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ABSTRACT 

 

The increasing sophistication of cyber threats, particularly in decentralized and 

resource-constrained environments such as the Internet of Things (IoT), 

demands adaptive and efficient security solutions. This study introduces 

SignReencryption, a unified framework that integrates signcryption, proxy re-

encryption (PRE), and Transformer-based intrusion detection to deliver both 

cryptographic assurance and intelligent adaptability. Signcryption ensures 

confidentiality and authenticity in a single lightweight operation, while PRE 

enables scalable, fine-grained access control without exposing plaintext. A 

TabTransformer-based intrusion detection system complements these 

cryptographic mechanisms, achieving classification accuracies of 94% on 

CICIDS2017, 99% on CIDDS-001, and 97% on NSL-KDD, with particular 

strength in detecting minority attack classes traditionally overlooked by 

baseline models. Optuna-driven hyperparameter optimization revealed dataset-

specific configurations, demonstrating the adaptability of the TabTransformer 

across heterogeneous traffic distributions. Experimental evaluation further 

shows that SignReencryption reduces ciphertext expansion by up to 50% and 

lowers per-message execution time by nearly half compared to conventional 

Sign-Then-Encrypt schemes, confirming its practicality for real-time and 

bandwidth-limited environments such as intelligent transportation systems. 

Overall, the framework advances intrusion detection by uniting cryptographic 

efficiency with adaptive intelligence, offering a scalable, resilient, and 

operationally viable defense model for modern cybersecurity challenges. 

 

Keywords: Signcryption; Cryptography; Transformer Neural Network;  

Intrusion Detection System; Internet of Things 

 

Subject Area: QA75.5-76.95   
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

The rapid evolution of cyber threats such as advanced persistent threats (APTs), 

ransomware, and state-sponsored attacks has rendered traditional cybersecurity 

measures inadequate. These threats continue to adapt, bypassing static security 

protocols and requiring increasingly sophisticated defence strategies. One such 

defence mechanism is adaptive cryptography, which dynamically adjusts to 

evolving threats. Static cryptographic methods often fail to meet the demands 

of modern cyber threats, making adaptive cryptographic strategies crucial for 

addressing dynamic risks. 

SignReencryption, a synthesis of signcryption, proxy re-encryption 

(PRE), and Transformer Neural Networks (TNN), offers a more robust 

framework for secure data transmission. It enables the re-encryption of a 

previously signcrypted message without decryption, thus increasing efficiency 

and security (Ateniese et al., 2005). This combination allows cryptographic 

systems to evolve in response to emerging threats, ensuring both confidentiality 

and authenticity in real-time communications. 

This research examines signcryption, PRE, and TNN as individual 

elements that, when integrated, offer adaptive security mechanisms, providing 

enhanced data protection and efficiency in modern digital communication 

systems. 
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1.2 Importance of the Study 

The growing sophistication and volume of cyber threats such as advanced 

persistent threats (APTs), ransomware, and zero-day attacks pose significant 

challenges to traditional cryptographic systems. These systems, often static in 

nature, are ill-equipped to handle the evolving and dynamic nature of modern 

cyberattacks. As cyber threats continue to adapt, the need for more dynamic, 

adaptive cryptographic solutions has become increasingly evident. 

This study is critical because it introduces an innovative approach by integrating 

signcryption, proxy re-encryption (PRE), and Transformer Neural Networks 

(TNN) to create an adaptive cryptographic framework. The integration of these 

three technologies offers a dynamic response to evolving threats, ensuring both 

security and efficiency in data transmission. 

 

1. Signcryption enables confidentiality and authenticity in a single step, 

reducing computational overhead which is an essential feature for 

resource-constrained environments (Kanchan et al., 2019). 

2. PRE allows data to be re-encrypted by a semi-trusted proxy without 

decrypting it, improving data sharing and access control in decentralised 

networks, such as the Internet of Things (IoT) (Ateniese et al., 2005). 

3. TNN provides real-time threat adaptation based on emerging attack 

patterns and improving network security through continuous learning 

(Heaton, 2018). 

 

 The combination of these techniques offers enhanced security by 

adapting to evolving threats, optimising computational efficiency, and ensuring 

scalable data sharing across distributed environments. This approach is 

especially significant for sectors like IoT and decentralised networks, where 

data security and flexible access control are paramount. 

 

The study’s results will contribute to the development of more adaptive 

and scalable cryptographic systems that can respond to emerging cyber threats 

in real-time, offering proactive protection against new attack techniques. As 

such, this study is not only important for improving the security of distributed 
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systems but also for ensuring that cryptographic solutions can evolve with the 

increasingly sophisticated nature of cybersecurity challenges. 

 

1.3 Problem Statement 

The increasing sophistication and frequency of cyber-attacks pose significant 

challenges to traditional cryptographic systems. Advanced persistent threats 

(APTs), zero-day exploits, and ransomware continue to outpace conventional 

security defences, highlighting the need for adaptive cryptographic solutions 

that can effectively address evolving threats. Traditional cryptographic methods, 

relying on static encryption techniques, struggle to provide the necessary 

flexibility, scalability, and efficiency in dynamic environments such as IoT 

networks and decentralised systems. The key challenges faced by current 

cryptographic systems are as follows: 

1. Inability to Adapt to Emerging Cyber Threats: 

Traditional systems are static and unable to dynamically respond to new 

and evolving cyber threats. As attackers continuously refine their 

strategies, conventional cryptographic systems often fail to protect data 

from new vulnerabilities. Without the ability to adapt to emerging 

threats, these systems leave sensitive data exposed to advanced cyber-

attacks. 

2. Scalability Issues in Decentralised Systems: 

As decentralised networks like IoT grow, traditional encryption methods 

struggle with scalability. These systems face significant challenges in 

managing access control and data sharing across a growing number of 

users, devices, and applications. The increasing complexity of these 

systems makes it difficult to maintain efficient key management and 

enforce flexible access policies without compromising security. 

3. Inefficient Key Management: 
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Managing encryption keys in large-scale decentralised systems remains 

a major obstacle. As the number of users and devices increases, key 

distribution and management become inefficient and prone to errors. 

This inefficiency can lead to security vulnerabilities, as poorly managed 

keys may result in unauthorised data access or decryption. 

4. Lack of Real-Time Adaptation: 

Existing cryptographic systems fail to adapt in real time to new threats 

or network conditions. Traditional systems typically operate with 

predefined settings and lack of parallel processing features based on 

changing circumstances or observed attacks. This lack of real-time 

adaptation leaves systems vulnerable to novel threats that do not fit 

predefined patterns. 

1.4 Aim and Objectives 

Aim: This study aims to develop a robust adaptive cryptographic framework 

that enhances cybersecurity by integrating machine learning and advanced 

cryptographic techniques. The framework will enable parallel processing for 

identifying the category of events to address evolving network security 

challenges, ensuring efficient, scalable, and secure data transmission. 

Objectives: 

1. Developing an Adaptive Cryptographic Framework 

Create a framework that combines machine learning and advanced 

cryptographic techniques, such as signcryption, proxy re-encryption 

(PRE), and transformer neural networks (TNN), to enhance 

cybersecurity. This framework will adapt dynamically to emerging 

cyber threats and improve overall security and efficiency. 

2. Integration of Transformer Neural Networks 
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Integrate TNN to provide real-time threat detection and adaptive 

cryptography, enabling parallel processing for identifying the category 

of events based on contextual network behaviour and evolving threats. 

3. Minimising Computational Overhead 

Utilise proxy re-encryption (PRE) to maintain encrypted 

communications across authorised users while preventing unauthorised 

access and data breaches. This minimises computational overhead by 

delegating re-encryption tasks to a proxy, thus optimising efficiency in 

decentralised systems. 

4. Securing Communication Channels 

Ensure secure and efficient communication across various channels, 

particularly for industries dealing with sensitive data such as healthcare, 

finance, and government. The framework will be designed to offer 

robust protection for data sharing and communication, crucial for sectors 

requiring high levels of security. 

1.5 Scope and Limitation of the Study 

Scope: 

This study focuses on developing and evaluating an adaptive cryptographic 

framework that integrates signcryption, proxy re-encryption (PRE), and 

transformer neural networks (TNN) to enhance cybersecurity in decentralised 

systems, such as Internet of Things (IoT) networks. The research will explore 

how these three technologies can work together to improve data confidentiality, 

integrity, and authenticity in environments that require flexible and scalable 

security solutions. 

 

Key areas of focus in the study include: 

• Real-time threat adaptation using TNN, enabling the cryptographic 

framework to parallel processing and identify the activities categories 

based on observed threats and contextual network behaviour. 



6 

• Minimisation of computational overhead through the use of 

signcryption to combine encryption and digital signature functions, 

improving efficiency while maintaining robust security. 

• Secure and scalable data sharing with PRE, which allows encrypted 

data to be securely re-encrypted by an intermediary (the proxy) without 

exposing plaintext data to unauthorised parties. 

 

 Additionally, the study will assess the scalability of these 

cryptographic techniques in decentralised environments and evaluate how well 

they adapt to emerging cybersecurity threats. The focus will be on developing a 

scalable solution capable of maintaining security while optimising performance 

in large, dynamic networks. 

 

Limitations: 

While this study aims to provide a comprehensive solution for adaptive 

cryptography, certain limitations should be acknowledged: 

1. Limited Testing Scope: 

o The study will primarily evaluate theoretical models and 

prototypes of signcryption, PRE, and TNN. It may not involve 

exhaustive testing in large-scale production environments or 

across highly distributed systems. As a result, real-world 

challenges related to system deployment and integration may not 

be fully addressed within the scope of this study. 

2. Novelty of TNN Integration: 

o The integration of TNN for adaptive security is a novel approach 

within the context of cryptographic systems. While the approach 

shows promise, its real-world performance in adapting to 

emerging threats will be explored through simulated 

environments rather than large-scale, live environments. The 

testing methodology will be based on simulations, which may 

not account for all variables present in actual deployment 

scenarios. 

3. Emerging Cryptographic Technologies: 
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o Due to the emerging nature of post-quantum cryptography and 

other advanced encryption protocols, this study may not fully 

address quantum-resistant methods or potential advancements in 

cryptography beyond the current focus. The integration of 

quantum-safe algorithms is not a priority for this research, and it 

is acknowledged that future advancements in this field could 

alter the approach outlined in this study. 

4. Compatibility with Legacy Systems: 

o The proposed system may face compatibility issues when 

deployed in existing decentralised infrastructures, especially 

those using legacy cryptographic systems. While the framework 

is designed to be scalable and flexible, integrating with existing 

systems, particularly those with outdated or incompatible 

cryptographic protocols, could present challenges. This will be 

considered as a limitation in terms of deployment feasibility in 

certain environments. 

5. Focus on Selected Applications: 

o The study will focus on the applications of this adaptive 

cryptographic framework within IoT and decentralised networks, 

with an emphasis on real-time threat adaptation and secure data 

sharing. While the framework is designed to be adaptable, its 

broader application across other domains of cybersecurity, such 

as cloud computing or enterprise networks, may require further 

research and adaptation. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction to SignReencryption 

Cryptography is the foundation of secure communication, ensuring 

confidentiality, integrity, and authenticity of data in digital environments. As 

cyber threats evolve, modern cryptographic techniques integrate multiple 

security mechanisms to enhance protection. Conventional cryptographic 

approaches rely on encryption for confidentiality, digital signatures for 

authenticity, and key management protocols for secure communication 

(Menezes, van Oorschot and Vanstone, 2018). However, emerging challenges 

in network security, such as adaptive cyber threats and scalability concerns, 

necessitate advanced cryptographic solutions that combine multiple security 

primitives efficiently. 

 

 SignReencryption, a synthesis of signcryption, proxy re-encryption, 

and Transformer Neural Network, enhances security and efficiency in data 

transmission. It allows re-encrypting a previously signcrypted message without 

decrypting it first(Ateniese et al., 2005), highlighting the necessity for adaptive 

cybersecurity strategies. This study explores three key cryptographic elements: 

signcryption, proxy re-encryption (PRE), and transformer neural networks 

(TNN) for adaptive security. Signcryption is a cryptographic scheme that 

simultaneously performs encryption and digital signature functions in a single 

operation, reducing computational overhead while ensuring both confidentiality 

and authenticity(Kanchan, Singh and Chaudhari, 2019). This efficiency makes 

it a valuable technique for secure communication in resource-constrained 

environments. Proxy re-encryption (PRE) allows a semi-trusted proxy to 

convert encrypted data from one recipient to another without decrypting it, 

enabling secure data sharing in dynamic environments such as cloud computing 

and decentralized networks (Ateniese et al., 2005) Lastly, transformer neural 

networks (TNN) for adaptive security apply machine learning models to parallel 

processing and identify the category of event based on contextual threats, 
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allowing systems to enhance real-time threat adaptation and detection (Heaton, 

2018). 

 

 Traditional encryption methods face efficiency and scalability 

challenges, particularly in decentralised networks and resource-constrained 

environments (Kanchan, Singh and Chaudhari, 2019). Signcryption enhances 

efficiency, reducing computational overhead while maintaining strong security 

guarantees. Proxy re-encryption improves data flexibility, ensuring that access 

control policies remain secure in dynamic systems such as cloud computing and 

the Internet of Things (IoT). Additionally, transformer-based adaptive security 

mechanisms enable proactive threat mitigation by learning from network 

behaviour and categorise the event with the parallel processing feature. 

 

By integrating these mechanisms, this study aims to develop a 

cryptographic framework that enhances security while optimising 

computational efficiency. The following sections provide a comprehensive 

analysis of existing research on these elements, highlighting advancements and 

potential areas for improvement. 

 

2.2 Signcryption 

Signcryption was initially introduced in 1997 by Yuliang Zheng, who claimed 

that his approach reduced computational costs by 50% and message expansion 

by 85% compared to the conventional method of applying digital signature 

followed by encryption. Zheng’s method was based on discrete logarithm 

cryptography and was proposed without formal security proofs (Zheng, 1997). 

In 1998, Zheng et al. extended this approach to elliptic curves, demonstrating a 

further reduction of 58% in computational cost and 40% in communication 

overhead (Zheng and Imai, 1998). However, due to the complexity of 

implementing elliptic curve signcryption, its practical adoption remained 

limited, particularly in environments such as VANET networks, where 

efficiency and scalability are critical. 

 

 Recent advancements have focused on enhancing the efficiency and 

applicability of signcryption for modern communication systems. Research by 
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Kanchan in 2018 introduced significant optimisations that improve 

computational performance, making signcryption more practical for resource-

constrained environments (Kanchan and Chaudhari, 2018). Unlike Zheng’s 

approach, which was challenging to implement in real-world applications, 

Kanchan’s model streamlines cryptographic operations, reducing processing 

time and energy consumption. This makes signcryption viable for real-time 

communication systems, where speed and efficiency are crucial. 

 

 Additionally, Kanchan’s work refines key management strategies and 

encryption mechanisms, mitigating delays associated with cryptographic 

computations. By optimising these operations, her approach ensures that 

signcryption remains relevant for next-generation secure communication 

applications, such as cloud computing and mobile transactions. In contrast to 

Zheng’s signcryption model, which is now considered less practical due to its 

complex implementation and computational constraints, Kanchan’s 

enhancements enable broader adoption in performance-sensitive environments. 

 

Further refining her work, Kanchan introduced additional 

optimisations that specifically address the computational challenges of 

signcryption in real-world applications. Her approach minimises processing 

delays, ensuring that signcryption can be efficiently deployed in time-sensitive 

environments such as Vehicular Ad Hoc Networks (VANETs). By streamlining 

cryptographic operations, Kanchan’s refinements enhance both security and 

efficiency, making signcryption more adaptable for secure communication in 

automated and decentralised networks(Kanchan, Singh and Chaudhari, 2019). 

These improvements make signcryption more practical for modern 

cybersecurity frameworks where real-time secure communication is a priority. 

 

 

2.2.1 Comparison with Traditional Approaches 

Prior to the development of signcryption, secure digital communication 

primarily relied on conventional paradigms such as Encrypt-then-Sign (EtS) 

and Sign-then-Encrypt (StE) (An, Dodis and Rabin, 2002). These approaches, 



11 

while functionally sound, impose notable limitations in terms of computational 

efficiency and structural elegance. 

 

i) Encrypt-then-Sign (EtS): This method first encrypts the message 

and then applies a digital signature to the encrypted output. While it 

ensures message integrity and confidentiality, it adds computational 

overhead due to separate cryptographic operations 

ii) Sign-then-Encrypt (StE): Here, the message is first signed and then 

encrypted, ensuring authenticity before confidentiality. However, 

this approach may expose signature details to adversaries if not 

properly implemented, making it susceptible to certain attacks 

 

 Signcryption addresses these challenges by integrating digital 

signature and encryption into a single, unified operation. This not only preserves 

the essential security attributes like confidentiality, integrity, authentication, and 

non-repudiation, but also significantly reduces computational complexity and 

bandwidth requirements. Owing to these advantages, signcryption has emerged 

as a highly efficient and secure alternative, particularly well-suited for resource-

constrained settings such as mobile devices, wireless networks, and IoT-based 

systems. 

 

2.2.2 Why Signcryption is Essential 

The convergence of digital signature and encryption operations into a unified 

cryptographic primitive, known as signcryption, has emerged as a vital 

advancement in ensuring security and privacy within cyber-physical systems 

(CPS), particularly in the context of Vehicular Ad Hoc Networks (VANETs). 

As demonstrated by Kanchan et al. (2021), signcryption plays a foundational 

role in addressing the growing demands of secure, real-time vehicular 

communication. Traditional schemes that treat signing and encryption as 

sequential, independent processes often incur higher computational costs and 

latency, which are impractical for latency-sensitive environments like 

intelligent transportation systems. By contrast, signcryption achieves 

confidentiality and authenticity simultaneously, thereby improving 

computational efficiency and reducing overall resource consumption. 
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 One of the critical motivations behind adopting signcryption in 

VANETs is the need for privacy-preserving mechanisms that still allow for 

secure and authenticated communication. In the proposed SPSR-VCP protocol, 

Kanchan et al. (2021) integrated signcryption with group signature schemes, 

effectively masking the identity of individual vehicles while ensuring that 

transmitted messages originate from legitimate and trusted sources. This dual 

feature is particularly valuable for protecting sensitive information such as 

vehicular location, identity, and routing data, which, if exposed, could lead to 

serious security breaches including identity theft, location tracking, or even 

vehicular hijacking. 

