

AUTOMATED PARKING AND PAYMENT

SYSTEM USING LICENSE PLATE AND

VEHICLE ATTRIBUTE RECOGNITION

WITH MULTIMODAL AI MODELS

YONG TING WEI

UNIVERSITI TUNKU ABDUL RAHMAN

AUTOMATED PARKING AND PAYMENT SYSTEM USING

LICENSE PLATE AND VEHICLE ATTRIBUTE RECOGNITION

WITH MULTIMODAL AI MODELS

YONG TING WEI

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Software

Engineering (Honours)

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2025

i

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that

it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Name Yong Ting Wei

ID No. : 2200787

Date : 16/10/2025

ii

COPYRIGHT STATEMENT

© 2025, Yong Ting Wei. All right reserved.

This final year project report is submitted in partial fulfilment of the

requirements for the degree of Bachelor of Software Engineering (Honours) at

Universiti Tunku Abdul Rahman (UTAR). This final year project report

represents the work of the author, except where due acknowledgement has been

made in the text. No part of this final year project report may be reproduced,

stored, or transmitted in any form or by any means, whether electronic,

mechanical, photocopying, recording, or otherwise, without the prior written

permission of the author or UTAR, in accordance with UTAR’s Intellectual

Property Policy.

iii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor, Lee Ming Jie,

for his invaluable advice, continuous guidance, and patience throughout the

development of this final year project. His encouragement and constructive

feedback have been instrumental in ensuring the successful completion of this

work.

I would also like to extend my appreciation to my moderator, Kelwin Tan

Seen Tiong, for providing constructive comments and support during the

evaluation stages.

In addition, I wish to thank the faculty and departmental members from Lee

Kong Chian Faculty of Engineering and Science and the Department of

Computing for creating a pleasant and supportive environment that enabled me

to carry out my research effectively.

Finally, I would like to thank my family and friends for their encouragement,

patience, and support during this journey.

iv

ABSTRACT

As of October 2023, Malaysia recorded over 36.3 million registered vehicles,

highlighting the need for more efficient and intelligent parking solutions.

Traditional parking systems, which rely on physical tickets, RFID tags, and e-

wallets, often lead to congestion, delays, and security vulnerabilities. This

project proposes an AI-powered parking payment system that integrates

License Plate Recognition (LPR) with Vehicle Attribute Recognition using the

Gemini 2.5 Flash multimodal large language model (LLM), complemented by

a mobile application designed for drivers, operators, and administrators. The

recognition module, developed in Python, was tested using a ground truth

dataset of 20 real vehicle images from Roboflow in a simulated environment.

Each image was passed directly to the Gemini model to extract license plates

and vehicle attributes such as make, model, and color. Recognition was

incorporated into two system points: (1) a mobile app feature allowing users to

auto-fill vehicle details via photo uploads, and (2) simulated parking facility

entry and exit points where vehicle identity was verified against a backend

database for automated payment processing. The mobile app was written with

Laravel, React Native, and PostgreSQL, and it offers role-based features

including vehicle registration, payment tracking, and operational oversight.

Testing showed an 85% accuracy for full multi-attribute recognition, with

individual accuracies of 95% for license plates, 100% for color and make, and

90% for model detection. Average recognition processing time was 2.495

seconds per image upload. While entry and exit recognition were simulated, the

system successfully demonstrated automated vehicle verification and payment

workflows. The mobile application facilitated seamless user interactions and

system management. Limitations include reliance on free-tier AI services,

absence of real-time hardware integration, and limited analytics capabilities.

This project illustrates the feasibility of leveraging multimodal LLMs and

mobile platforms to create ticketless, contactless, and fraud-resistant parking

solutions, contributing to Malaysia’s digital transformation and smart city

initiatives.

v

Keywords: artificial intelligence; license plate recognition; vehicle attribute

recognition; smart parking; fraud prevention; multimodal LLMs; smart city

Subject Area: QA75.5–76.95 Electronic computers. Computer science

vi

TABLE OF CONTENTS

DECLARATION i

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS vi

LIST OF TABLES xii

LIST OF FIGURES xvi

LIST OF SYMBOLS / ABBREVIATIONS xxiii

LIST OF APPENDICES xxiv

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 2

1.3 Problem Statement 2

1.3.1 Performance Limitation of Current LPR

Solutions 3

1.3.2 Security Risks and Unauthorized

Transactions Using LPR 3

1.3.3 Inefficiency in Existing Parking Systems 3

1.4 Aim and Objectives 4

1.4.1 Project Aim 4

1.4.2 Project Objectives 4

1.5 Project Solution 4

1.5.1 Automated Parking Payment System with

LPR and Vehicle Attribute Recognition 4

1.5.2 Parking Management Application 5

1.6 Project Approach 6

1.6.1 Research Approach 6

vii

1.6.2 Development Approach 7

1.7 Scope and Limitations of the Study 7

1.7.1 System Modules 8

1.7.2 Target Users 9

1.7.3 Out-of-Scope 9

1.7.4 Project Limitations 10

1.7.5 Development Tools, Languages, and

Frameworks 10

2 LITERATURE REVIEW 11

2.1 Introduction 11

2.2 Why Improve Current License Plate And Vehicle

Attribute Recognition? 11

2.3 Traditional Approaches to License Plate and

Vehicle Attribute Recognition 12

2.3.1 Manual Observation 12

2.3.2 Traditional License Plate Recognition 12

2.4 Machine Learning (ML) Approaches 13

2.5 Deep Learning (DL) Approaches 14

2.5.1 Deep Learning in Vehicle Detection 14

2.5.2 Instance Segmentation in Vehicle and

License Plate Recognition 20

2.5.3 Deep Learning for OCR in LPR 22

2.5.4 Deep Learning for Vehicle Attribute

Recognition 24

2.5.5 Summary 29

2.6 Large Language Models (LLMs) 30

2.6.1 Multimodal LLMs 30

2.7 Review of Similar Parking Payment Application 35

2.7.1 Touch ‘n Go eWallet 35

2.7.2 JomParking 39

2.7.3 ParkEasy 40

2.7.4 Flexi Parking 41

viii

2.7.5 Summary and Comparison of Existing

Applications 42

2.8 Software Development Methodologies 45

2.8.1 Waterfall Model 46

2.8.2 Iterative and Incremental Development

(IID) Model 47

2.8.3 Agile Methodologies 48

2.8.4 Summary and Comparison of

Methodologies 50

2.9 Development Framework 52

2.9.1 Frontend Framework 52

2.9.2 Backend Framework 57

2.9.3 Database 60

3 METHODOLOGY AND WORK PLAN 63

3.1 Introduction 63

3.2 Software Development Methodology: Scrum

Methodology 63

3.2.1 Phase 1: Initiation 63

3.2.2 Phase 2: Planning and Estimation 64

3.2.3 Phase 3: Sprint Execution 65

3.2.4 Phase 4: Review and Retrospective 66

3.2.5 Phase 5: Finalization and Release 67

3.2.6 Justification for Scrum Methodology 67

3.3 Project Planning and Scheduling 68

3.3.1 Work Breakdown Structure (WBS) 68

3.3.2 Gantt Chart 72

3.4 Development Tools and Techniques 75

3.4.1 Tools and IDEs 75

3.4.2 Languages 76

3.4.3 Software Frameworks 77

3.4.4 Database 78

3.5 Summary 79

4 PROJECT SPECIFICATION 80

ix

4.1 Introduction 80

4.2 Fact Finding 80

4.2.1 Responses on Google Form Questionnaire

Survey 81

4.3 Requirement Specification 102

4.3.1 Functional Requirements 102

4.3.2 Non-functional Requirements 103

4.4 Use Case Modelling 106

4.4.1 Use Case Diagram 106

4.4.2 Use Case Description 107

4.5 Interface Flow Diagram 131

4.6 Initial Prototype 134

4.7 Preliminary run on Vehicle Detection and

Segmentation 142

4.7.1 Overview 142

4.7.2 Experimental Setup and Results 142

5 SYSTEM DESIGN 144

5.1 Introduction 144

5.2 System Architecture Design 144

5.2.1 Front-end Architecture 145

5.2.2 Back-end Architecture 146

5.3 Database Architecture 147

5.3.1 Database Entity Relationship Diagram

(ERD) 148

5.3.2 Database Schema 149

5.3.3 Collection Description 167

5.4 Data Flow Diagram 169

5.4.1 Context Diagram 169

5.4.2 DFD Level-0 Diagram 170

5.5 Activity Diagram 171

5.6 User Interface Design 179

5.6.1 Driver Mobile Interface 179

5.6.2 Web Interface 210

x

5.6.3 Parking Operator Web Interface 213

5.6.4 Admin Web Interface 227

6 SYSTEM IMPLEMENTATION 235

6.1 Introduction 235

6.2 Backend Implementation 235

6.2.1 Authentication and Authorization 235

6.2.2 Database Integration (PostgreSQL) 236

6.2.3 Real-Time Communication (Reverb and

Pusher-js) 237

6.3 Frontend Implementation 238

6.3.1 Navigation Structure (React Navigation) 238

6.3.2 Local Storage (Async Storage) 238

6.3.3 Data Visualization 239

6.3.4 Location Services (Expo-Location) 240

6.4 AI & Detection Module 241

6.4.1 Python-Uvicorn Service Setup 241

6.4.2 Gemini 2.5 Flash Integration 241

6.4.3 Vehicle Detection Setup and Workflow 242

6.5 Development and Deployment Environment 243

6.5.1 NGROK for Local Testing 243

6.6 Conclusion 244

7 SYSTEM TESTING 245

7.1 Introduction 245

7.2 Traceability between Use Cases, Functional

Requirements, and Test Cases 245

7.2.1 Use Case Table 245

7.2.2 Functional Requirements Table 246

7.3 API Testing 248

7.3.1 Summary of API Test Cases 248

7.4 Traceability Matrix 268

7.5 Performance Evaluation of Vehicle Recognition 269

7.5.1 Evaluation Methodology 269

xi

7.6 Evaluation of Auto Payment via Vehicle

Recognition 270

7.7 Usability Test 270

7.7.1 Test Scenarios of Usability Test 271

7.7.2 Results of Usability Test 272

7.8 User Acceptance Testing (UAT) 273

7.9 Conclusion 274

8 CONCLUSION AND RECOMMENDATIONS 275

8.1 Introduction 275

8.2 Objectives Achievement 275

8.3 Project Limitations 276

8.4 Recommendations for Future Work 277

REFERENCES 279

APPENDICES 285

xii

LIST OF TABLES

Table 2.1: Table of comparison of segment models 22

Table 2.2: Table of accuracy results between LLMs (AlDahoul et al.,
2024) 33

Table 2.3: Table of comparison between LLMs 34

Table 2.4: Table of comparison between existing parking applications 43

Table 2.5:Table of differences between methodologies compared 51

Table 2.6: Table of differences between frontend frameworks compared 56

Table 2.7: Table of differences between backend frameworks compared 59

Table 2.8: Table of differences between the databases compared 62

Table 4.1: Functional Requirements. 102

Table 4.2: Non-functional Requirements. 103

Table 4.3: Use case description of login. 107

Table 4.4: Use case description of Register. 108

Table 4.5: Use case description of Manage Vehicles 109

Table 4.6: Use case description of Manage Payment Methods 112

Table 4.7: Use case description of View Dashboard 113

Table 4.8: Use case description of View Nearby Parking Lot Details 115

Table 4.9: Use case description of View Nearby EV Chargers 116

Table 4.10: Use case description of View Parking Transaction History 118

Table 4.11: Use case description of View EV Reservation 119

Table 4.12: Use case description of Auto-Transaction of Parking Fee 120

Table 4.13: Use case description of Submit Support Tickets 121

xiii

Table 4.14: Use case description of Request Change to Parking Lot
Details 122

Table 4.15: Use case description of Manage Support Tickets 124

Table 4.16: Use case description of Approve Pending Requests from
Operators 125

Table 4.17: Use case description of Manage User Accounts 127

Table 4.18: Use case description of Manage Own Profile 129

Table 5.1: Users Schema 149

Table 5.2: Companies Schema 152

Table 5.3: EV Charger Types Schema 153

Table 5.4: EV Chargers Schema 154

Table 5.5: EV Reservations Schema 155

Table 5.6: Notifications Schema 156

Table 5.7: Parking Lots Schema 157

Table 5.8: Parking Zones Schema 158

Table 5.9: Parking Rates Schema 159

Table 5.10: Parking Sessions Schema 160

Table 5.11: Vehicles Schema 162

Table 5.12: Payment Methods Schema 163

Table 5.13: Support Tickets Schema 164

Table 5.14: Support Ticket Messages Schema 165

Table 5.15: Pending Actions Schema 166

Table 5.16: Collections Description Table 167

Table 6.1: Key Methods Used in the Authentication and Authorization
Flow 236

Table 6.2: Vehicle Attribute Normalization 242

xiv

Table 7.1: Use Case Table 245

Table 7.2: Funstional Requirements Table 246

Table 7.3: Summary of API Test Cases and Results 248

Table 7.4: Test Case of User Registration 250

Table 7.5: Test Case of User Login (Successful) 250

Table 7.6: Test Case of User Login (Failed – Wrong Credentials) 251

Table 7.7: Test Case of View Profile Information 251

Table 7.8: Test Case of Update Profile Information 252

Table 7.9: Test Case of View Vehicles 252

Table 7.10: Test Case of Add Vehicles 253

Table 7.11: Test Case of Update Vehicle Information 253

Table 7.12: Test Case of Delete Vehicle 253

Table 7.13: Test Case of View Payment Methods 254

Table 7.14: Test Case of Add Payment Method 254

Table 7.15: Test Case of Delete Payment Method 255

Table 7.16: Test Case of View Driver Dashboard 255

Table 7.17: Test Case of View Parking Operator Dashboard 256

Table 7.18: Test Case of View Admin Dashboard 256

Table 7.19: Test Case of View Nearby Parking Lots 257

Table 7.20: Test Case of View Parking History 257

Table 7.21: Test Case of View EV Charger Information 258

Table 7.22: Test Case of Create EV Reservation 258

Table 7.23: Test Case of View EV Reservations 259

Table 7.24: Test Case of Operator Setup 259

xv

Table 7.25: Test Case of Operator Manage Parking Lot Details (Create,
Update, Delete) 261

Table 7.26: Test Case of Submit Support Ticket 261

Table 7.27: Test Case of View Support Ticket 262

Table 7.28: Test Case of Send Support Ticket Messages 262

Table 7.29: Test Case of View Support Ticket Messages 263

Table 7.30: Test Case of Admin View Support Ticket 263

Table 7.31: Test Case of Admin Send Support Ticket Messages 264

Table 7.32: Test Case of Admin View Support Ticket Messages 264

Table 7.33: Test Case of Admin View User Accounts 265

Table 7.34: Test Case of Admin Edit User Account 265

Table 7.35: Test Case of Admin Add User Account 266

Table 7.36: Test Case of Admin View Operator Requests 267

Table 7.37: Test Case of Admin Approve Operator Requests 267

Table 7.38: Traceability Matrix Table 268

Table 7.39: Test Scenarios of Usability Test 271

Table 7.40: Test Scenarios of Usability Test 273

Table 7.41: Summary of UAT Feedback and Actions 274

xvi

LIST OF FIGURES

Figure 1.1: High-Level Flow Diagram of LPR and Vehicle Attribute
Model 5

Figure 1.2 Parking Management System Architecture Flowchart 6

Figure 2.1: Faster R-CNN network structure (Ren et al., 2017) 15

Figure 2.2: YOLO architecture (Wu, 2018) 18

Figure 2.3: SSD architecture (Cao et al., 2020) 19

Figure 2.4: CNN architecture diagram (Phung and Rhee, 2018) 25

Figure 2.5: ViT Architecture and Transformer Encoder (H. Meybodi et
al., 2021) 26

Figure 2.6: Multitask learning framework (Ranjan et al., 2016) 27

Figure 2.7: TNG eWallet Parking Search Result 36

Figure 2.8: TNG eWallet LPR Parking Register Vehicle Steps (Wong,
2025) 37

Figure 2.9: TNG eWallet QR Parking Pay Screen (Rozlan, 2023) 38

Figure 2.10: Waterfall Methodology (Burtescu et al., 2014) 46

Figure 2.11: IID Methodology (Burtescu et al., 2014) 47

Figure 2.12: Scrum Methodology (Korkut, 2023) 49

Figure 3.1: Overview of project timeline 72

Figure 3.2: Project initiation timeline 72

Figure 3.3: Planning and design timeline 73

Figure 3.4: Development and Sprints Timeline Overview 73

Figure 3.5: Sprint 1 timeline 73

Figure 3.6: Sprint 2 timeline 73

Figure 3.7: Sprint 3 timeline 73

Figure 3.8: Sprint 4 timeline 74

xvii

Figure 3.9: Sprint 5 timeline 74

Figure 3.10: Final Integration and Testing Timeline 74

Figure 3.11: Project Closure Timeline 74

Figure 4.1: Pie Chart of Respondents’ Age Group 82

Figure 4.2: Pie Chart of Respondents’ Gender 82

Figure 4.3: Bar Chart of Types of Vehicles Owned by Respondents 83

Figure 4.4: Pie Chart of Respondents’ Frequency of Driving 84

Figure 4.5: Bar Chart of Respondents’ Purpose for Using their Vehicle 85

Figure 4.6: Pie Chart of Respondents’ Frequency of Using Paid Parking
Facilities 86

Figure 4.7: Bar Chart of Respondents’ Preferred Parking Payment
Methods 87

Figure 4.8: Bar Chart of Issues Faced by Respondents with Current
Parking Payment Systems 88

Figure 4.9: Column Chart of Respondents’ Rating on Parking Payment
Transaction Speed 89

Figure 4.10: Column Chart of Respondents’ Rating on Parking Payment
Transaction Convenience 90

Figure 4.11: Bar Chart of Respondents’ Dissatisfaction with Current
Parking Payment System 91

Figure 4.12: Bar Chart of Respondents’ Suggested Improvements for
Parking Payment System 92

Figure 4.13: Pie Chart of Respondents’ Familiarity with Vehicle
Recognition System 93

Figure 4.14: Pie Chart of Respondents’ Experience Using License Plate
Recognition Parking Systems 94

Figure 4.15: Pie Chart of Respondents’ Willingness to Use Vehicle
Recognition System for Parking Payments 95

Figure 4.16: Bar Chart of Respondents’ Concerns Regarding AI-Powered
Vehicle Recognition System 96

xviii

Figure 4.17: Bar Chart of Features Respondents Want in an AI-Powered
Parking Payment System 97

Figure 4.18: Pie Chart of the Importance of a Mobile App for Managing
Parking Payments 98

Figure 4.19: Pie Chart of Respondents’ Trust in AI System for Handling
Parking Payments 99

Figure 4.20: Pie Chart of Respondents’ Need for an “Emergency Stop
Transaction” Feature 100

Figure 4.21: Pie Chart of Respondents’ Preference for Real-Time
Parking Transaction Notifications 101

Figure 4.22: Use case diagram of Vehicle Parking Payment Application.
 106

Figure 4.23: Interface flow diagram of the proposed system for drivers 131

Figure 4.24: Interface flow diagram of the proposed system for parking
operators 132

Figure 4.25: Interface flow diagram of the proposed system for admin 133

Figure 4.26: Login Page on mobile 134

Figure 4.27: Login Page on desktop 134

Figure 4.28: Register Page on mobile 135

Figure 4.29: Register Page on desktop 135

Figure 4.30: Driver Dashboard page on mobile 136

Figure 4.31: Continued Driver Dashboard page on mobile 137

Figure 4.32: Driver Dashboard page on desktop 137

Figure 4.33: Operator Dashboard page on mobile 138

Figure 4.34: Continued Operator Dashboard page on mobile 139

Figure 4.35: Operator Dashboard page on desktop 139

Figure 4.36: Admin Dashboard page on mobile 140

Figure 4.37: Continued Admin Dashboard page on mobile 141

xix

Figure 4.38: Admin Dashboard page on desktop 141

Figure 4.39: The result from the detection and segmentation. 143

Figure 5.1: System Architecture Design. 145

Figure 5.2: Entity Relationship Diagram for the System Database 148

Figure 5.3: Context Diagram 169

Figure 5.4: DFD Level 0 Diagram 170

Figure 5.5: Activity Diagram of Login Account 171

Figure 5.6: Activity Diagram of Register Account 172

Figure 5.7: Activity Diagram of Operator Setup 173

Figure 5.8: Activity Diagram of View Nearby Parking Lots 174

Figure 5.9: Activity Diagram of Reserve Nearcy EV Chargers 175

Figure 5.10: Activity Diagram of Add Parking Lot 176

Figure 5.11: Activity Diagram of Edit Parking Lot 176

Figure 5.12: Activity Diagram of Review Pending Actions 177

Figure 5.13: Activity Diagram of Automated Payment During Exit of
Parking Lot 178

Figure 5.14: Login Page 179

Figure 5.15: Forgot Password Page 180

Figure 5.16: Register Page 181

Figure 5.17: Drawer Navigation 182

Figure 5.18: Driver Dashboard 183

Figure 5.19: Toaster Notification after Payment 184

Figure 5.20: Nearby Parking Lot Location Permission and Loading
Screen 185

Figure 5.21: Nearby Parking Lots List View 186

Figure 5.22: Nearby Parking Lots Details 187

xx

Figure 5.23: Nearby Parking Lots Map View 188

Figure 5.24: Nearby Parking Lot Filters 189

Figure 5.25: Nearby EV Reservation List View 190

Figure 5.26: Available EV Reservation Details 191

Figure 5.27: Vehicle Selection for EV Reservation 192

Figure 5.28: Nearby EV Reservation Map View 193

Figure 5.29: EV Reservation Filter 194

Figure 5.30: EV Reservation Active and History 195

Figure 5.31: Parking Transaction History 196

Figure 5.32: Parking Transaction History Details 197

Figure 5.33: Parking Transaction Filter 198

Figure 5.34: Profile Page Basic Info Tab 199

Figure 5.35: Profile Page Notifications Tab 200

Figure 5.36: Profile Page Security Tab 201

Figure 5.37: Profile Page Change Password 202

Figure 5.38: Profile Page Vehicles Tab 203

Figure 5.39: Profile Page Add Vehicles 204

Figure 5.40: Profile Page Payments Tab 205

Figure 5.41: Profile Page Add Payment Method 206

Figure 5.42: Support Tickets Page 207

Figure 5.43: Create New Ticket 208

Figure 5.44: View and Send Support Ticket Message 209

Figure 5.45: Landing Page 210

Figure 5.46: Login Page 211

Figure 5.47: Forgot Password Page 211

xxi

Figure 5.48: Register Page 212

Figure 5.49: Operator Company Setup Page 213

Figure 5.50: Operator Stripe Setup Page 213

Figure 5.51: Operator Parking Lot Setup Page 214

Figure 5.52: Operator Setup Review Page 214

Figure 5.53: Operator Setup Successful Page 215

Figure 5.54: Drawer Navigation 215

Figure 5.55: Parking Operator Dashboard 216

Figure 5.56: Parking Management Dashboard 217

Figure 5.57: Parking Management Dashboard Add Parking Lot 217

Figure 5.58: Parking Management Dashboard Edit Parking Lot 218

Figure 5.59: Parking Management Dashboard Zone Tab 218

Figure 5.60: Parking Management Dashboard Add Zone 219

Figure 5.61: Parking Management Dashboard Edit Zone 219

Figure 5.62: Parking Management Dashboard Rates Tab 220

Figure 5.63: Parking Management Dashboard Add Rate Plan 220

Figure 5.64: Parking Management Dashboard Edit Rate Plan 221

Figure 5.65: Parking Management Dashboard EV Chargers Tab 221

Figure 5.66: Parking Management Dashboard Add EV Charger 222

Figure 5.67: Parking Management Dashboard Edit EV Charger 222

Figure 5.68: Parking Management Dashboard Actions Made 223

Figure 5.69: Operator Profile Page 223

Figure 5.70: Operator Profile Page Notifications Tab 224

Figure 5.71: Operator Profile Page Security Tab 224

Figure 5.72: Operator Profile Page Company Tab 225

xxii

Figure 5.73: Support Tickets Page 225

Figure 5.74: Create New Ticket 226

Figure 5.75: View and Send Support Ticket Message 226

Figure 5.76: Drawer Navigation 227

Figure 5.77: Admin Dashboard 228

Figure 5.78: Admin Pending Actions Management 229

Figure 5.79: Admin Pending Actions Details 230

Figure 5.80: Admin User Management 231

Figure 5.81: Admin User Management User Details View 231

Figure 5.82: Admin User Management Add New User 232

Figure 5.83: Admin Profile Page 232

Figure 5.84: Admin Profile Page Notifications Tab 233

Figure 5.85: Admin Profile Page Security Tab 233

Figure 5.86: Admin Support Ticket Management 234

Figure 5.87: Admin View and Send Support Ticket Message 234

Figure 7.1: Vehicle Recognition System Benchmark Results 269

Figure 7.2: Vehicle Recognition and Auto Payment Results 270

xxiii

LIST OF SYMBOLS / ABBREVIATIONS

AI Artificial Intelligence

AVR Automatic Vehicle Recognition

CNN Convolutional Neural Network

CRNN Convolutional Recurrent Neural Network

LLM Large Language Model

LPR License Plate Recognition

NMS Non-Maximum Suppression

OCR Optical Character Recognition

RDBMS Relational Database Management System

RFID Radio Frequency Identification

ROI Region of Interest

RPN Region Proposal Network

SAM Segment Anything Model

SDG Sustainable Development Goals

SSD Single Shot Multibox Detector

TNG Touch ‘n Go

ViT Vision Transformer

WBS Work Breakdown Structure

YOLO You Only Look Once

xxiv

LIST OF APPENDICES

Appendix A: Vehicle Recognition Benchmark Result 285

Appendix B: System Usability Test Results 289

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

As of October 2023, the number of registered vehicles in Malaysia has exceeded

the country’s population, with over 36.3 million vehicles recorded

(Nuradzimmah Daim, 2023). With rapid urbanization and increasing vehicle

ownership, the need for efficient smart parking solutions has become

increasingly critical. However, many existing systems still rely on outdated

methods, such as physical parking tickets, Touch ‘n Go (TNG) cards, eWallets,

debit and credit cards, Radio Frequency Identification (RFID)-based payments,

and even manual kiosks.

A major issue with the current parking systems in Malaysia is

congestion at parking entry and exit points. These delays are often caused by

the need to stop the vehicle completely to insert a ticket or pay with cash, faulty

card readers, and slow RFID scans. These problems not only inconvenience

drivers but also disrupt traffic flow within parking facilities. Additionally, many

users forget to reload their TNG cards or eWallets, resulting in failed

transactions and further delays.

While LPR technology is gradually being adopted in some modern

parking systems to offer a more convenient and quicker experience, it introduces

a new challenge, which is license plate fraud. Criminals may clone or tamper

with license plates to avoid payment or gain unauthorized access to parking

areas, which weakens the reliability and security of LPR-based systems.

This project aims to address these challenges by developing an

Artificial Intelligence (AI)-powered parking payment system that utilizes fixed

cameras at parking entrances and exits to automatically recognize license plates

along with key vehicle attributes, such as make, model, and color, and process

payments without the need for manual intervention. By combining license plate

recognition with vehicle attribute verification, the system enhances security and

helps prevent fraud cases, which are potential vulnerabilities in traditional LPR-

based systems.

2

By eliminating the need for physical cards, parking tickets, eWallets,

RFID stickers, or manual kiosks, the proposed system supports Malaysia’s

digitalization and smart mobility initiatives. It offers a fully automated,

ticketless, and contactless parking payment experience, significantly improving

operational efficiency, strengthening security, and improving overall user

convenience in modern parking management.

1.2 Importance of the Study

The development of an automated parking payment system using LPR and

Vehicle Attribute Recognition offers practical and social benefits by addressing

major challenges in urban parking. By integrating AI technologies like

multimodal Large Language Models (LLMs), this system enhances the

efficiency, security, and convenience of parking systems. This research can

address the issues of long wait times and inefficiencies in traditional parking

methods. Moreover, it aims to reduce human error, minimize fraud, and

streamline the payment process, contributing to improved user satisfaction.

The system directly contributes to several United Nations Sustainable

Development Goals (SDGs), creating a positive impact on the world. For SDG

9 (Industry, Innovation and Infrastructure), it promotes resilient infrastructure

through cutting-edge AI applications while fostering innovation in smart city

technologies. In terms of SDG 11 (Sustainable Cities and Communities), the

system's ability to reduce congestion and improve parking efficiency supports

the creation of more inclusive, safe, and sustainable urban spaces. The solution

also advances SDG 16 (Peace, Justice and Strong Institutions) by implementing

transparent, fraud-resistant systems that enhance accountability in public

services and strengthen institutional trust. These benefits position automated

parking management as a key component in building smarter, more sustainable

cities for the future.

1.3 Problem Statement

The adoption of cashless payment solutions has significantly improved parking

management systems in Malaysia. However, various challenges remain,

affecting efficiency, security, and user convenience.

3

1.3.1 Performance Limitation of Current LPR Solutions

Although LPR technology is being implemented in some parking systems, many

of the LPR solutions struggle with accuracy and adaptability in real-world

conditions. Environmental factors, such as low-light conditions, motion blur,

and obstructed or damaged plates, severely affect LPR performance. For

example, LPR systems often struggle during nighttime or in poorly lit

environments where image quality is compromised. Additionally, when

vehicles are moving at high speeds or plates are dirty or partially blocked,

motion blur and distortion further reduce the accuracy of license plate detection.

Other than environmental factors, the wide variety of license plate designs,

differing in size, color, font style, and layout across regions, can complicate the

detection and recognition process. LPR systems often struggle when exposed to

designs not present in their training datasets.

1.3.2 Security Risks and Unauthorized Transactions Using LPR

Security is a critical concern in automated parking systems, particularly when it

comes to vehicle theft, unauthorized use, and fraud. Traditional LPR systems

rely solely on plate numbers for identification, without cross-checking

additional vehicle attributes such as make, model, and color. This lack of multi-

attribute verification allows fraudulent vehicles with cloned plates to bypass

detection. For example, a person could clone a legitimate vehicle’s license plate

by copying the plate number and placing it on a different vehicle. This cloned

vehicle can then enter the parking facilities, as the LPR system recognizes the

cloned plate as valid, leading to the transaction being processed under the

original vehicle’s plate number and deducting the payment from the original

vehicle owner’s account.

1.3.3 Inefficiency in Existing Parking Systems

Malaysia’s parking systems often rely on outdated technologies such as physical

parking tickets and cards, eWallets, RFID tags, and manual kiosks. These

methods require vehicles to stop for validation or payment, leading to

congestion at entry and exit points. Technical issues like malfunctioning card

readers, slow RFID scans, or insufficient eWallet balance further delay the

4

process, frustrating users and reducing system efficiency. The need to carry

RFID tags, cards, or cash also contributes to user dissatisfaction.

1.4 Aim and Objectives

1.4.1 Project Aim

This project aims to develop an automated parking payment system that

integrates multimodal LLMs for LPR and Vehicle Attribute Recognition. By

combining LPR with additional vehicle attributes such as make, model, and

color through multimodal AI models, the system will enhance transaction

security and accuracy. Additionally, a parking management app will be

developed to allow users to manage their parking sessions, view transaction

history, and make payments seamlessly. This approach eliminates the need for

manual payment methods, reduces congestion, and strengthens the overall

security of Malaysia’s parking infrastructure.

1.4.2 Project Objectives

1. To examine license plate and vehicle attribute approaches and review

similar applications.

2. To develop an automated parking payment system that integrates

multimodal LLMs for license plate and vehicle attribute recognition.

3. To develop a parking management application.

1.5 Project Solution

The proposed solution aims to address the limitations of traditional parking

payment systems by integrating advanced multimodal LLMs for license plate

and vehicle attribute recognition. This solution will not only improve the

accuracy and efficiency of vehicle identification but also enhance security by

verifying multiple vehicle attributes beyond the license plate, such as make,

model, and color.

1.5.1 Automated Parking Payment System with LPR and Vehicle

Attribute Recognition

The system will use multimodal LLMs trained on both LPR and vehicle attribute

recognition. The LLMs will process real-time data from cameras at entry and

5

exit points of parking facilities to automatically identify vehicles, verify their

license plates, and cross-check additional attributes, such as make, model, and

color. This will allow for seamless automated transactions without the need for

manual intervention, and also reduce the risk of fraud and increase the speed of

the payment process.

Figure 1.1: High-Level Flow Diagram of LPR and Vehicle Attribute Model

1.5.2 Parking Management Application

A dedicated mobile app will be developed for users to manage their vehicles,

register their license plates, and track parking transactions. The app will allow

users to link vehicles to their accounts, view parking history, and manage

payment preferences. An emergency stop feature will also be included, enabling

users to disable automated payments immediately if their vehicle is stolen or

used without authorization. In addition, parking operators can also use the

application as it provides tools to manage parking lot details, set or adjust

6

parking rates, and perform analytical reviews of transaction data. This helps

both users and the parking operators manage their tasks more easily.

Figure 1.2 Parking Management System Architecture Flowchart

1.6 Project Approach

1.6.1 Research Approach

The research explores various approaches, starting with traditional methods that

use simple image processing for plate detection. It then examines machine

learning techniques that improve automation and accuracy. The study further

investigates deep learning techniques, including deep neural networks for

vehicle detection, image segmentation, and Optical Character Recognition

(OCR) for reading plates and identifying vehicle attributes like make, model,

and color. Finally, the research looks into Multimodal LLMs, which combine

image and text processing to enhance recognition accuracy and fraud detection,

making them particularly effective in dynamic environments like toll booths and

parking areas.

A critical part of the research also involves analyzing existing parking

applications to identify strengths and limitations. By reviewing these

applications, the study will gain insights into the operational challenges and user

experience, helping to shape the design of the proposed system. Furthermore,

research into development tools and frameworks will help select the best

technologies for the project’s implementation.

7

Additionally, a questionnaire survey will be conducted as part of

quantitative research. The survey will gather data from users of current parking

systems to understand their preferences, the challenges they face, and their

perceptions of automated parking payment solutions. This data will offer

valuable insights into the real-world applicability, effectiveness, and user

acceptance of the proposed system, ensuring that it meets the needs and

expectations of the target users.

1.6.2 Development Approach

The development approach for this project will be based on the Scrum

methodology. Although the team consists of a single developer, the principles

of Scrum will still be applied to structure the development process effectively.

The project will be broken down into smaller, manageable tasks that can be

completed in short, time-boxed intervals known as sprints, typically lasting one

to two weeks. Each sprint will start with a planning phase, where objectives and

tasks for the upcoming period are defined. Daily stand-up meetings, even if brief,

will be used to assess progress, address challenges, and ensure that the project

stays on track. At the end of each sprint, a review will be conducted to assess

the deliverables and make adjustments based on feedback or new insights. The

project backlog will be maintained to track tasks and features, which will be

prioritized based on the system’s requirements and objectives. This approach

will allow for continuous improvement of the system, incorporating feedback

and ensuring that all aspects of the application, from vehicle recognition to the

user interface, are developed efficiently and meet the necessary specifications.

By applying Scrum principles, the development process will remain flexible,

enabling the project to adapt to any challenges or changes in scope while

ensuring steady progress and the delivery of a functional system.

1.7 Scope and Limitations of the Study

The scope and limitations of this study outline the key components and

boundaries of the project. This section will cover the specific modules addressed,

the target users, and the development tools, languages, and frameworks

employed in the project. It will also discuss the project limitations, including

any constraints in functionality or technology, as well as aspects that are

8

intentionally out of scope for this research. This provides a clear understanding

of the project's focus while acknowledging areas that fall outside its current

scope.

1.7.1 System Modules

The system consists of several key modules, each tailored to specific user roles,

ensuring that all users can perform their tasks efficiently.

1.7.1.1 Driver Module

This module is designed for vehicle owners and general users. It includes

functionalities such as vehicle registration, license plate management, viewing

parking availability, transaction history, and managing payment methods. The

module supports integration with the automated recognition system to enable

seamless entry and exit based on license plate and vehicle attribute detection.

1.7.1.2 Parking Operator Module

This module allows authorized parking operators to register and manage parking

facilities. Operators can input and update parking lot details, edit pricing rates,

and monitor the operational performance of their lots through analytical tools.

The system ensures that any updates to lot information or pricing are subject to

admin approval for validation and standardization.

1.7.1.3 Admin Module

The admin module provides centralized control of the system. It includes

features for managing user accounts for both drivers and operators, approving

or rejecting parking operator registrations, and verifying changes to parking lot

information or rates. This module also includes analytics and reporting tools for

overall system monitoring.

1.7.1.4 Multimodal LLM-based License Plate and Vehicle Attribute

Recognition Module

This module uses multimodal large language models to perform automated

recognition of license plates and vehicle attributes such as make, model, and

color. It enhances security and reduces fraud by cross-verifying plate numbers

9

with vehicle attributes. The system leverages image and text understanding

capabilities of LLMs to ensure high accuracy in diverse real-world

environments, such as low light or obstructed views.

1.7.2 Target Users

The system is designed to serve three main types of users.

(i) Drivers. These are the primary end-users who use the application to

register their vehicles, manage payment preferences, view transaction

history, and receive support for any parking-related issues. The system

aims to simplify their parking experience through automated license

plate recognition and secure payment handling.

(ii) Parking Operators. These users represent parking lot management

entities. They will use the system to register and manage their parking

lots, set parking rates, and view analytics related to usage and revenue.

Operators can also raise support tickets and handle operational queries

through the system.

(iii) Administrators. The admin role is responsible for overseeing the

platform. This includes managing user accounts, approving or rejecting

parking operator registrations and rate changes, monitoring system

analytics, and resolving submitted support tickets. Administrators

ensure that the platform remains secure, fair, and operationally efficient.

1.7.3 Out-of-Scope

The following aspects are beyond the scope of this project.

(i) Face Recognition or Biometric Authentication. The project will focus

solely on LPR and Vehicle Attribute Recognition, without incorporating

biometric authentication methods such as facial recognition.

(ii) Hardware Implementation. The project does not involve the

development or integration of physical devices such as cameras, sensors,

or gate control systems. It will assume that the image inputs are already

captured and available for processing.

10

1.7.4 Project Limitations

While this project aims to enhance parking automation using AI-based LPR and

Vehicle Attribute Recognition, it is subject to the following limitations.

(i) Simulation Environment. The system will be developed and tested in a

simulated environment for academic purposes. Real-world deployment

factors such as network infrastructure, environmental unpredictability,

and large-scale user traffic are not fully considered.

