DEVELOPING AN APP FOR STREAMLINED
INVENTORY TRACKING WITH BARCODE
SCANNING AND LOAD PLANNING
OPTIMIZATION

TENG YAN XIN

UNIVERSITI TUNKU ABDUL RAHMAN

DEVELOPING AN APP FOR STREAMLINED INVENTORY
TRACKING WITH BARCODE SCANNING AND LOAD PLANNING
OPTIMIZATION

TENG YAN XIN

A project report submitted in partial fulfilment of the
requirements for the award of Bachelor of Software

Engineering (Honours)

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2025

DECLARATION

I hereby declare that this project report is based on my original work except
for citations and quotations which have been duly acknowledged. I also
declare that it has not been previously and concurrently submitted for any

other degree or award at UTAR or other institutions.

Name : TENG YAN XIN

ID No. ;2106670

Date : 18 September 2025

il

COPYRIGHT STATEMENT

© 2025, TENG YAN XIN. All right reserved.

This final year project report is submitted in partial fulfilment of the
requirements for the degree of Software Engineering at Universiti Tunku
Abdul Rahman (UTAR). This final year project report represents the work of
the author, except where due acknowledgement has been made in the text. No
part of this final year project report may be reproduced, stored, or transmitted
in any form or by any means, whether electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the author or

UTAR, in accordance with UTAR’s Intellectual Property Policy.

iii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor, Ms. Beh Hooi
Ching and my moderator, Dr Chia Kai Lin for their invaluable advice,
guidance and enormous patience throughout the development of the project.
Their continuous support and encouragement have been instrumental in
ensuring the successful completion of this work.

I am also sincerely thankful to my peers and friends for their
cooperation, assistance, and motivation during the course of this project. Their
support has helped me overcome challenges and remain focused.

Lastly, I wish to extend my heartfelt appreciation to my family for
their unconditional love, patience, and support. They have provided full
support and encouraged me whenever I faced any difficulty during the

project's development.

v

ABSTRACT

Inventory management and load planning are important processes for
organizations that handle large volumes of goods. However, many small and
medium-sized enterprises (SMEs) still rely on manual record-keeping and
random cargo loading practices due to the high cost and complexity of existing
systems. These outdated practices often result in inaccurate stock records,
inefficient use of vehicle space, and delays in distribution caused by time-
consuming and unstructured load adjustments. To address these challenges,
this project developed a Streamlined Inventory Tracking Application that
integrates barcode scanning for fast and accurate stock management with an
optimized load planning module. The application was implemented using
React Native for mobile development and Firebase Firestore as the backend
database to enable real-time data synchronization, while a binary tree bin
packing algorithm was applied to generate efficient cargo loading
arrangements. The methodology combined throwaway prototyping and
incremental development, ensuring continuous refinement based on feedback
and iterative improvements. The system was tested for functionality, usability,
and performance, demonstrating improved stock accuracy, reduced manual
workload, and improved space utilization compared to traditional manual
methods. The results indicate that the proposed system is both affordable and
practical for SMEs, offering a user-friendly solution that enhances operational
efficiency. It is recommended that future improvements include focus on role-
based access control, advanced reporting, and support for irregular cargo

shapes to further increase usability and applicability.

Keywords: Inventory Management, Barcode Scanning, Load Planning, Binary

Tree Bin Packing Algorithm, Mobile Application Development.

Subject Area: T58.5-58.64 Information Technology

DECLARATION

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

TABLE OF CONTENTS

LIST OF TABLES
LIST OF FIGURES

LIST OF SYMBOLS / ABBREVIATIONS
LIST OF APPENDICES

CHAPTER

1 INTRODUCTION

1.1
1.2

1.3
1.4
1.5
1.6

General Introduction

Problem Statements

1.2.1 Inaccuracy and Inefficiency of Manual

Record-Keeping

1.2.2 Time-Consuming and Difficult
Adjustments in Manual Cargo Load

Planning
1.2.3 Underutilized Vehicle Capacity
Project Objectives
Proposed Solution
Proposed Approach
Scope and Limitation of the Project
1.6.1 Target End-Users
1.6.2 Feature Scope and Exclusions
1.6.3 Assumptions and Constraints of Cargo
1.6.4 Target Platform
1.6.5 Modules

il

iv

xiii
Xix

xxi

O O 0 0 O A~ W W N

—_ =
o O

LITERATURE REVIEW

2.1
2.2

23
24

2.5

2.6

2.7

Introduction

Overview of Traditional Manual Inventory

Tracking Methods

Manual Load Planning Techniques

Review of Existing Load Planner Applications

2.4.1 Common Features of Existing Load
Planner Application

2.4.2 Advantages and Limitations of Existing
Load Planner Applications

2.4.3 Key criteria for comparison

Rules and Constraints

2.5.1 Cargo Placement Constraints and
Assumptions

2.5.2 Cargo Orientations

2.5.3 Empty Maximal Space (EMS)

2.5.4 Load and Weight Restrictions for Vehicles

Review of Load Planning Algorithms

2.6.1 Biased Random Key Genetic Algorithm

2.6.2 Binary Tree Bin Packing Algorithm

Summary

METHODOLOGY AND WORK PLAN

3.1
3.2

33

Introduction

Software Development Methodology
3.2.1 Throwaway prototyping

3.2.2 Incremental Process Model
Development Tools

3.3.1 Axure RP

3.3.2 Visual Studio Code

3.3.3 Android Studio

3.3.4 React Native

3.3.5 Firebase

3.3.6 react-native-camera

vi

12
12

12
14
15

15

18
23
25

25
25

28
29
29

41

42
42
42
43
46
48
48
49
49
50
50
50

3.4
3.5

Work Breakdown Structure (WBS)
Gantt Chart

3.5.1 Overview of Project Timeline

3.5.2 Planning & Initial Requirement Gathering

3.5.3 Prototype Development
3.5.4 Prototype Review and Get Feedback
3.5.5 Discard or Refine Prototype

3.5.6 Incremental Development

PROJECT INITIAL SPECIFICATION

4.1
4.2

4.3

4.4

4.5

4.6

Introduction

Fact Finding

4.2.1 Interview

4.2.2 Observation

4.2.3 Summary for Interview and Observation
Requirement Specification

4.3.1 Functional Requirements
4.3.2 Non-functional requirements
Use Case Modelling

4.4.1 Use Case Diagram

4.4.2 Use Case Description
Interface Flow Diagram

4.5.1 User Management Module

4.5.2 Inventory Tracking via Barcode Scanning

Module
4.5.3 Cargo Load Planning Module
Prototype Interface
4.6.1 User Management Module

4.6.2 Inventory Tracking via Barcode Scanning

Module
4.6.3 Load Planning Module

SYSTEM DESIGN

5.1

Introduction

vii

51
57
57

58
58
58
59

62
62
62
62
64
65
66
66
68
68
69
70
85
86

86
87
87
87

89
96

101
101

5.2
53

5.4

5.5

5.6

System Architecture Design

System Database Design

5.3.1 Entity Relationship Diagram

5.3.2 Collection Description Diagram

5.3.3 Data Dictionay

Activity Diagram

5.4.1 Register account Activity Diagram
5.4.2 Login account Activity Diagram

5.4.3 Scan item barcode Activity Diagram
5.4.4 Update stock quantity activity diagram
5.4.5 View inventory list activity diagram
5.4.6 Add new item activity diagram

5.4.7 Delete inventory items Activity diagram
5.4.8 Generate Load Plan Activity diagram
5.4.9 View the checklist Activity diagram
5.4.10Generate PDF report Activity diagram
Algorithm Design

5.5.1 Algorithm Concept

5.5.2 Algorithm Flow

5.5.3 Pseudocode

5.5.4 Flowchart

5.5.5 Traceability = Table of Flowchart,

Pseudocode and Implementation Code

Conclusion

SYSTEM IMPLEMENTATION

6.1
6.2

6.3

Introduction

Development Environment Setup
6.2.1 Hardware Requirements
6.2.2 Software Requirements
6.2.3 Configuration Setup
System Modules

6.3.1 User Management Module

viii

101
103
103
103
104
109
109
110
111
112
113
114
115
116
117
118
119
119
120
122
124

126
130

131
131
131
131
131
132
134
134

6.3.2 Inventory Tracking via Barcode Scanning
Module
6.3.3 Load Planning Module

7 SYSTEM TESTING

7.1 Introduction

7.2 Unit Testing
7.2.1 Unit Test Cases Listing
7.2.2 Unit Test Cases

7.3 Integration Test

7.4 User Acceptance Test (UAT)

7.5 System Usability Test (SUS)

8 CONCLUSION
8.1 Conclusion
8.2 Objective Achievements
8.3 Limitations and Recommendations of Future

Work

REFERENCES
APPENDICES

X

138
146

157
157
157
158
159
187
190
203

207

207

208

209

211
213

LIST OF TABLES

Table2. 1: Comparison of features between Existing Application.

Table2. 2: Summary of GVW limits in Malaysia.

Table2. 3: Dimension of Items to be Packed.

Table 4.

Table 4.

Table 4.

Table 4.

Table 4.

Table 4.

Table 4.

Table 4.

Table 4.

Table 4.

Table 4.

Table 4.

Table 4.

Table 4.

Table 4.

Table 5.

Table 5.

Table 5.

Table 5.

Table 5.

Table 5.

1: Summary for Interview and Observation

2: Functional Requirement of User Management Module.

3: Functional Requirement of Inventory Tracking Module.

4: Functional Requirement of Load Planning Module.
5: Non-Functional Requirement.

6: Use Case Description of Register account.

7: Use Case Description of Login account.

8: Use Case Description of Scan item barcode.

9: Use Case Description of Update stock quantity.
10: Use Case Description of View inventory list.

11: Use Case Description of Add new items.

12: Use Case Description of Delete inventory items.
13: Use Case Description of Generate Load Plan.
14: Use Case Description of View the checklist.

15: Use Case Description of Generate PDF report.
1: Collection Description Table.

2: Data Dictionary for products collection.

3: Data Dictionary for users collection.

4: Data Dictionary for containers collection.

5: Data Dictionary for cargoes collection.

6: Data Dictionary for loadPlans collection.

23

29

32

65

66

67

67

68

70

72

73

74

76

78

79

80

82

84

103

104

105

106

107

107

xi
Table 5. 7: Algorithm Flow. 120

Table 5. 8: Traceability Table of Flowchart, Pseudocode and

Implementation Code. 126
Table 7. 1: Summary of Unit Test Cases Listing. 158
Table 7. 2: Unit Test Case of Add New User. 159
Table 7. 3: Unit Test of Login account. 160
Table 7. 4: Unit Test Case of Logout. 161
Table 7. 5: Unit Test Case of Home Dashboard. 162
Table 7. 6: Unit Test Case of View Products List. 163
Table 7. 7: Unit Test Case of Add New Product. 165
Table 7. 8: Unit Test Case of View Product Detail. 166
Table 7. 9: Unit Test Case of Edit Product Info. 167
Table 7. 10: Unit Test Case of Stock Update Using Product In. 168
Table 7. 11: Unit Test Case of Stock Update using Product Out. 169
Table 7. 12: Unit Test Case of Delete Product. 171
Table 7. 13: Unit Test Case of Camera Permission and Preview. 171
Table 7. 14: Unit Test Case of Scan the QR code on inventory item. 172
Table 7. 15: Unit Test Case of Navigate from Load Plan home. 176
Table 7. 16: Unit Test Case of Container and cargo selection. 178

Table 7. 17: Unit Test Case of Confirmation Details and Actual Ratio

Diagram. 179
Table 7. 18: Unit Test Case of Generate and save load plan. 181
Table 7. 19: Unit Test Case of View load plan history. 182
Table 7. 20: Unit Test Case of View load plan detail. 183
Table 7. 21: Unit Test Case of Arrange cargo checklist. 184

Table 7. 22: Unit Test Case of Set common size for containers and
cargo. 185

Table 7. 23: Unit Test Case of Export a plan to PDF.
Table 7. 24: Test Case of Integration Test.

Table 7. 25: UAT Result Summary.

Table 7. 26: Analysis of UAT Feedback.

Table 7. 27: User Acceptance Testing Form (UAT).
Table 7. 28: Template of SUS form.

Table 7. 29: Summary of SUS Survey Results.

Table 7. 30: Summary of Testers’ Feedback on the Most Liked Features.

Table 7. 31: Summary of Testers’ Suggestions for System Improvement.

Table 8. 1: Limitation and Recommendations.

Xii

186

187

190

191

194

203

205

206

206

209

LIST OF FIGURES

Figurel. 1: Operation flow of Barcode Scanning for Inventory Tracking

System.

Figurel. 2: Operation Flow of Load Planning.

Figurel. 3: Overview of the Software Development Methodology.

Figurel. 4: Overview of Throwaway Prototyping.

Figurel. 5: Overview of Incremental Process Model.

Figure 2. 1: Example of Stock Card

Figure 2. 2:
Figure 2.
Figure 2.
Figure 2.
Figure 2.
Figure 2.
Figure 2.
Figure 2.
Figure 2.
Figure 2.
Figure 2.
Figure 2.

Figure 2.

Figure 2.
Figure 2.

Figure 2.

Figure 2

3:

4.

8:

9:

Manual Sketch of Cargo Layout in Excel
Predefined Vehicle Selection of GoodLoading.

Space Calculation Features of GoodLoading.

: Space Calculation Features of EasyCargo.
: Drag and Drop Features of EasyCargo.

: Cargo Rotation via Cargo Information Panel.

Cargo Text Label Displayed on Hover in GoodLoading.

Visible Text Labels and Color-Coded Cargo in EasyCargo.

10: Six cargo orientations.

11: Calculating Available Space Using EMS Representation.
12: Six EMS Directions After Loading a Cargo.

13: Three New EMS when Box Placed at the Corner.

14: New EMSs Resulting from the Placement of the Grey Box.

15: Process of Biased Random-Key Genetic Algorithm.
16: Evolutionary process between consecutive generations.

17: Random Keys Generated.

. 18: Population of Five Individuals.

xiii

13

15

16

16

17

18

19

20

21

26

27

27

28

28

30

31

32

32

Figure 2. 19: Random Keys are Sorted.
Figure 2. 20: Arrangement of First Individual.

Figure 2. 21: Place the Largest Block in the Top Left Corner of the
Rectangle.

Figure 2. 22: Split Rectangle into 2 Smaller Rectangles.

Figure 2. 23: Result of Placing the Second Largest Block.

Figure 2. 24: Placing Third Block in the Bottom Remaining Space.
Figure 2. 25: Recursively Place All Blocks.

Figure 2. 26: 100x100 Container.

Figure 2. 27: 4 Items of Different Sizes.

Figure 2. 28: 100x100 Container.

Figure 2. 29: Initial State of Binary Tree.

Figure 2. 30: Place Item A and the Remaining Spaces.

Figure 2. 31: Binary Tree.

Figure 2. 32: Result of Placing Item C and the Remaining Spaces.
Figure 2. 33: Binary Tree.

Figure 2. 34: Result of Placing Item B and the Remaining Spaces.
Figure 2. 35: Binary Tree.

Figure 2. 36: Result of Placing Item D and the Remaining Spaces.
Figure 2. 37: Binary Tree.

Figure 3. 1: Throwaway Prototyping with Incremental Model
Development Methodologies.

Figure 3. 2: Throwaway Prototyping Phases.
Figure 3. 3: Incremental Process Model Phases.
Figure 3. 4: Gantt Chart for Overall Project.

Figure 3. 5: Gantt Chart for Planning & Initial Requirement Gathering.

X1V

33

33

35

35

35

36

36

37

37

37

38

38

39

39

39

39

40

40

41

42

43

46

57

57

Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.

Figure 3.

Figure 4. 1: Use case Diagram of Inventory Tracking System: User
Management and Inventory Tracking via barcode

Figure 4. 2: Use Case Diagram of Inventory Tracking System: Load

Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.

Figure 4.

6: Gantt Chart for Prototype Development.
7: Gantt Chart for Prototype Review and Get Feedback.

8: Gantt Chart for Discard or Refine Prototype.

9: Gantt Chart for Overview of Incremental Development.

10: Gantt Chart for First Increment.
11: Gantt Chart for Second Increment.

12: Gantt Chart for Third Increment.

scanning.

Planning.
3: Interface Flow Diagram of Proposed System.
4: Interface Flow in User Management Module.
5: Interface Flow in Inventory Tracking Module.
6: Interface Flow in Cargo Load Planning Module.
7: Register a New Account
8: Login feature by Staft.
9: Low Stock Alert Message Displayed After User Login.
10: Home Page.
11: Inventory Items List Screen.
12: Filter Feature by Category and Quantity.
13: Form Interface for Adding a New Inventory Item
14: Product Description Page.

15: Interface for Editing Inventory Item Details.

16: Confirmation Message for Deleting an Inventory Item.

17: Stock Update for a Single Inventory Item ('In' Button).

XV

58

58

58

59

60

60

61

69

70

85

86

86

87

89

89

90

90

91

91

92

92

93

93

94

Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.

Figure 4.

Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.

Figure 5.

18:

19:

20:

21:

22:

23:

24

25:

26:

27

1:

2:

3:

4.

5:

Steps to Scan a Barcode.

Steps to Update Stock Quantity by Scanning a Barcode.
Load Plan History.

Container Selection Screen.

Cargo Selection Screen.

Generated Load Plan and Redirection to Load Plan History.

Generating a Printable PDF of the Load Plan.

Example of Load Plan PDF Report.

Scanning QR Code on PDF to Retrieve Load Plan Details.
: Marking Items as Completed in the Load Plan Checklist.
System Architecture Design Diagram

Entity Relation Diagram.

Register account Activity Diagram.

Login account Activity Diagram.

Scan item barcode Activity Diagram.

6: Update stock quantity activity diagram.

7:

View inventory list activity diagram.

8: Add new item activity diagram.

9:

10

11

12

13

14

15

Delete inventory items Activity diagram.

: Generate Load Plan Activity diagram.

: View the checklist Activity diagram.

: Generate PDF report Activity diagram.

: Pseudocode of Binary Bin Packing algorithm.

: Flowchart of Binary Tree Bin Packing Algorithm (Part 1).

: Flowchart of Binary Tree Bin Packing Algorithm (Part 2).

XVi

95

96

97

97

98

98

99

99

100

100

101

103

109

110

111

112

113

114

115

116

117

118

122

124

125

Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.

Figure 6.

10

11

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

: Firebase configuration shown in Firebase console.
: Firebase configuration pasted in the Firebase config file.
: Welcome Screen.
: Login Screen with Input Validation and Error Messages.
: Login Screen with Correct Email Format and Password.
: Home Screen.

: Personal Screen.

: User Management Screen.

: Add New User Screen.

: Inventory List Screen.

: Search Inventory List Using Product ID Prefix.
Inventory List with Category Filters.

Inventory Filter Options.

Add Product Form.

Select Image for Product from Gallery.
Product Detail Screen.

Product Detail Screen in Edit Mode.

Product Deletion with Confirmation Dialog.
Stock Updated to Low After Product Out.

Stock Restored to In Stock After Product In.

Load Plan Main Menu.
Add New Container and Cargo Screen.
Selecting Container from List.

Adding Cargo and Adjusting Cargo Quantities.

Barcode Scanning for Bulk Product In/Out Updates.

Xvii

133

133

134

135

135

136

137

137

138

139

139

140

140

141

141

142

143

143

144

144

146

146

147

148

148

xviil
Figure 6. 26: Exceeding Container Weight Limit. 149
Figure 6. 27: Automatic Cargo Arrangement. 150

Figure 6. 28: Manual Adjustment of Cargo Placement Using Drag-and-

Drop. 151
Figure 6. 29: Load Plan History screen. 151
Figure 6. 30: Load Plan Shown with Filters and Search Option. 152
Figure 6. 31: Detailed View of a Selected Load Plan. 152
Figure 6. 32: Options to Share, Download, or Print the Load Plan. 153
Figure 6. 33: Generated PDF report. 154
Figure 6. 34: Scanning the QR code from the printed load plan PDF. 155
Figure 6. 35: Cargo arranging checklist. 156

Figure 6. 36: Confirmation dialog for deleting a load plan. 156

XiX

LIST OF SYMBOLS / ABBREVIATIONS

SMEs Small and Medium-Sized Enterprises
PDF Portable Document Format

QR Code Quick Response Code

ID Identity

IT Information Technology

SDLC Software Development Life Cycle
ERP enterprise resource planning

10S iPhone Operating System

CRUD Create, Read, Update, Delete

2D Two dimensional

3D Three dimensional

$ dollar sign

XML Extensible Markup Language

€ The euro, EUR

API Application programming interface
EMSs Empty Maximal Spaces

JKR Public Works Department

JPJ Road Transport Department

GVW Gross Vehicle Weight

BRKGA Biased Random-Key Genetic Algorithm
GA Genetic Algorithm

DBL Deepest-Bottom-Left

WBS Work Breakdown Structure

SDK
IDE
MySQL
NoSQL

EAN code

XX

Software Development Kit

Integrated Development Environment
My Structured Query Language

Not only SQL

European Article Number code

LIST OF APPENDICES

Appendix A: Interview Questions.

Appendix B: Manual Sketch of Cargo Layout in Excel.

Appendix C-1: User Acceptance Testing Result of Tester 1.
Appendix C-2: User Acceptance Testing Result of Tester 2.

Appendix C-3: User Acceptance Testing Result of Tester 3.

Appendix D-1: SUS Test Result of Tester 1.
Appendix D-2: SUS Test Result of Tester 2.

Appendix D-3: SUS Test Result of Tester 3.

XX1

213

214

215

224

233

242

244

246

CHAPTER 1

INTRODUCTION

1.1 General Introduction

Inventory management is a very important aspect within an organization that
deals with large volumes of raw materials or physical goods, whether in
manufacturing, retail, or distribution (Madamidola et al., 2024). The purpose
of inventory management is to be easy and efficient for organization to
manage the ordering, stocking, storing, and using of inventory. By managing
inventory effectively, organizations are able to always know what items are in
stock, how many items have, and where they are located.

Nowadays, there are many web-based inventory management systems
available. However, many small and medium-sized enterprises (SMEs) still
rely on manual record-keeping techniques, such as using Excel sheets to track
inventory and plan cargo arrangement. This is primarily because today’s load
planners and inventory systems are expensive and complex, and therefore
unacceptable to small and medium-sized businesses with tighter budgets and
simpler operational requirements.

While these methods are commonly used, they do not provide real-
time updates, requiring employees to physically walk through storage sites,
verify stock levels, and manually update records on paper (Chan, Sathiapriya
and Razali, 2023). This inefficient method may result in problems including
miscounting stock or recording incorrect quantities, leading to inaccurate
inventory records. Without real-time updates, inventory records may not
reflect actual stock levels, leading to discrepancies between recorded and
physical inventory (Barratt, Kull and Sodero, 2018).

Similarly, a lot of workers load cargo into vehicles using a random
stacking technique, placing the items inside without following any structured
plan. Their main goal is to fit everything inside the lorry, generally without
considering factors such as load safety, weight distribution, or space
optimization. Longer loading times, ineffective use of space, and potential

damage to delicate items are all results of this disorganized approach.

To address these challenges, this project aims to develop a
Streamlined Inventory Tracking Application with barcode scanning and load
planning optimization. By providing real-time inventory updates, automating
tracking processes, and optimizing load planning, the system will improve
stock accuracy, reduce manual workload, and enhance overall efficiency in
inventory and transportation management. The most important thing is to

create software that is affordable for small and medium-sized enterprises.

1.2 Problem Statements

The literature review and the interview conducted revealed several problems
associated with the currently available solutions for inventory tracking and
load planning. The problems are inaccuracy of manual record-keeping, time-

consuming and difficult to update load plan, and underutilized vehicle capacity.

1.2.1 Inaccuracy and Inefficiency of Manual Record-Keeping

One of the most common problems associated with manual inventory
management is inaccurate record-keeping. This is because manual inventory
tracking methods affect the visibility into actual goods in inventory and are
prone to frequent discrepancies. Manual inventory tracking methods, reliant on
physical inspections and paper-based records, making it difficult to maintain
an accurate view of stock levels. Employees must physically visit storage
locations to count inventory, a process prone to human error, such as
miscounting or incorrect data entry. Employees may only visit storage sites
weekly or biweekly to perform inventory counts, which can lead to
overstocking or understocking issues going unnoticed and unacted upon,
resulting in harder to identify discrepancies (Chopra, 2021). The goods are not
replenished on time, and when employees discover it, it is often too late to take

action.

1.2.2 Time-Consuming and Difficult Adjustments in Manual Cargo
Load Planning

Many companies utilize Excel's drawing functions to create visual

representations of each cargo items according to its size and arrange the items

within a larger grid, representing the container or vehicle. This approach helps

them visualize the load plan more effectively, but it can still be time-
consuming and prone to errors due to manual calculations and adjustments.
This process is time-consuming, especially for large or complex loads, as it
requires repeated manual drawing every cargo. Workers manually draw and
adjust each cargo’s based on a scaled size range using Excel, to fit them into
the container grid. Since most cargo sizes vary, they need to estimate and
adjust each item's placement manually. If the initial arrangement is not optimal,
they must repeatedly adjust placements. This trial-and-error process to fit all
items properly takes significant time, especially when making multiple

adjustments to optimize space.

1.2.3 Underutilized Vehicle Capacity

Many companies load cargo onto vehicles without any structured method or
planning. The Logistic workers often load items based on convenience,
prioritizing goods that are readily accessible at the front of the truck rather
than following a strategic plan to maximize space. Without a planned method,
logistic workers may fail to optimize the vehicle’s payload, leaving substantial
portions of the container or truck empty. Workers load the cargo into vehicles
without considering any calculations or following specific guidelines. They
neither evaluate the weight, size or shape of the goods before loading. This
lack of planning increases transportation costs, as more trips are required to
deliver the same volume of goods, resulting in higher fuel and labor expenses.
Furthermore, randomly placing cargo can lead to uneven weight distribution,
creating unstable loads that risk shifting or overloading during transit. Such
instability not only causes costly delays but also increases the likelihood of

accidents, posing safety hazards on the road (Gaur, 2023).

1.3 Project Objectives

The main goal of this project is to solve the identified problems in Section 1.2
by developing a software solution. This solution simplifies inventory
management by providing barcode scanning when inventory is in and out and
providing plan load optimization features. The objectives of the project are as

follows:

1. To conduct a thorough study of algorithms for generating
optimal cargo load plans for vehicles.

2. To develop a functional mobile app for inventory tracking
with integrated cargo load planning and optimization features
for vehicle space utilization.

3. To evaluate the developed mobile app with Unit Test, System
Usability Scale (SUS) and User Acceptance Testing (UAT).

14 Proposed Solution

To solve the problem in manual inventory tracking and unstructured cargo
loading, an Android-based mobile application was decided to develop. This
application integrates barcode scanning features to streamline inventory
management and apply automatic load planning algorithms to optimize cargo
arrangement.

For inventory tracking, when users want to issue raw materials to the
production line, users find the barcode on the goods and scan it using the
mobile application. After scanning, the application will retrieve and display
the relevant item information from the database, such as product thumbnail,
name, current stock quantity and stock status. The user can then update the
quantity issued and submit after confirming that the information is correct.
Once submitted, the database is updated in real-time, eliminating the need for
manual records, thus reducing the risk of human error.

Users able to view the changes in stock levels without having to
refresh the app. By having the application, users can monitor the inventory
levels and respond quickly to any issues at any time, and from anywhere. They
can just open the application and take immediate action with a few clicks
without having to go to the warehouse. Users also don’t have to rely on
hundreds of paper sheets or manual records, as the application provides a

centralized inventory system that includes all inventory data.

L
T -
Find the barcode Barcode Scanning Retri;;:air:‘:efrom
Quantity
) i@ BEEn

Database
synchronization

Update quantity

Figurel. 1: Operation flow of Barcode Scanning for Inventory Tracking

System.

Besides, in terms of cargo load planning module, the application
includes an automated feature that optimizes the arrangement of cargo during
the loading process. By using this application, users no longer have to do
manual calculations and can simply input the size of the container or lorry, as
well as the dimension and quantity of the cargo to be arranged. Then the
application will generate the cargo representations of corresponding
proportional size and arrange them neatly in the lorry. By applying the packing
algorithm, the lorry space can be maximally utilized.

User do not need to plan or draw scaled representations of each cargo
one by one, which not only reducing labour costs and time, but also provides
workers with a clear and structured loading guide. If the user needs to update
the size of a previously provided cargo, they can directly edit the dimensions
in the application, and such an operation does not take more than 1 minute.
Then the system will recalculate the arrangement and update the load plan
based on the updated information. Therefore, users are no longer to redraw or
recreate the cargo to scale. Besides, users also can retrieve a previously
generated load plan easily by scanning the QR code on the printed PDF
document. This is because the barcode contains a unique load plan ID, which
allows the application to fetch and show the corresponding load plan

immediately.

<

Set Commen See Mistory
CONTAINER o =
- e
[Bacsemss
-
L Jremid Generates cargo

representations to scale

Input dimension and
quantity of the
container and cargo

CI-<: = gl

Edit the dimension

Recalculate the of cargo Arrange all cargo
arrangement and update the into the lorry
load plan

Figurel. 2: Operation Flow of Load Planning.

1.5 Proposed Approach

The combination of throwaway prototyping and incremental development
methodologies was chosen to implement in this proposed system. Since the
application’s feature set is primarily based on personal ideas and the analysis
of the current market situation, supplemented by a few user requirements
collected through interviews. Therefore, in the absence of specific and
complete user requirements, early developing an initial prototype for
determining the core features and incrementally building feature by feature

provide flexibility to changes in design and feature development.

Planning and Initial . - . Discard or Refine
e Ry — Develop quick prototype — Initial User Evaluation —» prototype
Reusable Components J t J J
(o

Refined Components
Develop software

User
Management Module

Plan -» Design -p Implementation —» Testing

Inventory
Tracking Module

Requirements Plan -» Design -» Implementation —p Testing

Load
Planning Module

Figurel. 3: Overview of the Software Development Methodology.

Throwaway prototyping, also known as rapid prototyping, is used in
the early stages of software development. A prototype of the final product is
created quickly before actual software development takes place and then
shared with users for feedback (Perera et al., 2022). This model was chosen
because it is well suited for dealing with uncertain requirements, especially
when the user does not know the exact project requirements in advance and
the initial requirements are unclear. The software features defined in the early
stages are based on personal ideas and investigation. So throwaway prototypes
quickly create tangible representations of application functionality early in the
development process, encouraging experimentation and trial and error, instead
of being tethered to the first solution or design that comes along, making it
easier to explore multiple ideas without commitment (Douglas, 2025). As a
result, stakeholders can better visualize and interact with the prototype during
the interview session to provide more accurate requirements, helping clarify

expectations and provide effective feedback.

Planning and Initial) - : Discard or Refine
e —p Develop quick prototype — Initial User Evaluation —» T
Reusable Components J t J)
{ ;

Refined Components
Develop software

Figurel. 4: Overview of Throwaway Prototyping.

Besides, the end-users mostly do not have an IT background,
therefore prototype can serve as a common visual language for diverse
stakeholders. This reduces the risk of misunderstanding or misinterpreting of
requirements, because users can intuitively see what the project is doing and
what functions it currently has, regardless of technical background, so as to
better propose their own ideas and define the user requirements. In conclusion,
throwaway prototyping means building initial ideas for different applications,
interfaces, or functions, without necessarily intending to include them in the
final system. Instead, its purpose is to collect and gather feedback, determine
the final functionality of the software, and prove that the concept can be

implemented. Once the prototype has served its purpose, such as finalizing all

software functionality and design, it is set aside and then application
development begins.

