DOI AND ISBN CITATION CONVERTER

YEN PEI XUAN

UNIVERSITI TUNKU ABDUL RAHMAN

DOI AND ISBN CITATION CONVERTER

YEN PEI XUAN

A project report submitted in partial fulfilment of the
requirements for the award of

Bachelor of Software Engineering with Honours

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2025

DECLARATION

I hereby declare that this project report is based on my original work except for
citations and quotations which have been duly acknowledged. I also declare that
it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Name : Yen Pei Xuan

ID No. ;2105999

Date : 18 September 2025

il

COPYRIGHT STATEMENT

© 2025, Yen Pei Xuan. All right reserved.

This final year project report is submitted in partial fulfilment of the
requirements for the degree of software engineering at Universiti Tunku Abdul
Rahman (UTAR). This final year project report represents the work of the author,
except where due acknowledgement has been made in the text. No part of this
final year project report may be reproduced, stored, or transmitted in any form
or by any means, whether electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the author or UTAR, in

accordance with UTAR’s Intellectual Property Policy.

iii

ABSTRACT

This project developed a web-based citation generator to automate the accurate
formatting of academic references, addressing a significant need among
students and researchers who struggle with manual citation processes. The
system supports both Digital Object Identifiers (DOIs) and International
Standard Book Numbers (ISBNs), generating citations in multiple styles
including APA, Harvard, and IEEE. The methodology adopted is an Iterative
approach. The application employs a three-tier architecture consisting of a
lightweight HTML/CSS/JavaScript front end, a high-performance Python
backend built on FastAPI, and DuckDB for persistent metadata storage. The
system fetches metadata from external APIs asynchronously, using CrossRef
for DOIs and Open Library for ISBNs, and using Pydantic models to provide
strict input validation. A key innovation involves using DuckDB as a local cache
to minimise redundant API calls and significantly improve response times.
Testing of the system demonstrated its reliability in generating accurate citations,
managing invalid inputs with ease, and efficiently processing multiple
references through its advanced bulk upload functionality. The project provides
a practical and user-friendly solution that saves time while maintaining
academic integrity by reducing formatting errors. Future developments may
include additional citation styles, export features, and cloud-based deployment

to enhance scalability.

Keywords: citation, APA style, IEEE style, Harvard style, citation converter,

web application

Subject Area: PN172 — Literary Composition Techniques

DECLARATION

TABLE OF CONTENTS

COPYRIGHT STATEMENT

ABSTRACT

TABLE OF CONTENTS

LIST OF TABLES
LIST OF FIGURES

LIST OF SYMBOLS / ABBREVIATIONS
LIST OF APPENDICES

CHAPTER

1 INTRODUCTION

1.1

General Introduction

1.2 Importance of the Study
1.3 Problem Statement
1.4 Aim and Objectives
1.4.1 Project Objectives
1.5 Scope and Limitation of the Study
1.5.1 Target Users
1.5.2 Limitation of the Study
2 LITERATURE REVIEW
2.1 Introduction
2.2 Literature Review
2.2.1 Existing Converter Tools
2.2.2 DOI and ISBN Metadata Extraction
2.2.3 Comparison between existing APIs Tools
2.3 Citation Formatting Rules

2.3.1 APA style (7" Edition)
2.3.2 Harvard style
2.3.3 IEEE styles

v

ii
iii
iv

viii
ix
xi

xii

0 0 0 W 9 N N DN R W W =

—_ = = = = e
AN N AR = =

24

Summary

METHODOLOGY AND WORK PLAN

3.1
3.2
33

34

3.5

3.6

Introduction

Requirement/ Specification/ Standards
Software Development Methodology:
Methodology

3.3.1 Planning and Requirement Phase
3.3.2 Analysis and Design Phase

3.3.3 Implementation Phase

3.3.4 Testing Phase

3.3.5 Review Phase

Development Tools

3.4.1 Visual Studio Code (VSCode)
3.4.2 FastAPI

3.4.3 Python

3.4.4 MyPy

3.4.5 Pydantic

3.4.6 DuckDB

Iterative

3.4.7 HTML (HyperText Markup Language)

3.4.8 Cascading Style Sheets (CSS)
3.4.9 JavaScript

3.4.10Git

3.4.11Digital Ocean

3.4.12DuckDNS

Project Plan

3.5.1 Work Breakdown Structure (WBS)
3.5.2 Gantt Chart

Summary

PROJECT SPECIFICATIONS

4.1
4.2
43

Introduction

End Users

Requirement Specification
4.3.1 Functional Requirements

4.3.2 Non-Functional Requirements

16
18
18
18

19
20
21
21
22
22
23
23
23
23
24
24
24
24
25
25
25
25
26
26
26
27
27
29
29
29
30
30
31

4.4 Prototype
4.5 Summary
SYSTEM DESIGN
5.1 Introduction
5.2 System Architecture Design
5.3 Database Design
54 API Routes Design
5.4.1 DOI
5.4.2 ISBN

5.4.3 Error return

SYSTEM IMPLEMENTATION

6.1 Introduction

6.2 Backend Implementation

6.3 Data Validation

6.4 Database Implementation

6.5 Frontend Implementation

6.6 Intergration with External APIs

SYSTEM TESTING

7.1 Introduction

7.2 Test Plan

7.3 Test Case
7.3.1 Backemd Test Case
7.3.2 Fronted Test Case

7.4 Test Code

7.5 Discussion

CONCLUSION AND RECOMMENDATIONS

8.1 Conclusion

8.2 Problems Encountered

8.3 Limitations

8.4 Recommendations/Future Work

8.4.1 Expansion of Supported Citation Styles

8.4.2 Offline Caching and Local

Storage

Metadata

vi

32
32
34
34
34
38
39
39
40
40
41
41
42
45
46
47
49
51
51
52
53
53
55
56
58

60
61
62
63

63

vii

8.4.3 Integration with Browser Plugins and Word
Processors 63
8.4.4 Migration from DuckDB to SQLite for
Improved Concurrency 64
REFERENCES 65
APPENDICES 67

Table 2.1:

Table 2.2:

Table 4.1:

Table 4.2:

Table 5.1:

Table 7.1:

LIST OF TABLES

Tables of Tools Comparison

Table of differences between frameworks comparison
Functional Requirements

Non-Functional Requirements

Data dictionary

Table of Summary of Test Cases

viii

10

30

31

39

57

LIST OF FIGURES

Figure 3.1: Iterative Methodology (Visual Paradigm, 2024)
Figure 3.2: Gantt Chart

Figure 5.1: System Architecture Design Diagram

Figure 5.2: Entity Relationship Diagram for the databases
Figure 5.3: The design of the DOI route.

Figure 5.4: The response code and body.

Figure 5.5: The design of the ISBN route.

Figure 5.6: The response code and body.

Figure 5.7: The response code and body when error.
Figure 6.1: The route to call index.html

Figure 6.2: The cite endpoint for validation

Figure 6.3: The format of a DOI citation.

Figure 6.4: The format of an ISBN citation.

Figure 6.5: Upload file function

Figure 6.6: MyPy check DOI type

Figure 6.7: MyPy check ISBN type

Figure 6.8: Connect the DuckDB database

Figure 6.9: Metadata fetchers with DuckDB cache

Figure 6.10: The Website Interface

Figure 6.11: The Frequently Asked Questions section
Figure 6.12: The handleGenerate() function for validation
Figure 6.13: Fetch DOI metadata function

Figure 6.14: Fetch ISBN metadata function

Figure 7.1: Test case for valid input

X

27

35

38

39

39

40

40

40

42

43

44

44

45

46

46

46

47

48

48

49

50

50

53

Figure 7.2: Test case for invalid input
Figure 7.3: Test case for Internet
Figure 7.4: Test Case for Frontend

Figure 7.5: Test Result

54

54

56

57

R

? N

MAP
MAWP
OD

RV

LIST OF SYMBOLS / ABBREVIATIONS

specific heat capacity, J/(kg-K)
height, m

discharge coefficient

mass flow rate, kg/s

pressure, kPa

back pressure, kPa

mass flow rate ratio
temperature, K

specific volume, m?

homogeneous void fraction
pressure ratio
density, kg/m’

compressible flow parameter

inner diameter, m

maximum allowable pressure, kPa
maximum allowable working pressure, kPa
outer diameter, m

relief valve

X1

Xii

LIST OF APPENDICES

Appendix A: Tables 67

Appendix B: Open Access to Image Rights 72

CHAPTER 1

INTRODUCTION

1.1 General Introduction

Citing sources is a fundamental component of academic and
professional writing, forming the foundation of academic integrity and
intellectual honesty. A citation is the acknowledgment of the source that the
authors have used in their essay, assignment, or journal to support their
arguments and provide evidence. The authors provide a reference to the source,
which means they have acknowledged that they have read the work and
recognize its ideas in their own writing. (Montana.edu, 2020) A responsible
author gives credit to original authors, supports claims with evidence, and
prevents plagiarism by quoting ideas used by other authors.

Citations have a number of practical applications, other than preventing
plagiarism. They provide readers with a clear framework for tracing the
evolution of ideas, enabling them to verify facts, investigate related studies, and
gain a more comprehensive understanding of the subject. As besteditproof.com
(2022) notes, the proper citations can help the reader find the sources from
which the authors acquired the idea and check the facts. Good citation habits
build trust and keep writing clear and honest, and scholars place a high value on
and track the evolution of concepts. It shows the reader that the writer has done
proper research by listing sources that were used to get information. The citation
includes the author’s name, journal title, date, DOI(Digital Object Identifier) or
ISBN (International Standard Book Number), depending on the reference style
used. Each citation style specifies the required information for a citation in a
unique order and punctuation. There are many reference styles to use, for
example, APA(American Psychological Association) style, Harvard style, and
IEEE(Institute of Electrical and Electronics Engineers) style.

Why are there so many different reference styles? This is because the
different reference styles are used for different fields and are suitable for them.
For example, the APA style is favored in the fields of social science, education,
and psychology, which is suitable for quantitative studies; the IEEE style is

suitable for use in engineering, while the Chicago Manual of Style is suitable

for history. (Hunter, 2006) Another difference is that the source's information
in reference will have a different order, although they have the same basic
information, such as the authors' names, publication year, and the source's title.
In APA style, the order of information starts with the author's name, followed
by the publication year. This two information are the most important in the
social science and education fields. It is important to use the right style because
referencing is also a professional skill. (Which referencing style should you use?,
2019) It is important to note that understanding citation styles goes beyond
simply knowing how to format references correctly. It also reflects a
commitment to the standards set out in each discipline, adherence to established
academic traditions, and a professional approach to all aspects of work. Correct
citation methods demonstrate respect for others' intellectual contributions and
contribute to the greater academic debate by clearly acknowledging the sources
of ideas.

The Digital Object Identifier (DOI) System is used for recognising
content objects in a digital environment. DOIs are assigned to any sources
utilised on digital networks, such as journals and books. They can provide the
newest information and are easy to find on the Internet because the DOI name
will never change, although the content may change. The DOI System is a
framework for easier management of content, metadata, and enables the
automated management of media. Nowadays, we can get the information about
sources by the DOI easily from the Internet, because each DOI is a unique
alphanumeric string to identify the digital content, such as a journal and an
article, and then provides the link on the Internet. (DOI Foundation, 2022) The
DOI is commonly written on the first page of sources, so we can find it easily.

An International Standard Book Number (ISBN) is a product identifier
used for publishers, libraries, and internet retailers to easily list the book’s sales
records and stock control. The ISBN can identify the book's title, edition, format,
and other information. The ISBNs are assigned to text-based monographic
publications like academic books. Every book will have its unique ISBN that is
built with 13 digits, and the beginning of the number should start with either
978 or 979. Each book edition is given a different ISBN, enabling easy
identification of differences between versions by libraries, bookshops and

readers alike.

This project aims to develop an automated citation converter that is
convenient and highly accurate in reference style for users. This citation
converter will support APA, Harvard, and IEEE style references by the DOI or
ISBN provided by users. Furthermore, the citation converter will be able to
provide a high-speed response for the users, and users will be able to copy or

download the converted reference from the website.

1.2 Importance of the Study

The challenges of citation converters are that reference styles will have different
editions, and as time goes by, the reference styles might have huge differences.
Although numerous citation tools exist, many of them may use outdated editions
of citation styles and generate incorrect formats, which can compromise the
accuracy of academic work. In this case, users often need to manually format
citations, which may lead to errors in referencing. Other than that, some of the
citation converter tools require users to manually input the information of
sources, as they fail to detect the necessary information from metadata. This will
let users take more time to check back the sources and input by themselves, and
also need to take time to verify citation details.

Secondly, the academic penalties for improper citation could be severe,
including paper rejection, reduced grade, and accusations of academic
misconduct. In such cases, plagiarism detection tools are employed to identify
improper citations and plagiarism, thereby underscoring the significance of
accurate referencing. The objective of this project is to reduce the risk of citation
errors and enhance academic integrity by automating the citation process

through the extraction of DOI and ISBN metadata.

1.3 Problem Statement

Manually formatting citations is highly prone to making mistakes, especially
when formatting with multiple reference styles across different academic
disciplines, and users might use the incorrect reference style format. The users
may not understand the citation rules and lead to inconsistencies and incorrect
reference formatting, for example, missing publication year, improper source
titles, and missing commas. These errors can have serious consequences for

academic integrity and professional reputation.

Although many online reference tools are available, some produce
incorrect citation formats or incomplete metadata. Additionally, some citation
converters operate with outdated versions of reference styles; many are still
using APA 6th edition, even though the current version is 7th edition. This may
result in inconsistencies when academic institutions require adherence to the
most recent guidelines. Secondly, some of them used metadata retrieved from
APIs or databases, which is not always complete or accurate. This will lead to
incorrect or incomplete information, and users need to manually input the
information. Furthermore, many of the reference converters online, few of the
tools support DOI and ISBN metadata extraction while ensuring accurate
citation formation across multiple reference styles, which creates challenges
when citing books and journals.