(ii) Hardware Constraints. The system will not include physical installation

of cameras or sensors. Instead, pre-recorded images or uploaded data

will be used for testing the LPR and vehicle attribute modules.

1.7.5 Development Tools, Languages, and Frameworks

This project will utilize a combination of tools and frameworks across both

frontend and backend development. Visual Studio Code will serve as the

primary code editor. The frontend will be developed using React Native Web,

allowing for cross-platform access via both mobile and desktop browsers. The

backend will be built using Laravel, a PHP framework, while PostgreSQL will

be used for the database system. For AI-based recognition, Gemini 2.5 Flash, a

multimodal large language model, is employed to identify license plates and

vehicle attributes by processing both visual and textual inputs.

11

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

This chapter reviews key technologies and methods related to license plate and

vehicle attribute recognition, with a focus on their role in automated parking

systems. It covers traditional, machine learning, deep learning, and emerging

large language model-based approaches. In addition, it examines existing

parking payment applications, relevant software development practices, and

development frameworks to provide a foundation for system design and

implementation.

2.2 Why Improve Current License Plate And Vehicle Attribute

Recognition?

License plate recognition and vehicle attribute recognition are important for

systems like toll payments, parking management, traffic monitoring, and law

enforcement. However, many current systems still face problems, especially in

real-world conditions such as poor lighting, unclear images, occlusion, or

different plate formats. Traditional methods often make mistakes and may not

recognize important vehicle details like the make, model, or color. With the

growing number of vehicles worldwide, which is estimated to surpass 2 billion

by 2040, the demand for more reliable and scalable recognition systems is

increasing (Manzoor, Morgan and Bais, 2019). Therefore, there is a clear need

to improve existing LPR and vehicle recognition technologies to make them

more accurate, reliable, and suitable for real-time use. This section explains the

problems with current systems, compares older methods with newer AI-based

approaches, and shows why better solutions are needed.

12

2.3 Traditional Approaches to License Plate and Vehicle Attribute

Recognition

2.3.1 Manual Observation

One of the earliest ways to identify vehicles was by having officers or staff

visually check vehicles and record them down, or match the license plate

numbers with existing vehicle registration databases to find details of the

vehicle, such as the car's make, model, and owner. Some places still use this

method, especially where automated systems are not available. However,

manual checks are often unreliable because humans make mistakes, get tired, or

struggle with poor lighting, bad weather, or fast-moving traffic. It’s also slow

and not practical for busy areas or smart city systems, where quick and accurate

identification is needed.

2.3.2 Traditional License Plate Recognition

Traditional LPR systems are based on conventional computer vision techniques.

They follow a step-by-step process that includes capturing an image, extracting

the feature or region of interest (ROI), preprocessing by grayscale conversion

and noise reduction, license plate localization, character segmentation, and OCR

using template matching or rule-based logic (Nadira Muda et al., 2007;

Abdullah et al., 2021).

A major drawback is that these systems rely heavily on hand-crafted

features and are generally optimized for specific types of license plates. For

example, template matching works well when characters on the plate are

standardized in font and spacing, but tends to fail when dealing with non-

standard formats, stylized fonts, or variations in character alignment

(Montazzolli and Jung, 2018). In practice, these systems struggle with several

real-world challenges, including occlusions, motion blur, low-resolution images,

and plate distortions caused by camera angles or vehicle speed (Zherzdev and

Gruzdev, 2018).

Furthermore, traditional LPR systems cannot identify vehicle attributes

such as make, model, or color, which limits their use in more complex

surveillance and intelligent transportation applications. Their dependency on a

single modality, which is usually a 2D grayscale image, also makes them less

13

robust in dynamically changing environments, especially those involving bad

lighting or weather conditions (Abdullah et al., 2021).

Due to these limitations, research has gradually shifted toward AI-

based approaches, which offer greater flexibility, scalability, and robustness in

diverse real-world conditions.

2.4 Machine Learning (ML) Approaches

Machine learning techniques were one of the first approaches to be applied to

Automatic Vehicle Recognition (AVR) systems. These methods focus on

handcrafted feature extraction, where specific visual patterns are manually

engineered and then used for classification tasks. ML models have been widely

applied in vehicle make and model recognition (VMMR), particularly in

constrained or controlled environments.

The main handcrafted feature descriptors used in ML-based systems

are Scale-Invariant Feature Transform (SIFT), Speeded-Up Robust Features

(SURF), and Histogram of Oriented Gradients (HOG). SIFT identifies unique

keypoints by finding local extremes in scale-space and describes them using

gradient histograms. It works well across different scales, rotations, and

moderate viewpoint transformations (Lowe, 2004). SURF, a faster alternative

to SIFT, locates key points in an image by analyzing distinctive features such

as edges, corners, and blobs. It uses integral images and an approximate Hessian

matrix to quickly detect keypoints while remaining stable against scale and

rotation (Bay, Tuytelaars and Van Gool, 2006). HOG focuses on analyzing the

gradients and orientation of pixel intensity changes in an image, making it

effective for identifying object shapes such as vehicle outlines (Dalal and Triggs,

2005). These features are typically extracted from segmented vehicle regions

and then passed to machine learning algorithms used for classification, such as

Support Vector Machines (SVM), K-Nearest Neighbors (KNN), random forest,

or multi-layer perceptron (MLP) for vehicle type or model classification.

In the context of VMMR, handcrafted feature-based ML systems have

shown reasonable performance in scenarios with good lighting, minimal

occlusion, and consistent viewpoints. Their simplicity, low computational

14

overhead, and interpretability make them suitable for embedded or resource-

limited environments (Aly, 2008).

However, ML-based methods have several limitations. These methods

require significant effort in feature engineering and may not capture complex

features effectively. They also lack the adaptability to complex, real-world

conditions such as varying lighting, occlusions, and diverse vehicle models

(Sochor, Špaňhel and Herout, 2017). Moreover, separating feature extraction

and classification steps prevents the system from being optimized, which often

leads to weaker recognition performance in challenging conditions. Due to these

limitations, ML approaches are increasingly being replaced or supplemented by

deep learning models that automatically learn hierarchical feature

representations from raw data, offering superior generalization and accuracy.

2.5 Deep Learning (DL) Approaches

Deep learning techniques have significantly advanced the performance of AVR,

particularly in LPR and Vehicle Attribute Recognition (VAR). These methods

eliminate the need for manual feature engineering by allowing models to learn

directly from image data.

2.5.1 Deep Learning in Vehicle Detection

Object detection models for autonomous vehicles are categorized into one-stage

and two-stage detectors, each with distinct advantages and trade-offs in terms

of speed and precision. This section reviews well-known models in both

categories, focusing on their architectures, strengths, and applications in vehicle

detection.

2.5.1.1 Two-Stage Detectors

Two-stage detectors are object detection algorithms that use a two-step process

for detecting objects in images, offering high accuracy but requiring more

computational resources than one-stage detectors. In the first stage, the

algorithm generates potential ROIs in the image that might contain objects. This

is done using techniques like Selective Search or Region Proposal Networks

(RPN) (Gayen et al., 2024). These regions, called region proposals, narrow

15

down the areas in the image that are most likely to contain an object, reducing

the search space for the next step. The second stage involves classifying each

region proposal to determine if it contains an object and then refining the

bounding box around the object (Gayen et al., 2024). The model predicts

adjustments to the coordinates of the proposed bounding box to improve its

accuracy. Two-stage detectors offer higher accuracy, especially for small object

detection, as they focus computational resources on promising regions.

However, they tend to be slower and more resource-intensive than one-stage

detectors.

2.5.1.1.1 Faster R-CNN

Faster R-CNN is a widely adopted and powerful two-stage object detection

framework that improves both speed and accuracy over earlier region-based

Convolutional Neural Network (CNN) models. It is particularly known for its

ability to accurately localize and classify objects in an image by combining a

RPN with a Fast R-CNN detection head in a single and unified architecture

(Figure 2.1).

Figure 2.1: Faster R-CNN network structure (Ren et al., 2017)

16

The architecture of Faster R-CNN is divided into two main stages. First,

an input image is passed through a backbone convolutional neural network, such

as VGG16 or ResNet, to extract a feature map. This feature map is then fed into

the RPN, which slides over the map to generate multiple anchor boxes of

varying scales and aspect ratios. For each anchor, the RPN predicts an

objectness score, which indicates the presence of an object, and performs

bounding box regression to refine the coordinates. To reduce redundancy, Non-

Maximum Suppression (NMS) is applied to eliminate overlapping proposals,

resulting in a set of high-confidence candidate regions (Ren et al., 2017).

In the second stage, these candidate regions are fed into the Fast R-

CNN module. Through a ROI pooling layer, each region is converted into a

fixed-size feature vector regardless of its original shape. These vectors are then

passed through fully connected layers that perform two tasks, which are

classifying the object and further refining its bounding box. Faster R-CNN

enables end-to-end training of both the RPN and the Fast R-CNN detector,

allowing for joint optimization through backpropagation. The loss function

combines classification loss from the RPN’s objectness scores and bounding

box regression loss for both the RPN and the Fast R-CNN detection network,

ensuring simultaneous learning of region proposals and object detection for

improved accuracy (Ren et al., 2017).

The final output of Faster R-CNN includes predicted class labels,

bounding box coordinates, and confidence scores for each detected object. Due

to its efficient design, which reuses features between the RPN and Fast R-CNN,

the model significantly outperforms earlier methods that relied on slow proposal

algorithms like Selective Search. It typically achieves reasonable speeds of 5 to

17 frames per second while also maintaining high accuracy, depending on the

complexity of the network and the hardware used (Ren et al., 2017). Its robust

performance has made it a benchmark for object detection tasks, including

applications like vehicle detection, face recognition, and surveillance.

17

2.5.1.2 One-Stage Detectors

One-stage detectors are object detection algorithms that simplify the object

detection process by eliminating region proposal generation, which is common

in two-stage detectors (Gayen et al., 2024). One-stage detectors directly predict

the location of objects and their corresponding class labels in a single step. This

is achieved using a single feed-forward, fully convolutional network that

outputs both bounding boxes and object classifications for all potential objects

in the image (Carranza-García et al., 2021).

One-stage detectors are known for their speed and efficiency. These

models process the entire image at once, predicting object classes and bounding

box locations for every region of the image simultaneously. This approach

makes them much faster than two-stage detectors, as they do not require the

additional step of generating region proposals. However, one-stage detectors

traditionally faced challenges due to the imbalance between objects of interest

and background in images, which could negatively impact detection accuracy

(Carranza-García et al., 2021).

2.5.1.2.1 YOLO

You Only Look Once (YOLO) is a deep learning algorithm designed for real-

time object detection, known for its unique architecture and efficient processing.

Unlike traditional object detection methods that involve separate steps for

region proposal and classification, YOLO uses a single CNN that processes the

entire image in one pass, simplifying the pipeline.

YOLO’s architecture (Figure 2.2) is based on the GoogLeNet image

classification model. The network contains 24 convolutional layers and two

fully connected layers, making it almost 5 times larger than the ZF-5 used in

SPP-Net and Faster R-CNN (Wu, 2018). The process in YOLO starts with

image input, where the original image is fed into the system. Following this, a

preprocessing step is carried out, which involves resizing the image to a suitable

dimension and dividing it into an S × S grid, which prepares the image for

analysis by the neural network.

18

Figure 2.2: YOLO architecture (Wu, 2018)

Next, the image passes through a CNN that includes several layers such

as convolutional layers, pooling layers, fully connected layers, and dropout

layers. Each grid cell is then responsible for predicting bounding boxes and class

probabilities. A bounding box includes five parameters: the x and y coordinates

representing the center of the box, the width (w) and height (h) relative to the

full image, and a confidence score (Kang et al., 2025).

For every predicted box, a confidence score is calculated to estimate

how likely it is that the box contains an object and how accurate the predicted

location is. This confidence score is based on how much the predicted box

overlaps with the actual object (measured using Intersection over Union, or IoU).

In addition, each grid cell also predicts the probability that the object belongs to

a certain class. By combining the confidence score and the class probability, the

model determines the overall likelihood that a particular object is correctly

detected and classified.

After processing by the convolutional neural network, the model

outputs a set of predictions, which are then refined in a post-processing step.

This includes applying NMS to eliminate overlapping bounding boxes and

retain only the most confident detections. The remaining, most confident

predictions are then combined and mapped back onto the image to produce the

final output, which shows the detected objects along with their corresponding

bounding boxes and class labels (Kang et al., 2025).

19

2.5.1.2.2 Single Shot Multibox Detector (SSD)

SSD, also known as Single Shot Multibox Detector, is a widely used deep

learning framework for real-time object detection that strikes a strong balance

between speed and accuracy. As a one-stage detector, SSD performs object

localization and classification in a single forward pass through the network,

making it significantly faster than two-stage detectors like Faster R-CNN.

The SSD architecture (Figure 2.3) consists of three primary

components. First, it uses a base network, often adapted from established CNN

models such as VGG16, to extract features from input images. Second, it

includes a feature extractor that utilizes multiple layers of feature maps at

different resolutions, allowing the model to detect objects of varying sizes.

Finally, the detection layer comprises convolutional layers that predict both

bounding box coordinates and class scores (Cao et al., 2020).

Figure 2.3: SSD architecture (Cao et al., 2020)

The input image is first resized to a standard resolution, such as

300×300 or 512×512 pixels, to maintain consistency. This image is then passed

through the base network, which generates feature maps at various levels. These

maps represent different levels of abstraction, from low-level textures in earlier

layers to high-level object representations in deeper layers. This makes it

possible to detect objects of various sizes across different layers (Cao et al.,

2020).

SSD relies on these multi-scale feature maps to handle objects of

different sizes effectively. Lower layers, such as Conv4_3, detect smaller

objects using finer detail, while higher layers, such as Conv7, focus on larger,

more abstract features. At each location in the feature maps, SSD defines several

default anchor boxes of various shapes and sizes. For each anchor, the model

20

predicts two things which are the class confidence scores for every object class

and bounding box offsets that fine-tune the predicted box location (Cao et al.,

2020).

During training, SSD uses a combined loss function, which is a

localization loss (Smooth L1) for bounding box accuracy and a classification

loss (Softmax) to match predicted classes with the ground truth. During

inference, NMS is applied to remove redundant boxes, keeping only the most

confident predictions (Cao et al., 2020).

2.5.2 Instance Segmentation in Vehicle and License Plate Recognition

Instance segmentation is a powerful computer vision technique that combines

object detection and semantic segmentation to identify and outline objects at the

pixel level with unique segmentation masks (Kattenborn et al., 2021). Unlike

semantic segmentation, which treats all objects of a class as a single group,

instance segmentation can distinguish and segment each object individually,

even in cases of overlapping or occluded objects. This makes it particularly

useful in complex situations where multiple vehicles or license plates appear

close. Instance segmentation algorithms operate in two main stages. First, they

detect objects within an image using an object detection model, which typically

involves drawing bounding boxes around objects such as vehicles or license

plates. Next, a segmentation model produces pixel-wise masks that accurately

outline the shape and boundaries of each object. This approach enables precise

separation of objects from both the background and nearby instances of the same

class.

2.5.2.1 YOLOv8 Seg

YOLOv8 Seg is an advanced instance segmentation model developed by

Ultralytics as part of the YOLO family. It extends the capabilities of object

detection by incorporating pixel-level segmentation for each detected object.

This means that in addition to drawing bounding boxes around objects such as

vehicles or license plates, YOLOv8 Seg also generates precise segmentation

masks that outline the shape of each object instance (Ultralytics, 2023a). The

model operates in real-time and is optimized for applications that require both

21

speed and accuracy, such as traffic monitoring, license plate recognition, and

autonomous driving systems. YOLOv8 Seg supports training and inference on

custom datasets, allowing developers to fine-tune it for specific classes relevant

to their project.

2.5.2.2 Segment Anything (SAM)

The Segment Anything Model (SAM), developed by Meta AI, is a promptable

segmentation model designed to segment any object in an image, even without

class labels or prior training on specific objects. SAM can generate

segmentation masks in response to user-provided prompts, such as clicks,

bounding boxes, or even text descriptions. It uses a powerful image encoder and

a flexible prompt encoder to handle a wide range of inputs and produce high-

quality masks. One of SAM's most notable features is its ability to perform zero-

shot segmentation, meaning it can generalize to new, unseen objects at inference

time (Ultralytics, 2023b). This makes it highly versatile for research, labeling

tools, and applications that require segmentation without being limited to

predefined object classes. However, SAM is not designed for real-time tasks

and does not include object detection capabilities.

2.5.2.3 Comparison of Segmentation Model

Although both YOLOv8 Seg and SAM are used for segmentation tasks, they

are built for different objectives and perform differently in practical scenarios.

YOLOv8 Seg is trained to detect and segment predefined object classes, such

as vehicles or license plates, in a single, end-to-end pipeline. This makes it

especially suitable for high-speed applications where both accuracy and

performance are critical, such as smart parking systems. In contrast, SAM is a

prompt-based segmentation model designed for general-purpose segmentation

across a wide range of domains as it can segment objects it has never seen during

training. However, it is not optimized for real-time processing and lacks built-

in object detection, meaning it must be combined with other models to

automatically identify and segment specific objects.

In summary, YOLOv8 Seg excels in scenarios where speed,

automation, and predefined object classes are essential, while SAM is more

22

suited for exploratory or manual segmentation tasks where flexibility and

generality are required. For this project, where the goal is to automatically

identify and segment vehicles and license plates in real-time, YOLOv8 Seg is a

more practical and efficient choice.

Table 2.1: Table of comparison of segment models

Feature YOLOv8 Seg Segment Anything

(SAM)

Task Instance segmentation

and detection

Promptable

segmentation only

Real-time performance Yes No as it is slower and

more complex

Predefined classes Yes No

Requires prompts No Yes

Use Case Real-time tasks with

known classes

Interactive or general

segmentation

2.5.3 Deep Learning for OCR in LPR

Optical Character Recognition plays a crucial role in LPR by converting

detected license plate images into readable alphanumeric text. While traditional

OCR techniques were widely used in earlier systems, modern LPR applications

are increasingly adopting deep learning-based OCR methods due to their

superior performance in handling distorted, low-resolution, or variably styled

license plates. This section explores three widely used OCR approaches, which

are Tesseract OCR, CRNN, and Transformer-based models.

2.5.3.1 Tesseract OCR

Tesseract is a popular open-source OCR engine developed by HP and

maintained by Google. It primarily uses a traditional rule-based and pattern-

matching approach, making it lightweight and easy to implement. Recent

versions, such as those from 4.0 onwards, incorporate a Long Short-Term

Memory (LSTM) neural network, enhancing recognition accuracy on distorted

or variably spaced text (Tesseract Documentation, n.d.). In LPR systems,

23

Tesseract has been used for recognizing characters on plates due to its support

for multiple languages and high configurability.

However, Tesseract’s performance is limited even in newer versions when

dealing with real-world license plates that contain noise, blur, occlusions, or

stylized fonts (Sporici, Cuşnir and Boiangiu, 2020). It also lacks deep contextual

modeling, which can lead to misrecognition of visually similar characters such

as ‘0’ and ‘O’ or ‘8’ and ‘B’. Despite its limitations, Tesseract is still widely

used in lightweight or edge applications, and it is sometimes combined with

modern object detection models in hybrid LPR systems to balance efficiency

and cost.

2.5.3.2 CRNN

The Convolutional Recurrent Neural Network (CRNN) is a deep learning

architecture specifically designed for sequence-based tasks like OCR. It

combines convolutional layers for feature extraction, recurrent layers, typically

LSTM, for sequence modeling, and a transcription layer using Connectionist

Temporal Classification (CTC) loss to generate text predictions without

requiring pre-segmented characters (Shi, Bai and Yao, 2017).

In LPR, CRNN has been widely adopted due to its ability to handle

irregular character spacing, stylized fonts, and even cursive or partially occluded

text (Shi, Bai and Yao, 2017). Its end-to-end trainable structure allows it to

generalize well across different plate styles and layouts. Moreover, its moderate

computational footprint makes it suitable for real-time applications in resource-

constrained environments. Nevertheless, CRNNs may face limitations when

handling complex layouts or sequences that require deeper contextual

understanding, where attention-based models like Transformers have shown

superior performance.

2.5.3.3 Transformers

Transformer-based OCR models, such as TrOCR and Donut, have recently

emerged as cutting-edge solutions for document and scene text recognition.

These models use self-attention mechanisms to model global dependencies in

24

the text sequence, enabling the recognition of complex, distorted, or noisy text

(Li et al., 2021).

In the context of LPR, transformers can accurately transcribe license

plates even under challenging conditions, such as low lighting, occlusion, or

irregular fonts, without requiring character segmentation. Their ability to

process entire sequences in parallel, unlike sequential models like RNNs, also

enhances speed and scalability, making them highly effective for real-time

applications (Tao et al., 2024). Furthermore, their multimodal capabilities also

allow better integration with vision-language models, making them suitable for

advanced applications in smart transportation and automated surveillance

systems.

However, despite their superior accuracy and flexibility, transformer-

based models often require substantial computational resources, including high

memory usage and processing power (Tabani et al., 2021). This presents

practical deployment challenges, especially on edge devices or in resource-

constrained environments where low latency and efficiency are crucial. In such

scenarios, lighter alternatives like CRNNs may be more suitable due to their

reduced model size and hardware demands (Khan et al., 2024).

2.5.4 Deep Learning for Vehicle Attribute Recognition

Vehicle attribute recognition, which involves make, model, and color, relies on

deep learning models to handle complex and fine-grained classification tasks.

These models work well in extracting and understanding detailed features from

images, crucial for recognizing vehicles in diverse real-world conditions.

2.5.4.1 CNN-based Models

Convolutional Neural Networks (CNNs) have been a foundation in image

recognition tasks, including vehicle attribute classification. CNNs such as

ResNet, VGG, and EfficientNet are widely adopted due to their ability to learn

hierarchical spatial features, which are crucial for distinguishing vehicle

attributes like make, model, and color. In particular, CNNs are skilled at

recognizing fine-grained details, such as the shape of a vehicle’s logo, the style

25

of headlights, or unique design cues in the grille and bumpers, which are the

elements that are often crucial for distinguishing between similar vehicle models.

The structure of CNNs is typically composed of multiple layers. One

of the layers is the convolutional layers that extract features from the input

image by applying filters. Another layer is the pooling layers that down-sample

the image to reduce computational complexity while retaining important

features. Finally, the fully connected layers combine features extracted at

different layers to make final predictions, such as vehicle make, model, and

color (Xia, Feng and Zhang, 2016).

Figure 2.4: CNN architecture diagram (Phung and Rhee, 2018)

The success of CNNs in vehicle recognition can be attributed to their

local receptive fields, which allow the network to focus on small, localized

patterns, such as the texture of a car logo or the shape of the wheels. Moreover,

the deep architectures of models like ResNet, which utilize skip connections,

allow them to learn from a large number of layers without losing critical

information through vanishing gradients (He et al., 2016). EfficientNet, which

balances depth, width, and resolution for optimal performance, has shown

significant improvements in terms of accuracy and efficiency (Tan and Le,

2019).

26

2.5.4.2 ViT-based Models

Vision Transformers (ViTs) represent a more recent development in image

recognition, shifting away from traditional convolutional operations to a

transformer-based approach, which was initially designed for natural language

processing (Han et al., 2023). ViTs have shown great success in image

classification tasks due to their ability to capture long-range dependencies

across the entire image. This capability makes them effective at understanding

the contextual relationships between different parts of an image (Han et al.,

2023). This is especially useful in tasks like recognizing subtle differences in

vehicle attributes, where distinguishing between visually similar makes or

models is essential.

In contrast to CNNs, which apply convolutional filters over the entire

image, ViTs divide the image into non-overlapping patches and treat each patch

as a "token" in a sequence. These “tokens” are passed through a series of

transformer layers that use self-attention mechanisms (Figure 2.5) to assign

different levels of importance to each token (Han et al., 2023). This allows the

model to focus on crucial regions of the image, such as specific design features,

vehicle logos, or color patterns, which are essential for fine-grained vehicle

make or model recognition.

Figure 2.5: ViT Architecture and Transformer Encoder (H. Meybodi et al.,

2021)

27

Furthermore, ViTs excel at handling global contextual information,

which allows them to capture intricate details in vehicle design, such as subtle

differences in headlight shape, grille patterns, or logo positioning. This ability

allows ViTs to outperform traditional CNN models in certain tasks, particularly

when dealing with large datasets or images where understanding both local and

global features is necessary to distinguish between similar vehicle types.

2.5.4.3 Multitask Learning (MTL)

Multitask Learning (MTL) involves training a single model to predict multiple

related outputs simultaneously. The fundamental idea behind MTL is that by

sharing information across related tasks, the model can learn more generalizable

and robust representations (Figure 2.6), thereby improving overall performance

(Ruder, 2017). This approach is particularly effective when the tasks are related

and can benefit from shared knowledge, a concept known as inductive transfer,

where learning one task helps improve learning in another (Caruana, Pratt and

Thrun, 1997).

Figure 2.6: Multitask learning framework (Ranjan et al., 2016)

In the context of vehicle attribute recognition, MTL is often used to

predict attributes such as make, model, and color within a unified model

architecture. Instead of training separate models for each attribute, MTL

leverages a shared feature extractor, usually a convolutional backbone, to learn

general patterns such as edges, contours, and textures. These shared features are

then passed through task-specific branches that refine predictions for each

output (Caruana, Pratt and Thrun, 1997). This design allows the model to exploit

commonalities across tasks while preserving the flexibility to specialize in each

attribute.

28

Another important aspect of MTL is parameter sharing, which is

typically implemented using either hard or soft sharing techniques. In hard

sharing, the model uses a common set of parameters, known as a shared

backbone, while soft sharing allows different models to have their parameters

but introduces constraints to encourage similarity (Caruana, Pratt and Thrun,

1997). Regardless of the approach, this shared learning process increases the

model's efficiency and robustness across tasks.

MTL offers several advantages in vehicle recognition. It reduces model

complexity by combining multiple tasks into a single network and decreases

training and inference time compared to running separate models. Moreover,

since many vehicle attributes are naturally correlated, for example, specific

models may come in limited colors or shapes, MTL can learn to capture these

interdependencies, resulting in more accurate predictions and improved

generalization.

However, MTL also has challenges. A major issue is negative transfer,

which occurs when learning unrelated or poorly aligned tasks together will

negatively affect overall model performance (Ruder, 2017). For example,

predicting color, which is a low-level feature, and identifying the vehicle make,

which may depend on high-level shape semantics, could conflict if not properly

balanced. This challenge can be mitigated through strategies such as weighted

loss functions or dynamic task balancing are often used to ensure that one task

does not dominate the learning process (Cipolla, Gal and Kendall, 2018;

Kongyoung, Macdonald and Ounis, 2020).

2.5.4.4 Fine-Grained Classification

Vehicle attribute recognition is fundamentally a fine-grained classification task,

as it requires distinguishing between highly similar vehicle makes, models, and

colors that often exhibit only subtle visual differences. Unlike coarse

classification, where the goal might simply be to recognize a car versus a truck,

fine-grained classification is more precise by noticing small visual details (Yang

et al., 2018).

To handle this, fine-grained classification focuses on small,

discriminative features, such as the shape of headlights, grille patterns, bumper

29

contours, logo positioning, or even color hues. These details are usually found

in small parts of the image, and detecting them requires high-resolution input

and advanced deep learning models, especially CNNs or ViTs.

Deep learning models are suitable for this task because they can extract

hierarchical and local features, which are essential for capturing subtle intra-

class differences. Moreover, training these models on large, diverse datasets

improves their ability to generalize and recognize vehicle variants across

different viewpoints, lighting conditions, and occlusions, which are common

challenges in real-world environments such as parking lots. By using fine-

grained classification, vehicle attribute recognition systems can achieve high

accuracy in identifying specific vehicle types, which is crucial for applications

such as intelligent parking management.

2.5.5 Summary

Deep learning approaches for LPR and vehicle attribute recognition involve

several key stages: detection, segmentation, OCR, and attribute classification.

For detection, YOLO and SSD are fast, while Faster R-CNN offers higher

accuracy but is slower. Segmentation models like YOLOv8 Seg and Segment

Anything help isolate license plates and vehicle features. For OCR, Tesseract

OCR and CRNN are common, with transformer models showing better

accuracy and reliability. In vehicle attribute recognition, CNNs, ViT, and

techniques like multitask learning improve the recognition of vehicle details like

make, model, and color.

As outlined in the proposed solution, this project will utilize

multimodal LLMs to perform license plate and vehicle attribute recognition.

Unlike traditional deep learning models that rely on separate components for

each task, multimodal LLMs provide an integrated approach capable of

handling detection, segmentation, OCR, and classification within a unified

framework. While deep learning models remain efficient and widely adopted,

LLMs offer greater flexibility, contextual understanding, and scalability. A

hybrid approach may further enhance accuracy and reliability by combining the

strengths of both.

30

2.6 Large Language Models (LLMs)

Large Language Models (LLMs) are a subset of deep learning models designed

to understand and generate human-like text based on massive amounts of data.

These models are typically built using the Transformer architecture introduced

by Vaswani et al. (2017), which uses mechanisms such as self-attention to

capture dependencies between tokens across varying distances, enabling

context-aware representation of words. It also uses positional encoding to

capture contextual relationships between words in a sequence, which is a critical

factor since the Transformer lacks inherent sequential processing. LLMs are

pre-trained on diverse text corpora using an autoregressive objective, where the

model learns to predict the next word in a sequence by adjusting millions to

billions of parameters to minimize prediction error. Once pre-trained, these

models can be fine-tuned or prompted to perform a wide range of tasks, such as

question answering, translation, summarization, and dialogue generation. This

adaptability has driven their widespread use in natural language processing,

computer vision, and multimodal AI systems.

2.6.1 Multimodal LLMs

Multimodal Large Language Models (LLMs) extend traditional language

models by using multiple input types, such as text, images, audio, or video at

the same time. Unlike traditional LLMs that only work with text, multimodal

models combine information from various sources to perform tasks like

describing images, answering questions about pictures, or reading documents

with both text and visuals. This is done by connecting different types of

encoders, such as visual or audio encoders, with the language by feeding the

output from these encoders as prefix tokens into a frozen language model

(Tsimpoukelli et al., n.d.).

2.6.1.1 GPT-4o

GPT-4o is a multimodal large language model developed by OpenAI. It is part

of the GPT (Generative Pre-trained Transformer) family of models and is

designed to handle both text and image inputs, which is a significant

advancement in AI. GPT-4o builds upon the architecture of GPT-4 by

31

incorporating improved reasoning abilities and a larger scale, enabling it to

understand and generate more refined responses across a variety of tasks. The

model uses a combination of self-attention mechanisms and positional encoding

to process and generate text, while also leveraging ViTs for visual input

processing (Chiang, 2024). Unlike previous versions of GPT, GPT-4o can

perform complex multimodal tasks, such as interpreting images and generating

text-based descriptions or answering questions based on visual content. Its

ability to handle both text and image inputs is underpinned by a unified model

architecture that merges these modalities through shared representations.

2.6.1.2 Gemini 2.0 Flash

Gemini 2.0 Flash is a multimodal large language model developed by Google

DeepMind, optimized for speed and efficiency while maintaining robust

capabilities in processing both textual and visual inputs. As part of the second

generation in the Gemini series, Gemini 2.0 Flash is more advanced than its

predecessors by delivering faster inference times and streamlined memory

usage, which makes it highly suitable for real-time applications. It utilizes

vision-language pre-training and enhanced cross-attention mechanisms to align

image and text inputs effectively, enabling high-quality responses across

multimodal tasks. Despite its lightweight nature compared to larger Gemini

models, Gemini 2.0 Flash excels in tasks such as visual question answering,

image captioning, and multimodal reasoning, demonstrating significant

improvements in processing speed without compromising accuracy. Its design

prioritizes low latency, making it particularly well-suited for mobile and edge

deployments where both speed and context-aware responses are critical.

2.6.1.3 Claude 3.5

Claude 3.5 Sonnet is a multimodal large language model developed by

Anthropic. It builds upon the Claude 3 model family, introducing enhanced

performance across various tasks, including coding, visual reasoning, and

complex instruction following. It integrates both text and image processing

capabilities, which allows the model to perform complex tasks that require

reasoning across multiple types of data, such as visual question answering,

32

image captioning, and generating detailed descriptions based on visual inputs.

By using advanced ViTs and cross-modality attention mechanisms, Claude 3.5

can analyze images and combine them with textual information, enhancing its

ability to understand and respond to tasks that involve both texts and images.

2.6.1.4 LLMs on License Plate Recognition

Although Gemini 1.5 has been deprecated for new projects as of April 29, 2025,

its performance remains relevant for comparison. For character-level accuracy,

GPT-4o demonstrates the highest character-level accuracy at 97.1%, correctly

identifying 1,700 out of 1,751 tested characters (AlDahoul et al., 2024). This

excellent performance indicates that GPT-4o is highly adept at recognizing text

from images. It is particularly well-optimized for complex OCR tasks, including

situations with poor image quality or diverse fonts. Meanwhile, both model

from Gemini 1.5, including Flash and Pro, achieves a 93.8% character-level

accuracy, identifying 1,643 out of 1,751 tested characters (AlDahoul et al.,

2024). While it falls behind GPT-4o, it still represents strong performance. The

gap suggests that GPT-4o may be more specialized for text recognition tasks,

but Gemini 1.5 remains a competent model for general OCR tasks. It’s

particularly effective in processing and reasoning with multimodal inputs and

can still handle various text recognition scenarios efficiently. Lastly, Claude 3.5

achieves a 92.8% character-level accuracy, correctly identifying 1,625 out of

1,751 tested characters (AlDahoul et al., 2024). While slightly lower than both

GPT-4o and Gemini 1.5, Claude 3.5’s accuracy is still solid. It is adequate for

many OCR applications but may not be as precise in extracting text from images

as the other two models, particularly in complex or low-quality scenarios.

In LPR, GPT-4o demonstrates the best performance with an 86% plate-

level accuracy, recognizing 222 out of 258 plates (AlDahoul et al., 2024). Its

strong performance suggests that the model is well-optimized for tasks

involving visual input and complex plate recognition scenarios. Next, Gemini

1.5 Pro achieves a 71.7% plate-level accuracy, recognizing 185 out of 258 plates

(AlDahoul et al., 2024). While this is lower than GPT-4o, it still demonstrates

reasonable performance. Despite this, it remains a viable option for applications

where plate recognition is not the sole focus but is still required. The Gemini

33

1.5 Flash model performs slightly better than the Pro in license plate recognition,

with a 77.5% plate-level accuracy, recognizing 200 out of 258 plates (AlDahoul

et al., 2024). This result indicates that the Flash variant is optimized for speed

without a significant sacrifice in accuracy. The Flash model’s focus on real-time

applications allows it to strike a balance between recognition accuracy and

processing efficiency. Lastly, Claude 3.5 achieves a 72.1% plate-level accuracy,

recognizing 186 out of 258 plates (AlDahoul et al., 2024). Although its

performance is still lower than GPT-4o and Gemini 1.5 models, it still shows

reasonable capability in recognizing plates. Additionally, Claude 3.5 is known

for its speed, operating at twice the pace of its predecessor, making it ideal for

scenarios where quick processing is more critical than achieving the highest

recognition accuracy.

Table 2.2: Table of accuracy results between LLMs (AlDahoul et al., 2024)

Results GPT-4o Gemini 1.5

Flash

Gemini 1.5

Pro

Claude 3.5

Character-

Level

Accuracy

97.1% 93.8% 93.8% 92.8%

Plate-Level

Accuracy

86% 77.5% 71.7% 72.1%

2.6.1.5 LLMs on Vehicle Attribute Recognition

At present, there is no existing research that specifically explores the use of

LLMs for Vehicle Attribute Recognition, such as identifying a vehicle’s make,

model, color, or license plate directly from images. While multimodal LLMs

like GPT-4o, Gemini, and Claude 3.5 have demonstrated capabilities in

understanding both text and images, most studies and practical applications

involving vehicle attribute recognition still rely on traditional computer vision

models, such as CNNs, YOLO, or Transformers like ViT, rather than LLMs.

This indicates a research gap, where the application of multimodal LLMs to

vehicle attribute recognition remains largely unexplored. The potential for these

34

models to handle such tasks, especially when fine-tuned on relevant datasets,

presents an emerging opportunity for future research.

2.6.1.6 Comparison of the Multimodal LLMs

GPT-4o, Gemini 2.0 Flash, and Claude 3.5 are all multimodal models capable

of handling both text and image inputs. GPT-4o offers strong language

generation and recently introduced fine-tuning with images, making it suitable

for tasks like vehicle attribute recognition. Gemini 2.0 Flash also supports fine-

tuning through Google Cloud's Vertex AI, excelling in real-time image and text

processing, but may incur higher costs due to cloud-based services. Claude 3.5,

while strong in text generation and ethical AI, is less mature in image processing

and lacks robust fine-tuning capabilities for images, making it less ideal for

image-heavy tasks like vehicle recognition. Overall, GPT-4o and Gemini 2.0

Flash are more suited for vehicle recognition, offering flexible fine-tuning with

images, while Claude 3.5 is better suited for text-focused or ethical AI

applications.

Table 2.3: Table of comparison between LLMs

Feature GPT-4o Gemini 2.0 Flash Claude 3.5

Developed by OpenAI Google

DeepMind

Anthropic

Input Modalities Text, image,

audio

Text, image,

code

Text, image

Output

Modalities

Text, audio Text Text

Fine-Tuning

with Images

Available via

OpenAI API

Available via

Google Cloud’s

Vertex AI

Available vie

Claude.ai

Strengths Strong language

understanding

with fine-tuning

support

High

performance

with cloud

scalability

Focus on safety

and strong text

generation

35

Limitations Cloud-based

which can be

costly

Cloud-based,

may incur costs

Limited image

processing &

fine-tuning

options

Pricing Input price of

$2.50 per million

tokens, and

output price of

$10.00 per

million tokens.

Context length is

128,000 tokens.

Input price of

$0.75 per million

tokens, and

output price of

$3.00 per million

tokens.

Input price of

$1.50 per million

tokens, and

output price of

$6.00 per million

tokens.

API Availability Yes Yes Yes

2.7 Review of Similar Parking Payment Application

This section reviews similar parking payment applications, focusing on their

features, technologies, and functionalities.