After analysing the feedback, the project transitioned from the
prototyping phase to a more structured development approach. The feedback
gained from early user testing, interviews, and prototype refinement helped
shape a clearer understanding of user expectations and requirements. With
these findings, the formal software development phase began, guided by a
structured Software Development Life Cycle (SDLC). Each increment in the
development process follows the SDLC phases including Planning, Design,
Implementation, and Testing (GeeksforGeeks, 2025). The development is
divided into three increments, each focusing on different core functionalities.
The first increment focused on implementing the User Management Module,
with the main objective of developing a secure registration and login system
for user authentication. The second increment focused on developing the
Inventory Tracking Module, which allows users to manage stock efficiently
through barcode scanning and record inventory in and out activities with real-
time updates. Lastly, the third increment focused on the development of the
Load Planning Module, which allows the users to optimize the arrangement of

cargo within transportation containers or lorry.

User
Management Module

Plan -» Design —-» Implementation —» Testing

Inventory

Tracking Module

Requirements Plan -» Design -» Implementation —p Testing

Load

Planning Modul
—_— Plan =-» Design -» Implementation —p Testing

Figurel. 5: Overview of Incremental Process Model.

1.6 Scope and Limitation of the Project

1.6.1 Target End-Users

The project's target end users include storekeepers, warehouse staff, logistics
personnel, and companies across various sectors such as retail, manufacturing,
and wholesale, all of which require efficient solutions for inventory

management and cargo load planning to optimize their operations. The

application allows storekeepers and warehouse employees to track goods
coming in and out of the warehouse by scanning barcodes on the items using
the mobile application, monitoring stock levels and take immediate action
anytime, anywhere.

Besides, Logistics personnel can use the application to plan the
arrangement of goods within containers. With the cargo load planning
functionality, logistics personnel can optimize the load planning process by
automatically generating optimal layouts for cargo based on the size and
dimensions of the goods. This ensures that the space within vehicles or
containers is utilized as efficiently as possible.

This project is tailored for small and medium-sized enterprises (SMEs)
that operate on a smaller scale and have limited resources and budgets. These
SMEs are often unable to fully utilize the full functionality of existing systems
on the market. Therefore, these companies are often unwilling to invest too
many resources and money in building or adopting such complex solutions
that may be beyond their means. As a result, this software is intentionally
designed with simplicity and efficiency in mind, offering only a few essential

features that directly cater to specific needs.

1.6.2 Feature Scope and Exclusions

The application is designed with a simplified set of core features, such as
barcode scanning for real-time inventory tracking and automated cargo load
planning. To ensure ease of use and accessibility for small and medium-sized
enterprises (SMEs), it intentionally excludes unnecessary and cumbersome
features, therefore it may lack advanced functionalities found in more
comprehensive inventory and logistics systems, such as real-time multi-
warehouse synchronization, predictive analytics, or integration with external

enterprise resource planning (ERP) platforms.

1.6.3 Assumptions and Constraints of Cargo

The application is developed based on several simplifying assumptions to
maintain usability and efficiency for its target users. The assumption is that all
cargo items are rectangular or square in shape and do not account for

irregularly shaped objects, cylindrical items, or cargo with unconventional

10

forms. Additionally, since the app assumes all cargo has standard shapes, there
is a possibility of wasted space if the actual items vary in shape and cannot fit
perfectly together.

Additionally, the system does not consider other critical cargo
management factors such as item fragility, weight distribution, or stacking

limitations, which could be essential for more complex logistics scenarios.

1.6.4 Target Platform

Besides, the application is currently only available for Android devices, which
limits the use of users of i0OS or other platforms. Lastly, the system requires an
internet connection for synchronization with the Firebase database. In offline
environments or regions with poor connectivity, real-time data updates may be

delayed or unavailable.

1.6.5 Modules

1.6.5.1 User Management Module

The User Management Module is responsible for handling user access,
account creation, and authentication within the system. This module ensures
that only registered users can log in and interact with the application. During
registration, an existing user can create new accounts for additional staff by
assigning login credentials such as email and password. The Login feature
then allows newly registered users to securely access the system using the
credentials provided to them. Once logged in, all users are granted the same
level of access to the system’s features, including managing inventory and

performing barcode scanning activities.

1.6.5.2 Inventory Tracking via Barcode Scanning Module

The Inventory Tracking via Barcode Scanning module allows users to
efficiently manage and monitor inventory items using barcode technology.
This module enhances accuracy and efficiency in stock control by reducing
manual entry and enabling real-time updates. For example, users can view a
complete list of inventory items. They can filter items by category, stock status,
or search using keywords across item attributes. They can also manually add

new inventory items, edit or delete existing items. The users also can quickly

11

identify and update stock quantities by scanning items in or out with the
device camera. If a scanned barcode doesn’t match any existing item, the
system will alert the user to prevent errors. In addition, the system
automatically notifies users with a red indicator when stock levels fall below a
predefined threshold, helping to prevent shortages and ensuring timely

replenishment.

1.6.5.3 Load Planning Module

The Load Planning Module is designed to generate a load plan that help users
efficiently organize and manage the arrangement of cargo items into
containers for transport. It ensures optimal space usage and reduces loading
errors. This module allows users to input cargo dimensions and container sizes,
after which the system automatically generates an optimized load plan using a
binary tree bin packing algorithm. If predefined sizes are insufficient, user can
manually enter custom dimensions for containers or cargo. This module also
enables users to adjust and refine load plans by dragging and dropping cargo
items within the container layout for better optimization. Each cargo item can
be labelled with both a colour code and a text label for easy identification in
the load plan layout, helping users clearly recognize each item during the
loading process. Once the load plan is finalized, users can generate a printable
PDF report that includes cargo details and a QR code linked to the load plan
history. By scanning the QR code, users can quickly retrieve the full load plan
details. Additionally, the system provides a checklist for staff to double-check
the arrangement of each cargo item. Staff can mark them as ‘arranged’ after

confirming they are loaded correctly.

12

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter begins with an overview of traditional manual inventory tracking
and load planning methods. It then reviews existing load planning applications
to identify common features and functionalities relevant to this project's
mobile application. Additionally, this chapter examines the algorithms
commonly used in load optimization to guide the development of the proposed

mobile application.

2.2 Overview of Traditional Manual Inventory Tracking Methods
Nowadays, many small and medium-sized enterprises (SMEs) still rely on
manual inventory tracking methods, such as handwritten records, spreadsheets
or stock cards to monitor and manage their stock. These approaches remain
common primarily because they are less costly than implementing automated
inventory management systems. Besides, these methods only require low
initial investment and few technical resources, making them appeal to
companies with tight budgets and limited access to technology. Despite the
higher risk of mistakes, many SMEs expect to maintain accurate inventory
counts and fast access to the analysis of inventory data without technological
support.

The manual tracking process typically begins with physical stock
counting. Warehouse staff must go to the storage areas and count each item
manually. For example, when the staff want to know the latest inventory status,
they have to go to the site to then find the exact location where the goods are
placed, take out the goods and count them one by one (Setrag Shahikian,
2024). Finally, the quantities obtained during the physical count are manually
recorded in logbooks, pre-printed forms, or spreadsheets such as Microsoft
Excel (Kuhn, 2021). Spreadsheets may offer a small advantage over
handwritten records by allowing for basic calculations and summaries through

built-in formulas. However, they still rely entirely on manual data entry.

13

In addition, some companies use stock cards to monitor inventory
movement. Each item has its own card, and staff members manually update
the card every time stock is received, issued, or adjusted. To use a stock card
effectively, staff must follow a structured process. When stock is received, the
worker records the date, quantity received, and any relevant details on the card,
then calculates the new balance by adding the received quantity to the previous
balance. When stock is issued, such as when items are taken out for production
or use, the worker notes the date, quantity issued, and purpose, then subtracts
this amount from the previous balance to update the current stock level. This
process ensures the stock card reflects the item’s current inventory status.
However, the system’s accuracy hinges on consistent and immediate updates,
which is a significant challenge. For instance, workers may take items out of
storage without recording the transaction on the stock card, either due to time
constraints, or lack of adherence to procedures. This failure to update records
in real-time leads to discrepancies between the physical stock and the

quantities recorded on the stock cards.

" DATE | OPEN |

[Description
B6-02-01 k’q_“ 200

42 1900

DIN 933 (Z/Pi 22-9-2WC2

M10 x 75

HT HEX BOLT!
DB2-025-M12X100-80 |DIN 933 (B/O) 28-9-%\ «Q\
\ M12 x 100(FLLL

Al

mus_;s(n/p‘ 86-02-08 &L

[VEE BV VN

Figure 2. 1: Example of Stock Card

Besides, in order to speed up the inventory counting process, many
staff may be assigned to perform inventory counts at the same time, which
causes many employees to be unable to handle other tasks. Imagine if the

company has tens of thousands of different goods, each with at least 1,000

14

quantities, manual tracking will be very time-consuming and laborious.
Overall, manual inventory tracking involves a series of straightforward but
labour-intensive tasks. Although it can be effective for small-scale operations,
it becomes increasingly difficult to manage as inventory volume and

complexity grow.

23 Manual Load Planning Techniques

Nowadays, many companies load cargo onto vehicles without applying any
structured method or planning. Typically, logistical workers prioritize
convenience over considerations such as maximizing space, balancing weight,
or preventing damage. Small and medium-sized enterprises (SMEs) often
relied on experience-based judgment, basic physical sketches, or simple
spreadsheet tools to arrange cargo within containers or lorries. Items are also
loaded based on their immediate availability rather than a systematic
arrangement designed to optimize the load.

One of the most commonly used manual techniques is random
stacking, where items are loaded into containers without a defined structure or
layout. In such cases, the main goal is to fit everything inside the truck, rather
than space efficiency or load safety. For instance, cargo may be loaded starting
from the front of the container, and workers continue stacking until the space
is filled. This approach can lead to uneven weight distribution, and inefficient
use of available space.

Another common manual approach involves using tools like
Microsoft Excel or grid paper to draw and simulate container layouts.
According to the interviewee, workers start by using Excel’s shape and
drawing features to create basic visual blocks that represent each item of cargo,
sized roughly according to their actual dimensions. These blocks are then
placed onto a larger grid that represents the truck or container space. The goal
is to visually arrange the cargo in a way that fits everything within the
available area. Since cargo items often come in different shapes and sizes, the
workers need to carefully estimate where each item might fit best. This usually
means dragging and repositioning the blocks on the grid, one by one, trying
different combinations to make everything work. If something doesn’t fit or

the layout seems off, the workers go back and move items around until a better

15

configuration is found. An example of the final cargo layout is shown in

@ Auosae @ on) ¥ Bookl! - Saved to this PC v
File Home Insert Pagelayout Formulas Data Review View Automate Developer Help
oy . = = 5 f
= Jn A = =(=Z) e 25 Wrap Text General B 2 =
m - — A =4 |
te u e A S == = = EMegencemsr - - % 9 9 § Condtional Formatas Cel Insert Delete Format
3 o Formatting * Table ¥ Styles * - - v
Clipbossd 5 Font 3 Aligrment) Number) Styles Cells
u2s v £
A B c D E F G H] K L M (o
1 28fts 31/01/25 8.30am BDA (Main)
3 4 1500730
4 (gs4saz) (e7e885)
carane| viEmiANy
5 A p
Larry
9 | Head
:] 2 ° [£]
83179116-R0 | 83511850-R0 83156154-n2 | | 83510819-R1 | 83015765-R8 | [§3i7asasno | ssizossons | esiisozsno | | sasiosarAz | | 830413764
B3310157-R0 | 83179117-R0 86024284-R2 83510820-R1 | 83087438-R1 3013609-R1 | 83170380-R2 | 83169853-R3 | [37004713.R5 | | 8304132785
38923877-R3 | 83194685-R1 83137719-R2 83087443-R0 | 83087442-R1 83101589.R3 | 83108479 R1 | B3528847-R2 83038537-R1
83192055-R1 | 83194696-R1 831397871 83100368-R0_| 83094555-R0 83505789-R1 | 83108200-R0 | E3512814-R1 83039187-R1
B3179118-R0 | 33400445-RE 83143273-R3 £3092817-R1 | B3022486-R3 83085612-R0 | 83182236-R0 | 83150914-R2
53310162-R0 | 83316375-R0 83095770-R2 83056053R1 | 83004795 R1 83082607-R0 | 83127213-R0 | 83150815-R2
83301765-R0 | 83319865-R1 83137348-RS 83158150-R2 | $3165638-R4 | 83082061-R0
83151230-R1 | 83310164-R1 83576334-R0 | 83165639-R4 | 83174867-R0

Figure 2. 2: Manual Sketch of Cargo Layout in Excel

24 Review of Existing Load Planner Applications
The cargo load planning applications such as GoodLoading, EasyCargo and
CubeMaster are reviewed and analysed to identify the common features,

strengths, and limitations of each application.

2.4.1 Common Features of Existing Load Planner Application

2.4.1.1 Predefined Container Types and Cargo Sizes

Across the three load planning applications reviewed, several common
features were identified. These applications offer a set of predefined
commonly used container types and cargo sizes. Users can directly select from
the predefined cargo items to put them into the container rather than manually
inputting each item’s details. They only need to adjust the quantity to generate
a load plan, which is simple and convenient. Additionally, these applications
offer flexibility by allowing users to define custom container sizes, including
trailers, standard containers, air freight containers, and pallets. If a container or

cargo size is not in the predefined list, users can also input custom dimensions.

16

LOADED SPACE ° = Wi Vehicle I Sea container W Air container
LOADING [+ =
Create your own e
ADDED LOADS Algorithm settings: E£
©@ ™ Busser e my Bus8EP (7

420 x 220 x 220 cm | 1500 kg
1/2 Euro pallet 1 4 eee

80 x 60 x 100 cm | O kg o Bus 10 EP o /,
T 490 x 220 x 230 cm | 1500 kg

™ Solo truck 10 EP Axle ar P
400.8 x 241.2 x 280 cm | 10505 kg

Bus 12 EP
m s add |/
590 x 230 x 230 cm | 3500 kg

Solo truck 15 EP
™ olo truc e ’
620 x 245 x 240 cm | 5000 kg

Solo truck 18 EP
720 x 245 x 240 cm | 6000 kg

-, Solo truck 20 EP ar 7
820 x 245 x 240 cm | 8000 kg

Standard semitrailer 33 EP .
L] Add |/
1360 x 245 x 270 cm | 24000 kg

r— Set of 765x240x270 R P

765 x 240 x 270 cm | 6000 kg

Figure 2. 3: Predefined Vehicle Selection of GoodLoading.

2.4.1.2 Space Calculation

Besides, three existing applications also have space calculation features. When
a cargo is added to a container, the system automatically calculates both the
occupied and remaining free space. This feature is able to ensure optimal
space utilization by providing users with a clear overview of whether or not

more cargo can be added.

Space Calculation

WEB Bus 8 EP 420 x 220 x 220 cm 1500 kg v l

L:8 »N:- W: 0 ki s: 2.28 m? V: 6.67/13.66 m*
g

Occupied LDM: 3.6

Free LDM: 0.6

Figure 2. 4: Space Calculation Features of GoodLoading.

17

Figure 2. 5: Space Calculation Features of EasyCargo.

2.4.1.3 Provide 3D Visualization

Furthermore, another common feature is providing 3D visualization load plan,
which allows users to interactively view and adjust their load plans in three
dimensions. It gives them the flexibility to zoom in, rotate, and adjust their
view, providing a more immersive and intuitive way to let users get a better
look at how the cargo is arranged inside the container. Rather than just looking
at a 2D layout, users can switch between different views like top, front, or side
to understand how everything fits together. Some apps also allow users to
partially rotate the view, such as 180 or 360 degrees, while others limit fixed-

angle views.

2.4.1.4 Automated and Manual Adjustment Options

Another useful feature found in many load planning applications is the
combination of automated and manual adjustment options. The system usually
generates a loading plan automatically using built-in algorithms, which saves
time and helps optimize space. However, users aren’t limited to the system’s
suggestions. They can still manually adjust or reposition items if needed. Most
applications support simple drag and drop functionality, allowing users to
click, drag, and release items to position them exactly where they want inside

the container.

18

Figure 2. 6: Drag and Drop Features of EasyCargo.

2.4.1.5 Export Options

Export options are a common feature among load planning applications,
providing users with the ability to share, print, or analyze their load plans in
different formats. The most commonly available options include PDF, Excel,
Photo, and Sharable Link. PDF exports are standard for generating printable
documents, a feature offered by all three applications. Excel exports are
available only in EasyCargo, providing users with the ability to manipulate or
analyze data in a spreadsheet. Photo exports offer a quick, visual way to share
the load plan, and are available in GoodLoading. Sharable Links, which allow

for easy real-time collaboration, are available in all three applications.

2.4.2 Advantages and Limitations of Existing Load Planner

Applications

2.4.2.1 GoodLoading

Advantage:

1. Arrangement Algorithms:
A key advantage of GoodLoading over other load planner applications
is its multiple algorithms for cargo arrangement. These features allow
users to decide how to arrange the cargo in the container in order to
generate a load plan. For example, the optimal arrangement algorithm

is designed to maximize residual space, ensuring the most efficient use

19

of available container space, regardless of the order in which the cargo
is added. Alternatively, GoodLoading offers an algorithm that arranges
cargo in the order it was added, as well as one that prioritizes placing
the heaviest items first. These diverse options allow users to tailor the

load plan based on specific needs and preferences.

2. Rotate The Container View 360 Degrees:
GoodLoading allows users to rotate the container view 360 degrees by
holding down the left mouse button, giving them the ability to inspect
cargo arrangements from all angles for a more thorough review. In
addition, GoodLoading features drag-and-drop functionality, enabling
users to easily move cargo items and place them anywhere within the

container.

Limitations:

1. Limited Direct Rotation:

One limitation of GoodLoading is the limited direct rotation functionality.
Users cannot rotate the cargo directly within the displayed load plan using the
mouse. Instead, to adjust the orientation of cargo, they must navigate to the
cargo information panel and manually select the available options. This extra
step can be a bit less intuitive compared to applications that allow direct, on-

the-spot cargo rotation, potentially slowing down the user experience.

Rotate Option

o [1] Bus 8 EP Voeee

Industrial pallet (1S0)

o SitterBox | -2
GitterBox 1 4 e
° 1/2 Euro pal!gt I S
80 x 60 x 100 0 kg Weight [k Quantity
o
Enlarged Euro pallet 1+ (1] - 1+ 0 =
Sav []
Stack
100%
Support level 50% ® 100%

Figure 2. 7: Cargo Rotation via Cargo Information Panel.

20

Lack of Step-by-Step Cargo Placement:

Another limitation of GoodLoading is the lack of a step-by-step cargo
placement process. When users add multiple cargo items to the load plan,
the system automatically generates the entire loading arrangement in one
action. There is no option to manually place each item one by one, nor is
the placement process broken down into steps. As a result, users cannot
track the exact sequence of placement in real-time. Instead, the system
displays the placement sequence in a report, showing the order in which
cargo was arranged. This means users must rely solely on the cargo names
in the report to understand the sequence, making it less interactive and

potentially confusing.

Color-Coded Cargo Without Text Labels

GoodLoading uses color-coding to differentiate between cargo types, and
while it does provide text labels, they only appear when the user hovers
the cursor over a specific cargo item. This means that at a glance, users
can't immediately identify each cargo type without interacting with the

interface.

Text Label

/

/| T
/
r .
|

Figure 2. 8: Cargo Text Label Displayed on Hover in GoodLoading.

2.4.2.2 EasyCargo

Advantages

1.

Tutorial on Login:
Upon logging in, EasyCargo offers a helpful tutorial that guides users

through the process of generating a load plan. This feature is especially

21

useful for new users, as it helps them quickly understand the software’s

functions and get up to speed without feeling overwhelmed.

2. Step-by-Step Placement Process:
In contrast to GoodLoading, EasyCargo offers a step-by-step cargo
placement feature. This allows users to control the placement of cargo one
group at a time, by clicking a button for each step, providing better
flexibility and precision.

3. Color-Coded with Visible Text Labels:
EasyCargo clearly labels cargo using both colors and visible text directly
on the items, making it easy for users to identify cargo types at a glance
without needing to hover or open additional panels.
Figure 2. 9: Visible Text Labels and Color-Coded Cargo in EasyCargo.

Limitations:
1. Limited Container View Rotation:

One drawback of EasyCargo is the limited container view rotation. Users
can only rotate the container view up to 180 degrees, which may limit
visibility and make it harder to precisely place cargo from different angles.
This restriction can be frustrating for users who need a full 360-degree

view to optimize their load plan.

22

2.4.2.3 CubeMaster

Advantages:

1.

Multi-Language Support:

CubeMaster supports multiple languages, which makes the software
accessible to users around the world. By offering various language
options, CubeMaster ensures that international users can comfortably
navigate the platform and generate load plans without language barriers,

making it a versatile choice for global operations.

Scenario Simulation:

CubeMaster offers a scenario simulation feature, allowing users to create
and compare multiple loading scenarios. This tool helps users test
different loading configurations and identify the most efficient plan. By
simulating various arrangements, users can make data-driven decisions to

optimize space and improve the overall load planning process.

Limitations:

1.

High Cost:

One significant downside of CubeMaster is its high cost, which may make
it less accessible for smaller businesses or individual users. The most
affordable subscription package starts at $49 per month, but it offers only
limited features. Key functions such as Grouping, Palletizing, Balancing
Rules, and Analysis View are unavailable in the standard package.
Moreover, the standard package restricts important file management
capabilities, such as uploading Excel and XML files or downloading
reports in Excel and PDF formats. This can make it difficult for users to

access the full range of tools unless they opt for a more expensive plan.

Non-User-Friendly Interface:
Another drawback of CubeMaster is its non-user-friendly interface, which
can make it difficult for new users to navigate and quickly learn how to

use the software. Given the extensive range of features, the platform can

23

feel overwhelming, and users may require proper training to fully

understand and utilize all its capabilities effectively.

Limited Container and Cargo Rotation:

A limitation of CubeMaster is its restricted container and cargo rotation.
Unlike other load planning software that allows free rotation, CubeMaster
requires users to select specific views to see the container from different
angles. Additionally, cargo cannot be directly rotated with a simple click-
and-drag; instead, users must right-click and select a rotation option,

making it less efficient.

Lack of Clear Labeling:

Another limitation of CubeMaster is its lack of clear labeling. The
software primarily uses color differentiation to distinguish between cargo
types, which can be effective on screen but becomes problematic when
printed in black and white. Without proper labels or text indicators, it
becomes difficult to quickly identify and differentiate cargo types,
especially in printouts. This can lead to confusion and errors during the
load planning process, particularly when users rely on physical copies of

the plan.

243

Key criteria for comparison

Table2. 1: Comparison of features between Existing Application.

Feature GoodLoading | EasyCargo | CubeMaster | Proposed
App

Cost €18/month, $79/month, | $49/month, Free

one user one user one user
User Simple, but User- Complicated | Userfriendly,
Interface lacks intuitive | friendly with | for beginners | simple for
navigation login SMEs
tutorials
Predefined Yes None Yes Yes

24

Container
Types and
Cargo Sizes
Step-by-step None Yes Yes Yes
Cargo
Placement
Drag and Yes Yes None Yes
Drop
Placement
Container 360° rotation 180° Cannot be No direct
Rotation rotation rotated; use rotation
selection to
see each
view
Cargo Through cargo | Rotate using | No direct No direct
Rotation information directional cargo cargo
panel and use controls rotation rotation
the available
options
Custom Yes Yes Yes Yes
Cargo Size
Labeling & Color-coded | Color-coded | Color-coded | Color-coded
Color without text with text without text with text
Coding labels labels labels labels
Export PDF, photo PDF, Excel PDF anfi PDF
Options and sharable file and sharable link
link sharable link

Language English only | English only Multi- English only
Support language

support
Integration API and offers API and ERP/WMS N/A
with Other tailored SAP ERP integration
Software integration

25

options
Suitable for Suitable for Best for Suitable for
beginners or medium- large SMEs
small-scale scale enterprises
Accessibility use businesses with
complex
logistics
needs

2.5

2.5.1
l.

2.5.2

Rules and Constraints

Cargo Placement Constraints and Assumptions

Cargo must be placed firmly on the surface, suspension or oblique
positioning is not allowed.

The length of each cargo item should not exceed the length of the
container.

The effect of external force between cargo items is considered
negligible.

Cargo is assumed to remain intact without deformation due to
squeezing.

The cargo items are placed onto the container from largest to
smallest based on volume.

The total weight of all cargo must not exceed the maximum load

capacity of the container.

Cargo Orientations

In a 3D space, a rectangular or square cargo item can be placed in six possible

orientations because of the six faces of a cuboid (BYJUS, n.d.). Each face can

serve as a base, leading to six distinct placements.

Below is a diagram illustrating the six possible orientations for

placing each cargo item:

26

Ve

(w1, h) (h, 1, w) (. w, h)
w
[
l w
h
(w, h, 1) (h, w, 1) (I h, w)

Figure 2. 10: Six cargo orientations.

2.5.3 Empty Maximal Space (EMS)
The maximal space is a way to represent the available empty space inside a
bin., defined by their minimum and maximum coordinates. This only works if
all objects are placed orthogonally. The rules for creating EMSs are volume
check and dimension check. If the new EMS's volume is smaller than the
smallest remaining box, it's discarded. If any dimension of the new EMS is
smaller than the corresponding dimension of any remaining box, it's discarded.
This strategy able to reduce the computational time by approximately 60%.
After placing the box in an EMS, the original EMS is split into six
new EMS regions as shown in Figure 2.12 below that represent the remaining
available space. The initial EMS is like a large container, and when the box is
placed, the space to the left, right, above, below, in front, and behind the box
can be seen as new available spaces (Saraiva, Nepomuceno and Pinheiro,

2015).

27

File Edit Format Run Options Window Help

1| $Use Maximal Space representation

Z|$EMS = [

3 & (x1, w1, z1), #minimum coodinate=bottom-left-back corner
4| (x2, w2, z2), fmaximum coordinates= top-right-front corner

fminimum & maximum coordinates for intsrsected EMS
xl, wl, z1 = EMS[0]
x2, y2, z2 = EM3[1]

10| fminimum & maximum coordinates boxl to be placed
1113, ¥3, z3 = ems[0]
12| x4, v4, z4 = ems[1]

14| fWhen a box is placed inside an EMS,
S| #the remaining availabkle space is
fdivided into six new EMSs for 3D space
new_EMSs = [
[(x1, ¥1, =1),
[(x4, v1, =1
[(x1, v1, =1

wom -l

(%3, y2, =22)], #Left EMS
. (=2, y2, z2)], #Right EMS
. (%2, y3, =z2)], #Back EMS
[(x1, v4, =1 (%2, y2, =2)], #Front EMS3
[(=x1, y1, =1), (=2, y2, =z3)], #Bottom EMS
[{=x1, v1, =4), (=2, y2, =2)] $Top EMS

B3 B3 B3 B BD b
3 Ba

I

Figure 2. 11: Calculating Available Space Using EMS Representation.

Figure 2. 12: Six EMS Directions After Loading a Cargo.

If a box placed at the corner of the intersected EMS, only three valid
EMSs are generated due to the placement, which are the right, front, and top
spaces remain. This is because the box touches the left, bottom, and back

boundaries and occupies a full edge, face, or corner of the EMS.

28

€| #Use Maximal Space representation

27 fEME = [
28| # {(x1, 1, =z1), fminimum coodinate=kottom-left-back corner
26| § (%2, v2, 22), #maximum coordinates= top-right—-front corner

31| #fminimum & maximum coordinates for intersected EMS
xl, vl, z1 = EMS[0]
x2, vy2, z2 = EMS[1]

[T S I % I i |

fminimum & maximum coordinates boxl to be placed
x3, v3, 23 = ems[0]
27 x4, w4, z4 = ems[1]

oy LN

25 #three new EM3S= for 3D space 1f ems[0] = EM3[0]
40| new_EMS3s = [

41 [(=4, v1, =z1), (=2, vy2, z2)], #Right EMS
[(=1l, v4, =1), (=2, v2, =22)], #Front EMS
[(=1, v1, =z4), (=2, y2, =22)] £Top EMS

N R]

¥ Y

WL PO}

=9

Figure 2. 13: Three New EMS when Box Placed at the Corner.

Figure 2. 14: New EMSs Resulting from the Placement of the Grey Box.

2.54 Load and Weight Restrictions for Vehicles

When planning the loading of cargo onto vehicles, it is critical to consider
various load and weight restrictions to ensure safety, legal compliance, and
operational efficiency. Since Malaysia enforces strict vehicle weight
regulations, load planning must go beyond simply optimizing the physical
arrangement of items within a container or vehicle. It must also ensure that the
total weight of the cargo does not exceed the legal maximum allowed for the

specific vehicle type.

29

According to Ministry of Transport Malaysia (2021), in Malaysia,
these weight regulations are governed primarily under the Road Transport Act
1987 and enforced by the Road Transport Department (Jabatan Pengangkutan
Jalan, JPJ) and the Public Works Department (JKR). The Gross Vehicle
Weight (GVW) refers to the total weight of the vehicle, including its own
weight, fuel, passengers, and cargo. Each vehicle type, depending on its axle
configuration, has specific maximum allowable GVW limits (Asia-Pacific
Economic Cooperation, 2017). The GVW limits is the maximum allowable
weight the vehicle can carry. Below are the GVW limits for various vehicle

types commonly used in Malaysia:

Table2. 2: Summary of GVW limits in Malaysia.

Type of | Number of Axle Configuration GVW Limit (kg)
Vehicle Axle
Rigid 2 Axle 16,000 — 18,000
(1+1)
3 Axle 20,000 — 25,000
(1+2)
4 Axle 25,000 — 27,000
2+2)

Articulated 3 Axle 26,000 — 30,000

(1+1+1)

4 Axle 27,000 — 37,000
(1+1+2)

5 Axle 27,000 — 39,000
(1+1+3)

2.6 Review of Load Planning Algorithms
2.6.1 Biased Random Key Genetic Algorithm
The Biased Random-Key Genetic Algorithm (BRKGA) is a variant of the

genetic algorithm (GA) that combines the features of random-key

30

representation and biased selection from the population pool. In BRKGA,
solutions are in the form of vectors of real numbers, also called random keys,
between 0 and 1. These numbers are then translated into actual solutions, like
a packing plan, using a problem-specific decoder. BRKGA has a biased
selection process, it keeps the best solutions, called elite and combines them
with others to create new solutions, while also adding some completely
random solutions, which are mutants (Gongalves and Resende, 2013). This

balance helps BRKGA find great solutions without getting stuck.

Define Random- Generate Offspring ‘
Key Encoding via Biased Crossover |
‘ Initialize Population ‘ ‘ Introduce Mutants ‘

4)‘ Decode Solutions] Form Next Generation ‘

‘ Evaluate Fitness]
Stopping —No
l condition met
[Select Elite Set]7 |

Yes

|

[Return Best Solution

J

Figure 2. 15: Process of Biased Random-Key Genetic Algorithm.

