

DOI AND ISBN CITATION CONVERTER

YEN PEI XUAN

UNIVERSITI TUNKU ABDUL RAHMAN

DOI AND ISBN CITATION CONVERTER

YEN PEI XUAN

A project report submitted in partial fulfilment of the

requirements for the award of

Bachelor of Software Engineering with Honours

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2025

i

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that

it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Name : Yen Pei Xuan

ID No. : 2105999

Date : 18 September 2025

ii

COPYRIGHT STATEMENT

© 2025, Yen Pei Xuan. All right reserved.

This final year project report is submitted in partial fulfilment of the

requirements for the degree of software engineering at Universiti Tunku Abdul

Rahman (UTAR). This final year project report represents the work of the author,

except where due acknowledgement has been made in the text. No part of this

final year project report may be reproduced, stored, or transmitted in any form

or by any means, whether electronic, mechanical, photocopying, recording, or

otherwise, without the prior written permission of the author or UTAR, in

accordance with UTAR’s Intellectual Property Policy.

iii

ABSTRACT

This project developed a web-based citation generator to automate the accurate

formatting of academic references, addressing a significant need among

students and researchers who struggle with manual citation processes. The

system supports both Digital Object Identifiers (DOIs) and International

Standard Book Numbers (ISBNs), generating citations in multiple styles

including APA, Harvard, and IEEE. The methodology adopted is an Iterative

approach. The application employs a three-tier architecture consisting of a

lightweight HTML/CSS/JavaScript front end, a high-performance Python

backend built on FastAPI, and DuckDB for persistent metadata storage. The

system fetches metadata from external APIs asynchronously, using CrossRef

for DOIs and Open Library for ISBNs, and using Pydantic models to provide

strict input validation. A key innovation involves using DuckDB as a local cache

to minimise redundant API calls and significantly improve response times.

Testing of the system demonstrated its reliability in generating accurate citations,

managing invalid inputs with ease, and efficiently processing multiple

references through its advanced bulk upload functionality. The project provides

a practical and user-friendly solution that saves time while maintaining

academic integrity by reducing formatting errors. Future developments may

include additional citation styles, export features, and cloud-based deployment

to enhance scalability.

Keywords: citation, APA style, IEEE style, Harvard style, citation converter,

web application

Subject Area: PN172 – Literary Composition Techniques

iv

TABLE OF CONTENTS

DECLARATION i

COPYRIGHT STATEMENT ii

ABSTRACT iii

TABLE OF CONTENTS iv

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS / ABBREVIATIONS xi

LIST OF APPENDICES xii

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 3

1.3 Problem Statement 3

1.4 Aim and Objectives 4

1.4.1 Project Objectives 5

1.5 Scope and Limitation of the Study 6

1.5.1 Target Users 6

1.5.2 Limitation of the Study 7

2 LITERATURE REVIEW 8

2.1 Introduction 8

2.2 Literature Review 8

2.2.1 Existing Converter Tools 8

2.2.2 DOI and ISBN Metadata Extraction 11

2.2.3 Comparison between existing APIs Tools 11

2.3 Citation Formatting Rules 14

2.3.1 APA style (7th Edition) 14

2.3.2 Harvard style 15

2.3.3 IEEE styles 16

v

2.4 Summary 16

3 METHODOLOGY AND WORK PLAN 18

3.1 Introduction 18

3.2 Requirement/ Specification/ Standards 18

3.3 Software Development Methodology: Iterative

Methodology 19

3.3.1 Planning and Requirement Phase 20

3.3.2 Analysis and Design Phase 21

3.3.3 Implementation Phase 21

3.3.4 Testing Phase 22

3.3.5 Review Phase 22

3.4 Development Tools 23

3.4.1 Visual Studio Code (VSCode) 23

3.4.2 FastAPI 23

3.4.3 Python 23

3.4.4 MyPy 24

3.4.5 Pydantic 24

3.4.6 DuckDB 24

3.4.7 HTML (HyperText Markup Language) 24

3.4.8 Cascading Style Sheets (CSS) 25

3.4.9 JavaScript 25

3.4.10 Git 25

3.4.11 Digital Ocean 25

3.4.12 DuckDNS 26

3.5 Project Plan 26

3.5.1 Work Breakdown Structure (WBS) 26

3.5.2 Gantt Chart 27

3.6 Summary 27

4 PROJECT SPECIFICATIONS 29

4.1 Introduction 29

4.2 End Users 29

4.3 Requirement Specification 30

4.3.1 Functional Requirements 30

4.3.2 Non-Functional Requirements 31

vi

4.4 Prototype 32

4.5 Summary 32

5 SYSTEM DESIGN 34

5.1 Introduction 34

5.2 System Architecture Design 34

5.3 Database Design 38

5.4 API Routes Design 39

5.4.1 DOI 39

5.4.2 ISBN 40

5.4.3 Error return 40

6 SYSTEM IMPLEMENTATION 41

6.1 Introduction 41

6.2 Backend Implementation 42

6.3 Data Validation 45

6.4 Database Implementation 46

6.5 Frontend Implementation 47

6.6 Intergration with External APIs 49

7 SYSTEM TESTING 51

7.1 Introduction 51

7.2 Test Plan 52

7.3 Test Case 53

7.3.1 Backemd Test Case 53

7.3.2 Fronted Test Case 55

7.4 Test Code 56

7.5 Discussion 58

8 CONCLUSION AND RECOMMENDATIONS 60

8.1 Conclusion 60

8.2 Problems Encountered 61

8.3 Limitations 62

8.4 Recommendations/Future Work 63

8.4.1 Expansion of Supported Citation Styles 63

8.4.2 Offline Caching and Local Metadata

Storage 63

vii

8.4.3 Integration with Browser Plugins and Word

Processors 63

8.4.4 Migration from DuckDB to SQLite for

Improved Concurrency 64

REFERENCES 65

APPENDICES 67

viii

LIST OF TABLES

Table 2.1: Tables of Tools Comparison 10

Table 2.2: Table of differences between frameworks comparison 13

Table 4.1: Functional Requirements 30

Table 4.2: Non-Functional Requirements 31

Table 5.1: Data dictionary 39

Table 7.1: Table of Summary of Test Cases 57

ix

LIST OF FIGURES

Figure 3.1: Iterative Methodology (Visual Paradigm, 2024) 19

Figure 3.2: Gantt Chart 27

Figure 5.1: System Architecture Design Diagram 35

Figure 5.2: Entity Relationship Diagram for the databases 38

Figure 5.3: The design of the DOI route. 39

Figure 5.4: The response code and body. 39

Figure 5.5: The design of the ISBN route. 40

Figure 5.6: The response code and body. 40

Figure 5.7: The response code and body when error. 40

Figure 6.1: The route to call index.html 42

Figure 6.2: The cite endpoint for validation 43

Figure 6.3: The format of a DOI citation. 44

Figure 6.4: The format of an ISBN citation. 44

Figure 6.5: Upload file function 45

Figure 6.6: MyPy check DOI type 46

Figure 6.7: MyPy check ISBN type 46

Figure 6.8: Connect the DuckDB database 46

Figure 6.9: Metadata fetchers with DuckDB cache 47

Figure 6.10: The Website Interface 48

Figure 6.11: The Frequently Asked Questions section 48

Figure 6.12: The handleGenerate() function for validation 49

Figure 6.13: Fetch DOI metadata function 50

Figure 6.14: Fetch ISBN metadata function 50

Figure 7.1: Test case for valid input 53

x

Figure 7.2: Test case for invalid input 54

Figure 7.3: Test case for Internet 54

Figure 7.4: Test Case for Frontend 56

Figure 7.5: Test Result 57

xi

LIST OF SYMBOLS / ABBREVIATIONS

cp specific heat capacity, J/(kgK)

h height, m

Kd discharge coefficient

M mass flow rate, kg/s

P pressure, kPa

Pb back pressure, kPa

R mass flow rate ratio

T temperature, K

v specific volume, m3

 homogeneous void fraction

 pressure ratio

 density, kg/m3

 compressible flow parameter

ID inner diameter, m

MAP maximum allowable pressure, kPa

MAWP maximum allowable working pressure, kPa

OD outer diameter, m

RV relief valve

xii

LIST OF APPENDICES

Appendix A: Tables 67

Appendix B: Open Access to Image Rights 72

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

Citing sources is a fundamental component of academic and

professional writing, forming the foundation of academic integrity and

intellectual honesty. A citation is the acknowledgment of the source that the

authors have used in their essay, assignment, or journal to support their

arguments and provide evidence. The authors provide a reference to the source,

which means they have acknowledged that they have read the work and

recognize its ideas in their own writing. (Montana.edu, 2020) A responsible

author gives credit to original authors, supports claims with evidence, and

prevents plagiarism by quoting ideas used by other authors.

Citations have a number of practical applications, other than preventing

plagiarism. They provide readers with a clear framework for tracing the

evolution of ideas, enabling them to verify facts, investigate related studies, and

gain a more comprehensive understanding of the subject. As besteditproof.com

(2022) notes, the proper citations can help the reader find the sources from

which the authors acquired the idea and check the facts. Good citation habits

build trust and keep writing clear and honest, and scholars place a high value on

and track the evolution of concepts. It shows the reader that the writer has done

proper research by listing sources that were used to get information. The citation

includes the author’s name, journal title, date, DOI(Digital Object Identifier) or

ISBN (International Standard Book Number), depending on the reference style

used. Each citation style specifies the required information for a citation in a

unique order and punctuation. There are many reference styles to use, for

example, APA(American Psychological Association) style, Harvard style, and

IEEE(Institute of Electrical and Electronics Engineers) style.

 Why are there so many different reference styles? This is because the

different reference styles are used for different fields and are suitable for them.

For example, the APA style is favored in the fields of social science, education,

and psychology, which is suitable for quantitative studies; the IEEE style is

suitable for use in engineering, while the Chicago Manual of Style is suitable

2

for history. (Hunter, 2006) Another difference is that the source's information

in reference will have a different order, although they have the same basic

information, such as the authors' names, publication year, and the source's title.

In APA style, the order of information starts with the author's name, followed

by the publication year. This two information are the most important in the

social science and education fields. It is important to use the right style because

referencing is also a professional skill. (Which referencing style should you use?,

2019) It is important to note that understanding citation styles goes beyond

simply knowing how to format references correctly. It also reflects a

commitment to the standards set out in each discipline, adherence to established

academic traditions, and a professional approach to all aspects of work. Correct

citation methods demonstrate respect for others' intellectual contributions and

contribute to the greater academic debate by clearly acknowledging the sources

of ideas.

 The Digital Object Identifier (DOI) System is used for recognising

content objects in a digital environment. DOIs are assigned to any sources

utilised on digital networks, such as journals and books. They can provide the

newest information and are easy to find on the Internet because the DOI name

will never change, although the content may change. The DOI System is a

framework for easier management of content, metadata, and enables the

automated management of media. Nowadays, we can get the information about

sources by the DOI easily from the Internet, because each DOI is a unique

alphanumeric string to identify the digital content, such as a journal and an

article, and then provides the link on the Internet. (DOI Foundation, 2022) The

DOI is commonly written on the first page of sources, so we can find it easily.

 An International Standard Book Number (ISBN) is a product identifier

used for publishers, libraries, and internet retailers to easily list the book’s sales

records and stock control. The ISBN can identify the book's title, edition, format,

and other information. The ISBNs are assigned to text-based monographic

publications like academic books. Every book will have its unique ISBN that is

built with 13 digits, and the beginning of the number should start with either

978 or 979. Each book edition is given a different ISBN, enabling easy

identification of differences between versions by libraries, bookshops and

readers alike.

3

 This project aims to develop an automated citation converter that is

convenient and highly accurate in reference style for users. This citation

converter will support APA, Harvard, and IEEE style references by the DOI or

ISBN provided by users. Furthermore, the citation converter will be able to

provide a high-speed response for the users, and users will be able to copy or

download the converted reference from the website.

1.2 Importance of the Study

The challenges of citation converters are that reference styles will have different

editions, and as time goes by, the reference styles might have huge differences.

Although numerous citation tools exist, many of them may use outdated editions

of citation styles and generate incorrect formats, which can compromise the

accuracy of academic work. In this case, users often need to manually format

citations, which may lead to errors in referencing. Other than that, some of the

citation converter tools require users to manually input the information of

sources, as they fail to detect the necessary information from metadata. This will

let users take more time to check back the sources and input by themselves, and

also need to take time to verify citation details.

 Secondly, the academic penalties for improper citation could be severe,

including paper rejection, reduced grade, and accusations of academic

misconduct. In such cases, plagiarism detection tools are employed to identify

improper citations and plagiarism, thereby underscoring the significance of

accurate referencing. The objective of this project is to reduce the risk of citation

errors and enhance academic integrity by automating the citation process

through the extraction of DOI and ISBN metadata.

1.3 Problem Statement

Manually formatting citations is highly prone to making mistakes, especially

when formatting with multiple reference styles across different academic

disciplines, and users might use the incorrect reference style format. The users

may not understand the citation rules and lead to inconsistencies and incorrect

reference formatting, for example, missing publication year, improper source

titles, and missing commas. These errors can have serious consequences for

academic integrity and professional reputation.