2.7.1 Touch ‘n Go eWallet

Touch 'n Go eWallet (TNG eWallet) is a Malaysian digital wallet and online

payment platform established in July 2017 through a joint venture between

Touch 'n Go and Ant Financial Services Group (Touch ’n Go, n.d. b). The app

supports a wide range of digital transactions, including payments using QR

codes, bill payments, mobile top-ups, money transfers, and ticket purchases for

various transport services and events. It is also closely integrated with

transportation services, enabling payments for tolls, e-hailing, and car-sharing

through features like RFID and PayDirect.

In the context of parking, TNG eWallet offers multiple solutions to

enhance convenience and automation. Users can access LPR-enabled parking

zones where license plates are automatically recognized for entry and exit, use

QR code parking at supported facilities, pay for street parking, and purchase

insurance coverage that protects against unexpected incidents while their

vehicle is parked.

36

Figure 2.7: TNG eWallet Parking Search Result

2.7.1.1 LPR Parking (License Plate Recognition)

TNG eWallet's LPR Parking feature allows for seamless, ticketless entry and

exit at participating parking facilities. Upon arrival at an LPR-enabled parking

lot, cameras automatically recognize your vehicle's license plate, lifting the

barrier without the need for a physical ticket or card. Upon exit, the system

calculates the parking fee and deducts it directly from your eWallet balance

(Touch ’n Go, n.d. a).

To activate it, users should tap on "LPR Parking", select “Add vehicle

now”, and follow the instructions shown to perform the registration of the

vehicle. Users will need to agree to auto-debit terms and confirm with their 6-

digit PIN. Lastly, users will get a push notification once the registration for LPR

Parking is successful. A user can register up to 10 vehicles under their account

and manage their LPR settings individually. While there is no minimum balance

required to enter an LPR-enabled parking lot, sufficient funds must be available

in the eWallet before exiting to avoid delays. Currently, the LPR Parking feature

is available in only 12 locations, and they are working to add in more car parks

in Malaysia that support LPR technology (Touch ’n Go, n.d. a).

37

Figure 2.8: TNG eWallet LPR Parking Register Vehicle Steps (Wong, 2025)

2.7.1.2 QR Parking

The QR Parking feature enables a smooth and ticketless parking payment

experience through TNG eWallet. Instead of using physical tickets, users scan

a QR code at both the entry and exit points of the parking facility. When a user

enters a parking facility, the parking reader scans the user’s QR code via the

eWallet’s “Pay” function. This process is repeated during exit, allowing the

system to calculate the duration of the parking session. If a payment is required,

the fee is automatically deducted from the user's eWallet balance, and a payment

notification is sent to the user. Although there is no minimum balance required,

it is advisable to maintain sufficient funds in the eWallet to ensure successful

payment processing. If the balance is insufficient at the time of exit, the barrier

gate will remain closed until payment is completed (Touch ’n Go, n.d. c).

38

Figure 2.9: TNG eWallet QR Parking Pay Screen (Rozlan, 2023)

2.7.1.3 Street Parking

Touch 'n Go (TNG) eWallet offers a convenient and cashless solution for on-

street parking payments across various municipalities in Malaysia. This feature

eliminates the need for physical parking meters or paper tickets, allowing users

to manage their parking sessions directly through the TNG eWallet app. The

app utilizes the device's location services to identify nearby parking zones. This

system is currently operational in multiple areas, including Kuala Lumpur,

Selangor, Putrajaya, Kota Bharu, and Subang Jaya, among others. Users are

advised to check the list of participating local councils within the app to ensure

coverage in their desired parking location (Touch ’n Go, n.d. d).

To use the street parking payment feature, users can tap on “Street

Parking” within the “Transport” section or search for it on the TNG eWallet app.

The app uses GPS to detect nearby supported parking zones. To begin, users

must register their vehicle number plate within the app, which will be used to

associate and track the parking session with the correct vehicle. Once the vehicle

is registered, users can select their parking location and specify the desired

duration for their parking session. Depending on the regulations set by the local

authority, parking may be booked by the hour or by the day. The app will display

the available booking options and the corresponding fees based on the selected

zone. These fees are determined by the respective municipal councils and may

vary by location and duration. After reviewing the parking details, users can

confirm the booking. The parking fee is then automatically deducted from the

user’s eWallet balance. A booking is only confirmed once payment is

39

successfully processed, and a confirmation screen will appear to indicate that

the session has started. Users must ensure sufficient balance is available in the

eWallet before booking. In addition, the app allows users to monitor their active

parking sessions and, if necessary, extend the duration without returning to their

vehicle (Touch ’n Go, n.d. d).

2.7.1.4 ParkInsure

TNG ParkInsure is a Personal Accident (PA) insurance or takaful subscription

plan offered by Touch 'n Go, designed to provide additional coverage on top of

standard motor insurance when using Touch 'n Go cards at TNG-enabled

parking sites. It offers protection for incidents occurring within parking

compounds, including accidental death or permanent disablement, loss or

damage of personal belongings due to accidents, snatch theft, forcible car break-

ins, and car accidents. The plan is provided by Allianz General Insurance

Company (Malaysia) Berhad for conventional insurance and Zurich General

Takaful Malaysia Berhad for takaful coverage (Touch ’n Go, n.d. e). Users can

subscribe to ParkInsure through the Insurance section or search for it on the

Touch 'n Go eWallet app. The plan costs RM5 per month and is renewed

monthly. To be eligible for coverage, users must link their Touch 'n Go card to

the ParkInsure plan and use the same card to enter and exit TNG-enabled

parking sites.

2.7.2 JomParking

JomParking is a smart parking app developed in Malaysia that provides a

cashless and convenient solution for both on-street and off-street parking. By

combining digital payments with real-time parking management, the app

removes the need for physical tickets or cash, making parking much easier for

users.

For on-street parking, the app uses GPS to detect the user's current

location. Users select their vehicle and desired parking duration, then confirm

the transaction. A countdown timer displays the remaining time, and a

notification is sent 15 minutes before expiration. This gives users the chance to

extend their parking remotely without needing to go back to their vehicle. On-

40

street parking is supported in only nine areas managed by local councils

(JomParking, n.d. b).

For off-street parking, users select the parking zone within the app. A

QR code is generated, which is scanned at the entrance and exit of the parking

facility. The parking fee is automatically deducted from the user's token balance

upon exit. JomParking also offers monthly parking passes for specific zones,

providing a convenient solution for regular commuters (JomParking, n.d. b).

Off-street parking is supported at prominent locations such as Terminal

Bersepadu Selatan (TBS) and Gurney Mall @ Residensi UTMKL in Kuala

Lumpur (Apple, n.d. b).

Other helpful features include compound management, where users

can view and pay parking fines directly in the app. The app also supports

multiple vehicle registrations under one account, making it suitable for users

who own or manage more than one car. All parking transactions are recorded

within the app, allowing users to track their parking activities and payments.

JomParking provides reminders for vehicle insurance renewals and real-time

notifications for session expiry, payment confirmations, and promotional

updates.

JomParking operates on a token-based system, where users purchase

tokens using various payment methods such as online banking, credit/debit

cards, or e-wallets. These tokens are then used to pay for parking sessions,

monthly passes, and compounds (JomParking, n.d. a).

2.7.3 ParkEasy

ParkEasy is a Malaysian mobile application designed to help users find and

reserve parking spots ahead of time, especially in shopping malls and

commercial areas. One of its main features is the parking reservation system,

where users can select their location and reserve a parking spot ahead of time.

ParkEasy also supports electric vehicle (EV) charging bay reservations,

allowing EV owners to book charging spots in advance.

Furthermore, users can easily manage their reservations within the app,

including checking and canceling reservations. The app provides clear

41

navigation instructions to the reserved parking spot and uses a parking lock

system to ensure the spot remains available until the user's arrival.

Moreover, the app operates on a credit-based system, where users can

purchase credits to make reservations. Payments can be made using credit or

debit cards and online banking. New users receive free credits upon registration,

and more credits can be earned through referral programs and promotional codes.

ParkEasy also provides free insurance coverage against break-ins or theft for

users parking at participating malls, offering an added layer of security

(ParkEasy, 2016).

Lastly, ParkEasy offers memberships such as Shell Recharge Gold,

MyEVOC, and BonusLink (ParkEasy, n.d.). Shell Recharge Gold gives users

longer reservation grace periods and cheaper charging rates at Shell Recharge

stations. The MyEVOC membership provides special benefits for EV owners,

making it easier and more convenient to charge their vehicles. With BonusLink,

users can earn points for every transaction made through the ParkEasy app by

linking their accounts.

2.7.4 Flexi Parking

Flexi Parking is a Malaysian mobile app developed by Leading Innovative

Technologies and Systems Sdn Bhd (LITS). It helps users pay for both on-street

and off-street parking easily without the need for physical coupons or tickets.

The app supports over 40 municipal councils across 9 states, including popular

areas like Selangor, Smart Selangor Parking, and Kuala Lumpur, Wilayah

Parking (Apple, n.d. a). With its wide coverage, users can pay for parking in

multiple areas using just one app.

Parking in Flexi Parking can be paid in just two steps, which are

choosing the vehicle number and selecting the parking duration. Flexi Parking

supports multiple languages, including Bahasa Malaysia, English, and Chinese,

to suit different users (Apple, n.d. a). It also keeps all receipts in digital form,

making it easy to check past transactions or email them when needed.

Flexi Parking works on a prepaid credit system, where users top up

credits in advance using online banking, debit or credit cards, and other payment

methods. One account can manage up to 10 vehicles, making it convenient for

42

families or businesses. The app also allows users to pay for parking compounds

issued by some municipal councils directly through the app, avoiding the need

to visit payment counters (Apple, n.d. a).

In addition to regular parking, the app offers monthly parking passes

for up to six months. It also supports gated off-street parking through QR code

scanning and LPR. Notifications are sent when parking time is about to expire,

helping users avoid getting fined. GPS is used to help users select the correct

municipal council based on their location, reducing the chance of mistakes

during payment (Apple, n.d. a).

2.7.5 Summary and Comparison of Existing Applications

Each of the four parking payment applications offers unique features but also

has its limitations. TNG eWallet offers a comprehensive cashless system with

options like LPR, QR-based entry, and pay-on-the-spot methods, while also

offering rewards and ParkInsure coverage. It also supports multiple vehicles of

up to ten per account. However, its LPR functionality is currently limited to only

twelve locations, and users must maintain enough eWallet balance, which may

cause delays if funds are insufficient.

JomParking is recognized for its user-friendly interface, token-based

payment system, and useful features such as insurance renewal reminders,

compound management, and support for up to ten vehicles. It also lets users

extend parking sessions remotely and offers monthly passes. However, its

token-based system may confuse new users. Additionally, it does not provide

guaranteed spot availability and lacks insurance coverage.

ParkEasy distinguishes itself through its advance reservation system,

which includes electric vehicle (EV) charging bay bookings, and further

increases its value by offering insurance against theft or break-ins. In addition,

membership programs such as Shell Recharge Gold, MyEVOC, and BonusLink

offer users additional benefits. While these features are appealing, ParkEasy’s

coverage is limited, and users may also encounter situations where a reserved

parking space is still occupied if the previous user does not leave on time.

Flexi Parking provides the widest coverage nationwide, supporting

over 40 municipal councils across nine states. It enables LPR and QR-based

43

parking, offers monthly passes, compound payments, and multiple vehicle

support for up to ten vehicles, and includes Flexi Protect insurance. Its

additional features, such as multi-language support and digital receipts, further

improve accessibility and usability. However, the application’s limitations

include the risk of credit expiration, dependence on participating municipal

councils, and the potential discontinuation of services in certain areas.

In conclusion, each app has strengths and weaknesses. TNG eWallet

and JomParking provide reliable cashless payment systems, but both are limited

in terms of coverage and guaranteed parking availability. ParkEasy is strong in

reservation and electric vehicle (EV) services, though its use is restricted mainly

to certain locations. Flexi Parking has the widest coverage across Malaysia, but

it faces challenges such as credit expiry and dependence on participating

municipal councils.

Table 2.4: Table of comparison between existing parking applications

Application

Name

Touch ‘n Go

eWallet

Jom Parking ParkEasy Flexi Parking

Payment

Method

Cashless, with

payments

deducted

directly from

the eWallet

balance using

methods such

as LPR, QR

code, or pay-

on-the-spot.

Cashless,

token-based

system with

options such

as QR code,

pay-on-the-

spot, or

monthly

passes.

Cashless,

credit-based

system for

both

reservations

and on-the-

spot

payments.

Cashless,

credit-based

system with

methods

such as LPR,

QR code,

pay-on-the-

spot, or

monthly

passes.

Parking

Types

Supported

On-street and

off-street

On-street

and off-

street

On-street

and off-

street

On-street and

off-street

Multiple

Vehicle

Management

Up to 10

vehicles

Up to 10

vehicles

Multiple

vehicles

under one

Up to 10

vehicles

44

account (not

explicitly

mentioned)

Location

Coverage

Limited (12

locations for

LPR)

Limited,

dependent

on local

council

decisions

Limited Extensive

(Multiple

Malaysian

states)

Booking /

Reservation

No No Parking and

EV charging

reservations

allowed

No

Rewards &

Promotions

Occasional

rewards and

cashback

Promotional

campaigns,

including

free tokens

and special

offers, and

partnership

with brands

Partnerships

with brands

for

exclusive

promotions

Promotions

such as free

credits

Insurance

Coverage

Yes, with

ParkInsure

No Yes Yes, with

Flexi Protect

Token /

Credit

System

No Yes Yes Yes

Compouds

payment

Yes Yes No Yes

What stands

out

Comprehensive

payment

system with

multiple

parking

User

friendly

interface,

provides

reminders

for vehicle

Parking

reservations

and EV

features

Broad

geographic

coverage

(supports

over 40

municipal

45

methods and

rewards

insurance

renewals

councils

across 9

states)

Limitations Currently only

12 locations for

LPR system

No

guaranteed

spot

availability

& no

insurance

coverage

Limited

locations,

reserved

spaces may

still be

occupied by

previous

users

Limited to

certain

councils and

may be

discontinued,

credit

expiration

risk

2.8 Software Development Methodologies

Software development methodologies are structured approaches used to plan,

manage, and control the development of software systems. Each methodology

defines how a project should be carried out by outlining steps, roles,

responsibilities, communication standards, activities, and expected deliverables

throughout the software development life cycle. These stages include

requirements gathering, planning, analysis, design, implementation, testing,

deployment, and maintenance. The wide variety of methodologies available

allows teams and organizations to select the one that best suits their specific

needs, depending on factors like project size, complexity, timeline, team

structure, and the level of flexibility required.

Selecting the right methodology is a crucial decision in any software

project, as it can significantly impact cost, timeline, quality, and user

satisfaction. However, there is no one-size-fits-all solution, as each project has

unique goals and constraints. Therefore, it is important to study and compare

different approaches to determine the most effective one for a specific context.

Successful outcomes often rely on adopting a management structure that aligns

with project needs and objectives.

46

2.8.1 Waterfall Model

Figure 2.10: Waterfall Methodology (Burtescu et al., 2014)

The Waterfall Model is widely known as the earliest approach to software

development. The concept was introduced by Winston W. Royce in 1970 and

gained prominence throughout the 1970s and 1980s (A.K.M Zahidul Islam and

Ferworn, 2020). It is often referred to as a “top-down” or “linear sequential”

development model. The model is heavily inspired by traditional engineering

and construction workflows.

One of the key characteristics of the Waterfall Model is its linear

sequential flow, where each phase flows into the next like a waterfall with no

overlapping or iteration between phases. Each phase must be fully completed

with clearly defined deliverables before proceeding to the next. This model

relies heavily on documentation, which supports each stage of the process

(A.K.M Zahidul Islam and Ferworn, 2020). Since all planning and design are

done at the beginning, the process becomes predictable (Burtescu et al., 2014).

However, it will be difficult to make changes or feedback once development has

started. Feedback from stakeholders usually happens only after the system has

been built and tested.

The Waterfall Model has several advantages. It is simple and easy to

understand, which makes it suitable for teams with limited experience or

47

resources. The clearly defined stages make the process easy to manage and

implement. Additionally, the structured schedule makes it easier to allocate time

and resources for each phase (Vishal Chandra, 2015).

However, the model also has multiple drawbacks. One of the main

disadvantages is its inflexibility and rigid structure, which makes it difficult to

revisit earlier phases for corrections or improvements. The lack of feedback

between phases means that errors or misunderstandings might only be

discovered late in the development cycle, leading to costly and time-consuming

revisions. Moreover, since each phase must be completed before the next begins,

any delays or issues can significantly affect the project schedule (Vishal

Chandra, 2015).

2.8.2 Iterative and Incremental Development (IID) Model

Figure 2.11: IID Methodology (Burtescu et al., 2014)

The Iterative and Incremental Development model is a development approach

where the software is built step-by-step through iterative design and incremental

delivery. Development starts with a basic version of the system based on initial

requirements. After each iteration, feedback is collected from the project owner

or stakeholders, and necessary changes or enhancements are made. The model

is improved and extended in each cycle without discarding previous work

(Burtescu et al., 2014). The model emphasizes design over documentation and

ensures that feedback is received after each iteration is completed. This helps

maintain alignment with user expectations and project goals throughout

development (Burtescu et al., 2014).

In iterative design, requirements and designs are revised throughout the

development lifecycle, emphasizing continuous improvement. The team

48

continuously learns and adapts based on what is built, tested, and observed in

each cycle. This feedback loop allows the team to identify areas of improvement,

correct misunderstandings, and make informed decisions for the next iteration.

In doing so, the system evolves to better match user expectations. In incremental

design, the system is delivered in parts. Each part adds new functionality, and

these parts are tested independently before being integrated (Suhasini Gadam,

2023). While early increments may have limited functionality, they are fully

operational. As more increments are added, the system gradually becomes a

complete and functional application (Saeed et al., 2019). This ongoing

development allows potential issues to be detected early, reducing the risk of

costly revisions later in the process.

The IID model offers key advantages such as early delivery of a

working product, allowing users to provide feedback from the beginning. This

frequent feedback loop helps align the system with actual user needs. The model

is flexible, making it ideal for projects with changing requirements, and it

supports early issue detection, which improves risk management. Continuous

testing across iterations also enhances overall software quality.

However, IID also comes with drawbacks. Frequent changes can lead

to scope creep, causing the project to exceed its original goals. Planning

becomes complex when future requirements are unclear, and the repeated cycles

may demand more time and resources. Additionally, rushed iterations can result

in technical debt if code quality is compromised, and poor planning may cause

integration issues between increments.

2.8.3 Agile Methodologies

Agile methods were developed to address challenges in traditional software

development, especially in fast-changing environments. These methodologies

emphasize flexibility, collaboration, and iterative development, making them

ideal for projects where requirements evolve over time. According to Miller

(2001), Agile breaks projects into short, manageable steps, eliminating

unnecessary work and enabling quick fixes. It prioritizes teamwork and

communication over rigid processes.

49

2.8.3.1 Scrum

Figure 2.12: Scrum Methodology (Korkut, 2023)

Scrum is an agile, lightweight framework created for managing complex

product development, especially in software engineering. The concept was first

introduced by Hirotaka Takeuchi and Ikujiro Nonaka in 1986. Unlike the

traditional Waterfall model, which relies on sequential stages, Scrum supports

iterative and incremental development, allowing teams to adapt quickly to

changing requirements (Apoorva Srivastava, Sukriti Bhardwaj and Shipra

Saraswat, 2017).

The Scrum methodology is based on three main roles: the Product

Owner, Scrum Master, and the Development Team. The Product Owner decides

what needs to be built and sets the priorities. The Scrum Master helps the team

follow Scrum rules and clears up any problems they face. The Development

Team is a group of skilled members who work together to build and deliver a

part of the product at the end of each sprint (Sakshi Sachdeva, 2016).

A key element of Scrum is the sprint, a time-boxed iteration typically

ranging from one to four weeks, where the team works to complete a part of the

product. Each sprint begins with a Sprint Planning meeting where the team

defines the Sprint Goal and selects items from the product backlog to be

completed. Throughout the sprint, the team participates in daily Scrum meetings

to discuss progress, identify obstacles, and coordinate efforts. At the end of each

sprint, the team holds a Sprint Review to present the increment to stakeholders

for feedback and a Sprint Retrospective to reflect on the process and identify

areas for improvement (Sakshi Sachdeva, 2016).

50

The advantages of Scrum include its adaptability, which makes it

suitable for dynamic project environments where requirements frequently

change. It also improves communication through regular team meetings and

stakeholder involvement. This leads to early and continuous delivery of

software, with faster feedback and adjustments. Additionally, Scrum is cost-

effective because it identifies and resolves issues early in the process, reducing

the need for expensive rework. The methodology also improves product quality

through continuous testing and integration, ensuring that each increment meets

the desired standards.

Scrum also has some challenges, including requiring a skilled and self-

managing team for successful adoption, making it difficult to use in

organizations with rigid hierarchies or insufficient training. Moreover, misuse

or partial adoption of Scrum practices, often referred to as "ScrumBut", can

reduce its effectiveness (Sakshi Sachdeva, 2016). Scrum also doesn’t include

detailed engineering practices, so teams often combine it with other methods

like Extreme Programming (XP) (Sakshi Sachdeva, 2016). For big or complex

projects, using Scrum alone can be difficult, and extra frameworks like SAFe or

Nexus may be needed.

2.8.4 Summary and Comparison of Methodologies

The Waterfall model is most suitable for projects with well-defined, stable

requirements and a clear end goal. It is ideal in environments where detailed

planning can be done upfront and changes during development are unlikely.

Industries such as healthcare, aerospace, and defense often favor Waterfall due

to its emphasis on formal documentation, regulatory compliance, and structured

processes. Waterfall works best when the project scope, timeline, and budget

are fixed and when stakeholders can finalize requirements early in the process.

However, it is not suited for projects where requirements may evolve, as it offers

little flexibility and delays feedback until late in the development cycle. This

makes it less appropriate for complex, dynamic, or user-driven projects.

IID is most suitable for projects where requirements are expected to

evolve or when the final product is not fully defined at the beginning. It is ideal

for uncertain projects, exploratory development, or when early delivery of core

51

features is critical. By delivering the software in smaller, manageable

increments, IID supports continuous feedback and quicker issue resolution,

making it beneficial in time-sensitive or innovation-driven contexts. It is also

useful when future improvements are anticipated after initial deployment.

However, IID may not be the best choice for projects that require a rigid

structure, fully defined deliverables from the start, or a lot of planning upfront.

Without careful control, the flexibility of IID can lead to integration challenges

and uncontrolled changes in scope.

Scrum is most effective in fast-paced, complex projects where

requirements are likely to change frequently. It is suitable for projects that focus

on adaptability, close collaboration, and frequent delivery of working software.

It works best for projects that rely on regular customer feedback and team-based

decisions, especially when teams are cross-functional and self-organizing.

However, Scrum may not suit projects with fixed scope, rigid deadlines, or

limited team freedom. It also requires a certain level of Agile experience and

defined roles like Scrum Master and Product Owner, which may not be practical

in smaller or more traditional teams. In such cases, alternative methodologies

may offer a better fit.

Table 2.5:Table of differences between methodologies compared

 Waterfall IID Scrum

Development

Style

Linear and

sequential

Build in

increments and

improve in

iterations

Agile, iterative,

and time-boxed

Flexibility Very low Medium Very high

User

Involvement

Only at the

beginning and

end

Moderate

(feedback after

increments)

Very high

(constant

feedback every

sprint)

Risk

Management

High risk (late

discovery of

issues)

Moderate (issues

found after each

increment)

Low (issues

found early and

52

corrected

quickly)

Delivery Single delivery at

the end

Partial delivery

after each

increment

Working product

delivered at the

end of each sprint

Time Estimation Predictable (if

requirements are

stable)

Moderate Unpredictable

Project Type

Suitability

Best for clear,

fixed

requirements,

small projects

Good for

evolving

requirements,

medium projects

Best for complex,

changing projects

2.9 Development Framework

Choosing the right frameworks for the frontend, backend, and database is

essential for building an efficient, scalable, and maintainable application. The

frontend determines how users interact with the app, the backend handles the

business logic and data processing, and the database stores and retrieves the data.

In this section, we will compare different frameworks and tools to evaluate their

suitability for developing a web and mobile app for a parking payment system.

2.9.1 Frontend Framework

2.9.1.1 React Native (with React Native for Web)

React Native is an open-source framework developed by Meta that enables

developers to build cross-platform mobile applications using JavaScript and

React. Unlike traditional web-based frameworks, React Native uses native

components instead of HTML elements, allowing applications to achieve near-

native performance on both Android and iOS platforms while maintaining a

single shared codebase. This approach simplifies development and reduces

maintenance effort compared to creating separate native apps for each platform.

React Native operates by bridging JavaScript code to native mobile

components, ensuring that applications deliver smooth performance and a

consistent user experience. The framework supports features such as hot

53

reloading, flexible styling, and integration with native modules, which enhance

development efficiency and scalability. Because of its architecture, developers

can reuse a significant portion of code across multiple platforms while still

having the flexibility to implement platform-specific features when needed.

In addition to mobile platforms, React Native can be extended to

support web development through React Native for Web. This library bridges

React Native components to the React DOM, enabling the same codebase to run

seamlessly in web browsers. It allows developers to build applications that

function consistently across web and mobile without rewriting core logic. React

Native for Web leverages modern React features such as function components

and hooks, and converts native components into standard web elements while

maintaining their layout and design behavior. This makes it a practical choice

for projects that require both mobile and web interfaces with a unified user

experience.

Overall, React Native (with React Native for Web) provides a powerful

and flexible solution for cross-platform application development. It offers the

performance and feel of native mobile apps while maintaining the adaptability

of web technologies. Major companies such as Meta, Microsoft, and Shopify

use React Native for their production applications, demonstrating its reliability

and scalability for real-world use.

2.9.1.2 Flutter

Flutter is an open-source UI framework developed by Google for building cross-

platform applications from a single codebase. It allows developers to create

applications for Android, iOS, web, and desktop platforms using the Dart

programming language. Flutter’s key advantage lies in its high-performance

rendering engine, known as Skia, which allows it to draw UI elements directly

on the screen rather than relying on native platform components. This approach

ensures consistent appearance and performance across platforms.

Flutter provides a rich set of customizable widgets, enabling

developers to create visually appealing and highly responsive interfaces. Its hot

reload feature allows developers to instantly view code changes without

restarting the application, which significantly speeds up the development and

54

debugging process. Flutter also includes a powerful layout system that supports

adaptive design, ensuring that applications function well on devices with

different screen sizes and resolutions.

For web development, Flutter compiles Dart code to JavaScript,

allowing applications to run efficiently in modern browsers. Although Flutter’s

web support continues to evolve, it already enables the deployment of

lightweight and visually consistent web interfaces that share the same business

logic and UI design as mobile apps. This makes it an attractive option for

projects aiming to achieve a unified design system across multiple platforms.

Overall, Flutter offers an efficient and versatile framework for building

cross-platform applications with a single codebase. Its strong performance,

expressive UI components, and growing community make it a leading choice

for both mobile and web application development.

2.9.1.3 Ionic React

Ionic React is a hybrid application development framework that integrates the

Ionic UI library with the React ecosystem to build cross-platform web and

mobile applications. It uses standard web technologies, such as HTML, CSS,

and JavaScript, to create applications that run in a WebView for mobile or

directly in a web browser. Ionic is designed with a mobile-first approach and

provides a native-like look and feel through a rich collection of pre-built,

mobile-optimized UI components, as well as tools for navigation, routing,

gestures, and animations. It works well with popular JavaScript frameworks like

React, Angular, and Vue, making it ideal for developers already familiar with

these technologies (Haire, n.d.). This approach enables developers to maintain

a single codebase for multiple platforms, reducing development time and effort.

Ionic React emphasizes UI consistency through its pre-built and

customizable components that follow modern mobile design principles such as

Material Design and iOS Human Interface Guidelines. The framework

integrates with Capacitor, a native runtime that allows access to device hardware

features like the camera, GPS, and file system. This enables web-based

applications to function more like native mobile apps while maintaining the

flexibility of web technologies.

55

For web deployment, Ionic React applications can run directly in

browsers with minimal modification, making it suitable for projects that

prioritize rapid development and easy maintenance. However, since it relies on

a WebView for mobile platforms, its performance may not match that of fully

native or compiled frameworks like React Native or Flutter. Despite this, Ionic

React remains a popular choice for developing applications that need to reach

both web and mobile users efficiently.

In summary, Ionic React provides a balanced solution between web

flexibility and mobile accessibility, making it ideal for applications that require

cross-platform compatibility without complex native development.

2.9.1.4 Summary and Comparison of Frontend Framework

When comparing React Native, Flutter, and Ionic React, several key factors

influence their suitability for cross-platform development. React Native excels

in scenarios where developers aim to build mobile and web applications with a

shared codebase using the React ecosystem. It provides near-native performance

by bridging JavaScript components to native platform APIs. Its ability to extend

to the web through React Native for Web makes it suitable for teams seeking a

unified development experience across platforms.

Flutter is best suited for applications requiring high performance,

custom UIs, and complex animations. Since it compiles directly to native code,

Flutter delivers smooth performance and a consistent UI across devices.

However, its larger app size and the need to learn the Dart language can pose

challenges for developers who are new to the framework.

Ionic React, on the other hand, provides an accessible entry point for

developers familiar with web technologies such as HTML, CSS, and JavaScript.

It enables rapid development for both mobile and web applications through a

single codebase and integrates with Capacitor for accessing native device

features. However, as it primarily relies on WebView rendering, it may not

match the performance of frameworks that compile to native code, especially in

graphically intensive applications.

Overall, React Native offers the best balance between performance and

code reusability, Flutter delivers superior native-like performance with

56

flexibility in design, and Ionic React provides simplicity and fast development

cycles for web-oriented teams.

Table 2.6: Table of differences between frontend frameworks compared

Feature React Native Flutter Ionic React

Programming

Language

JavaScript with

React syntax

Dart JavaScript with

HTML, CSS, and

React

Performance Good with native-

feel

Excellent with

native-like speed,

especially on

mobile

Moderate as

WebView-based

and may be slightly

slower for complex

apps

UI Look Native look on

web and mobile

Consistent UI

across platforms

with custom

widgets

Web-style UI

Learning

Curve

Easy if familiar

with React

Steeper as need

to learn Dart and

Flutter structure

Easiest if familiar

with web

development and

React

App Size Moderate Larger as Flutter

bundles its

rendering engine

Light as it relies on

the browser’s

engine

Web Support Supported via

React Native for

Web

Available but

still maturing

Excellent, designed

for web-first

applications

Mobile

Support

Strong native

performance for

Android and iOS

Strong native

performance for

Android and iOS

Supported via

WebView with

Capacitor bridge

Use Case Best for apps with

shared mobile &

Priority on

beautiful UI,

animation-heavy

Priority on rapid

development, web-

first experience

57

web code using

React

apps, and term

scalability

2.9.2 Backend Framework

2.9.2.1 NestJS

NestJS is a framework for building server-side applications with Node.js. It is

built with TypeScript and also supports regular JavaScript. NestJS stands out

because it provides a clear structure for organizing applications, making it easier

to manage and scale large projects. The framework follows a modular approach,

where the code is divided into modules, controllers, and services. This helps

separate responsibilities within the application, making the code cleaner and

more maintainable. NestJS is inspired by Angular’s architecture, so developers

familiar with Angular may find it easier to learn. NestJS uses Express as its

default web server, but developers can also choose Fastify for better

performance. While Nest adds a layer of abstraction, it still allows full access to

the Express or Fastify features. Additionally, it supports modern programming

styles like object-oriented, functional, and functional reactive programming

(NestJS, n.d.). NestJS also offers a strong foundation for building reliable and

scalable applications and is suitable for teams that value clean architecture,

maintainability, and good development practices.

Despite that, NestJS has some limitations. It has a steep learning curve,

particularly for developers unfamiliar with TypeScript or advanced

programming concepts. It also requires a lot of repetitive code, which can feel

unnecessary for small projects. Additionally, NestJS may introduce some

performance overhead due to its use of decorators and abstraction layers. Lastly,

its community is still growing, which can make finding solutions for specific

issues more challenging compared to more established frameworks.

2.9.2.2 Laravel

Laravel is a modern PHP framework known for its elegant syntax and powerful

features that simplify web application development. It follows the Model-View-

Controller (MVC) pattern, helping developers organize their code and maintain

separation of concerns. Laravel offers built-in tools for routing, session

58

management, caching, authentication, and more, reducing the need for third-

party packages. It also provides robust security features, such as protection

against SQL injection, CSRF, and XSS, ensuring secure applications out of the

box (Sehouli, 2025). One of Laravel's key strengths is its scalability. The

framework is designed to handle large workloads and can be easily scaled

horizontally using distributed caching systems like Redis (Laravel, n.d.).

Laravel also supports task scheduling and job queues, making it easier to

manage background processes such as email sending or file uploads. With a

large and active community, Laravel also benefits from a rich ecosystem of

packages and resources. The framework also supports unit testing and provides

tools for debugging and error handling, enhancing the overall developer

experience.

However, Laravel's main disadvantage is its performance, as it tends to

be heavier than other PHP frameworks, which may cause slower response times

in high-traffic applications. The learning curve can also be steep for beginners,

especially with the large number of the framework’s features and tools.

Laravel’s heavy reliance on third-party packages can also lead to extra

dependencies, making it harder to manage as the project grows. Additionally,

deploying Laravel can be more complicated than other frameworks as it requires

specific server environments and tools.

2.9.2.3 Summary and Comparison of Backend Framework

NestJS and Laravel are both powerful frameworks, but they fit different

ecosystems and use cases. NestJS is a TypeScript-based framework built on

Node.js, ideal for scalable, high-performance applications, especially those

requiring microservices, APIs, and real-time features. It's well-suited for

developers familiar with JavaScript/TypeScript and offers flexibility and

modularity. However, it has a steeper learning curve and might be more

complex for beginners. Meanwhile, Laravel is a PHP-based framework that

focuses on rapid development with an elegant syntax and a robust set of built-

in tools like Eloquent ORM, Blade templating, and Artisan CLI. It is best for

web applications and traditional server-rendered projects. Laravel’s ease of use,

59

excellent documentation, and strong ecosystem make it great for developers

who prefer PHP.

Table 2.7: Table of differences between backend frameworks compared

Feature NestJS Laravel

Approach Structured, modular, and

built for scalability

MVC framework

Performance High performance Good

Development

Speed

Slower for small projects

but faster for large-scale

applications

Fast development with lots

of built-in tools

Scalability Excellent scalability with

built-in support

Scalable but requires manual

configuration for advanced

features

Built-in Features Many Many

Learning Curve Steeper Moderate

Database

Integration

Supports TypeORM or

Sequelize for ORM

Eloquent ORM that is built-

in for smooth database

integration

Ecosystem Built on Node.js, uses npm

but with additional tooling

and structure

Huge PHP ecosystem with

tools like Composer, Laravel

Mix, Eloquent ORM

Testing Built-in testing tools like

Jest

Built-in testing tools like

PHPUnit

Use Case Best for large-scale,

enterprise-level, or

complex applications

Best for full-stack web

applications, especially with

a database and admin panel

60

2.9.3 Database

2.9.3.1 MySQL

MySQL is a popular open-source relational database management system

(RDBMS) widely used for storing and managing data. It is reliable, fast, scalable,

and easy to use, making it essential for high-traffic apps like Facebook, Netflix,

Uber, Airbnb, Shopify, and Booking.com (Erickson, 2024). MySQL stores data

in tables organized by schemas and uses SQL (Structured Query Language) for

querying and managing data. It supports ACID transactions, ensuring data

consistency even during system failures, and can handle a large number of

concurrent connections. As MySQL is open source, it allows developers to

freely access and modify its code, making it a cost-effective solution for both

small projects and enterprise-level systems. It supports a variety of data types,

including traditional SQL data and JSON, enabling flexibility in how data is

stored and accessed. MySQL also scales efficiently, with native replication and

failover features that ensure high availability and performance under demanding

conditions. Over its nearly 30-year history, MySQL has developed a robust

community that continually improves the system. It is compatible with various

programming languages like Java, Python, and PHP, and is known for its easy

setup and management. MySQL’s flexibility, low cost, and support for both

SQL and NoSQL applications make it a reliable choice for developers across

various industries (Erickson, 2024).

However, MySQL has some limitations, including a lack of advanced

features for complex queries, recursive operations, and certain joins, which can

be restrictive for complex applications. It also doesn't fully comply with SQL

standards, leading to potential compatibility issues when migrating to other

databases. MySQL is also less extensible than systems like PostgreSQL,

limiting customization options for developers. While it offers some JSON

support, MySQL's NoSQL capabilities are weaker compared to databases like

MongoDB or PostgreSQL, making it less suitable for handling unstructured or

semi-structured data.

61

2.9.3.2 PostgreSQL

PostgreSQL is a powerful, open-source object-relational database system that

extends SQL and is known for its reliability, data integrity, and extensibility.

Major companies such as Apple, IMDB, Instagram, Reddit, Skype, Spotify, and

Twitch use PostgreSQL due to its powerful features, flexibility, scalability, and

cost-effectiveness (Romanowski, 2020). It is ACID-compliant, compatible with

all major operating systems, and offers robust features such as the PostGIS

geospatial extender for better spatial data handling. PostgreSQL is highly

extensible and allows developers to define custom data types, functions, and

even use different programming languages without recompiling the database. It

adheres closely to SQL standards and supports advanced features like indexing,

multi-version concurrency control, and parallel query processing. PostgreSQL

also offers strong disaster recovery capabilities, including write-ahead logging,

replication, and point-in-time recovery. Security features include robust

authentication methods and access controls, while its extensibility allows for a

wide range of customizations, including stored functions and foreign data

wrappers (The PostgreSQL Global Development Group, n.d.). With its

scalability and ability to manage large data sets, PostgreSQL is widely used in

both small and enterprise-level applications.

However, However, PostgreSQL's advanced features can lead to

performance overhead, making it less optimal for read-heavy applications. It

can also be complex to configure and manage, requiring more effort and

expertise to optimize the system, which could lead to longer setup times and

higher maintenance costs. Additionally, PostgreSQL has a steeper learning

curve due to its extensive features, making it more challenging for beginners.

2.9.3.3 Summary and Comparison of Database

When comparing MySQL and PostgreSQL, the main differences are their

features, performance, and extensibility. MySQL is better for applications that

need fast read operations, as it offers faster performance and easier management,

making it ideal for applications like e-commerce platforms and websites with

high traffic. Its simplicity and speed make it a good choice for small to medium-

sized projects. Meanwhile, PostgreSQL, which is known for its advanced

62

features and scalability, performs well in complex applications requiring high

data integrity, custom data types, and extensibility. It is fully SQL-compliant,

supports complex queries, and provides great disaster recovery features, making

it ideal for large-scale applications, analytical processing, or geospatial data.

