

DEVELOPING AN APP FOR STREAMLINED

INVENTORY TRACKING WITH BARCODE

SCANNING AND LOAD PLANNING

OPTIMIZATION

TENG YAN XIN

UNIVERSITI TUNKU ABDUL RAHMAN

DEVELOPING AN APP FOR STREAMLINED INVENTORY

TRACKING WITH BARCODE SCANNING AND LOAD PLANNING

OPTIMIZATION

TENG YAN XIN

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Software

Engineering (Honours)

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2025

i

DECLARATION

I hereby declare that this project report is based on my original work except

for citations and quotations which have been duly acknowledged. I also

declare that it has not been previously and concurrently submitted for any

other degree or award at UTAR or other institutions.

Name : TENG YAN XIN

ID No. : 2106670

Date : 18 September 2025

ii

COPYRIGHT STATEMENT

© 2025, TENG YAN XIN. All right reserved.

This final year project report is submitted in partial fulfilment of the

requirements for the degree of Software Engineering at Universiti Tunku

Abdul Rahman (UTAR). This final year project report represents the work of

the author, except where due acknowledgement has been made in the text. No

part of this final year project report may be reproduced, stored, or transmitted

in any form or by any means, whether electronic, mechanical, photocopying,

recording, or otherwise, without the prior written permission of the author or

UTAR, in accordance with UTAR’s Intellectual Property Policy.

iii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor, Ms. Beh Hooi

Ching and my moderator, Dr Chia Kai Lin for their invaluable advice,

guidance and enormous patience throughout the development of the project.

Their continuous support and encouragement have been instrumental in

ensuring the successful completion of this work.

I am also sincerely thankful to my peers and friends for their

cooperation, assistance, and motivation during the course of this project. Their

support has helped me overcome challenges and remain focused.

Lastly, I wish to extend my heartfelt appreciation to my family for

their unconditional love, patience, and support. They have provided full

support and encouraged me whenever I faced any difficulty during the

project's development.

iv

ABSTRACT

Inventory management and load planning are important processes for

organizations that handle large volumes of goods. However, many small and

medium-sized enterprises (SMEs) still rely on manual record-keeping and

random cargo loading practices due to the high cost and complexity of existing

systems. These outdated practices often result in inaccurate stock records,

inefficient use of vehicle space, and delays in distribution caused by time-

consuming and unstructured load adjustments. To address these challenges,

this project developed a Streamlined Inventory Tracking Application that

integrates barcode scanning for fast and accurate stock management with an

optimized load planning module. The application was implemented using

React Native for mobile development and Firebase Firestore as the backend

database to enable real-time data synchronization, while a binary tree bin

packing algorithm was applied to generate efficient cargo loading

arrangements. The methodology combined throwaway prototyping and

incremental development, ensuring continuous refinement based on feedback

and iterative improvements. The system was tested for functionality, usability,

and performance, demonstrating improved stock accuracy, reduced manual

workload, and improved space utilization compared to traditional manual

methods. The results indicate that the proposed system is both affordable and

practical for SMEs, offering a user-friendly solution that enhances operational

efficiency. It is recommended that future improvements include focus on role-

based access control, advanced reporting, and support for irregular cargo

shapes to further increase usability and applicability.

Keywords: Inventory Management, Barcode Scanning, Load Planning, Binary

Tree Bin Packing Algorithm, Mobile Application Development.

Subject Area: T58.5–58.64 Information Technology

v

TABLE OF CONTENTS

DECLARATION i

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF TABLES x

LIST OF FIGURES xiii

LIST OF SYMBOLS / ABBREVIATIONS xix

LIST OF APPENDICES xxi

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Problem Statements 2

1.2.1 Inaccuracy and Inefficiency of Manual

Record-Keeping 2

1.2.2 Time-Consuming and Difficult

Adjustments in Manual Cargo Load

Planning 2

1.2.3 Underutilized Vehicle Capacity 3

1.3 Project Objectives 3

1.4 Proposed Solution 4

1.5 Proposed Approach 6

1.6 Scope and Limitation of the Project 8

1.6.1 Target End-Users 8

1.6.2 Feature Scope and Exclusions 9

1.6.3 Assumptions and Constraints of Cargo 9

1.6.4 Target Platform 10

1.6.5 Modules 10

vi

2 LITERATURE REVIEW 12

2.1 Introduction 12

2.2 Overview of Traditional Manual Inventory

Tracking Methods 12

2.3 Manual Load Planning Techniques 14

2.4 Review of Existing Load Planner Applications 15

2.4.1 Common Features of Existing Load

Planner Application 15

2.4.2 Advantages and Limitations of Existing

Load Planner Applications 18

2.4.3 Key criteria for comparison 23

2.5 Rules and Constraints 25

2.5.1 Cargo Placement Constraints and

Assumptions 25

2.5.2 Cargo Orientations 25

2.5.3 Empty Maximal Space (EMS) 26

2.5.4 Load and Weight Restrictions for Vehicles 28

2.6 Review of Load Planning Algorithms 29

2.6.1 Biased Random Key Genetic Algorithm 29

2.6.2 Binary Tree Bin Packing Algorithm 34

2.7 Summary 41

3 METHODOLOGY AND WORK PLAN 42

3.1 Introduction 42

3.2 Software Development Methodology 42

3.2.1 Throwaway prototyping 43

3.2.2 Incremental Process Model 46

3.3 Development Tools 48

3.3.1 Axure RP 48

3.3.2 Visual Studio Code 49

3.3.3 Android Studio 49

3.3.4 React Native 50

3.3.5 Firebase 50

3.3.6 react-native-camera 50

vii

3.4 Work Breakdown Structure (WBS) 51

3.5 Gantt Chart 57

3.5.1 Overview of Project Timeline 57

3.5.2 Planning & Initial Requirement Gathering 57

3.5.3 Prototype Development 58

3.5.4 Prototype Review and Get Feedback 58

3.5.5 Discard or Refine Prototype 58

3.5.6 Incremental Development 59

4 PROJECT INITIAL SPECIFICATION 62

4.1 Introduction 62

4.2 Fact Finding 62

4.2.1 Interview 62

4.2.2 Observation 64

4.2.3 Summary for Interview and Observation 65

4.3 Requirement Specification 66

4.3.1 Functional Requirements 66

4.3.2 Non-functional requirements 68

4.4 Use Case Modelling 68

4.4.1 Use Case Diagram 69

4.4.2 Use Case Description 70

4.5 Interface Flow Diagram 85

4.5.1 User Management Module 86

4.5.2 Inventory Tracking via Barcode Scanning

Module 86

4.5.3 Cargo Load Planning Module 87

4.6 Prototype Interface 87

4.6.1 User Management Module 87

4.6.2 Inventory Tracking via Barcode Scanning

Module 89

4.6.3 Load Planning Module 96

5 SYSTEM DESIGN 101

5.1 Introduction 101

viii

5.2 System Architecture Design 101

5.3 System Database Design 103

5.3.1 Entity Relationship Diagram 103

5.3.2 Collection Description Diagram 103

5.3.3 Data Dictionay 104

5.4 Activity Diagram 109

5.4.1 Register account Activity Diagram 109

5.4.2 Login account Activity Diagram 110

5.4.3 Scan item barcode Activity Diagram 111

5.4.4 Update stock quantity activity diagram 112

5.4.5 View inventory list activity diagram 113

5.4.6 Add new item activity diagram 114

5.4.7 Delete inventory items Activity diagram 115

5.4.8 Generate Load Plan Activity diagram 116

5.4.9 View the checklist Activity diagram 117

5.4.10 Generate PDF report Activity diagram 118

5.5 Algorithm Design 119

5.5.1 Algorithm Concept 119

5.5.2 Algorithm Flow 120

5.5.3 Pseudocode 122

5.5.4 Flowchart 124

5.5.5 Traceability Table of Flowchart,

Pseudocode and Implementation Code 126

5.6 Conclusion 130

6 SYSTEM IMPLEMENTATION 131

6.1 Introduction 131

6.2 Development Environment Setup 131

6.2.1 Hardware Requirements 131

6.2.2 Software Requirements 131

6.2.3 Configuration Setup 132

6.3 System Modules 134

6.3.1 User Management Module 134

ix

6.3.2 Inventory Tracking via Barcode Scanning

Module 138

6.3.3 Load Planning Module 146

7 SYSTEM TESTING 157

7.1 Introduction 157

7.2 Unit Testing 157

7.2.1 Unit Test Cases Listing 158

7.2.2 Unit Test Cases 159

7.3 Integration Test 187

7.4 User Acceptance Test (UAT) 190

7.5 System Usability Test (SUS) 203

8 CONCLUSION 207

8.1 Conclusion 207

8.2 Objective Achievements 208

8.3 Limitations and Recommendations of Future

Work 209

REFERENCES 211

APPENDICES 213

x

LIST OF TABLES

Table2. 1: Comparison of features between Existing Application. 23

Table2. 2: Summary of GVW limits in Malaysia. 29

Table2. 3: Dimension of Items to be Packed. 32

Table 4. 1: Summary for Interview and Observation 65

Table 4. 2: Functional Requirement of User Management Module. 66

Table 4. 3: Functional Requirement of Inventory Tracking Module. 67

Table 4. 4: Functional Requirement of Load Planning Module. 67

Table 4. 5: Non-Functional Requirement. 68

Table 4. 6: Use Case Description of Register account. 70

Table 4. 7: Use Case Description of Login account. 72

Table 4. 8: Use Case Description of Scan item barcode. 73

Table 4. 9: Use Case Description of Update stock quantity. 74

Table 4. 10: Use Case Description of View inventory list. 76

Table 4. 11: Use Case Description of Add new items. 78

Table 4. 12: Use Case Description of Delete inventory items. 79

Table 4. 13: Use Case Description of Generate Load Plan. 80

Table 4. 14: Use Case Description of View the checklist. 82

Table 4. 15: Use Case Description of Generate PDF report. 84

Table 5. 1: Collection Description Table. 103

Table 5. 2: Data Dictionary for products collection. 104

Table 5. 3: Data Dictionary for users collection. 105

Table 5. 4: Data Dictionary for containers collection. 106

Table 5. 5: Data Dictionary for cargoes collection. 107

Table 5. 6: Data Dictionary for loadPlans collection. 107

xi

Table 5. 7: Algorithm Flow. 120

Table 5. 8: Traceability Table of Flowchart, Pseudocode and

Implementation Code. 126

Table 7. 1: Summary of Unit Test Cases Listing. 158

Table 7. 2: Unit Test Case of Add New User. 159

Table 7. 3: Unit Test of Login account. 160

Table 7. 4: Unit Test Case of Logout. 161

Table 7. 5: Unit Test Case of Home Dashboard. 162

Table 7. 6: Unit Test Case of View Products List. 163

Table 7. 7: Unit Test Case of Add New Product. 165

Table 7. 8: Unit Test Case of View Product Detail. 166

Table 7. 9: Unit Test Case of Edit Product Info. 167

Table 7. 10: Unit Test Case of Stock Update Using Product In. 168

Table 7. 11: Unit Test Case of Stock Update using Product Out. 169

Table 7. 12: Unit Test Case of Delete Product. 171

Table 7. 13: Unit Test Case of Camera Permission and Preview. 171

Table 7. 14: Unit Test Case of Scan the QR code on inventory item. 172

Table 7. 15: Unit Test Case of Navigate from Load Plan home. 176

Table 7. 16: Unit Test Case of Container and cargo selection. 178

Table 7. 17: Unit Test Case of Confirmation Details and Actual Ratio

Diagram. 179

Table 7. 18: Unit Test Case of Generate and save load plan. 181

Table 7. 19: Unit Test Case of View load plan history. 182

Table 7. 20: Unit Test Case of View load plan detail. 183

Table 7. 21: Unit Test Case of Arrange cargo checklist. 184

Table 7. 22: Unit Test Case of Set common size for containers and

cargo. 185

xii

Table 7. 23: Unit Test Case of Export a plan to PDF. 186

Table 7. 24: Test Case of Integration Test. 187

Table 7. 25: UAT Result Summary. 190

Table 7. 26: Analysis of UAT Feedback. 191

Table 7. 27: User Acceptance Testing Form (UAT). 194

Table 7. 28: Template of SUS form. 203

Table 7. 29: Summary of SUS Survey Results. 205

Table 7. 30: Summary of Testers’ Feedback on the Most Liked Features.

 206

Table 7. 31: Summary of Testers’ Suggestions for System Improvement.

 206

Table 8. 1: Limitation and Recommendations. 209

xiii

LIST OF FIGURES

Figure1. 1: Operation flow of Barcode Scanning for Inventory Tracking

System. 5

Figure1. 2: Operation Flow of Load Planning. 6

Figure1. 3: Overview of the Software Development Methodology. 6

Figure1. 4: Overview of Throwaway Prototyping. 7

Figure1. 5: Overview of Incremental Process Model. 8

Figure 2. 1: Example of Stock Card 13

Figure 2. 2: Manual Sketch of Cargo Layout in Excel 15

Figure 2. 3: Predefined Vehicle Selection of GoodLoading. 16

Figure 2. 4: Space Calculation Features of GoodLoading. 16

Figure 2. 5: Space Calculation Features of EasyCargo. 17

Figure 2. 6: Drag and Drop Features of EasyCargo. 18

Figure 2. 7: Cargo Rotation via Cargo Information Panel. 19

Figure 2. 8: Cargo Text Label Displayed on Hover in GoodLoading. 20

Figure 2. 9: Visible Text Labels and Color-Coded Cargo in EasyCargo. 21

Figure 2. 10: Six cargo orientations. 26

Figure 2. 11: Calculating Available Space Using EMS Representation. 27

Figure 2. 12: Six EMS Directions After Loading a Cargo. 27

Figure 2. 13: Three New EMS when Box Placed at the Corner. 28

Figure 2. 14: New EMSs Resulting from the Placement of the Grey Box.

 28

Figure 2. 15: Process of Biased Random-Key Genetic Algorithm. 30

Figure 2. 16: Evolutionary process between consecutive generations. 31

Figure 2. 17: Random Keys Generated. 32

Figure 2. 18: Population of Five Individuals. 32

xiv

Figure 2. 19: Random Keys are Sorted. 33

Figure 2. 20: Arrangement of First Individual. 33

Figure 2. 21: Place the Largest Block in the Top Left Corner of the

Rectangle. 35

Figure 2. 22: Split Rectangle into 2 Smaller Rectangles. 35

Figure 2. 23: Result of Placing the Second Largest Block. 35

Figure 2. 24: Placing Third Block in the Bottom Remaining Space. 36

Figure 2. 25: Recursively Place All Blocks. 36

Figure 2. 26: 100x100 Container. 37

Figure 2. 27: 4 Items of Different Sizes. 37

Figure 2. 28: 100x100 Container. 37

Figure 2. 29: Initial State of Binary Tree. 38

Figure 2. 30: Place Item A and the Remaining Spaces. 38

Figure 2. 31: Binary Tree. 39

Figure 2. 32: Result of Placing Item C and the Remaining Spaces. 39

Figure 2. 33: Binary Tree. 39

Figure 2. 34: Result of Placing Item B and the Remaining Spaces. 39

Figure 2. 35: Binary Tree. 40

Figure 2. 36: Result of Placing Item D and the Remaining Spaces. 40

Figure 2. 37: Binary Tree. 41

Figure 3. 1: Throwaway Prototyping with Incremental Model

Development Methodologies. 42

Figure 3. 2: Throwaway Prototyping Phases. 43

Figure 3. 3: Incremental Process Model Phases. 46

Figure 3. 4: Gantt Chart for Overall Project. 57

Figure 3. 5: Gantt Chart for Planning & Initial Requirement Gathering. 57

xv

Figure 3. 6: Gantt Chart for Prototype Development. 58

Figure 3. 7: Gantt Chart for Prototype Review and Get Feedback. 58

Figure 3. 8: Gantt Chart for Discard or Refine Prototype. 58

Figure 3. 9: Gantt Chart for Overview of Incremental Development. 59

Figure 3. 10: Gantt Chart for First Increment. 60

Figure 3. 11: Gantt Chart for Second Increment. 60

Figure 3. 12: Gantt Chart for Third Increment. 61

Figure 4. 1: Use case Diagram of Inventory Tracking System: User

Management and Inventory Tracking via barcode

scanning. 69

Figure 4. 2: Use Case Diagram of Inventory Tracking System: Load

Planning. 70

Figure 4. 3: Interface Flow Diagram of Proposed System. 85

Figure 4. 4: Interface Flow in User Management Module. 86

Figure 4. 5: Interface Flow in Inventory Tracking Module. 86

Figure 4. 6: Interface Flow in Cargo Load Planning Module. 87

Figure 4. 7: Register a New Account 89

Figure 4. 8: Login feature by Staff. 89

Figure 4. 9: Low Stock Alert Message Displayed After User Login. 90

Figure 4. 10: Home Page. 90

Figure 4. 11: Inventory Items List Screen. 91

Figure 4. 12: Filter Feature by Category and Quantity. 91

Figure 4. 13: Form Interface for Adding a New Inventory Item 92

Figure 4. 14: Product Description Page. 92

Figure 4. 15: Interface for Editing Inventory Item Details. 93

Figure 4. 16: Confirmation Message for Deleting an Inventory Item. 93

Figure 4. 17: Stock Update for a Single Inventory Item ('In' Button). 94

xvi

Figure 4. 18: Steps to Scan a Barcode. 95

Figure 4. 19: Steps to Update Stock Quantity by Scanning a Barcode. 96

Figure 4. 20: Load Plan History. 97

Figure 4. 21: Container Selection Screen. 97

Figure 4. 22: Cargo Selection Screen. 98

Figure 4. 23: Generated Load Plan and Redirection to Load Plan History.

 98

Figure 4. 24: Generating a Printable PDF of the Load Plan. 99

Figure 4. 25: Example of Load Plan PDF Report. 99

Figure 4. 26: Scanning QR Code on PDF to Retrieve Load Plan Details. 100

Figure 4. 27: Marking Items as Completed in the Load Plan Checklist. 100

Figure 5. 1: System Architecture Design Diagram 101

Figure 5. 2: Entity Relation Diagram. 103

Figure 5. 3: Register account Activity Diagram. 109

Figure 5. 4: Login account Activity Diagram. 110

Figure 5. 5: Scan item barcode Activity Diagram. 111

Figure 5. 6: Update stock quantity activity diagram. 112

Figure 5. 7: View inventory list activity diagram. 113

Figure 5. 8: Add new item activity diagram. 114

Figure 5. 9: Delete inventory items Activity diagram. 115

Figure 5. 10: Generate Load Plan Activity diagram. 116

Figure 5. 11: View the checklist Activity diagram. 117

Figure 5. 12: Generate PDF report Activity diagram. 118

Figure 5. 13: Pseudocode of Binary Bin Packing algorithm. 122

Figure 5. 14: Flowchart of Binary Tree Bin Packing Algorithm (Part 1). 124

Figure 5. 15: Flowchart of Binary Tree Bin Packing Algorithm (Part 2). 125

xvii

Figure 6. 1: Firebase configuration shown in Firebase console. 133

Figure 6. 2: Firebase configuration pasted in the Firebase config file. 133

Figure 6. 3: Welcome Screen. 134

Figure 6. 4: Login Screen with Input Validation and Error Messages. 135

Figure 6. 5: Login Screen with Correct Email Format and Password. 135

Figure 6. 6: Home Screen. 136

Figure 6. 7: Personal Screen. 137

Figure 6. 8: User Management Screen. 137

Figure 6. 9: Add New User Screen. 138

Figure 6. 10: Inventory List Screen. 139

Figure 6. 11: Search Inventory List Using Product ID Prefix. 139

Figure 6. 12: Inventory List with Category Filters. 140

Figure 6. 13: Inventory Filter Options. 140

Figure 6. 14: Add Product Form. 141

Figure 6. 15: Select Image for Product from Gallery. 141

Figure 6. 16: Product Detail Screen. 142

Figure 6. 17: Product Detail Screen in Edit Mode. 143

Figure 6. 18: Product Deletion with Confirmation Dialog. 143

Figure 6. 19: Stock Updated to Low After Product Out. 144

Figure 6. 20: Stock Restored to In Stock After Product In. 144

Figure 6. 21: Barcode Scanning for Bulk Product In/Out Updates. 146

Figure 6. 22: Load Plan Main Menu. 146

Figure 6. 23: Add New Container and Cargo Screen. 147

Figure 6. 24: Selecting Container from List. 148

Figure 6. 25: Adding Cargo and Adjusting Cargo Quantities. 148

xviii

Figure 6. 26: Exceeding Container Weight Limit. 149

Figure 6. 27: Automatic Cargo Arrangement. 150

Figure 6. 28: Manual Adjustment of Cargo Placement Using Drag-and-

Drop. 151

Figure 6. 29: Load Plan History screen. 151

Figure 6. 30: Load Plan Shown with Filters and Search Option. 152

Figure 6. 31: Detailed View of a Selected Load Plan. 152

Figure 6. 32: Options to Share, Download, or Print the Load Plan. 153

Figure 6. 33: Generated PDF report. 154

Figure 6. 34: Scanning the QR code from the printed load plan PDF. 155

Figure 6. 35: Cargo arranging checklist. 156

Figure 6. 36: Confirmation dialog for deleting a load plan. 156

xix

LIST OF SYMBOLS / ABBREVIATIONS

SMEs Small and Medium-Sized Enterprises

PDF Portable Document Format

QR Code Quick Response Code

ID Identity

IT Information Technology

SDLC Software Development Life Cycle

ERP enterprise resource planning

iOS iPhone Operating System

CRUD Create, Read, Update, Delete

2D Two dimensional

3D Three dimensional

$ dollar sign

XML Extensible Markup Language

€ The euro, EUR

API Application programming interface

EMSs Empty Maximal Spaces

JKR Public Works Department

JPJ Road Transport Department

GVW Gross Vehicle Weight

BRKGA Biased Random-Key Genetic Algorithm

GA Genetic Algorithm

DBL Deepest-Bottom-Left

WBS Work Breakdown Structure

xx

SDK Software Development Kit

IDE Integrated Development Environment

MySQL My Structured Query Language

NoSQL Not only SQL

EAN code European Article Number code

xxi

LIST OF APPENDICES

Appendix A: Interview Questions. 213

Appendix B: Manual Sketch of Cargo Layout in Excel. 214

Appendix C-1: User Acceptance Testing Result of Tester 1. 215

Appendix C-2: User Acceptance Testing Result of Tester 2. 224

Appendix C-3: User Acceptance Testing Result of Tester 3. 233

Appendix D-1: SUS Test Result of Tester 1. 242

Appendix D-2: SUS Test Result of Tester 2. 244

Appendix D-3: SUS Test Result of Tester 3. 246

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

Inventory management is a very important aspect within an organization that

deals with large volumes of raw materials or physical goods, whether in

manufacturing, retail, or distribution (Madamidola et al., 2024). The purpose

of inventory management is to be easy and efficient for organization to

manage the ordering, stocking, storing, and using of inventory. By managing

inventory effectively, organizations are able to always know what items are in

stock, how many items have, and where they are located.

Nowadays, there are many web-based inventory management systems

available. However, many small and medium-sized enterprises (SMEs) still

rely on manual record-keeping techniques, such as using Excel sheets to track

inventory and plan cargo arrangement. This is primarily because today’s load

planners and inventory systems are expensive and complex, and therefore

unacceptable to small and medium-sized businesses with tighter budgets and

simpler operational requirements.

While these methods are commonly used, they do not provide real-

time updates, requiring employees to physically walk through storage sites,

verify stock levels, and manually update records on paper (Chan, Sathiapriya

and Razali, 2023). This inefficient method may result in problems including

miscounting stock or recording incorrect quantities, leading to inaccurate

inventory records. Without real-time updates, inventory records may not

reflect actual stock levels, leading to discrepancies between recorded and

physical inventory (Barratt, Kull and Sodero, 2018).

Similarly, a lot of workers load cargo into vehicles using a random

stacking technique, placing the items inside without following any structured

plan. Their main goal is to fit everything inside the lorry, generally without

considering factors such as load safety, weight distribution, or space

optimization. Longer loading times, ineffective use of space, and potential

damage to delicate items are all results of this disorganized approach.

2

To address these challenges, this project aims to develop a

Streamlined Inventory Tracking Application with barcode scanning and load

planning optimization. By providing real-time inventory updates, automating

tracking processes, and optimizing load planning, the system will improve

stock accuracy, reduce manual workload, and enhance overall efficiency in

inventory and transportation management. The most important thing is to

create software that is affordable for small and medium-sized enterprises.

1.2 Problem Statements

The literature review and the interview conducted revealed several problems

associated with the currently available solutions for inventory tracking and

load planning. The problems are inaccuracy of manual record-keeping, time-

consuming and difficult to update load plan, and underutilized vehicle capacity.

1.2.1 Inaccuracy and Inefficiency of Manual Record-Keeping

One of the most common problems associated with manual inventory

management is inaccurate record-keeping. This is because manual inventory

tracking methods affect the visibility into actual goods in inventory and are

prone to frequent discrepancies. Manual inventory tracking methods, reliant on

physical inspections and paper-based records, making it difficult to maintain

an accurate view of stock levels. Employees must physically visit storage

locations to count inventory, a process prone to human error, such as

miscounting or incorrect data entry. Employees may only visit storage sites

weekly or biweekly to perform inventory counts, which can lead to

overstocking or understocking issues going unnoticed and unacted upon,

resulting in harder to identify discrepancies (Chopra, 2021). The goods are not

replenished on time, and when employees discover it, it is often too late to take

action.

1.2.2 Time-Consuming and Difficult Adjustments in Manual Cargo

Load Planning

Many companies utilize Excel's drawing functions to create visual

representations of each cargo items according to its size and arrange the items

within a larger grid, representing the container or vehicle. This approach helps

3

them visualize the load plan more effectively, but it can still be time-

consuming and prone to errors due to manual calculations and adjustments.

This process is time-consuming, especially for large or complex loads, as it

requires repeated manual drawing every cargo. Workers manually draw and

adjust each cargo’s based on a scaled size range using Excel, to fit them into

the container grid. Since most cargo sizes vary, they need to estimate and

adjust each item's placement manually. If the initial arrangement is not optimal,

they must repeatedly adjust placements. This trial-and-error process to fit all

items properly takes significant time, especially when making multiple

adjustments to optimize space.

1.2.3 Underutilized Vehicle Capacity

Many companies load cargo onto vehicles without any structured method or

planning. The Logistic workers often load items based on convenience,

prioritizing goods that are readily accessible at the front of the truck rather

than following a strategic plan to maximize space. Without a planned method,

logistic workers may fail to optimize the vehicle’s payload, leaving substantial

portions of the container or truck empty. Workers load the cargo into vehicles

without considering any calculations or following specific guidelines. They

neither evaluate the weight, size or shape of the goods before loading. This

lack of planning increases transportation costs, as more trips are required to

deliver the same volume of goods, resulting in higher fuel and labor expenses.

Furthermore, randomly placing cargo can lead to uneven weight distribution,

creating unstable loads that risk shifting or overloading during transit. Such

instability not only causes costly delays but also increases the likelihood of

accidents, posing safety hazards on the road (Gaur, 2023).

1.3 Project Objectives

The main goal of this project is to solve the identified problems in Section 1.2

by developing a software solution. This solution simplifies inventory

management by providing barcode scanning when inventory is in and out and

providing plan load optimization features. The objectives of the project are as

follows:

4

1. To conduct a thorough study of algorithms for generating

optimal cargo load plans for vehicles.

2. To develop a functional mobile app for inventory tracking

with integrated cargo load planning and optimization features

for vehicle space utilization.

3. To evaluate the developed mobile app with Unit Test, System

Usability Scale (SUS) and User Acceptance Testing (UAT).

1.4 Proposed Solution

To solve the problem in manual inventory tracking and unstructured cargo

loading, an Android-based mobile application was decided to develop. This

application integrates barcode scanning features to streamline inventory

management and apply automatic load planning algorithms to optimize cargo

arrangement.

For inventory tracking, when users want to issue raw materials to the

production line, users find the barcode on the goods and scan it using the

mobile application. After scanning, the application will retrieve and display

the relevant item information from the database, such as product thumbnail,

name, current stock quantity and stock status. The user can then update the

quantity issued and submit after confirming that the information is correct.