 

Figure 2.1: Members’ Communication Flow 

Source: (Kanchan, Singh and Chaudhari, 2021) 

 

 Moreover, the SPSR-VCP protocol introduces proxy re-encryption to 

support load distribution and fault tolerance. Here, a semi-trusted proxy is 

assigned the task of converting ciphertexts originally intended for one entity 

(e.g., the main membership manager) into ciphertexts compatible with an 

alternative manager. This approach ensures uninterrupted service even when 

primary nodes become overloaded or temporarily unavailable, thereby 

enhancing system robustness without compromising confidentiality. 

Importantly, the re-encryption keys used in the scheme are designed to be non-

transitive, mitigating risks associated with unauthorised key derivation and key 

misuse which is a recognised vulnerability in proxy-based systems. 
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Figure 2.2: Proposed Authentication Protocol 

Source: (Kanchan, Singh and Chaudhari, 2021) 

 

 The protocol further leverages cloud computing capabilities to perform 

complex operations, such as computing group keys or updating signature 

accumulators. Offloading such computationally intensive tasks to the cloud 

ensures that the vehicles, which may have limited processing power, are not 

burdened by cryptographic operations. This enhances the scalability of the 

system, allowing it to function efficiently even under high-volume 

communication scenarios typical in urban traffic systems. 

 

 From a security standpoint, the robustness of the signcryption-based 

SPSR-VCP protocol is formally verified using BAN logic and the AVISPA tool. 

The analysis confirms the protocol’s resilience against a range of attacks, 

including impersonation, replay, Sybil, man-in-the-middle, and digital signature 

forgery. The integration of nonce-based freshness checks and authenticated 

encryption ensures that replay and duplication of messages are effectively 

prevented, while the use of traceable group signatures allows authorised entities, 

such as a tracing manager, to revoke misbehaving nodes without compromising 

the privacy of compliant ones. 

 

 In terms of performance, the protocol demonstrates notable gains. With 

a computational cost of only 5.675 milliseconds per message, it outperforms 

several comparable schemes, some of which exceed 12 milliseconds. 
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Additionally, the compact packet size of 57 bytes results in lower 

communication overhead, which is critical for high-speed and bandwidth-

limited vehicular environments. 

 

Figure 2.3: Computation cost of the algorithms 

Source: (Kanchan, Singh and Chaudhari, 2021) 

 

 

 

Figure 2.4: Final Packet-size with the comparison of the algorithms 

Source: (Kanchan, Singh and Chaudhari, 2021) 

 

 In conclusion, the adoption of signcryption within the SPSR-VCP 

framework represents a significant step forward in the design of secure, efficient, 
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and privacy-preserving communication protocols for vehicular cyber-physical 

systems. Its combined use of signcryption, group signatures, proxy re-

encryption, and cloud computing not only addresses the critical challenges of 

modern VANETs but also sets a precedent for future research and real-world 

deployment of secure vehicular networks. 

 

2.2.3 Challenges and Limitations of Signcryption 

While signcryption offers significant advantages over traditional encryption 

methods, several challenges and limitations remain. These hurdles can affect the 

practicality and scalability of signcryption, particularly in large-scale or 

resource-constrained environments. 

 

1. Efficiency in Resource-Constrained Environments 

Despite its inherent computational advantages, signcryption still 

presents efficiency challenges in resource-constrained environments, 

such as IoT devices, mobile networks, or low-power embedded systems. 

The cryptographic operations involved in signcryption can demand 

significant processing power and memory, which may overwhelm 

devices with limited resources. Although Kanchan et al. (2018) 

proposed efficient signcryption schemes, the need for constant key 

management, signature generation, and encryption still imposes 

performance limitations in environments with low CPU power and 

bandwidth constraints (Kanchan & Chaudhari, 2018). These limitations 

make it difficult to implement signcryption in scenarios where rapid 

execution and low power consumption are crucial. 

 

2. Key Management and Revocation 

Efficient key management and the revocation of compromised keys are 

inherent challenges for any cryptographic system, and signcryption is no 

exception. In the context of signcryption, managing dynamic keys and 

ensuring that only valid, authorised users can access the network is 

crucial. Kanchan et al. (2018) propose a robust system for key 

distribution and revocation in vehicular networks, but the 

implementation of these mechanisms can still be complicated, especially 



16 

when considering large networks with high mobility and frequent 

membership changes. The real-time revocation of keys and 

authentication processes must be streamlined to prevent any 

unauthorised access or compromised data from being transmitted, which 

remains a persistent challenge in practical applications. 

 

2.3 Transformer Neural Network (TNN) 

Transformer Neural Networks (TNNs) have had a profound impact on deep 

learning, particularly within the areas of sequence modelling and natural 

language processing (NLP). First introduced by Vaswani et al. (2017), the 

Transformer model marked a departure from earlier methods such as recurrent 

neural networks (RNNs) and long short-term memory (LSTM) networks by 

eliminating the need for recurrence. Instead of relying on sequential data 

handling, the Transformer leverages self-attention to effectively model complex 

relationships within the input. This structural innovation has greatly advanced 

machine learning capabilities in a range of applications, including automated 

translation, content generation, and understanding natural language. 

 

One of the most distinctive aspects of the Transformer is the self-

attention mechanism. This feature allows the model to evaluate how relevant 

each input token is in relation to every other token, regardless of their positions 

within the sequence. Unlike traditional methods that require processing in order, 

the self-attention approach enhances computational speed and allows for high 

levels of parallelisation, making it especially efficient when working with 

extensive or complex datasets (Vaswani et al., 2017). 
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Figure 2.5: Transformer-model architecture 

Source: (Vaswani et al., 2017) 

 

 The importance of self-attention lies in its ability to capture contextual 

dependencies by dynamically learning which tokens should be emphasised or 

downplayed during training. Enhancing this, the multi-head attention technique 

enables the model to examine the input from multiple perspectives at once, 

thereby extracting features at different levels of granularity. 

 

 Since the introduction of the original Transformer model, several 

highly influential variants have been developed. Among them are BERT and 

GPT, which have both achieved remarkable performance on a wide range of 

NLP benchmarks (Devlin et al., 2019). The flexibility and scale of Transformer-

based architectures have also extended their relevance beyond language tasks, 

finding applications in areas such as image analysis, genomic data processing, 

and decision-making systems like reinforcement learning. 
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 The Transformer’s capability to handle various input types in parallel 

and manage extensive data efficiently has positioned it as a cornerstone in the 

development of modern artificial intelligence systems. With continual 

advancements and the emergence of increasingly powerful models like GPT-3, 

this architecture is expected to remain central to the evolution of more intelligent 

and scalable machine learning technologies. 

 

2.3.1 Core Components of TNN 

This section outlines several fundamental elements that form the basis of 

knowledge in Transformer Neural Networks. The discussion will cover five key 

aspects that contribute to its power and effectiveness. (Vaswani et al., 2017). 

 

2.3.1.1 Self-Attention Mechanism 

Self-attention allows a Transformer to analyse how every token in a sequence 

relates to every other token simultaneously, unlike RNNs and LSTMs that 

handle data step by step. Each token is transformed into three separate vectors: 

query, key, and value based on its embedding. Attention scores are computed 

by taking the dot product of queries and keys, then applying a softmax function 

to normalise the results. These scores are used to weight the value vectors, 

producing an output for each token. This approach supports efficient parallel 

processing and helps capture dependencies over long distances in the input. 

 

2.3.1.2 Multi-Head Attention 

Multi-head attention extends the self-attention process by performing multiple 

attention operations concurrently, each using different parameter sets. This 

design allows the model to examine the input from several perspectives, 

capturing a wide range of relationships and patterns. Each head may detect 

different features, such as syntax or meaning, at various abstraction levels. 

Afterwards, the outputs from all heads are merged and passed through a linear 

transformation to generate the final result. This structure boosts the model’s 

ability to interpret complex data more effectively. 
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2.3.1.3 Positional Encoding 

Since Transformers process input tokens all at once, they lack built-in awareness 

of token order. To address this, positional encodings are integrated into the 

token embeddings, offering cues about each token’s place in the sequence. The 

original model uses sine and cosine functions to produce distinct patterns for 

each position. This enables the Transformer to learn the sequence structure and 

generalise to longer sequences than it was trained on, preserving performance 

and order awareness. 

 

2.3.1.4 Feed-Forward Networks (FFN) 

Once tokens have been processed through self-attention, each is individually 

passed through a feed-forward neural network. This FFN consists of two dense 

layers separated by a ReLU activation function, introducing non-linearity and 

enabling the model to detect complex patterns. Notably, the same FFN is applied 

to each token without considering others, enhancing computational efficiency. 

Despite this independence, the FFN refines token-level features and contributes 

to deeper representations. 

 

2.3.1.5 Encoder-Decoder Architecture 

The encoder-decoder setup is essential for handling tasks that require mapping 

an input sequence to an output, such as translating languages. The encoder 

converts the input into a continuous representation, which the decoder uses to 

generate the output. Both parts consist of several layers incorporating self-

attention and feed-forward sublayers. The decoder includes an extra attention 

mechanism that targets the encoder’s outputs, helping it focus on the relevant 

input during generation. To ensure proper sequence generation, masked self-

attention is applied in the decoder to block access to future positions. This 

structure enables the model to learn both short- and long-term dependencies 

effectively. 
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2.3.2 Benefits of Transformer Neural Networks in Predicting Known, 

Partially Known and Unknown Metadata 

Transformer Neural Networks (TNNs) have proven highly capable when 

working with various types of metadata, whether the data is fully known, 

partially complete, or entirely new. This versatility primarily stems from the 

self-attention mechanism, which allows the model to process sequences 

simultaneously and capture both short- and long-distance relationships within 

the data. Due to this architecture, TNNs often surpass traditional models like 

RNNs and LSTMs, especially in scenarios involving incomplete or unfamiliar 

data patterns. 

 

2.3.2.1 Predicting Known Metadata 

In cases where metadata is comprehensive and structured, TNNs excel by 

leveraging multi-head self-attention to interpret intricate connections among 

elements in the input. This approach enables the model to recognise both fine-

grained and broad dependencies across the sequence. Unlike RNNs or LSTMs, 

which process input step by step, Transformers analyse entire sequences at once, 

leading to improved efficiency and understanding of contextual relationships. 
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Figure 2.6: Transformer processes sequence in parallel 

Source: (Vaswani et al., 2017) 

 

The original Transformer model, as introduced by Vaswani et al. 

(2017), demonstrated superior results in machine translation compared to 

traditional RNN-based approaches. Its effectiveness is largely attributed to the 

ability to manage long-term relationships and its capacity for parallel processing 

areas where RNNs and LSTMs often fall short due to their reliance on sequential 

data handling. 

 

2.3.2.2 Predicting Partially Known Metadata 

In many practical applications, datasets often contain gaps, referred to as 

partially known metadata. Traditional sequence models typically address this 

through methods like data imputation or gating mechanisms, which can be both 

complex and limited in utilising the available information. Transformers, 

particularly those trained with masked input strategies (as in BERT), are 
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naturally suited to infer missing content using the surrounding tokens. For 

example, BERT employs a masked language modelling technique, where 

certain input tokens are hidden, and the model learns to predict them based on 

their context. This training method strengthens the model’s ability to reconstruct 

missing or uncertain portions of the data, as shown in Figure 2.7. 

 

 

Figure 2.7: Overview of BERT's pre-training and fine-tuning process 

Source: (Devlin et al., 2019) 

 

The model’s bidirectional attention design is key to this functionality 

as it allows simultaneous reference to both preceding and following elements in 

the sequence. This offers a notable advantage over models like RNNs and 

LSTMs, which operate in a strictly forward or backward manner and may 

struggle to retain or utilise long-distance information when faced with partial 

inputs (Devlin et al., 2019) 

 

2.3.2.3 Predicting Unknown Metadata 

One of the most remarkable capabilities of Transformer models is their ability 

to handle unknown metadata, or tasks involving data and contexts the model has 

not encountered during training. This capability is especially evident in 

pretrained models such as GPT-3. Unlike traditional models like RNNs and 

LSTMs, which typically require retraining or fine-tuning for each new task, 

Transformer models can generalise to new tasks with minimal task-specific 

training, using zero-shot or few-shot learning techniques. GPT-3, for example, 
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with its 175 billion parameters, is capable of performing a wide variety of tasks, 

including question answering, text generation, and translation, with minimal 

input, as shown in Figure 2.8. 

  

 

Figure 2.8: Comparison of learning paradigms 

Source: (Brown et al., 2020) 

 

The ability to perform these tasks without explicit retraining is a direct 

result of the large-scale pretraining and the flexibility of the Transformer 

architecture. Brown et al. (2020) demonstrated that GPT-3 can generate 

coherent and contextually appropriate outputs across various domains without 

requiring additional task-specific fine-tuning, a feature that significantly 

distinguishes it from traditional models such as RNNs and LSTMs. 
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2.3.3 Comparative Performance: Transformer vs Traditional 

Architectures 

The following table summarises the key advantages of Transformer-based 

models over RNNs and LSTMs in terms of handling known, partially known, 

and unknown metadata: 

 

Table 2.1:  Comparative Analysis of RNN/LSTM and TNN Architectures 

Across Key Aspects 

Aspect RNN / LSTM Transformer (TNN) 

Handling Sequential 

Dependencies 

Sequential, prone to 

vanishing gradients 

Parallel, captures long-

range dependencies 

without recurrence 

Efficiency and Speed 
Slow (sequential 

processing) 

Fast (parallel 

processing, especially 

with GPUs) 

Handling Missing 

Data 

Requires explicit 

mechanisms (e.g., 

imputation) 

Can infer missing data 

based on context (e.g., 

BERT) 

Generalisation to 

Unseen Tasks 

Needs retraining or 

fine-tuning 

Excellent zero-

shot/few-shot learning 

(e.g., GPT-3) 

Performance on NLP 

Tasks 

Outperformed by newer 

architectures 

State-of-the-art on 

various benchmarks 

(e.g., translation, QA) 

Model Scale 
Limited by parameter 

size and architecture 

Massive scale (e.g., 

GPT-3 with 175 billion 

parameters) 
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2.4 Proxy Re-encryption 

Proxy Re-encryption (PRE) is a cryptographic technique designed to enhance 

secure data sharing in decentralised environments. It allows a semi-trusted 

intermediary, called a proxy, to re-encrypt data encrypted under one key to a 

different key without ever learning the underlying plaintext. This enables the 

proxy to perform its role without the need to decrypt the data, thus preserving 

the confidentiality of the information. PRE facilitates secure and efficient data 

delegation by allowing data owners to grant access to encrypted data to a third 

party, such as a cloud provider or another user, without exposing the original 

content (Ateniese et al., 2005). 

 

The concept of Proxy Re-encryption was first introduced by Ateniese, 

et al., in 2005, and has since evolved with various improvements and 

optimisations. One of the key features of PRE is its ability to provide fine-

grained access control in environments where data may need to be shared or 

transferred between different users or systems. The proxy, acting as an 

intermediary, can convert ciphertext from one recipient’s encryption to another 

recipient’s encryption, allowing the owner of the data to control access without 

requiring the re-encryption process to be done manually. 

 

PRE is particularly useful in cloud computing and distributed systems, 

where users or organisations may want to securely share encrypted data with 

multiple recipients. In these systems, access control policies can change 

dynamically, and PRE enables seamless access management. For example, in a 

cloud storage environment, data owners may need to grant access to data to 

different parties over time, and PRE allows the data to be shared securely 

without re-encrypting the entire dataset for each new user. 

 

Several variants of PRE have been developed to address different 

security and functionality requirements, such as unidirectional PRE, where data 

is re-encrypted in only one direction (from the sender to the recipient), and 

bidirectional PRE, where re-encryption can happen in both directions. 

Advanced schemes, including identity-based PRE and hierarchical PRE, have 
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also emerged, providing greater flexibility and scalability for large systems 

(Goyal et al., 2006). 

 

In addition to its ability to support secure data sharing, PRE also offers 

efficiency advantages, as it avoids the need for data decryption and re-

encryption by the original owner. By delegating the re-encryption process to the 

proxy, systems using PRE can achieve significant performance improvements, 

particularly in environments where data needs to be accessed or transferred by 

multiple parties frequently. 

 

As data-sharing requirements grow in distributed and cloud-based 

systems, the role of PRE in enabling secure, efficient, and scalable data sharing 

continues to expand. The ongoing development of more secure and efficient 

PRE schemes, as well as their integration with other cryptographic protocols, 

makes PRE a valuable tool for modern cybersecurity. 

 

2.4.1 Key Concepts and Mechanisms in Proxy Re-encryption 

Proxy Re-encryption (PRE) is a cryptographic technique designed to enhance 

secure data sharing in decentralised systems. It allows a semi-trusted 

intermediary (the proxy) to re-encrypt ciphertext from one recipient's encryption 

key to another's without decrypting the data, preserving the confidentiality of 

the information throughout the process (Ateniese et al., 2005). This capability 

is significant because traditional encryption systems often require data to be 

decrypted before it can be re-encrypted for another recipient, which exposes the 

plaintext to the proxy. In contrast, PRE’s non-decrypting re-encryption feature 

ensures that the proxy cannot access the underlying data, thus preserving the 

confidentiality and integrity of the encrypted content (Ateniese et al., 2005). 

 

One of the key features of PRE is its ability to provide dynamic access 

control in environments where data may need to be shared or transferred 

between different users or systems. In traditional encryption, if access needs to 

be granted to new users, the data owner must either manually re-encrypt the data 

for each user or provide access to decryption keys, which can be cumbersome 

and insecure. PRE addresses these challenges by allowing the proxy to re-
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encrypt the data on behalf of the owner, without exposing the plaintext or 

requiring direct interaction between the owner and each new recipient. 