Table 2.8: Table of differences between the databases compared

Feature MySQL PostgreSQL

Type Relational DBMS Object-relational

DBMS

Performance Fast for read-heavy

operations

Better for complex

queries & write-heavy

Data Integrity Decent (less strict) Strong (strict ACID

compliance)

Complex Queries Basic joins & subqueries

supported

Advanced joins,

CTEs, window

functions

Geolocation (GIS) Basic support via

MySQL Spatial

Extensions

Advanced with

PostGIS

Ease of Setup Simple Slightly more complex

63

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter outlines the methodology and work plan for the parking system

project. It covers the chosen methodology, which will guide the project’s

development process, as well as the Work Breakdown Structure (WBS), which

breaks the project into smaller tasks. A Gantt chart is provided to visualize the

project timeline and track progress. Additionally, the chapter discusses the

development tools and techniques that will be utilized throughout the project to

ensure efficient and effective implementation.

3.2 Software Development Methodology: Scrum Methodology

The software development of the Parking Payment System for License Plate and

Vehicle Attribute Recognition will adopt the Scrum methodology. Scrum was

chosen due to its flexibility, iterative nature, and ability to adapt to evolving

requirements, which is important in this project with the integration of advanced

AI techniques. The development is divided into Sprints, with each producing

usable increments or improvements of the system.

3.2.1 Phase 1: Initiation

The first phase involves initiating the project by clearly defining the overall

vision. The objective of this project is to build a system that automates parking

transactions through license plate and vehicle attribute recognition powered by

multimodal AI models. This system aims to streamline the parking experience

for drivers and parking operators by leveraging advanced AI technologies to

enable seamless, secure, and efficient payment processing.

The key stakeholders for this project include drivers, parking operators,

and system administrators. Drivers will use the system to view parking rates,

activate auto-payments, and check their parking history. Parking operators will

use the system to monitor parking activity through dashboards and reports, as

well as manage parking rates and related details. System administrators will use

64

the system to manage account approvals, review support tickets, and oversee

changes requested by parking operators.

Although Scrum methodology is traditionally used for team-based

development, its practices are adapted in this project for a single-developer

environment. The Scrum roles are assigned where the developer takes on the

responsibilities of both the Scrum Master and Developer roles, while the

supervising lecturer or the developer assumes the role of Product Owner. This

approach ensures that the project remains organized, iterative, and focused on

delivering incremental improvements.

An initial Product Backlog is created based on the outlined project

scope. Key features in the Product Backlog include user account registration,

vehicle registration, activation of auto-payment, viewing of parking rates, fraud

prevention mechanisms, support ticket submission and management,

management of parking zones by operators, user account management by

administrators, and analytical dashboards for both operators and administrators.

This initial backlog forms the foundation for planning and prioritizing tasks

during the subsequent phases of the project.

3.2.2 Phase 2: Planning and Estimation

In the Planning and Estimation phase, the development process begins by

conducting Sprint Planning sessions to prioritize the items listed in the Product

Backlog. Each feature or requirement is evaluated based on its importance and

contribution to the overall project vision, ensuring that critical functionalities

are addressed early in the development cycle.

Major features are broken down into smaller, manageable User Stories

to make the development tasks clearer and more achievable. For example, a

User Story might be framed as "As a driver, I want to register my vehicle so I

can activate auto-payment." This method allows for a user-centered approach,

ensuring that all system functionalities align closely with real-world needs and

user expectations.

Effort estimation is then carried out for each User Story using story

points or simple relative sizing. This helps in understanding the complexity and

workload associated with each task, helping in better Sprint planning and time

65

management. Each Sprint is set to a duration of two weeks to ensure consistent

development and allow for regular reviews and adjustments.

Sprint Goals are established at the beginning of each Sprint to provide

clear direction and focus. These goals might include completing specific

modules such as the vehicle registration flow, implementing basic login and

authentication functionality, or integrating early versions of the multimodal AI

recognition system. Setting clear Sprint Goals helps ensure that each Sprint

moves the project closer to completion.

Additionally, the phase involves creating a WBS to break down the

project into manageable tasks and a Gantt chart to schedule and track these tasks.

These help ensure effective project management and provide a clear visual

timeline to monitor progress, leading to better organization, resource allocation,

and timely project completion. The development tools for the project should

also be decided, including programming languages, frameworks, and AI model

libraries. It also involves system design, where it defines functional and non-

functional requirements, creates use case diagrams and use case descriptions to

outline system interactions, designs interface flow diagrams to map user

interactions, and develops user interface prototype designs to visualize the final

product.

3.2.3 Phase 3: Sprint Execution

The Sprint Execution phase focuses on implementing the features defined

during Sprint Planning. Development activities are initiated by working on both

backend and frontend components. Backend development includes creating

modules for account management, payment handling, support ticketing, and

data analytics. These backend services are the foundation that supports secure

transactions, user management, and operational reporting for both drivers and

parking operators. Meanwhile, frontend development is carried out to build

intuitive and responsive mobile application interfaces. Separate but

complementary interfaces are designed for drivers and parking operators,

ensuring that each user group can access the functionalities they require. Besides

that, user experience and usability are prioritized to enhance system

performance and promote widespread adoption.

66

Another part of this phase includes the integration of multimodal AI

models for license plate and vehicle attribute recognition. The system

incorporates AI models to automatically identify vehicles and activate auto-

payment. Significant efforts are made to ensure that the AI components are

robust and capable of operating under real-world conditions. Prompt

engineering techniques are applied to optimize model performance, ensuring

reliable operation under real-world conditions. Data preprocessing, model

evaluation, and backend integration further strengthen the AI component,

supporting accurate recognition and smooth automated parking transactions.

Moreover, Daily Scrum meetings are conducted in this phase to monitor

development progress, identify and resolve any obstacles, and adjust task

priorities as necessary. Even as a solo developer, brief daily reflections are held

to assess completed work, plan upcoming tasks, and ensure that the Sprint

remains on track. Throughout the Sprint, the Sprint Backlog is continuously

updated to reflect the current status of tasks, allowing for better tracking,

transparency, and management of the development workflow.

3.2.4 Phase 4: Review and Retrospective

At the end of each Sprint, a Sprint Review is conducted to evaluate the progress

made and demonstrate the completed features, where the key functionalities are

presented to gather feedback. Feedback may be collected from the supervising

lecturer acting as the Product Owner, project moderator during the presentation,

or from mock users simulating the roles of drivers and parking operators. This

feedback is crucial for validating the system’s functionality and ensuring that

the development remains aligned with user needs and project objectives.

Following the Sprint Review, a Sprint Retrospective is held to reflect

on the overall development process. During the retrospective, the project

examines what aspects of the Sprint went well, what challenges were

encountered, and what areas require improvement. This continuous reflection

helps identify workflow obstacles and shape better practices for future Sprints.

Action items are documented at the end of each retrospective session. These

may include steps such as improving testing procedures, enhancing user

interface designs, optimizing AI model performance, or refining project

67

management approaches. The lessons learned and adjustments made during this

phase contribute significantly to the continuous improvement of the system

throughout the project lifecycle.

3.2.5 Phase 5: Finalization and Release

In the Finalization and Release phase, the primary focus is on completing all

necessary testing and preparing the system for deployment. Comprehensive

system testing is conducted, covering functional tests to verify the correct

operation of features, usability tests to ensure a smooth and intuitive user

experience, and performance tests to evaluate the accuracy and robustness of

the multimodal AI models for license plate and vehicle attribute recognition.

Any issues identified during testing are addressed immediately to ensure a

refined and reliable system.

Once testing is completed, the mobile application prototype is finalized

and deployed, ready for demonstration and evaluation purposes. Alongside the

deployment, essential documentation such as user guides, technical

documentation, and the final project report is prepared to support users and

stakeholders in understanding and operating the system. These documents serve

to enhance the project's professionalism and completeness.

A final presentation and system demonstration are conducted to

showcase the project’s outcomes. This provides an opportunity to highlight key

features, demonstrate the effectiveness of the AI models, and explain how the

system meets the original project objectives. Other than software deliverables,

research findings from developing and evaluating the License Plate and Vehicle

Attribute Recognition models are included in the final report. This ensures that

both the practical implementation and research findings are documented and

presented as part of the project's completion.

3.2.6 Justification for Scrum Methodology

Scrum is selected as the methodology for this project because it provides a

flexible and structured approach that suits the project's needs. Scrum’s iterative

approach enables the quick development of key modules while managing the

growing complexity of integrating multimodal AI models. Since fine-tuning and

68

testing the AI components often bring new challenges, using Scrum helps the

team adapt quickly during development.

Furthermore, Scrum’s focus on incremental delivery ensures that a

working prototype is always ready for demonstration and feedback. This

continuous delivery of functional features helps detect issues early and align the

system more closely with stakeholder expectations. Each Sprint produces

tangible outcomes that can be evaluated and improved, enhancing the quality

and robustness of the final system.

Another key advantage of Scrum is its flexibility in accommodating

changes. Since the performance of AI models might require frequent

adjustments based on real-world test results, and the need to refine app

functionalities to meet user feedback, Scrum’s flexibility allows these changes

to be integrated smoothly without disrupting overall project progress. This

makes Scrum a highly effective and practical choice for managing the technical

and research needs of the project.

3.3 Project Planning and Scheduling

In order to plan and organize the project effectively, project planning tools such

as the WBS and Gantt chart will be used. The WBS will help break down the

overall project into smaller, manageable tasks to ensure that all necessary work

is clearly defined. The Gantt chart will be used to schedule these tasks over time,

providing a visual timeline that helps track progress and ensure timely

completion. Together, these tools will support better organization, resource

management, and project control.

3.3.1 Work Breakdown Structure (WBS)

0.0 Development for License Plate and Vehicle Attribute Recognition Using

Multimodal AI Models

1.0 Project Initialization

1.1 Identify the Importance of the Project

1.2 Identify Problems

1.2.1 Analyze Problem Background

1.2.2 List Problem Statements

69

1.3 Define Project Aim and Objectives

1.4 Propose Project Solution and Approach

1.5 Define Project Scope and Limitations

1.6 Conduct Literature Review

1.6.1 Research on License Plate and Vehicle Attribute Recognition

Systems

1.6.2 Research on Existing Parking Systems and Applications

1.7 Identify Stakeholders

1.8 Requirement Gathering and Elicitation

1.8.1 Questionnaire

1.8.1.1 Plan Questionnaire

1.8.1.2 Request and Obtain Ethical Clearance

1.8.1.3 Distribute Questionnaire

1.8.1.4 Analyze and Interpret Data Collected

2.0 Planning and Design

2.1 Select Software Development Methodology

2.2 Schedule Project Activities

2.2.1 Create Work Breakdown Structure (WBS)

2.2.2 Create Gantt Chart

2.3 Define Functional and Non-Functional Requirements

2.4 Create Use Case Diagrams and Descriptions

2.5 Design Flow Diagrams

3.0 Development and Sprints

3.1 Sprint 1

3.1.1 Sprint Planning

3.1.2 Sprint Execution

3.1.2.1 AI Recognition and Classification Research

3.1.2.1.1 License Plate and Vehicle Attribute

Recognition

3.1.2.1.1.1 Recognition Segmentation

3.1.3 Sprint Testing

3.1.3.1 Perform Bug Fixing and Regression Testing

3.1.4 Sprint Review

70

3.1.5 Sprint Retrospective

3.2 Sprint 2

3.2.1 Sprint Planning

3.2.2 Sprint Execution

3.2.2.1 AI Recognition and Classification Research

3.2.2.1.1 License Plate and Vehicle Attribute

Recognition

3.2.2.1.1.1 Integrating LLM for

Classification

3.2.2.2 AI Model Evaluation and Tuning

3.2.3 Sprint Testing

3.2.3.1 Perform Bug Fixing and Regression Testing

3.2.4 Sprint Review

3.2.5 Sprint Retrospective

3.3 Sprint 3

3.3.1 Sprint Planning

3.3.2 Sprint Execution

3.3.2.1 Account Management Module

3.3.2.1.1 Registration

3.3.2.1.2 Login

3.3.2.1.3 Manage Profile

3.3.2.2 Parking Operator Module

3.3.2.2.1 Register Parking Lot Information

3.3.2.2.2 Manage Parking Lot

3.3.2.2.3 Analytics

3.3.2.2.3.1 View Dashboard

3.3.3 Sprint Testing

3.3.3.1 Perform Unit Testing

3.3.3.2 Perform Integration Testing

3.3.3.3 Conduct UI/UX Testing

3.3.3.4 Perform Bug Fixing and Regression Testing

3.3.4 Sprint Review

3.3.5 Sprint Retrospective

71

3.4 Sprint 4

3.4.1 Sprint Planning

3.4.2 Sprint Execution

3.4.2.1 Driver Module

3.4.2.1.1 Vehicle Management Module

3.4.2.1.1.1 Register Vehicle

3.4.2.1.1.2 Manage Vehicle

3.4.2.1.2 Parking Payment System

3.4.2.1.2.1 Auto-Payment Activation

3.4.2.1.2.2 Emergency Stop Transactions

3.4.2.1.3 Parking History Management

3.4.2.1.3.1 View Parking History

3.4.2.1.4 Parking Information View

3.4.2.1.5 Manage Payment Methods

3.4.3 Sprint Testing

3.4.3.1 Perform Unit Testing

3.4.3.2 Perform Integration Testing

3.4.3.3 Conduct UI/UX Testing

3.4.3.4 Perform Bug Fixing and Regression Testing

3.4.4 Sprint Review

3.4.5 Sprint Retrospective

3.5 Sprint 5

3.5.1 Sprint Planning

3.5.2 Sprint Execution

3.5.2.1 Admin Module

3.5.2.1.1 Manage User Account

3.5.2.1.2 Operator Account Approval

3.5.2.1.3 Operator Request Approval

3.5.2.1.4 Analytics

3.5.2.1.4.1 View Dashboard

3.5.2.2 Notifications and Alerts Module

3.5.2.3 Support Ticket System

3.5.3 Sprint Testing

72

3.5.3.1 Perform Unit Testing

3.5.3.2 Perform Integration Testing

3.5.3.3 Conduct UI/UX Testing

3.5.3.4 Perform Bug Fixing and Regression Testing

3.5.4 Sprint Review

3.5.5 Sprint Retrospective

4.0 Final Integration and Testing

4.1 Perform API Testing

4.2 Perform User Acceptance Testing (UAT)

4.3 Perform Bug Fixing

5.0 Project Closure

5.1 Documentation Finalization

5.2 Handover and Presentation

5.2.1 Prepare Final Project Presentation

5.2.2 Schedule and Conduct Handover Meeting with Stakeholders

5.2.3 Handover Project Code and Documentation to Relevant Teams

5.3 Project Retrospective and Lessons Learned

5.3.1 Conduct Retrospective Meeting

5.3.2 Document Lessons Learned and Best Practices

3.3.2 Gantt Chart

Figure 3.1: Overview of project timeline

Figure 3.2: Project initiation timeline

73

Figure 3.3: Planning and design timeline

Figure 3.4: Development and Sprints Timeline Overview

Figure 3.5: Sprint 1 timeline

Figure 3.6: Sprint 2 timeline

Figure 3.7: Sprint 3 timeline

74

Figure 3.8: Sprint 4 timeline

Figure 3.9: Sprint 5 timeline

Figure 3.10: Final Integration and Testing Timeline

Figure 3.11: Project Closure Timeline

75

3.4 Development Tools and Techniques

3.4.1 Tools and IDEs

3.4.1.1 Enterprise Architecture

Enterprise Architecture (EA) is a conceptual blueprint that shapes the structure

and operation of an organization. It helps to determine how an organization can

effectively achieve its current and future goals (Alexander Gillis, n.d.). In this

project, Enterprise Architecture will be used to design and organize the system

in a clear and structured way. It will guide how different parts of the system

connect and work together. To support this, charts such as use case diagrams

and flowcharts will be created. Use case diagrams will show how users interact

with the system, while flowcharts will map out the steps and processes within

the system. This approach will make it easier to plan, develop, and manage the

system efficiently.

3.4.1.2 Visual Studio Code

Visual Studio Code (VS Code) is a lightweight but powerful source code editor

developed by Microsoft. It supports a wide range of programming languages

and comes with built-in features such as debugging, version control integration,

and intelligent code completion (Visual Studio Code, n.d.). In this project,

Visual Studio Code will be used as the main integrated development

environment (IDE) for writing, editing, and managing code for both the frontend

and backend components. Additionally, VS Code offers many extensions that

assist in coding by providing syntax highlighting, code formatting, snippets, and

AI-powered suggestions, which help to improve development efficiency and

code quality.

3.4.1.3 Git and GitHub

Git is a version control system that allows developers to track changes in their

codebase over time. It helps manage different versions of the project, making it

easy to identify and fix issues. On the other hand, GitHub is a cloud-based

platform that hosts Git repositories and provides a space for developers to

collaborate on code by sharing and managing their repositories. In this project,

I will use Git and GitHub to track changes, manage versions, and maintain a

76

history of the project to easily reference older versions of the code when needed.

I will also use branches to test new functionalities without affecting the main

codebase. Additionally, GitHub will act as a backup, ensuring the project is

securely stored and accessible from anywhere. These tools will help streamline

development, improve organization, and provide a safe, collaborative

environment for the project in the future.

3.4.2 Languages

3.4.2.1 Python

Python is a flexible and powerful language used widely in machine learning and

AIIn this project, it is used mainly for prompt engineering to interact with

multimodal models, enabling recognition of license plates and vehicle attributes.

It also supports essential tasks such as data preprocessing, model evaluation,

and API integrations to ensure smooth system functionality.

3.4.2.2 HTML, CSS, JavaScript

HTML, CSS, and JavaScript are the basic tools for web development. These

technologies will be used for developing the frontend of the parking payment

system, ensuring that the user interface (UI) is visually appealing, functional,

and interactive across both mobile and desktop platforms. HTML will provide

the basic structure of the web pages, defining elements such as headers, forms,

and buttons. CSS will be used for styling, ensuring that the application has a

responsive design that adapts to different screen sizes and devices. JavaScript

will bring interactivity to the frontend, handling tasks like form validation,

dynamic content updates, and user interactions.

3.4.2.3 SQL

SQL (Structured Query Language) is a standard programming language used to

manage and manipulate relational databases. It allows users to perform tasks

such as querying data, inserting, updating, and deleting records in a database. In

this project, SQL will be used to manage the data associated with the parking

system. It will store user information and manage parking records. SQL will

also have efficient data retrieval and querying, like fetching a user’s transaction

77

history or checking parking space availability. SQL will ensure data integrity,

providing a secure and consistent way to store and manipulate the system’s

information.

3.4.3 Software Frameworks

3.4.3.1 React Native

In this project, React Native is used as the primary frontend framework for

developing both mobile and web applications using a shared codebase. React

Native enables the development of mobile applications for Android and iOS

using JavaScript and React, while maintaining native-like performance and

interface consistency. To extend the application’s reach to web browsers, the

project also integrates React Native for Web, which allows React Native

components to be rendered on the web through React DOM. This approach

ensures that the application maintains a consistent user interface and

functionality across both mobile and web platforms without the need to build

separate applications. By adopting this framework, the project benefits from

reduced development time, easier maintenance, and a cohesive user experience

across multiple platforms. React Native’s reusable components and modular

structure also enhance scalability and performance, making it an ideal choice

for cross-platform development.

3.4.3.2 Laravel

Laravel is an open-source PHP web framework that follows the MVC

architecture and is known for its elegant syntax, scalability, and developer-

friendly features. It includes built-in tools for database management,

authentication, routing, and security, making it ideal for backend development.

I will use Laravel for the backend of the parking system because of its ability to

efficiently handle user accounts, vehicle registration, payment transactions, and

data processing. Its also integrates with PostgreSQL to ensure reliable data

management.

78

3.4.3.3 Expo

Expo is an open-source framework and platform built around React Native that

makes it easier to develop cross-platform applications. It includes a range of

tools and services to help developers build, deploy, and quickly test apps for

iOS, Android, and the web using a single JavaScript or TypeScript codebase.

Expo includes features like a built-in development server, over-the-air (OTA)

updates, and pre-configured native modules, such as camera, notifications, and

biometrics, which reduces complex native code setup (Kwiatkowski, 2024). In

this project, Expo is used alongside React Native and React Native for Web to

streamline development across both mobile and web platforms. It simplifies

testing and debugging across devices, supports fast iteration through its

development tools, and provides easy integration with native features without

requiring manual configuration of native code. Overall, Expo enhances

development efficiency and ensures a smooth deployment process across all

supported platforms.

3.4.4 Database

3.4.4.1 PostgreSQL

PostgreSQL is an open-source, relational database management system known

for its scalability, reliability, and advanced data handling capabilities. For the

LPR and vehicle attribute recognition in a parking system, PostgreSQL is an

ideal choice due to its ability to efficiently manage large volumes of structured

data, handle complex queries, and store interrelated data like vehicle registration

details and transaction histories. Its support for advanced data types like JSON

is useful for storing vehicle attributes, while its strong security features ensure

data protection. Additionally, PostgreSQL integrates well with Laravel, making

it suitable for building and managing the backend of the parking system and its

AI components.

79

3.5 Summary

This chapter outlines the methodology, WBS, Gantt chart, and tools and

technologies used in the development of the parking system project. The Scrum

methodology is adopted for iterative development and continuous feedback

through short sprints, ensuring flexibility and efficient task management. A

WBS was created to break the project into manageable tasks, while a Gantt chart

visually tracks the project timeline, ensuring timely completion. For the

development process, Enterprise Architecture (EA) guides the overall system

design, Visual Studio Code (VS Code) serves as the primary integrated

development environment (IDE), and Git with GitHub is used for version

control and team collaboration. The frontend will be developed using React

Native, which supports both mobile and web platforms through React Native

for Web. Expo is used to facilitate cross-platform development, testing, and

access to native device features. The backend will be powered by Laravel,

integrated with PostgreSQL for secure and efficient data management, while

Python will handle license plate recognition and vehicle attribute identification.

80

CHAPTER 4

4 PROJECT SPECIFICATION

4.1 Introduction

This chapter presents the project specification, which was developed based on

the analysis of data collected through both primary and secondary research.

Using the insights gathered, the system requirements are defined, followed by

the construction of requirement specifications, use case diagrams, interface flow

diagrams, and initial user interface designs. A preliminary experiment on

vehicle detection and segmentation is also included to evaluate the feasibility of

the proposed approach. Altogether, this chapter provides a comprehensive

overview of the system’s expected functionalities, design structure, and

technical foundation.

4.2 Fact Finding

This project uses both primary and secondary data collection methods to support

the system analysis and development phases. For primary data collection, an

online questionnaire was created and distributed through Google Forms to

gather insights from Malaysian vehicle owners and drivers, who are the main

target users of the proposed system. The questionnaire aims to gather insights

on vehicle usage, commuting habits, challenges faced by road users regarding

current parking payment systems, and user perceptions of automated parking

payment systems using vehicle recognition technology. It is also designed to

understand user expectations for a multimodal AI-based vehicle recognition

system.

For secondary data collection, a literature review explored existing

LPR technologies, vehicle attribute recognition methods, and their applications

in automated parking systems. Sources included journal articles, research papers,

case studies, and technical documentation on both traditional and AI-driven

approaches, such as machine learning, deep learning, and LLMs. Additionally,

commercial parking solutions were reviewed to benchmark current systems.

Software development methodologies and frameworks were also examined to

81

guide the system’s implementation. This review provided insights into the

proposed system's current capabilities, limitations, and opportunities.

Both of these data collection methods were important in defining the

scope and direction of the project. The primary data highlighted user preferences,

experiences, and expectations regarding parking payment systems, while the

secondary data provided insights into existing technologies and AI-based

vehicle recognition methods. These findings will guide the development to be

more practical and user-focused in addressing common issues of current parking

systems.

4.2.1 Responses on Google Form Questionnaire Survey

The questionnaire was distributed over social media platforms and messaging

apps to ensure a wide reach and cost-effective data collection. A total of 31

responses were collected. The questionnaire was divided into four sections,

consisting of 21 questions in total.

4.2.1.1 Section A: Demographics of Respondents

In this section, demographic information is collected to understand the

background of the respondents, including factors such as age, gender, and

vehicle ownership. This helps provide context for analyzing the responses and

identifying any trends or patterns based on different user groups.

82

Figure 4.1: Pie Chart of Respondents’ Age Group

The first question of the questionnaire collects the age of the

respondents. As shown in Figure 4.1, the majority of respondents, which is

67.7%, fall within the 18 to 24 age group. The second largest group is aged

between 45 and 54, making up 19.4% of the total responses. Meanwhile, the 55

to 64 and 25 to 34 age groups have the lowest representation, with only three

(9.7%) and one (3.2%) respondents respectively. No responses were recorded

from the under-18 or 35 to 44 age categories. Overall, the data shows that all

respondents are aged 18 and above.

Figure 4.2: Pie Chart of Respondents’ Gender

The majority of respondents are female, making up 48.4% of the total.

Meanwhile, 45.2% of respondents are male, and 6.5% preferred not to disclose

their gender. No respondents selected the "Others" option. Overall, the results

show a nearly equal gender distribution among respondents.

83

Figure 4.3: Bar Chart of Types of Vehicles Owned by Respondents

The majority of respondents own a car, making up 77.4% of the total.

SUVs are the next most commonly owned vehicle at 16.1%. Meanwhile, 16.1%

of respondents also reported that they do not own any vehicle. However, they

are still relevant to the survey, as they may use a family member’s vehicle.

Motorcycles are the least owned type among the options provided, with only

9.7% of respondents. Additionally, there were no respondents who own a truck

or van, as both categories received 0%. This suggests that private cars are the

most preferred mode of transportation among the respondents.

84

Figure 4.4: Pie Chart of Respondents’ Frequency of Driving

The majority of respondents, which is 54.8%, reported that they drive

daily, showing a high level of reliance on their vehicles for transportation. 19.4%

of respondents drive rarely, suggesting occasional use of their vehicle.

Meanwhile, 12.9% of respondents drive a few times a month, while another 12.9%

drive a few times a week, showing moderate but less frequent vehicle use. These

lower frequencies may be due to the higher number of younger respondents in

the survey, such as university students who live in hostels without a car but drive

when they return to their hometowns. Lastly, no respondents indicated that they

do not own a vehicle, showing that all participants in this survey drive or have

access to a vehicle. This chart highlights varying levels of vehicle use among

the respondents, with daily driving being the most common.

85

Figure 4.5: Bar Chart of Respondents’ Purpose for Using their Vehicle

The most common purpose for using a vehicle is daily commuting,

which is 87.1% of respondents. It indicated that the majority of respondents rely

on their vehicle for regular travel to work, school, or other daily activities. 45.2%

of respondents use their vehicle for leisure, suggesting that a significant portion

of respondents also use their vehicle for recreational purposes. 22.6% of

respondents use their vehicle for long-distance travel, while 16.1% use it for

business purposes. Finally, 6.5% of respondents reported using their vehicle for

ride-sharing services such as Grab or Taxi, showing a smaller but relevant

portion of respondents using their vehicle in the ride-hailing market. This

suggests that most respondents use their vehicles primarily for commuting, with

leisure and travel also being important reasons.

86

4.2.1.2 Section B: Difficulties in the Existing Parking Payment System

Figure 4.6: Pie Chart of Respondents’ Frequency of Using Paid Parking

Facilities

The largest group, with 29% of total responses, reported using paid

parking a few times a month, indicating occasional use of such facilities. 25.8%

of respondents use paid parking every day, indicating that a significant portion

of respondents likely rely on paid parking for daily commuting or work-related

travel. 22.6% use paid parking a few times a week, suggesting moderate usage

of such facilities. The remaining 22.6% of respondents reported using paid

parking rarely, showing that for some, paid parking is not a regular necessity.

This distribution highlights that paid parking is commonly used, especially by

those who commute daily or have frequent parking needs. The lower usage of

paid parking facilities among some respondents may be due to the younger age

group, who may not use paid parking as frequently as working adults.

87

Figure 4.7: Bar Chart of Respondents’ Preferred Parking Payment Methods

The majority of respondents, which is 90.3%, prefer using the Touch

'n Go card, making it the most popular method. It is then followed by eWallets

like TNG eWallet, GrabPay, and Boost, which are used by 48.4% of respondents.

Credit or debit card payments are also fairly common at 41.9%. Other methods

include mobile app payments (e.g., Sunway Super App Smart Park) at 16.1%,

paying at kiosks using a parking ticket at 12.9%, and monthly passes or season

parking at 9.7%. This suggests that digital and contactless payments are more

favored over traditional methods like kiosk payments or monthly passes.

88

Figure 4.8: Bar Chart of Issues Faced by Respondents with Current Parking

Payment Systems

The most frequently reported issue with parking payment systems was

high parking charges, which were 67.7% of total responses. This suggests that

parking price remains a major concern for users. Technical issues were the

second most common problem, affecting 54.8% of respondents and indicating

that system reliability is a significant area for improvement. Additionally, 51.6%

of participants reported problems due to insufficient balance in their TNG Card

or eWallet, highlighting the need for easier ways to check and manage balance.

Other commonly faced issues include a lack of payment options at 45.2%, long

queues at payment kiosks at 41.9%, QR code or scanner issues at 41.9%, and

inconvenient payment methods at 38.7%, all of which suggest both physical and

digital aspects of the payment process need refinement. Less frequent issues,

such as lost or damaged parking tickets and poor security, were each reported

by 16.1% of respondents. Only 6.5% of participants indicated they faced no

issues at all, implying that the majority encounter some form of difficulty when

using parking payment systems.

89

Figure 4.9: Column Chart of Respondents’ Rating on Parking Payment

Transaction Speed

The majority of respondents, which is 51.6%, rated the transaction

speed as 4, indicating that they find the process to be fairly fast and acceptable

for daily use. Another 25.8% chose a neutral score of 3, suggesting that while

the speed is not problematic, it may not be particularly efficient either.

Meanwhile, 16.1% rated the speed as 2, pointing to noticeable delays or

inefficiencies in some payment systems. A small portion of respondents rated

the speed as 1 (very slow) and 5 (very fast), both at 3.2%. These findings reflect

that although a large portion of drivers are relatively satisfied with the

transaction speed, there remains a need to optimize the system further.

Improving processing speed through automation or better system design could

improve the overall parking payment experience for drivers.

90

Figure 4.10: Column Chart of Respondents’ Rating on Parking Payment

Transaction Convenience

The majority of respondents, which is 51.6%, rated the transaction

convenience as 4, indicating that they find the payment process somewhat

convenient. Following that, 22.6% of respondents chose a neutral score of 3,

suggesting that while the transaction is neither particularly convenient nor

inconvenient, improvement is still needed. Meanwhile, a smaller portion of 16.1%

rated the convenience as 2, which points to some dissatisfaction or challenges

faced by respondents with the current system. Only 6.5% of respondents rated

the system as a 5, which represents very convenient, indicating that while some

drivers find the system convenient, it is not the case for the majority of drivers.

Additionally, 3.2% of respondents rated the system as a 1, which means very

inconvenient, highlighting that there are still drivers who experience significant

difficulties when using the current parking payment system. This suggests that

while the majority of drivers find the system overall convenient, there is

potential for improvement. Enhancing the system’s convenience could help in

addressing the concerns of those who rated it as less convenient. Improvements

could focus on simplifying the transaction process, reducing wait times, or

introducing more user-friendly interfaces.

91

Figure 4.11: Bar Chart of Respondents’ Dissatisfaction with Current Parking

Payment System

The most common issue reported by 21 respondents (67.7%) is parking

payment failures, such as insufficient balance or faulty card readers, which often

lead to delays and inconvenience. The second most frequent dissatisfaction,

selected by 16 respondents (51.6%), is the need to carry physical cards or tickets.

This can be inconvenient for drivers who may forget their cards or have to

manage multiple cards for different parking locations. Having to queue at kiosks

or barriers was also a major dissatisfaction reported by 14 respondents (45.2%).

This suggests that delays during peak hours or in high-traffic areas give a

negative experience to drivers. Security risks, such as the misuse of lost tickets,

were selected by 8 respondents (25.8%). This shows that drivers are not only

concerned about convenience but also the safety and reliability of the current

systems. Additionally, 1 respondent (3.2%) selected the "Others" option and

mentioned the hassle of ensuring sufficient balance on a card before entering a

parking facility. This further emphasizes the limitations of prepaid card systems

and the potential benefit of real-time balance tracking or auto top-up features.

92

Figure 4.12: Bar Chart of Respondents’ Suggested Improvements for Parking

Payment System

The most highly requested improvement is faster and more efficient

payment processing, with 83.9% of respondents selecting this option. This

highlights the importance of minimizing delays during entry and exit, possibly

through better system integration or automation. Contactless payment methods

were also a popular choice, which was chosen by 71% of respondents. It

indicates a strong demand for more hygienic and convenient payment

experiences. Following closely, eliminating the need for physical parking

tickets was chosen by 58.1%, reflecting a preference for digital or app-based

alternatives that reduce the hassle of handling or losing tickets. Other

suggestions include increasing system reliability (54.8%) and offering discounts

for frequent users (51.6%), both showing a need for consistent system

performance and customer loyalty benefits. More payment options, such as

eWallets, mobile apps, or credit cards, were selected by 48.4% of respondents,

suggesting that flexibility in payment is also important to users. Additionally,

41.9% of respondents would like real-time availability displays, which could

help drivers better plan and reduce time spent searching for parking. Finally,

improved security was selected by 35.5%, indicating that users also value safer,

more trustworthy payment systems.

93

4.2.1.3 Section C: Exposure to Technologies for Automated Parking

Payment

Figure 4.13: Pie Chart of Respondents’ Familiarity with Vehicle Recognition

System

A majority of respondents (74.2%) expressed that they have used or

seen vehicle recognition systems before, suggesting a widespread exposure to

the technology. A smaller portion (16.1%) has heard of these systems but has

not used them, suggesting some awareness but limited direct experience. The

remaining 9.7% are unaware of vehicle recognition technology, highlighting

that there are still individuals unfamiliar with this emerging technology. Overall,

this indicates a high level of awareness and experience among respondents, but

also shows that there is room for greater adoption and familiarity.

94

Figure 4.14: Pie Chart of Respondents’ Experience Using License Plate

Recognition Parking Systems

The chart shows that 74.2% of respondents have used a license plate

recognitio parking system and found it convenient, indicating a generally

positive experience with the technology. A smaller portion, 9.7%, have used

LPR systems but encountered issues with plate detection or payment, suggesting

that while the technology has been adopted, there are still challenges to be

addressed. The remaining 16.1% have never used such a system, highlighting

that there is still a segment of users unfamiliar with LPR parking systems. This

suggests that while LPR technology is gaining popularity, there is still room for

improvement and greater adoption.

95

Figure 4.15: Pie Chart of Respondents’ Willingness to Use Vehicle

Recognition System for Parking Payments

The chart indicates that a majority of respondents (83.9%) would be

willing to use a vehicle recognition system for parking payments, expressing

that convenience is important to them. A smaller portion (12.9%) expressed

limited interest and is dependent on the security and reliability of the system.

Only 3.2% of respondents preferred to stick with existing payment methods and

were unwilling to use a vehicle recognition system for parking payments. This

suggests that most respondents are open to adopting vehicle recognition systems

if they offer practical benefits like convenience and ease of use. While there is

a positive response to the system, concerns around security and reliability must

still be addressed to ensure more acceptance.

96

Figure 4.16: Bar Chart of Respondents’ Concerns Regarding AI-Powered

Vehicle Recognition System

The primary concern among respondents regarding AI-powered

vehicle recognition systems is security, with 61.3% expressing worries about

fraudulent vehicle entry. With an equal percentage of 61.3%, the accuracy of

license plate detection is also another significant concern. Inaccuracies could

lead to errors in billing, processing delays, and misidentification, affecting user

trust and system reliability. Privacy concerns, specifically about vehicle data

being stored, were also raised by 54.8% of respondents. Additionally, 41.9% are

concerned about how well the system integrates with existing payment methods.

Only 3.2% of respondents indicated they would trust the system without any

concerns. This highlights that while there is interest in AI-powered systems,

addressing privacy, security, and accuracy concerns will be crucial to gaining

wider acceptance.

97

4.2.1.4 Section D: User Expectations for AI-powered Parking System

Figure 4.17: Bar Chart of Features Respondents Want in an AI-Powered

Parking Payment System

The most popular feature is a mobile app to register vehicles, track

payments, and manage parking history (64.5%). This highlights the demand for

a simpler and accessible way to handle parking tasks. The next popular feature

is the integration of various payment methods, such as eWallets, debit/credit

cards, and bank transfers (61.3%). This reflects the importance of flexible and

smooth payment options. Other highly requested features include automatic

parking fee deduction based on license plate recognition (54.8%) and the ability

to disable auto-payments if a vehicle is stolen (58.1%). This indicates concerns

around security and the need for convenience in managing payments.

Additionally, 48.4% of respondents would like to receive parking receipts via

email or app, showing a preference for digital records. Lastly, 45.2% of

respondents would like to manage multiple vehicles under one account, further

emphasizing the desire for a more user-friendly, multi-functional system. These

preferences demonstrate the need for a comprehensive, secure, and flexible

solution that meets the diverse needs of users.

98

Figure 4.18: Pie Chart of the Importance of a Mobile App for Managing

Parking Payments

The majority of respondents (51.6%) consider a mobile app "very

important" for managing parking payments, as they desire full control over their

parking payments through the app. This reflects a preference for greater

convenience and autonomy in managing parking transactions. A smaller portion

of respondents (38.7%) find the app "somewhat important," indicating that they

might use the app occasionally but are not as dependent on it. Lastly, a minority

of respondents (9.7%) view the app as "not important" and prefer automatic

transactions without an app, suggesting that they favor a more straightforward

payment experience. This chart emphasizes the importance of offering a mobile

app for managing parking payments, while also highlighting that some users

still prefer fully automated methods.

99

Figure 4.19: Pie Chart of Respondents’ Trust in AI System for Handling

Parking Payments

The majority of respondents (67.7%) are open to trusting an AI system

for handling parking payments, provided it is secure and accurate. This shows

that most users are willing to adopt AI technology if it offers reliability and

safety. Meanwhile, 32.3% of respondents are more cautious as they would trust

the system only if manual override options are available. This suggests a need

for flexibility and user control within the system. Notably, none of the

respondents rejected the idea entirely, showing a general openness toward AI-

driven solutions for parking payments.