Once submitted, the database is updated in real-time, eliminating the need for

manual records, thus reducing the risk of human error.

Users able to view the changes in stock levels without having to

refresh the app. By having the application, users can monitor the inventory

levels and respond quickly to any issues at any time, and from anywhere. They

can just open the application and take immediate action with a few clicks

without having to go to the warehouse. Users also don’t have to rely on

hundreds of paper sheets or manual records, as the application provides a

centralized inventory system that includes all inventory data.

5

Figure1. 1: Operation flow of Barcode Scanning for Inventory Tracking

System.

Besides, in terms of cargo load planning module, the application

includes an automated feature that optimizes the arrangement of cargo during

the loading process. By using this application, users no longer have to do

manual calculations and can simply input the size of the container or lorry, as

well as the dimension and quantity of the cargo to be arranged. Then the

application will generate the cargo representations of corresponding

proportional size and arrange them neatly in the lorry. By applying the packing

algorithm, the lorry space can be maximally utilized.

User do not need to plan or draw scaled representations of each cargo

one by one, which not only reducing labour costs and time, but also provides

workers with a clear and structured loading guide. If the user needs to update

the size of a previously provided cargo, they can directly edit the dimensions

in the application, and such an operation does not take more than 1 minute.

Then the system will recalculate the arrangement and update the load plan

based on the updated information. Therefore, users are no longer to redraw or

recreate the cargo to scale. Besides, users also can retrieve a previously

generated load plan easily by scanning the QR code on the printed PDF

document. This is because the barcode contains a unique load plan ID, which

allows the application to fetch and show the corresponding load plan

immediately.

6

Figure1. 2: Operation Flow of Load Planning.

1.5 Proposed Approach

The combination of throwaway prototyping and incremental development

methodologies was chosen to implement in this proposed system. Since the

application’s feature set is primarily based on personal ideas and the analysis

of the current market situation, supplemented by a few user requirements

collected through interviews. Therefore, in the absence of specific and

complete user requirements, early developing an initial prototype for

determining the core features and incrementally building feature by feature

provide flexibility to changes in design and feature development.

Figure1. 3: Overview of the Software Development Methodology.

7

Throwaway prototyping, also known as rapid prototyping, is used in

the early stages of software development. A prototype of the final product is

created quickly before actual software development takes place and then

shared with users for feedback (Perera et al., 2022). This model was chosen

because it is well suited for dealing with uncertain requirements, especially

when the user does not know the exact project requirements in advance and

the initial requirements are unclear. The software features defined in the early

stages are based on personal ideas and investigation. So throwaway prototypes

quickly create tangible representations of application functionality early in the

development process, encouraging experimentation and trial and error, instead

of being tethered to the first solution or design that comes along, making it

easier to explore multiple ideas without commitment (Douglas, 2025). As a

result, stakeholders can better visualize and interact with the prototype during

the interview session to provide more accurate requirements, helping clarify

expectations and provide effective feedback.

Figure1. 4: Overview of Throwaway Prototyping.

Besides, the end-users mostly do not have an IT background,

therefore prototype can serve as a common visual language for diverse

stakeholders. This reduces the risk of misunderstanding or misinterpreting of

requirements, because users can intuitively see what the project is doing and

what functions it currently has, regardless of technical background, so as to

better propose their own ideas and define the user requirements. In conclusion,

throwaway prototyping means building initial ideas for different applications,

interfaces, or functions, without necessarily intending to include them in the

final system. Instead, its purpose is to collect and gather feedback, determine

the final functionality of the software, and prove that the concept can be

implemented. Once the prototype has served its purpose, such as finalizing all

8

software functionality and design, it is set aside and then application

development begins.

After analysing the feedback, the project transitioned from the

prototyping phase to a more structured development approach. The feedback

gained from early user testing, interviews, and prototype refinement helped

shape a clearer understanding of user expectations and requirements. With

these findings, the formal software development phase began, guided by a

structured Software Development Life Cycle (SDLC). Each increment in the

development process follows the SDLC phases including Planning, Design,

Implementation, and Testing (GeeksforGeeks, 2025). The development is

divided into three increments, each focusing on different core functionalities.

The first increment focused on implementing the User Management Module,

with the main objective of developing a secure registration and login system

for user authentication. The second increment focused on developing the

Inventory Tracking Module, which allows users to manage stock efficiently

through barcode scanning and record inventory in and out activities with real-

time updates. Lastly, the third increment focused on the development of the

Load Planning Module, which allows the users to optimize the arrangement of

cargo within transportation containers or lorry.

Figure1. 5: Overview of Incremental Process Model.

1.6 Scope and Limitation of the Project

1.6.1 Target End-Users

The project's target end users include storekeepers, warehouse staff, logistics

personnel, and companies across various sectors such as retail, manufacturing,

and wholesale, all of which require efficient solutions for inventory

management and cargo load planning to optimize their operations. The

9

application allows storekeepers and warehouse employees to track goods

coming in and out of the warehouse by scanning barcodes on the items using

the mobile application, monitoring stock levels and take immediate action

anytime, anywhere.

Besides, Logistics personnel can use the application to plan the

arrangement of goods within containers. With the cargo load planning

functionality, logistics personnel can optimize the load planning process by

automatically generating optimal layouts for cargo based on the size and

dimensions of the goods. This ensures that the space within vehicles or

containers is utilized as efficiently as possible.

This project is tailored for small and medium-sized enterprises (SMEs)

that operate on a smaller scale and have limited resources and budgets. These

SMEs are often unable to fully utilize the full functionality of existing systems

on the market. Therefore, these companies are often unwilling to invest too

many resources and money in building or adopting such complex solutions

that may be beyond their means. As a result, this software is intentionally

designed with simplicity and efficiency in mind, offering only a few essential

features that directly cater to specific needs.

1.6.2 Feature Scope and Exclusions

The application is designed with a simplified set of core features, such as

barcode scanning for real-time inventory tracking and automated cargo load

planning. To ensure ease of use and accessibility for small and medium-sized

enterprises (SMEs), it intentionally excludes unnecessary and cumbersome

features, therefore it may lack advanced functionalities found in more

comprehensive inventory and logistics systems, such as real-time multi-

warehouse synchronization, predictive analytics, or integration with external

enterprise resource planning (ERP) platforms.

1.6.3 Assumptions and Constraints of Cargo

The application is developed based on several simplifying assumptions to

maintain usability and efficiency for its target users. The assumption is that all

cargo items are rectangular or square in shape and do not account for

irregularly shaped objects, cylindrical items, or cargo with unconventional

10

forms. Additionally, since the app assumes all cargo has standard shapes, there

is a possibility of wasted space if the actual items vary in shape and cannot fit

perfectly together.

Additionally, the system does not consider other critical cargo

management factors such as item fragility, weight distribution, or stacking

limitations, which could be essential for more complex logistics scenarios.

1.6.4 Target Platform

Besides, the application is currently only available for Android devices, which

limits the use of users of iOS or other platforms. Lastly, the system requires an

internet connection for synchronization with the Firebase database. In offline

environments or regions with poor connectivity, real-time data updates may be

delayed or unavailable.

1.6.5 Modules

1.6.5.1 User Management Module

The User Management Module is responsible for handling user access,

account creation, and authentication within the system. This module ensures

that only registered users can log in and interact with the application. During

registration, an existing user can create new accounts for additional staff by

assigning login credentials such as email and password. The Login feature

then allows newly registered users to securely access the system using the

credentials provided to them. Once logged in, all users are granted the same

level of access to the system’s features, including managing inventory and

performing barcode scanning activities.

1.6.5.2 Inventory Tracking via Barcode Scanning Module

The Inventory Tracking via Barcode Scanning module allows users to

efficiently manage and monitor inventory items using barcode technology.

This module enhances accuracy and efficiency in stock control by reducing

manual entry and enabling real-time updates. For example, users can view a

complete list of inventory items. They can filter items by category, stock status,

or search using keywords across item attributes. They can also manually add

new inventory items, edit or delete existing items. The users also can quickly

11

identify and update stock quantities by scanning items in or out with the

device camera. If a scanned barcode doesn’t match any existing item, the

system will alert the user to prevent errors. In addition, the system

automatically notifies users with a red indicator when stock levels fall below a

predefined threshold, helping to prevent shortages and ensuring timely

replenishment.

1.6.5.3 Load Planning Module

The Load Planning Module is designed to generate a load plan that help users

efficiently organize and manage the arrangement of cargo items into

containers for transport. It ensures optimal space usage and reduces loading

errors. This module allows users to input cargo dimensions and container sizes,

after which the system automatically generates an optimized load plan using a

binary tree bin packing algorithm. If predefined sizes are insufficient, user can

manually enter custom dimensions for containers or cargo. This module also

enables users to adjust and refine load plans by dragging and dropping cargo

items within the container layout for better optimization. Each cargo item can

be labelled with both a colour code and a text label for easy identification in

the load plan layout, helping users clearly recognize each item during the

loading process. Once the load plan is finalized, users can generate a printable

PDF report that includes cargo details and a QR code linked to the load plan

history. By scanning the QR code, users can quickly retrieve the full load plan

details. Additionally, the system provides a checklist for staff to double-check

the arrangement of each cargo item. Staff can mark them as ‘arranged’ after

confirming they are loaded correctly.

12

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

This chapter begins with an overview of traditional manual inventory tracking

and load planning methods. It then reviews existing load planning applications

to identify common features and functionalities relevant to this project's

mobile application. Additionally, this chapter examines the algorithms

commonly used in load optimization to guide the development of the proposed

mobile application.

2.2 Overview of Traditional Manual Inventory Tracking Methods

Nowadays, many small and medium-sized enterprises (SMEs) still rely on

manual inventory tracking methods, such as handwritten records, spreadsheets

or stock cards to monitor and manage their stock. These approaches remain

common primarily because they are less costly than implementing automated

inventory management systems. Besides, these methods only require low

initial investment and few technical resources, making them appeal to

companies with tight budgets and limited access to technology. Despite the

higher risk of mistakes, many SMEs expect to maintain accurate inventory

counts and fast access to the analysis of inventory data without technological

support.

The manual tracking process typically begins with physical stock

counting. Warehouse staff must go to the storage areas and count each item

manually. For example, when the staff want to know the latest inventory status,

they have to go to the site to then find the exact location where the goods are

placed, take out the goods and count them one by one (Setrag Shahikian,

2024). Finally, the quantities obtained during the physical count are manually

recorded in logbooks, pre-printed forms, or spreadsheets such as Microsoft

Excel (Kuhn, 2021). Spreadsheets may offer a small advantage over

handwritten records by allowing for basic calculations and summaries through

built-in formulas. However, they still rely entirely on manual data entry.

13

In addition, some companies use stock cards to monitor inventory

movement. Each item has its own card, and staff members manually update

the card every time stock is received, issued, or adjusted. To use a stock card

effectively, staff must follow a structured process. When stock is received, the

worker records the date, quantity received, and any relevant details on the card,

then calculates the new balance by adding the received quantity to the previous

balance. When stock is issued, such as when items are taken out for production

or use, the worker notes the date, quantity issued, and purpose, then subtracts

this amount from the previous balance to update the current stock level. This

process ensures the stock card reflects the item’s current inventory status.

However, the system’s accuracy hinges on consistent and immediate updates,

which is a significant challenge. For instance, workers may take items out of

storage without recording the transaction on the stock card, either due to time

constraints, or lack of adherence to procedures. This failure to update records

in real-time leads to discrepancies between the physical stock and the

quantities recorded on the stock cards.

Figure 2. 1: Example of Stock Card

Besides, in order to speed up the inventory counting process, many

staff may be assigned to perform inventory counts at the same time, which

causes many employees to be unable to handle other tasks. Imagine if the

company has tens of thousands of different goods, each with at least 1,000

14

quantities, manual tracking will be very time-consuming and laborious.

Overall, manual inventory tracking involves a series of straightforward but

labour-intensive tasks. Although it can be effective for small-scale operations,

it becomes increasingly difficult to manage as inventory volume and

complexity grow.

2.3 Manual Load Planning Techniques

Nowadays, many companies load cargo onto vehicles without applying any

structured method or planning. Typically, logistical workers prioritize

convenience over considerations such as maximizing space, balancing weight,

or preventing damage. Small and medium-sized enterprises (SMEs) often

relied on experience-based judgment, basic physical sketches, or simple

spreadsheet tools to arrange cargo within containers or lorries. Items are also

loaded based on their immediate availability rather than a systematic

arrangement designed to optimize the load.

One of the most commonly used manual techniques is random

stacking, where items are loaded into containers without a defined structure or

layout. In such cases, the main goal is to fit everything inside the truck, rather

than space efficiency or load safety. For instance, cargo may be loaded starting

from the front of the container, and workers continue stacking until the space

is filled. This approach can lead to uneven weight distribution, and inefficient

use of available space.

Another common manual approach involves using tools like

Microsoft Excel or grid paper to draw and simulate container layouts.

According to the interviewee, workers start by using Excel’s shape and

drawing features to create basic visual blocks that represent each item of cargo,

sized roughly according to their actual dimensions. These blocks are then

placed onto a larger grid that represents the truck or container space. The goal

is to visually arrange the cargo in a way that fits everything within the

available area. Since cargo items often come in different shapes and sizes, the

workers need to carefully estimate where each item might fit best. This usually

means dragging and repositioning the blocks on the grid, one by one, trying

different combinations to make everything work. If something doesn’t fit or

the layout seems off, the workers go back and move items around until a better

15

configuration is found. An example of the final cargo layout is shown in

Figure 2.2.

Figure 2. 2: Manual Sketch of Cargo Layout in Excel

2.4 Review of Existing Load Planner Applications

The cargo load planning applications such as GoodLoading, EasyCargo and

CubeMaster are reviewed and analysed to identify the common features,

strengths, and limitations of each application.

2.4.1 Common Features of Existing Load Planner Application

2.4.1.1 Predefined Container Types and Cargo Sizes

Across the three load planning applications reviewed, several common

features were identified. These applications offer a set of predefined

commonly used container types and cargo sizes. Users can directly select from

the predefined cargo items to put them into the container rather than manually

inputting each item’s details. They only need to adjust the quantity to generate

a load plan, which is simple and convenient. Additionally, these applications

offer flexibility by allowing users to define custom container sizes, including

trailers, standard containers, air freight containers, and pallets. If a container or

cargo size is not in the predefined list, users can also input custom dimensions.

16

Figure 2. 3: Predefined Vehicle Selection of GoodLoading.

2.4.1.2 Space Calculation

Besides, three existing applications also have space calculation features. When

a cargo is added to a container, the system automatically calculates both the

occupied and remaining free space. This feature is able to ensure optimal

space utilization by providing users with a clear overview of whether or not

more cargo can be added.

Figure 2. 4: Space Calculation Features of GoodLoading.

Space Calculation

17

Figure 2. 5: Space Calculation Features of EasyCargo.

2.4.1.3 Provide 3D Visualization

Furthermore, another common feature is providing 3D visualization load plan,

which allows users to interactively view and adjust their load plans in three

dimensions. It gives them the flexibility to zoom in, rotate, and adjust their

view, providing a more immersive and intuitive way to let users get a better

look at how the cargo is arranged inside the container. Rather than just looking

at a 2D layout, users can switch between different views like top, front, or side

to understand how everything fits together. Some apps also allow users to

partially rotate the view, such as 180 or 360 degrees, while others limit fixed-

angle views.

2.4.1.4 Automated and Manual Adjustment Options

Another useful feature found in many load planning applications is the

combination of automated and manual adjustment options. The system usually

generates a loading plan automatically using built-in algorithms, which saves

time and helps optimize space. However, users aren’t limited to the system’s

suggestions. They can still manually adjust or reposition items if needed. Most

applications support simple drag and drop functionality, allowing users to

click, drag, and release items to position them exactly where they want inside

the container.

Space Calculation

18

Figure 2. 6: Drag and Drop Features of EasyCargo.

2.4.1.5 Export Options

Export options are a common feature among load planning applications,

providing users with the ability to share, print, or analyze their load plans in

different formats. The most commonly available options include PDF, Excel,

Photo, and Sharable Link. PDF exports are standard for generating printable

documents, a feature offered by all three applications. Excel exports are

available only in EasyCargo, providing users with the ability to manipulate or

analyze data in a spreadsheet. Photo exports offer a quick, visual way to share

the load plan, and are available in GoodLoading. Sharable Links, which allow

for easy real-time collaboration, are available in all three applications.

2.4.2 Advantages and Limitations of Existing Load Planner

Applications

2.4.2.1 GoodLoading

Advantage:

1. Arrangement Algorithms:

A key advantage of GoodLoading over other load planner applications

is its multiple algorithms for cargo arrangement. These features allow

users to decide how to arrange the cargo in the container in order to

generate a load plan. For example, the optimal arrangement algorithm

is designed to maximize residual space, ensuring the most efficient use

19

of available container space, regardless of the order in which the cargo

is added. Alternatively, GoodLoading offers an algorithm that arranges

cargo in the order it was added, as well as one that prioritizes placing

the heaviest items first. These diverse options allow users to tailor the

load plan based on specific needs and preferences.

2. Rotate The Container View 360 Degrees:

GoodLoading allows users to rotate the container view 360 degrees by

holding down the left mouse button, giving them the ability to inspect

cargo arrangements from all angles for a more thorough review. In

addition, GoodLoading features drag-and-drop functionality, enabling

users to easily move cargo items and place them anywhere within the

container.

Limitations:

1. Limited Direct Rotation:

One limitation of GoodLoading is the limited direct rotation functionality.

Users cannot rotate the cargo directly within the displayed load plan using the

mouse. Instead, to adjust the orientation of cargo, they must navigate to the

cargo information panel and manually select the available options. This extra

step can be a bit less intuitive compared to applications that allow direct, on-

the-spot cargo rotation, potentially slowing down the user experience.

Figure 2. 7: Cargo Rotation via Cargo Information Panel.

Rotate Option

20

2. Lack of Step-by-Step Cargo Placement:

Another limitation of GoodLoading is the lack of a step-by-step cargo

placement process. When users add multiple cargo items to the load plan,

the system automatically generates the entire loading arrangement in one

action. There is no option to manually place each item one by one, nor is

the placement process broken down into steps. As a result, users cannot

track the exact sequence of placement in real-time. Instead, the system

displays the placement sequence in a report, showing the order in which

cargo was arranged. This means users must rely solely on the cargo names

in the report to understand the sequence, making it less interactive and

potentially confusing.

3. Color-Coded Cargo Without Text Labels

GoodLoading uses color-coding to differentiate between cargo types, and

while it does provide text labels, they only appear when the user hovers

the cursor over a specific cargo item. This means that at a glance, users

can't immediately identify each cargo type without interacting with the

interface.

Figure 2. 8: Cargo Text Label Displayed on Hover in GoodLoading.

2.4.2.2 EasyCargo

Advantages

1. Tutorial on Login:

Upon logging in, EasyCargo offers a helpful tutorial that guides users

through the process of generating a load plan. This feature is especially

Text Label

21

useful for new users, as it helps them quickly understand the software’s

functions and get up to speed without feeling overwhelmed.

2. Step-by-Step Placement Process:

In contrast to GoodLoading, EasyCargo offers a step-by-step cargo

placement feature. This allows users to control the placement of cargo one

group at a time, by clicking a button for each step, providing better

flexibility and precision.

3. Color-Coded with Visible Text Labels:

EasyCargo clearly labels cargo using both colors and visible text directly

on the items, making it easy for users to identify cargo types at a glance

without needing to hover or open additional panels.

Figure 2. 9: Visible Text Labels and Color-Coded Cargo in EasyCargo.

Limitations:

1. Limited Container View Rotation:

One drawback of EasyCargo is the limited container view rotation. Users

can only rotate the container view up to 180 degrees, which may limit

visibility and make it harder to precisely place cargo from different angles.

This restriction can be frustrating for users who need a full 360-degree

view to optimize their load plan.

Text Label

22

2.4.2.3 CubeMaster

Advantages:

1. Multi-Language Support:

CubeMaster supports multiple languages, which makes the software

accessible to users around the world. By offering various language

options, CubeMaster ensures that international users can comfortably

navigate the platform and generate load plans without language barriers,

making it a versatile choice for global operations.

2. Scenario Simulation:

CubeMaster offers a scenario simulation feature, allowing users to create

and compare multiple loading scenarios. This tool helps users test

different loading configurations and identify the most efficient plan. By

simulating various arrangements, users can make data-driven decisions to

optimize space and improve the overall load planning process.

Limitations:

1. High Cost:

One significant downside of CubeMaster is its high cost, which may make

it less accessible for smaller businesses or individual users. The most

affordable subscription package starts at $49 per month, but it offers only

limited features. Key functions such as Grouping, Palletizing, Balancing

Rules, and Analysis View are unavailable in the standard package.

Moreover, the standard package restricts important file management

capabilities, such as uploading Excel and XML files or downloading

reports in Excel and PDF formats. This can make it difficult for users to

access the full range of tools unless they opt for a more expensive plan.

2. Non-User-Friendly Interface:

Another drawback of CubeMaster is its non-user-friendly interface, which

can make it difficult for new users to navigate and quickly learn how to

use the software. Given the extensive range of features, the platform can

23

feel overwhelming, and users may require proper training to fully

understand and utilize all its capabilities effectively.

3. Limited Container and Cargo Rotation:

A limitation of CubeMaster is its restricted container and cargo rotation.

Unlike other load planning software that allows free rotation, CubeMaster

requires users to select specific views to see the container from different

angles. Additionally, cargo cannot be directly rotated with a simple click-

and-drag; instead, users must right-click and select a rotation option,

making it less efficient.

4. Lack of Clear Labeling:

Another limitation of CubeMaster is its lack of clear labeling. The

software primarily uses color differentiation to distinguish between cargo

types, which can be effective on screen but becomes problematic when

printed in black and white. Without proper labels or text indicators, it

becomes difficult to quickly identify and differentiate cargo types,

especially in printouts. This can lead to confusion and errors during the

load planning process, particularly when users rely on physical copies of

the plan.

2.4.3 Key criteria for comparison

Table2. 1: Comparison of features between Existing Application.

Feature GoodLoading EasyCargo CubeMaster Proposed

App

Cost €18/month,

one user

$79/month,

one user

$49/month,

one user

Free

User

Interface

Simple, but

lacks intuitive

navigation

User-

friendly with

login

tutorials

Complicated

for beginners

Userfriendly,

simple for

SMEs

Predefined Yes None Yes Yes

24

Container

Types and

Cargo Sizes

Step-by-step

Cargo

Placement

None Yes Yes Yes

Drag and

Drop

Placement

Yes Yes None Yes

Container

Rotation

360° rotation 180°

rotation

Cannot be

rotated; use

selection to

see each

view

No direct

rotation

Cargo

Rotation

Through cargo

information

panel and use

the available

options

Rotate using

directional

controls

No direct

cargo

rotation

No direct

cargo

rotation

Custom

Cargo Size

Yes Yes Yes Yes

Labeling &

Color

Coding

Color-coded

without text

labels

Color-coded

with text

labels

Color-coded

without text

labels

Color-coded

with text

labels

Export

Options

PDF, photo

and sharable

link

PDF, Excel

file and

sharable link

PDF and

sharable link

PDF

Language

Support

English only English only Multi-

language

support

English only

Integration

with Other

Software

API and offers

tailored

integration

API and

SAP ERP

ERP/WMS

integration

N/A

25

options

Accessibility

Suitable for

beginners or

small-scale

use

Suitable for

medium-

scale

businesses

Best for

large

enterprises

with

complex

logistics

needs

Suitable for

SMEs

2.5 Rules and Constraints

2.5.1 Cargo Placement Constraints and Assumptions

1. Cargo must be placed firmly on the surface, suspension or oblique

positioning is not allowed.

2. The length of each cargo item should not exceed the length of the

container.

3. The effect of external force between cargo items is considered

negligible.

4. Cargo is assumed to remain intact without deformation due to

squeezing.

5. The cargo items are placed onto the container from largest to

smallest based on volume.

6. The total weight of all cargo must not exceed the maximum load

capacity of the container.

2.5.2 Cargo Orientations

In a 3D space, a rectangular or square cargo item can be placed in six possible

orientations because of the six faces of a cuboid (BYJUS, n.d.). Each face can

serve as a base, leading to six distinct placements.

 Below is a diagram illustrating the six possible orientations for

placing each cargo item:

26

Figure 2. 10: Six cargo orientations.

2.5.3 Empty Maximal Space (EMS)

The maximal space is a way to represent the available empty space inside a

bin., defined by their minimum and maximum coordinates. This only works if

all objects are placed orthogonally. The rules for creating EMSs are volume

check and dimension check. If the new EMS's volume is smaller than the

smallest remaining box, it's discarded. If any dimension of the new EMS is

smaller than the corresponding dimension of any remaining box, it's discarded.

This strategy able to reduce the computational time by approximately 60%.

After placing the box in an EMS, the original EMS is split into six

new EMS regions as shown in Figure 2.12 below that represent the remaining

available space. The initial EMS is like a large container, and when the box is

placed, the space to the left, right, above, below, in front, and behind the box

can be seen as new available spaces (Saraiva, Nepomuceno and Pinheiro,

2015).

27

Figure 2. 11: Calculating Available Space Using EMS Representation.

Figure 2. 12: Six EMS Directions After Loading a Cargo.

If a box placed at the corner of the intersected EMS, only three valid

EMSs are generated due to the placement, which are the right, front, and top

spaces remain. This is because the box touches the left, bottom, and back

boundaries and occupies a full edge, face, or corner of the EMS.

28

Figure 2. 13: Three New EMS when Box Placed at the Corner.

Figure 2. 14: New EMSs Resulting from the Placement of the Grey Box.

2.5.4 Load and Weight Restrictions for Vehicles

When planning the loading of cargo onto vehicles, it is critical to consider

various load and weight restrictions to ensure safety, legal compliance, and

operational efficiency. Since Malaysia enforces strict vehicle weight

regulations, load planning must go beyond simply optimizing the physical

arrangement of items within a container or vehicle. It must also ensure that the

total weight of the cargo does not exceed the legal maximum allowed for the

specific vehicle type.

29

According to Ministry of Transport Malaysia (2021), in Malaysia,

these weight regulations are governed primarily under the Road Transport Act

1987 and enforced by the Road Transport Department (Jabatan Pengangkutan

Jalan, JPJ) and the Public Works Department (JKR). The Gross Vehicle

Weight (GVW) refers to the total weight of the vehicle, including its own

weight, fuel, passengers, and cargo. Each vehicle type, depending on its axle

configuration, has specific maximum allowable GVW limits (Asia-Pacific

Economic Cooperation, 2017). The GVW limits is the maximum allowable

weight the vehicle can carry. Below are the GVW limits for various vehicle

types commonly used in Malaysia:

Table2. 2: Summary of GVW limits in Malaysia.

Type of

Vehicle

Number of

Axle

Axle Configuration GVW Limit (kg)

Rigid

2 Axle

(1 + 1)

16,000 – 18,000

3 Axle

(1 + 2)

20,000 – 25,000

4 Axle

(2 + 2)

25,000 – 27,000

Articulated 3 Axle

(1+1+1)

26,000 – 30,000

4 Axle

(1+1+2)

27,000 – 37,000

5 Axle

(1+1+3)

27,000 – 39,000

2.6 Review of Load Planning Algorithms

2.6.1 Biased Random Key Genetic Algorithm

The Biased Random-Key Genetic Algorithm (BRKGA) is a variant of the

genetic algorithm (GA) that combines the features of random-key

30

representation and biased selection from the population pool. In BRKGA,

solutions are in the form of vectors of real numbers, also called random keys,

between 0 and 1. These numbers are then translated into actual solutions, like

a packing plan, using a problem-specific decoder. BRKGA has a biased

selection process, it keeps the best solutions, called elite and combines them

with others to create new solutions, while also adding some completely

random solutions, which are mutants (Gonçalves and Resende, 2013). This

balance helps BRKGA find great solutions without getting stuck.

Figure 2. 15: Process of Biased Random-Key Genetic Algorithm.

