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ABSTRACT

The increasing sophistication of cyber threats, particularly in decentralized and
resource-constrained environments such as the Internet of Things (IoT),
demands adaptive and efficient security solutions. This study introduces
SignReencryption, a unified framework that integrates signcryption, proxy re-
encryption (PRE), and Transformer-based intrusion detection to deliver both
cryptographic assurance and intelligent adaptability. Signcryption ensures
confidentiality and authenticity in a single lightweight operation, while PRE
enables scalable, fine-grained access control without exposing plaintext. A
TabTransformer-based intrusion detection system complements these
cryptographic mechanisms, achieving classification accuracies of 94% on
CICIDS2017, 99% on CIDDS-001, and 97% on NSL-KDD, with particular
strength in detecting minority attack classes traditionally overlooked by
baseline models. Optuna-driven hyperparameter optimization revealed dataset-
specific configurations, demonstrating the adaptability of the TabTransformer
across heterogeneous traffic distributions. Experimental evaluation further
shows that SignReencryption reduces ciphertext expansion by up to 50% and
lowers per-message execution time by nearly half compared to conventional
Sign-Then-Encrypt schemes, confirming its practicality for real-time and
bandwidth-limited environments such as intelligent transportation systems.
Overall, the framework advances intrusion detection by uniting cryptographic
efficiency with adaptive intelligence, offering a scalable, resilient, and

operationally viable defense model for modern cybersecurity challenges.

Keywords: Signcryption; Cryptography; Transformer Neural Network;

Intrusion Detection System; Internet of Things

Subject Area: QA75.5-76.95
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CHAPTER 1

INTRODUCTION

1.1 General Introduction

The rapid evolution of cyber threats such as advanced persistent threats (APTs),
ransomware, and state-sponsored attacks has rendered traditional cybersecurity
measures inadequate. These threats continue to adapt, bypassing static security
protocols and requiring increasingly sophisticated defence strategies. One such
defence mechanism is adaptive cryptography, which dynamically adjusts to
evolving threats. Static cryptographic methods often fail to meet the demands
of modern cyber threats, making adaptive cryptographic strategies crucial for

addressing dynamic risks.

SignReencryption, a synthesis of signcryption, proxy re-encryption
(PRE), and Transformer Neural Networks (TNN), offers a more robust
framework for secure data transmission. It enables the re-encryption of a
previously signcrypted message without decryption, thus increasing efficiency
and security (Ateniese et al., 2005). This combination allows cryptographic
systems to evolve in response to emerging threats, ensuring both confidentiality

and authenticity in real-time communications.

This research examines signcryption, PRE, and TNN as individual
elements that, when integrated, offer adaptive security mechanisms, providing
enhanced data protection and efficiency in modern digital communication

systems.



1.2 Importance of the Study

The growing sophistication and volume of cyber threats such as advanced
persistent threats (APTs), ransomware, and zero-day attacks pose significant
challenges to traditional cryptographic systems. These systems, often static in
nature, are ill-equipped to handle the evolving and dynamic nature of modern
cyberattacks. As cyber threats continue to adapt, the need for more dynamic,
adaptive cryptographic solutions has become increasingly evident.

This study is critical because it introduces an innovative approach by integrating
signcryption, proxy re-encryption (PRE), and Transformer Neural Networks
(TNN) to create an adaptive cryptographic framework. The integration of these
three technologies offers a dynamic response to evolving threats, ensuring both

security and efficiency in data transmission.

1. Signcryption enables confidentiality and authenticity in a single step,
reducing computational overhead which is an essential feature for
resource-constrained environments (Kanchan et al., 2019).

2. PRE allows data to be re-encrypted by a semi-trusted proxy without
decrypting it, improving data sharing and access control in decentralised
networks, such as the Internet of Things (IoT) (Ateniese et al., 2005).

3. TNN provides real-time threat adaptation based on emerging attack
patterns and improving network security through continuous learning

(Heaton, 2018).

The combination of these techniques offers enhanced security by
adapting to evolving threats, optimising computational efficiency, and ensuring
scalable data sharing across distributed environments. This approach is
especially significant for sectors like [oT and decentralised networks, where

data security and flexible access control are paramount.

The study’s results will contribute to the development of more adaptive
and scalable cryptographic systems that can respond to emerging cyber threats
in real-time, offering proactive protection against new attack techniques. As

such, this study is not only important for improving the security of distributed



systems but also for ensuring that cryptographic solutions can evolve with the

increasingly sophisticated nature of cybersecurity challenges.

1.3 Problem Statement

The increasing sophistication and frequency of cyber-attacks pose significant
challenges to traditional cryptographic systems. Advanced persistent threats
(APTs), zero-day exploits, and ransomware continue to outpace conventional
security defences, highlighting the need for adaptive cryptographic solutions
that can effectively address evolving threats. Traditional cryptographic methods,
relying on static encryption techniques, struggle to provide the necessary
flexibility, scalability, and efficiency in dynamic environments such as IoT
networks and decentralised systems. The key challenges faced by current

cryptographic systems are as follows:

1. Inability to Adapt to Emerging Cyber Threats:

Traditional systems are static and unable to dynamically respond to new
and evolving cyber threats. As attackers continuously refine their
strategies, conventional cryptographic systems often fail to protect data
from new vulnerabilities. Without the ability to adapt to emerging
threats, these systems leave sensitive data exposed to advanced cyber-

attacks.

2. Scalability Issues in Decentralised Systems:

As decentralised networks like IoT grow, traditional encryption methods
struggle with scalability. These systems face significant challenges in
managing access control and data sharing across a growing number of
users, devices, and applications. The increasing complexity of these
systems makes it difficult to maintain efficient key management and

enforce flexible access policies without compromising security.

3. Inefficient Key Management:



1.4

Managing encryption keys in large-scale decentralised systems remains
a major obstacle. As the number of users and devices increases, key
distribution and management become inefficient and prone to errors.
This inefficiency can lead to security vulnerabilities, as poorly managed

keys may result in unauthorised data access or decryption.

Lack of Real-Time Adaptation:

Existing cryptographic systems fail to adapt in real time to new threats
or network conditions. Traditional systems typically operate with
predefined settings and lack of parallel processing features based on
changing circumstances or observed attacks. This lack of real-time
adaptation leaves systems vulnerable to novel threats that do not fit

predefined patterns.

Aim and Objectives

Aim: This study aims to develop a robust adaptive cryptographic framework

that enhances cybersecurity by integrating machine learning and advanced

cryptographic techniques. The framework will enable parallel processing for

identifying the category of events to address evolving network security

challenges, ensuring efficient, scalable, and secure data transmission.

Objectives:

1.

Developing an Adaptive Cryptographic Framework

Create a framework that combines machine learning and advanced
cryptographic techniques, such as signcryption, proxy re-encryption
(PRE), and transformer neural networks (TNN), to enhance
cybersecurity. This framework will adapt dynamically to emerging

cyber threats and improve overall security and efficiency.

2. Integration of Transformer Neural Networks



Integrate TNN to provide real-time threat detection and adaptive
cryptography, enabling parallel processing for identifying the category

of events based on contextual network behaviour and evolving threats.

3. Minimising Computational Overhead

Utilise proxy re-encryption (PRE) to maintain encrypted
communications across authorised users while preventing unauthorised
access and data breaches. This minimises computational overhead by
delegating re-encryption tasks to a proxy, thus optimising efficiency in

decentralised systems.

4. Securing Communication Channels
Ensure secure and efficient communication across various channels,
particularly for industries dealing with sensitive data such as healthcare,
finance, and government. The framework will be designed to offer
robust protection for data sharing and communication, crucial for sectors

requiring high levels of security.

1.5 Scope and Limitation of the Study

Scope:

This study focuses on developing and evaluating an adaptive cryptographic
framework that integrates signcryption, proxy re-encryption (PRE), and
transformer neural networks (TNN) to enhance cybersecurity in decentralised
systems, such as Internet of Things (IoT) networks. The research will explore
how these three technologies can work together to improve data confidentiality,
integrity, and authenticity in environments that require flexible and scalable

security solutions.

Key areas of focus in the study include:
o Real-time threat adaptation using TNN, enabling the cryptographic
framework to parallel processing and identify the activities categories

based on observed threats and contextual network behaviour.



e Minimisation of computational overhead through the use of

signcryption to combine encryption and digital signature functions,

improving efficiency while maintaining robust security.

e Secure and scalable data sharing with PRE, which allows encrypted

data to be securely re-encrypted by an intermediary (the proxy) without

exposing plaintext data to unauthorised parties.

Additionally, the study will assess the scalability of these

cryptographic techniques in decentralised environments and evaluate how well

they adapt to emerging cybersecurity threats. The focus will be on developing a

scalable solution capable of maintaining security while optimising performance

in large, dynamic networks.

Limitations:

While this study aims to provide a comprehensive solution for adaptive

cryptography, certain limitations should be acknowledged:

1. Limited Testing Scope:

o

The study will primarily evaluate theoretical models and
prototypes of signcryption, PRE, and TNN. It may not involve
exhaustive testing in large-scale production environments or
across highly distributed systems. As a result, real-world
challenges related to system deployment and integration may not

be fully addressed within the scope of this study.

2. Novelty of TNN Integration:

o

The integration of TNN for adaptive security is a novel approach
within the context of cryptographic systems. While the approach
shows promise, its real-world performance in adapting to
emerging threats will be explored through simulated
environments rather than large-scale, live environments. The
testing methodology will be based on simulations, which may
not account for all variables present in actual deployment

scenarios.

3. Emerging Cryptographic Technologies:



Due to the emerging nature of post-quantum cryptography and
other advanced encryption protocols, this study may not fully
address quantum-resistant methods or potential advancements in
cryptography beyond the current focus. The integration of
quantum-safe algorithms is not a priority for this research, and it
is acknowledged that future advancements in this field could

alter the approach outlined in this study.

4. Compatibility with Legacy Systems:

o

The proposed system may face compatibility issues when
deployed in existing decentralised infrastructures, especially
those using legacy cryptographic systems. While the framework
is designed to be scalable and flexible, integrating with existing
systems, particularly those with outdated or incompatible
cryptographic protocols, could present challenges. This will be
considered as a limitation in terms of deployment feasibility in

certain environments.

5. Focus on Selected Applications:

o

The study will focus on the applications of this adaptive
cryptographic framework within IoT and decentralised networks,
with an emphasis on real-time threat adaptation and secure data
sharing. While the framework is designed to be adaptable, its
broader application across other domains of cybersecurity, such
as cloud computing or enterprise networks, may require further

research and adaptation.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction to SignReencryption

Cryptography is the foundation of secure communication, ensuring
confidentiality, integrity, and authenticity of data in digital environments. As
cyber threats evolve, modern cryptographic techniques integrate multiple
security mechanisms to enhance protection. Conventional cryptographic
approaches rely on encryption for confidentiality, digital signatures for
authenticity, and key management protocols for secure communication
(Menezes, van Oorschot and Vanstone, 2018). However, emerging challenges
in network security, such as adaptive cyber threats and scalability concerns,
necessitate advanced cryptographic solutions that combine multiple security

primitives efficiently.

SignReencryption, a synthesis of signcryption, proxy re-encryption,
and Transformer Neural Network, enhances security and efficiency in data
transmission. It allows re-encrypting a previously signcrypted message without
decrypting it first(Ateniese ef al., 2005), highlighting the necessity for adaptive
cybersecurity strategies. This study explores three key cryptographic elements:
signcryption, proxy re-encryption (PRE), and transformer neural networks
(TNN) for adaptive security. Signcryption is a cryptographic scheme that
simultaneously performs encryption and digital signature functions in a single
operation, reducing computational overhead while ensuring both confidentiality
and authenticity(Kanchan, Singh and Chaudhari, 2019). This efficiency makes
it a valuable technique for secure communication in resource-constrained
environments. Proxy re-encryption (PRE) allows a semi-trusted proxy to
convert encrypted data from one recipient to another without decrypting it,
enabling secure data sharing in dynamic environments such as cloud computing
and decentralized networks (Ateniese et al., 2005) Lastly, transformer neural
networks (TNN) for adaptive security apply machine learning models to parallel

processing and identify the category of event based on contextual threats,



allowing systems to enhance real-time threat adaptation and detection (Heaton,

2018).

Traditional encryption methods face efficiency and scalability
challenges, particularly in decentralised networks and resource-constrained
environments (Kanchan, Singh and Chaudhari, 2019). Signcryption enhances
efficiency, reducing computational overhead while maintaining strong security
guarantees. Proxy re-encryption improves data flexibility, ensuring that access
control policies remain secure in dynamic systems such as cloud computing and
the Internet of Things (IoT). Additionally, transformer-based adaptive security
mechanisms enable proactive threat mitigation by learning from network

behaviour and categorise the event with the parallel processing feature.

By integrating these mechanisms, this study aims to develop a
cryptographic framework that enhances security while optimising
computational efficiency. The following sections provide a comprehensive
analysis of existing research on these elements, highlighting advancements and

potential areas for improvement.

2.2 Signcryption

Signcryption was initially introduced in 1997 by Yuliang Zheng, who claimed
that his approach reduced computational costs by 50% and message expansion
by 85% compared to the conventional method of applying digital signature
followed by encryption. Zheng’s method was based on discrete logarithm
cryptography and was proposed without formal security proofs (Zheng, 1997).
In 1998, Zheng et al. extended this approach to elliptic curves, demonstrating a
further reduction of 58% in computational cost and 40% in communication
overhead (Zheng and Imai, 1998). However, due to the complexity of
implementing elliptic curve signcryption, its practical adoption remained
limited, particularly in environments such as VANET networks, where

efficiency and scalability are critical.

Recent advancements have focused on enhancing the efficiency and

applicability of signcryption for modern communication systems. Research by
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Kanchan in 2018 introduced significant optimisations that improve
computational performance, making signcryption more practical for resource-
constrained environments (Kanchan and Chaudhari, 2018). Unlike Zheng’s
approach, which was challenging to implement in real-world applications,
Kanchan’s model streamlines cryptographic operations, reducing processing
time and energy consumption. This makes signcryption viable for real-time

communication systems, where speed and efficiency are crucial.

Additionally, Kanchan’s work refines key management strategies and
encryption mechanisms, mitigating delays associated with cryptographic
computations. By optimising these operations, her approach ensures that
signcryption remains relevant for next-generation secure communication
applications, such as cloud computing and mobile transactions. In contrast to
Zheng’s signcryption model, which is now considered less practical due to its
complex implementation and computational constraints, Kanchan’s

enhancements enable broader adoption in performance-sensitive environments.

Further refining her work, Kanchan introduced additional
optimisations that specifically address the computational challenges of
signeryption in real-world applications. Her approach minimises processing
delays, ensuring that signcryption can be efficiently deployed in time-sensitive
environments such as Vehicular Ad Hoc Networks (VANETS). By streamlining
cryptographic operations, Kanchan’s refinements enhance both security and
efficiency, making signcryption more adaptable for secure communication in
automated and decentralised networks(Kanchan, Singh and Chaudhari, 2019).
These improvements make signcryption more practical for modern

cybersecurity frameworks where real-time secure communication is a priority.

2.2.1  Comparison with Traditional Approaches
Prior to the development of signcryption, secure digital communication
primarily relied on conventional paradigms such as Encrypt-then-Sign (EtS)

and Sign-then-Encrypt (StE) (An, Dodis and Rabin, 2002). These approaches,



11

while functionally sound, impose notable limitations in terms of computational

efficiency and structural elegance.

1) Encrypt-then-Sign (EtS): This method first encrypts the message
and then applies a digital signature to the encrypted output. While it
ensures message integrity and confidentiality, it adds computational
overhead due to separate cryptographic operations

i1) Sign-then-Encrypt (StE): Here, the message is first signed and then
encrypted, ensuring authenticity before confidentiality. However,
this approach may expose signature details to adversaries if not

properly implemented, making it susceptible to certain attacks

Signcryption addresses these challenges by integrating digital
signature and encryption into a single, unified operation. This not only preserves
the essential security attributes like confidentiality, integrity, authentication, and
non-repudiation, but also significantly reduces computational complexity and
bandwidth requirements. Owing to these advantages, signcryption has emerged
as a highly efficient and secure alternative, particularly well-suited for resource-
constrained settings such as mobile devices, wireless networks, and IoT-based

systems.