The BRKGA follows a structured process to evolve a population of
solutions toward an optimal or near-optimal state. The process starts by
defining a random-key encoding, where each solution is a list of numbers
between 0 and 1. These random keys correspond to features of the solution,
such as item order or orientation in packing problems. Next, a set of solutions,
called the population is randomly generated. Each individual is then decoded
into a feasible solution using a problem-specific decoder and its quality is
evaluated using a fitness function to see how good it is based on the problem’s

objective.

31

Elite — Elite

Population | _, \ o Crossover
ALl 0= Offspring
Elite
Mutant
Generation i Generation j+1

Figure 2. 16: Evolutionary process between consecutive generations.

Once all solutions are evaluated, they are ranked based on fitness, and
a small subset of the best-performing individuals, known as the elite set, is
preserved for the next generation. New solutions are generated using a biased
crossover mechanism, where each offspring is formed by combining two
parents (Londe et al., 2024). One from the elite set and one from the non-elite
population. During crossover, there is a higher probability up to 70% that each
gene in the offspring will be inherited from the elite parent, promoting the
retention of high-quality traits. To maintain diversity and prevent premature
convergence, a set of mutants which is completely random new individuals is
also added to each new generation.

The next generation is formed by combining the elite individuals, the
offspring from biased crossover, and the mutants, while keeping the
population size constant. This process of decoding, evaluating, selecting elites,
generating offspring, and introducing mutants is repeated across multiple
generations. The algorithm continues until a predefined stopping criterion is
met, such as a maximum number of generations, a time limit, or achieving a
satisfactory solution. Ultimately, BRKGA returns the best solution found
during its evolutionary search process.

With the BRKGA process clearly defined, the following section
demonstrates its implementation using an example of 3D bin packing. There
are 4 items need to be packed into a bin, focusing solely on the sequence in

which items are placed. The bin dimensions are 10 x 10 x 10 cm, and the 4

32

items are: Iteml is4 x4 x4;Item2is 6 x4 x 3; Item 3 is 5 x 5 x 2 and Item 4

1s3x3x5.

Table2. 3: Dimension of Items to be Packed

Width (x) (cm) Depth (y) (cm) Height (z) (cm)
Item 1 4 4 4
Item 2 6 4 3
Item 3 5 5 2
Item 4 3 3 5

In Step 1, we define the random-key encoding to represent a solution
as a vector of 4 random keys, each a real number in [0, 1], corresponding to

the packing order of the four items.

Unordered boxes 1 2 3 4

Random Keys

Figure 2. 17: Random Keys Generated.

In Step 2, a population of five individuals is initialized, each a 4-key
vector, to create a diverse set of random solutions. With parameters specifying
an elite set size of 1 (20%), a mutant set size of 1 (20%), and 3 offspring
(60%), vectors such as [0.3, 0.8, 0.1, 0.6], [0.7, 0.2, 0.9, 0.4], [0.5, 0.1, 0.6,
0.8],10.9, 0.4, 0.7, 0.2], and [0.2, 0.6, 0.3, 0.9] are generated.

Individual 1: [0.3, 0.8, 0.1, 0.6]
Individual 2: [0.7, 0.2, 0.9, 0.4]
Individual 3: [0.5, 0.1, 0.6, 0.8]
Individual 4: [0.9, 0.4, 0.7, 0.2]
~ Individual 5: [0.2, 0.6, 0.3, 0.9]

Figure 2. 18: Population of Five Individuals.

33

In Step 3, each solution is decoded into a packing configuration using
a Deepest-Bottom-Left (DBL) heuristic. The 4 keys are sorted to determine the
item sequence (e.g., for [0.3, 0.8, 0.1, 0.6], sorting [0.1, 0.3, 0.6, 0.8] results in

indices [3, 1, 4, 2], meaning Item 3, Item 1, Item 4, Item 2).

Unordered boxes 1 2 3 4

Random Keys @ @ @ @

Deepest-Bottom-Left
(DBL)

e (53 (13 (50 o
3 1 4 2

Figure 2. 19: Random Keys are Sorted.

The DBL heuristic places items in order into the first feasible bin,
starting at (0,0,0) and moving to the deepest, bottommost, leftmost position,
ensuring no overlap and no rotations. Item 3 (5x5x2) is placed at (0,0,0), and
occupy from (0.0.0) to (5,5,2). Then Item 1 (4x4x4) is placed at (0,5,0) and
occupy from (0,5,0) to (4,9,4). Next, Item 4 (3x3x5) placed at (5,0,0) and
occupy from (5,0,0) to (8,3,5). Lastly, Item 2 (6x4x3) placed at (0,0,2) and
occupy (0,0,2) to (6,4,5). This process is repeated for all individuals of the

population to evaluate their packing solutions.

4
Wld[h %) 6

8

Figure 2. 20: Arrangement of First Individual.

34

Lastly, the fitness of the solution is evaluated to determine their

quality based on the objective of maximizing the space utilization.

Total Item Volume Packed
Utilization = - X 100 %
Total Container Volume

Total packed volume
= 5X5X2)+(4%x4%x4)+(3%x3x%x5)+(6%x4x3)
= 156

Container volume = 10x 10 x 10 = 1000

x 100 % = 15.6%

Utilization = 1000

The utilization rate is 15.6%, it is not the optimal solution. After
evaluating the fitness of all five individuals based on utilization, the individual
with the best fitness is chosen as the elite solution and preserved in the next

generation.

2.6.2 Binary Tree Bin Packing Algorithm
According to Gordon (2011), the Binary Tree Bin Packing Algorithm starts by
placing the first (largest) block in the top left corner of the fixed rectangle,
then split that rectangle into 2 smaller rectangles that represent the remaining
spaces as right and below the placed block.

Each time a new block is placed, the remaining free space is further
divided recursively. This process continues until all blocks are placed or no

suitable space remains.

35

Figure 2. 21: Place the Largest Block in the Top Left Corner of the Rectangle.

Figure 2. 22: Split Rectangle into 2 Smaller Rectangles.

Figure 2. 23: Result of Placing the Second Largest Block.

36

Figure 2. 24: Placing Third Block in the Bottom Remaining Space.

- -
[| [] | [|

Figure 2. 25: Recursively Place All Blocks.

After understanding the concept of Binary Tree Bin Packing Algorithm,
we can assume a binary tree can represent the container space as a hierarchy of
subdivided sections. Each node represents a remaining space, and child nodes

represent split sections where items are placed.

Steps for Binary Tree-Based Packing:

1. Start with a root node representing the full container space.
2. Place an item in the root node if it fits.
3. Split the remaining space into two child nodes:

One node represents the space next to the item (horizontal
split).

The other represents the space below it (vertical split).

37
4. Repeat recursively until all items are packed or no more space is

left.

Example:

Have a 100x100 container

100

100

Figure 2. 26: 100x100 Container.

Different size items:

1. Item A (50x50) =2500
2. Item B (30x30) =900
3. Item C (20x70) =1400
4. Item D (10x10) =100

50 30 70 10
10

30

50 20

Figure 2. 27: 4 Ttems of Different Sizes.

Initial Container (100x100)

100

100

Figure 2. 28: 100x100 Container.

38

This is the root node of the binary tree, representing the entire

available space.

Root

(100x100)

Figure 2. 29: Initial State of Binary Tree.

2. Place Largest Item (Item A (50x50))

50 50 1

50 50

100 100

100 100

Figure 2. 30: Place Item A and the Remaining Spaces.

The first item A (50x50) is placed in the top-left corner. Container is split into
two smaller rectangles:

Right rectangle (Node): (50x50) empty

Bottom rectangle (Node): (100x50) empty

Root
(100x100)

Root
(100x50)

39

Figure 2. 31: Binary Tree.

3. Place Item C (20x70)

50
50 1
%0 100
E0 100 — 70 —> || 1
2 2
20

100

100

Figure 2. 32: Result of Placing Item C and the Remaining Spaces.

Item C (20x70) is placed in the remaining bottom space (100x50). Split it into
new 2 rectangles:

Right node: (30x20)

Bottom node: (100x30)

Root
(100x100)

Root
(50x50)

Root
(100x50)

Root
(100x30)

Figure 2. 33: Binary Tree.

4. Place Item B (30x30)

50 50

2
100 3 30 —> 0 100

30

50

2

100 100

Figure 2. 34: Result of Placing Item B and the Remaining Spaces.

40

Place B (30x30) in the top-left area (50x50). The remaining space is split into:
Right Node: (20x30)
Bottom node: (50x20)

Root
(100x100)

Root
(100x50)

Root Root
(50x20) (30x20)

Figure 2. 35: Binary Tree.

Root
(100x30)

5. Place Item D (10x10)

50 [E: 50

5o|2|100—> 10 —> 5“'f'lzlmo
I 10 L

100 100

Figure 2. 36: Result of Placing Item D and the Remaining Spaces.

Item D (10x10) is placed inside the remaining (50x20) space. The remaining
space is split into:

Right Node: (40x10)

Bottom Node: (50x10)

41

Root
(100x100)

Root
(50x50)

Root
(100x50)

Root
(100x30)

Root
(50x10)

Root
(40x10)

Figure 2. 37: Binary Tree.

2.7 Summary

After reviewing two algorithms, the Binary Tree Bin Packing Algorithm is
chosen for implementation because it is easier to understand and implement,
especially for scenarios involving only rectangular or square-shaped items.
This algorithm uses a simple binary tree structure to divide space and place
items efficiently, making it highly suitable for structured and grid-like packing
tasks such as cargo load planning.

In contrast, the Biased Random Key Genetic Algorithm (BRKGA) is
more complex, requiring the design of genetic encoding, fitness functions, and
evolutionary operators. While BRKGA is powerful for solving a wide range of
optimization problems and may achieve better results in some cases, it is
computationally intensive and less straightforward to implement. Given the
scope of this project and the need for simplicity and clarity, the Binary Tree

Bin Packing Algorithm is the more practical and effective choice.

42

CHAPTER 3
METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter outlines the methods and tools used in the development of the
proposed system. It covers the selected software development methodology,
description of the tools used, and project planning for the entire project. A
detailed Work Breakdown Structure (WBS) and Gantt Chart are also included

to illustrate the project timeline and task management.

3.2 Software Development Methodology

The combination of throwaway prototyping and incremental development
methodologies was selected for this system, as previously discussed in Section
1.5 (Proposed Solution). Since there is lack of fully defined user requirements,
early developing an initial prototype helps to identify and refine the main
features, while incremental development allows the system incrementally
building feature by feature. This approach provide flexibility to changes in

design and feature development.

Planning and Initial X . | Discard or Refine
Roquiramant Gatharing —» Develop quick prototype — Initial User Evaluation —p prototype

Reusable Components J t J J

+

Refined Components
Develop software

User
Management Module .
/ Plan -» Design -p Implementation —» Testing

Inventory
Tracking Module

Requirements Plan -» Design -» Implementation —p Testing

Load
Planning Module

Figure 3. 1: Throwaway Prototyping with Incremental Model Development

Methodologies.

43

3.2.1 Throwaway prototyping

Throwaway prototyping was used to address unclear and evolving
requirements by rapidly creating early disposable versions of the application.
This approach encourages experimentation and helps stakeholders, especially
non-technical users to visualize and interact with the system during interviews.
It reduces misunderstandings and supports more accurate feedback, ultimately
helping to refine the software's final functionality before full-scale
development begins. The overall process including planning, developing quick

prototypes, gathering feedback, and refining features is outlined in the steps

below.
Planning and Initial , ” \ Discard or Refine
e — Develop quick prototype — Initial User Evaluation —% T
Reusable Components J t J J
{ ¢

Refined Components
Develop software

Figure 3. 2: Throwaway Prototyping Phases.

3.2.1.1 Planning and Initial Requirement Gathering

The first step of throwaway prototyping is to gain a basic understanding of
what the app should do, who it's for, what problems it solves and how to
implement it. This phase begins by identifying problems within the current
inventory tracking and load planning processes, particularly those relying on
manual methods commonly used by small and medium-sized enterprises.
Therefore, problem statements such as inaccurate record-keeping, lack of
automation and time-consuming are identified. From this understanding, the
project's goals and specific objectives are defined to guide solution
development. Besides, a review of relevant literature and analysis of existing
applications were conducted. Through hands-on experience with existing
applications, the main functions were identified, and some additional features
were proposed to make the application more acceptable to small and medium-
sized enterprises. The project scope and limitations are also outlined, focusing

on SME needs and constraints such as support for rectangle-shaped goods only.

44

Finally, application modules are identified, and functional and non-functional

requirements are elicited.

3.2.1.2 Develop a Quick Prototype

After defining the initial functionality of the application, the first version of
the prototype was created using the Axure RP so that users without an IT
background can gain a more intuitive understanding of the software's
functionality and provide feedback. Based on the identified functionalities,
prototype screens for 3 main modules were created, including user login and
registration, inventory management via barcode scanning, and load planning.
The designed screens are then linked together that allows users to navigate and
interact like a real application. Once the complete functional prototype is
created, an initial review is conducted through a self-evaluation to check the
main usability of the main feature and identify the missing or incomplete
components. Finally, the necessary improvements are being made to enhance
the quality of prototypes. This refined prototype is then prepared for the next

user feedback collection phase.

3.2.1.3 Prototype Review and Get Feedback
After building the initial throwaway prototype, the next step is to collect
feedback to evaluate the app's usability and overall concept of the application.
This phase combined informal user testing and one-on-one interviews with
experienced users of the relevant software. Target users, typically
representatives from small and medium-sized enterprises, who were identified
and selected for interviews to ensure that the information obtained was
relevant to the project. Therefore, the interview was conducted with the
Assistant Manager of the Logistics Department at a manufacturing company.
The reason for the selection is that she has nearly 15 years of experience in
logistics, which means she can provide expert insights into the load planning
functionality. The interview was semi-structured, combining prepared
questions with open-ended discussion, and covered the key features such as
barcode scanning, inventory tracking process, and load planning interface.

In addition to the interview, potential end users have the opportunity

to test prototypes that include the main features in order to understand

45

firsthand how users react and identify areas for improvement can be identified
before moving into structured development. Informal testing was carried out
with the interviewee to observe how she interacted with the prototype. She
was asked to complete some basic tasks such as generating a load plan using
container sizes and cargoes provided in the software. While experiencing the
prototype, she made some suggestions about the user interface. For example,
she pointed out that the color-coded cargo blocks appeared visually appealing
within the mobile application. However, it becomes ineffective when exported
or printed as a PDF, because companies often print documents in black and
white rather than in colour to save costs. She recommended using text-based
labels directly on the cargo blocks instead, to ensure that printed versions
remain readable.

In conclusion, the feedback revealed that while the prototype's core
concept was solid, several usability improvements were still needed to guide

the transition to structured development.

3.2.1.4 Discard or Refine the Prototype

After the feedback collection phase, the next step was to evaluate the
throwaway prototype to determine whether it should be refined or discarded.
Firstly, review the user comments in detail to find out where the prototype met
expectations and where it fell short. Based on the user feedback obtained from
the user interactions and testing, decisions are made. Some parts of the
prototype were discarded, while others were enhanced and integrated into the
next development phase. For example, the feature of using color-code to
differentiate cargo groups was discarded, while using text-based labels placed
on top of the cargoes feature will be refined. The use of color-coded cargo
groups was found to be ineffective when printed in black-and-white. This is
because most companies will print documents in black and white to save costs.
No matter how beautiful it looks on the phone, it will be difficult for staff to
distinguish between different types of goods. Additionally, screen layouts,
navigation flows and functional requirements are updated accordingly. The use
case diagrams and descriptions were updated to match the revised system
functionality. Rather than discarding the prototype entirely, it was improved

and adjusted based on the feedback gathered.

46

3.2.2 Incremental Process Model

After analysing the feedback, the project transitioned from the prototyping
phase to a more structured development approach. The feedback gained from
early user testing, interviews, and prototype refinement helped shape a clearer
understanding of user expectations and requirements. Formal software
development begins and each increment in the model follows the Software
Development Life Cycle (SDLC), including Planning, Design, Implementation
and Testing.

User
Management Module

Plan -» Design -» Implementation —p Testing

Inventory
Tracking Module

Requirements Plan -» Design -» Implementation —p Testing

Load
Planning Module

Figure 3. 3:Incremental Process Model Phases.

3.2.2.1 First Increment

The first increment focused on implementing the User Management Module.
The main objective of this phase was to develop a basic registration and login
system to allow users to securely access the application. During the planning
and analysis stage, the user requirements for authentication were defined, and
Firebase Authentication was selected as the service to handle account creation
and verification. In the design phase, user interfaces for the registration and
login screens were created using React Native, ensuring a simple and user-
friendly layout. The implementation was carried out in Visual Studio Code,
with Firebase providing real-time authentication and data storage support. The
key features developed included user account registration, secure login
functionality, and session handling. Finally, functional testing was conducted
by creating new accounts, attempting logins with valid and invalid credentials,
and verifying that only registered users could successfully access the system’s

features.

47

3.2.2.2 Second Increment

The second increment focused on developing the Inventory Tracking Module,
which allows users to manage stock efficiently through barcode scanning and
record inventory in and out activities with real-time updates. During the
planning and analysis stage, the flow of inventory operations was defined,
including how users would scan items, log stock movements, and monitor
inventory levels. The design phase involved creating screens for barcode
scanning, displaying item information, and managing inventory status. The
interaction flow was also outlined to allow users to either check in or check
out stock by scanning an item's barcode using the device camera. In the
implementation phase, the react-native-camera library was used to enable
barcode scanning, while the system checked database information against the
scanned data records stored in Firebase. Real-time updates to stock quantities
and activity logs were also implemented to maintain up-to-date inventory
information. During the testing phase of the Inventory Tracking Module,
several functional tests was carried out to ensure the system successfully
capture and process barcode data, validate it against the database, and update
inventory records correctly. The key focus was to verify that barcode scanning
worked reliably and that stock movements were accurately reflected in the

system.

3.2.2.3 Third Increment

In the third increment, focused on the development of the Load Planning
Module, which allows the users to optimize the arrangement of cargo within
transportation containers or lorry. The goal was to generate an efficient load
plan based on cargo dimensions, weight, and available container capacity to
minimize unused space. During the planning and analysis stage, suitable
algorithms for solving space allocation problems were reviewed, and the
Binary Tree Bin Packing Algorithm was selected for implementation. This
algorithm operates by recursively dividing available space into smaller
sections using a binary tree structure. Each item is placed in the most optimal

position, and the remaining space is split for future item placement.

48

During the design phase, the user interface screens were designed to
guide users through the load planning process. This includes the screens for
creating and editing load plans, adding custom cargo or container
specifications, viewing load plan history, managing checklists, and generating
printable PDF reports.

The implementation phase focus on integrating the load planning
logic within the React Native application. The Binary Tree Bin Packing
Algorithm was developed in JavaScript to process cargo details such as length,
width, height, and quantity against the container’s internal dimensions. Based
on this input, the algorithm generated a placement layout that included
position coordinates, cargo grouping, and overall space utilization. To enhance
usability, a drag-and-drop feature was also implemented, allowing users to
manually adjust cargo positions within the container layout if required. This
ensured flexibility by letting users refine the algorithm-generated plan. Cargo
blocks were displayed with colour codes and text labels for easy identification
during the loading process, and the finalized plan could be exported as a
printable PDF report containing a QR code linked to the load plan history.

The unit testing of the Binary Tree Bin Packing Algorithm involved
running various sets of sample cargo data and container dimensions through
the algorithm. The testing process ensured that the algorithm correctly placed
cargo items in the available space without overlapping and maximized space

utilization as expected.

33 Development Tools

To develop an Android mobile application for the inventory management
system with the key functionalities such as barcode scanning for tracking
inventory movement and load planning, several development tools are utilized

throughout the implementation of the project.

3.3.1 Axure RP

Axure RP is the design tool used to create user interface prototypes before
development begins. Due to its various interactive elements, including drag-
and-drop widgets, dropdown menus, sliders, and dynamic panels, Axure was

chosen for this project over alternative prototyping tools like Figma (Varun

49

Saharawat, 2024). Axure is able to create "if-then" scenarios since it also
supports conditional logic. By simulating real-world user interactions, these
characteristics facilitate the design and refinement of complicated ideas. By
using Axure to create a functional prototype that includes the main key
features, users are able to better understand the purpose of the application at an
early stage and provide feedback to modify the original concept, rather than
ultimately submitting a version that does not meet user needs and may have

defects.

3.3.2 Visual Studio Code

Visual Studio Code (VS Code) was used as the primary code editor due to its
lightweight nature, robust extension support, and integration with React Native.
Visual Studio Code was chosen because it supports almost all major
programming languages, and in this project, it was mainly used for JavaScript
development, covering both frontend interfaces and backend logic. The
Firebase SDK and JavaScript APIs were integrated into the project to handle
database and authentication functionalities. VS Code was also used to write
Firebase service logic, including adding, retrieving, and updating data from
Firebase Firestore, as well as implementing the load planning algorithm
directly in JavaScript. Its debugging tools and version control integration

further streamlined the development process.

3.3.3 Android Studio

Android Studio is the official integrated development environment (IDE) for
Android app development. Android Studio was used in this project as the
emulator, which allowed for testing the app on Android devices without
needing physical devices. This helps to test the app’s functionality directly on
a simulated device. Android Studio also provided access to the Android
Software Development Kit (SDK), which is essential for building and
packaging the mobile application. Besides, the tool set in Android Studio
enabled the development of Android-specific features such as permissions for

accessing the camera during barcode scanning operations.

50

3.3.4 React Native

React Native is a popular open-source framework for building mobile
applications using JavaScript and React. The app’s interface will build using
reusable React components. Each component such as buttons, lists and input
fields could be easily reused across different parts of the app, maintaining
consistency and reducing development time. Besides, the critical feature for
inventory management, barcode scanning, was integrated using third-party
libraries such as react-native-camera and react-native-barcode-scanner. React
Native allowed seamless integration of native camera functionality with

JavaScript, enabling the app to scan barcodes for tracking inventory items.

3.3.5 Firebase

The Firebase was chosen instead of MySQL is because it offers real-time
database that better supports the needs of this project. Cloud Firestore,
Firebase’s flexible and scalable NoSQL cloud database, was used to store and
synchronize application data in real time. All inventory data such as items,
quantities, barcodes and load planning information were stored in Firestore,
enabling seamless updates and synchronization between devices. Firestore’s
real-time synchronization ensured that any updates, such as adding, editing, or
removing inventory items, were instantly reflected on all users’ devices
without requiring manual refresh. In addition, Firebase Authentication was
utilized to manage secure user registration and login, while Firebase SDKs and

APIs provided straightforward integration with the React Native application.

3.3.6 react-native-camera

The react-native-camera library is a crucial component in enabling barcode
scanning functionality within the mobile application. It provided access to the
device’s camera and allowed the app to capture barcode data efficiently,
forming the core inventory tracking feature. The library supports scanning
multiple types of barcodes such as Code128, QR, and EAN. It also integrated a
camera view directly in the app where users could scan the barcode within a
predefined frame. Once a barcode was detected, the app retrieved the

corresponding item information from Firebase and updated the inventory.

51

34 Work Breakdown Structure (WBS)

0.0 Inventory Tracking System with Barcode Scanning and Load Planning
1.0 Planning and Initial Requirement Gathering
1.1 Identify Problem
1.1.1 Identify issues in current inventory and load planning process
1.1.1.1 Analyze manual inventory methods
1.1.1.2 Analyze current load planning techniques
1.1.2 Develop problem statements
1.1.2.1 Summarize inventory problems
1.1.2.2 Summarize load planning problems
1.2 Identify project goals and objectives
1.2.1 Define overall project goals
1.2.2 Define specific objectives
1.3 Propose project solution
1.3.1 Research similar solutions
1.3.2 Compare similar solutions
1.3.2.1 Analyse features offered
1.3.2.2 Analyse pricing and suitability for SMEs
1.3.3 Sketch flow of proposed solution
1.3.3.1 Create flowchart of inventory tracking process
1.3.3.2 Create flowchart of load planning process
1.4 Propose project approach
1.4.1 Select software development methodology
1.4.1.1 Choose Throwaway Prototyping for early design
1.4.1.2 Choose Incremental Process Model for
development phase
1.4.2 Justify methodology choice
1.4.2.1 Advantages of Throwaway Prototyping
1.4.2.2 Advantages of Incremental Process
1.5 Define project scope and limitation
1.5.1 Define application scope
1.5.1.1 Focus on small and medium enterprises

1.5.1.2 Focus on rectangular or square-shaped goods

52

1.5.2 Identify limitations
1.5.2.1 No support for irregularly shaped cargo
1.5.2.2 No complex weight and fragility handling
1.5.3 Identify required modules
1.5.3.1 Analyse User Management module
1.5.3.2 Analyse Inventory Tracking via Barcode Scanning
module
1.5.3.3 Analyse Load Planning module
1.6 Gathering requirements
1.6.1 Review existing applications
1.6.1.1 Identify key features
1.6.1.2 Walkthrough of load planning processes
1.6.1.3 Identify pros and cons of each application
1.6.1.4 Compare and tabulate results
1.7 Literature Review
1.7.1 Study on inventory management process
1.7.2 Study on load planning algorithms
1.7.2.1 Analyse Biased Random Key Genetic Algorithm
with Placement Procedure Heuristic
1.7.2.2 Analyse Binary Tree Bin Packing Algorithm
1.8 Requirements elicitation
1.8.1 Define functional requirements
1.8.2 Define non-functional requirements
1.8.3 Develop use case diagram
1.8.4 Write use case descriptions
1.8.5 Design interface flow diagram
1.9 Project scheduling
1.9.1 Prepare work break down structure (WBS)
1.9.1.1 Identify the main activities
1.9.1.2 Break down the activities into smaller tasks
1.9.2 Prepare Gantt Chart
1.9.2.1 Define task start and end dates
1.9.2.2 Identify task dependencies
1.9.2.3 Create Gantt Chart

53

2.0 Prototype Development
2.1 Define initial functionality
2.2 Select prototyping tool
2.2 Design initial prototype
2.2.1 Sketch basic inventory tracking flow
2.2.2 Sketch basic load planning flow
2.3 Build prototype screens
2.3.1 Design login and registration process screens
2.3.2 Design inventory tracking process screens
2.3.3 Design load planning process screens
2.4 Link screens and define interactions
2.4.1 Create navigation flows between screens
2.5 Review and finalize throwaway prototype
2.5.1 Perform self-evaluation of usability
2.5.1.1 Test core features
2.5.1.2 Check user interface navigation and flow
2.5.1.3 Identify missing functions
2.5.1.4 Refine prototype
2.5.2 Prepare prototype for user feedback
3.0 Prototype Review and Get Feedback
3.1 Perform Interviews
3.1.1 Identify and select target users for interviews
3.1.2 Prepare interview questions
3.1.3 Conduct interviews with users
3.1.4 Analyze feedback from users
3.2 Conduct Informal User Testing
3.2.1 Prepare testing tasks
3.2.2 Conduct testing sessions
3.2.2.1 Observe user interaction
3.2.2.2 Record user feedback
3.2.3 Analyze test results
3.2.3.1 Identify common issues and suggestions
4.0 Discard or Refine Prototype
4.1 Evaluate feedback

54

4.1.1 Review user comments and observations
4.1.2 Summarize key usability problems
4.2 Decide action for prototype
4.2.1 Identify features to discard
4.2.2 Identify features to refine
4.3 Update prototype design
4.3.1 Modify screens and navigation based on feedback
4.3.2 Modify function requirements
4.3.3 Modify use case diagram
4.3.4 Modify use case description
5.0 Incremental Development
5.1 First Increment
5.1.1 Planning and Analysis
5.1.1.1 Define user authentication requirements
5.1.1.2 Select authentication method
5.1.2 Design
5.1.2.1 Design login account and register new user screens
5.1.2.2 Design basic navigation flow after login
5.1.3 Implementation
5.1.3.1 Build registration Ul
5.1.3.2 Build login UI
5.1.3.3 Implement user account creation with Firebase
5.1.3.4 Implement login functionality with Firebase
Authentication
5.1.3.5 Integrate session handling for logged-in users
5.1.4 Testing
5.1.4.1 Test account registration with valid/invalid inputs
5.1.4.2 Test login with correct and incorrect credentials
5.1.4.3 Test access to system features after successful
login
5.1.4.4 Test logout functionality
5.2 Second Increment

5.2.1 Planning and Analysis

55

5.2.1.1 Analyze requirements for inventory listing,
filtering, and searching
5.2.1.2 Define inventory item data structure
5.2.1.3 Plan database structure for inventory management
5.2.1.4 Define barcode scanning requirements
5.2.1.5 Define stock update process via scanning
5.2.1.6 Plan alert conditions for low stock and unmatched
barcodes
5.2.1.7 Define requirements for inventory summary report
generation
5.2.2 Design
5.2.2.1 Design screens
5.2.2.1.1 Inventory list screen
5.2.2.1.2 Add and Edit inventory item screens
5.2.2.1.3 Barcode scanner interface
5.2.2.1.4 Alerts and Notifications indicators
5.2.2.1.5 Inventory Summary Report screen.
5.2.3 Implementation
5.2.3.1 Implement inventory item listing
5.2.3.2 Implement filtering and searching features
5.2.3.3 Implement add new item feature
5.2.3.4 Implement update item details feature
5.2.3.5 Integrate barcode scanning feature using device
camera
5.2.3.6 Implement stock quantity updates via scanning
5.2.3.7 Implement delete item feature
5.2.3.8 Implement low stock alert indicator
5.2.3.9 Implement unmatched barcode alert
5.2.3.10 Implement inventory summary report generation
5.2.4 Testing
5.2.4.1 Test inventory list viewing, filtering, and searching
5.2.4.2 Test barcode scanning functionality
5.2.4.3 Test adding, updating, and deleting items
5.2.4.4 Test stock quantity updates via scanning

56

5.2.4.5 Test low stock alert triggering
5.2.4.6 Test unmatched barcode handling
5.3 Third Increment
5.3.1 Planning and Analysis
5.3.1.1 Define cargo and container attributes
5.3.1.2 Plan database structure for storing load plans
5.3.1.3 Define checklist workflow and data structure
5.3.1.4 Define load plan update mechanism
5.3.1.5 Plan the generation of printable PDF reports
5.3.1.6 Define QR code generation and retrieval process
5.3.2 Design screen
5.3.2.1 Load plan creation screen
5.3.2.2 Add custom cargo and container screen
5.3.2.3 Load plan editing screen with drag-and-drop
interface
5.3.2.4 PDF layout for printable load plan report
5.3.2.5 Load plan history screen
5.3.2.6 Cargo arrangement checklist screen
5.3.3 Implementation
5.3.3.1 Implement load plan generation
5.3.3.2 Implement add custom containers and cargo size
feature
5.3.3.3 Implement drag-and-drop adjustment feature
5.3.3.4 Implement PDF report generation with QR code
embedded
5.3.3.5 Implement QR code scanning
5.3.3.6 Implement checklist functionality
5.3.4 Testing
5.3.4.1 Test load plan creation
5.3.4.2 Test drag-and-drop adjustments of cargo
5.3.4.3 Test scanning QR codes to view correct load plan
history
5.3.4.4 Test checklist functionality for checking off cargo

items

3.5

3.5.1

Gantt Chart

Overview of Project Timeline

57

® — e e o = T e et | o = A by o
Il T T3 301 o 1 35 L 3 28 on [o 221 T 8 8 o0 {12 Lo o ot T 3 L 2 n o2 Lo o | T L4 L an L oL L L Lo 3 ot o 3 0 T

[i dews N

T b Panedng e inltisl Rl e Gethering ASckevs Mom Z57240 Pl S50

S| 28 Prototvos Dveslooment 1Tdew: Sat 28RS Al SmAM _—

T | &k Prowsoe Review avd Gt Pevdbuck deye Gt AN b SR —

E | Lk Diceard or Rufiwe Protoces: Sidev: Mow ZSA/EL The BV —

- oy FE Mo AL

3.5.2

Figure 3. 4: Gantt Chart for Overall Project.