The BRKGA follows a structured process to evolve a population of

solutions toward an optimal or near-optimal state. The process starts by

defining a random-key encoding, where each solution is a list of numbers

between 0 and 1. These random keys correspond to features of the solution,

such as item order or orientation in packing problems. Next, a set of solutions,

called the population is randomly generated. Each individual is then decoded

into a feasible solution using a problem-specific decoder and its quality is

evaluated using a fitness function to see how good it is based on the problem’s

objective.

31

Figure 2. 16: Evolutionary process between consecutive generations.

Once all solutions are evaluated, they are ranked based on fitness, and

a small subset of the best-performing individuals, known as the elite set, is

preserved for the next generation. New solutions are generated using a biased

crossover mechanism, where each offspring is formed by combining two

parents (Londe et al., 2024). One from the elite set and one from the non-elite

population. During crossover, there is a higher probability up to 70% that each

gene in the offspring will be inherited from the elite parent, promoting the

retention of high-quality traits. To maintain diversity and prevent premature

convergence, a set of mutants which is completely random new individuals is

also added to each new generation.

The next generation is formed by combining the elite individuals, the

offspring from biased crossover, and the mutants, while keeping the

population size constant. This process of decoding, evaluating, selecting elites,

generating offspring, and introducing mutants is repeated across multiple

generations. The algorithm continues until a predefined stopping criterion is

met, such as a maximum number of generations, a time limit, or achieving a

satisfactory solution. Ultimately, BRKGA returns the best solution found

during its evolutionary search process.

With the BRKGA process clearly defined, the following section

demonstrates its implementation using an example of 3D bin packing. There

are 4 items need to be packed into a bin, focusing solely on the sequence in

which items are placed. The bin dimensions are 10 x 10 x 10 cm, and the 4

32

items are: Item1 is 4 x 4 x 4; Item 2 is 6 x 4 x 3; Item 3 is 5 x 5 x 2 and Item 4

is 3 x 3 x 5.

Table2. 3: Dimension of Items to be Packed

 Width (x) (cm) Depth (y) (cm) Height (z) (cm)

Item 1 4 4 4

Item 2 6 4 3

Item 3 5 5 2

Item 4 3 3 5

In Step 1, we define the random-key encoding to represent a solution

as a vector of 4 random keys, each a real number in [0, 1], corresponding to

the packing order of the four items.

Figure 2. 17: Random Keys Generated.

In Step 2, a population of five individuals is initialized, each a 4-key

vector, to create a diverse set of random solutions. With parameters specifying

an elite set size of 1 (20%), a mutant set size of 1 (20%), and 3 offspring

(60%), vectors such as [0.3, 0.8, 0.1, 0.6], [0.7, 0.2, 0.9, 0.4], [0.5, 0.1, 0.6,

0.8], [0.9, 0.4, 0.7, 0.2], and [0.2, 0.6, 0.3, 0.9] are generated.

Figure 2. 18: Population of Five Individuals.

33

In Step 3, each solution is decoded into a packing configuration using

a Deepest-Bottom-Left (DBL) heuristic. The 4 keys are sorted to determine the

item sequence (e.g., for [0.3, 0.8, 0.1, 0.6], sorting [0.1, 0.3, 0.6, 0.8] results in

indices [3, 1, 4, 2], meaning Item 3, Item 1, Item 4, Item 2).

Figure 2. 19: Random Keys are Sorted.

The DBL heuristic places items in order into the first feasible bin,

starting at (0,0,0) and moving to the deepest, bottommost, leftmost position,

ensuring no overlap and no rotations. Item 3 (5×5×2) is placed at (0,0,0), and

occupy from (0.0.0) to (5,5,2). Then Item 1 (4x4x4) is placed at (0,5,0) and

occupy from (0,5,0) to (4,9,4). Next, Item 4 (3x3x5) placed at (5,0,0) and

occupy from (5,0,0) to (8,3,5). Lastly, Item 2 (6x4x3) placed at (0,0,2) and

occupy (0,0,2) to (6,4,5). This process is repeated for all individuals of the

population to evaluate their packing solutions.

Figure 2. 20: Arrangement of First Individual.

34

Lastly, the fitness of the solution is evaluated to determine their

quality based on the objective of maximizing the space utilization.

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝑇𝑜𝑡𝑎𝑙 𝐼𝑡𝑒𝑚 𝑉𝑜𝑙𝑢𝑚𝑒 𝑃𝑎𝑐𝑘𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑉𝑜𝑙𝑢𝑚𝑒
 × 100 %

𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑑 𝑣𝑜𝑙𝑢𝑚𝑒

= (5 × 5 × 2) + (4 × 4 × 4) + (3 × 3 × 5) + (6 × 4 × 3)

= 156

𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒 = 10 × 10 × 10 = 1000

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
156

1000
 × 100 % = 15.6%

The utilization rate is 15.6%, it is not the optimal solution. After

evaluating the fitness of all five individuals based on utilization, the individual

with the best fitness is chosen as the elite solution and preserved in the next

generation.

2.6.2 Binary Tree Bin Packing Algorithm

According to Gordon (2011), the Binary Tree Bin Packing Algorithm starts by

placing the first (largest) block in the top left corner of the fixed rectangle,

then split that rectangle into 2 smaller rectangles that represent the remaining

spaces as right and below the placed block.

Each time a new block is placed, the remaining free space is further

divided recursively. This process continues until all blocks are placed or no

suitable space remains.

35

Figure 2. 21: Place the Largest Block in the Top Left Corner of the Rectangle.

Figure 2. 22: Split Rectangle into 2 Smaller Rectangles.

Figure 2. 23: Result of Placing the Second Largest Block.

36

Figure 2. 24: Placing Third Block in the Bottom Remaining Space.

Figure 2. 25: Recursively Place All Blocks.

After understanding the concept of Binary Tree Bin Packing Algorithm,

we can assume a binary tree can represent the container space as a hierarchy of

subdivided sections. Each node represents a remaining space, and child nodes

represent split sections where items are placed.

Steps for Binary Tree-Based Packing:

1. Start with a root node representing the full container space.

2. Place an item in the root node if it fits.

3. Split the remaining space into two child nodes:

 One node represents the space next to the item (horizontal

split).

 The other represents the space below it (vertical split).

37

4. Repeat recursively until all items are packed or no more space is

left.

Example:

Have a 100x100 container

Figure 2. 26: 100x100 Container.

Different size items:

1. Item A (50x50) =2500

2. Item B (30x30) =900

3. Item C (20x70) =1400

4. Item D (10x10) =100

Figure 2. 27: 4 Items of Different Sizes.

1. Initial Container (100x100)

Figure 2. 28: 100x100 Container.

38

This is the root node of the binary tree, representing the entire

available space.

Figure 2. 29: Initial State of Binary Tree.

2. Place Largest Item (Item A (50x50))

Figure 2. 30: Place Item A and the Remaining Spaces.

The first item A (50x50) is placed in the top-left corner. Container is split into

two smaller rectangles:

 Right rectangle (Node): (50x50) empty

 Bottom rectangle (Node): (100x50) empty

39

Figure 2. 31: Binary Tree.

3. Place Item C (20x70)

Figure 2. 32: Result of Placing Item C and the Remaining Spaces.

Item C (20x70) is placed in the remaining bottom space (100x50). Split it into

new 2 rectangles:

 Right node: (30x20)

 Bottom node: (100x30)

Figure 2. 33: Binary Tree.

4. Place Item B (30x30)

Figure 2. 34: Result of Placing Item B and the Remaining Spaces.

40

Place B (30x30) in the top-left area (50x50). The remaining space is split into:

 Right Node: (20x30)

 Bottom node: (50x20)

Figure 2. 35: Binary Tree.

5. Place Item D (10x10)

Figure 2. 36: Result of Placing Item D and the Remaining Spaces.

Item D (10x10) is placed inside the remaining (50x20) space. The remaining

space is split into:

 Right Node: (40x10)

 Bottom Node: (50x10)

41

Figure 2. 37: Binary Tree.

2.7 Summary

After reviewing two algorithms, the Binary Tree Bin Packing Algorithm is

chosen for implementation because it is easier to understand and implement,

especially for scenarios involving only rectangular or square-shaped items.

This algorithm uses a simple binary tree structure to divide space and place

items efficiently, making it highly suitable for structured and grid-like packing

tasks such as cargo load planning.

In contrast, the Biased Random Key Genetic Algorithm (BRKGA) is

more complex, requiring the design of genetic encoding, fitness functions, and

evolutionary operators. While BRKGA is powerful for solving a wide range of

optimization problems and may achieve better results in some cases, it is

computationally intensive and less straightforward to implement. Given the

scope of this project and the need for simplicity and clarity, the Binary Tree

Bin Packing Algorithm is the more practical and effective choice.

42

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter outlines the methods and tools used in the development of the

proposed system. It covers the selected software development methodology,

description of the tools used, and project planning for the entire project. A

detailed Work Breakdown Structure (WBS) and Gantt Chart are also included

to illustrate the project timeline and task management.

3.2 Software Development Methodology

The combination of throwaway prototyping and incremental development

methodologies was selected for this system, as previously discussed in Section

1.5 (Proposed Solution). Since there is lack of fully defined user requirements,

early developing an initial prototype helps to identify and refine the main

features, while incremental development allows the system incrementally

building feature by feature. This approach provide flexibility to changes in

design and feature development.

Figure 3. 1: Throwaway Prototyping with Incremental Model Development

Methodologies.

43

3.2.1 Throwaway prototyping

Throwaway prototyping was used to address unclear and evolving

requirements by rapidly creating early disposable versions of the application.

This approach encourages experimentation and helps stakeholders, especially

non-technical users to visualize and interact with the system during interviews.

It reduces misunderstandings and supports more accurate feedback, ultimately

helping to refine the software's final functionality before full-scale

development begins. The overall process including planning, developing quick

prototypes, gathering feedback, and refining features is outlined in the steps

below.

Figure 3. 2: Throwaway Prototyping Phases.

3.2.1.1 Planning and Initial Requirement Gathering

The first step of throwaway prototyping is to gain a basic understanding of

what the app should do, who it's for, what problems it solves and how to

implement it. This phase begins by identifying problems within the current

inventory tracking and load planning processes, particularly those relying on

manual methods commonly used by small and medium-sized enterprises.

Therefore, problem statements such as inaccurate record-keeping, lack of

automation and time-consuming are identified. From this understanding, the

project's goals and specific objectives are defined to guide solution

development. Besides, a review of relevant literature and analysis of existing

applications were conducted. Through hands-on experience with existing

applications, the main functions were identified, and some additional features

were proposed to make the application more acceptable to small and medium-

sized enterprises. The project scope and limitations are also outlined, focusing

on SME needs and constraints such as support for rectangle-shaped goods only.

44

Finally, application modules are identified, and functional and non-functional

requirements are elicited.

3.2.1.2 Develop a Quick Prototype

After defining the initial functionality of the application, the first version of

the prototype was created using the Axure RP so that users without an IT

background can gain a more intuitive understanding of the software's

functionality and provide feedback. Based on the identified functionalities,

prototype screens for 3 main modules were created, including user login and

registration, inventory management via barcode scanning, and load planning.

The designed screens are then linked together that allows users to navigate and

interact like a real application. Once the complete functional prototype is

created, an initial review is conducted through a self-evaluation to check the

main usability of the main feature and identify the missing or incomplete

components. Finally, the necessary improvements are being made to enhance

the quality of prototypes. This refined prototype is then prepared for the next

user feedback collection phase.

3.2.1.3 Prototype Review and Get Feedback

After building the initial throwaway prototype, the next step is to collect

feedback to evaluate the app's usability and overall concept of the application.

This phase combined informal user testing and one-on-one interviews with

experienced users of the relevant software. Target users, typically

representatives from small and medium-sized enterprises, who were identified

and selected for interviews to ensure that the information obtained was

relevant to the project. Therefore, the interview was conducted with the

Assistant Manager of the Logistics Department at a manufacturing company.

The reason for the selection is that she has nearly 15 years of experience in

logistics, which means she can provide expert insights into the load planning

functionality. The interview was semi-structured, combining prepared

questions with open-ended discussion, and covered the key features such as

barcode scanning, inventory tracking process, and load planning interface.

In addition to the interview, potential end users have the opportunity

to test prototypes that include the main features in order to understand

45

firsthand how users react and identify areas for improvement can be identified

before moving into structured development. Informal testing was carried out

with the interviewee to observe how she interacted with the prototype. She

was asked to complete some basic tasks such as generating a load plan using

container sizes and cargoes provided in the software. While experiencing the

prototype, she made some suggestions about the user interface. For example,

she pointed out that the color-coded cargo blocks appeared visually appealing

within the mobile application. However, it becomes ineffective when exported

or printed as a PDF, because companies often print documents in black and

white rather than in colour to save costs. She recommended using text-based

labels directly on the cargo blocks instead, to ensure that printed versions

remain readable.

In conclusion, the feedback revealed that while the prototype's core

concept was solid, several usability improvements were still needed to guide

the transition to structured development.

3.2.1.4 Discard or Refine the Prototype

After the feedback collection phase, the next step was to evaluate the

throwaway prototype to determine whether it should be refined or discarded.

Firstly, review the user comments in detail to find out where the prototype met

expectations and where it fell short. Based on the user feedback obtained from

the user interactions and testing, decisions are made. Some parts of the

prototype were discarded, while others were enhanced and integrated into the

next development phase. For example, the feature of using color-code to

differentiate cargo groups was discarded, while using text-based labels placed

on top of the cargoes feature will be refined. The use of color-coded cargo

groups was found to be ineffective when printed in black-and-white. This is

because most companies will print documents in black and white to save costs.

No matter how beautiful it looks on the phone, it will be difficult for staff to

distinguish between different types of goods. Additionally, screen layouts,

navigation flows and functional requirements are updated accordingly. The use

case diagrams and descriptions were updated to match the revised system

functionality. Rather than discarding the prototype entirely, it was improved

and adjusted based on the feedback gathered.

46

3.2.2 Incremental Process Model

After analysing the feedback, the project transitioned from the prototyping

phase to a more structured development approach. The feedback gained from

early user testing, interviews, and prototype refinement helped shape a clearer

understanding of user expectations and requirements. Formal software

development begins and each increment in the model follows the Software

Development Life Cycle (SDLC), including Planning, Design, Implementation

and Testing.

Figure 3. 3: Incremental Process Model Phases.

3.2.2.1 First Increment

The first increment focused on implementing the User Management Module.

The main objective of this phase was to develop a basic registration and login

system to allow users to securely access the application. During the planning

and analysis stage, the user requirements for authentication were defined, and

Firebase Authentication was selected as the service to handle account creation

and verification. In the design phase, user interfaces for the registration and

login screens were created using React Native, ensuring a simple and user-

friendly layout. The implementation was carried out in Visual Studio Code,

with Firebase providing real-time authentication and data storage support. The

key features developed included user account registration, secure login

functionality, and session handling. Finally, functional testing was conducted

by creating new accounts, attempting logins with valid and invalid credentials,

and verifying that only registered users could successfully access the system’s

features.

47

3.2.2.2 Second Increment

The second increment focused on developing the Inventory Tracking Module,

which allows users to manage stock efficiently through barcode scanning and

record inventory in and out activities with real-time updates. During the

planning and analysis stage, the flow of inventory operations was defined,

including how users would scan items, log stock movements, and monitor

inventory levels. The design phase involved creating screens for barcode

scanning, displaying item information, and managing inventory status. The

interaction flow was also outlined to allow users to either check in or check

out stock by scanning an item's barcode using the device camera. In the

implementation phase, the react-native-camera library was used to enable

barcode scanning, while the system checked database information against the

scanned data records stored in Firebase. Real-time updates to stock quantities

and activity logs were also implemented to maintain up-to-date inventory

information. During the testing phase of the Inventory Tracking Module,

several functional tests was carried out to ensure the system successfully

capture and process barcode data, validate it against the database, and update

inventory records correctly. The key focus was to verify that barcode scanning

worked reliably and that stock movements were accurately reflected in the

system.

3.2.2.3 Third Increment

In the third increment, focused on the development of the Load Planning

Module, which allows the users to optimize the arrangement of cargo within

transportation containers or lorry. The goal was to generate an efficient load

plan based on cargo dimensions, weight, and available container capacity to

minimize unused space. During the planning and analysis stage, suitable

algorithms for solving space allocation problems were reviewed, and the

Binary Tree Bin Packing Algorithm was selected for implementation. This

algorithm operates by recursively dividing available space into smaller

sections using a binary tree structure. Each item is placed in the most optimal

position, and the remaining space is split for future item placement.

48

During the design phase, the user interface screens were designed to

guide users through the load planning process. This includes the screens for

creating and editing load plans, adding custom cargo or container

specifications, viewing load plan history, managing checklists, and generating

printable PDF reports.

The implementation phase focus on integrating the load planning

logic within the React Native application. The Binary Tree Bin Packing

Algorithm was developed in JavaScript to process cargo details such as length,

width, height, and quantity against the container’s internal dimensions. Based

on this input, the algorithm generated a placement layout that included

position coordinates, cargo grouping, and overall space utilization. To enhance

usability, a drag-and-drop feature was also implemented, allowing users to

manually adjust cargo positions within the container layout if required. This

ensured flexibility by letting users refine the algorithm-generated plan. Cargo

blocks were displayed with colour codes and text labels for easy identification

during the loading process, and the finalized plan could be exported as a

printable PDF report containing a QR code linked to the load plan history.

The unit testing of the Binary Tree Bin Packing Algorithm involved

running various sets of sample cargo data and container dimensions through

the algorithm. The testing process ensured that the algorithm correctly placed

cargo items in the available space without overlapping and maximized space

utilization as expected.

3.3 Development Tools

To develop an Android mobile application for the inventory management

system with the key functionalities such as barcode scanning for tracking

inventory movement and load planning, several development tools are utilized

throughout the implementation of the project.

3.3.1 Axure RP

Axure RP is the design tool used to create user interface prototypes before

development begins. Due to its various interactive elements, including drag-

and-drop widgets, dropdown menus, sliders, and dynamic panels, Axure was

chosen for this project over alternative prototyping tools like Figma (Varun

49

Saharawat, 2024). Axure is able to create "if-then" scenarios since it also

supports conditional logic. By simulating real-world user interactions, these

characteristics facilitate the design and refinement of complicated ideas. By

using Axure to create a functional prototype that includes the main key

features, users are able to better understand the purpose of the application at an

early stage and provide feedback to modify the original concept, rather than

ultimately submitting a version that does not meet user needs and may have

defects.

3.3.2 Visual Studio Code

Visual Studio Code (VS Code) was used as the primary code editor due to its

lightweight nature, robust extension support, and integration with React Native.

Visual Studio Code was chosen because it supports almost all major

programming languages, and in this project, it was mainly used for JavaScript

development, covering both frontend interfaces and backend logic. The

Firebase SDK and JavaScript APIs were integrated into the project to handle

database and authentication functionalities. VS Code was also used to write

Firebase service logic, including adding, retrieving, and updating data from

Firebase Firestore, as well as implementing the load planning algorithm

directly in JavaScript. Its debugging tools and version control integration

further streamlined the development process.

3.3.3 Android Studio

Android Studio is the official integrated development environment (IDE) for

Android app development. Android Studio was used in this project as the

emulator, which allowed for testing the app on Android devices without

needing physical devices. This helps to test the app’s functionality directly on

a simulated device. Android Studio also provided access to the Android

Software Development Kit (SDK), which is essential for building and

packaging the mobile application. Besides, the tool set in Android Studio

enabled the development of Android-specific features such as permissions for

accessing the camera during barcode scanning operations.

50

3.3.4 React Native

React Native is a popular open-source framework for building mobile

applications using JavaScript and React. The app’s interface will build using

reusable React components. Each component such as buttons, lists and input

fields could be easily reused across different parts of the app, maintaining

consistency and reducing development time. Besides, the critical feature for

inventory management, barcode scanning, was integrated using third-party

libraries such as react-native-camera and react-native-barcode-scanner. React

Native allowed seamless integration of native camera functionality with

JavaScript, enabling the app to scan barcodes for tracking inventory items.

3.3.5 Firebase

The Firebase was chosen instead of MySQL is because it offers real-time

database that better supports the needs of this project. Cloud Firestore,

Firebase’s flexible and scalable NoSQL cloud database, was used to store and

synchronize application data in real time. All inventory data such as items,

quantities, barcodes and load planning information were stored in Firestore,

enabling seamless updates and synchronization between devices. Firestore’s

real-time synchronization ensured that any updates, such as adding, editing, or

removing inventory items, were instantly reflected on all users’ devices

without requiring manual refresh. In addition, Firebase Authentication was

utilized to manage secure user registration and login, while Firebase SDKs and

APIs provided straightforward integration with the React Native application.

3.3.6 react-native-camera

The react-native-camera library is a crucial component in enabling barcode

scanning functionality within the mobile application. It provided access to the

device’s camera and allowed the app to capture barcode data efficiently,

forming the core inventory tracking feature. The library supports scanning

multiple types of barcodes such as Code128, QR, and EAN. It also integrated a

camera view directly in the app where users could scan the barcode within a

predefined frame. Once a barcode was detected, the app retrieved the

corresponding item information from Firebase and updated the inventory.

51

3.4 Work Breakdown Structure (WBS)

0.0 Inventory Tracking System with Barcode Scanning and Load Planning

1.0 Planning and Initial Requirement Gathering

1.1 Identify Problem

1.1.1 Identify issues in current inventory and load planning process

1.1.1.1 Analyze manual inventory methods

1.1.1.2 Analyze current load planning techniques

 1.1.2 Develop problem statements

1.1.2.1 Summarize inventory problems

1.1.2.2 Summarize load planning problems

1.2 Identify project goals and objectives

1.2.1 Define overall project goals

1.2.2 Define specific objectives

1.3 Propose project solution

1.3.1 Research similar solutions

1.3.2 Compare similar solutions

1.3.2.1 Analyse features offered

1.3.2.2 Analyse pricing and suitability for SMEs

1.3.3 Sketch flow of proposed solution

1.3.3.1 Create flowchart of inventory tracking process

1.3.3.2 Create flowchart of load planning process

1.4 Propose project approach

1.4.1 Select software development methodology

1.4.1.1 Choose Throwaway Prototyping for early design

1.4.1.2 Choose Incremental Process Model for

development phase

1.4.2 Justify methodology choice

1.4.2.1 Advantages of Throwaway Prototyping

1.4.2.2 Advantages of Incremental Process

1.5 Define project scope and limitation

1.5.1 Define application scope

1.5.1.1 Focus on small and medium enterprises

1.5.1.2 Focus on rectangular or square-shaped goods

52

1.5.2 Identify limitations

1.5.2.1 No support for irregularly shaped cargo

1.5.2.2 No complex weight and fragility handling

1.5.3 Identify required modules

1.5.3.1 Analyse User Management module

1.5.3.2 Analyse Inventory Tracking via Barcode Scanning

module

 1.5.3.3 Analyse Load Planning module

1.6 Gathering requirements

1.6.1 Review existing applications

1.6.1.1 Identify key features

1.6.1.2 Walkthrough of load planning processes

1.6.1.3 Identify pros and cons of each application

1.6.1.4 Compare and tabulate results

1.7 Literature Review

1.7.1 Study on inventory management process

1.7.2 Study on load planning algorithms

1.7.2.1 Analyse Biased Random Key Genetic Algorithm

with Placement Procedure Heuristic

1.7.2.2 Analyse Binary Tree Bin Packing Algorithm

1.8 Requirements elicitation

1.8.1 Define functional requirements

1.8.2 Define non-functional requirements

1.8.3 Develop use case diagram

1.8.4 Write use case descriptions

1.8.5 Design interface flow diagram

1.9 Project scheduling

1.9.1 Prepare work break down structure (WBS)

1.9.1.1 Identify the main activities

1.9.1.2 Break down the activities into smaller tasks

1.9.2 Prepare Gantt Chart

1.9.2.1 Define task start and end dates

1.9.2.2 Identify task dependencies

1.9.2.3 Create Gantt Chart

53

2.0 Prototype Development

2.1 Define initial functionality

2.2 Select prototyping tool

2.2 Design initial prototype

2.2.1 Sketch basic inventory tracking flow

2.2.2 Sketch basic load planning flow

2.3 Build prototype screens

2.3.1 Design login and registration process screens

2.3.2 Design inventory tracking process screens

2.3.3 Design load planning process screens

2.4 Link screens and define interactions

2.4.1 Create navigation flows between screens

2.5 Review and finalize throwaway prototype

2.5.1 Perform self-evaluation of usability

2.5.1.1 Test core features

2.5.1.2 Check user interface navigation and flow

2.5.1.3 Identify missing functions

2.5.1.4 Refine prototype

2.5.2 Prepare prototype for user feedback

3.0 Prototype Review and Get Feedback

3.1 Perform Interviews

3.1.1 Identify and select target users for interviews

3.1.2 Prepare interview questions

3.1.3 Conduct interviews with users

3.1.4 Analyze feedback from users

3.2 Conduct Informal User Testing

3.2.1 Prepare testing tasks

3.2.2 Conduct testing sessions

3.2.2.1 Observe user interaction

3.2.2.2 Record user feedback

3.2.3 Analyze test results

3.2.3.1 Identify common issues and suggestions

4.0 Discard or Refine Prototype

4.1 Evaluate feedback

54

4.1.1 Review user comments and observations

4.1.2 Summarize key usability problems

4.2 Decide action for prototype

4.2.1 Identify features to discard

4.2.2 Identify features to refine

4.3 Update prototype design

4.3.1 Modify screens and navigation based on feedback

4.3.2 Modify function requirements

4.3.3 Modify use case diagram

4.3.4 Modify use case description

5.0 Incremental Development

5.1 First Increment

5.1.1 Planning and Analysis

5.1.1.1 Define user authentication requirements

5.1.1.2 Select authentication method

5.1.2 Design

5.1.2.1 Design login account and register new user screens

5.1.2.2 Design basic navigation flow after login

5.1.3 Implementation

5.1.3.1 Build registration UI

5.1.3.2 Build login UI

5.1.3.3 Implement user account creation with Firebase

5.1.3.4 Implement login functionality with Firebase

Authentication

5.1.3.5 Integrate session handling for logged-in users

5.1.4 Testing

5.1.4.1 Test account registration with valid/invalid inputs

5.1.4.2 Test login with correct and incorrect credentials

5.1.4.3 Test access to system features after successful

login

5.1.4.4 Test logout functionality

5.2 Second Increment

5.2.1 Planning and Analysis

55

5.2.1.1 Analyze requirements for inventory listing,

filtering, and searching

5.2.1.2 Define inventory item data structure

5.2.1.3 Plan database structure for inventory management

5.2.1.4 Define barcode scanning requirements

5.2.1.5 Define stock update process via scanning

5.2.1.6 Plan alert conditions for low stock and unmatched

barcodes

5.2.1.7 Define requirements for inventory summary report

generation

5.2.2 Design

5.2.2.1 Design screens

5.2.2.1.1 Inventory list screen

5.2.2.1.2 Add and Edit inventory item screens

5.2.2.1.3 Barcode scanner interface

5.2.2.1.4 Alerts and Notifications indicators

5.2.2.1.5 Inventory Summary Report screen.

5.2.3 Implementation

5.2.3.1 Implement inventory item listing

5.2.3.2 Implement filtering and searching features

5.2.3.3 Implement add new item feature

5.2.3.4 Implement update item details feature

5.2.3.5 Integrate barcode scanning feature using device

camera

5.2.3.6 Implement stock quantity updates via scanning

5.2.3.7 Implement delete item feature

5.2.3.8 Implement low stock alert indicator

5.2.3.9 Implement unmatched barcode alert

5.2.3.10 Implement inventory summary report generation

5.2.4 Testing

5.2.4.1 Test inventory list viewing, filtering, and searching

5.2.4.2 Test barcode scanning functionality

5.2.4.3 Test adding, updating, and deleting items

5.2.4.4 Test stock quantity updates via scanning

56

5.2.4.5 Test low stock alert triggering

5.2.4.6 Test unmatched barcode handling

5.3 Third Increment

5.3.1 Planning and Analysis

5.3.1.1 Define cargo and container attributes

5.3.1.2 Plan database structure for storing load plans

5.3.1.3 Define checklist workflow and data structure

5.3.1.4 Define load plan update mechanism

5.3.1.5 Plan the generation of printable PDF reports

5.3.1.6 Define QR code generation and retrieval process

5.3.2 Design screen

5.3.2.1 Load plan creation screen

5.3.2.2 Add custom cargo and container screen

5.3.2.3 Load plan editing screen with drag-and-drop

interface

5.3.2.4 PDF layout for printable load plan report

5.3.2.5 Load plan history screen

5.3.2.6 Cargo arrangement checklist screen

5.3.3 Implementation

5.3.3.1 Implement load plan generation

5.3.3.2 Implement add custom containers and cargo size

feature

5.3.3.3 Implement drag-and-drop adjustment feature

5.3.3.4 Implement PDF report generation with QR code

embedded

5.3.3.5 Implement QR code scanning

5.3.3.6 Implement checklist functionality

5.3.4 Testing

5.3.4.1 Test load plan creation

5.3.4.2 Test drag-and-drop adjustments of cargo

5.3.4.3 Test scanning QR codes to view correct load plan

history

5.3.4.4 Test checklist functionality for checking off cargo

items

57

3.5 Gantt Chart

3.5.1 Overview of Project Timeline

Figure 3. 4: Gantt Chart for Overall Project.