4

 Although many online reference tools are available, some produce

incorrect citation formats or incomplete metadata. Additionally, some citation

converters operate with outdated versions of reference styles; many are still

using APA 6th edition, even though the current version is 7th edition. This may

result in inconsistencies when academic institutions require adherence to the

most recent guidelines. Secondly, some of them used metadata retrieved from

APIs or databases, which is not always complete or accurate. This will lead to

incorrect or incomplete information, and users need to manually input the

information. Furthermore, many of the reference converters online, few of the

tools support DOI and ISBN metadata extraction while ensuring accurate

citation formation across multiple reference styles, which creates challenges

when citing books and journals.

 These limitations indicate a market requirement for a robust, reliable

and highly accurate citation converter. This converter should be able to

automatically detect and extract metadata using DOI and ISBNs, while

formatting the citations according to updated APA, Harvard and IEEE styles.

Therefore, an accurate citation converter tool is needed that can effectively

address this discrepancy by offering expeditious, precise, and adaptable citation

services that are aligned with contemporary academic requirements. This

project aims to address the problem and develop a tool that can convert DOI and

ISBN references into multiple reference styles.

1.4 Aim and Objectives

This project’s primary objective is to develop an automated citation converter

that can efficiently obtain metadata from DOI and ISBN inputs and accurately

format citations in accordance with APA, Harvard, and IEEE to reduce manual

citation effort and prevent formatting errors. This project is developed to reduce

the manual burden on academics, students, and researchers when citing their

sources, increasing citation accuracy and consistency, while minimising citation

errors and promoting academic accuracy. The objective of the project is not

merely to transform input into output, but also to establish a system that provides

metadata validation, robust error handling, and an enhanced user experience. It

is anticipated that this tool will offer users rapid response times, enabling them

to acquire citations in seconds.

5

 Moreover, the tool will be designed to be scalable and stable, with the

capability to manage multiple requests without compromising performance.

This project is designed with modularity to enable easy future updates to

accommodate changes in citation styles as the citation standards evolve over

time. This project places a significant emphasis on accessibility and usability,

ensuring that individuals with limited technical expertise are able to generate

high-quality citations through a straightforward web interface. The integration

of automation, validation, and usability is expected to yield substantial

contributions to academic writing standards and promote optimal scholarly

practices.

1.4.1 Project Objectives

The project will pursue the following objectives to attain the above-stated goal.

Firstly, develop an automated system that retrieves metadata from the CrossRef

for the DOI’s information and the Open Library for the ISBN’s information.

The objective of this undertaking is to use the CrossRef and Open Library, with

the intention of facilitating the automated retrieval of key citation metadata. The

system has been designed to ensure the highest standards of data accuracy by

sourcing information from well-known and reputable sources. The retrieval

routines must be capable of gracefully managing problems, such as missing

fields or API outages, and have fallback measures in place if data retrieval fails.

 Secondly, create a user-friendly website to enable users can have a

seamless experience and generate citations efficiently and correctly. The project

will result in the creation of an accessible and adaptable web interface, in which

users may enter their DOI or ISBN, select their needed citation style, and swiftly

obtain a reference prepared to a standardised format. The principles of user

experience (UX) that will be considered include clear feedback messages, quick

input validation, and immediate visibility of system status. The website will

also include certain guidelines, such as an example of a Digital Object Identifier

(DOI) and International Standard Book Number (ISBN), as well as an

explanation of the importance of referencing.

 Thirdly, this project will implement error handling and validation to

prevent incomplete or incorrect citations and verify the metadata consistency.

The system is designed to provide rigorous validation tests on both the front end

6

and the back end. The system validates user input formats and ensures that API

responses include all essential metadata, and issuing warnings to users when

human input or edits are required are all features of the system. This objective

is to ensure that, even in the event of incomplete data, the system will direct the

user to complete an accurate citation.

 Lastly, this project will ensure that the system is scalable, maintainable,

and extensible in the future. The system's architecture will be characterised by

modularity, with a clear delineation of components, such as API retrieval,

citation preparation, and user interface. The modular design of the system will

facilitate the future updating of citation formats, addition of new reference styles,

and enhancement of metadata retrieval capabilities, without the need for

substantial system changes.

1.5 Scope and Limitation of the Study

1.5.1 Target Users

The primary users of this citation converter are university students, academics,

and researchers who frequently cite sources in APA style, Harvard style, and

IEEE style. Undergraduate and postgraduate level students are often required to

strictly adhere to the citation guidelines as a part of their academic thesis,

dissertations, and assignments. Academics and researchers will need to ensure

that their references meet rigorous formatting standards when preparing

conference papers, research reports, and journal submissions. This citation

converter aims to provide accurate citations efficiently and in compliance with

the newest edition of the reference style. This project especially focused on APA,

Harvard, and IEEE styles, which are among the most extensively utilised across

educational institutions globally, as different academic disciplines have

differing preferences for citation styles. Beyond the confines of academic

settings, professional writers engaged in the creation of technical documentation,

policy reports, or white papers may find value in a tool that ensures consistent

and high-quality formatting of citations, thereby enhancing the professional

presentation of their work.

7

1.5.2 Limitations of the Study

The project has several limitations of the study, as the citation converter focuses

on DOI and ISBN-based references and is designed for a limited type of citation

references. Firstly, the converter is only able to consider references that are

specified by DOI or ISBN numbers because the functionality of the tool in

question is contingent upon the presence of a Digital Object Identifier (DOI) or

International Standard Book Number (ISBN). If the user inputs sources that do

not conform to these criteria, such as informal blog postings, personal emails,

or unpublished works, it will show an error message to users. Therefore, the

users are required to manually create citations for these sources in accordance

with standard procedures.

 Secondly, the system will only support three citation styles: The

reference styles employed in this text are APA, Harvard, and IEEE. It should

be noted that alternative styles, including those designated as Chicago,

Vancouver, and AMA, are not supported during this particular project phase.

While these styles may be incorporated into subsequent iterations, the present

project places emphasis on the three styles that are most pertinent to the

specified target user base.

 Thirdly, the system's reliance on external APIs, such as CrossRef and

Open Library, creates a dependency risk. If these services modify their API

formats, experience periods of downtime, or furnish insufficient metadata, the

accuracy of citations may be adversely affected. While local caching or manual

input alternatives can help mitigate this risk, reliance on external sources in real-

time remains a limitation. Furthermore, if the metadata provides incomplete or

incorrect information, the citation accuracy may be affected.

 Lastly, the citation converter is web-based and reliant on external data

retrieval; consistent internet access is a prerequisite for its functionality. In

environments characterised by limited connectivity, users may encounter delays

or interruptions when attempting to generate citations.

8

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

Citation is essential in academic writing, as it ensures that authors have

conducted proper research and acknowledged their sources. The citation

formatting was done manually before the citation tools were introduced, and

this may lead to incorrect citation format and waste time. With the progress of

science and technology, a lot of citation tools have been developed to help users

quickly format citations correctly and reduce errors. A literature review is an

integral component of any research endeavor, as it provides a comprehensive

overview of preceding research, identifies lacunae in existing knowledge, and

substantiates the necessity for the study in question. In the context of this project,

it is imperative to examine existing citation and reference management

technologies in order to understand their capabilities, strengths, and limitations.

This chapter provides an overview of the existing citation tools with their

strengths and limitations, mainly the DOI and ISBN citation, and the process of

metadata retrieval. This chapter also writes the newest APA, Harvard, and IEEE

style reference format, and the comparison between manual and automated

citation formatting. Therefore, the subsequent sections will discuss and evaluate

existing citation tools, metadata extraction methods, and reference formatting

systems relevant to this study.

2.2 Literature Review

This section reviews existing citation tools, analyzing their advantages,

disadvantages, and the gaps that motivate the development of this project.

2.2.1 Existing Converter Tools

In the literature review, three citation tools were compared about their strengths

and limitations, as these tools are widely used and well-known on websites.

The Zotero reference tool is a tool that can automatically sense the

content, like using a web browser, and is easy to use. It is a free and open-source

desktop software that can store website content on local storage. It works well

9

with Chrome and Safari to detect and save links from web pages, and helps users

organise their searches the way they want, such as sorting items in the collection

and tagging them with keywords to make them easier to find. Furthermore,

Zotero can capture metadata automatically from many sources, like videos and

PDFS, which is a very unique function. Zotero also supports over 9,000 citation

styles that users can use to format their references and allows sharing libraries

for group collaboration, using cloud sync features so that users can synchronise

the data across devices. (Zotero, 2025) However, Zotero also has its limitations;

firstly, it provides 300 MB of free storage, and the additional storage needs to

be paid for with a subscription. Compared to other existing citation converter

tools, its interface is too simple and less modern. Although it has community-

based support, it doesn't have a customer support team to solve issues.

In contrast to Zotero, Mendeley adopts a more research-oriented

ecosystem with collaborative tools for academics. Mendeley is a desktop-based

reference management software that requires users to download the application.

Mendeley Cite is the new feature that adds to Microsoft Word and is compatible

with Microsoft Office 365, so users can download it along with plug-ins for the

Microsoft software to insert citations. It offers a range of features to help

connect with discoverers and researchers, for example, a cross-device backup

feature to sync the content automatically, intelligent filtering, and a PDF viewer.

Mendeley aims to provide users with effective and fast reference management.

Secondly, users can build their own Mendeley library to search, organize, and

read their references. Additionally, it will also help users to collate all of the

notes and highlights from a PDF file, so that users can easily find their highlights.

(Mendeley, 2025) Mendeley is owned by Elsevier, which is a large publishing

company, so users are concerned about issues of openness and privacy. In

addition, the free version of Mendeley only allows users to create 5 groups and

limits them to 25 members per group. Highlighting and comments are no longer

shared between different group members and the user's original file. (Uw.edu,

2025)

On the other hand, EndNote is a more advanced commercial solution

tailored for professional researchers and institutions. EndNote aims to simplify

the complex task and organise complete references for users; it is widely used

in research and academic institutions. EndNote also allows users to create a

10

smart group by customising the tag and field. It also supports cloud

synchronisation and sharing, allowing users to access and collaborate via

EndNote Web. It is available for Windows and Mac users, and has three versions:

EndNote21, EndNote Web, and EndNote Basic. The EndNote Basic version is

free for anyone, can integrate with MS Word, and does not require installation.

The EndNote basic version has a file attachment storage limit of 2 GB only, and

reference storage is just 50000. Different versions of EndNote have different

maximum numbers of fields per reference and type. If users would like to use

EndNote 21, they need to buy and install it on their devices, as it provides more

services and efficiency. (EndNote, 2025)

Table 2.1: Tables of Tools Comparison

Tool Strengths Limitations

Zotero Free, open-source, supports

9,000 styles, browser integration

Limited free storage, lacks

customer support

Mendeley MS Word integration, PDF

annotation, and collaboration

tools

Limited free groups, privacy

concerns

EndNote Advanced management, cloud

sync, institutional support

Paid full version, limited free

features

The strengths of these tools are that they all support multiple reference

styles, such as APA style, Harvard style, Chicago style, and IEEE style. Some

tools also offer a browser extension function that it will automatically captures

the metadata. After users cite the resources, the completed references can be

saved in a library for reuse purposes. The tools can easily format the imported

citation for users and produce various types of style formats. Other than that,

they also import citations from other databases to retrieve sources' information

and cite them according to the reference style required by users.(Tutorspoint,

2024) They support many types of export citations, for example, BibTeX,

copying to the clipboard, and downloading as a Word file.

Other than strengths, these citation generator tools also have their

limitations. The application is built to earn profit; some features will be locked

and require users to purchase the premium version to access all these features.

11

The accuracy of the input data is important because incorrect citation references

may cause problems for users. The automatic data retrieval features will be

convenient for users, but sometimes they bring some trouble. The tools can pull

the incomplete details or incorrect information, and the users are required to

manually edit the reference themselves. If users input the wrong information,

the reference will generate an incorrect reference for users. Additionally, the

citation generator may pull data from an untrustworthy source, which will affect

the accuracy of citations. Thirdly, the citation generator might use an old version

of the reference style or an incorrect format to cite the references, such as when

to use a comma, which type of style uses the bracket, and different reference

styles use different information. (Rephrasely, 2024)

2.2.2 DOI and ISBN Metadata Extraction

The metadata extraction function is a process that identifies and extracts the

necessary information from an open source, for example, the authors' names,

the title of the article, and the year of publication. This is also a core function to

enable the automated citation generator. The DOI is a unique alphanumeric

string to identify the digital content and provide a link on the Internet. To

retrieve metadata using a DOI, the tools can access the DOI Foundation API

and return a JSON-formatted data that contains the necessary information for

the system.

 A unique ISBN that is built with 13 digits and identifies text-based

monographic publications like academic books. ISBN metadata can be retrieved

through the public API, such as Open Library, and the necessary information

will be returned to the system. To enhance the speed of the citation generator

and the performance of the system, some tools will store the references that have

been referenced by users in the databases. If other users cite the same DOI or

ISBN, the tool will fetch the metadata from databases and return it to the users.

