driver retrieves
a list of
registered

vehicles.

1.

JSON array of
vehicles
associated with

the driver.

1. JSON array of
vehicles
associated with

the driver.

253

Table 7.10: Test Case of Add Vehicles

Test Case ID TCO007 Actual Result Pass
Test Case Title | Test Case of Add Vehicles

Model Vehicle

Controller ProfileController

Method POST

Endpoints http://${AP1_BASE_URL}/vehicles

Involved

Test Scenario | Test Data Expected Result | Actual Result

Driver adds a| 1. vehicle type | 1. JSON object | 1. JSON object

new vehicle to | 2. make of vehicle of vehicle
their account. 3. model details. details.

4. color

5. license_plate

Table 7.11: Test Case of Update Vehicle Information

Test Case ID TCO008 Actual Result Pass

Test Case Title | Test Case of Update Vehicle Information

Model Vehicle

Controller ProfileController
Method PUT
Endpoints http://${AP1_BASE_URL}/vehicles/${id}
Involved
Test Scenario | Test Data Expected Result | Actual Result
Driver updates | 1. vehicle_id 1. JSON object | 1. JSON object
details of an | 2. vehicle_type of updated of updated
existing vehicle. | 3. make vehicle. vehicle.

4. model

5. color

6. license_plate

Table 7.12: Test Case of Delete Vehicle

Test Case ID TCO009 Actual Result Pass

254

Test Case Title | Test Case of Delete Vehicle

Model Vehicle

Controller ProfileController

Method DELETE

Endpoints http://${AP1_BASE_URL}/vehicles/${id}

Involved

Test Scenario | Test Data Expected Result | Actual Result
Driver deletes a | 1. vehicle_id 1. JSON object | 1. JSON object

registered with success with success

vehicle. message, message,
vehicle mark vehicle mark
as inactive. as inactive.

Table 7.13: Test Case of View Payment Methods

Test Case ID TCO10 Actual Result Pass

Test Case Title | Test Case of View Payment Methods

Model PaymentMethod

Controller ProfileController

Method GET

Endpoints http://${AP1_BASE_URL}/payment-methods

Involved

Test Scenario | Test Data Expected Result | Actual Result

Driver views | - 1. JSON array of | 1. JSON array

their saved saved of saved

payment payment payment

methods. methods. methods.

Table 7.14: Test Case of Add Payment Method

Test Case ID TCO11 Actual Result Pass

Test Case Title | Test Case of Add Payment Method

Model PaymentMethod

Controller ProfileController

Method

POST

255

Endpoints http://${API_BASE_URL}/payment-methods
Involved
Test Scenario | Test Data Expected Result | Actual Result
Driver adds a| 1. type 1. JSON object | 1. JSON object
new payment | 2. provider of added of added
method. 3. cast_last_fou payment payment
r method. method.
4. card_expiry
5. ewallet_id
Table 7.15: Test Case of Delete Payment Method
Test Case ID TCO012 Actual Result Pass
Test Case Title | Test Case of Delete Payment Method
Model PaymentMethod
Controller ProfileController
Method DELETE
Endpoints http://${API_BASE_URL}/payment-methods/${id}
Involved
Test Scenario | Test Data Expected Result | Actual Result
Driver deletes a | 1. payment_id |1. JSON object | 1. JSON object

payment with success with success

method. message, message,
payment payment
method set to method set to
inactive. inactive.

Table 7.16: Test Case of View Driver Dashboard

Test Case ID TCO13 Actual Result Pass

Test Case Title | Test Case of View Driver Dashboard

Model ParkingSession, EvReservation, Vehicle,

PaymentMethod, ParkingLot
Controller DriverDashboardController
Method GET

256

Endpoints

Involved

http://${AP1_BASE_URL}/driver/dashboard
http://${API_BASE_URL}/monthly-usage
http://${API_BASE_URL}/weekly-usage

Test Scenario

Test Data

Expected Result

Actual Result

Driver views | - 1. JSON object | 1. JSON object
dashboard with with
tailored to their dashboard dashboard
role. data. data.
Table 7.17: Test Case of View Parking Operator Dashboard
Test Case ID TCO014 Actual Result Pass
Test Case Title | Test Case of View Parking Operator Dashboard
Model ParkingLot, ParkingZone, ParkingRate, ParkingSession,
EvCharger, EvReservation
Controller ParkingOperatorDashboardController
Method GET
Endpoints http://${AP1_BASE_URL}/operator/dashboard
Involved http://${API_BASE_URL}/revenue-trends

http://${API_BASE_URL}/occupancy-trends
http://${AP1_BASE_URL}/live-lot-status
http://${AP1_BASE_URL }/parking-rates

Test Scenario

Test Data

Expected Result

Actual Result

Parking - 1. JSON object | 1. JSON object
Operator views with with
dashboard dashboard dashboard
tailored to their data. data.
role.

Table 7.18: Test Case of View Admin Dashboard
Test Case ID TCO15 Actual Result Pass
Test Case Title | Test Case of View Admin Dashboard
Model User, ParkingLot, SupportTicket, EvCharger,

ParkingSession

257

Controller AdminDashboardController

Method GET

Endpoints http://${AP1_BASE_URL}/admin/dashboard
Involved http://${API_BASE_URL}/dashboard/user-growth

http://${API_BASE_URL}/parking-usage

Test Scenario | Test Data Expected Result | Actual Result
Admin views | - 1. JSON object | 1. JSON object
dashboard with with
tailored to their dashboard dashboard
role. data. data.
Table 7.19: Test Case of View Nearby Parking Lots
Test Case ID TCO16 Actual Result Pass
Test Case Title | Test Case of View Nearby Parking Lots
Model ParkingLot, ParkingSession, EvReservation
Controller ParkingLotController
Method GET
Endpoints http://${API_BASE_URL}/nearby-parking-lots
Involved
Test Scenario | Test Data Expected Result | Actual Result
Driver views | 1. latitude 1. JSON array of | 1. JSON array
nearby parking | 2. longitude nearby of nearby
lot details. 3. radius parking lots parking lots
4. available onl with details. with details.
y
5. sort_by
Table 7.20: Test Case of View Parking History

Test Case ID TCO17 Actual Result Pass
Test Case Title | Test Case of View Parking History
Model ParkingSession
Controller TransactionHistoryController
Method GET

258

Endpoints

Involved

http://${AP1_BASE_URL }/transaction-history

Test Scenario

Test Data

Expected Result

Actual Result

Driver views

their parking

transaction

1. JSON array of
past

transactions.

1. JSON
of past

array

transactions.

history.

Table 7.21: Test Case of View EV Charger Information
Test Case ID TCO18 Actual Result Pass
Test Case Title | Test Case of View EV Charger Information
Model EvCharger, EvReservation, ParkingLot
Controller EvReservationController
Method GET
Endpoints http://${API_BASE_URL}/nearby-ev-chargers
Involved

Test Scenario

Test Data

Expected Result

Actual Result

Driver views | - 1. JSON array of | 1. JSON array

details of nearby EV chargers of EV

EV chargers. with chargers with
availability availability
status status

Table 7.22: Test Case of Create EV Reservation

Test Case ID TCO019 Actual Result Pass

Test Case Title | Test Case of Create EV Reservation

Model EvCharger, EvReservation, ParkingLot, Vehicle

Controller EvReservationController

Method POST

Endpoints http://${AP1_BASE_URL}/ev-reservations

Involved

Test Scenario

Test Data

Expected Result

Actual Result

259

Driver creates a
reservation for

an EV charger.

1. ev_charger_i
d
2. vehicle_id

1. JSON object
with success

message and

reservation

details.

1. JSON object
with success
message and
reservation

details.

Table 7.23: Test Case of View EV Reservations

Test Case ID TC020 Actual Result Pass

Test Case Title | Test Case of View EV Reservations

Model EvReservation

Controller EvReservationController

Method GET

Endpoints http://${AP1_BASE_URL}/ev-reservations

Involved

Test Scenario | Test Data Expected Result | Actual Result
Driver views | - 1. JSON array of | 1. JSON array
their existing reservations. of

EV reservations.

reservations.