3.5.2 Planning & Initial Requirement Gathering

Figure 3. 5: Gantt Chart for Planning & Initial Requirement Gathering.

58

3.5.3 Prototype Development

Figure 3. 6: Gantt Chart for Prototype Development.

3.5.4 Prototype Review and Get Feedback

Figure 3. 7: Gantt Chart for Prototype Review and Get Feedback.

3.5.5 Discard or Refine Prototype

Figure 3. 8: Gantt Chart for Discard or Refine Prototype.

59

3.5.6 Incremental Development

Figure 3. 9: Gantt Chart for Overview of Incremental Development.

60

3.5.6.1 First Increment

Figure 3. 10: Gantt Chart for First Increment.

3.5.6.2 Second Increment

Figure 3. 11: Gantt Chart for Second Increment.

61

3.5.6.3 Third Increment

Figure 3. 12: Gantt Chart for Third Increment.

62

CHAPTER 4

4 PROJECT INITIAL SPECIFICATION

4.1 Introduction

This chapter includes detailed specifications for the inventory tracking and

load planning mobile application being developed as part of this project. The

following session outlines the methodology used to gather requirements,

including fact-finding techniques such as interviewing experienced users. The

system’s functional and non-functional requirements will be defined, followed

by use case modelling to describe the main interactions between the users and

the system. Additionally, Interface Flow Diagram and Prototype Interface are

also included to visually represent the app’s structure, flow, and user interface.

4.2 Fact Finding

To gather relevant information for the development of an inventory tracking

application and to verify the accuracy of the literature search information,

interviews were conducted.

4.2.1 Interview

The first interview was conducted on 23 April 2025 at Ametal Tech Sdn Bhd

and took about an hour. The interviewee invited was an experienced user of

the relevant software. Ms Jesther, who is the Assistant Manager of the

Logistics Department, has nearly 15 years of experience in logistics. The

interviewees were selected based on her direct involvement with the load plan

during her working life for so many years and could provide expert insights

into my load planning functionality.

 The interview adopted a semi-structured interview method, which

combined pre-prepared questions with open-ended discussion. The interview

began with a self-introduction and explained that the purpose of the interview

was to collect users' feedback on the prototype and the functional requirements

or expectations for the new application. The interview found that the load plan

is currently managed using manual methods such as Microsoft Excel. Once the

container size and the list of cargo to be loaded are finalized, the staff begin by

63

drawing the container dimensions to scale within Excel. They then proceed to

manually draw each cargo item, which can number 20 or more, and label each

one with its corresponding ID and name. After that, they attempt to arrange the

cargoes within the container space, adjusting placements until the container is

fully loaded. This manual process is time-consuming and labor-intensive. It

usually takes at least an hour to complete a load plan, and even at least 3 to 4

loading plans need to be drawn up every day. This results in approximately

four to five hours spent solely on load planning, effectively consuming nearly

half of the working day.

 The interviewee also highlighted key challenges faced during the

current load planning process, including a high error rate and the need to

repeatedly redo work due to mistakes or inefficient cargo arrangements. Using

Excel to manually draw out each cargo item one by one is not only time-

consuming but also prone to errors, especially dealing with a large number of

goods with varying sizes and dimensions. After drawing the items, staff must

manually try to fit them into the container, adjusting positions through trial

and error to ensure all items fit properly. This lack of automation means that

any change such as adjusting the order of loading, replacing an item, or

modifying the container size requires the entire layout to be redone, often from

scratch.

 The interviewee also mentioned that she had previously tested a few

existing load planning applications using trial versions. However, she found

them not worth the investment, as her team only needed a single core function,

which is basic load planning. Most of the available applications were designed

with a wide range of advanced features, catering mainly to logistics or

transport companies with more complex operational needs. In her case, the

company only required a simple and focused solution. The existing

applications she tested offered a wide range of features, such as route

optimization, fleet tracking and multi-container management. However, only

about 20% of these features, specifically the basic load planning function,

were relevant to their needs. As a result, investing in full-featured commercial

software was considered inefficient and unnecessary, especially for a business

that does not operate as a full logistics or transport company.

64

 The interviewee also mentioned the app should provide reporting and

analysis features. For example, it would be possible to see how many items

were shipped in a week and how many vehicles were used. This data would be

very useful for her company's sales department because it would help evaluate

transportation efficiency and better understand resource usage. For example,

they could use this data to predict how many lorries would be needed to

transport similar quantities of goods in the future.

 After the interview, informal testing was carried out and the

interviewee was given the opportunity to test prototypes that included the main

features of the application so that the author could directly observe the user

reactions and identify areas for improvement before moving into structured

development. She was asked to complete some basic tasks such as generating

a load plan using container sizes and cargoes provided in the software. While

experiencing the prototype, she made some suggestions about the user

interface. For example, she pointed out that the color-coded cargo blocks

appeared visually appealing within the mobile application. However, it

becomes ineffective when exported or printed as a PDF, because companies

often print documents in black and white rather than in colour to save costs.

She recommended using text-based labels directly on the cargo blocks instead,

to ensure that printed versions remain readable.

4.2.2 Observation

The observation was carried out to gain a clearer understanding of the current

workflow and challenges involved in inventory management, specifically how

items are scanned and recorded when they are checked in and out of inventory.

It was conducted on-site, where staff were observed performing their usual

daily inventory tasks without any interference, to ensure the process remained

authentic and uninterrupted.

 During the observation, staff used a handheld barcode scanner to scan

items one by one. After scanning, they manually updated the quantity of items

that needed to be taken out. One key issue observed was related to the quantity

input field in their existing system. It comes with a default value of “1,” which

often causes confusion. In some cases, staff may forget to update the quantity,

but the quantity field has a default value of 1, and the system cannot justify

65

whether this is the default value or the actual quantity to be taken out. This

increases the risk of incorrect inventory records. The way to improve the

system is to leave the quantity field blank by default. This way, if the staff

forget to enter the correct quantity, the system can easily detect the missing

input and prompt a reminder, thus helping reduce errors and improving

accuracy in the process.

4.2.3 Summary for Interview and Observation

Table 4. 1: Summary for Interview and Observation

Aspect Interview Observation

Date and

Location

23 April 2025, Ametal Tech

Sdn Bhd

On-site at Ametal Tech

Sdn Bhd

Purpose Collect user feedback on load

planning prototype and

functional requirements

Understand workflow and

challenges in inventory

management, focusing on

item scanning

Method Semi-structured interview

with pre-prepared questions

and open-ended discussion

Non-intrusive observation

of staff performing daily

inventory tasks

Key

Participant

Ms. Jesther, Assistant

Manager of Logistics

Department, 15 years of

experience

Staff performing

inventory tasks

Current Tool Microsoft Excel Handheld barcode scanner

Current

Process

Draw container and cargo

items to scale in Excel,

followed by trial-and-error

arrangement

Items scanned one-by-one

using handheld barcode

scanners, with manual

quantity updates in the

system

Time Taken ~1 hour per plan;

3–4 plans daily

= ~4–5 hours per day

Not specified

66

Challenges - High error rate due to

manual drawing and

arrangement

- Time-consuming trial-and-

error process

- Entire layout needs redone

for any change

- Existing load planning apps

too complex, with only 20%

of features relevant

- Default quantity field

value of “1” leads to

errors if staff forget to

update quantity

User

Feedback

/Suggestions

- Need for simple, focused

load planning app

- Avoid feature bloat

- Reporting and analysis

features

- Blank quantity field by

default

- System prompts for

missing quantity inputs to

improve accuracy

Prototype

Feedback

- Liked color-coded cargo

blocks in-app

- Recommended using text

labels for print readability

- N/A

4.3 Requirement Specification

This section outlines the functional and non-functional requirements derived

from the interview and the review of existing application. The functional

requirement is divided into 3 main modules: User Management, Inventory

Tracking and Load Planning.

4.3.1 Functional Requirements

1. User Management

Table 4. 2: Functional Requirement of User Management Module.

FR01 The system shall allow user to register a new user account.

FR02 The system shall allow users to login via email and password.

67

2. Inventory Tracking via barcode scanning

Table 4. 3: Functional Requirement of Inventory Tracking Module.

FR03 The system shall allow users to view a list of all inventory items.

FR04 The system shall allow users to filter the inventory list by stock status

and category.

FR05 The system shall allow users to search inventory items using any

keyword that matching across all item attributes.

FR06 The system shall allow users to add a new inventory item.

FR07 The system shall allow users to update the details of existing item.

FR08 The system shall allow users to scan barcodes using the device

camera

FR09 The system shall allow users to update the stock quantity after

scanning items in or out.

FR10 The system shall allow users to delete an inventory item.

FR11 The system shall visually indicate when the stock quantity is lower

than the specified stock level.

FR12 The system shall allow user to receive alerts if a scanned barcode

does not match any existing inventory item.

3. Load Planning

Table 4. 4: Functional Requirement of Load Planning Module.

FR13 The system shall allow user to generate a load plan based on the

selected cargo and container.

FR14 The system shall allow user to add custom containers and cargo size if

the desired size is not available in the predefined list.

FR15 The system shall allow user to update the load plan by drag and drop

cargo items.

FR16 The system shall allow user to export the load plan into printable PDF

report.

FR17 The system shall allow user to view load plan history via scanning the

QR code from the PDF load plan.

68

FR18 The system shall allow user to view the checklist for double-checking

the arrangement status of each cargo item.

FR19 The system shall allow user to mark items as checked off in the

checklist after they have been successfully arranged in the load plan.

4.3.2 Non-functional requirements

Table 4. 5: Non-Functional Requirement.

NFR01 The system shall respond to user actions, such as

barcode scans and item updates, in under 2

seconds.

Performance

NFR02 The system shall have an intuitive, easy-to-navigate

interface that users can quickly understand.

Usability

NFR03 The system shall be compatible with a wide range

of Android devices and versions.

Portability

NFR04 The system shall remain accessible to users at any

time, as long as they have an internet connection.

Availability

NFR05 The system shall be able to access and use the

mobile device's camera.

Compatibility

NFR06 The system shall ensure input validation and

display appropriate error messages for invalid

inputs.

Usability

4.4 Use Case Modelling

To enhance clarity and avoid overcrowding, the use case diagram is split into

two separate diagrams. The first use case diagram combines the User

Management and Inventory Tracking features, while the second use case

diagram focuses on Load Planning.

69

4.4.1 Use Case Diagram

Figure 4. 1: Use case Diagram of Inventory Tracking System: User

Management and Inventory Tracking via barcode scanning.

70

Figure 4. 2: Use Case Diagram of Inventory Tracking System: Load Planning.

4.4.2 Use Case Description

Table 1: Use Case Description of Register account

Table 4. 6: Use Case Description of Register account.

Use Case Name: Register account

ID: UC01 Importance Level: High

Primary Actor: User

Use Case Type: Detail, Real

Stakeholders and Interests: User – Wants to create new user accounts

Brief Description: This use case allows a user to create a new user account

using a valid email and password.

Trigger: User wants to create a new user account for a new user.

Relationships:

 Association : User

 Include :

71

 Extend : Login

 Generalization: N/A

Normal Flow of Events:

1. The user clicks the ‘+’ button on the User Management screen.

2. The system displays the add new user modal.

3. The user inputs required information such as email, name and

password.

4. The user clicks the ‘Add’ button to submit the form.

5. The system validates the email format. Continue to Sub-flows 5.1 or

5.2.

6. The system checks whether the email is already registered.

Continue to Sub-flows 6.1 or 6.2.

7. The system creates a new account.

8. The system redirects the user to the User Management screen.

Sub-flows:

5.1 If the email format correct:

5.1.1 Continue to Flow 6.

5.2 If the email format is incorrect:

5.2.1 The system displays an error message: “Invalid email address.”

5.2.2 The user is prompted to correct the information and try again.

5.2.3 After correction, continue to Flow 6.

6.1 If the email is already registered:

6.1.1 The system displays an error message: “This email is already

registered.”

6.1.2 The user is prompted to try a different email.

6.2 If the email is not yet registered:

6.2.1 The system creates a new user account.

6.2.3 Continue to Flow 7.

Alternate/Exceptional Flows:

72

Table 4. 7: Use Case Description of Login account.

Use Case Name: Login account

ID: UC02 Importance Level: High

Primary Actor: User

Use Case Type: Detail, Real

Stakeholders and Interests: User – Wants to access the inventory

management system using their assigned email and password.

Brief Description: This use case allows a user member to log in to the

system using their assigned email and password.

Trigger: The user wants to log in to his/her account.

Relationships:

 Association : User

 Include : N/A

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The user clicks the ‘Login’ button from the Welcome Screen.

2. The system displays the login form.

3. The user enters the assigned email and password.

4. The user clicks the ‘Login’ button to submit credentials.

5. The system validates the email format. Continue to Sub-flows 5.1 or

5.2.

6. The system checks the credentials against the authentication

database. Continue to Sub-flows 6.1 or 6.2.

7. Upon successful login, the system redirects the user to the home

screen.

Sub-flows:

5.1 If the email format is correct:

73

5.1.1 Continue to Flow 6.

5.2 If the email format is incorrect:

5.2.1 The system displays an error: “Please enter a valid email address.”

5.2.2 The user corrects the input and retries.

5.2.3 After correction, continue to Flow 6.

6.1 If the credentials are valid:

6.1.1 The system logs in to the user and redirects to the home screen.

6.2 If the credentials are invalid:

6.2.1 The system displays an error message: “Incorrect email or

password.”

6.2.2 The user is prompted to retry or reset their password.

Alternate/Exceptional Flows:

Table 4. 8: Use Case Description of Scan item barcode.

Use Case Name: Scan item barcode

ID: UC03 Importance Level: High

Primary Actor: User

Use Case Type: Detail, Real

Stakeholders and Interests: User – wants to scan barcodes using the device

camera to quickly identify items and update stock when adding or removing

them.

Brief Description: This use case allows staff to scan an item’s barcode using

the device camera. The system reads the barcode, checks if the item exists in

the inventory, and displays the relevant details.

Trigger: The user wants to update stock by scanning one or more

items.

Relationships:

 Association : User

 Include : N/A

74

 Extend : Receive alert on unmatched barcode

 Generalization: N/A

Normal Flow of Events:

1. The user clicks the “Scan” icon button on the navigation bar from the

home screen.

2. The system opens the barcode scanner camera interface.

3. The user scans a product barcode using the device’s camera.

4. The system detects and reads the scanned value.

5. The system searches for a matching Product ID in the inventory

database. Continue sub-flows 5.1 or 5.2.

Sub-flows:

5.1 If Product ID is found:

5.1.1 The system fetches and displays product image, ID, name, quantity

and stock status.

5.1.2 The staff adjust the quantity of scanned items.

5.1.3 The staff proceed to scan the next item by clicking the ‘scan’ icon

button.

5.2 If Product ID is not found:

5.2.1 The system alerts the user that the item is not found in the inventory.

5.2.2 The system returns the staff to the scan interface.

Alternate/Exceptional Flows:

A1 - Camera access not granted:

A1.1 The system displays: "Camera permission required to scan

barcodes."

A1.2 The staff is prompted to enable camera permissions in the device

settings.

Table 4. 9: Use Case Description of Update stock quantity.

Use Case Name: Update stock quantity

ID:

UC04

Importance Level: High

Primary Actor: User Use Case Type: Detail, Real

75

Stakeholders and Interests: User – Wants to update the stock quantity for one

or multiple items.

Brief Description: This use case allows user to update the stock quantity of

items in two different ways. For individual updates, staff can go to the

product detail screen and manually add or reduce the quantity. For handling

multiple items efficiently, they can scan barcodes one by one and update the

stock immediately after each scan.

Trigger: The user wants to update the stock quantity.

Relationships:

 Association : User

 Include : N/A

 Extend : Indicate Low Stock Level

 Generalization: N/A

Normal Flow of Events:

1. The user wants to update the stock quantity of one or more items.

2. The user proceeds with one of the methods. Continue sub-flows 2.1

or 2.2.

Sub-flows:

2.1 Manual update from product description screen:

 2.1.1 The user opens the product's description screen.

 2.1.2 They tap the “IN” or “OUT” button.

 2.1.3 The system prompts for a quantity input.

 2.1.4 The user enters the desired quantity and confirms.

 2.1.5 The system validates and updates the quantity.

 2.1.6 The system checks against the low stock threshold. Continue sub-

flow 3.1 or 3.2.

2.2 Update via barcode scanning:

76

 2.2.1 The user clicks the ‘Scan’ icon button on the home screen.

 2.2.2 The system opens the barcode scanner interface.

 2.2.3 The user scans an item’s barcode.

 2.2.4 Upon a successful scan, the system shows the item details.

 2.2.5 The user adjusts the quantity.

 2.2.6 If there are more items to scan, the user clicks the ‘Scan’ icon again

and repeats from Step 2.2.3. otherwise,

 2.2.7 If there are no more items, the user chooses either ‘Product In’ or

‘Product Out’.

 2.2.8 The system updates the stock accordingly.

 2.2.9 The system checks against the low stock threshold. Continue sub-

flow 3.1 or 3.2.

3.1 If quantity is above specific level:

3.1.1 The system confirms the update and returns to the previous screen.

3.2 If quantity is below specific level:

3.2.1 The system highlights the item with a low stock visual indicator

using a red dot.

3.2.2 Use case ends.

Alternate/Exceptional Flows:

A1. Quantity set to 0 or negative:

 A1.1 System displays: “Invalid quantity. Must be at least 1.”

 A1.2 User is prompted to adjust the quantity before proceeding.

Table 4. 10: Use Case Description of View inventory list.

Use Case Name: View inventory list

ID:

UC05

Importance Level: High

Primary Actor: User

Use Case Type: Detail, Real

Stakeholders and Interests: User – Want to view the complete inventory or

locate specific items using filters or search functionality.

77

Brief Description: This use case allows users to view the full list of current

inventory items. Users can also narrow the list by

applying filters or searching using keywords.

Trigger: The user wants to view all inventory items, filter the list, or search

for specific products.

Relationships:

 Association : User

 Include : N/A

 Extend : N/A

 Generalization: View by filtering, View by searching

Normal Flow of Events:

1. The user navigates to the inventory list screen by clicking the

‘Product’ tab in the navigation bar on the home screen.

2. The system retrieves and displays all current inventory items from the

database.

3. Each item is shown with its product image, ID, name and current

stock quantity with units.

4. The user can optionally choose to either apply filters or perform a

search using keywords. Continue sub-flows 4.1 or 4.2.

Sub-flows:

4.1 Filter by category or stock status

4.1.1 The user selects a product category or chooses a stock status such as

In Stock, Low Stock or Out of Stock.

4.1.2 The system applies the filters and updates the list.

4.1.3 The use case ends.

4.2 Search using keywords

4.2.1 The user enters a keyword into the search bar.

4.2.2 The system displays all items matching the entered keyword.

4.1.3 The use case ends.

78

Alternate/Exceptional Flows:

A1 No results from filter:

A1.1 System displays: “No matching items found.”

Table 4. 11: Use Case Description of Add new items.

Use Case Name: Add new items

ID: UC06 Importance Level: High

Primary Actor: User

Use Case Type: Detail, Real

Stakeholders and Interests: User – Wants to add new inventory items when

receiving new products.

Brief Description: This use case allows user to manually register a new item

by entering product details such as name, category, stock

quantity, image and minimum stock quantity. If have

incorrect or incomplete information, the user may also

proceed to update the item details.

Trigger: The user wants to add a new product to the inventory database.

Relationships:

 Association : User

 Include : N/A

 Extend : Update existing item details

 Generalization: N/A

Normal Flow of Events:

1. The user clicks the “+” button on the inventory list screen.

2. The system displays a form to enter new item’s details.

3. The user fills in the required fields such as Product image, Product

name, Current stock quantity, Category, and Minimum stock

quantity.

4. The user clicks the “Save” button.

5. The system validates the entered information and saves the new item

79

to the database.

6. A success message is displayed: “Item added successfully.”

7. The new item appears in the inventory list.

8. If the user notices a typo or incorrect data, continue to sub-flow 8.1.

Otherwise, the use case ends.

Sub-flows:

8.1 Correcting incorrect info:

8.1.1 The user selects the newly added item from the inventory

list.

8.1.2 The system displays the product description screen.

8.1.3 The user clicks the three dots (menu) icon at the top right

corner and selects "Edit".

8.1.4 The system navigates to the edit item screen.

8.1.5 The user updates the necessary fields and clicks “Save.”

8.1.6 The system saves the changes and displays: “Item details

updated successfully.”

8.1.7 The updated item appears in the inventory list. Sub-flow

8.1 ends.

Alternate/Exceptional Flows:

Table 4. 12: Use Case Description of Delete inventory items.

Use Case Name: Delete inventory items

ID:

UC07

Importance Level: High

Primary Actor: User

Use Case Type: Detail, Real

Stakeholders and Interests: User – Wants to delete an inventory item from

the system when it is no longer needed.

Brief Description: This use case allows user to delete an existing inventory

item from the system.

Trigger: User decides to remove an item from the inventory list.

80

Relationships:

 Association : User

 Include : N/A

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The user selects an item from the inventory list.

2. The system navigates to the product description screen.

3. The user clicks the ‘three dots’ icon at the top right corner and selects

the ‘trash bin’ icon button.

4. The system displays a confirmation dialog: “Are you sure you want

to delete this item?”

5. The user confirms the deletion by clicking “Delete”.

6. The system deletes the item from the database.

7. A success message is displayed: “Item deleted successfully.”

8. The system returns the user to the inventory list screen.

Sub-flows:

Alternate/Exceptional Flows:

Table 4. 13: Use Case Description of Generate Load Plan.

Use Case Name: Generate Load Plan

ID:

UC08

Importance Level: High

Primary Actor: User

Use Case Type: Detail, Real

Stakeholders and Interests: User – Wants to generate a load plan to arrange

selected cargo items into a container

Brief Description: This use case allows the user to generate a load plan by

arranging selected cargo items inside a container based on

container size and cargo dimensions. It also allows the

user to update the arrangement using drag-and-drop

functionality as needed.

81

Trigger: Users want to arrange selected items for shipment within a

container.

Relationships:

 Association : User

 Include : N/A

 Extend : Add custom container and cargo size, Update

load plan

 Generalization: N/A

Normal Flow of Events:

1. The user navigates to the Load Plan section from the home menu.

2. The system displays options which are Plan Load, Set Common Size,

and History.

3. The user selects Plan Load to start creating a new load plan.

4. The user inputs or selects the container size. Continue with sub-flow

4.1 or 4.2.

5. The user inputs or selects the cargo dimensions and quantity.

Continue with sub-flow 6.1 or 6.2.

6. The user confirms the container and cargo selections.

7. The system retrieves the container, and cargo details and

automatically generates a load plan, arranging cargo inside the

container.

8. The system displays confirmation details, including selected

container, selected cargo items with quantities, an Actual Ratio

Diagram showing the arrangement, Calculated used space, free space,

and total container space.

9. After the load plan is generated, the user may optionally rearrange

cargo items manually. Continue with Sub-flow 9.1 if needed.

10. The user reviews the arrangement and clicks the ‘Save’ button.

11. A confirmation message appears: “Saved successfully.”

Sub-flows:

82

4.1 If using a preset container size:

4.1.1 The user selects a container from the predefined list. Continue

flow-no 5.

4.2 If adding a custom container size:

4.2.1 The user clicks the ‘Set common size’ button on the Load Plan

tab.

4.2.2 The user enters the container’s length, width, height and

maximum weight capacity.

4.2.3 The system validates and saves the custom size input. Continue

flow-no 5.

 5.1 If using preset cargo dimensions and quantity:

5.1.1 The users select the predefined cargo items.

5.1.2 The user adjusts the quantity. Continue flow-no 6.

5.2 If adding custom cargo size:

5.2.1 The iser enters the cargo dimensions and quantity. Continue flow-

no 6.

9.1 Rearranging Cargo Items Manually:

9.1.1 The user selects a cargo item inside the 3D load plan.

9.1.2 The user drags and drops the cargo item to a new position within

the container.

9.1.3 The system dynamically updates the load plan layout based on the

new arrangement.

9.1.4 The user repeats the drag-and-drop action as needed to finalize the

arrangement.

9.1.5 Once satisfied, continue flow no-10.

Alternate/Exceptional Flows:

Table 4. 14: Use Case Description of View the checklist.

Use Case Name: View the checklist

ID: UC09 Importance Level: High

83

Primary Actor: User

Use Case Type: Detail, Real

Stakeholders and Interests: User- wants to view a checklist that shows which

cargo items still need to be arranged

within the current load plan, and mark

items as placed once arranged.

Brief Description: This use case allows user to display a checklist of cargo

items that not yet been arranged.

Trigger: The user member wants to see which cargo items still require

arrangement.

Relationships:

 Association : User

 Include : N/A

 Extend : Mark Checklist Item

 Generalization: N/A

Normal Flow of Events:

1. The user scans the barcode on the PDF load plan.

2. The system navigates to the corresponding load plan description

page.

3. The user clicks the “Checklist” button.

4. The system retrieves the list of cargo items that need to be loaded into

the container.

5. The system displays the checklist, showing details for each cargo

item such as cargo name, quantity, and dimensions.

6. As the user physically arranges each cargo item into the container,

they mark the corresponding checklist item.

7. The system marks the item as completed with a checkmark.

8. The user continues arranging and marking items until all cargo items

are completed.

9. Once all items are marked as placed, the user clicks Save.

10. The system updates the load plan status from Pending to Finished.

84

Sub-flows:

Alternate/Exceptional Flows:

Table 4. 15: Use Case Description of Generate PDF report.

Use Case Name: Generate PDF report

ID:

UC10

Importance Level: High

Primary Actor: User

Use Case Type: Detail, Real

Stakeholders and Interests:

User

- want to generate a printable version of the finalized load plan that

includes cargo arrangement, container details, and a QR code for

quick future access.

-wants to retrieve and view the load plan details by scanning the QR code.

Brief Description: This use case allows user to generate a PDF report of a

load plan which includes a QR code that links directly

back to the system for easy future access.

Trigger: The user finalizes a load plan and chooses to export it as a PDF.

Relationships:

 Association : User

 Include : N/A

 Extend : View Load Plan History

 Generalization: N/A

Normal Flow of Events:

1. The user opens the load plan description page.

2. The user clicks the “Generate PDF” button.

3. The system compiles the load plan data such as Load plan ID,

container details, total used space and remaining space, cargo

arrangement order, and a QR code into a formatted PDF.

4. The system generates the PDF file and displays the message:

85

“Generated Successfully!”

5. The user clicks the “View” button to preview the generated PDF.

6. The PDF file can be printed or distributed as needed. Proceed with

sub-flow 6.1 or 6.2.

Sub-flows:

 6.1 Staff views load plan history via scanning QR Code:

6.1.1 The user scans the QR code from the printed PDF copy.

6.1.2 The system retrieves and opens the associated load plan

description page.

6.1.3 The user can view the load plan details, including cargo

arrangement and container info.

6.1.4 The use case ends.

6.2 User does not scan the QR code:

6.2.1 If the QR code is not scanned, no action is triggered.

6.2.2 The use case ends.

Alternate/Exceptional Flows:

4.5 Interface Flow Diagram

This section shows the interface flow of the application, illustrating how users

navigate between different screens and interact with the system.