2.2.2  Why Signcryption is Essential

The convergence of digital signature and encryption operations into a unified
cryptographic primitive, known as signcryption, has emerged as a vital
advancement in ensuring security and privacy within cyber-physical systems
(CPS), particularly in the context of Vehicular Ad Hoc Networks (VANETS).
As demonstrated by Kanchan et al. (2021), signcryption plays a foundational
role in addressing the growing demands of secure, real-time vehicular
communication. Traditional schemes that treat signing and encryption as
sequential, independent processes often incur higher computational costs and
latency, which are impractical for latency-sensitive environments like
intelligent transportation systems. By contrast, signcryption achieves
confidentiality and authenticity simultaneously, thereby improving

computational efficiency and reducing overall resource consumption.
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One of the critical motivations behind adopting signcryption in
VANETs is the need for privacy-preserving mechanisms that still allow for
secure and authenticated communication. In the proposed SPSR-VCP protocol,
Kanchan et al. (2021) integrated signcryption with group signature schemes,
effectively masking the identity of individual vehicles while ensuring that
transmitted messages originate from legitimate and trusted sources. This dual
feature is particularly valuable for protecting sensitive information such as
vehicular location, identity, and routing data, which, if exposed, could lead to
serious security breaches including identity theft, location tracking, or even

vehicular hijacking.
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Figure 2.1: Members’ Communication Flow

Source: (Kanchan, Singh and Chaudhari, 2021)

Moreover, the SPSR-VCP protocol introduces proxy re-encryption to
support load distribution and fault tolerance. Here, a semi-trusted proxy is
assigned the task of converting ciphertexts originally intended for one entity
(e.g., the main membership manager) into ciphertexts compatible with an
alternative manager. This approach ensures uninterrupted service even when
primary nodes become overloaded or temporarily unavailable, thereby
enhancing system robustness without compromising confidentiality.
Importantly, the re-encryption keys used in the scheme are designed to be non-
transitive, mitigating risks associated with unauthorised key derivation and key

misuse which is a recognised vulnerability in proxy-based systems.
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Figure 2.2: Proposed Authentication Protocol

Source: (Kanchan, Singh and Chaudhari, 2021)

The protocol further leverages cloud computing capabilities to perform
complex operations, such as computing group keys or updating signature
accumulators. Offloading such computationally intensive tasks to the cloud
ensures that the vehicles, which may have limited processing power, are not
burdened by cryptographic operations. This enhances the scalability of the
system, allowing it to function efficiently even wunder high-volume

communication scenarios typical in urban traffic systems.

From a security standpoint, the robustness of the signcryption-based
SPSR-VCP protocol is formally verified using BAN logic and the AVISPA tool.
The analysis confirms the protocol’s resilience against a range of attacks,
including impersonation, replay, Sybil, man-in-the-middle, and digital signature
forgery. The integration of nonce-based freshness checks and authenticated
encryption ensures that replay and duplication of messages are effectively
prevented, while the use of traceable group signatures allows authorised entities,
such as a tracing manager, to revoke misbehaving nodes without compromising

the privacy of compliant ones.

In terms of performance, the protocol demonstrates notable gains. With
a computational cost of only 5.675 milliseconds per message, it outperforms

several comparable schemes, some of which exceed 12 milliseconds.
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Additionally, the compact packet size of 57 bytes results in lower
communication overhead, which is critical for high-speed and bandwidth-

limited vehicular environments.
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Figure 2.3: Computation cost of the algorithms

Source: (Kanchan, Singh and Chaudhari, 2021)
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Figure 2.4: Final Packet-size with the comparison of the algorithms
Source: (Kanchan, Singh and Chaudhari, 2021)

In conclusion, the adoption of signcryption within the SPSR-VCP

framework represents a significant step forward in the design of secure, efficient,
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and privacy-preserving communication protocols for vehicular cyber-physical
systems. Its combined use of signcryption, group signatures, proxy re-
encryption, and cloud computing not only addresses the critical challenges of
modern VANETS but also sets a precedent for future research and real-world

deployment of secure vehicular networks.

2.2.3  Challenges and Limitations of Signcryption

While signeryption offers significant advantages over traditional encryption
methods, several challenges and limitations remain. These hurdles can affect the
practicality and scalability of signecryption, particularly in large-scale or

resource-constrained environments.

1. Efficiency in Resource-Constrained Environments

Despite its inherent computational advantages, signcryption still
presents efficiency challenges in resource-constrained environments,
such as [oT devices, mobile networks, or low-power embedded systems.
The cryptographic operations involved in signcryption can demand
significant processing power and memory, which may overwhelm
devices with limited resources. Although Kanchan et al. (2018)
proposed efficient signcryption schemes, the need for constant key
management, signature generation, and encryption still imposes
performance limitations in environments with low CPU power and
bandwidth constraints (Kanchan & Chaudhari, 2018). These limitations
make it difficult to implement signcryption in scenarios where rapid

execution and low power consumption are crucial.

2. Key Management and Revocation

Efficient key management and the revocation of compromised keys are
inherent challenges for any cryptographic system, and signcryption is no
exception. In the context of signcryption, managing dynamic keys and
ensuring that only valid, authorised users can access the network is
crucial. Kanchan et al. (2018) propose a robust system for key
distribution and revocation in vehicular networks, but the

implementation of these mechanisms can still be complicated, especially
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when considering large networks with high mobility and frequent
membership changes. The real-time revocation of keys and
authentication processes must be streamlined to prevent any
unauthorised access or compromised data from being transmitted, which

remains a persistent challenge in practical applications.

2.3 Transformer Neural Network (TNN)

Transformer Neural Networks (TNNs) have had a profound impact on deep
learning, particularly within the areas of sequence modelling and natural
language processing (NLP). First introduced by Vaswani et al. (2017), the
Transformer model marked a departure from earlier methods such as recurrent
neural networks (RNNs) and long short-term memory (LSTM) networks by
eliminating the need for recurrence. Instead of relying on sequential data
handling, the Transformer leverages self-attention to effectively model complex
relationships within the input. This structural innovation has greatly advanced
machine learning capabilities in a range of applications, including automated

translation, content generation, and understanding natural language.

One of the most distinctive aspects of the Transformer is the self-
attention mechanism. This feature allows the model to evaluate how relevant
each input token is in relation to every other token, regardless of their positions
within the sequence. Unlike traditional methods that require processing in order,
the self-attention approach enhances computational speed and allows for high
levels of parallelisation, making it especially efficient when working with

extensive or complex datasets (Vaswani et al., 2017).
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Figure 2.5: Transformer-model architecture

Source: (Vaswani et al., 2017)

The importance of self-attention lies in its ability to capture contextual
dependencies by dynamically learning which tokens should be emphasised or
downplayed during training. Enhancing this, the multi-head attention technique
enables the model to examine the input from multiple perspectives at once,

thereby extracting features at different levels of granularity.

Since the introduction of the original Transformer model, several
highly influential variants have been developed. Among them are BERT and
GPT, which have both achieved remarkable performance on a wide range of
NLP benchmarks (Devlin et al., 2019). The flexibility and scale of Transformer-
based architectures have also extended their relevance beyond language tasks,
finding applications in areas such as image analysis, genomic data processing,

and decision-making systems like reinforcement learning.
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The Transformer’s capability to handle various input types in parallel
and manage extensive data efficiently has positioned it as a cornerstone in the
development of modern artificial intelligence systems. With continual
advancements and the emergence of increasingly powerful models like GPT-3,
this architecture is expected to remain central to the evolution of more intelligent

and scalable machine learning technologies.

2.3.1  Core Components of TNN
This section outlines several fundamental elements that form the basis of
knowledge in Transformer Neural Networks. The discussion will cover five key

aspects that contribute to its power and effectiveness. (Vaswani et al., 2017).

2.3.1.1 Self-Attention Mechanism

Self-attention allows a Transformer to analyse how every token in a sequence
relates to every other token simultaneously, unlike RNNs and LSTMs that
handle data step by step. Each token is transformed into three separate vectors:
query, key, and value based on its embedding. Attention scores are computed
by taking the dot product of queries and keys, then applying a softmax function
to normalise the results. These scores are used to weight the value vectors,
producing an output for each token. This approach supports efficient parallel

processing and helps capture dependencies over long distances in the input.

2.3.1.2 Multi-Head Attention

Multi-head attention extends the self-attention process by performing multiple
attention operations concurrently, each using different parameter sets. This
design allows the model to examine the input from several perspectives,
capturing a wide range of relationships and patterns. Each head may detect
different features, such as syntax or meaning, at various abstraction levels.
Afterwards, the outputs from all heads are merged and passed through a linear
transformation to generate the final result. This structure boosts the model’s

ability to interpret complex data more effectively.
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2.3.1.3 Positional Encoding

Since Transformers process input tokens all at once, they lack built-in awareness
of token order. To address this, positional encodings are integrated into the
token embeddings, offering cues about each token’s place in the sequence. The
original model uses sine and cosine functions to produce distinct patterns for
each position. This enables the Transformer to learn the sequence structure and
generalise to longer sequences than it was trained on, preserving performance

and order awareness.

2.3.1.4 Feed-Forward Networks (FFN)

Once tokens have been processed through self-attention, each is individually
passed through a feed-forward neural network. This FFN consists of two dense
layers separated by a ReL.U activation function, introducing non-linearity and
enabling the model to detect complex patterns. Notably, the same FFN is applied
to each token without considering others, enhancing computational efficiency.
Despite this independence, the FFN refines token-level features and contributes

to deeper representations.

2.3.1.5 Encoder-Decoder Architecture

The encoder-decoder setup is essential for handling tasks that require mapping
an input sequence to an output, such as translating languages. The encoder
converts the input into a continuous representation, which the decoder uses to
generate the output. Both parts consist of several layers incorporating self-
attention and feed-forward sublayers. The decoder includes an extra attention
mechanism that targets the encoder’s outputs, helping it focus on the relevant
input during generation. To ensure proper sequence generation, masked self-
attention is applied in the decoder to block access to future positions. This
structure enables the model to learn both short- and long-term dependencies

effectively.
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2.3.2  Benefits of Transformer Neural Networks in Predicting Known,
Partially Known and Unknown Metadata
Transformer Neural Networks (TNNs) have proven highly capable when
working with various types of metadata, whether the data is fully known,
partially complete, or entirely new. This versatility primarily stems from the
self-attention mechanism, which allows the model to process sequences
simultaneously and capture both short- and long-distance relationships within
the data. Due to this architecture, TNNs often surpass traditional models like
RNNs and LSTMs, especially in scenarios involving incomplete or unfamiliar

data patterns.

2.3.2.1 Predicting Known Metadata

In cases where metadata is comprehensive and structured, TNNs excel by
leveraging multi-head self-attention to interpret intricate connections among
elements in the input. This approach enables the model to recognise both fine-
grained and broad dependencies across the sequence. Unlike RNNs or LSTMs,
which process input step by step, Transformers analyse entire sequences at once,

leading to improved efficiency and understanding of contextual relationships.
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Figure 2.6: Transformer processes sequence in parallel

Source: (Vaswani et al., 2017)

The original Transformer model, as introduced by Vaswani et al.
(2017), demonstrated superior results in machine translation compared to
traditional RNN-based approaches. Its effectiveness is largely attributed to the
ability to manage long-term relationships and its capacity for parallel processing
areas where RNNs and LSTMs often fall short due to their reliance on sequential

data handling.

2.3.2.2 Predicting Partially Known Metadata

In many practical applications, datasets often contain gaps, referred to as
partially known metadata. Traditional sequence models typically address this
through methods like data imputation or gating mechanisms, which can be both
complex and limited in utilising the available information. Transformers,

particularly those trained with masked input strategies (as in BERT), are
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naturally suited to infer missing content using the surrounding tokens. For
example, BERT employs a masked language modelling technique, where
certain input tokens are hidden, and the model learns to predict them based on
their context. This training method strengthens the model’s ability to reconstruct

missing or uncertain portions of the data, as shown in Figure 2.7.

Masked Sentence A > Masked Sentence B Question > Paragraph
Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning

Figure 2.7: Overview of BERT's pre-training and fine-tuning process

Source: (Devlin et al., 2019)

The model’s bidirectional attention design is key to this functionality
as it allows simultaneous reference to both preceding and following elements in
the sequence. This offers a notable advantage over models like RNNs and
LSTMs, which operate in a strictly forward or backward manner and may
struggle to retain or utilise long-distance information when faced with partial

inputs (Devlin et al., 2019)

2.3.2.3 Predicting Unknown Metadata

One of the most remarkable capabilities of Transformer models is their ability
to handle unknown metadata, or tasks involving data and contexts the model has
not encountered during training. This capability is especially evident in
pretrained models such as GPT-3. Unlike traditional models like RNNs and
LSTMs, which typically require retraining or fine-tuning for each new task,
Transformer models can generalise to new tasks with minimal task-specific

training, using zero-shot or few-shot learning techniques. GPT-3, for example,
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with its 175 billion parameters, is capable of performing a wide variety of tasks,

including question answering, text generation, and translation, with minimal

input, as shown in Figure 2.8.

The three settings we explore for in-context learning

Traditional fine-tuning (not used for GPT-3)

Zero-shot

The model predicts the answer given only a natural language

description of the task. No gradient updates are performed.

Translate English to French:

cheese =>

One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description
sea otter == loutre de mer
cheese >

Few-shot

In addition to the task description, the model sees a few
examples of the task. Mo gradient updates are performed.

Translate English to French: task description
zea otter == loutre de mer examples
peppermint == menthe poivrée

plush girafe == girafe peluche

cheese == prompt

Fine-tuning

The model is trained via repeated gradient updates using a
large corpus of example tasks.

zea otter == loutre de mer example £7
peppermint == menthe poivrée example #2
plush giraffe == girafe peluche example #N
cheese == prampt

Figure 2.8: Comparison of learning paradigms

Source: (Brown et al., 2020)

The ability to perform these tasks without explicit retraining is a direct

result of the large-scale pretraining and the flexibility of the Transformer

architecture. Brown et al. (2020) demonstrated that GPT-3 can generate

coherent and contextually appropriate outputs across various domains without

requiring additional task-specific fine-tuning, a feature that significantly

distinguishes it from traditional models such as RNNs and LSTMs.
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Traditional

The following table summarises the key advantages of Transformer-based

models over RNNs and LSTMs in terms of handling known, partially known,

and unknown metadata:

Table 2.1: Comparative Analysis of RNN/LSTM and TNN Architectures

Across Key Aspects
Aspect RNN/LSTM Transformer (TNN)
. Parallel, captures long-
Handling Sequential Sequential, prone to

range dependencies

Dependencies vanishing gradients _
without recurrence
) Fast (parallel
Slow (sequential . ‘
Efficiency and Speed ) processing, especially
processing)
with GPUs)
Requires explicit Can infer missing data
Handling Missing
b mechanisms (e.g., based on context (e.g.,
ata

imputation)

BERT)

Generalisation to

Unseen Tasks

Needs retraining or

fine-tuning

Excellent zero-
shot/few-shot learning

(e.g., GPT-3)

Performance on NLP

Tasks

Outperformed by newer

architectures

State-of-the-art on
various benchmarks

(e.g., translation, QA)

Model Scale

Limited by parameter

size and architecture

Massive scale (e.g.,

GPT-3 with 175 billion

parameters)
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24 Proxy Re-encryption

Proxy Re-encryption (PRE) is a cryptographic technique designed to enhance
secure data sharing in decentralised environments. It allows a semi-trusted
intermediary, called a proxy, to re-encrypt data encrypted under one key to a
different key without ever learning the underlying plaintext. This enables the
proxy to perform its role without the need to decrypt the data, thus preserving
the confidentiality of the information. PRE facilitates secure and efficient data
delegation by allowing data owners to grant access to encrypted data to a third
party, such as a cloud provider or another user, without exposing the original

content (Ateniese et al., 2005).

The concept of Proxy Re-encryption was first introduced by Ateniese,
et al.,, in 2005, and has since evolved with various improvements and
optimisations. One of the key features of PRE is its ability to provide fine-
grained access control in environments where data may need to be shared or
transferred between different users or systems. The proxy, acting as an
intermediary, can convert ciphertext from one recipient’s encryption to another
recipient’s encryption, allowing the owner of the data to control access without

requiring the re-encryption process to be done manually.

PRE is particularly useful in cloud computing and distributed systems,
where users or organisations may want to securely share encrypted data with
multiple recipients. In these systems, access control policies can change
dynamically, and PRE enables seamless access management. For example, in a
cloud storage environment, data owners may need to grant access to data to
different parties over time, and PRE allows the data to be shared securely

without re-encrypting the entire dataset for each new user.

Several variants of PRE have been developed to address different
security and functionality requirements, such as unidirectional PRE, where data
is re-encrypted in only one direction (from the sender to the recipient), and
bidirectional PRE, where re-encryption can happen in both directions.

Advanced schemes, including identity-based PRE and hierarchical PRE, have
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also emerged, providing greater flexibility and scalability for large systems

(Goyal et al., 2006).

In addition to its ability to support secure data sharing, PRE also offers
efficiency advantages, as it avoids the need for data decryption and re-
encryption by the original owner. By delegating the re-encryption process to the
proxy, systems using PRE can achieve significant performance improvements,
particularly in environments where data needs to be accessed or transferred by

multiple parties frequently.

As data-sharing requirements grow in distributed and cloud-based
systems, the role of PRE in enabling secure, efficient, and scalable data sharing
continues to expand. The ongoing development of more secure and efficient
PRE schemes, as well as their integration with other cryptographic protocols,

makes PRE a valuable tool for modern cybersecurity.

24.1 Key Concepts and Mechanisms in Proxy Re-encryption

Proxy Re-encryption (PRE) is a cryptographic technique designed to enhance
secure data sharing in decentralised systems. It allows a semi-trusted
intermediary (the proxy) to re-encrypt ciphertext from one recipient's encryption
key to another's without decrypting the data, preserving the confidentiality of
the information throughout the process (Ateniese ef al., 2005). This capability
is significant because traditional encryption systems often require data to be
decrypted before it can be re-encrypted for another recipient, which exposes the
plaintext to the proxy. In contrast, PRE’s non-decrypting re-encryption feature
ensures that the proxy cannot access the underlying data, thus preserving the

confidentiality and integrity of the encrypted content (Ateniese et al., 2005).

One of the key features of PRE is its ability to provide dynamic access
control in environments where data may need to be shared or transferred
between different users or systems. In traditional encryption, if access needs to
be granted to new users, the data owner must either manually re-encrypt the data
for each user or provide access to decryption keys, which can be cumbersome

and insecure. PRE addresses these challenges by allowing the proxy to re-
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encrypt the data on behalf of the owner, without exposing the plaintext or

requiring direct interaction between the owner and each new recipient.