This can also reduce reliance on external API calls and improve loading times.

2.2.3 Comparison between existing APIs Tools

This project requires the use of an API web application framework to assist in

project development. This section will review the three frameworks: Django,

Flask, and FastAPI, about their function, strengths, and limitations.

12

Django is a high-level, full-stack Python web framework that facilitates

the fast construction of safe and maintainable websites with a clean, pragmatic

design. The software contains integrated tools for managing administrative

interfaces, database models, and more, allowing developers to focus on building

the software rather than reinventing the wheel. (Django, 2024) Django provides

a comprehensive solution that incorporates an ORM (Object-Relational

Mapper), a templating engine, form handling, and security features as standard.

The software in question has been exhaustively documented, is capable of

extreme scalability, and boasts a substantial user base that provides substantial

backing. The software adheres to the "batteries included" concept, thereby

minimising the necessity for additional libraries. However, Django can present

certain challenges in terms of its complexity, which may be more suited to larger

projects and more substantial applications. Its monolithic nature has the

potential to incur excessive overhead when only basic REST APIs are required.

The customisation of such frameworks that exceeds the basic conventions

established by Django has been shown to require a greater investment of time

and effort.

Flask is a WSGI web application framework that is lightweight and

adaptable, allowing users to initiate development processes expediently. Flask

aims to facilitate the development of small to medium web applications and

RESTful APIs. It encompasses the essential tools required for web development,

while concurrently enabling developers to select their preferred components.

(Flask, 2010) Flask is a straightforward and uncomplicated software, which

renders it optimal for utilisation in diminutive applications for prototyping. It is

a highly flexible system that facilitates rapid deployment with minimal coding.

This paradigm shift empowers developers with unparalleled autonomy, granting

them the freedom to select their authentication system, ancillary add-ons, and

preferred database. Since Flask's simplicity has prompted the development of

numerous third-party extensions to address its limitations, though this approach

can lead to inconsistent architectures. In the case of Flask, additional

configuration may be necessary for functionality included in frameworks such

as Django for projects of a larger or more complicated nature.

FastAPI is a contemporary, high-performance web framework for the

creation of APIs in Python, utilising conventional Python type hints. (FastAPI,

13

2023) The software has been developed on the basis of Starlette for web parts

and Pydantic used for data validation, with asynchronous support and automatic

API documentation generation. FastAPI is distinguished by its rapid execution,

attributable to its asynchronous features and superior processing speed. These

characteristics are comparable to those observed in Node.js and Go APIs. It

generates OpenAPI (Swagger) documentation automatically, thus eliminating

the need for any additional configuration. The microservice paradigm, modern

web APIs, and asynchronous programming are well-suited to this approach.

Additionally, FastAPI provides robust typing and validation using Pydantic

models, which has been demonstrated to reduce problems and improve code

clarity. The FastAPI ecosystem is in a state of development and expansion,

given its relatively recent emergence as a software framework in comparison to

more established options such as Django and Flask. It is evident that certain

features, such as full-stack website support, like templating and ORM, are less

comprehensive in their initial state than those offered by Django. Those

developers unfamiliar with asynchronous programming may encounter an initial

period of adjustment.

Table 2.2: Table of differences between frameworks comparison

Framework Function Strengths Limitation

Django Build

complex

websites

Comprehensive

features,

widely supported

Heavy for small

projects,

rigid structure,

Flask lightweight

micro-

framework

Simple and flexible,

easy to learn

Lacks built-in tools,

Required manual setup

extensions

FastAPI Modern,

high-

performance

Asynchronous

support, automatic

validation with

Pydantic

Newer ecosystem,

learning curve for

async handling

Based on the analysis above, FastAPI was chosen for this project due

to its balance of speed, modern design, and validation capabilities. The primary

reasons for this choice are as follows: the enhanced performance, the automated

14

validation of input, the asynchronous processing of requests, and the simplified

development of RESTful APIs. The FastAPI software was found to offer an

optimal combination of simplicity and functionality, aligning well with the

project's requirements for a lightweight, efficient, and highly responsive citation

converter with API-based metadata retrieval. The software's automated

production of interactive API documentation (Swagger UI) has been

demonstrated to streamline the development and testing processes. A

comparative analysis of the structural intricacies of Django and the absence of

integrated validation mechanisms in Flask reveals that FastAPI emerges as the

most efficacious, contemporary, and extensible solution to meet the stipulated

project requirements. Furthermore, the built-in data validation of FastAPI with

Pydantic ensured the safe processing of DOI and ISBN queries, thus resulting

in a more robust and error-free solution.

2.3 Citation Formatting Rules

The following section outlines the reference formatting rules for three major

citation styles: APA, Harvard, and IEEE, along with examples for DOI-based

and ISBN-based citations. The different style of reference requires different

information; here is an example of each style of reference used by the DOI

(Journal) and the ISBN (Books). The APA reference format was according to

the Publication Manual of the American Psychological Association, 7th edition.

The Harvard style was according to the Cite Them Right book. The IEEE

reference format was according to the Universiti Tunku Abdul Rahman’s IEEE

Reference Guide.

2.3.1 APA style (7th Edition)

The APA reference format was according to the 7th edition of the Publication

Manual of the American Psychological Association. (2020)

DOI Reference Format:

AuthorA, LastName. FirstName., & AuthorB, LastName. FirstName. (Year

 of Publication). Title of the article: Subtitle. Title of the Journal,

 Volume number(Issue number), page–page. https://doi.org/xxx

15

Example:

Smith, J., & Lee, A. (2020). Investigating citation tools in academia. Journal of

 Information Systems, 15(2), 123–134.

 https://doi.org/10.1016/j.jis.2020.02.004

ISBN Reference format:

AuthorA, LastName. FirstName., & AuthorB, LastName. FirstName. (Year

 of Publication). Title of book: Subtitle (2nd ed.). Name of Publisher.

Example:

Clark, J. W. (2012). AC Power Conditioners. Academic Press.

2.3.2 Harvard style

The Harvard style was according to the Cite Them Right book. (2022)

DOI Reference Format:

AuthorA, LastName, FirstName., and AuthorB, LastName, FirstName., Year of

 Publication. Title of article. Full Title of Journal, [e-journal] Volume

 number(Issue number), pp.page-page. https://doi.org/xxx

Example:

QU, H.-B., CHEN, X., WANG, S.-T., & YU, M.,2015. Forward Affine Point

 Set Matching Under Variational Bayesian Framework. In Acta

 Automatica Sinica, [e-journal] 41(8), pp.1482–1494.

 https://doi.org/10.1016/s1874-1029(15)30001-x.

ISBN Reference Format:

AuthorA, LastName, FirstName., and AuthorB, LastName, FirstName.,

 Year of Publication. Title of book. Edition. Place of publication

 (town or city): Publisher.

Example:

Clark, J.W. , 1990. AC power conditioners: Design and applications. San Diego:

 Academic Press.

16

2.3.3 IEEE styles

The IEEE reference format was according to the Universiti Tunku Abdul

Rahman’s IEEE Reference Guide. (2022)

DOI Reference Format:

[1] AuthorA, FirstInitial. SecondInitial. LastName, and AuthorB, FirstInitial.

 SecondInitial. LastName, “Title of the article,” in Abbreviated Name.

 Year of Publication, pp.page–page. doi: (doi number)

Example:

[1] H.-B. QU, X. CHEN, S.-T. WANG, and M. YU, “Forward Affine Point Set

 Matching Under Variational Bayesian Framework,” in Acta

 Automatica Sinica, 2015, pp.1482–1494, doi: 10.1016/s1874-

 1029(15)30001-x.

ISBN Reference Format:

[1] AuthorA, FirstInitial. SecondInitial. LastName, and AuthorB, FirstInitial.

 SecondInitial. LastName, “Title of chapter,” in Title of Book, 3rd ed.

 City of Publisher (only U.S. State), Country: Abbreviated, Year of

 Publication, ch. 3, sec. 4, pp. page-page.

Example:

[1] R. Chellappa and S. Theodoridis, “Signal processing for massive MIMO

 communications,” in Academic Press Library in Signal Processing,

 Volume 7, London, England: Academic Press, 2018, ch.8, pp.367- 401.

2.4 Summary

This chapter reviews and compares the existing citation generator tools, the

strengths and limitations of the tools, the DOI and ISBN metadata retrieval, and

the reference style format. A review of the tools under consideration reveals a

number of factors that may be considered to be beneficial, alongside a number

of factors that may be considered to be detrimental. The former include, but are

not limited to, simplicity, cost barriers, the level of DOI/ISBN support, and the

capacity for real-time updates. The latter comprises a number of disadvantages,

17

including, but not limited to, the complexity of the processes and the paucity of

support for DOI and ISBN. Due to all the research, this project aims to provide

an accurate automated citation generator to format APA, Harvard, and IEEE

styles. Secondly, this project will also use trusted metadata sources, such as the

DOI Foundation and Open Library, to retrieve the information. The citation

generator will also support manual input in case the information is incomplete.

Furthermore, this project will also create a high-speed DOI and ISBN citation

converter with accuracy and reliability for users. The next chapter presents the

system design, outlining how these findings inform the proposed architecture

and implementation.

18

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter discusses the methodology that outlines the approach used to

develop the DOI and ISBN citation converter and ensure effective, accurate and

usable. The methodology for this project follows a sequential workflow,

beginning with planning and progressing through system analysis,

implementation, testing and a final review phase. Each phase is important to

ensure that the system is efficient, reliable, accurate, and user-friendly. This

chapter will state the details about requirements and specifications for the

project, the API integration used, and the Iterative methodology used to ensure

continuous improvements and testing during development.

3.2 Requirement/ Specification/ Standards

The system requires a combination of front-end interfaces, backend processing

services, and third-party APIs for metadata retrieval to develop a user-friendly

website to convert the DOI and the ISBN into different reference styles.

 The hardware requirements for this project are a minimum of 8 GB of

RAM is recommended to support backend processing. The higher RAM

capacity and speed lead to improved computer performance, and testing tools

will work smoothly. Secondly, more RAM allows the system to handle more

data and prevent slowdowns and lag while running multiple programs. The

software requirements are important; the core programming language used for

the project’s backend is Python 3.13.

1. Pydantic and dataclasses are used for data validation, which enforces the

type of data and ensures the input received via API requests is correctly

structured to prevent missing data.

2. MyPy is a static type checker for Python; it can detect potential type-

related errors before runtime and improve code reliability and

maintainability.

3. DuckDB databases are used to store the citation history.

19

4. The third-party API calls the DOI Foundation to retrieve the journal

information, for example, journal title, author, and publication data

based on the DOI input. The Open Library for fetching book data, for

example, book title, authors, and publisher, using the ISBN.

5. FastAPI was utilised in this project. It is a modern and high-performance

web framework for constructing RESTful APIs using Python.

3.3 Software Development Methodology: Iterative Methodology

The iterative methodology is a software development methodology to develop

a service in phases, and each phase builds on the previous phase. The phase

involves planning and requirements, design, implementation, testing, and

review, which is used to gain feedback and evaluation for refinement purposes.

This methodology's advantage is that developers can test their ideas early and

frequently to save time, reduce the risk of major flaws, and optimise the

resources. (indeed, 2024)

 The iterative process is where the developer starts to define a basic

version of the service, defines the service's requirements, designs the service

based on the requirements, develops some tests to test the service and then

reviews the service's feedback. This process breaks a project into a few modules

to let the developer develop the service step-by-step to improve the service. An

iterative process begins with the first iteration, where the developer creates a

simple planning task that fulfils the project requirements. Secondly, the

developer should design the project interface or anything necessary and

implement it. Then, conducting a test to ensure the project is well done and has

no errors. After that, through the feedback, the developer can decide to refine

the project or improve the project to meet the project goals.

Figure 3.1: Iterative Methodology (Visual Paradigm, 2024)

20

3.3.1 Planning and Requirement Phase

The initial phase should start in the planning and requirements phase. The

planning phase laid the foundation for the project's success. This phase should

determine the project problem statement, project objectives, project scope,

select suitable technologies, and set deliverables. The planning phase also

identified the target users, requirements of the system, and key milestones based

on the requirements. This phase will involve the project schedule to estimate the

overall project duration and ensure the project is completed on time. The scope

of the project was limited to creating a lightweight web-based citation converter

that takes DOI or ISBN input, automatically retrieves metadata from reliable

sources, and outputs citations in APA, Harvard, or IEEE format. Functionally,

the system needed to allow users to input a DOI or ISBN, and then the system

would automatically retrieve metadata and display formatted citations based on

user-selected styles. Non-functional requirements included accuracy, fast

response time, scalability, security, and maintainability. The flow of the

application is for users to input the DOI and ISBN in the column and select the

citation style needed. The system will validate the input and retrieve metadata

from the CrossRef for DOI and the Open Library for ISBN, and then format the

citation into the style that users choose. Other than that, users are allowed to

manually input data if the metadata is not complete or incorrect.