Table 7.24: Test Case of Operator Setup

Test Case ID | TC021 Actual Result Pass

Test Case | Test Case of Operator Setup

Title

Model PendingAction

Controller CompanyRegirstrationController

Method POST

Endpoints http://${API_BASE_URL}/company-registration
Involved

Test Test Data Expected Actual Result
Scenario Result

Driver views | company: 2. JSON object | 2. JSON object
their existing | 1. address confirming confirming

260

EV

reservations.

contact_email
contact_phone

name

a b~ w DN

registration_no

gateway:
6. provider
7. stripe_account_id

8. stripe_onboarded

parking_lots:

9. address

10. city

11. closing_time
12.is_24 7

13. latitude

14. longitude

15. opening_time

16. parking_lot_name
17. parking_type

18. postcode

19. state

20. total_parking_bay

S

Zones:
21. bay_count
22. description
23. ev_chargers

24. zone_name

ev_chargers:
25. end_hour

that the
company,
parking lot,
zones, and
EV chargers
have Dbeen
successfully
registered
and
submitted
for admin

approval.

that the
company,
parking lot,
zones, and
EV chargers
have been
successfully
registered
and

submitted
for admin

approval.

261

26. rate
27. rate_type
28. start_hour

Table 7.25: Test Case of Operator Manage Parking Lot Details (Create,

Update, Delete)

Test Case ID TC022 Actual Result Pass

Test Case Title | Test Case of Operator Manage Parking Lot Details
(Create, Update, Delete)

Model PendingAction

Controller PendingActionsController

Method POST

Endpoints http://${AP1_BASE_URL}/pending-actions

Involved

Test Scenario

Test Data

Expected Result

Actual Result

Operator
updates existing
parking lot
details.

1. entity type
2. entity _id
3. action
4. data

1. JSON object
with success
message,
pending
admin

approval.

1. JSON object
with success
message,
pending
admin

approval.

Table 7.26: Test Case of Submit Support Ticket

Test Case ID TC023 Actual Result Pass

Test Case Title | Test Case of Submit Support Ticket

Model SupportTicket, SupportTicketMessage

Controller SupportTicketController

Method POST

Endpoints http://${API_BASE_URL}/support-tickets

Involved

Test Scenario | Test Data Expected Result | Actual Result
User submits a | 1. subject 1. JSON object | 1. JSON object

support ticket

2. description

with success

with success

262

for system- | 3. priority message and message and

related issue. ticket ID. ticket ID.
Table 7.27: Test Case of View Support Ticket

Test Case ID TCO024 Actual Result Pass

Test Case Title | Test Case of View Support Ticket

Model SupportTicket, SupportTicketMessage

Controller SupportTicketController

Method GET

Endpoints http://${API_BASE_URL}/support-tickets

Involved

Test Scenario | Test Data Expected Result | Actual Result

User retrieves | 1. user_id 1. JSON object | 1. JSON object

the list of their
submitted

support tickets,

containing a
list of support
tickets

containing a
list of support
tickets

including submitted by submitted by
messages and the user. the user.
status.

Table 7.28: Test Case of Send Support Ticket Messages
Test Case ID TC025 Actual Result Pass
Test Case Title | Test Case of Send Support Ticket Messages
Model SupportTicketMessage
Controller SupportTicketController
Method POST
Endpoints http://${AP1_BASE_URL}/support-
Involved tickets/${ticketld}/messages

Test Scenario | Test Data Expected Result | Actual Result

User sends a | 1. ticketld 1. JSON object | 1. JSON object

message to a | 2. is_admin containing the containing
3. message message that the message

263

specific support
ticket.

4. user_id

was added to

the support added to the
ticket. support
ticket.

that was

Table 7.29: Test Case of View Support Ticket Messages

Test Case ID TC026 Actual Result Pass
Test Case Title | Test Case of View Support Ticket Messages
Model SupportTicketMessage

Controller SupportTicketController

Method GET

Endpoints http://${API_BASE_URL}/support-

Involved tickets/${ticketld}/messages

Test Scenario | Test Data Expected Result Actual Result
User retrieves | 1. ticketld |1. JSON object | 1. JSON object
all messages containing a list containing a list

associated with

of messages for

of messages for

a specific the specified the specified

support ticket. support ticket. support ticket.
Table 7.30: Test Case of Admin View Support Ticket

Test Case ID TCO027 Actual Result Pass

Test Case Title | Test Case of Admin View Support Ticket

Model SupportTicket, SupportTicketMessage

Controller SupportTicketController

Method GET

Endpoints http://${API_BASE_URL}/admin/support-tickets

Involved

Test Scenario

Test Data

Expected Result

Actual Result

Admin retrieves
the list of all

submitted

1. JSON

containing a list

object

of all support

1. JSON object
containing a

list of all

264

support tickets
along with their
messages and

statuses.

tickets

system.

in the

support tickets
in the system.

Table 7.31: Test Case of Admin Send Support Ticket Messages

Test Case ID TC028 Actual Result Pass
Test Case Title | Test Case of Admin Send Support Ticket Messages
Model SupportTicketMessage

Controller SupportTicketController

Method POST

Endpoints http://${API_BASE_URL}/support-

Involved tickets/${ticketld}/messages

Test Scenario | Test Data Expected Result Actual Result

Admin sends a | 1. ticketld | 1. JSON object | 1. JSON object
message to a|2. is_admin containing containing the
specific support | 3. message message that was message that

ticket.

added to
support ticket.

the
ticket.

was added to

support

Table 7.32: Test Case of Admin View Support Ticket Messages

Test Case ID TC029 Actual Result Pass
Test Case Title | Test Case of Admin View Support Ticket Messages
Model SupportTicketMessage

Controller SupportTicketController

Method GET

Endpoints http://${API_BASE_URL}/admin/support-
Involved tickets/${ticketld}/details

Test Scenario

Test Data

Expected Result

Actual Result

265

Admin retrieves
all messages

associated with

1. ticketld | 1.

JSON

containing a list

object

of messages for

1. JSON

containing a list

object

of messages for

a specific the specified the specified
support ticket. support ticket. support ticket.
Table 7.33: Test Case of Admin View User Accounts
Test Case ID TCO030 Actual Result Pass
Test Case Title | Test Case of Admin View User Accounts
Model User, Company
Controller UserManagementController
Method GET
Endpoints http://${API_BASE_URL}/admin/users?${params}
Involved
Test Scenario | Test Data Expected Actual Result
Result
Admin retrieves | 1. page 1. JSON object | 1. JSON object
and filters user | 2. per_page containing a containing a
accounts, with | 3. user_type paginated paginated list
the ability to | 4. status list of user of user
view details, | 5. company_id accounts accounts
update, or | 6. search filtered filtered
deactivate according to according to
accounts. the provided the provided
parameters parameters
Table 7.34: Test Case of Admin Edit User Account
Test Case ID TCO031 Actual Result Pass
Test Case Title | Test Case of Admin Edit User Account
Model User, Company
Controller UserManagementController

Method

PUT

266

Endpoints http://${API_BASE_URL}/admin/users/${selectedUser.i
Involved d}
Test Scenario | Test Data Expected Actual Result
Result
Admin updates | 1. full_name | 1. JSON object | 1. JSON object of
details of a|2. ic of the the updated new
specific user | 3. email updated new details.
account. 4. phone_num details.
ber
5. user_type
6. status
7. company_i
d
8. password
9. password ¢
onfirmation
Table 7.35: Test Case of Admin Add User Account
Test Case ID TC032 Actual Result Pass
Test Case Title | Test Case of Admin Add User Account
Model User, Company
Controller UserManagementController
Method POST
Endpoints http://${AP1_BASE_URL}/admin/users
Involved
Test Scenario | Test Data Expected Actual Result
Result
Admin creates a | 1. full name | 1. JSON object | 1. JSON object
new user | 2. ic confirming confirming the
account by | 3. email the new user new user
providing all | 4. phone_num account was account was
necessary ber successfully successfully

267

personal, role, | 5. password created with created with the
and company | 6. user_type the provided provided detalils.
details. 7. company_i details.
d
8. status
Table 7.36: Test Case of Admin View Operator Requests
Test Case ID TCO033 Actual Result Pass
Test Case Title | Test Case of Admin View Operator Requests
Model PendingAction
Controller AdminPendingActionController
Method GET
Endpoints http://${AP1_BASE_URL}/admin/pending-
Involved actions?${params}
Test Scenario | Test Data Expected Result | Actual Result
Admin retrieves | 1. page 1. JSON object | 1. JSON object
a list of pending | 2. per_page containing a containing a
operator 3. status paginated list paginated list
requests, 4. entity_type of pending of pending
optionally 5. action operator operator
filtered by | 6. search requests requests
status, type, or
search criteria.