Planning & Initial Requirement Gathering

-
=]

Task Name

hr ati on

tart inish

-

-

@

@

5

"

I

=

1.0 Planning and Initial Requirement Gathering 45 days
11 Mdentify Problem Gdays
111 dentify Esues in current inventory and load 3 days
planning process
1111 Analyze manual mentory methods 2 days
1112 Analyze current load danning technicues 2 days
1.1.2 Dewelop problem statements 4 days
1121 Summanze mventory problems 2 days
11227 Summainze load planning problems 3days
12 identify project goalks and objectives 3days
121 Define overall roject goals 2 days
122 Defne speafic chyectives 2 days
13 Propose project solution 6 days
131 Research smmilar solutions 3days
13.2 Compare similar solutions 2days
1321 Analyze features offered 1 day
1322 Analyze mriang and ;utabidity far SMEs 2 days
133 Sketch flow of proposed solution 3days

1331 Create lowdchart of iiventory tradang roces3 days
1332 Create lowdchart of lcad pdanning proess 3 days

14 Propose project approach 6 days
141 Select software development methodology 4 days
1411 Choose Throwaway Protctyping for early 4 days
design
1412 Choose incoemental Protess Mode far 4 days
develcpment phase
142 hstify methodology choice 4 days
1421 Advantages of Throwaway Protalypng 4 days
1422 Advantages of noemental Process 4 days
15 Define projed scope and Emitation 4 days
15.1 Define appBcation scope 1day
1511 Foous on small and medium entarprises 1day

1512 Foous an rectangular or square-shaped goo 1 day

152 dentify Emitations 1day
1521 No suppart for imegularty shaped @go 1day
15227 No canplex weight and fraglity handng 1 day

153 dentify required modules 2days
1531 Analyze User Management module 1day
1532 Analyze Inventory Tradang via Bacode 2 days
Scanning module
1533 Analyze Load Planning module 2 days

16 Gathering requirements Tdays

161 Review existing applications Tdays
1611 Wentify key features 3days
1612 Wakthrough of load danning processes 2 days
1613 entify pras and cons of eadh application 2 days
1614 Compare and tabulate resulis 2 days

17 Literature Review 9 days

1.71 Study on mventory management proces 3days

132 Study on load planning algorithms 6 days

1721 Analyze Biased Random Key Genetic Algaithb days
1722 Analyze Binary Tree Bin Padang Algaithm 3 days

18 Requirements eBcitation 10 days
181 Define unchonal requrements 3days
182 Define non-functional requirements 3days
183 Develop use diagram 2 days
184 Write use desoiphions 4 days
185 Design interface flow diagram 6 days

19 Project scheduling Sdays
1391 Prepare work break down struchure (WBS) 3 days

1911 dentify the main acthahies 1 day
19127 Break down the adnities nto smaller tasks 2 days
192 Prepare Gantt Chart 2days
1921 Define task start and end dates 1day
1922 dentify task dependences 1 day
1923 Create Gantt Chart 1 day

jruar 2025 March

Mon 25/2/10 Fri 25/3/28
Mon 25/2/10 Sat 25/2/15
Mon 25/2/10 Wed 25/2/12

Mon 25/2710 Tue 25%2/11
Tue 2/2/11 Wed 25/2/12
Wed 25/2/12 Sat 25/2/15
Wed 25/2/12 Thu 25/2/13
Thu 25/2/13 Sat 2/2/15
Sat 25/2/15 Mon 25/2/17
Sat 2572715 Sun 25/2/16
Sun 25/2/16 Man 25/2/17
Tue 25/2/18 Sun 25/2/23
Tue 2/2/18 Thu 25/2/20
Thu 25/2/20 Fri 25/2/21
Thu 25/2/20 Thu 25/2/20
Thu 25/2/20 Fn 2%/2/21
Fri 25/2/21 Sun 25/2/23
Fn25/2/21 Sun 2%/2/723
Fn25/2/21 Sun 2%/2/723
Sat 25/2/22 Tha 25/2/27
Sat 25/2/22 Tue 25/2/25
Sat 2572722 Tue 2%/2/25
Sat 2572722 Tue 2%/2/25
Mon 25/2/24 Thu 25/2/27
Mon 25/2/24 Thu 252/27
Mon 25/2/24 Thu 252/27
Fri 25/2/28 Mon 25/3/3
Fri 25/2/28 Fri25/2/28
Fn25/2/28 Fn2%/2/28
Fn25/2/28 Fn2%/2/28
Sat 25/3/1 Sat 29/3/1
Sat 257371 Sat 25/3/1
Sat 257371 Sat 25/371
Sun 25/3/2 Mon 25/3/3
Sun 2532 Sun 25372
Sun 25/32 Man 25373

Sun 25/%2
Tue 25/2/4
Tue 25/2/4
Tue 25/3/4
Thu 25/%6
Fri 25377
Mon 25/3710
Mon 25/3/3
Mon 25/373
Thu 25/3/6
Thu 25/3/6
Mon 25/3710
Thu 25/3/13
Thu 25/3/13
Thu 25/3/13
Sat 2573715

Man 25/3/3
Tue 25/2/11
Tue 25/2/11
Thu 25/3/6
Fri 22/3/7

Sun 257379
Tue 2%/3/11
Wed 25/3/12
Wed 25/3/5
Wed 25/3/12
Tue 253711
Wed 22/3/12
Sun 25/3/23
Sat /315
Sat /315
Sun 253716
Sun 25/316 Wed 25/3/19
Mon 25/317 Sun 25/3/23
Mon 25/3/24 Fri 25/3/28
Mon 25/3/24 Wed 25/3/26
Mon 25/324 Man 25/3/24
Tue 22/3/25 Wed 25/3/26
Thu 25/3/27 Fri 25/3/28
Thu 25/327 Thu 25/3/27
Fn25/3/28 Fn2%/3/28
Fn25/3/28 Fn2%/3/28

= |
7 |(10[13|16 19 |22 |36 28| 3 |6 |9 |12 |15 |18 |21 |24 |27 (30| 2
—_—————

e —

]
m
-
/
[
|
m/
-
-
/
|
-
u
[
m/
|
|
]
/
|
|
=
|
|
=
2]
[]
[]
n
[]
[]
(=]
[]
[
||
l_l
l_l
e
|
[|
I
|
i
|
|
-
|

Figure 3. 5: Gantt Chart for Planning & Initial Requirement Gathering.

|202¢

58

3.5.3 Prototype Development

1D Task Name Ilmmti.m ‘Star‘t IFinish 2025 April
27|30 2 |5 |8 [11]14

64 2.0 Prototype Development 13 days Sat 25/3/29 Fri 25/4/11 [
65 2.1 Define initial functionality 2days Sat 25/3/20 Mon 25/3/31 .
66 2.2 Select prototyping tool 1day Mon 25/3/31 Mon 25/3/31 u
67 2.3 Design initial prototype 2days Tue25/4/1 Wed 25/4/2 /.
68 2.3.1 Sketch basic inventory tracking flow 1day Tue 25/4/1 Tue 25/4/1 []
69 2.3.2 Sketch basic load planning flow 2days Tue 25/4/1 Wed 25/4/2 m
0 2.4 Build prototype screens Sdays Wed 25/4/2 Sun 25/4/6 | |
71 2.4.1 Design login and registration process screens 2 days Wed 25/4/2 Thu 25/4/3
72 2.4.2 Design inventory tracking process screens 2days Thu 25/4/3 Fri 25/4/4 1
LG 2.4.3 Design load planning process screens 3days Fri25/4/4 Sun 25/4/6]
7 25 Link screens and define interactions 2days Sun25/4/6 Mon 25/4/7 /=
75 2.5.1 Create navigation flows between screens 2days Sun 25/4/6 Mon 25/4/7 |
7% 2.6 Review and finalize throwaway prototype 3days Tue25/4/8 Thu 25/4/10 =
T 2.6.1 Perform self-evaluation of usability 3days Tue 25/4/8 Thu 25/4/10 ==
38 26.1.1 Test core features 2days Tue 25/4/8 Wed 25/4/9 ||
™ 26.1.2 Check user interface navigation and flow 2days Wed 25/4/9 Thu 25/4/10 |
80 26.1.3 identify missing functions 3days Tue 25/4/8 Thu 25/4/10]
81 26.1.4 Refine prototype 3days Tue 25/4/8 Thu 25/4/10]
82 2.6.2 Prepare prototype for user feedback 1 day Thu 25/4/10 Thu 25/4/10]

Figure 3. 6: Gantt Chart for Prototype Development.

3.5.4 Prototype Review and Get Feedback

I Task Neme ‘tion tart Finish ri
lmm F r h; Ila\ulu\l?\mlzmﬁ

8 3.0 Prototype Review and Get Feedback 7 days Sat 25/4/12 Sun 25/4/20 e |
8 3.1 Perform Interviews 3days Sat 25/4/12 Tue 25/4/15 i
8 3.1.1 Identify and select target users for interviews 1 day Sat 2%/4/12 Sat 25/4/12
il 3.1.2 Prepare interview questions 2days Sat 25/4/12 Mon 25/4/14 g
8 3.1.3 Conduct interviews with users 1 day Mon 25/4/14 Mon 25/4/14 .L
3.1.4 Analyze feedback from users 3days Tue 25/4/15 Thu 25/4/17
8 3.2 Conduct Informal User Testing Sdays Mon 25/4/14 Fri 25/4/18 | |
%0 3.2.1 Prepare testing tasks 1 day Mon 25/4/14 Mon 25/4/14 [|
91 3.22 Conduct testing sessions 1day Mon 25/4/14 Mon 25/4/14 n
%2 3.2.21 Observe user interaction 1 day Mon 25/4/14 Mon 25/4/14 [|
B 3.2.22 Record user feedback 1 day Mon 25/4/14 Mon 25/4/14 [|
91 3.23 Analyze test results 4days Tue25/4/15 Fri 25/4/18 =
i 3.2.31 Identify common issues and suggestions Addays Tue 25/4/15 Fri 25/4/18 .

Figure 3. 7: Gantt Chart for Prototype Review and Get Feedback.

3.5.,5 Discard or Refine Prototype

[0 Task Rame r:lxrnl.lnn Furl inish 2025 May 2025 June
17 |20 |23 (26 (20 [2 [5 |8 [11[14 /17 (2023 |26 (20 |1 [4 | 7T
® 4.0 Discard or Refine Prototype 3 days Mon 25/421 Thu 25/5/29 [LSS
ol 4.1 Evaluate feedback ddays Mon 25/421 Thu 25/4/24 ==
= 411 Review user comments and observations 2days Mon 5/4/21 Tue 25/4/22 |
n 4.1.2 Summarize key usability problems. 3days Tue Z5/4/22 Thu 25/4/24 -
100 4.2 Dedde action for prototype 3days Mon 25/4/21 Wed 25/4/23 =
101 4.2 1 identify features to discard 2days Mon 5/4/21 Tue 25/4/22 |
10z 4.2 2 identify features to refine 3days Mon 5/4/21 Wed 25/4/23 -
103 4.3 Update prototype design 28 days Thu 25/4/24 Thu 25/5/29 K 1
1 4.3.1 Modify screens and navigation 14das Thu 25/4/24 Mon 25/8/12 |
105 4.3.2 Modify function requirements 4days Tue 25/5/13 Fri 25/5/16
106 4.3.3 Modify use case diagram 4days Mon 5/8/19 Thu 25/8/22
o7 4.3.4 Modify use case description Gdays Fri 25523 Thu 25/5/29

Figure 3. 8: Gantt Chart for Discard or Refine Prototype.

59

3.5.6 Incremental Development

R BEEKNESS SSqssiNWeERERRERNNNNN £ RENEH fAfssWANdeeNiedN 6y aqegadusee a9

narcmement
5214 Arahze tamade scaning repuiremenss Lday Wed S5 Wed 5/T/9
521 5 Define sack updale pracess via scrring Lday Wed ZUTS Wed 20778

521 6Plan ales conditians 1day Thu 570 Thu 257710
527 Dasigm Sdns FiZS/I11 Tea Z5/775
5221 Desemxreess Sdrns FiZS/IA1 Tea ZS/185
52711 rvesory ksl scen ldy R EAAL FOSTAL
52212 Add sed Fcil mvemlorvilem sopens 1oy S 5/7712 Sa ES7A2
52213 Brode scmmer imlexface lday SnE7A3 Sun 29773
52214 Mesic amd ioms popeps lday Man 257/14 Man 2577714
1day Tue 25715 Tue2wiAS

16 dnys Wed 25/7/16 S Z5/W/Z LS

5.23.5 Inkegme bucode scmming fralme wing Btk F8 /IR RIS

device camern
5236 siock Bdas i S8 RO ESTES
523 7 hmrlesrnt ddele e fexiae lday Man 25728 Mon 257028
523 8 hmrlessrnt brw siock: skt snificalioes: lday Tue2S7729 Tue297729
523 9 hmrleswrst wesmiched bacode dest Z2da Wed S0 Thu 257721
523 10 inplement vsioey commryrepodt 1day i ISAL Sasme
524 Texine Tdays Smm 75T Tme TSRS =
524.1 Test mvomiory it vicwing, Siexmy, axd lday EnZR3 RnIZGRZ .L
semclamy
5242 Test barcode scamie S fomliv 2daE Man 25R7 Tue 258G
5243 Teot addin. wodsii and del-ir iiewrs 225 Man 25374 Tue 2505 ™
524 4 Testsiock quumitywpdules vin scommine. 205 Man 25874 Tue 2985 -
524 5 Test kowsiock dlest Wirperme lday TueZS/AS TueZS/ES .
524 6 Test summryveport pesasicn lday TueZS/AS TueZS/BS H
5.3 Third Incremess ZMdrs Wed 25K Wad 258710 E 1
531 Flassine amd Amnlesic Sdays Wed 2SS Mo ZS5MA1 —
5311 Defme cawo axd contamer siivibwies: lday Wed SA% Wed S/AG]
531 2Pl daish xzc siracture for bad phas Aday Wed /A% Wed %06
53.1 3 Defime checklst woikdlow aud dais simche 12y Thu SR/7 Thu 2587
5314 Defme: load ph wodle mecheras. Bdap FEZEAREA Man2GRA1
5.3.1 5Pl ke remcsalion of pimbable I wporks 12y P 5A2 R 5m78 .%
5316 Ambgr: O code rrmomine lday SRS EaEmG
53.2 Desiemmreen dday TmaZS/MAZ Fi Zsans —
532 1 Load vl ceation sceem. 2das Tue2S'12 Wed 513
5322 Add cusiom careo sd contsier screem. lday Wed S/ Wed Z5/B13 M
532 3 Load vl edilr scwen. lcday ThuSmA4 Thu2SB04
5324 FIF brvowt x aimisbk: bad hameepod. 1y Thu SR04 Thu 253714
532 5Load vl bsiory e lday FiZERAS i SRS
532 6 Cher kst soeem. 1 day Fi BRA5 Fi Z5RAS
533 lmpkmcniaion 1Sdays Mom ZSM/1E Fri 75/0/5 _—
5331 Implement bad phe peersion Scdas Man 25808 Wed /A7
5337 Impleswnt 2 cuiom comtsimers anl capo 108y Man 25718 Man 258718 -
s fexime
5333 hmpleswnt des-sd-diop fonles: 2dap ThuZRPE Fi Z5R/29
5334 Gesexale: pimbabll: FIIF repodts dcay Man 2557 Man 25571
5335 hmpleswnt QR code scamime: 2das Tue?WS2 Wed /A3
533 6 Impleswrst checki fuc iomilily 2dae TuXSAA FiSWS
534 Taime Adns SHZSAA Wed 25810 —
534 1 Test load plam cresiicon ldy 5=xX5%t SaXAk

5342 Test do sl dopwpdsiiee of bad phass 1cay Man 2598 Man 257978
5343 Testscomimp (R codes o vewcomect 1day Tue29'aD Tue2599
e ivlocy

load
5344 Test checkist fmc iomlily o1 checkig off 1day Wed /9710 Wed 2579710

Ly t-xi- = == 22 2t mly [3n dmnrt 2008 Saptmber
M|t || 7 [0]13 10 [19|22 |2 |20 |1 |4 [7 (4812|9819 22 20 2830 [3 | 4 | 9 42w (18 21 (24 |27 (202 |w [0 |31 [14]17]2
1 |50 mcremestal Developmest Edrys Mo ZA/Z2 MmZRA5 | °
bl 5.1 Farst Imcrama Mars Mom Z5K/2 Mo 25/711 b 1
i) 511 Flasming and Analyss 1Zdzys Mom Z5/6/2 Tea Z5/6A7 e
m 5111 Define user mles and permissiars. ScdwE Man25W2 Thu2SW12 —
il 112 Sdect authenticalian methad Gdws TweZW@10 TueZHG17 —
fic) 517 Deasigm Bdny Wad 25/5/18 Fi Z5/6/27 —
E 5121 Design lagin accourns and regiter new ser Adas Wed UG8 Man 256723 —
saeers
o 5122 Design rale-tmsed aces: cantrdl lagic Bcdas Wed K25 Fri Z/E/ZT]
i) 5.1.2 implemestation Adns Mom 75/%6/30 The 25/7/3 (=]
5131 Auid lagin and registasion LA lcay Man25%30 Man 25630
13 Akmi seqitr i Zdws Man 25530 Tue2S7 1
5123kmplement uses mleasigrment during Scaps Twe2W 71 Thu2WTi3
acmunt crealion
51.2.4 Implement |agin fundiarality ey Twe2WV1 ThuZWTE -
5135 rale—tmsed revigasian s Tue2SWl ThuZSTa -
514 Testimg Tdns TRmZS/I/2 Sa 7SI (=]
5141 Test acaant registslian lday TR Thu2ETE []
5142 Test rale sssignmens iunciaraliny Zdws FEEATM SRS]
5.143 Test boei f ET S Y S -
5145 Test rale-tmsed acoes Bdws T B XS -
52 Second lncremen Z7des Mom Z5fIf7 Tea 2505 —_—
521 Flamming and Anahysis Adeys Mom Z5/7/7 Thm 257710 =1
8211 i i ylcting, lcay Man257/7 Man 2577
Sexing, searching
521 7 Define imventary item data siucuse: lday TweZSVE TueZWTR
5213 Plan daatase swucase for irversay lday TweS7E Tue2S7R

Figure 3. 9: Gantt Chart for Overview of Incremental Development.

3.5.6.1 First Increment

1 < 5.0 Incremental Development

85 days? Mon 25/6/2

1 < 5.1 First Increment 28 days
1 5.1.1 Planning and Analysis 12 days
1 «5.1.2 Design 8 days
114 5.1.2.1 Design login account and register new user 4 days
screens

115 5.1.2.2 Design basic navigation flow after login 3 days
116 < 5.1.3 Implementation 4 days
7 5.1.3.1 Build registration Ul 1day

1 5.1.3.2 Build login Ul 2 days

5.1.3.3 Implement user account creation with Firebase 3 days
5.1.3.4 Implement login functionality with Firebase 3 days
Authentication

5.1.3.5 Integrate session handling for logged-in users 3 days

+5.14 Testing 3 days
5.14.1 Test account registration with valid/invalid 1day
inputs
124 5.14.2 Test login with correct and incorrect credentials 2 days
1 5.1.4.3 Test access to system features after 3 days
successful login
5.1.4.5 Test logout functionality 3 days

Mon 25/6/2
Mon 25/6/2

+ Finish -
Mon 25/9/15
Mon 25/7/7
Tue 25/6/17

Wed 25/6/18 Fri 25/6/27

Wed 25/6/18

Wed 25/6/25

Mon 25/6/23

Fri 25/6/27

Mon 25/6/30 Thu 25/7/3

Mon 25/6/30
Mon 25/6/30
Tue 25/7/1
Tue 25/7/1

Tue 25/7/1
Thu 25/7/3
Thu 25/7/3

Fri 25/7/4
Thu 25/7/3

Thu 25/7/3

Mon 25/6/30
Tue 25/7/
Thu 25/7/3
Thu 25/7/3

Thu 25/7/3
Sat 25/7/5
Thu 25/7/3

Sat 25/7/5
Sat 25/7/5

Sat 25/7/5

60

Figure 3. 10: Gantt Chart for First Increment.

3.5.6.2 Second Increment

Task Name Pntinn Ism Finisll Taly 2025 Angust
4 |7 [10/12(16/19[22 |25 (28(31 (3 |6 |9
| 127 | 52 Second Increment 27days Mon 25/7/7 Tue 25/8/5 r 1
| 128 | 521 Planning and Analysis 4days Mon 25/7/T Thu 25/7/10 —
13 5.2.11 Analyze requirements for inventory listing, 1day Mon 257777 Mon 25777
L filtering, searching
130 5.2.1.2 Define inventory item data structure 1lday Tue 2578 Tue2%/7/8
BEW 5.2.1.3 Plan database structure for inventory lday Tue2w/7/8 Tuel2s/7/8
management
RER 5.2.14 Analyze barcode scanning requirements 1day Wed 25/7/9 Wed 25/7/9
133 5.2.15 Define stock update prooess via scanning 1day Wed 25/7/9 Wed 20/7/9
il 5.2.16 Plan alert conditions lday Thu257/10 Thu25/7/10
136 522 Design Sdays Fri25/7/11 Tue25/7/15 [|
136 | 5.2.2.1 Design screens Sdays Fri25/7f11 Tue25/7/15 —
[T 52.2.1.1 Inventory list screen lday Fri2s7/11 Fri 5711 L
138 52.2.12 Add and Fdit inventory item screens lday Sat 25/7/12 Sat 2%/7/12
13 52.2.13 Barcode scanner interface l1day Sun25/7/13 Sun25/7/13
0 52.2.1.4 Alarts and Notifications popups l1day Mon 257714 Mon 25/7/14
" 52.2.1.5 Inventory Summary Repot scroen lday Tue2%715 Tue2S/7/15
e 5.2.3 Implementation 16 days Wed 25/7/16 Sat 25/8/2 [|
165 5.23.1 Implement imventory jtem Hsting, lday Wed 25/7/16 Wed 25/7/16
4 5.23.2 oplement filiering and scarching features 1day Wed 25/7/16 Wed 25/7/16
145 5.23.3 fmplement add new jtem feature lday Thu25/7/17 Thu25/7/17
146 5.23.4 mplement update dem details feature lday Thu25/7/17 Thu25/7/17
7 5.23.5 Infegrake barcode scanning fesmre wsing ~ 8days Fri25/7/18 Fri 5/7/5
device camera
L 5.2.3.6 Implement stock quantity updates after scann8days Fri25/7/18 Fri 5/7/25
(1. 5.23.7 implement delete Item feature lday Mon 257/28 Mon 25/7/28 %1
150 | 5.23.8 Implement low stock alert notifications lday Tue 257729 Tue25/7/29
|18 | 5.23.9 Implement ummatched barcode alert 2days Wed 25/7/30 Thu 25/7/31 .La
RER 5.2.3.10 hnplement inventory smnmary repoit lday FriZwgl Sat 25/8/2
L generation
153 5.2 4 Tesling 3days Sun25/8/3 Tue25/8/5 =
|15 | 5.24.1 Test inventory kst viewing, filtering, and lday Sun2%/&3 Sun2w/8/3 ll
searching
|15 | 5.24.2 Test barcode scanming fimctionality 2days Mon 25/8/4 Tue 25/8/5 -
|15 | 5.24.3 Test adding, updating, and deketing #ems =~ 2days Mon 25/8/4 Tue 25/8/5 [
REl 5.2.4.4 Test stock quantity updales viascaming ~ 2days Mon 25874 Tue 25/8/5]
RED 5.2.4.5 Test low stock alert triggering lday Tue2/®5 Tue2%/85 [
18 | 5.2.4.6 Test summary report generation lday Tue 25/85 Tue 2%/8/5 |

Figure 3. 11: Gantt Chart for Second Increment.

3.5.6.3 Third Increment

61

[0 Task fam rln‘ﬂiﬂn inish 5 Auzust 2025 September
3 (6|9 |12 (16518 (21 (2427302 & |8 |11 |1
| 160 | 5.3 Thid Ingement 28days Wed 25/8/6 Wed 25/9/10 f 1
161 531 Planming 2nd Analysis Sdays Wed25/8/6 Mon2sB/11 | ——
53.1.1 Defmne cargo and container altributes 1 day Wed 25/8/6 Wed 25/8/6 a
5.3.1.2 Plan database structure for load plans ldy Wed 2586 Wed25/8/6
(161 | 53.1.3 Diefine checklist woddlow and data lday ThaZ/87 Thu 2587 %
|1 | 53.1.4 Defme load plan update mechanicm 3days Fri2n/8/8 Man 25/8/11
166 | 5315 Plan the grncration of printable PDF reports 1 sy Fi258/8 Fri 25/8/8 l%
|67 | 53.1.6 Analyze QR code generation lday Sk Z/&9 Sat 29879
1 | 532 Design screes adays Tue25/8/12 Fri 25/8/15 —
18| 53.2.1 Load piln creation screen Zdas TueZ98/17 Wed 25/8/13
| 17| 5322 Add cosiom cargo and container screen lday Wed 25/8/13 Wed 25/8/13 u
| 5323 Load pln editing screen lday ThuZS/B4 Thu 25/8/14
iz | 5324 PDF layout for prinisble oad plan report. 10y Thu 25/8/14 Thu 25/8/14
|13 5325 Load plan history screen 1 day Fri2=/A8/15 Fri 25/8/15
| 7] 5326 Checldist screen. 1 day Fri2=/A8/15 Fri 25/8/15
s 533 Implementation 15days Mon 25/8/18 Fri 25/9/5 —_—
| 176 | 5331 Implement load plan generation Sdays Mon 22/8/18 Wed 22/8/77
7 533 2 Impik add cosiom o and capo 1 day Man 2/8/18 Maon 25/8/18 a
[size fealnre
[| 5333 Implement drag-and-drop featnre Z2das T Z/828 Fu Z&/R29
1 | 5.3.3 4 Generake prinksble PDF reports ldy ManZ%1 Man 2591
18| 5335 Implement QR code scanning Z2dys TueZ52 Wed259/3
l 5.3.3.6 Impl ‘hecklist functions 2days Thu2Z/9%4 Fn Z/9%5
18z 534 Testimg 4days Sat25/9/6 Wed 25/9/10 []
153 5341 Test load plan creation 1 day Sat 25/9%6 Sat 25/9/6
T 5342 Test drag-and-dropupdaling of load plms 1day Mo 25/%8 Man 25/%/8
185 5343 Test scanning QR codes toview comect 1day Tue259/9 Tue 25/8/9
load plan hisinry
185 534 4 Test checkfist functionality for checking off 1 day Wed 25/9/10 Wed 25/9/10
cargo dems

Figure 3. 12: Gantt Chart for Third Increment.

62

CHAPTER 4

PROJECT INITIAL SPECIFICATION

4.1 Introduction

This chapter includes detailed specifications for the inventory tracking and
load planning mobile application being developed as part of this project. The
following session outlines the methodology used to gather requirements,
including fact-finding techniques such as interviewing experienced users. The
system’s functional and non-functional requirements will be defined, followed
by use case modelling to describe the main interactions between the users and
the system. Additionally, Interface Flow Diagram and Prototype Interface are

also included to visually represent the app’s structure, flow, and user interface.

4.2 Fact Finding
To gather relevant information for the development of an inventory tracking
application and to verify the accuracy of the literature search information,

interviews were conducted.

4.2.1 Interview

The first interview was conducted on 23 April 2025 at Ametal Tech Sdn Bhd
and took about an hour. The interviewee invited was an experienced user of
the relevant software. Ms Jesther, who is the Assistant Manager of the
Logistics Department, has nearly 15 years of experience in logistics. The
interviewees were selected based on her direct involvement with the load plan
during her working life for so many years and could provide expert insights
into my load planning functionality.

The interview adopted a semi-structured interview method, which
combined pre-prepared questions with open-ended discussion. The interview
began with a self-introduction and explained that the purpose of the interview
was to collect users' feedback on the prototype and the functional requirements
or expectations for the new application. The interview found that the load plan
is currently managed using manual methods such as Microsoft Excel. Once the

container size and the list of cargo to be loaded are finalized, the staff begin by

63

drawing the container dimensions to scale within Excel. They then proceed to
manually draw each cargo item, which can number 20 or more, and label each
one with its corresponding ID and name. After that, they attempt to arrange the
cargoes within the container space, adjusting placements until the container is
fully loaded. This manual process is time-consuming and labor-intensive. It
usually takes at least an hour to complete a load plan, and even at least 3 to 4
loading plans need to be drawn up every day. This results in approximately
four to five hours spent solely on load planning, effectively consuming nearly
half of the working day.

The interviewee also highlighted key challenges faced during the
current load planning process, including a high error rate and the need to
repeatedly redo work due to mistakes or inefficient cargo arrangements. Using
Excel to manually draw out each cargo item one by one is not only time-
consuming but also prone to errors, especially dealing with a large number of
goods with varying sizes and dimensions. After drawing the items, staff must
manually try to fit them into the container, adjusting positions through trial
and error to ensure all items fit properly. This lack of automation means that
any change such as adjusting the order of loading, replacing an item, or
modifying the container size requires the entire layout to be redone, often from
scratch.

The interviewee also mentioned that she had previously tested a few
existing load planning applications using trial versions. However, she found
them not worth the investment, as her team only needed a single core function,
which is basic load planning. Most of the available applications were designed
with a wide range of advanced features, catering mainly to logistics or
transport companies with more complex operational needs. In her case, the
company only required a simple and focused solution. The existing
applications she tested offered a wide range of features, such as route
optimization, fleet tracking and multi-container management. However, only
about 20% of these features, specifically the basic load planning function,
were relevant to their needs. As a result, investing in full-featured commercial
software was considered inefficient and unnecessary, especially for a business

that does not operate as a full logistics or transport company.

64

The interviewee also mentioned the app should provide reporting and
analysis features. For example, it would be possible to see how many items
were shipped in a week and how many vehicles were used. This data would be
very useful for her company's sales department because it would help evaluate
transportation efficiency and better understand resource usage. For example,
they could use this data to predict how many lorries would be needed to
transport similar quantities of goods in the future.

After the interview, informal testing was carried out and the
interviewee was given the opportunity to test prototypes that included the main
features of the application so that the author could directly observe the user
reactions and identify areas for improvement before moving into structured
development. She was asked to complete some basic tasks such as generating
a load plan using container sizes and cargoes provided in the software. While
experiencing the prototype, she made some suggestions about the user
interface. For example, she pointed out that the color-coded cargo blocks
appeared visually appealing within the mobile application. However, it
becomes ineffective when exported or printed as a PDF, because companies
often print documents in black and white rather than in colour to save costs.
She recommended using text-based labels directly on the cargo blocks instead,

to ensure that printed versions remain readable.