Figure 4. 3: Interface Flow Diagram of Proposed System.

86

4.5.1 User Management Module

Figure 4. 4: Interface Flow in User Management Module.

4.5.2 Inventory Tracking via Barcode Scanning Module

Figure 4. 5: Interface Flow in Inventory Tracking Module.

87

4.5.3 Cargo Load Planning Module

Figure 4. 6: Interface Flow in Cargo Load Planning Module.

4.6 Prototype Interface

The prototype development was developed based on the three main modules

specified in the project scope, which will include the module of user

management, inventory tracking via barcode scanning, and load planning.

4.6.1 User Management Module

The User Management Module enables users to create and access their own

accounts through a secure registration and login system. It ensures that only

registered users can log in to the application using their email and password.

Once authenticated, users are granted access to all system features such as

inventory tracking and load planning. Figure 4.4 illustrates the process of

registering a new user account within the system.

88

89

Figure 4. 7: Register a New Account.

The Login feature allows users to access the system using the email

and password with the credentials assigned to them. Figure 4.8 show that the

welcomes screen and login form.

Figure 4. 8: Login feature by Staff.

4.6.2 Inventory Tracking via Barcode Scanning Module

It provides a complete inventory list with options to filter and search items by

attributes such as category or quantity. Using the device camera, users can

quickly scan barcodes to update stock quantities for check-in and check-out

90

activities. In addition, users can manually add, update, or delete inventory

records as needed. The system also provides automatic alerts when stock

levels fall below a predefined threshold or when a scanned barcode does not

match any existing item, thereby helping to maintain accuracy and prevent

errors in inventory management.

Figure 4. 9: Low Stock Alert Message Displayed After User Login.

Figure 4. 10: Home Page.

91

Figure 4. 11: Inventory Items List Screen.

Figure 4. 12: Filter Feature by Category and Quantity.

92

Figure 4. 13: Form Interface for Adding a New Inventory Item

Figure 4. 14: Product Description Page.

93

Figure 4. 15: Interface for Editing Inventory Item Details.

Figure 4. 16: Confirmation Message for Deleting an Inventory Item.

94

Figure 4. 17: Stock Update for a Single Inventory Item ('In' Button).

95

Figure 4. 18: Steps to Scan a Barcode.

96

Figure 4. 19: Steps to Update Stock Quantity by Scanning a Barcode.

4.6.3 Load Planning Module

The Load Planning Module allows users to generate a load plan based on

selected cargo and container types, with the option to add custom containers or

cargo sizes if needed. This module also enables users to adjust load plans by

dragging and dropping cargo items within the container layout for better

optimization. Once the load plan is finalized, users can generate a printable

97

PDF report that includes a QR code, which can be scanned retrieve the

corresponding load plan history. Additionally, the system provides a checklist

to verify the arrangement of cargo items, where each item can be marked as

“arranged” once it has been correctly loaded.

Figure 4. 20: Load Plan History.

Figure 4. 21: Container Selection Screen.

98

Figure 4. 22: Cargo Selection Screen.

Figure 4. 23: Generated Load Plan and Redirection to Load Plan History.

99

Figure 4. 24: Generating a Printable PDF of the Load Plan.

Figure 4. 25: Example of Load Plan PDF Report.

100

Figure 4. 26: Scanning QR Code on PDF to Retrieve Load Plan Details.

Figure 4. 27: Marking Items as Completed in the Load Plan Checklist.

101

CHAPTER 5

5 SYSTEM DESIGN

5.1 Introduction

This chapter explains the design of the proposed system, outlining how its

components are structured and interact to fulfil the required functionalities.

The design covers fours main aspects which are system architecture, system

database design, activity diagrams and algorithm design.

5.2 System Architecture Design

The proposed system architecture follows a three-layer design consisting of

the Presentation Layer (Frontend), Application Layer (Backend Services), and

Data Layer (Database). The presentation layer provides the graphical user

interface that enables users to interact with the system. The application layer

acts as the middleware, handling business logic, processing requests, and

coordinating communication between the user interface and the database. The

data layer is used to store application data and control read and write access to

the database, ensuring consistency and security.

Figure 5. 1: System Architecture Design Diagram

102

 In the proposed mobile application, the Presentation Layer is

developed using React Native, which serves as the frontend framework for

Android. This layer provides all user-facing interfaces, including login and

registration screens, inventory management interfaces, barcode scanning

functionality, and load planning visualization. Users interact with the system

exclusively through this layer.

 The Application Layer is powered by Firebase Backend Services,

which handle the core business logic and facilitate communication between the

frontend and database. Firebase Authentication manages user login and

registration by issuing secure authentication tokens. Cloud Functions act as

middleware to process complex logic, such as handling stock update requests,

load plan generation, and validating data before committing changes. Cloud

Storage is used to upload and retrieve product images, PDFs of load plan

reports, and other media files. This layer ensures that all requests from the

React Native app are properly validated and routed to the appropriate data

services.

 The Data Layer consists of Cloud Firestore, a NoSQL database

provided by Firebase. Firestore stores structured collections and documents,

including inventory records, cargo details, container sizes, and load plan

histories. It supports real-time data synchronization, ensuring that updates like

stock changes or load plan modifications are instantly reflected across the

system. Firestore also enforces access rules, controlling read and write

operations to maintain data consistency and security.

103

5.3 System Database Design

5.3.1 Entity Relationship Diagram

Figure 5. 2: Entity Relation Diagram.

5.3.2 Collection Description Table

In the proposed system, data is organized and managed using Firebase

Firestore collections. Each collection stores related information in the form of

documents, making it easier to organize, retrieve, and maintain.

Table 5. 1: Collection Description Table.

Collection Description

products Stores all product details including name, category, current

stock quantity, minimum stock quantity, image and stock

status.

users Stores all user details, including login information.

containers Stores container details such as dimensions and maximum

load capacity.

cargoes Stores cargo item details such dimensions and weight.

loadPlans Stores load plan details, arrangement data, and status.

104

5.3.3 Data Dictionay

The data dictionary defines the structure and attributes of each collection used in the system. It provides details such as attribute names,

descriptions, data types, constraints, and example values.

5.3.3.1 Data Dictionary for products collection

The products collect stores all product details including name, category, current stock quantity, minimum stock quantity, image and stock status.

Table 5. 2: Data Dictionary for products collection.

Attribute Description Data Type PK/FK Nullable Example Values

productId Unique identifier for the product generated

by Firebase

string PK No PAC979822

name Product name string No Beverage Cup 700ml

category Product category string No Packaging

quantity Current stock quantity number No 23

minStockQty Minimum stock quantity before triggering

alert

number No 20

imageUrl URL of product image in Firebase Storage string No https://firebasestorage.googleapis.com/v0/b/

inventoryapp5c48a.firebasestorage.app/o/

105

productImages%2F1756528824262.jpg?alt

=media&token=49ea3d32-0118-4654-

8956-6ff803b6c14b

stockStatus Current stock status string No In Stock

5.3.3.2 Data Dictionary for users collection

User collection stores all user details, including login information.

Table 5. 3: Data Dictionary for users collection.

Attribute Description Data Type PK/FK Nullable Example Values

uid Unique identifier of user generated by

Firebase Authentication

string (Auth ID) PK No nV719KbgkaQc5sLvFOz9mQW04Rp2

email User’s registered email address string No ali@gmail.com

name User’s display name string No Ali

photoURL URL of user’s profile photo (empty if

not uploaded)

string Yes “ ”

106

5.3.3.3 Data Dictionary for containers collection

The containers collection stores container details such as dimensions and maximum load capacity.

Table 5. 4: Data Dictionary for containers collection.

Attribute Description Data Type PK/FK Nullable Example Values

containerId Unique identifier of container

generated by Firestore

string PK No 2DyYRuG8mnwTZnM7bMKC

ContainerName Name of the container string No Container 1

ContainerSize Dimensions of the container (L×W×H

in cm)

string No 420x200x220cm

ContainerWeight Weight capacity of the container string No 1500kg

107

5.3.3.4 Data Dictionary for cargoes collection

Cargoes collection stores cargo item details such dimensions and weight.

Table 5. 5: Data Dictionary for cargoes collection.

Attribute Description Data Type PK/FK Nullable Example Values

cargoId Unique identifier of cargo generated by

Firestore

string PK No VKXOd8ZUnTf3Tgmj4EAP

CargoName Name of the cargo item string No Cargo 1

CargoSize Dimensions of cargo (L×W×H in cm) string No 80×60 ×100 cm

CargoWeight Weight of the cargo string No 10kg

5.3.3.5 Data Dictionary for loadPlans collection

The loadPlans collection stores load plan details, arrangement data, and status.

Table 5. 6: Data Dictionary for loadPlans collection.

Attribute Description Data Type PK/FK Nullable Example Values

loadPlanId Unique identifier for the load plan string PK No 2

cargoes List of cargo items included in this array of objects No [{CargoName: "Cargo 2", CargoSize:

108

load plan "100x100x140cm", CargoWeight: "10kg",

quantity: 3}, …]

container Container details used in the plan object FK No
{ContainerName: "Container 1",

ContainerSize: "420x200x220cm",

ContainerWeight: "1500kg"}

date Date and time when the load plan

was created

timestamp No 2025-09-12T06:38:48.899Z

diagramImage Cargo arrangement diagram image string No iVBORw0KGgoAAAANSUhEUgAAA…

freeArea Remaining free area in container number No 2.05

usedArea Used area in container number No 6.35

totalArea Total area of container number No 8.4

status Status of the load plan string No finished/pending

109

5.4 Activity Diagram

The Activity Diagrams provide a visual representation of the workflows in the

proposed system. They illustrate the sequence of user actions and system

responses for various use cases, ensuring a clear understanding of process

flows, decision points, and interactions between the user and the system.

5.4.1 Register account Activity Diagram

Figure 5. 3: Register account Activity Diagram.

110

5.4.2 Login account Activity Diagram

Figure 5. 4: Login account Activity Diagram.

111

5.4.3 Scan item barcode Activity Diagram

Figure 5. 5: Scan item barcode Activity Diagram.

112

5.4.4 Update stock quantity activity diagram

Figure 5. 6: Update stock quantity activity diagram.

113

5.4.5 View inventory list activity diagram

Figure 5. 7: View inventory list activity diagram.

114

5.4.6 Add new item activity diagram

Figure 5. 8: Add new item activity diagram.

115

5.4.7 Delete inventory items Activity diagram

Figure 5. 9: Delete inventory items Activity diagram.

116

5.4.8 Generate Load Plan Activity diagram

Figure 5. 10: Generate Load Plan Activity diagram.

117

5.4.9 View the checklist Activity diagram

Figure 5. 11: View the checklist Activity diagram.

118

5.4.10 Generate PDF report Activity diagram

Figure 5. 12: Generate PDF report Activity diagram.

119

5.5 Algorithm Design

This section presents the algorithm applied in the system to optimize the cargo

arrangement process. The Binary Tree Bin Packing algorithm was chosen as it

provides an efficient way to place items within a container by recursively

partitioning available space. The following subsections describe the concept,

flow, pseudocode, and flowchart of the algorithm used in this project.

5.5.1 Algorithm Concept

The algorithm implemented in this project is the Binary Tree Bin Packing

algorithm, which is designed to efficiently arrange rectangular cargo items

within a container while maximizing space utilization. The concept is based on

representing the container as a binary tree, where each node corresponds to a

rectangular space available for item placement.

When a cargo item is placed into a node, that space is marked as used

and split into two child nodes. One representing the space to the right of the

item and the other representing the space below the item. This type of

subdivision is known as the Guillotine split, where space is recursively divided

into two smaller rectangular regions along straight horizontal or vertical lines.

Such recursive partitioning ensures that all available areas within the container

are systematically tracked and reused for subsequent items.

The algorithm processes cargo items sequentially, typically sorted in

descending order by their area to prioritize placement of larger items first. For

each item, the algorithm searches for a suitable node that can accommodate its

dimensions. If a fitting node is found, the item is placed, and the space is

subdivided. If no node can accommodate the item, it is classified as an unfit

item.

Unlike some general implementations of Binary Tree Bin Packing

that may allow item rotation, the algorithm used in this project is restricted to a

2D, non-rotational Guillotine split approach. This constraint was chosen to

maintain simplicity in the algorithm’s design and execution, ensuring that the

solution remains lightweight and efficient. Such a simplification is sufficient

for small and medium-sized enterprises (SMEs), where the focus is on ease of

use and practicality rather than handling highly complex packing scenarios. By

120

avoiding rotation, the algorithm preserves the natural orientation of cargo

items, making the loading process more straightforward for staff while still

maximizing space utilization.

By recursively splitting and tracking available regions, the Binary

Tree Bin Packing algorithm provides a balance between computational

efficiency and effective use of container space, making it well-suited for

applications in inventory management and cargo load planning.

5.5.2 Algorithm Flow

Table 5. 7: Algorithm Flow.

No Step Description

1 Input Preparation The algorithm receives the container dimensions

and cargo list. Cargo dimensions are parse to

{length, width, height} from strings such as

"420x220x200".

2 Expand Cargo List Each cargo with a given quantity is expanded into

individual cargo items (flatCargoes), each with a

unique index (_flatIdx).

3 Convert to 2D

Rectangles

Each cargo item is represented as a rectangle (w,

h), where w = length and h = width. Two versions

are generated which are in centimeters (for fit/unfit

checking) and in pixels (for UI rendering).

4 Sort by Area The cargo items are sorted in descending order by

area (w × h) so that larger items are placed first,

increasing packing efficiency.

5 Create Root Node The container is represented as the root node of a

binary tree, (x=0, y=0, w=containerLength,

h=containerWidth). Initially, it is unused and has

no children.

6 Iterative Placement For each cargo item, the algorithm attempts to find

a suitable node.

6.1 Find Node Call btFindNode(node, w, h):

 If node.used = true, recursively search

121

node.right and node.down.

 If the item fits within the node (w ≤ node.w

and h ≤ node.h), return the node.

 Otherwise, return null.

6.2 Placement

Decision

If a suitable node is found, place the item.

If no node fits, add the item to the unfit list.

6.3 Place Item Place the cargo at (node.x, node.y). Mark the node

as used.

6.4 Split Space Apply a guillotine split to divide remaining free

space.

 Right node, space to the right of the placed

item.

 Down node, space below the placed item.

6.5 Record Result Store the placement in the placements map (for fit

items) or in the unfit list (for items that cannot fit).

7 Continue Loop Repeat steps 6.1–6.5 until all cargo items are

processed.

8 Output Generation The algorithm returns two results which are

 Placements, list of successfully placed cargo

items with coordinates.

 Unfit Items, list of items that could not fit into

the container.

9 Visualization In the UI, successfully placed items are drawn on

the diagram at their coordinates. Unfit items are

listed below as “Not Fit Into Container.”

122

5.5.3 Pseudocode

The pseudocode describes how the Binary Tree Bin Packing algorithm

arranges cargo items within the container. Each item is processed individually,

starting with the largest by area. The algorithm searches for a suitable free

node within the container space using a recursive function that explores the

right and down child nodes until a fit is found, or no space is available. When

an item fits, it is placed at the node’s coordinates, and the node is split into two

sub-nodes to represent the remaining free space. If no suitable node is found,

the item is classified as unfit. This recursive placement and splitting process

continues until all items are considered, resulting in a final load plan layout

with clearly identified placed and unfit items.

Figure 5. 13: Pseudocode of Binary Bin Packing algorithm.

Input:

 cargoList – list of cargo items (length, width, quantity)

 container – container dimensions (length, width)

Output:

 placements – coordinates of placed items

 unfitItems – list of items that cannot fit

Begin

 1. Expand cargoList so that each unit of quantity is represented as an

individual item.

 2. Convert each cargo item into a 2D rectangle (w, h).

 3. Sort cargo items in descending order of area (w × h).

 4. Create the root node representing the entire container space.

 5. For each cargo item in cargoList do

 5.1 Attempt to find a node for the item:

 If node.used = true then

 recursively check node.right or node.down

nodeFound ← FindNode(node.right, item.w, item.h) ||

FindNode(node.down, item.w, item.h)

123

 Else if (item.w ≤ node.w) and (item.h ≤ node.h) then

 nodeFound ← node

 Else

 nodeFound ← null

 5.2 If nodeFound ≠ null then

 Place item at (node.x, node.y)

 node.used ← true

 Split remaining space into:

 1. Down node → (x = node.x, y = node.y + item.h,

w = node.w, h = node.h − item.h)

 2. Right node → (x = node.x + item.w, y = node.y,

w = node.w − item.w, h = item.h)

 Add placement to placements

 Else

 Add item to unfitItems

 End If

 End For

 6. Return placements and unfitItems

End

124

5.5.4 Flowchart

The flowchart illustrates the Binary Tree Bin Packing algorithm applied for

arranging cargo items in a container. The process begins by taking the

container dimensions and a list of cargo items defined by their length, width,

and quantity. The cargo list is expanded by quantity, converted into 2D

rectangles, and sorted by area in descending order. A root node is then created

to represent the available container space. For each cargo item, the algorithm

recursively searches for a suitable node by checking if the node is unused and

large enough to accommodate the item. If a valid node is found, the item is

placed at the node’s coordinates, the node is marked as used, and the

remaining space is split into right and down sub-nodes. The placement is then

recorded. If no valid node is found, the item is added to the unfit list. This

process continues until all items are processed, after which the algorithm

outputs both the successful placements and the list of unfit items.

Figure 5. 14: Flowchart of Binary Tree Bin Packing Algorithm (Part 1).

125

Figure 5. 15: Flowchart of Binary Tree Bin Packing Algorithm (Part 2).

126

5.5.5 Traceability Table of Flowchart, Pseudocode and Implementation Code

Table 5. 8: Traceability Table of Flowchart, Pseudocode and Implementation Code.

Flowchart Step Pseudocode Statement Implementation

Input container size and cargo list Input: cargoList, container Function getFitStatus2D(cargoes, container) and getInitialPositions(cargoes,

container) parse inputs

Expand cargoList by quantity Expand cargoList flatCargoes = cargoes.flatMap(cargo => Array(cargo.quantity).fill({...}))

Convert to 2D rectangles Convert each cargo into (w,h) const itemsPx = flatCargoes.map((cargo, idx) => {

 const s = parseSize(cargo.CargoSize);

 return { _flatIdx: idx, w: s.length * scaleLength, h: s.width *

scaleWidth, orig: idx };

 });

Sort by area descending Sort cargo items by w × h const sorted = [...itemsPx].sort((a, b) => (b.w * b.h) - (a.w * a.h));

Create root node root ←

{x=0,y=0,w,h,used=false}

const root = { x: 0, y: 0, w: binW, h: binH, used: false, right: null, down:

null } in btPackFixedBin

Find Node nodeFound ←

FindNode(node.right,w,h)

127

Does item fit? if (w ≤ node.w and h ≤

node.h)

const btFindNode = (node, w, h) => {

 if (!node) return null;

 if (node.used) {

 return btFindNode(node.right, w, h) || btFindNode(node.down, w, h);

 }

 if (w <= node.w && h <= node.h) return node;

 return null;

 };

Place item Place item at (node.x, node.y) placements.set(it._flatIdx, { x: usedNode.x, y: usedNode.y, w: it.w, h:

it.h });

Mark node as used node.used ← true const btSplitNode = (node, w, h) => {

 node.used = true;

Split node into Right and Down split into right/down nodes const btSplitNode = (node, w, h) => {

 node.used = true;

 node.down = { x: node.x, y: node.y + h, w: node.w, h: node.h - h,

used: false, right: null, down: null };

 node.right = { x: node.x + w, y: node.y, w: node.w - w, h:

h, used: false, right: null, down: null };

128

 return node;

 };

Add placement Add placement to placements const btPackFixedBin = (items, binW, binH) => {

 const root = { x: 0, y: 0, w: binW, h: binH, used: false, right: null, down:

null };

 const placements = new Map();

 const unplacedIdx = [];

 for (const it of items) {

 const node = btFindNode(root, it.w, it.h);

 if (node) {

 const usedNode = btSplitNode(node, it.w, it.h);

 placements.set(it._flatIdx, { x: usedNode.x, y: usedNode.y, w: it.w, h:

it.h });

 } else {

 unplacedIdx.push(it._flatIdx);

 }

 }

Unfit item Add item to unfitItems

129

 return { placements, unplacedIdx };

 };

Loop (More items?) for each cargo item const itemsSorted = [...items].sort((a, b) => (b.w * b.h) - (a.w * a.h));

Return placements & unfitItems return placements, unfitItems return { fitCargoes, unfitCargoes: mergedUnfit }; from getFitStatus2D

return positions; from getInitialPositions

130

5.6 Conclusion

In conclusion, this chapter has presented the overall system design of the

proposed mobile application. The design was structured into several sections,

including system architecture design, database design, activity diagrams, and

algorithm design. The architecture design described the three-layer structure of

the application, consisting of the presentation, application, and data layers. The

database design detailed the organization of data using Firebase Firestore

collections, supported by collection description tables and data dictionaries.

Furthermore, activity diagrams were used to illustrate the flow of key system

functionalities, offering clear visualizations of user–system interactions.

Additionally, the algorithm design section described the implementation of the

Binary Tree Bin Packing algorithm (2D, Guillotine split, no rotation), which

serves as the core mechanism for optimizing cargo arrangement within the

container.

131

CHAPTER 6

6 SYSTEM IMPLEMENTATION

6.1 Introduction

This chapter focuses on transforming the design specifications into a

functional mobile application. In this phase, all modules and components that

were designed in the previous chapter are developed and integrated to ensure

the system performs as intended.

6.2 Development Environment Setup

Both hardware and software environments were properly configured before

implementation.

6.2.1 Hardware Requirements

The mobile application was developed using a personal computer equipped

with an Intel i9 processor, 16 GB of RAM, and the Windows 11 operating

system. To validate the application on a real device and ensure compatibility

with real-world usage, an Android smartphone running Android 10 or higher

was used for testing. Alternatively, in the absence of a physical device, the

Android Studio emulator with the Pixel 4a API 30 configuration served as an

option for debugging and functional testing throughout the development

process.

6.2.2 Software Requirements

The system implementation required a set of software tools and technologies

to support the development process. The frontend of the application was built

using React Native with the Expo CLI, while JavaScript served as the main

programming language. The backend relied on Firebase services, including

Firestore was used as the real-time database to store product details, cargo

information, and load plans. Firebase Authentication handled secure user login

and account management, while Firebase Storage was utilized to store product

and cargo images.

132

For development tools, Visual Studio Code was chosen as the

primary code editor, and Android Studio was used to configure the emulator

and assist in debugging. Several supporting libraries were also included, such

as Expo-camera for barcode scanning, Expo-linear-gradient, Ionicons, and

FontAwesome5 for UI enhancements, and React Navigation to manage screen

transitions and navigation flows effectively.

6.2.3 Configuration Setup

This project starts with creating a Firebase project on

https://console.firebase.google.com/. The project included enabling Firestore

Database for storing product, cargo, and load plan data, Firebase

Authentication for user login and registration, and Firebase Storage for saving

images. A configuration file (google-services.json) was generated and later

added to the application folder.

 The mobile app was set up using Expo CLI by running ‘npx create-

expo-app <project-name>’. Node.js and npm were installed to support package

management, while Android Studio was configured to run the app using the

Pixel 4a emulator (API 30). This allowed the application to be tested both on

real devices and in the emulator.

 The application required several libraries to provide its core

functionalities, which were installed using npm. These included the Firebase

SDK for Firestore, Authentication, and Storage integration, expo-camera for

barcode scanning, and expo-linear-gradient for interface design. For

navigation management, @react-navigation/native and its related packages

were implemented, while Ionicons and FontAwesome5 were used to enhance

the user interface with icons. Additional supporting libraries were also

installed as needed to improve functionality and user experience.

 A dedicated configuration file (firebase.js) was created in the

project’s source folder. The Firebase configuration details including apiKey,

projectId, storageBucket, etc. were copied from the Firebase Console and

pasted into this file. Firestore, Authentication, and Storage were initialized and

exported, allowing the entire application to access Firebase services

consistently. With the development environment fully set up and Firebase

https://console.firebase.google.com/

133

successfully integrated, the system was ready to begin coding and

implementing the main application features.

Figure 6. 1: Firebase configuration shown in Firebase console.

Figure 6. 2: Firebase configuration pasted in the Firebase config file.

134

6.3 System Modules

The implementation of the system was divided into three major modules

which are User Management, Inventory Tracking, and Load Planning. Each

module was developed according to the design specifications and integrated

into the mobile application.

6.3.1 User Management Module

The User Management module is designed to handle account registration,

login, and access control for the application. It was implemented using

Firebase Authentication to provide secure account creation and login, while

Firestore is used to store user-related information such as name and email.

This module ensures that only authorized users can log in and access the

system’s features.

The first screen that appears when the user opens the application is

the Welcome Screen, as shown in Figure 6.3. This screen introduces the

application with a short description of its purpose, letting users know they are

entering an inventory tracking system with barcode scanning and automated

load planning. It provides a simple entry point with a Login button, which

directs users to the authentication process managed by the User Management

module.

Figure 6. 3: Welcome Screen.

135

The Login Screen allows users to access the system by entering their

email and password. As shown in Figure 6.4, the system validates the input

and will prompt an error message when the credentials are incomplete or

incorrect. For example, if the user enters only the email without a password,

the system displays a message indicating that both email and password field is

required. Similarly, if the user enters an invalid email format, such as missing

the proper Gmail structure, the system alerts the user with an error message.

Figure 6. 4: Login Screen with Input Validation and Error Messages.

 Only when both the email and password are provided in the correct

format will the login be successful, and the user will be redirected to the home

screen.

Figure 6. 5: Login Screen with Correct Email Format and Password.

136

After a successful login, the user is redirected to the Home Screen,

which serves as the main dashboard of the application. This screen provides a

quick overview of inventory status, including the number of products added,

total products available, items restocked, and low stock alerts. A section at the

bottom highlights items that have reached or fallen below the minimum stock

level, allowing users to take immediate action. From the Home Screen, users

can also navigate to other key features of the system such as product

management, barcode scanning, load planning, and personal profile through

the bottom navigation bar.

Figure 6. 6: Home Screen.

 When the user navigates to the Personal tab, the system displays the

logged-in user’s profile information, including their name and unique ID. This

screen also provides a button to access User Management, where all registered

accounts can be viewed. A logout option is also available, allowing users to

securely exit the application.

137

Figure 6. 7: Personal Screen.

The User Management screen shows a list of all registered users in

the system. Each record includes the username, email address, and unique user

ID, which are managed through Firebase Authentication and Firestore. This

feature allows users to view existing accounts stored in the database.

Figure 6. 8: User Management Screen.

138

The Add New User form enables the creation of new accounts by

entering a name, email, and password. Once submitted, the system processes

the registration using Firebase Authentication, while Firestore stores the

additional details for reference. This provides a simple way to expand the list

of users who can log in to the application.

Figure 6. 9: Add New User Screen.

6.3.2 Inventory Tracking via Barcode Scanning Module

The Inventory List displays all products stored in the system, including their

name, ID, category, image, available stock quantity, minimum stock quantity

and stock status. Users can easily browse the list, while items with low or zero

stock are highlighted with a red indicator for quick identification. The product

information is retrieved in real time from Firebase Firestore, ensuring that any

changes made during stock in or out updates or barcode scanning are

immediately reflected in the list.

139

Figure 6. 10: Inventory List Screen.

A search bar and category filters are provided at the top of the

Inventory List to make it easier for users to find specific products. The search

bar allows users to type in a product ID or name, and the system will instantly

display matching results from the Firestore database. This reduces the time

spent scrolling through long lists of products.

Figure 6. 11: Search Inventory List Using Product ID Prefix.

140

In addition, the category filters such as Ingredients, Packaging, and

Equipment allow users to narrow down the list based on product type. For

example, selecting ‘Ingredients’ will only display items categorized under that

group, hiding unrelated products.

Figure 6. 12: Inventory List with Category Filters.

In addition, the filter function allows users to narrow down the

product list based on stock status. Selecting In Stock displays only items that

currently have available quantity, while Out of Stock shows products with zero

units remaining. The Low Stock option highlights products that have reached

or fallen below their predefined minimum stock level. These filters help users

quickly focus on items that require restocking or monitoring.