 

The proxy, acting as an intermediary, can convert ciphertext from one 

recipient’s encryption key to another recipient’s encryption key, enabling the 

data owner to control access to the encrypted data dynamically and securely. 

This eliminates the need for the owner to manually re-encrypt the data each time 

access needs to be granted or revoked. Additionally, the owner does not have to 

share their decryption keys with the proxy, thus ensuring that the proxy can 

perform its task without compromising the confidentiality of the data. This 

dynamic control over who can access the data and when is a significant 

advantage of PRE over traditional encryption mechanisms, especially in large, 

distributed systems where access control policies frequently change (Ateniese 

et al., 2005). 

 

In the typical PRE mechanism, the sender encrypts the data under their 

own public key, and the proxy can then perform re-encryption using a special 

transformation key provided by the sender or the data owner. This 

transformation key allows the proxy to re-encrypt the ciphertext so that the 

recipient can decrypt it using their own private key. The re-encrypted ciphertext 

is forwarded to the recipient without the proxy ever accessing the plaintext, 

ensuring both confidentiality and flexibility in managing access (Ateniese et al., 

2005). 

 

This dynamic access control feature makes PRE particularly useful in 

environments such as cloud computing, IoT, and decentralised networks, where 

data access needs to be controlled dynamically without overburdening the data 

owner or exposing sensitive information to intermediaries. 

 

2.4.2 Variants of Proxy Re-encryption and Its Efficiency Advantages 

Several variants of Proxy Re-encryption (PRE) have been developed to address 

different security and functionality requirements in various cryptographic 

applications. One such variant is unidirectional PRE, where the proxy can re-

encrypt data in only one direction, typically from the sender’s encryption to the 
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recipient’s encryption. This design simplifies the process in scenarios where 

data is shared from a single source to a single destination, providing a basic but 

secure method for delegated access control (Ateniese et al., 2005). In contrast, 

bidirectional PRE allows re-encryption to occur in both directions, meaning that 

the data can be re-encrypted from one user to another and vice versa. This bi-

directionality enhances flexibility, particularly in systems where users need to 

share data in multiple directions or in collaborative environments, where access 

rights may change frequently (Ateniese et al., 2005). 

 

In addition to these basic variants, advanced schemes such as identity-

based PRE and hierarchical PRE have emerged to address the scalability and 

flexibility requirements of large systems. Identity-based PRE uses identity-

based encryption (IBE) to derive public keys from user identities, streamlining 

key management and allowing the proxy to re-encrypt data without the need for 

explicit key distribution. This is particularly useful in systems where key 

management is a critical concern, such as in large-scale cloud environments 

(Goyal et al., 2006). On the other hand, hierarchical PRE introduces multi-level 

access control, allowing for more sophisticated delegation of decryption rights 

in organisational structures, where different users or departments may need 

different levels of access to the encrypted data (Goyal et al., 2006). These 

advanced schemes provide greater flexibility and scalability, enabling PRE to 

be effectively implemented in large, distributed environments, including cloud 

computing and enterprise networks. 

 

Beyond its ability to support secure data sharing, PRE offers significant 

efficiency advantages, particularly in scenarios where data needs to be accessed 

or transferred by multiple parties. One of the most important advantages of PRE 

is that it avoids the need for data decryption and re-encryption by the original 

data owner. Instead, the re-encryption process is delegated to the proxy, which 

means that the data owner does not have to spend time or resources manually 

re-encrypting data every time access is required by a new party (Ateniese et al., 

2005). This delegation not only reduces the computational burden on the data 
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owner but also enhances the efficiency of the system as a whole, especially in 

environments where data is frequently accessed or shared among a large number 

of recipients. 

 

As data-sharing requirements continue to grow in distributed and 

cloud-based systems, the role of PRE in enabling secure, efficient, and scalable 

data sharing becomes increasingly critical. PRE enhances the ability of 

organisations to share sensitive data securely while maintaining control over 

access, even as systems scale up. The continued development of more secure 

and efficient PRE schemes, coupled with their integration with other 

cryptographic protocols (such as signcryption, attribute-based encryption, and 

blockchain), makes PRE an indispensable tool in modern cybersecurity 

(Ateniese et al., 2005; Goyal et al., 2006). The adaptability of PRE to handle 

various access control policies, combined with its efficiency and scalability, will 

ensure its widespread use in future cybersecurity architectures. 

 

2.5 Related Works 

The growing prevalence of sophisticated and diverse cyber threats has led to an 

extensive body of research on network intrusion detection systems (NIDS) that 

leverage machine learning and deep learning techniques. Recent studies have 

focused on addressing fundamental challenges such as class imbalance, 

detection latency, and model generalisability across heterogeneous network 

environments. This section reviews two closely related and representative 

approaches proposed by Gupta, Jindal and Bedi (2021), which specifically 

tackle the issue of class imbalance through architectural and algorithmic 

innovations. The discussion highlights the design principles, methodological 

contributions, and dataset utilisation in each study, followed by a synthesis that 

outlines their comparative insights and implications for the development of 

robust, real-time intrusion detection frameworks. 
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2.5.1 LIO-IDS: LSTM with an Improved One-vs-One Strategy for 

Class-Imbalanced NIDS 

Gupta, Jindal and Bedi (2021) introduced LIO-IDS, a two-layer anomaly-based 

network intrusion detection system (NIDS) that integrates sequence modelling 

with an efficient multi-class decision scheme. The first layer distinguishes 

normal from malicious traffic using a long short-term memory (LSTM) network, 

while the second layer employs an Improved One-vs-One (I-OVO) ensemble to 

classify specific attack types. The improvement lies in reducing computational 

overhead by activating only three classifiers during inference, compared to the 

large number typically required by the standard OVO approach. 

The study evaluated LIO-IDS using three widely adopted datasets: 

NSL-KDD, CIDDS-001, and CICIDS2017, reporting on accuracy, detection 

rates, and computational times. The authors addressed the problem of class 

imbalance, which is common in intrusion detection scenarios where majority 

and minority attack types differ significantly in frequency. They identified four 

main categories of imbalance-handling techniques and incorporated data-level 

rebalancing alongside ensemble learning to mitigate this issue (Gupta et al., 

2021). 

Methodologically, the model employed Random Forest and balanced 

Bagging, together with oversampling techniques such as Random Oversampling 

(ROS), Borderline-SMOTE, and SVM-SMOTE, to improve recall for under-

represented attack types while maintaining computational efficiency. The I-

OVO design strategically partitions classes into majority and minority groups, 

training two multi-class classifiers (C1 and C2) and using a single binary 

classifier (C3) to resolve ambiguous predictions. This structure effectively 

balances accuracy with reduced inference time. 

The evaluation of the study relies on three well-established benchmark 

datasets: NSL-KDD, CIDDS-001, and CICIDS2017, with each contributing 

distinct characteristics that strengthen the comprehensiveness of the analysis. 

NSL-KDD offers a refined and de-duplicated version of the KDD’99 dataset, 

providing a balanced environment to evaluate detection and false alarm rates. 

CIDDS-001 adds realism through flow-based traffic derived from enterprise 



31 

networks, while CICIDS2017 represents modern attack patterns and updated 

traffic features. Using these datasets together allows the authors to assess the 

generalisability of their model across different network environments and data 

distributions. 

Despite its strengths, LIO-IDS depends heavily on the correct 

identification of majority and minority groups. As threat landscapes evolve, this 

grouping can become outdated. Furthermore, oversampling techniques, while 

improving recall, risk introducing noise if synthetic samples are generated near 

mislabeled or noisy decision boundaries, especially in legacy datasets such as 

NSL-KDD. 

 

2.5.2 CSE-IDS: Cost-Sensitive Deep Learning with Staged Ensemble  

In related research, Gupta, Jindal and Bedi (2021) also proposed CSE-IDS, a 

three-layer cost-sensitive anomaly-based NIDS that combines deep learning 

with ensemble methods. The first layer applies a cost-sensitive deep neural 

network (DNN) to filter normal and suspicious traffic, assigning higher 

misclassification costs to missed attacks. The second layer employs XGBoost 

to distinguish between normal traffic, majority attack types, and a pooled 

“minority” class, while the third layer refines this pooled class using a Random 

Forest model. 

The evaluation was again conducted on NSL-KDD, CIDDS-001, and 

CICIDS2017, with performance reported in terms of accuracy, recall, precision, 

F1-score, ROC, AUC, and computational efficiency (Gupta et al., 2021). 

Oversampling techniques, including Random Oversampling and SVM-SMOTE, 

were applied selectively at Layers 2 and 3 to enrich the minority class without 

overly distorting the overall data distribution. 

A key contribution of CSE-IDS lies in its cost-sensitive learning 

approach, which explicitly penalises misclassifications of rare attack types. The 

staged architecture progressively refines classification outcomes, reducing false 

positives by re-examining samples at deeper layers. This structural design 

contrasts with LIO-IDS, which focuses on efficient classifier utilisation through 

I-OVO reduction and temporal learning in its first stage. 
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As with LIO-IDS, the three datasets provide complementary strengths: 

NSL-KDD ensures a controlled benchmark, CIDDS-001 introduces enterprise-

scale realism, and CICIDS2017 brings contemporary attack diversity. The 

consistent use of these datasets across both studies enables direct comparison of 

detection capability, computational efficiency, and the impact of imbalance 

handling. 

 

2.5.3 Synthesis and Comparative Perspective 

Both LIO-IDS and CSE-IDS address the critical challenge of detecting minority 

attack classes within imbalanced datasets while maintaining efficiency suitable 

for near real-time application. LIO-IDS demonstrates that LSTM-based 

temporal modelling, combined with an I-OVO structure, achieves strong 

detection rates with low latency across NSL-KDD, CIDDS-001, and 

CICIDS2017 (Gupta et al., 2021). Conversely, CSE-IDS shows that cost-

sensitive training, when integrated with staged ensemble learning and targeted 

oversampling, enhances minority-class recognition and minimises false alarms 

under the same benchmarking conditions (Gupta et al., 2021). 

Collectively, these works underscore two complementary strategies for 

modern NIDS design which are embedding class-aware cost functions early in 

the learning process to bias detection toward rare yet impactful intrusions, and 

structuring the decision pipeline to minimise redundant multi-class comparisons 

without compromising classification granularity. Cross-dataset evaluation 

remains critical, as each dataset highlights different facets of the intrusion 

detection problem such as legacy noise, enterprise traffic realism, and modern 

attack complexity. 

 

2.6 Summary 

This study explores the integration of three advanced cryptographic techniques: 

signcryption, proxy re-encryption (PRE), and transformer neural networks 

(TNN) to enhance security and efficiency in data transmission. Signcryption 

combines encryption and digital signatures in a single operation, reducing 
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computational overhead while ensuring confidentiality and authenticity, making 

it suitable for resource-constrained environments (Kanchan, Singh and 

Chaudhari, 2019). PRE allows a semi-trusted proxy to re-encrypt data for 

different recipients without decrypting it, which is particularly useful for secure 

data sharing in dynamic systems such as cloud computing and IoT (Ateniese et 

al., 2005). TNN utilises machine learning models to parallel processing to 

identify the category of event in real time based on contextual threats, enhancing 

adaptive security (Heaton, 2018). 

These techniques address the growing complexity of cybersecurity 

threats and the need for adaptive security strategies. While traditional 

encryption methods face scalability and efficiency challenges, the integration of 

signcryption, PRE, and TNN provides a solution that enhances security, 

efficiency, and scalability in modern, decentralised systems. This framework is 

crucial for mitigating emerging threats and ensuring secure communication in 

the evolving landscape of digital security. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction to Proposed Solution 

The increasing complexity of cybersecurity threats, particularly within 

decentralised systems such as Internet of Things (IoT) networks, has 

necessitated the development of more adaptive and intelligent security 

mechanisms. This study focuses on the design and evaluation of an adaptive 

cryptographic framework that integrates signcryption, proxy re-encryption 

(PRE), and transformer neural networks (TNN) to enhance data confidentiality, 

integrity, and authenticity in such environments. 

 

By combining advanced cryptographic techniques with machine 

learning, the proposed framework aims to dynamically respond to evolving 

threats. Transformer Neural Networks will be utilised for real-time threat 

detection and contextual analysis, allowing the system to parallel processing for 

identify the category of event in response to observed network behaviour. 

 

This research further examines the scalability of these technologies in 

decentralised settings and evaluates the framework’s adaptability to emerging 

cybersecurity challenges. The goal is to develop a solution that not only meets 

the security demands of modern distributed systems but also ensures efficient 

and scalable performance in real-world applications. 

 

3.2 Implementation of SignReencryption  

In SignReencryption, the core objective of this project is to develop an adaptive 

cryptographic framework by integrating Intrusion Detection System (IDS) with 

a Transformer Neural Network (TNN). This deep learning architecture is known 

for its strength in processing sequential data.  
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3.2.1 Mechanism Overview: Intrusion Detection System with 

Transformer Neural Network 

The system is trained using the CICIDS2017 dataset which is a widely accepted 

benchmark in the cybersecurity research community. This dataset includes a 

rich variety of network traffic scenarios, encompassing both normal operations 

and multiple forms of attack, making it a robust foundation for developing and 

evaluating detection systems. 
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Figure 3.1: Intrusion Detection System integrated with TNN 
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In this design, the Transformer Neural Network functions as the central 

classification engine. Unlike conventional machine learning models, the TNN 

is particularly effective in capturing long-range dependencies within sequences 

of data, which is essential in network traffic analysis where malicious behaviour 

can manifest subtly over time. Additionally, the parallel processing nature of 

Transformers allows for more efficient training and inference, enabling the IDS 

to operate in near real-time, even in high-throughput environments. 

 

The trained TNN is embedded directly within the IDS framework. 

Rather than simply flagging any anomaly, the system is designed to classify 

observed network events into three meaningful categories:  

1. Critical - indicating severe threats that require immediate attention. 

2. Suspicious - denoting potentially harmful activities that warrant closer 

inspection. 

3. Legitimate - representing normal, benign network behaviour. 

 

This classification not only aids in reducing false positives but also 

assists cybersecurity teams in prioritising their responses based on the severity 

of detected activities. Critical events typically point to immediate threats such 

as brute force, cross-site scripting or denial-of-service attempts. Suspicious 

events might indicate probing, unusual behaviour, or patterns that merit closer 

investigation. Legitimate events are recognised as normal traffic, contributing 

to more accurate baselining and less alert fatigue. 

 

The IDS operates in a passive monitoring mode, continuously 

observing network traffic without altering it. This ensures that the system does 

not interfere with normal operations while still providing comprehensive 

visibility across the network. When the IDS guided by the TNN, identifies 

behaviour that deviates significantly from the learned norm or matches patterns 

associated with known threats, it generates a detailed alert. This alert is then 

forwarded to a centralised Security Information and Event Management (SIEM) 

system. 
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The SIEM acts as the central nervous system of the organisation’s 

cybersecurity operations. It aggregates and logs the alerts, providing a historical 

record of events for auditing and forensic purposes. Furthermore, the SIEM 

notifies the cybersecurity team through configured channels such as dashboards, 

emails, or integrated ticketing systems, prompting further analysis and response. 

The final layer of this mechanism involves human judgment. The cybersecurity 

team investigates the alerts, validates their accuracy and takes appropriate action, 

ranging from isolating devices or dropping the message to initiating deeper 

investigations. 

 

By combining the pattern recognition power of Transformer models 

with the strategic role of IDS and SIEM, this project offers a comprehensive 

approach to modern cybersecurity defence which is proactive, intelligent, and 

adaptable to evolving threats. 

 

3.2.2 Real-World Application and Data Flow 

In the real-world deployment of the proposed solution, the system operates at 

two key levels: secure communication and threat detection, working together 

to safeguard sensitive information while ensuring network integrity.  
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Figure 3.2: Normal message flow with the proposed solution 
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The communication flow is as follows: 

1. The sender prepares a message and encrypts it using their own public 

key, ensuring its integrity and origin. 

2. When the message needs to be shared securely with an authorised 

receiver, and must remain confidential during transmission, the system 

employs proxy re-encryption. 

3. A re-encryption key is generated and used by a trusted proxy to convert 

the original ciphertext into a format that can be decrypted by the receiver 

without ever accessing the plaintext. 

4. The re-encrypted message is then forwarded to the intended recipient. 

5. The receiver decrypts the message using their private key, ensuring that 

only authorised individuals can access the original content. 

 

 When a user (the sender) wishes to transmit a message, the 

signcryption process is the first step before the message even leaves the internal 

network. This is facilitated by a signcryption machine, which performs both 

cryptographic signing and encryption in a single and efficient operation. This 

approach enhances both performance and security by addressing multiple 

objectives at once. The signcryption process ensures three essential elements of 

secure communication: 

1. Confidentiality – The message is encrypted so that only the intended 

recipient, holding the correct private key, can decrypt and access its 

contents. 

2. Integrity – Any alteration to the message in transit would invalidate 

the digital signature, making tampering detectable. 

3. Authentication and Non-repudiation – The signature confirms the 

sender’s identity, and because it is cryptographically tied to the 

sender’s private key, the sender cannot later deny having sent the 

message. 

 By integrating these protections, signcryption reduces overhead and 

complexity compared to applying encryption and digital signatures separately, 



41 

 

while still ensuring robust security suitable for hostile environments like the 

Internet. 

 

Once the message is signcrypted, only the encrypted and signed 

version is sent across the public Internet. At no point is the original message 

exposed during transmission. This is particularly crucial because the Internet is 

assumed to be an untrusted and hostile environment which an attacker may 

always be present, constantly attempting to intercept or manipulate the data. 

However, since the message is never revealed in plaintext and has a valid 

cryptographic signature, attackers gain nothing useful from any interception 

attempts. 

 

For added security and flexibility in communication, the system 

incorporates proxy re-encryption (PRE). If the signcrypted message is intended 

for multiple recipients, PRE allows a proxy to convert the ciphertext for the 

specific recipient without ever needing access to the original content or 

decryption keys. This means there is no need to download, decrypt, and re-

encrypt the data for every new user. The original sender simply provides a re-

encryption key, and the proxy handles secure redirection efficiently and without 

compromising confidentiality. As a result, sensitive data remains secure even 

when being routed through third parties or intermediaries. 