The proxy, acting as an intermediary, can convert ciphertext from one
recipient’s encryption key to another recipient’s encryption key, enabling the
data owner to control access to the encrypted data dynamically and securely.
This eliminates the need for the owner to manually re-encrypt the data each time
access needs to be granted or revoked. Additionally, the owner does not have to
share their decryption keys with the proxy, thus ensuring that the proxy can
perform its task without compromising the confidentiality of the data. This
dynamic control over who can access the data and when is a significant
advantage of PRE over traditional encryption mechanisms, especially in large,
distributed systems where access control policies frequently change (Ateniese

et al., 2005).

In the typical PRE mechanism, the sender encrypts the data under their
own public key, and the proxy can then perform re-encryption using a special
transformation key provided by the sender or the data owner. This
transformation key allows the proxy to re-encrypt the ciphertext so that the
recipient can decrypt it using their own private key. The re-encrypted ciphertext
is forwarded to the recipient without the proxy ever accessing the plaintext,
ensuring both confidentiality and flexibility in managing access (Ateniese et al.,

2005).

This dynamic access control feature makes PRE particularly useful in
environments such as cloud computing, [oT, and decentralised networks, where
data access needs to be controlled dynamically without overburdening the data

owner or exposing sensitive information to intermediaries.

2.4.2  Variants of Proxy Re-encryption and Its Efficiency Advantages

Several variants of Proxy Re-encryption (PRE) have been developed to address
different security and functionality requirements in various cryptographic
applications. One such variant is unidirectional PRE, where the proxy can re-

encrypt data in only one direction, typically from the sender’s encryption to the
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recipient’s encryption. This design simplifies the process in scenarios where
data is shared from a single source to a single destination, providing a basic but
secure method for delegated access control (Ateniese ef al., 2005). In contrast,
bidirectional PRE allows re-encryption to occur in both directions, meaning that
the data can be re-encrypted from one user to another and vice versa. This bi-
directionality enhances flexibility, particularly in systems where users need to
share data in multiple directions or in collaborative environments, where access

rights may change frequently (Ateniese et al., 2005).

In addition to these basic variants, advanced schemes such as identity-
based PRE and hierarchical PRE have emerged to address the scalability and
flexibility requirements of large systems. Identity-based PRE uses identity-
based encryption (IBE) to derive public keys from user identities, streamlining
key management and allowing the proxy to re-encrypt data without the need for
explicit key distribution. This is particularly useful in systems where key
management is a critical concern, such as in large-scale cloud environments
(Goyal et al., 2006). On the other hand, hierarchical PRE introduces multi-level
access control, allowing for more sophisticated delegation of decryption rights
in organisational structures, where different users or departments may need
different levels of access to the encrypted data (Goyal ef al, 2006). These
advanced schemes provide greater flexibility and scalability, enabling PRE to
be effectively implemented in large, distributed environments, including cloud

computing and enterprise networks.

Beyond its ability to support secure data sharing, PRE offers significant
efficiency advantages, particularly in scenarios where data needs to be accessed
or transferred by multiple parties. One of the most important advantages of PRE
is that it avoids the need for data decryption and re-encryption by the original
data owner. Instead, the re-encryption process is delegated to the proxy, which
means that the data owner does not have to spend time or resources manually
re-encrypting data every time access is required by a new party (Ateniese ef al.,

2005). This delegation not only reduces the computational burden on the data
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owner but also enhances the efficiency of the system as a whole, especially in
environments where data is frequently accessed or shared among a large number

of recipients.

As data-sharing requirements continue to grow in distributed and
cloud-based systems, the role of PRE in enabling secure, efficient, and scalable
data sharing becomes increasingly critical. PRE enhances the ability of
organisations to share sensitive data securely while maintaining control over
access, even as systems scale up. The continued development of more secure
and efficient PRE schemes, coupled with their integration with other
cryptographic protocols (such as signcryption, attribute-based encryption, and
blockchain), makes PRE an indispensable tool in modern cybersecurity
(Ateniese ef al., 2005; Goyal et al., 2006). The adaptability of PRE to handle
various access control policies, combined with its efficiency and scalability, will

ensure its widespread use in future cybersecurity architectures.

2.5 Related Works

The growing prevalence of sophisticated and diverse cyber threats has led to an
extensive body of research on network intrusion detection systems (NIDS) that
leverage machine learning and deep learning techniques. Recent studies have
focused on addressing fundamental challenges such as class imbalance,
detection latency, and model generalisability across heterogeneous network
environments. This section reviews two closely related and representative
approaches proposed by Gupta, Jindal and Bedi (2021), which specifically
tackle the issue of class imbalance through architectural and algorithmic
innovations. The discussion highlights the design principles, methodological
contributions, and dataset utilisation in each study, followed by a synthesis that
outlines their comparative insights and implications for the development of

robust, real-time intrusion detection frameworks.



30

2.5.1 LIO-IDS: LSTM with an Improved One-vs-One Strategy for
Class-Imbalanced NIDS
Gupta, Jindal and Bedi (2021) introduced LIO-IDS, a two-layer anomaly-based
network intrusion detection system (NIDS) that integrates sequence modelling
with an efficient multi-class decision scheme. The first layer distinguishes
normal from malicious traffic using a long short-term memory (LSTM) network,
while the second layer employs an Improved One-vs-One (I-OVO) ensemble to
classify specific attack types. The improvement lies in reducing computational
overhead by activating only three classifiers during inference, compared to the

large number typically required by the standard OVO approach.

The study evaluated LIO-IDS using three widely adopted datasets:
NSL-KDD, CIDDS-001, and CICIDS2017, reporting on accuracy, detection
rates, and computational times. The authors addressed the problem of class
imbalance, which is common in intrusion detection scenarios where majority
and minority attack types differ significantly in frequency. They identified four
main categories of imbalance-handling techniques and incorporated data-level
rebalancing alongside ensemble learning to mitigate this issue (Gupta et al.,

2021).

Methodologically, the model employed Random Forest and balanced
Bagging, together with oversampling techniques such as Random Oversampling
(ROS), Borderline-SMOTE, and SVM-SMOTE, to improve recall for under-
represented attack types while maintaining computational efficiency. The I-
OVO design strategically partitions classes into majority and minority groups,
training two multi-class classifiers (C1 and C2) and using a single binary
classifier (C3) to resolve ambiguous predictions. This structure effectively

balances accuracy with reduced inference time.

The evaluation of the study relies on three well-established benchmark
datasets: NSL-KDD, CIDDS-001, and CICIDS2017, with each contributing
distinct characteristics that strengthen the comprehensiveness of the analysis.
NSL-KDD offers a refined and de-duplicated version of the KDD’99 dataset,
providing a balanced environment to evaluate detection and false alarm rates.

CIDDS-001 adds realism through flow-based traffic derived from enterprise
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networks, while CICIDS2017 represents modern attack patterns and updated
traffic features. Using these datasets together allows the authors to assess the
generalisability of their model across different network environments and data

distributions.

Despite its strengths, LIO-IDS depends heavily on the correct
identification of majority and minority groups. As threat landscapes evolve, this
grouping can become outdated. Furthermore, oversampling techniques, while
improving recall, risk introducing noise if synthetic samples are generated near
mislabeled or noisy decision boundaries, especially in legacy datasets such as

NSL-KDD.

2.5.2  CSE-IDS: Cost-Sensitive Deep Learning with Staged Ensemble

In related research, Gupta, Jindal and Bedi (2021) also proposed CSE-IDS, a
three-layer cost-sensitive anomaly-based NIDS that combines deep learning
with ensemble methods. The first layer applies a cost-sensitive deep neural
network (DNN) to filter normal and suspicious traffic, assigning higher
misclassification costs to missed attacks. The second layer employs XGBoost
to distinguish between normal traffic, majority attack types, and a pooled
“minority” class, while the third layer refines this pooled class using a Random

Forest model.

The evaluation was again conducted on NSL-KDD, CIDDS-001, and
CICIDS2017, with performance reported in terms of accuracy, recall, precision,
Fl-score, ROC, AUC, and computational efficiency (Gupta et al., 2021).
Oversampling techniques, including Random Oversampling and SVM-SMOTE,
were applied selectively at Layers 2 and 3 to enrich the minority class without

overly distorting the overall data distribution.

A key contribution of CSE-IDS lies in its cost-sensitive learning
approach, which explicitly penalises misclassifications of rare attack types. The
staged architecture progressively refines classification outcomes, reducing false
positives by re-examining samples at deeper layers. This structural design
contrasts with LIO-IDS, which focuses on efficient classifier utilisation through

[-OVO reduction and temporal learning in its first stage.
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As with LIO-IDS, the three datasets provide complementary strengths:
NSL-KDD ensures a controlled benchmark, CIDDS-001 introduces enterprise-
scale realism, and CICIDS2017 brings contemporary attack diversity. The
consistent use of these datasets across both studies enables direct comparison of
detection capability, computational efficiency, and the impact of imbalance

handling.

2.5.3  Synthesis and Comparative Perspective

Both LIO-IDS and CSE-IDS address the critical challenge of detecting minority
attack classes within imbalanced datasets while maintaining efficiency suitable
for near real-time application. LIO-IDS demonstrates that LSTM-based
temporal modelling, combined with an [-OVO structure, achieves strong
detection rates with low latency across NSL-KDD, CIDDS-001, and
CICIDS2017 (Gupta et al., 2021). Conversely, CSE-IDS shows that cost-
sensitive training, when integrated with staged ensemble learning and targeted
oversampling, enhances minority-class recognition and minimises false alarms

under the same benchmarking conditions (Gupta et al., 2021).

Collectively, these works underscore two complementary strategies for
modern NIDS design which are embedding class-aware cost functions early in
the learning process to bias detection toward rare yet impactful intrusions, and
structuring the decision pipeline to minimise redundant multi-class comparisons
without compromising classification granularity. Cross-dataset evaluation
remains critical, as each dataset highlights different facets of the intrusion
detection problem such as legacy noise, enterprise traffic realism, and modern

attack complexity.

2.6 Summary

This study explores the integration of three advanced cryptographic techniques:
signcryption, proxy re-encryption (PRE), and transformer neural networks
(TNN) to enhance security and efficiency in data transmission. Signcryption

combines encryption and digital signatures in a single operation, reducing
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computational overhead while ensuring confidentiality and authenticity, making
it suitable for resource-constrained environments (Kanchan, Singh and
Chaudhari, 2019). PRE allows a semi-trusted proxy to re-encrypt data for
different recipients without decrypting it, which is particularly useful for secure
data sharing in dynamic systems such as cloud computing and [oT (Ateniese et
al., 2005). TNN utilises machine learning models to parallel processing to
identify the category of event in real time based on contextual threats, enhancing

adaptive security (Heaton, 2018).

These techniques address the growing complexity of cybersecurity
threats and the need for adaptive security strategies. While traditional
encryption methods face scalability and efficiency challenges, the integration of
signcryption, PRE, and TNN provides a solution that enhances security,
efficiency, and scalability in modern, decentralised systems. This framework is
crucial for mitigating emerging threats and ensuring secure communication in

the evolving landscape of digital security.
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CHAPTER 3

METHODOLOGY AND WORK PLAN

31 Introduction to Proposed Solution

The increasing complexity of cybersecurity threats, particularly within
decentralised systems such as Internet of Things (IoT) networks, has
necessitated the development of more adaptive and intelligent security
mechanisms. This study focuses on the design and evaluation of an adaptive
cryptographic framework that integrates signcryption, proxy re-encryption
(PRE), and transformer neural networks (TNN) to enhance data confidentiality,

integrity, and authenticity in such environments.

By combining advanced cryptographic techniques with machine
learning, the proposed framework aims to dynamically respond to evolving
threats. Transformer Neural Networks will be utilised for real-time threat
detection and contextual analysis, allowing the system to parallel processing for

identify the category of event in response to observed network behaviour.

This research further examines the scalability of these technologies in
decentralised settings and evaluates the framework’s adaptability to emerging
cybersecurity challenges. The goal is to develop a solution that not only meets
the security demands of modern distributed systems but also ensures efficient

and scalable performance in real-world applications.

3.2 Implementation of SignReencryption

In SignReencryption, the core objective of this project is to develop an adaptive
cryptographic framework by integrating Intrusion Detection System (IDS) with
a Transformer Neural Network (TNN). This deep learning architecture is known

for its strength in processing sequential data.



35

3.2.1 Mechanism Overview: Intrusion Detection System with
Transformer Neural Network

The system is trained using the CICIDS2017 dataset which is a widely accepted

benchmark in the cybersecurity research community. This dataset includes a

rich variety of network traffic scenarios, encompassing both normal operations

and multiple forms of attack, making it a robust foundation for developing and

evaluating detection systems.



36

Jasn pazuoyiny
q

183N pazuoyiny

Janag fxoig

1850 JgInaiped sy) o}
afessew paidfious puss

o

135N pazuoyiny
q

wes] Aundssiagho

wewsabeuely War3
pUE UoEWNO| AuNIsg

wea} Aunoesieqks o) pues
pUE UoEIYOU © J36BL

SUOILIE BXE] pUE SBlebiseALl

13[e UB puss ‘punoy
sno|dsns BuiBIOS |

walshs uonasieq uoisnaul

@)

sulyew uondAoubis

'S13SN PaZUOINE SISUL0 0] PUSS 310J3( 10U 10 abessaw au)
10/13U53] O] 113U S3PIIEP JBNISS BUL 13| PUB JaAIES
uondAizusal Axoid sy 0} 80ESSBW JO W0} paldAious By puss /

aigen ayy
J0puoW ARRNISSEd

HIOMIEU [BIBNU JBWIOJSUBL]

o

suoMBU 3] ein abessaw
au) BuIpU3S UBLM J3NB031 BU 0} 3GeSsaW PAIdAUBIS B PUSS 0} USIM JBPUSS

pajdfnubis aq o) abessayy E

aseqeleq

12smep Q@-TSN "100-8AdID LTOTSAIIY

uonezuobajed s200I2pUN pUB JUAAD
|ensnun au &y3uspy

10} UBAS E{ILIOUGE 3U] 10 JOINEYSQ U] 0S[E PUE SaINJES) 3U) WEs]

sisfjeue saypny 1uaAs aU)

10 sainjesy pazyobeled 2105

System integrated with TNN

10n

Detect

Intrusion

1
BEE

UBD NNL SHOAMSN [BINBN JSULOSUBL] 0} UBAS PZLIOBBIED Blf} PUSS

Figure 3.1



37

In this design, the Transformer Neural Network functions as the central
classification engine. Unlike conventional machine learning models, the TNN
is particularly effective in capturing long-range dependencies within sequences
of data, which is essential in network traffic analysis where malicious behaviour
can manifest subtly over time. Additionally, the parallel processing nature of
Transformers allows for more efficient training and inference, enabling the IDS

to operate in near real-time, even in high-throughput environments.

The trained TNN is embedded directly within the IDS framework.
Rather than simply flagging any anomaly, the system is designed to classify
observed network events into three meaningful categories:

1. Ciritical - indicating severe threats that require immediate attention.
2. Suspicious - denoting potentially harmful activities that warrant closer
inspection.

3. Legitimate - representing normal, benign network behaviour.

This classification not only aids in reducing false positives but also
assists cybersecurity teams in prioritising their responses based on the severity
of detected activities. Critical events typically point to immediate threats such
as brute force, cross-site scripting or denial-of-service attempts. Suspicious
events might indicate probing, unusual behaviour, or patterns that merit closer
investigation. Legitimate events are recognised as normal traffic, contributing

to more accurate baselining and less alert fatigue.

The IDS operates in a passive monitoring mode, continuously
observing network traffic without altering it. This ensures that the system does
not interfere with normal operations while still providing comprehensive
visibility across the network. When the IDS guided by the TNN, identifies
behaviour that deviates significantly from the learned norm or matches patterns
associated with known threats, it generates a detailed alert. This alert is then
forwarded to a centralised Security Information and Event Management (SIEM)

system.
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The SIEM acts as the central nervous system of the organisation’s
cybersecurity operations. It aggregates and logs the alerts, providing a historical
record of events for auditing and forensic purposes. Furthermore, the SIEM
notifies the cybersecurity team through configured channels such as dashboards,
emails, or integrated ticketing systems, prompting further analysis and response.
The final layer of this mechanism involves human judgment. The cybersecurity
team investigates the alerts, validates their accuracy and takes appropriate action,
ranging from isolating devices or dropping the message to initiating deeper

investigations.

By combining the pattern recognition power of Transformer models
with the strategic role of IDS and SIEM, this project offers a comprehensive
approach to modern cybersecurity defence which is proactive, intelligent, and

adaptable to evolving threats.

3.2.2  Real-World Application and Data Flow
In the real-world deployment of the proposed solution, the system operates at
two key levels: secure communication and threat detection, working together

to safeguard sensitive information while ensuring network integrity.
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The communication flow is as follows:

1.

The sender prepares a message and encrypts it using their own public
key, ensuring its integrity and origin.

When the message needs to be shared securely with an authorised
receiver, and must remain confidential during transmission, the system
employs proxy re-encryption.

A re-encryption key is generated and used by a trusted proxy to convert
the original ciphertext into a format that can be decrypted by the receiver
without ever accessing the plaintext.