4.2.2 Observation

The observation was carried out to gain a clearer understanding of the current
workflow and challenges involved in inventory management, specifically how
items are scanned and recorded when they are checked in and out of inventory.
It was conducted on-site, where staff were observed performing their usual
daily inventory tasks without any interference, to ensure the process remained
authentic and uninterrupted.

During the observation, staff used a handheld barcode scanner to scan
items one by one. After scanning, they manually updated the quantity of items
that needed to be taken out. One key issue observed was related to the quantity
input field in their existing system. It comes with a default value of “1,” which
often causes confusion. In some cases, staff may forget to update the quantity,

but the quantity field has a default value of 1, and the system cannot justify

65

whether this is the default value or the actual quantity to be taken out. This
increases the risk of incorrect inventory records. The way to improve the
system 1is to leave the quantity field blank by default. This way, if the staff
forget to enter the correct quantity, the system can easily detect the missing

input and prompt a reminder, thus helping reduce errors and improving

accuracy in the process.

4.2.3 Summary for Interview and Observation
Table 4. 1: Summary for Interview and Observation
Aspect Interview Observation

Date and 23 April 2025, Ametal Tech | On-site at Ametal Tech

Location Sdn Bhd Sdn Bhd

Purpose Collect user feedback on load | Understand workflow and
planning prototype and challenges in inventory
functional requirements management, focusing on

item scanning

Method Semi-structured interview Non-intrusive observation
with pre-prepared questions of staff performing daily
and open-ended discussion inventory tasks

Key Ms. Jesther, Assistant Staff performing

Participant Manager of Logistics inventory tasks

Department, 15 years of

experience

Current Tool

Microsoft Excel

Handheld barcode scanner

Current Draw container and cargo Items scanned one-by-one
Process items to scale in Excel, using handheld barcode
followed by trial-and-error scanners, with manual
arrangement quantity updates in the
system
Time Taken ~1 hour per plan; Not specified

3—4 plans daily
= ~4-5 hours per day

66

Challenges - High error rate due to - Default quantity field
manual drawing and value of “1” leads to
arrangement errors if staff forget to

- Time-consuming trial-and- | update quantity
error process

- Entire layout needs redone
for any change

- Existing load planning apps
too complex, with only 20%

of features relevant

User - Need for simple, focused - Blank quantity field by
Feedback load planning app default
/Suggestions | - Avoid feature bloat - System prompts for
- Reporting and analysis missing quantity inputs to
features improve accuracy
Prototype - Liked color-coded cargo - N/A
Feedback blocks in-app

- Recommended using text

labels for print readability

4.3 Requirement Specification

This section outlines the functional and non-functional requirements derived
from the interview and the review of existing application. The functional
requirement is divided into 3 main modules: User Management, Inventory

Tracking and Load Planning.

4.3.1 Functional Requirements

1. User Management

Table 4. 2: Functional Requirement of User Management Module.

FRO1 | The system shall allow user to register a new user account.

FRO2 | The system shall allow users to login via email and password.

67

2. Inventory Tracking via barcode scanning

Table 4. 3: Functional Requirement of Inventory Tracking Module.

FRO3 | The system shall allow users to view a list of all inventory items.

FRO4 | The system shall allow users to filter the inventory list by stock status
and category.

FRO5 | The system shall allow users to search inventory items using any
keyword that matching across all item attributes.

FRO6 | The system shall allow users to add a new inventory item.

FRO7 | The system shall allow users to update the details of existing item.

FRO8 | The system shall allow users to scan barcodes using the device
camera

FRO9 | The system shall allow users to update the stock quantity after
scanning items in or out.

FR10 | The system shall allow users to delete an inventory item.

FR11 | The system shall visually indicate when the stock quantity is lower
than the specified stock level.

FR12 | The system shall allow user to receive alerts if a scanned barcode

does not match any existing inventory item.

3. Load Planning

Table 4. 4: Functional Requirement of Load Planning Module.

FR13 | The system shall allow user to generate a load plan based on the
selected cargo and container.

FR14 | The system shall allow user to add custom containers and cargo size if
the desired size is not available in the predefined list.

FR15 | The system shall allow user to update the load plan by drag and drop
cargo items.

FR16 | The system shall allow user to export the load plan into printable PDF
report.

FR17 | The system shall allow user to view load plan history via scanning the

QR code from the PDF load plan.

68

FR18 | The system shall allow user to view the checklist for double-checking
the arrangement status of each cargo item.
FR19 | The system shall allow user to mark items as checked off in the
checklist after they have been successfully arranged in the load plan.
4.3.2 Non-functional requirements
Table 4. 5: Non-Functional Requirement.

NFRO1 | The system shall respond to user actions, such as | Performance
barcode scans and item updates, in under 2
seconds.

NFRO02 | The system shall have an intuitive, easy-to-navigate | Usability
interface that users can quickly understand.

NFRO3 | The system shall be compatible with a wide range | Portability
of Android devices and versions.

NFRO04 | The system shall remain accessible to users at any | Availability
time, as long as they have an internet connection.

NFRO5 | The system shall be able to access and use the | Compatibility
mobile device's camera.

NFRO6 | The system shall ensure input validation and | Usability
display appropriate error messages for invalid
inputs.

4.4 Use Case Modelling

To enhance clarity and avoid overcrowding, the use case diagram is split into

two separate diagrams. The first use case diagram combines the User

Management and Inventory Tracking features, while the second use case

diagram focuses on Load Planning.

4.4.1 Use Case Diagram

69

uc Inventory Tracking via barcode scanning /

User

AN

Inventory Tracking System: User Management and Inventory Tracking via barcode scanning

View Inventory
lists

Register account

View by searching

Update existing item
aextend? details

o ”
‘extension points
ncorrect info

W
extension points —— wextend?
If Product D not found -

Update stock quantity

Delete inventory item

Receive alert on
unmatched barcode

. Sextend®

‘extension points
Stock quantity lower than = Indicate Low Stock Level
specific level

Figure 4. 1: Use case Diagram of Inventory Tracking System: User

Management and Inventory Tracking via barcode scanning.

70

uc LoadPlan)

Inventory Tracking System: Load Flanning

Add custom container
and cargo size

Generate load plan

wextend? _ =

‘extension points
Ifthe desired size is not available
inthe predefined list

Drag and drop carge items

User
- “extend?

Update load plan

Generate PDF Report

extension points wextend®

Scan QR code on printed PDF

View load plan history

View the checklist

aextend®

extension points
Cargoes have been arranged

Mark checlist items

Figure 4. 2: Use Case Diagram of Inventory Tracking System: Load Planning.

4.4.2 Use Case Description

Table 1: Use Case Description of Register account

Table 4. 6: Use Case Description of Register account.

Use Case Name: Register account | ID: UCO01 Importance Level: High

Primary Actor: User Use Case Type: Detail, Real

Stakeholders and Interests: User — Wants to create new user accounts

Brief Description: This use case allows a user to create a new user account

using a valid email and password.

Trigger: User wants to create a new user account for a new user.

Relationships:
Association : User

Include

71

Extend : Login

Generalization: N/A

Normal Flow of Events:

1. The user clicks the ‘+’ button on the User Management screen.

2. The system displays the add new user modal.

3. The user inputs required information such as email, name and
password.

4. The user clicks the ‘Add’ button to submit the form.

5. The system validates the email format. Continue to Sub-flows 5.1 or
5.2.

6. The system checks whether the email is already registered.
Continue to Sub-flows 6.1 or 6.2.

7. The system creates a new account.

8. The system redirects the user to the User Management screen.

Sub-flows:

5.1 If the email format correct:
5.1.1 Continue to Flow 6.

5.2 If the email format is incorrect:
5.2.1 The system displays an error message: “Invalid email address.”
5.2.2 The user is prompted to correct the information and try again.

5.2.3 After correction, continue to Flow 6.

6.1 If the email is already registered:

6.1.1 The system displays an error message: “This email is already
registered.”

6.1.2 The user is prompted to try a different email.
6.2 If the email is not yet registered:

6.2.1 The system creates a new user account.

6.2.3 Continue to Flow 7.

Alternate/Exceptional Flows:

Table 4. 7: Use Case Description of Login account.

72

Use Case Name: Login account ID: UCO02 Importance Level: High

Primary Actor: User Use Case Type: Detail, Real

Stakeholders and Interests: User — Wants to access the inventory

management system using their assigned email and password.

Brief Description: This use case allows a user member to log in to the

system using their assigned email and password.

Trigger: The user wants to log in to his/her account.
Relationships:

Association : User

Include : N/A

Extend : N/A

Generalization: N/A

Normal Flow of Events:

1. The user clicks the ‘Login’ button from the Welcome Screen.
The system displays the login form.
The user enters the assigned email and password.

The user clicks the ‘Login’ button to submit credentials.

U

The system validates the email format. Continue to Sub-flows 5.1 or

5.2.

6. The system checks the credentials against the authentication
database. Continue to Sub-flows 6.1 or 6.2.

7. Upon successful login, the system redirects the user to the home

screen.

Sub-flows:

5.1 If the email format is correct:

73

5.1.1 Continue to Flow 6.

5.2 If the email format is incorrect:
5.2.1 The system displays an error: “Please enter a valid email address.”
5.2.2 The user corrects the input and retries.

5.2.3 After correction, continue to Flow 6.

6.1 If the credentials are valid:

6.1.1 The system logs in to the user and redirects to the home screen.
6.2 If the credentials are invalid:

6.2.1 The system displays an error message: “Incorrect email or
password.”

6.2.2 The user is prompted to retry or reset their password.

Alternate/Exceptional Flows:

Table 4. 8: Use Case Description of Scan item barcode.

Use Case Name: Scan item barcode | ID: UC03 | Importance Level: High

Primary Actor: User Use Case Type: Detail, Real

Stakeholders and Interests: User — wants to scan barcodes using the device
camera to quickly identify items and update stock when adding or removing

them.

Brief Description: This use case allows staff to scan an item’s barcode using
the device camera. The system reads the barcode, checks if the item exists in

the inventory, and displays the relevant details.

Trigger: The user wants to update stock by scanning one or more
items.
Relationships:

Association : User

Include : N/A

74

Extend : Receive alert on unmatched barcode

Generalization: N/A

Normal Flow of Events:
1. The user clicks the “Scan” icon button on the navigation bar from the

home screen.

2. The system opens the barcode scanner camera interface.
3. The user scans a product barcode using the device’s camera.
4. The system detects and reads the scanned value.
5. The system searches for a matching Product ID in the inventory
database. Continue sub-flows 5.1 or 5.2.
Sub-flows:

5.1 If Product ID is found:
5.1.1 The system fetches and displays product image, ID, name, quantity
and stock status.
5.1.2 The staff adjust the quantity of scanned items.
5.1.3 The staff proceed to scan the next item by clicking the ‘scan’ icon
button.
5.2 If Product ID is not found:
5.2.1 The system alerts the user that the item is not found in the inventory.

5.2.2 The system returns the staff to the scan interface.

Alternate/Exceptional Flows:
Al - Camera access not granted:
Al.1 The system displays: "Camera permission required to scan
barcodes."
A1.2 The staff is prompted to enable camera permissions in the device

settings.

Table 4. 9: Use Case Description of Update stock quantity.

Use Case Name: Update stock quantity | ID: Importance Level: High
ucCo4

Primary Actor: User Use Case Type: Detail, Real

75

Stakeholders and Interests: User — Wants to update the stock quantity for one

or multiple items.

Brief Description: This use case allows user to update the stock quantity of
items in two different ways. For individual updates, staff can go to the
product detail screen and manually add or reduce the quantity. For handling
multiple items efficiently, they can scan barcodes one by one and update the

stock immediately after each scan.

Trigger: The user wants to update the stock quantity.
Relationships:

Association : User

Include : N/A

Extend : Indicate Low Stock Level

Generalization: N/A

Normal Flow of Events:
1. The user wants to update the stock quantity of one or more items.
2. The user proceeds with one of the methods. Continue sub-flows 2.1

or2.2.

Sub-flows:
2.1 Manual update from product description screen:
2.1.1 The user opens the product's description screen.
2.1.2 They tap the “IN” or “OUT” button.
2.1.3 The system prompts for a quantity input.
2.1.4 The user enters the desired quantity and confirms.
2.1.5 The system validates and updates the quantity.
2.1.6 The system checks against the low stock threshold. Continue sub-
flow 3.1 or 3.2.

2.2 Update via barcode scanning:

76

2.2.1 The user clicks the ‘Scan’ icon button on the home screen.

2.2.2 The system opens the barcode scanner interface.

2.2.3 The user scans an item’s barcode.

2.2.4 Upon a successful scan, the system shows the item details.

2.2.5 The user adjusts the quantity.

2.2.6 If there are more items to scan, the user clicks the ‘Scan’ icon again
and repeats from Step 2.2.3. otherwise,

2.2.7 If there are no more items, the user chooses either ‘Product In’ or
‘Product Out’.

2.2.8 The system updates the stock accordingly.

2.2.9 The system checks against the low stock threshold. Continue sub-
flow 3.1 or 3.2.

3.1 If quantity is above specific level:
3.1.1 The system confirms the update and returns to the previous screen.
3.2 If quantity is below specific level:
3.2.1 The system highlights the item with a low stock visual indicator
using a red dot.

3.2.2 Use case ends.

Alternate/Exceptional Flows:

Al. Quantity set to 0 or negative:
Al.1 System displays: “Invalid quantity. Must be at least 1.”
A1.2 User is prompted to adjust the quantity before proceeding.

Table 4. 10: Use Case Description of View inventory list.

Use Case Name: View inventory list ID: Importance Level: High
ucCos

Primary Actor: User Use Case Type: Detail, Real

Stakeholders and Interests: User — Want to view the complete inventory or

locate specific items using filters or search functionality.

71

Brief Description: This use case allows users to view the full list of current
inventory items. Users can also narrow the list by

applying filters or searching using keywords.

Trigger: The user wants to view all inventory items, filter the list, or search

for specific products.

Relationships:
Association : User
Include :N/A
Extend :N/A

Generalization: View by filtering, View by searching

Normal Flow of Events:

1. The user navigates to the inventory list screen by clicking the
‘Product’ tab in the navigation bar on the home screen.

2. The system retrieves and displays all current inventory items from the
database.

3. Each item is shown with its product image, ID, name and current
stock quantity with units.

4. The user can optionally choose to either apply filters or perform a

search using keywords. Continue sub-flows 4.1 or 4.2.

Sub-flows:
4.1 Filter by category or stock status
4.1.1 The user selects a product category or chooses a stock status such as
In Stock, Low Stock or Out of Stock.
4.1.2 The system applies the filters and updates the list.
4.1.3 The use case ends.
4.2 Search using keywords
4.2.1 The user enters a keyword into the search bar.
4.2.2 The system displays all items matching the entered keyword.

4.1.3 The use case ends.

78

Alternate/Exceptional Flows:

A1 No results from filter:

A1.1 System displays: “No matching items found.”

Table 4. 11: Use Case Description of Add new items.

Use Case Name: Add new items ID: UC06 Importance Level: High

Primary Actor: User Use Case Type: Detail, Real

Stakeholders and Interests: User — Wants to add new inventory items when

receiving new products.

Brief Description: This use case allows user to manually register a new item

by entering product details such as name, category, stock
quantity, image and minimum stock quantity. If have
incorrect or incomplete information, the user may also

proceed to update the item details.

Trigger: The user wants to add a new product to the inventory database.

Relationships:
Association : User
Include : N/A
Extend : Update existing item details

Generalization: N/A

Normal Flow of Events:

l.
2.
3.

The user clicks the “+” button on the inventory list screen.

The system displays a form to enter new item’s details.

The user fills in the required fields such as Product image, Product
name, Current stock quantity, Category, and Minimum stock
quantity.

The user clicks the “Save” button.

The system validates the entered information and saves the new item

79

to the database.
6. A success message is displayed: “Item added successfully.”
7. The new item appears in the inventory list.
8. If'the user notices a typo or incorrect data, continue to sub-flow 8.1.

Otherwise, the use case ends.

Sub-flows:
8.1 Correcting incorrect info:
8.1.1 The user selects the newly added item from the inventory
list.
8.1.2 The system displays the product description screen.
8.1.3 The user clicks the three dots (menu) icon at the top right
corner and selects "Edit".
8.1.4 The system navigates to the edit item screen.
8.1.5 The user updates the necessary fields and clicks “Save.”
8.1.6 The system saves the changes and displays: “Item details
updated successfully.”
8.1.7 The updated item appears in the inventory list. Sub-flow
8.1 ends.

Alternate/Exceptional Flows:

Table 4. 12: Use Case Description of Delete inventory items.

Use Case Name: Delete inventory items | ID: Importance Level: High
uco7
Primary Actor: User Use Case Type: Detail, Real

Stakeholders and Interests: User — Wants to delete an inventory item from

the system when it is no longer needed.

Brief Description: This use case allows user to delete an existing inventory

item from the system.

Trigger: User decides to remove an item from the inventory list.

80

Relationships:
Association : User
Include : N/A
Extend :N/A

Generalization: N/A

Normal Flow of Events:

1. The user selects an item from the inventory list.

2. The system navigates to the product description screen.

3. The user clicks the ‘three dots’ icon at the top right corner and selects
the ‘trash bin’ icon button.

4. The system displays a confirmation dialog: “Are you sure you want
to delete this item?”

5. The user confirms the deletion by clicking “Delete”.

6. The system deletes the item from the database.

7. A success message is displayed: “Item deleted successfully.”

8. The system returns the user to the inventory list screen.

Sub-flows:

Alternate/Exceptional Flows:

Table 4. 13: Use Case Description of Generate Load Plan.

Use Case Name: Generate Load Plan | ID: Importance Level: High

ucCo8

Primary Actor: User Use Case Type: Detail, Real

Stakeholders and Interests: User — Wants to generate a load plan to arrange

selected cargo items into a container

Brief Description: This use case allows the user to generate a load plan by

arranging selected cargo items inside a container based on
container size and cargo dimensions. It also allows the
user to update the arrangement using drag-and-drop

functionality as needed.

81

Trigger: Users want to arrange selected items for shipment within a

container.
Relationships:
Association : User
Include : N/A
Extend : Add custom container and cargo size, Update

load plan
Generalization: N/A

Normal Flow of Events:

1. The user navigates to the Load Plan section from the home menu.

2. The system displays options which are Plan Load, Set Common Size,
and History.

3. The user selects Plan Load to start creating a new load plan.

4. The user inputs or selects the container size. Continue with sub-flow
4.1 or4.2.

5. The user inputs or selects the cargo dimensions and quantity.
Continue with sub-flow 6.1 or 6.2.

6. The user confirms the container and cargo selections.

7. The system retrieves the container, and cargo details and
automatically generates a load plan, arranging cargo inside the
container.

8. The system displays confirmation details, including selected
container, selected cargo items with quantities, an Actual Ratio
Diagram showing the arrangement, Calculated used space, free space,
and total container space.

9. After the load plan is generated, the user may optionally rearrange
cargo items manually. Continue with Sub-flow 9.1 if needed.

10. The user reviews the arrangement and clicks the ‘Save’ button.

11. A confirmation message appears: “Saved successfully.”

Sub-flows:

82

4.1 If using a preset container size:
4.1.1 The user selects a container from the predefined list. Continue
flow-no 5.
4.2 If adding a custom container size:
4.2.1 The user clicks the ‘Set common size’ button on the Load Plan
tab.
4.2.2 The user enters the container’s length, width, height and
maximum weight capacity.
4.2.3 The system validates and saves the custom size input. Continue

flow-no 5.

5.1 If using preset cargo dimensions and quantity:
5.1.1 The users select the predefined cargo items.
5.1.2 The user adjusts the quantity. Continue flow-no 6.
5.2 If adding custom cargo size:
5.2.1 The iser enters the cargo dimensions and quantity. Continue flow-

no 6.

9.1 Rearranging Cargo Items Manually:

9.1.1 The user selects a cargo item inside the 3D load plan.

9.1.2 The user drags and drops the cargo item to a new position within
the container.

9.1.3 The system dynamically updates the load plan layout based on the
new arrangement.

9.1.4 The user repeats the drag-and-drop action as needed to finalize the
arrangement.

9.1.5 Once satisfied, continue flow no-10.

Alternate/Exceptional Flows:

Table 4. 14: Use Case Description of View the checklist.

Use Case Name: View the checklist | ID: UC09 | Importance Level: High

83

Primary Actor: User Use Case Type: Detail, Real

Stakeholders and Interests: User- wants to view a checklist that shows which

cargo items still need to be arranged
within the current load plan, and mark

items as placed once arranged.

Brief Description: This use case allows user to display a checklist of cargo

items that not yet been arranged.

Trigger: The user member wants to see which cargo items still require

arrangement.
Relationships:
Association : User
Include :N/A
Extend : Mark Checklist Item

Generalization: N/A

Normal Flow of Events:

9.

The user scans the barcode on the PDF load plan.

The system navigates to the corresponding load plan description
page.

The user clicks the “Checklist” button.

The system retrieves the list of cargo items that need to be loaded into
the container.

The system displays the checklist, showing details for each cargo
item such as cargo name, quantity, and dimensions.

As the user physically arranges each cargo item into the container,
they mark the corresponding checklist item.

The system marks the item as completed with a checkmark.

The user continues arranging and marking items until all cargo items
are completed.

Once all items are marked as placed, the user clicks Save.

10. The system updates the load plan status from Pending to Finished.

84

Sub-flows:

Alternate/Exceptional Flows:

Table 4. 15: Use Case Description of Generate PDF report.

Use Case Name: Generate PDF report ID: Importance Level: High
uUcCl10
Primary Actor: User Use Case Type: Detail, Real

Stakeholders and Interests:

User

- want to generate a printable version of the finalized load plan that
includes cargo arrangement, container details, and a QR code for
quick future access.

-wants to retrieve and view the load plan details by scanning the QR code.

Brief Description: This use case allows user to generate a PDF report of a
load plan which includes a QR code that links directly

back to the system for easy future access.

Trigger: The user finalizes a load plan and chooses to export it as a PDF.

Relationships:
Association : User
Include : N/A
Extend : View Load Plan History

Generalization: N/A

Normal Flow of Events:
1. The user opens the load plan description page.
2. The user clicks the “Generate PDF” button.
3. The system compiles the load plan data such as Load plan ID,
container details, total used space and remaining space, cargo
arrangement order, and a QR code into a formatted PDF.

4. The system generates the PDF file and displays the message:

85

“Generated Successfully!”
5. The user clicks the “View” button to preview the generated PDF.
6. The PDF file can be printed or distributed as needed. Proceed with
sub-flow 6.1 or 6.2.

Sub-flows:

6.1 Staff views load plan history via scanning QR Code:
6.1.1 The user scans the QR code from the printed PDF copy.
6.1.2 The system retrieves and opens the associated load plan
description page.
6.1.3 The user can view the load plan details, including cargo
arrangement and container info.
6.1.4 The use case ends.

6.2 User does not scan the QR code:

6.2.1 If the QR code is not scanned, no action is triggered.

6.2.2 The use case ends.

Alternate/Exceptional Flows:

4.5 Interface Flow Diagram
This section shows the interface flow of the application, illustrating how users

navigate between different screens and interact with the system.

Figure 4. 3: Interface Flow Diagram of Proposed System.

86

4.5.1 User Management Module

[Personal Account Screen]

v

[Profile Screen]

!

[User Management Screen]

A\ 4
[Add User Screen]

Figure 4. 4: Interface Flow in User Management Module.

4.5.2 Inventory Tracking via Barcode Scanning Module

Home Screen

Update many products

Update a single product No Yes atatime

Many itermns

Inventory List
Screen

Scan Barcode

Screen
Product Out
Screen

Product description
screen

Add ltem Screen
v v v v

Edit Details Inventory In Inventory Out
Delete Screen
Screen screen screen

Figure 4. 5: Interface Flow in Inventory Tracking Module.

87

4.5.3 Cargo Load Planning Module

Load Plan Screen

Plan Load h 4 History Screen
Screen Set Common
Size Screen

¢ A 4

- Load Plan

Select Container Load Plan Description Screen
Screen Generated Screen

A

[Select Cargo Screen J At
Delete Screen

Y Y

Ckecklist Screen PDF Generated
Screen

Figure 4. 6: Interface Flow in Cargo Load Planning Module.

4.6 Prototype Interface
The prototype development was developed based on the three main modules
specified in the project scope, which will include the module of user

management, inventory tracking via barcode scanning, and load planning.

4.6.1 User Management Module

The User Management Module enables users to create and access their own
accounts through a secure registration and login system. It ensures that only
registered users can log in to the application using their email and password.
Once authenticated, users are granted access to all system features such as
inventory tracking and load planning. Figure 4.4 illustrates the process of

registering a new user account within the system.

88

® [g < User Lists
User
User1
1D: 00000001
User1 0 User 2
10: 00000001 "9 1000000002
{& User Management User 3
S ——— J
£ Lea
@ ® 7 > 8 o o

Add New User Add New User

((een)

[yxteng07 @gmail.com }

{ 123456 J

89

< User Lists

User

&
I 28 J
J
|

Add New User
=W User2

10: 00000002

yanxin

teng07 @ il
T~) Added Successfully! ‘ £ User3
- ~ New User added successfullly! 10: 00000003

123456

User &4
10: 00000004

Figure 4. 7: Register a New Account.

The Login feature allows users to access the system using the email
and password with the credentials assigned to them. Figure 4.8 show that the

welcomes screen and login form.

Login

Inventory Tracking System

An inventory tracking app with barcode
scanning and automated load planning

Login

Figure 4. 8: Login feature by Staff.

4.6.2 Inventory Tracking via Barcode Scanning Module
It provides a complete inventory list with options to filter and search items by
attributes such as category or quantity. Using the device camera, users can

quickly scan barcodes to update stock quantities for check-in and check-out

90

activities. In addition, users can manually add, update, or delete inventory
records as needed. The system also provides automatic alerts when stock
levels fall below a predefined threshold or when a scanned barcode does not

match any existing item, thereby helping to maintain accuracy and prevent

errors in inventory management.

Low Stock Alert !

Some items are below the minimum
quantity threshold. Check the inventory
list for details.

OK

Figure 4. 9: Low Stock Alert Message Displayed After User Login.

= Qe ..
Inventory See All
] d
678+ 1,021 -
® &
136 132

Total Products Total Restocked ®

Low Stock Items

® Kraft Box
Current Stock: 4
Reorder Level: 50

® Beverage Cup - 700ml
Current Stock: 17 ctn
Reorder Level: 103

rN

@ © W == 8

Products Scan LoadPlan Personal 1

Figure 4. 10: Home Page.

.
< Q searcn -
.

Al Ingredients Packaging Equipment §

ING 00000001
Yellow Potato Ball 30 pks

PAC 00000001 ®

Beverage Cup - 700ml 17 ctn

ING 00000047

Dutch Lady Full Cream

UHT Milk 1L 16 bils
f ING 00000003

White Peach Oolong Jelly 17 pks

EQT 00000026
Induction Cooker 3500W 17 units

PAC 00000005 ®

®@ ¢ 4 @z~ @

Kraft Box 4 ctn
ING 000000017 H
Purple Potato Ball 17 pks

Figure 4. 11: Inventory Items List Screen.

< Q searen =
Filter
AUl Ingredients Ps
Category
ING 0000000 Ingredients
Yellow Potat¢
Packaging

PAC 000000¢ Equipment&Tools

Beverage Cu ;
Quantity

e o o

0 100 300 500 1000
ING 0000004
Dutch Lady Fu
UHT Milk 1L

ING 0000000
White Peach

EQT 000000:
Induction Co

PAC 000000
Kraft Box

ING 000000(
Purple Pota

®@ e @iz~ @

Figure 4. 12: Filter Feature by Category and Quantity.

92

<) Qe = < Add New ltem

Al Ingredients Packaging Equipment §

‘ ING 00000001 +
J Yellow Potato Ball 30 pks

Product Name

PAC 00000001 ®
Beverage Cup - 700ml 17 ctn

Quantity

ING 00000047
Dutch Lady Full Cream
UHT Milk 1L 78 bils

ING 00000003 I

Category Category v

White Peach Oolong Jelly 17 pks Min Stock Qty

EQT 00000026
Induction Cooker 3500W 17 units

Kraft Box

Purple Potato Ball 17 pks

[&
=
g PAC 00000005 ®

Figure 4. 13: Form Interface for Adding a New Inventory Item

% < PAC 00000001
Q searcn .

< PAC 00000001 / =

Al Ingredients Packaging Equipment § N

‘ ING 00000001 N
W Yellow Potato Ball 30 pks @

PAC 00000001 ®
Beverage Cup - 700ml

Product ID PAC 00000001
. Product ID PAC 00000001
< LNG 00000047 Praduct Name Beverage Cup - 700ml
utch Lady Full Cream 78 btls
£s UHT Milk 1L i Product Name Beverage Cup - 700ml
Category Packaging
Category Packaging
f ING 00000003 Quantity 7
§ White Peach Oolong Jelly 1 antity 17 ctn
Min Stack Qty 120 ctn
Min Stock Qty 120 ctn
Stock Status Low @
-, IEG\T uqul:lDéJZé - . Stock Status Low @
‘2’ nduction Cooker w 17 units Last In/Out Date 03.04.2025
Last In/Out Date 03.04.2025
Barcode ID
PAC 00000005 ® Borcode 0
Kraft Box 4 ctn
ING 000000017
. Purple Potato Ball 17 pks

1234567897 1234567897

Figure 4. 14: Product Description Page.

< PAC 00000001

Product ID PAC 00000001

Product Name Beverage Cup - T00ml

Category Packaging

Quantity 17 ctn luanm
Min Stock Qty 120 ctn

in Stock Qty

Stack Status Low @

Last InfOut Date 03.04.2025

Barcode ID

1234567897

<

Product ID

Product Name

Category

Stock Status

Last In/Out Date

Barcode ID

PAC 00000001 g

PAC 00000001

Beverage Cup - 700,

Packaging

Low @

03.04.2025

PAC00000001

120 ctn uantity

< PAC 00000001

Product ID

Product Name

Min Stock Qty

Figure 4. 15: Interface for Editing Inventory Item Details.

< PAC 00000001

v

Product ID PAC 00000001

Product Name Beverage Cup - 700ml

Category Packaging
Quantity 17 ctn
Min Stock Qty 120 ctn
Stock Status Low @
Last In/Out Date 03.04.2025

Barcode ID

1234567897

—_

Cancel

Are you sure?

Are you sure want to delete this
load plan?

Ingredients

PAC 00000001

Packaging
Equipments&Tools

93

Beverage Cup - TUDmlI

Stock Status
Last In/Out Date 03.04.2025
Barcode ID
[= &*—'IEI
£
<AQ :
All Ingredients Packaging Equipment §
-
(ING 00000001
Yellow Potato Ball 30 pks
‘ﬂ ING 00000047
Dutch Lady Full Cream
£s UHT Milk 1L 79:bils
ING 00000003

White Peach Oolong Jelly

EQT 00000026
Induction Cooker 3500W

PAC 00000005 ®
Kraft Box

®

ING 000000017
Purple Potato Ball

17 pks

17 units

Figure 4. 16: Confirmation Message for Deleting an Inventory Item.