 

Meanwhile, the IDS remains active in the background, continuously 

monitoring network traffic, including message transmissions. The IDS uses the 

trained TNN to detect anomalies or patterns of behaviour that might indicate 

malicious activity. If any traffic is flagged as critical or suspicious, an alert is 

immediately generated and forwarded to the SIEM system. 

 

The SIEM component plays a central role in the organisation's incident 

response strategy. It logs all alerts for traceability and forensic purposes and 

sends real-time notifications to the cybersecurity team. Importantly, the system 

does not act independently to block or remove data but rather waits for expert 
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decisions from cybersecurity team ensuring that human analysts validate 

potential threats and determine the appropriate course of action. 

 

This integrated data flow from secure message transmission through 

proactive threat monitoring demonstrates a practical, end-to-end cybersecurity 

framework. The proposed solution not only improves the efficiency and security 

of internal and external communications but also reinforces organisational 

resilience through detection and human-in-the-loop decision making. It reflects 

a modern and scalable approach to cybersecurity that addresses both 

confidentiality and operational readiness in real-world environments. 

 

3.3 Hardware and Software Requirements 

This section outlines the hardware and software environments utilised in the 

development and implementation of the proposed system. A combination of 

local and cloud-based tools was employed to support tasks such as data 

preprocessing, neural network training, cryptographic simulation, and 

visualization. 

3.3.1 Hardware Specifications 

All experiments and development tasks were conducted using the following 

hardware setup: 

Table 3.1:  Hardware Specifications 

Component Specification 

Processor 
AMD Ryzen 7 7730U with Radeon Graphics, 2.00 GHz, 8 

cores, 16 threads 

RAM 24 GB DDR4 

Storage 1 TB Micron 2400 NVMe SSD 

GPU (for training) NVIDIA Tesla T4 (via Google Colab) 

Operating System Windows 11  

 

 For training the Transformer Neural Network (TNN), Google Colab 

was utilised to leverage GPU acceleration, which significantly reduced the 

training time and improved performance. 
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3.3.2 Software Specifications 

All experiments and development tasks were conducted using the following 

software setup: 

 

Table 3.2:  Software Specifications 

Software Tool Purpose 

Visual Studio Code Used for code development and data preprocessing. In 

particular, it was used to convert .pcap files into .csv 

format for easier manipulation and input into machine 

learning models. 

Google Colab Used for training the Transformer Neural Network 

using TensorFlow/PyTorch with GPU support. Colab 

allowed access to scalable resources for iterative 

training and validation of models. 

GitHub Served as the primary source for pre-built TNN 

architectures and open-source reference 

implementations. Repositories were cloned and 

adapted for the project’s specific use case in secure 

communication. 

Draw.io Used to visualise system architecture, workflows, and 

the overall integration between signcryption modules 

and TNN-based anomaly detection. These diagrams 

enhance understanding and presentation of the 

methodology. 

 

 This software-hardware ecosystem ensured a robust, reproducible, and 

efficient environment for implementing and validating the proposed hybrid 

cryptographic framework. 

 

3.4 Workplan 

The project’s timeline, major tasks, and key deliverables are laid out in a 

detailed Work Breakdown Structure (WBS). This structured plan outlines each 

phase of the project along with estimated durations, helping to ensure that 
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progress stays on track and deadlines are met. The WBS provides a clear view 

of how the work is organised and when each component is expected to be 

completed. 

 

Work Breakdown Structure (WBS) 

 

Figure 3.3: Overview of Tasks 

 

 

Figure 3.4: Task 1: Introduction (2/17/2025 – 3/4/2025) 

 

 

Figure 3.5: Task 2: Literature Review (3/5/2025 – 4/1/2025) 

 

 

Figure 3.6: Task 3: Methodology and Work Plan (4/2/2025 – 4/21/2025) 
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Figure 3.7: Task 4: Results and Discussion (6/23/2025 – 8/1/2025) 

 

Figure 3.8: Task 5: Conclusion and Recommendations (8/4/2025 – 8/21/2025) 

 

Figure 3.9: Task 6: Finalisation (8/22/2025 – 8/29/2025) 

 

3.5 Summary 

The growing complexity and sophistication of cybersecurity threats especially 

in decentralised environments like Internet of Things (IoT) networks have 

highlighted the need for more adaptable security frameworks. Traditional static 

approaches are increasingly insufficient in addressing dynamic attack patterns 

and evolving threat landscapes. In response to this challenge, this research 

proposes an integrated cryptographic and machine learning-based framework 

that combines signcryption, proxy re-encryption and Transformer Neural 

Networks. The goal is to strengthen data confidentiality, integrity, authenticity 

and non-repudiation while enabling real-time threat detection and adaptive 

response mechanisms suited for complex and distributed systems. 

 

The chapter begins by outlining the conceptual foundation of the 

system, which brings together robust data encryption and advanced threat 

detection. Signcryption is utilised to streamline the encryption and signing 

process into a single step, ensuring key security features such as confidentiality, 

integrity, and authentication are maintained before any data leaves the internal 
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network. To further enhance secure communication, proxy re-encryption is 

employed. This allows encrypted data to be securely shared with authorised 

recipients without the need to decrypt and re-encrypt the message at each stage, 

thereby preserving privacy and improving efficiency. 

 

On the monitoring side, the IDS is embedded with a Transformer 

Neural Network to classify network activity into categories such as critical, 

suspicious, or legitimate. The mechanism capitalises on the TNN’s ability to 

capture long-range dependencies in data sequences, making it particularly 

effective in detecting both known and previously unseen patterns of network 

behaviour. When suspicious activity is identified, the IDS generates an alert, 

which is forwarded to the Security Information and Event Management (SIEM) 

system for logging and escalation to the cybersecurity team. A practical data 

flow model is included to demonstrate how the components interact from 

message transmission and signcryption, to threat detection and incident 

response.  

 

 Finally, this methodology is supported by clearly defined hardware and 

software requirements. These technical specifications ensure the necessary 

infrastructure is in place to support both cryptographic processing and neural 

network training. Collectively, this approach lays out a structured and goal-

oriented plan for achieving an adaptive cryptography system.  
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CHAPTER 4 

 

4 DATASET AND EXPERIMENTAL SETUP 

 

4.1 Dataset Used  

This study employs three publicly available network intrusion detection datasets: 

CICIDS2017, CIDDS-001, and NSL-KDD. These datasets were selected to 

facilitate a comprehensive evaluation of the TabTransformer model across 

heterogeneous network environments and a wide spectrum of intrusion types. 

By incorporating both contemporary and well-established datasets, the 

assessment encompasses modern cyberattack patterns as well as classical 

intrusion scenarios, thereby providing a rigorous measure of the model’s 

generalisability and detection capability. 

 

4.1.1 CICIDS2017 

The CICIDS2017 dataset was developed by the Canadian Institute for 

Cybersecurity and it is recognised as one of the most representative benchmarks 

for intrusion detection research. It contains network traffic data captured over a 

five-day period, combining benign activities with a variety of modern attack 

vectors, including Denial of Service (DoS), brute force, infiltration, botnet, and 

web-based attacks. The dataset is provided in comma-separated values (CSV) 

format with each record representing a network flow described by more than 80 

features. These features include flow-level statistics such as duration and packet 

size distribution as well as protocol-specific attributes obtained through deep 

packet inspection. The diversity of attack types and the realistic nature of the 

traffic make CICIDS2017 highly suitable for evaluating a model’s ability to 

detect complex and evolving threats in real-world network environments. 

 

The dataset is organised into multiple files corresponding to specific 

attack scenarios and benign activity. Table 4.1 summarises the file composition, 

associated attack types, and the source and victim IP addresses involved in each 

capture.  
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Table 4.1:  Description of CICISD2017 dataset 

File Name Description Attacker IP Victim Local IP 

Monday-

WorkingHours.pcap_ISCX.csv 

Benign - - 

Tuesday-

WorkingHours.pcap_ISCX.csv 

Benign, SSH-Patator, 

FTP-Patator 

Kali 

(205.174.165.73) 

WebServer Ubuntu 

(192.168.10.50) 

Wednesday- 

WorkingHours.pcap_ISCX.csv 

Benign, DoS 

Slowhttptest, DoS 

slowloris, DoS Hulk, 

DoS GoldenEye, 

Heartbleed 

Kali 

(205.174.165.73) 

WebServer Ubuntu 

(192.168.10.50),  

Ubuntu12 

(192.168.10.51) 

Thursday-WorkingHours-

Morning-

WebAttacks.pcap_ISCX.csv 

Benign, Web Attack 

(Brute Force, Sql 

Injection & XSS) 

Kali 

(205.174.165.73) 

WebServer Ubuntu 

(192.168.10.50)  

 

Thursday-WorkingHours-

Afternoon-

Infilteration.pcap_ISCX.csv 

Benign, Infiltration Kali 

(205.174.165.73) 

Windows Vista 

(192.168.10.8), 

MAC 

(192.168.10.25) 

Friday-WorkingHours-

Morning.pcap_ISCX.csv 

Benign, Bot Kali 

(205.174.165.73) 

Win 10 

(192.168.10.15),  

Win 7 

(192.168.10.9), 

Win 10 

(192.168.10.14), 

Win 8 

(192.168.10.5), 

Vista 

 (192.168.10.8) 

Friday-WorkingHours-

Afternoon-

PortScan.pcap_ISCX.csv 

Benign, Port Scan Kali 

(205.174.165.73) 

 Ubuntu16  

(192.168.10.50) 

Friday-WorkingHours-

Afternoon-

DDos.pcap_ISCX.csv 

Benign, DDoS Three Win 8.1 

(205.174.165.69 - 

71) 

Ubuntu16  

(192.168.10.50) 
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In addition to file-level organisation, the dataset includes well-defined 

attack categories. Table 4.2 presents these categories, along with concise 

descriptions and their significance in intrusion detection research. 

 

Table 4.2:  CICIDS2017 Attack Categories, Descriptions, and Detection 

Significance 

Attack Category Description Significance for Detection 

Normal Traffic 

Legitimate user-generated 

network traffic representing 

baseline behaviour. 

Establishes normal patterns 

of communication, reducing 

false positives in anomaly-

based detection. 

Denial of Service 

(DoS) 

High-volume traffic intended 

to overwhelm services and 

disrupt availability. 

Ensures effective detection 

of service disruption 

attempts that threaten system 

uptime. 

PortScan 

Systematic probing of 

network ports to identify open 

or vulnerable services. 

Facilitates early 

identification of 

reconnaissance activity and 

potential exploitation 

attempts. 

Patator 

Automated brute-force 

attempts to guess 

authentication credentials. 

Detects unauthorised access 

attempts and mitigates brute-

force attack threats. 

Web Attacks 

Exploitation of web 

application vulnerabilities, 

including SQL injection and 

cross-site scripting (XSS). 

Protects web interfaces from 

injection-based and script-

based compromises. 

Botnet 

Compromised devices under 

remote control, used to 

execute coordinated 

malicious activities. 

Detects large-scale, 

distributed threats originating 

from infected hosts. 

Infiltration 

Covert access to internal 

systems through 

compromised hosts or 

malicious payloads. 

Identifies stealthy, high-risk 

breaches such as advanced 

persistent threats (APTs). 
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4.1.2 CIDDS-001 

The CIDDS-001 dataset (Coburg Intrusion Detection Data Set) was generated 

in a simulated corporate network environment at the Coburg University of 

Applied Sciences. It comprises traffic from both an external server and an 

OpenStack-based cloud infrastructure, encompassing benign activity as well as 

labelled intrusion attempts such as Denial of Service (DoS), port scanning, brute 

force, and ping scans. The dataset is presented in a flow-based format, derived 

from packet capture (pcap) data, with each record summarising the 

communication between two IP addresses. The recorded attributes include 

source and destination IP addresses, ports, protocol type, the number of bytes 

transferred, and connection duration. The controlled simulation environment 

and precise attack labelling make CIDDS-001 a valuable benchmark for 

assessing a model’s adaptability to diverse traffic patterns and intrusion 

behaviours. 

 

The attack categories present in CIDDS-001, along with their 

descriptions and relevance for detection, are summarised in Table 4.3. 
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Table 4.3:  CIDDS-001 Attack Categories, Descriptions, and Detection 

Significance 

Attack Category Description Significance for Detection 

Normal Traffic 

Legitimate 

communication within a 

simulated corporate 

network environment. 

Establishes the baseline 

behaviour of the network, 

aiding in the reduction of 

false alarms in anomaly-

based systems. 

Denial of Service 

(DoS) 

Traffic floods intended 

to overwhelm network 

services and render them 

unavailable. 

Enables prompt detection of 

service disruption attempts 

to maintain operational 

continuity. 

Port Scan 

Sequential probing of 

network ports to identify 

open or vulnerable 

services. 

Facilitates early 

identification of 

reconnaissance activities 

that may precede targeted 

attacks. 

Brute Force 

Repeated automated 

attempts to guess 

authentication 

credentials. 

Detects unauthorised access 

attempts and mitigates 

credential-based attack 

vectors. 

Ping Scan 

Transmission of Internet 

Control Message 

Protocol (ICMP) echo 

requests to identify 

active hosts. 

Supports network mapping 

detection, preventing 

adversaries from identifying 

potential targets. 
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4.1.3 NSL-KDD 

The NSL-KDD dataset is an enhanced version of the KDD Cup 1999 benchmark, 

specifically developed to address the redundancy and class imbalance issues in 

its predecessor. It comprises network connection records, each represented by 

41 distinct features organised into three principal categories. The first category, 

basic connection features, describes fundamental session attributes such as 

connection duration and protocol type. The second category, content-based 

features, captures semantic information extracted from the payload, including 

indicators of anomalous or suspicious activity such as unsuccessful login 

attempts. The third category, traffic-based features, summarises statistical 

properties of network flows over a defined temporal window, including metrics 

such as the number of connections targeting the same host. 

 

Each connection is classified as either normal or belonging to one of 

four attack categories: Probe, Denial of Service (DoS), User to Root (U2R), and 

Remote to Local (R2L). Despite being older than CICIDS2017 and CIDDS-001, 

NSL-KDD remains a widely adopted benchmark in intrusion detection research. 

Its structured feature representation and extensive adoption in prior studies 

make it a valuable reference for comparative performance evaluation. The 

attack categories and their significance are outlined in Table 4.4. 
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Table 4.4:  NSL-KDD Attack Categories, Descriptions, and Detection 

Significance 

Attack Category Description Significance for Detection 

Normal Traffic 

Legitimate user or 

system-generated 

network activity without 

malicious intent. 

Establishes a behavioural 

baseline for distinguishing 

abnormal connections. 

Denial of Service 

(DoS) 

High-volume requests or 

malicious commands 

designed to exhaust 

resources and disrupt 

services. 

Detects large-scale service 

interruption attempts that 

threaten availability. 

Probe 

Network scanning and 

information-gathering 

activities aimed at 

identifying 

vulnerabilities. 

Enables proactive detection 

of reconnaissance activities 

before exploitation. 

User to Root 

(U2R) 

Exploits that allow an 

attacker with local user 

privileges to gain root or 

administrative access. 

Identifies privilege 

escalation attempts that 

could compromise entire 

systems. 

Remote to Local 

(R2L) 

Attempts by a remote 

attacker to gain local user 

access without prior 

authorisation. 

Detects unauthorised login 

or system access originating 

from external sources. 

 

4.2 Data Processing Pipeline of CICIDS2017 

The CICIDS2017 dataset was processed through a systematic pipeline to ensure 

reliability, consistency, and suitability for model training (Sharafaldin, Lashkari 

and Ghorbani, 2018). The pipeline consisted of eight key stages, described 

below. 
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4.2.1 Data Ingestion and Initial Inspection 

The dataset was loaded from a unified source compiled from the original daily 

traffic captures. Upon loading, the data structure was examined to verify correct 

feature definitions, appropriate data types, and plausible value ranges. The 

inspection phase also focused on detecting anomalies such as infinite values, 

missing observations, or inconsistencies in feature naming. Non-essential 

whitespace in column headers was removed to ensure uniformity. Statistical 

summaries and exploratory checks were conducted to confirm that the dataset 

retained its integrity prior to transformation. 

 

4.2.2 Label Normalisation and Taxonomy Aggregation 

The original labels in CICIDS2017 contain detailed attack subcategories, 

including variants of Denial of Service (DoS Hulk, DoS GoldenEye, Slowloris, 

SlowHTTPTest, and DDoS), reconnaissance activity (PortScan), brute force 

attempts (FTP-Patator, SSH-Patator), web application attacks (SQL injection, 

cross-site scripting, and brute force), botnet activity (Bot), infiltration attempts, 

and benign traffic. 

 

For experimental consistency, these subcategories were consolidated 

into seven higher-level classes: 

1. Normal 

2. DoS (all variants including DDoS) 

3. PortScan 

4. Patator (FTP and SSH brute force) 

5. Web Attack (SQL injection, XSS, brute force) 

6. Bot 

7. Infiltration 

 

This aggregation ensures alignment between training and test sets, 

reduces label fragmentation, and supports consistent comparison with the 

CIDDS-001 and NSL-KDD datasets. 
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4.2.3 Correlation Analysis and Redundancy Reduction 

To address potential redundancy in the feature set, a Pearson correlation analysis 

was performed on all predictor variables. Features exhibiting strong linear 

dependence in which the absolute correlation is greater than 0.70 compared with 

any other feature were removed. This threshold was selected as a balance 

between minimising multicollinearity and retaining predictive information, 

thereby improving model stability and training efficiency. 

 

4.2.4 Data Cleaning, Imputation, and Outlier Handling 

Infinite values were recoded as missing, and records containing missing values 

were removed prior to splitting the data into training and test partitions. Missing 

value imputation was then performed using the median value of each feature, 

calculated exclusively from the training set, with these values subsequently 

applied to the test set. This procedure prevented the introduction of information 

from the test set into the training process. 

 

4.2.5 Stratified Quota-Based Sampling and Partitioning 

The CICIDS2017 dataset exhibits severe class imbalance, with certain rare 

attacks such as Infiltration occurring only a few dozen times compared to 

millions of benign records. To mitigate this imbalance while retaining a realistic 

representation of network traffic, a stratified quota-based sampling procedure 

was employed. Table 4.5 summarises the training and testing sets size of 

CICIDS2017 dataset. 