 The selection of a suitable technology stack constituted a pivotal

element in the planning phase. Following a thorough evaluation of the available

options, FastAPI was selected for the backend due to its speed, asynchronous

capabilities, and automatic OpenAPI documentation compatibility. The httpx

library was selected for use with HTTP requests due to its asynchronous request-

handling capabilities, which facilitate expeditious metadata retrieval without

compromising server performance. Pydantic was employed for the purposes of

input validation and schema enforcement, thereby ensuring data consistency

throughout the system. In order to enhance compatibility and reduce load times,

the frontend was built with simple, lightweight technologies such as HTML5,

CSS, and JavaScript.

21

3.3.2 Analysis and Design Phase

In this analysis and design phase, the system architecture was designed to

represent the detailed information based on the project requirements. This

system architecture provides a better understanding of the software and

hardware requirements and their function. Firstly, the application block design

is designed with a user-friendly interface and uses HTML language in VSCode.

The comparison with existing citation converter tools analysis will be conducted

to show the strengths and limitations of each website. After that, I can take the

strengths and avoid the limitations for my project. The backend structure will

use FastAPI to manage the user's request, the data classes, and Pydantic for

validation metadata. Additionally, the reference format and sample are used to

test the function and the output.

3.3.3 Implementation Phase

After the design phase, the implementation phase should be implemented using

the backend services to develop a system using the Python language and

FastAPI for this project. The CrossRef and ISBN will retrieve metadata using

the DOI Foundation and Open Library because they are stable and widely used.

The information that is retrieved will be converted to JSON format and will pick

the necessary information to convert into different citation formats. Pydantic is

implemented to validate the input, and MyPy uses static type checking to

prevent runtime errors. Two Pydantic models were created: one to define the

request structure (CitationRequest) and one to define the response structure

(CitationResponse). The /cite endpoint is responsible for receiving user requests,

assessing the necessity of retrieving metadata from DOI or ISBN sources,

preparing the citation using the selected style, and returning the formatted

citation. The httpx component facilitates asynchronous HTTP requests, thereby

ensuring non-blocking performance and enhanced response times, even in

scenarios where external APIs exhibit latency. With each iteration, the

functionality is extended to avoid becoming too complex and confusing the

system. For example, the second iteration adds new citation styles, and the third

iteration implements a database.

 The backend handles incorrect scenarios, such as an error DOI or ISBN,

or a missing metadata field. Specific exceptions are reported using suitable

22

HTTP status codes and user-friendly error messages. The citation formatting

logic adheres to APA 7th edition norms, Harvard reference standards, and IEEE

regulations. It is important to note that particular care was taken to ensure that

fields such as volume, issue, page numbers, and publication dates are properly

handled, and that citations are generated in grammatically and stylistically

accurate formats.

 The frontend implementation placed significant emphasis on simplicity

and practicality. The decision was taken to employ a rudimentary design to

ensure that users would be able to input identifiers, select styles, and produce

citations with minimal difficulty. The interface is composed of three distinct

components: an entry field for a DOI or ISBN, a dropdown menu that facilitates

the selection of a citation style, a button that initiates the process of generating

a citation, and an example of a DOI and an ISBN. Upon the backend's return of

the structured citation, it is presented within a read-only text field, thereby

enabling users to seamlessly duplicate and paste the result. Frontend logic was

handled using JavaScript, thereby circumventing the introduction of superfluous

dependencies that could impede the processes of maintenance or deployment.

3.3.4 Testing Phase

The necessity for testing arises after the application implementation, in such a

manner that it tests the coverage and functionality of the application. Testing

can be a stabilising factor of the system, along with ensuring correctness in the

citation format. In this project, unit testing would be done as a mode of testing

the individual functions, like DOI/ISBN validation, citation formatting, and

some functions of parsing the data from FastAPI. The test case creates a new

test case to check for the precise response to a particular set of inputs. Aside

from that, the test coverage for Python was performed to measure the amount

of code exercised by tests. It would create a report on coverage showing which

parts of the code base are covered by tests and which ones are not. (Keployio,

2024)

3.3.5 Review Phase

In the review phase, feedback from the test cases was collected, and code

reviews were performed for continuous improvement. A meticulous review of

23

the citation formats was undertaken in order to ensure full compliance with the

APA, Harvard, and IEEE standards, which were most recently updated.

Following the testing phase, any bugs detected should be addressed, and each

feature enhanced based on the results. By fixing the bugs, the system should run

without error, or it may cause a domino effect, where the bugs are fixed, but an

unexpected event occurs, and then causes huge issues for the system. The

feedback will facilitate continuous improvement and ensure the application runs

smoothly and fulfills the requirements. Each new iteration will enhance the

application's system based on feedback to improve the user experience and

optimise citation formatting logic.

3.4 Development Tools

This section will outline the tools used, the programming language used to write

the program, the web framework, databases, and libraries used to retrieve

metadata.

3.4.1 Visual Studio Code (VSCode)

Visual Studio Code (VS Code) is an open-source code editor used to write and

debug Python code. It is lightweight and free to download from the website. It

offers various features, including the AI copilot features for all users. It supports

a wide range of extensions, the Pydantic, MyPy, and Git integration can be

installed and used in VS Code. By using these tools in VS Code, the system can

develop smoothly and efficiently.

3.4.2 FastAPI

FastAPI is a modern Python web framework used for building efficient and fast

APIs. It can handle both synchronous and asynchronous operations, perform

automatic documentation, and has built-in support for input data validation

using Pydantic. It can help to create a readable, clean, and high-performance

endpoint for this citation formatting.

3.4.3 Python

The main programming language used to develop the backend of the citation

converter for this project is Python. Python is simple, readable, and can be used

24

for FastAPI. Its rich ecosystem of libraries can develop a system for rapid

development and integration with APIs.

3.4.4 MyPy

MyPy is a static type checker that can check the input for Python. Implementing

it can ensure the code follows the type annotations and help to catch type-related

errors during development. the project will improve code reliability and

maintainability by implementing MyPy.

3.4.5 Pydantic

Pydantic is a Python-based data validation and settings management package. It

will validate the input data type based on type annotations. By implementing

Pydantic, it can ensure the metadata retrieved from APIs fulfills expected

formats and structures. It provides benefits to improve the accuracy and

reliability of the citation data used in the converter.

3.4.6 DuckDB

DuckDB is an embedded analytical database system designed for online

analytical processing (OLAP). DuckDB offers various features, including the

rapid execution of SQL queries on large data sets, operating entirely within a

process without requiring a separate server, and providing fast data

transformation and aggregation. Additionally, DuckDB also helps manage and

analyse data directly from local storage or memory, making it an ideal tool for

data scientists and developers for exploratory data analysis.

3.4.7 HTML (HyperText Markup Language)

HTML (Hypertext Markup Language) is a standard markup language employed

for the structuring of web content. The definition encompasses elements that

serve as foundational components of web pages, including headings, paragraphs,

forms, and buttons. In this project, HTML was employed to generate the input

fields, dropdown menus, and display spaces for citation. The primary function

of this process is to ensure that the user interface is well-organised, easily

accessible, and semantically correct.

25

3.4.8 Cascading Style Sheets (CSS)

Cascading Style Sheets (CSS) are a language that is used to control the

appearance and layout of HTML elements. In this project, it was employed to

style the web interface, thereby enhancing both the visual appearance and the

user experience. CSS is a set of style rules that allow for the flexible

modification of visual elements on a webpage, including colors, fonts, margins,

and padding. These rules can be applied to various screen sizes, ensuring that

the webpage adapts accordingly, a process referred to as responsive design. The

project is rendered with a clean, modern, and professional appearance that

enhances usability by utilizing CSS.

3.4.9 JavaScript

JavaScript is a high-level programming language that facilitates the construction

of dynamic and interactive web pages. In this project, the JavaScript

programming language employs the Fetch API to facilitate asynchronous

communication with the backend server. The system is designed to validate user

input, initiate requests to the FastAPI backend, and subsequently update the

page with the generated citations. The employment of JavaScript facilitates a

seamless and responsive user experience, obviating the necessity for page

reloads. This is of paramount importance to the real-time interaction and

functionality of the application.

3.4.10 Git

Git is a version control system that can be used to manage source code changes.

Git offers various features, such as tracking modifications, maintaining the

history of the development process, and collaborating or sharing with others on

GitHub. Additionally, Git helps to manage different versions of the project, and

users can see the difference between versions using the rollback function.

3.4.11 Digital Ocean

Digital Ocean is a cloud infrastructure provider that provides scalable

computing platforms and services. DigitalOcean provides a variety of features,

including virtual private servers (Droplets), managed databases, Kubernetes

clusters, and scalable storage. It also simplifies cloud computing for developers

26

by providing a user-friendly control panel, thorough documentation, and a

predictable pricing scheme, allowing for quick web application development

and management.

3.4.12 DuckDNS

DuckDNS is a free dynamic DNS service that allows you to assign a fixed

domain name to a dynamic or changeable IP address. DuckDNS provides

several features, such as a simple setup process, automatic IP address updates

using an easy HTTP API, and support for multiple domain names. DuckDNS

also allows users to operate personal servers, websites, or remote access tools

from their home network without incurring the cost of a static IP address from

their internet provider.

3.5 Project Plan

3.5.1 Work Breakdown Structure (WBS)

1.0 Initial Planning

 1.1 Project Planning

 1.1.1 Define Project Problem Statement

 1.1.2 Define Project Aims and Objectives

 1.1.3 Define Project Scope and Limitations

 1.2 Literature Review

 1.2.1 Comparison of Existing Converter Tools

 1.2.2 Define DOI and ISBN Metadata Extraction

 1.2.3 Define Citation Formatting Rules

2.0 Methodology and Work Plan

 2.1 Define Requirements

 2.1.1 Define the hardware requirements of the system

 2.1.2 Define the software requirements of the system

 2.2 Define the methodology for software development

 2.2.1 Develop Work Plan

 2.2.2 Define Development Tools

3.0 System Development

 3.1 Develop Python on VS Code

27

 3.1.1 Develop FastAPI

 3.1.2 Develop Frontend using HTML, CSS, JavaScript

 3.2 Adding features for the application

 3.3 Improve the User-Interface (UI) and system

4.0 Testing Phase

 4.1 Preparation for Test Case

 4.1.1 Test Case for Valid Input

 4.1.2 Test Case for Invalid Input

 4.1.3 Test Case for Internet

 4.1.4 Test Case for Frontend Function

 4.2 Test with PyTest

 4.3 Record and summarize results

5.0 Closure

 5.1 Conclusion

 5.2 Define Problem Encountered

 5.3 Define Limitations for the Project

 5.4 Define Recommendations and Future Work

3.5.2 Gantt Chart

Figure 3.2: Gantt Chart

3.6 Summary

This chapter determines the hardware and software requirements and the

software development methodology used in the project. This project used a

modern framework, FastAPI, to build RESTful APIs with Python, Pydantic and

MyPy to validate the data. The system is being developed to be scalable, reliable,

17-Feb 24-Feb 3-Mar 10-Mar 17-Mar 24-Mar 31-Mar 7-Apr 14-Apr 21-Apr 28-Apr 5-May 12-May 19-May 26-May 2-Jun 9-Jun 16-Jun 23-Jun 30-Jun 7-Jul 14-Jul 21-Jul 28-Jul 4-Aug 11-Aug 18-Aug 25-Aug 1-Sep 8-Sep 15-Sep

No Task Name Start Date End Date Duration (days) WK 1 WK 2 WK 3 WK 4 WK 5 WK 6 WK 7 WK 8 WK 9 WK 10 WK 11 WK 12 WK 13 WK 14 WK 15 WK 16 WK 17 WK 18 WK 19 WK 20 WK 21 WK 22 WK 23 WK 24 WK 25 WK 26 WK 27 WK 28 WK 29 WK 30 WK 31

1.0 Initial Planning 17/2/2025 14/4/2025 56

1.1 Project Planning 17/2/2025 22/3/2025 33

1.1.1 Define Project Problem Statement 17/2/2025 1/3/2025 12

1.1.2 Define Project Aims and Objectives 1/3/2025 15/3/2025 14

1.1.3 Define Project Scope and Limitations 15/3/2025 22/3/2025 7

1.2 Literature Review 22/3/2025 14/4/2025 23

1.2.1 Review Existing Converter Tools 22/3/2025 5/4/2025 14

1.2.2 Comparison between Existing APIs Tools 5/4/2025 12/4/2025 7

1.2.3 Citation Formatting Rules 12/4/2025 14/4/2025 2

2.0 Methodology and Work Plan 14/4/2025 26/5/2025 46

2.1 Define Requirements 14/4/2025 3/5/2025 19

2.1.1 Define the hardware requirements of the system 14/4/2025 26/4/2024 12

2.1.2 Define the software requirements of the system 26/4/2025 3/5/2025 7

2.2 Define the methodology for software development 3/5/2025 26/5/2025 23

2.2.1 Develop Work Plan 3/5/2025 17/5/2025 14

2.2.2 Define Development Tools 17/5/2025 26/5/2025 9

3.0 System Development 26/5/2025 4/8/2025 70

3.1 Develop Python on VS Code 26/5/2025 7/7/2025 42

3.1.1 Develop FastAPI 26/5/2025 21/6/2025 26

3.1.2 Develop Frontend using HTML, CSS, JavaScript 21/6/2025 7/7/2025 16

3.2 Adding Features for the Website 7/7/2025 19/7/2025 12

3.3 Improve User-Interface (UI) and system 19/7/2025 4/8/2025 16

4.0 System Testing 4/8/2025 1/9/2025 28

4.1 Prepare Test Case 4/8/2025 11/8/2025 7

4.1.1 Test Case for Valid Input 4/8/2025 6/8/2025 2

4.1.2 Test Case for Invalid Input 6/8/2025 7/8/2025 1

4.1.3 Test Case for Internet 7/8/2025 9/8/2025 2

4.1.4 Test Case for Frontend function 9/8/2025 11/8/2025 2

4.2 Test with PyTest 11/8/2025 16/8/2025 5

4.3 Record and Summarize Result 16/8/2025 1/9/2025 16

5.0 Closure 1/9/2025 12/9/2025 11

5.1 Conclusion 1/9/2025 3/9/2025 2

5.2 Define Problem Encountered 3/9/2025 6/9/2025 3

5.2 Define Limitation for Project 6/9/2025 9/9/2025 3

5.2 Define Recommendations and Future Work 9/9/2025 12/9/2025 3

28

and efficient. The iterative methodology was used to ensure the development

process was step-by-step and remained adaptive throughout its lifecycle.