Figure 6. 13: Inventory Filter Options.

141

Next, as shown in Figure 6.14, user is allowed to create a new

inventory item by entering the product name, quantity, category and minimum

stock quantity. An image can be attached by tapping the “+” placeholder.

When Save is pressed, the record is created in Firebase Firestore and

immediately appears in the Inventory List.

Figure 6. 14: Add Product Form.

When adding an image, the app requests permission and opens the

device gallery. After the user selects a photo, it is uploaded to Firebase Storage,

and the product document stores the image URL in Firestore.

Figure 6. 15: Select Image for Product from Gallery.

142

When a user taps on a product card in the Inventory List, the system

retrieves and displays the complete product details from Firebase Firestore.

This includes the product ID, name, category, available quantity, minimum

stock quantity, and current stock status (e.g., In Stock, Low Stock, or Out of

Stock).

Figure 6. 16: Product Detail Screen.

From Product Details screen, the user can also choose to update

product details. By clicking the ‘Edit’ button and switching into edit mode,

fields such as name and category can be modified. After pressing Save, the

updated values are written back to Firestore, and the changes are immediately

reflected in the inventory list.

143

Figure 6. 17: Product Detail Screen in Edit Mode.

The system also provides the option to delete products that are no

longer in use. When a user selects the delete option from the product detail

screen, a confirmation dialog appears to prevent accidental deletion. Only after

the user confirms by pressing Delete will the product be permanently removed

from Firebase Firestore. If the user cancels, no changes are made, and the

record remains intact.

Figure 6. 18: Product Deletion with Confirmation Dialog.

144

The system also provides stock in or out functions directly from the

product detail screen, mainly used when updating the quantity of a single

product. When the user selects In, a dialog appears to enter the quantity to be

added to stock, while choosing Out allows the user to specify the quantity to

be deducted. Stock levels are updated accurately and in real time within the

Firestore database. The system then automatically compares the updated stock

with the minimum stock quantity. If the quantity falls below the threshold, the

status changes to Low Stock, highlighted in red for immediate attention.

Conversely, when stock is replenished above the threshold, the status updates

to In Stock, marked in green. This feature helps maintain effective inventory

control and prevents stock shortages.

Figure 6. 19: Stock Updated to Low After Product Out.

Figure 6. 20: Stock Restored to In Stock After Product In.

145

The Scan function provides a faster way to manage stock quantities

for multiple products at once. Users can simply scan the QR codes attached to

product packaging, and the system will automatically retrieve product details

using product id from the Firestore database. Once scanned, the products

appear in a list with their current quantities and stock status. From here, users

can adjust the quantity by increasing or decreasing the values for each product.

This feature is especially useful when handling bulk stock updates, such as

during goods receipt or dispatch, since it allows users to update several

products in a single session.

After adjustments, users can confirm by selecting either Product In

(All) or Product Out (All), which updates the stock levels of all scanned

products in real time. The system also validates against the minimum stock

quantity, updating each product’s status accordingly.

146

Figure 6. 21: Barcode Scanning for Bulk Product In/Out Updates.

6.3.3 Load Planning Module

When users navigate to the Load Plan module, they are presented with three

main options which are Plan Load, Set Common Size, and History. This serves

as the entry point for creating new load arrangements, defining frequently used

sizes, or reviewing past load plans.

Figure 6. 22: Load Plan Main Menu.

147

In the screen shown in Figure 6.23, users can register a new container

by providing details such as container name, dimensions (length × width ×

height), and maximum load weight. Alongside container setup, users can add

cargo items by entering cargo name, dimensions, and weight.

Figure 6. 23: Add New Container and Cargo Screen.

In the Plan Load screen, users can begin by selecting both a container

and cargo items. The interface provides separate sections for ‘Container’ and

‘Cargo’ with a Confirm Selection button to proceed once the choices are made.

The system displays all available containers saved earlier. Users can choose

from multiple options, depending on the vehicle or container type required for

the load plan. Once a container is chosen, its details such as dimensions and

maximum load capacity are displayed for confirmation.

148

Figure 6. 24: Selecting Container from List.

The user can then select different cargo items to include in the load

plan. Each cargo is displayed with its dimensions and weight, allowing users

to make informed decisions on what to load. After selecting cargo items, the

system allows users to adjust the quantity for each type of cargo.

Figure 6. 25: Adding Cargo and Adjusting Cargo Quantities.

149

If the total cargo weight goes beyond the selected container’s

maximum limit, the system issues a warning message ‘Weight Limit

Exceeded’. This prevents unsafe or invalid load plans and ensures compliance

with container restrictions.

Figure 6. 26: Exceeding Container Weight Limit.

After selecting the desired container and cargo, the user clicks the

‘Confirm Selection’ button to proceed. At this stage, the system automatically

arranges the selected cargo within the container using the load planning

algorithm. As shown in Figure 6.27, the system generates an Actual Ratio

Diagram that visually represents the arrangement of the cargo. Each cargo is

both color-coded and labelled with text, ensuring clear distinction between

different items. The inclusion of text labels also makes the diagram

understandable even when printed in black and white, so users are not

restricted when downloading or sharing the load plan in different formats.

 In addition, the system calculates and displays space utilization

details, including the total container space, used space, and free space. This

information helps the user evaluate how efficiently the cargo has been packed.

If certain cargo cannot be fitted into the container, the system highlights them

150

under the ‘Not Fit into Container’ section. This ensures users are aware of

unplaced items immediately and can make adjustments such as selecting a

larger container or splitting cargo into multiple containers.

Figure 6. 27: Automatic Cargo Arrangement.

Besides the automatic arrangement, the system also allows users to

manually adjust cargo placement through a drag-and-drop interface as shown

in Figure 6.28. This feature allows users to manually adjust cargo positions if

they prefer customized arrangement instead of the automatically generated one.

151

Figure 6. 28: Manual Adjustment of Cargo Placement Using Drag-and-Drop.

After the load plan is saved, the system automatically records it in the

Load Plan History, as shown in Figure 6.29. Each saved entry is listed with a

unique ID, container details, total used and free space, the list of cargoes

included, and the date and time the plan was created.

Figure 6. 29: Load Plan History screen.

152

Users can filter the history by All, Pending, or Finished status to

quickly locate specific load plans. A search bar is also available for searching

directly by load plan ID.

Figure 6. 30: Load Plan Shown with Filters and Search Option.

Selecting a particular history record displays the full details of that

plan, as illustrated in Figure 6.31. The screen shows the container used, cargo

details with their dimensions, weight, and quantity, along with a color-coded

arrangement diagram. Below the diagram, the used space and free space

values are shown.

Figure 6. 31: Detailed View of a Selected Load Plan.

153

After saving a load plan, the system provides the option to generate a

PDF report by clicking the PDF button. The PDF can be shared, downloaded,

or printed directly from the application for documentation or operational use.

This feature ensures that load plans can be easily distributed to logistics staff,

stored for record-keeping, or printed for on-site reference.

Figure 6. 32: Options to Share, Download, or Print the Load Plan.

As shown in Figure 6.33, the PDF report includes container

specifications, cargo details, total used and free space, cargo arrangement

order, and a visual diagram of the actual placement. Additionally, a QR code is

embedded in the PDF, allowing users to quickly retrieve and view the same

load plan details in the system by scanning it.

Send to

 Friends
Browser

Add to

WeChat

Favourite

s

Email

Share to Nearby Devices

Share to Computer

Print

154

Figure 6. 33: Generated PDF report.

After generating and saving the load plan, users can retrieve it by

scanning the QR code printed on the PDF. When the QR code is scanned, the

corresponding load plan details are automatically displayed in the app.

155

Figure 6. 34: Scanning the QR code from the printed load plan PDF.

The system then provides a Cargo Arranging Checklist, as shown in

Figure 6.35, which lists all the cargo items that need to be placed into the

container. This checklist guides the user step by step in following the planned

arrangement generated earlier by the system, ensuring that no cargo item is

missed out during the physical loading process. Each item can be marked as

‘Arranged’ once it has been physically placed inside the container. After all

items have been marked as arranged, the user finalizes the process by clicking

the ‘Save (Settled)’ button. At this stage, the status of the load plan is

automatically updated from Pending to Finished, ensuring that the plan is

properly tracked and updated in the system.

156

Figure 6. 35: Cargo arranging checklist.

The system also provides a delete function. When the user chooses to

delete a load plan, the system displays a confirmation dialog, as shown in

Figure 6.36. This dialog ensures that the user does not accidentally remove an

important record. The dialog presents two options which is Cancel, which

aborts the action and retains the load plan, or Delete, which permanently

removes the selected plan from the system.

Figure 6. 36: Confirmation dialog for deleting a load plan.

157

CHAPTER 7

7 SYSTEM TESTING

7.1 Introduction

In this project, system testing is conducted to evaluate the functionality,

usability, and overall quality of the developed application. This chapter

presents and discusses the testing approaches carried out, including unit testing

to verify individual components, integration testing to ensure proper

interaction between modules, the System Usability Scale (SUS) test to assess

user experience, and the User Acceptance Test (UAT) to ensure that the

system meets user needs and project objectives.

7.2 Unit Testing

Unit testing focuses on testing individual components or modules of the

system to ensure they function correctly in isolation. In this project, a total of

22 test cases were executed, covering all three main modules of the application.

Each of these test cases was further expanded into detailed scenarios, resulting

in a total of 91 sub-test cases. This approach ensured that both normal and

exceptional conditions were thoroughly tested, covering functional correctness,

data handling, and user interactions.

158

7.2.1 Unit Test Cases Listing

Table 7. 1: Summary of Unit Test Cases Listing.

Test Module Test Case ID Test Case Title Status

User

Management

TC01 Add new user Pass

TC02 Login account Pass

TC03 Logout Pass

Inventory

Tracking

TC04 Home Dashboard Pass

TC05 View Products List Pass

TC06 Add new product Pass

TC07 View Product Detail Pass

TC08 Edit Product Info Pass

TC09 Stock Update using Product In Pass

TC10 Stock Update using Product Out Pass

TC11 Delete Product Pass

TC12 Camera Permission and Preview Pass

TC13 Scan the QR code on inventory

item

Pass

Load

Planning

TC14 Navigate from Load Plan home Pass

TC15 Container and cargo selection Pass

TC16 Confirmation Details and Actual

Ratio Diagram

Pass

TC17 Generate and save load plan Pass

TC18 View load plan history Pass

TC19 View load plan detail Pass

TC20 Arrange cargo checklist Pass

TC21 Set common size for containers

and cargo

Pass

TC22 Export a plan to PDF Pass

159

7.2.2 Unit Test Cases

7.2.2.1 User Management Module

Table 7. 2: Unit Test Case of Add New User.

Test Case Title Add new user Test Module User Management

Test Case ID TC01

Pre-conditions The application is launched and the user is logged in. Navigate to User Management screen. “Add New User” modal is

opened after tapping the “+” button.

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

UT01 Add user with valid

name, email, password

1. Enter valid name, email,

and password.

2. Tap Add.

Name: abc

Email: abc@gmail.com

Password: Abc12345

New user created and

info stored in Firestore.

Success alert shown.

User displayed in list.

Pass

UT02 Add new user with

empty name

1. Leave Name field blank.

2. Enter valid email and

password.

3. Tap Add.

Name: “ ”

Email: empty@gmail.com

Password: Abc12345

Alert “Please fill all

fields.” shown. No user

created.

Pass

160

UT03 Add new user with

Invalid email format

1. Enter valid name and

password.

2. Enter invalid email.

3. Tap Add.

Name: yanxin

Email: yanxin@

Password: yanxin77777

Error alert displayed for

invalid email. User not

created.

Pass

Table 7. 3: Unit Test of Login account.

Test Case Title Login account Test Module User Management

Test Case ID TC02

Pre-conditions User is on the Login Screen. At least one user account exists in Firebase Authentication.

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

UT04 Login with predefined

(valid) info

1. Enter valid email and

password created by

admin.

2. Tap Login.

Email: abc@gmail.com

Password: Abc12345

Successfully logged in

and navigates to Home

screen.

Pass

UT05 Login with not

predefined

(unregistered) info

1. Enter email not in

system and password.

2. Tap Login.

Email: nono@gmail.com

Password: Abc12345

Error alert “Invalid

credentials” shown.

Stay on Login screen.

Pass

UT06 Login with invalid 1. Enter valid registered Email: abc@gmail.com Error alert “Invalid Pass

161

password email.

2. Enter wrong password.

3. Tap Login.

Password: wrong123 credentials” shown.

Stay on Login screen.

UT07 Login with empty fields 1. Leave email and

password blank.

2. Tap Login.

Email: “ ”

Password: “ ”

Alert “Please enter your

email and password”

shown. No login

attempt made.

Pass

UT08 After login, Personal

screen shows correct

Name and ID

1. Login with valid

credentials.

2. Navigate to Personal

tab.

Email: abc@gmail.com

Password: Abc12345

Personal screen

displays name, abc, ID

and Avatar shows first

letter A.

Pass

Table 7. 4: Unit Test Case of Logout.

Test Case Title Logout Test Module User Management

Test Case ID TC03

Pre-conditions User is already logged in successfully and navigates to the Personal tab screen.

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

UT09 Successful logout 1. Tap Logout icon. - User session cleared. Pass

162

App navigates back to

Welcome Screen.

UT10 Attempt to access app

after logout

1. Log out successfully.

2. Relaunch the app or

navigate to protected

screen.

- App forces user to

Login Screen. User

cannot access features

until login again.

Pass

7.2.2.2 Inventory Tracking via Barcode Scanning Module

Table 7. 5: Unit Test Case of Home Dashboard.

Test Case Title Home Dashboard – Hamburger Menu & Navigation Test Module Inventory Tracking

Test Case ID TC04

Pre-conditions User is on Home screen. Hamburger icon visible at top-left.

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

UT11 Inventory analysis info

is displayed

1. Open Home screen.

2. Wait for Firestore data

to load.

Products in Firestore with

different quantity,

stockStatus, minStockQty.

All 4 cards display

correct values. The

Low Stock section lists

Pass

163

items with current

stock & restock

numbers.

UT12 Open menu sheet 1. Tap hamburger menu

icon.

- Side sheet opens. Pass

UT13 Close by tapping

outside

1. Tap hamburger menu

icon.

2. Tap outside overlay.

- Menu closes. Pass

UT14 Navigate to Products

1. Tap hamburger menu

icon.

2. Tap ‘Products’.

- Menu closes; navigates

to Products screen.

Pass

UT15 Navigate to Load Plan 1. Tap hamburger menu

icon.

2. Tap ‘Load Plan’.

- Menu closes; navigates

to Load Plan screen.

Pass

Table 7. 6: Unit Test Case of View Products List.

Test Case Title View Products List Test Module Inventory Tracking

164

Test Case ID TC05

Pre-conditions User logged in and on Products screen. Firestore products table exists.

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

UT16 Display all product in

list

1. Open Products screen Products: ING285956,

EQT860842, PAC825080

All products are listed

with image, productId,

name, and quantity.

Pass

UT17 Search by product name 1. Enter “Longan” in

search bar

Name = “Longan” Only “Longan” item

appears in the list.

Pass

UT18 Search by product ID 1. Enter “EQT839431” in

search bar

ID = “EQT839431” Only “1000ML

Jug&Lid” item appears.

Pass

UT19 Filter by category 1. Tap Packaging tab Products with category

Packaging

Only Packaging

products (PAC…)

displayed.

Pass

UT20 Filter by stock status 1. Tap filter icon

2. Select Out of Stock

ING194617 (qty=0) List shows only out-of-

stock items.

Pass

UT21 View Low Stock

Products

1. View product list EQT860842 qty=16,

min=20

Red dot shown beside

low stock products.

Pass

UT22 View Product Detail 1. Tap any product card PAC825080 Show correct product Pass

165

info.

Table 7. 7: Unit Test Case of Add New Product.

Test Case Title Add new product Test Module Inventory Tracking

Test Case ID TC06

Pre-conditions Taps ‘+’ floating button on product list screen to open Add Product form.

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

UT23 Add product with all

valid fields

1. Tap image box and

select product image

from gallery.

2. Enter valid Product

Name, Quantity,

Category, Min Stock

Qty.

3. Tap Save button.

Name: “Honey Pearl”

Qty: 30

Category: Ingredients

Min: 20

New product added

with success alert

shown.

Pass

UT24 Add product with

missing fields

1. Leave Product Name

blank..

2. Tap Save button.

Name: “ ”

Qty: 20

Category: Ingredients

Alert popup displayed

with message “Please

fill in all fields.” Stay

Pass

166

Min Stock Qty: 10 on Add Product screen.

UT25 Add product without

image

1. Do not select any image.

2. Fill in all other valid

fields.

3. Tap Save button.

Name: Bamboo Straw

Qty: 15

Category: Packaging

Min Stock Qty: 30

Product added and

visible in list. Default

placeholder image

shown.

Pass

UT26 Verify that adding a

product assigns the

correct product ID

prefix based on its

category

1. Select category from

dropdown.

2. Enter valid product info.

3. Tap Save.

Category: Ingredients

Name: Purple Taro Balls

Qty: 25

Min Stock Qty: 20

Success alert shown. In

product list, productId

starts with ING. New

product visible under

“Ingredients” tab.

Pass

Table 7. 8: Unit Test Case of View Product Detail.

Test Case Title View Product Detail Test Module Inventory Tracking

Test Case ID TC07

Pre-conditions From Products list, open any product’s Detail screen.

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

UT-27 View product details 1. Open Products list. - Detail screen opens Pass

167

2. Tap a product card. showing Product name,

ID, Category, Quantity,

Min stock qty, Stock

status and Product

image or placeholder.

Table 7. 9: Unit Test Case of Edit Product Info.

Test Case Title Edit Product Info Test Module Inventory Tracking

Test Case ID TC08

Pre-conditions From Products list, open any product’s Detail screen.

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

UT28 Edit product name and

category

1. Tap Edit icon.

2. Change product name

and category.

3. Tap Save.

4. Confirm changes.

Old: 700ml Shaker, Cat:

Equipment.

New: 500ml Shaker, Cat:

Packaging.

Confirmation popup

shown. Success alert

displayed (“Product

updated”). Screen

updates to show new

name and category.

Pass

UT29 Cancel edit 1. Tap Edit icon. Change name to “Test Discard confirmation Pass

168

2. Change fields.

3. Tap Cancel.

4. Confirm discard.

Item”. popup appears. On

confirm, changes not

saved. Detail screen

remains with original

values.

Table 7. 10: Unit Test Case of Stock Update Using Product In.

Test Case Title Stock Update using Product In Test Module Inventory Tracking

Test Case ID TC09

Pre-conditions From Products list, open any product’s Detail screen.

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

UT30 Add stock to product 1. Tap IN option.

2. Enter quantity to add.

3. Tap Add.

Current qty=16.

Add=5.

Success alert displayed:

“Quantity updated”.

Product quantity

updates to 21.

Pass

UT31 Add stock that changes

status from Low Stock

to In Stock

1. Tap IN option.

2. Enter quantity that raises

stock above min.

Current qty = 10

Min stock = 20

Add = 15

Success alert displayed.

Quantity increases to

25. Status changes from

Pass

169

3. Tap Add. Low Stock (red dot) to

In Stock (no red dot).

UT32 Add stock that keeps

status as Low Stock

1. Tap IN option.

2. Enter small quantity that

keeps stock below min.

3. Tap Add.

Current qty = 5

Min stock = 20

Add = 10

Success alert displayed.

Quantity increases to

15. Status remains Low

Stock, red dot stays.

Pass

UT33 Cancel adding stock 1. Tap IN option.

2. Enter quantity.

3. Tap Cancel.

Any value Stock unchanged.

Screen remains with

original quantity. No

alert shown.

Pass

Table 7. 11: Unit Test Case of Stock Update using Product Out.

Test Case Title Stock Update using Product Out Test Module Inventory Tracking

Test Case ID TC10

Pre-conditions From Products list, open any product’s Detail screen.

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

UT34 Reduce stock 1. Tap OUT option.

2. Enter quantity to

Current qty=16.

Subtract=5

Confirmation popup

shown. Success alert

Pass

170

subtract.

3. Tap Subtract.

displayed. Product

quantity decreases to

11.

UT35 Prevent negative stock 1. Tap OUT option.

2. Enter qty larger than

current stock.

3. Tap Subtract.

Current qty=5.

Subtract=10.

Alert popup shown:

“Quantity cannot be

negative.” Quantity

unchanged.

Pass

UT36 Add stock that changes

status from In Stock to

Low Stock

1. Tap OUT option.

2. Enter quantity that

lowers stock below min.

3. Tap Subtract.

Current qty = 25

Min stock = 20

Subtract = 10

Success alert displayed.

Quantity updates to 15.

Status indicator changes

to Low Stock

Pass

UT37 Reduce stock to 0 (Out

of Stock)

1. Tap OUT option.

2. Enter full qty value.

3. Tap Subtract.

Current qty = 8

Subtract = 8

Success alert displayed.

Quantity updates to 0.

Status label changes to

Out of Stock.

Pass

UT38 Cancel reduce stock

action

1. Tap OUT option.

2. Enter any quantity.

3. Tap Cancel.

Qty input = 5 Action cancelled. No

alert shown. Quantity

remains unchanged.

Pass

171

Table 7. 12: Unit Test Case of Delete Product.

Test Case Title Delete Product Test Module Inventory Tracking

Test Case ID TC11

Pre-conditions From Products list, open any product’s Detail screen.

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

UT39 Delete product from

inventory

1. On Detail screen, tap

Delete option.

2. Confirm delete action.

Product: Bamboo

Toothpick.

Delete confirmation

popup and success alert

“Product deleted”

shown. Deleted product

no longer visible in list.

Pass

Table 7. 13: Unit Test Case of Camera Permission and Preview.

Test Case Title Camera Permission and Preview Test Module Inventory Tracking

Test Case ID TC12

Pre-conditions User is logged in and navigates to Scan screen.

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

172

UT40 Request camera

permission

1. Open Scan with no prior

permission

2. Tap Allow Camera

- Modal “Camera Access

Needed” appears; after

allowing, modal closes

and camera preview

with scan frame is

shown.

Pass

UT41 Show camera preview 1. Open Scan screen with

permission granted.

- Fullscreen camera view

renders with green-

cornered square scan

frame.

Pass

Table 7. 14: Unit Test Case of Scan the QR code on inventory item.

Test Case Title Scan the QR code on inventory item Test Module Inventory Tracking

Test Case ID TC13

Pre-conditions User is logged in and navigates to Scan screen. Camera permission granted.

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

UT42 Scan valid product QR 1. Point camera at valid

QR.

{"productId":"ING123456",

"name":"Longan"}

Longan product card

appears with correct

Pass

173

2. Wait for scan. ID, name, qty, status.

UT43 Scan unknown product,

which is not in database

1. Scan QR whose

productId isn’t stored

{"productId":"ING999999",

"name":"Unknown"}

Alert “The product is

not found. Please add it

first.” No card is added;

Pass

UT44 Scan invalid QR (non-

JSON)

1. Point camera at invalid

QR.

1234567890 Alert pops up “Scanned

Barcode: 1234567890”.

User remains on Scan;

no crash.

Pass

UT45 Rescan after a scan 1. Successfully scan a

product.

2. Tap Tap to Scan Again.

Any valid QR Camera preview

reopens.

Pass

UT46 Scan QR code to view

scanned product card

1. Land on Scanned

Product Detail after

valid scan.

{"productId":"ING123456",

"name":"Longan"}

Card displays product

image, ID, name, qty,

and status.

Pass

UT47 Scan same product QR

twice

1. Scan product A.

2. Scan product A again

using ‘Scan’ icon button

in scanned product

{"productId":"ING123456",

"name":"Longan"}

{"productId":"ING123456",

"name":"Longan"}

Only one card for

Longan is shown.

Duplicate scans of

same item do not add

Pass

174

detail. multiple cards.

UT48 Adjust quantity using

+/–

1. On Scanned Product

Detail, tap + twice then

– once.

Default 1 → + → + → – Quantity field updates

to 2.

Pass

UT49 Adjust quantity going

below 1

1. On Scanned Product

Detail, tap – repeatedly.

Default = 1 → – → – Quantity cannot drop

below 1. Field stays at

1.

Pass

UT50 Adjust every item

quantity

1. Scan two products.

2. Tap + once for item A.

3. Tap + twice for item B.

Item A: 1 → 2

Item B: 1 → 3

Each card updates

independently. Item A

shows qty 2. Item B

shows qty 3.

UT51 Update a single

scanned item with

Product In (All)

1. Scan only one item.

2. Set quantity to 3.

3. Tap Product In (All).

Add = 3 Success alert: “Product

added successfully”.

The scanned list clears

and app returns to Scan

screen.

Pass

UT52 Check the reset

quantity after update

1. Scan item A.
Qty set = 5 After update, when

item A is scanned

Pass

175

2. Set quantity = 5.

3. Tap Product In (All).

4. Scan item A again.

again, its quantity

resets to default 1 in the

new card.

UT53 Update multiple items

with Product In (All)

1. Scan item A and B.

2. Set A=2, B=5.

3. Tap Product In (All).

A add 2; B add 5 Success alert shown,

list clears and app

navigates back to Scan.

Pass

UT54 Update a single

scanned item with

Product Out (All)

1. Scan item A.

2. Set quantity to 3.

3. Tap Product Out (All).

Current 5, out 3 Success alert shown,

list clears and app

returns to Scan.

Pass

UT55 Update multiple items

with Product Out (All)

1. Scan item with stock 10.

2. Set Out=4.

3. Tap Product Out (All).

Current 10, Out 4 Success alert shown,

list clears and app

returns to Scan. No

negative UI states.

Pass

UT56 Scan one item and try

to subtract more than

current stock

1. Scan one item.

2. Set Out = 5 while

current stock = 3.

3. Tap Product Out (All).

Current 3, Out 5 Alert displayed:

“Cannot remove more

than current stock for

<product name>.”

Pass

176

No changes made and

return to scan screen.

UT57 Scan multiple items

and one item has

subtraction larger than

stock

1. Scan item A

2. Scan item B

3. Set Out A = 5, Out B =

4.

4. Tap Product Out (All).

A: Current = 3, Out = 5

B: Current = 10, Out = 4

Alert displayed:

“Cannot remove more

than current stock for

<product A>.” Valid

item B still processes

and updates.

Pass

UT58 Scan another QR from

detail screen

1. On Scanned Product

Detail, tap the QR icon.

- App navigates back to

Scan and the camera

preview is active for

the next scan.

Pass

7.2.2.3 Load Planning Module

Table 7. 15: Unit Test Case of Navigate from Load Plan home.

Test Case Title Navigate from Load Plan home Test Module Load Planning

Test Case ID TC14

177

Pre-conditions The user is logged in and on the Load Plan tab which shows three buttons labelled Plan Load, Set Common Size, and History.

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

UT59 Navigate to the Plan

Load screen

1. Tap the Plan Load

button

- The Plan Load screen

appears with the

Container section, the

Cargo section, and the

Confirm Selection

button

Pass

UT60 Navigate to the Set

Common Size screen

1. Tap the Set Common

Size button

- The Set Common Size

screen appears with the

Add New Container

form and the Add New

Cargo form

Pass

UT61 Navigate to the History

screen

1. Tap the History button - The Load Plan History

list appears with the

search box and load

plan history.

Pass

178

Table 7. 16: Unit Test Case of Container and cargo selection.

Test Case Title Container and cargo selection Test Module Load Planning

Test Case ID TC15

Pre-conditions The user is on the Plan Load screen.

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

UT62 Show available

container and cargo

lists

1. Open the Plan Load

screen.

2. Tap ‘+’ button of the

container and cargo.

- Displays a list of

containers and cargo

items.

Pass

UT63 Selects one container 1. Tap a container card Container 1 The selected container

card is highlighted.

Pass

UT64 Selects two container 1. Tap one container card.

2. Tap another container

card.

Container 1, Container 2 Only the last selected

container remains

highlighted.

Pass

UT65 Add one cargo item to

the selection

1. Tap a cargo card. Cargo 2 The cargo appears in

the Selected Cargo

panel with a default

quantity of one.