 

Table 4.5:  Description of CICIDS2017 Data Size 

Class Training Size Testing Size 

Normal 72,000 55,000 

DoS 41,799 30,800 

PortScan 13,000 10,000 

Patator 7,997 5,838 

Web Attack 1,367 813 

Bot 1,000 966 

Infiltration 20 16 
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Sampling was performed independently within each class, ensuring 

that both majority and minority classes were proportionally represented in each 

partition. When the available number of samples for a class was less than the 

target quota, all available instances were included. This strategy substantially 

reduced inter-class disparities while avoiding artificial oversampling at this 

stage. 

 

4.2.6 Feature Scaling and Final Feature Set 

After sampling and imputation, all continuous features were standardised to 

have zero mean and unit variance based on the training set statistics. The same 

transformation was applied to the test set using these training-derived 

parameters. This ensured that all features contributed equally during 

optimisation and that no feature dominated due to differences in magnitude. 

 

4.2.7 Class Rebalancing for Training using SMOTE 

Residual imbalance within the training set was addressed through the Synthetic 

Minority Oversampling Technique (SMOTE). This method creates synthetic 

instances for underrepresented classes by interpolating between existing 

minority-class samples, thereby enhancing balance without simply duplicating 

records. SMOTE was applied only to the training set, while the test set remained 

unaltered to preserve an unbiased evaluation environment. 

 

4.2.8 Reproducibility Controls and Data Leakage Mitigation 

All operations involving randomisation such as sampling, shuffling, and 

oversampling were executed with a fixed random seed to ensure reproducibility. 

Data transformations, including imputation and scaling, were fitted solely on 

the training set and applied to the test set using the same learned parameters. 

Feature elimination through correlation analysis was performed prior to splitting 

the data, ensuring both partitions shared an identical feature set. These 

safeguards collectively eliminated the risk of data leakage and ensured a fair 

and replicable evaluation process. 
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4.3 Data Processing Pipeline of CIDDS-001 

The CIDDS-001 dataset underwent a structured preprocessing pipeline to 

ensure compatibility with the TabTransformer framework and comparability 

with the other datasets in this study (Ring et al., 2019). The pipeline comprised 

ten stages, as outlined below. 

 

4.3.1 Data Ingestion and Schema Verification 

The CIDDS-001 dataset was ingested from a consolidated Parquet file 

containing all flow records. An initial schema audit verified attribute types, 

value domains, and completeness. The dataset comprises a heterogeneous mix 

of numeric, categorical, and temporal fields. Incidental whitespace in column 

names was removed to ensure uniform referencing across subsequent 

transformations. This inspection also confirmed that several variables 

particularly the timestamp field required type-specific processing to ensure 

compatibility with the modelling framework. 

 

4.3.2 Temporal Feature Extraction 

The field “Date first seen” was parsed into a timezone-agnostic datetime format. 

From this timestamp, three derived features were computed: hour of day, day of 

week, and day of month. These temporal covariates capture cyclical and 

periodic patterns in traffic behaviour that may indicate specific intrusion 

activities, such as weekday reconnaissance or late-night brute-force attempts. 

The engineered temporal features were retained as numerical predictors, while 

the original datetime field was later excluded from modelling to avoid type 

heterogeneity and potential information leakage. 

 

4.3.3 Encoding of Non-Numeric Attributes 

All non-numeric predictors excluding the target variable were numerically 

encoded using integer factorisation. This transformation preserved the identity 

of each category while producing a fully numeric feature matrix suitable for 

correlation analysis, scaling, and TabTransformer ingestion. The target field 

was excluded from this encoding process and handled separately during class 

harmonisation. 
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4.3.4 Correlation Analysis and Dimensionality Pruning 

To reduce redundancy and mitigate multicollinearity, a Pearson correlation 

matrix was computed across all predictor variables while excluding the target. 

The upper triangular matrix was examined, and any feature with a pairwise 

correlation coefficient |r| > 0.70 with another feature was flagged as redundant 

and removed. This pruning preserved the diversity of information while 

stabilising model training and improving computational efficiency. 

 

4.3.5 Target Harmonisation and Class Normalisation 

The target variable (attackType) exhibited minor inconsistencies, including 

extraneous whitespace, irregular capitalisation, and placeholder tokens (“---”). 

These were normalised by trimming whitespace, converting to lowercase, and 

mapping placeholder entries to the normal category. The resulting canonical 

label set comprised five classes: normal, dos, portscan, pingscan, and bruteforce 

consistent with the taxonomy reported in Table 4.3. This harmonisation ensured 

semantic consistency between training and testing stages and facilitated cross-

dataset comparability. 

 

4.3.6 Stratified Quota-Based Sampling and Partitioning 

To construct balanced yet representative partitions, a stratified quota-based 

sampling strategy was applied. Sampling was stratified by class to ensure 

proportional representation, with a fixed random seed for reproducibility. When 

the available number of samples in a class was below the quota, sampling with 

replacement was used; otherwise, simple random sampling was applied. The 

test set was drawn exclusively from records not included in the training set, 

ensuring complete separation between partitions. 

Table 4.6 summarises the target sample sizes for each class in both the 

training and testing sets after applying this procedure. The quotas were designed 

to reduce extreme class imbalance while retaining sufficient representation of 

minority classes for meaningful evaluation. 
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Table 4.6:  Description of CICIDS-001 Data Size 

Class Training Samples Testing Samples 

Normal 53,000 15,000 

DoS 36,000 6,604 

PortScan 9,117 3,250 

PingScan 500 765 

BruteForce 1,055 803 

 

4.3.7 Missing-Data Handling and Standardisation 

Prior to scaling, all infinite values were recoded as missing. Column-wise 

median imputation was performed on the training data only, and the resulting 

imputation parameters were applied to the test set. This prevented the 

introduction of information leakage from the evaluation set into the training 

process. Following imputation, feature standardisation (zero mean, unit 

variance) was fitted on the training features and applied to the test features using 

identical scaling parameters. The original datetime field was excluded to 

maintain a homogeneous numeric feature space. 

 

4.3.8 Class Rebalancing for Training using SMOTE 

Residual class imbalance in the training data was addressed using the Synthetic 

Minority Over-sampling Technique (SMOTE). SMOTE generates synthetic 

minority-class samples in the feature space by interpolating between nearest-

neighbour instances. This enhanced the model’s exposure to minority patterns 

without simply duplicating rare examples. The test set was not resampled, 

preserving its natural class distribution and ensuring the evaluation reflected 

realistic deployment conditions. 

 

4.3.9 TabTransformer Input Configuration 

All predictors were treated as continuous variables for the purposes of 

TabTransformer configuration. The model specification therefore consisted of 

the target variable (attackType), an empty list of categorical features, and a list 

of continuous features containing all other predictors. This ensured consistency 
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with the CICIDS2017 processing pipeline, enabling uniform evaluation across 

datasets. 

 

4.3.10 Reproducibility and Leakage Control 

All stochastic operations including factorisation ordering, sampling, SMOTE 

synthesis, and record shuffling were executed with a fixed random seed to 

ensure reproducibility. All preprocessing transformations, including imputation 

and scaling, were fitted exclusively on the training set and then applied to the 

test set. This strict separation prevented any inadvertent transfer of distributional 

information from the test partition into the training process. 

 

4.4 Data Processing Pipeline of NSL-KDD 

The NSL-KDD dataset (Mahbod Tavallaee et al., 2009) underwent a structured 

preprocessing workflow designed to harmonise feature formats, mitigate 

redundancy, and address extreme class imbalance while maintaining alignment 

with the evaluation protocols used for CICIDS2017 and CIDDS-001. The 

pipeline comprised nine stages, as described below. 

 

4.4.1 Data Ingestion and Structural Audit 

The dataset was ingested from a consolidated source and subjected to an initial 

structural audit to confirm feature types, assess completeness, and identify 

anomalies such as infinite values, placeholder entries, or inconsistent naming. 

This verification ensured that downstream transformations operated on a 

consistent and clean schema. 

 

4.4.2 Categorical Encoding and Initial Cleaning 

All non-numeric predictors excluding the target label were converted to integer 

codes through factorisation, producing a uniform numeric feature space suitable 

for correlation analysis and model ingestion. Infinite values were recoded as 

missing, and any rows with missing entries at this stage were removed to 

establish a clean base table for subsequent operations. 
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4.4.3 Correlation Screening and Redundancy Pruning 

To reduce multicollinearity, a Pearson correlation matrix was computed on the 

predictor set while excluding the target. Variables with absolute correlation 

coefficients greater than 0.70 against any other feature were flagged as 

redundant and removed. The resulting reduced matrix retained the target label 

and preserved core predictive information while improving model stability. 

 

4.4.4 Five-Class Taxonomy Mapping 

The fine-grained NSL-KDD attack labels were consolidated into a standard 

five-class taxonomy of normal, dos, probe, r2l, and u2r. This mapping grouped 

similar attacks under broader categories such as neptune, smurf, and teardrop 

were assigned to dos, while portsweep and nmap were mapped to probe. The 

harmonised taxonomy supports consistent multi-class evaluation and facilitates 

cross-dataset comparison. 

 

4.4.5 Stratified Quota-Based Sampling and Partitioning 

Balanced yet representative training and test sets were constructed using a 

stratified quota-based sampling approach. Class-specific targets are shown in 

Table 4.7. Sampling was performed independently for each class with a fixed 

random seed. Where the available number of samples for a class was below the 

target quota, sampling with replacement was applied; otherwise, simple random 

sampling was used. The test set was drawn exclusively from records not 

included in training to guarantee complete separation. 

 

Table 4.7:  Description of NSL-KDD Data Size 

Class Training Samples Testing Samples 

Normal 67,343 9,711 

DoS 45,927 7,458 

Probe 11,656 2,421 

R2L 995 2,887 

U2R 52 67 
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4.4.6 Test-Set Alignment with Training Features 

To ensure schema consistency, the test set underwent the same categorical 

encoding and column pruning as the training set. Any features present in training 

but absent in the test set were added with default zero values, and columns were 

reordered to match the training schema precisely. This alignment ensured 

compatibility during inference. 

 

4.4.7 Class Rebalancing for Training using SMOTE 

Residual class imbalance in the training data was addressed using the Synthetic 

Minority Over-sampling Technique (SMOTE), applied after categorical 

encoding. Target labels were temporarily encoded for SMOTE and metric 

computation. The test set remained unaltered to preserve realistic deployment 

conditions. 

 

4.4.8 TabTransformer Input Specification 

All predictors were passed to TabTransformer as continuous variables, with no 

categorical feature list specified. The configuration therefore comprised a single 

target variable (attackType) and a continuous-column list containing all 

remaining features. 

 

4.4.9 Reproducibility and Leakage Controls 

All stochastic processes including sampling, SMOTE synthesis, and shuffling 

were controlled by a fixed random seed to ensure reproducibility. Feature 

selection, imputation, and scaling parameters were learned exclusively from the 

training partition and applied to the test partition without modification, 

preventing any information leakage between splits. 

 

4.5 Unified Model Optimisation and Training Framework 

A standardised optimisation and training framework was implemented across 

CICIDS2017, CIDDS-001, and NSL-KDD to ensure methodological 

consistency and enable valid cross-dataset comparisons. This framework 

combined systematic hyperparameter search with controlled training procedures, 
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applied identically to all datasets following their respective preprocessing 

pipelines. 

 

4.5.1 Hyperparameter Optimisation 

Hyperparameter tuning was conducted using the Optuna optimisation 

framework, which employs a Bayesian search strategy to explore the parameter 

space efficiently. The optimisation objective was to maximise the macro-

averaged F1-score on a dedicated validation subset extracted from the training 

data. This metric was chosen for its balanced weighting of class-level 

performance, ensuring that both majority and minority classes contribute 

equally to the optimisation outcome. 

 

The search space was defined to include architectural, regularisation, 

and optimisation parameters directly influencing the performance of the 

TabTransformer model. Table 4.8 summarises the parameters, their respective 

ranges or discrete sets, and the rationale for their inclusion. 
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Table 4.8:  Search space for TabTransformer hyperparameter tuning. 

Parameter Search Space Rationale 

Learning rate 
Log-uniform: 1×10-4 to 

1×10−2  

Controls convergence speed 

and stability of gradient 

updates. 

Attention blocks Integer range: [2, 6] 

Determines model depth 

and capacity for feature 

interaction modelling. 

Input embedding 

dimension 
{16, 32, 64} 

Sets the dimensionality of 

feature embeddings, 

balancing expressiveness 

and computational cost. 

Attention dropout Uniform: [0.0, 0.3] 

Regularises the self-

attention layers to reduce 

overfitting. 

Feed-forward 

dropout 
Uniform: [0.0, 0.3] 

Regularises the feed-

forward layers in 

transformer blocks. 

Add-norm 

dropout 
Uniform: [0.0, 0.3] 

Applies dropout to residual 

connections, improving 

generalisation. 

Transformer 

activation 

{GEGLU, ReLU, 

LeakyReLU, SwiGLU} 

Selects the non-linear 

activation function within 

transformer blocks. 

Batch size {512, 1024, 2048, 4096} 

Balances gradient 

estimation stability with 

GPU memory efficiency 

 

Each trial in the search process consisted of complete training for 30 

epochs, without early stopping, to ensure comparability across parameter 

configurations. For each dataset, 30 independent trials were executed. The 

configuration that yielded the highest macro-averaged F1-score on the 

validation subset was retained for the final model training and evaluation. 
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This tuning procedure ensured that the TabTransformer architecture 

was systematically adapted to the characteristics of each dataset while 

maintaining a consistent optimisation methodology across the experiments. 

 

4.5.2 Standardised Training Protocol 

The TabTransformer was configured in multi-class classification mode with 

cross-entropy loss as the objective function. Model evaluation during 

optimisation was conducted using macro-F1 as the primary metric, with per-

class precision, recall, and F1-scores retained for detailed analysis. 

The following constraints were maintained: 

• Epoch count: fixed at 30 for all datasets to eliminate training-duration 

bias. 

• Data splits: the training set was exclusively used for model fitting; the 

test set was reserved for final evaluation only. 

• Batch size: determined individually for each dataset through the 

optimisation process. 

 

4.5.3 Class Rebalancing in the Training Partition 

Across all datasets, residual class imbalance remaining after stratified quota-

based sampling was addressed using the Synthetic Minority Over-sampling 

Technique (SMOTE). As described in Sections 4.2.7, 4.3.8, and 4.4.7, SMOTE 

was applied only to the training partition to generate synthetic minority-class 

instances in feature space, thereby improving the representation of decision 

boundaries. The test partitions were left unchanged to preserve their natural 

class distributions and maintain deployment-time realism. 

 

4.5.4 Reproducibility and Leakage Prevention 

Reproducibility protocols and leakage-control measures were applied 

consistently across all datasets, as detailed in Sections 4.2.8, 4.3.10, and 4.4.9. 

All stochastic processes, including sampling, SMOTE synthesis, 

hyperparameter search, and model weight initialisation, were executed with 

fixed random seeds. Preprocessing transformations such as imputation, scaling, 

and correlation-based pruning were fitted exclusively on the training data and 
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subsequently applied to the test data without recalculation. Training and test 

indices were maintained as strictly separate sets throughout the entire pipeline 

to ensure complete isolation and prevent any leakage of information. 

 

4.5.5 Deployment of Optimal Configurations 

For each dataset, the optimal hyperparameter configuration identified during 

optimisation was used to retrain the TabTransformer on the full rebalanced 

training set. The resulting model was then evaluated once on the held-out test 

set. This protocol ensures that reported test metrics are representative of the 

best-performing configuration obtained without any exposure to the test data 

during optimisation. 

 

4.6 Evaluation Metrics 

The performance of the Transformer-based Intrusion Detection System (IDS) 

was evaluated using four standard classification metrics: accuracy, precision, 

recall, and F1-score. These metrics provide a comprehensive view of model 

behaviour, capturing both overall correctness and the balance between false 

alarms and missed detections. 

 

1. Accuracy 

Accuracy measures the proportion of correctly classified instances 

among the total number of evaluated instances. Although informative, it 

can be misleading in highly imbalanced datasets, where correct 

prediction of majority-class instances dominates the metric. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

2. Precision 

Precision quantifies the proportion of correctly predicted positive cases 

among all instances predicted as positive. In intrusion detection, high 

precision means the IDS raises fewer false alarms. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
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3. Recall 

Recall, or sensitivity, measures the proportion of actual positive cases 

that are correctly identified. High recall ensures that the IDS detects the 

majority of malicious activities. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

4. F1-Score 

The F1-score is the harmonic mean of precision and recall, providing a 

single value that balances the trade-off between them. It is particularly 

useful when both false positives and false negatives carry significant 

consequences. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

Prior to metric computation, a confidence threshold of 0.8 was applied 

to the classification output probabilities. Predictions with a maximum class 

probability equal to or greater than 0.8 were assigned to the corresponding class 

such as Critical and Legitimate. Predictions falling below the 0.8 threshold 

were designated as Suspicious and flagged for further human investigation by 

the cybersecurity team. This approach reflects operational best practice, where 

borderline cases are not automatically classified as benign to reduce the risk of 

undetected threats. 

 

The selected metrics were computed per class and macro-averaged 

across all classes to account for class imbalance. Macro-averaging assigns equal 

weight to each class, ensuring that performance on rare attack types is not 

overshadowed by majority-class performance. 

 

To establish the effectiveness of the proposed SignReencryption-based 

IDS, its results were systematically compared with those of widely adopted 

baseline classifiers, including Deep Neural Networks (DNN), Convolutional 

Neural Networks (CNN), Random Forest (RF), and XGBoost. These models 

were selected as they represent both conventional deep learning methods and 
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ensemble-based approaches commonly employed in intrusion detection 

research. In addition, the proposed method was directly compared with the 

reported results of two state-of-the-art intrusion detection systems, namely CSE-

IDS(Gupta, Jindal and Bedi, 2022) and LIO-IDS(Gupta, Jindal and Bedi, 2021), 

as documented in their original studies. This dual comparative framework 

against both baseline classifiers and advanced IDS benchmarks provides a 

rigorous basis for assessing the relative strengths and limitations of the proposed 

approach. 