29

CHAPTER 4

4 PROJECT SPECIFICATIONS

4.1 Introduction

The project specification provides a comprehensive set of instructions detailing

the objectives of the DOI and ISBN citation converter system and the actions

required to achieve its objectives. The purpose of specifications is to define a

clear scope, set quantifiable expectations, and offer a solid foundation for the

design, development, and testing phases. The specification guarantees that both

functional and non-functional requirements are explicitly established, thus

avoiding ambiguity and allowing for systematic evaluation of whether the

system meets its objectives. By defining these needs, the project may be

developed in an organised manner while remaining closely linked with the

expectations of its end customers. This chapter also delineates the system's

limitations, the prototype that will be produced, and the constraints of the system

in its present implementation.

4.2 End Users

The end users of this project are primarily individuals engaged in academic and

research activities. These include:

- University students who are regularly engaged in the preparation of

assignments, projects, and theses should employ correctly formatted

references to circumvent the occurrence of plagiarism and to ensure the

maintenance of academic integrity.

- In academic writing, researchers are expected to acknowledge a range

of sources when producing articles for journals or conference papers.

- Educators who guide students through the process of research writing

require reliable citation tools to facilitate effective demonstration and

academic support.

30

Consequently, the system has been developed with a focus on usability,

minimising the complexity of citation formatting while still enabling the

management of missing or inconsistent metadata.

4.3 Requirement Specification

The functional requirements define the system’s needs, and the non-functional

requirements define system qualities, performance, and constraints.

4.3.1 Functional Requirements

The functional requirements specify the features and behaviours that the system

must provide. These include the ability to accept DOI or ISBN as input, retrieve

metadata from external APIs, such as CrossRef and Open Library, and generate

citations in APA, Harvard, and IEEE forms. The system allows users to

download or copy citations and upload them in bulk via .txt files. Another

important functional requirement is metadata caching in DuckDB, which

ensures that repeated requests are delivered effectively and reduces API calls.

Table 4.1: Functional Requirements

ID Functional Requirement

FR001 The system shall allow users to input a DOI and retrieve

metadata from the CrossRef API.

FR002 The system shall allow users to input an ISBN and retrieve

metadata from the Open Library API.

FR003 The system shall format metadata into APA style according to

the latest APA referencing guidelines.

FR004 The system shall format metadata into Harvard style according

to standard Harvard referencing rules.

FR005 The system shall format metadata into IEEE style according to

IEEE referencing rules.

FR006 The system shall store generated citations in a DuckDB database

for future retrieval and reuse.

FR007 The system shall validate user inputs and return error messages

for invalid DOI/ISBN values.

31

FR008 The system shall provide a download or copy function, allowing

users to incorporate the citation into their documents.

FR009 The system shall provide a basic user interface for inputting

DOIs/ISBNS, viewing results, and downloading citations.

FR010 The system shall allow exporting citations in plain text format.

FR011 The system shall allow exporting citations to BibTeX format.

FR012 The system shall provide a clear form button to let users clear

the input.

FR013 The system shall provide a simple FAQ section for users.

4.3.2 Non-Functional Requirements

Non-functional requirements describe system qualities such as performance,

reliability, scalability, usability, and security.

Table 4.2: Non-Functional Requirements

ID Non-Functional Requirement Category Priority

NFR001 The system shall return results

within 3–5 seconds of DOI/ISBN

input.

Performance High

NFR002 The system shall have a clean and

user-friendly interface that requires

minimal training.

Usability High

NFR003 The system shall generate citations

with at least 95% accuracy

according to citation guidelines.

Reliability High

NFR004 The system shall be able to handle

simultaneous requests without

significant performance

degradation.

Scalability Medium

NFR005 The system shall support the

addition of new citation styles with

minimal changes in code.

Scalability Medium

32

NFR006 The system shall ensure that data

retrieved from APIs and stored in

the database is secure and

protected.

Security High

NFR007 The system shall provide error

messages and fallback options

when API services are unavailable.

Reliability High

NFR008 The system shall maintain

compatibility with modern

browsers (Chrome, Edge, Firefox).

Portability High

NFR009 The system shall be documented

and version-controlled with GitHub

for future maintainability.

Maintainability High

NFR0010 The system shall comply with

academic citation guidelines and be

easily extendable to support future

updates in APA/Harvard/IEEE

style formats.

Compliance High

4.4 Prototype

The prototype developed for this project exemplifies the capacity for automating

citation formatting with DOI and ISBN identifiers. The prototype includes the

following key features: DOI/ISBN input, API metadata retrieval, citation

formatting in APA/Harvard/IEEE style, and the FAQs section. The prototype is

equipped with a rudimentary graphical user interface, facilitating interaction

with the device. Despite its current functional limitations, the prototype serves

as a robust foundation for future development, encompassing the capacity to

export citations in various formats, enhanced search functionalities, and support

for offline utilisation.

4.5 Summary

In summary, this chapter has outlined the functional and non-functional

requirements that serve as the foundation for the DOI and ISBN citation

converter system. The system's functionality is intentionally restricted to DOI

33

and ISBN inputs, the generation of citations in APA, Harvard, and IEEE styles,

and the retrieval of metadata via APIs such as CrossRef and Open Library. The

specification of these standards enables the structured development and

measurement of the system, thereby ensuring that the end product satisfies user

expectations while remaining within the project's schedule.

34

CHAPTER 5

5 SYSTEM DESIGN

5.1 Introduction

System design serves as the bridge between the abstract requirements of the

system and its concrete implementation. It is imperative to establish a design

that defines the architecture, data flow, storage models, and operational

procedures before writing code. The design of this citation converter ensures

that it can meet functional requirements, such as metadata retrieval and

formatting, and non-functional requirements, including usability, reliability, and

performance. An inadequately designed system is likely to exhibit inefficiencies,

data discrepancies, and issues sustaining or extending features in the future.

Conversely, a meticulously formulated design facilitates modular development,

seamless integration of external APIs, and incremental enhancements through

Agile methodology. Moreover, communication is another critical component of

design. The provision of detailed descriptions and illustrations is instrumental

in facilitating comprehension among stakeholders who do not possess a

background in programming. These materials enable these individuals to grasp

the conceptual underpinnings of the system. In this chapter, the design is

described through system architecture to show the layered structure of the

system, a data flow diagram that illustrates how information moves through the

system, a database schema to capture the relationships between stored data, and

system flow designs to highlight decision-making processes within the backend.

These artifacts delineate the system's micro- and macro-level structures, and it

is important to note that they also function as a guide for testing in subsequent

phases. This is because test cases can be methodically developed because every

flow and component is documented.

5.2 System Architecture Design

The design of the proposed citation converter system incorporates a three-tier

architecture and integration with external metadata APIs. This architecture is a

well-established design pattern that separates concerns into distinct layers,

35

making the system scalable, maintainable, and robust. Each layer facilitates the

assurance that alterations made to a specific layer, such as database schema

modifications, do not disrupt other layers, including the user interface. This

architecture facilitates rapid reaction times and effective data retrieval by

utilising contemporary frameworks and asynchronous technologies, two

essential features for a citation creation system that communicates with external

services. At a high level, the system is divided into three main layers: the

presentation layer for the frontend, the application layer for the backend, and

the data layer for the database, while also maintaining a critical dependency on

external APIs, which are CrossRef and Open Library.

Figure 5.1: System Architecture Design Diagram

i. Presentation Layer

The presentation layer is the entry point of the system where users interact

with the application. In this project, the frontend is developed using HTML,

CSS, and JavaScript, providing a simple yet effective user interface. Firstly,

it provides a single input that allows users to input the DOI or ISBN and also

36

an upload file system to upload the DOI file or ISBN file without inputting

the reference number one by one. The users can choose the citation format

they prefer from the style selector dropdown. After that, basic input checks

are implemented in JavaScript to prevent the submission of invalid

identifiers, and this can also help reduce unnecessary API calls to the

backend. Once the user submits the form, the front-end sends a POST

request to the backend’s /cite endpoint. The request payload contains two

fields: the identifier, which is a DOI or an ISBN, and the desired style. After

processing by the backend, the frontend receives a JSON response

containing the formatted citation string and supporting metadata. This is

displayed neatly to the user, with options such as copy-to-clipboard and

download as BibTeX. If an invalid DOI/ISBN is detected or the backend

returns an error, for example, an ISBN is unavailable, the frontend displays

a clear error message to guide the user. The design decision to make the

frontend lightweight has been shown to result in faster load times, reduced

complexity, and simpler integration with the backend REST API.

ii. Application Layer

The backend is the system's primary processing component, which is

responsible for coordinating formatting, persistence, metadata retrieval, and

validation. This system utilises the FastAPI framework, a modern Python

framework known for its asynchronous capabilities, speed, and automatic

API documentation production, in its construction. The backend is deployed

using Uvicorn, an ASGI server designed to manage several concurrent

requests, is used to deploy the backend. The incoming requests are validated

against predefined Pydantic schemas to ensure that identifiers are properly

structured and that the citation style field only accepts valid values. On the

other side, the invalid requests are immediately rejected with a clear error

response, reducing unnecessary backend processing. If the requested

citation is not found in the cache, the backend makes an asynchronous API

call using httpx. For DOIs, the request is directed to CrossRef; for ISBNs,

the request goes to Open Library. This asynchronous function can handle

multiple lookups to be processed simultaneously to improve the system's

37

responsiveness under load, so the system can retrieve metadata as soon as

possible. Once metadata is retrieved, the backend applies the formatting

rules based on the chosen style, such as APA, Harvard, and IEEE style. The

engine will also ensure consistent and accurate formatting even when

metadata fields are optional or missing. Before making external API calls,

the backend first checks the local database for previously generated citations.

If found, the cached result is returned instantly; if not, the metadata is

fetched from the external API, formatted, and then stored in the cache for

future requests and reducing calls to external APIs. By combining validation,

caching, external integration, and formatting into a single backend service,

the system achieves a clean separation of logic, enabling easier debugging

and testing.

iii. Data Layer

DuckDB is used as the system's primary database in the data layer. DuckDB

is an embedded analytical database designed to operate within the same

process as the application. It is a simple database system, as no separate

database server is needed; the database runs as part of the Python process,

reducing setup complexity and deployment overhead. The data is stored in

columnar format, which is efficient for analytical queries and supports fast

lookups. After calling the external API, the metadata will be stored in the

database to reduce call time and speed up the process. The system integrates

with two external APIs to source bibliographic metadata: CrossRef, which

provides metadata for DOIs, and Open Library, which provides metadata for

ISBNs. When metadata cannot be located locally in DuckDB, these APIs

are searched in real time. Even in the face of API volatility, the system

manages timeouts, retries, and structured JSON parsing to guarantee

seamless functioning. When metadata cannot be located locally in DuckDB,

these APIs are searched in real time. Even in the face of API volatility, the

system manages timeouts, retries, and structured JSON parsing to guarantee

seamless functioning.

38

5.3 Database Design

Citation metadata obtained from Open Library for references based on ISBNs

and Crossref for references based on DOIs are stored and managed by the

database for this project. The system's storage engine, DuckDB, is characterised

by its lightweight, integrated, and tailored architecture for analytical queries,

ensuring effectiveness and adaptability. The database's primary function is to

serve as a local metadata cache, thereby minimising the need for repetitive API

calls and facilitating expeditious offline lookups. The metadata records for both

Digital Object Identifier (DOI) and International Standard Book Number (ISBN)

citations are stored in the database's central table named metadata_cache. Each

record is associated with a JSON object, which contains the raw metadata

response and is identified by a unique key (the DOI or ISBN value). This JSON

format allows flexibility because citation metadata often varies in structure

depending on the source. For example, Crossref metadata typically contains

nested fields such as authors, publisher, references, and issue details, while

Open Library metadata may emphasise ISBN, editions, and publication details.