The re-encrypted message is then forwarded to the intended recipient.
The receiver decrypts the message using their private key, ensuring that

only authorised individuals can access the original content.

When a user (the sender) wishes to transmit a message, the

signcryption process is the first step before the message even leaves the internal

network. This is facilitated by a signcryption machine, which performs both

cryptographic signing and encryption in a single and efficient operation. This

approach enhances both performance and security by addressing multiple

objectives at once. The signcryption process ensures three essential elements of

secure communication:

Confidentiality — The message is encrypted so that only the intended
recipient, holding the correct private key, can decrypt and access its
contents.

Integrity — Any alteration to the message in transit would invalidate
the digital signature, making tampering detectable.

Authentication and Non-repudiation — The signature confirms the
sender’s identity, and because it is cryptographically tied to the
sender’s private key, the sender cannot later deny having sent the

message.

By integrating these protections, signcryption reduces overhead and

complexity compared to applying encryption and digital signatures separately,
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while still ensuring robust security suitable for hostile environments like the

Internet.

Once the message is signcrypted, only the encrypted and signed
version is sent across the public Internet. At no point is the original message
exposed during transmission. This is particularly crucial because the Internet is
assumed to be an untrusted and hostile environment which an attacker may
always be present, constantly attempting to intercept or manipulate the data.
However, since the message is never revealed in plaintext and has a valid
cryptographic signature, attackers gain nothing useful from any interception

attempts.

For added security and flexibility in communication, the system
incorporates proxy re-encryption (PRE). If the signcrypted message is intended
for multiple recipients, PRE allows a proxy to convert the ciphertext for the
specific recipient without ever needing access to the original content or
decryption keys. This means there is no need to download, decrypt, and re-
encrypt the data for every new user. The original sender simply provides a re-
encryption key, and the proxy handles secure redirection efficiently and without
compromising confidentiality. As a result, sensitive data remains secure even

when being routed through third parties or intermediaries.

Meanwhile, the IDS remains active in the background, continuously
monitoring network traffic, including message transmissions. The IDS uses the
trained TNN to detect anomalies or patterns of behaviour that might indicate
malicious activity. If any traffic is flagged as critical or suspicious, an alert is

immediately generated and forwarded to the SIEM system.

The SIEM component plays a central role in the organisation's incident
response strategy. It logs all alerts for traceability and forensic purposes and
sends real-time notifications to the cybersecurity team. Importantly, the system

does not act independently to block or remove data but rather waits for expert
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decisions from cybersecurity team ensuring that human analysts validate

potential threats and determine the appropriate course of action.

This integrated data flow from secure message transmission through
proactive threat monitoring demonstrates a practical, end-to-end cybersecurity
framework. The proposed solution not only improves the efficiency and security
of internal and external communications but also reinforces organisational
resilience through detection and human-in-the-loop decision making. It reflects
a modern and scalable approach to cybersecurity that addresses both

confidentiality and operational readiness in real-world environments.

33 Hardware and Software Requirements

This section outlines the hardware and software environments utilised in the
development and implementation of the proposed system. A combination of
local and cloud-based tools was employed to support tasks such as data
preprocessing, neural network training, cryptographic simulation, and
visualization.

3.3.1 Hardware Specifications

All experiments and development tasks were conducted using the following
hardware setup:

Table 3.1: Hardware Specifications

Component Specification
AMD Ryzen 7 7730U with Radeon Graphics, 2.00 GHz, 8
Processor
cores, 16 threads
RAM 24 GB DDR4
Storage 1 TB Micron 2400 NVMe SSD

GPU (for training) NVIDIA Tesla T4 (via Google Colab)

Operating System Windows 11

For training the Transformer Neural Network (TNN), Google Colab
was utilised to leverage GPU acceleration, which significantly reduced the

training time and improved performance.
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3.3.2  Software Specifications
All experiments and development tasks were conducted using the following

software setup:

Table 3.2: Software Specifications

Software Tool Purpose

Visual Studio Code | Used for code development and data preprocessing. In
particular, it was used to convert .pcap files into .csv
format for easier manipulation and input into machine

learning models.

Google Colab Used for training the Transformer Neural Network
using TensorFlow/PyTorch with GPU support. Colab
allowed access to scalable resources for iterative

training and validation of models.

GitHub Served as the primary source for pre-built TNN
architectures and open-source reference
implementations. Repositories were cloned and
adapted for the project’s specific use case in secure

communication.

Draw.io Used to visualise system architecture, workflows, and
the overall integration between signcryption modules
and TNN-based anomaly detection. These diagrams
enhance understanding and presentation of the

methodology.

This software-hardware ecosystem ensured a robust, reproducible, and
efficient environment for implementing and validating the proposed hybrid

cryptographic framework.

34 Workplan
The project’s timeline, major tasks, and key deliverables are laid out in a
detailed Work Breakdown Structure (WBS). This structured plan outlines each

phase of the project along with estimated durations, helping to ensure that
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progress stays on track and deadlines are met. The WBS provides a clear view

of how the work is organis

completed.
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35 Summary

The growing complexity and sophistication of cybersecurity threats especially
in decentralised environments like Internet of Things (IoT) networks have
highlighted the need for more adaptable security frameworks. Traditional static
approaches are increasingly insufficient in addressing dynamic attack patterns
and evolving threat landscapes. In response to this challenge, this research
proposes an integrated cryptographic and machine learning-based framework
that combines signcryption, proxy re-encryption and Transformer Neural
Networks. The goal is to strengthen data confidentiality, integrity, authenticity
and non-repudiation while enabling real-time threat detection and adaptive

response mechanisms suited for complex and distributed systems.

The chapter begins by outlining the conceptual foundation of the
system, which brings together robust data encryption and advanced threat
detection. Signcryption is utilised to streamline the encryption and signing
process into a single step, ensuring key security features such as confidentiality,

integrity, and authentication are maintained before any data leaves the internal
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network. To further enhance secure communication, proxy re-encryption is
employed. This allows encrypted data to be securely shared with authorised
recipients without the need to decrypt and re-encrypt the message at each stage,

thereby preserving privacy and improving efficiency.

On the monitoring side, the IDS is embedded with a Transformer
Neural Network to classify network activity into categories such as critical,
suspicious, or legitimate. The mechanism capitalises on the TNN’s ability to
capture long-range dependencies in data sequences, making it particularly
effective in detecting both known and previously unseen patterns of network
behaviour. When suspicious activity is identified, the IDS generates an alert,
which is forwarded to the Security Information and Event Management (SIEM)
system for logging and escalation to the cybersecurity team. A practical data
flow model is included to demonstrate how the components interact from
message transmission and signcryption, to threat detection and incident

response.

Finally, this methodology is supported by clearly defined hardware and
software requirements. These technical specifications ensure the necessary
infrastructure is in place to support both cryptographic processing and neural
network training. Collectively, this approach lays out a structured and goal-

oriented plan for achieving an adaptive cryptography system.
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CHAPTER 4

DATASET AND EXPERIMENTAL SETUP

4.1 Dataset Used

This study employs three publicly available network intrusion detection datasets:
CICIDS2017, CIDDS-001, and NSL-KDD. These datasets were selected to
facilitate a comprehensive evaluation of the TabTransformer model across
heterogeneous network environments and a wide spectrum of intrusion types.
By incorporating both contemporary and well-established datasets, the
assessment encompasses modern cyberattack patterns as well as classical
intrusion scenarios, thereby providing a rigorous measure of the model’s

generalisability and detection capability.

4.1.1 CICIDS2017

The CICIDS2017 dataset was developed by the Canadian Institute for
Cybersecurity and it is recognised as one of the most representative benchmarks
for intrusion detection research. It contains network traffic data captured over a
five-day period, combining benign activities with a variety of modern attack
vectors, including Denial of Service (DoS), brute force, infiltration, botnet, and
web-based attacks. The dataset is provided in comma-separated values (CSV)
format with each record representing a network flow described by more than 80
features. These features include flow-level statistics such as duration and packet
size distribution as well as protocol-specific attributes obtained through deep
packet inspection. The diversity of attack types and the realistic nature of the
traffic make CICIDS2017 highly suitable for evaluating a model’s ability to

detect complex and evolving threats in real-world network environments.

The dataset is organised into multiple files corresponding to specific
attack scenarios and benign activity. Table 4.1 summarises the file composition,
associated attack types, and the source and victim IP addresses involved in each

capture.
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DoS GoldenEye,
Heartbleed

Table 4.1: Description of CICISD2017 dataset

File Name Description Attacker IP Victim Local IP

Monday- Benign - -
WorkingHours.pcap ISCX.csv

Tuesday- Benign, SSH-Patator, Kali WebServer Ubuntu
WorkingHours.pcap ISCX.csv FTP-Patator (205.174.165.73) (192.168.10.50)

Wednesday- Benign, DoS Kali WebServer Ubuntu
WorkingHours.pcap ISCX.csv Slowhttptest, DoS (205.174.165.73) (192.168.10.50),
slowloris, DoS Hulk, Ubuntul2

(192.168.10.51)

Thursday-WorkingHours-
Morning-

WebAttacks.pcap ISCX.csv

Benign, Web Attack
(Brute Force, Sql
Injection & XSS)

Kali
(205.174.165.73)

WebServer Ubuntu
(192.168.10.50)

Thursday-WorkingHours-
Afternoon-

Infilteration.pcap ISCX.csv

Benign, Infiltration

Kali
(205.174.165.73)

Windows Vista
(192.168.10.8),
MAC
(192.168.10.25)

Friday-WorkingHours-
Morning.pcap ISCX.csv

Benign, Bot

Kali
(205.174.165.73)

Win 10
(192.168.10.15),
Win 7
(192.168.10.9),
Win 10
(192.168.10.14),
Win 8
(192.168.10.5),
Vista
(192.168.10.8)

Friday-WorkingHours-
Afternoon-

PortScan.pcap ISCX.csv

Benign, Port Scan

Kali
(205.174.165.73)

Ubuntul6
(192.168.10.50)

Friday-WorkingHours-
Afternoon-

DDos.pcap ISCX.csv

Benign, DDoS

Three Win 8.1
(205.174.165.69 -
71)

Ubuntul6é
(192.168.10.50)
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In addition to file-level organisation, the dataset includes well-defined

attack categories. Table 4.2 presents these categories, along with concise

descriptions and their significance in intrusion detection research.

Table 4.2: CICIDS2017 Attack Categories, Descriptions, and Detection

Significance

Attack Category

Description

Significance for Detection

Normal Traffic

Legitimate user-generated
network traffic representing

baseline behaviour.

Establishes normal patterns
of communication, reducing
false positives in anomaly-

based detection.

Denial of Service

(DoS)

High-volume traffic intended
to overwhelm services and

disrupt availability.

Ensures effective detection
of service disruption
attempts that threaten system

uptime.

Systematic probing of

Facilitates early

identification of

PortScan network ports to identify open | reconnaissance activity and
or vulnerable services. potential exploitation
attempts.
Automated brute-force Detects unauthorised access
Patator attempts to guess attempts and mitigates brute-
authentication credentials. force attack threats.
Exploitation of web _
o o Protects web interfaces from
application vulnerabilities, S )
Web Attacks ) ) o injection-based and script-
including SQL injection and )
) o based compromises.
cross-site scripting (XSS).
Compromised devices under
Detects large-scale,
remote control, used to o o
Botnet ) distributed threats originating
execute coordinated )
o o from infected hosts.
malicious activities.
Covert access to internal ) .
Identifies stealthy, high-risk
systems through
Infiltration breaches such as advanced

compromised hosts or

malicious payloads.

persistent threats (APTs).
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4.1.2 CIDDS-001

The CIDDS-001 dataset (Coburg Intrusion Detection Data Set) was generated
in a simulated corporate network environment at the Coburg University of
Applied Sciences. It comprises traffic from both an external server and an
OpenStack-based cloud infrastructure, encompassing benign activity as well as
labelled intrusion attempts such as Denial of Service (DoS), port scanning, brute
force, and ping scans. The dataset is presented in a flow-based format, derived
from packet capture (pcap) data, with each record summarising the
communication between two IP addresses. The recorded attributes include
source and destination IP addresses, ports, protocol type, the number of bytes
transferred, and connection duration. The controlled simulation environment
and precise attack labelling make CIDDS-001 a valuable benchmark for
assessing a model’s adaptability to diverse traffic patterns and intrusion

behaviours.

The attack categories present in CIDDS-001, along with their

descriptions and relevance for detection, are summarised in Table 4.3.
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Table 4.3: CIDDS-001 Attack Categories, Descriptions, and Detection

Significance

Attack Category

Description

Significance for Detection

Normal Traffic

Legitimate
communication within a
simulated corporate

network environment.

Establishes the baseline
behaviour of the network,
aiding in the reduction of
false alarms in anomaly-

based systems.

Denial of Service

(DoS)

Traffic floods intended
to overwhelm network
services and render them

unavailable.

Enables prompt detection of
service disruption attempts
to maintain operational

continuity.

Port Scan

Sequential probing of
network ports to identify
open or vulnerable

services.

Facilitates early
identification of
reconnaissance activities
that may precede targeted

attacks.

Brute Force

Repeated automated
attempts to guess
authentication

credentials.

Detects unauthorised access
attempts and mitigates
credential-based attack

vectors.

Ping Scan

Transmission of Internet
Control Message
Protocol (ICMP) echo
requests to identify

active hosts.

Supports network mapping
detection, preventing
adversaries from identifying

potential targets.
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4.1.3 NSL-KDD

The NSL-KDD dataset is an enhanced version of the KDD Cup 1999 benchmark,
specifically developed to address the redundancy and class imbalance issues in
its predecessor. It comprises network connection records, each represented by
41 distinct features organised into three principal categories. The first category,
basic connection features, describes fundamental session attributes such as
connection duration and protocol type. The second category, content-based
features, captures semantic information extracted from the payload, including
indicators of anomalous or suspicious activity such as unsuccessful login
attempts. The third category, traffic-based features, summarises statistical
properties of network flows over a defined temporal window, including metrics

such as the number of connections targeting the same host.

Each connection is classified as either normal or belonging to one of
four attack categories: Probe, Denial of Service (DoS), User to Root (U2R), and
Remote to Local (R2L). Despite being older than CICIDS2017 and CIDDS-001,
NSL-KDD remains a widely adopted benchmark in intrusion detection research.
Its structured feature representation and extensive adoption in prior studies
make it a valuable reference for comparative performance evaluation. The

attack categories and their significance are outlined in Table 4.4.
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Table 4.4: NSL-KDD Attack Categories, Descriptions, and Detection

Significance

Attack Category

Description

Significance for Detection

Normal Traffic

Legitimate  user  or
system-generated
network activity without

malicious intent.

Establishes a behavioural
baseline for distinguishing

abnormal connections.

Denial of Service

High-volume requests or

malicious commands

Detects large-scale service

information-gathering

designed to  exhaust | interruption attempts that
(DoS) ) I,

resources and disrupt | threaten availability.

services.

Network scanning and

Enables proactive detection

administrative access.

Probe activities aimed at | of reconnaissance activities
identifying before exploitation.
vulnerabilities.

Exploits that allow an | Identifies privilege

User to Root | attacker with local user | escalation attempts that

(U2R) privileges to gain root or | could compromise entire

systems.

Remote to Local
(R2L)

Attempts by a remote
attacker to gain local user
without

access prior

authorisation.

Detects unauthorised login
or system access originating

from external sources.

4.2

Data Processing Pipeline of CICIDS2017

The CICIDS2017 dataset was processed through a systematic pipeline to ensure

reliability, consistency, and suitability for model training (Sharafaldin, Lashkari

and Ghorbani, 2018). The pipeline consisted of eight key stages, described

below.
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4.2.1 Data Ingestion and Initial Inspection

The dataset was loaded from a unified source compiled from the original daily
traffic captures. Upon loading, the data structure was examined to verify correct
feature definitions, appropriate data types, and plausible value ranges. The
inspection phase also focused on detecting anomalies such as infinite values,
missing observations, or inconsistencies in feature naming. Non-essential
whitespace in column headers was removed to ensure uniformity. Statistical
summaries and exploratory checks were conducted to confirm that the dataset

retained its integrity prior to transformation.

4.2.2 Label Normalisation and Taxonomy Aggregation

The original labels in CICIDS2017 contain detailed attack subcategories,
including variants of Denial of Service (DoS Hulk, DoS GoldenEye, Slowloris,
SlowHTTPTest, and DDoS), reconnaissance activity (PortScan), brute force
attempts (FTP-Patator, SSH-Patator), web application attacks (SQL injection,
cross-site scripting, and brute force), botnet activity (Bot), infiltration attempts,

and benign traffic.

For experimental consistency, these subcategories were consolidated
into seven higher-level classes:
Normal
DoS (all variants including DDoS)
PortScan
Patator (FTP and SSH brute force)
Web Attack (SQL injection, XSS, brute force)
Bot

S A I S e

Infiltration

This aggregation ensures alignment between training and test sets,
reduces label fragmentation, and supports consistent comparison with the

CIDDS-001 and NSL-KDD datasets.
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4.2.3  Correlation Analysis and Redundancy Reduction

To address potential redundancy in the feature set, a Pearson correlation analysis
was performed on all predictor variables. Features exhibiting strong linear
dependence in which the absolute correlation is greater than 0.70 compared with
any other feature were removed. This threshold was selected as a balance
between minimising multicollinearity and retaining predictive information,

thereby improving model stability and training efficiency.