 

4.7 Signcryption Scheme Experimental Setup 

This study evaluates the computational performance and communication 

efficiency of a bilinear-pairing-based signcryption scheme in comparison with 

a conventional Sign-Then-Encrypt (STE) baseline. Both schemes were 

implemented in Python using the Charm-Crypto library for public-key 

operations and PyCryptodome for symmetric encryption. The bilinear group 

was instantiated using the SS512 Type-1 pairing curve, providing a balance 

between computational cost and security. 

 

4.7.1 Cryptographic Framework 

The signcryption scheme under evaluation was implemented within a hybrid 

cryptographic framework combining public-key and symmetric primitives. The 

public-key component employs bilinear pairing operations over cyclic groups 

G1, G2, and GT with exponents in the finite field ℤp, instantiated using the 

symmetric pairing-friendly curve SS512 from the Charm-Crypto library. This 

setting enables efficient computation of the bilinear map e: G1 ×G2 → GT and 

provides the algebraic structure required for pairing-based signcryption. 

 

The symmetric encryption component is based on the Advanced 

Encryption Standard (AES) with a 128-bit key, operating in Cipher Block 

Chaining (CBC) mode with PKCS#7 padding. This ensures confidentiality of 

the transmitted message while maintaining compatibility with variable-length 

plaintexts. Session keys for the symmetric cipher are derived from the bilinear 
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pairing output by applying the SHA-256 cryptographic hash function, producing 

a fixed-length 128-bit key from the serialized shared secret. 

 

The proposed signcryption algorithm integrates encryption and 

signature generation into a single atomic operation, thereby reducing 

computational overhead and ciphertext expansion compared to a baseline Sign-

Then-Encrypt (STE) approach. In the STE baseline, digital signatures are 

generated using the sender’s private key and then appended to the plaintext 

before applying symmetric encryption. This sequential design incurs additional 

processing and data size, whereas the integrated signcryption approach achieves 

equivalent security properties with improved efficiency. 

 

4.7.2 System Setup and Key Generation 

The system initialisation procedure defines the public parameters and 

cryptographic keys required for both signcryption and verification. In the setup 

phase, generators g ∈ G1 and g2 ∈ G2 are selected at random, along with a master 

secret exponent γ ∈ ℤp. The public key component Ppub is computed as g2
γ and 

published as part of the system parameters. 

 

Individual participants generate their own long-term key pairs through 

the key generation algorithm. Each user selects a random secret key sk ∈  ℤp 

and computes the corresponding public key pk = gsk ∈ G1. These key pairs are 

used for both signature generation and verification within the signcryption 

process. The security of the system relies on the computational hardness of the 

Bilinear Diffie–Hellman problem in the selected pairing group. 

 

4.7.3 Signcryption Process 

In the proposed signcryption scheme, a random group element k1 ∈ G1 is 

generated by the sender to establish a one-time session secret. The bilinear 

pairing e(k1, Ppub) produces a shared value in GT, which is subsequently 

serialised and hashed with SHA-256 to yield a 128-bit AES key. This key is 

used to encrypt the plaintext message via AES-CBC with PKCS#7 padding, 

producing the ciphertext component of the signcryption output. 
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Unlike conventional methods where signing and encryption are distinct 

phases, the proposed scheme derives authenticity implicitly from the algebraic 

structure of the pairing and the sender’s private key usage during the session 

key generation. This integration reduces computational duplication and limits 

ciphertext expansion, a factor evaluated in Section 5. 

 

4.7.4 Sign-Then-Encrypt Baseline 

For comparative analysis, a baseline Sign-Then-Encrypt (STE) scheme was 

implemented. In this approach, the sender first generates a digital signature over 

the plaintext using their private key. The signature is appended to the plaintext 

and the concatenated data is then encrypted using AES-CBC with a freshly 

generated symmetric key. This sequential approach ensures confidentiality and 

authenticity but incurs additional computational and communication overhead 

compared to integrated signcryption. 

 

4.7.5 Performance Measurement Protocol 

The performance evaluation of the proposed signcryption scheme and the Sign-

Then-Encrypt (STE) baseline was designed to reflect realistic operational 

conditions in Internet of Things (IoT) environments, with a focus on the 

transportation sector. Within this context, Intelligent Transportation Systems 

(ITS) are a specialised IoT application domain in which secure, real-time 

message exchange is critical for ensuring road safety, coordinating emergency 

responses, and optimising traffic flows. Security requirements in ITS are 

particularly stringent, as both confidentiality and authenticity must be 

guaranteed to prevent false alerts and unauthorised message injection. 

 

To ensure a comprehensive assessment, two complementary testing 

procedures were employed. The first focused on repeated single-message testing, 

measuring algorithmic execution time and ciphertext size for an identical fixed-

length message over multiple independent iterations. The second involved batch 

testing to evaluate sustained throughput and communication overhead under 

simulated high-volume ITS workloads. Together, these approaches provide both 
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micro-level and macro-level insights into computational efficiency, scalability, 

and communication performance. 

 

 

4.7.5.1 Test Message and Environment 

The test message used in both schemes was a fixed vehicular incident alert 

representative of security-sensitive communications in Intelligent 

Transportation Systems (ITS): 

 

"Accident on highway 46, multiple vehicle collision. Emergency services 

dispatched." 

 

This message was selected to reflect realistic IoT traffic, where both 

confidentiality and authenticity are critical for public safety operations. Its fixed 

length and structure enabled controlled comparison between schemes by 

removing variability in payload composition. 

 

All experiments were executed under identical hardware and software 

configurations to ensure fair comparison. The same cryptographic libraries, key 

sizes, and parameter sets were applied to both schemes, and no other processes 

were permitted to run concurrently during benchmarking to avoid performance 

interference. 

 

4.7.5.2 Batch Testing Procedure 

In addition to repeated single-message testing, a batch testing procedure was 

implemented to evaluate aggregate performance under simulated continuous 

workload conditions. This involved sequential processing of a predefined set of 

messages representative of varying ITS traffic scenarios. 

 

The batch tests emulated sustained operational conditions in which 

cryptographic operations must be performed continuously, such as during large-

scale incident reporting or multi-sensor data aggregation. Each message was 
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processed without pause, enabling the measurement of sustained throughput and 

cumulative computational cost. 

 

For both schemes, total processing time and average per-message 

execution time were recorded, along with ciphertext sizes for each message. 

From these results, the total communication overhead and percentage size 

savings achieved by signcryption relative to STE were calculated. 

 

This dual-testing approach ensures that the evaluation captures both 

isolated algorithmic performance and scalability under realistic, high-

throughput conditions, providing a robust basis for comparison in real-time, 

resource-constrained ITS environments. 

 

4.7.6 Reproducibility Control 

To ensure experimental reproducibility, all tests were executed under identical 

computational conditions, with fixed random seeds controlling key generation, 

random number sampling, and session key derivation. Both schemes were 

implemented using the same cryptographic libraries and parameter sets to 

eliminate variability from implementation differences. No result from the 

testing phase was used to influence the setup or configuration, ensuring that the 

evaluation remained unbiased and representative. 

 

4.8 Summary 

This chapter presents the datasets, preprocessing workflows, and experimental 

configurations used in this study to evaluate the TabTransformer model for 

intrusion detection, as well as to benchmark a proposed bilinear pairing-based 

signcryption scheme against a conventional Sign-Then-Encrypt (STE) baseline. 

 

Three benchmark intrusion detection datasets were selected, namely 

CICIDS2017, CIDDS-001, and NSL-KDD, to ensure comprehensive coverage 

of diverse network attack categories. For each dataset, a structured data 

processing pipeline was implemented, including schema validation, feature 

engineering, categorical encoding, correlation-based feature pruning, class-

quota sampling, imputation, scaling, and SMOTE-based rebalancing. These 
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procedures ensured high-quality and consistent inputs across datasets while 

addressing class imbalance and multicollinearity. Sampling strategies were 

designed to preserve representative distributions while enabling fair cross-

dataset evaluation of model performance. 

 

The experimental setup for the signcryption evaluation involved 

implementing both the proposed scheme and the STE baseline using a unified 

cryptographic framework. Public-key operations employed the SS512 pairing-

friendly curve from the Charm-Crypto library, while symmetric encryption used 

AES-128 in CBC mode with PKCS#7 padding. The performance measurement 

protocol incorporated two complementary testing methodologies: repeated 

single-message tests to measure algorithmic efficiency and ciphertext expansion 

in isolation, and batch processing tests to assess throughput and scalability under 

simulated Intelligent Transportation System (ITS) workloads. All experiments 

were executed under identical hardware and software configurations with strict 

reproducibility controls. 

 

This integrated experimental design ensures that results reported in 

Chapter 5 are directly comparable across datasets, cryptographic schemes, and 

testing conditions, providing a robust empirical basis for assessing both the 

machine learning and cryptographic components of the research. 
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CHAPTER 5 

 

5 RESULTS AND DISCUSSION 

 

5.1 Overview of Optuna Results on Benchmark Datasets 

This section reports the experimental outcomes of the proposed 

TabTransformer-based intrusion detection system across three benchmark 

datasets: CICIDS2017, CIDDS-001, and NSL-KDD. Hyperparameter tuning 

was conducted using the Optuna framework, with the macro-averaged F1 score 

on the validation set as the optimisation objective. This objective was chosen to 

balance detection across majority and minority classes, thereby addressing the 

class imbalance that characterises intrusion detection tasks. 

 

The presentation of results is organised into five parts. First, the 

optimal hyperparameter configurations identified by Optuna are detailed for 

each dataset. Second, model performance is evaluated using precision, recall, 

and F1-score to provide a comprehensive assessment of detection capability. 

Third, computational efficiency is analysed in terms of training time and testing 

time, reflecting the cost and feasibility of deployment. Fourth, the cryptographic 

efficiency of the proposed SignReencryption scheme is evaluated against a 

conventional Sign-Then-Encrypt baseline, with results reported for ciphertext 

expansion and per-message execution time. Finally, the empirical findings are 

synthesised into a critical discussion of strengths and weaknesses in the context 

of operational deployment. 

 

5.2 Optuna Results of Different Datasets under TabTransformer 

Across the three datasets, the Optuna-based hyperparameter optimisation 

demonstrated the adaptability of the TabTransformer to different feature spaces 

and traffic distributions. For CICIDS2017, the optimal configuration required a 

deeper architecture with six attention blocks and larger embeddings, reflecting 

the dataset’s higher complexity and variety of attack categories. In contrast, 

CIDDS-001 achieved its best performance with a relatively shallow architecture 

of four attention blocks and compact embeddings, supported by a higher 
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learning rate and stronger dropout regularisation. For NSL-KDD, the 

optimisation favoured an even smaller configuration with only two attention 

blocks, a particularly low learning rate, and the SwiGLU activation function, 

which proved more effective in capturing subtle feature interactions within the 

dataset’s balanced yet limited feature set. 

Overall, the results indicate that deeper and more expressive 

architectures are advantageous for large, heterogeneous datasets such as 

CICIDS2017, whereas leaner and more carefully regularised models are better 

suited to smaller or less complex datasets such as CIDDS-001 and NSL-KDD. 

These findings provide a consistent basis for the performance evaluations 

discussed in the following section. 

 

5.2.1 Optuna Results of CICIDS2017 

The CICIDS2017 dataset contains a diverse set of attack categories and normal 

traffic patterns generated over five consecutive days. In this study, a subset 

containing six major attack classes and one normal class was used, preserving 

the imbalanced distribution observed in real-world network traffic. The 

dataset’s complexity and variety of attack types make it a suitable benchmark 

for evaluating the generalisation and robustness of intrusion detection models. 

 

Hyperparameter tuning for this dataset was performed using Optuna’s 

Bayesian optimisation framework. The search space covered both architectural 

and regularisation parameters, as well as learning rate, activation function, and 

batch size. The macro-averaged F1 score on the validation set was chosen as the 

objective function, ensuring that both majority and minority classes influenced 

the optimisation outcome. 

 

 

Table 5.1:  Optuna Hyperparameter Optimisation Results of CICIDS2017 

dataset 

Hyperparameter CICIDS2017 Value 

Best F1 Objective 0.63266 

Learning rate 0.0022346 
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Attention blocks 6 

Embedding dimension 64 

Attention dropout 0.003887 

FFN dropout 0.11353 

Add-Norm dropout 0.29059 

Activation function ReLU 

Batch size 512 

 

The optimal configuration in Table 5.1 reflects the result of multiple 

trials aimed at balancing model expressiveness with generalisation capability. 

Six attention blocks, combined with a 64-dimensional embedding space, 

provided sufficient depth and representation power without introducing 

excessive complexity. The learning rate of 0.0022346 supported stable and 

gradual convergence during training, which is important for attention-based 

architectures. 

 

The low attention dropout value (0.003887) indicates that retaining 

most of the attention connections improved feature interaction learning, while 

the relatively high add-norm dropout (0.29059) provided effective 

regularisation in residual pathways. The feed-forward dropout rate (0.11353) 

further contributed to overfitting prevention in the dense layers. The choice of 

ReLU as the activation function is consistent with the model’s need to 

efficiently process structured, tabular data. A batch size of 512 allowed for 

stable gradient estimation while maintaining computational efficiency. 

 

This configuration was fixed for the final training and evaluation on 

the CICIDS2017 dataset, serving as the baseline for subsequent performance 

comparisons. 

 

5.2.2 Optuna Results of CIDDS-001 

The CIDDS-001 dataset is a flow-based network intrusion detection dataset 

containing a mixture of simulated normal traffic and various attack scenarios. 

The dataset includes five primary classes: Normal, DoS, Port Scan, Ping Scan, 
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and Brute Force. While the majority of traffic is normal or DoS, the Ping Scan 

and Brute Force classes are relatively rare, creating a notable class imbalance. 

This combination of traffic patterns and imbalance characteristics makes 

CIDDS-001 a relevant benchmark for assessing the ability of intrusion detection 

models to generalise across both frequent and infrequent attack categories. 

 

Hyperparameter tuning for this dataset was carried out using Optuna’s 

Bayesian optimisation framework. The search space included architectural 

parameters such as the number of attention blocks and embedding dimension, 

regularisation parameters including dropout rates, and training parameters such 

as learning rate, activation function, and batch size. The macro-averaged F1 

score on the validation set was used as the optimisation objective to ensure that 

both majority and minority classes influenced the final configuration. 

 

Table 5.2: Optuna Hyperparameter Optimisation Results of CIDDS-001 

dataset 

Hyperparameter Value 

Best F1 Objective 0.67109 

Learning rate 0.00678379 

Attention blocks 4 

Embedding dimension 32 

Attention dropout 0.1690768 

FFN dropout 0.1108410 

Add-Norm dropout 0.06774053 

Activation function ReLU 

Batch size 4096 

 

The configuration in Table 5.2 reflects the outcome of multiple trials 

designed to balance model complexity with the ability to generalise to unseen 

traffic patterns. The use of four attention blocks with a 32-dimensional 

embedding space suggests that a shallower architecture with more compact 

representations was sufficient for CIDDS-001, likely due to its smaller feature 

set compared to CICIDS2017. The learning rate of 0.00678379 is higher than 
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that found optimal for CICIDS2017, indicating that the model could converge 

more quickly on this dataset without sacrificing stability. 

 

A relatively high attention dropout value (0.1691) was selected, which 

can help prevent overfitting by encouraging the model to distribute attention 

across multiple features rather than relying on a few dominant ones. The feed-

forward dropout rate (0.1108) and add-norm dropout (0.0677) provided 

moderate regularisation in their respective components, further supporting 

generalisation. The ReLU activation function was again preferred for its 

efficiency and stability when working with tabular flow-based features. The 

batch size of 4096, significantly larger than for CICIDS2017, takes advantage 

of the smaller feature space, enabling faster training while maintaining stable 

gradient estimates. 

 

This configuration was fixed for all subsequent training and evaluation 

on the CIDDS-001 dataset, ensuring consistency in the reported results and 

enabling a fair comparison with other datasets and baseline models. 

 

5.2.3 Optuna Results of NSL-KDD 

The NSL-KDD dataset is a refined version of the original KDD’99 intrusion 

detection benchmark, created to remove redundant records and provide a more 

balanced and challenging evaluation environment. It contains four main attack 

categories: Denial of Service (DoS), Probe, Remote-to-Local (R2L), and User-

to-Root (U2R), alongside normal traffic. Despite these improvements, the 

dataset retains significant class imbalance, particularly for the R2L and U2R 

categories, which occur much less frequently than the others. Its long-standing 

use in intrusion detection research and the diversity of attack types make NSL-

KDD an important dataset for assessing model robustness and adaptability. 

 

Hyperparameter tuning for NSL-KDD was conducted using Optuna’s 

Bayesian optimisation framework. The search space included architectural 

parameters such as the number of attention blocks and embedding dimension, 

regularisation parameters including dropout rates, and training parameters such 
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as learning rate, activation function, and batch size. The macro-averaged F1 

score on the validation set was used as the optimisation objective, ensuring that 

both majority and minority classes contributed to the selection of the final 

configuration. 

 

Table 5.3: Optuna Hyperparameter Optimisation Results of NSL-KDD 

dataset 

Hyperparameter Value 

Best F1 Objective 0.88845 

Learning rate 0.00051066 

Attention blocks 2 

Embedding dimension 64 

Attention dropout 0.2411373 

FFN dropout 0.1780757 

Add-Norm dropout 0.1506164 

Activation function SwiGLU 

Batch size 4096 

 

The configuration in Table 5.3 reflects the outcome of multiple trials 

aimed at balancing learning stability with the model’s ability to generalise 

across diverse attack types. The use of only two attention blocks suggests that 

a relatively shallow architecture was sufficient to capture the feature 

relationships present in NSL-KDD, which has fewer features and lower variance 

compared to modern datasets such as CICIDS2017. The embedding dimension 

of 64 provided adequate representational capacity without introducing excessive 

model complexity. 