Table 7.37: Test Case of Admin Approve Operator Requests

Test Case ID TC034 Actual Result Pass
Test Case Title | Test Case of Admin Approve Operator Requests
Model PendingAction

Controller AdminPendingActionController

Method PATCH

Endpoints http://${API_BASE_URL}/admin/pending-
Involved actions/${actionld}/review

268

Test Scenario | Test Data | Expected Result Actual Result

Admin reviews | 1. review |1. JSON object | 1. JSON object
and approves or _notes confirming that confirming that
rejects a| 2. status the pending the pending
pending operator request operator request
operator has been updated has been updated
request. with the new with the new

status and notes.

status and notes.

7.4 Traceability Matrix

To clearly illustrate the relationship between the test cases executed, the

functional requirements, and the use cases, a traceability matrix has been created.

This matrix links each test case with its corresponding functional requirement

and use case. The traceability matrix is presented in the table below.

Table 7.38: Traceability Matrix Table

Use Case ID Funct-ional Test Case ID
Requirement ID

UC1 FR2 TC002, TC003

ucC2 FR1 TCO001

UC3 cra TC006, TC007, TCOO8,
TCO009

UC4 FR12 TCO010, TCO11, TCO12

UC5 FR6 TCO013, TC014, TCO015

ucCo6 FR7, FR15, FR16 TCO016, TCO21, TC022

ucCv FR9 TCO18

uCs FR8 TCO017

ucC9 FR10, FR11 TCO019, TCO20

UC11 FR17 TCO023

UC12 FR20 TC033, TC034

UC13 FR21 TC027, TC028, TC029

uC14 FR19 TCO033, TC034

UC15 FR18 TC030, TC031, TC032

269

UC16 FR3 TCO004, TCO05

7.5 Performance Evaluation of Vehicle Recognition

The purpose of this test is to validate the system’s ability to accurately identify
vehicle information, including license plate, make, model, and color, using
image inputs. The test also evaluates the system’s response time and overall

reliability for real-world usage.

7.5.1 Evaluation Methodology

A dataset of real vehicle images was used as input for the system. The system
processed each image to extract vehicle attributes, and recognition results were
compared against ground truth. Metrics recorded included detection time per
image and accuracy for each vehicle attribute. The detailed results are provided

in a table in Appendix A.
Processing images: 100%| | 20/20 [01:45<00:00, 5.30s/img]

Benchmark results saved to detection results.csv

M per-field accuracy (first 20 labeled images):
License plate : 19/20 = 95.00% | Failures: 1
Make : 20/20 = 100.00% | Failures: @
Model : 18/20 = 90.00% | Failures: 2
Color : 20/20 = 100.00% | Failures: @

Overall accuracy (all fields correct): 17/20 = 85.00%

¥ Common misclassifications:
Model :
GT=MYVI -+ Detected=AXTA (1x)
GT=ALZA -+ Detected=MYVI (1x)
License plate:
GT=VAT 6430 » Detected=VAT F438 (‘l){)

" Performance metrics (all 20 images):
Average detection time: 2.495 sec
Median detection time: 2.155 sec
Max detection time: 4.649 sec
Std dev detection time: ©.822 sec
Detection failures (unknown plates): @

Figure 7.1: Vehicle Recognition System Benchmark Results

270

The image above presents the benchmark results of the vehicle recognition
system tested on 20 images. Key observations include per-field accuracy, such
as license plate, make, model, and color, overall accuracy, common
misclassifications, and performance metrics. These results demonstrate that the
system is accurate in detecting vehicle attributes and performs efficiently in

terms of processing time.

7.6 Evaluation of Auto Payment via Vehicle Recognition

The automatic parking fee system, based on license plate and vehicle
recognition, was tested to demonstrate end-to-end functionality, from vehicle
detection to payment processing. The system successfully scanned vehicle
image, identified the license plate, make, model, and color, matched the vehicle
to a registered user, calculated the parking fee based on duration and rate,
processed the payment automatically, and stored a notification for the driver.
The following log content illustrates a complete parking session, including entry,
duration calculation, fee computation, payment processing, and notification

delivery.

[INFO] Scanning vehicle from image: proto_image\!

[INFO] AFC is enabled with max remote calls:
[INFO] HTTP Request: POST
"HTTP/1.1 2 -
[INFO] AFC remote call 1 is done.
[INFO] Detected Plate: VBP , Make: Nissan, Model: Almera, Color: gray
[

INFO] Plate VBP belongs to user Driver 1 (User ID 5)

[INFO] vehicle vBP entered parking lot 1, zone

[INFO] vBP will stay parked for 5 seconds (simulated 3 hours)

[INFO] Processing exit for vehicle VBP

[INFO] calculating fee for 3 hours parked (weekday)...

[INFO] - From hour & to 2 (2h @ RM2.00/h) =

[INFO] vBP parked for min (~3h), total fee:

[INFO] charging Visa card **** (exp 12/26) for VBP

[INFO] vBP exit completed, Paid , Payment ID: pi_mock_ 1758885111362
[INFO] Notification stored for VBP

Figure 7.2: Vehicle Recognition and Auto Payment Results

7.7 Usability Test

Usability testing was conducted as a critical phase of system evaluation to
ensure that users can navigate the app and perform essential tasks with ease and
minimal confusion. The primary objective of this testing was to gather direct

feedback from users and assess overall usability using the System Usability

271

Scale (SUS). The testing was conducted online following a structured
methodology to ensure consistent and reliable results.

Participants were divided into three main roles: drivers, parking
operators, and administrators, representing the primary users of the system.
Each participant completed predefined tasks simulating real-world interactions
relevant to their role.

After completing these tasks, participants provided feedback via a
structured user satisfaction survey. The detailed survey results are provided in
Appendix B, and the collected data were analyzed to calculate the average SUS
score, reflecting the system’s overall usability and user satisfaction across all

user roles.

7.7.1 Test Scenarios of Usability Test

Table 7.39: Test Scenarios of Usability Test

No | Test Name Test Description
Test that drivers and parking operators can
Account)]
1 successfully register an account and receive

Registration))
confirmation.

) Verify that all users (drivers, operators, admins)
2 | Secure Login])))
can log in securely with valid credentials.

Profile Test that users can view and update their profile
3 Management information without errors.

Vehicle Verify that drivers can add, edit, or remove vehicle
‘ Management details in the system.
. Payment Method | Test that drivers can add, update, or delete

Management payment methods seamlessly.

Verify that users can view a personalized
6 | Dashboard Access | dashboard displaying relevant information for

their role.

Nearby Parking | Test that drivers can view nearby parking lot

Info locations and details accurately.

272

8 | Parking History Verify that drivers can view a complete history of
their parking transactions.
9 | EV Charger Info Test that drivers can view nearby EV chargers with
relevant details.
10 | EV Reservations Verify that drivers can make and view EV
reservations successfully.
Test that the system can process automatic parking
11 | Auto-Transaction | fee transactions based on license plate and vehicle
recognition.
Notifications & | Verify that drivers receive correct notifications
e Alerts related to parking transactions.
13 Submit Support | Test that drivers and parking operators can submit
Tickets support tickets for system-related issues.
Manage Parking | Verify that parking operators can update parking
1 Lot Details lot information, which is sent for admin approval.
15 Approve Operator | Test that admins can review and approve new
Requests parking operator accounts and change requests.
Manage User | Verify that admins can manage driver and parking
10 Accounts operator accounts.
17 Manage Support | Test that admins can view, update, and resolve
Tickets support tickets submitted by users.
7.7.2 Results of Usability Test

After completing the usability testing, the user satisfaction survey forms were

collected from all participants and are included in Appendix B. The responses

from each form were analyzed and summarized. Each of the ten usability

questions was rated on a scale from 1 (Strongly Disagree) to 5 (Strongly Agree).