The database has the capacity to support both approaches by storing the

response in JSON, thereby eliminating the necessity for frequent schema

modifications. The following ERD (Entity Relationship Diagram) illustrates the

conceptual design of the normalized schema.

Figure 5.2: Entity Relationship Diagram for the databases

39

Table 5.1: Data dictionary

Column

Name

Type Key Description

Id/key String Primary DOI or ISBN. Example: 10.1016/S1874-

1029(15)30001-X.

metadata JSON - Full raw metadata response from

Crossref/Open Library (authors, title,

year, publisher, references, etc.).

5.4 API Routes Design

FastAPI uses the Swagger API Documentation tool to create the design for

every route. The route will contain the information about the parameters used to

request and provide the response code and values.

5.4.1 DOI

Figure 5.3: The design of the DOI route.

Figure 5.4: The response code and body.

40

5.4.2 ISBN

Figure 5.5: The design of the ISBN route.

Figure 5.6: The response code and body.

5.4.3 Error return

Figure 5.7: The response code and body when error.

41

CHAPTER 6

6 SYSTEM IMPLEMENTATION

6.1 Introduction

The implementation phase of this project involved converting the designs

generated in Chapter 5 into a functional system. Several tools, programming

languages, and frameworks were selected carefully to ensure that the system can

satisfy both functional and non-functional requirements. The backend was built

with Python 3.10 because Python has a wide ecosystem of libraries and is highly

readable, which will make the system easier to maintain and extend in the future.

FastAPI, a modern Python framework built for rapid and effective API

development, was chosen as the web framework. FastAPI was selected due to

its proven capabilities for asynchronous programming, enabling the system to

process numerous requests concurrently. This feature was important because the

system relies heavily on real-time calls to external APIs such as CrossRef and

Open Library, which can occasionally result in latency. Asynchronous handling

allows the backend to continue processing incoming requests while waiting for

external API responses, resulting in greatly improved overall responsiveness.

 The DuckDB database was used for the data layer because DuckDB is

distinct from conventional databases such as MySQL and PostgreSQL in that it

operates as an embedded, in-process database, whereas the latter run as separate

services. This decision reduced system complexity by removing the need for an

external database server. DuckDB is a single-file system, then optimised for

analytical queries, making it ideal for caching bibliographic metadata and

quickly retrieving previously retrieved results. This system uses DuckDB to

store identifiers (DOIs or ISBNs), associated metadata in JSON, and request

history. By caching this data, the number of repeated external API calls is

reduced, enhancing efficiency while also protecting against rate limitations from

the external metadata providers.

 The front end of the website was built using HTML5, CSS3, and

JavaScript to provide a lightweight and accessible user interface. All major

browsers support these technologies, ensuring that users can access the system

42

without needing to install additional dependencies. The user interface features

text input areas for entering DOIs or ISBNs, options for uploading .txt files or

BibTeX files, and a dropdown menu for selecting citation styles. JavaScript

communicates with the backend through asynchronous fetch calls, which allow

the interface to remain responsive while waiting for results.

6.2 Backend Implementation

The backend implementation is in app.py, which defines the FastAPI

application and implements all of its main capabilities. The backend is the

system's central processing unit, which connects the user interface, database,

and external metadata suppliers. The FastAPI framework provides a robust

foundation for designing routes, managing requests, and returning structured

results in JSON format. Each route corresponds to a distinct system function,

ensuring the backend remains modular and extensible. The root endpoint (/) was

the first to be implemented, which serves the index.html file as the homepage.

This seamlessly integrates the frontend and backend, enabling users to access

the interface directly without needing a separate static file server, and also

provides the HTML page through FastAPI, which is an effective way for the

backend to ensure that the entire system can be deployed in a single package.

Figure 6.1: The route to call index.html

 The most important endpoint is the /cite endpoint, which accepts a

JSON payload as described by the CitationRequest Pydantic model. This

payload comprises three essential fields: the identifier (either DOI or ISBN), the

identification type, and the chosen citation style. The backend then validates

this input through a series of steps. Firstly, it ensures that the citation style is

one of the supported ones, such as APA, Harvard, and IEEE styles. If an

unsupported style, such as "Chicago", is used, the system will instantly reject

the request with a 400 Bad Request response. Next, the backend validates the

43

identifier's validity. The system returns a 404 Not Found error for known invalid

identifiers such as "10.0000/invalid-doi" or "0000000000000." These validation

processes help to prevent unnecessary calls to external APIs and provide users

with instant feedback.

Figure 6.2: The cite endpoint for validation

 If the input successfully passes validation, the backend determines the

type of identification and retrieves the metadata. For DOIs, the system calls the

CrossRef API, whereas for ISBNs, it calls the Open Library API. These calls

are made asynchronously using httpx.AsyncClient, which ensures that the

server remains responsive even during periods of high demand. When metadata

is retrieved, the system sends it to the relevant formatting functions. The DOI

will be sent to the format_doi_citation function, where the ISBN will be sent to

the format_isbn_citation function. Then, the system produces the final

formatted reference and in-text citation for the users. These are returned to the

frontend as a CitationResponse, which is a structured JSON object that includes

both outputs.

44

Figure 6.3: The format of a DOI citation.

Figure 6.4: The format of an ISBN citation.

 Another feature is the /upload endpoint, which facilitates bulk citation

generation. Users have the option to upload a .txt file containing multiple DOIs

and ISBNs. The backend processes the file line by line, verifying the identifiers

to determine if they are a DOI or ISBN, retrieving metadata from cache or other

APIs, and generating citations. Each line of data is processed asynchronously,

resulting in substantially faster bulk handling than sequential methods. The

findings are returned as a collection of objects of the class "CitationResponse".

This feature is useful for researchers who need to generate multiple citations at

once.

45

Figure 6.5: Upload file function

6.3 Data Validation

Data validation is a fundamental component of the system, ensuring that only

properly structured requests are processed. In the app.py file, two Pydantic

models are defined: CitationRequest and CitationResponse. The

CitationRequest model specifies three fields: firstly, an identifier field

containing the DOI or ISBN string; secondly, a type field indicating whether the

identifier is a "doi" or "isbn" string; and thirdly, a style field which is a string

representing the desired citation style. The FastAPI model automatically

validates incoming JSON payloads before they reach the business logic. For

instance, if a user submits a request that is missing the identifier field, FastAPI

will immediately reject the request with a 422 Unprocessable Entity error,

thereby specifying the absent field in the response. This eliminates the need for

manual validation code and reduces the likelihood of runtime errors caused by

malformed requests. The CitationResponse model defines the structure of

responses returned through the /cite and /upload endpoints. Each response must

comprise two fields, which include the citation with formatted reference and in-

text citation, which is the recommended in-text citation. By utilizing this

response model, the system ensures consistency in the output, irrespective of

the input or style that is selected.

46

In addition to Pydantic validation, type checking is supplemented by a

static Python type checker, MyPy. Backend functions are marked with type

hints, such as async def fetch_doi_metadata(doi: str) -> dict:, which makes the

code more self-documenting and ensures correctness during development.

MyPy aims to analyse the codebase to ensure that routines produce the expected

values and that the arguments correspond to their declared types. This proactive

method of type checking improves code reliability and also helps identify

potential issues early in the development process to avoid huge bugs. This

layered approach to validation, which combines Pydantic runtime enforcement

and MyPy static analysis, ensures system robustness, error minimisation, and

clear error signals for users.

Figure 6.6: MyPy check DOI type

Figure 6.7: MyPy check ISBN type

6.4 Database Implementation

The system uses DuckDB as its persistence layer, which offers a lightweight

and embedded alternative to server-based databases. After initiation, the

backend establishes a connection to a database file (db/citations.db) to verify

the existence of the metadata_cache table. The table under consideration

comprises three columns: firstly, an identifier, the DOI or ISBN string that

serves as the primary key; secondly, a type of input, either DOI or ISBN; and

thirdly, metadata, which is a JSON object containing bibliographic metadata.

Figure 6.8: Connect the DuckDB database

47

 The database functions as a cache for metadata obtained from CrossRef

and Open Library. When a request is received, the backend first queries

DuckDB to check whether metadata for the given identifier has already been

saved, and this process is implemented by the function

fetch_metadata_from_cache. If a record is found, the metadata is returned

immediately without calling the external API. If no record is found, the backend

performs an external API call to retrieve the metadata and stores it in the cache

using the store_metadata_in_cache function. This caching approach enhances

performance by reducing latency, particularly in cases of repetitive queries, and

prevents unnecessary calls to external APIs that may have usage limits.

Figure 6.9: Metadata fetchers with DuckDB cache

 DuckDB’s columnar storage format makes it efficient for analytical

queries, though in this project, it primarily supports simple lookups and inserts.

The primary advantage of this approach is its simplicity: the database is

integrated into the application process, thereby eliminating the need for a

separate server. This design helps to reduce deployment complexity, making the

system portable and easy to run on any machine with Python installed.

6.5 Frontend Implementation

The frontend is implemented in index.html, serving as the user interface that

links users to the backend API. The layout of the website is simple and effective,

and is divided into two major sections. The left section is a help box that

explains DOI and ISBN identifiers, and the right section is the main input form

for generating citations. The initial form consists of three sections; first, there is

an input field for users to enter a DOI or ISBN. Next, there is a file upload option

for .txt files so users can process multiple references simultaneously. Thirdly, a

dropdown menu for users to select a citation style, such as APA, Harvard, and

IEEE styles. Finally, the form includes a button that, when selected, commences

48

the process of producing the citation. The results are presented in tabular form,

with two columns: the full formatted citation and the proposed in-text citation.

The functionality of the programme is further enhanced by the presence of

additional buttons located beneath the table. These buttons let users interact with

the system by performing some actions, such as copying citations to the

clipboard, downloading citations in .txt or .bib format, and clearing the form.

The bottom also features a Frequently Asked Questions section for users.

Figure 6.10: The Website Interface

Figure 6.11: The Frequently Asked Questions section

 JavaScript is used in the system to manage user interactions. For

example, the handleGenerate() function is responsible for determining whether

the user has supplied a single identifier or has uploaded a file. For single inputs,

a POST request is sent to the /cite endpoint, while for file uploads, it sends a

49

multipart form to /upload. The results are dynamically inserted into the results

table, allowing for instant feedback. Other than that, the error messages, such as

"Invalid DOI or ISBN," are displayed in the table to ensure uniformity.

Cascading Style Sheets (CSS) are utilised to style the interface, thereby

endowing it with a contemporary design that incorporates clear typography,

rounded boxes, and responsive layouts. Although the website is simple, the

design ensures that the system is both user-friendly and accessible.

Figure 6.12: The handleGenerate() function for validation

6.6 Integration with External APIs

The system's functionality is significantly dependent on its integration with

external metadata providers. For DOIs, the backend utilises the CrossRef API,

which returns metadata in JSON format. The fetch_doi_metadata method is

responsible for generating the API URL from the DOI, sending an asynchronous

GET request, and parsing the message field of the JSON response. Metadata

fields such as authors, title, journal, volume, issue, pages, and DOI are extracted

and normalized before being formatted into citations. For ISBNs, the backend

calls the Open Library API. The function fetch_isbn_metadata queries the

50

endpoint using the ISBN and parses the response, and because of the lack of

standardisation inherent to Open Library responses, the function normalises the

data by ensuring the inclusion of fields such as authors, publisher, publish date,

and edition, even when replacement with placeholders such as "Unknown

Author" is necessary.

 The first check in both functions is checking the DuckDB cache to see

whether metadata is already present to minimise external dependencies. If the

API request fails, like the identifier does not exist, the functions will throw an

HTTPException with a status code 404, to ensure the user receives a clear error

message. The retrieved metadata is then passed to formatting procedures such

as format_doi_citation and format_isbn_citation, which generate references in

the chosen style. These functions are designed to handle differences between

styles, including author name formatting, ordering, and punctuation, thereby

ensuring that the output adheres to APA, Harvard, or IEEE rules.

Figure 6.13: Fetch DOI metadata function

Figure 6.14: Fetch ISBN metadata function

51

CHAPTER 7

7 SYSTEM TESTING

7.1 Introduction

Testing is one of the most critical phases in the software development life cycle,

as it ensures that the system functions as intended, fulfills user requirements,

and performs reliably under diverse conditions. A system that has not been

thoroughly tested cannot be trusted to operate in a real-world environment,

particularly when integrating with other services such as CrossRef and the Open

Library. The objective of the project is to validate both functional needs, for

example, the capacity to create citations in APA, Harvard, and IEEE formats,

and non-functional criteria, such as response time, robustness to incorrect inputs,

and error handling.