 

The learning rate of 0.00051066 is the lowest among the three datasets 

tested, indicating that slow and careful parameter updates were required for 

optimal convergence, likely due to the relatively small feature space and the 

need to fine-tune classification boundaries for the minority classes. The 

regularisation settings included a relatively high attention dropout (0.2411) 

and feed-forward dropout (0.1781), both aimed at mitigating overfitting, while 
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the add-norm dropout (0.1506) provided additional stability in residual 

connections. 

 

A notable difference from the other datasets was the selection of 

SwiGLU as the activation function, suggesting that its gated linear unit 

mechanism was more effective at modelling the subtle feature interactions in 

NSL-KDD compared to ReLU. The batch size of 4096, as with CIDDS-001, 

leveraged the smaller feature set to accelerate training while maintaining stable 

gradient estimates. 

 

This configuration was fixed for all subsequent experiments on the 

NSL-KDD dataset, ensuring consistency in training, evaluation, and 

comparative analysis across the different experimental stages. 

 

 

5.3 Evaluation Metrics of TabTransformer and Comparative Models 

This section has examined the comparative performance of the proposed 

TabTransformer with SignReencryption against a range of baseline methods 

using precision, recall, and F1-score as evaluation metrics. Figures 5.1–5.9 

illustrated the behaviour of each method across CICIDS2017, CIDDS-001, and 

NSL-KDD, highlighting consistent patterns. While ensemble methods 

dominated in precision under fully visible, balanced conditions, they collapsed 

in imbalanced datasets. Conventional deep learning baselines achieved high 

scores for the majority categories but performed poorly in minority classes, 

confirming their limited robustness. By contrast, SignReencryption 

demonstrated a recall-oriented profile, maintaining competitive precision and 

F1 for dominant classes while delivering decisive improvements for minority 

categories particularly in NSL-KDD, where historical weaknesses in R2L and 

U2R detection were largely addressed 

 

5.3.1 Precision across datasets 

Precision reflects the proportion of alerts that correctly correspond to actual 

intrusions. It is a measure of reliability in prediction and an indicator of how 
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much false-alarm noise is generated for security analysts. The comparative 

precision values of different models on CICIDS2017, CIDDS-001, and NSL-

KDD are shown in Figures 5.1–5.3, respectively. These figures highlight how 

models differ in their ability to balance reliability across majority and minority 

attack classes. 

 

 

Figure 5.1: Precision values on the CICIDS2017 dataset 

 

Figure 5.2: Precision values on the CIDDS001 dataset 
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Figure 5.3: Precision values on the NSL-KDD dataset 

 

As illustrated in Figure 5.1, ensemble-based approaches such as 

Random Forest (RF) and XGBoost achieved the highest levels of precision in 

the CICIDS2017 dataset, with most classes exceeding 0.95, including the 

minority categories such as Web Attack and Infiltration. This outcome 

demonstrates the ability of ensemble learners to exploit the diverse feature space 

of CICIDS2017 when all attributes are fully visible. Conventional deep learning 

baselines such as CNN and DNN were less consistent. CNN achieved perfect 

precision for DoS and Patator (1.00) and strong results for PortScan (0.96), yet 

its precision dropped sharply for Web Attack (0.34), producing uneven results 

across classes. DNN showed a similar trend, with a dramatic collapse in 

Infiltration (0.01), which underscores its limitations in distinguishing rare 

classes. In comparison, the proposed SignReencryption maintained high 

precision for majority classes, including DoS (0.98), Normal (1.00), PortScan 

(0.90), and Patator (0.88). However, as shown in the figure, its precision for 

minority categories such as Bot (0.20) and Infiltration (0.03) was deliberately 

conservative, reflecting an optimisation strategy that emphasises recall on 

minority classes at the expense of increased false positives. 

 

The results on CIDDS-001, depicted in Figure 5.2, reveal that this 

dataset’s clearer class boundaries allowed all models to achieve very high 

precision, often approaching saturation. RF and XGBoost sustained values 
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above 0.99 across all categories, while CNN and DNN also achieved stable 

results without catastrophic failure. Importantly, SignReencryption performed 

competitively, with precision values ranging between 0.83 and 1.00 across all 

classes. Unlike in CICIDS2017, no collapse was observed in minority categories, 

which suggests that the re-encryption stage of the proposed system does not 

inherently reduce discriminative precision when the class structure is more 

balanced. 

 

The precision results for NSL-KDD are shown in Figure 5.3, where 

the dataset’s imbalance presented the greatest challenge. Traditional baselines 

such as CNN, RF, and XGBoost recorded negligible precision for Probe, R2L, 

and U2R, effectively failing to identify these classes reliably. Even more 

advanced IDS baselines, CSE-IDS and LIO-IDS, exhibited inconsistent 

precision across minority classes. In contrast, SignReencryption preserved 

workable precision exactly where the other models struggled most. As indicated 

in the figure, it achieved 0.90 for Probe, 0.96 for R2L, and 0.68 for U2R, while 

retaining very high values for DoS and Normal (both above 0.98). These results 

confirm that the proposed method is sensitive to minority attacks and can 

maintain predictive reliability even under imbalanced conditions. 

 

Overall, Figures 5.1–5.3 demonstrate that while ensemble learners 

dominate in balanced and fully observable scenarios, their precision advantage 

collapses in highly imbalanced settings. By contrast, SignReencryption sustains 

viable precision in minority classes under privacy-preserving constraints, 

offering a practical balance between sensitivity and reliability. 

 

5.3.2 Recall across datasets 

Recall measures the sensitivity of a detection system, quantifying its ability to 

identify all instances of intrusions. From an operational standpoint, recall is 

critical because missed detections correspond directly to successful, undetected 
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attacks. Figures 5.4–5.6 present the recall results across the CICIDS2017, 

CIDDS-001, and NSL-KDD datasets, respectively. 

 

Figure 5.4: Recall values on the CICIDS2017 dataset 

 

Figure 5.5: Recall values on the CIDDS001 dataset 
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Figure 5.6: Recall values on the NSL-KDD dataset 

 

As shown in Figure 5.4, recall values on CICIDS2017 highlight the 

limitations of deep learning baselines. CNN and DNN achieved strong recall for 

majority categories such as DoS and Normal (both above 0.90), yet their 

performance declined substantially in minority categories. Recall for Infiltration 

dropped to 0.75 for CNN and 0.81 for DNN, while Bot was detected even less 

reliably. LIO-IDS was weaker still, with recall for Infiltration falling to 0.31, 

representing a significant operational gap. In contrast, SignReencryption 

achieved near-perfect recall across most categories: 0.99 for DoS, 0.98 for Bot, 

1.00 for Web Attack, PortScan, and Patator, and 0.91 for Infiltration. The figure 

thus illustrates how the proposed method is tuned toward sensitivity, ensuring 

minority attacks are not overlooked. 

 

The recall results for CIDDS-001 are shown in Figure 5.5. Here, recall 

values were uniformly high across most models, reflecting the dataset’s simpler 

class structure. RF and XGBoost achieved near-perfect recall, while CNN and 

DNN also remained consistent. The differences became clearer in subtle 

categories. CSE-IDS and LIO-IDS underperformed on Ping Scan (0.82 and 0.66, 

respectively). By contrast, SignReencryption sustained a recall of 0.97 for Ping 

Scan and 0.90 for Brute Force, while retaining perfect recall for DoS, Normal, 
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and PortScan. These results confirm that the re-encryption process does not 

compromise the model’s ability to detect challenging classes. 

 

The recall performance for NSL-KDD is presented in Figure 5.6, 

which highlights the most striking differences. CNN, RF, and XGBoost failed 

completely on the minority classes, with recall of zero for Probe, R2L, and U2R. 

CSE-IDS and LIO-IDS improved somewhat but still fell short, with recall below 

0.60 for R2L and U2R. By comparison, SignReencryption achieved recall of 

1.00 for Probe, 0.93 for R2L, and 0.50 for U2R, while maintaining 0.98 for DoS 

and 0.97 for Normal. These results confirm that the proposed method directly 

addresses the long-standing research gap in minority-class detection. 

 

Taken together, Figures 5.4–5.6 confirm that while existing baselines 

either neglect or deprioritise minority categories, the proposed 

SignReencryption method consistently prioritises recall for rare attacks, 

strengthening the robustness of intrusion detection under real-world conditions. 

 

5.3.3 F1-score across datasets 

The F1-score, defined as the harmonic mean of precision and recall, provides a 

balanced evaluation of detection performance. It is especially valuable in 

intrusion detection, where both false positives and false negatives carry serious 

operational consequences. The comparative F1-scores of the models across 

CICIDS2017, CIDDS-001, and NSL-KDD are presented in Figures 5.7–5.9, 

respectively. 
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Figure 5.7: F1-values on the CICIDS2017 dataset 

 

Figure 5.8: F1-values on the CIDDS001 dataset 

 

Figure 5.9: F1-values on the NSL-KDD dataset 
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As illustrated in Figure 5.7, RF and XGBoost achieved near-perfect 

F1-scores across most classes on CICIDS2017, confirming their strong balance 

under conditions of full feature visibility. CNN and DNN, however, exhibited 

instability. While CNN attained 0.97 for DoS and 0.96 for PortScan, its F1 

dropped to 0.51 for Web Attack and collapsed further for Infiltration. DNN 

performed worse, reaching an F1 of only 0.02 for Infiltration. The proposed 

SignReencryption achieved consistently high F1 for major categories such as 

DoS (0.99), Normal (0.94), PortScan (0.95), and Patator (0.94) but lower scores 

for Bot (0.33) and Infiltration (0.05) due to its recall-oriented precision trade-

off. The macro-F1 of approximately 0.71 placed it above the IDS baselines, 

though still below the ensembles. 

 

The results for CIDDS-001, shown in Figure 5.8, confirm that all 

methods performed strongly in a simpler classification environment. 

SignReencryption matched the ensembles with F1 of 1.00 for DoS and Normal, 

and maintained competitive scores for Port Scan (0.94), Ping Scan (0.92), and 

Brute Force (0.83). The macro-F1 of 0.94 demonstrates that the proposed 

method remains stable and reliable even under balanced conditions. 

 

The F1-scores on NSL-KDD, presented in Figure 5.9, provide the 

clearest evidence of advantage. CNN, RF, and XGBoost all failed to produce 

usable results for minority classes, with F1 of zero for R2L and U2R. Even IDS 

baselines showed only partial improvement, with CSE-IDS recording 0.63 for 

R2L and 0.52 for U2R. In contrast, SignReencryption achieved F1 of 0.95 for 

Probe, 0.95 for R2L, and 0.58 for U2R, alongside 0.98 for both DoS and Normal. 

Its macro-F1 of approximately 0.89 decisively outperformed all baselines and 

matched the Optuna-optimised objectives reported earlier. 

 

Collectively, Figures 5.7–5.9 demonstrate that the proposed method is 

competitive in simple datasets, resilient in complex modern datasets, and 

markedly superior in imbalanced conditions where other methods collapse. This 

shows that SignReencryption not only balances false positives and false 

negatives but also consistently preserves minority-class detection which is an 
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essential requirement for intrusion detection systems deployed in real-world 

networks. 

 

5.3.4 Comparative Insights 

A synthesis of the results presented in Figures 5.1–5.9 provides several 

comparative insights into how different methods behave across datasets of 

varying complexity and class distribution.  

 

The first insight concerns the systematic trade-off between precision 

and recall. Ensemble methods such as Random Forest and XGBoost maintained 

very high precision across the balanced and fully visible conditions of 

CICIDS2017 and CIDDS-001, with most classes exceeding 0.95. However, 

their recall collapsed in NSL-KDD minority categories, leaving critical attacks 

such as R2L and U2R almost entirely undetected. By contrast, 

SignReencryption adopted a recall-oriented profile, deliberately tolerating a 

reduction in precision in certain minority categories of CICIDS2017 while 

maintaining recall above 0.90 for Infiltration and achieving perfect recall for 

Web Attack, PortScan, and Patator. This design choice ensured that no attack 

type was systematically overlooked, which is crucial in operational contexts 

where the cost of a missed intrusion outweighs the burden of investigating false 

alarms.  

 

The second insight relates to stability across traffic regimes. In the 

CIDDS-001 dataset, where the class boundaries are more distinct, all methods 

achieved high scores. Nonetheless, SignReencryption matched ensemble 

baselines in the major classes and avoided any catastrophic failures in the 

minority categories of Ping Scan and Brute Force. In CICIDS2017, the proposed 

method sustained strong F1 performance for dominant behaviours such as DoS 

and Normal, achieving 0.99 and 0.94, respectively, despite the dataset’s 

diversity. In NSL-KDD, it decisively outperformed all comparators in minority 

categories, reaching F1-scores of 0.95 for Probe and R2L, while achieving a 

usable 0.58 for U2R. These results demonstrate that the proposed system 
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remains robust across datasets that differ in feature complexity, attack diversity, 

and class imbalance.  

 

The third insight highlights a consistent advantage in the detection of 

Denial-of-Service (DoS) attacks across all datasets. DoS traffic is a major 

category in every benchmark used in this study, and it represents a critical real-

world threat. SignReencryption achieved recall of at least 98 percent for DoS in 

CICIDS2017, CIDDS-001, and NSL-KDD, while simultaneously maintaining 

F1-scores close to 1.00 in each case. This consistency is important because DoS 

attacks often dominate real network traffic during intrusion events, and failure 

to detect them undermines the credibility of any intrusion detection system. By 

achieving high detection rates for DoS across all benchmarks, the proposed 

method demonstrates both reliability and practical readiness for deployment.  

 

Together, these insights show that while ensemble learners dominate 

in balanced and fully visible scenarios, their advantage does not extend to 

imbalanced datasets or privacy-preserving conditions. Deep learning baselines 

are unstable, often failing in minority categories. SignReencryption, however, 

demonstrates a stable and recall-oriented performance profile, maintaining high 

sensitivity across all datasets while preserving strong detection in the majority 

categories. 

 

5.3.5 Research Contribution of SignReencryption 

The results across CICIDS2017, CIDDS-001, and NSL-KDD confirm several 

research contributions of the proposed SignReencryption method. 

 

First, the method substantially improves detection of minority attack 

categories that have historically been persistent weaknesses in intrusion 

detection research. In NSL-KDD, the system achieved F1-scores of 0.95 for 

Probe and R2L, and 0.58 for U2R, where traditional baselines either failed 

completely or achieved only marginal results. In CICIDS2017, the method 

raised recall for Infiltration to 0.91 and achieved perfect recall for Web Attack. 
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These outcomes demonstrate that SignReencryption is capable of capturing 

subtle, low-frequency attack patterns that are often missed by existing methods. 

 

Second, the method consistently detects major categories without 

sacrificing stability in dominant classes. Across all datasets, Denial-of-Service 

(DoS) traffic was detected with recall of at least 98 percent and F1-scores close 

to 1.00. Since DoS represents one of the most critical real-world threats, this 

consistency establishes the reliability of the system for deployment in practical 

network defence scenarios. The ability to strengthen minority-class detection 

while simultaneously maintaining high detection rates in majority categories is 

a defining characteristic of the proposed approach. 

 

Third, the method demonstrates robustness across heterogeneous 

datasets. In CIDDS-001, where traffic classes are relatively well separated, the 

proposed method performed on par with ensemble baselines, achieving stable 

results across all categories without collapse in the less frequent classes of Ping 

Scan and Brute Force. In CICIDS2017, which is more complex and diverse, it 

maintained strong detection rates for major categories while achieving 

competitive sensitivity in minority classes. In NSL-KDD, which is widely 

regarded as the most challenging due to its extreme imbalance, the method 

decisively outperformed all comparators in the minority categories. This 

consistency confirms that the system adapts effectively to different traffic 

environments, making it suitable for diverse deployment contexts. 

 

In summary, the research contribution of SignReencryption lies in its 

ability to simultaneously enhance the detection of low-frequency attacks, 

maintain high reliability in dominant categories such as DoS, and demonstrate 

robustness across datasets of varying complexity. By filling long-standing gaps 

in minority-class sensitivity while preserving stability in major classes, the 

proposed method advances the state of the art in intrusion detection and provides 

a framework that is both effective in research benchmarks and practical for real-

world deployment. 
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5.4 Accuracy and Computational Cost Analysis 

The effectiveness of an intrusion detection system is not only measured by 

classification performance but also by the computational resources required for 

training and deployment. Tables 5.4–5.6 compare the proposed 

SignReencryption with baseline methods across CICIDS2017, CIDDS-001, and 

NSL-KDD, reporting accuracy, training time, and testing time. These results 

highlight the trade-offs between predictive accuracy and computational 

efficiency. 

 

5.4.1 CICIDS2017 

Table 5.4 presents the comparison on CICIDS2017. Ensemble methods such as 

Random Forest and XGBoost achieved perfect accuracy (1.00) with remarkably 

low training times of 60.36 and 85.12 seconds, respectively. CNN and DNN 

recorded accuracies of 0.92 and 0.95 but required substantially higher training 

costs, taking 963.97 seconds for CNN and 612.94 seconds for DNN. 

 

Table 5.4: Comparison of the proposed SignReencryption with other related 

works using the CICIDS2017 dataset. 

 Evaluation Metrics 

Research Works Accuracy Training Time Testing Time 

CNN 0.92 963.97 0.0000235 

DNN 0.95 612.94 0.0000261 

RF 1 60.36 0.0000183 

XGBoost 1 85.12 0.0000174 

CSE-IDS 0.92 274.40 0.0052000 

LIO-IDS 0.86 153.25 - 

SignReencryption 0.94 334.45 0.0000191 

 

The proposed SignReencryption achieved an accuracy of 0.94, 

positioning it competitively between the deep learning baselines and the 

ensembles. Its training time of 334.45 seconds was considerably lower than 

CNN and DNN, but higher than the ensembles. Importantly, its testing time was 

0.0000191 seconds per sample, comparable to RF and XGBoost, and 
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substantially lower than CSE-IDS (0.0052) and LIO-IDS, for which no testing 

time was reported. These results suggest that while ensembles dominate in raw 

accuracy and efficiency for this dataset, SignReencryption strikes a balance by 

achieving strong accuracy while maintaining lightweight inference times 

suitable for real-time detection. 