100

Figure 4.20: Pie Chart of Respondents’ Need for an “Emergency Stop

Transaction” Feature

The majority of respondents (74.2%) believe that an “Emergency Stop

Transaction” feature is essential. This shows that there is strong support for

having the ability to immediately stop parking payments in urgent situations,

such as vehicle theft or unauthorized use. Meanwhile, 25.8% of respondents

expressed interest but would like more information about how the feature works,

suggesting clearer policies and transparency could help increase confidence.

Notably, no respondents dismissed the need for this feature, indicating overall

support for having added safety and control measures within the parking

payment system.

101

Figure 4.21: Pie Chart of Respondents’ Preference for Real-Time Parking

Transaction Notifications

Most respondents (61.3%) prefer to receive real-time parking

transaction notifications through mobile app alerts, showing a strong demand

for instant updates. Another 32.3% prefer notifications via SMS or email,

suggesting that while they value updates, they may not actively use mobile apps

or prefer more traditional channels. Only 6.5% indicated that they do not require

any notifications, as they may prioritize simplicity or find frequent notifications

unnecessary or intrusive. Overall, the majority want to stay informed about their

parking activities through some sort of notification. The chart also highlights

the importance of offering flexible notification options to suit different user

preferences and enhance overall user engagement.

102

4.3 Requirement Specification

4.3.1 Functional Requirements

Table 4.1: Functional Requirements.

ID Functional Requirement

FR1 The system shall allow drivers and parking operators to register user

accounts.

FR2 The system shall allow drivers, parking operators, and admins to log

in securely.

FR3 The system shall allow drivers, parking operators, and admins to

manage their own profile information.

FR4 The system shall allow drivers to manage one or more vehicles.

FR5 The system shall allow drivers to manage the auto-transaction

settings for parking through license plate and vehicle attribute

recognition using multimodal AI.

FR6 The system shall allow drivers, parking operators, and admins to

view dashboards personalized to their roles.

FR7 The system shall allow drivers to view nearby parking information.

FR8 The system shall allow drivers to view their parking history.

FR9 The system shall allow drivers to view nearby EV charger

information.

FR10 The system shall allow drivers to make EV reservations.

FR11 The system shall allow drivers to view their EV reservations.

FR12 The system shall allow drivers to manage their payment methods.

FR13 The system shall process automatic parking fee transactions when

drivers exit a parking lot.

FR14 The system shall provide drivers with notifications and alerts related

to transactions.

FR15 The system shall require parking operators to set up parking rates,

parking lot details, and all relevant information during the

registration process.

FR16 The system shall allow parking operators to update and manage

parking lot details, which will be reviewed and approved by the

admin.

103

FR17 The system shall allow drivers and parking operators to submit

support tickets for system-related issues.

FR18 The system shall allow admins to manage accounts for drivers and

parking operators.

FR19 The system shall require admin approval for new parking operator

accounts before they can start managing parking lots, rates, and other

features.

FR20 The system shall require admin approval for any changes made to

parking rates, parking zones, or other features requested by parking

operators.

FR21 The system shall allow admins to manage support tickets submitted

by drivers or parking operators.

4.3.2 Non-functional Requirements

Table 4.2: Non-functional Requirements.

ID Non-functional Requirements Category of NFR

NFR1 The system shall achieve a minimum of

90% accuracy in license plate

recognition under optimal conditions.

Accuracy

NFR2 The system shall correctly match vehicle

attributes (e.g., color, make, model) with

a minimum accuracy rate of 90% under

optimal conditions.

NFR3 The system shall ensure that auto-

payments are only triggered when both

the license plate and registered vehicle

attributes are correctly recognized.

NFR4 The system shall respond to user actions

within 2 seconds under normal network

conditions.
Performance

NFR5 The system shall process license plate

recognition and return a decision within

5 seconds at the point of entry/exit.

104

NFR6 The system shall be compatible with

modern web browsers, including

Chrome, Firefox, Edge, and Safari, for

the website, and compatible with

Android and iOS platforms for the

mobile application.
Compatability

NFR7 The system shall integrate with third-

party payment gateways and support

APIs for external system access (e.g.,

payment services).

NFR8 The system shall enforce authentication

and role-based access control for drivers

and parking operators.

Security

NFR9 The system shall maintain accurate and

tamper-proof records of transactions

NFR10 All sensitive data, like user credentials,

personal data, and payment information,

shall be encrypted using AES-256

encryption or higher.

NFR11 The application shall adhere to relevant

data protection regulations to safeguard

user privacy and ensure the security of

personal data.

NFR12 The system shall provide a user-friendly,

simple, and intuitive interface with clear

icons, buttons, and navigation.
Usability

NFR13 When an error occurs, the system shall

display clear and understandable error

messages.

NFR14 The system shall be able to store and

retrieve user data accurately without loss

or corruption.

Reliability

105

NFR15 The system shall follow a modular

architecture to facilitate future

enhancements and updates, with a

structured and maintainable codebase

that adheres to established coding

standards and industry best practices.

Maintainability

NFR16 The system shall be designed to easily

accommodate additional parking lots or

parking zones as the system expands,

without requiring significant changes to

the infrastructure.
Scalability

NFR17 The system shall be designed to

accommodate future growth in user

base, traffic, and transaction volume.

106

4.4 Use Case Modelling

4.4.1 Use Case Diagram

Figure 4.22: Use case diagram of Vehicle Parking Payment Application.

107

4.4.2 Use Case Description

Table 4.3: Use case description of login.

Use Case Name: Login ID: UC-1 Importance

Level: High

Primary Actor: Drivers, Parking

Operators, Admin

Use Case Type: Detail, Real

Stakeholders and Interests: N/A

Brief Description: Allows Admins, Parking Operators, and Drivers to securely

access the system based on their assigned roles.

Trigger: The actor initiates the login process by selecting login on the home

page of the platform.

Relationships:

Association : Driver, Parking Operator, Admin

Include : -

Extend : -

Generalization: -

Normal Flow of Events:

1. The actor navigates to the login page.

2. The system prompts the user to enter their login credentials.

3. The actor enters their login credentials.

4. The system verifies the credentials. Continue S-1

5. The actor is redirected to their dashboard.

6. The login session is initiated.

Sub-flows:

 S-1: Perform 4.1 or 4.2 or 4.3 or 4.4

4.1 If invalid credentials, the system displays an error message

and prompts the user to re-enter their credentials. Continue to

flow 3.

4.2 If valid credentials, the actor successfully logs in to their

account. Continue to flow 5.

108

4.3 If unapproved parking operators, the system displays a

pending approval message. Continue to flow 3.

4.4 If the actor does not have an account, UC-2 will be performed.

Alternate/Exceptional Flows:

Assumptions:

Table 4.4: Use case description of Register.

Use Case Name: Register ID: UC-2 Importance

Level: High

Primary Actor: Drivers, Parking

Operators

Use Case Type: Detail, Real

Stakeholders and Interests: N/A

Brief Description: Allows Drivers and Parking Operators to create a new

account on the platform.

Trigger: The actor initiates the register process by selecting register on the

home page of the platform.

Relationships:

Association : Driver, Parking Operator

Include : -

Extend : Set Up Parking Rates and Other Related

Information

Generalization: -

Normal Flow of Events:

1. The actor navigates to the register page.

2. The system prompts the user to enter the required information,

including email and password.

3. The actor enters their required information and submits the registration

form.

4. The system validates the credentials. Continue S-1

5. The system creates a new user account.

6. The actor is redirected to their dashboard.

109

7. The login session is initiated.

Sub-flows:

 S-1: Perform 4.1 or 4.2 or 4.3

4.1 If invalid input, the system displays an error message and

prompts the user to re-enter the required information.

Continue to flow 3.

4.2 If valid input, the actor successfully registered their account.

Continue to flow 5.

4.3 If the actor is a parking operator, proceed to E-1.

Alternate/Exceptional Flows:

 E-1:

4.3.1 The system prompts the parking operator to enter required

information for parking lots information.

4.3.2 The parking operator enters the required parking lots

information and submits the registration form.

4.3.3 The system prompts a message stating to wait for admin

approval. Continue to flow 1.

Assumptions:

 Table 4.5: Use case description of Manage Vehicles

Use Case Name: Manage Vehicles ID: UC-3 Importance

Level: High

Primary Actor: Driver Use Case Type: Detail, Real

Stakeholders and Interests: N/A

Brief Description: Allows driver to register their vehicles for auto-transaction

for parking payments.

Trigger: The driver wants to register their vehicles into the application.

Relationships:

Association : Drivers

Include : -

Extend : Manage Auto-Transaction

110

Generalization: -

Normal Flow of Events:

1. The driver navigates to the “manage vehicle” screen.

2. The system displays the currently registered vehicles if they exist, and

prompts the user to add, edit, delete or manage auto-transaction of

vehicles. Continue S-1.

3. The system updates the records of the vehicle.

4. The system will display a message showing that the action performed

is successful.

Sub-flows:

 S-1: Perform 2.1 or 2.2 or 2.3 or 2.4

2.1 If driver selects to add vehicle, the system request vehicle

information.

2.1.1 The user enters the required vehicle details, including

vehicle type, license plate, make, model, and color,

and submit the registration form.

2.1.1.1 If invalid input, the system displays an error

message and prompts the driver to re-enter the

required information. Continue to flow 2.

2.1.1.2 If valid input, the vehicle is successfully

registered.

2.2 If driver selects to edit vehicle, the system request vehicle

information for modification.

2.2.1 The user enters the required vehicle information.

2.2.1.1 If invalid input, the system displays an error

message and prompts the driver to re-enter the

required information. Continue to flow 2.

2.2.1.2 If valid input, the vehicle detail is modified.

Continue to flow 3

2.2.2 If the enter selects to manage payment methods of the

vehicle, perform UC-5.

111

2.3 If driver selects to delete vehicle method, the system prompts

a confirmation message.

2.3.1 If the driver selects confirm, the vehicle will be

removed. Continue to flow 3.

2.3.2 If the driver selects cancel, the process will stop.

Continue to flow 2.

2.4 If the driver selects to manage auto-transaction settings,

proceed to E-1

Alternate/Exceptional Flows:

 E-1: Perform 2.4.1 or 2.4.2

2.4.1 If the auto-transactionis active and the driver wants to

stop, the system will prompt a confirmation message.

2.4.1.1 If the driver selects confirm, the auto-

deduction will be deactivated.

2.4.1.1.1 The driver receives a notification

regarding the stop. Continue to

flow 3.

2.4.1.2 If the driver selects cancel, the process will

stop. Continue to flow 2.

2.4.2 If the auto-transaction is deactivated and the driver

wants to reactivate, the system will prompt a

verification step.

2.4.2.1 If verification successful, the auto-transaction

will be reactivated.

2.4.2.1.1 The driver receives a notification

regarding the reactivation.

Continue to flow 3.

2.4.2.2 If the driver selects cancel, the process will

stop. Continue to flow 2.

Assumptions:

A. Actor is an authenticated user.

B. Driver can only edit or delete the specific vehicle when it is registered

112

Table 4.6: Use case description of Manage Payment Methods

Use Case Name: Manage Payment Methods ID: UC-4 Importance

Level: High

Primary Actor: Driver Use Case Type: Detail, Real

Stakeholders and Interests: N/A

Brief Description: Allows the driver to add, modify, or delete their payment

methods. This use case extends Manage Own Profile (UC-

16) when the actor is a Driver.

Trigger: The driver wants to manage their payment methods.

Relationships:

Association : Drivers

Include : -

Extend : -

Generalization: -

Normal Flow of Events:

1. The driver selects “Manage Payment Methods” from their profile

page.

2. The system displays the driver’s current payment methods if they exist,

and prompts the user to add, edit, or delete payment methods. Continue

S-1.

3. The system updates the records of payment methods.

4. The system will display a message showing that the action performed

is successful.

Sub-flows:

 S-1: Perform 2.1 or 2.2 or 2.3

2.1 If the driver selects to add payment methods, the system

requests payment method information.

2.1.1 The user enters the required payment method

information.

113

2.1.1.1 If invalid input, the system displays an error

message and prompts the driver to re-enter the

required information. Continue to flow 2.1.

2.1.1.2 If valid input, the payment method is added.

Continue to flow 3.

2.2 If the driver selects to edit payment methods, the system

displays the selected payment method information available

for modification.

2.2.1 The user enters the required payment method

information for modification.

2.2.1.1 If invalid input, the system displays an error

message and prompts the driver to re-enter the

required information. Continue to flow 2.2.

2.2.1.2 If valid input, the payment method is modified.

Continue to flow 3.

2.3 If the driver selects to delete a payment method, the system

prompts a confirmation message.

2.3.1 If the driver selects confirm, the payment method will

be removed. Continue to flow 3.

2.3.2 If the driver selects cancel, the process will stop.

Continue to flow 2.

Alternate/Exceptional Flows:

Assumptions:

A. Actor is an authenticated user.

Table 4.7: Use case description of View Dashboard

Use Case Name: View Dashboard ID: UC-5 Importance

Level: High

Primary Actor: Driver, Parking Operator,

Admin

Use Case Type: Detail, Real

Stakeholders and Interests: Drivers want to see their current sessions,
reservations, and statistics for better tracking and planning. Parking Operators
want to monitor operational metrics, financial performance, and live parking

114

status. Admin wants to oversee the entire system, user activities, resources,
and growth trends.

Brief Description: Allows the actor to view their personalized dashboard

showing role-specific information, statistics, and quick

actions.

Trigger: The actor logs into the system and navigates to the Dashboard screen.

Relationships:

Association : Drivers

Include : -

Extend : -

Generalization: -

Normal Flow of Events:

1. The actor logs in and navigates to the Dashboard screen.

2. The system checks the actor’s role. Continue to S-1.

3. The actor browses the dashboard and interacts with available quick

actions or analytics.

Sub-flows:

 S-1: Perform 2.1 or 2.2 or 2.3

2.1 If the role is Driver, the system displays the appropriate

dashboard content for drivers, which includes current parking

sessions, EV charging reservations, stats such as total

sessions, total spent, sessions this month, and usage trends,

and quick info and actions, continue to flow 3.

2.2 If the role is Parking Operator, the system displays the

appropriate dashboard content for parking operators, which

includes parking lots overview, parked today count, today’s

revenue, occupancy rate and average duration, customer

analysis and revenue trends, peak hour analysis, live parking

status, and current parking rates, continue to flow 3.

2.3 If the role is Admin, the system displays the appropriate

dashboard content for admins, which includes total users,

115

parking lots, EV chargers in the system, quick actions, alerts,

growth trends, parking usage statistics, and user breakdowns,

continue to flow 3.

Alternate/Exceptional Flows:

A. If system data sync fails, the system shows a “Data temporarily

unavailable” message with a retry option.

B. If the actor does not have proper role permissions, the system restricts

access and displays “Unauthorized access”.

Assumptions:

A. Actor is an authenticated user and has a valid role assigned.

B. Dashboard data is updated in real-time or near real-time to ensure

accuracy.

Table 4.8: Use case description of View Nearby Parking Lot Details

Use Case Name: View Nearby Parking Lot

Details

ID: UC-6 Importance

Level: High

Primary Actor: Driver Use Case Type: Detail, Real

Stakeholders and Interests: N/A

Brief Description: Allows the driver to view details of nearb parking lots to

facilitate parking decisions.

Trigger: Driver wants to view parking lot details

Relationships:

Association : Drivers

Include : -

Extend : -

Generalization: -

Normal Flow of Events:

1. The driver navigates to the “parking lots” screen.

2. The system requests permission to access the driver’s current location.

Continue S-1

3. If permission is granted, the system retrieves the driver’s location.

116

4. The system checks if there is any parking lots available. Continue S-2

5. The system displays the list of nearby parking lots on a map or list

view.

6. The driver browses the list or map to view available parking lots.

7. The driver can select to view the details of the specific parking lot.

8. The system will display the details of the specific parking lot, including

the location, rate, zones, and more.

Sub-flows:

S-1: Perform 2.1 or 2.2

2.1 If the driver denies location permission, the system cannot

display nearby parking lot.

2.2 If the driver accepts location permission, the system retrieves

the driver’s location, continue to flow 3.

 S-2: Perform 3.1 or 3.2

3.1 If there is no parking lots available, the system displays a

message showing no parking lots and redirect to previous

screen.

3.2 If there are parking lots, continue to flow 4.

Alternate/Exceptional Flows:

Assumptions:

A. Actor is an authenticated user.

B. Parking lot data is synced with the system in real-time for accurate

availability.

Table 4.9: Use case description of View Nearby EV Chargers

Use Case Name: View Nearby EV Chargers ID: UC-7 Importance

Level: High

Primary Actor: Driver Use Case Type: Detail, Real

Stakeholders and Interests: N/A

117

Brief Description: Allows the driver to view details of nearby EV chargers,

including availability, type, and location, to facilitate

charging decisions.

Trigger: The driver wants to check EV charger availability.

Relationships:

Association : Drivers

Include : -

Extend : -

Generalization: -

Normal Flow of Events:

1. The driver navigates to the “EV Reservation” screen.

2. The system requests permission to access the driver’s current location.

Continue to S-1.

3. The system checks if there are any EV chargers available. Continue to

S-2.

4. The system displays the list of nearby EV chargers on a map or list

view.

5. The driver browses the list or map to view available chargers.

6. The driver can select a specific EV charger to view detailed

information.

7. The system displays the details of the charger, including Charger type,

location, and availability status.

Sub-flows:

S-1: Perform 2.1 or 2.2

2.1 If the driver denies location permission, the system cannot

display nearby EV chargers.

2.2 If the driver accepts location permission, the system retrieves

the driver’s location, continue to flow 3.

 S-2: Perform 3.1 or 3.2

3.1 If there are no chargers available, the system displays a

message indicating “No EV chargers available”.

3.2 If there are chargers available, continue to flow 4.

118

Alternate/Exceptional Flows:

A. If a charger’s status changes while viewing (e.g., from available to

reserved), the system updates the display in real-time.

Assumptions:

A. Actor is an authenticated user.

B. EV charger data is synced with the system in real-time for accurate

availability.

Table 4.10: Use case description of View Parking Transaction History

Use Case Name: View Parking Transaction

History

ID: UC-8 Importance

Level: High

Primary Actor: Driver Use Case Type: Detail, Real

Stakeholders and Interests: N/A

Brief Description: Allows driver to view parking their parking transaction

history.

Trigger: Driver wants to view their parking transaction history.

Relationships:

Association : Drivers

Include : -

Extend : -

Generalization: -

Normal Flow of Events:

1. The driver navigates to the “parking history” screen

2. The system checks if there is any parking history available. Continue

S-1

3. The system displays the list of parking histories to the user.

4. The driver views the list of parking histories.

5. The driver can select to view the details of the specific parking history.

6. The system will display the details of the specific parking history,

including the transaction fee, timestamp, parking location, zones,

reference number, status, and payment method used.

119

Sub-flows:

 S-1: Perform 2.1 or 2.2

2.1 If there is no parking history available, the system displays a

message showing no parking history and redirect to previous

screen.

2.2 If there are parking histories, continue to flow 3.

Alternate/Exceptional Flows:

Assumptions:

A. Actor is an authenticated user.

Table 4.11: Use case description of View EV Reservation

Use Case Name: View EV Reservation ID: UC-9 Importance

Level: High

Primary Actor: Driver Use Case Type: Detail, Real

Stakeholders and Interests: N/A

Brief Description: Allows the driver to view their EV charging reservation

history, separated into active reservations (reserved and

ongoing) and past reservations.

Trigger: Driver wants to view their EV charging reservations.

Relationships:

Association : Drivers

Include : -

Extend : -

Generalization: -

Normal Flow of Events:

1. The driver navigates to the “EV Reservation” screen

2. The system checks if there is any EV reservations associated with the

driver. Continue S-1

3. The system displays two sections, which are Active Reservations that

show reservations with status reserved or ongoing, and Past

Reservations that show completed, expired, or cancelled reservations.

120

4. The driver browses through active or past reservations.

5. The driver can select a specific reservation to view detailed

information.

6. The system displays details of the reservation, including reservation

time, charger type, location, zone, EV details, and current status.

Sub-flows:

 S-1: Perform 2.1 or 2.2

2.1 If there are no EV reservations, the system displays a message

“No reservations found” and redirects to the previous screen.

2.2 If there are EV reservations, continue to flow 3.

Alternate/Exceptional Flows:

Assumptions:

A. Actor is an authenticated user.

B. Reservation data is synced with the system in real-time for accurate

availability and status.

Table 4.12: Use case description of Auto-Transaction of Parking Fee

Use Case Name: Auto-Transaction of Parking

Fee

ID: UC-10 Importance

Level: High

Primary Actor: Driver Use Case Type: Detail, Real

Stakeholders and Interests: Payment Gateway

Brief Description: Allows driver to pay for their parking automatically.

Trigger: When driver exits the parking lot through the gate sensor and the

vehicle recognition is successfully performed.

Relationships:

Association : Drivers

Include : -

Extend : -

Generalization: -

121

Normal Flow of Events:

1. The driver’s vehicle is scanned by the exit gate sensors.

2. Vehicle recognition is successful.

3. The system calculates the total parking fee based on entry and exit

timestamps, and the parking location and rates.

4. The system initiates auto-transaction using linked payment methods.

Continue to S-1.

5. The system will send a notification regarding the success of transaction

to the drivers .

6. Transaction detail is saved to history.

Sub-flows:

 S-1: Perform 3.1 or 3.2

3.1 If auto-transaction is unsuccessful, the system will send a

notification regarding the failure to the user.

3.2 If auto-transaction is successful, the payment is confirmed.

Continue to flow 4.

Alternate/Exceptional Flows:

Assumptions:

A. Actor is an authenticated user.

B. Driver anable the auto-transaction in the application

C. Linked a valid payment method

D. Vehicle recognition is successfully performed.

Table 4.13: Use case description of Submit Support Tickets

Use Case Name: Submit Support Tickets ID: UC-11 Importance

Level: High

Primary Actor: Drivers, Parking

Operators

Use Case Type: Detail, Real

Stakeholders and Interests: N/A

122

Brief Description: Drivers and Parking Operators are able to submit support

tickets when they faced any issues or bugs from the

application.

Trigger: When there is an issue or bug that drivers and parking operators

would like to submit to admin to resolve.

Relationships:

Association : Driver, Parking Operator

Include : -

Extend : -

Generalization: -

Normal Flow of Events:

1. The actor navigates to the “Support” page.

2. Actor selects "Submit New Ticket".

3. The system displays a form, prompting the user to enter the details of

the issue faced, including subject, category and description.

4. The actor enters their required information and submits the support

ticket form.

5. The system validates the input. Continue to S-1.

6. The system creates a support ticket.

7. Confirmation message is displayed

Sub-flows:

 S-1: Perform 5.1 or 5.2

5.1 If invalid input, the system displays an error message and

prompts the user to re-enter the required information.

Continue to flow 4.

5.2 If valid input, continue to flow 6.

Alternate/Exceptional Flows:

Assumptions:

A. Actor is an authenticated user.

Table 4.14: Use case description of Request Change to Parking Lot Details

123

Use Case Name: Request Change to Parking

Lot Details

ID: UC-12 Importance

Level: High

Primary Actor: Parking Operators Use Case Type: Detail, Real

Stakeholders and Interests: N/A

Brief Description: Allows parking operator to request change to parking lot

details. These changes are subject to admin review and

approval. If a parking lot is marked as inactive, no further

parking sessions or auto-transactions will be allowed for

that location.

Trigger: The parking operator have to make some changes to the information

of parking lots.

Relationships:

Association : Parking Operators

Include : -

Extend : -

Generalization: -

Normal Flow of Events:

1. The parking operator navigates to the “My Parking Lots” page.

2. The system displays the available parking lots of the parking operator,

3. The parking operator selects a parking lot and clicks “Request

Change”.

4. The system displays a form with editable fields such as parking name,

address, operating hours, pates, contact info, and status.

5. Operator modifies the desired fields and submit the request. Continue

to S-1

6. System prompts a message stating to wait for admin’s approval and

records the request as “Pending Approval”.

Sub-flows:

 S-1: Perform 5.1 or 5.2

5.1 If invalid input, the system displays an error message and

prompts the driver to re-enter the required information.

Continue to flow 5.

124

5.2 If valid input, the payment method is added. Continue to flow

6.

Alternate/Exceptional Flows:

Assumptions:

A. Actor is an authenticated user.

B. Parking operator have existing parking lot as they set up during

registration and approved by admin.

Table 4.15: Use case description of Manage Support Tickets

Use Case Name: Manage Support Tickets ID: UC-13 Importance

Level: High

Primary Actor: Admin Use Case Type: Detail, Real

Stakeholders and Interests: N/A

Brief Description: Enables the admin to view, respond to, and manage all

support tickets submitted by drivers and parking operators.

Admins can update ticket status, provide responses, and

close resolved tickets.

Trigger: The admin want to manage the support tickets submitted by drivers

and parking operators.

Relationships:

Association : Admin

Include : -

Extend : -

Generalization: -

Normal Flow of Events:

1. The admin navigates to the “Support Tickets” page.

2. The system checks if there are support tickets. Continue to S-1.

125

3. The system displays a list of submitted tickets, including status that are

open, in progress, resolved, and closed, while also offering filter by

status, user type, and submission date.

4. The admin selects a ticket to view full details, including ticket id,

submitter name and role, issue category, subject, and message.

5. The admin writes a response.

6. The admin updates the ticket status.

7. The system will send notification of the response to the users.

Sub-flows:

 S-1: Perform 2.1 or 2.2

2.1 If there is no support ticket available, the system displays a

message showing no support ticket and redirect to previous

screen.

2.2 If there are support tickets, continue to flow 3.

Alternate/Exceptional Flows:

Assumptions:

A. Actor is an authenticated user.

B. Admin cannot respond to ticket that is closed.

Table 4.16: Use case description of Approve Pending Requests from Operators

Use Case Name: Approve Pending Requests

from Operators

ID: UC-14 Importance

Level: High

Primary Actor: Admin Use Case Type: Detail, Real

Stakeholders and Interests: Admin wants to ensure only legitimate operators

and valid changes are approved. Parking Operators want their accounts and

submitted changes to be processed efficiently.

Brief Description: Allows the Admin to review, approve, or reject pending

requests submitted by parking operators. Pending requests

can include new operator account applications or change

requests (e.g., parking rate adjustments, lot capacity

126

updates, enabling/disabling EV chargers, or marking a lot

inactive).

Trigger: When there are pending requests (account approvals or parking

change requests) that require admin action.

Relationships:

Association : Admin

Include : -

Extend :

Generalization: -

Normal Flow of Events:

1. The admin navigates to the Pending Requests page.

2. The system checks if there are any pending requests. Continue to S-1.

3. The system displays a list of pending requests (e.g., operator accounts,

parking changes) with filter options (e.g., request type, status,

submission date).

4. The admin selects a request to view details.

5. The system displays full request details (e.g., operator info, requested

change, justification, timestamp).

6. The admin decides to approve or reject the request. Continue to S-2.

7. The system displays a message showing the action is successful.

8. The system updates the status of the request accordingly.

9. The system sends a notification to the operator regarding the decision.

Sub-flows:

 S-1: Perform 2.1 or 2.2

2.1 If there is no pending parking change request, the system displays

a message showing no pending request and redirect to previous

screen.

2.2 If pending requests exist, continue to flow 3.

 S-2: Perform 6.1 or 6.2

6.1 If the admin selects Approve, the system finalizes the approval

(account is activated or parking change applied). Continue to flow

7.

127

6.2 If the admin selects reject, the system will prompt a confirmation

message.

4.2.1 If the admin confirms, the system rejects the request.

Continue to flow 7.

4.2.2 If the admin selects cancel, the process stops. Continue to

flow 5.

Alternate/Exceptional Flows:

Assumptions:

A. Actor is an authenticated user.

B. Operators must have submitted requests through the system.

Table 4.17: Use case description of Manage User Accounts

Use Case Name: Manage User Accounts ID: UC-15 Importance

Level: High

Primary Actor: Admin Use Case Type: Detail, Real

Stakeholders and Interests: N/A

Brief Description: Allows the Admin to view, search, add, edit, and manage

all driver and parking operator accounts in the system.

Admins can create new user accounts, update existing

profiles, deactivate/reactivate accounts, monitor

suspicious or inactive users, and manage other admins

when necessary.

Trigger: The admin want to manage user accounts.

Relationships:

Association : Admin

Include : -

Extend : -

Generalization: -

Normal Flow of Events:

1. The admin navigates to the “User Accounts” page.

2. The system checks if there are any users. Continue to S-1.

128

3. System displays a list of all registered accounts with filters by user

role, account status, registration date, and search by email, name, or id.

4. The admin can select a specific account to view full profile

5. The system displays the full profile, including name, email, contact

info, role, login history, and status.

6. Admin can perform actions. Continue to S-2

Sub-flows:

 S-1: Perform 2.1 or 2.2

2.1 If there is no users, the system displays a message showing no

users and redirect to previous screen.

2.2 If there are users, continue to flow 3.

 S-2: Perform 6.1 or 6.2 or 6.3 or 6.4

6.1 If admin select to deactivate a user, a confirmation message

will be prompted

6.1.1 If admin select confirm, the status of the user will

switch to deactivated.

6.1.2 If admin select cancel, the process stops. Continue to

flow 5.

6.2 If admin select to reactivate a user, a confirmation message

will be prompted

6.2.1 If admin select confirm, the status of the user will

switch to active.

6.2.2 If admin select cancel, the process stops. Continue to

flow 5.

6.3 If admin selects Add New User, the system displays a

registration form (name, email, role, password, etc.).

6.3.1 The admin fills in details and submits.

6.3.2 The system validates input and creates the new

account.

6.3.3 The new user appears in the user list.

6.4 If admin selects Edit Profile, the system displays an editable

form with user details.

6.4.1 The admin updates and submits changes.

129

6.4.2 The system validates and saves changes.

6.4.3 A success message is displayed, and the updated

profile is shown.

Alternate/Exceptional Flows:

A. If invalid inputs are entered when adding/editing a user, the system
displays error messages and requests corrections.

B. If an attempt is made to deactivate the last active system admin, the
system blocks the action and shows a warning.

Assumptions:

A. Actor is an authenticated user.

Table 4.18: Use case description of Manage Own Profile

Use Case Name: Manage Own Profile ID: UC-16 Importance

Level: High

Primary Actor: Driver, Parking Operator,

Admin

Use Case Type: Detail, Real

Stakeholders and Interests: N/A

Brief Description: Allows users of all roles to view and update their personal

profile information, including name, contact details, and

password. Ensures that user data stays accurate and

current. Drivers can also extend this functionality to

manage their payment methods.

Trigger: The actors want to manage their own profile.

Relationships:

Association : Driver, Parking Operator, Admin

Include : -

Extend : UC-4 Manage Payment Methods (only for Driver)

Generalization: -

Normal Flow of Events:

1. The actor navigates to the “Profile” page.

130

2. The system displays the actor’s current profile information, including

full name, email, phone number, and role. If actor is Driver, proceed

to E-1.

3. Actor edits desired fields and submit changes.

4. The system validates the input. Continue to S-1.

5. System displays confirmation message.

Sub-flows:

 S-1: Perform 4.1 or 4.2

4.1 If invalid input, the system displays an error message and

prompts the actor to re-enter the required information.

Continue to flow 2.

4.2 If valid input, the system saves the updated profile. Continue

to flow 5.

Alternate/Exceptional Flows:

E-1: Perform 2.1 or 2.2

2.1 If the actor is a Driver, the system displays an additional

option: “Manage Payment Methods.”

2.1.1 The driver may choose to add, edit, or delete payment

methods (UC-4).

2.1.1.1 On completion, control returns to the Manage

Own Profile step 2.

Assumptions:

A. Actor is an authenticated user.

131

4.5 Interface Flow Diagram

Figure 4.23: Interface flow diagram of the proposed system for drivers

132

Figure 4.24: Interface flow diagram of the proposed system for parking

operators

133

Figure 4.25: Interface flow diagram of the proposed system for admin

134

4.6 Initial Prototype

Figure 4.26: Login Page on mobile

Figure 4.27: Login Page on desktop

135

Figure 4.28: Register Page on mobile

Figure 4.29: Register Page on desktop

136

Figure 4.30: Driver Dashboard page on mobile

137

Figure 4.31: Continued Driver Dashboard page on mobile

Figure 4.32: Driver Dashboard page on desktop

138

Figure 4.33: Operator Dashboard page on mobile

139

Figure 4.34: Continued Operator Dashboard page on mobile

Figure 4.35: Operator Dashboard page on desktop

140

Figure 4.36: Admin Dashboard page on mobile

141

Figure 4.37: Continued Admin Dashboard page on mobile

Figure 4.38: Admin Dashboard page on desktop

142

4.7 Preliminary run on Vehicle Detection and Segmentation

4.7.1 Overview

This section outlines a preliminary experiment conducted to assess the

effectiveness of vehicle detection and segmentation using the YOLOv8 model

family. Specifically, YOLOv8 and YOLOv8-Seg were employed to detect and

segment vehicles in a custom dataset comprising 50 real-world images sourced

online. The primary objective was to evaluate the models' capability to

accurately identify and isolate vehicle instances under diverse conditions,

including varying angles, lighting, and backgrounds. The results from this initial

test serve as an early benchmark for detection accuracy, segmentation quality,

and model responsiveness, guiding further refinement of the vehicle recognition

pipeline for real-world applications.

4.7.2 Experimental Setup and Results

The preliminary experiment utilized the YOLOv8 and YOLOv8-Seg models to

evaluate vehicle detection and segmentation performance. A total of 50 real-

world images were manually collected from online sources, featuring various

environments, lighting conditions, and vehicle angles to reflect practical usage

scenarios. The models, pre-trained on the COCO dataset, were run using the

official Ultralytics YOLOv8 implementation in Python. No additional fine-

tuning was performed. Each image was processed individually to record several

key metrics, which are the number of vehicles detected, the number of

segmentation instances, the confidence scores for detections and segmentations,

and the largest segment ratio, defined as the size of the largest segmented

vehicle area relative to the image dimensions. Since there were no predefined

or labeled data, the analysis focused on the models' raw output to evaluate their

initial effectiveness in real-world conditions.

The models detected an average of 1.78 vehicles and produced 1.92

segmentations per image, indicating generally accurate detection with slight

over-segmentation. The average largest segment covered 39.18% of the image

area, suggesting effective focus on primary vehicle regions. Detection

confidence averaged 63.42%, while segmentation confidence was slightly

higher at 69.15%, reflecting moderate to strong model certainty. Overall, the

143

results indicate reliable initial performance, with room for further refinement

through model tuning and dataset expansion.

Figure 4.39: The result from the detection and segmentation.

144

CHAPTER 5

5 SYSTEM DESIGN

5.1 Introduction

This chapter describes the architecture design of the system, which includes the

frontend, backend, and their communication.

5.2 System Architecture Design

The ParkPal system separates frontend and backend components for efficient

operation. The frontend consists of mobile and web applications for drivers,

parking operators, and admins, built with Expo, React Native, and React Native

Web, allowing management of vehicles, parking sessions, payments, and

support tickets.

The backend includes a Laravel PHP server, which handles CRUD

operations on a PostgreSQL database, manages users, processes parking

transactions, handles notifications, and integrates with Stripe for automatic

payments. A Python/Uvicorn server performs AI-based license plate and vehicle

attribute recognition using Gemini Flash 2.5, supporting driver vehicle

registration and automatic parking fee processing.

NGROK is used for exposing backend servers during development but

does not perform backend operations. In operation, frontend requests are

processed by Laravel, interacting with the database, Stripe, and the Python

server for AI tasks, then returning responses and notifications to users. This

architecture ensures secure transactions, real-time updates, and automated

parking fee collection.

145

Figure 5.1: System Architecture Design.

5.2.1 Front-end Architecture

The frontend of the ParkPal application is developed using React Native and

React Native Web, providing a consistent interface across mobile and web

platforms. React Native components are dynamic elements that respond to state

changes, user interactions, and component events, such as button clicks or text

entry. The main entry point, index.js, registers the root component (App) using

registerRootComponent from Expo, ensuring that the application environment

is correctly initialized whether running in Expo Go or a native build. The App.js

file contains the <NavigationContainer> and sets up the main stack navigator

for routing across screens.

 State management and authentication are handled via the

<AuthProvider> context, while persistent navigation state is stored in

AsyncStorage to restore user sessions across app launches. The app also

integrates real-time notifications through Pusher and Echo, allowing drivers to

receive updates on payment events immediately. Client-side rendering ensures

that all UI components, such as <View>, <Text>, and <Image>, are executed

on the device, providing a responsive and interactive experience. This

architecture allows seamless interaction with backend services, efficient state

handling, and real-time updates while maintaining a single codebase for

multiple platforms.

146

In React Native, the UI is rendered on the client side, meaning it is

executed directly on the mobile device. During installation, the necessary native

code and bundled JavaScript components are deployed on the device. When the

application is launched, the React Native runtime executes the JavaScript

bundle, rendering UI components and enabling real-time interactions, such as

vehicle registration, parking session management, and automatic payment

transactions.

React Native communicates with the device’s native components via a

bridge, connecting the JavaScript thread (which executes the app logic) and the

native thread (which handles rendering). Data is serialized in JSON format to

pass between threads, providing a native-like experience while using a single

codebase for multiple platforms. This architecture reduces the need to develop

separate applications for iOS and Android and distributes rendering tasks to the

client, lowering server workload.

The project uses Expo as a development framework to streamline

bundling and deployment. Developers can connect a mobile device via a QR

code or URL to load the JavaScript bundle directly from the development

machine. Expo simplifies testing and reduces resource consumption by

eliminating the need for virtual devices during development.

5.2.2 Back-end Architecture

The backend of ParkPal consists of a Laravel PHP server as the main backend,

supported by a Python/Uvicorn server for AI processing. The Laravel server

handles requests from both mobile and web applications, performing CRUD

(Create, Read, Update, Delete) operations on a PostgreSQL database. It

manages user accounts, parking sessions, notifications, and integrates with

Stripe for payment processing.

The Python/Uvicorn server performs specialized AI tasks, including

license plate and vehicle attribute recognition. There are two main flows for

image processing. First, during driver vehicle registration, drivers upload

vehicle images through the mobile app, which are sent to the Python server. The

server communicates with Gemini Flash 2.5 to extract attributes such as license

147

plate, make, model, and color. The results are then returned to the Laravel

backend for storage in PostgreSQL.