Pass

179

UT66 Add multiple cargo

items to the selection

1. Tap a cargo card.

2. Tap one more cargo

card.

Cargo 2, Cargo 4 Both cargo items

appear in the Selected

Cargo panel with

default quantity of one.

Pass

UT67 Adjusts the quantity of

a selected cargo

1. In the Selected Cargo

panel, tap the ‘+’ button

twice.

2. Tap the ‘-’ button once.

Default quantity = 1 The quantity increases

to 2 and cannot drop

below 1.

Pass

UT68 Add cargo that exceeds

container weight

capacity

1. Select a container with

maximum weight

capacity of 1500 kg.

2. Add multiple cargoes

with total weight of

1600 kg.

3. Tap Confirm Selection.

Container 1 (1500 kg),

Cargo A + Cargo B = 1600

kg

An alert ‘Total cargo

weight exceeds

container weight.

Cannot add more’

appears, and no further

additions can be made.

Pass

Table 7. 17: Unit Test Case of Confirmation Details and Actual Ratio Diagram.

Test Case Title Confirmation Details and Actual Ratio Diagram Test Module Load Planning

180

Test Case ID TC16

Pre-conditions The user has selected at least one container and one cargo, then tapped “Confirm Selection.”

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

UT69 Confirmation details

show selected container

and cargo information

1. Select one container and

one cargo.

2. Tap Confirm Selection.

Container 1: 420×200×220

cm, 1500 kg.

Cargo 1: 100×100×140 cm,

10 kg, Qty: 1

Confirmation screen

displays container name,

dimensions, max weight,

and cargo list with

dimensions, weight, and

quantity.

Pass

UT70 Actual ratio diagram

displays cargo

placement

proportionally

1. Add multiple cargo

items to a container.

2. Tap Confirm Selection.

Container 1. Cargo 2

quantity one. Cargo 4

quantity two.

Diagram renders blocks

representing each cargo

with distinct labels and

sizes, fitting

proportionally inside

container area.

Pass

UT71 Space utilization

percentage is calculated

1. Add cargos that partially

fill container.

Container capacity = 8.4 m².

Cargos total area = 3.0 m².

Space utilization shows

“Used Space: 3.00 m²

Pass

181

correctly 2. Tap Confirm Selection. (35.7%)” and “Free

Space: 5.40 m² (64.3%)”.

UT72 Handles exceeding

cargo that does not fit

visually

1. Add a cargo larger than

the container

dimensions.

2. Tap Confirm Selection.

Container:420×200×220 cm

Cargo: 500×250×300 cm.

Cargo not added to

diagram and appears

under ‘Cargo(es) not fit

into container’ section

Pass

Table 7. 18: Unit Test Case of Generate and save load plan.

Test Case Title Generate and save load plan Test Module Load Planning

Test Case ID TC17

Pre-conditions The user is on the Confirmation Details screen after selecting a container and one or more cargo items. The diagram and

space summary are visible.

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

UT73 Saves a valid load

plan

1. Add container and

cargo items.

2. Update the

quantity of cargo.

3. Tap Save Load

Container 1: 420×200×220

cm, 1500 kg. Cargo 2 qty

1 (10 kg), Cargo 4 qty 2

(200 kg each)

A success alert appears: “Load

plan saved successfully.”

Pass

182

Plan.

UT74 Saved plan is visible

in History after

success

1. Save a valid plan.

2. Navigate to

History.

Recently saved plan A new card appears with an

auto-incremented ID, container

info, used and free space, date,

and cargo summary. The status

is Pending until arranged.

Pass

Table 7. 19: Unit Test Case of View load plan history.

Test Case Title View load plan history Test Module Load Planning

Test Case ID TC18

Pre-conditions At least one load plan may exist. The user is on the History screen.

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

UT75 The list shows existing

load plans with key fields

1. Open the History screen. Plans exist The screen renders load plan cards

with details.

Pass

UT76 The screen shows an

empty state when there

are no plans

1. Open History with no

records.

No plans Empty state appears that says “No

load plans found” with no list

items.

Pass

UT77 Scroll to view more plans 1. Open History with many >10 plans Additional cards appear smoothly Pass

183

records.

2. Scroll down the list.

as the user scrolls, no layout

jumps or overlaps.

UT78 Search by an exact plan

ID

1. Type an existing ID in the

search box.

ID: 4 Only the card for ID: 4 remains in

the list.

Pass

UT79 Search by a non-existent

ID

1. Enter an ID that does not

exist.

ID: 999 No results found Pass

UT80 Tapping a card opens the

plan detail

1. Tap a plan card. Any listed

plan

The app navigates to Load Plan

Detail for that ID.

Pass

UT81 Opens a plan by scanning

a valid QR code

1. Tap the scan icon.

2. Scan a valid load plan QR.

Valid QR

encodes

plan ID 1

The camera view closes and Load

Plan Detail (ID: 1) opens.

Pass

UT82 Handles an invalid QR

code

1. Tap the scan icon.

2. Scan a random QR not

linked to any plan.

Random

text

An alert appears ‘Not found’ Pass

Table 7. 20: Unit Test Case of View load plan detail.

Test Case Title View load plan detail Test Module Load Planning

Test Case ID TC19

184

Pre-conditions The user has opened a load plan from the History screen or scanned a valid QR code. The Load Plan Detail screen is

displayed.

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

UT83 Delete a plan 1. Tap the Delete icon.

2. Confirm deletion in the

popup.

Plan ID: 5 A success alert appears

and navigated back to

the History screen

where Plan ID 5 is no

longer listed.

Pass

Table 7. 21: Unit Test Case of Arrange cargo checklist.

Test Case Title Arrange cargo checklist Test Module Load Planning

Test Case ID TC20

Pre-conditions The user opened a pending load plan from History or scanned a valid QR code and navigated to the Arrange Cargo screen.

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

UT84 Marks all cargo as

arranged and saves

1. Tap each cargo row to

mark as arranged.

2. Tap Save (Settled).

Cargo A qty 2, Cargo B

qty 3

The Save (Settled)

button becomes enabled

only when all cargo are

marked. After tapping

Pass

185

Save, the plan status

changes to Finished in

History.

UT85 Prevents saving if some

cargoes are not

arranged

1. Mark only one cargo

row as arranged.

2. Try tapping Save

Cargo A arranged, Cargo

B not arranged

The Save (Settled)

button remains

disabled.

Pass

UT86 Save action updates the

plan status

1. Arrange all cargo.

2. Tap Save (Settled).

3. Return to History.

Plan ID: 11 The plan card in

History now shows

status as Finished.

Pass

UT87 Cancel arrangement 1. Return to previous page

before marking cargo.

Any pending plan The status remains

Pending.

Pass

Table 7. 22: Unit Test Case of Set common size for containers and cargo.

Test Case Title Set common size for containers and cargo Test Module Load Planning

Test Case ID TC21

Pre-conditions The user is on the Set Common Size screen.

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

186

UT88 Add a new container

with valid inputs

1. Enter container name.

2. Enter length, width, and

height in centimetres.

3. Enter maximum weight.

4. Tap Add Container.

Name: Container A. Size:

420 × 200 × 220 cm.

Weight: 1500 kg.

A success alert appears

and container is added

to the list.

Pass

UT89 Add a new cargo with

valid inputs

1. Enter cargo name.

2. Enter length, width, and

height in centimetres.

3. Enter weight.

4. Tap Add Cargo.

Name: Cargo X. Size: 100

× 100 × 100 cm. Weight:

50 kg.

A success alert appears

and cargo is added to

the list.

Pass

Table 7. 23: Unit Test Case of Export a plan to PDF.

Test Case Title Export a plan to PDF Test Module Load Planning

Test Case ID TC22

Pre-conditions The user is on the Load Plan Detail screen and the plan has been saved previously.

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

UT90 Exports a plan to PDF 1. Tap the Export to PDF

button on the detail

Plan ID: 7 A share or download

option appears with the

Pass

187

screen. generated file.

UT91 Exported PDF contains

all required details

1. Tap the Export to PDF

button.

2. Open the downloaded

file.

Plan ID: 12 with saved

diagram and cargo list.

The PDF includes the

load plan diagram, QR

code, container info,

cargo list, used/free/

total space, and

arrangement order.

Pass

7.3 Integration Test

Integration testing is conducted to verify that the different modules of the system interact and work together as expected. It ensures that data

flows correctly between modules, and that combined functionalities achieve the intended outcomes. For this project, integration tests cover end-

to-end flows across the User Management, Inventory Tracking, and Load Planning modules, validating that the entire system operates seamlessly

when modules are integrated.

Table 7. 24: Test Case of Integration Test.

Test Case ID Test Case Description Execution Steps Expected Result Status

IT01 Register a new user, sign in,

scan multiple valid product

1. Tap the + button to open Add

New User modal.

 New user is created and can log in

successfully.

Pass

188

QRs to perform Product

Out, create a load plan, save

it, see it in History, export to

PDF, scan the PDF QR and

start arranging

2. Enter Name, Email, and

Password.

3. Tap Add and wait for the success

alert.

4. Navigate to Personal and tap

Logout

5. On Login screen, enter the newly

created Email and Password and

tap Login.

6. After landing on Home, go to

Personal tab.

7. Verify the displayed Name and ID

match the created user.

8. Open Scan tab and scan QR of

product A and B, set quantity.

9. Tap ‘Product Out’ button.

10. Open Products and verify both

items’ quantities decreased.

 Product stock decreases correctly

after Product Out.

 Load Plan is generated with

selected container and cargo, and

diagram is shown.

 User can rearrange cargo and save

the plan.

 History shows the saved plan with

Pending status.

 Exported PDF contains load plan

details with scannable QR.

 Scanning the QR reopens the

same plan.

 Arranging all cargo updates the

plan status to Finished.

189

11. Go to Load Plan Tab and click

Plan Load.

12. Select Container 1 and add Cargo

A with quantity 5.

13. Tap Confirm Selection.

14. Drag and drop to change the

cargo placement.

15. Save Load Plan.

16. Open History and locate the new

plan card with Pending status.

17. Open the plan and tap Export to

PDF.

18. From History, tap the scan icon

and scan the QR in the PDF.

19. In the plan detail, open Arrange

Cargo.

20. Tick all cargo items.

21. Tap Save (Settled).

190

7.4 User Acceptance Test (UAT)

User Acceptance Testing (UAT) was conducted to ensure that the developed

mobile application for inventory tracking and cargo load planning meets the

specified functional requirements and delivers smooth user experience for its

intended end users, such as storekeepers and logistics staff in small and

medium-sized enterprises (SMEs).

A total of three testers from different backgrounds were selected to

participate in the UAT sessions to simulate real-world users. These testers

represented typical roles such as inventory staff and logistics workers who

would normally handle daily stock operations and vehicle load planning. The

testing sessions were conducted face-to-face, which allowed for direct

observation of the testers’ interactions with the application and provided

immediate opportunities to collect feedback.

Each tester was provided with an android smartphone with the

application. They were guided to perform all prepared test cases step by step,

based on the detailed instructions outlined in the UAT form. The test cases

covered the full workflow of the system, including registering and logging into

an account, adding, editing, and deleting inventory items, updating stock

quantities through manual entry or barcode scanning, generating cargo load

plans automatically or via manual rearrangement, checking cargo arrangement

through the checklist, exporting load plan reports in PDF format, and

retrieving load plan history using QR code scanning.

The results of the UAT sessions were recorded, and the detailed

results from each tester are attached in Appendix C. A results summary

collected from all three testers is tabulated as follows.

 Table 7. 25: UAT Result Summary.

Tester No. of Test Case Executed Pass Fail Overall Result

Tester 1 15 15 0 Pass

Tester 2 15 15 0 Pass

Tester 3 15 15 0 Pass

Total 45 45 0 All Passed

191

 Although all test cases were successfully passed, testers provided several valuable comments during the UAT sessions. These comments

highlight areas where the system can be further improved to enhance usability, efficiency, and flexibility. The comments were analysed as

follows.

Table 7. 26: Analysis of UAT Feedback.

Test Case ID Test Case Title Tester Comment Analysis

UAT01 User Registration Prefer to have different role like

admin or staff to differentiate.

The system only provides a single user type because the project

scope focused on core inventory and load planning functions.

Adding role-based access control like staff and admin in the future

would enhance security and assign responsibilities more clearly.

For example, only Admin can delete items, Staff can update stock.

UAT03 Update Stock

Quantity

Can have push alert when the stock

low.

Low stock is currently shown only with a red indicator. Implement

a push notification or popup alert would ensure that stock

replenishment is not missed, improving operational efficiency.

No history record to know who,

when, how many stock updated

before.

Now, stock updates are reflected but without an audit trail. Adding

a stock update history log in the future.

UAT05 View Inventory Filter function is enough for this app, Current filtering is limited to categories because only basic product

192

List but prefer more methods to search

like by supplier, by expiry date in the

future.

attributes are stored in the database. Supplier and expiry date were

not required in the initial scope. In future versions, the product

attributes can be extended to support advanced filtering options like

supplier, expiry date, and storage location, allowing the system to

be tailored more closely to the needs of different companies with

larger inventories.

UAT07 Edit Item Product name and min stock qty

should be edited as well.

Editing currently supports only certain attributes. However, in

future versions, the editing function can be extended to include

minimum stock quantity and other additional fields, allowing the

system to be tailored to the specific needs of each company.

UAT09 Generate Load

Plan

The load plan diagram looks a bit

crowded, suggest have zoom in or

out.

The load plan diagram was designed to fit within a single screen to

ensure compatibility and ease of use on Android phones. However,

this approach limits visibility when dealing with complex load

plans containing many cargoes. Zoom or rotate options can be

implemented in future versions to enhance clarity and usability for

more detailed arrangements.

UAT11 Rearrange Cargo

Manually

Drag and drop function works, but

currently cargoes can overlap when

Overlap validation was not implemented to keep the drag and drop

function simple. Preventing overlap requires boundary checks and

193

rearranged manually. grid alignment logic, which can be added later to ensure realistic

arrangements.

UAT13 View Load Plan

History

Prefer to have edit function so can

rearrange the cargo placement, no

need create a new one if using same

cargoes.

Load plans are currently stored as final records for reference only.

Adding an edit feature in the future versions would save time by

letting users adjust existing plans without the need to recreate them

from scratch.

The saved load plan cannot be

edited.

194

Table 7. 27: User Acceptance Testing Form (UAT).

User Acceptance Testing Form (UAT)

Name

Role / Position

Date of Testing

Testing Start Time Testing End Time

Test Case ID Test Case Title Test Steps Expected Results Status Comments

UAT01 Register a new user 1. Tap + in the User List Screen.

2. Enter Name, Email, Password.

3. Tap Add.

Success alert ‘User

added!’ shown. New

created user appears in

the user list with correct

name and email.

UAT02 Login an account 1. User enters the assigned email

‘abc@gmail.com’ and

password ‘123456’ in the login

page.

2. User clicks on the login button.

Users will be navigated

to Home Screen with

welcome message.

UAT03 Update an item’s 1. User clicks ‘Product’ tab. A successful alert will be

195

stock quantity 2. Use ‘Search’ function in the

inventory list to find the

product to be adjusted.

3. Click the product card to opens

the product's description

screen.

4. Tap the ‘IN’ button, enter the

quantity and confirms.

displayed. The product's

inventory quantity and

status will be updated in

real time on the product’s

description screen.

UAT04 Update 3 items’ stock

quantity

1. User clicks the “Scan” tab.

2. The user scans the first item’s

barcode and adjusts the

quantity.

3. User clicks the ‘Scan’ icon at

the right bottom side in the

scan details screen and repeats

step 2 until there are no more

items to scan.

4. User clicks the ‘Product In’

A successful alert will be

displayed. The stock

quantity of scanned items

is updated accordingly.

196

button.

UAT05 View inventory list 1. Navigate to the Products tab

from the bottom menu.

2. View the complete list of

inventory items displayed on

the screen.

3. Use the category tabs or filter

option to display products by

category.

4. Select an inventory card to

open and view its detailed

information.

Product Detail screen

showing all details of

that product.

UAT06 Add a new item 1. The user clicks the “+” button

on the inventory list screen.

2. The user fills in the required

fields such as Product image,

Product name, Current stock

quantity, Category, and

A success message is

displayed: “Item added

successfully” and the

new item appears in the

inventory list

197

Minimum stock quantity

3. The user clicks the “Save”

button.

UAT07 Edit an item 1. User selects the item to be

edited from the inventory.

2. Clicks the ‘three dots’ icon at

the top right corner and selects

the ‘edit’ button.

3. Change product name and

category.

4. Tap Save to confirm changes.

Success alert displayed

‘Product updated’.

Screen updates to show

new name and category.

UAT08 Delete an inventory

item

1. The user selects the item to be

deleted from the inventory.

2. The user clicks the ‘three dots’

icon at the top right corner and

selects the ‘trash bin’ icon

button.

3. The staff confirms the deletion

A success message is

displayed ‘Item deleted

successfully’ and returns

back to the inventory list

screen.

198

by clicking ‘Delete’.

UAT09 Generate Load Plan

using custom

container size and

cargo dimension

1. The user taps the Load Plan tab

on the navigation bar.

2. The user selects the Set

Common Size option.

3. The user enters the container

dimensions and maximum load

capacity.

4. The user enters the cargo

dimensions.

5. The user returns to the Load

Plan tab and selects Plan Load.

6. The user chooses the container

and cargo added, then adjusts

the quantities.

7. The user taps Confirm

Selection.

8. The user reviews the generated

New container and cargo

are added into the

system. A load plan is

generated and saved.

199

load plan and taps Save.

UAT10 Generate Load Plan

using previously

defined container size

and cargo dimensions

1. The user taps the Load Plan tab

on the navigation bar.

2. The user selects the Plan Load

option.

3. The user chooses a previously

saved container from the list.

4. The user chooses one or more

previously saved cargo items.

5. The user adjusts the cargo

quantities as needed.

6. The user taps Confirm

Selection.

7. The user reviews the generated

load plan and taps Save.

A load plan with diagram

and space usage is

generated and saved.

UAT11 Rearranging cargo

item manually in a

load plan

1. The user opens the Load Plan

tab.

2. The user selects a container and

Cargo items can be

rearranged manually in

the diagram. The updated

200

cargo, then generates a load

plan.

3. On the Confirmation Details

screen, the user drags and

drops cargo items to rearrange

their positions.

4. The user taps the Save button.

arrangement is saved

successfully.

UAT12 Generate PDF report 1. The user opens the History tab.

2. The user selects a saved load

plan from the list.

3. On the Load Plan Detail

screen, the user taps the Export

to PDF button.

4. The system generates the PDF

and displays the option to view

or download it.

A PDF report is

generated successfully.

The PDF can be opened

or downloaded.

UAT13 View Load Plan

History

1. The user navigates to the

History tab.

The corresponding Load

Plan Detail screen is

201

2. The user searches by Load Plan

ID or uses the filter function to

filter by status.

5. The user taps the Load Plan

card from the list.

displayed with complete

information.

UAT14 View Load Plan

Details by Scanning

QR in PDF

1. The user navigates to the

History tab.

2. On the Load Plan History

screen, the user taps the Scan

button.

3. The user scans the QR code on

the printed PDF.

The QR code on the

printed PDF is scanned

successfully. The system

opens the corresponding

Load Plan Detail screen.

UAT15 Arrange Cargo

Checklist

1. The user opens the History tab.

2. The user selects a load plan with

status Pending.

3. On the Load Plan Detail screen,

the user taps the Arrange Cargo

option.

Cargo items can be

marked as arranged using

the checklist. The system

updates the load plan

status to Finished after

saving.

202

4. The user marks each cargo item

in the checklist as arranged.

3. The user taps the Save (Settled)

button.

203

7.5 System Usability Test (SUS)

In addition to User Acceptance Testing (UAT), a System Usability Test (SUS)

was conducted to evaluate the overall usability and user-friendliness of the

developed mobile application. While UAT focuses on validating whether the

system meets functional requirements, SUS is designed to measure users’

subjective perception of the system in terms of ease of use, efficiency, and

learnability.

 The SUS questionnaire consisted of ten standardized statements rated

on a five-point Likert scale, ranging from Strongly Disagree (1) to Strongly

Agree (5). To conduct the SUS, each tester was given the questionnaire

immediately after completing the UAT session to ensure their feedback was

based on fresh experience. The same three testers who participated in UAT

also took part in the SUS evaluation, providing a consistent perspective across

both tests.

 The testers completed the SUS individually and without external

influence, so their answers reflected their personal opinions. Once collected,

the responses were tabulated and scored using the standard SUS calculation

method. Each odd-numbered question was scored as the user’s response minus

1, while each even-numbered question was scored as 5 minus the user’s

response. The values were then summed up for each tester and multiplied by

2.5 to convert the raw score into a usability score out of 100. Finally, the three

testers’ scores were averaged to determine the overall SUS score of the system.

Table 7. 28: Template of SUS form.

Participant No:

Name

Question Strongly

Disagree

 Strongly

Agree

1 2 3 4 5

1. I think that I would like to use this

inventory and load planning app

frequently.

2. I found the app unnecessarily complex

204

when managing inventory or planning

loads.

3. I thought the app was easy to use.

4. I think that I would need the support of

a technical person to be able to use this

app.

5. I found the barcode scanning,

inventory, and load planning functions in

this app were well integrated.

6. I experienced inconsistencies in the

app (e.g., navigation, layout, or

functions) that made it harder to use.

7. I believe new users can learn to use

this app without much difficulty.

8. I found the app cumbersome to use

when performing tasks like scanning or

arranging cargo.

9. I felt very confident using the app to

manage inventory and generate load

plans.

10. I needed to learn a lot of things

before I could start using this app

effectively.

1. What do you like most about the app?

2. What did you like the least about the app?

3. Did you face any bugs, errors, or unexpected behavior while using the

system? If yes, please describe.

4. Do you have any suggestions for improving the system?

205

The results of the System Usability Test (SUS) show that the three

testers gave overall usability scores of 87.5%, 87.5%, and 80.0%, with an

average SUS score of 85.0%. According to the standard SUS benchmark scale,

a score above 68 is considered above average, while scores above 80 are

regarded as excellent. Therefore, the obtained score of 85 places the developed

system in the “Excellent Usability” category (Grade A).

 This result indicates that testers found the system easy to use,

efficient, and user-friendly, with minimal difficulties in performing tasks such

as scanning items, updating stock, and generating load plans. While the UAT

comments highlighted some areas for improvement, the high SUS score

confirms that the system is already highly usable and well-accepted by its

intended users.

Table 7. 29: Summary of SUS Survey Results.

Tester Usability score for each question Total Percentage

(%) 1 2 3 4 5 6 7 8 9 10

1 3 4 4 4 4 3 3 4 3 3 35 87.5

2 4 4 4 4 3 3 3 3 4 3 35 87.5

3 3 3 4 4 5 3 3 3 3 3 32 80

Average SUS Score 85

Grade A

Apart from the standard System Usability Scale (SUS) questionnaire,

several open-ended questions were also included to give testers the

opportunity to share their personal opinions about the system. The summary of

their responses is shown below, highlighting what they liked most, what they

liked least, any issues they faced, and their suggestions for improvement.

The testers highlighted several key strengths of the system,

particularly the features that made their daily work faster and easier. Their

comments are summarized in the table below.

206

Table 7. 30: Summary of Testers’ Feedback on the Most Liked Features.

What testers liked most about the app:

The scan function is useful and quick to tracking item. My company currently

use Excel to record stock quantity, which is time-consuming and sometime

have typo mistakes. So having the scanning barcode allows the stock to be

updated instantly in the system.

The automatic arranges cargo feature. It is better than draw one by one cargo

using Excel and fit it to the container, as my company currently does, take

around 1 hours for 1 plan. With this app, it auto generates the arrangement, I

just check only, maybe 5 minutes can finish already.

Overall the system is good, easy to use and quite straightforward.

Across all three testers, no significant weaknesses or bugs were

reported. Two testers explicitly stated that they had no dislikes, while one

mentioned that the system overall worked smoothly without errors or crashes.

This feedback indicates that the system was generally stable and well-received,

with no major usability concerns raised.

Although the testers were satisfied with the system overall, the testers

also provided constructive suggestions for future enhancements. Their

feedback is summarized in the table below.

Table 7. 31: Summary of Testers’ Suggestions for System Improvement.

Suggestions for improvement:

I think it’s better if got history record for stock updates, so can know who

update the stock, when update, and how many change each time. In business

this is important, because sometimes stock got wrong number, then very hard

to find why. If got history, manager can trace back to see who update wrong

and correct it faster.

The load plan diagram all shows in one screen, so a bit crowded and hard to

see clearly. If can add zoom in or out, then easier or maybe got computer

version to do it also better.

No

207

CHAPTER 8

8 CONCLUSION

8.1 Conclusion

This project focuses on developing a mobile application for inventory tracking

with barcode scanning and cargo load planning optimization. The main

motivation is to overcome the inefficiencies of traditional manual or Excel-

based methods, which are often time-consuming and prone to human error. By

combining inventory management and load planning into a single application,

the system provides a faster, more accurate, and more user-friendly solution

for small and medium-sized enterprises (SMEs), particularly for storekeepers

and logistics staff.

In the initial phase, the project focuses on identifying the problem,

defining objectives, and gathering requirements. A literature review is

conducted to study traditional inventory methods, manual load planning

techniques, and existing applications, while interviews and observations are

used to validate the practical needs of storekeepers and logistics staff.

Requirements are then modelled using use cases, interface flows, and initial

prototypes.

The middle phase concentrates on designing and implementing the

system. The architecture is structured into clear modules, supported by

Firebase Firestore for real-time data management. Features such as user

management, inventory tracking with barcode scanning, cargo load planning

with both automated algorithms and manual drag-and-drop, as well as report

generation with PDF and QR code support, are developed.

Finally, in the last phase, the system is tested and validated. Unit

testing and integration testing confirm the correctness of individual modules

and their interactions. User Acceptance Testing (UAT) is carried out with

three testers, all of whom pass successfully. The System Usability Test (SUS)

further validates the user-friendliness of the application, producing an

excellent average usability score of 85%. Feedback collected highlights

strengths such as the barcode scanning and automatic cargo arrangement

208

features, while also pointing out potential improvements including stock

history tracking and enhanced load plan visualization.

In summary, the project successfully achieves its objectives and

delivers a functional mobile application that integrates inventory management

with cargo load planning in a practical and efficient way.

8.2 Objective Achievements

The project set out three main objectives as outlined in Chapter 1, all of which

were successfully achieved during the development and testing process.

1. To conduct a thorough study of algorithms for generating

optimal cargo load plans for vehicles.

2. To develop a functional mobile app for inventory tracking with

integrated cargo load planning and optimization features for

vehicle space utilization.

3. To evaluate the developed mobile app with Unit Test, System

Usability Scale (SUS) and User Acceptance Testing (UAT).

The first objective is achieved through an in-depth literature review of

existing load planning algorithms, including the Biased Random-Key Genetic

Algorithm (BRKGA) and the Binary Tree Bin Packing algorithm. After

comparison, the Binary Tree Bin Packing algorithm is selected and

implemented in the system because it provides faster and more consistent

results with lower computational complexity, making it more suitable for

SMEs and mobile environments than BRKGA.

The second objective is fully accomplished with the successful

development of a mobile application using React Native and Firebase Firestore.

The application integrates multiple modules, such as user management,

inventory tracking with barcode scanning, stock quantity updates, load plan

generation using the selected algorithm, manual cargo rearrangement through

drag-and-drop, and load plan reporting through PDF export and QR code

scanning. Together, these features form a practical and functional solution that

209

enables SMEs to manage inventory effectively while optimizing vehicle space

utilization.

Lastly, the third objective is also achieved. Unit testing is carried out

to validate the correctness of individual modules, while integration testing

confirms smooth interaction between system components. User Acceptance

Testing (UAT) is conducted with three testers, covering 15 test cases, all of

which pass successfully. In addition, a System Usability Test (SUS) is

performed, which results in an excellent usability score of 85% (Grade A).

This outcome demonstrates that the developed system is not only functional

but also user-friendly, efficient, and well-accepted by its intended end users.