273

Table 7.40: Test Scenarios of Usability Test

ID Score for each test Total
1 2 3 4 5 6 7 8 9 | 10 | SUS
Score
P1L | 5 3 3 4 4 3 3 4 4 3 55
P2 | 5 1 5 3 5 5 5 1 5 3 80
P3 | 3 2 5 2 4 1 3 2 4 4 70
P4 5 2 4 1 4 1 4 1 4 2 85
P5 5 1 5 1 4 1 5 1 5 1 97.5
Average SUS Score 77.5

The average SUS score across all participants is 77.5, showing that the
system is generally easy to use, though there is still room for improvement.
Some participants mentioned that the app’s loading time can be a bit slow,
which may affect the user experience. It should be noted that the test involved
only five participants, so the results provide a preliminary view of usability.
Future usability testing with a larger group would give more reliable and
representative feedback. Additionally, the helpful comments provided in the
open-ended survey questions have been reviewed and noted for future

improvements.

7.8 User Acceptance Testing (UAT)

During the User Acceptance Testing (UAT), participants provided feedback on
various aspects of the system, including functionality, interface design, and
usability. Most of the issues reported were minor and focused on improving user
experience rather than correcting critical system errors. The key feedback and

the actions taken to address them are summarized.

274

Table 7.41: Summary of UAT Feedback and Actions

Feedback Given Action Taken

“It would be wuseful if vehicle _ -
-) _ Added vehicle recognition feature to
recognition could be integrated into the _) o
_ o streamline vehicle registration.
vehicle registration process.”

“Some parts of the Ul are not o
. Updated Ul components to maintain
consistent, such as the drawer)
consistent colors and styles.
background color.”

)) Replaced selected icons with
“Some icons could be improved to |)
) L improved designs for better
look nicer and more intuitive.”

appearance and clarity.

In summary, the UAT was successful, requiring minimal intervention
from the developers. Testers completed all UAT scenarios and effectively
validated the core functionality of ParkPal. While a few minor suggestions were
provided to improve user experience, these did not affect the overall

performance or usability of the system.

7.9 Conclusion

This report presents the testing and evaluation of ParkPal, covering functionality,
performance, usability, and user acceptance. The traceability analysis showed
that all use cases and functional requirements were properly tested. API testing
confirmed that the system’s endpoints work correctly. The vehicle recognition
system performed accurately and responded quickly enough for practical use.
Usability testing showed that drivers, parking operators, and administrators can
navigate the app and complete tasks easily, with a high average SUS score. User
Acceptance Testing (UAT) confirmed that the system meets its intended
purpose, with all test scenarios completed successfully. Overall, ParkPal has
been tested thoroughly and is ready for deployment, with some suggestions for

future improvements to enhance user experience.

275

CHAPTER 8
CONCLUSION AND RECOMMENDATIONS

8.1 Introduction

This chapter provides the conclusion of the project by reviewing how the
objectives were achieved, the limitations that were encountered, and the
possible improvements for future development. It highlights the progress made
in building the parking management system while also pointing out areas that
can be enhanced to ensure greater efficiency, accuracy, and usability in future

versions.

8.2 Objectives Achievement

The objectives of this project were successfully achieved through the
development and evaluation of the proposed parking management system
mentioned in Chapter 1.

The first objective, which focused on examining license plate and
vehicle attribute recognition approaches and reviewing similar applications, was
fulfilled through a comprehensive study of existing methods. Traditional
computer vision techniques were compared with modern LLMs, and related
parking and mobility applications were analyzed to identify common practices,
limitations, and opportunities for improvement. This provided the foundation
for designing a system that leverages advanced recognition technologies while
addressing practical challenges observed in current solutions.

The second objective, to develop an automated parking payment
system that integrates multimodal LLMs for license plate and vehicle attribute
recognition, was also achieved. The project implemented the Gemini 2.5 Flash
model to automatically detect license plates and extract key vehicle attributes
such as make, model, and color. These detections were integrated into the
parking workflow to enable automated validation and fee calculation during
vehicle entry and exit. While the current implementation relies on the free-tier
version of the model, which introduces certain limitations, it successfully
demonstrated the feasibility of incorporating Al-powered recognition into the

automation of parking payments.

276

The third objective, to develop a parking management application, was
realized through the creation of a complete system with role-based functionality
for drivers, parking operators, and administrators. Drivers are able to register,
manage vehicles, view nearby parking lots, and make EV reservations.
Operators can manage parking lots and view parking statistics to monitor
performance and usage trends, while administrators are provided with a
dashboard to monitor system usage and manage users and pending actions. The
application was developed using Laravel, React Native, PostgreSQL, and
supporting frameworks, ensuring a scalable, secure, and user-friendly design.

In summary, the project achieved its intended objectives by delivering
a functional prototype of an Al-assisted parking management system. The
system integrates multimodal recognition for automation, role-based
dashboards for management, and scalable technologies for implementation,
thereby demonstrating the viability of intelligent parking solutions in real-world

contexts.

8.3 Project Limitations
Despite the successful implementation, the project has several limitations. One
key limitation lies in the Al model constraints. The vehicle recognition system
relies on the free version of the Gemini 2.5 Flash model, which restricts its
processing capacity. As a result, handling large volumes of images in real time
becomes challenging. In testing, the license plate recognition achieved an
accuracy of 85%, which is slightly below the 90% target set in the non-
functional requirements. This difference is mainly due to the limited dataset of
20 real vehicle images used for evaluation and the constraints of the free API
tier. An upgrade to a higher-tier model or a larger, more diverse dataset would
likely improve accuracy, processing speed, and overall reliability of the system.
Another limitation is the scope of analytics and reporting. The current
features are fairly general, focusing mainly on basic usage statistics and
payment summaries. While these provide some insights, more detailed and
customizable reports, such as those filtered by time range, parking lot
performance, or driver behavior, would significantly enhance decision-making

for operators and administrators.

277

Finally, the system still requires manual setup by parking operators. At
present, operators need to manually key in parking lot details, which can be
time-consuming and prone to error. More efficient methods, such as bulk data
import or configuration cloning, and maybe even integration with external APIs,

would reduce this burden and streamline onboarding for new operators.

8.4 Recommendations for Future Work

While the current version of the parking management app provides essential
features, there are several opportunities to enhance its functionality and user
experience in future iterations.

One potential improvement is the integration of third-party
authentication methods, such as Google, Apple, or social media logins. This
would simplify access for users and reduce the friction associated with creating
a new account.

While the system currently supports real-time parking management, a
parking reservation module could be added too, which works similarly to the
current EV Reservation. This would allow drivers to book specific parking spots
in advance, ensuring availability upon arrival and reducing uncertainty in busy
areas.

A significant improvement would be to enable payments for electric
vehicle (EV) parking reservations. Currently, the app allows users to reserve EV
charging spots but does not support payment for these reservations. Integrating
a secure payment feature for EV spots would make the service more convenient
and complete, encouraging greater adoption among EV users.

To improve transparency and accountability, the system could include
receipt printing and automated receipt generation. Beyond individual receipts,
administrators and operators could benefit from advanced analysis reports, with
options to export data in PDF format for auditing, financial tracking, or
decision-making purposes.

Another area for enhancement is the incorporation of additional
services. By analyzing existing parking and mobility apps, features such as
vehicle insurance options, promotional offers, and loyalty programs could be

278

added. These services would provide added value beyond basic parking
management and help engage users more effectively.

In addition, expanding the app’s geographical scope is also
recommended. The app could be extended to include toll payment systems
across Malaysia, offering a more comprehensive mobility solution. With
appropriate localization, it could potentially be adapted for use in other countries,
reaching a wider audience and increasing its utility.

Finally, the app can improve through pre-processing techniques such
as image enhancement and noise reduction before sending data to the model.
For scenarios requiring deeper customization, such as adapting recognition to
specific local license plate formats, vehicle types, or environmental conditions,
a fine-tunable open-source model could be integrated alongside Gemini. This
hybrid approach would allow developers to retrain or fine-tune the open-source
model on domain-specific datasets while still using Gemini for broader
recognition tasks.