 Testing also facilitates the identification of edge situations and

inconsistencies that may have been overlooked during the development process.

For example, metadata retrieved from other APIs might exhibit differences in

structure, and the system must be capable of managing missing fields such as

publisher names or page numbers. Moreover, invalid identifiers should not crash

the system but instead return meaningful error messages. The structured testing

facilitates a comprehensive evaluation of the system's resilience, correctness,

and usability.

 This system conducts the testing using Pytest, a widely utilised Python

testing tool that functions seamlessly with FastAPI's TestClient. This facilitates

the execution of automated testing procedures for API endpoints, getting rid of

the necessity for requests to be routed through the front-end. In addition to

utilising the automated backend testing, the user interface was manually tested

to ensure usability and error handling. The combination of these tests provides

confidence in the system's functionality, including its capacity to manage both

expected and unexpected user behaviors.

52

7.2 Test Plan

The test plan was designed to cover the key functional and non-functional

aspects of the system. Automated test cases were written in test_main.py, while

manual UI tests were carried out using the browser interface. The main

categories of tests are as follows:

i. Input Validation

- Test with valid DOIs and ISBNs to ensure that the system correctly

retrieves metadata and creates citations.

- The system should be tested with invalid DOIs and ISBNs to ensure that

clear error messages with code, such as 404 or 422, are returned.

- It is imperative to verify the absence of fields in the request payload to

ensure that Pydantic validation produces structured error responses.

ii. Citation Output Correctness

- Verify that the citation output matches the rules of APA, Harvard, and

IEEE formatting.

- Ensure that both the full reference citation and the in-text citation are

included in responses.

iii. Database Storage (DuckDB Caching)

- When submitting the same DOI/ISBN several times, ensure that the

metadata is retrieved from DuckDB rather than the external API

following the first call.

- Ensure that cached info is stored correctly in JSON format and can be

retrieved as needed.

iv. User Interface Usability

- Test the input form by inputting valid and incorrect identifiers.

- Upload a.txt file containing multiple identifiers, then validate that bulk

citations are generated and displayed in the table.

- Test UI controls, such as copy citation, download citation, and clear

form function, to ensure they perform as expected.

53

7.3 Test Case

Test cases provide a methodical method of determining if a system meets its

requirements and expectations. The goal is to guarantee that each functional unit

of the application performs as planned under both normal and extraordinary

conditions. In the case of this citation converter system, test cases were critical

not only for establishing that legitimate inputs produced correct citations, but

also for ensuring that faulty inputs and deployment conditions were handled

graciously. By developing structured test cases, the project was able to measure

accuracy, robustness, and reliability in a controlled and repeatable manner.

7.3.1 Backend Test Case

For valid input scenarios, the test cases demonstrated that the system correctly

retrieved metadata from CrossRef and Open Library and generated structured

citations in APA, Harvard, and IEEE styles. These tests confirmed that the

system's primary operation, converting identifiers into citations, worked

properly and reliably. Test cases ensured that the system did not crash or give

misleading results in circumstances of improper input, such as missing IDs,

malformed ISBNs, or non-existent DOIs. Instead, it delivered structured error

messages with corresponding HTTP codes. This demonstrated the system's

reliability and capacity to guide users when mistakes occurred.

Figure 7.1: Test case for valid input

Figure 7.1 demonstrates the result of the valid input test cases for DOI

and ISBN. The figure shows that the system successfully retrieves metadata

54

from the CrossRef and Open Library APIs, formats the citations accurately in

APA, Harvard, and IEEE styles, and returns both in-text and full citations. This

confirms that the backend system handles valid inputs correctly and produces

reliable citation outputs.

Figure 7.2: Test case for invalid input

Figure 7.2 illustrates how the system responds to invalid DOI and

ISBN identifiers. When an invalid or missing identifier is entered, the backend

returns a proper error response, such as 404 or 422, without crashing or

producing an incorrect citation. This verifies the robustness of the input

validation and error-handling mechanisms in the backend API.

Finally, deployment-level test cases were run to ensure that the system

functioned properly when hosted on DigitalOcean rather than only in a local

development environment. These tests ensured that the deployed API endpoints

were internet accessible, returned the same accurate results as local tests, and

remained usable via the web interface.

Figure 7.3: Test case for Internet

Figure 7.3 shows the results of testing the deployed application hosted

on DigitalOcean. It demonstrates that both the root endpoint and the /cite

endpoint work correctly in the live environment, retrieving metadata and

55

generating citations with the same accuracy as in local testing. This confirms

that the deployment is stable and functions properly over the internet.

7.3.2 Frontend Test Case

In addition to backend test cases, additional user interface (UI) test cases were

created to ensure that the citation generator's web-based front end functions

properly and delivers a seamless user experience. These test cases focused on

validating the interface's primary interactive components: the upload and

download functions, the copy citation button, and the clear form button. The

upload function was tested with .txt files containing both valid and invalid IDs.

The system successfully parsed valid DOIs and ISBNs line by line, generating

citations in the desired manner and displaying them in the output table. Invalid

lines were also handled graciously, with the system displaying relevant error

warnings rather than halting the entire operation.

The download function was tested by generating citations and

exporting them in .txt and .bib formats. The .txt format created clear, plain-text

citations suited for general use, but the .bib format generated BibTeX-

compatible references that could be loaded straight into reference management

software. Both file types were successfully downloaded, had valid citation

entries, and were free of corruption. The copy citation button was checked to

ensure that all generated citations could be copied to the clipboard with only one

click. The test demonstrated that the citations were properly sent in structured

form, allowing users to paste them immediately into their documents.

The clear form button was tested by first producing citations and then

pressing the button to reset the input field and citation table. The test confirmed

that all entries were cleared, and the system was restored to its original condition

without refreshing the browser page, and rapidly initiated a fresh session. These

UI test cases supplement the backend tests by ensuring that the entire system—

from identifier input to citation production, export, and reset—functions

consistently and quickly.

56

Figure 7.4: Test Case for Frontend

Figure 7.4 displays the frontend testing of the citation converter interface. The

figure shows that all user interactions, such as entering identifiers, uploading

files, downloading results, and copying citations, operate smoothly without

errors. The test verifies that the user interface components integrate effectively

with the backend API to deliver a seamless experience.

7.4 Test Code

The testing phase showed that the system is functionally correct and stable in

all scenarios. The pytest framework was used to create and run 14 automated

test cases, all of which passed successfully in 3.43 seconds. The test suite

consisted of three key sections: valid input tests, invalid input tests, and

deployment-level tests. For valid inputs, the system accurately processed both

DOI and ISBN IDs and generated citations in APA, Harvard, and IEEE formats.

This showed that the citation formatting criteria were followed consistently and

that the system supported a variety of academic standards.

 Invalid input scenarios were handled as planned, with the system

returning structured error messages and appropriate HTTP codes 404 or 422 to

ensure robustness against wrong or missing user inputs. The deployment-level

tests, which visited the system via its live DigitalOcean URL, confirmed that

the application performed identically in the production environment,

demonstrating the reliability of API integration and the stability of the deployed

service. The fact that all 14 tests completed successfully in 3.43 seconds

demonstrates the implementation's efficiency, with no notable performance

bottlenecks identified. Overall, the findings show that the system meets its

functional requirements, is resilient to edge cases, and can perform consistently

in a real-world setting.

57

Figure 7.5: Test Result

Figure 7.5 presents the summary of all automated and manual test cases

executed. It indicates that all 14 tests have been collected and passed

successfully in 3.43 seconds, showing that the system performs efficiently and

consistently. The overall result confirms that both the backend and frontend

meet functional and performance expectations.

Table 7.1: Table of Summary of Test Cases

Test

ID

Test Type Description Expected

Result

Actual

Result

Status

TC01 Backend Test root

endpoint

Homepage

returns 200 OK

200 OK

returned

Passed

TC02 Backend Valid DOI in

APA

Citation

generated

correctly

Citation

accurate

Passed

TC03 Backend Valid DOI in

Harvard

Citation

generated

correctly

Citation

accurate

Passed

TC04 Backend Valid DOI in

IEEE

Citation

generated

correctly

Citation

accurate

Passed

TC05 Backend Valid ISBN

in APA

Citation

generated

correctly

Citation

accurate

Passed

TC06 Backend Valid ISBN

in Harvard

Citation

generated

correctly

Citation

accurate

Passed

58

TC07 Backend Valid ISBN

in IEEE

Citation

generated

correctly

Citation

accurate

Passed

TC08 Backend Invalid DOI

identifier

Error handled

gracefully

404/422

response

Passed

TC09 Backend Invalid

ISBN

identifier

Error handled

gracefully

404/422

response

Passed

TC10 Backend Missing

identifier

System returns

422

Validation

triggered

Passed

TC11 Backend Unsupported

style

400/422 error Error

handled

Passed

TC12 Internet Deployed

root

endpoint

200 OK

response

200 OK

returned

Passed

TC13 Internet Deployed

DOI test

Citation

generated

remotely

Citation

accurate

Passed

TC14 Frontend UI upload,

download,

copy, clear

All buttons

work correctly

Functions

validated

Passed

7.5 Discussion

The testing phase confirmed that the citation generation system functions

correctly and reliably in a range of scenarios. Automated backend testing with

Pytest demonstrated that the API endpoints respond appropriately to both valid

and invalid queries. Valid DOI and ISBN inputs produced citations and in-text

references in APA and Harvard styles that were consistently styled correctly.

An additional IEEE formatting test confirmed that the criteria for formatting

author names, titles, and volume/issue numbers were correctly applied. Invalid

identifiers, such as erroneous DOIs or placeholder ISBNs, resulted in structured

error responses with the relevant HTTP status codes (404 or 422).

59

Furthermore, missing fields in the request payload triggered Pydantic

validation, demonstrating that the backend maintains strict input integrity.

Database caching was also tested by repeatedly submitting the identical

DOI/ISBN. The initial call initiated a fetch from the external API, while

successive requests collected the stored metadata from DuckDB. This caching

reduced the number of external API requests, increasing efficiency and

demonstrating the system's capacity to optimise performance with repeated use.

The DuckDB entries were validated to be saved in JSON format, allowing for

simple retrieval for subsequent formatting processes.

60

CHAPTER 8

8 CONCLUSION AND RECOMMENDATIONS

8.1 Conclusion

The project has successfully achieved its primary goal of developing a fully

functional and reliable automatic citation converter system that is capable of

processing both DOI and ISBN inputs. The system integrates seamlessly with

the CrossRef API for journal articles and the Open Library API for books, to

retrieve accurate metadata and convert it into citations that follow academic

standards. The inclusion of three frequently used citation styles, APA, Harvard,

and IEEE, guarantees that users are presented with the most relevant referencing

forms for higher education and research. Also, DuckDB's effective

implementation as a lightweight and embedded database enabled efficient

metadata caching, resulting in reduced API calls and increased system

responsiveness to repeated requests.

Aside from functionality, the system provided a clean and intuitive user

interface that allows users to manually enter individual identifiers or upload

bulk lists for batch processing. Furthermore, some additional features were

implemented, such as the ability to copy citations, download them in various

formats, and view clear findings, improving usability and efficiency.

Furthermore, FastAPI was implemented because it supplied a modern, high-

performance backend architecture, and Pydantic ensured stringent input

validation and error handling. The system's reliability was further validated by

automated testing with Pytest, which demonstrated its resilience and accuracy

across many circumstances.

In conclusion, the project demonstrates the high degree of alignment

between the design goals, implementation results, and testing outcomes. It helps

solve a real-world academic problem by reducing the workload for students and

researchers, improving citation accuracy, and streamlining the reference

management process. Despite its limitations, the project provides a solid

foundation that could eventually be expanded into a comprehensive academic

citation platform.

61

8.2 Problems Encountered

Throughout the development and testing phases, a series of obstacles were

encountered, posing significant challenges to the overall progress of the project.

A significant challenge encountered pertained to the inconsistency of metadata

from external APIs. While CrossRef and Open Library generally provided

comprehensive information, there were many cases where essential details such

as publisher names, author lists, or publication years were missing or formatted

irregularly. This created challenges in generating properly formatted citations.

To resolve this, placeholder defaults such as “Unknown Author” or “Unknown

Year” were applied, ensuring that the citation output remained complete and

usable.

 Another concern was the dependency on external APIs, which

periodically experienced outages or delayed response times. These outages

disrupted the development and testing processes, highlighting the risk of relying

on third-party services. The current solution includes storing metadata locally

in DuckDB, so the repeated requests for the same identifier can be delivered

quickly without re-querying the APIs, reducing delays and service interruptions.

 Another problem encountered was the intricacy of citation formatting,

particularly in the IEEE style. Unlike APA and Harvard styles, the IEEE has

strict guidelines regarding author initials, punctuation, and order. To ensure

compliance, these rules had to be implemented through careful coding and

repeated testing. Even slight formatting errors could compromise academic

legitimacy, so extra care was needed to ensure compliance with the standard.