8.3 Limitations and Recommendations of Future Work

Although the developed mobile application successfully meets its stated

objectives, there are still several limitations in its current version. These

limitations arise mainly from the simplified assumptions made during

development, the scope constraints defined at the start of the project, and the

need to balance usability with technical complexity. To address these issues,

several recommendations have been identified for future improvements, which

are outlined together with the limitations in the following table.

Table 8. 1: Limitation and Recommendations.

 Limitations Recommendations

1 No user role differentiation

At present, all users share the

same access level and functions.

This may not reflect real business

environments, where admin,

managers, and staff need different

levels of access and control.

Implement a role-based access

control system where admin can

manage users and perform critical

actions, while staff are limited to

day-to-day operations.

2 Cargo assumptions and

constraints

The system assumes all cargo

items are rectangular or square,

Enhance the algorithm to support

irregular and cylindrical cargo

shapes and integrate rules for

weight distribution, fragility, and

210

and it does not account for

irregular shapes, cylindrical items,

weight distribution, fragility, or

stacking limitations. This may

lead to wasted space or unsafe

arrangements in real-world use.

stacking restrictions. This will

make the system more realistic and

suitable for complex logistics

environments.

3 No history record for stock

updates

The system does not keep track of

who updated the stock, when it

was updated, and how much was

changed. This reduces

transparency and makes it

difficult to trace errors.

Add a stock update history log that

records each update with details

such as user, date or time, and

change in quantity. This feature

help track errors and provide a

more realistic record for business

operations.

4 Manual drag-and-drop cargo

arrangement allows overlap

Currently, users can place cargo

items on top of each other, which

is not realistic and may result in

confusion.

Implement boundary checks and

snap-to-grid alignment to prevent

overlapping cargo. This will

ensure more accurate

arrangements and better reflect

physical loading constraints.

5 Load plan diagram can be

crowded on mobile screens

When multiple cargoes are

displayed in one container, the

diagram becomes difficult to read

on smaller devices.

Add zoom and rotate functions to

improve visibility. Additionally,

consider developing a desktop or

web-based version of the system

for complex load plans where

more screen space is required.

211

‘

REFERENCES

Asia-Pacific Economic Cooperation. (2017). Current Situation of Heavy

Vehicle Overloading in Malaysia. [online] Available at:

https://mddb.apec.org/Documents/2017/TPTWG/WKSP1/17_%20tptwg_

wksp1_018.pdf.

Barratt, M., Kull, T.J. and Sodero, A.C. (2018). Inventory record inaccuracy

dynamics and the role of employees within multi-channel distribution

center inventory systems. Journal of Operations Management, 63(1),

pp.6–24. doi: https://doi.org/10.1016/j.jom.2018.09.003.

BYJUS. (n.d.). Cube and Cuboid Shape (Definition, Formulas & Properties).

[online] Available at: https://byjus.com/maths/cuboid-and-cube/.

Chan, C.W., Sathiapriya, A.R. and Razali, N.F. (2023). Inventory

Management Systems (IMS). Journal of Applied Technology and

Innovation, [online] 7(3), pp.2600–7304. doi:

http://dx.doi.org/10.1088/1742-6596/1573/1/012038.

Chopra, C. (2021). Why Manual Inventory Tracking Must Be Replaced with

Automated Inventory Tracking? [online] Infizo. Available at:

https://www.infizo.com/stock/blog/manual-vs-automated-inventory-

tracking.

Douglas, C. (2025). An Ultimate Guide to Throwaway Prototyping - Visily.

[online] www.visily.ai. Available at:

https://www.visily.ai/blog/throwaway-prototyping/.

Gaur, P. (2023). The Importance of Load Planning: Tips for Efficient and Safe

Shipment. [online] Cargoflip.com. Available at:

https://www.cargoflip.com/post/load-planning#google_vignette.

GeeksforGeeks. (2025). Software Engineering | Incremental process model -

GeeksforGeeks. [online] Available at:

https://www.geeksforgeeks.org/software-engineering-incremental-

process-model/.

Gonçalves, J.F. and Resende, M.G.C. (2013). A biased random key genetic

algorithm for 2D and 3D bin packing problems. International Journal of

Production Economics, [online] 145(2), pp.500–510. doi:

https://doi.org/10.1016/j.ijpe.2013.04.019.

212

Gordon, J. (2011). Binary Tree Bin Packing Algorithm. [online]

Codeincomplete.com. Available at:

https://codeincomplete.com/articles/bin-packing/.

Kuhn, J. (2021). The Financial Impact of Manual Inventory Record Errors.

International Journal of Business and Social Science, [online] 12(10),

pp.4–5. doi: https://doi.org/10.30845/ijbss.v12n10p2.

Londe, M.A., Pessoa, L.S., Andrade, C.E. and Resende, M.G.C. (2024).

Biased random-key genetic algorithms: A review. European Journal of

Operational Research, 321(1), pp.1–22. doi:

https://doi.org/10.1016/j.ejor.2024.03.030.

Madamidola, O.A., Daramola, O., Akintola, K. and Adeboje, O. (2024). A

Review of Existing Inventory Management Systems. International

Journal of Research in Engineering and Science, [online] 12(9), pp.40–

50. Available at:

https://www.researchgate.net/publication/383947700_A_Review_of_Exis

ting_Inventory_Management_Systems.

Ministry of Transport Malaysia (2021). Land Transportation Acts. [online]

Mot.gov.my. Available at: https://www.mot.gov.my/en/land/acts-and-

regulations/land-transportation.

Perera, M., Hettiarachchi, M., Pabasara, T., Kulasekara, V. and Parindya, J.

(2022). Study on Throwaway Prototyping Model over PcD.UcT Model.

SW Modelling CI Wk2, [online] p.2. doi:

https://doi.org/10.13140/RG.2.2.27238.50243.

Saraiva, R.D., Nepomuceno, N. and Pinheiro, P.R. (2015). A layer-building

algorithm for the three-dimensional multiple bin packing problem: a case

study in an automotive company. IFAC-PapersOnLine, 48(3), pp.490–

495. doi: https://doi.org/10.1016/j.ifacol.2015.06.129.

Setrag Shahikian (2024). Finale Inventory. [online] Finale Inventory.

Available at: https://www.finaleinventory.com/inventory-

management/manual-vs-automated-inventory-management-key-

distinctions-explained-ecommerce.

213

APPENDICES

Appendix A: Interview Questions.

214

Appendix B: Manual Sketch of Cargo Layout in Excel.

215

Appendix C-1: User Acceptance Testing Result of Tester 1.

User Acceptance Testing Form (UAT)

Name Yuki

Role / Position Warehouse Manager of 4 Beans Cafe

Date of Testing 9/9/2025

Testing Start Time 9.33am Testing End Time 10.57am

Test Case ID Test Case Title Test Steps Expected Results Status Comments

UAT01 Register a new user 1. Tap + in the User List Screen.

2. Enter Name, Email, Password.

3. Tap Add.

Success alert ‘User

added!’ shown. New

created user appears in

the user list with correct

name and email.

Pass

UAT02 Login an account 1. User enters the assigned email

‘abc@gmail.com’ and password

‘123456’ in the login page.

2. User clicks on the login button.

Users will be navigated

to Home Screen with

welcome message.

Pass

UAT03 Update an item’s

stock quantity

1. User clicks ‘Product’ tab.

2. Use ‘Search’ function in the

A successful alert will be

displayed. The product's

Pass No history

record to know

216

inventory list to find the product

to be adjusted.

3. Click the product card to opens

the product's description screen.

4. Tap the ‘IN’ button, enter the

quantity and confirms.

inventory quantity and

status will be updated in

real time on the product’s

description screen.

who, when, how

many stock

updated before.

UAT04 Update 3 items’ stock

quantity

1. User clicks the “Scan” tab.

2. The user scans the first item’s

barcode and adjusts the

quantity.

3. User clicks the ‘Scan’ icon at

the right bottom side in the scan

details screen and repeats step 2

until there are no more items to

scan.

4. User clicks the ‘Product In’

button.

A successful alert will be

displayed. The stock

quantity of scanned items

is updated accordingly.

Pass

UAT05 View inventory list 1. Navigate to the Products tab Product Detail screen Pass Filter function is

217

from the bottom menu.

2. View the complete list of

inventory items displayed on the

screen.

3. Use the category tabs or filter

option to display products by

category.

4. Select an inventory card to open

and view its detailed

information.

showing all details of

that product.

enough for this

app, but prefer

more methods to

search like by

supplier, by

expiry date in the

future.

UAT06 Add a new item 1. The user clicks the “+” button

on the inventory list screen.

2. The user fills in the required

fields such as Product image,

Product name, Current stock

quantity, Category, and

Minimum stock quantity.

3. The user clicks the ‘Save’

A success message is

displayed: “Item added

successfully” and the

new item appears in the

inventory list

Pass

218

button.

UAT07 Edit an item 1. User selects the item to be

edited from the inventory.

2. Clicks the ‘three dots’ icon at

the top right corner and selects

the ‘edit’ button.

3. Change product name and

category.

4. Tap Save to confirm changes.

Success alert displayed

‘Product updated’.

Screen updates to show

new name and category.

Pass Min stock qty

should be edited

as well.

UAT08 Delete an inventory

item

1. The user selects the item to be

deleted from the inventory.

2. The user clicks the ‘three dots’

icon at the top right corner and

selects the ‘trash bin’ icon

button.

3. The staff confirms the deletion

by clicking ‘Delete’.

A success message is

displayed ‘Item deleted

successfully’ and returns

back to the inventory list

screen.

Pass

UAT09 Generate Load Plan 1. The user taps the Load Plan tab New container and cargo Pass

219

using custom

container size and

cargo dimension

on the navigation bar.

2. The user selects the Set

Common Size option.

3. The user enters the container

dimensions and maximum load

capacity.

4. The user enters the cargo

dimensions.

5. The user returns to the Load

Plan tab and selects Plan Load.

6. The user chooses the container

and cargo added, then adjusts

the quantities.

7. The user taps Confirm

Selection.

The user reviews the generated

load plan and taps Save.

are added into the

system. A load plan is

generated and saved.

UAT10 Generate Load Plan 1. The user taps the Load Plan tab A load plan with diagram Pass

220

using previously

defined container size

and cargo dimensions

on the navigation bar.

2. The user selects the Plan Load

option.

3. The user chooses a previously

saved container from the list.

4. The user chooses one or more

previously saved cargo items.

5. The user adjusts the cargo

quantities as needed.

6. The user taps Confirm

Selection.

7. The user reviews the generated

load plan and taps Save.

and space usage is

generated and saved.

UAT11 Rearranging cargo

item manually in a

load plan

1. The user opens the Load Plan

tab.

2. The user selects a container and

cargo, then generates a load

plan.

Cargo items can be

rearranged manually in

the diagram. The updated

arrangement is saved

successfully.

Pass

221

3. On the Confirmation Details

screen, the user drags and drops

cargo items to rearrange their

positions.

4. The user taps the Save button.

UAT12 Generate PDF report 1. The user opens the History tab.

2. The user selects a saved load

plan from the list.

3. On the Load Plan Detail screen,

the user taps the Export to PDF

button.

4. The system generates the PDF

and displays the option to view

or download it.

A PDF report is

generated successfully.

The PDF can be opened

or downloaded.

Pass

UAT13 View Load Plan

History

1. The user navigates to the

History tab.

2. The user searches by Load Plan

ID or uses the filter function to

The corresponding Load

Plan Detail screen is

displayed with complete

information.

Pass The saved load

plan cannot be

edited.

222

filter by status.

3. The user taps the Load Plan

card from the list.

UAT14 View Load Plan

Details by Scanning

QR in PDF

1. The user navigates to the

History tab.

2. On the Load Plan History

screen, the user taps the Scan

button.

3. The user scans the QR code on

the printed PDF.

The QR code on the

printed PDF is scanned

successfully. The system

opens the corresponding

Load Plan Detail screen.

Pass

UAT15 Arrange Cargo

Checklist

1. The user opens the History tab.

2. The user selects a load plan with

status Pending.

3. On the Load Plan Detail screen,

the user taps the Arrange Cargo

option.

4. The user marks each cargo item

in the checklist as arranged.

Cargo items can be

marked as arranged using

the checklist. The system

updates the load plan

status to Finished after

saving.

Pass

223

5. The user taps the Save (Settled)

button.

224

Appendix C-2: User Acceptance Testing Result of Tester 2.

User Acceptance Testing Form (UAT)

Name Ms Jesther

Role / Position Logistics Assistant Manager, Ametal Tech Sdn. Bhd.

Date of Testing 11/9/2025

Testing Start Time 10.14am Testing End Time 12.07pm

Test Case ID Test Case Title Test Steps Expected Results Status Comments

UAT01 Register a new user 1. Tap + in the User List Screen.

2. Enter Name, Email, Password.

3. Tap Add.

Success alert ‘User

added!’ shown. New

created user appears in

the user list with correct

name and email.

Pass

UAT02 Login an account 1. User enters the assigned email

‘abc@gmail.com’ and password

‘123456’ in the login page.

2. User clicks on the login button.

Users will be navigated

to Home Screen with

welcome message.

Pass

UAT03 Update an item’s

stock quantity

1. User clicks ‘Product’ tab.

2. Use ‘Search’ function in the

A successful alert will be

displayed. The product's

Pass

225

inventory list to find the product

to be adjusted.

3. Click the product card to opens

the product's description screen.

4. Tap the ‘IN’ button, enter the

quantity and confirms.

inventory quantity and

status will be updated in

real time on the product’s

description screen.

UAT04 Update 3 items’ stock

quantity

1. User clicks the “Scan” tab.

2. The user scans the first item’s

barcode and adjusts the

quantity.

3. User clicks the ‘Scan’ icon at

the right bottom side in the scan

details screen and repeats step 2

until there are no more items to

scan.

4. User clicks the ‘Product In’

button.

A successful alert will be

displayed. The stock

quantity of scanned items

is updated accordingly.

Pass

UAT05 View inventory list 1. Navigate to the Products tab Product Detail screen Pass

226

from the bottom menu.

2. View the complete list of

inventory items displayed on the

screen.

3. Use the category tabs or filter

option to display products by

category.

4. Select an inventory card to open

and view its detailed

information.

showing all details of

that product.

UAT06 Add a new item 1. The user clicks the “+” button

on the inventory list screen.

2. The user fills in the required

fields such as Product image,

Product name, Current stock

quantity, Category, and

Minimum stock quantity.

3. The user clicks the ‘Save’

A success message is

displayed: “Item added

successfully” and the

new item appears in the

inventory list

Pass

227

button.

UAT07 Edit an item 1. User selects the item to be

edited from the inventory.

2. Clicks the ‘three dots’ icon at

the top right corner and selects

the ‘edit’ button.

3. Change product name and

category.

4. Tap Save to confirm changes.

Success alert displayed

‘Product updated’.

Screen updates to show

new name and category.

Pass

UAT08 Delete an inventory

item

1. The user selects the item to be

deleted from the inventory.

2. The user clicks the ‘three dots’

icon at the top right corner and

selects the ‘trash bin’ icon

button.

3. The staff confirms the deletion

by clicking ‘Delete’.

A success message is

displayed ‘Item deleted

successfully’ and returns

back to the inventory list

screen.

Pass

UAT09 Generate Load Plan 1. The user taps the Load Plan tab New containers and Pass The load plan

228

using custom

container size and

cargo dimension

on the navigation bar.

2. The user selects the Set

Common Size option.

3. The user enters the container

dimensions and maximum load

capacity.

4. The user enters the cargo

dimensions.

5. The user returns to the Load

Plan tab and selects Plan Load.

6. The user chooses the container

and cargo added, then adjusts

the quantities.

7. The user taps Confirm

Selection.

The user reviews the generated

load plan and taps Save.

cargo are added into the

system. A load plan is

generated and saved.

diagram looks a

bit crowded,

suggest have

zoom in or out.

UAT10 Generate Load Plan 1. The user taps the Load Plan tab A load plan with diagram Pass

229

using previously

defined container size

and cargo dimensions

on the navigation bar.

2. The user selects the Plan Load

option.

3. The user chooses a previously

saved container from the list.

4. The user chooses one or more

previously saved cargo items.

5. The user adjusts the cargo

quantities as needed.

6. The user taps Confirm

Selection.

7. The user reviews the generated

load plan and taps Save.

and space usage is

generated and saved.

UAT11 Rearranging cargo

item manually in a

load plan

1. The user opens the Load Plan

tab.

2. The user selects a container and

cargo, then generates a load

plan.

Cargo items can be

rearranged manually in

the diagram. The updated

arrangement is saved

successfully.

Pass Drag and drop

function works,

but currently

cargoes can

overlap when

230

3. On the Confirmation Details

screen, the user drags and drops

cargo items to rearrange their

positions.

4. The user taps the Save button.

 rearranged

manually.

UAT12 Generate PDF report 1. The user opens the History tab.

2. The user selects a saved load

plan from the list.

3. On the Load Plan Detail screen,

the user taps the Export to PDF

button.

4. The system generates the PDF

and displays the option to view

or download it.

A PDF report is

generated successfully.

The PDF can be opened

or downloaded.

Pass

UAT13 View Load Plan

History

1. The user navigates to the

History tab.

2. The user searches by Load Plan

ID or uses the filter function to

The corresponding Load

Plan Detail screen is

displayed with complete

information.

 Prefer to have

edit function so

can rearrange the

cargo placement,

231

filter by status.

3. The user taps the Load Plan

card from the list.

no need create a

new one if using

same cargoes.

UAT14 View Load Plan

Details by Scanning

QR in PDF

1. The user navigates to the

History tab.

2. On the Load Plan History

screen, the user taps the Scan

button.

3. The user scans the QR code on

the printed PDF.

The QR code on the

printed PDF is scanned

successfully. The system

opens the corresponding

Load Plan Detail screen.

Pass

UAT15 Arrange Cargo

Checklist

1. The user opens the History tab.

2. The user selects a load plan with

status Pending.

3. On the Load Plan Detail screen,

the user taps the Arrange Cargo

option.

4. The user marks each cargo item

in the checklist as arranged.

Cargo items can be

marked as arranged using

the checklist. The system

updates the load plan

status to Finished after

saving.

Pass

232

5. The user taps the Save (Settled)

button.

233

Appendix C-3: User Acceptance Testing Result of Tester 3.

User Acceptance Testing Form (UAT)

Name Mr Luo

Role / Position Worker of TaiYi Machinery Equipment Co., Ltd.

Date of Testing 15/9/2025

Testing Start Time 3.49pm Testing End Time 4.22pm

Test Case ID Test Case Title Test Steps Expected Results Status Comments

UAT01 Register a new user 1. Tap + in the User List Screen.

2. Enter Name, Email, Password.

3. Tap Add.

Success alert ‘User

added!’ shown. New

created user appears in

the user list with correct

name and email.

Pass Prefer to have

different role like

admin or staff to

differentiate.

UAT02 Login an account 1. User enters the assigned email

‘abc@gmail.com’ and password

‘123456’ in the login page.

2. User clicks on the login button.

Users will be navigated

to Home Screen with

welcome message.

Pass

UAT03 Update an item’s

stock quantity

1. User clicks ‘Product’ tab.

2. Use ‘Search’ function in the

A successful alert will be

displayed. The product's

Pass Can have push

alert when the

234

inventory list to find the product

to be adjusted.

3. Click the product card to opens

the product's description screen.

4. Tap the ‘IN’ button, enter the

quantity and confirms.

inventory quantity and

status will be updated in

real time on the product’s

description screen.

stock low.

UAT04 Update 3 items’ stock

quantity

1. User clicks the “Scan” tab.

2. The user scans the first item’s

barcode and adjusts the

quantity.

3. User clicks the ‘Scan’ icon at

the right bottom side in the scan

details screen and repeats step 2

until there are no more items to

scan.

4. User clicks the ‘Product In’

button.

A successful alert will be

displayed. The stock

quantity of scanned items

is updated accordingly.

Pass

UAT05 View inventory list 1. Navigate to the Products tab Product Detail screen Pass

235

from the bottom menu.

2. View the complete list of

inventory items displayed on the

screen.

3. Use the category tabs or filter

option to display products by

category.

4. Select an inventory card to open

and view its detailed

information.

showing all details of

that product.

UAT06 Add a new item 1. The user clicks the “+” button

on the inventory list screen.

2. The user fills in the required

fields such as Product image,

Product name, Current stock

quantity, Category, and

Minimum stock quantity.

3. The user clicks the ‘Save’

A success message is

displayed: “Item added

successfully” and the

new item appears in the

inventory list

Pass

236

button.

UAT07 Edit an item 1. User selects the item to be

edited from the inventory.

2. Clicks the ‘three dots’ icon at

the top right corner and selects

the ‘edit’ button.

3. Change product name and

category.

4. Tap Save to confirm changes.

Success alert displayed

‘Product updated’.

Screen updates to show

new name and category.

Pass

UAT08 Delete an inventory

item

1. The user selects the item to be

deleted from the inventory.

2. The user clicks the ‘three dots’

icon at the top right corner and

selects the ‘trash bin’ icon

button.

3. The staff confirms the deletion

by clicking ‘Delete’.

A success message is

displayed ‘Item deleted

successfully’ and returns

back to the inventory list

screen.

Pass

UAT09 Generate Load Plan 1. The user taps the Load Plan tab New container and cargo Pass

237

using custom

container size and

cargo dimension

on the navigation bar.

2. The user selects the Set

Common Size option.

3. The user enters the container

dimensions and maximum load

capacity.

4. The user enters the cargo

dimensions.

8. The user returns to the Load

Plan tab and selects Plan Load.

9. The user chooses the container

and cargo added, then adjusts

the quantities.

10. The user taps Confirm

Selection.

The user reviews the generated

load plan and taps Save.

are added into the

system. A load plan is

generated and saved.

UAT10 Generate Load Plan 1. The user taps the Load Plan tab A load plan with diagram Pass

238

using previously

defined container size

and cargo dimensions

on the navigation bar.

2. The user selects the Plan Load

option.

3. The user chooses a previously

saved container from the list.

4. The user chooses one or more

previously saved cargo items.

5. The user adjusts the cargo

quantities as needed.

6. The user taps Confirm

Selection.

7. The user reviews the generated

load plan and taps Save.

and space usage is

generated and saved.

UAT11 Rearranging cargo

item manually in a

load plan

1. The user opens the Load Plan

tab.

2. The user selects a container and

cargo, then generates a load

plan.

Cargo items can be

rearranged manually in

the diagram. The updated

arrangement is saved

successfully.

Pass

239

3. On the Confirmation Details

screen, the user drags and drops

cargo items to rearrange their

positions.

4. The user taps the Save button.

UAT12 Generate PDF report 1. The user opens the History tab.

2. The user selects a saved load

plan from the list.

3. On the Load Plan Detail screen,

the user taps the Export to PDF

button.

4. The system generates the PDF

and displays the option to view

or download it.

A PDF report is

generated successfully.

The PDF can be opened

or downloaded.

Pass

UAT13 View Load Plan

History

1. The user navigates to the

History tab.

2. The user searches by Load Plan

ID or uses the filter function to

The corresponding Load

Plan Detail screen is

displayed with complete

information.

240

filter by status.

3. The user taps the Load Plan

card from the list.

UAT14 View Load Plan

Details by Scanning

QR in PDF

1. The user navigates to the

History tab.

2. On the Load Plan History

screen, the user taps the Scan

button.

3. The user scans the QR code on

the printed PDF.

The QR code on the

printed PDF is scanned

successfully. The system

opens the corresponding

Load Plan Detail screen.

Pass

UAT15 Arrange Cargo

Checklist

1. The user opens the History tab.

2. The user selects a load plan with

status Pending.

3. On the Load Plan Detail screen,

the user taps the Arrange Cargo

option.

4. The user marks each cargo item

in the checklist as arranged.

Cargo items can be

marked as arranged using

the checklist. The system

updates the load plan

status to Finished after

saving.

Pass

241

5. The user taps the Save (Settled)

button.

242

Appendix D-1: SUS Test Result of Tester 1.

Participant No: 1

Name: Yuki

Question Strongly

Disagree

 Strongly

Agree

1 2 3 4 5

1. I think that I would like to use this

inventory and load planning app

frequently.

 ✓

2. I found the app unnecessarily complex

when managing inventory or planning

loads.

✓

3. I thought the app was easy to use. ✓

4. I think that I would need the support of

a technical person to be able to use this

app.

✓

5. I found the barcode scanning,

inventory, and load planning functions in

this app were well integrated.

 ✓

6. I experienced inconsistencies in the

app (e.g., navigation, layout, or

functions) that made it harder to use.

 ✓

7. I believe new users can learn to use

this app without much difficulty.

 ✓

8. I found the app cumbersome to use

when performing tasks like scanning or

arranging cargo.

✓

9. I felt very confident using the app to

manage inventory and generate load

plans.

 ✓

10. I needed to learn a lot of things

before I could start using this app

 ✓

243

effectively.

1. What do you like most about the app?

The scan function is useful and quick to tracking item. My company currently

use Excel to record stock quantity, which is time-consuming and sometime

have typo mistakes. So having the scanning barcode allows the stock to be

updated instantly in the system.

2. What did you like the least about the app?

No

3. Did you face any bugs, errors, or unexpected behaviour while using the

system? If yes, please describe.

No, overall worked smoothly.

4. Do you have any suggestions for improving the system?

I think it’s better if got history record for stock updates, so can know who

update the stock, when update, and how many change each time. In business

this is important, because sometimes stock got wrong number, then very hard

to find why. If got history, manager can trace back to see who update wrong

and correct it faster.

244

Appendix D-2: SUS Test Result of Tester 2.

Participant No: 2

Name Ms Jesther

Question Strongly

Disagree

 Strongly

Agree

1 2 3 4 5

1. I think that I would like to use this

inventory and load planning app

frequently.

 ✓

2. I found the app unnecessarily complex

when managing inventory or planning

loads.

✓

3. I thought the app was easy to use. ✓

4. I think that I would need the support of

a technical person to be able to use this

app.

✓

5. I found the barcode scanning,

inventory, and load planning functions in

this app were well integrated.

 ✓

6. I experienced inconsistencies in the

app (e.g., navigation, layout, or

functions) that made it harder to use.

 ✓

7. I believe new users can learn to use

this app without much difficulty.

 ✓

8. I found the app cumbersome to use

when performing tasks like scanning or

arranging cargo.

 ✓

9. I felt very confident using the app to

manage inventory and generate load

plans.

 ✓

10. I needed to learn a lot of things

before I could start using this app

 ✓

245

effectively.

1. What do you like most about the app?

The automatic arranges cargo feature. It is better than draw one by one cargo

using Excel and fit it to the container, as my company currently does, take

around 1 hours for 1 plan. With this app, it auto generates the arrangement, I

just check only, maybe 5 minutes can finish already.

2. What did you like the least about the app?

None

3. Did you face any bugs, errors, or unexpected behavior while using the

system? If yes, please describe.

No

4. Do you have any suggestions for improving the system?

The load plan diagram all shows in one screen, so a bit crowded and hard to

see clearly. If can add zoom in or out, then easier or maybe got computer

version to do it also better.

246

Appendix D-3: SUS Test Result of Tester 3.

Participant No: 3

Name Mr Luo

Question Strongly

Disagree

 Strongly

Agree

1 2 3 4 5

1. I think that I would like to use this

inventory and load planning app

frequently.

 ✓

2. I found the app unnecessarily complex

when managing inventory or planning

loads.

 ✓

3. I thought the app was easy to use. ✓

4. I think that I would need the support of

a technical person to be able to use this

app.

✓

5. I found the barcode scanning,

inventory, and load planning functions in

this app were well integrated.

 ✓

6. I experienced inconsistencies in the

app (e.g., navigation, layout, or

functions) that made it harder to use.

 ✓

7. I believe new users can learn to use

this app without much difficulty.

 ✓

8. I found the app cumbersome to use

when performing tasks like scanning or

arranging cargo.

 ✓

9. I felt very confident using the app to

manage inventory and generate load

plans.

 ✓

10. I needed to learn a lot of things

before I could start using this app

 ✓

247

effectively.

1. What do you like most about the app?

Overall the system is good, easy to use and quite straightforward.

2. What did you like the least about the app?

No

3. Did you face any bugs, errors, or unexpected behaviour while using the

system? If yes, please describe.

No

4. Do you have any suggestions for improving the system?

No