These limitations indicate a market requirement for a robust, reliable
and highly accurate citation converter. This converter should be able to
automatically detect and extract metadata using DOI and ISBNs, while
formatting the citations according to updated APA, Harvard and IEEE styles.
Therefore, an accurate citation converter tool is needed that can effectively
address this discrepancy by offering expeditious, precise, and adaptable citation
services that are aligned with contemporary academic requirements. This
project aims to address the problem and develop a tool that can convert DOI and

ISBN references into multiple reference styles.

14 Aim and Objectives

This project’s primary objective is to develop an automated citation converter
that can efficiently obtain metadata from DOI and ISBN inputs and accurately
format citations in accordance with APA, Harvard, and IEEE to reduce manual
citation effort and prevent formatting errors. This project is developed to reduce
the manual burden on academics, students, and researchers when citing their
sources, increasing citation accuracy and consistency, while minimising citation
errors and promoting academic accuracy. The objective of the project is not
merely to transform input into output, but also to establish a system that provides
metadata validation, robust error handling, and an enhanced user experience. It
is anticipated that this tool will offer users rapid response times, enabling them

to acquire citations in seconds.

Moreover, the tool will be designed to be scalable and stable, with the
capability to manage multiple requests without compromising performance.
This project is designed with modularity to enable easy future updates to
accommodate changes in citation styles as the citation standards evolve over
time. This project places a significant emphasis on accessibility and usability,
ensuring that individuals with limited technical expertise are able to generate
high-quality citations through a straightforward web interface. The integration
of automation, validation, and usability is expected to yield substantial
contributions to academic writing standards and promote optimal scholarly

practices.

1.4.1 Project Objectives
The project will pursue the following objectives to attain the above-stated goal.
Firstly, develop an automated system that retrieves metadata from the CrossRef
for the DOI’s information and the Open Library for the ISBN’s information.
The objective of this undertaking is to use the CrossRef and Open Library, with
the intention of facilitating the automated retrieval of key citation metadata. The
system has been designed to ensure the highest standards of data accuracy by
sourcing information from well-known and reputable sources. The retrieval
routines must be capable of gracefully managing problems, such as missing
fields or API outages, and have fallback measures in place if data retrieval fails.

Secondly, create a user-friendly website to enable users can have a
seamless experience and generate citations efficiently and correctly. The project
will result in the creation of an accessible and adaptable web interface, in which
users may enter their DOI or ISBN, select their needed citation style, and swiftly
obtain a reference prepared to a standardised format. The principles of user
experience (UX) that will be considered include clear feedback messages, quick
input validation, and immediate visibility of system status. The website will
also include certain guidelines, such as an example of a Digital Object Identifier
(DOI) and International Standard Book Number (ISBN), as well as an
explanation of the importance of referencing.

Thirdly, this project will implement error handling and validation to
prevent incomplete or incorrect citations and verify the metadata consistency.

The system is designed to provide rigorous validation tests on both the front end

and the back end. The system validates user input formats and ensures that API
responses include all essential metadata, and issuing warnings to users when
human input or edits are required are all features of the system. This objective
is to ensure that, even in the event of incomplete data, the system will direct the
user to complete an accurate citation.

Lastly, this project will ensure that the system is scalable, maintainable,
and extensible in the future. The system's architecture will be characterised by
modularity, with a clear delineation of components, such as API retrieval,
citation preparation, and user interface. The modular design of the system will
facilitate the future updating of citation formats, addition of new reference styles,
and enhancement of metadata retrieval capabilities, without the need for

substantial system changes.

1.5 Scope and Limitation of the Study

1.5.1 Target Users

The primary users of this citation converter are university students, academics,
and researchers who frequently cite sources in APA style, Harvard style, and
IEEE style. Undergraduate and postgraduate level students are often required to
strictly adhere to the citation guidelines as a part of their academic thesis,
dissertations, and assignments. Academics and researchers will need to ensure
that their references meet rigorous formatting standards when preparing
conference papers, research reports, and journal submissions. This citation
converter aims to provide accurate citations efficiently and in compliance with
the newest edition of the reference style. This project especially focused on APA,
Harvard, and IEEE styles, which are among the most extensively utilised across
educational institutions globally, as different academic disciplines have
differing preferences for citation styles. Beyond the confines of academic
settings, professional writers engaged in the creation of technical documentation,
policy reports, or white papers may find value in a tool that ensures consistent
and high-quality formatting of citations, thereby enhancing the professional

presentation of their work.

1.5.2 Limitations of the Study

The project has several limitations of the study, as the citation converter focuses
on DOI and ISBN-based references and is designed for a limited type of citation
references. Firstly, the converter is only able to consider references that are
specified by DOI or ISBN numbers because the functionality of the tool in
question is contingent upon the presence of a Digital Object Identifier (DOI) or
International Standard Book Number (ISBN). If the user inputs sources that do
not conform to these criteria, such as informal blog postings, personal emails,
or unpublished works, it will show an error message to users. Therefore, the
users are required to manually create citations for these sources in accordance
with standard procedures.

Secondly, the system will only support three citation styles: The
reference styles employed in this text are APA, Harvard, and IEEE. It should
be noted that alternative styles, including those designated as Chicago,
Vancouver, and AMA, are not supported during this particular project phase.
While these styles may be incorporated into subsequent iterations, the present
project places emphasis on the three styles that are most pertinent to the
specified target user base.

Thirdly, the system's reliance on external APIs, such as CrossRef and
Open Library, creates a dependency risk. If these services modify their API
formats, experience periods of downtime, or furnish insufficient metadata, the
accuracy of citations may be adversely affected. While local caching or manual
input alternatives can help mitigate this risk, reliance on external sources in real-
time remains a limitation. Furthermore, if the metadata provides incomplete or
incorrect information, the citation accuracy may be affected.

Lastly, the citation converter is web-based and reliant on external data
retrieval; consistent internet access is a prerequisite for its functionality. In
environments characterised by limited connectivity, users may encounter delays

or interruptions when attempting to generate citations.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Citation is essential in academic writing, as it ensures that authors have
conducted proper research and acknowledged their sources. The citation
formatting was done manually before the citation tools were introduced, and
this may lead to incorrect citation format and waste time. With the progress of
science and technology, a lot of citation tools have been developed to help users
quickly format citations correctly and reduce errors. A literature review is an
integral component of any research endeavor, as it provides a comprehensive
overview of preceding research, identifies lacunae in existing knowledge, and
substantiates the necessity for the study in question. In the context of this project,
it is imperative to examine existing citation and reference management
technologies in order to understand their capabilities, strengths, and limitations.
This chapter provides an overview of the existing citation tools with their
strengths and limitations, mainly the DOI and ISBN citation, and the process of
metadata retrieval. This chapter also writes the newest APA, Harvard, and IEEE
style reference format, and the comparison between manual and automated
citation formatting. Therefore, the subsequent sections will discuss and evaluate
existing citation tools, metadata extraction methods, and reference formatting

systems relevant to this study.

2.2 Literature Review
This section reviews existing citation tools, analyzing their advantages,

disadvantages, and the gaps that motivate the development of this project.

2.2.1 Existing Converter Tools

In the literature review, three citation tools were compared about their strengths

and limitations, as these tools are widely used and well-known on websites.
The Zotero reference tool is a tool that can automatically sense the

content, like using a web browser, and is easy to use. It is a free and open-source

desktop software that can store website content on local storage. It works well

with Chrome and Safari to detect and save links from web pages, and helps users
organise their searches the way they want, such as sorting items in the collection
and tagging them with keywords to make them easier to find. Furthermore,
Zotero can capture metadata automatically from many sources, like videos and
PDFS, which is a very unique function. Zotero also supports over 9,000 citation
styles that users can use to format their references and allows sharing libraries
for group collaboration, using cloud sync features so that users can synchronise
the data across devices. (Zotero, 2025) However, Zotero also has its limitations;
firstly, it provides 300 MB of free storage, and the additional storage needs to
be paid for with a subscription. Compared to other existing citation converter
tools, its interface is too simple and less modern. Although it has community-
based support, it doesn't have a customer support team to solve issues.

In contrast to Zotero, Mendeley adopts a more research-oriented
ecosystem with collaborative tools for academics. Mendeley is a desktop-based
reference management software that requires users to download the application.
Mendeley Cite is the new feature that adds to Microsoft Word and is compatible
with Microsoft Office 365, so users can download it along with plug-ins for the
Microsoft software to insert citations. It offers a range of features to help
connect with discoverers and researchers, for example, a cross-device backup
feature to sync the content automatically, intelligent filtering, and a PDF viewer.
Mendeley aims to provide users with effective and fast reference management.
Secondly, users can build their own Mendeley library to search, organize, and
read their references. Additionally, it will also help users to collate all of the
notes and highlights from a PDF file, so that users can easily find their highlights.
(Mendeley, 2025) Mendeley is owned by Elsevier, which is a large publishing
company, so users are concerned about issues of openness and privacy. In
addition, the free version of Mendeley only allows users to create 5 groups and
limits them to 25 members per group. Highlighting and comments are no longer
shared between different group members and the user's original file. (Uw.edu,
2025)

On the other hand, EndNote is a more advanced commercial solution
tailored for professional researchers and institutions. EndNote aims to simplify
the complex task and organise complete references for users; it is widely used

in research and academic institutions. EndNote also allows users to create a

10

smart group by customising the tag and field. It also supports cloud
synchronisation and sharing, allowing users to access and collaborate via
EndNote Web. It is available for Windows and Mac users, and has three versions:
EndNote21, EndNote Web, and EndNote Basic. The EndNote Basic version is
free for anyone, can integrate with MS Word, and does not require installation.
The EndNote basic version has a file attachment storage limit of 2 GB only, and
reference storage is just 50000. Different versions of EndNote have different
maximum numbers of fields per reference and type. If users would like to use
EndNote 21, they need to buy and install it on their devices, as it provides more

services and efficiency. (EndNote, 2025)

Table 2.1: Tables of Tools Comparison

Tool Strengths Limitations

Zotero Free, open-source, supports | Limited free storage, lacks

9,000 styles, browser integration | customer support

Mendeley | MS Word integration, PDF | Limited free groups, privacy
annotation, and collaboration | concerns

tools

EndNote | Advanced management, cloud | Paid full version, limited free

sync, institutional support features

The strengths of these tools are that they all support multiple reference
styles, such as APA style, Harvard style, Chicago style, and IEEE style. Some
tools also offer a browser extension function that it will automatically captures
the metadata. After users cite the resources, the completed references can be
saved in a library for reuse purposes. The tools can easily format the imported
citation for users and produce various types of style formats. Other than that,
they also import citations from other databases to retrieve sources' information
and cite them according to the reference style required by users.(Tutorspoint,
2024) They support many types of export citations, for example, BibTeX,
copying to the clipboard, and downloading as a Word file.

Other than strengths, these citation generator tools also have their
limitations. The application is built to earn profit; some features will be locked

and require users to purchase the premium version to access all these features.

11

The accuracy of the input data is important because incorrect citation references
may cause problems for users. The automatic data retrieval features will be
convenient for users, but sometimes they bring some trouble. The tools can pull
the incomplete details or incorrect information, and the users are required to
manually edit the reference themselves. If users input the wrong information,
the reference will generate an incorrect reference for users. Additionally, the
citation generator may pull data from an untrustworthy source, which will affect
the accuracy of citations. Thirdly, the citation generator might use an old version
of the reference style or an incorrect format to cite the references, such as when
to use a comma, which type of style uses the bracket, and different reference

styles use different information. (Rephrasely, 2024)

2.2.2 DOI and ISBN Metadata Extraction

The metadata extraction function is a process that identifies and extracts the
necessary information from an open source, for example, the authors' names,
the title of the article, and the year of publication. This is also a core function to
enable the automated citation generator. The DOI is a unique alphanumeric
string to identify the digital content and provide a link on the Internet. To
retrieve metadata using a DOI, the tools can access the DOI Foundation API
and return a JSON-formatted data that contains the necessary information for
the system.

A unique ISBN that is built with 13 digits and identifies text-based
monographic publications like academic books. ISBN metadata can be retrieved
through the public API, such as Open Library, and the necessary information
will be returned to the system. To enhance the speed of the citation generator
and the performance of the system, some tools will store the references that have
been referenced by users in the databases. If other users cite the same DOI or
ISBN, the tool will fetch the metadata from databases and return it to the users.

This can also reduce reliance on external API calls and improve loading times.

2.2.3 Comparison between existing APIs Tools
This project requires the use of an API web application framework to assist in
project development. This section will review the three frameworks: Django,

Flask, and FastAPI, about their function, strengths, and limitations.

12

Django is a high-level, full-stack Python web framework that facilitates
the fast construction of safe and maintainable websites with a clean, pragmatic
design. The software contains integrated tools for managing administrative
interfaces, database models, and more, allowing developers to focus on building
the software rather than reinventing the wheel. (Django, 2024) Django provides
a comprehensive solution that incorporates an ORM (Object-Relational
Mapper), a templating engine, form handling, and security features as standard.
The software in question has been exhaustively documented, is capable of
extreme scalability, and boasts a substantial user base that provides substantial
backing. The software adheres to the "batteries included" concept, thereby
minimising the necessity for additional libraries. However, Django can present
certain challenges in terms of its complexity, which may be more suited to larger
projects and more substantial applications. Its monolithic nature has the
potential to incur excessive overhead when only basic REST APIs are required.
The customisation of such frameworks that exceeds the basic conventions
established by Django has been shown to require a greater investment of time
and effort.

Flask is a WSGI web application framework that is lightweight and
adaptable, allowing users to initiate development processes expediently. Flask
aims to facilitate the development of small to medium web applications and
RESTful APIs. It encompasses the essential tools required for web development,
while concurrently enabling developers to select their preferred components.
(Flask, 2010) Flask is a straightforward and uncomplicated software, which
renders it optimal for utilisation in diminutive applications for prototyping. It is
a highly flexible system that facilitates rapid deployment with minimal coding.
This paradigm shift empowers developers with unparalleled autonomy, granting
them the freedom to select their authentication system, ancillary add-ons, and
preferred database. Since Flask's simplicity has prompted the development of
numerous third-party extensions to address its limitations, though this approach
can lead to inconsistent architectures. In the case of Flask, additional
configuration may be necessary for functionality included in frameworks such
as Django for projects of a larger or more complicated nature.