 

5.4.2 CIDDS001 

The results for CIDDS-001 are reported in Table 5.5. All baseline methods 

achieved extremely high accuracies, with CNN, DNN, RF, and XGBoost each 

reaching 1.00. CSE-IDS and LIO-IDS were slightly lower at 0.99 and 0.96. 

SignReencryption achieved 0.99, aligning closely with the top-performing 

models. 

 

Table 5.5: Comparison of the proposed SignReencryption with other related 

works using the CIDDS001 dataset 

 Evaluation Metrics 

Research Works Accuracy Training Time Testing Time 

CNN 1 334.85 0.0000072 

DNN 1 122.55 0.0000228 

RF 1 15.87 0.0000124 

XGBoost 1 19.47 0.0000103 

CSE-IDS 0.99 384.85 0.0045000 

LIO-IDS 0.96 345.10 - 

SignReencryption 0.99 111.39 0.0000157 

 

From a computational perspective, SignReencryption demonstrated 

one of the most efficient training times at 111.39 seconds, outperforming CNN 

(334.85), CSE-IDS (384.85), and LIO-IDS (345.10). Its testing time of 

0.0000157 seconds per sample was again comparable to the ensembles and 

significantly lower than CSE-IDS. These results indicate that for datasets with 

clearer class separation such as CIDDS-001, the proposed method achieves high 

accuracy with substantially reduced training cost, reinforcing its practicality in 

environments where retraining must be performed frequently. 
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5.4.3 NSL-KDD  

Table 5.6 shows the performance on NSL-KDD, which is widely recognised as 

a challenging benchmark due to its extreme imbalance. CNN, RF, and XGBoost 

recorded accuracies of only 0.43, while DNN reached 0.75. Advanced baselines 

performed better, with CSE-IDS at 0.92 and LIO-IDS at 0.87. 

 

Table 5.6: Comparison of the proposed SignReencryption with other related 

works using the NSL-KDD dataset 

 Evaluation Metrics 

Research Works Accuracy Training Time Testing Time 

CNN 0.43 580.13 0.0000155 

DNN 0.75 42.79 0.0000248 

RF 0.43 23.92 0.0000113 

XGBoost 0.43 31.49 0.0000087 

CSE-IDS 0.92 434.90 0.0030000 

LIO-IDS 0.87 391.13 - 

SignReencryption 0.97 71.73 0.0000117 

 

The proposed SignReencryption achieved the highest accuracy at 0.97, 

decisively surpassing all comparators. Its training time of 71.73 seconds was 

much lower than CNN (580.13) and CSE-IDS (434.90), while its testing time 

of 0.0000117 seconds per sample was competitive with RF and XGBoost. This 

result is particularly significant because it demonstrates that SignReencryption 

not only improves detection performance in the most challenging dataset but 

also does so with modest computational cost, enabling both retraining efficiency 

and real-time operation. 

 

5.4.4 Operational Implications of Accuracy and Computational 

Efficiency 

Across all datasets, three patterns can be observed. First, ensemble models 

achieved the fastest training times and highest accuracy in relatively balanced 

datasets such as CICIDS2017 and CIDDS-001. However, their performance 
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collapsed in NSL-KDD, where the proposed method achieved a decisive 

advantage. Second, deep learning baselines such as CNN and DNN required 

high training costs but did not consistently outperform the proposed method, 

particularly in minority categories where their accuracy weakened. Third, 

SignReencryption demonstrated stable testing times across all datasets, 

consistently in the order of 10-5 seconds per sample, which is crucial for real-

time detection in high-throughput networks. 

 

It is important to note that training time represents a cost incurred 

primarily when the system is first deployed or periodically retrained to adapt to 

evolving network conditions. By contrast, testing time determines the model’s 

ability to operate in real-world environments where millions of flows must be 

processed continuously. In this regard, SignReencryption maintains high 

accuracy while requiring only minimal inference time, making it suitable for 

deployment in practical, latency-sensitive settings. 

 

Taken together, these findings confirm that the proposed 

SignReencryption achieves a balanced profile of accuracy, training efficiency, 

and real-time readiness. While ensemble methods remain attractive in simpler 

regimes, the proposed system provides superior adaptability to complex, 

imbalanced environments, and does so with inference costs that make it feasible 

for continuous operation in production networks. 

 

5.5 Results of SignReencryption versus Sign-Then-Encrypt 

The performance of the proposed SignReencryption scheme was evaluated 

against the conventional Sign-Then-Encrypt (STE) baseline across two core 

dimensions: ciphertext expansion and execution time. The results are 

illustrated in Figures 5.10 and 5.11, respectively. 

 

5.5.1 Ciphertext Expansion 

Figure 5.10 presents the ciphertext size as a function of message length. The 

results show that SignReencryption consistently produces smaller ciphertexts 

compared to STE. This efficiency arises from the scheme’s structural 
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integration of encryption and signature generation into a single process, thereby 

eliminating the need to append a separate digital signature to the plaintext before 

encryption. 

 

 

Figure 5.10:  Ciphertext size comparison between SignReencryption and 

Sign-Then-Encrypt across varying message lengths. 

 

For very short messages, where communication overhead is 

proportionally large, the improvement is most striking. At a 50-byte input size, 

SignReencryption compresses the ciphertext to 80 bytes, whereas STE requires 

160 bytes, representing a 50 percent reduction. At 256 bytes, the ciphertext 

produced by SignReencryption is 288 bytes, compared to 368 bytes under STE, 

a saving of approximately 22 percent. While the relative savings decline with 

increasing message length, absolute reductions remain measurable, with 

SignReencryption producing ciphertexts of 4128 bytes versus 4208 bytes at 4 

KB. 

 

These results confirm that SignReencryption achieves substantial 

communication savings, particularly in environments dominated by small, 

frequent control messages such as vehicular alerts and IoT sensor updates. In 

such contexts, reduced ciphertext expansion translates directly into improved 

bandwidth utilisation, faster message dissemination, and lower energy 

consumption during transmission. 
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5.5.2 Execution Time 

Figure 5.11 compares the execution times of both schemes across varying input 

lengths. The results demonstrate that SignReencryption consistently 

outperforms STE, maintaining an average processing latency of 2.7–3.2 ms, 

compared to 5.0–6.5 ms for STE. This corresponds to a computational 

efficiency improvement of approximately 40–50 percent, independent of 

message length. 

 

 

Figure 5.11:  Execution time comparison between SignReencryption and 

Sign-Then-Encrypt as a function of message length. 

 

The efficiency gain arises from the elimination of duplicated 

operations. In STE, signature generation and encryption are performed 

sequentially, incurring separate cryptographic computations. In 

SignReencryption, these steps are algebraically unified within the bilinear 

pairing framework, thereby avoiding redundancy. This design reduces per-

message latency while preserving confidentiality and authenticity guarantees. 

 

5.5.3 Operational Implications 

The combined reductions in ciphertext size and execution time carry significant 

implications for deployment in resource-constrained and latency-sensitive 

environments. In Intelligent Transportation Systems (ITS), where vehicular 

collision alerts and road hazard notifications must be disseminated with minimal 

delay, SignReencryption’s efficiency ensures both timely message delivery and 
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minimal communication overhead. Similarly, in IoT deployments characterised 

by high message frequency and energy-limited devices, the scheme’s lower 

bandwidth consumption and reduced computational burden extend device 

longevity and improve overall scalability. 

 

From a security–efficiency perspective, these findings confirm that 

SignReencryption preserves the full spectrum of security properties associated 

with the STE approach, while offering superior performance in both 

communication and computation. 

 

5.5.4 Comparative Insights 

A synthesis of the results highlights three comparative insights into the 

advantages of SignReencryption relative to the STE baseline: 

 

1. Communication Efficiency: SignReencryption reduces ciphertext 

expansion across all message sizes, with particularly strong gains in 

short-message scenarios where communication efficiency is most 

critical. This property makes the scheme highly suitable for IoT and 

vehicular networks, where message payloads are often minimal yet must 

be transmitted at scale. 

2. Computational Performance: The scheme achieves a systematic 

reduction in execution time of approximately 40–50 percent relative to 

STE, a consequence of the unified cryptographic operation. This 

improvement ensures that the system remains responsive even under 

sustained high-throughput conditions, reducing latency without 

weakening security guarantees. 

 

3. Deployment Readiness: The results demonstrate that  

SignReencryption is not only a theoretical enhancement but also a 

practically deployable solution. By reducing both communication 

overhead and computational latency while maintaining the same level of 

security assurances, it addresses two of the primary bottlenecks in secure 

communications for ITS and IoT ecosystems. This positions the scheme 
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as a more scalable alternative to conventional STE, particularly in large-

scale, real-time operational environments. 

 

5.6 Strengths and Weaknesses in Operational Deployment 

The experimental results across CICIDS2017, CIDDS-001, and NSL-KDD, 

together with the comparative cryptographic evaluation, provide an opportunity 

to critically examine the strengths and weaknesses of the proposed 

SignReencryption system in the context of practical deployment. 

 

A key strength of the system lies in its ability to detect minority attack 

categories that have historically been problematic for intrusion detection 

systems. The model consistently achieved strong recall for classes such as 

Infiltration in CICIDS2017 and R2L/U2R in NSL-KDD, where ensemble 

methods and conventional deep learning approaches frequently failed. This 

capability addresses a longstanding research gap in intrusion detection by 

reducing the likelihood of operational blind spots in exactly those categories 

that pose a disproportionate risk despite their low frequency. 

 

Another strength is the robustness of the model in detecting Denial-of-

Service (DoS) attacks, which represent one of the most prevalent and damaging 

forms of intrusion. Across all three datasets, the system maintained recall above 

98 percent and F1-scores approaching unity for DoS traffic. This consistency 

provides assurance of reliability against an attack type that dominates real-world 

incident reports and has direct implications for the credibility of an operational 

intrusion detection system. 

 

From a computational perspective, the system demonstrates a 

favourable profile for deployment. While the training phase requires a moderate 

level of resources, testing incurs negligible latency, with inference times in the 

order of 10⁻⁵ seconds per sample. This property ensures that the system can be 

integrated into high-throughput environments, such as enterprise networks or 

IoT infrastructures, without creating performance bottlenecks. In addition, the 

integration of signature generation and encryption into a single operation 
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reduces computational overhead and ciphertext expansion relative to 

conventional Sign-Then-Encrypt approaches. This enhancement in efficiency is 

particularly relevant for resource-constrained environments such as intelligent 

transportation systems, where both communication bandwidth and processing 

capacity are limited. 

 

Despite these advantages, several limitations must also be recognised. 

The recall-oriented optimisation of SignReencryption occasionally results in 

reduced precision for minority classes, as evidenced by lower precision values 

in categories such as Bot within CICIDS2017. Although this trade-off 

significantly reduces the risk of missed detections, it also increases the number 

of false positives, thereby imposing an additional workload on human analysts 

who must validate alerts. 

 

Another limitation relates to the cost of training. Compared with tree-

based ensembles such as Random Forest, the system requires longer training 

times, which may restrict its adoption in scenarios where computational 

resources are scarce or where frequent retraining is required due to evolving 

threat landscapes. This concern is compounded by the model’s dependence on 

hyperparameter optimisation. While Optuna-based tuning enables high 

adaptability, it also reveals the sensitivity of the model to dataset characteristics. 

Maintaining optimal performance in dynamic environments may therefore 

necessitate periodic re-optimisation, which introduces additional operational 

overhead. 

 

Finally, as with most Transformer-based architectures, the 

interpretability of the model remains limited. The internal mechanisms by which 

features are weighted and decisions are made are less transparent than in 

traditional ensemble learners. This lack of interpretability could reduce analyst 

trust and complicate forensic investigations following an intrusion, potentially 

hindering the model’s acceptance in production environments where 

explainability is valued. 
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Taken together, these findings indicate that the proposed 

SignReencryption system offers a compelling balance between accuracy, 

efficiency, and security assurance, particularly in its ability to capture rare but 

consequential intrusions and to operate effectively in real-time settings. 

Nonetheless, careful consideration must be given to its precision–recall trade-

offs, training overhead, and interpretability when deploying the system in 

practice. 

 

5.7 Summary 

This chapter presented a comprehensive evaluation of the proposed 

TabTransformer-based intrusion detection system combined with the 

SignReencryption scheme. Across the three benchmark datasets, Optuna-driven 

hyperparameter tuning demonstrated the adaptability of the model to varying 

levels of feature complexity and class imbalance, yielding competitive 

configurations that emphasised generalisation. Evaluation using precision, 

recall, and F1-score revealed that while ensemble methods retained an 

advantage under balanced conditions, they collapsed in minority-class detection. 

In contrast, SignReencryption consistently prioritised recall, sustaining reliable 

detection of minority categories such as R2L and U2R in NSL-KDD, while 

maintaining stable performance on dominant categories including DoS across 

all datasets. 

 

The analysis of computational cost further highlighted the practicality 

of the proposed approach. Although training times were moderate, they 

represent a one-time cost incurred only during system deployment. In testing, 

SignReencryption achieved low per-sample latency while preserving high 

accuracy, thereby meeting the requirements of real-time intrusion detection. 

Complementary evaluation of the cryptographic component showed that 

SignReencryption significantly reduced ciphertext expansion and execution 

overhead compared to a traditional Sign-Then-Encrypt baseline, making it 

highly suitable for deployment in resource-constrained environments such as 

IoT-based intelligent transportation systems. 
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Finally, the strengths and weaknesses of the system were discussed in 

the context of operational deployment. The method demonstrated robust 

sensitivity to diverse attack categories, resilience in imbalanced traffic regimes, 

and efficiency in cryptographic protection. At the same time, trade-offs were 

observed in precision for certain minority classes and in training time relative 

to lightweight baselines. Overall, the results confirm that the integration of 

TabTransformer with SignReencryption provides a balanced, secure, and 

practically deployable solution to the challenges of modern intrusion detection. 
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CHAPTER 6 

6 CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusion 

This study introduced SignReencryption, an intrusion detection framework that 

integrates a TabTransformer-based detection model with a bilinear-pairing-

based signcryption scheme. The system was evaluated across three widely 

recognised benchmark datasets, namely CICIDS2017, CIDDS-001, and NSL-

KDD, under a rigorous experimental protocol. Hyperparameter optimisation 

was performed using Optuna, ensuring balanced performance across both 

majority and minority classes. 

 

The results demonstrate that the TabTransformer architecture, when 

tuned appropriately, can adapt to datasets with highly diverse traffic 

distributions. In particular, SignReencryption achieved competitive results in 

terms of precision, recall, and F1-score, with a clear advantage in detecting 

minority attack categories that have historically been overlooked by 

conventional methods. This was particularly evident in the NSL-KDD dataset, 

where the system consistently outperformed baseline and ensemble-based 

methods in categories such as Probe, R2L, and U2R. 

 

Beyond detection performance, computational cost was analysed in 

terms of training time, testing time, and overall accuracy. While 

SignReencryption required a moderate training cost, it maintained a testing time 

comparable to the fastest baselines, confirming its suitability for real-time 

deployment. Importantly, the integration of the signcryption scheme ensured 

message confidentiality and authenticity without incurring prohibitive overhead, 

outperforming the conventional Sign-Then-Encrypt baseline in both 

computational efficiency and communication compactness. 

 

From an operational perspective, the system exhibits several strengths, 

including stability across heterogeneous datasets, strong sensitivity to minority 

attacks, and consistent detection of Denial-of-Service traffic with recall values 

exceeding 98 percent across all benchmarks. These qualities highlight its 
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readiness for deployment in environments where both security and reliability 

are critical. Nonetheless, challenges remain in reducing training overhead and 

further improving precision for rare attack categories under extreme imbalance. 

 

Overall, this work contributes a novel integration of advanced deep 

learning with efficient cryptographic primitives, addressing a significant gap in 

intrusion detection research by unifying detection accuracy, computational 

feasibility, and secure communication within a single framework. 

 

6.2 Future Works 

While the findings of this study are promising, several avenues remain open for 

future exploration: 

1. Extending Dataset Diversity: Future research should incorporate more 

recent and large-scale traffic datasets that capture advanced threats such 

as adversarial intrusions, zero-day exploits, and polymorphic malware. 

This would strengthen the empirical evidence for robustness under 

evolving attack scenarios. 

2. Adversarial Robustness: Given the rise of adversarial machine 

learning, enhancing the system’s resilience to adversarial perturbations 

is an essential next step. Techniques such as adversarial training, 

defensive distillation, or ensemble defences could be employed to 

mitigate vulnerabilities. 

3. Lightweight Deployment: Although testing efficiency is already 

competitive, further optimisation of both the detection model and 

cryptographic primitives can reduce training cost and memory usage. 

This would allow seamless deployment in edge and resource-

constrained environments such as IoT devices. 

4. Federated and Privacy-Preserving Learning: Embedding 

SignReencryption within federated learning frameworks would enable 

collaborative intrusion detection across distributed entities without 

centralising sensitive network data, aligning the system with 

contemporary privacy regulations. 
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5. Integration in Intelligent Transportation Systems (ITS): The 

demonstrated efficiency of the signcryption scheme makes it suitable for 

real-time vehicular communication. Pilot deployment within ITS 

networks would provide practical insights into its scalability, throughput, 

and resilience under operational traffic conditions. 

6. Multilayer Intrusion Detection Frameworks: A promising direction 

is the extension of the current architecture into a multilayer framework 

that integrates detection across the network, host, and application levels. 

Such an approach would enhance coverage, reduce the likelihood of 

evasion, and improve detection granularity. When combined with 

SignReencryption, a multilayer design could deliver both deep 

contextual awareness and secure communication across heterogeneous 

operational environments. 

 

6.3 Concluding Insights 

The research presented in this work demonstrates that unifying advanced deep 

learning architectures with efficient cryptographic mechanisms provides a 

viable pathway for next-generation intrusion detection systems. By jointly 

addressing the core challenges of detection accuracy, minority class sensitivity, 

computational feasibility, and secure communication, SignReencryption 

establishes a strong foundation for operational deployment. Future refinements, 

particularly in the direction of multilayer architectures and privacy-preserving 

collaboration, are expected to further elevate its role in safeguarding modern 

networked infrastructures. 
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