During the deployment to the DigitalOcean platform, a novel challenge

manifested in the form of configuration issues pertaining to the domain and the

SSL certificate. These issues engendered delays in the process of rendering the

server accessible to the public. Furthermore, an attempt was made to arrange the

deployment to operate with four worker processes for scalability. However, it

was revealed that DuckDB does not support concurrent access across multiple

workers. DuckDB has been developed as an embedded, single-process database;

as a result, it is incapable of accommodating concurrent reads and writes from

multiple Uvicorn workers. Consequently, the application was incapable of

scaling to multiple workers according to standard methods and was constrained

62

to functioning with a single worker process. While this approach ensured

reliability, it also imposed limitations on the system's throughput and

concurrency, resulting in suboptimal scalability.

8.3 Limitations

Although the system offers a wide range of features, it has some limitations.

One of the primary limitations of the system is the restricted number of

supported citation styles. The system only supports APA, Harvard, and IEEE

currently. While these are popular in academics, other styles such as Chicago,

MLA, and Vancouver are also frequently required. The lack of these styles may

limit the system's popularity among users who require more diverse formatting

options.

Another limitation is the system's reliance on external APIs, such as

CrossRef for DOIs and Open Library for ISBNs. Although these APIs provide

huge and authoritative datasets, the system is vulnerable to downtime or data

quality concerns caused by these services. If the API is unavailable, the citation

generator will be unable to retrieve new metadata, reducing reliability for end

users.

 Thirdly, the system's reliance on an internet connection, because all

information retrieval is based on online API calls, users cannot create new

citations when offline. This reliance restricts usability in locations with weak

connectivity or for researchers who require offline capabilities when traveling

or conducting fieldwork.

Finally, the system's scalability is limited by the use of DuckDB.

DuckDB is lightweight and efficient for caching, but its single-process nature

prohibits it from growing horizontally to accommodate additional workers. This

limitation limits the number of concurrent users that the system can support in

its current configuration, making it unsuitable for large-scale institutional

implementation.

63

8.4 Recommendations/Future Work

The system can be improved to become a better system and enrich its functions.

Therefore, this chapter will provide some recommendations for the future to

improve the system.

8.4.1 Expansion of Supported Citation Styles

One of the most important future enhancements for the system is the inclusion

of additional citation styles beyond APA, Harvard, and IEEE. While these three

formats cater to a wide academic readership, they do not meet the needs of

specialties that rely significantly on alternative styles such as Chicago,

Vancouver, and MLA. For example, the Chicago style is frequently used in the

humanities, whereas Vancouver is the standard for medical and scientific

articles. By extending the system to include additional formats, the tool will

become more adaptable and appealing to a larger academic community.

8.4.2 Offline Caching and Local Metadata Storage

Another future development is the introduction of offline caching mechanisms.

Currently, the system requires a constant internet connection to fetch metadata

from CrossRef or Open Library, which causes limitations. Implementing offline

caching would allow metadata to be saved locally after the initial retrieval,

allowing users to generate citations even without internet connectivity. This

might be accomplished by extending DuckDB to include an exportable and

shareable cache file that can be moved between devices. Users could also select

to pre-download metadata for a batch of identifiers, ensuring continuous citation

production while offline. This offline functionality would further increase API

robustness by allowing users to get previously cached results without relying on

external services.

8.4.3 Integration with Browser Plugins and Word Processors

For optimal usage, the system can be expanded to include browser plugins and

word-processor add-ins. Many students and researchers create their work

directly in apps like Microsoft Word, Google Docs, and LaTeX editors.

Frequently jumping between the citation generator and a writing platform might

be distracting and inefficient. Users might generate citations in real time while

64

writing by embedding the system as a plugin in word processors, integrating

correctly formatted references straight into their documents. Similarly, browser

extensions could enable users to generate citations while perusing publications

online, eliminating the need for manual copying of DOIs or ISBNs.

8.4.4 Migration from DuckDB to SQLite for Improved Concurrency

Finally, a recommendation for future work is to replace DuckDB with SQLite

as the system’s local database engine. Although DuckDB performed well during

development for caching metadata, it does not enable real concurrent writes

across several worker processes, as demonstrated during deployment attempts

on DigitalOcean. The system could address this problem by migrating to SQLite,

which supports multi-process concurrency more effectively. It supports safe

concurrent reads and, with correct configuration, controlled write access,

making it more suited to web applications deployed with numerous workers.

SQLite is widely supported and has built-in transactional stability, so it ensures

data consistency while allowing for horizontal growth among worker processes.

This migration will preserve the simplicity of a file-based database while

eliminating the bottleneck created by DuckDB, thereby increasing the system's

scalability, dependability, and responsiveness in production settings.

65

REFERENCES

American Psychological Association (2020) Publication Manual Of The

 American Psychological Association. 7th ed. S.L.: American

 Psychological Association.

Best Edit & Proof (2021). Importance of Citations in Academic Writing.

 Available at: https://besteditproof.com/en/academy/importance-of-

 citations-in-academic-writing (Accessed: 10 April 2025).

Django (2025) Meet Django. Available at: https://www.djangoproject.com/

 (Accessed: 10 April 2025).

EndNote (2025) EndNote Desktop Comparison Chart. Available at:

 https://endnote.com/product-details/compare-current-versions/

 (Accessed: 10 April 2025).

FastAPI (no date) FastAPI. Available at: https://fastapi.tiangolo.com (Accessed:

 10 April 2025).

Flask (2010) Flask. Available at: https://flask.palletsprojects.com/en/stable/

 (Accessed: 10 April 2025).

Hunter, J. (2006) The importance of citation. Available at:

 https://web.grinnell.edu/Dean/Tutorial/EUS/IC.pdf (Accessed: 10

 April 2025).

Indeed (2025) What is a Software Process Model? Available

 at: https://uk.indeed.com/career-advice/career-development/what-is-

 iterative-methodology (Accessed: 10 April 2025).

Keployio (2024) Mastering Python Test Coverage: Tools, Tips, and Best

 Practices. Available at: https://medium.com/@keployio/mastering-

 python-test-coverage-tools-tips-and-best-practices-11daf699d79b

 (Accessed: 10 April 2025).

Mendey (2025) Mendeley Cite. Available at:

 https://www.mendeley.com/reference-management/mendeley-cite

 (Accessed: 10 April 2025).

Montana.edu (2020) Citation Help and Style Guide. Available at:

 https://guides.lib.montana.edu/citation/overview (Accessed: 10 April

 2025).

66

Rephrasely (2025) Using Citation Generators: Benefits and Limitations -

 Rephrasely. Available at: https://rephrasely.com/blog/using-citation-

 generators-benefits-limitations (Accessed: 10 April 2025).

Swagger (no date) Crossref REST API. Available at:

 https://api.crossref.org/swagger-ui/index.html (Accessed: 10 April

 2025).

Tutorspoint (2024) Revealing 5 Important Benefits of Using Citation Tools.

 Available at: https://www.tutorspoint.com/blog/revealing-5-

 important-benefits-of-using-citation-tools (Accessed: 10 April 2025).

Universiti Tunku Abdul Rahman (2022) IEEEReferenceGuide. Available at:

 https://library.utar.edu.my/documents/Guides/IEEEReferenceGuide_

 12Aug2022.pdf (Accessed: 10 April 2025).

University of Reading Library (2019) Which referencing style should you use?.

 Available at: https://www.youtube.com/watch?v=vFSbpoWzA_4&t

 =2s (Accessed: 10 April 2025).

University of Washington (2025) Mendeley: Working in Groups. Available at:

 https://guides.lib.uw.edu/hsl/mendeley/organize/groups (Accessed: 10

 April 2025).

Visual Paradigm (2024) Available at: https://www.visual-

 paradigm.com/guide/software-development-process/what-is-a-

 software-process-model (Accessed: 10 April 2025).

Zotero (2025) Your personal research assistant.. Available at:

 https://www.zotero.org/ (Accessed: 10 April 2025).

67

APPENDICES

Appendix A: Tables

Table 2.1: Tables of Tools Comparison

Tool Strengths Limitations

Zotero Free, open-source, supports

9,000+ styles, browser

integration

Limited free storage, lacks

customer support

Mendeley MS Word integration, PDF

annotation, and collaboration

tools

Limited free groups, privacy

concerns

EndNote Advanced management, cloud

sync, institutional support

Paid full version, limited free

features

Table 2.2: Table of differences between frameworks compared

Framework Function Strengths Limitation

Django Build

complex

website

Comprehensive

features,

widely supported

Heavy for small

projects,

rigid structure,

Flask lightweight

micro-

framework

Simple and flexible,

easy to learn

Lacks built-in tools,

Required manual setup

extensions

FastAPI Modern,

high-

performance

Asynchronous

support,

automatic validation

with Pydantic

Newer ecosystem,

learning curve for

async handling

Table 4.1: Functional Requirements

ID Functional Requirement

FR001 The system shall allow users to input a DOI and retrieve

metadata from the CrossRef API.

FR002 The system shall allow users to input an ISBN and retrieve

metadata from the Open Library API.

68

FR003 The system shall format metadata into APA style according to

the latest APA referencing guidelines.

FR004 The system shall format metadata into Harvard style according

to standard Harvard referencing rules.

FR005 The system shall format metadata into IEEE style according to

IEEE referencing rules.

FR006 The system shall store generated citations in a DuckDB database

for future retrieval and reuse.

FR007 The system shall validate user inputs and return error messages

for invalid DOI/ISBN values.

FR008 The system shall provide a download or copy function, allowing

users to incorporate the citation into their documents.

FR009 The system shall provide a basic user interface for inputting

DOIs/ISBNS, viewing results, and downloading citations.

FR010 The system shall allow exporting citations in plain text format.

FR011 The system shall allow exporting citations to BibTeX format.

FR012 The system shall provide a clear form button to let users clear

the input.

FR013 The system shall provide a simple FAQ section for users.

Table 4.2: Non-Functional Requirements

ID Non-Functional Requirement Category Priority

NFR001 The system shall return results

within 3–5 seconds of DOI/ISBN

input.

Performance High

NFR002 The system shall have a clean and

user-friendly interface that requires

minimal training.

Usability High

NFR003 The system shall generate citations

with at least 95% accuracy

according to citation guidelines.

Reliability High

NFR004 The system shall be able to handle

simultaneous requests without

Scalability Medium

69

significant performance

degradation.

NFR005 The system shall support the

addition of new citation styles with

minimal changes in code.

Scalability Medium

NFR006 The system shall ensure that data

retrieved from APIs and stored in

the database is secure and

protected.

Security High

NFR007 The system shall provide error

messages and fallback options

when API services are unavailable.

Reliability High

NFR008 The system shall maintain

compatibility with modern

browsers (Chrome, Edge, Firefox).

Portability High

NFR009 The system shall be documented

and version-controlled with GitHub

for future maintainability.

Maintainability High

NFR0010 The system shall comply with

academic citation guidelines and be

easily extendable to support future

updates in APA/Harvard/IEEE

style formats.

Compliance High

Table 5.1: Data dictionary

Column

Name

Type Key Description

Id/key String Primary DOI or ISBN. Example: 10.1016/S1874-

1029(15)30001-X.

metadata JSON - Full raw metadata response from

Crossref/Open Library (authors, title,

year, publisher, references, etc.).

70

Table 7.1: Table of Summary of Test Cases

Test

ID

Test Type Description Expected

Result

Actual

Result

Status

TC01 Backend Test root

endpoint

Homepage

returns 200 OK

200 OK

returned

Passed

TC02 Backend Valid DOI in

APA

Citation

generated

correctly

Citation

accurate

Passed

TC03 Backend Valid DOI in

Harvard

Citation

generated

correctly

Citation

accurate

Passed

TC04 Backend Valid DOI in

IEEE

Citation

generated

correctly

Citation

accurate

Passed

TC05 Backend Valid ISBN

in APA

Citation

generated

correctly

Citation

accurate

Passed

TC06 Backend Valid ISBN

in Harvard

Citation

generated

correctly

Citation

accurate

Passed

TC07 Backend Valid ISBN

in IEEE

Citation

generated

correctly

Citation

accurate

Passed

TC08 Backend Invalid DOI

identifier

Error handled

gracefully

404/422

response

Passed

TC09 Backend Invalid

ISBN

identifier

Error handled

gracefully

404/422

response

Passed

TC10 Backend Missing

identifier

System returns

422

Validation

triggered

Passed

TC11 Backend Unsupported

style

400/422 error Error

handled

Passed

71

TC12 Internet Deployed

root

endpoint

200 OK

response

200 OK

returned

Passed

TC13 Internet Deployed

DOI test

Citation

generated

remotely

Citation

accurate

Passed

TC14 Frontend UI upload,

download,

copy, clear

All buttons

work correctly

Functions

validated

Passed

72

Appendix B: Open Access to Image Rights

Figure C-1: Reprinted with Permission from Copyright 2024 Visual Paradigm

 to Reuse the What Is Iterative Methodology? (Visial Paradigm, 2024).

 Image in Figure 3.1.

Figure 2.1: What Is Iterative Methodology? (Visual Paradigm, 2024).

Reprinted with Permission from Copyright 2024 Visual Paradigm.