FastAPI is a contemporary, high-performance web framework for the

creation of APIs in Python, utilising conventional Python type hints. (FastAPI,

13

2023) The software has been developed on the basis of Starlette for web parts
and Pydantic used for data validation, with asynchronous support and automatic
API documentation generation. FastAPI is distinguished by its rapid execution,
attributable to its asynchronous features and superior processing speed. These
characteristics are comparable to those observed in Node.js and Go APIs. It
generates OpenAPI (Swagger) documentation automatically, thus eliminating
the need for any additional configuration. The microservice paradigm, modern
web APIs, and asynchronous programming are well-suited to this approach.
Additionally, FastAPI provides robust typing and validation using Pydantic
models, which has been demonstrated to reduce problems and improve code
clarity. The FastAPI ecosystem is in a state of development and expansion,
given its relatively recent emergence as a software framework in comparison to
more established options such as Django and Flask. It is evident that certain
features, such as full-stack website support, like templating and ORM, are less
comprehensive in their initial state than those offered by Django. Those
developers unfamiliar with asynchronous programming may encounter an initial

period of adjustment.

Table 2.2: Table of differences between frameworks comparison

Framework | Function Strengths Limitation

Django Build Comprehensive Heavy for small
complex features, projects,
websites widely supported rigid structure,

Flask lightweight | Simple and flexible, | Lacks built-in tools,
micro- easy to learn Required manual setup
framework extensions

FastAPI Modern, Asynchronous Newer ecosystem,
high- support, automatic learning curve for
performance | validation with async handling

Pydantic

Based on the analysis above, FastAPI was chosen for this project due
to its balance of speed, modern design, and validation capabilities. The primary

reasons for this choice are as follows: the enhanced performance, the automated

14

validation of input, the asynchronous processing of requests, and the simplified
development of RESTful APIs. The FastAPI software was found to offer an
optimal combination of simplicity and functionality, aligning well with the
project's requirements for a lightweight, efficient, and highly responsive citation
converter with API-based metadata retrieval. The software's automated
production of interactive API documentation (Swagger UI) has been
demonstrated to streamline the development and testing processes. A
comparative analysis of the structural intricacies of Django and the absence of
integrated validation mechanisms in Flask reveals that FastAPI emerges as the
most efficacious, contemporary, and extensible solution to meet the stipulated
project requirements. Furthermore, the built-in data validation of FastAPI with
Pydantic ensured the safe processing of DOI and ISBN queries, thus resulting

in a more robust and error-free solution.

23 Citation Formatting Rules

The following section outlines the reference formatting rules for three major
citation styles: APA, Harvard, and IEEE, along with examples for DOI-based
and ISBN-based citations. The different style of reference requires different
information; here is an example of each style of reference used by the DOI
(Journal) and the ISBN (Books). The APA reference format was according to
the Publication Manual of the American Psychological Association, 7™ edition.
The Harvard style was according to the Cite Them Right book. The IEEE
reference format was according to the Universiti Tunku Abdul Rahman’s IEEE

Reference Guide.

2.3.1 APA style (7™ Edition)
The APA reference format was according to the 7™ edition of the Publication

Manual of the American Psychological Association. (2020)

DOI Reference Format:
AuthorA, LastName. FirstName., & AuthorB, LastName. FirstName. (Year
of Publication). Title of the article: Subtitle. Title of the Journal,

Volume number(Issue number), page—page. https://doi.org/xxx

15

Example:

Smith, J., & Lee, A. (2020). Investigating citation tools in academia. Journal of
Information Systems, 15(2), 123-134.
https://doi.org/10.1016/].Jis.2020.02.004

ISBN Reference format:
AuthorA, LastName. FirstName., & AuthorB, LastName. FirstName. (Year
of Publication). Title of book: Subtitle (2nd ed.). Name of Publisher.

Example:

Clark, J. W. (2012). AC Power Conditioners. Academic Press.

2.3.2 Harvard style
The Harvard style was according to the Cite Them Right book. (2022)

DOI Reference Format:

AuthorA, LastName, FirstName., and AuthorB, LastName, FirstName., Year of
Publication. Title of article. Full Title of Journal, [e-journal] Volume
number(Issue number), pp.page-page. https://doi.org/xxx

Example:

QU, H.-B., CHEN, X., WANG, S.-T., & YU, M.,2015. Forward Affine Point
Set Matching Under Variational Bayesian Framework. In Acta
Automatica Sinica, [e-journal] 41(8), pp.1482-1494.
https://doi.org/10.1016/s1874-1029(15)30001-x.

ISBN Reference Format:
AuthorA, LastName, FirstName., and AuthorB, LastName, FirstName.,
Year of Publication. Title of book. Edition. Place of publication

(town or city): Publisher.

Example:
Clark, J.W. , 1990. AC power conditioners.: Design and applications. San Diego:

Academic Press.

16

2.3.3 IEEE styles
The IEEE reference format was according to the Universiti Tunku Abdul
Rahman’s IEEE Reference Guide. (2022)

DOI Reference Format:
[1] AuthorA, FirstInitial. SecondlInitial. LastName, and AuthorB, Firstlnitial.
Secondlnitial. LastName, “Title of the article,” in Abbreviated Name.

Year of Publication, pp.page—page. doi: (doi number)

Example:

[1]H.-B. QU, X. CHEN, S.-T. WANG, and M. YU, “Forward Affine Point Set
Matching Under Variational Bayesian Framework,” in Acta
Automatica Sinica, 2015, pp.1482—-1494, doi: 10.1016/s1874-
1029(15)30001-x.

ISBN Reference Format:

[1] AuthorA, Firstlnitial. SecondlInitial. LastName, and AuthorB, Firstlnitial.
Secondlnitial. LastName, “Title of chapter,” in Title of Book, 3rd ed.
City of Publisher (only U.S. State), Country: Abbreviated, Year of
Publication, ch. 3, sec. 4, pp. page-page.

Example:
[1] R. Chellappa and S. Theodoridis, “Signal processing for massive MIMO
communications,” in Academic Press Library in Signal Processing,

Volume 7, London, England: Academic Press, 2018, ch.8, pp.367-401.

24 Summary

This chapter reviews and compares the existing citation generator tools, the
strengths and limitations of the tools, the DOI and ISBN metadata retrieval, and
the reference style format. A review of the tools under consideration reveals a
number of factors that may be considered to be beneficial, alongside a number
of factors that may be considered to be detrimental. The former include, but are
not limited to, simplicity, cost barriers, the level of DOI/ISBN support, and the

capacity for real-time updates. The latter comprises a number of disadvantages,

17

including, but not limited to, the complexity of the processes and the paucity of
support for DOI and ISBN. Due to all the research, this project aims to provide
an accurate automated citation generator to format APA, Harvard, and IEEE
styles. Secondly, this project will also use trusted metadata sources, such as the
DOI Foundation and Open Library, to retrieve the information. The citation
generator will also support manual input in case the information is incomplete.
Furthermore, this project will also create a high-speed DOI and ISBN citation
converter with accuracy and reliability for users. The next chapter presents the
system design, outlining how these findings inform the proposed architecture

and implementation.

18

CHAPTER 3

METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter discusses the methodology that outlines the approach used to
develop the DOI and ISBN citation converter and ensure effective, accurate and
usable. The methodology for this project follows a sequential workflow,
beginning with planning and progressing through system analysis,
implementation, testing and a final review phase. Each phase is important to
ensure that the system is efficient, reliable, accurate, and user-friendly. This
chapter will state the details about requirements and specifications for the
project, the API integration used, and the Iterative methodology used to ensure

continuous improvements and testing during development.

3.2 Requirement/ Specification/ Standards
The system requires a combination of front-end interfaces, backend processing
services, and third-party APIs for metadata retrieval to develop a user-friendly
website to convert the DOI and the ISBN into different reference styles.

The hardware requirements for this project are a minimum of 8 GB of
RAM is recommended to support backend processing. The higher RAM
capacity and speed lead to improved computer performance, and testing tools
will work smoothly. Secondly, more RAM allows the system to handle more
data and prevent slowdowns and lag while running multiple programs. The
software requirements are important; the core programming language used for
the project’s backend is Python 3.13.

1. Pydantic and dataclasses are used for data validation, which enforces the
type of data and ensures the input received via API requests is correctly
structured to prevent missing data.

2. MyPy is a static type checker for Python; it can detect potential type-
related errors before runtime and improve code reliability and
maintainability.

3. DuckDB databases are used to store the citation history.

19

4. The third-party API calls the DOI Foundation to retrieve the journal
information, for example, journal title, author, and publication data
based on the DOI input. The Open Library for fetching book data, for
example, book title, authors, and publisher, using the ISBN.

5. FastAPI was utilised in this project. It is a modern and high-performance

web framework for constructing RESTful APIs using Python.

33 Software Development Methodology: Iterative Methodology

The iterative methodology is a software development methodology to develop
a service in phases, and each phase builds on the previous phase. The phase
involves planning and requirements, design, implementation, testing, and
review, which is used to gain feedback and evaluation for refinement purposes.
This methodology's advantage is that developers can test their ideas early and
frequently to save time, reduce the risk of major flaws, and optimise the
resources. (indeed, 2024)

The iterative process is where the developer starts to define a basic
version of the service, defines the service's requirements, designs the service
based on the requirements, develops some tests to test the service and then
reviews the service's feedback. This process breaks a project into a few modules
to let the developer develop the service step-by-step to improve the service. An
iterative process begins with the first iteration, where the developer creates a
simple planning task that fulfils the project requirements. Secondly, the
developer should design the project interface or anything necessary and
implement it. Then, conducting a test to ensure the project is well done and has
no errors. After that, through the feedback, the developer can decide to refine
the project or improve the project to meet the project goals.

Requirements Analysis & Design

Planning Implementation

Iterative
.. . Model
Initial planning y N
45 s

[‘ Deployment

[
Evaluation (U
N Testing

Figure 3.1: Iterative Methodology (Visual Paradigm, 2024)

20

3.3.1 Planning and Requirement Phase

The initial phase should start in the planning and requirements phase. The
planning phase laid the foundation for the project's success. This phase should
determine the project problem statement, project objectives, project scope,
select suitable technologies, and set deliverables. The planning phase also
identified the target users, requirements of the system, and key milestones based
on the requirements. This phase will involve the project schedule to estimate the
overall project duration and ensure the project is completed on time. The scope
of the project was limited to creating a lightweight web-based citation converter
that takes DOI or ISBN input, automatically retrieves metadata from reliable
sources, and outputs citations in APA, Harvard, or IEEE format. Functionally,
the system needed to allow users to input a DOI or ISBN, and then the system
would automatically retrieve metadata and display formatted citations based on
user-selected styles. Non-functional requirements included accuracy, fast
response time, scalability, security, and maintainability. The flow of the
application is for users to input the DOI and ISBN in the column and select the
citation style needed. The system will validate the input and retrieve metadata
from the CrossRef for DOI and the Open Library for ISBN, and then format the
citation into the style that users choose. Other than that, users are allowed to
manually input data if the metadata is not complete or incorrect.

The selection of a suitable technology stack constituted a pivotal
element in the planning phase. Following a thorough evaluation of the available
options, FastAPI was selected for the backend due to its speed, asynchronous
capabilities, and automatic OpenAPI documentation compatibility. The httpx
library was selected for use with HTTP requests due to its asynchronous request-
handling capabilities, which facilitate expeditious metadata retrieval without
compromising server performance. Pydantic was employed for the purposes of
input validation and schema enforcement, thereby ensuring data consistency
throughout the system. In order to enhance compatibility and reduce load times,
the frontend was built with simple, lightweight technologies such as HTMLS,
CSS, and JavaScript.

21

3.3.2 Analysis and Design Phase

In this analysis and design phase, the system architecture was designed to
represent the detailed information based on the project requirements. This
system architecture provides a better understanding of the software and
hardware requirements and their function. Firstly, the application block design
is designed with a user-friendly interface and uses HTML language in VSCode.
The comparison with existing citation converter tools analysis will be conducted
to show the strengths and limitations of each website. After that, I can take the
strengths and avoid the limitations for my project. The backend structure will
use FastAPI to manage the user's request, the data classes, and Pydantic for
validation metadata. Additionally, the reference format and sample are used to

test the function and the output.

3.3.3 Implementation Phase
After the design phase, the implementation phase should be implemented using
the backend services to develop a system using the Python language and
FastAPI for this project. The CrossRef and ISBN will retrieve metadata using
the DOI Foundation and Open Library because they are stable and widely used.
The information that is retrieved will be converted to JSON format and will pick
the necessary information to convert into different citation formats. Pydantic is
implemented to validate the input, and MyPy uses static type checking to
prevent runtime errors. Two Pydantic models were created: one to define the
request structure (CitationRequest) and one to define the response structure
(CitationResponse). The /cite endpoint is responsible for receiving user requests,
assessing the necessity of retrieving metadata from DOI or ISBN sources,
preparing the citation using the selected style, and returning the formatted
citation. The httpx component facilitates asynchronous HTTP requests, thereby
ensuring non-blocking performance and enhanced response times, even in
scenarios where external APIs exhibit latency. With each iteration, the
functionality is extended to avoid becoming too complex and confusing the
system. For example, the second iteration adds new citation styles, and the third
iteration implements a database.

The backend handles incorrect scenarios, such as an error DOI or ISBN,

or a missing metadata field. Specific exceptions are reported using suitable

22

HTTP status codes and user-friendly error messages. The citation formatting
logic adheres to APA 7th edition norms, Harvard reference standards, and IEEE
regulations. It is important to note that particular care was taken to ensure that
fields such as volume, issue, page numbers, and publication dates are properly
handled, and that citations are generated in grammatically and stylistically
accurate formats.

The frontend implementation placed significant emphasis on simplicity
and practicality. The decision was taken to employ a rudimentary design to
ensure that users would be able to input identifiers, select styles, and produce
citations with minimal difficulty. The interface is composed of three distinct
components: an entry field for a DOI or ISBN, a dropdown menu that facilitates
the selection of a citation style, a button that initiates the process of generating
a citation, and an example of a DOI and an ISBN. Upon the backend's return of
the structured citation, it is presented within a read-only text field, thereby
enabling users to seamlessly duplicate and paste the result. Frontend logic was
handled using JavaScript, thereby circumventing the introduction of superfluous

dependencies that could impede the processes of maintenance or deployment.