These improvements would not only strengthen the app’s functionality
but also create a seamless and satisfying user experience, positioning it as a

competitive solution for both local and international markets.

279

REFERENCES

Abdullah, M. et al. (2021) “LICENSE PLATE RECOGNITION
TECHNIQUES: COMPARATIVE STUDY,” Malaysian Journal of Computer
Science, 2021(Special Issue 1), pp. 94-105. Awvailable at:
https://doi.org/10.22452/mjcs.sp2021n01.9.

A.K.M Zahidul Islam and Ferworn, A. (2020) “A Comparison between Agile
and Traditional Software Development Methodologies,” Global Journal of
Computer Science and Technology: C Software & Data Engineering, 20(2).

AlDahoul, N. et al. (2024) “Advancing Vehicle Plate Recognition: Multitasking
Visual Language Models with VehiclePaliGemma.” Available at:
http://arxiv.org/abs/2412.14197.

Alexander Gillis (no date) enterprise architecture (EA), TechTarget. Available
at: https://www.techtarget.com/searchcio/definition/enterprise-architecture
(Accessed: April 27, 2025).

Aly, M. (2008) Real time Detection of Lane Markers in Urban Streets, IEEE
Intelligent ~ Vehicles Symposium, Proceedings. Available at:
https://doi.org/10.1109/1VS.2008.4621152.

Apoorva Srivastava, Sukriti Bhardwaj and Shipra Saraswat (2017) SCRUM
Model for Agile Methodology. IEEE.

Apple (no date a) Flexi Parking on the App Store, Apple. Available at:
https://apps.apple.com/cn/app/flexi-parking/id1466897086?1=en-GB
(Accessed: May 2, 2025).

Apple (no date b) JomParking on the App Store, Apple. Available at:
https://apps.apple.com/my/app/jomparking/id990623185 (Accessed: April 12,
2025).

Bay, H., Tuytelaars, T. and Van Gool, L. (2006) SURF: Speeded up robust
features, Computer Vision-ECCV 2006. Available at:
https://doi.org/10.1007/11744023_32.

Burtescu, E. et al. (2014) “Database Systems Journal,” Database Systems
Journal, 5(3).

Cao, J. et al. (2020) “Front vehicle detection algorithm for smart car based on
improved SSD model,” Sensors (Switzerland), 20(16), pp. 1-21. Available at:
https://doi.org/10.3390/s20164646.

Carranza-Garcia, M. et al. (2021) “On the performance of one-stage and two-
stage object detectors in autonomous vehicles using camera data,” Remote
Sensing, 13(1), pp. 1-23. Available at: https://doi.org/10.3390/rs13010089.

280

Caruana, R., Pratt, L. and Thrun, S. (1997) Multitask Learning *. Kluwer
Academic Publishers.

Chiang, J. (2024) GPT-40: what do we know so far, Medium. Available at:
https://medium.com/@tsunhanchiang/gpt-40-what-do-we-know-so-far-
6672e85c4de5 (Accessed: April 30, 2025).

Cipolla, R., Gal, Y. and Kendall, A. (2018) “Multi-task Learning Using
Uncertainty to Weigh Losses for Scene Geometry and Semantics,” in
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. IEEE Computer Society, pp. 7482-7491. Available at:
https://doi.org/10.1109/CVVPR.2018.00781.

Dalal, N. and Triggs, B. (2005) Histograms of Oriented Gradients for Human
Detection, Comput. Vision Pattern Recognit. Available at:
https://doi.org/10.1109/CVPR.2005.177.

Erickson, J. (2024) MySQL: Understanding What It Is and How It’s Used,
Oracle. Available at: https://www.oracle.com/mysgl/what-is-mysql/ (Accessed:
April 30, 2025).

Gayen, S. et al. (2024) “Two decades of vehicle make and model recognition —
Survey, challenges and future directions,” Journal of King Saud University -
Computer and Information Sciences. King Saud bin Abdulaziz University.
Available at: https://doi.org/10.1016/j.jksuci.2023.101885.

H. Meybodi, Z. et al. (2021) TEDGE-Caching: Transformer-based Edge
Caching Towards 6G Networks. Available at:
https://doi.org/10.48550/arXiv.2112.00633.

Haire, A. (no date) What is lonic: Learn the essentials of what you can do with
lonic and how it works., ionic. Available at:
https://ionic.io/resources/articles/what-is-ionic (Accessed: April 29, 2025).

Han, K. et al. (2023) “A Survey on Vision Transformer,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(1), pp. 87-110. Available at:
https://doi.org/10.1109/TPAMI.2022.3152247.

He, K. et al. (2016) “Deep residual learning for image recognition,” in
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. IEEE Computer Society, pp. 770-778. Available at:
https://doi.org/10.1109/CVPR.2016.90.

JomParking (no date a) Documentation, JomParking. Available at:
https://web.jomparking.com/documentation (Accessed: April 12, 2025).

JomParking (no date b) JomParking, JomParking. Available at:
https://web.jomparking.com/features (Accessed: April 12, 2025).

281

Kang, S. et al. (2025) “Object Detection YOLO Algorithms and Their Industrial
Applications: Overview and Comparative Analysis,” Electronics (Switzerland).
Multidisciplinary Digital Publishing Institute (MDPI). Available at:
https://doi.org/10.3390/electronics14061104.

Kattenborn, T. et al. (2021) “Review on Convolutional Neural Networks (CNN)
in vegetation remote sensing,” ISPRS Journal of Photogrammetry and Remote
Sensing. Elsevier B.V., pp. 24-49. Available at:
https://doi.org/10.1016/j.isprsjprs.2020.12.010.

Kongyoung, S., Macdonald, C. and Ounis, I. (2020) “Multi-Task Learning using
Dynamic Task Weighting for Conversational Question Answering,” in J. Dalton
et al. (eds.) Proceedings of the 5th International Workshop on Search-Oriented
Conversational Al (SCAI). Online: Association for Computational Linguistics,
pp. 17-26. Available at: https://doi.org/10.18653/v1/2020.scai-1.3.

Korkut, T. (2023) Excelling in Software Development with Scrum Methodology
Part 2, Medium. Available at: https://blog.stackademic.com/excelling-in-
software-development-with-scrum-methodology-part-2-e2d0b29437ce
(Accessed: April 16, 2025).

Kwiatkowski, K. (2024) What is Expo?, Pagepro. Available at:
https://pagepro.co/blog/what-is-expo-js/ (Accessed: May 2, 2025).

Laravel (no date) Installation. Available at: https://laravel.com/docs/12.x
(Accessed: April 29, 2025).

Manzoor, M.A., Morgan, Y. and Bais, A. (2019) “Real-Time Vehicle Make and
Model Recognition System,” Machine Learning and Knowledge Extraction,
1(2), pp. 611-629. Available at: https://doi.org/10.3390/make1020036.

Miller, G. (2001) The Characteristics of Agile Software Processes. Available at:
https://doi.org/10.1109/TOOLS.2001.10035.

Montazzolli, S. and Jung, C. (2018) License Plate Detection and Recognition in
Unconstrained Scenarios.

Nadira Muda et al. (2007) “Optical Character Recognition By Using Template
Matching (Alphabet),” in.

NestJS (no date) Introduction, NestJS. Available at: https://docs.nestjs.com/
(Accessed: April 30, 2025).

Nuradzimmah Daim (2023) 36.3 million vehicles in Malaysia, New Straits
Times : Available at:
https://www.nst.com.my/news/nation/2023/12/987062/363-million-vehicles-
malaysia (Accessed: May 1, 2025).

ParkEasy (2016) ParkEasy, park safely, ParkEasy. Available at:
https://www.parkeasy.co/blog/tag/parking (Accessed: May 2, 2025).

282

ParkEasy (no date) Add Membership, ParkEasy. Available at:
https://www.parkeasy.co/add-membership (Accessed: May 2, 2025).

Phung, V.H. and Rhee, E.J. (2018) “A Deep Learning Approach for
Classification of Cloud Image Patches on Small Datasets,” Journal of
Information and Communication Convergence Engineering. 2018/09/30, 16(3),
pp. 173-178. Available at: https://doi.org/10.6109/jicce.2018.16.3.173.