< PAC 00000001 (=

O,

ouT

»
Product ID PAC 00000001
Product Name Beverage Cup - T00ml
Category Packaging

Quantity

Min Stock Qty 120 ctn
Stock Status Low @
Last In/Out Date 03.04.2025
Barcode ID

1234567897

< PAC 00000001

4

IN
out

0]

*
€

Prr IN Hm

Pr lml

o =30+ =

94

< PAC 00000001

“

IN

ouT

9 0}

r \

i IN p
Pr| ml
Ca - 0 @ ng
Qu n
i Cancel Add L
Stock Status Low @
Last In/Out Date 03.04.2025

Barcode ID

12345678917

< PAC 00000001

IN
ouT
»
Product ID PAC 00000001
Product Name Beverage Cup - 7T00ml
Category Packaging

Qu fn ‘ Quantity
Cancel '

Mi J1n Min Stock Qty 120 ctn
Stock Status Low @ Stock Status Low @
Last In/Out Date 03.04.2025 Last In/Qut Date 03.04.2025
Barcode ID Barcode ID

1234567897

1234567897

Figure 4. 17: Stock Update for a Single Inventory Item ('In' Button).

=] Qe

Inventory

<
678

Product In

P
136

Total Products

Low Stock ltems
3 @ Kraft Box

L

@

Home Products

< Scan

w PAC 00000001
Beverage Cup - 700ml

©® Beverage Cup -

@

See All

K
1,021 -

Product Out

132

Total Restocked @

700ml

» &

Load Plan Personal

—

A
J

-
L

Product Out

PAC 00000001
Beverage Cup - 700ml

-
<

+

-

95

—

s ©

Product Out

Figure 4. 18: Steps to Scan a Barcode.

=

< Scan
PAC 00000001
!‘ Beverage Cup - 700ml - 103 +

PAC 00000005
Kraft Box

YO -

< Scan
" PAC 00000001
k Beverage Cup - 700ml
PAC 00000005
Kraft Box

—

~
J

-
L

Product Out

= Qe

Inventory

<
678 +

Product In

@

136

Total Products

 ofn §
w gl
Home Products Scan

Figure 4. 19: Steps to Update Stock Quantity by Scanning a Barcode.

4.6.3

No low stock items:

- 103 +

- B0 +

&

Stock Updated!

All scanned items have been added to
stock

OK
o
[}
@ Product Out
< Qe
All Ingredients Packaging Equipment &
See All -
Eg y ING 00000001
- Yellow Potato Ball 30 pks
1,021 -
RrodugtOut . PAC 00000001
Beverage Cup - 700ml
@ = ING 00000047
Dutch Lady Full Cream
1 50 [& - UHT MILK 1L 18 bils
— ‘
- ING 00000003
\ White Peach Oolong Jelly 17 pks
EQT 00000026
Induction Cooker 3500W 17 units

B &

Load Plan Personal

Load Planning Module

PAC 00000005

Kraft Box @
ING 000000017

Purple Potato Ball 17 pks

96

The Load Planning Module allows users to generate a load plan based on

selected cargo and container types, with the option to add custom containers or

cargo sizes if needed. This module also enables users to adjust load plans by

dragging and dropping cargo items within the container layout for better

optimization. Once the load plan is finalized, users can generate a printable

97

PDF report that includes a QR code, which can be scanned retrieve the
corresponding load plan history. Additionally, the system provides a checklist
to verify the arrangement of cargo items, where each item can be marked as

“arranged” once it has been correctly loaded.

=AQ = < <
Inventory See All g St Common Size Plan Load Set Common Size

History

dilod] 02.....

generated in this manth

b4 E CONTAINER

678+ 1,021 -
CARGO (+]

2025 W

@ @ 2025 April

136 150 ‘ 1D: LPOODODOD3
= i sy 2300 22 .
Total Products Total Restocked @ DRl G :Lorry 420 x 220 x 220 em | 1500kg

183m?

Low Stock Items
ID: LPOO0DODDO2

Tl - Lorry 490 x 220 x 230 cm | 1500kg

2025 February

ID: LPO000D0D0O2

M = 8220 £ 250 em | 1500Kg
A

()
{ S} o} v a
Wome Products scan Load pian_J personal Wome Proucts 2can Losdpian peesan

Figure 4. 20: Load Plan History.

< <
<

LEVRREL N Sct Commeon Size History [JELRRELN Set Common Size History
[AELRRELNY Set Common Size History

CONTAINER = CONTAINER =
@ - CONTAINER Qo = © =

CARGO o = CARGO o =
Container 1
a Ely Container 1 VAT
Container 2
%’ 300x 220 x 520 cm | 2500 kg

), conines
e 520 x 320 x 420 cm | 1800 kg

q’ Container &4
O 420 x 200 x 200 cm 11000 ky

-+

Container 5

L]
o0 250 x 180 x 220 cm | 800 kg

Figure 4. 21: Container Selection Screen.

98

< < <
. [{ELJRELY Set Common Size History
(SIPITR Set Common Size History LELRRELE Set Common Size History

CONTAINER

— L+
CONTAINER (+] =
L+]
[+

CONTAINER (+]

CARGO

CARGO

CARGO [+

@™ container v
o!g Container 1 Ve Cargo A

"" Cargo 1 80 x 60 x 100 em | 10kg -1+
80 x 60 x 100 cm | 10kg Cargo A
-] + Cargo B
80 x 60 x 100 cm | 10kg - -
® 80 x 60 x 100 ¢m | 10kg 3+

Cargo 2
120 x 60 x 80 cm | 18kg

=

Cargo C

Cargo 3

60 x 60 x 60 cm | Skg

{s‘

Cargo 4
80 x 120 x 100 cm | 4kg

«

g 3 =0 o
Foea S 1480 et S T [—

Save

Figure 4. 22: Cargo Selection Screen.

Plan Load Set Common Size

History

] 03....

generated in this month

2025 W

1D: LPO0O00D0O004

Saved Successfully!

Your load plan has been successfully
saved.

=
i] [: Lorry 420 x 220 x 220 cm | 1500kg

d space: 14.37md

I 1D: LPOD00D0D03
E [l : Lorry 420 x 220 x 220 cm | 1500kg

Uses Space: 18.84m? Fros Space 133m3

1D: LPO000D0D2

i [0 : Lorry 490 x 220 x 230 cm | 1500kg
Usad Space: 0.B6m3 A Free Space: 19.04m3
@b ® 7 o
Home Products Scan LosdPlan Persanal

Figure 4. 23: Generated Load Plan and Redirection to Load Plan History.

< ID: 00000004

E]
' 4
f
i |
|
Container
Cargo(es)
S Cargo A

80 x 60 x 100 cm | 10kg

o Cargo B
80 x 60 x 100 em | 10kg

'Y Cargo C
80 x 60 x 100 cm | 10kg

Used Space

Free Space

Date

v—
.

Lorry 420 x 220 x 220 cm | 1500kg

16.3Tm3

8.10m3

30/04/2025

Generated Successfully!
Your load plan PDF have been saved to

—_

Downloads folder!

Figure 4. 24: Generating a Printable PDF of the Load Plan.

yxteng0T@gmail.com | Project From : 30/4/2025

E.I.‘\--'

Loading Space:

LPODD000DA | Lorry 420 x 220 x 220 cm | 1500kg | Used Space: 16.37Tm3 Free Space: 8.10m3

New loaded loads Load dimension (cm) Weight (kg) Quantity
@ Cargo A 80 x 60 x 100 [10 1
. ® Cargo B 100 x 70 x 80 - 20 3
@® CargoC 60 x 120 x 80 15 2
Total 9
Order of arranging cargo: Quantity
@ Cargo A 1
@® CargoB 3
® cargoC 2

Figure 4. 25: Example of Load Plan PDF Report.

100

A

ID: 00000004

yxteng07@gmail.com | Project From : 30/4/2025

=
=)
®

Loading Space:
LPO0000004 | Lorry 420 x 220 x 220 cm | 1500kg | Used Space: 14. 371m3 Free Space: 810m3 | 1
(
|
f
' [|
I
! |
| Container Lorry 420 x 220 x 220 cm | 1500kg
I
Cargo(es)
Mew loaded loads | Load dimension (em) Welght {kg) Duantity ® Cargo A 1

® Cargo A 80 x 60 x 100 0 1 - 80 x 40 x 100 cm | 10kg
@ Cargo B 100 x 70 x BO 20 3 Cargo B

® 80 x 60 x 100 cm | 10kg 3
@ Cargo C 60 x120 x 80 15 2
[| | Cargo C
Tatal 9
o ® 5050 %100 cm [10kg 2
[Order of arranging carge: Qusatity Used Space Ilo.:”'ms
® Cargo A 1
® CargoB 3 Free Space 8.10m3
® CargoC 2
Date 30/04/2025

Figure 4. 26: Scanning QR Code on PDF to Retrieve Load Plan Details.

< ID: 00000004 -
< Checklist
@
Cargo(es) to be packed 5 /5 cargoes
'4 | Cargo A
f
h i = - ‘. 80 x 60 x 100 cm | 10kg 1
| !
Y Cargo B
| ‘ ‘ @ 80 x 60 x 100 cm | 10kg 3
‘ @ CargoC
Container Lorry 420 x 220 x 220 cm | 1500kg S 80 x 60 x 100 cm | 10kg 2
Cargo(es)
Cargo A
@ 80 x 60 x 100 cm | 10kg 1
< Checklist
'Y Cargo B 3
80 x 60 x 100 em | 10kg
@ CargoC Cargo(es) to be packed 4/5 cargoes
80 x 60 x 100 em | 10kg 2
Cargo B 3
80 x 60 x 100 cm | 10kg
Used Space 14.37m3
Cargo C
Free Space 8.10m3 80 x 60 x 100 cm | 10kg 2
Date 30/04/2025

Figure 4. 27: Marking Items as Completed in the Load Plan Checklist.

101

CHAPTER 5

SYSTEM DESIGN

51 Introduction

This chapter explains the design of the proposed system, outlining how its
components are structured and interact to fulfil the required functionalities.
The design covers fours main aspects which are system architecture, system

database design, activity diagrams and algorithm design.

5.2 System Architecture Design

The proposed system architecture follows a three-layer design consisting of
the Presentation Layer (Frontend), Application Layer (Backend Services), and
Data Layer (Database). The presentation layer provides the graphical user
interface that enables users to interact with the system. The application layer
acts as the middleware, handling business logic, processing requests, and
coordinating communication between the user interface and the database. The
data layer is used to store application data and control read and write access to

the database, ensuring consistency and security.

Presentation Layer Application Layer Data Layer
Login / Register requests
_—
— ©
Auth result Foabese Aithenti
> z User authentication tokens
_
Stock updates & —
Userlinteractions Load plan requests 2 ANtStats ooy ;
—_——— 4
— e) (5
Stock & load plan response A CRUD data
Cloud Functions —
—
Return queried data
Upload product images & PDF
_—
—
Cloud Storage
File download (=) for Fi ‘g
(images, PDFs)

Frontend Backend Database

Figure 5. 1: System Architecture Design Diagram

102

In the proposed mobile application, the Presentation Layer is
developed using React Native, which serves as the frontend framework for
Android. This layer provides all user-facing interfaces, including login and
registration screens, inventory management interfaces, barcode scanning
functionality, and load planning visualization. Users interact with the system
exclusively through this layer.

The Application Layer is powered by Firebase Backend Services,
which handle the core business logic and facilitate communication between the
frontend and database. Firebase Authentication manages user login and
registration by issuing secure authentication tokens. Cloud Functions act as
middleware to process complex logic, such as handling stock update requests,
load plan generation, and validating data before committing changes. Cloud
Storage is used to upload and retrieve product images, PDFs of load plan
reports, and other media files. This layer ensures that all requests from the
React Native app are properly validated and routed to the appropriate data
services.

The Data Layer consists of Cloud Firestore, a NoSQL database
provided by Firebase. Firestore stores structured collections and documents,
including inventory records, cargo details, container sizes, and load plan
histories. It supports real-time data synchronization, ensuring that updates like
stock changes or load plan modifications are instantly reflected across the
system. Firestore also enforces access rules, controlling read and write

operations to maintain data consistency and security.

103

5.3 System Database Design

5.3.1 Entity Relationship Diagram

users

uid (PK)
email
name

photoURL

1 loadPlans products

containers

containerld (PK)
containerName

containerSize

containerWeight

loadPlanld (PK) productld (PK)
container (FK) name
cargoes
cargoes categor
g cargold (PK) gery

date uantit
CargoName 9 v

diagramimage CaraoS minStockQty

argosize

freeArea imageURL
CargoWeight

usedArea stockStatus

totalArea

status

createdBy

Figure 5. 2: Entity Relation Diagram.

5.3.2 Collection Description Table

In the proposed system, data is organized and managed using Firebase

Firestore collections. Each collection stores related information in the form of

documents, making it easier to organize, retrieve, and maintain.

Table 5. 1: Collection Description Table.

Collection Description
products Stores all product details including name, category, current
stock quantity, minimum stock quantity, image and stock
status.
users Stores all user details, including login information.
containers Stores container details such as dimensions and maximum
load capacity.
cargoes Stores cargo item details such dimensions and weight.
loadPlans Stores load plan details, arrangement data, and status.

5.3.3 Data Dictionay

104

The data dictionary defines the structure and attributes of each collection used in the system. It provides details such as attribute names,

descriptions, data types, constraints, and example values.

5.3.3.1 Data Dictionary for products collection

The products collect stores all product details including name, category, current stock quantity, minimum stock quantity, image and stock status.

Table 5. 2: Data Dictionary for products collection.

Attribute Description Data Type | PK/FK | Nullable Example Values
productld Unique identifier for the product generated string PK No PAC979822
by Firebase
name Product name string No Beverage Cup 700ml
category Product category string No Packaging
quantity Current stock quantity number No 23
minStockQty | Minimum stock quantity before triggering number No 20
alert
imageUrl URL of product image in Firebase Storage string No https://firebasestorage.googleapis.com/v0/b/

inventoryappSc48a.firebasestorage.app/o/

105

productlmages%2F 1756528824262 .jpg?alt
=media&token=49ea3d32-0118-4654-
8956-6ft803b6c14b

stockStatus

Current stock status

string

No In Stock

5.3.3.2 Data Dictionary for users collection

User collection stores all user details, including login information.

Table 5. 3: Data Dictionary for users collection.

Attribute Description Data Type PK/FK Nullable Example Values
uid Unique identifier of user generated by string (Auth ID) PK No nV719KbgkaQc5sLvFOzImQWO04Rp2
Firebase Authentication
email User’s registered email address string No ali@gmail.com
name User’s display name string No Ali
photoURL | URL of user’s profile photo (empty if string Yes “r

not uploaded)

5.3.3.3 Data Dictionary for containers collection

The containers collection stores container details such as dimensions and maximum load capacity.

Table 5. 4: Data Dictionary for containers collection.

106

Attribute Description Data Type PK/FK Nullable Example Values
containerld Unique identifier of container string PK No 2Dy YRuG8mnwTZnM7bMKC
generated by Firestore
ContainerName | Name of the container string No Container 1
ContainerSize | Dimensions of the container (LxWxH string No 420x200x220cm
in cm)
ContainerWeight | Weight capacity of the container string No 1500kg

107

5.3.3.4 Data Dictionary for cargoes collection

Cargoes collection stores cargo item details such dimensions and weight.

Table 5. 5: Data Dictionary for cargoes collection.

Attribute Description Data Type PK/FK Nullable Example Values
cargold Unique identifier of cargo generated by string PK No VKXOd8ZUnT{3Tgmj4EAP
Firestore
CargoName | Name of the cargo item string No Cargo 1
CargoSize | Dimensions of cargo (LxWxH in cm) string No 80x60 x100 cm
CargoWeight | Weight of the cargo string No 10kg

5.3.3.5 Data Dictionary for loadPlans collection

The loadPlans collection stores load plan details, arrangement data, and status.

Table 5. 6: Data Dictionary for loadPlans collection.

Attribute Description Data Type PK/FK Nullable Example Values

loadPlanld | Unique identifier for the load plan string PK No 2

cargoes List of cargo items included in this array of objects No [{CargoName: "Cargo 2", CargoSize:

108

load plan

"100x100x140cm", CargoWeight: "10kg",
quantity: 3}, ...]

container Container details used in the plan object FK No {ContainerName: "Container 1",
ContainerSize: "420x200x220cm",
ContainerWeight: "1500kg" }
date Date and time when the load plan timestamp No 2025-09-12T06:38:48.899Z
was created
diagramlmage | Cargo arrangement diagram image string No iIVBORWOKGgoAAAANSUREUgAAA...

freeArea Remaining free area in container number No 2.05
usedArea Used area in container number No 6.35
total Area Total area of container number No 8.4

status Status of the load plan string No finished/pending

109

5.4 Activity Diagram

The Activity Diagrams provide a visual representation of the workflows in the
proposed system. They illustrate the sequence of user actions and system
responses for various use cases, ensuring a clear understanding of process

flows, decision points, and interactions between the user and the system.

5.4.1 Register account Activity Diagram
act Activity Diagram /

User System

Assumptions
1. This activity diagram is related to 'Register account use case’.
Activitylnitial

Click '+' button Display Add New User Modal

Enter email, name and
password

[valid

[invalid]
\b (Email Existence Check

(Disp\ay invalid email error
[email already registerad] [email not yet registered

hV4

(i Display already registerad arror Craate new user account

Submit form

-

ActivityFinsl

Figure 5. 3: Register account Activity Diagram.

5.4.2 Login account Activity Diagram

110

act Loginaccount

User

System

Activity[nitial

Click 'Login' button

Enter assigned email and

password
=

Submit form

invalid

Validate email format

Aszumptions
1. This activity dizsgram iz related to
Login account use casze'.

Displays login form

valid

Display error message

v

Display error message

Check credentials

Invalid valid

Login

ActivityFinal

Figure 5. 4: Login account Activity Diagram.

5.4.3 Scan item barcode Activity Diagram

111

act Scan item barcode /|

User System

Aszumptions
1. This activity diagram is related to 'Scan item
barcode use case'.

Open barcode scanner

Click "Scan' tab \ camera interface J

—:bl Scan product

(Detectand read the scanned value)

Search Product ID

item not found

found

A4

Adjust quantity

more items to scan
L

— Show product details @

no mare item

A4

Select Product Inor Qut

Gpdates stock quantity accord ingla

ActivityFinal

Figure 5. 5: Scan item barcode Activity Diagram.

112

5.4.4 Update stock quantity activity diagram

act Update stock quantity)

User System

Activitylnitial

Selectan item ‘;,.I-' Display product detail screen
Tap In or Out button Prompt for quantity input

v

(Enter desired quantity and confirm /, Validate entered quantity

@pdate stock quantity accordi ngly)

!

(Check against low stock threshold)

gty <threshold qty 2 threshold

N4

Highlight item with red dot Highlight item with green dot
Reviews updated stock Y\

ActivityFinal

Figure 5. 6: Update stock quantity activity diagram.

113

5.4.5 View inventory list activity diagram

act View inventory list)

User System
Aszumptions
1. This activity diagram is related to View
inventory list use case’.
Activitylnitial

Click 'Product’ tab
View displayed inventory list

Search by keyword

Filter by category or
stock status

—={ Retrieve inventory items
— Displays inventory list

(Retri eve matching inventory itEI‘I‘IS)

Found Not found

Display filtered results

Display 'Mo product found'

5
6

ActivityFinal

Figure 5. 7: View inventory list activity diagram.

5.4.6

Add new item activity diagram

114

act Add new items

User

System

Click '+ button

Azzumptions
1. This activity disgram is related to 'Add new
items use case'.

y form

Fills in required fields

Validates the entered

Submit form

information

(Save new item to database)

Displays success message

(\n’i ew the item in inventory Iistjj

correct info incorrectinfo

Edit and update the
necessary fields

ActivityFinal

S

\ﬁC Saves and update the changes)

Figure 5. 8: Add new item activity diagram.

5.4.7 Delete inventory items Activity diagram

115

act Delete inventory items /J

User

System

Activitylnitial

Select an item

Assumptions
1. This activity dizgram iz related to
'Delete inventory items use case’

Navigates to product

description screen

Click Delete button

(: Display confirmation message)

Confirm the deletion

Delete item from database

Displays success message

(Return to inventary list screen >

ActivityFinal

Figure 5. 9: Delete inventory items Activity diagram.

5.4.8 Generate Load Plan Activity diagram

116

act Generate Load Plan .~

User

System

Selectacontainer

GElEEt cargo and adjust q uantity)

Assumptions
1. This sctivity dizgram is related to
‘Generate Load Flan use case'.

Confirm selections

(View the actual ratio diagram

.{ Retrieves container and cargo details)

(Generates automatic load plan)

N
v

satisfied

C Review and save load plan)

ActivityFinal

no satisfied

Rearranges cargo items by
drag and drop

Ir/ Displays confirmation details and
actual ratio diagram

;.| Dynamically updates the load plan Ia\ruut)

Figure 5. 10: Generate Load Plan Activity diagram.

5.4.9

act View the checklist)

View the checklist Activity diagram

117

User

System

Activitylnitial

<5|:an barcode on POF load pIan}

Aszumptions

1. This activity dizgram iz related to
"View the checklist use case'.

Clicks 'Checklist' button

description page

{Na\rigate to correspoendinf load planj

Marks each cargo item

'/\: Retrieves the list of cargo itEms)

I/rDispIa\rs the checklist with cargo detai Isj

G’.‘Ii:ks&aveafterﬁnishingall item-\'

-
-«

Marks item as completed)

v

Pending to Finished

__[/fUpdatEs load plan status from j

ActivityFinal

Figure 5. 11: View the checklist Activity diagram.

5.4.10 Generate PDF report Activity diagram

118

act Generate PDF report /J

User

System

Activitylnitial

<Open load plan description pagE)

Assumptions
1. This activity diagram iz related to
‘Generate POF Report use case”.

(Click "Generate PDF' button

Ny

Compile load plan data

(Click "View' button ::1

[fﬁenemte PDF file and displa\;j

SUCCess message

Show generated PDF

(Print PDF) (Share PDF)

Scan QR code

Retrieve and open associated
\\ load plan description page

View load plan history

ActivityFinal

Figure 5. 12: Generate PDF report Activity diagram.

119

5.5 Algorithm Design

This section presents the algorithm applied in the system to optimize the cargo
arrangement process. The Binary Tree Bin Packing algorithm was chosen as it
provides an efficient way to place items within a container by recursively
partitioning available space. The following subsections describe the concept,

flow, pseudocode, and flowchart of the algorithm used in this project.

5.5.1 Algorithm Concept

The algorithm implemented in this project is the Binary Tree Bin Packing
algorithm, which is designed to efficiently arrange rectangular cargo items
within a container while maximizing space utilization. The concept is based on
representing the container as a binary tree, where each node corresponds to a
rectangular space available for item placement.

When a cargo item is placed into a node, that space is marked as used
and split into two child nodes. One representing the space to the right of the
item and the other representing the space below the item. This type of
subdivision is known as the Guillotine split, where space is recursively divided
into two smaller rectangular regions along straight horizontal or vertical lines.
Such recursive partitioning ensures that all available areas within the container
are systematically tracked and reused for subsequent items.

The algorithm processes cargo items sequentially, typically sorted in
descending order by their area to prioritize placement of larger items first. For
each item, the algorithm searches for a suitable node that can accommodate its
dimensions. If a fitting node is found, the item is placed, and the space is
subdivided. If no node can accommodate the item, it is classified as an unfit
item.

Unlike some general implementations of Binary Tree Bin Packing
that may allow item rotation, the algorithm used in this project is restricted to a
2D, non-rotational Guillotine split approach. This constraint was chosen to
maintain simplicity in the algorithm’s design and execution, ensuring that the
solution remains lightweight and efficient. Such a simplification is sufficient
for small and medium-sized enterprises (SMEs), where the focus is on ease of

use and practicality rather than handling highly complex packing scenarios. By

120

avoiding rotation, the algorithm preserves the natural orientation of cargo
items, making the loading process more straightforward for staff while still
maximizing space utilization.

By recursively splitting and tracking available regions, the Binary
Tree Bin Packing algorithm provides a balance between computational
efficiency and effective use of container space, making it well-suited for

applications in inventory management and cargo load planning.

5.5.2 Algorithm Flow
Table 5. 7: Algorithm Flow.

No | Step Description

1 Input Preparation The algorithm receives the container dimensions
and cargo list. Cargo dimensions are parse to
{length, width, height} from strings such as
"420x220x200".

2 | Expand Cargo List | Each cargo with a given quantity is expanded into

individual cargo items (flatCargoes), each with a

unique index (_flatldx).
3 | Convert to 2D Each cargo item is represented as a rectangle (w,
Rectangles h), where w = length and h = width. Two versions

are generated which are in centimeters (for fit/unfit

checking) and in pixels (for Ul rendering).

4 | Sort by Area The cargo items are sorted in descending order by
area (w X h) so that larger items are placed first,

increasing packing efficiency.

5 | Create Root Node | The container is represented as the root node of a
binary tree, (x=0, y=0, w=containerLength,
h=containerWidth). Initially, it is unused and has

no children.

6 | Iterative Placement | For each cargo item, the algorithm attempts to find

a suitable node.

6.1 | Find Node Call btFindNode(node, w, h):

If node.used = true, recursively search

121

node.right and node.down.
If the item fits within the node (w < node.w
and h <node.h), return the node.

Otherwise, return null.

6.2

Placement

Decision

If a suitable node is found, place the item.

If no node fits, add the item to the unfit list.

6.3

Place Item

Place the cargo at (node.x, node.y). Mark the node

as used.

6.4

Split Space

Apply a guillotine split to divide remaining free
space.
Right node, space to the right of the placed
item.

Down node, space below the placed item.

6.5

Record Result

Store the placement in the placements map (for fit

items) or in the unfit list (for items that cannot fit).

Continue Loop

Repeat steps 6.1-6.5 until all cargo items are

processed.

Output Generation

The algorithm returns two results which are
Placements, list of successfully placed cargo
items with coordinates.

Unfit Items, list of items that could not fit into

the container.

Visualization

In the UI, successfully placed items are drawn on
the diagram at their coordinates. Unfit items are

listed below as “Not Fit Into Container.”

122

5.5.3 Pseudocode

The pseudocode describes how the Binary Tree Bin Packing algorithm
arranges cargo items within the container. Each item is processed individually,
starting with the largest by area. The algorithm searches for a suitable free
node within the container space using a recursive function that explores the
right and down child nodes until a fit is found, or no space is available. When
an item fits, it is placed at the node’s coordinates, and the node is split into two
sub-nodes to represent the remaining free space. If no suitable node is found,
the item is classified as unfit. This recursive placement and splitting process
continues until all items are considered, resulting in a final load plan layout

with clearly identified placed and unfit items.

Figure 5. 13: Pseudocode of Binary Bin Packing algorithm.

Input:
cargoList — list of cargo items (length, width, quantity)

container — container dimensions (length, width)

Output:
placements — coordinates of placed items

unfitltems — list of items that cannot fit

Begin
1. Expand cargoList so that each unit of quantity is represented as an
individual item.
2. Convert each cargo item into a 2D rectangle (w, h).
3. Sort cargo items in descending order of area (w x h).
4. Create the root node representing the entire container space.
5. For each cargo item in cargoList do
5.1 Attempt to find a node for the item:
If node.used = true then
recursively check node.right or node.down
nodeFound < FindNode(node.right, item.w, item.h) ||

FindNode(node.down, item.w, item.h)

123

Else if (item.w < node.w) and (item.h < node.h) then
nodeFound <« node
FElse

nodeFound <« null

5.2 If nodeFound # null then
Place item at (node.x, node.y)
node.used « true
Split remaining space into:
1. Down node — (x = node.x, y = node.y + item.h,
w =node.w, h =node.h — item.h)
2. Right node — (x =node.x + item.w, y = node.y,
w =node.w — item.w, h = item.h)
Add placement to placements
Else
Add item to unfitltems
End If
End For
6. Return placements and unfitltems

End

124

5.54 Flowchart

The flowchart illustrates the Binary Tree Bin Packing algorithm applied for
arranging cargo items in a container. The process begins by taking the
container dimensions and a list of cargo items defined by their length, width,
and quantity. The cargo list is expanded by quantity, converted into 2D
rectangles, and sorted by area in descending order. A root node is then created
to represent the available container space. For each cargo item, the algorithm
recursively searches for a suitable node by checking if the node is unused and
large enough to accommodate the item. If a valid node is found, the item is
placed at the node’s coordinates, the node is marked as used, and the
remaining space is split into right and down sub-nodes. The placement is then
recorded. If no valid node is found, the item is added to the unfit list. This
process continues until all items are processed, after which the algorithm

outputs both the successful placements and the list of unfit items.

/ Input container size and cargo list /

A 4

Expand cargoList by quantity

A

Convert cargo items into 2D rectangles

A 4

Sort cargo items by area descending

y

Create root node for container space

Figure 5. 14: Flowchart of Binary Tree Bin Packing Algorithm (Part 1).

125

For each cargo item

|

> Find Node

Yes
Is Node Used?

A

No

Check node.right or
node.down

Does Item Fit?

A A 4

nodeFound = node nodeFound = null

No
Node Found?

A A 4

Place item at (node.x, node.y) Add item to unfititems

|

Set node.used = true

|

Split node into Down and Right

|

Add placement to placements

‘r>
3

A

Yes No
More ltems?

Return placements and unfitltems

Figure 5. 15: Flowchart of Binary Tree Bin Packing Algorithm (Part 2).

126

5.5.5 Traceability Table of Flowchart, Pseudocode and Implementation Code

Table 5. 8: Traceability Table of Flowchart, Pseudocode and Implementation Code.

Flowchart Step

Pseudocode Statement

Implementation

Input container size and cargo list

Input: cargoList, container

Function getFitStatus2D(cargoes, container) and getlnitialPositions(cargoes,

container) parse inputs

Expand cargoList by quantity

Expand cargoList

flatCargoes = cargoes.flatMap(cargo => Array(cargo.quantity).fill({...}))

Convert to 2D rectangles

Convert each cargo into (w,h)

const itemsPx = flatCargoes.map((cargo, idx) => {
const s = parseSize(cargo.CargoSize);
return { flatldx: idx, w: s.length * scaleLength, h: s.width *
scaleWidth, orig: idx };
1)

Sort by area descending

Sort cargo items by w x h

const sorted = [...itemsPx].sort((a, b) => (b.w * b.h) - (a.w * a.h));

Create root node

1root «—

{x=0,y=0,w,h,used=false}

const root = { x: 0, y: 0, w: binW, h: binH, used: false, right: null, down:
null } in btPackFixedBin

Find Node

nodeFound <

FindNode(node.right,w,h)

127

Does item fit?

if (W < node.w and h <

node.h)

const btFindNode = (node, w, h) => {
if (Inode) return null;
if (node.used) {
return btFindNode(node.right, w, h) || btFindNode(node.down, w, h);

}

if (w <= node.w && h <=node.h) return node;

return null;

55

Place item

Place item at (node.x, node.y)

placements.set(it._flatldx, { x: usedNode.x, y: usedNode.y, w: it.w, h:
it.h });

Mark node as used

node.used « true

const btSplitNode = (node, w, h) => {

node.used = true;

Split node into Right and Down

split into right/down nodes

const btSplitNode = (node, w, h) => {
node.used = true;
node.down = { x: node.x, y:node.y + h, w: node.w, h:node.h - h,
used: false, right: null, down: null };
node.right = { x: node.x + w, y: node.y, w: node.w - w, h:

used: false, right: null, down: null };

9

128

return node;

¥

Add placement

Add placement to placements

Unfit item

Add item to unfitltems

const btPackFixedBin = (items, binW, binH) => {

const root = { x: 0, y: 0, w: binW, h: binH, used: false, right: null, down:
null };

const placements = new Map();

const unplacedIdx = [];

for (const it of items) {

const node = btFindNode(root, it.w, it.h);

if (node) {
const usedNode = btSplitNode(node, it.w, it.h);
placements.set(it._flatldx, { x: usedNode.x, y: usedNode.y, w: it.w, h:

ith });

} else {

unplacedldx.push(it. flatldx);

b
}

129

return { placements, unplacedldx };

¥

Loop (More items?) for each cargo item const itemsSorted = [...items].sort((a, b) => (b.w * b.h) - (a.w * a.h));

Return placements & unfitltems | return placements, unfitltems | return { fitCargoes, unfitCargoes: mergedUnfit }; from getFitStatus2D

return positions; from getlnitialPositions

130

5.6 Conclusion

In conclusion, this chapter has presented the overall system design of the
proposed mobile application. The design was structured into several sections,
including system architecture design, database design, activity diagrams, and
algorithm design. The architecture design described the three-layer structure of
the application, consisting of the presentation, application, and data layers. The
database design detailed the organization of data using Firebase Firestore
collections, supported by collection description tables and data dictionaries.
Furthermore, activity diagrams were used to illustrate the flow of key system
functionalities, offering clear visualizations of user—system interactions.
Additionally, the algorithm design section described the implementation of the
Binary Tree Bin Packing algorithm (2D, Guillotine split, no rotation), which
serves as the core mechanism for optimizing cargo arrangement within the

container.