4.2.4  Data Cleaning, Imputation, and Outlier Handling

Infinite values were recoded as missing, and records containing missing values
were removed prior to splitting the data into training and test partitions. Missing
value imputation was then performed using the median value of each feature,
calculated exclusively from the training set, with these values subsequently
applied to the test set. This procedure prevented the introduction of information

from the test set into the training process.

4.2.5 Stratified Quota-Based Sampling and Partitioning

The CICIDS2017 dataset exhibits severe class imbalance, with certain rare
attacks such as Infiltration occurring only a few dozen times compared to
millions of benign records. To mitigate this imbalance while retaining a realistic
representation of network traffic, a stratified quota-based sampling procedure

was employed. Table 4.5 summarises the training and testing sets size of

CICIDS2017 dataset.

Table 4.5: Description of CICIDS2017 Data Size

Class Training Size Testing Size
Normal 72,000 55,000
DoS 41,799 30,800
PortScan 13,000 10,000
Patator 7,997 5,838
Web Attack 1,367 813
Bot 1,000 966
Infiltration 20 16
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Sampling was performed independently within each class, ensuring
that both majority and minority classes were proportionally represented in each
partition. When the available number of samples for a class was less than the
target quota, all available instances were included. This strategy substantially
reduced inter-class disparities while avoiding artificial oversampling at this

stage.

4.2.6  Feature Scaling and Final Feature Set

After sampling and imputation, all continuous features were standardised to
have zero mean and unit variance based on the training set statistics. The same
transformation was applied to the test set using these training-derived
parameters. This ensured that all features contributed equally during

optimisation and that no feature dominated due to differences in magnitude.

4.2.7  Class Rebalancing for Training using SMOTE

Residual imbalance within the training set was addressed through the Synthetic
Minority Oversampling Technique (SMOTE). This method creates synthetic
instances for underrepresented classes by interpolating between existing
minority-class samples, thereby enhancing balance without simply duplicating
records. SMOTE was applied only to the training set, while the test set remained

unaltered to preserve an unbiased evaluation environment.

4.2.8 Reproducibility Controls and Data Leakage Mitigation

All operations involving randomisation such as sampling, shuffling, and
oversampling were executed with a fixed random seed to ensure reproducibility.
Data transformations, including imputation and scaling, were fitted solely on
the training set and applied to the test set using the same learned parameters.
Feature elimination through correlation analysis was performed prior to splitting
the data, ensuring both partitions shared an identical feature set. These
safeguards collectively eliminated the risk of data leakage and ensured a fair

and replicable evaluation process.
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4.3 Data Processing Pipeline of CIDDS-001

The CIDDS-001 dataset underwent a structured preprocessing pipeline to
ensure compatibility with the TabTransformer framework and comparability
with the other datasets in this study (Ring et al., 2019). The pipeline comprised

ten stages, as outlined below.

4.3.1 Data Ingestion and Schema Verification

The CIDDS-001 dataset was ingested from a consolidated Parquet file
containing all flow records. An initial schema audit verified attribute types,
value domains, and completeness. The dataset comprises a heterogeneous mix
of numeric, categorical, and temporal fields. Incidental whitespace in column
names was removed to ensure uniform referencing across subsequent
transformations. This inspection also confirmed that several variables
particularly the timestamp field required type-specific processing to ensure

compatibility with the modelling framework.

4.3.2 Temporal Feature Extraction

The field “Date first seen” was parsed into a timezone-agnostic datetime format.
From this timestamp, three derived features were computed: hour of day, day of
week, and day of month. These temporal covariates capture cyclical and
periodic patterns in traffic behaviour that may indicate specific intrusion
activities, such as weekday reconnaissance or late-night brute-force attempts.
The engineered temporal features were retained as numerical predictors, while
the original datetime field was later excluded from modelling to avoid type

heterogeneity and potential information leakage.

4.3.3 Encoding of Non-Numeric Attributes

All non-numeric predictors excluding the target variable were numerically
encoded using integer factorisation. This transformation preserved the identity
of each category while producing a fully numeric feature matrix suitable for
correlation analysis, scaling, and TabTransformer ingestion. The target field
was excluded from this encoding process and handled separately during class

harmonisation.
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4.3.4  Correlation Analysis and Dimensionality Pruning

To reduce redundancy and mitigate multicollinearity, a Pearson correlation
matrix was computed across all predictor variables while excluding the target.
The upper triangular matrix was examined, and any feature with a pairwise
correlation coefficient |r| > 0.70 with another feature was flagged as redundant
and removed. This pruning preserved the diversity of information while

stabilising model training and improving computational efficiency.

4.3.5 Target Harmonisation and Class Normalisation

The target variable (attackType) exhibited minor inconsistencies, including
extraneous whitespace, irregular capitalisation, and placeholder tokens (*---).
These were normalised by trimming whitespace, converting to lowercase, and
mapping placeholder entries to the normal category. The resulting canonical
label set comprised five classes: normal, dos, portscan, pingscan, and bruteforce
consistent with the taxonomy reported in Table 4.3. This harmonisation ensured
semantic consistency between training and testing stages and facilitated cross-

dataset comparability.

4.3.6  Stratified Quota-Based Sampling and Partitioning
To construct balanced yet representative partitions, a stratified quota-based
sampling strategy was applied. Sampling was stratified by class to ensure
proportional representation, with a fixed random seed for reproducibility. When
the available number of samples in a class was below the quota, sampling with
replacement was used; otherwise, simple random sampling was applied. The
test set was drawn exclusively from records not included in the training set,
ensuring complete separation between partitions.

Table 4.6 summarises the target sample sizes for each class in both the
training and testing sets after applying this procedure. The quotas were designed
to reduce extreme class imbalance while retaining sufficient representation of

minority classes for meaningful evaluation.
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Table 4.6: Description of CICIDS-001 Data Size

Class Training Samples Testing Samples
Normal 53,000 15,000
DoS 36,000 6,604
PortScan 9,117 3,250
PingScan 500 765
BruteForce 1,055 803

4.3.7 Missing-Data Handling and Standardisation

Prior to scaling, all infinite values were recoded as missing. Column-wise
median imputation was performed on the training data only, and the resulting
imputation parameters were applied to the test set. This prevented the
introduction of information leakage from the evaluation set into the training
process. Following imputation, feature standardisation (zero mean, unit
variance) was fitted on the training features and applied to the test features using
identical scaling parameters. The original datetime field was excluded to

maintain a homogeneous numeric feature space.

4.3.8 Class Rebalancing for Training using SMOTE

Residual class imbalance in the training data was addressed using the Synthetic
Minority Over-sampling Technique (SMOTE). SMOTE generates synthetic
minority-class samples in the feature space by interpolating between nearest-
neighbour instances. This enhanced the model’s exposure to minority patterns
without simply duplicating rare examples. The test set was not resampled,
preserving its natural class distribution and ensuring the evaluation reflected

realistic deployment conditions.

4.3.9 TabTransformer Input Configuration

All predictors were treated as continuous variables for the purposes of
TabTransformer configuration. The model specification therefore consisted of
the target variable (attackType), an empty list of categorical features, and a list

of continuous features containing all other predictors. This ensured consistency
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with the CICIDS2017 processing pipeline, enabling uniform evaluation across

datasets.

4.3.10 Reproducibility and Leakage Control

All stochastic operations including factorisation ordering, sampling, SMOTE
synthesis, and record shuffling were executed with a fixed random seed to
ensure reproducibility. All preprocessing transformations, including imputation
and scaling, were fitted exclusively on the training set and then applied to the
test set. This strict separation prevented any inadvertent transfer of distributional

information from the test partition into the training process.

4.4 Data Processing Pipeline of NSL-KDD

The NSL-KDD dataset (Mahbod Tavallaee ef al., 2009) underwent a structured
preprocessing workflow designed to harmonise feature formats, mitigate
redundancy, and address extreme class imbalance while maintaining alignment
with the evaluation protocols used for CICIDS2017 and CIDDS-001. The

pipeline comprised nine stages, as described below.

4.4.1 Data Ingestion and Structural Audit

The dataset was ingested from a consolidated source and subjected to an initial
structural audit to confirm feature types, assess completeness, and identify
anomalies such as infinite values, placeholder entries, or inconsistent naming.
This verification ensured that downstream transformations operated on a

consistent and clean schema.

4.4.2  Categorical Encoding and Initial Cleaning

All non-numeric predictors excluding the target label were converted to integer
codes through factorisation, producing a uniform numeric feature space suitable
for correlation analysis and model ingestion. Infinite values were recoded as
missing, and any rows with missing entries at this stage were removed to

establish a clean base table for subsequent operations.
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4.4.3 Correlation Screening and Redundancy Pruning

To reduce multicollinearity, a Pearson correlation matrix was computed on the
predictor set while excluding the target. Variables with absolute correlation
coefficients greater than 0.70 against any other feature were flagged as
redundant and removed. The resulting reduced matrix retained the target label

and preserved core predictive information while improving model stability.

4.44  Five-Class Taxonomy Mapping

The fine-grained NSL-KDD attack labels were consolidated into a standard
five-class taxonomy of normal, dos, probe, 121, and u2r. This mapping grouped
similar attacks under broader categories such as neptune, smurf, and teardrop
were assigned to dos, while portsweep and nmap were mapped to probe. The
harmonised taxonomy supports consistent multi-class evaluation and facilitates

cross-dataset comparison.

4.4.5 Stratified Quota-Based Sampling and Partitioning

Balanced yet representative training and test sets were constructed using a
stratified quota-based sampling approach. Class-specific targets are shown in
Table 4.7. Sampling was performed independently for each class with a fixed
random seed. Where the available number of samples for a class was below the
target quota, sampling with replacement was applied; otherwise, simple random
sampling was used. The test set was drawn exclusively from records not

included in training to guarantee complete separation.

Table 4.7: Description of NSL-KDD Data Size

Class Training Samples Testing Samples
Normal 67,343 9,711
DoS 45,927 7,458
Probe 11,656 2,421
R2L 995 2,887
U2R 52 67
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4.4.6 Test-Set Alignment with Training Features

To ensure schema consistency, the test set underwent the same categorical
encoding and column pruning as the training set. Any features present in training
but absent in the test set were added with default zero values, and columns were
reordered to match the training schema precisely. This alignment ensured

compatibility during inference.

4.47 Class Rebalancing for Training using SMOTE

Residual class imbalance in the training data was addressed using the Synthetic
Minority Over-sampling Technique (SMOTE), applied after categorical
encoding. Target labels were temporarily encoded for SMOTE and metric
computation. The test set remained unaltered to preserve realistic deployment

conditions.

4.4.8 TabTransformer Input Specification

All predictors were passed to TabTransformer as continuous variables, with no
categorical feature list specified. The configuration therefore comprised a single
target variable (attackType) and a continuous-column list containing all

remaining features.

4.49 Reproducibility and Leakage Controls

All stochastic processes including sampling, SMOTE synthesis, and shuftling
were controlled by a fixed random seed to ensure reproducibility. Feature
selection, imputation, and scaling parameters were learned exclusively from the
training partition and applied to the test partition without modification,

preventing any information leakage between splits.

4.5 Unified Model Optimisation and Training Framework

A standardised optimisation and training framework was implemented across
CICIDS2017, CIDDS-001, and NSL-KDD to ensure methodological
consistency and enable valid cross-dataset comparisons. This framework

combined systematic hyperparameter search with controlled training procedures,
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applied identically to all datasets following their respective preprocessing

pipelines.

4.5.1 Hyperparameter Optimisation

Hyperparameter tuning was conducted using the Optuna optimisation
framework, which employs a Bayesian search strategy to explore the parameter
space efficiently. The optimisation objective was to maximise the macro-
averaged F1-score on a dedicated validation subset extracted from the training
data. This metric was chosen for its balanced weighting of class-level
performance, ensuring that both majority and minority classes contribute

equally to the optimisation outcome.

The search space was defined to include architectural, regularisation,
and optimisation parameters directly influencing the performance of the
TabTransformer model. Table 4.8 summarises the parameters, their respective

ranges or discrete sets, and the rationale for their inclusion.
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Table 4.8: Search space for TabTransformer hyperparameter tuning.

Parameter

Search Space

Rationale

Learning rate

Log-uniform: 1x10* to

1x1072

Controls convergence speed
and stability of gradient
updates.

Attention blocks

Integer range: [2, 6]

Determines model depth
and capacity for feature

interaction modelling.

Input embedding

dimension

{16, 32, 64}

Sets the dimensionality of
feature embeddings,
balancing  expressiveness

and computational cost.

Attention dropout

Uniform: [0.0, 0.3]

Regularises the self-

attention layers to reduce

overfitting.
Regularises  the  feed-
Feed-forward ) .
Uniform: [0.0, 0.3] forward layers n
dropout
transformer blocks.
Applies dropout to residual
Add-norm . PP . P _ .
Uniform: [0.0, 0.3] connections, improving
dropout o
generalisation.
Selects the  non-linear
Transformer {GEGLU, ReLU, o ' o
o . activation function within
activation LeakyReLU, SwiGLU}
transformer blocks.
Balances gradient
Batch size {512, 1024, 2048, 4096} | estimation stability with

GPU memory efficiency

Each trial in the search process consisted of complete training for 30

epochs, without early stopping, to ensure comparability across parameter

configurations. For each dataset, 30 independent trials were executed. The

configuration that yielded the highest macro-averaged Fl-score on the

validation subset was retained for the final model training and evaluation.
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This tuning procedure ensured that the TabTransformer architecture
was systematically adapted to the characteristics of each dataset while

maintaining a consistent optimisation methodology across the experiments.

4.5.2 Standardised Training Protocol
The TabTransformer was configured in multi-class classification mode with
cross-entropy loss as the objective function. Model evaluation during
optimisation was conducted using macro-F1 as the primary metric, with per-
class precision, recall, and F1-scores retained for detailed analysis.
The following constraints were maintained:
e Epoch count: fixed at 30 for all datasets to eliminate training-duration
bias.
o Data splits: the training set was exclusively used for model fitting; the
test set was reserved for final evaluation only.
o Batch size: determined individually for each dataset through the

optimisation process.

4.5.3 Class Rebalancing in the Training Partition

Across all datasets, residual class imbalance remaining after stratified quota-
based sampling was addressed using the Synthetic Minority Over-sampling
Technique (SMOTE). As described in Sections 4.2.7, 4.3.8, and 4.4.7, SMOTE
was applied only to the training partition to generate synthetic minority-class
instances in feature space, thereby improving the representation of decision
boundaries. The test partitions were left unchanged to preserve their natural

class distributions and maintain deployment-time realism.

4.5.4 Reproducibility and Leakage Prevention

Reproducibility protocols and leakage-control measures were applied
consistently across all datasets, as detailed in Sections 4.2.8, 4.3.10, and 4.4.9.
All  stochastic processes, including sampling, SMOTE synthesis,
hyperparameter search, and model weight initialisation, were executed with
fixed random seeds. Preprocessing transformations such as imputation, scaling,

and correlation-based pruning were fitted exclusively on the training data and



66

subsequently applied to the test data without recalculation. Training and test
indices were maintained as strictly separate sets throughout the entire pipeline

to ensure complete isolation and prevent any leakage of information.

4.5.5 Deployment of Optimal Configurations

For each dataset, the optimal hyperparameter configuration identified during
optimisation was used to retrain the TabTransformer on the full rebalanced
training set. The resulting model was then evaluated once on the held-out test
set. This protocol ensures that reported test metrics are representative of the
best-performing configuration obtained without any exposure to the test data

during optimisation.

4.6 Evaluation Metrics

The performance of the Transformer-based Intrusion Detection System (IDS)
was evaluated using four standard classification metrics: accuracy, precision,
recall, and Fl1-score. These metrics provide a comprehensive view of model
behaviour, capturing both overall correctness and the balance between false

alarms and missed detections.

1. Accuracy
Accuracy measures the proportion of correctly classified instances
among the total number of evaluated instances. Although informative, it
can be misleading in highly imbalanced datasets, where correct

prediction of majority-class instances dominates the metric.

TP+TN
TP+TN+ FP+FN

Accuracy =

2. Precision
Precision quantifies the proportion of correctly predicted positive cases
among all instances predicted as positive. In intrusion detection, high

precision means the IDS raises fewer false alarms.

TP

Precision = W



67

3. Recall
Recall, or sensitivity, measures the proportion of actual positive cases
that are correctly identified. High recall ensures that the IDS detects the

majority of malicious activities.
TP

Recall = TP+—FN

4. F1-Score
The F1-score is the harmonic mean of precision and recall, providing a
single value that balances the trade-off between them. It is particularly
useful when both false positives and false negatives carry significant

consequences.

Precision X Recall

F1-— =2X
score Precision + Recall

Prior to metric computation, a confidence threshold of 0.8 was applied
to the classification output probabilities. Predictions with a maximum class
probability equal to or greater than 0.8 were assigned to the corresponding class
such as Critical and Legitimate. Predictions falling below the 0.8 threshold
were designated as Suspicious and flagged for further human investigation by
the cybersecurity team. This approach reflects operational best practice, where
borderline cases are not automatically classified as benign to reduce the risk of

undetected threats.

The selected metrics were computed per class and macro-averaged
across all classes to account for class imbalance. Macro-averaging assigns equal
weight to each class, ensuring that performance on rare attack types is not

overshadowed by majority-class performance.