3.3.4 Testing Phase

The necessity for testing arises after the application implementation, in such a
manner that it tests the coverage and functionality of the application. Testing
can be a stabilising factor of the system, along with ensuring correctness in the
citation format. In this project, unit testing would be done as a mode of testing
the individual functions, like DOI/ISBN validation, citation formatting, and
some functions of parsing the data from FastAPI. The test case creates a new
test case to check for the precise response to a particular set of inputs. Aside
from that, the test coverage for Python was performed to measure the amount
of code exercised by tests. It would create a report on coverage showing which
parts of the code base are covered by tests and which ones are not. (Keployio,

2024)

3.3.5 Review Phase
In the review phase, feedback from the test cases was collected, and code

reviews were performed for continuous improvement. A meticulous review of

23

the citation formats was undertaken in order to ensure full compliance with the
APA, Harvard, and IEEE standards, which were most recently updated.
Following the testing phase, any bugs detected should be addressed, and each
feature enhanced based on the results. By fixing the bugs, the system should run
without error, or it may cause a domino effect, where the bugs are fixed, but an
unexpected event occurs, and then causes huge issues for the system. The
feedback will facilitate continuous improvement and ensure the application runs
smoothly and fulfills the requirements. Each new iteration will enhance the
application's system based on feedback to improve the user experience and

optimise citation formatting logic.

34 Development Tools
This section will outline the tools used, the programming language used to write
the program, the web framework, databases, and libraries used to retrieve

metadata.

3.4.1 Visual Studio Code (VSCode)

Visual Studio Code (VS Code) is an open-source code editor used to write and
debug Python code. It is lightweight and free to download from the website. It
offers various features, including the Al copilot features for all users. It supports
a wide range of extensions, the Pydantic, MyPy, and Git integration can be
installed and used in VS Code. By using these tools in VS Code, the system can
develop smoothly and efficiently.

3.4.2 FastAPI

FastAPI is a modern Python web framework used for building efficient and fast
APIs. It can handle both synchronous and asynchronous operations, perform
automatic documentation, and has built-in support for input data validation
using Pydantic. It can help to create a readable, clean, and high-performance

endpoint for this citation formatting.

3.43 Python
The main programming language used to develop the backend of the citation

converter for this project is Python. Python is simple, readable, and can be used

24

for FastAPI. Its rich ecosystem of libraries can develop a system for rapid

development and integration with APIs.

344 MyPy

MyPy is a static type checker that can check the input for Python. Implementing
it can ensure the code follows the type annotations and help to catch type-related
errors during development. the project will improve code reliability and

maintainability by implementing MyPy.

3.45 Pydantic

Pydantic is a Python-based data validation and settings management package. It
will validate the input data type based on type annotations. By implementing
Pydantic, it can ensure the metadata retrieved from APIs fulfills expected
formats and structures. It provides benefits to improve the accuracy and

reliability of the citation data used in the converter.

3.4.6 DuckDB

DuckDB is an embedded analytical database system designed for online
analytical processing (OLAP). DuckDB offers various features, including the
rapid execution of SQL queries on large data sets, operating entirely within a
process without requiring a separate server, and providing fast data
transformation and aggregation. Additionally, DuckDB also helps manage and
analyse data directly from local storage or memory, making it an ideal tool for

data scientists and developers for exploratory data analysis.

3.4.7 HTML (HyperText Markup Language)

HTML (Hypertext Markup Language) is a standard markup language employed
for the structuring of web content. The definition encompasses elements that
serve as foundational components of web pages, including headings, paragraphs,
forms, and buttons. In this project, HTML was employed to generate the input
fields, dropdown menus, and display spaces for citation. The primary function
of this process is to ensure that the user interface is well-organised, easily

accessible, and semantically correct.

25

3.4.8 Cascading Style Sheets (CSS)

Cascading Style Sheets (CSS) are a language that is used to control the
appearance and layout of HTML elements. In this project, it was employed to
style the web interface, thereby enhancing both the visual appearance and the
user experience. CSS is a set of style rules that allow for the flexible
modification of visual elements on a webpage, including colors, fonts, margins,
and padding. These rules can be applied to various screen sizes, ensuring that
the webpage adapts accordingly, a process referred to as responsive design. The
project is rendered with a clean, modern, and professional appearance that

enhances usability by utilizing CSS.

3.49 JavaScript

JavaScript is a high-level programming language that facilitates the construction
of dynamic and interactive web pages. In this project, the JavaScript
programming language employs the Fetch API to facilitate asynchronous
communication with the backend server. The system is designed to validate user
input, initiate requests to the FastAPI backend, and subsequently update the
page with the generated citations. The employment of JavaScript facilitates a
seamless and responsive user experience, obviating the necessity for page
reloads. This is of paramount importance to the real-time interaction and

functionality of the application.

3.4.10 Git

Git is a version control system that can be used to manage source code changes.
Git offers various features, such as tracking modifications, maintaining the
history of the development process, and collaborating or sharing with others on
GitHub. Additionally, Git helps to manage different versions of the project, and

users can see the difference between versions using the rollback function.

3.4.11 Digital Ocean

Digital Ocean is a cloud infrastructure provider that provides scalable
computing platforms and services. DigitalOcean provides a variety of features,
including virtual private servers (Droplets), managed databases, Kubernetes

clusters, and scalable storage. It also simplifies cloud computing for developers

26

by providing a user-friendly control panel, thorough documentation, and a
predictable pricing scheme, allowing for quick web application development

and management.

3.4.12 DuckDNS

DuckDNS is a free dynamic DNS service that allows you to assign a fixed
domain name to a dynamic or changeable IP address. DuckDNS provides
several features, such as a simple setup process, automatic IP address updates
using an easy HTTP API, and support for multiple domain names. DuckDNS
also allows users to operate personal servers, websites, or remote access tools
from their home network without incurring the cost of a static IP address from

their internet provider.

3.5 Project Plan

3.5.1 Work Breakdown Structure (WBS)
1.0 Initial Planning
1.1 Project Planning
1.1.1 Define Project Problem Statement
1.1.2 Define Project Aims and Objectives
1.1.3 Define Project Scope and Limitations
1.2 Literature Review
1.2.1 Comparison of Existing Converter Tools
1.2.2 Define DOI and ISBN Metadata Extraction
1.2.3 Define Citation Formatting Rules
2.0 Methodology and Work Plan
2.1 Define Requirements
2.1.1 Define the hardware requirements of the system
2.1.2 Define the software requirements of the system
2.2 Define the methodology for software development
2.2.1 Develop Work Plan
2.2.2 Define Development Tools
3.0 System Development
3.1 Develop Python on VS Code

27

3.1.1 Develop FastAPI
3.1.2 Develop Frontend using HTML, CSS, JavaScript
3.2 Adding features for the application
3.3 Improve the User-Interface (UI) and system
4.0 Testing Phase
4.1 Preparation for Test Case
4.1.1 Test Case for Valid Input
4.1.2 Test Case for Invalid Input
4.1.3 Test Case for Internet
4.1.4 Test Case for Frontend Function
4.2 Test with PyTest
4.3 Record and summarize results
5.0 Closure
5.1 Conclusion
5.2 Define Problem Encountered
5.3 Define Limitations for the Project

5.4 Define Recommendations and Future Work

3.5.2 Gantt Chart
=SS —

24500 A" 2 Bl by
SoDso EndDal Dusaon(fays) WK1 WK2 WK3 WKA WK WKG WKT WKB WKS WK1O WK1l WK1 WKI3 WK1 WKIS WKIE WKY WK1B WK1 WK20 WKZ1 WK2 WK23 WK2 WK WKZ WK2I WK2 WK2S WK% WK31
s W %
s s %

52 Deine Recormendatonsan Fre Work o5 1295

Figure 3.2: Gantt Chart

3.6 Summary

This chapter determines the hardware and software requirements and the
software development methodology used in the project. This project used a
modern framework, FastAPI, to build RESTful APIs with Python, Pydantic and
MyPy to validate the data. The system is being developed to be scalable, reliable,

28

and efficient. The iterative methodology was used to ensure the development

process was step-by-step and remained adaptive throughout its lifecycle.

29

CHAPTER 4

PROJECT SPECIFICATIONS

4.1 Introduction

The project specification provides a comprehensive set of instructions detailing
the objectives of the DOI and ISBN citation converter system and the actions
required to achieve its objectives. The purpose of specifications is to define a
clear scope, set quantifiable expectations, and offer a solid foundation for the
design, development, and testing phases. The specification guarantees that both
functional and non-functional requirements are explicitly established, thus
avoiding ambiguity and allowing for systematic evaluation of whether the
system meets its objectives. By defining these needs, the project may be
developed in an organised manner while remaining closely linked with the
expectations of its end customers. This chapter also delineates the system's
limitations, the prototype that will be produced, and the constraints of the system

in its present implementation.

4.2 End Users
The end users of this project are primarily individuals engaged in academic and

research activities. These include:

- University students who are regularly engaged in the preparation of
assignments, projects, and theses should employ correctly formatted
references to circumvent the occurrence of plagiarism and to ensure the

maintenance of academic integrity.

- In academic writing, researchers are expected to acknowledge a range

of sources when producing articles for journals or conference papers.

- Educators who guide students through the process of research writing
require reliable citation tools to facilitate effective demonstration and

academic support.

30

Consequently, the system has been developed with a focus on usability,
minimising the complexity of citation formatting while still enabling the

management of missing or inconsistent metadata.

4.3 Requirement Specification
The functional requirements define the system’s needs, and the non-functional

requirements define system qualities, performance, and constraints.

4.3.1 Functional Requirements

The functional requirements specify the features and behaviours that the system
must provide. These include the ability to accept DOI or ISBN as input, retrieve
metadata from external APIs, such as CrossRef and Open Library, and generate
citations in APA, Harvard, and IEEE forms. The system allows users to
download or copy citations and upload them in bulk via .txt files. Another
important functional requirement is metadata caching in DuckDB, which

ensures that repeated requests are delivered effectively and reduces API calls.

Table 4.1: Functional Requirements

ID Functional Requirement

FROO1 The system shall allow users to input a DOI and retrieve
metadata from the CrossRef API.

FR002 The system shall allow users to input an ISBN and retrieve
metadata from the Open Library API.

FRO003 The system shall format metadata into APA style according to
the latest APA referencing guidelines.

FRO004 The system shall format metadata into Harvard style according

to standard Harvard referencing rules.

FRO05 The system shall format metadata into IEEE style according to

IEEE referencing rules.

FRO06 The system shall store generated citations in a DuckDB database

for future retrieval and reuse.

FROO07 The system shall validate user inputs and return error messages

for invalid DOI/ISBN values.

31

FROOS8 The system shall provide a download or copy function, allowing
users to incorporate the citation into their documents.

FRO09 The system shall provide a basic user interface for inputting
DOISs/ISBNS, viewing results, and downloading citations.

FRO10 The system shall allow exporting citations in plain text format.

FRO11 The system shall allow exporting citations to BibTeX format.

FRO12 The system shall provide a clear form button to let users clear
the input.

FRO13 The system shall provide a simple FAQ section for users.

4.3.2 Non-Functional Requirements

Non-functional requirements describe system qualities such as performance,

reliability, scalability, usability, and security.

Table 4.2: Non-Functional Requirements

ID

Non-Functional Requirement Category Priority

NFRO01

The system shall return results | Performance High
within 3-5 seconds of DOI/ISBN

input.

NFR002

The system shall have a clean and | Usability High
user-friendly interface that requires

minimal training.

NFRO003

The system shall generate citations | Reliability High
with at least 95% accuracy

according to citation guidelines.

NFR004

The system shall be able to handle | Scalability Medium
simultaneous requests without
significant performance

degradation.

NFRO005

The system shall support the | Scalability Medium

addition of new citation styles with

minimal changes in code.

32

NFRO006 | The system shall ensure that data | Security High
retrieved from APIs and stored in
the database 1is secure and
protected.

NFRO07 | The system shall provide error | Reliability High

messages and fallback options

when API services are unavailable.

NFROO8 | The system shall maintain | Portability High
compatibility with modern
browsers (Chrome, Edge, Firefox).

NFRO09 | The system shall be documented | Maintainability | High

and version-controlled with GitHub

for future maintainability.

NFRO010 | The system shall comply with | Compliance High
academic citation guidelines and be
easily extendable to support future
updates in APA/Harvard/IEEE

style formats.

4.4 Prototype

The prototype developed for this project exemplifies the capacity for automating
citation formatting with DOI and ISBN identifiers. The prototype includes the
following key features: DOI/ISBN input, API metadata retrieval, citation
formatting in APA/Harvard/IEEE style, and the FAQs section. The prototype is
equipped with a rudimentary graphical user interface, facilitating interaction
with the device. Despite its current functional limitations, the prototype serves
as a robust foundation for future development, encompassing the capacity to
export citations in various formats, enhanced search functionalities, and support

for offline utilisation.

4.5 Summary
In summary, this chapter has outlined the functional and non-functional
requirements that serve as the foundation for the DOI and ISBN citation

converter system. The system's functionality is intentionally restricted to DOI

33

and ISBN inputs, the generation of citations in APA, Harvard, and IEEE styles,
and the retrieval of metadata via APIs such as CrossRef and Open Library. The
specification of these standards enables the structured development and
measurement of the system, thereby ensuring that the end product satisfies user

expectations while remaining within the project's schedule.

34

CHAPTER 5

SYSTEM DESIGN

51 Introduction

System design serves as the bridge between the abstract requirements of the
system and its concrete implementation. It is imperative to establish a design
that defines the architecture, data flow, storage models, and operational
procedures before writing code. The design of this citation converter ensures
that it can meet functional requirements, such as metadata retrieval and
formatting, and non-functional requirements, including usability, reliability, and
performance. An inadequately designed system is likely to exhibit inefficiencies,
data discrepancies, and issues sustaining or extending features in the future.
Conversely, a meticulously formulated design facilitates modular development,
seamless integration of external APIs, and incremental enhancements through
Agile methodology. Moreover, communication is another critical component of
design. The provision of detailed descriptions and illustrations is instrumental
in facilitating comprehension among stakeholders who do not possess a
background in programming. These materials enable these individuals to grasp
the conceptual underpinnings of the system. In this chapter, the design is
described through system architecture to show the layered structure of the
system, a data flow diagram that illustrates how information moves through the
system, a database schema to capture the relationships between stored data, and
system flow designs to highlight decision-making processes within the backend.
These artifacts delineate the system's micro- and macro-level structures, and it
is important to note that they also function as a guide for testing in subsequent
phases. This is because test cases can be methodically developed because every

flow and component is documented.