131

CHAPTER 6

SYSTEM IMPLEMENTATION

6.1 Introduction

This chapter focuses on transforming the design specifications into a
functional mobile application. In this phase, all modules and components that
were designed in the previous chapter are developed and integrated to ensure

the system performs as intended.

6.2 Development Environment Setup
Both hardware and software environments were properly configured before

implementation.

6.2.1 Hardware Requirements

The mobile application was developed using a personal computer equipped
with an Intel 19 processor, 16 GB of RAM, and the Windows 11 operating
system. To validate the application on a real device and ensure compatibility
with real-world usage, an Android smartphone running Android 10 or higher
was used for testing. Alternatively, in the absence of a physical device, the
Android Studio emulator with the Pixel 4a API 30 configuration served as an
option for debugging and functional testing throughout the development

process.

6.2.2 Software Requirements

The system implementation required a set of software tools and technologies
to support the development process. The frontend of the application was built
using React Native with the Expo CLI, while JavaScript served as the main
programming language. The backend relied on Firebase services, including
Firestore was used as the real-time database to store product details, cargo
information, and load plans. Firebase Authentication handled secure user login
and account management, while Firebase Storage was utilized to store product

and cargo images.

132

For development tools, Visual Studio Code was chosen as the
primary code editor, and Android Studio was used to configure the emulator
and assist in debugging. Several supporting libraries were also included, such
as Expo-camera for barcode scanning, Expo-linear-gradient, lonicons, and
FontAwesome5 for Ul enhancements, and React Navigation to manage screen

transitions and navigation flows effectively.

6.2.3 Configuration Setup
This project starts with creating a Firebase project on

https://console.firebase.google.com/. The project included enabling Firestore

Database for storing product, cargo, and load plan data, Firebase
Authentication for user login and registration, and Firebase Storage for saving
images. A configuration file (google-services.json) was generated and later
added to the application folder.

The mobile app was set up using Expo CLI by running ‘npx create-
expo-app <project-name>’. Node.js and npm were installed to support package
management, while Android Studio was configured to run the app using the
Pixel 4a emulator (API 30). This allowed the application to be tested both on
real devices and in the emulator.

The application required several libraries to provide its core
functionalities, which were installed using npm. These included the Firebase
SDK for Firestore, Authentication, and Storage integration, expo-camera for
barcode scanning, and expo-linear-gradient for interface design. For
navigation management, (@react-navigation/native and its related packages
were implemented, while Ionicons and FontAwesome5 were used to enhance
the user interface with icons. Additional supporting libraries were also
installed as needed to improve functionality and user experience.

A dedicated configuration file (firebase.js) was created in the
project’s source folder. The Firebase configuration details including apiKey,
projectld, storageBucket, etc. were copied from the Firebase Console and
pasted into this file. Firestore, Authentication, and Storage were initialized and
exported, allowing the entire application to access Firebase services

consistently. With the development environment fully set up and Firebase

https://console.firebase.google.com/

133

successfully integrated, the system was ready to begin coding and

implementing the main application features.

Firebase InventoryApp ¥ Project settings

Projec

1:667544060979:web:9e6d68661006c876d30f46

a Firebase Hosting site

SDK setup and configuration
® npm CDN) Config

If you're already using 3 and a module bundler such as webpack (4)7, you can
run the following command to install the latest SDK (

firebase (8]

Then, initialize Firebase and begin using the SDKs for the products youd like to use

0

< 3

Note: This option uses the 3 3, which provides reduced SDK size.

initializeApp
{ getAuth }

apiKey:
authDomain:
projectId: "in
storageBucket: "i

measurementI
e-lock.json

age.json
app = initializefApp(firebaseConfig);
auth = getAuth(app);

Figure 6. 2: Firebase configuration pasted in the Firebase config file.

134

6.3 System Modules

The implementation of the system was divided into three major modules
which are User Management, Inventory Tracking, and Load Planning. Each
module was developed according to the design specifications and integrated

into the mobile application.

6.3.1 User Management Module

The User Management module is designed to handle account registration,
login, and access control for the application. It was implemented using
Firebase Authentication to provide secure account creation and login, while
Firestore is used to store user-related information such as name and email.
This module ensures that only authorized users can log in and access the
system’s features.

The first screen that appears when the user opens the application is
the Welcome Screen, as shown in Figure 6.3. This screen introduces the
application with a short description of its purpose, letting users know they are
entering an inventory tracking system with barcode scanning and automated
load planning. It provides a simple entry point with a Login button, which
directs users to the authentication process managed by the User Management

module.

Inventory Management

@

Inventory Tracking System

AR N

Login

Figure 6. 3: Welcome Screen.

135

The Login Screen allows users to access the system by entering their
email and password. As shown in Figure 6.4, the system validates the input
and will prompt an error message when the credentials are incomplete or
incorrect. For example, if the user enters only the email without a password,
the system displays a message indicating that both email and password field is
required. Similarly, if the user enters an invalid email format, such as missing

the proper Gmail structure, the system alerts the user with an error message.

19:16 5 EL R =
° e w70 QD e, 191750

Login Login

Al Missing Info Al Login Failed

Please enter your email and

Firebase: Error (auth/invalid-email).
password.

oK

Login

Figure 6. 4: Login Screen with Input Validation and Error Messages.

Only when both the email and password are provided in the correct
format will the login be successful, and the user will be redirected to the home

screen.

191820 RO R

Login

Ali@grmail.com

Login

Figure 6. 5: Login Screen with Correct Email Format and Password.

136

After a successful login, the user is redirected to the Home Screen,
which serves as the main dashboard of the application. This screen provides a
quick overview of inventory status, including the number of products added,
total products available, items restocked, and low stock alerts. A section at the
bottom highlights items that have reached or fallen below the minimum stock
level, allowing users to take immediate action. From the Home Screen, users
can also navigate to other key features of the system such as product
management, barcode scanning, load planning, and personal profile through

the bottom navigation bar.

21:36 20 PR R o1
Inventory See All

725 4

uct | w Stock lterr

751 55

Total Products Total Restocked
Low Stock Items

Longan

Current Stock: 10

Number to Restock: 10

700ml Shacker

Current Stock: 16

Number to Restock: 4

Bamboo Toothpick

Current Stock: 0

Number to Restock: 20

Home

Figure 6. 6: Home Screen.

When the user navigates to the Personal tab, the system displays the
logged-in user’s profile information, including their name and unique ID. This
screen also provides a button to access User Management, where all registered
accounts can be viewed. A logout option is also available, allowing users to

securely exit the application.

21:402 0

137

»

e

G

Ali

ID
nV719KbgkaQc5sLvFOz9mQWO4Rp2

28 User Management

8 &

Personal

Figure 6. 7: Personal Screen.

The User Management screen shows a list of all registered users in

the system. Each record includes

the username, email address, and unique user

ID, which are managed through Firebase Authentication and Firestore. This

feature allows users to view existing accounts stored in the database.

214120

User Management

@ U &

Mresa

Username:
Ali

Gmail:
ali@gmail.com

User ID:
nV719KbgkaQc5sLvFOzI9mQWO4R
p2

Username:

test

Gmail:
test@gmail.com

User ID:
obaaZHXZC8NHQpasmmMB8tJgN
0132

Username:
abc

Gmail:
abc@gmail.com

User ID:
2kDVQANPpeBTxPOXkLvgepjlAllY2

Username:
w

Personal

Figure 6. 8: User Management Screen.

138

The Add New User form enables the creation of new accounts by
entering a name, email, and password. Once submitted, the system processes
the registration using Firebase Authentication, while Firestore stores the
additional details for reference. This provides a simple way to expand the list

of users who can log in to the application.

21:412 0 Vg a=sa

Add New User

Name
Email

Password

ws 2D

Figure 6. 9: Add New User Screen.

6.3.2 Inventory Tracking via Barcode Scanning Module

The Inventory List displays all products stored in the system, including their
name, ID, category, image, available stock quantity, minimum stock quantity
and stock status. Users can easily browse the list, while items with low or zero
stock are highlighted with a red indicator for quick identification. The product
information is retrieved in real time from Firebase Firestore, ensuring that any
changes made during stock in or out updates or barcode scanning are

immediately reflected in the list.

21:48 2 ©

Search...

All Ingredients Packaging Equipment&Tool

®

EQT839431
1000ML Jug&Lid
20 units

ING285956
Water Chestnut Ball
21 units

ING112178 @

'y Longan

10 units

EQT860842 @
700ml Shacker
16 units

PAC979822
Beverage Cup 700ml
30 units

| PAC825080 @

L=l Bamboo Toothpick
&0 units G

ING000002

Products

Figure 6. 10: Inventory List Screen.

139

A search bar and category filters are provided at the top of the

Inventory List to make it easier for users to find specific products. The search

bar allows users to type in a product ID or name, and the system will instantly

display matching results from the Firestore database. This reduces the time

spent scrolling through long lists of products.

211492 0

ind

All Ingredient

ING285956
Water Chestnut Ball
21 units

ING112178 @

J Longan

-

Figure 6. 11: Search Inventory List Using Product ID Prefix.

10 units

ING000002
Mixed Taro Balls
51 units

ING587372

F Lychee

20 units

ING194617 @

Honey Pearl
0 units

ING530421

Gingko Nuts
20 units °

ING610299

@ 8

140

In addition, the category filters such as Ingredients, Packaging, and
Equipment allow users to narrow down the list based on product type. For
example, selecting ‘Ingredients’ will only display items categorized under that

group, hiding unrelated products.

214950 RiDTE@ 215950 riloRm

204920 Riowm
Search v Search Y Search Y
Al Ingredients Packaging Equipment&:Too All Ingredients Packaging Equipment&Too Al Ingredients Packaging Equipment&Too

) ING285956 PAC979822 EQT839431
L Viater Chestrut Ball B Beverage cup 700ml H‘ 1000ML Jug&Lid
21 units L 30 units 20 units

ING112178 @

' Longan

10 units

ING000002

‘@ Mixed Taro Balls

1 units

ING587372

3d Lychee

20 units

. ING194617 @

D GingkoNuts

Honey Pearl
Qunits

ING530421

| PAC825080 @
LEES! gamboo Toothpick
Y ounts

PAC761160
% | Plastic Spoon

unit

PACT766771
gl Aluminum Foil 450mm x 1.15kg
LY s

PAC839006
Polyfoam Box M2
20 units

PKG000001
Plastic Container
50 units,

EQT860842 @
700ml Shacker
16 units

EQT986012
500ML Jug & Lid
27 units

- EQT724463

-2

4

Plastic Storage Basket
20 units

EQT00000026
Induction Cooker 3500
113 units

EQT241842
Basket
20 units

PAC544593 EQT522561
@ s =] \ %) 3 a8 . A (5] a =

Figure 6. 12: Inventory List with Category Filters.

In addition, the filter function allows users to narrow down the
product list based on stock status. Selecting In Stock displays only items that
currently have available quantity, while Out of Stock shows products with zero
units remaining. The Low Stock option highlights products that have reached
or fallen below their predefined minimum stock level. These filters help users

quickly focus on items that require restocking or monitoring.

21:49.5.0 R0 24900 LA L 21495 0 DT @

bearch... Y fearch Y Pearch... Y

Al Ingredients Packaging Equipment&Tool All Ingredients Packaging Equipment&Tool ANl Ingredients Packaging Equipment&Tool

EQT839431
” 1000ML Jug&Lid Q ING112178 @
B 20unis &) Longan

10 units
7 ING285956
(Water Chestnut Ball EQT860842 @
21 units 700ml Shacker
1. PAC825080 @ £ 16 units
W gamboo Toothpick
PAC979822 o
" Beverage Cup 700m| £ PAC825080 @
s W= Bamboo Toothpick
ING194617 @ 0 units

ING000002 ’ Honey Pearl
}9 Mixed Taro Balls 0 units
¢

51 units / ,

L INGERTATY

ING194617 @
Honey Pearl
0 units

Filter Products Filter Products Filter Products
Al Out of Stock Al InStock @ o InStock Out of Stock
Low Stock Only Low Stock Only Low StockOnly @)

Figure 6. 13: Inventory Filter Options.

141

Next, as shown in Figure 6.14, user is allowed to create a new
inventory item by entering the product name, quantity, category and minimum
stock quantity. An image can be attached by tapping the “+” placeholder.
When Save is pressed, the record is created in Firebase Firestore and

immediately appears in the Inventory List.

22:08 50 Nt Tm

Product Name

Quantity
Ingredients v

Min Stock Qty

Q £ *

uuuuuuuuu

When adding an image, the app requests permission and opens the
device gallery. After the user selects a photo, it is uploaded to Firebase Storage,

and the product document stores the image URL in Firestore.

200 rewm

EERE

Figure 6. 15: Select Image for Product from Gallery.

142

When a user taps on a product card in the Inventory List, the system
retrieves and displays the complete product details from Firebase Firestore.
This includes the product ID, name, category, available quantity, minimum
stock quantity, and current stock status (e.g., In Stock, Low Stock, or Out of

Stock).

221820 YRIDT@
< PAC979822

b

Product ID PAC979822
Product Name Beverage Cup 700ml|
Category Packaging
Quantity 30
Min Stock Qty 20

Stock Status In Stock @

2

Figure 6. 16: Product Detail Screen.

From Product Details screen, the user can also choose to update
product details. By clicking the ‘Edit’ button and switching into edit mode,
fields such as name and category can be modified. After pressing Save, the
updated values are written back to Firestore, and the changes are immediately

reflected in the inventory list.

143

118 & 8 10
22300 PRI) #e0e VEnwm

< PAC979822 < PAC979822

i E t

]

ProductiD PAC979822 Product ID PAC979822
Product Name Beverage Cup 700ml Product Name Beverage Cup 700ml|
Category Packaging

Category
Quantity 30 Packaging ¥
Min Stock Qty 0)
Stock Status In Stock @ Quiantity 30

Min Stock Qty 20

Stock Status In Stock @

® @© O a

Products Scan Load Plan

g Do

@ ® U B8 &

Products Scan Load Plar Personal

Figure 6. 17: Product Detail Screen in Edit Mode.

The system also provides the option to delete products that are no
longer in use. When a user selects the delete option from the product detail
screen, a confirmation dialog appears to prevent accidental deletion. Only after
the user confirms by pressing Delete will the product be permanently removed
from Firebase Firestore. If the user cancels, no changes are made, and the

record remains intact.

22350 R m
< PAC979822 g
c]
IN
out
)
Product ID PAC979822
Product Name Beverage Cup 700m!
Category Packaging
Are you sure?
Quantity 30 .
Are you sure want to delete this
Min Stock Qty 20 product?
Stock Status In Stock @
CANCEL DELETE
AN =
Products

Figure 6. 18: Product Deletion with Confirmation Dialog.

144

The system also provides stock in or out functions directly from the
product detail screen, mainly used when updating the quantity of a single
product. When the user selects In, a dialog appears to enter the quantity to be
added to stock, while choosing Out allows the user to specify the quantity to
be deducted. Stock levels are updated accurately and in real time within the
Firestore database. The system then automatically compares the updated stock
with the minimum stock quantity. If the quantity falls below the threshold, the
status changes to Low Stock, highlighted in red for immediate attention.
Conversely, when stock is replenished above the threshold, the status updates
to In Stock, marked in green. This feature helps maintain effective inventory

control and prevents stock shortages.

RATe Py 23505 0 2ieTm 00:022 0 2Eesm oy T
¢ PAC979822 H < PAC979822 H
@]
N IN
out out
o W
Product ID PAC979822 Product ID PACS79822
Product Name Beverage Cup 700m!) Product Name Beverage Cup 700ml
Enter Quantity to Enter Quantity to
Category Packaging Subtract ‘Subtract Category Packaging
Quantity 30 Quantity 15
Min Stock Qt; 20 0 & 15 % Min §
y in Stock Qty 20
Stock Status In Stock @ Stock Status Low @
o o
° © a & @? O =
Produts Sean LoadPln Persoro Home Products Scon LoadPln Personal

Figure 6. 19: Stock Updated to Low After Product Out.

000220 e Rm 00:035 0 S wm 00:03 5 © sizoRm
< PAC979822 2 < PAC979822 3
c4 4
N IN
out out
] @
Product ID PAC979822 Product ID PAC79822
Product Name Beverage Cup 700mI Product Name Beverage Cup 700ml
Category Packaging Enter Quantity to Add Category Packaging
Quantity 15 o s + Quantity 2
Min Stack Qty 20 Min Stock Qty 20
Stock Status Low @ m Stock Status In Stock @
Fa
@ @ 8 & 7] g8 2
Home Products osd Plan

Products Scan LoadPlan Personal

20: Stock Restored to In Stock After Product In.

145

The Scan function provides a faster way to manage stock quantities
for multiple products at once. Users can simply scan the QR codes attached to
product packaging, and the system will automatically retrieve product details
using product id from the Firestore database. Once scanned, the products
appear in a list with their current quantities and stock status. From here, users
can adjust the quantity by increasing or decreasing the values for each product.
This feature is especially useful when handling bulk stock updates, such as
during goods receipt or dispatch, since it allows users to update several
products in a single session.

After adjustments, users can confirm by selecting either Product In
(All) or Product Out (All), which updates the stock levels of all scanned
products in real time. The system also validates against the minimum stock

quantity, updating each product’s status accordingly.

1252808 VT
< Scan

PAC979822

Beverage Cup 700mi -1+
Qty: 20

Status: Low Stock

[C=S

¢ ® U B8 &
Home Products Scan

LoadPlan Persanal

146

255858 YT m 256@o8 Ve Tmm 12:56@208
< Scan < Scan
PAC979822 PAC979822
[3 Beverage Cup 700m -1+ 7 =10 &
Gty: 20
o tock
PAC761160
!\l Plastic Spoor - A% 15 +
= S ow ock
GR0 Confirmation
Product added successfully
-3 4
mm
= 5%
o[o]) 26
&~ (O
m ProdrONAn / M i
en y T
[559

Figure 6. 21: Barcode Scanning for Bulk Product In/Out Updates.

6.3.3 Load Planning Module

When users navigate to the Load Plan module, they are presented with three
main options which are Plan Load, Set Common Size, and History. This serves
as the entry point for creating new load arrangements, defining frequently used

sizes, or reviewing past load plans.

00:324 0 VDT
Plan Load
=]

Figure 6. 22: Load Plan Main Menu.

147

In the screen shown in Figure 6.23, users can register a new container
by providing details such as container name, dimensions (length x width x
height), and maximum load weight. Alongside container setup, users can add

cargo items by entering cargo name, dimensions, and weight.

00:32 20 I T D

Add New Container

Container Name
Container Size (e.g. 420%220x200cm)
Maximum Cont Weight (e.g. 100kg)

Add Container

Add New Cargo

Cargo Name
Cargo Size (e.g. 100x60x100cm)

Cargo Weight

) g a

Load Plan

Figure 6. 23: Add New Container and Cargo Screen.

In the Plan Load screen, users can begin by selecting both a container
and cargo items. The interface provides separate sections for ‘Container’ and
‘Cargo’ with a Confirm Selection button to proceed once the choices are made.
The system displays all available containers saved earlier. Users can choose
from multiple options, depending on the vehicle or container type required for
the load plan. Once a container is chosen, its details such as dimensions and

maximum load capacity are displayed for confirmation.

148

00:392 0 s m 00:39 20 T m

00:39 2 0 Ylawm
Plan Load Plan Load Plan Load
CONTAINER ° CONTAINER ° CONTAINER °
CARGO ° Container 1
Selected Container
Container 2 Container 1
Confirm Selection 420x200x220cm
1500kg
Container 3

CARGO °
CARGO °
Confirm Selection

@& ® O 8 ® ® O a8 & @ @ I 8 &

Load Plan persanal Hame Product Scan Load Plan orsanal Ham Products Sca LoadPlan F nal

Do

Figure 6. 24: Selecting Container from List.

The user can then select different cargo items to include in the load
plan. Each cargo is displayed with its dimensions and weight, allowing users
to make informed decisions on what to load. After selecting cargo items, the

system allows users to adjust the quantity for each type of cargo.

L) bt LR 00%3'9%8 ST LY
250x50x100cm o
Plan Load 10kg
CONTAINER °
Selected Cargo
3 Cargo 2
Selected Container 100x100x140¢m
Container 1 10kg
420x200x220cm
1500kg ' 4 °
Cargo 4
CARGO ° 200x50x200cm
200kg
Cargo 2 2
100x100x140cm
10k
J Cargo 6
70x50x60cm
Cargo 4 8kg
200x50%x200cm
200kg 6
Cargo 7
Cargo 1 40x100x40cm
80 x 60 x 100 cm 10kg
10kg
00
Cargo 5
220x50x120cm
5kg onfirm Selection
& © U a 2 a ® I a8 &
jome Products Scan Load Plan Personal Home roducts Scar Load Plan rsonal

Figure 6. 25: Adding Cargo and Adjusting Cargo Quantities.

149

If the total cargo weight goes beyond the selected container’s
maximum limit, the system issues a warning message ‘Weight Limit
Exceeded’. This prevents unsafe or invalid load plans and ensures compliance

with container restrictions.

Weight Limit Exceeded

Total cargo weight exceeds

container weight. Cannot add
more.

Figure 6. 26: Exceeding Container Weight Limit.

After selecting the desired container and cargo, the user clicks the
‘Confirm Selection’ button to proceed. At this stage, the system automatically
arranges the selected cargo within the container using the load planning
algorithm. As shown in Figure 6.27, the system generates an Actual Ratio
Diagram that visually represents the arrangement of the cargo. Each cargo is
both color-coded and labelled with text, ensuring clear distinction between
different items. The inclusion of text labels also makes the diagram
understandable even when printed in black and white, so users are not
restricted when downloading or sharing the load plan in different formats.

In addition, the system calculates and displays space utilization
details, including the total container space, used space, and free space. This
information helps the user evaluate how efficiently the cargo has been packed.

If certain cargo cannot be fitted into the container, the system highlights them

150

under the ‘Not Fit into Container’ section. This ensures users are aware of
unplaced items immediately and can make adjustments such as selecting a

larger container or splitting cargo into multiple containers.

00:53 & © VDT m 00:50 & © LYo e
Cargo 2: 100x100x140cm | 10kg | Qty:

(_‘Zonfirmation Details 4

Cargo 4: 200x50x200cm | 200kg | Qty:
Container 2

Container 1: 420x200x220cm | 1500kg Cargo 6: 70x50x60cm | 8kg | Qty: 6

Cargo(es) Cargo 7: 40x100x40cm | 10kg | Qty: 1

Cargo 2: 100x100x140cm | 10kg | Qty: L
4 Actual Ratio Diagram

Cargo 4: 200x50x200cm | 200kg | Qty:
2

Cargo 2 Cargo 2 Cargo 2 Cargo 2

Cargo 6: 70x50x60cm | 8kg | Qty: 6 Cago Como s

Cargo6 Cargoé Cargob Cargoé Cargo Cargod

Cargo 7: 40x100x40cm | 10kg | Qty: 1

Actual Ratio Diagram Used Space: 8.10 m? (96.4%)
Free Space: 0.30 m? (3.6%)
Total Space: 8.40 m?
GaigoR Cargo2 Cogo Cargo2 Cargo(s) Not Fit Into Container
Cargo 7: 40x100x40cm | 10kg | Qty: 1
Cargo 4 Cargo 4

Cargo6 Cargo6 Cargo6 Cargoé Cargoé Cargo 6 SaVe Load Plan

3 [e] / ¢ 0
i \7) <2 = = (] \7] <3 a8 A

Home duct Scar Load Plan Personal Horr Load Plan

Figure 6. 27: Automatic Cargo Arrangement.

Besides the automatic arrangement, the system also allows users to
manually adjust cargo placement through a drag-and-drop interface as shown
in Figure 6.28. This feature allows users to manually adjust cargo positions if

they prefer customized arrangement instead of the automatically generated one.

151

00:55 Q. REeT
Cargo 2: 100x100x140cm | 10kg | Qty:
4

Cargo 4: 200x50x200cm | 200kg | Qty:
2

Cargo 6: 70x50x60cm | 8kg | Qty: 6

Cargo 7: 40x100x40cm | 10kg | Qty: 1

Actual Ratio Diagram

Cangn &
Camgo 4 Cargo &

Cargn &

Used Space: 8.10 m* (96.4%)
Free Space: 0.30 m* (3.6%)
Total Space: 8.40 m?
Cargo(s) Not Fit Into Container
Cargo 7: 40x100x40cm | 10kg | Qty: 1

Save Load Plan

@ ® o B8 2

Product Scan Load Plan

Figure 6. 28: Manual Adjustment of Cargo Placement Using Drag-and-Drop.

After the load plan is saved, the system automatically records it in the
Load Plan History, as shown in Figure 6.29. Each saved entry is listed with a
unique ID, container details, total used and free space, the list of cargoes

included, and the date and time the plan was created.

Load Plan History

b\ =

(=) ; =
\._II‘/I Pending Finished

ID: 4

Container 1

Size: 420x200x220cm | Weight: 1500kg
Uszed: 6.92 m? | Free: 1.48 m? | Total: 8.40
m

Date: 2025-08-30 05:42:14
Cargoes: Cargo 2 (100x100x140cm) x5,
Cargo 1(80 x 60 x 100 cm) x4

ID: 2

Container 1

Size: 420x200x220cm | Weight: 1500kg
Us}ed: 2.64 m? | Free: 5.76 m* | Total: 8.40
m

Date: 2025-08-25 12:50:24

Cargoes: CargoTest (100 x 60 x 100 cm) x2,
Cargo 1(80 x 60 x 100 cm) x3

ID: 1 Finished |
Container 1

Size: 420x200x220cm | Weight: 1500kg
Used: 2.16 m? | Free: 6.24 m? | Total: 8.40
m2

A (] E (o]
wnd ® (N o

Home Product Scan Load Plan el

Figure 6. 29: Load Plan History screen.

152

Users can filter the history by All, Pending, or Finished status to

quickly locate specific load plans. A search bar is also available for searching

directly by load plan ID.
Load Plan History
Q2

7= ~
Al (Pending) Finished

ID: 2

Container 1

Size: 420x200x220cm | Weight: 1500kg
Used: 2.64 m? | Free: 5.76 m? | Total: 8.40
Date: 2025-08-25 12:50:24

Cargoes: CargoTest (100 x 60 x 100 cm) x2,
Cargo 1(80 x 60 x 100 cm) x3

® (&)) v

T|2|3|4|5]|6|7|8]9210
=)=+ | |e]”
. - — L7

ER 123 . e

01:234 0 Rllosm

Load Plan History

Q L A
Q A%

)
Al Pending) Finished

ID: 4

Container 1

Size: 420x200x220cm | Weight: 1500kg
Used: 6.92 m? | Free: 1.48 m? | Total: 8.40
i

Date: 2025-08-30 05:42:14
Cargoes: Cargo 2 (100x100x140cm) X5,
Cargo 1 (80 x 60 x 100 cm) x4

ID: 2

Container 1

Size: 420x200x220cm | Weight: 1500kg
Used: 2.64 m? | Free: 5.76 m* | Total: 8.40
m

Date: 2025-08-25 12:50:24

Cargoes: CargoTest (100 x 60 x 100 cm) x2,
Cargo 1 (80 x 60 x 100 cm) x3

ID: 6

Container 1

Size: 420x200x220cm | Weight: 1500kg
Usled. 8.10 m? | Free: 0.30 m* | Total: 8.40
m

® o 8

oad Plan |

01:2320 e we

Load Plan History

Al Pending '/\Finished:\

iD:1 [roined
Container 1

Size: 420x200x220cm | Weight: 1500kg
Used: 2.16 m? | Free: 6.24 m? | Total: 8.40
o

Date: 2025-08-25 11:37:51

Cargoes: CargoTest (100 x 60 x 100 cm) x2,
Cargo 1(80 x 60 x 100 cm) x2

ID:5
Container 1

Size: 420x200x220cm | Weight: 1500kg
Used: 3.00 m? | Free: 5.40 m? | Total: 8.40
e

Date: 2025-09-05 17:21:16

Cargoes: Cargo 2 (100x100x140cm) x1,
Cargo 4 (200x50x200cm) x2

ID:3

Container 1

Size: 420x200x220cm | Weight: 1500kg
Used: 696 m? | Free: 1.44 m? | Total: 8.40
b

) @ o =] S

Load Plan

Figure 6. 30: Load Plan Shown with Filters and Search Option.

Selecting a particular history record displays the full details of that

plan, as illustrated in Figure 6.31. The screen shows the container used, cargo

details with their dimensions, weight, and quantity, along with a color-coded

arrangement diagram. Below the diagram, the used space and free space

values are shown.

MR Rm
ID:7
82
Cargo 4

Cago6 Cargo6 Cargob Cargod Cargod Cargo b

01295 0 Ve Tm 01:30 2 ©
< ID: 7 <

o} 88 @

Cargo 4
Cargo 2 Cargo 2 Cargo 2 Cargo 2
Cargo 4 Cargo 4
CONTAINER

Cargob Cargo6 Cargaé Cargo6 Cargos Cargo b Container 1

CONTAINER
Container 1

420x200x220cm | 1500kg

CARGO(ES)

° Cargo 2

100x100x140cm cm | 10kg

° Cargo 4

200x50%x200cm cm | 200kg

° Cargo 6

70x50x60cm cm | 8kg

Used Space

Free Space

< r

@9

420%200x220cm | 1500kg

CARGO(ES)
° Cargorz 4
100x100x140cm cm | 10kg
% ° Carrg>o4 . 2
200x50x200¢cm cm | 200kg
. Cargo 6
2 ® Jox50x60cm cr 6
70x50x60cm cm
o Used Space 8.10m*
Free Space 0.30m?
8.10m*
Date 2025-09-1117:29:17
0.30m*
B 2 a © o o a 2
Load Plan v’ can Load Plan o

Figure 6. 31: Detailed View of a Selected Load Plan.