To establish the effectiveness of the proposed SignReencryption-based
IDS, its results were systematically compared with those of widely adopted
baseline classifiers, including Deep Neural Networks (DNN), Convolutional
Neural Networks (CNN), Random Forest (RF), and XGBoost. These models

were selected as they represent both conventional deep learning methods and
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ensemble-based approaches commonly employed in intrusion detection
research. In addition, the proposed method was directly compared with the
reported results of two state-of-the-art intrusion detection systems, namely CSE-
IDS(Gupta, Jindal and Bedi, 2022) and L1IO-IDS(Gupta, Jindal and Bedi, 2021),
as documented in their original studies. This dual comparative framework
against both baseline classifiers and advanced IDS benchmarks provides a
rigorous basis for assessing the relative strengths and limitations of the proposed

approach.

4.7 Signcryption Scheme Experimental Setup

This study evaluates the computational performance and communication
efficiency of a bilinear-pairing-based signcryption scheme in comparison with
a conventional Sign-Then-Encrypt (STE) baseline. Both schemes were
implemented in Python using the Charm-Crypto library for public-key
operations and PyCryptodome for symmetric encryption. The bilinear group
was instantiated using the SS512 Type-1 pairing curve, providing a balance

between computational cost and security.

4.7.1  Cryptographic Framework

The signcryption scheme under evaluation was implemented within a hybrid
cryptographic framework combining public-key and symmetric primitives. The
public-key component employs bilinear pairing operations over cyclic groups
G1, G2, and Gt with exponents in the finite field Z,, instantiated using the
symmetric pairing-friendly curve SS512 from the Charm-Crypto library. This

setting enables efficient computation of the bilinear map e: G1 X G2 — Gt and

provides the algebraic structure required for pairing-based signcryption.

The symmetric encryption component is based on the Advanced
Encryption Standard (AES) with a 128-bit key, operating in Cipher Block
Chaining (CBC) mode with PKCS#7 padding. This ensures confidentiality of
the transmitted message while maintaining compatibility with variable-length

plaintexts. Session keys for the symmetric cipher are derived from the bilinear
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pairing output by applying the SHA-256 cryptographic hash function, producing
a fixed-length 128-bit key from the serialized shared secret.

The proposed signcryption algorithm integrates encryption and
signature generation into a single atomic operation, thereby reducing
computational overhead and ciphertext expansion compared to a baseline Sign-
Then-Encrypt (STE) approach. In the STE baseline, digital signatures are
generated using the sender’s private key and then appended to the plaintext
before applying symmetric encryption. This sequential design incurs additional
processing and data size, whereas the integrated signcryption approach achieves

equivalent security properties with improved efficiency.

4.7.2  System Setup and Key Generation

The system initialisation procedure defines the public parameters and
cryptographic keys required for both signcryption and verification. In the setup
phase, generators g € G1 and g2 € G; are selected at random, along with a master
secret exponent y € Z,. The public key component Ppup is computed as g>” and

published as part of the system parameters.

Individual participants generate their own long-term key pairs through
the key generation algorithm. Each user selects a random secret key sk € 7Z,p
and computes the corresponding public key pk = g** € Gi. These key pairs are
used for both signature generation and verification within the signcryption
process. The security of the system relies on the computational hardness of the

Bilinear Diffie—Hellman problem in the selected pairing group.

4.7.3  Signcryption Process

In the proposed signcryption scheme, a random group element ki € Gy is
generated by the sender to establish a one-time session secret. The bilinear
pairing e(ki, Ppup) produces a shared value in Gr, which is subsequently
serialised and hashed with SHA-256 to yield a 128-bit AES key. This key is
used to encrypt the plaintext message via AES-CBC with PKCS#7 padding,

producing the ciphertext component of the signcryption output.
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Unlike conventional methods where signing and encryption are distinct
phases, the proposed scheme derives authenticity implicitly from the algebraic
structure of the pairing and the sender’s private key usage during the session
key generation. This integration reduces computational duplication and limits

ciphertext expansion, a factor evaluated in Section 5.

4.7.4  Sign-Then-Encrypt Baseline

For comparative analysis, a baseline Sign-Then-Encrypt (STE) scheme was
implemented. In this approach, the sender first generates a digital signature over
the plaintext using their private key. The signature is appended to the plaintext
and the concatenated data is then encrypted using AES-CBC with a freshly
generated symmetric key. This sequential approach ensures confidentiality and
authenticity but incurs additional computational and communication overhead

compared to integrated signcryption.

4.7.5  Performance Measurement Protocol

The performance evaluation of the proposed signcryption scheme and the Sign-
Then-Encrypt (STE) baseline was designed to reflect realistic operational
conditions in Internet of Things (IoT) environments, with a focus on the
transportation sector. Within this context, Intelligent Transportation Systems
(ITS) are a specialised IoT application domain in which secure, real-time
message exchange is critical for ensuring road safety, coordinating emergency
responses, and optimising traffic flows. Security requirements in ITS are
particularly stringent, as both confidentiality and authenticity must be

guaranteed to prevent false alerts and unauthorised message injection.

To ensure a comprehensive assessment, two complementary testing
procedures were employed. The first focused on repeated single-message testing,
measuring algorithmic execution time and ciphertext size for an identical fixed-
length message over multiple independent iterations. The second involved batch
testing to evaluate sustained throughput and communication overhead under

simulated high-volume ITS workloads. Together, these approaches provide both
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micro-level and macro-level insights into computational efficiency, scalability,

and communication performance.

4.7.5.1 Test Message and Environment
The test message used in both schemes was a fixed vehicular incident alert
representative  of  security-sensitive = communications in Intelligent

Transportation Systems (ITS):

""Accident on highway 46, multiple vehicle collision. Emergency services

dispatched."

This message was selected to reflect realistic [oT traffic, where both
confidentiality and authenticity are critical for public safety operations. Its fixed
length and structure enabled controlled comparison between schemes by

removing variability in payload composition.

All experiments were executed under identical hardware and software
configurations to ensure fair comparison. The same cryptographic libraries, key
sizes, and parameter sets were applied to both schemes, and no other processes
were permitted to run concurrently during benchmarking to avoid performance

interference.

4.7.5.2 Batch Testing Procedure

In addition to repeated single-message testing, a batch testing procedure was
implemented to evaluate aggregate performance under simulated continuous
workload conditions. This involved sequential processing of a predefined set of

messages representative of varying ITS traffic scenarios.

The batch tests emulated sustained operational conditions in which
cryptographic operations must be performed continuously, such as during large-

scale incident reporting or multi-sensor data aggregation. Each message was
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processed without pause, enabling the measurement of sustained throughput and

cumulative computational cost.

For both schemes, total processing time and average per-message
execution time were recorded, along with ciphertext sizes for each message.
From these results, the total communication overhead and percentage size

savings achieved by signcryption relative to STE were calculated.

This dual-testing approach ensures that the evaluation captures both
isolated algorithmic performance and scalability under realistic, high-
throughput conditions, providing a robust basis for comparison in real-time,

resource-constrained ITS environments.

4.7.6  Reproducibility Control

To ensure experimental reproducibility, all tests were executed under identical
computational conditions, with fixed random seeds controlling key generation,
random number sampling, and session key derivation. Both schemes were
implemented using the same cryptographic libraries and parameter sets to
eliminate variability from implementation differences. No result from the
testing phase was used to influence the setup or configuration, ensuring that the

evaluation remained unbiased and representative.

4.8 Summary

This chapter presents the datasets, preprocessing workflows, and experimental
configurations used in this study to evaluate the TabTransformer model for
intrusion detection, as well as to benchmark a proposed bilinear pairing-based

signcryption scheme against a conventional Sign-Then-Encrypt (STE) baseline.

Three benchmark intrusion detection datasets were selected, namely
CICIDS2017, CIDDS-001, and NSL-KDD, to ensure comprehensive coverage
of diverse network attack categories. For each dataset, a structured data
processing pipeline was implemented, including schema validation, feature
engineering, categorical encoding, correlation-based feature pruning, class-

quota sampling, imputation, scaling, and SMOTE-based rebalancing. These
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procedures ensured high-quality and consistent inputs across datasets while
addressing class imbalance and multicollinearity. Sampling strategies were
designed to preserve representative distributions while enabling fair cross-

dataset evaluation of model performance.

The experimental setup for the signcryption evaluation involved
implementing both the proposed scheme and the STE baseline using a unified
cryptographic framework. Public-key operations employed the SS512 pairing-
friendly curve from the Charm-Crypto library, while symmetric encryption used
AES-128 in CBC mode with PKCS#7 padding. The performance measurement
protocol incorporated two complementary testing methodologies: repeated
single-message tests to measure algorithmic efficiency and ciphertext expansion
in isolation, and batch processing tests to assess throughput and scalability under
simulated Intelligent Transportation System (ITS) workloads. All experiments
were executed under identical hardware and software configurations with strict

reproducibility controls.

This integrated experimental design ensures that results reported in
Chapter 5 are directly comparable across datasets, cryptographic schemes, and
testing conditions, providing a robust empirical basis for assessing both the

machine learning and cryptographic components of the research.
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CHAPTER 5

RESULTS AND DISCUSSION

5.1 Overview of Optuna Results on Benchmark Datasets

This section reports the experimental outcomes of the proposed
TabTransformer-based intrusion detection system across three benchmark
datasets: CICIDS2017, CIDDS-001, and NSL-KDD. Hyperparameter tuning
was conducted using the Optuna framework, with the macro-averaged F1 score
on the validation set as the optimisation objective. This objective was chosen to
balance detection across majority and minority classes, thereby addressing the

class imbalance that characterises intrusion detection tasks.

The presentation of results is organised into five parts. First, the
optimal hyperparameter configurations identified by Optuna are detailed for
each dataset. Second, model performance is evaluated using precision, recall,
and Fl-score to provide a comprehensive assessment of detection capability.
Third, computational efficiency is analysed in terms of training time and testing
time, reflecting the cost and feasibility of deployment. Fourth, the cryptographic
efficiency of the proposed SignReencryption scheme is evaluated against a
conventional Sign-Then-Encrypt baseline, with results reported for ciphertext
expansion and per-message execution time. Finally, the empirical findings are
synthesised into a critical discussion of strengths and weaknesses in the context

of operational deployment.

5.2 Optuna Results of Different Datasets under TabTransformer

Across the three datasets, the Optuna-based hyperparameter optimisation
demonstrated the adaptability of the TabTransformer to different feature spaces
and traffic distributions. For CICIDS2017, the optimal configuration required a
deeper architecture with six attention blocks and larger embeddings, reflecting
the dataset’s higher complexity and variety of attack categories. In contrast,
CIDDS-001 achieved its best performance with a relatively shallow architecture

of four attention blocks and compact embeddings, supported by a higher
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learning rate and stronger dropout regularisation. For NSL-KDD, the
optimisation favoured an even smaller configuration with only two attention
blocks, a particularly low learning rate, and the SwiGLU activation function,
which proved more effective in capturing subtle feature interactions within the
dataset’s balanced yet limited feature set.

Overall, the results indicate that deeper and more expressive
architectures are advantageous for large, heterogeneous datasets such as
CICIDS2017, whereas leaner and more carefully regularised models are better
suited to smaller or less complex datasets such as CIDDS-001 and NSL-KDD.
These findings provide a consistent basis for the performance evaluations

discussed in the following section.

5.2.1 Optuna Results of CICIDS2017

The CICIDS2017 dataset contains a diverse set of attack categories and normal
traffic patterns generated over five consecutive days. In this study, a subset
containing six major attack classes and one normal class was used, preserving
the imbalanced distribution observed in real-world network traffic. The
dataset’s complexity and variety of attack types make it a suitable benchmark

for evaluating the generalisation and robustness of intrusion detection models.

Hyperparameter tuning for this dataset was performed using Optuna’s
Bayesian optimisation framework. The search space covered both architectural
and regularisation parameters, as well as learning rate, activation function, and
batch size. The macro-averaged F1 score on the validation set was chosen as the
objective function, ensuring that both majority and minority classes influenced

the optimisation outcome.

Table 5.1: Optuna Hyperparameter Optimisation Results of CICIDS2017

dataset

Hyperparameter CICIDS2017 Value

Best F1 Objective 0.63266

Learning rate 0.0022346
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Attention blocks 6
Embedding dimension 64
Attention dropout 0.003887
FFN dropout 0.11353
Add-Norm dropout 0.29059
Activation function ReLU
Batch size 512

The optimal configuration in Table 5.1 reflects the result of multiple
trials aimed at balancing model expressiveness with generalisation capability.
Six attention blocks, combined with a 64-dimensional embedding space,
provided sufficient depth and representation power without introducing
excessive complexity. The learning rate of 0.0022346 supported stable and
gradual convergence during training, which is important for attention-based

architectures.

The low attention dropout value (0.003887) indicates that retaining
most of the attention connections improved feature interaction learning, while
the relatively high add-norm dropout (0.29059) provided effective
regularisation in residual pathways. The feed-forward dropout rate (0.11353)
further contributed to overfitting prevention in the dense layers. The choice of
ReLU as the activation function is consistent with the model’s need to
efficiently process structured, tabular data. A batch size of 512 allowed for

stable gradient estimation while maintaining computational efficiency.

This configuration was fixed for the final training and evaluation on
the CICIDS2017 dataset, serving as the baseline for subsequent performance

comparisons.

5.2.2  Optuna Results of CIDDS-001
The CIDDS-001 dataset is a flow-based network intrusion detection dataset
containing a mixture of simulated normal traffic and various attack scenarios.

The dataset includes five primary classes: Normal, DoS, Port Scan, Ping Scan,
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and Brute Force. While the majority of traffic is normal or DoS, the Ping Scan
and Brute Force classes are relatively rare, creating a notable class imbalance.
This combination of traffic patterns and imbalance characteristics makes
CIDDS-001 a relevant benchmark for assessing the ability of intrusion detection

models to generalise across both frequent and infrequent attack categories.

Hyperparameter tuning for this dataset was carried out using Optuna’s
Bayesian optimisation framework. The search space included architectural
parameters such as the number of attention blocks and embedding dimension,
regularisation parameters including dropout rates, and training parameters such
as learning rate, activation function, and batch size. The macro-averaged F1
score on the validation set was used as the optimisation objective to ensure that

both majority and minority classes influenced the final configuration.

Table 5.2: Optuna Hyperparameter Optimisation Results of CIDDS-001

dataset

Hyperparameter Value
Best F1 Objective 0.67109
Learning rate 0.00678379
Attention blocks 4
Embedding dimension 32
Attention dropout 0.1690768
FFN dropout 0.1108410
Add-Norm dropout 0.06774053
Activation function ReLU
Batch size 4096

The configuration in Table 5.2 reflects the outcome of multiple trials
designed to balance model complexity with the ability to generalise to unseen
traffic patterns. The use of four attention blocks with a 32-dimensional
embedding space suggests that a shallower architecture with more compact
representations was sufficient for CIDDS-001, likely due to its smaller feature

set compared to CICIDS2017. The learning rate of 0.00678379 is higher than
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that found optimal for CICIDS2017, indicating that the model could converge

more quickly on this dataset without sacrificing stability.

A relatively high attention dropout value (0.1691) was selected, which
can help prevent overfitting by encouraging the model to distribute attention
across multiple features rather than relying on a few dominant ones. The feed-
forward dropout rate (0.1108) and add-norm dropout (0.0677) provided
moderate regularisation in their respective components, further supporting
generalisation. The ReLU activation function was again preferred for its
efficiency and stability when working with tabular flow-based features. The
batch size of 4096, significantly larger than for CICIDS2017, takes advantage
of the smaller feature space, enabling faster training while maintaining stable

gradient estimates.

This configuration was fixed for all subsequent training and evaluation
on the CIDDS-001 dataset, ensuring consistency in the reported results and

enabling a fair comparison with other datasets and baseline models.

5.2.3  Optuna Results of NSL-KDD

The NSL-KDD dataset is a refined version of the original KDD’99 intrusion
detection benchmark, created to remove redundant records and provide a more
balanced and challenging evaluation environment. It contains four main attack
categories: Denial of Service (DoS), Probe, Remote-to-Local (R2L), and User-
to-Root (U2R), alongside normal traffic. Despite these improvements, the
dataset retains significant class imbalance, particularly for the R2L and U2R
categories, which occur much less frequently than the others. Its long-standing
use in intrusion detection research and the diversity of attack types make NSL-

KDD an important dataset for assessing model robustness and adaptability.

Hyperparameter tuning for NSL-KDD was conducted using Optuna’s
Bayesian optimisation framework. The search space included architectural
parameters such as the number of attention blocks and embedding dimension,

regularisation parameters including dropout rates, and training parameters such
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as learning rate, activation function, and batch size. The macro-averaged F1
score on the validation set was used as the optimisation objective, ensuring that
both majority and minority classes contributed to the selection of the final

configuration.

Table 5.3: Optuna Hyperparameter Optimisation Results of NSL-KDD

dataset

Hyperparameter Value
Best F1 Objective 0.88845
Learning rate 0.00051066
Attention blocks 2
Embedding dimension 64
Attention dropout 0.2411373
FFN dropout 0.1780757
Add-Norm dropout 0.1506164
Activation function SwiGLU
Batch size 4096

The configuration in Table 5.3 reflects the outcome of multiple trials
aimed at balancing learning stability with the model’s ability to generalise
across diverse attack types. The use of only two attention blocks suggests that
a relatively shallow architecture was sufficient to capture the feature
relationships present in NSL-KDD, which has fewer features and lower variance
compared to modern datasets such as CICIDS2017. The embedding dimension
of 64 provided adequate representational capacity without introducing excessive

model complexity.