Ranjan, R. etal. (2016) “An All-In-One Convolutional Neural Network for Face
Analysis.” Available at: https://doi.org/10.48550/arXiv.1611.00851.

Ren, S. etal. (2017) “Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39(6), pp. 1137-1149. Available at:
https://doi.org/10.1109/TPAMI.2016.2577031.

Romanowski, J. (2020) Major Companies Using PostgreSQL: Purposes &
Examples, LearnSQL.com. Available at: https://learnsgl.com/blog/companies-
that-use-postgresql-in-business/ (Accessed: April 30, 2025).

Rozlan, 1. (2023) Touch ‘n Go eWallet Enables QR Code Scanning To Pay
Parking, Lowyat.NET. Available at:
https://www.lowyat.net/2023/296185/touch-n-go-ewallet-gr-code-parking/
(Accessed: April 12, 2025).

Ruder, S. (2017) “An Overview of Multi-Task Learning in Deep Neural
Networks.” Available at: http://arxiv.org/abs/1706.05098.

Saeed, S. et al. (2019) “Analysis of software development methodologies,”
International Journal of Computing and Digital Systems, 8(5), pp. 445-460.
Available at: https://doi.org/10.12785/ijcds/080502.

Sakshi Sachdeva (2016) “Scrum Methodology,” International Journal Of
Engineering And Computer Science [Preprint]. Available at:
https://doi.org/10.18535/ijecs/v5i6.11.

Sehouli, H. (2025) Protecting Your Laravel App Against SQL Injection, Cross-
Site Scripting (XSS), and Cross-Site Request Forgery (CSRF), Medium.
Available at: https://medium.com/@sehouli.namza/protecting-your-laravel-
app-against-sql-injection-cross-site-scripting-xss-and-cross-site-ea3a05260afe
(Accessed: April 29, 2025).

Shi, B., Bai, X. and Yao, C. (2017) “An End-to-End Trainable Neural Network
for Image-Based Sequence Recognition and Its Application to Scene Text
Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(11), pp. 2298-2304. Available at:
https://doi.org/10.1109/TPAMI.2016.2646371.

Sochor, J., Spaithel, J. and Herout, A. (2017) “BoxCars: Improving Vehicle
Fine-Grained Recognition using 3D Bounding Boxes in Traffic Surveillance,”

283

IEEE Transactions on Intelligent Transportation Systems, PP. Available at:
https://doi.org/10.1109/T1TS.2018.2799228.

Sporici, D., Cusnir, E. and Boiangiu, C.A. (2020) “Improving the accuracy of
Tesseract 4.0 OCR engine using convolution-based preprocessing,” Symmetry,
12(5). Available at: https://doi.org/10.3390/SYM12050715.

Suhasini Gadam (2023) What is iterative and incremental development?
Process, examples. Available at: https://blog.logrocket.com/product-
management/what-is-iterative-incremental-development-process-examples/
(Accessed: April 15, 2025).

Tabani, H. et al. (2021) “Improving the Efficiency of Transformers for
Resource-Constrained Devices.” Available at: http://arxiv.org/abs/2106.16006.

Tan, M. and Le, Q. (2019) “EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks,” in K. Chaudhuri and R. Salakhutdinov (eds.)
Proceedings of the 36th International Conference on Machine Learning. PMLR
(Proceedings of Machine Learning Research), pp. 6105-6114. Available at:
https://proceedings.mlr.press/v97/tan19a.html.

Tao, L. et al. (2024) “A Real-Time License Plate Detection and Recognition
Model in Unconstrained Scenarios,” Sensors, 24(9). Available at:
https://doi.org/10.3390/s24092791.

Tesseract Documentation (no date) Tesseract User Manual. Available at:
https://tesseract-ocr.github.io/tessdoc/ (Accessed: May 1, 2025).

The PostgreSQL Global Development Group (no date) About, The PostgreSQL
Global Development Group. Available at: https://www.postgresql.org/about/
(Accessed: April 30, 2025).

Touch 'n Go (no date a) LPR Parking (License Plate Recognition), Touch *N
Go. Available at: https://support.tngdigital.com.my/hc/en-
my/sections/20991708013081-LPR-Parking-License-Plate-Recognition
(Accessed: April 12, 2025).

Touch 'n Go (no date b) Our Story, Touch ’n Go. Available at:
https://www.touchngo.com.my/ewallet/about-us/our-story/ (Accessed: April 12,
2025).

Touch ’n Go (no date ¢) Scan QR in/out Parking, Touch 'n Go. Available at:
https://support.tngdigital.com.my/hc/en-my/sections/16266968986265-Scan-
QR-in-out-Parking (Accessed: April 12, 2025).

Touch 'n Go (no date d) Street Parking, Touch ’n Go. Available at:
https://support.tngdigital.com.my/hc/en-my/sections/360008669294-Street-
Parking?page=1#articles (Accessed: April 12, 2025).

284

Touch ’n Go (no date €) What is TNG Parklnsure?, Touch 'n Go. Available at:
https://support.tngdigital.com.my/hc/en-my/articles/21505528982041-What-
is-TNG-ParklInsure (Accessed: April 12, 2025).

Tsimpoukelli, M. et al. (no date) Multimodal Few-Shot Learning with Frozen
Language Models.

Tulsee Doshi (2025) Start building with Gemini 2.5 Flash - Google Developers
Blog. Available at: https://developers.googleblog.com/en/start-building-with-
gemini-25-flash/ (Accessed: September 19, 2025).

Ultralytics (2023a) Instance Segmentation , Ultralytics. Awvailable at:
https://docs.ultralytics.com/tasks/segment/ (Accessed: May 1, 2025).

Ultralytics (2023b) Segment Anything Model (SAM), Ultralytics. Available at:
https://docs.ultralytics.com/models/sam/#introduction-to-sam-the-segment-
anything-model (Accessed: May 1, 2025).

Vaswani, A. et al. (2017) “Attention Is All You Need.” Available at:
http://arxiv.org/abs/1706.03762.

Vishal Chandra (2015) “Comparison between Various Software Development
Methodologies,” International Journal of Computer Applications, 131(9), pp.
975-8887.

Visual Studio Code (no date) Visual Studio Code documentation, Visual Studio
Code. Available at: https://code.visualstudio.com/docs (Accessed: April 27,
2025).

Wong, A. (2025) TNG eWallet now supports LPR parking, available in 12
locations, SoyaCincau. Available at: https://soyacincau.com/2025/03/16/tng-
ewallet-lpr-licence-plate-recognition-parking/ (Accessed: April 12, 2025).

Wu, J. (2018) “Complexity and accuracy analysis of common artificial neural
networks on pedestrian detection,” in MATEC Web of Conferences. EDP
Sciences. Available at: https://doi.org/10.1051/matecconf/201823201003.

Xia, Y., Feng, J. and Zhang, B. (2016) “Vehicle Logo Recognition and
Attributes Prediction by Multi-task Learning with CNN,” in 2016 12th
International Conference on Natural Computation, Fuzzy Systems and
Knowledge Discovery (ICNC-FSKD). IEEE.

Yang, Z. et al. (2018) “Learning to Navigate for Fine-grained Classification,”
in Proceedings of the European Conference on Computer Vision (ECCV).

Zherzdev, S. and Gruzdev, A. (2018) “LPRNet: License Plate Recognition via
Deep Neural Networks.” Available at: http://arxiv.org/abs/1806.10447.