5.2 System Architecture Design
The design of the proposed citation converter system incorporates a three-tier
architecture and integration with external metadata APIs. This architecture is a

well-established design pattern that separates concerns into distinct layers,

35

making the system scalable, maintainable, and robust. Each layer facilitates the
assurance that alterations made to a specific layer, such as database schema
modifications, do not disrupt other layers, including the user interface. This
architecture facilitates rapid reaction times and effective data retrieval by
utilising contemporary frameworks and asynchronous technologies, two
essential features for a citation creation system that communicates with external
services. At a high level, the system is divided into three main layers: the
presentation layer for the frontend, the application layer for the backend, and
the data layer for the database, while also maintaining a critical dependency on

external APIs, which are CrossRef and Open Library.

Usar Browser

HTMLICESUE

BACHEND

Pydaniic | DuckDB hitps

l L
EXTERMAL &F1

e hilbimiss

APAHavand|EEE + +

CrossRal Opan Library

Figure 5.1: System Architecture Design Diagram

1. Presentation Layer

The presentation layer is the entry point of the system where users interact
with the application. In this project, the frontend is developed using HTML,
CSS, and JavaScript, providing a simple yet effective user interface. Firstly,

it provides a single input that allows users to input the DOI or ISBN and also

36

an upload file system to upload the DOI file or ISBN file without inputting
the reference number one by one. The users can choose the citation format
they prefer from the style selector dropdown. After that, basic input checks
are implemented in JavaScript to prevent the submission of invalid
identifiers, and this can also help reduce unnecessary API calls to the
backend. Once the user submits the form, the front-end sends a POST
request to the backend’s /cite endpoint. The request payload contains two
fields: the identifier, which is a DOI or an ISBN, and the desired style. After
processing by the backend, the frontend receives a JSON response
containing the formatted citation string and supporting metadata. This is
displayed neatly to the user, with options such as copy-to-clipboard and
download as BibTeX. If an invalid DOI/ISBN is detected or the backend
returns an error, for example, an ISBN is unavailable, the frontend displays
a clear error message to guide the user. The design decision to make the
frontend lightweight has been shown to result in faster load times, reduced

complexity, and simpler integration with the backend REST APIL.

11. Application Layer

The backend is the system's primary processing component, which is
responsible for coordinating formatting, persistence, metadata retrieval, and
validation. This system utilises the FastAPI framework, a modern Python
framework known for its asynchronous capabilities, speed, and automatic
API documentation production, in its construction. The backend is deployed
using Uvicorn, an ASGI server designed to manage several concurrent
requests, is used to deploy the backend. The incoming requests are validated
against predefined Pydantic schemas to ensure that identifiers are properly
structured and that the citation style field only accepts valid values. On the
other side, the invalid requests are immediately rejected with a clear error
response, reducing unnecessary backend processing. If the requested
citation is not found in the cache, the backend makes an asynchronous API
call using httpx. For DOIs, the request is directed to CrossRef; for ISBNs,
the request goes to Open Library. This asynchronous function can handle

multiple lookups to be processed simultaneously to improve the system's

37

responsiveness under load, so the system can retrieve metadata as soon as
possible. Once metadata is retrieved, the backend applies the formatting
rules based on the chosen style, such as APA, Harvard, and IEEE style. The
engine will also ensure consistent and accurate formatting even when
metadata fields are optional or missing. Before making external API calls,
the backend first checks the local database for previously generated citations.
If found, the cached result is returned instantly; if not, the metadata is
fetched from the external API, formatted, and then stored in the cache for
future requests and reducing calls to external APIs. By combining validation,
caching, external integration, and formatting into a single backend service,
the system achieves a clean separation of logic, enabling easier debugging

and testing.

1. Data Layer

DuckDB is used as the system's primary database in the data layer. DuckDB
is an embedded analytical database designed to operate within the same
process as the application. It is a simple database system, as no separate
database server is needed; the database runs as part of the Python process,
reducing setup complexity and deployment overhead. The data is stored in
columnar format, which is efficient for analytical queries and supports fast
lookups. After calling the external API, the metadata will be stored in the
database to reduce call time and speed up the process. The system integrates
with two external APIs to source bibliographic metadata: CrossRef, which
provides metadata for DOIs, and Open Library, which provides metadata for
ISBNs. When metadata cannot be located locally in DuckDB, these APIs
are searched in real time. Even in the face of API volatility, the system
manages timeouts, retries, and structured JSON parsing to guarantee
seamless functioning. When metadata cannot be located locally in DuckDB,
these APIs are searched in real time. Even in the face of API volatility, the
system manages timeouts, retries, and structured JSON parsing to guarantee

seamless functioning.

38

5.3 Database Design

Citation metadata obtained from Open Library for references based on ISBNs
and Crossref for references based on DOIs are stored and managed by the
database for this project. The system's storage engine, DuckDB, is characterised
by its lightweight, integrated, and tailored architecture for analytical queries,
ensuring effectiveness and adaptability. The database's primary function is to
serve as a local metadata cache, thereby minimising the need for repetitive API
calls and facilitating expeditious offline lookups. The metadata records for both
Digital Object Identifier (DOI) and International Standard Book Number (ISBN)
citations are stored in the database's central table named metadata cache. Each
record is associated with a JSON object, which contains the raw metadata
response and is identified by a unique key (the DOI or ISBN value). This JSON
format allows flexibility because citation metadata often varies in structure
depending on the source. For example, Crossref metadata typically contains
nested fields such as authors, publisher, references, and issue details, while
Open Library metadata may emphasise ISBN, editions, and publication details.
The database has the capacity to support both approaches by storing the
response in JSON, thereby eliminating the necessity for frequent schema
modifications. The following ERD (Entity Relationship Diagram) illustrates the

conceptual design of the normalized schema.

Citations

Authors

PK | citation id

PK | author id

doi_isbn

1.* has 1.5 FK | citation_id
title >

given_name
year
family_name
type
affiliation

publisher

1=

1.5 ¢

References

PK | reference id

FK | citation_id
ref_doi_isbn
ref_title

ref_year

Figure 5.2: Entity Relationship Diagram for the databases

39

Table 5.1: Data dictionary
Column Type | Key Description
Name
Id/key String | Primary | DOI or ISBN. Example: 10.1016/S1874-
1029(15)30001-X.
metadata JSON | - Full raw metadata response from

Crossref/Open Library (authors, title,

year, publisher, references, etc.).

5.4 API Routes Design
FastAPI uses the Swagger API Documentation tool to create the design for

every route. The route will contain the information about the parameters used to

request and provide the response code and values.

54.1 DOI

Responses

Figure 5.3: The design of the DOI route.

Figure 5.4: The response code and body.

40

54.2 ISBN
—

Edit Value = Schema

*$780131101630",

Figure 5.5: The design of the ISBN route.

Responses

Ccurl

Request URL

htyy

Server response

Code Details.

200 Respense body

>. Prentice-Hall.”,

Responss headers

content-length: 146
contant-type: application/json
date: Thu,11 Sep 2025 16:33:18 GHT

Rasnnness

Figure 5.6: The response code and body.

54.3 Error return

Responses

-H 'accept: application,
-H "Content-Type: application/jsan’

-4
“idemtifier”

Server response
Code Details.
500 Error: Internal Server Error

Response body

Internal Ser

Response headers

Figure 5.7: The response code and body when error.

41

CHAPTER 6

SYSTEM IMPLEMENTATION

6.1 Introduction
The implementation phase of this project involved converting the designs
generated in Chapter 5 into a functional system. Several tools, programming
languages, and frameworks were selected carefully to ensure that the system can
satisfy both functional and non-functional requirements. The backend was built
with Python 3.10 because Python has a wide ecosystem of libraries and is highly
readable, which will make the system easier to maintain and extend in the future.
FastAPI, a modern Python framework built for rapid and effective API
development, was chosen as the web framework. FastAPI was selected due to
its proven capabilities for asynchronous programming, enabling the system to
process numerous requests concurrently. This feature was important because the
system relies heavily on real-time calls to external APIs such as CrossRef and
Open Library, which can occasionally result in latency. Asynchronous handling
allows the backend to continue processing incoming requests while waiting for
external API responses, resulting in greatly improved overall responsiveness.

The DuckDB database was used for the data layer because DuckDB is
distinct from conventional databases such as MySQL and PostgreSQL in that it
operates as an embedded, in-process database, whereas the latter run as separate
services. This decision reduced system complexity by removing the need for an
external database server. DuckDB is a single-file system, then optimised for
analytical queries, making it ideal for caching bibliographic metadata and
quickly retrieving previously retrieved results. This system uses DuckDB to
store identifiers (DOIs or ISBNs), associated metadata in JSON, and request
history. By caching this data, the number of repeated external API calls is
reduced, enhancing efficiency while also protecting against rate limitations from
the external metadata providers.

The front end of the website was built using HTMLS5, CSS3, and
JavaScript to provide a lightweight and accessible user interface. All major

browsers support these technologies, ensuring that users can access the system

42

without needing to install additional dependencies. The user interface features
text input areas for entering DOIs or ISBNs, options for uploading .txt files or
BibTeX files, and a dropdown menu for selecting citation styles. JavaScript
communicates with the backend through asynchronous fetch calls, which allow

the interface to remain responsive while waiting for results.

6.2 Backend Implementation

The backend implementation is in app.py, which defines the FastAPI
application and implements all of its main capabilities. The backend is the
system's central processing unit, which connects the user interface, database,
and external metadata suppliers. The FastAPI framework provides a robust
foundation for designing routes, managing requests, and returning structured
results in JSON format. Each route corresponds to a distinct system function,
ensuring the backend remains modular and extensible. The root endpoint (/) was
the first to be implemented, which serves the index.html file as the homepage.
This seamlessly integrates the frontend and backend, enabling users to access
the interface directly without needing a separate static file server, and also
provides the HTML page through FastAPI, which is an effective way for the

backend to ensure that the entire system can be deployed in a single package.

@app.get (/")

c def index():
return FileResponse(”index.html"™)

Figure 6.1: The route to call index.html

The most important endpoint is the /cite endpoint, which accepts a
JSON payload as described by the CitationRequest Pydantic model. This
payload comprises three essential fields: the identifier (either DOI or ISBN), the
identification type, and the chosen citation style. The backend then validates
this input through a series of steps. Firstly, it ensures that the citation style is
one of the supported ones, such as APA, Harvard, and IEEE styles. If an
unsupported style, such as "Chicago", is used, the system will instantly reject

the request with a 400 Bad Request response. Next, the backend validates the

43

identifier's validity. The system returns a 404 Not Found error for known invalid
identifiers such as "10.0000/invalid-doi" or "0000000000000." These validation
processes help to prevent unnecessary calls to external APIs and provide users

with instant feedback.

@app.post(” te", response model=CitationRe
cite(request: CitationRequest):

F request.style VALID STYLES:
raise HTTP on(status_code=400, detall="Uns

f request.type "isbn™ request.identifie
raise HTTP (status_code=404, detail

f request.type oi" request.identifier
raise HTTP

f request.type == "doi":
metadata = it fetch doi metadata(request.identifier)
citation, in_text = format_doi_citation(metadata, request.style)
elif request.type == "isbn":
metadata = await fetch_isbn_metadata(request.identifier)
citation, in text = format_isbn citation(metadata, request.style)
else:

raise HTTPException(status_code=40@, detail="Invalid identifier

return CitationRes (citation=citation, in_text=in_ text)

Figure 6.2: The cite endpoint for validation

If the input successfully passes validation, the backend determines the
type of identification and retrieves the metadata. For DOIs, the system calls the
CrossRef API, whereas for ISBN, it calls the Open Library API. These calls
are made asynchronously using httpx.AsyncClient, which ensures that the
server remains responsive even during periods of high demand. When metadata
is retrieved, the system sends it to the relevant formatting functions. The DOI
will be sent to the format _doi_citation function, where the ISBN will be sent to
the format isbn citation function. Then, the system produces the final
formatted reference and in-text citation for the users. These are returned to the
frontend as a CitationResponse, which is a structured JSON object that includes

both outputs.

44

format_doi_citation(metadata, style, ref index=1):

authors = metadata.get [n

title = metadata.get "

journal = metadata.get r-tit wn Journal™])[e]

volume = metadata.get(” '

issue = metadata.get(”

pages = metadata.get("

year = metadata.get("is " = H 1Ielre]

month = metadata.get(” d", {}). 1)[e]l[1]
doi = metadata.get(

a = format_authors(authors, style, ieee=(style == "IEEE"))

in_text = get_in_text citation(authors, year)
if style =
citation { {year}). {title}. {journal }« , {volume}({issue})
elif style
itation = ar}. {title}. {journal}</em journal] {volume}({issue}), pp. {pages}. htt
"[{ref_index}] {a}, \u2eic{title},\u201d {journal}, vol. {volume}, pp. {pages}, {month}. {year}. doi

citation = "Error: Un ed citation

return citation, in text

Figure 6.3: The format of a DOI citation.

format_isbn_citation(metadata, style, ref_index-=1):

authors = metadata.g

title = metadata.get

edition = metadata.get(

publisher = metadata

year = metadata.get(

place = metadata.get 1 N "Unknown Place") if metadata.get("publish

a = format_authors(authors, style, ieee=(style == "IEEE"))
in_text = get in text citation(authors, year)

if style =
itation "4 ar}). (ti . {publisher}."

elif style

edition

citation ar}. i < {edition_part} {place}: {publisher}.”
elif style

if edition el
\u2e1c{titl @1d{edition_part}, {place}: {publisher}, {year}."

return citation, in_text

Figure 6.4: The format of an ISBN citation.