Second, for automatic parking fee processing, images of vehicles

captured at parking lots are sent directly to the Python server for recognition via

Gemini Flash 2.5. The processed results are returned to the Laravel backend to

calculate parking fees, process payments through Stripe, and send notifications

to drivers.

For development and mobile testing, NGROK is used to expose the

backend servers to the internet, allowing devices to connect remotely. Overall,

the backend processes HTTP requests from the frontend, interacts with the

database, communicates with Stripe and the AI service, and returns responses

to the frontend, ensuring real-time updates and efficient system operation.

5.3 Database Architecture

The system utilizes PostgreSQL as its primary RDBMS due to its robustness,

scalability, and strong support for complex queries and data integrity.

PostgreSQL is well-suited for handling structured data, relationships, and

transactional operations, which are essential for managing users, vehicles,

reservations, parking lots, and EV charger information in the application.

The database is designed following relational principles, ensuring that

entities such as users, parking lots, EV chargers, and reservations are

represented as separate tables with clearly defined relationships. For instance, a

users table maintains personal and authentication details, while vehicles are

linked to users through foreign key constraints. Similarly, reservations and

ev_chargers tables are associated with users and parking locations to track

bookings, availability, and occupancy in real time.

This relational design supports data consistency, integrity, and

scalability. Constraints such as primary keys, foreign keys, and unique indices

are applied to prevent invalid or duplicate data. Additionally, PostgreSQL’s

support for advanced features like JSONB fields allows flexible storage for

dynamic or semi-structured data, such as parking lot metadata or EV charger

specifications, without compromising query performance.

148

By leveraging PostgreSQL, the system ensures reliable data

management for real-time operations, complex filtering and searching, and

future extensibility, enabling efficient handling of both transactional and

analytical requirements for the parking and EV reservation platform.

5.3.1 Database Entity Relationship Diagram (ERD)

Figure 5.2 shows the Entity Relationship Diagram (ERD) for the system

database. It illustrates the entities and their relationships, which form the

foundation for the database schema implemented in PostgreSQL. The ERD

defines how data is logically structured and interconnected within the system,

ensuring referential integrity, data consistency, and efficient query performance.

Figure 5.2: Entity Relationship Diagram for the System Database

149

The relationships among entities such as users, vehicles, parking

sessions, and payments enable accurate tracking of parking activities, vehicle

entries and exits, and corresponding financial transactions. Supporting entities

such as notifications, support tickets, and pending actions provide functionality

for user communication, issue management, and administrative approvals.

The database design follows normalization principles to minimize

redundancy and improve data integrity, while maintaining flexibility for future

system expansion. For example, modular entities such as EV chargers,

companies, and payment gateways can be easily extended or modified without

disrupting existing relationships. This relational structure ensures seamless

integration between the Laravel backend and other system components,

supporting reliable and scalable data operations throughout the parking

management system.

5.3.2 Database Schema

The database schema defines the logical structure of the system’s data as

implemented in PostgreSQL. It specifies the tables, fields, data types, and

relationships derived from the Entity Relationship Diagram (ERD).

Table 5.1: Users Schema

Column Type Default Constraints
Descriptio

n

id bigint NOT NULL
Primary

key

full_name varchar(255) NOT NULL
User’s full

name

ic varchar(255) NOT NULL

Identity

card

number

email varchar(255) NOT NULL
Email

address

150

email_verified

_at
timestamp

Email

verification

timestamp

password varchar(255) NOT NULL
Hashed

password

user_type varchar(255) 'driver'

Must be

driver,
parking_oper

ator, admin

Type of

user

google_id varchar(255)
Google

OAuth ID

company_id bigint

Linked

company

(if

applicable)

stripe_account

_id
varchar(255)

Stripe

account ID

stripe_onboard

ed
boolean false

Stripe

onboarding

status

phone_number varchar(255)
Contact

number

profile_picture varchar(255)
Profile

image URL

two_factor_en

abled
boolean false

2FA

enabled

flag

notification_e

mail
boolean true

Email

notification

s enabled

notification_s

ms
boolean false

SMS

notification

s enabled

151

notification_pu

sh
boolean false

Push

notification

s enabled

status varchar(255)
'pending_

setup'

Must be
pending_setu

p,
pending_appr

oval, active,

inactive,

rejected,

suspended,
deactivated

Account

status

last_login_at timestamp
Last login

timestamp

last_login_ip varchar(255)
Last login

IP address

failed_login_at

tempts
integer 0

Count of

failed login

attempts

last_password_

change_at
timestamp

Timestamp

of last

password

change

remember_tok

en
varchar(100)

Remember

me token

created_at timestamp Creation

timestamp

updated_at timestamp Last update

timestamp

152

Table 5.2: Companies Schema

Column Type Default Constraints
Descriptio

n

id bigint NOT NULL
Primary

key

name
varchar(255

)
 NOT NULL

Company

name

registration_no
varchar(255

)

Registratio

n number

address
varchar(255

)

Company

address

contact_email
varchar(255

)

Contact

email

contact_phone
varchar(255

)

Contact

phone

gateway_account_i

d

varchar(255

)

Payment

gateway

account ID

status
varchar(255

)

'pending

'

Must be one

of pending,

verified,

rejected,

suspended,
deactivate

d

Company

account

status

created_at timestamp
Creation

timestamp

updated_at timestamp
Last update

timestamp

153

Table 5.3: EV Charger Types Schema

Column Type Default Constraints Description

id bigint NOT NULL Primary key

connector_type varchar(255)

Must be

Type 1,

Type 2,

CHAdeMO,

CCS, Tesla

Type of

charger

connector

current_type varchar(255)
Must be AC

or DC

Type of

electric

current

power_output_kw numeric(6,2)

Power

output in

kW

status varchar(255) 'active'
Must be

active or
inactive

Charger

type status

created_at timestamp
Creation

timestamp

updated_at timestamp
Last update

timestamp

154

Table 5.4: EV Chargers Schema

Column Type Default Constraints Description

id bigint NOT NULL Primary key

charger_type_

id
bigint NOT NULL

Foreign key to
ev_charger_ty

pes

parking_zone

_id
bigint NOT NULL

Foreign key to

parking zone

identifier
varchar(25

5)

Charger

identifier

status
varchar(25

5)

'availabl

e'

Must be

available,

reserved,

in_use,
out_of_ord

er

Current status of

charger

lifecycle_stat

us

varchar(25

5)
'active'

Must be

active or
inactive

Lifecycle status

created_at timestamp
Creation

timestamp

updated_at timestamp
Last update

timestamp

155

Table 5.5: EV Reservations Schema

Column Type Default Constraints Description

id bigint NOT NULL Primary key

user_id bigint NOT NULL

User making

the

reservation

ev_charger_id bigint NOT NULL
Reserved

charger

vehicle_id bigint

Vehicle

being

charged

status varchar(255) 'reserved'

Must be

reserved,

active,

completed,

cancelled,
expired

Reservation

status

start_time timestamp
Start time of

reservation

checked_in_at timestamp
Check-in

timestamp

end_time timestamp End time

created_at timestamp
Creation

timestamp

updated_at timestamp
Last update

timestamp

156

Table 5.6: Notifications Schema

Column Type Default Constraints Description

id uuid NOT NULL Primary key

type varchar(255) NOT NULL
Type of

notification

notifiable_type varchar(255) NOT NULL

Model type

being

notified

notifiable_id bigint NOT NULL

ID of the

notified

entity

data json NOT NULL
Notification

content

read_at timestamp

Timestamp

when

notification

was read

created_at timestamp
Creation

timestamp

updated_at timestamp
Last update

timestamp

157

Table 5.7: Parking Lots Schema

Column Type Default
Constraint

s

Descriptio

n

id bigint
NOT

NULL

Primary

key

company_id bigint
NOT

NULL

Owning

company

parking_lot_name varchar(255)
NOT

NULL

Name of

parking lot

address varchar(255)
NOT

NULL

Street

address

city varchar(255)
NOT

NULL
City

postcode varchar(255)
NOT

NULL
Postal code

state varchar(255)
NOT

NULL
State

latitude
numeric(10,7

)

Latitude

coordinate

longitude
numeric(10,7

)

Longitude

coordinate

parking_type varchar(255)
'open-

air'

Must be

basement,
multi-

storey,

open-air,
valet

Type of

parking

total_parking_bay

s
integer

NOT

NULL

Total

number of

bays

opening_time time
Opening

hour

158

closing_time time
Closing

hour

is_24_7 boolean false
24/7

availability

status varchar(255)
'pending

'

Must be

pending,

approved,

rejected,
suspended

Lot status

created_at timestamp
Creation

timestamp

updated_at timestamp
Last update

timestamp

Table 5.8: Parking Zones Schema

Column Type Default Constraints Description

id bigint NOT NULL Primary key

parking_lot_id bigint NOT NULL
Related

parking lot

zone_name varchar(255) NOT NULL Zone name

bay_count integer 0
Number of

bays in zone

description text
Optional

description

status varchar(255) 'active'
Must be

active or
inactive

Zone status

created_at timestamp
Creation

timestamp

updated_at timestamp
Last update

timestamp

159

Table 5.9: Parking Rates Schema

Column Type Default Constraints Description

id bigint NOT NULL Primary key

parking_zone_id bigint NOT NULL
Zone for this

rate

identifier varchar(255)
Rate

identifier

start_hour integer NOT NULL
Start hour of

rate

end_hour integer
End hour of

rate

rate numeric(8,2) NOT NULL Rate amount

rate_type varchar(255) 'weekday'

Must be

weekday,

weekend,
holiday

Type of rate

status varchar(255) 'active'
Must be

active or
inactive

Rate status

created_at timestamp
Creation

timestamp

updated_at timestamp
Last update

timestamp

160

Table 5.10: Parking Sessions Schema

Column Type Default
Constraint

s
Description

id bigint
NOT

NULL
Primary key

user_id bigint
NOT

NULL

User who

parked

vehicle_id bigint Vehicle used

parking_lot_id bigint
NOT

NULL
Parking lot

parking_zone_id bigint
Zone parked

in

payment_method_

id
bigint

Payment

method used

entry_time timestamp
NOT

NULL

Entry

timestamp

exit_time timestamp
Exit

timestamp

duration_minutes integer

Duration of

parking in

minutes

total_amount
numeric(8,2

)
 Total paid

paid_at timestamp
Payment

timestamp

status
varchar(255

)

'ongoing

'

Must be

ongoing,
completed

,
cancelled

, failed

Session status

161

entry_detected_by
varchar(255

)

Sensor/metho

d detecting

entry

exit_detected_by
varchar(255

)

Sensor/metho

d detecting

exit

payment_reference
varchar(255

)

Payment

reference ID

receipt_number
varchar(255

)

Receipt

number

remarks text
Additional

notes

created_at timestamp
Creation

timestamp

updated_at timestamp
Last update

timestamp

162

Table 5.11: Vehicles Schema

Column Type Default Constraints Description

id bigint NOT NULL Primary key

user_id bigint NOT NULL
Owner user

ID

vehicle_type varchar(255) 'car'
Must be car,

motorcycle,
truck

Type of

vehicle

make varchar(255) NOT NULL
Vehicle

brand

model varchar(255) NOT NULL
Vehicle

model

color varchar(255) NOT NULL Vehicle color

license_plate varchar(255) NOT NULL
Registration

plate

is_default boolean false
Default

vehicle flag

is_active boolean true
Active

vehicle flag

created_at timestamp
Creation

timestamp

updated_at timestamp
Last update

timestamp

163

Table 5.12: Payment Methods Schema

Column Type Default Constraints Description

id bigint NOT NULL Primary key

user_id bigint NOT NULL
Owner user

ID

type varchar(255)

Must be

card,

ewallet,
bank

Payment

method type

provider varchar(255) NOT NULL
Provider

name

card_last_four varchar(255)

Last 4 digits

of card (if

card)

card_expiry varchar(255)
Card expiry

date

ewallet_id varchar(255)
E-wallet

identifier

is_default boolean false

Default

payment

method

token varchar(255)
Tokenized

payment info

created_at timestamp
Creation

timestamp

updated_at timestamp
Last update

timestamp

164

Table 5.13: Support Tickets Schema

Column Type Default Constraints
Descriptio

n

id bigint NOT NULL Primary key

user_id bigint NOT NULL

User who

created

ticket

subject
varchar(255

)
 NOT NULL

Ticket

subject

description text NOT NULL
Detailed

description

priority
varchar(255

)
'medium

'

Must be low,

medium,

high, urgent

Ticket

priority

status
varchar(255

)
'open'

Must be open,
in_progress

, resolved,
closed

Ticket

status

assigned_admin_i

d
bigint

Admin

assigned to

ticket

resolved_at timestamp
Resolution

timestamp

attachments json
Attached

files

created_at timestamp
Creation

timestamp

updated_at timestamp
Last update

timestamp

165

Table 5.14: Support Ticket Messages Schema

Column Type Default Constraints Description

id bigint NOT NULL Primary key

support_ticket_id bigint NOT NULL Linked ticket

user_id bigint
Sender user

ID

message text NOT NULL
Message

content

is_admin boolean false
Flag if

admin sent

attachments json
Optional

attachments

created_at timestamp
Creation

timestamp

updated_at timestamp
Last update

timestamp

166

Table 5.15: Pending Actions Schema

Column Type Default Constraints Description

id bigint NOT NULL Primary key

user_id bigint NOT NULL
Action

initiator

entity_type varchar(255) NOT NULL
Model type

affected

entity_id bigint

ID of

affected

entity

action varchar(255)

Must be

create,

update,
deactivate

Action type

data json New data

old_data json Previous data

status varchar(255) 'pending'

Must be

pending,

approved,
rejected

Action status

reviewed_by bigint Reviewer ID

reviewed_at timestamp
Review

timestamp

review_notes text
Reviewer

notes

created_at timestamp
Creation

timestamp

updated_at timestamp
Last update

timestamp

167

5.3.3 Collection Description

This section provides detailed descriptions of the database tables used in the

system. Each table is explained in terms of its purpose.

Table 5.16: Collections Description Table

Table Name Description / Use

users

Stores all registered users, including drivers,

parking operators, and admins, along with

their authentication and notification

preferences.

companies
Stores information about companies that

manage parking lots, including contact info

and account status.

company_change_requests
Tracks requests by users to update company

information, with review and approval

workflow.

ev_charger_types
Stores types of EV chargers, their connector

type, power, current type, and status.

ev_chargers
Represents individual EV chargers in parking

zones, linked to charger types and their

current availability.

ev_reservations
Records reservations of EV chargers by users,

including start/end times and status.

notifications
Stores notifications sent to users or other

entities, including type, content, and read

status.

parking_lots
Contains information about parking lots,

including company ownership, location, type,

capacity, and operational hours.

parking_zones
Subdivisions of parking lots (zones) with bay

counts, descriptions, and status.

168

parking_rates
Stores rate information for parking zones,

including time slots, rate amount, and type

(weekday/weekend/holiday).

parking_sessions
Tracks parking usage by users, including

entry/exit times, duration, payment info, and

status.

vehicles
Stores details about user vehicles, including

type, make/model, color, license plate, and

active/default status.

payment_methods
Stores user payment methods, including card,

e-wallet, or bank, with provider info and

default flag.

payment_gateways
Stores company-linked payment gateway

information, API credentials, webhook

settings, and verification status.

support_tickets
Tracks support tickets submitted by users,

including subject, description, priority, status,

and assigned admin.

support_ticket_messages
Stores individual messages within support

tickets, including sender, message content,

and attachments.

pending_actions
Tracks user-initiated actions that require

admin review, including

create/update/deactivate operations.

password_reset_tokens
Stores tokens for resetting user passwords,

linked to user email and creation timestamp.

169

5.4 Data Flow Diagram

5.4.1 Context Diagram

Figure 5.3: Context Diagram

170

5.4.2 DFD Level-0 Diagram

Figure 5.4: DFD Level 0 Diagram

171

5.5 Activity Diagram

Figure 5.5: Activity Diagram of Login Account

172

Figure 5.6: Activity Diagram of Register Account

173

Figure 5.7: Activity Diagram of Operator Setup

174

Figure 5.8: Activity Diagram of View Nearby Parking Lots

175

Figure 5.9: Activity Diagram of Reserve Nearcy EV Chargers

176

Figure 5.10: Activity Diagram of Add Parking Lot

Figure 5.11: Activity Diagram of Edit Parking Lot

177

Figure 5.12: Activity Diagram of Review Pending Actions

178

Figure 5.13: Activity Diagram of Automated Payment During Exit of Parking

Lot

179

5.6 User Interface Design

5.6.1 Driver Mobile Interface

Figure 5.14: Login Page

This is the Login page of the ParkPal mobile application, where users (drivers)

enter their email and password to access their account. Users who forgot their

password can click “Forgot Password?”, and new users can tap “Sign Up” to

create a new account.

180

Figure 5.15: Forgot Password Page

This is the Forgot Password page, where users can enter their email to receive a

password reset link. They can reset their password through the link, or tap “Back

to Login” to cancel the operation.

181

Figure 5.16: Register Page

This is the Registration page, where users can create an account by entering their

personal information and agreeing to the terms and conditions and privacy

policy. Users who already have an account can click the “Sign in” link to log in.

182

Figure 5.17: Drawer Navigation

This is the Drawer Navigation, which allows users to access other pages. Users

can also view their name and role, and log out directly through the drawer.

183

Figure 5.18: Driver Dashboard

The Driver Dashboard provides an overview of the driver’s parking and EV

activities. It displays the current parking session, reserved EV charging slots,

and key statistics. Users can access quick actions for common tasks, view usage

trends through interactive charts (switching between weekly and monthly

views), and see quick informational summaries at a glance.

184

Figure 5.19: Toaster Notification after Payment

After a driver exits the parking lot and the simulated payment is successfully

processed, the system displays a toaster notification to confirm completion. This

notification appears instantly on the driver’s screen, showing details such as the

total parking fee, payment status, and session summary. It provides users with

real-time feedback, ensuring they are informed of the successful transaction.

185

Figure 5.20: Nearby Parking Lot Location Permission and Loading Screen

Upon first use, the Nearby Parking Lots page prompts the user to grant location

access. Once permission is granted, the system may display a loading screen

while fetching nearby parking lot data.

186

Figure 5.21: Nearby Parking Lots List View

The Nearby Parking Lots page displays a list of available parking lots near the

user. Users can filter the results, switch to a map view, and view directions to

their chosen parking lot.

187

Figure 5.22: Nearby Parking Lots Details

Clicking on a parking lot card from the Nearby Parking Lot page opens the

parking lot details, including available zones and their rates. If EV Chargers are

present for the lot, the number of EV Chargers available is also displayed.

188

Figure 5.23: Nearby Parking Lots Map View

Switching to the map tab displays a map with pins marking the locations of

nearby parking lots. Tapping a pin opens the parking lot details, including zones,

rates, and available EV charging stations, as described previously.

189

Figure 5.24: Nearby Parking Lot Filters

The filtering feature allows users to refine nearby parking lot results based on

several criteria, such as search radius (1 km to 15 km), parking type, maximum

rate, availability of EV charging, and currently available lots. Users can also

reset all filters to return to the default view.

190

Figure 5.25: Nearby EV Reservation List View

The EV Reservation List page displays parking lots with available EV chargers.

It shows the number of chargers available at each location and the types of

chargers offered, allowing users to select a suitable option for reservation.

191

Figure 5.26: Available EV Reservation Details

Clicking on an EV reservation item opens a detailed view of all available

chargers at that parking lot. Each charger includes detailed information, such as

type, power output, and current availability, allowing users to choose the most

suitable charger for reservation.

192

Figure 5.27: Vehicle Selection for EV Reservation

After clicking “Reserve This Charger,” the driver can select which of their

registered vehicles to use for the reservation.

193

Figure 5.28: Nearby EV Reservation Map View

The EV Reservation map view displays pins for parking lots with available EV

chargers. Tapping a pin opens the reservation details, showing all available

chargers and their specifications, allowing users to make a reservation directly

from the map.

194

Figure 5.29: EV Reservation Filter

The EV Reservation filtering feature allows users to refine the list of available

chargers based on search radius and connector types. This helps drivers quickly

find chargers that are both nearby and compatible with their vehicle. Users can

also clear all filters to return to the default view.

195

Figure 5.30: EV Reservation Active and History

The EV Reservation also shows the upcoming, ongoing, and past reservations.

The Active tab displays both upcoming reservations, showing the time

remaining until expiration (1-hour limit), and ongoing reservations, showing the

current session duration. The History tab shows past reservations. All

reservations display the associated vehicle, parking lot, and EV charger details.

196

Figure 5.31: Parking Transaction History

The Parking Transaction History page displays a list of past parking transactions.

Each entry includes the transaction status, parking lot, vehicle used, duration,

date and time, and amount paid, giving users a clear record of their parking

activities.

197

Figure 5.32: Parking Transaction History Details

Clicking “View Details” on a transaction opens an in-depth view, showing the

parking lot location, vehicle information, time details, and payment information

(if available), providing a comprehensive overview of the transaction.

198

Figure 5.33: Parking Transaction Filter

The Transaction History page includes filters that allow users to refine

transactions by status and date range. It also provides quick date range options

for faster access to recent transactions.

199

Figure 5.34: Profile Page Basic Info Tab

Under the Basic Info tab, users can view their personal information, including

full name, email, phone number, and IC number. The IC number is displayed as

read-only and cannot be edited, while the other fields can be updated as needed.

200

Figure 5.35: Profile Page Notifications Tab

Under the Notifications tab, users can manage their notification preferences.

They can toggle options for receiving alerts via email, SMS, or push

notifications according to their preferences.

201

Figure 5.36: Profile Page Security Tab

Under the Security tab, users can change their password and toggle two-factor

authentication for enhanced account security. This tab also displays relevant

account security information to keep users informed about their account

protection status.

202

Figure 5.37: Profile Page Change Password

To update their password, users must enter their current password, choose a new

password, and confirm the new password. This ensures that password changes

are secure and verified.

203

Figure 5.38: Profile Page Vehicles Tab

The Vehicles tab displays all vehicles registered by the user. Users can add new

vehicles, edit or delete existing ones, mark a vehicle as default, or stop a vehicle

in case of suspected fraud.

204

Figure 5.39: Profile Page Add Vehicles

When adding a vehicle, users can either manually enter the vehicle details or

use the camera to capture a photo. The system will extract information such as

make, model, color, and license plate from the image to simplify the process.

205

Figure 5.40: Profile Page Payments Tab

In the Payment Methods tab, users can add new payment methods, set a default

method for transactions, and delete existing payment methods as needed.

206

Figure 5.41: Profile Page Add Payment Method

When adding a payment method, users must provide the payment type, provider,

last four digits of the card, and expiry date. This ensures the system has the

necessary information to process transactions securely.

207

Figure 5.42: Support Tickets Page

The Support Ticket page displays a list of all tickets submitted by the driver.

Users can view the status of existing tickets and create new tickets to report

issues or request assistance.

208

Figure 5.43: Create New Ticket

When creating a new support ticket, the driver is required to enter the ticket type,

subject, detailed description, and select a priority level. This ensures the issue is

properly categorized and addressed promptly.

209

Figure 5.44: View and Send Support Ticket Message

The Support Ticket Messages feature functions like a text messaging system,

allowing drivers and support staff to communicate within each ticket. Users can

send and receive messages, providing updates, clarifications, and responses

related to their submitted issues.

210

5.6.2 Web Interface

Figure 5.45: Landing Page

The Landing Page serves as the first screen of the ParkPal website, providing

users with an overview of the app’s main features. It offers quick navigation to

key sections such as Login, Registration, and introductory information about the

app’s services.

211

Figure 5.46: Login Page

This is the Login page of the ParkPal website, where users (parking operators

and admins) enter their email and password to access their account. Users who

forgot their password can click “Forgot Password?”, and new users can tap

“Sign Up” to create a new account.

Figure 5.47: Forgot Password Page

This is the Forgot Password page, where users can enter their email to receive a

password reset link. They can reset their password through the link, or tap “Back

to Login” to cancel the operation.

212

Figure 5.48: Register Page

This is the Registration page, where users can create an account by entering their

personal information and agreeing to the terms and conditions and privacy

policy. Users who already have an account can click the “Sign in” link to log in.

213

5.6.3 Parking Operator Web Interface

Figure 5.49: Operator Company Setup Page

There are 4 steps in the Operator Setup. In the first section of Operator Setup,

parking operators enter their company details, including the company name,

registration number, address, email, and phone number. This information is

required to complete the initial setup of the operator account.

Figure 5.50: Operator Stripe Setup Page

In the second section, parking operators link their Stripe account to enable

payment processing. This allows the system to handle transactions securely and

ensures that parking fees can be collected and managed efficiently.

214

Figure 5.51: Operator Parking Lot Setup Page

In the third section, parking operators enter details about their parking lot,

including the lot name, zones, and rates for each zone. Information about EV

chargers can also be added if available. Operators can add multiple lots if they

manage more than one location.

Figure 5.52: Operator Setup Review Page

215

In the final section, parking operators can review all the information they have

entered, including company details, Stripe connection, and parking lot

information. This allows them to verify and confirm the accuracy of their data

before completing the setup process.

Figure 5.53: Operator Setup Successful Page

After submitting the setup, a confirmation page is displayed indicating that the

registration has been submitted. The message informs the operator that admin

approval is required before the account becomes active. Operator can then be

redirected back to the login page.

Figure 5.54: Drawer Navigation

This is the Drawer Navigation, which allows users to access other pages. Users

can also view their name and role, and log out directly through the drawer.

216

Figure 5.55: Parking Operator Dashboard

The Parking Operator Dashboard provides an overview of parking operations

and performance. It includes statistics, customer analysis, revenue trends (with

tabs for daily, weekly, and monthly views), peak hour analysis, live parking

status, and current parking rates. This allows operators to monitor and manage

their parking lots effectively.

217

Figure 5.56: Parking Management Dashboard

The Parking Management Dashboard displays all parking lots managed by the

operator, along with their details. Operators can click on a lot to view its zones,

rates, and any associated EV chargers. An overview section provides summary

insights for quick reference. All changes and actions made within this dashboard

require admin approval before taking effect.

Figure 5.57: Parking Management Dashboard Add Parking Lot

Operators can add a new parking lot by entering its name, address, latitude and

longitude, parking type, total number of parking bays, and opening and closing

times. There is also an option to set the parking lot as open 24/7 for convenience.

Once submitted, the new parking lot requires admin approval before it becomes

active.

218

Figure 5.58: Parking Management Dashboard Edit Parking Lot

Operators can update an existing parking lot’s details, including name, address,

latitude and longitude, parking type, total parking bays, and opening and closing

times, with the option to set it as open 24/7. All edits must be submitted for

admin approval before the changes take effect.

Figure 5.59: Parking Management Dashboard Zone Tab

Clicking on a parking lot opens its detailed view, organized into tabs for Zones,

Rates, and EV Chargers. The Parking Zones tab displays a list of all zones

within the lot, along with key details for each zone, allowing operators to

manage and review their parking areas efficiently.

219

Figure 5.60: Parking Management Dashboard Add Zone

Operators can update the details of a parking zone, including its name,

associated parking lot, number of parking bays, and a description. All changes

must be submitted for admin approval before they take effect.

Figure 5.61: Parking Management Dashboard Edit Zone

Operators can edit a parking zone using the same fields, such as name,

associated parking lot, number of bays, and description. All edits must be

submitted for admin approval before taking effect.

220

Figure 5.62: Parking Management Dashboard Rates Tab

The Rates tab displays all parking rates associated with the lot and their

corresponding zones. Key details such as rate type, applicable zone, and pricing

are shown. Operators can view, add, or edit rates, with all changes requiring

admin approval before taking effect.

Figure 5.63: Parking Management Dashboard Add Rate Plan

Operators can add a new rate plan by specifying the associated zone, rate type,

start and end hours, and the rate amount. Once submitted, the new rate plan

requires admin approval before it becomes active.

221

Figure 5.64: Parking Management Dashboard Edit Rate Plan

Operators can edit an existing rate plan using the same fields, including zone,

rate type, start and end hours, and rate amount. All edits must be submitted for

admin approval before they take effect.

Figure 5.65: Parking Management Dashboard EV Chargers Tab

The EV Chargers tab displays all EV chargers associated with the parking lot,

including key details such as charger type, power rating, availability, and

associated zone. Operators can view, add, or edit chargers, with all changes

requiring admin approval before taking effect.

222

Figure 5.66: Parking Management Dashboard Add EV Charger

Operators can add a new EV charger by specifying the charger identifier,

associated zone, type, and status. Once submitted, the new charger requires

admin approval before it becomes active.

Figure 5.67: Parking Management Dashboard Edit EV Charger

Operators can edit an existing EV charger using the same fields, which are

charger identifier, associated zone, type, and status. All edits must be submitted

for admin approval before taking effect.

223

Figure 5.68: Parking Management Dashboard Actions Made

Operators can review the actions they have performed within the system and

view detailed information for each action. This allows them to track changes

they have made and monitor the status of submissions pending admin approval.

Figure 5.69: Operator Profile Page

The Basic Info tab displays the user’s personal information, including full name,

email, phone number, and IC number. While the name, email, and phone

number can be updated, the IC number is read-only and cannot be changed.

224

Figure 5.70: Operator Profile Page Notifications Tab

Under the Notifications tab, users can manage their notification preferences.

They can toggle options for receiving alerts via email, SMS, or push

notifications according to their preferences.

Figure 5.71: Operator Profile Page Security Tab

Under the Security tab, users can change their password and toggle two-factor

authentication for enhanced account security. This tab also displays relevant

account security information to keep users informed about their account

protection status.

225

Figure 5.72: Operator Profile Page Company Tab

The Company tab displays the operator’s company information, including

company name, registration number, address, email, and phone number. Users

can view and update these details as needed.

Figure 5.73: Support Tickets Page

The Support Ticket page displays a list of all tickets submitted by the driver.

Users can view the status of existing tickets and create new tickets to report

issues or request assistance.

226

Figure 5.74: Create New Ticket

When creating a new support ticket, the driver is required to enter the ticket

type, subject, detailed description, and select a priority level. This ensures the

issue is properly categorized and addressed promptly.

Figure 5.75: View and Send Support Ticket Message

The Support Ticket Messages feature functions like a text messaging system,

allowing drivers and support staff to communicate within each ticket. Users can

send and receive messages, providing updates, clarifications, and responses

related to their submitted issues.

227

5.6.4 Admin Web Interface

Figure 5.76: Drawer Navigation

This is the Drawer Navigation, which allows users to access other pages. Users

can also view their name and role, and log out directly through the drawer.

228

Figure 5.77: Admin Dashboard

The Admin Dashboard provides an overview of system performance and user

activity. It displays key statistics, alerts, and user growth trends. Weekly parking

usage is visualized to monitor demand patterns, while a user breakdown gives

insights into different user types, helping admins manage and oversee the

system effectively.

229

Figure 5.78: Admin Pending Actions Management

This section allows admins to view all pending actions submitted by operators,

including additions, updates, or deletions related to companies, parking lots,

zones, rates, and EV chargers. Admins can view details of each action and

choose to approve or reject them. The interface also provides filtering options

to easily locate specific actions.

230

Figure 5.79: Admin Pending Actions Details

Admins can view the full details of each pending action submitted by operators.

Any changes compared to the current data are highlighted, allowing admins to

easily identify modifications before approving or rejecting the action. Admins

can choose to either approve or reject the action directly from this view.

231

Figure 5.80: Admin User Management

This section allows admins to view all users in the system along with relevant

statistics. Admins can filter users, add new accounts, edit existing ones, and

view detailed information for each user to manage the system effectively.

Figure 5.81: Admin User Management User Details View

Admins can access a detailed view of each user’s account. This comprehensive

view helps admins monitor user activity and manage accounts effectively.

232

Figure 5.82: Admin User Management Add New User

In this section, admins can create new user accounts, including adding other

admin accounts since admins cannot self-register. Required details are entered

during account creation to ensure proper setup and access control.

Figure 5.83: Admin Profile Page

The Basic Info tab displays the user’s personal information, including full name,

email, phone number, and IC number. While the name, email, and phone

number can be updated, the IC number is read-only and cannot be changed.

233

Figure 5.84: Admin Profile Page Notifications Tab

Under the Notifications tab, users can manage their notification preferences.

They can toggle options for receiving alerts via email, SMS, or push

notifications according to their preferences.

Figure 5.85: Admin Profile Page Security Tab

Under the Security tab, users can change their password and toggle two-factor

authentication for enhanced account security. This tab also displays relevant

account security information to keep users informed about their account

protection status.

234

Figure 5.86: Admin Support Ticket Management

Admins can view all support tickets submitted by users, along with relevant

statistics. The system provides filtering options to easily locate specific tickets

and monitor the status of user-reported issues.

Figure 5.87: Admin View and Send Support Ticket Message

Within each support ticket, admins can send and receive messages with users,

similar to a text messaging system. This allows admins to provide updates,

request clarifications, and respond to user-reported issues efficiently.

235

CHAPTER 6

6 SYSTEM IMPLEMENTATION

6.1 Introduction

This chapter explains how the ParkPal system was implemented to create a

working prototype. The implementation includes the backend, frontend, and AI-

based vehicle recognition using the Gemini 2.5 Flash model. The backend was

developed using Laravel and PostgreSQL to handle user authentication, data

management, and system logic. The frontend, built with React Native, provides

a user-friendly interface for drivers and administrators. A Python module was

integrated to detect vehicle license plates and attributes automatically. Tools

such as NGROK and Expo were also used to support testing and cross-platform

development. Overall, this chapter describes how the system design was

transformed into a functional and integrated solution.

6.2 Backend Implementation

6.2.1 Authentication and Authorization

The parking management system uses Bearer token authentication powered by

Laravel Sanctum to ensure secure and scalable authentication. When a user

successfully logs in or registers, the backend generates a unique Bearer token

using Sanctum. This token is then sent to the client application and included in

the Authorization header of all subsequent API requests in the following format:

Authorization: Bearer <token>.

Passwords are hashed using Laravel’s Hash facade (Bcrypt) before

being stored in the database. This ensures that even if the database is

compromised, plain-text passwords are never exposed. During login, the system

verifies the provided password by comparing it with the hashed version stored

in the database using Hash::check.

The system also supports token revocation. When a user logs out, their

current access token is invalidated (currentAccessToken()->delete()),

preventing further use of that token. Additionally, the system updates the

last_login_at field on successful login to track account activity.

236

For authorization, each Bearer token contains user-specific information

and is tied to a particular account. Access to different parts of the system is

controlled using role-based middleware, including driver, parking_operator,

and admin. This ensures that each type of user only has access to the features

and data appropriate for their role. For example, parking operators must

complete a company setup and obtain admin approval before being granted full

access, while suspended or rejected operators are blocked from using the system.

Table 6.1: Key Methods Used in the Authentication and Authorization Flow

Method Library / Middleware Usage

Hash::make Laravel Hash (Bcrypt) Hashes plain-text passwords for

secure storage in the database.

Hash::check Laravel Hash (Bcrypt) Compares a plain-text password

with its hashed version.

createToken Laravel Sanctum Generates a new Bearer token for

user authentication.

auth:sanctum

middleware

Laravel Sanctum Ensures only authenticated

requests with valid tokens can

access APIs.

role:driver/

operator/

admin

Custom Middleware Restricts access to routes based on

user role.

currentAccess

Token()->

delete()

Laravel Sanctum Revokes a user’s current token

during logout.

6.2.2 Database Integration (PostgreSQL)

To interact with PostgreSQL, the backend is implemented using the MVC

(Model-View-Controller) architecture provided by Laravel. This design

separates the application into three main components.

The models define the structure and relationships of database tables in

PostgreSQL. Models represent entities such as users, parking lots, reservations,

and transactions, and provide an interface to perform database operations. The

237

controllers handle the logic for processing requests, interacting with Models,

and preparing responses for the frontend. Controllers manage CRUD (Create,

Read, Update, Delete) operations and implement business rules such as

reservation validation, payment processing, and user role management. In this

system, the Views are represented by the React Native frontend, which retrieves

and displays data provided by the backend.

To facilitate communication between the frontend and backend, Axios

is used as a promise-based HTTP client. Axios sends HTTP requests (GET,

POST, PUT, PATCH, DELETE) from the React Native application to the

Laravel backend API. This enables the frontend to perform CRUD operations

on PostgreSQL data, streamlining the interaction between the mobile/web

interface and the server.

By combining PostgreSQL with Laravel’s MVC architecture, the system

achieves a structured, maintainable, and scalable design while ensuring efficient

data storage, retrieval, and processing for all application modules. PostgreSQL’s

robust ACID compliance and indexing capabilities also ensure data consistency

and efficient query performance, especially for large datasets such as transaction

records and parking sessions.

6.2.3 Real-Time Communication (Reverb and Pusher-js)

The system employs Reverb and Pusher-js to enable real-time updates on the

admin dashboard. Using Pusher’s private channels, the dashboard subscribes to

events such as DashboardUpdated, which triggers immediate updates to metrics

without requiring manual page refreshes. This allows administrators to view up-

to-date information on total users, active users, parking lot availability, EV

charger status, and high-priority alerts. Reverb simplifies event handling and

ensures smooth communication between the frontend and backend. In addition,

cleanup routines are implemented to safely leave channels and stop event

listeners, preventing memory leaks or duplicate updates during prolonged usage.

238

6.3 Frontend Implementation

6.3.1 Navigation Structure (React Navigation)

In the Park Pal mobile app for drivers, React Navigation is used to manage all

navigation flows. The app implements a combination of stack and drawer

navigators to create a nested navigation system.

The drawer navigator serves as the main navigation system. It provides

access to primary screens such as the driver dashboard, available parking lots,

EV reservations, transaction history, profile, and support tickets. The drawer is

hidden by default to save screen space, and can be opened by tapping a menu

button located in the top-left corner of the home screen header.

The stack navigator allows navigation between secondary pages and

supports typical forward/backward navigation within the app. The drawer

navigator is nested as the initial screen of the stack navigator, ensuring that users

can access the main menu from anywhere in the app.

This combination of stack and drawer navigation creates a smooth and

intuitive user experience, allowing drivers to move seamlessly between the

dashboard, reservations, transaction history, and other key features.

6.3.2 Local Storage (Async Storage)

In the Park Pal mobile application, Async Storage is utilized as a local key-value

storage system for maintaining essential user data on the device. This includes

authentication tokens and user profile information, allowing the app to persist

the user’s login state between sessions.

When a user logs in, the authentication token and user data are saved

to Async Storage. This ensures that even if the app is closed or the device is

restarted, the driver remains logged in. Upon reopening the app, the stored token

and user data are retrieved automatically to authenticate the user without

requiring manual login.