The learning rate of 0.00051066 is the lowest among the three datasets
tested, indicating that slow and careful parameter updates were required for
optimal convergence, likely due to the relatively small feature space and the
need to fine-tune classification boundaries for the minority classes. The
regularisation settings included a relatively high attention dropout (0.2411)

and feed-forward dropout (0.1781), both aimed at mitigating overfitting, while
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the add-norm dropout (0.1506) provided additional stability in residual

connections.

A notable difference from the other datasets was the selection of
SwiGLU as the activation function, suggesting that its gated linear unit
mechanism was more effective at modelling the subtle feature interactions in
NSL-KDD compared to ReLU. The batch size of 4096, as with CIDDS-001,
leveraged the smaller feature set to accelerate training while maintaining stable

gradient estimates.

This configuration was fixed for all subsequent experiments on the
NSL-KDD dataset, ensuring consistency in training, evaluation, and

comparative analysis across the different experimental stages.

53 Evaluation Metrics of TabTransformer and Comparative Models
This section has examined the comparative performance of the proposed
TabTransformer with SignReencryption against a range of baseline methods
using precision, recall, and Fl-score as evaluation metrics. Figures 5.1-5.9
illustrated the behaviour of each method across CICIDS2017, CIDDS-001, and
NSL-KDD, highlighting consistent patterns. While ensemble methods
dominated in precision under fully visible, balanced conditions, they collapsed
in imbalanced datasets. Conventional deep learning baselines achieved high
scores for the majority categories but performed poorly in minority classes,
confirming their limited robustness. By contrast, SignReencryption
demonstrated a recall-oriented profile, maintaining competitive precision and
F1 for dominant classes while delivering decisive improvements for minority
categories particularly in NSL-KDD, where historical weaknesses in R2L and

U2R detection were largely addressed

5.3.1  Precision across datasets
Precision reflects the proportion of alerts that correctly correspond to actual

intrusions. It is a measure of reliability in prediction and an indicator of how
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much false-alarm noise is generated for security analysts. The comparative
precision values of different models on CICIDS2017, CIDDS-001, and NSL-
KDD are shown in Figures 5.1-5.3, respectively. These figures highlight how
models differ in their ability to balance reliability across majority and minority

attack classes.

Precision Values: CICIDS2017
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Figure 5.1: Precision values on the CICIDS2017 dataset
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Figure 5.2: Precision values on the CIDDS001 dataset
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Precision Values: NSL-KDD
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Figure 5.3: Precision values on the NSL-KDD dataset

As illustrated in Figure 5.1, ensemble-based approaches such as
Random Forest (RF) and XGBoost achieved the highest levels of precision in
the CICIDS2017 dataset, with most classes exceeding 0.95, including the
minority categories such as Web Attack and Infiltration. This outcome
demonstrates the ability of ensemble learners to exploit the diverse feature space
of CICIDS2017 when all attributes are fully visible. Conventional deep learning
baselines such as CNN and DNN were less consistent. CNN achieved perfect
precision for DoS and Patator (1.00) and strong results for PortScan (0.96), yet
its precision dropped sharply for Web Attack (0.34), producing uneven results
across classes. DNN showed a similar trend, with a dramatic collapse in
Infiltration (0.01), which underscores its limitations in distinguishing rare
classes. In comparison, the proposed SignReencryption maintained high
precision for majority classes, including DoS (0.98), Normal (1.00), PortScan
(0.90), and Patator (0.88). However, as shown in the figure, its precision for
minority categories such as Bot (0.20) and Infiltration (0.03) was deliberately
conservative, reflecting an optimisation strategy that emphasises recall on

minority classes at the expense of increased false positives.

The results on CIDDS-001, depicted in Figure 5.2, reveal that this
dataset’s clearer class boundaries allowed all models to achieve very high

precision, often approaching saturation. RF and XGBoost sustained values
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above 0.99 across all categories, while CNN and DNN also achieved stable
results without catastrophic failure. Importantly, SignReencryption performed
competitively, with precision values ranging between 0.83 and 1.00 across all
classes. Unlike in CICIDS2017, no collapse was observed in minority categories,
which suggests that the re-encryption stage of the proposed system does not
inherently reduce discriminative precision when the class structure is more

balanced.

The precision results for NSL-KDD are shown in Figure 5.3, where
the dataset’s imbalance presented the greatest challenge. Traditional baselines
such as CNN, RF, and XGBoost recorded negligible precision for Probe, R2L,
and U2R, effectively failing to identify these classes reliably. Even more
advanced IDS baselines, CSE-IDS and LIO-IDS, exhibited inconsistent
precision across minority classes. In contrast, SignReencryption preserved
workable precision exactly where the other models struggled most. As indicated
in the figure, it achieved 0.90 for Probe, 0.96 for R2L, and 0.68 for U2R, while
retaining very high values for DoS and Normal (both above 0.98). These results
confirm that the proposed method is sensitive to minority attacks and can

maintain predictive reliability even under imbalanced conditions.

Overall, Figures 5.1-5.3 demonstrate that while ensemble learners
dominate in balanced and fully observable scenarios, their precision advantage
collapses in highly imbalanced settings. By contrast, SignReencryption sustains
viable precision in minority classes under privacy-preserving constraints,

offering a practical balance between sensitivity and reliability.

5.3.2  Recall across datasets
Recall measures the sensitivity of a detection system, quantifying its ability to
identify all instances of intrusions. From an operational standpoint, recall is

critical because missed detections correspond directly to successful, undetected
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attacks. Figures 5.4-5.6 present the recall results across the CICIDS2017,

CIDDS-001, and NSL-KDD datasets, respectively.
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Figure 5.4: Recall values on the CICIDS2017 dataset
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Recall Values: NSL-KDD
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Figure 5.6: Recall values on the NSL-KDD dataset

As shown in Figure 5.4, recall values on CICIDS2017 highlight the
limitations of deep learning baselines. CNN and DNN achieved strong recall for
majority categories such as DoS and Normal (both above 0.90), yet their
performance declined substantially in minority categories. Recall for Infiltration
dropped to 0.75 for CNN and 0.81 for DNN, while Bot was detected even less
reliably. LIO-IDS was weaker still, with recall for Infiltration falling to 0.31,
representing a significant operational gap. In contrast, SignReencryption
achieved near-perfect recall across most categories: 0.99 for DoS, 0.98 for Bot,
1.00 for Web Attack, PortScan, and Patator, and 0.91 for Infiltration. The figure
thus illustrates how the proposed method is tuned toward sensitivity, ensuring

minority attacks are not overlooked.

The recall results for CIDDS-001 are shown in Figure 5.5. Here, recall
values were uniformly high across most models, reflecting the dataset’s simpler
class structure. RF and XGBoost achieved near-perfect recall, while CNN and
DNN also remained consistent. The differences became clearer in subtle
categories. CSE-IDS and LIO-IDS underperformed on Ping Scan (0.82 and 0.66,
respectively). By contrast, SignReencryption sustained a recall of 0.97 for Ping

Scan and 0.90 for Brute Force, while retaining perfect recall for DoS, Normal,
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and PortScan. These results confirm that the re-encryption process does not

compromise the model’s ability to detect challenging classes.

The recall performance for NSL-KDD is presented in Figure 5.6,
which highlights the most striking differences. CNN, RF, and XGBoost failed
completely on the minority classes, with recall of zero for Probe, R2L, and U2R.
CSE-IDS and LIO-IDS improved somewhat but still fell short, with recall below
0.60 for R2L and U2R. By comparison, SignReencryption achieved recall of
1.00 for Probe, 0.93 for R2L, and 0.50 for U2R, while maintaining 0.98 for DoS
and 0.97 for Normal. These results confirm that the proposed method directly

addresses the long-standing research gap in minority-class detection.

Taken together, Figures 5.4-5.6 confirm that while existing baselines
either neglect or deprioritise minority categories, the proposed
SignReencryption method consistently prioritises recall for rare attacks,

strengthening the robustness of intrusion detection under real-world conditions.

5.3.3  Fl-score across datasets

The F1-score, defined as the harmonic mean of precision and recall, provides a
balanced evaluation of detection performance. It is especially valuable in
intrusion detection, where both false positives and false negatives carry serious
operational consequences. The comparative Fl-scores of the models across
CICIDS2017, CIDDS-001, and NSL-KDD are presented in Figures 5.7-5.9,

respectively.
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As illustrated in Figure 5.7, RF and XGBoost achieved near-perfect
F1-scores across most classes on CICIDS2017, confirming their strong balance
under conditions of full feature visibility. CNN and DNN, however, exhibited
instability. While CNN attained 0.97 for DoS and 0.96 for PortScan, its F1
dropped to 0.51 for Web Attack and collapsed further for Infiltration. DNN
performed worse, reaching an F1 of only 0.02 for Infiltration. The proposed
SignReencryption achieved consistently high F1 for major categories such as
DoS (0.99), Normal (0.94), PortScan (0.95), and Patator (0.94) but lower scores
for Bot (0.33) and Infiltration (0.05) due to its recall-oriented precision trade-
off. The macro-F1 of approximately 0.71 placed it above the IDS baselines,
though still below the ensembles.

The results for CIDDS-001, shown in Figure 5.8, confirm that all
methods performed strongly in a simpler -classification environment.
SignReencryption matched the ensembles with F1 of 1.00 for DoS and Normal,
and maintained competitive scores for Port Scan (0.94), Ping Scan (0.92), and
Brute Force (0.83). The macro-F1 of 0.94 demonstrates that the proposed

method remains stable and reliable even under balanced conditions.

The Fl-scores on NSL-KDD, presented in Figure 5.9, provide the
clearest evidence of advantage. CNN, RF, and XGBoost all failed to produce
usable results for minority classes, with F1 of zero for R2L and U2R. Even IDS
baselines showed only partial improvement, with CSE-IDS recording 0.63 for
R2L and 0.52 for U2R. In contrast, SignReencryption achieved F1 of 0.95 for
Probe, 0.95 for R2L, and 0.58 for U2R, alongside 0.98 for both DoS and Normal.
Its macro-F1 of approximately 0.89 decisively outperformed all baselines and

matched the Optuna-optimised objectives reported earlier.

Collectively, Figures 5.7-5.9 demonstrate that the proposed method is
competitive in simple datasets, resilient in complex modern datasets, and
markedly superior in imbalanced conditions where other methods collapse. This
shows that SignReencryption not only balances false positives and false

negatives but also consistently preserves minority-class detection which is an
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essential requirement for intrusion detection systems deployed in real-world

networks.

5.3.4  Comparative Insights
A synthesis of the results presented in Figures 5.1-5.9 provides several
comparative insights into how different methods behave across datasets of

varying complexity and class distribution.

The first insight concerns the systematic trade-off between precision
and recall. Ensemble methods such as Random Forest and XGBoost maintained
very high precision across the balanced and fully visible conditions of
CICIDS2017 and CIDDS-001, with most classes exceeding 0.95. However,
their recall collapsed in NSL-KDD minority categories, leaving critical attacks
such as R2L and U2R almost entirely undetected. By contrast,
SignReencryption adopted a recall-oriented profile, deliberately tolerating a
reduction in precision in certain minority categories of CICIDS2017 while
maintaining recall above 0.90 for Infiltration and achieving perfect recall for
Web Attack, PortScan, and Patator. This design choice ensured that no attack
type was systematically overlooked, which is crucial in operational contexts
where the cost of a missed intrusion outweighs the burden of investigating false

alarms.

The second insight relates to stability across traffic regimes. In the
CIDDS-001 dataset, where the class boundaries are more distinct, all methods
achieved high scores. Nonetheless, SignReencryption matched ensemble
baselines in the major classes and avoided any catastrophic failures in the
minority categories of Ping Scan and Brute Force. In CICIDS2017, the proposed
method sustained strong F1 performance for dominant behaviours such as DoS
and Normal, achieving 0.99 and 0.94, respectively, despite the dataset’s
diversity. In NSL-KDD, it decisively outperformed all comparators in minority
categories, reaching Fl-scores of 0.95 for Probe and R2L, while achieving a

usable 0.58 for U2R. These results demonstrate that the proposed system
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remains robust across datasets that differ in feature complexity, attack diversity,

and class imbalance.

The third insight highlights a consistent advantage in the detection of
Denial-of-Service (DoS) attacks across all datasets. DoS traffic is a major
category in every benchmark used in this study, and it represents a critical real-
world threat. SignReencryption achieved recall of at least 98 percent for DoS in
CICIDS2017, CIDDS-001, and NSL-KDD, while simultaneously maintaining
F1-scores close to 1.00 in each case. This consistency is important because DoS
attacks often dominate real network traffic during intrusion events, and failure
to detect them undermines the credibility of any intrusion detection system. By
achieving high detection rates for DoS across all benchmarks, the proposed

method demonstrates both reliability and practical readiness for deployment.

Together, these insights show that while ensemble learners dominate
in balanced and fully visible scenarios, their advantage does not extend to
imbalanced datasets or privacy-preserving conditions. Deep learning baselines
are unstable, often failing in minority categories. SignReencryption, however,
demonstrates a stable and recall-oriented performance profile, maintaining high
sensitivity across all datasets while preserving strong detection in the majority

categories.

5.3.5 Research Contribution of SignReencryption
The results across CICIDS2017, CIDDS-001, and NSL-KDD confirm several

research contributions of the proposed SignReencryption method.

First, the method substantially improves detection of minority attack
categories that have historically been persistent weaknesses in intrusion
detection research. In NSL-KDD, the system achieved F1-scores of 0.95 for
Probe and R2L, and 0.58 for U2R, where traditional baselines either failed
completely or achieved only marginal results. In CICIDS2017, the method
raised recall for Infiltration to 0.91 and achieved perfect recall for Web Attack.
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These outcomes demonstrate that SignReencryption is capable of capturing

subtle, low-frequency attack patterns that are often missed by existing methods.

Second, the method consistently detects major categories without
sacrificing stability in dominant classes. Across all datasets, Denial-of-Service
(DoS) traffic was detected with recall of at least 98 percent and F1-scores close
to 1.00. Since DoS represents one of the most critical real-world threats, this
consistency establishes the reliability of the system for deployment in practical
network defence scenarios. The ability to strengthen minority-class detection
while simultaneously maintaining high detection rates in majority categories is

a defining characteristic of the proposed approach.

Third, the method demonstrates robustness across heterogeneous
datasets. In CIDDS-001, where traffic classes are relatively well separated, the
proposed method performed on par with ensemble baselines, achieving stable
results across all categories without collapse in the less frequent classes of Ping
Scan and Brute Force. In CICIDS2017, which is more complex and diverse, it
maintained strong detection rates for major categories while achieving
competitive sensitivity in minority classes. In NSL-KDD, which is widely
regarded as the most challenging due to its extreme imbalance, the method
decisively outperformed all comparators in the minority categories. This
consistency confirms that the system adapts effectively to different traffic

environments, making it suitable for diverse deployment contexts.

In summary, the research contribution of SignReencryption lies in its
ability to simultaneously enhance the detection of low-frequency attacks,
maintain high reliability in dominant categories such as DoS, and demonstrate
robustness across datasets of varying complexity. By filling long-standing gaps
in minority-class sensitivity while preserving stability in major classes, the
proposed method advances the state of the art in intrusion detection and provides
a framework that is both effective in research benchmarks and practical for real-

world deployment.



92

5.4 Accuracy and Computational Cost Analysis

The effectiveness of an intrusion detection system is not only measured by
classification performance but also by the computational resources required for
training and deployment. Tables 5.4-5.6 compare the proposed
SignReencryption with baseline methods across CICIDS2017, CIDDS-001, and
NSL-KDD, reporting accuracy, training time, and testing time. These results
highlight the trade-offs between predictive accuracy and computational

efficiency.

54.1 CICIDS2017

Table 5.4 presents the comparison on CICIDS2017. Ensemble methods such as
Random Forest and XGBoost achieved perfect accuracy (1.00) with remarkably
low training times of 60.36 and 85.12 seconds, respectively. CNN and DNN
recorded accuracies of 0.92 and 0.95 but required substantially higher training

costs, taking 963.97 seconds for CNN and 612.94 seconds for DNN.

Table 5.4: Comparison of the proposed SignReencryption with other related
works using the CICIDS2017 dataset.

Evaluation Metrics

Research Works | Accuracy Training Time Testing Time
CNN 0.92 963.97 0.0000235
DNN 0.95 612.94 0.0000261
RF 1 60.36 0.0000183
XGBoost 1 85.12 0.0000174
CSE-IDS 0.92 274.40 0.0052000
LIO-IDS 0.86 153.25 -
SignReencryption | 0.94 334.45 0.0000191

The proposed SignReencryption achieved an accuracy of 0.94,
positioning it competitively between the deep learning baselines and the
ensembles. Its training time of 334.45 seconds was considerably lower than
CNN and DNN, but higher than the ensembles. Importantly, its testing time was
0.0000191 seconds per sample, comparable to RF and XGBoost, and
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substantially lower than CSE-IDS (0.0052) and LIO-IDS, for which no testing
time was reported. These results suggest that while ensembles dominate in raw
accuracy and efficiency for this dataset, SignReencryption strikes a balance by
achieving strong accuracy while maintaining lightweight inference times

suitable for real-time detection.