Another feature is the /upload endpoint, which facilitates bulk citation
generation. Users have the option to upload a .txt file containing multiple DOIs
and ISBNs. The backend processes the file line by line, verifying the identifiers
to determine if they are a DOI or ISBN, retrieving metadata from cache or other
APIs, and generating citations. Each line of data is processed asynchronously,
resulting in substantially faster bulk handling than sequential methods. The
findings are returned as a collection of objects of the class "CitationResponse".
This feature is useful for researchers who need to generate multiple citations at

once.

45

@app.post (", oad”, response_model=List[CitationResponse
upload_file(file: UploadFi File(...), style: str = Form(...)):
if file.filename.endswith(". B
raise HTTPE ion(status_code=408, detail="0Only .txt files are supported.”)

content = await file.read()
lines = [line.strip() for line in content.decode().splitlines() if line.strip()]

process_line(line, index):
if line.startswith("10.") e line:

metadata = it fetch_doi_metadata(line)

citation, in_text = format_doi_citation(metadata, style, ref_ index=index)
elif line.isdigit():

metadata = await fetch isbn metadata(line)

citation, in_text = format_isbn_citation(metadata, style, ref_index=index)

nse(citation=f"Invalid identifier: {line}", in text="")
tation=citation, in_text=in_text)

line(line, i + 1) for i, line in enumerate(lines)]
o.gather(*tasks)

Figure 6.5: Upload file function

6.3 Data Validation

Data validation is a fundamental component of the system, ensuring that only
properly structured requests are processed. In the app.py file, two Pydantic
models are defined: CitationRequest and CitationResponse. The
CitationRequest model specifies three fields: firstly, an identifier field
containing the DOI or ISBN string; secondly, a type field indicating whether the
identifier is a "doi" or "isbn" string; and thirdly, a style field which is a string
representing the desired citation style. The FastAPI model automatically
validates incoming JSON payloads before they reach the business logic. For
instance, if a user submits a request that is missing the identifier field, FastAPI
will immediately reject the request with a 422 Unprocessable Entity error,
thereby specifying the absent field in the response. This eliminates the need for
manual validation code and reduces the likelihood of runtime errors caused by
malformed requests. The CitationResponse model defines the structure of
responses returned through the /cite and /upload endpoints. Each response must
comprise two fields, which include the citation with formatted reference and in-
text citation, which is the recommended in-text citation. By utilizing this
response model, the system ensures consistency in the output, irrespective of

the input or style that is selected.

46

In addition to Pydantic validation, type checking is supplemented by a
static Python type checker, MyPy. Backend functions are marked with type
hints, such as async def fetch doi_metadata(doi: str) -> dict:, which makes the
code more self-documenting and ensures correctness during development.
MyPy aims to analyse the codebase to ensure that routines produce the expected
values and that the arguments correspond to their declared types. This proactive
method of type checking improves code reliability and also helps identify
potential issues early in the development process to avoid huge bugs. This
layered approach to validation, which combines Pydantic runtime enforcement
and MyPy static analysis, ensures system robustness, error minimisation, and

clear error signals for users.

fetch doi metadata(doi: str) -> dict:

cached = await fetch_metadata from_cache(doi, "doi™)

Figure 6.6: MyPy check DOI type

fetch isbn metadata(isbn: str) -»> dict:

cached = await fetch metadata from cache(isbn, "isbn")

Figure 6.7: MyPy check ISBN type

6.4 Database Implementation

The system uses DuckDB as its persistence layer, which offers a lightweight
and embedded alternative to server-based databases. After initiation, the
backend establishes a connection to a database file (db/citations.db) to verify
the existence of the metadata cache table. The table under consideration
comprises three columns: firstly, an identifier, the DOI or ISBN string that
serves as the primary key; secondly, a type of input, either DOI or ISBN; and
thirdly, metadata, which is a JSON object containing bibliographic metadata.

Figure 6.8: Connect the DuckDB database

47

The database functions as a cache for metadata obtained from CrossRef
and Open Library. When a request is received, the backend first queries
DuckDB to check whether metadata for the given identifier has already been
saved, and this process is implemented by the function
fetch_metadata_from cache. If a record is found, the metadata is returned
immediately without calling the external API. If no record is found, the backend
performs an external API call to retrieve the metadata and stores it in the cache
using the store_metadata_in_cache function. This caching approach enhances
performance by reducing latency, particularly in cases of repetitive queries, and

prevents unnecessary calls to external APIs that may have usage limits.

)2
con.execute("SELECT ERE identifier = ? AND type = ?", (identifier, id type)).fetchone()
son.loads(result[6])

ef store metadata in_cache(identifier: str, id type: ct):
con.execute("INSERT OR REPLACE INT((2)", (identifier, id type, metadata))

Figure 6.9: Metadata fetchers with DuckDB cache

DuckDB’s columnar storage format makes it efficient for analytical
queries, though in this project, it primarily supports simple lookups and inserts.
The primary advantage of this approach is its simplicity: the database is
integrated into the application process, thereby eliminating the need for a
separate server. This design helps to reduce deployment complexity, making the

system portable and easy to run on any machine with Python installed.

6.5 Frontend Implementation

The frontend is implemented in index.html, serving as the user interface that
links users to the backend API. The layout of the website is simple and effective,
and is divided into two major sections. The left section is a help box that
explains DOI and ISBN identifiers, and the right section is the main input form
for generating citations. The initial form consists of three sections; first, there is
an input field for users to enter a DOI or ISBN. Next, there is a file upload option
for .txt files so users can process multiple references simultaneously. Thirdly, a
dropdown menu for users to select a citation style, such as APA, Harvard, and

IEEE styles. Finally, the form includes a button that, when selected, commences

48

the process of producing the citation. The results are presented in tabular form,
with two columns: the full formatted citation and the proposed in-text citation.
The functionality of the programme is further enhanced by the presence of
additional buttons located beneath the table. These buttons let users interact with
the system by performing some actions, such as copying citations to the
clipboard, downloading citations in .txt or .bib format, and clearing the form.

The bottom also features a Frequently Asked Questions section for users.

& DOI & ISBN Citation Generator 2

Generate accurate citations in APA, Harvard, or IEEE styles

© What are DOI & ISBN? # Generate Citations

&3 Enter DOI/ISBN:

.., 10.1108/5.771073 or 97

ISBN (International Standard Book Number) is 2 10 or 13-digit
number that uniquely identifies books and book-like products.

B Or Upload a List (.txt):

Choose file or drag and drop

Example DOTs:
10.1109/5.771073
10.1016/51874-1029(15)30001-X # Select Citation Style:
Example IsaNs: APA .
9781455728657 (13-digit)
0131101633 (10-digit) P e
i= Results
© How to Use Generated Citation In-text Citation

1. Enter a single DOI or ISBN

Download

a TXT v
Figure 6.10: The Website Interface

Frequently Asked Questions

What is the difference between DOI and ISBN?

‘

DOl is used primarily for journal articles and digital content, providing a persistent link online. ISBN is used for books and book-like
preducts, with each edition having its own ISBN.

‘

Why isn't my DOI/ISBN working?

Possible reasons: incorrect identifier entry, resource not in database, very recent publication, or older publication without DOI. Double-
check the identifier or create citation manually.

‘

What citation styles are supported?

We support APA, Harvard, and |EEE citation styles. These cover most academic formatting requirements.

Figure 6.11: The Frequently Asked Questions section

JavaScript is used in the system to manage user interactions. For
example, the handleGenerate() function is responsible for determining whether
the user has supplied a single identifier or has uploaded a file. For single inputs,

a POST request is sent to the /cite endpoint, while for file uploads, it sends a

49

multipart form to /upload. The results are dynamically inserted into the results
table, allowing for instant feedback. Other than that, the error messages, such as
"Invalid DOI or ISBN," are displayed in the table to ensure uniformity.
Cascading Style Sheets (CSS) are utilised to style the interface, thereby
endowing it with a contemporary design that incorporates clear typography,
rounded boxes, and responsive layouts. Although the website is simple, the

design ensures that the system is both user-friendly and accessible.

handleGenerate() {
dy = document.getElementById ("
citationB nnerHTML = "<t

fileInput = document.getElementById("
document.getElementById(

= document.getElementById(

if (fileInput.files.length > @)

isArray(data) ? data.map(d
td>${d.in_text}<

>${formatCitationHTML(data.citation) }</ »${data.in_text
ut t) {

startswith("10." inpu includes(”/")) type =
{9} 1$|~\d{13}%/.test(inputText)) type = "isbn";

>Invalid DOI or ISBN

Figure 6.12: The handleGenerate() function for validation

6.6 Integration with External APIs

The system's functionality is significantly dependent on its integration with
external metadata providers. For DOIs, the backend utilises the CrossRef API,
which returns metadata in JSON format. The fetch doi_metadata method is
responsible for generating the API URL from the DOI, sending an asynchronous
GET request, and parsing the message field of the JSON response. Metadata
fields such as authors, title, journal, volume, issue, pages, and DOI are extracted
and normalized before being formatted into citations. For ISBNs, the backend

calls the Open Library API. The function fetch isbn metadata queries the

50

endpoint using the ISBN and parses the response, and because of the lack of
standardisation inherent to Open Library responses, the function normalises the
data by ensuring the inclusion of fields such as authors, publisher, publish date,
and edition, even when replacement with placeholders such as "Unknown
Author" is necessary.

The first check in both functions is checking the DuckDB cache to see
whether metadata is already present to minimise external dependencies. If the
API request fails, like the identifier does not exist, the functions will throw an
HTTPException with a status code 404, to ensure the user receives a clear error
message. The retrieved metadata is then passed to formatting procedures such
as format doi_citation and format _isbn_citation, which generate references in
the chosen style. These functions are designed to handle differences between
styles, including author name formatting, ordering, and punctuation, thereby

ensuring that the output adheres to APA, Harvard, or IEEE rules.

fetch doi metadata(doi: str) -» dict:
cached = await fetch metadata from cache(doi, "doi")
if cached:
a

I e T IDLD
doi.strip()}

get(url)
if r.status_code != 200:
_code=484, detail="DOI not found™)
metadata = r.json()
store_metadata_in_cache(doi, "doi", metadata)
return metadata

bn", metadata)

Figure 6.14: Fetch ISBN metadata function

51

CHAPTER 7

SYSTEM TESTING

71 Introduction

Testing is one of the most critical phases in the software development life cycle,
as it ensures that the system functions as intended, fulfills user requirements,
and performs reliably under diverse conditions. A system that has not been
thoroughly tested cannot be trusted to operate in a real-world environment,
particularly when integrating with other services such as CrossRef and the Open
Library. The objective of the project is to validate both functional needs, for
example, the capacity to create citations in APA, Harvard, and IEEE formats,
and non-functional criteria, such as response time, robustness to incorrect inputs,
and error handling.

Testing also facilitates the identification of edge situations and
inconsistencies that may have been overlooked during the development process.
For example, metadata retrieved from other APIs might exhibit differences in
structure, and the system must be capable of managing missing fields such as
publisher names or page numbers. Moreover, invalid identifiers should not crash
the system but instead return meaningful error messages. The structured testing
facilitates a comprehensive evaluation of the system's resilience, correctness,
and usability.

This system conducts the testing using Pytest, a widely utilised Python
testing tool that functions seamlessly with FastAPI's TestClient. This facilitates
the execution of automated testing procedures for API endpoints, getting rid of
the necessity for requests to be routed through the front-end. In addition to
utilising the automated backend testing, the user interface was manually tested
to ensure usability and error handling. The combination of these tests provides
confidence in the system's functionality, including its capacity to manage both

expected and unexpected user behaviors.

7.2

52

Test Plan

The test plan was designed to cover the key functional and non-functional

aspects of the system. Automated test cases were written in test main.py, while

manual UI tests were carried out using the browser interface. The main

categories of tests are as follows:

1.

ii.

1il.

1v.

Input Validation
Test with valid DOIs and ISBNs to ensure that the system correctly
retrieves metadata and creates citations.
The system should be tested with invalid DOIs and ISBNs to ensure that
clear error messages with code, such as 404 or 422, are returned.
It is imperative to verify the absence of fields in the request payload to
ensure that Pydantic validation produces structured error responses.
Citation Output Correctness
Verify that the citation output matches the rules of APA, Harvard, and
IEEE formatting.
Ensure that both the full reference citation and the in-text citation are
included in responses.
Database Storage (DuckDB Caching)
When submitting the same DOI/ISBN several times, ensure that the
metadata is retrieved from DuckDB rather than the external API
following the first call.
Ensure that cached info is stored correctly in JSON format and can be
retrieved as needed.
User Interface Usability
Test the input form by inputting valid and incorrect identifiers.
Upload a.txt file containing multiple identifiers, then validate that bulk
citations are generated and displayed in the table.
Test UI controls, such as copy citation, download citation, and clear

form function, to ensure they perform as expected.

53

7.3 Test Case

Test cases provide a methodical method of determining if a system meets its
requirements and expectations. The goal is to guarantee that each functional unit
of the application performs as planned under both normal and extraordinary
conditions. In the case of this citation converter system, test cases were critical
not only for establishing that legitimate inputs produced correct citations, but
also for ensuring that faulty inputs and deployment conditions were handled
graciously. By developing structured test cases, the project was able to measure

accuracy, robustness, and reliability in a controlled and repeatable manner.

7.3.1 Backend Test Case

For valid input scenarios, the test cases demonstrated that the system correctly
retrieved metadata from CrossRef and Open Library and generated structured
citations in APA, Harvard, and IEEE styles. These tests confirmed that the
system's primary operation, converting identifiers into citations, worked
properly and reliably. Test cases ensured that the system did not crash or give
misleading results in circumstances of improper input, such as missing IDs,
malformed ISBNs, or non-existent DOIs. Instead, it delivered structured error
messages with corresponding HTTP codes. This demonstrated the system's

reliability and capacity to guide users when mistakes occurred.