During logout, the token and user data are removed from Async

Storage, effectively ending the session. Additionally, Async Storage is used

throughout the app for temporarily storing other session-related data, such as

selected chargers or reservation details.

239

By leveraging Async Storage, the app provides a seamless user

experience, keeping the driver logged in and retaining necessary session data

until the user explicitly logs out or the data is cleared.

6.3.3 Data Visualization

6.3.3.1 React Native Chart Kit

In the development of the Driver Dashboard, react-native-chart-kit is used to

create visual representations of parking and vehicle usage data. The library

provides an easy way to integrate charts such as line charts and bar charts

directly into the mobile app, helping drivers understand their parking behavior

and usage trends over time.

This react-native-chart-kit is chosen for its simplicity and pre-built

components, allowing for rapid chart integration without extensive

customization. While it may not offer as many advanced options as other

charting libraries, it provides responsive and clear visualizations that meet the

needs of the dashboard.

In this application, two primary chart types are implemented. The

Monthly Usage Line Chart displays the total parking sessions per month,

helping drivers see trends in their parking activity over the past months.

Meanwhile, the Weekly Usage Bar Chart shows weekly parking activity,

providing a quick overview of short-term usage patterns.

Both charts are encapsulated within reusable ChartCard components

and receive usage data from custom hooks like useDriverDashboardData. These

charts appear in the driver’s dashboard, allowing them to monitor their parking

habits at a glance. The charts are interactive and scrollable horizontally, giving

drivers an intuitive way to switch between monthly and weekly views.

By using react-native-chart-kit, the dashboard delivers visual insights

that improve driver awareness of parking patterns, enabling better planning and

efficient use of parking resources.

240

6.3.3.2 Recharts

Both the admin and parking operator dashboards use Recharts to render

complex datasets into interactive visualizations. On the admin dashboard, area

charts, line charts, and bar charts display trends such as user growth, weekly

parking usage, and high-priority tickets. Custom tooltips and legends enhance

data readability and highlight critical insights, while responsive containers

ensure charts adapt to different screen sizes.

For parking operators, Recharts is employed to visualize revenue

trends, occupancy rates, EV reservations, and peak-hour analyses. The

dashboard provides interactive components such as period selectors, which

allow users to switch between daily, weekly, or monthly data views. Live status

cards summarize parking lot availability and occupancy, while quick action

cards provide one-click access to ticket management, EV charger management,

and reservation oversight. Together, these visualizations transform raw data into

actionable insights, supporting efficient decision-making for both

administrators and operators.

6.3.4 Location Services (Expo-Location)

The mobile application leverages Expo Location to capture and manage the

driver’s real-time geographic coordinates. Within custom hooks such as

useNearbyParkingLots and useEvReservations, the system requests foreground

location permissions on iOS and Android devices. Once granted, the app

retrieves high-accuracy GPS coordinates using

Location.getCurrentPositionAsync, which are then stored in the local state as

userLocation. On the web, the system falls back to the browser’s

navigator.geolocation API for location access.

These coordinates are critical for dynamically querying nearby parking

lots and EV chargers, allowing the application to calculate distances, filter

results by radius, and sort by availability or proximity. The location data also

supports reservation management, enabling the app to check whether a user can

access a charger or parking space on time. Default coordinates (e.g., central

Kuala Lumpur) are used as a fallback when permissions are denied or location

retrieval fails, ensuring continuous functionality. Overall, Expo Location

241

provides a seamless and cross-platform method for integrating real-time

geolocation into the driver experience.

6.4 AI & Detection Module

6.4.1 Python-Uvicorn Service Setup

Uvicorn serves as the ASGI server for running the Python backend that powers

vehicle detection and recognition. It processes requests sent from the Laravel

backend, such as analyzing parking lot images to extract vehicle license plates

and attributes using the Gemini Flash 2.5 model. Uvicorn’s high-performance,

asynchronous capabilities make it well-suited for handling multiple AI

inference requests efficiently, ensuring real-time responses during vehicle entry

and exit.

6.4.2 Gemini 2.5 Flash Integration

The system integrates Gemini 2.5 Flash, an LLM, to perform vehicle detection

from uploaded images. This module extracts key vehicle attributes, such as

license plate number, make, model, and color, which are then used to facilitate

parking reservation and verification.

The detection process is implemented in Python and interacts with the

Gemini 2.5 Flash API. The Python service acts as a middleware between the

LLM and the Laravel backend, ensuring smooth data flow between the AI

inference output and database storage. Each uploaded vehicle image is sent to

the model with a structured prompt requesting a JSON-formatted output. Once

the response is received, the module performs normalization of the detected

attributes as stated in the table below.

Gemini 2.5 Flash was chosen over the earlier Gemini 2.0 version,

which has since been deprecated and is no longer actively supported. Tulsee

Doshi (2025) mentioned that the newer release provides faster response times

and cost-efficiency, excelling at high-volume, latency-sensitive tasks, which is

suitable for our system. By adopting Gemini 2.5 Flash, the system benefits from

improved stability, compatibility with the latest API features, and long-term

reliability.

242

Table 6.2: Vehicle Attribute Normalization

Attribute

Normalization Method Example

License plate Cleans invalid characters and

converts text to uppercase.

"abc 123" →

"ABC 123"

Make and model Capitalizes and formats strings

consistently.
"toyota corolla" →

"Toyota Corolla"

Color Maps different color names to a

standardized set of colors.
"burgundy" →

"red"

The vehicle detection module integrates with the backend to

automatically capture vehicle details during entry and exit at the parking lot.

This reduces manual entry errors and ensures accurate tracking of vehicles,

while detection times are logged for performance monitoring. This integration

enhances the app’s capabilities, allowing automated recognition of vehicles.

6.4.3 Vehicle Detection Setup and Workflow

The vehicle recognition component was implemented using the Gemini 2.5

Flash model integrated with a Python–Uvicorn service. The purpose of this

module is to automatically extract vehicle information (license plate, make,

model, and color) from captured images at the parking lot entry point.

6.4.3.1 Data Collection and Preparation

A total of 20 real vehicle images were collected from Roboflow, representing

various makes, models, and colors under different lighting conditions. To

evaluate detection performance, a ground truth dataset was manually prepared,

recording the actual license plate number, make, model, and color for each

image. It serves as a benchmark to assess the system’s accuracy.

243

6.4.3.2 Detection Workflow

The detection and matching process follows the steps below.

1. Capture vehicle image at entry (simulated using Roboflow dataset

images).

2. Send image to the Python server hosting Gemini 2.5 Flash API.

3. Extract attributes which are license plate, make, model, and color.

4. Normalize attributes for consistency (e.g., uppercase plates,

standardized colors).

5. Match results with the registered user and vehicle records in the

PostgreSQL database.

6. Create a new record in the parking_sessions table.

7. On exit, the system updates session details, calculates the parking fee,

processes payment (simulated), and sends a driver notification.

6.4.3.3 System Integration Overview

The mobile frontend (React Native) allows users to initiate or view parking

sessions. It communicates with the Laravel backend via HTTP requests (Axios),

which interacts with PostgreSQL for all CRUD operations. For AI-based

detection, the Laravel backend forwards captured images to the Python service

for inference, receives JSON responses with detected attributes, and stores them

in the database.

6.5 Development and Deployment Environment
6.5.1 NGROK for Local Testing

NGROK is used during development to expose the locally running backend

servers (Laravel and Python) to the internet through secure tunnels. This makes

it possible for the Expo-based mobile app to communicate with the backend

services in real time, even when they are hosted on local machines. NGROK

provides temporary public URLs for both the Laravel API and the Python AI

server, ensuring seamless testing across physical devices without manual server

deployment.

244

6.6 Conclusion

In conclusion, the implementation of the ParkPal system successfully combines

web, mobile, and AI technologies into a cohesive platform for smart parking

management. The integration of Laravel and PostgreSQL ensures secure and

reliable backend operations, while React Native provides a unified and

responsive frontend experience. Real-time communication through Reverb and

Pusher-js enhances system interactivity, and the AI detection module powered

by Gemini 2.5 Flash automates vehicle recognition with satisfactory accuracy.

The use of NGROK, Expo, and modular architecture also facilitated efficient

testing and deployment across devices. Overall, the implementation

demonstrates the feasibility and practicality of an intelligent parking

management system capable of improving user convenience, operational

efficiency, and automation through modern cross-platform and AI-driven

technologies.

245

CHAPTER 7

7 SYSTEM TESTING

7.1 Introduction

This chapter presents the testing results for the ParkPal Parking Management

System. The system testing involves API testing, usability testing, and user

acceptance testing (UAT) to ensure the overall functionality, usability, and

reliability of the application. Additionally, a traceability matrix is produced,

linking the use cases, functional requirements, and test cases to ensure that all

functionalities are properly validated.

7.2 Traceability between Use Cases, Functional Requirements, and

Test Cases

Testing is a crucial stage of the software development lifecycle as it ensures that

the system meets the expectations of end-users while maintaining functionality

and quality. To achieve this, a traceability matrix is developed to establish the

relationship between use cases, which describe how users interact with the

system, functional requirements that specify what the system must deliver, and

test cases, which verify whether the requirements and use cases are satisfied.

This mapping ensures that all intended features are covered during testing,

improving maintainability, consistency, and reliability across the application.

7.2.1 Use Case Table

The following table displays the use cases, including their IDs and names.

Table 7.1: Use Case Table

Use Case ID Use Case Name

UC1 Login

UC2 Register

UC3 Manage Vehicles

UC4 Manage Payment Methods

UC5 View Dashboard

UC6 View Nearby Parking Lot Details

UC7 View Nearby EV Chargers

246

UC8 View Parking Transaction History

UC9 View EV Reservations

UC10 Auto-Transaction of Parking Fee

UC11 Submit Support Tickets

UC12 Request Change to Parking Lot Details

UC13 Manage Support Tickets

UC14 Approve Pending Requests from Operators

UC15 Manage User Accounts

UC16 Manage Own Profile

7.2.2 Functional Requirements Table

The following table outlines the functional requirements that describe the

expected functionalities of the system.

Table 7.2: Funstional Requirements Table

Functional

Requirement

ID

Description

FR1
The system shall allow drivers and parking operators to

register user accounts.

FR2
The system shall allow drivers, parking operators, and

admins to log in securely.

FR3
The system shall allow drivers, parking operators, and

admins to manage their own profile information.

FR4
The system shall allow drivers to manage one or more

vehicles.

FR5

The system shall allow drivers to manage the auto-

transaction settings for parking through license plate and

vehicle attribute recognition using multimodal AI.

FR6
The system shall allow drivers, parking operators, and

admins to view dashboards personalized to their roles.

FR7
The system shall allow drivers to view nearby parking

information.

247

FR8
The system shall allow drivers to view their parking

history.

FR9
The system shall allow drivers to view nearby EV charger

information.

FR10 The system shall allow drivers to make EV reservations.

FR11
The system shall allow drivers to view their EV

reservations.

FR12
The system shall allow drivers to manage their payment

methods.

FR13
The system shall process automatic parking fee

transactions when drivers exit a parking lot.

FR14
The system shall provide drivers with notifications and

alerts related to transactions.

FR15

The system shall require parking operators to set up

parking rates, parking lot details, and all relevant

information during the registration process.

FR16

The system shall allow parking operators to update and

manage parking lot details, which will be reviewed and

approved by the admin.

FR17
The system shall allow drivers and parking operators to

submit support tickets for system-related issues.

FR18
The system shall allow admins to manage accounts for

drivers and parking operators.

FR19

The system shall require admin approval for new parking

operator accounts before they can start managing parking

lots, rates, and other features.

FR20

The system shall require admin approval for any changes

made to parking rates, parking zones, or other features

requested by parking operators.

FR21
The system shall allow admins to manage support tickets

submitted by drivers or parking operators.

248

7.3 API Testing

API testing is an essential part of this system’s validation process. It ensures that

the application programming interfaces (APIs) work correctly in terms of

functionality, reliability, performance, and security. Since the system relies

heavily on APIs to manage user authentication, parking transactions, EV

reservations, and administrative operations, testing these endpoints is critical to

achieving a reliable application.

For this project, Postman was used to perform manual API testing.

Postman allows developers to send HTTP requests to the server and verify the

responses. Additionally, during front-end development, the network tab of

browser developer tools (or React Native debugging tools) was used to monitor

API calls in real time. This allows verification of request payloads, response

data, status codes, and error handling directly from the client side.

The backend server was developed in Laravel and exposes endpoints

that interact with the database to perform CRUD operations and business logic

for drivers, parking operators, and administrators. All APIs were tested

according to their intended functional requirements. Each test case includes the

test case ID, description, endpoint, request method, test scenario, test data,

expected result, and actual result.

By combining Postman testing with network tab inspection, the

system’s API responses were validated both from the server perspective and

from the client-side interaction, ensuring correctness, consistency, and

reliability of the application.

7.3.1 Summary of API Test Cases

The table below provides a summary of the API test cases executed for this

project.

Table 7.3: Summary of API Test Cases and Results

Test Case ID Test Case Name Status

TC001 User Registration Pass

TC002 User Login (Successful) Pass

249

TC003
User Login (Failed – Wrong

Credentials)
Pass

TC004 View Profile Information Pass

TC005 Update Profile Information Pass

TC006 View Vehicles Pass

TC007 Add Vehicle Pass

TC008 Update Vehicle Information Pass

TC009 Delete Vehicle Pass

TC010 View Payment Methods Pass

TC011 Add Payment Method Pass

TC012 Delete Payment Method Pass

TC013 View Driver Dashboard Pass

TC014
View Parking Operator

Dashboard
Pass

TC015 View Admin Dashboard Pass

TC016 View Nearby Parking Lots Pass

TC017 View Parking History Pass

TC018 View EV Charger Information Pass

TC019 Create EV Reservation Pass

TC020 View EV Reservations Pass

TC021 Operator Setup Pass

TC022
Operator Manage Parking Lot

Details
Pass

TC023 Submit Support Ticket Pass

TC024 View Support Ticket Pass

TC025 Send Support Ticket Messages Pass

TC026 View Support Ticket Messages Pass

TC027 Admin View Support Ticket Pass

TC028
Admin Send Support Ticket

Messages
Pass

TC029
Admin View Support Ticket

Messages
Pass

250

TC030 Admin View User Accounts Pass

TC031 Admin Edit User Account Pass

TC032 Admin Add User Account Pass

TC033

Admin View Operator
Requests

Pass

TC034
Admin Approve Operator

Requests
Pass

Table 7.4: Test Case of User Registration

Test Case ID TC001 Actual Result Pass

Test Case Title Test Case of User Registration

Model User

Controller AuthController

Method POST

Endpoints

Involved

http://${API_BASE_URL}/register

Test Scenario Test Data Expected Result Actual

Result

User completes

and submits the

registration

form with

personal

information.

1. full_name

2. ic

3. email

4. password

5. password_confi

rmation

6. user_type

1. JSON object

with message

2. User created.

1. JSON

object

with

message

2. User

created.

Table 7.5: Test Case of User Login (Successful)

Test Case ID TC002 Actual Result Pass

Test Case Title Test Case of User Login (Successful)

Model User

Controller AuthController

Method POST

251

Endpoints

Involved

http://${API_BASE_URL}/login

Test Scenario Test Data Expected Result Actual Result

User logs in

with valid

credentials.

1. email

2. password

1. JSON object

with success

message.

2. Authentication

token returned.

1. JSON object

with success

message.

2. Authentication

token returned.

Table 7.6: Test Case of User Login (Failed – Wrong Credentials)

Test Case ID TC003 Actual Result Pass

Test Case Title Test Case of User Login (Failed – Wrong Credentials)

Model User

Controller AuthController

Method POST

Endpoints

Involved

http://${API_BASE_URL}/login

Test Scenario Test Data Expected Result Actual Result

User attempts

login with

invalid

credentials.

1. email

2. password

1. JSON object

with error

message.

2. Authentication

denied.

1. JSON object

with error

message.

2. Authentication

denied.

Table 7.7: Test Case of View Profile Information

Test Case ID TC004 Actual Result Pass

Test Case Title Test Case of View Profile Information

Model User

Controller ProfileController

Method GET

Endpoints

Involved

http://${API_BASE_URL}/profile

Test Scenario Test Data Expected Result Actual Result

252

User retrieves

their profile

information.

- 1. JSON object

with user

profile details.

1. JSON object

with user

profile details.

Table 7.8: Test Case of Update Profile Information

Test Case ID TC005 Actual Result Pass

Test Case Title Test Case of Update Profile Information

Model User

Controller ProfileController

Method PUT

Endpoints

Involved

http://${API_BASE_URL}/profile

Test Scenario Test Data Expected Result Actual Result

User updates

profile details.

1. full_name

2. email

3. phone_nu

mber

1. JSON object

with success

message and

updated profile.

1. JSON object

with success

message and

updated

profile.

Table 7.9: Test Case of View Vehicles

Test Case ID TC006 Actual Result Pass

Test Case Title Test Case of View Vehicles

Model Vehicle

Controller ProfileController

Method GET

Endpoints

Involved

http://${API_BASE_URL}/vehicles

Test Scenario Test Data Expected Result Actual Result

Driver retrieves

a list of

registered

vehicles.

- 1. JSON array of

vehicles

associated with

the driver.

1. JSON array of

vehicles

associated with

the driver.

253

Table 7.10: Test Case of Add Vehicles

Test Case ID TC007 Actual Result Pass

Test Case Title Test Case of Add Vehicles

Model Vehicle

Controller ProfileController

Method POST

Endpoints

Involved

http://${API_BASE_URL}/vehicles

Test Scenario Test Data Expected Result Actual Result

Driver adds a

new vehicle to

their account.

1. vehicle_type

2. make

3. model

4. color

5. license_plate

1. JSON object

of vehicle

details.

1. JSON object

of vehicle

details.

Table 7.11: Test Case of Update Vehicle Information

Test Case ID TC008 Actual Result Pass

Test Case Title Test Case of Update Vehicle Information

Model Vehicle

Controller ProfileController

Method PUT

Endpoints

Involved

http://${API_BASE_URL}/vehicles/${id}

Test Scenario Test Data Expected Result Actual Result

Driver updates

details of an

existing vehicle.

1. vehicle_id

2. vehicle_type

3. make

4. model

5. color

6. license_plate

1. JSON object

of updated

vehicle.

1. JSON object

of updated

vehicle.

Table 7.12: Test Case of Delete Vehicle

Test Case ID TC009 Actual Result Pass

254

Test Case Title Test Case of Delete Vehicle

Model Vehicle

Controller ProfileController

Method DELETE

Endpoints

Involved

http://${API_BASE_URL}/vehicles/${id}

Test Scenario Test Data Expected Result Actual Result

Driver deletes a

registered

vehicle.

1. vehicle_id 1. JSON object

with success

message,

vehicle mark

as inactive.

1. JSON object

with success

message,

vehicle mark

as inactive.

Table 7.13: Test Case of View Payment Methods

Test Case ID TC010 Actual Result Pass

Test Case Title Test Case of View Payment Methods

Model PaymentMethod

Controller ProfileController

Method GET

Endpoints

Involved

http://${API_BASE_URL}/payment-methods

Test Scenario Test Data Expected Result Actual Result

Driver views

their saved

payment

methods.

- 1. JSON array of

saved

payment

methods.

1. JSON array

of saved

payment

methods.

Table 7.14: Test Case of Add Payment Method

Test Case ID TC011 Actual Result Pass

Test Case Title Test Case of Add Payment Method

Model PaymentMethod

Controller ProfileController

Method POST

255

Endpoints

Involved

http://${API_BASE_URL}/payment-methods

Test Scenario Test Data Expected Result Actual Result

Driver adds a

new payment

method.

1. type

2. provider

3. cast_last_fou

r

4. card_expiry

5. ewallet_id

1. JSON object

of added

payment

method.

1. JSON object

of added

payment

method.

Table 7.15: Test Case of Delete Payment Method

Test Case ID TC012 Actual Result Pass

Test Case Title Test Case of Delete Payment Method

Model PaymentMethod

Controller ProfileController

Method DELETE

Endpoints

Involved

http://${API_BASE_URL}/payment-methods/${id}

Test Scenario Test Data Expected Result Actual Result

Driver deletes a

payment

method.

1. payment_id 1. JSON object

with success

message,

payment

method set to

inactive.

1. JSON object

with success

message,

payment

method set to

inactive.

Table 7.16: Test Case of View Driver Dashboard

Test Case ID TC013 Actual Result Pass

Test Case Title Test Case of View Driver Dashboard

Model ParkingSession, EvReservation, Vehicle,

PaymentMethod, ParkingLot

Controller DriverDashboardController

Method GET

256

Endpoints

Involved

http://${API_BASE_URL}/driver/dashboard

http://${API_BASE_URL}/monthly-usage

http://${API_BASE_URL}/weekly-usage

Test Scenario Test Data Expected Result Actual Result

Driver views

dashboard

tailored to their

role.

- 1. JSON object

with

dashboard

data.

1. JSON object

with

dashboard

data.

Table 7.17: Test Case of View Parking Operator Dashboard

Test Case ID TC014 Actual Result Pass

Test Case Title Test Case of View Parking Operator Dashboard

Model ParkingLot, ParkingZone, ParkingRate, ParkingSession,

EvCharger, EvReservation

Controller ParkingOperatorDashboardController

Method GET

Endpoints

Involved

http://${API_BASE_URL}/operator/dashboard

http://${API_BASE_URL}/revenue-trends

http://${API_BASE_URL}/occupancy-trends

http://${API_BASE_URL}/live-lot-status

http://${API_BASE_URL}/parking-rates

Test Scenario Test Data Expected Result Actual Result

Parking

Operator views

dashboard

tailored to their

role.

- 1. JSON object

with

dashboard

data.

1. JSON object

with

dashboard

data.

Table 7.18: Test Case of View Admin Dashboard

Test Case ID TC015 Actual Result Pass

Test Case Title Test Case of View Admin Dashboard

Model User, ParkingLot, SupportTicket, EvCharger,

ParkingSession

257

Controller AdminDashboardController

Method GET

Endpoints

Involved

http://${API_BASE_URL}/admin/dashboard

http://${API_BASE_URL}/dashboard/user-growth

http://${API_BASE_URL}/parking-usage

Test Scenario Test Data Expected Result Actual Result

Admin views

dashboard

tailored to their

role.

- 1. JSON object

with

dashboard

data.

1. JSON object

with

dashboard

data.

Table 7.19: Test Case of View Nearby Parking Lots

Test Case ID TC016 Actual Result Pass

Test Case Title Test Case of View Nearby Parking Lots

Model ParkingLot, ParkingSession, EvReservation

Controller ParkingLotController

Method GET

Endpoints

Involved

http://${API_BASE_URL}/nearby-parking-lots

Test Scenario Test Data Expected Result Actual Result

Driver views

nearby parking

lot details.

1. latitude

2. longitude

3. radius

4. available_onl

y

5. sort_by

1. JSON array of

nearby

parking lots

with details.

1. JSON array

of nearby

parking lots

with details.

Table 7.20: Test Case of View Parking History

Test Case ID TC017 Actual Result Pass

Test Case Title Test Case of View Parking History

Model ParkingSession

Controller TransactionHistoryController

Method GET

258

Endpoints

Involved

http://${API_BASE_URL}/transaction-history

Test Scenario Test Data Expected Result Actual Result

Driver views

their parking

transaction

history.

- 1. JSON array of

past

transactions.

1. JSON array

of past

transactions.

Table 7.21: Test Case of View EV Charger Information

Test Case ID TC018 Actual Result Pass

Test Case Title Test Case of View EV Charger Information

Model EvCharger, EvReservation, ParkingLot

Controller EvReservationController

Method GET

Endpoints

Involved

http://${API_BASE_URL}/nearby-ev-chargers

Test Scenario Test Data Expected Result Actual Result

Driver views

details of nearby

EV chargers.

- 1. JSON array of

EV chargers

with

availability

status

1. JSON array

of EV

chargers with

availability

status

Table 7.22: Test Case of Create EV Reservation

Test Case ID TC019 Actual Result Pass

Test Case Title Test Case of Create EV Reservation

Model EvCharger, EvReservation, ParkingLot, Vehicle

Controller EvReservationController

Method POST

Endpoints

Involved

http://${API_BASE_URL}/ev-reservations

Test Scenario Test Data Expected Result Actual Result

259

Driver creates a

reservation for

an EV charger.

1. ev_charger_i

d

2. vehicle_id

1. JSON object

with success

message and

reservation

details.

1. JSON object

with success

message and

reservation

details.

Table 7.23: Test Case of View EV Reservations

Test Case ID TC020 Actual Result Pass

Test Case Title Test Case of View EV Reservations

Model EvReservation

Controller EvReservationController

Method GET

Endpoints

Involved

http://${API_BASE_URL}/ev-reservations

Test Scenario Test Data Expected Result Actual Result

Driver views

their existing

EV

reservations.

- 1. JSON array of

reservations.

1. JSON array

of

reservations.

Table 7.24: Test Case of Operator Setup

Test Case ID TC021 Actual Result Pass

Test Case

Title

Test Case of Operator Setup

Model PendingAction

Controller CompanyRegirstrationController

Method POST

Endpoints

Involved

http://${API_BASE_URL}/company-registration

Test

Scenario

Test Data Expected

Result

Actual Result

Driver views

their existing

company:

1. address

2. JSON object

confirming

2. JSON object

confirming

260

EV

reservations.

2. contact_email

3. contact_phone

4. name

5. registration_no

gateway:

6. provider

7. stripe_account_id

8. stripe_onboarded

parking_lots:

9. address

10. city

11. closing_time

12. is_24_7

13. latitude

14. longitude

15. opening_time

16. parking_lot_name

17. parking_type

18. postcode

19. state

20. total_parking_bay

s

zones:

21. bay_count

22. description

23. ev_chargers

24. zone_name

ev_chargers:

25. end_hour

that the

company,

parking lot,

zones, and

EV chargers

have been

successfully

registered

and

submitted

for admin

approval.

that the

company,

parking lot,

zones, and

EV chargers

have been

successfully

registered

and

submitted

for admin

approval.

261

26. rate

27. rate_type

28. start_hour

Table 7.25: Test Case of Operator Manage Parking Lot Details (Create,

Update, Delete)

Test Case ID TC022 Actual Result Pass

Test Case Title Test Case of Operator Manage Parking Lot Details

(Create, Update, Delete)

Model PendingAction

Controller PendingActionsController

Method POST

Endpoints

Involved

http://${API_BASE_URL}/pending-actions

Test Scenario Test Data Expected Result Actual Result

Operator

updates existing

parking lot

details.

1. entity_type

2. entity_id

3. action

4. data

1. JSON object

with success

message,

pending

admin

approval.

1. JSON object

with success

message,

pending

admin

approval.

Table 7.26: Test Case of Submit Support Ticket

Test Case ID TC023 Actual Result Pass

Test Case Title Test Case of Submit Support Ticket

Model SupportTicket, SupportTicketMessage

Controller SupportTicketController

Method POST

Endpoints

Involved

http://${API_BASE_URL}/support-tickets

Test Scenario Test Data Expected Result Actual Result

User submits a

support ticket

1. subject

2. description

1. JSON object

with success

1. JSON object

with success

262

for system-

related issue.

3. priority message and

ticket ID.

message and

ticket ID.

Table 7.27: Test Case of View Support Ticket

Test Case ID TC024 Actual Result Pass

Test Case Title Test Case of View Support Ticket

Model SupportTicket, SupportTicketMessage

Controller SupportTicketController

Method GET

Endpoints

Involved

http://${API_BASE_URL}/support-tickets

Test Scenario Test Data Expected Result Actual Result

User retrieves

the list of their

submitted

support tickets,

including

messages and

status.

1. user_id 1. JSON object

containing a

list of support

tickets

submitted by

the user.

1. JSON object

containing a

list of support

tickets

submitted by

the user.

Table 7.28: Test Case of Send Support Ticket Messages

Test Case ID TC025 Actual Result Pass

Test Case Title Test Case of Send Support Ticket Messages

Model SupportTicketMessage

Controller SupportTicketController

Method POST

Endpoints

Involved

http://${API_BASE_URL}/support-

tickets/${ticketId}/messages

Test Scenario Test Data Expected Result Actual Result

User sends a

message to a

1. ticketId

2. is_admin

3. message

1. JSON object

containing the

message that

1. JSON object

containing

the message

263

specific support

ticket.

4. user_id

was added to

the support

ticket.

that was

added to the

support

ticket.

Table 7.29: Test Case of View Support Ticket Messages

Test Case ID TC026 Actual Result Pass

Test Case Title Test Case of View Support Ticket Messages

Model SupportTicketMessage

Controller SupportTicketController

Method GET

Endpoints

Involved

http://${API_BASE_URL}/support-

tickets/${ticketId}/messages

Test Scenario Test Data Expected Result Actual Result

User retrieves

all messages

associated with

a specific

support ticket.

1. ticketId 1. JSON object

containing a list

of messages for

the specified

support ticket.

1. JSON object

containing a list

of messages for

the specified

support ticket.

Table 7.30: Test Case of Admin View Support Ticket

Test Case ID TC027 Actual Result Pass

Test Case Title Test Case of Admin View Support Ticket

Model SupportTicket, SupportTicketMessage

Controller SupportTicketController

Method GET

Endpoints

Involved

http://${API_BASE_URL}/admin/support-tickets

Test Scenario Test Data Expected Result Actual Result

Admin retrieves

the list of all

submitted

- 1. JSON object

containing a list

of all support

1. JSON object

containing a

list of all

264

support tickets

along with their

messages and

statuses.

tickets in the

system.

support tickets

in the system.

Table 7.31: Test Case of Admin Send Support Ticket Messages

Test Case ID TC028 Actual Result Pass

Test Case Title Test Case of Admin Send Support Ticket Messages

Model SupportTicketMessage

Controller SupportTicketController

Method POST

Endpoints

Involved

http://${API_BASE_URL}/support-

tickets/${ticketId}/messages

Test Scenario Test Data Expected Result Actual Result

Admin sends a

message to a

specific support

ticket.

1. ticketId

2. is_admin

3. message

1. JSON object

containing the

message that was

added to the

support ticket.

1. JSON object

containing the

message that

was added to

the support

ticket.

Table 7.32: Test Case of Admin View Support Ticket Messages

Test Case ID TC029 Actual Result Pass

Test Case Title Test Case of Admin View Support Ticket Messages

Model SupportTicketMessage

Controller SupportTicketController

Method GET

Endpoints

Involved

http://${API_BASE_URL}/admin/support-

tickets/${ticketId}/details

Test Scenario Test Data Expected Result Actual Result

265

Admin retrieves

all messages

associated with

a specific

support ticket.

1. ticketId 1. JSON object

containing a list

of messages for

the specified

support ticket.

1. JSON object

containing a list

of messages for

the specified

support ticket.

Table 7.33: Test Case of Admin View User Accounts

Test Case ID TC030 Actual Result Pass

Test Case Title Test Case of Admin View User Accounts

Model User, Company

Controller UserManagementController

Method GET

Endpoints

Involved

http://${API_BASE_URL}/admin/users?${params}

Test Scenario Test Data Expected

Result

Actual Result

Admin retrieves

and filters user

accounts, with

the ability to

view details,

update, or

deactivate

accounts.

1. page

2. per_page

3. user_type

4. status

5. company_id

6. search

1. JSON object

containing a

paginated

list of user

accounts

filtered

according to

the provided

parameters

1. JSON object

containing a

paginated list

of user

accounts

filtered

according to

the provided

parameters

Table 7.34: Test Case of Admin Edit User Account

Test Case ID TC031 Actual Result Pass

Test Case Title Test Case of Admin Edit User Account

Model User, Company

Controller UserManagementController

Method PUT

266

Endpoints

Involved

http://${API_BASE_URL}/admin/users/${selectedUser.i

d}

Test Scenario Test Data Expected

Result

Actual Result

Admin updates

details of a

specific user

account.

1. full_name

2. ic

3. email

4. phone_num

ber

5. user_type

6. status

7. company_i

d

8. password

9. password_c

onfirmation

1. JSON object

of the

updated new

details.

1. JSON object of

the updated new

details.

Table 7.35: Test Case of Admin Add User Account

Test Case ID TC032 Actual Result Pass

Test Case Title Test Case of Admin Add User Account

Model User, Company

Controller UserManagementController

Method POST

Endpoints

Involved

http://${API_BASE_URL}/admin/users

Test Scenario Test Data Expected

Result

Actual Result

Admin creates a

new user

account by

providing all

necessary

1. full_name

2. ic

3. email

4. phone_num

ber

1. JSON object

confirming

the new user

account was

successfully

1. JSON object

confirming the

new user

account was

successfully

267

personal, role,

and company

details.

5. password

6. user_type

7. company_i

d

8. status

created with

the provided

details.

created with the

provided details.

Table 7.36: Test Case of Admin View Operator Requests

Test Case ID TC033 Actual Result Pass

Test Case Title Test Case of Admin View Operator Requests

Model PendingAction

Controller AdminPendingActionController

Method GET

Endpoints

Involved

http://${API_BASE_URL}/admin/pending-

actions?${params}

Test Scenario Test Data Expected Result Actual Result

Admin retrieves

a list of pending

operator

requests,

optionally

filtered by

status, type, or

search criteria.

1. page

2. per_page

3. status

4. entity_type

5. action

6. search

1. JSON object

containing a

paginated list

of pending

operator

requests

1. JSON object

containing a

paginated list

of pending

operator

requests

Table 7.37: Test Case of Admin Approve Operator Requests

Test Case ID TC034 Actual Result Pass

Test Case Title Test Case of Admin Approve Operator Requests

Model PendingAction

Controller AdminPendingActionController

Method PATCH

Endpoints

Involved

http://${API_BASE_URL}/admin/pending-

actions/${actionId}/review

268

Test Scenario Test Data Expected Result Actual Result

Admin reviews

and approves or

rejects a

pending

operator

request.

1. review

_notes

2. status

1. JSON object

confirming that

the pending

operator request

has been updated

with the new

status and notes.

1. JSON object

confirming that

the pending

operator request

has been updated

with the new

status and notes.

7.4 Traceability Matrix

To clearly illustrate the relationship between the test cases executed, the

functional requirements, and the use cases, a traceability matrix has been created.

This matrix links each test case with its corresponding functional requirement

and use case. The traceability matrix is presented in the table below.

Table 7.38: Traceability Matrix Table

Use Case ID
Functional

Requirement ID
Test Case ID

UC1 FR2 TC002, TC003

UC2 FR1 TC001

UC3 FR4
TC006, TC007, TC008,

TC009

UC4 FR12 TC010, TC011, TC012

UC5 FR6 TC013, TC014, TC015

UC6 FR7, FR15, FR16 TC016, TC021, TC022

UC7 FR9 TC018

UC8 FR8 TC017

UC9 FR10, FR11 TC019, TC020

UC11 FR17 TC023

UC12 FR20 TC033, TC034

UC13 FR21 TC027, TC028, TC029

UC14 FR19 TC033, TC034

UC15 FR18 TC030, TC031, TC032

269

UC16 FR3 TC004, TC005

7.5 Performance Evaluation of Vehicle Recognition

The purpose of this test is to validate the system’s ability to accurately identify

vehicle information, including license plate, make, model, and color, using

image inputs. The test also evaluates the system’s response time and overall

reliability for real-world usage.

7.5.1 Evaluation Methodology

A dataset of real vehicle images was used as input for the system. The system

processed each image to extract vehicle attributes, and recognition results were

compared against ground truth. Metrics recorded included detection time per

image and accuracy for each vehicle attribute. The detailed results are provided

in a table in Appendix A.

Figure 7.1: Vehicle Recognition System Benchmark Results

270

The image above presents the benchmark results of the vehicle recognition

system tested on 20 images. Key observations include per-field accuracy, such

as license plate, make, model, and color, overall accuracy, common

misclassifications, and performance metrics. These results demonstrate that the

system is accurate in detecting vehicle attributes and performs efficiently in

terms of processing time.

7.6 Evaluation of Auto Payment via Vehicle Recognition

The automatic parking fee system, based on license plate and vehicle

recognition, was tested to demonstrate end-to-end functionality, from vehicle

detection to payment processing. The system successfully scanned vehicle

image, identified the license plate, make, model, and color, matched the vehicle

to a registered user, calculated the parking fee based on duration and rate,

processed the payment automatically, and stored a notification for the driver.

The following log content illustrates a complete parking session, including entry,

duration calculation, fee computation, payment processing, and notification

delivery.

Figure 7.2: Vehicle Recognition and Auto Payment Results

7.7 Usability Test

Usability testing was conducted as a critical phase of system evaluation to

ensure that users can navigate the app and perform essential tasks with ease and

minimal confusion. The primary objective of this testing was to gather direct

feedback from users and assess overall usability using the System Usability

271

Scale (SUS). The testing was conducted online following a structured

methodology to ensure consistent and reliable results.

Participants were divided into three main roles: drivers, parking

operators, and administrators, representing the primary users of the system.

Each participant completed predefined tasks simulating real-world interactions

relevant to their role.

After completing these tasks, participants provided feedback via a

structured user satisfaction survey. The detailed survey results are provided in

Appendix B, and the collected data were analyzed to calculate the average SUS

score, reflecting the system’s overall usability and user satisfaction across all

user roles.

7.7.1 Test Scenarios of Usability Test

Table 7.39: Test Scenarios of Usability Test

No Test Name Test Description

1
Account

Registration

Test that drivers and parking operators can

successfully register an account and receive

confirmation.

2 Secure Login
Verify that all users (drivers, operators, admins)

can log in securely with valid credentials.

3
Profile

Management

Test that users can view and update their profile

information without errors.

4
Vehicle

Management

Verify that drivers can add, edit, or remove vehicle

details in the system.

5
Payment Method

Management

Test that drivers can add, update, or delete

payment methods seamlessly.

6 Dashboard Access

Verify that users can view a personalized

dashboard displaying relevant information for

their role.

7
Nearby Parking

Info

Test that drivers can view nearby parking lot

locations and details accurately.

272

8 Parking History
Verify that drivers can view a complete history of

their parking transactions.

9 EV Charger Info
Test that drivers can view nearby EV chargers with

relevant details.

10 EV Reservations
Verify that drivers can make and view EV

reservations successfully.

11 Auto-Transaction

Test that the system can process automatic parking

fee transactions based on license plate and vehicle

recognition.

12
Notifications &

Alerts

Verify that drivers receive correct notifications

related to parking transactions.

13
Submit Support

Tickets

Test that drivers and parking operators can submit

support tickets for system-related issues.