APPENDICES

APPENDIX A: Vehicle Recognition Benchmark Result

Table A-1: Vehicle Recognition Benchmark Results

285

license_ mod | colo | detection_ti | accuracy_licens | accuracy_ | accuracy_ | accuracy_
image plate make | el r me_sec e_plate make model color
016667cb-5915-4440-9031-
efae7700de8f jpg.rf.c3500bd80a69ff22a92 | VBP Nissa | Alme
940e992b29ccc.jpg 3477 n ra gray | 3.734 TRUE TRUE TRUE TRUE
0324bca4d-2650-43e3-b883-
1dafa98eb2fe jpg.rf.cfdc7599673636cale9 | JSM Pero
49d548e0408ed.jpg 2306 dua Axia | gray | 1.966 TRUE TRUE TRUE TRUE
15c8f5f9-6856-4375-9aa3-
a3aafdOed3a7_jpg.rf.57527c¢87c5958a45915 | TBU Hond
10add9510799f.jpg 5553 a City red | 1.733 TRUE TRUE TRUE TRUE

286

1b584696-1322-461d-83e0-

1a23a3bf82ef jpg.rf.1309cfe57e2290c747fe | VCF Hond whit

be4362827672.jpg 2025 a City |e 1.828 TRUE TRUE TRUE TRUE
2156eaea-9c31-4838-a9b8-

8d8fec29900e_jpg.rf.09d85642cbd9ec9da8 | PMJ Pero whit

841c58bb91aa30.jpg 5716 dua Axia |e 1.909 TRUE TRUE FALSE TRUE
248b04ae-38f2-4ece-bebf-

216aa6218c2e_jpg.rf.86968alefca8c5cleb2 Pero

3751d79e8dd0a.jpg VCT9264 | dua Alza | blue | 1.866 TRUE TRUE TRUE TRUE
29650796-36d3-468b-8cda-

eb6859e053a3_jpg.rf.86977d4ce69c14fb8f5 | PMJ Pero whit

10d89f75abf28.jpg 5716 dua Myvi | e 2.904 TRUE TRUE TRUE TRUE
2a352357-3848-48cd-a423-

6241f80d7b16_jpg.rf.83e34e6014c8e1138e | VAT Pero | Bezz

6e0afc609d47b7.jpg F430 dua a gray | 2.103 FALSE TRUE TRUE TRUE
2eb92e30-4f79-4ee7-9f95-

le291ac2fcda_jpg.rf.0bc95aa562ebc40ef3a | PMP Pero whit

694691eeeead8.jpg 9680 dua Myvi | e 2.346 TRUE TRUE FALSE TRUE

287

319e49f8-181f-4288-aa94-

0d38d33f77c1_jpg.rf.c6d52eab6db320a485e | VCF Nissa | Alme

9004df7044c8ff.jpg 1804 n ra gray | 2.071 TRUE TRUE TRUE TRUE
334c72e5-b22b-4341-a6ab-

e65fe684ace2_jpg.rf.8023c0e493b6a5ab9d | SU 5805 | Pero | Bezz

3645bb110bcab8.jpg D dua a red | 3.987 TRUE TRUE TRUE TRUE
33f48b10-37ec-4e83-b9d9-

€25a83da84b0_jpg.rf.8d480063f77f4448780 | VDK Nissa whit

4699ac3c97958.jpg 8639 n Leaf |e 1.696 TRUE TRUE TRUE TRUE
35aff9e2-44ec-4d82-872b-

3575b6863f73_jpg.rf.80b6155475el4eae5ad | AKD Toyot

00a53ab51965b3.jpg 9878 a Vios | gray | 4.649 TRUE TRUE TRUE TRUE
37a46b75-847a-4860-becd-

dfc7337138fe_jpg.rf.0ee0d210e016c8e0c8b Pero yell

201421f192dca.jpg AKQ 206 | dua Axia | ow 2.012 TRUE TRUE TRUE TRUE
3b66b3ed-349f-4d1c-9861-

f6a7c2065a80 jpg.rf.8895dbfb45569e75deb | VBR Rena | Capt

85ad30b00a5ch.jpg 2625 ult ur blue | 3.153 TRUE TRUE TRUE TRUE

288

3d7577dd-9427-45c0-92f3-

e8f35543346a_jpg.rf.9041d4448d9767a952 Proto | Pers | bro

e4b06e09085602.jpg VK 641 n ona wn 1.844 TRUE TRUE TRUE TRUE
3ed72906-efff-40d0-afae-

a52e3ba3fa6f_jpg.rf.a86e374ef5498520a2d | VAT Pero | Bezz

3202b27cb6561.jpg 6458 dua a blue | 2.208 TRUE TRUE TRUE TRUE
3f7bbcb9-9¢47-4950-8e53-012e36bb2acc-1-

_jpg.rf.c906c¢79156d109434841658808dc28 Pero blac

43.jpg JRC 5492 | dua Axia k 2.707 TRUE TRUE TRUE TRUE
3fe7af30-1573-4658-b576-

3607cbe9951f jpg.rf.7cd5508c76abdaalafe Pero

5417d8ab360ba.jpg KEE 1096 | dua Axia red | 2.531 TRUE TRUE TRUE TRUE
408a8b3f-89b0-431d-b409-

ed8264e258a9 jpg.rf.45dd12f3440a6caf52c | WC 5763 | Nissa | Alme

£602f78a29b09.jpg R n ra gray | 2.65 TRUE TRUE TRUE TRUE

APPENDIX B: System Usability Test Results

| think that | would like to use this app frequently.

5 responses

4
3
2
1
0 (0%) 0 (0%) 0 (0%)
0 | | |
1 2 4

Figure B-1: SUS Result Question 1

LD Copy chart

4 (30%)

289

290

| found the app unnecessarily complex. LEl Copy chart

5 responses

2 (40%) 2 (40%)

1 (20%)

0 ([lzu%} 0 {{lzu%)

Figure B-2: SUS Result Question 2

291

| thought the app was easy to use. LEI Copy chart

5 responses

’ 3 (60%)
2
! 1 (20%) 1 (20%)
0 (0%) 0 (0%)
. | |
1 2

Figure B-3: SUS Result Question 3

292

| think | would need the support of a technical person to be able to use this app. LD Copy chart

5 responses

2 (40%)

1 (20%) 1 (20%) 1 (20%)

0 (0%)

Figure B-4: SUS Result Question 4

293

| found the various features in this app were well integrated. LD Copy chart

5 responses

4 (80%)
3
2
! 1 (20%)
0 (?%} 0 (?%} 0 ([lzu%}
0
1 2 3 4 5

Figure B-5: SUS Result Question 5

294

| thought there was too much inconsistency in this app. LD Copy chart

5 responses

3 3 (60%)
2
1 ;
1 (20%)
0 (0%) 0 (0%)
0 | |
1 2 4

Figure B-6: SUS Result Question 6

295

| would imagine that most people would learn to use this app very quickly. LD Copy chart

5 responses

2 (40%) 2 (40%)

1 (20%)

0 ((lj%} 0 (Ill%}

1 2

Figure B-7: SUS Result Question 7

296

| found the app very cumbersome to use. LEl Copy chart

5 responses

3 (60%)

1 (20%)

1 (20%)

0 (0%) 0 (0%)

297

Figure B-8: SUS Result Question 8

| felt very confident using the app. LEI Copy chart

5 responses

3 (60%)

2 (40%)

0 (?%) 0 (?%) 0 {?%]

1 2 3

298

Figure B-9: SUS Result Question 9

| needed to learn a lot of things before | could get going with this app. LD Copy chart

5 responses

2 (40%)

1 (20%) 1 (20%) 1 (20%)

0 (0%)

Figure B-10: SUS Result Question 10

299

Do you have any suggestions to improve the app?