Project Name: |DOI and ISBN Clration |Test Designed by: [Yen Pel Xuan
Converter

Module Name: _|Local Test [Test Designed date: £82025

Release Version: | 1.0 [Test Executed by: [Yen Pel Xuan
[Test Exeention date: 15/8/2025

Pre_condition | Input is vakd
Dependencies:

Test Priorify Medium |

Test Caseil [Test Title [Expected Resuc [Post_condition [Actual Result [Status [Notes

TC1 ‘Test Root Endpoint HTTP 200 0K Page loads suceess fully HTTP 200 0K Pass
. o "10.1016/51874-

TC2 ‘Test Cite DOI ety etation genermon for s " "type™: "doi". | ISON response with felds “citation” and “in_text”. [Valid formatted citation returned. |Correst citation + in-text shown | Pass
valid DOI in APA style.
Verify citation generation for a |- . N

TC3 Test Cite DOI t . |TSON response with Belds “citation’ and "in_text'. | Valid formatted citation returned. | Correct citation = in-text shown | Pass

o valid DOI in Harvard style. ¥ - text e it et text

TC4 Test Cite DOL JSON response with fields citation’ and 'in_text’. [Valid formatted citation retumed. |Correst citation + in-text shown | Pass

TCS Test Cite ISBN TSON response with fields “citation’ and 'in_text’. | Valid formatied citation returned. |Correct citation + in-text shown | Pass

TC6 Test Cite ISBN . |7SON response with fields “citation’ and “in_text’. |Valid formatted citation returned. [Correct citation + in-text shown | Pass

TCT Test Cite ISBN JSON response with fickds “citation’ and “in_text'. | Valid formatted citation reramed. | Correst citation + in-text shown | Pass

Figure 7.1: Test case for valid input

Figure 7.1 demonstrates the result of the valid input test cases for DOI

and ISBN. The figure shows that the system successfully retrieves metadata

54

from the CrossRef and Open Library APIs, formats the citations accurately in
APA, Harvard, and IEEE styles, and returns both in-text and full citations. This
confirms that the backend system handles valid inputs correctly and produces

reliable citation outputs.

‘Project Name: | DOI and ISBN Citation | Test Designed by: |Ven Pei Xuan
Converter
Module Name: _| Losal Test Test Designed date: /82025
Release Version: | L0 Test Executed by: [Ven Pel Xnan
Test d 15/812025
Pre_condition | Iuput is [nvalid |
Dependencies: |
Test Priority | Medium [|
Test Case Test Tithe [Expected Result M‘M“—‘Amlhh | Status [Notes
r 10.0000 imvalid-
TCl Test Cite DOI Verify system handles invalid DOL d doi, “style” HTTP 404 or 422 eror. | Envor response returned. [HTTP 404 | Pass | Clear error message shown
[T £ “00D0000000000". | |
TC2 Test Cire ISBN Verify system handles invalid ISBN input y i "uryic®: "apAw) | |[HTTP404ord22 cmor. |Enor response retumned. (HTTP 404 | Paas [lavalid ISBN handied properly
TCH Test Cite Missing Identifier | Verify system rejects requests without idenifier. | {"type™: "doi", "style™ "APA"} [HTTP 422 error (validation). |Ervor response retumed, [HTTP 422 | Pass |Validation ervor handled
G “10.1016/51674- 1 |
et Test Cite Unsupported Style | Verify system rejects unsupported sitation style. |1029(13)60024-5", “type®: “doi*, |HTTP 400 or 422 error. | Ervor response returned, [HTTP 400 | Pass [Unsupported style handled
“style”: "Chicago™}

Figure 7.2: Test case for invalid input

Figure 7.2 illustrates how the system responds to invalid DOI and
ISBN identifiers. When an invalid or missing identifier is entered, the backend
returns a proper error response, such as 404 or 422, without crashing or
producing an incorrect citation. This verifies the robustness of the input

validation and error-handling mechanisms in the backend API.

Finally, deployment-level test cases were run to ensure that the system
functioned properly when hosted on DigitalOcean rather than only in a local
development environment. These tests ensured that the deployed API endpoints
were internet accessible, returned the same accurate results as local tests, and

remained usable via the web interface.

Project Name: [DOT and ISEN Citation |Test Designed by: VenPeiXuan
Module Name: _|Cloud Test Test 8/8/2025
Release Version: |1.0 Test Execated by: [Yen Pei X

Test Execution date: | 15/8/2028

Pre-condition_|Input from internet

Test Priority |[Mediom

Test Caset [Test Title [Test Summary [Test Data [Expected Result

Fost-condition. [Actmal Result [Status Notes
Verity degloyed system's |
Tt Test Root Endpoint [root s HTTP 200 0K Page loads successtilly HTTP 200 0K Pass | Deplovment success
? tps:citationoomverter duckcns org ¢

(itentifier” 10101651874
Tcz [Test Cite DOI (Valid) [gen alid | 1029(13)60024-5","iyper. "o, | TSON response with Fields "citafion” and "in_fext’. |Valid formatted cifaticn refurmed. |Correct cifation = in-text shown | Pass |Maiches local test

style”: 'APA'}

M| pidentifier 9780131101630, -

TC2 Test Cite ISBN (Valid) alic _[h'z”‘:‘;': ri:" [l::t(, o JSON response with fields “citaion” and "in_text |Valid formatted citation refursed. |Correct citation = in-text shown | Pass | Matches local test

Figure 7.3: Test case for Internet
Figure 7.3 shows the results of testing the deployed application hosted
on DigitalOcean. It demonstrates that both the root endpoint and the /cite

endpoint work correctly in the live environment, retrieving metadata and

55

generating citations with the same accuracy as in local testing. This confirms

that the deployment is stable and functions properly over the internet.

7.3.2 Frontend Test Case

In addition to backend test cases, additional user interface (UI) test cases were
created to ensure that the citation generator's web-based front end functions
properly and delivers a seamless user experience. These test cases focused on
validating the interface's primary interactive components: the upload and
download functions, the copy citation button, and the clear form button. The
upload function was tested with .txt files containing both valid and invalid IDs.
The system successfully parsed valid DOIs and ISBNs line by line, generating
citations in the desired manner and displaying them in the output table. Invalid
lines were also handled graciously, with the system displaying relevant error
warnings rather than halting the entire operation.

The download function was tested by generating citations and
exporting them in .txt and .bib formats. The .txt format created clear, plain-text
citations suited for general use, but the .bib format generated BibTeX-
compatible references that could be loaded straight into reference management
software. Both file types were successfully downloaded, had valid citation
entries, and were free of corruption. The copy citation button was checked to
ensure that all generated citations could be copied to the clipboard with only one
click. The test demonstrated that the citations were properly sent in structured
form, allowing users to paste them immediately into their documents.

The clear form button was tested by first producing citations and then
pressing the button to reset the input field and citation table. The test confirmed
that all entries were cleared, and the system was restored to its original condition
without refreshing the browser page, and rapidly initiated a fresh session. These
Ul test cases supplement the backend tests by ensuring that the entire system—
from identifier input to citation production, export, and reset—functions

consistently and quickly.

56

Project Name: [DOI and ISBN Citation [Teet Designed by: |\'mrdxnu
=

Module ¥z rontend Test T | T
Release Version: |11 Test Execured by: __[Ven Pei Xuan
i7 1582005

Test Prioriey

Te Caeh

Figure 7.4: Test Case for Frontend
Figure 7.4 displays the frontend testing of the citation converter interface. The
figure shows that all user interactions, such as entering identifiers, uploading
files, downloading results, and copying citations, operate smoothly without
errors. The test verifies that the user interface components integrate effectively

with the backend API to deliver a seamless experience.

7.4 Test Code

The testing phase showed that the system is functionally correct and stable in
all scenarios. The pytest framework was used to create and run 14 automated
test cases, all of which passed successfully in 3.43 seconds. The test suite
consisted of three key sections: valid input tests, invalid input tests, and
deployment-level tests. For valid inputs, the system accurately processed both
DOI and ISBN IDs and generated citations in APA, Harvard, and IEEE formats.
This showed that the citation formatting criteria were followed consistently and
that the system supported a variety of academic standards.

Invalid input scenarios were handled as planned, with the system
returning structured error messages and appropriate HTTP codes 404 or 422 to
ensure robustness against wrong or missing user inputs. The deployment-level
tests, which visited the system via its live DigitalOcean URL, confirmed that
the application performed identically in the production environment,
demonstrating the reliability of API integration and the stability of the deployed
service. The fact that all 14 tests completed successfully in 3.43 seconds
demonstrates the implementation's efficiency, with no notable performance
bottlenecks identified. Overall, the findings show that the system meets its
functional requirements, is resilient to edge cases, and can perform consistently

in a real-world setting.

57

st

== test session starts ====
Python 3.13.3, pytest-8.4.1, pluggy-1.6.0
: C:\Users\60111\Desktop\FYP
plugins: anyio-4.8.0

collected 14 items

test main.py

Figure 7.5: Test Result

Figure 7.5 presents the summary of all automated and manual test cases
executed. It indicates that all 14 tests have been collected and passed
successfully in 3.43 seconds, showing that the system performs efficiently and
consistently. The overall result confirms that both the backend and frontend

meet functional and performance expectations.

Table 7.1: Table of Summary of Test Cases

Test Test Type | Description | Expected Actual Status
ID Result Result
TCO1 | Backend | Test root | Homepage 200 OK | Passed
endpoint returns 200 OK | returned
TC02 | Backend | Valid DOlin | Citation Citation Passed
APA generated accurate
correctly
TCO03 | Backend | Valid DOlin | Citation Citation Passed
Harvard generated accurate
correctly
TC04 | Backend | Valid DOIin | Citation Citation Passed
IEEE generated accurate
correctly
TCO05 | Backend | Valid ISBN | Citation Citation Passed
in APA generated accurate
correctly
TCO06 | Backend | Valid ISBN | Citation Citation Passed
in Harvard | generated accurate
correctly

58

TCO07 | Backend | Valid ISBN | Citation Citation Passed

in I[EEE generated accurate
correctly

TCO8 | Backend | Invalid DOI | Error handled | 404/422 Passed
identifier gracefully response

TC09 | Backend | Invalid Error handled | 404/422 Passed
ISBN gracefully response
identifier

TC10 | Backend | Missing System returns | Validation | Passed
identifier 422 triggered

TC11 | Backend | Unsupported | 400/422 error | Error Passed
style handled

TC12 | Internet Deployed 200 OK | 200 OK | Passed
root response returned
endpoint

TC13 | Internet Deployed Citation Citation Passed
DOI test generated accurate

remotely

TC14 | Frontend | Ul wupload, | All buttons | Functions | Passed
download, work correctly | validated
copy, clear

7.5 Discussion

The testing phase confirmed that the citation generation system functions

correctly and reliably in a range of scenarios. Automated backend testing with

Pytest demonstrated that the API endpoints respond appropriately to both valid

and invalid queries. Valid DOI and ISBN inputs produced citations and in-text

references in APA and Harvard styles that were consistently styled correctly.

An additional IEEE formatting test confirmed that the criteria for formatting

author names, titles, and volume/issue numbers were correctly applied. Invalid

identifiers, such as erroneous DOIs or placeholder ISBNs, resulted in structured

error responses with the relevant HTTP status codes (404 or 422).

59

Furthermore, missing fields in the request payload triggered Pydantic
validation, demonstrating that the backend maintains strict input integrity.
Database caching was also tested by repeatedly submitting the identical
DOI/ISBN. The initial call initiated a fetch from the external API, while
successive requests collected the stored metadata from DuckDB. This caching
reduced the number of external API requests, increasing efficiency and
demonstrating the system's capacity to optimise performance with repeated use.
The DuckDB entries were validated to be saved in JSON format, allowing for

simple retrieval for subsequent formatting processes.

60

CHAPTER 8

CONCLUSION AND RECOMMENDATIONS

8.1 Conclusion

The project has successfully achieved its primary goal of developing a fully
functional and reliable automatic citation converter system that is capable of
processing both DOI and ISBN inputs. The system integrates seamlessly with
the CrossRef API for journal articles and the Open Library API for books, to
retrieve accurate metadata and convert it into citations that follow academic
standards. The inclusion of three frequently used citation styles, APA, Harvard,
and IEEE, guarantees that users are presented with the most relevant referencing
forms for higher education and research. Also, DuckDB's effective
implementation as a lightweight and embedded database enabled efficient
metadata caching, resulting in reduced API calls and increased system
responsiveness to repeated requests.

Aside from functionality, the system provided a clean and intuitive user
interface that allows users to manually enter individual identifiers or upload
bulk lists for batch processing. Furthermore, some additional features were
implemented, such as the ability to copy citations, download them in various
formats, and view clear findings, improving usability and efficiency.
Furthermore, FastAPI was implemented because it supplied a modern, high-
performance backend architecture, and Pydantic ensured stringent input
validation and error handling. The system's reliability was further validated by
automated testing with Pytest, which demonstrated its resilience and accuracy
across many circumstances.

In conclusion, the project demonstrates the high degree of alignment
between the design goals, implementation results, and testing outcomes. It helps
solve a real-world academic problem by reducing the workload for students and
researchers, improving citation accuracy, and streamlining the reference
management process. Despite its limitations, the project provides a solid
foundation that could eventually be expanded into a comprehensive academic

citation platform.

61

8.2 Problems Encountered

Throughout the development and testing phases, a series of obstacles were
encountered, posing significant challenges to the overall progress of the project.
A significant challenge encountered pertained to the inconsistency of metadata
from external APIs. While CrossRef and Open Library generally provided
comprehensive information, there were many cases where essential details such
as publisher names, author lists, or publication years were missing or formatted
irregularly. This created challenges in generating properly formatted citations.
To resolve this, placeholder defaults such as “Unknown Author” or “Unknown
Year” were applied, ensuring that the citation output remained complete and
usable.

Another concern was the dependency on external APIs, which
periodically experienced outages or delayed response times. These outages
disrupted the development and testing processes, highlighting the risk of relying
on third-party services. The current solution includes storing metadata locally
in DuckDB, so the repeated requests for the same identifier can be delivered
quickly without re-querying the APIs, reducing delays and service interruptions.

Another problem encountered was the intricacy of citation formatting,
particularly in the IEEE style. Unlike APA and Harvard styles, the IEEE has
strict guidelines regarding author initials, punctuation, and order. To ensure
compliance, these rules had to be implemented through careful coding and
repeated testing. Even slight formatting errors could compromise academic
legitimacy, so extra care was needed to ensure compliance with the standard.