54.2 CIDDS001

The results for CIDDS-001 are reported in Table 5.5. All baseline methods
achieved extremely high accuracies, with CNN, DNN, RF, and XGBoost each
reaching 1.00. CSE-IDS and LIO-IDS were slightly lower at 0.99 and 0.96.
SignReencryption achieved 0.99, aligning closely with the top-performing

models.

Table 5.5: Comparison of the proposed SignReencryption with other related
works using the CIDDS001 dataset

Evaluation Metrics

Research Works | Accuracy Training Time Testing Time
CNN 1 334.85 0.0000072
DNN 1 122.55 0.0000228
RF 1 15.87 0.0000124
XGBoost 1 19.47 0.0000103
CSE-IDS 0.99 384.85 0.0045000
LIO-IDS 0.96 345.10 -
SignReencryption | 0.99 111.39 0.0000157

From a computational perspective, SignReencryption demonstrated
one of the most efficient training times at 111.39 seconds, outperforming CNN
(334.85), CSE-IDS (384.85), and LIO-IDS (345.10). Its testing time of
0.0000157 seconds per sample was again comparable to the ensembles and
significantly lower than CSE-IDS. These results indicate that for datasets with
clearer class separation such as CIDDS-001, the proposed method achieves high
accuracy with substantially reduced training cost, reinforcing its practicality in

environments where retraining must be performed frequently.
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54.3 NSL-KDD

Table 5.6 shows the performance on NSL-KDD, which is widely recognised as
a challenging benchmark due to its extreme imbalance. CNN, RF, and XGBoost
recorded accuracies of only 0.43, while DNN reached 0.75. Advanced baselines
performed better, with CSE-IDS at 0.92 and LIO-IDS at 0.87.

Table 5.6: Comparison of the proposed SignReencryption with other related
works using the NSL-KDD dataset

Evaluation Metrics

Research Works | Accuracy Training Time Testing Time
CNN 0.43 580.13 0.0000155
DNN 0.75 42.79 0.0000248
RF 0.43 23.92 0.0000113
XGBoost 0.43 31.49 0.0000087
CSE-IDS 0.92 434.90 0.0030000
LIO-IDS 0.87 391.13 -
SignReencryption | 0.97 71.73 0.0000117

The proposed SignReencryption achieved the highest accuracy at 0.97,
decisively surpassing all comparators. Its training time of 71.73 seconds was
much lower than CNN (580.13) and CSE-IDS (434.90), while its testing time
0f 0.0000117 seconds per sample was competitive with RF and XGBoost. This
result is particularly significant because it demonstrates that SignReencryption
not only improves detection performance in the most challenging dataset but
also does so with modest computational cost, enabling both retraining efficiency

and real-time operation.

5.4.4 Operational Implications of Accuracy and Computational
Efficiency

Across all datasets, three patterns can be observed. First, ensemble models

achieved the fastest training times and highest accuracy in relatively balanced

datasets such as CICIDS2017 and CIDDS-001. However, their performance
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collapsed in NSL-KDD, where the proposed method achieved a decisive
advantage. Second, deep learning baselines such as CNN and DNN required
high training costs but did not consistently outperform the proposed method,
particularly in minority categories where their accuracy weakened. Third,
SignReencryption demonstrated stable testing times across all datasets,
consistently in the order of 10~ seconds per sample, which is crucial for real-

time detection in high-throughput networks.

It is important to note that training time represents a cost incurred
primarily when the system is first deployed or periodically retrained to adapt to
evolving network conditions. By contrast, testing time determines the model’s
ability to operate in real-world environments where millions of flows must be
processed continuously. In this regard, SignReencryption maintains high
accuracy while requiring only minimal inference time, making it suitable for

deployment in practical, latency-sensitive settings.

Taken together, these findings confirm that the proposed
SignReencryption achieves a balanced profile of accuracy, training efficiency,
and real-time readiness. While ensemble methods remain attractive in simpler
regimes, the proposed system provides superior adaptability to complex,
imbalanced environments, and does so with inference costs that make it feasible

for continuous operation in production networks.

5.5 Results of SignReencryption versus Sign-Then-Encrypt

The performance of the proposed SignReencryption scheme was evaluated
against the conventional Sign-Then-Encrypt (STE) baseline across two core
dimensions: ciphertext expansion and execution time. The results are

illustrated in Figures 5.10 and 5.11, respectively.

5.5.1 Ciphertext Expansion
Figure 5.10 presents the ciphertext size as a function of message length. The
results show that SignReencryption consistently produces smaller ciphertexts

compared to STE. This efficiency arises from the scheme’s structural
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integration of encryption and signature generation into a single process, thereby
eliminating the need to append a separate digital signature to the plaintext before

encryption.

Ciphetext Size Comparison between SignReencryption and Sign-then-Encrypt
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SignReencrytion Sign-then-Encrypt

Figure 5.10: Ciphertext size comparison between SignReencryption and

Sign-Then-Encrypt across varying message lengths.

For very short messages, where communication overhead is
proportionally large, the improvement is most striking. At a 50-byte input size,
SignReencryption compresses the ciphertext to 80 bytes, whereas STE requires
160 bytes, representing a 50 percent reduction. At 256 bytes, the ciphertext
produced by SignReencryption is 288 bytes, compared to 368 bytes under STE,
a saving of approximately 22 percent. While the relative savings decline with
increasing message length, absolute reductions remain measurable, with
SignReencryption producing ciphertexts of 4128 bytes versus 4208 bytes at 4
KB.

These results confirm that SignReencryption achieves substantial
communication savings, particularly in environments dominated by small,
frequent control messages such as vehicular alerts and IoT sensor updates. In
such contexts, reduced ciphertext expansion translates directly into improved
bandwidth utilisation, faster message dissemination, and lower energy

consumption during transmission.
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5.5.2  Execution Time

Figure 5.11 compares the execution times of both schemes across varying input
lengths. The results demonstrate that SignReencryption consistently
outperforms STE, maintaining an average processing latency of 2.7-3.2 ms,
compared to 5.0-6.5 ms for STE. This corresponds to a computational
efficiency improvement of approximately 40-50 percent, independent of

message length.

Time Comparison between SignReecnryption and Sign-then-Encrypt

10 50 256 1024 2048 4096
Message Length (bytes)

——SignReencryption Sign-Then-Encrypt

Figure 5.11: Execution time comparison between SignReencryption and

Sign-Then-Encrypt as a function of message length.

The efficiency gain arises from the elimination of duplicated
operations. In STE, signature generation and encryption are performed
sequentially, incurring separate  cryptographic = computations. In
SignReencryption, these steps are algebraically unified within the bilinear
pairing framework, thereby avoiding redundancy. This design reduces per-

message latency while preserving confidentiality and authenticity guarantees.

5.5.3  Operational Implications

The combined reductions in ciphertext size and execution time carry significant
implications for deployment in resource-constrained and latency-sensitive
environments. In Intelligent Transportation Systems (ITS), where vehicular
collision alerts and road hazard notifications must be disseminated with minimal

delay, SignReencryption’s efficiency ensures both timely message delivery and
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minimal communication overhead. Similarly, in IoT deployments characterised
by high message frequency and energy-limited devices, the scheme’s lower
bandwidth consumption and reduced computational burden extend device

longevity and improve overall scalability.

From a security—efficiency perspective, these findings confirm that
SignReencryption preserves the full spectrum of security properties associated
with the STE approach, while offering superior performance in both

communication and computation.

5.5.4  Comparative Insights
A synthesis of the results highlights three comparative insights into the

advantages of SignReencryption relative to the STE baseline:

1. Communication Efficiency: SignReencryption reduces ciphertext
expansion across all message sizes, with particularly strong gains in
short-message scenarios where communication efficiency is most
critical. This property makes the scheme highly suitable for IoT and
vehicular networks, where message payloads are often minimal yet must
be transmitted at scale.

2. Computational Performance: The scheme achieves a systematic
reduction in execution time of approximately 40—50 percent relative to
STE, a consequence of the unified cryptographic operation. This
improvement ensures that the system remains responsive even under
sustained high-throughput conditions, reducing latency without

weakening security guarantees.

3. Deployment Readiness: The results demonstrate  that
SignReencryption is not only a theoretical enhancement but also a
practically deployable solution. By reducing both communication
overhead and computational latency while maintaining the same level of
security assurances, it addresses two of the primary bottlenecks in secure

communications for ITS and IoT ecosystems. This positions the scheme



99

as a more scalable alternative to conventional STE, particularly in large-

scale, real-time operational environments.

5.6 Strengths and Weaknesses in Operational Deployment

The experimental results across CICIDS2017, CIDDS-001, and NSL-KDD,
together with the comparative cryptographic evaluation, provide an opportunity
to critically examine the strengths and weaknesses of the proposed

SignReencryption system in the context of practical deployment.

A key strength of the system lies in its ability to detect minority attack
categories that have historically been problematic for intrusion detection
systems. The model consistently achieved strong recall for classes such as
Infiltration in CICIDS2017 and R2L/U2R in NSL-KDD, where ensemble
methods and conventional deep learning approaches frequently failed. This
capability addresses a longstanding research gap in intrusion detection by
reducing the likelihood of operational blind spots in exactly those categories

that pose a disproportionate risk despite their low frequency.

Another strength is the robustness of the model in detecting Denial-of-
Service (DoS) attacks, which represent one of the most prevalent and damaging
forms of intrusion. Across all three datasets, the system maintained recall above
98 percent and F1-scores approaching unity for DoS traffic. This consistency
provides assurance of reliability against an attack type that dominates real-world
incident reports and has direct implications for the credibility of an operational

intrusion detection system.

From a computational perspective, the system demonstrates a
favourable profile for deployment. While the training phase requires a moderate
level of resources, testing incurs negligible latency, with inference times in the
order of 107° seconds per sample. This property ensures that the system can be
integrated into high-throughput environments, such as enterprise networks or
IoT infrastructures, without creating performance bottlenecks. In addition, the

integration of signature generation and encryption into a single operation
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reduces computational overhead and ciphertext expansion relative to
conventional Sign-Then-Encrypt approaches. This enhancement in efficiency is
particularly relevant for resource-constrained environments such as intelligent
transportation systems, where both communication bandwidth and processing

capacity are limited.

Despite these advantages, several limitations must also be recognised.
The recall-oriented optimisation of SignReencryption occasionally results in
reduced precision for minority classes, as evidenced by lower precision values
in categories such as Bot within CICIDS2017. Although this trade-off
significantly reduces the risk of missed detections, it also increases the number
of false positives, thereby imposing an additional workload on human analysts

who must validate alerts.

Another limitation relates to the cost of training. Compared with tree-
based ensembles such as Random Forest, the system requires longer training
times, which may restrict its adoption in scenarios where computational
resources are scarce or where frequent retraining is required due to evolving
threat landscapes. This concern is compounded by the model’s dependence on
hyperparameter optimisation. While Optuna-based tuning enables high
adaptability, it also reveals the sensitivity of the model to dataset characteristics.
Maintaining optimal performance in dynamic environments may therefore
necessitate periodic re-optimisation, which introduces additional operational

overhead.

Finally, as with most Transformer-based architectures, the
interpretability of the model remains limited. The internal mechanisms by which
features are weighted and decisions are made are less transparent than in
traditional ensemble learners. This lack of interpretability could reduce analyst
trust and complicate forensic investigations following an intrusion, potentially
hindering the model’s acceptance in production environments where

explainability is valued.
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Taken together, these findings indicate that the proposed
SignReencryption system offers a compelling balance between accuracy,
efficiency, and security assurance, particularly in its ability to capture rare but
consequential intrusions and to operate effectively in real-time settings.
Nonetheless, careful consideration must be given to its precision—recall trade-
offs, training overhead, and interpretability when deploying the system in

practice.

5.7 Summary

This chapter presented a comprehensive evaluation of the proposed
TabTransformer-based intrusion detection system combined with the
SignReencryption scheme. Across the three benchmark datasets, Optuna-driven
hyperparameter tuning demonstrated the adaptability of the model to varying
levels of feature complexity and class imbalance, yielding competitive
configurations that emphasised generalisation. Evaluation using precision,
recall, and Fl-score revealed that while ensemble methods retained an
advantage under balanced conditions, they collapsed in minority-class detection.
In contrast, SignReencryption consistently prioritised recall, sustaining reliable
detection of minority categories such as R2L and U2R in NSL-KDD, while
maintaining stable performance on dominant categories including DoS across

all datasets.

The analysis of computational cost further highlighted the practicality
of the proposed approach. Although training times were moderate, they
represent a one-time cost incurred only during system deployment. In testing,
SignReencryption achieved low per-sample latency while preserving high
accuracy, thereby meeting the requirements of real-time intrusion detection.
Complementary evaluation of the cryptographic component showed that
SignReencryption significantly reduced ciphertext expansion and execution
overhead compared to a traditional Sign-Then-Encrypt baseline, making it
highly suitable for deployment in resource-constrained environments such as

IoT-based intelligent transportation systems.
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Finally, the strengths and weaknesses of the system were discussed in
the context of operational deployment. The method demonstrated robust
sensitivity to diverse attack categories, resilience in imbalanced traffic regimes,
and efficiency in cryptographic protection. At the same time, trade-offs were
observed in precision for certain minority classes and in training time relative
to lightweight baselines. Overall, the results confirm that the integration of
TabTransformer with SignReencryption provides a balanced, secure, and

practically deployable solution to the challenges of modern intrusion detection.
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CHAPTER 6
CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusion

This study introduced SignReencryption, an intrusion detection framework that
integrates a TabTransformer-based detection model with a bilinear-pairing-
based signcryption scheme. The system was evaluated across three widely
recognised benchmark datasets, namely CICIDS2017, CIDDS-001, and NSL-
KDD, under a rigorous experimental protocol. Hyperparameter optimisation
was performed using Optuna, ensuring balanced performance across both

majority and minority classes.

The results demonstrate that the TabTransformer architecture, when
tuned appropriately, can adapt to datasets with highly diverse traffic
distributions. In particular, SignReencryption achieved competitive results in
terms of precision, recall, and F1l-score, with a clear advantage in detecting
minority attack categories that have historically been overlooked by
conventional methods. This was particularly evident in the NSL-KDD dataset,
where the system consistently outperformed baseline and ensemble-based

methods in categories such as Probe, R2L, and U2R.

Beyond detection performance, computational cost was analysed in
terms of training time, testing time, and overall accuracy. While
SignReencryption required a moderate training cost, it maintained a testing time
comparable to the fastest baselines, confirming its suitability for real-time
deployment. Importantly, the integration of the signcryption scheme ensured
message confidentiality and authenticity without incurring prohibitive overhead,
outperforming the conventional Sign-Then-Encrypt baseline in both

computational efficiency and communication compactness.

From an operational perspective, the system exhibits several strengths,
including stability across heterogeneous datasets, strong sensitivity to minority
attacks, and consistent detection of Denial-of-Service traffic with recall values

exceeding 98 percent across all benchmarks. These qualities highlight its
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readiness for deployment in environments where both security and reliability
are critical. Nonetheless, challenges remain in reducing training overhead and

further improving precision for rare attack categories under extreme imbalance.

Overall, this work contributes a novel integration of advanced deep
learning with efficient cryptographic primitives, addressing a significant gap in
intrusion detection research by unifying detection accuracy, computational

feasibility, and secure communication within a single framework.

6.2 Future Works
While the findings of this study are promising, several avenues remain open for
future exploration:

1. Extending Dataset Diversity: Future research should incorporate more
recent and large-scale traffic datasets that capture advanced threats such
as adversarial intrusions, zero-day exploits, and polymorphic malware.
This would strengthen the empirical evidence for robustness under
evolving attack scenarios.

2. Adversarial Robustness: Given the rise of adversarial machine
learning, enhancing the system’s resilience to adversarial perturbations
is an essential next step. Techniques such as adversarial training,
defensive distillation, or ensemble defences could be employed to
mitigate vulnerabilities.

3. Lightweight Deployment: Although testing efficiency is already
competitive, further optimisation of both the detection model and
cryptographic primitives can reduce training cost and memory usage.
This would allow seamless deployment in edge and resource-
constrained environments such as [oT devices.

4. Federated and Privacy-Preserving Learning: Embedding
SignReencryption within federated learning frameworks would enable
collaborative intrusion detection across distributed entities without
centralising sensitive network data, aligning the system with

contemporary privacy regulations.
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5. Integration in Intelligent Transportation Systems (ITS): The
demonstrated efficiency of the signcryption scheme makes it suitable for
real-time vehicular communication. Pilot deployment within ITS
networks would provide practical insights into its scalability, throughput,
and resilience under operational traffic conditions.

6. Multilayer Intrusion Detection Frameworks: A promising direction
is the extension of the current architecture into a multilayer framework
that integrates detection across the network, host, and application levels.
Such an approach would enhance coverage, reduce the likelihood of
evasion, and improve detection granularity. When combined with
SignReencryption, a multilayer design could deliver both deep
contextual awareness and secure communication across heterogeneous

operational environments.

6.3 Concluding Insights

The research presented in this work demonstrates that unifying advanced deep
learning architectures with efficient cryptographic mechanisms provides a
viable pathway for next-generation intrusion detection systems. By jointly
addressing the core challenges of detection accuracy, minority class sensitivity,
computational feasibility, and secure communication, SignReencryption
establishes a strong foundation for operational deployment. Future refinements,
particularly in the direction of multilayer architectures and privacy-preserving
collaboration, are expected to further elevate its role in safeguarding modern

networked infrastructures.
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