2 responses

no

can be more fast

Figure B-11: UAT Suggestion

300

Figure B-12: Respondents testing ParkPal Application

	DECLARATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS / ABBREVIATIONS
	LIST OF APPENDICES
	CHAPTER 1
	1 INTRODUCTION
	1.1 General Introduction
	1.2 Importance of the Study
	1.3 Problem Statement
	1.3.1 Performance Limitation of Current LPR Solutions
	1.3.2 Security Risks and Unauthorized Transactions Using LPR
	1.3.3 Inefficiency in Existing Parking Systems

	1.4 Aim and Objectives
	1.4.1 Project Aim
	1.4.2 Project Objectives

	1.5 Project Solution
	1.5.1 Automated Parking Payment System with LPR and Vehicle Attribute Recognition
	1.5.2 Parking Management Application

	1.6 Project Approach
	1.6.1 Research Approach
	1.6.2 Development Approach

	1.7 Scope and Limitations of the Study
	1.7.1 System Modules
	1.7.1.1 Driver Module
	1.7.1.2 Parking Operator Module
	1.7.1.3 Admin Module
	1.7.1.4 Multimodal LLM-based License Plate and Vehicle Attribute Recognition Module

	1.7.2 Target Users
	1.7.3 Out-of-Scope
	1.7.4 Project Limitations
	1.7.5 Development Tools, Languages, and Frameworks

	CHAPTER 2
	2 LITERATURE REVIEW
	2.1 Introduction
	2.2 Why Improve Current License Plate And Vehicle Attribute Recognition?
	2.3 Traditional Approaches to License Plate and Vehicle Attribute Recognition
	2.3.1 Manual Observation
	2.3.2 Traditional License Plate Recognition

	2.4 Machine Learning (ML) Approaches
	2.5 Deep Learning (DL) Approaches
	2.5.1 Deep Learning in Vehicle Detection
	2.5.1.1 Two-Stage Detectors
	2.5.1.1.1 Faster R-CNN

	2.5.1.2 One-Stage Detectors
	2.5.1.2.1 YOLO
	2.5.1.2.2 Single Shot Multibox Detector (SSD)

	2.5.2 Instance Segmentation in Vehicle and License Plate Recognition
	2.5.2.1 YOLOv8 Seg
	2.5.2.2 Segment Anything (SAM)
	2.5.2.3 Comparison of Segmentation Model

	2.5.3 Deep Learning for OCR in LPR
	2.5.3.1 Tesseract OCR
	2.5.3.2 CRNN
	2.5.3.3 Transformers

	2.5.4 Deep Learning for Vehicle Attribute Recognition
	2.5.4.1 CNN-based Models
	2.5.4.2 ViT-based Models
	2.5.4.3 Multitask Learning (MTL)
	2.5.4.4 Fine-Grained Classification

	2.5.5 Summary

	2.6 Large Language Models (LLMs)
	2.6.1 Multimodal LLMs
	2.6.1.1 GPT-4o
	2.6.1.2 Gemini 2.0 Flash
	2.6.1.3 Claude 3.5
	2.6.1.4 LLMs on License Plate Recognition
	2.6.1.5 LLMs on Vehicle Attribute Recognition
	2.6.1.6 Comparison of the Multimodal LLMs

	2.7 Review of Similar Parking Payment Application
	2.7.1 Touch ‘n Go eWallet
	2.7.1.1 LPR Parking (License Plate Recognition)
	2.7.1.2 QR Parking
	2.7.1.3 Street Parking
	2.7.1.4 ParkInsure

	2.7.2 JomParking
	2.7.3 ParkEasy
	2.7.4 Flexi Parking
	2.7.5 Summary and Comparison of Existing Applications

	2.8 Software Development Methodologies
	2.8.1 Waterfall Model
	2.8.2 Iterative and Incremental Development (IID) Model
	2.8.3 Agile Methodologies
	2.8.3.1 Scrum

	2.8.4 Summary and Comparison of Methodologies

	2.9 Development Framework
	2.9.1 Frontend Framework
	2.9.1.1 React Native (with React Native for Web)
	2.9.1.2 Flutter
	2.9.1.3 Ionic React
	2.9.1.4 Summary and Comparison of Frontend Framework

	2.9.2 Backend Framework
	2.9.2.1 NestJS
	2.9.2.2 Laravel
	2.9.2.3 Summary and Comparison of Backend Framework

	2.9.3 Database
	2.9.3.1 MySQL
	2.9.3.2 PostgreSQL
	2.9.3.3 Summary and Comparison of Database

	CHAPTER 3
	3 METHODOLOGY AND WORK PLAN
	3
	3
	3.1 Introduction
	3.2 Software Development Methodology: Scrum Methodology
	3.2.1 Phase 1: Initiation
	3.2.2 Phase 2: Planning and Estimation
	3.2.3 Phase 3: Sprint Execution
	3.2.4 Phase 4: Review and Retrospective
	3.2.5 Phase 5: Finalization and Release
	3.2.6 Justification for Scrum Methodology

	3.3 Project Planning and Scheduling
	3.3.1 Work Breakdown Structure (WBS)
	3.3.2 Gantt Chart

	3.4 Development Tools and Techniques
	3.4.1 Tools and IDEs
	3.4.1.1 Enterprise Architecture
	3.4.1.2 Visual Studio Code
	3.4.1.3 Git and GitHub

	3.4.2 Languages
	3.4.2.1 Python
	3.4.2.2 HTML, CSS, JavaScript
	3.4.2.3 SQL

	3.4.3 Software Frameworks
	3.4.3.1 React Native
	3.4.3.2 Laravel
	3.4.3.3 Expo

	3.4.4 Database
	3.4.4.1 PostgreSQL

	3.5 Summary

	CHAPTER 4
	4 PROJECT SPECIFICATION
	4.1 Introduction
	4.2 Fact Finding
	4.2.1 Responses on Google Form Questionnaire Survey
	4.2.1.1 Section A: Demographics of Respondents
	4.2.1.2 Section B: Difficulties in the Existing Parking Payment System
	4.2.1.3 Section C: Exposure to Technologies for Automated Parking Payment
	4.2.1.4 Section D: User Expectations for AI-powered Parking System

	4.3 Requirement Specification
	4.3.1 Functional Requirements
	4.3.2 Non-functional Requirements

	4.4 Use Case Modelling
	4.4.1 Use Case Diagram
	4.4.2 Use Case Description

	4.5 Interface Flow Diagram
	4.6 Initial Prototype
	4.7 Preliminary run on Vehicle Detection and Segmentation
	4.7.1 Overview
	4.7.2 Experimental Setup and Results

	CHAPTER 5
	5 SYSTEM DESIGN
	5.1 Introduction
	5.2 System Architecture Design
	5.2.1 Front-end Architecture
	5.2.2 Back-end Architecture

	5.3 Database Architecture
	5.3.1 Database Entity Relationship Diagram (ERD)
	5.3.2 Database Schema
	5.3.3 Collection Description

	5.4 Data Flow Diagram
	5.4.1 Context Diagram
	5.4.2 DFD Level-0 Diagram

	5.5 Activity Diagram
	5.6 User Interface Design
	5.6.1 Driver Mobile Interface
	5.6.2 Web Interface
	5.6.3 Parking Operator Web Interface
	5.6.4 Admin Web Interface

	CHAPTER 6
	6 SYSTEM IMPLEMENTATION
	6.1 Introduction
	6.2 Backend Implementation
	6.2.1 Authentication and Authorization
	6.2.2 Database Integration (PostgreSQL)
	6.2.3 Real-Time Communication (Reverb and Pusher-js)

	6.3 Frontend Implementation
	6.3.1 Navigation Structure (React Navigation)
	6.3.2 Local Storage (Async Storage)
	6.3.3 Data Visualization
	6.3.3.1 React Native Chart Kit
	6.3.3.2 Recharts

	6.3.4 Location Services (Expo-Location)

	6.4 AI & Detection Module
	6.4.1 Python-Uvicorn Service Setup
	6.4.2 Gemini 2.5 Flash Integration
	6.4.3 Vehicle Detection Setup and Workflow
	6.4.3.1 Data Collection and Preparation
	6.4.3.2 Detection Workflow
	6.4.3.3 System Integration Overview

	6.5 Development and Deployment Environment
	6.5.1 NGROK for Local Testing

	6.6 Conclusion

	CHAPTER 7
	7 SYSTEM TESTING
	7.1 Introduction
	7.2 Traceability between Use Cases, Functional Requirements, and Test Cases
	7.2.1 Use Case Table
	7.2.2 Functional Requirements Table

	7.3 API Testing
	7.3.1 Summary of API Test Cases

	7.4 Traceability Matrix
	7.5 Performance Evaluation of Vehicle Recognition
	7.5.1 Evaluation Methodology

	7.6 Evaluation of Auto Payment via Vehicle Recognition
	7.7 Usability Test
	7.7.1 Test Scenarios of Usability Test
	7.7.2 Results of Usability Test

	7.8 User Acceptance Testing (UAT)
	7.9 Conclusion

	CHAPTER 8
	8 CONCLUSION AND RECOMMENDATIONS
	8.1 Introduction
	8.2 Objectives Achievement
	8.3 Project Limitations
	8.4 Recommendations for Future Work
	REFERENCES
	APPENDICES