14
Manage Parking

Lot Details

Verify that parking operators can update parking

lot information, which is sent for admin approval.

15
Approve Operator

Requests

Test that admins can review and approve new

parking operator accounts and change requests.

16
Manage User

Accounts

Verify that admins can manage driver and parking

operator accounts.

17
Manage Support

Tickets

Test that admins can view, update, and resolve

support tickets submitted by users.

7.7.2 Results of Usability Test

After completing the usability testing, the user satisfaction survey forms were

collected from all participants and are included in Appendix B. The responses

from each form were analyzed and summarized. Each of the ten usability

questions was rated on a scale from 1 (Strongly Disagree) to 5 (Strongly Agree).

273

Table 7.40: Test Scenarios of Usability Test

ID Score for each test Total

SUS

Score

1 2 3 4 5 6 7 8 9 10

P1 5 3 3 4 4 3 3 4 4 3 55

P2 5 1 5 3 5 5 5 1 5 3 80

P3 3 2 5 2 4 1 3 2 4 4 70

P4 5 2 4 1 4 1 4 1 4 2 85

P5 5 1 5 1 4 1 5 1 5 1 97.5

Average SUS Score 77.5

The average SUS score across all participants is 77.5, showing that the

system is generally easy to use, though there is still room for improvement.

Some participants mentioned that the app’s loading time can be a bit slow,

which may affect the user experience. It should be noted that the test involved

only five participants, so the results provide a preliminary view of usability.

Future usability testing with a larger group would give more reliable and

representative feedback. Additionally, the helpful comments provided in the

open-ended survey questions have been reviewed and noted for future

improvements.

7.8 User Acceptance Testing (UAT)

During the User Acceptance Testing (UAT), participants provided feedback on

various aspects of the system, including functionality, interface design, and

usability. Most of the issues reported were minor and focused on improving user

experience rather than correcting critical system errors. The key feedback and

the actions taken to address them are summarized.

274

Table 7.41: Summary of UAT Feedback and Actions

Feedback Given Action Taken

“It would be useful if vehicle

recognition could be integrated into the

vehicle registration process.”

Added vehicle recognition feature to

streamline vehicle registration.

“Some parts of the UI are not

consistent, such as the drawer

background color.”

Updated UI components to maintain

consistent colors and styles.

“Some icons could be improved to

look nicer and more intuitive.”

Replaced selected icons with

improved designs for better

appearance and clarity.

In summary, the UAT was successful, requiring minimal intervention

from the developers. Testers completed all UAT scenarios and effectively

validated the core functionality of ParkPal. While a few minor suggestions were

provided to improve user experience, these did not affect the overall

performance or usability of the system.

7.9 Conclusion

This report presents the testing and evaluation of ParkPal, covering functionality,

performance, usability, and user acceptance. The traceability analysis showed

that all use cases and functional requirements were properly tested. API testing

confirmed that the system’s endpoints work correctly. The vehicle recognition

system performed accurately and responded quickly enough for practical use.

Usability testing showed that drivers, parking operators, and administrators can

navigate the app and complete tasks easily, with a high average SUS score. User

Acceptance Testing (UAT) confirmed that the system meets its intended

purpose, with all test scenarios completed successfully. Overall, ParkPal has

been tested thoroughly and is ready for deployment, with some suggestions for

future improvements to enhance user experience.

275

CHAPTER 8

8 CONCLUSION AND RECOMMENDATIONS

8.1 Introduction

This chapter provides the conclusion of the project by reviewing how the

objectives were achieved, the limitations that were encountered, and the

possible improvements for future development. It highlights the progress made

in building the parking management system while also pointing out areas that

can be enhanced to ensure greater efficiency, accuracy, and usability in future

versions.

8.2 Objectives Achievement

The objectives of this project were successfully achieved through the

development and evaluation of the proposed parking management system

mentioned in Chapter 1.

The first objective, which focused on examining license plate and

vehicle attribute recognition approaches and reviewing similar applications, was

fulfilled through a comprehensive study of existing methods. Traditional

computer vision techniques were compared with modern LLMs, and related

parking and mobility applications were analyzed to identify common practices,

limitations, and opportunities for improvement. This provided the foundation

for designing a system that leverages advanced recognition technologies while

addressing practical challenges observed in current solutions.

The second objective, to develop an automated parking payment

system that integrates multimodal LLMs for license plate and vehicle attribute

recognition, was also achieved. The project implemented the Gemini 2.5 Flash

model to automatically detect license plates and extract key vehicle attributes

such as make, model, and color. These detections were integrated into the

parking workflow to enable automated validation and fee calculation during

vehicle entry and exit. While the current implementation relies on the free-tier

version of the model, which introduces certain limitations, it successfully

demonstrated the feasibility of incorporating AI-powered recognition into the

automation of parking payments.

276

The third objective, to develop a parking management application, was

realized through the creation of a complete system with role-based functionality

for drivers, parking operators, and administrators. Drivers are able to register,

manage vehicles, view nearby parking lots, and make EV reservations.

Operators can manage parking lots and view parking statistics to monitor

performance and usage trends, while administrators are provided with a

dashboard to monitor system usage and manage users and pending actions. The

application was developed using Laravel, React Native, PostgreSQL, and

supporting frameworks, ensuring a scalable, secure, and user-friendly design.

In summary, the project achieved its intended objectives by delivering

a functional prototype of an AI-assisted parking management system. The

system integrates multimodal recognition for automation, role-based

dashboards for management, and scalable technologies for implementation,

thereby demonstrating the viability of intelligent parking solutions in real-world

contexts.

8.3 Project Limitations

Despite the successful implementation, the project has several limitations. One

key limitation lies in the AI model constraints. The vehicle recognition system

relies on the free version of the Gemini 2.5 Flash model, which restricts its

processing capacity. As a result, handling large volumes of images in real time

becomes challenging. In testing, the license plate recognition achieved an

accuracy of 85%, which is slightly below the 90% target set in the non-

functional requirements. This difference is mainly due to the limited dataset of

20 real vehicle images used for evaluation and the constraints of the free API

tier. An upgrade to a higher-tier model or a larger, more diverse dataset would

likely improve accuracy, processing speed, and overall reliability of the system.

Another limitation is the scope of analytics and reporting. The current

features are fairly general, focusing mainly on basic usage statistics and

payment summaries. While these provide some insights, more detailed and

customizable reports, such as those filtered by time range, parking lot

performance, or driver behavior, would significantly enhance decision-making

for operators and administrators.

277

Finally, the system still requires manual setup by parking operators. At

present, operators need to manually key in parking lot details, which can be

time-consuming and prone to error. More efficient methods, such as bulk data

import or configuration cloning, and maybe even integration with external APIs,

would reduce this burden and streamline onboarding for new operators.

8.4 Recommendations for Future Work

While the current version of the parking management app provides essential

features, there are several opportunities to enhance its functionality and user

experience in future iterations.

One potential improvement is the integration of third-party

authentication methods, such as Google, Apple, or social media logins. This

would simplify access for users and reduce the friction associated with creating

a new account.

While the system currently supports real-time parking management, a

parking reservation module could be added too, which works similarly to the

current EV Reservation. This would allow drivers to book specific parking spots

in advance, ensuring availability upon arrival and reducing uncertainty in busy

areas.

A significant improvement would be to enable payments for electric

vehicle (EV) parking reservations. Currently, the app allows users to reserve EV

charging spots but does not support payment for these reservations. Integrating

a secure payment feature for EV spots would make the service more convenient

and complete, encouraging greater adoption among EV users.

To improve transparency and accountability, the system could include

receipt printing and automated receipt generation. Beyond individual receipts,

administrators and operators could benefit from advanced analysis reports, with

options to export data in PDF format for auditing, financial tracking, or

decision-making purposes.

Another area for enhancement is the incorporation of additional

services. By analyzing existing parking and mobility apps, features such as

vehicle insurance options, promotional offers, and loyalty programs could be

278

added. These services would provide added value beyond basic parking

management and help engage users more effectively.

In addition, expanding the app’s geographical scope is also

recommended. The app could be extended to include toll payment systems

across Malaysia, offering a more comprehensive mobility solution. With

appropriate localization, it could potentially be adapted for use in other countries,

reaching a wider audience and increasing its utility.

Finally, the app can improve through pre-processing techniques such

as image enhancement and noise reduction before sending data to the model.

For scenarios requiring deeper customization, such as adapting recognition to

specific local license plate formats, vehicle types, or environmental conditions,

a fine-tunable open-source model could be integrated alongside Gemini. This

hybrid approach would allow developers to retrain or fine-tune the open-source

model on domain-specific datasets while still using Gemini for broader

recognition tasks.

These improvements would not only strengthen the app’s functionality

but also create a seamless and satisfying user experience, positioning it as a

competitive solution for both local and international markets.

.

279

REFERENCES

Abdullah, M. et al. (2021) “LICENSE PLATE RECOGNITION
TECHNIQUES: COMPARATIVE STUDY,” Malaysian Journal of Computer
Science, 2021(Special Issue 1), pp. 94–105. Available at:
https://doi.org/10.22452/mjcs.sp2021no1.9.

A.K.M Zahidul Islam and Ferworn, A. (2020) “A Comparison between Agile
and Traditional Software Development Methodologies,” Global Journal of
Computer Science and Technology: C Software & Data Engineering, 20(2).

AlDahoul, N. et al. (2024) “Advancing Vehicle Plate Recognition: Multitasking
Visual Language Models with VehiclePaliGemma.” Available at:
http://arxiv.org/abs/2412.14197.

Alexander Gillis (no date) enterprise architecture (EA), TechTarget. Available
at: https://www.techtarget.com/searchcio/definition/enterprise-architecture
(Accessed: April 27, 2025).

Aly, M. (2008) Real time Detection of Lane Markers in Urban Streets, IEEE
Intelligent Vehicles Symposium, Proceedings. Available at:
https://doi.org/10.1109/IVS.2008.4621152.

Apoorva Srivastava, Sukriti Bhardwaj and Shipra Saraswat (2017) SCRUM
Model for Agile Methodology. IEEE.

Apple (no date a) Flexi Parking on the App Store, Apple. Available at:
https://apps.apple.com/cn/app/flexi-parking/id1466897086?l=en-GB
(Accessed: May 2, 2025).

Apple (no date b) JomParking on the App Store, Apple. Available at:
https://apps.apple.com/my/app/jomparking/id990623185 (Accessed: April 12,
2025).

Bay, H., Tuytelaars, T. and Van Gool, L. (2006) SURF: Speeded up robust
features, Computer Vision-ECCV 2006. Available at:
https://doi.org/10.1007/11744023_32.

Burtescu, E. et al. (2014) “Database Systems Journal,” Database Systems
Journal, 5(3).

Cao, J. et al. (2020) “Front vehicle detection algorithm for smart car based on
improved SSD model,” Sensors (Switzerland), 20(16), pp. 1–21. Available at:
https://doi.org/10.3390/s20164646.

Carranza-García, M. et al. (2021) “On the performance of one-stage and two-
stage object detectors in autonomous vehicles using camera data,” Remote
Sensing, 13(1), pp. 1–23. Available at: https://doi.org/10.3390/rs13010089.

280

Caruana, R., Pratt, L. and Thrun, S. (1997) Multitask Learning *. Kluwer
Academic Publishers.

Chiang, J. (2024) GPT-4o: what do we know so far, Medium. Available at:
https://medium.com/@tsunhanchiang/gpt-4o-what-do-we-know-so-far-
6672e85c4de5 (Accessed: April 30, 2025).

Cipolla, R., Gal, Y. and Kendall, A. (2018) “Multi-task Learning Using
Uncertainty to Weigh Losses for Scene Geometry and Semantics,” in
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. IEEE Computer Society, pp. 7482–7491. Available at:
https://doi.org/10.1109/CVPR.2018.00781.

Dalal, N. and Triggs, B. (2005) Histograms of Oriented Gradients for Human
Detection, Comput. Vision Pattern Recognit. Available at:
https://doi.org/10.1109/CVPR.2005.177.

Erickson, J. (2024) MySQL: Understanding What It Is and How It’s Used,
Oracle. Available at: https://www.oracle.com/mysql/what-is-mysql/ (Accessed:
April 30, 2025).

Gayen, S. et al. (2024) “Two decades of vehicle make and model recognition –
Survey, challenges and future directions,” Journal of King Saud University -
Computer and Information Sciences. King Saud bin Abdulaziz University.
Available at: https://doi.org/10.1016/j.jksuci.2023.101885.

H. Meybodi, Z. et al. (2021) TEDGE-Caching: Transformer-based Edge
Caching Towards 6G Networks. Available at:
https://doi.org/10.48550/arXiv.2112.00633.

Haire, A. (no date) What is Ionic: Learn the essentials of what you can do with
Ionic and how it works., ionic. Available at:
https://ionic.io/resources/articles/what-is-ionic (Accessed: April 29, 2025).

Han, K. et al. (2023) “A Survey on Vision Transformer,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(1), pp. 87–110. Available at:
https://doi.org/10.1109/TPAMI.2022.3152247.

He, K. et al. (2016) “Deep residual learning for image recognition,” in
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. IEEE Computer Society, pp. 770–778. Available at:
https://doi.org/10.1109/CVPR.2016.90.

JomParking (no date a) Documentation, JomParking. Available at:
https://web.jomparking.com/documentation (Accessed: April 12, 2025).

JomParking (no date b) JomParking, JomParking. Available at:
https://web.jomparking.com/features (Accessed: April 12, 2025).

281

Kang, S. et al. (2025) “Object Detection YOLO Algorithms and Their Industrial
Applications: Overview and Comparative Analysis,” Electronics (Switzerland).
Multidisciplinary Digital Publishing Institute (MDPI). Available at:
https://doi.org/10.3390/electronics14061104.

Kattenborn, T. et al. (2021) “Review on Convolutional Neural Networks (CNN)
in vegetation remote sensing,” ISPRS Journal of Photogrammetry and Remote
Sensing. Elsevier B.V., pp. 24–49. Available at:
https://doi.org/10.1016/j.isprsjprs.2020.12.010.

Kongyoung, S., Macdonald, C. and Ounis, I. (2020) “Multi-Task Learning using
Dynamic Task Weighting for Conversational Question Answering,” in J. Dalton
et al. (eds.) Proceedings of the 5th International Workshop on Search-Oriented
Conversational AI (SCAI). Online: Association for Computational Linguistics,
pp. 17–26. Available at: https://doi.org/10.18653/v1/2020.scai-1.3.

Korkut, T. (2023) Excelling in Software Development with Scrum Methodology
Part 2, Medium. Available at: https://blog.stackademic.com/excelling-in-
software-development-with-scrum-methodology-part-2-e2d0b29437ce
(Accessed: April 16, 2025).

Kwiatkowski, K. (2024) What is Expo?, Pagepro. Available at:
https://pagepro.co/blog/what-is-expo-js/ (Accessed: May 2, 2025).

Laravel (no date) Installation. Available at: https://laravel.com/docs/12.x
(Accessed: April 29, 2025).

Manzoor, M.A., Morgan, Y. and Bais, A. (2019) “Real-Time Vehicle Make and
Model Recognition System,” Machine Learning and Knowledge Extraction,
1(2), pp. 611–629. Available at: https://doi.org/10.3390/make1020036.

Miller, G. (2001) The Characteristics of Agile Software Processes. Available at:
https://doi.org/10.1109/TOOLS.2001.10035.

Montazzolli, S. and Jung, C. (2018) License Plate Detection and Recognition in
Unconstrained Scenarios.

Nadira Muda et al. (2007) “Optical Character Recognition By Using Template
Matching (Alphabet),” in.

NestJS (no date) Introduction, NestJS. Available at: https://docs.nestjs.com/
(Accessed: April 30, 2025).

Nuradzimmah Daim (2023) 36.3 million vehicles in Malaysia, New Straits
Times . Available at:
https://www.nst.com.my/news/nation/2023/12/987062/363-million-vehicles-
malaysia (Accessed: May 1, 2025).

ParkEasy (2016) ParkEasy, park safely, ParkEasy. Available at:
https://www.parkeasy.co/blog/tag/parking (Accessed: May 2, 2025).

282

ParkEasy (no date) Add Membership, ParkEasy. Available at:
https://www.parkeasy.co/add-membership (Accessed: May 2, 2025).

Phung, V.H. and Rhee, E.J. (2018) “A Deep Learning Approach for
Classification of Cloud Image Patches on Small Datasets,” Journal of
Information and Communication Convergence Engineering. 2018/09/30, 16(3),
pp. 173–178. Available at: https://doi.org/10.6109/jicce.2018.16.3.173.

Ranjan, R. et al. (2016) “An All-In-One Convolutional Neural Network for Face
Analysis.” Available at: https://doi.org/10.48550/arXiv.1611.00851.

Ren, S. et al. (2017) “Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39(6), pp. 1137–1149. Available at:
https://doi.org/10.1109/TPAMI.2016.2577031.

Romanowski, J. (2020) Major Companies Using PostgreSQL: Purposes &
Examples, LearnSQL.com. Available at: https://learnsql.com/blog/companies-
that-use-postgresql-in-business/ (Accessed: April 30, 2025).

Rozlan, I. (2023) Touch ‘n Go eWallet Enables QR Code Scanning To Pay
Parking, Lowyat.NET. Available at:
https://www.lowyat.net/2023/296185/touch-n-go-ewallet-qr-code-parking/
(Accessed: April 12, 2025).

Ruder, S. (2017) “An Overview of Multi-Task Learning in Deep Neural
Networks.” Available at: http://arxiv.org/abs/1706.05098.

Saeed, S. et al. (2019) “Analysis of software development methodologies,”
International Journal of Computing and Digital Systems, 8(5), pp. 445–460.
Available at: https://doi.org/10.12785/ijcds/080502.

Sakshi Sachdeva (2016) “Scrum Methodology,” International Journal Of
Engineering And Computer Science [Preprint]. Available at:
https://doi.org/10.18535/ijecs/v5i6.11.

Sehouli, H. (2025) Protecting Your Laravel App Against SQL Injection, Cross-
Site Scripting (XSS), and Cross-Site Request Forgery (CSRF), Medium.
Available at: https://medium.com/@sehouli.hamza/protecting-your-laravel-
app-against-sql-injection-cross-site-scripting-xss-and-cross-site-ea3a05260afe
(Accessed: April 29, 2025).

Shi, B., Bai, X. and Yao, C. (2017) “An End-to-End Trainable Neural Network
for Image-Based Sequence Recognition and Its Application to Scene Text
Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(11), pp. 2298–2304. Available at:
https://doi.org/10.1109/TPAMI.2016.2646371.

Sochor, J., Špaňhel, J. and Herout, A. (2017) “BoxCars: Improving Vehicle
Fine-Grained Recognition using 3D Bounding Boxes in Traffic Surveillance,”

283

IEEE Transactions on Intelligent Transportation Systems, PP. Available at:
https://doi.org/10.1109/TITS.2018.2799228.

Sporici, D., Cuşnir, E. and Boiangiu, C.A. (2020) “Improving the accuracy of
Tesseract 4.0 OCR engine using convolution-based preprocessing,” Symmetry,
12(5). Available at: https://doi.org/10.3390/SYM12050715.

Suhasini Gadam (2023) What is iterative and incremental development?
Process, examples. Available at: https://blog.logrocket.com/product-
management/what-is-iterative-incremental-development-process-examples/
(Accessed: April 15, 2025).

Tabani, H. et al. (2021) “Improving the Efficiency of Transformers for
Resource-Constrained Devices.” Available at: http://arxiv.org/abs/2106.16006.

Tan, M. and Le, Q. (2019) “EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks,” in K. Chaudhuri and R. Salakhutdinov (eds.)
Proceedings of the 36th International Conference on Machine Learning. PMLR
(Proceedings of Machine Learning Research), pp. 6105–6114. Available at:
https://proceedings.mlr.press/v97/tan19a.html.

Tao, L. et al. (2024) “A Real-Time License Plate Detection and Recognition
Model in Unconstrained Scenarios,” Sensors, 24(9). Available at:
https://doi.org/10.3390/s24092791.

Tesseract Documentation (no date) Tesseract User Manual. Available at:
https://tesseract-ocr.github.io/tessdoc/ (Accessed: May 1, 2025).

The PostgreSQL Global Development Group (no date) About, The PostgreSQL
Global Development Group. Available at: https://www.postgresql.org/about/
(Accessed: April 30, 2025).

Touch ’n Go (no date a) LPR Parking (License Plate Recognition), Touch ’N
Go. Available at: https://support.tngdigital.com.my/hc/en-
my/sections/20991708013081-LPR-Parking-License-Plate-Recognition
(Accessed: April 12, 2025).

Touch ’n Go (no date b) Our Story, Touch ’n Go. Available at:
https://www.touchngo.com.my/ewallet/about-us/our-story/ (Accessed: April 12,
2025).

Touch ’n Go (no date c) Scan QR in/out Parking, Touch ’n Go. Available at:
https://support.tngdigital.com.my/hc/en-my/sections/16266968986265-Scan-
QR-in-out-Parking (Accessed: April 12, 2025).

Touch ’n Go (no date d) Street Parking, Touch ’n Go. Available at:
https://support.tngdigital.com.my/hc/en-my/sections/360008669294-Street-
Parking?page=1#articles (Accessed: April 12, 2025).

284

Touch ’n Go (no date e) What is TNG ParkInsure?, Touch ’n Go. Available at:
https://support.tngdigital.com.my/hc/en-my/articles/21505528982041-What-
is-TNG-ParkInsure (Accessed: April 12, 2025).

Tsimpoukelli, M. et al. (no date) Multimodal Few-Shot Learning with Frozen
Language Models.

Tulsee Doshi (2025) Start building with Gemini 2.5 Flash - Google Developers
Blog. Available at: https://developers.googleblog.com/en/start-building-with-
gemini-25-flash/ (Accessed: September 19, 2025).

Ultralytics (2023a) Instance Segmentation , Ultralytics. Available at:
https://docs.ultralytics.com/tasks/segment/ (Accessed: May 1, 2025).

Ultralytics (2023b) Segment Anything Model (SAM), Ultralytics. Available at:
https://docs.ultralytics.com/models/sam/#introduction-to-sam-the-segment-
anything-model (Accessed: May 1, 2025).

Vaswani, A. et al. (2017) “Attention Is All You Need.” Available at:
http://arxiv.org/abs/1706.03762.

Vishal Chandra (2015) “Comparison between Various Software Development
Methodologies,” International Journal of Computer Applications, 131(9), pp.
975–8887.

Visual Studio Code (no date) Visual Studio Code documentation, Visual Studio
Code. Available at: https://code.visualstudio.com/docs (Accessed: April 27,
2025).

Wong, A. (2025) TNG eWallet now supports LPR parking, available in 12
locations, SoyaCincau. Available at: https://soyacincau.com/2025/03/16/tng-
ewallet-lpr-licence-plate-recognition-parking/ (Accessed: April 12, 2025).

Wu, J. (2018) “Complexity and accuracy analysis of common artificial neural
networks on pedestrian detection,” in MATEC Web of Conferences. EDP
Sciences. Available at: https://doi.org/10.1051/matecconf/201823201003.

Xia, Y., Feng, J. and Zhang, B. (2016) “Vehicle Logo Recognition and
Attributes Prediction by Multi-task Learning with CNN,” in 2016 12th
International Conference on Natural Computation, Fuzzy Systems and
Knowledge Discovery (ICNC-FSKD). IEEE.

Yang, Z. et al. (2018) “Learning to Navigate for Fine-grained Classification,”
in Proceedings of the European Conference on Computer Vision (ECCV).

Zherzdev, S. and Gruzdev, A. (2018) “LPRNet: License Plate Recognition via
Deep Neural Networks.” Available at: http://arxiv.org/abs/1806.10447.

285

APPENDICES

APPENDIX A: Vehicle Recognition Benchmark Result

Table A-1: Vehicle Recognition Benchmark Results

image

license_

plate make

mod

el

colo

r

detection_ti

me_sec

accuracy_licens

e_plate

accuracy_

make

accuracy_

model

accuracy_

color

016667cb-5915-4440-9031-

efae7700de8f_jpg.rf.c3500bd80a69ff22a92

940e992b29ccc.jpg

VBP

3477

Nissa

n

Alme

ra gray 3.734 TRUE TRUE TRUE TRUE

0324bca4-2650-43e3-b883-

1dafa98eb2fe_jpg.rf.cfdc7599673636ca0e9

49d548e0408ed.jpg

JSM

2306

Pero

dua Axia gray 1.966 TRUE TRUE TRUE TRUE

15c8f5f9-6856-4375-9aa3-

a3aafd0e43a7_jpg.rf.57527c87c5958a45915

10add9510799f.jpg

TBU

5553

Hond

a City red 1.733 TRUE TRUE TRUE TRUE

286

1b584696-1322-461d-83e0-

1a23a3bf82ef_jpg.rf.1309cfe57e2290c747fe

be4362827672.jpg

VCF

2025

Hond

a City

whit

e 1.828 TRUE TRUE TRUE TRUE

2156eaea-9c31-4838-a9b8-

8d8fec29900e_jpg.rf.09d85642cbd9ec9da8

841c58bb91aa30.jpg

PMJ

5716

Pero

dua Axia

whit

e 1.909 TRUE TRUE FALSE TRUE

248b04ae-38f2-4ece-be6f-

216aa6218c2e_jpg.rf.86968a1efca8c5c1eb2

3751d79e8dd0a.jpg VCT9264

Pero

dua Alza blue 1.866 TRUE TRUE TRUE TRUE

29650796-36d3-468b-8cda-

eb6859e053a3_jpg.rf.86977d4ce69c14fb8f5

10d89f75abf28.jpg

PMJ

5716

Pero

dua Myvi

whit

e 2.904 TRUE TRUE TRUE TRUE

2a352357-3848-48cd-a423-

6241f80d7b16_jpg.rf.83e34e6014c8e1138e

6e0afc609d47b7.jpg

VAT

F430

Pero

dua

Bezz

a gray 2.103 FALSE TRUE TRUE TRUE

2eb92e30-4f79-4ee7-9f95-

1e291ac2fcda_jpg.rf.0bc95aa562ebc40ef3a

694691eeeea98.jpg

PMP

9680

Pero

dua Myvi

whit

e 2.346 TRUE TRUE FALSE TRUE

287

319e49f8-181f-4288-aa94-

0d38d33f77c1_jpg.rf.c6d52ea6db320a485e

9004df7044c8ff.jpg

VCF

1804

Nissa

n

Alme

ra gray 2.071 TRUE TRUE TRUE TRUE

334c72e5-b22b-4341-a6ab-

e65fe684ace2_jpg.rf.8023c0e493b6a5ab9d

3645bb110bca68.jpg

SU 5805

D

Pero

dua

Bezz

a red 3.987 TRUE TRUE TRUE TRUE

33f48b10-37ec-4e83-b9d9-

c25a83da84b0_jpg.rf.8d480063f77f4448780

4699ac3c97958.jpg

VDK

8639

Nissa

n Leaf

whit

e 1.696 TRUE TRUE TRUE TRUE

35aff9e2-44ec-4d82-872b-

3575b6863f73_jpg.rf.8b6155475e14eae5ad

00a53ab51965b3.jpg

AKD

9878

Toyot

a Vios gray 4.649 TRUE TRUE TRUE TRUE

37a46b75-847a-4860-becd-

dfc7337138fe_jpg.rf.0ee0d210e016c8e0c8b

201421f192dca.jpg AKQ 206

Pero

dua Axia

yell

ow 2.012 TRUE TRUE TRUE TRUE

3b66b3ed-349f-4d1c-9861-

f6a7c2065a80_jpg.rf.8895dbfb45569e75deb

85ad30b00a5cb.jpg

VBR

2625

Rena

ult

Capt

ur blue 3.153 TRUE TRUE TRUE TRUE

288

3d7577dd-9427-45c0-92f3-

e8f35543346a_jpg.rf.9b41d4448d9767a952

e4b06e09085602.jpg VK 641

Proto

n

Pers

ona

bro

wn 1.844 TRUE TRUE TRUE TRUE

3ed72906-efff-40d0-afae-

a52e3ba3f46f_jpg.rf.a86e374ef5498520a2d

3202b27cb6561.jpg

VAT

6458

Pero

dua

Bezz

a blue 2.208 TRUE TRUE TRUE TRUE

3f7bbcb9-9c47-4950-8e53-012e36bb2acc-1-

_jpg.rf.c906c79156d109434841658808dc28

43.jpg JRC 5492

Pero

dua Axia

blac

k 2.707 TRUE TRUE TRUE TRUE

3fe7af30-1573-4658-b576-

3607cbe9951f_jpg.rf.7cd5508c76abdaa0afe

5417d8ab360ba.jpg KEE 1096

Pero

dua Axia red 2.531 TRUE TRUE TRUE TRUE

408a8b3f-89b0-431d-b409-

ed8264e258a9_jpg.rf.45dd12f3440a6caf52c

e602f78a29b09.jpg

WC 5763

R

Nissa

n

Alme

ra gray 2.65 TRUE TRUE TRUE TRUE

289

APPENDIX B: System Usability Test Results

Figure B-1: SUS Result Question 1

290

Figure B-2: SUS Result Question 2

291

Figure B-3: SUS Result Question 3

292

Figure B-4: SUS Result Question 4

293

Figure B-5: SUS Result Question 5

294

Figure B-6: SUS Result Question 6

295

Figure B-7: SUS Result Question 7

296

297

Figure B-8: SUS Result Question 8

298

Figure B-9: SUS Result Question 9

Figure B-10: SUS Result Question 10

299

Figure B-11: UAT Suggestion

300

Figure B-12: Respondents testing ParkPal Application

	DECLARATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS / ABBREVIATIONS
	LIST OF APPENDICES
	CHAPTER 1
	1 INTRODUCTION
	1.1 General Introduction
	1.2 Importance of the Study
	1.3 Problem Statement
	1.3.1 Performance Limitation of Current LPR Solutions
	1.3.2 Security Risks and Unauthorized Transactions Using LPR
	1.3.3 Inefficiency in Existing Parking Systems

	1.4 Aim and Objectives
	1.4.1 Project Aim
	1.4.2 Project Objectives

	1.5 Project Solution
	1.5.1 Automated Parking Payment System with LPR and Vehicle Attribute Recognition
	1.5.2 Parking Management Application

	1.6 Project Approach
	1.6.1 Research Approach
	1.6.2 Development Approach

	1.7 Scope and Limitations of the Study
	1.7.1 System Modules
	1.7.1.1 Driver Module
	1.7.1.2 Parking Operator Module
	1.7.1.3 Admin Module
	1.7.1.4 Multimodal LLM-based License Plate and Vehicle Attribute Recognition Module

	1.7.2 Target Users
	1.7.3 Out-of-Scope
	1.7.4 Project Limitations
	1.7.5 Development Tools, Languages, and Frameworks

	CHAPTER 2
	2 LITERATURE REVIEW
	2.1 Introduction
	2.2 Why Improve Current License Plate And Vehicle Attribute Recognition?
	2.3 Traditional Approaches to License Plate and Vehicle Attribute Recognition
	2.3.1 Manual Observation
	2.3.2 Traditional License Plate Recognition

	2.4 Machine Learning (ML) Approaches
	2.5 Deep Learning (DL) Approaches
	2.5.1 Deep Learning in Vehicle Detection
	2.5.1.1 Two-Stage Detectors
	2.5.1.1.1 Faster R-CNN

	2.5.1.2 One-Stage Detectors
	2.5.1.2.1 YOLO
	2.5.1.2.2 Single Shot Multibox Detector (SSD)

	2.5.2 Instance Segmentation in Vehicle and License Plate Recognition
	2.5.2.1 YOLOv8 Seg
	2.5.2.2 Segment Anything (SAM)
	2.5.2.3 Comparison of Segmentation Model

	2.5.3 Deep Learning for OCR in LPR
	2.5.3.1 Tesseract OCR
	2.5.3.2 CRNN
	2.5.3.3 Transformers

	2.5.4 Deep Learning for Vehicle Attribute Recognition
	2.5.4.1 CNN-based Models
	2.5.4.2 ViT-based Models
	2.5.4.3 Multitask Learning (MTL)
	2.5.4.4 Fine-Grained Classification

	2.5.5 Summary

	2.6 Large Language Models (LLMs)
	2.6.1 Multimodal LLMs
	2.6.1.1 GPT-4o
	2.6.1.2 Gemini 2.0 Flash
	2.6.1.3 Claude 3.5
	2.6.1.4 LLMs on License Plate Recognition
	2.6.1.5 LLMs on Vehicle Attribute Recognition
	2.6.1.6 Comparison of the Multimodal LLMs

	2.7 Review of Similar Parking Payment Application
	2.7.1 Touch ‘n Go eWallet
	2.7.1.1 LPR Parking (License Plate Recognition)
	2.7.1.2 QR Parking
	2.7.1.3 Street Parking
	2.7.1.4 ParkInsure

	2.7.2 JomParking
	2.7.3 ParkEasy
	2.7.4 Flexi Parking
	2.7.5 Summary and Comparison of Existing Applications

	2.8 Software Development Methodologies
	2.8.1 Waterfall Model
	2.8.2 Iterative and Incremental Development (IID) Model
	2.8.3 Agile Methodologies
	2.8.3.1 Scrum

	2.8.4 Summary and Comparison of Methodologies

	2.9 Development Framework
	2.9.1 Frontend Framework
	2.9.1.1 React Native (with React Native for Web)
	2.9.1.2 Flutter
	2.9.1.3 Ionic React
	2.9.1.4 Summary and Comparison of Frontend Framework

	2.9.2 Backend Framework
	2.9.2.1 NestJS
	2.9.2.2 Laravel
	2.9.2.3 Summary and Comparison of Backend Framework

	2.9.3 Database
	2.9.3.1 MySQL
	2.9.3.2 PostgreSQL
	2.9.3.3 Summary and Comparison of Database

	CHAPTER 3
	3 METHODOLOGY AND WORK PLAN
	3
	3
	3.1 Introduction
	3.2 Software Development Methodology: Scrum Methodology
	3.2.1 Phase 1: Initiation
	3.2.2 Phase 2: Planning and Estimation
	3.2.3 Phase 3: Sprint Execution
	3.2.4 Phase 4: Review and Retrospective
	3.2.5 Phase 5: Finalization and Release
	3.2.6 Justification for Scrum Methodology

	3.3 Project Planning and Scheduling
	3.3.1 Work Breakdown Structure (WBS)
	3.3.2 Gantt Chart

	3.4 Development Tools and Techniques
	3.4.1 Tools and IDEs
	3.4.1.1 Enterprise Architecture
	3.4.1.2 Visual Studio Code
	3.4.1.3 Git and GitHub

	3.4.2 Languages
	3.4.2.1 Python
	3.4.2.2 HTML, CSS, JavaScript
	3.4.2.3 SQL

	3.4.3 Software Frameworks
	3.4.3.1 React Native
	3.4.3.2 Laravel
	3.4.3.3 Expo

	3.4.4 Database
	3.4.4.1 PostgreSQL

	3.5 Summary

	CHAPTER 4
	4 PROJECT SPECIFICATION
	4.1 Introduction
	4.2 Fact Finding
	4.2.1 Responses on Google Form Questionnaire Survey
	4.2.1.1 Section A: Demographics of Respondents
	4.2.1.2 Section B: Difficulties in the Existing Parking Payment System
	4.2.1.3 Section C: Exposure to Technologies for Automated Parking Payment
	4.2.1.4 Section D: User Expectations for AI-powered Parking System

	4.3 Requirement Specification
	4.3.1 Functional Requirements
	4.3.2 Non-functional Requirements

	4.4 Use Case Modelling
	4.4.1 Use Case Diagram
	4.4.2 Use Case Description

	4.5 Interface Flow Diagram
	4.6 Initial Prototype
	4.7 Preliminary run on Vehicle Detection and Segmentation
	4.7.1 Overview
	4.7.2 Experimental Setup and Results

	CHAPTER 5
	5 SYSTEM DESIGN
	5.1 Introduction
	5.2 System Architecture Design
	5.2.1 Front-end Architecture
	5.2.2 Back-end Architecture

	5.3 Database Architecture
	5.3.1 Database Entity Relationship Diagram (ERD)
	5.3.2 Database Schema
	5.3.3 Collection Description

	5.4 Data Flow Diagram
	5.4.1 Context Diagram
	5.4.2 DFD Level-0 Diagram

	5.5 Activity Diagram
	5.6 User Interface Design
	5.6.1 Driver Mobile Interface
	5.6.2 Web Interface
	5.6.3 Parking Operator Web Interface
	5.6.4 Admin Web Interface

	CHAPTER 6
	6 SYSTEM IMPLEMENTATION
	6.1 Introduction
	6.2 Backend Implementation
	6.2.1 Authentication and Authorization
	6.2.2 Database Integration (PostgreSQL)
	6.2.3 Real-Time Communication (Reverb and Pusher-js)

	6.3 Frontend Implementation
	6.3.1 Navigation Structure (React Navigation)
	6.3.2 Local Storage (Async Storage)
	6.3.3 Data Visualization
	6.3.3.1 React Native Chart Kit
	6.3.3.2 Recharts

	6.3.4 Location Services (Expo-Location)

	6.4 AI & Detection Module
	6.4.1 Python-Uvicorn Service Setup
	6.4.2 Gemini 2.5 Flash Integration
	6.4.3 Vehicle Detection Setup and Workflow
	6.4.3.1 Data Collection and Preparation
	6.4.3.2 Detection Workflow
	6.4.3.3 System Integration Overview

	6.5 Development and Deployment Environment
	6.5.1 NGROK for Local Testing

	6.6 Conclusion

	CHAPTER 7
	7 SYSTEM TESTING
	7.1 Introduction
	7.2 Traceability between Use Cases, Functional Requirements, and Test Cases
	7.2.1 Use Case Table
	7.2.2 Functional Requirements Table

	7.3 API Testing
	7.3.1 Summary of API Test Cases

	7.4 Traceability Matrix
	7.5 Performance Evaluation of Vehicle Recognition
	7.5.1 Evaluation Methodology

	7.6 Evaluation of Auto Payment via Vehicle Recognition
	7.7 Usability Test
	7.7.1 Test Scenarios of Usability Test
	7.7.2 Results of Usability Test

	7.8 User Acceptance Testing (UAT)
	7.9 Conclusion

	CHAPTER 8
	8 CONCLUSION AND RECOMMENDATIONS
	8.1 Introduction
	8.2 Objectives Achievement
	8.3 Project Limitations
	8.4 Recommendations for Future Work
	REFERENCES
	APPENDICES