During the deployment to the DigitalOcean platform, a novel challenge
manifested in the form of configuration issues pertaining to the domain and the
SSL certificate. These issues engendered delays in the process of rendering the
server accessible to the public. Furthermore, an attempt was made to arrange the
deployment to operate with four worker processes for scalability. However, it
was revealed that DuckDB does not support concurrent access across multiple
workers. DuckDB has been developed as an embedded, single-process database;
as a result, it is incapable of accommodating concurrent reads and writes from
multiple Uvicorn workers. Consequently, the application was incapable of

scaling to multiple workers according to standard methods and was constrained

62

to functioning with a single worker process. While this approach ensured
reliability, it also imposed limitations on the system's throughput and

concurrency, resulting in suboptimal scalability.

8.3 Limitations

Although the system offers a wide range of features, it has some limitations.
One of the primary limitations of the system is the restricted number of
supported citation styles. The system only supports APA, Harvard, and IEEE
currently. While these are popular in academics, other styles such as Chicago,
MLA, and Vancouver are also frequently required. The lack of these styles may
limit the system's popularity among users who require more diverse formatting
options.

Another limitation is the system's reliance on external APIs, such as
CrossRef for DOIs and Open Library for ISBNs. Although these APIs provide
huge and authoritative datasets, the system is vulnerable to downtime or data
quality concerns caused by these services. If the API is unavailable, the citation
generator will be unable to retrieve new metadata, reducing reliability for end
users.

Thirdly, the system's reliance on an internet connection, because all
information retrieval is based on online API calls, users cannot create new
citations when offline. This reliance restricts usability in locations with weak
connectivity or for researchers who require offline capabilities when traveling
or conducting fieldwork.

Finally, the system's scalability is limited by the use of DuckDB.
DuckDB is lightweight and efficient for caching, but its single-process nature
prohibits it from growing horizontally to accommodate additional workers. This
limitation limits the number of concurrent users that the system can support in
its current configuration, making it unsuitable for large-scale institutional

implementation.

63

8.4 Recommendations/Future Work
The system can be improved to become a better system and enrich its functions.
Therefore, this chapter will provide some recommendations for the future to

improve the system.

8.4.1 Expansion of Supported Citation Styles

One of the most important future enhancements for the system is the inclusion
of additional citation styles beyond APA, Harvard, and IEEE. While these three
formats cater to a wide academic readership, they do not meet the needs of
specialties that rely significantly on alternative styles such as Chicago,
Vancouver, and MLA. For example, the Chicago style is frequently used in the
humanities, whereas Vancouver is the standard for medical and scientific
articles. By extending the system to include additional formats, the tool will

become more adaptable and appealing to a larger academic community.

8.4.2 Offline Caching and Local Metadata Storage

Another future development is the introduction of offline caching mechanisms.
Currently, the system requires a constant internet connection to fetch metadata
from CrossRef or Open Library, which causes limitations. Implementing offline
caching would allow metadata to be saved locally after the initial retrieval,
allowing users to generate citations even without internet connectivity. This
might be accomplished by extending DuckDB to include an exportable and
shareable cache file that can be moved between devices. Users could also select
to pre-download metadata for a batch of identifiers, ensuring continuous citation
production while offline. This offline functionality would further increase API
robustness by allowing users to get previously cached results without relying on

external services.

8.4.3 Integration with Browser Plugins and Word Processors

For optimal usage, the system can be expanded to include browser plugins and
word-processor add-ins. Many students and researchers create their work
directly in apps like Microsoft Word, Google Docs, and LaTeX editors.
Frequently jumping between the citation generator and a writing platform might

be distracting and inefficient. Users might generate citations in real time while

64

writing by embedding the system as a plugin in word processors, integrating
correctly formatted references straight into their documents. Similarly, browser
extensions could enable users to generate citations while perusing publications

online, eliminating the need for manual copying of DOIs or ISBNs.

8.4.4 Migration from DuckDB to SQLite for Improved Concurrency

Finally, a recommendation for future work is to replace DuckDB with SQLite
as the system’s local database engine. Although DuckDB performed well during
development for caching metadata, it does not enable real concurrent writes
across several worker processes, as demonstrated during deployment attempts
on DigitalOcean. The system could address this problem by migrating to SQLite,
which supports multi-process concurrency more effectively. It supports safe
concurrent reads and, with correct configuration, controlled write access,
making it more suited to web applications deployed with numerous workers.
SQLite is widely supported and has built-in transactional stability, so it ensures
data consistency while allowing for horizontal growth among worker processes.
This migration will preserve the simplicity of a file-based database while
eliminating the bottleneck created by DuckDB, thereby increasing the system's

scalability, dependability, and responsiveness in production settings.

65

REFERENCES

American Psychological Association (2020) Publication Manual Of The
American Psychological Association. Tth ed. S.L.: American
Psychological Association.

Best Edit & Proof (2021). Importance of Citations in Academic Writing.
Available at: https://besteditproof.com/en/academy/importance-of-
citations-in-academic-writing (Accessed: 10 April 2025).

Django (2025) Meet Django. Available at: https://www.djangoproject.com/
(Accessed: 10 April 2025).

EndNote (2025) EndNote Desktop Comparison Chart. Available at:
https://endnote.com/product-details/compare-current-versions/
(Accessed: 10 April 2025).

FastAPI (no date) FastAPI. Available at: https://fastapi.tiangolo.com (Accessed:
10 April 2025).

Flask (2010) Flask. Available at: https://flask.palletsprojects.com/en/stable/
(Accessed: 10 April 2025).

Hunter, J. (2006) The importance of citation. Available at:
https://web.grinnell.edu/Dean/Tutorial/ EUS/IC.pdf (Accessed: 10
April 2025).

Indeed (2025) What is a Software Process Model? Available
at: https://uk.indeed.com/career-advice/career-development/what-is-
iterative-methodology (Accessed: 10 April 2025).

Keployio (2024) Mastering Python Test Coverage: Tools, Tips, and Best
Practices. Available at: https://medium.com/@keployio/mastering-
python-test-coverage-tools-tips-and-best-practices-11daf699d79b
(Accessed: 10 April 2025).

Mendey (2025) Mendeley Cite. Available at:
https://www.mendeley.com/reference-management/mendeley-cite
(Accessed: 10 April 2025).

Montana.edu (2020) Citation Help and Style Guide. Available at:
https://guides.lib.montana.edu/citation/overview (Accessed: 10 April
2025).

66

Rephrasely (2025) Using Citation Generators: Benefits and Limitations -
Rephrasely. Available at: https://rephrasely.com/blog/using-citation-
generators-benefits-limitations (Accessed: 10 April 2025).

Swagger (no date) Crossref REST API Available at:
https://api.crossref.org/swagger-ui/index.html (Accessed: 10 April
2025).

Tutorspoint (2024) Revealing 5 Important Benefits of Using Citation Tools.
Available at: https://www.tutorspoint.com/blog/revealing-5-
important-benefits-of-using-citation-tools (Accessed: 10 April 2025).

Universiti Tunku Abdul Rahman (2022) /[EEEReferenceGuide. Available at:
https://library.utar.edu.my/documents/Guides/IEEEReferenceGuide
12Aug2022.pdf (Accessed: 10 April 2025).

University of Reading Library (2019) Which referencing style should you use?.
Available at: https://www.youtube.com/watch?v=vFSbpoWzA 4&t
=2s (Accessed: 10 April 2025).

University of Washington (2025) Mendeley: Working in Groups. Available at:
https://guides.lib.uw.edu/hsl/mendeley/organize/groups (Accessed: 10
April 2025).

Visual Paradigm (2024) Available at: https://www.visual-
paradigm.com/guide/software-development-process/what-is-a-
software-process-model (Accessed: 10 April 2025).

Zotero (2025) Your personal research assistant.. Available at:
https://www.zotero.org/ (Accessed: 10 April 2025).

APPENDICES
Appendix A: Tables

Table 2.1: Tables of Tools Comparison

67

Tool Strengths Limitations

Zotero Free, open-source, supports | Limited free storage, lacks
9,000+ styles, browser | customer support
integration

Mendeley | MS Word integration, PDF | Limited free groups, privacy
annotation, and collaboration | concerns
tools

EndNote | Advanced management, cloud | Paid full version, limited free

sync, institutional support

features

Table 2.2: Table of differences between frameworks compared

Framework | Function Strengths Limitation

Django Build Comprehensive Heavy for small
complex features, projects,
website widely supported rigid structure,

Flask lightweight Simple and flexible, | Lacks built-in tools,
micro- easy to learn Required manual setup
framework extensions

FastAPI Modern, Asynchronous Newer ecosystem,
high- support, learning curve for
performance | automatic validation | async handling

with Pydantic
Table 4.1: Functional Requirements

ID Functional Requirement

FROO1 The system shall allow users to input a DOI and retrieve

metadata from the CrossRef API.

FRO002 The system shall allow users to input an ISBN and retrieve

metadata from the Open Library API.

68

FRO0O03 The system shall format metadata into APA style according to
the latest APA referencing guidelines.

FRO04 The system shall format metadata into Harvard style according
to standard Harvard referencing rules.

FRO05 The system shall format metadata into IEEE style according to
IEEE referencing rules.

FR0O06 The system shall store generated citations in a DuckDB database
for future retrieval and reuse.

FROO07 The system shall validate user inputs and return error messages
for invalid DOI/ISBN values.

FROO08 The system shall provide a download or copy function, allowing
users to incorporate the citation into their documents.

FRO09 The system shall provide a basic user interface for inputting
DOIs/ISBNS, viewing results, and downloading citations.

FRO10 The system shall allow exporting citations in plain text format.

FRO11 The system shall allow exporting citations to BibTeX format.

FRO12 The system shall provide a clear form button to let users clear
the input.

FRO13 The system shall provide a simple FAQ section for users.

Table 4.2: Non-Functional Requirements

ID Non-Functional Requirement Category Priority

NFRO001 The system shall return results | Performance High
within 3-5 seconds of DOI/ISBN
input.

NFR002 | The system shall have a clean and | Usability High
user-friendly interface that requires
minimal training.

NFRO03 | The system shall generate citations | Reliability High
with at least 95% accuracy
according to citation guidelines.

NFRO004 | The system shall be able to handle | Scalability Medium

simultaneous requests without

69

significant performance

degradation.

NFRO005

The system shall support the
addition of new citation styles with

minimal changes in code.

Scalability

Medium

NFRO006

The system shall ensure that data
retrieved from APIs and stored in
the database 1s secure and

protected.

Security

High

NFRO007

The system shall provide error
messages and fallback options

when API services are unavailable.

Reliability

High

NFRO008

The system shall maintain
compatibility with modern

browsers (Chrome, Edge, Firefox).

Portability

High

NFRO009

The system shall be documented
and version-controlled with GitHub

for future maintainability.

Maintainability

High

NFRO010

The system shall comply with
academic citation guidelines and be
easily extendable to support future
updates in APA/Harvard/IEEE

style formats.

Compliance

High

Table 5.1: Data dictionary

Column

Name

Type | Key Description

Id/key

String | Primary | DOI or ISBN. Example: 10.1016/S1874-
1029(15)30001-X.

metadata

JSON | - Full raw metadata

year, publisher, references, etc.).

response from

Crossref/Open Library (authors, title,

Table 7.1: Table of Summary of Test Cases

70

Test Test Type | Description | Expected Actual Status
ID Result Result
TCO1 | Backend | Test root | Homepage 200 OK | Passed
endpoint returns 200 OK | returned
TC02 | Backend | Valid DOl in | Citation Citation Passed
APA generated accurate
correctly
TC03 | Backend | Valid DOl in | Citation Citation Passed
Harvard generated accurate
correctly
TC04 | Backend | Valid DOlin | Citation Citation Passed
IEEE generated accurate
correctly
TCO05 | Backend | Valid ISBN | Citation Citation Passed
in APA generated accurate
correctly
TCO06 | Backend | Valid ISBN | Citation Citation Passed
in Harvard | generated accurate
correctly
TCO07 | Backend | Valid ISBN | Citation Citation Passed
in [EEE generated accurate
correctly
TCO08 | Backend | Invalid DOI | Error handled | 404/422 Passed
identifier gracefully response
TC09 | Backend | Invalid Error handled | 404/422 Passed
ISBN gracefully response
identifier
TC10 | Backend | Missing System returns | Validation | Passed
identifier 422 triggered
TC11 | Backend | Unsupported | 400/422 error | Error Passed
style handled

71

TC12 | Internet Deployed 200 OK | 200 OK | Passed
root response returned
endpoint

TC13 | Internet Deployed Citation Citation Passed
DOI test generated accurate

remotely

TC14 | Frontend | Ul wupload, | All buttons | Functions | Passed

download, work correctly | validated

copy, clear

72

Appendix B: Open Access to Image Rights

Visual e Paradigm What's New Features ¥ Tutorials Support Pricing RequestDemo VP Online @ ~
What is a Software Process Iterat've Model
Model?

An iterative life cycle model does not attempt to start with a full specification of requirements by first focusing
Types of Software Process Model on an initial, simplified set user features, which then progressively gains more complexity and a broader set of
features until the targeted system is complete. When adopting the iterative approach, the philosophy of

Waterfall Model incremental development will also often be used liberally and interchangeably.

V Model

In other words, the iterative approach begins by specifying and implementing just part of the software, which
Incremental model can then be reviewed and prioritized in order to identify further requirements. This iterative process is then
repeated by delivering a new version of the software for each iteration. In a light-weight iterative project the

Iterative Model
code may represent the major source of documentation of the system; however, in a critical iterative project a

RAD model formal software specification may also be required.
Spiral model Requirements Analysis & Design
Agile model
.) Planning Implementation
Managing Software Process with
Visual Paradigm -
£ Iterative
Project Manage Guide-Through Inifial planning Model
Just-in-Time PMBOK / Project Deployment
Management Process Map
Evaluation
Testing

Figure C-1: Reprinted with Permission from Copyright 2024 Visual Paradigm
to Reuse the What Is Iterative Methodology? (Visial Paradigm, 2024).

Image in Figure 3.1.

Requirements Analysis & Design

Planning Implementation
Iterative
l;:iliul planning Model
Deployment
Evaluation
Testing

Figure 2.1: What Is Iterative Methodology? (Visual Paradigm, 2024).
Reprinted with Permission from Copyright 2024 Visual Paradigm.