153

After saving a load plan, the system provides the option to generate a
PDF report by clicking the PDF button. The PDF can be shared, downloaded,
or printed directly from the application for documentation or operational use.
This feature ensures that load plans can be easily distributed to logistics staff,

stored for record-keeping, or printed for on-site reference.

01:312 0

be0648bc-e4---26d6b979.pdf
2H Add to
WeChat

Browser Favourite
} 5 O «

REGBBR pUbE iﬁhuﬁgﬁ’s’ W BT Eﬁ!(‘

Send to

Friends

SEBHHRIRE Share to Nearby Devices ()

S=ZFEBAK | Share to Computer (|

$TED | Print =

Figure 6. 32: Options to Share, Download, or Print the Load Plan.

As shown in Figure 6.33, the PDF report includes container
specifications, cargo details, total used and free space, cargo arrangement
order, and a visual diagram of the actual placement. Additionally, a QR code is
embedded in the PDF, allowing users to quickly retrieve and view the same

load plan details in the system by scanning it.

154

Project From : 2025-09-11 17:29:17 E .
Loading Space
D 7 - Container 1 + 420x200x220cm + 1500kgkg a |
Used Space Free Space Total Cargo
8.10 m* 0.30 m? Weight [~}
488.00 -
kg
Cargo 2 Cargo 2 Cargo 2 Cargo 2
Cargo 4 Cargo 4
Cargo6 Cargo6 Cargo6 Cargo6 Cargoé Cargo b
NEW LOADED LOADS
Load Load dimension (cm) Weight (kg) Quantity
® Cargo 2 100x100x140cm cm 10kg 4
® Cargo 4 200x50x200cm cm 200kg 2
Cargo 6 70x50x60cm cm 8kg 6
Total 12
ORDER OF ARRANGING CARGO
Load Quantity
® Cargo 2 4
® Cargo 4 2
Cargo 6 6

Figure 6. 33: Generated PDF report.

After generating and saving the load plan, users can retrieve it by

scanning the QR code printed on the PDF. When the QR code is scanned, the

corresponding load plan details are automatically displayed in the app.

155

Scan Load Plan QR X i BB @

Cargol Cargol Cargol Cargol Cargol

Cargo1 Cargo1 CargoTest CargoTest

‘CargoTest CargoTest CargoTest CargoTest

CONTAINER

Container 1
420x200x220cm | 1500kg

CARGO(ES)

Cargo 1
80 x 60 x 100 cm cm | 10kg

CargoTest
100 x 60 x 100 cm cm | 10kg

Used Space 6.96m?

Free Space 1.44m?

Date 2025-08-28 05:19:12
Point the camera at the QR in the PDF C, Res ﬂ @ : 3 E g

Home Products Scan Load Plan Personal

Figure 6. 34: Scanning the QR code from the printed load plan PDF.

The system then provides a Cargo Arranging Checklist, as shown in
Figure 6.35, which lists all the cargo items that need to be placed into the
container. This checklist guides the user step by step in following the planned
arrangement generated earlier by the system, ensuring that no cargo item is
missed out during the physical loading process. Each item can be marked as
‘Arranged’ once it has been physically placed inside the container. After all
items have been marked as arranged, the user finalizes the process by clicking
the ‘Save (Settled)’ button. At this stage, the status of the load plan is
automatically updated from Pending to Finished, ensuring that the plan is

properly tracked and updated in the system.

01:49 2 © NEps®

Cargo Arranging Checklist

Cargo 1
Size: 80 x 60 x 100 cm
Quantity: 7

CargoTest
Size: 100 x 60 x 100 cm
Quantity: 6

)

Home Product Scar Load Plan

01:57 2 © Viowe

Cargo Arranging Checklist

Cargo 1

Size: 80 x 60 x 100 cm
Quantity: 7

v Arranged

CargoTest
Size: 100 x 60 x 100 cm
Quantity: 6

@ ® & a &

Load Plan Personal

01:57 G © NpEe

Cargo Arranging Checklist

Cargo 1

Size: 80 x 60 x 100 cm
Quantity: 7

v/ Arranged

CargoTest

Size: 100 x 60 x 100 cm
Quantity: 6

v/ Arranged

)

Save (Settled)

a © O a8 &

Load Plan

Figure 6. 35: Cargo arranging checklist.

156

The system also provides a delete function. When the user chooses to

delete a load plan, the system displays a confirmation dialog, as shown in

Figure 6.36. This dialog ensures that the user does not accidentally remove an

important record. The dialog presents two options which is Cancel, which

aborts the action and retains the load plan, or Delete, which permanently

removes the selected plan from the system.

02:03%5 0

Delete Load Plan

Are you sure you want to delete

this load plan?

CANCEL DELETE

Figure 6. 36: Confirmation dialog for deleting a load plan.

157

CHAPTER 7

SYSTEM TESTING

71 Introduction

In this project, system testing is conducted to evaluate the functionality,
usability, and overall quality of the developed application. This chapter
presents and discusses the testing approaches carried out, including unit testing
to verify individual components, integration testing to ensure proper
interaction between modules, the System Usability Scale (SUS) test to assess
user experience, and the User Acceptance Test (UAT) to ensure that the

system meets user needs and project objectives.

7.2 Unit Testing

Unit testing focuses on testing individual components or modules of the
system to ensure they function correctly in isolation. In this project, a total of
22 test cases were executed, covering all three main modules of the application.
Each of these test cases was further expanded into detailed scenarios, resulting
in a total of 91 sub-test cases. This approach ensured that both normal and
exceptional conditions were thoroughly tested, covering functional correctness,

data handling, and user interactions.

7.2.1 Unit Test Cases Listing

Table 7. 1: Summary of Unit Test Cases Listing.

158

Test Module | Test Case ID Test Case Title Status
User TCO1 Add new user Pass
Management | TCO02 Login account Pass
TCO3 Logout Pass
Inventory | TC04 Home Dashboard Pass
Tracking TCO05 View Products List Pass
TCO06 Add new product Pass
TCO7 View Product Detail Pass
TCO8 Edit Product Info Pass
TC09 Stock Update using Product In Pass
TCI10 Stock Update using Product Out Pass
TCI11 Delete Product Pass
TC12 Camera Permission and Preview | Pass
TC13 Scan the QR code on inventory | Pass
item
Load TC14 Navigate from Load Plan home Pass
Planning TCI15 Container and cargo selection Pass
TC16 Confirmation Details and Actual | Pass
Ratio Diagram
TC17 Generate and save load plan Pass
TCI18 View load plan history Pass
TC19 View load plan detail Pass
TC20 Arrange cargo checklist Pass
TC21 Set common size for containers | Pass
and cargo
TC22 Export a plan to PDF Pass

159

7.2.2 Unit Test Cases
7.2.2.1 User Management Module

Table 7. 2: Unit Test Case of Add New User.

Test Case Title | Add new user Test Module User Management

Test Case ID TCO1

Pre-conditions | The application is launched and the user is logged in. Navigate to User Management screen. “Add New User” modal is

opened after tapping the “+” button.

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status
UTO01 Add user with wvalid | 1. Enter valid name, email, | Name: abc New user created and Pass
name, email, password and password. Email: abc@gmail.com info stored in Firestore.
2. Tap Add. Password: Abc12345 Success alert shown.
User displayed in list.
UTO02 Add new wuser with | 1. Leave Name field blank. | Name: “” Alert “Please fill all | Pass
empty name 2. Enter valid email and | Email: empty@gmail.com | fields.” shown. No user
password. Password: Abc12345 created.
3. Tap Add.

UTo03 Add new user with Enter valid name and | Name: yanxin Error alert displayed for | Pass
Invalid email format password. Email: yanxin@ invalid email. User not
Enter invalid email. Password: yanxin77777 created.
Tap Add.
Table 7. 3: Unit Test of Login account.
Test Case Title | Login account Test Module User Management
Test Case ID | TCO02
Pre-conditions | User is on the Login Screen. At least one user account exists in Firebase Authentication.
Test Case ID Test Case Description Execution Steps Test Data Expected Result Status
UTO04 Login with predefined | 1. Enter valid email and Email: abc@gmail.com Successfully logged in | Pass
(valid) info password created by Password: Abc12345 and navigates to Home
admin. screen.
Tap Login.
UTO05 Login with not | 1. Enter email not in|Email: nono@gmail.com | Error alert “Invalid | Pass
predefined system and password. Password: Abc12345 credentials” shown.
(unregistered) info Tap Login. Stay on Login screen.
UTO06 Login with invalid Enter valid registered | Email: abc@gmail.com | Error alert “Invalid | Pass

161

password

email.

Password: wrong123

credentials” shown.

2. Enter wrong password. Stay on Login screen.
3. Tap Login.
UTo07 Login with empty fields | 1. Leave email and | Email: “” Alert “Please enter your | Pass
password blank. Password: “” email and password”
2. Tap Login. shown. No login
attempt made.
UTO08 After login, Personal 1. Login with valid Email: abc@gmail.com | Personal screen Pass
screen shows correct credentials. Password: Abc12345 displays name, abc, ID
Name and ID 2. Navigate to Personal and Avatar shows first
tab. letter A.
Table 7. 4: Unit Test Case of Logout.
Test Case Title | Logout Test Module User Management
Test Case ID | TCO3
Pre-conditions | User is already logged in successfully and navigates to the Personal tab screen.
Test Case ID Test Case Description Execution Steps Test Data Expected Result Status
UT09 Successful logout 1. Tap Logout icon. - User session cleared. Pass

162

App navigates back to

Welcome Screen.

UT10

Attempt to access app 1. Log out successfully. - App forces user to Pass
after logout 2. Relaunch the app or Login Screen. User
navigate to protected cannot access features
screen. until login again.
7.2.2.2 Inventory Tracking via Barcode Scanning Module
Table 7. 5: Unit Test Case of Home Dashboard.
Test Case Title | Home Dashboard — Hamburger Menu & Navigation Test Module Inventory Tracking
Test Case ID | TCO04
Pre-conditions | User is on Home screen. Hamburger icon visible at top-left.
Test Case ID Test Case Description Execution Steps Test Data Expected Result Status
UT11 Inventory analysis info | 1. Open Home screen. Products in Firestore with | All 4 cards display Pass

is displayed

2. Wait for Firestore data
to load.

different quantity,

stockStatus, minStockQty.

correct values. The

Low Stock section lists

163

items with current

stock & restock

numbers.
UTI12 Open menu sheet Tap hamburger menu - Side sheet opens. Pass
icon.
UTI13 Close by tapping Tap hamburger menu - Menu closes. Pass
outside icon.
Tap outside overlay.
UT14 Navigate to Products Tap hamburger menu - Menu closes; navigates Pass
icon. to Products screen.
Tap ‘Products’.
UTI15 Navigate to Load Plan Tap hamburger menu - Menu closes; navigates Pass
icon. to Load Plan screen.
Tap ‘Load Plan’.
Table 7. 6: Unit Test Case of View Products List.
Test Case Title | View Products List Test Module Inventory Tracking

164

Test Case ID

TCO5

Pre-conditions

User logged in and on Products screen. Firestore products table exists.

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status
UTI16 Display all product in 1. Open Products screen Products: ING285956, All products are listed Pass
list EQT860842, PAC825080 | with image, productld,
name, and quantity.
UT17 Search by product name | 1. Enter “Longan” in Name = “Longan” Only “Longan” item Pass
search bar appears in the list.
UTI18 Search by product ID 1. Enter “EQT839431”in | ID =“EQT839431” Only “1000ML Pass
search bar Jug&lLid” item appears.
UTI19 Filter by category 1. Tap Packaging tab Products with category Only Packaging Pass
Packaging products (PAC...)
displayed.
UT20 Filter by stock status 1. Tap filter icon ING194617 (qty=0) List shows only out-of- Pass
2. Select Out of Stock stock items.
UT21 View Low Stock 1. View product list EQT860842 qty=16, Red dot shown beside Pass
Products min=20 low stock products.
UT22 View Product Detail 1. Tap any product card PAC825080 Show correct product Pass

165

info.
Table 7. 7: Unit Test Case of Add New Product.
Test Case Title | Add new product Test Module Inventory Tracking
Test Case ID | TCO06
Pre-conditions | Taps ‘+’ floating button on product list screen to open Add Product form.
Test Case ID Test Case Description Execution Steps Test Data Expected Result Status
UT23 Add product with all 1. Tap image box and Name: “Honey Pearl” New product added Pass
valid fields select product image Qty: 30 with success alert
from gallery. Category: Ingredients shown.
2. Enter valid Product Min: 20
Name, Quantity,
Category, Min Stock
Qty.
3. Tap Save button.
UuT24 Add product with 1. Leave Product Name Name: “” Alert popup displayed Pass
missing fields blank.. Qty: 20 with message “Please
2. Tap Save button. Category: Ingredients fill in all fields.” Stay

166

Min Stock Qty: 10

on Add Product screen.

UT25 Add product without 1. Do not select any image. | Name: Bamboo Straw Product added and Pass
image 2. Fill in all other valid Qty: 15 visible in list. Default
fields. Category: Packaging placeholder image
3. Tap Save button. Min Stock Qty: 30 shown.
UT26 Verify that adding a 1. Select category from Category: Ingredients Success alert shown. In Pass
product assigns the dropdown. Name: Purple Taro Balls product list, productld
correct product ID 2. Enter valid product info. | Qty: 25 starts with ING. New
prefix based on its 3. Tap Save. Min Stock Qty: 20 product visible under
category “Ingredients” tab.
Table 7. 8: Unit Test Case of View Product Detail.
Test Case Title | View Product Detail Test Module Inventory Tracking
Test Case ID | TCO7
Pre-conditions | From Products list, open any product’s Detail screen.
Test Case ID Test Case Description Execution Steps Test Data Expected Result Status
UT-27 View product details 1. Open Products list. - Detail screen opens Pass

167

2. Tap a product card.

showing Product name,
ID, Category, Quantity,
Min stock qty, Stock
status and Product

image or placeholder.

Table 7. 9: Unit Test Case of Edit Product Info.

Test Case Title | Edit Product Info Test Module Inventory Tracking
Test Case ID | TCO8
Pre-conditions | From Products list, open any product’s Detail screen.
Test Case ID Test Case Description Execution Steps Test Data Expected Result Status
UT28 Edit product name and | 1. Tap Edit icon. Old: 700ml Shaker, Cat: Confirmation popup Pass
category 2. Change product name Equipment. shown. Success alert
and category. New: 500ml Shaker, Cat: | displayed (“Product
3. Tap Save. Packaging. updated”). Screen
4. Confirm changes. updates to show new
name and category.
UT29 Cancel edit 1. Tap Edit icon. Change name to “Test Discard confirmation Pass

168

2. Change fields.
3. Tap Cancel.

4. Confirm discard.

Item™.

popup appears. On
confirm, changes not
saved. Detail screen
remains with original

values.

Table 7. 10: Unit Test Case of Stock Update Using Product In.

Test Case Title | Stock Update using Product In Test Module Inventory Tracking
Test Case ID | TC09
Pre-conditions | From Products list, open any product’s Detail screen.
Test Case ID Test Case Description Execution Steps Test Data Expected Result Status
UT30 Add stock to product Tap IN option. Current qty=16. Success alert displayed: Pass
. Enter quantity to add. Add=5. “Quantity updated”.
Tap Add. Product quantity
updates to 21.
UT31 Add stock that changes Tap IN option. Current gty = 10 Success alert displayed. Pass

status from Low Stock

to In Stock

. Enter quantity that raises

stock above min.

Min stock =20
Add=15

Quantity increases to

25. Status changes from

169

3. Tap Add. Low Stock (red dot) to
In Stock (no red dot).
UT32 Add stock that keeps 1. Tap IN option. Current qty =5 Success alert displayed. Pass
status as Low Stock 2. Enter small quantity that | Min stock = 20 Quantity increases to
keeps stock below min. | Add =10 15. Status remains Low
3. Tap Add. Stock, red dot stays.
UT33 Cancel adding stock 1. Tap IN option. Any value Stock unchanged. Pass
2. Enter quantity. Screen remains with
3. Tap Cancel. original quantity. No
alert shown.
Table 7. 11: Unit Test Case of Stock Update using Product Out.
Test Case Title | Stock Update using Product Out Test Module Inventory Tracking
Test Case ID | TC10
Pre-conditions | From Products list, open any product’s Detail screen.
Test Case ID Test Case Description Execution Steps Test Data Expected Result Status
UT34 Reduce stock 1. Tap OUT option. Current qty=16. Confirmation popup Pass

2. Enter quantity to

Subtract=5

shown. Success alert

170

subtract.

Tap Subtract.

displayed. Product
quantity decreases to

11.

UT35 Prevent negative stock Tap OUT option. Current qty=5. Alert popup shown: Pass
. Enter qty larger than | Subtract=10. “Quantity cannot be
current stock. negative.” Quantity
Tap Subtract. unchanged.
UT36 Add stock that changes Tap OUT option. Current qty = 25 Success alert displayed. Pass
status from In Stock to . Enter quantity that Min stock =20 Quantity updates to 15.
Low Stock lowers stock below min. | Subtract =10 Status indicator changes
Tap Subtract. to Low Stock
UT37 Reduce stock to 0 (Out Tap OUT option. Current qty = 8 Success alert displayed. Pass
of Stock) . Enter full qty value. Subtract = 8 Quantity updates to 0.
Tap Subtract. Status label changes to
Out of Stock.
UT38 Cancel reduce stock Tap OUT option. Qty input =5 Action cancelled. No Pass

action

. Enter any quantity.

Tap Cancel.

alert shown. Quantity

remains unchanged.

Table 7. 12: Unit Test Case of Delete Product.

171

Test Case Title | Delete Product Test Module Inventory Tracking
Test Case ID | TC11
Pre-conditions | From Products list, open any product’s Detail screen.
Test Case ID Test Case Description Execution Steps Test Data Expected Result Status
UT39 Delete product from 1. On Detail screen, tap Product: Bamboo Delete confirmation Pass
inventory Delete option. Toothpick. popup and success alert
2. Confirm delete action. “Product deleted”
shown. Deleted product
no longer visible in list.
Table 7. 13: Unit Test Case of Camera Permission and Preview.
Test Case Title | Camera Permission and Preview Test Module Inventory Tracking
Test Case ID | TC12
Pre-conditions | User is logged in and navigates to Scan screen.
Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

172

UT40 Request camera 1. Open Scan with no prior - Modal “Camera Access Pass
permission permission Needed” appears; after
2. Tap Allow Camera allowing, modal closes
and camera preview
with scan frame is
shown.
UT41 Show camera preview | 1. Open Scan screen with - Fullscreen camera view Pass
permission granted. renders with green-
cornered square scan
frame.
Table 7. 14: Unit Test Case of Scan the QR code on inventory item.
Test Case Title | Scan the QR code on inventory item Test Module Inventory Tracking
Test Case ID | TC13
Pre-conditions | User is logged in and navigates to Scan screen. Camera permission granted.
Test Case ID Test Case Description Execution Steps Test Data Expected Result Status
UT42 Scan valid product QR | 1. Point camera at valid {"productld":"ING123456", | Longan product card Pass

QR.

"name":"Longan"}

appears with correct

173

. Wait for scan.

ID, name, qty, status.

UT43 Scan unknown product, Scan QR whose {"productld":"ING999999", | Alert “The product is Pass
which is not in database productld isn’t stored "name":"Unknown"} not found. Please add it
first.” No card is added,;
UT44 Scan invalid QR (non- . Point camera at invalid | 1234567890 Alert pops up “Scanned Pass
JSON) QR. Barcode: 1234567890”.
User remains on Scan;
no crash.
UT45 Rescan after a scan Successfully scan a Any valid QR Camera preview Pass
product. reopens.
Tap Tap to Scan Again.
UT46 Scan QR code to view . Land on Scanned {"productld":"ING123456", | Card displays product Pass
scanned product card Product Detail after "name":"Longan"} image, ID, name, qty,
valid scan. and status.
UT47 Scan same product QR Scan product A. {"productld":"ING123456", | Only one card for Pass

twice

Scan product A again
using ‘Scan’ icon button

in scanned product

"name":"Longan"}
{"productld":"ING123456",

"name":"Longan"}

Longan is shown.
Duplicate scans of

same item do not add

174

detail. multiple cards.
UT48 Adjust quantity using 1. On Scanned Product Default | » + —> +—— Quantity field updates Pass
+/— Detail, tap + twice then to 2.
— once.
UT49 Adjust quantity going 1. On Scanned Product Default=1 — — — — Quantity cannot drop Pass
below 1 Detail, tap — repeatedly. below 1. Field stays at
1.
UT50 Adjust every item 1. Scan two products. ItemA: 1 — 2 Each card updates
quantity 2. Tap +once foritem A. |ItemB:1—3 independently. Item A
3. Tap + twice for item B. shows qty 2. Item B
shows qty 3.
UTS51 Update a single 1. Scan only one item. Add=3 Success alert: “Product Pass
scanned item with 2. Set quantity to 3. added successfully”.
Product In (All) 3. Tap Product In (All). The scanned list clears
and app returns to Scan
screen.
UT52 Check the reset 1. Scan item A. Qty set =35 After update, when Pass

quantity after update

item A is scanned

175

2. Set quantity = 5. again, its quantity
3. Tap Product In (All). resets to default 1 in the
4. Scan item A again. new card.
UTS53 Update multiple items | 1. Scan item A and B. A add 2; B add 5 Success alert shown, Pass
with Product In (All) 2. Set A=2, B=5. list clears and app
3. Tap Product In (All). navigates back to Scan.
UT54 Update a single 1. Scan item A. Current 5, out 3 Success alert shown, Pass
scanned item with 2. Set quantity to 3. list clears and app
Product Out (All) 3. Tap Product Out (All). returns to Scan.
UTS55 Update multiple items | 1. Scan item with stock 10. | Current 10, Out 4 Success alert shown, Pass
with Product Out (All) | 2. Set Out=4. list clears and app
3. Tap Product Out (All). returns to Scan. No
negative Ul states.
UT56 Scan one item and try | 1. Scan one item. Current 3, Out 5 Alert displayed: Pass
to subtract more than | 2. Set Out=5 while “Cannot remove more
current stock current stock = 3. than current stock for
3. Tap Product Out (All). <product name>.”

176

No changes made and

return to scan screen.

UT57 Scan multiple items Scan item A A: Current=3,0ut =15 Alert displayed: Pass
and one item has Scan item B B: Current= 10, Out=4 “Cannot remove more
subtraction larger than Set Out A=35,0ut B = than current stock for
stock 4. <product A>.” Valid
Tap Product Out (All). item B still processes
and updates.
UTS8 Scan another QR from On Scanned Product - App navigates back to Pass

detail screen

Detail, tap the QR icon.

Scan and the camera
preview is active for

the next scan.

7.2.2.3 Load Planning Module

Table 7. 15: Unit Test Case of Navigate from Load Plan home.

Test Case Title

Navigate from Load Plan home

Test Module

Load Planning

Test Case ID

TC14

177

Pre-conditions

The user is logged in and on the Load Plan tab which shows three buttons labelled Plan Load, Set Common Size, and History.

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status
UT59 Navigate to the Plan Tap the Plan Load - The Plan Load screen Pass
Load screen button appears with the
Container section, the
Cargo section, and the
Confirm Selection
button
UT60 Navigate to the Set Tap the Set Common - The Set Common Size Pass
Common Size screen Size button screen appears with the
Add New Container
form and the Add New
Cargo form
UT61 Navigate to the History Tap the History button - The Load Plan History Pass

screen

list appears with the
search box and load

plan history.

Table 7. 16: Unit Test Case of Container and cargo selection.

178

Test Case Title | Container and cargo selection Test Module Load Planning
Test Case ID | TC15
Pre-conditions | The user is on the Plan Load screen.
Test Case ID Test Case Description Execution Steps Test Data Expected Result Status
uUT62 Show available Open the Plan Load - Displays a list of Pass
container and cargo screen. containers and cargo
lists Tap ‘+’ button of the items.
container and cargo.
UT63 Selects one container Tap a container card Container 1 The selected container Pass
card is highlighted.
UTo64 Selects two container Tap one container card. | container 1, Container 2 Only the last selected Pass
Tap another container container remains
card. highlighted.
UT65 Add one cargo item to Tap a cargo card. Cargo 2 The cargo appears in Pass

the selection

the Selected Cargo
panel with a default

quantity of one.

179

UT66 Add multiple cargo Tap a cargo card. Cargo 2, Cargo 4 Both cargo items Pass
items to the selection Tap one more cargo appear in the Selected
card. Cargo panel with
default quantity of one.
UTe67 Adjusts the quantity of In the Selected Cargo Default quantity = 1 The quantity increases Pass
a selected cargo panel, tap the ‘+’ button to 2 and cannot drop
twice. below 1.
Tap the ‘-’ button once.
UT68 Add cargo that exceeds Select a container with | Container 1 (1500 kg), An alert “Total cargo Pass
container weight maximum weight Cargo A + Cargo B = 1600 | weight exceeds
capacity capacity of 1500 kg. kg container weight.
. Add multiple cargoes Cannot add more’
with total weight of appears, and no further
1600 kg. additions can be made.
Tap Confirm Selection.
Table 7. 17: Unit Test Case of Confirmation Details and Actual Ratio Diagram.
Test Case Title | Confirmation Details and Actual Ratio Diagram Test Module Load Planning

180

Test Case ID

TCI16

Pre-conditions

The user has selected at least one container and one cargo, then tapped “Confirm Selection.”

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status
UT69 Confirmation details Select one container and | Container 1: 420x200%220 | Confirmation screen Pass
show selected container one cargo. cm, 1500 kg. displays container name,
and cargo information Tap Confirm Selection. | Cargo 1: 100x100x140 cm, | dimensions, max weight,
10 kg, Qty: 1 and cargo list with
dimensions, weight, and
quantity.
UT70 Actual ratio diagram . Add multiple cargo Container 1. Cargo 2 Diagram renders blocks Pass
displays cargo items to a container. quantity one. Cargo 4 representing each cargo
placement Tap Confirm Selection. | quantity two. with distinct labels and
proportionally sizes, fitting
proportionally inside
container area.
UT71 Space utilization . Add cargos that partially | Container capacity = 8.4 m*. | Space utilization shows Pass

percentage is calculated

fill container.

Cargos total area = 3.0 m>.

“Used Space: 3.00 m?

181

correctly 2.

Tap Confirm Selection.

(35.7%)” and “Free

Space: 5.40 m? (64.3%)”.

UT72 Handles exceeding 1. Add acargo larger than | Container:420%200%220 cm | Cargo not added to Pass
cargo that does not fit the container Cargo: 500%250%300 cm. diagram and appears
visually dimensions. under ‘Cargo(es) not fit
2. Tap Confirm Selection. into container’ section
Table 7. 18: Unit Test Case of Generate and save load plan.
Test Case Title | Generate and save load plan Test Module Load Planning
Test Case ID | TC17

Pre-conditions

The user is on the Confirmation Details screen after selecting a container and one or more cargo items. The diagram and

space summary are visible.

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status
UT73 Saves a valid load 1. Add container and | Container 1: 420x200%x220 | A success alert appears: “Load Pass
plan cargo items. cm, 1500 kg. Cargo 2 qty | plan saved successfully.”
2. Update the 1 (10 kg), Cargo 4 qty 2

quantity of cargo.

Tap Save Load

(200 kg each)

182

Plan.
UT74 Saved plan is visible 1. Save avalid plan. | Recently saved plan A new card appears with an Pass
in History after 2. Navigate to auto-incremented ID, container
success History. info, used and free space, date,
and cargo summary. The status
is Pending until arranged.
Table 7. 19: Unit Test Case of View load plan history.
Test Case Title | View load plan history Test Module | Load Planning
Test Case ID | TC18
Pre-conditions | At least one load plan may exist. The user is on the History screen.
Test Case ID Test Case Description Execution Steps Test Data Expected Result Status
UT75 The list shows existing 1. Open the History screen. Plans exist | The screen renders load plan cards Pass
load plans with key fields with details.
UT76 The screen shows an 1. Open History with no No plans Empty state appears that says “No Pass
empty state when there records. load plans found” with no list
are no plans items.
UT77 Scroll to view more plans | 1. Open History with many >10 plans Additional cards appear smoothly Pass

183

records.

Scroll down the list.

as the user scrolls, no layout

jumps or overlaps.

UT78 Search by an exact plan . Type an existing ID inthe | ID: 4 Only the card for ID: 4 remains in Pass
ID search box. the list.

UT79 Search by a non-existent . Enter an ID that does not ID: 999 No results found Pass
ID exist.

UTS80 Tapping a card opens the | 1. Tap a plan card. Any listed | The app navigates to Load Plan Pass
plan detail plan Detail for that ID.

UTS81 Opens a plan by scanning | 1. Tap the scan icon. Valid QR The camera view closes and Load Pass
a valid QR code Scan a valid load plan QR. | encodes Plan Detail (ID: 1) opens.

planID 1

UTS2 Handles an invalid QR . Tap the scan icon. Random An alert appears ‘Not found’ Pass

code Scan a random QR not | text
linked to any plan.
Table 7. 20: Unit Test Case of View load plan detail.
Test Case Title | View load plan detail Test Module Load Planning
Test Case ID | TC19

184

Pre-conditions

The user has opened a load plan from the History screen or scanned a valid QR code. The Load Plan Detail screen is

displayed.
Test Case ID Test Case Description Execution Steps Test Data Expected Result Status
UTS83 Delete a plan 1. Tap the Delete icon. Plan ID: 5 A success alert appears Pass
2. Confirm deletion in the and navigated back to
popup. the History screen
where Plan ID 5 is no
longer listed.
Table 7. 21: Unit Test Case of Arrange cargo checklist.
Test Case Title | Arrange cargo checklist Test Module Load Planning
Test Case ID | TC20

Pre-conditions

The user opened a pending load plan from History or scanned a valid QR code and navigated to the Arrange Cargo screen.

Test Case ID

Test Case Description

Execution Steps

Test Data

Expected Result

Status

UT84

Marks all cargo as

arranged and saves

1. Tap each cargo row to
mark as arranged.

2. Tap Save (Settled).

Cargo A qty 2, Cargo B
qty 3

The Save (Settled)
button becomes enabled
only when all cargo are

marked. After tapping

Pass

185

Save, the plan status

changes to Finished in

History.
UT85 Prevents saving if some | 1. Mark only one cargo Cargo A arranged, Cargo | The Save (Settled) Pass
cargoes are not row as arranged. B not arranged button remains
arranged 2. Try tapping Save disabled.
UT86 Save action updates the | 1. Arrange all cargo. Plan ID: 11 The plan card in Pass
plan status 2. Tap Save (Settled). History now shows
3. Return to History. status as Finished.
UT87 Cancel arrangement 1. Return to previous page Any pending plan The status remains Pass
before marking cargo. Pending.
Table 7. 22: Unit Test Case of Set common size for containers and cargo.
Test Case Title | Set common size for containers and cargo Test Module Load Planning
Test Case ID | TC21
Pre-conditions | The user is on the Set Common Size screen.
Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

186

UTS88 Add a new container 1. Enter container name. Name: Container A. Size: | A success alert appears Pass
with valid inputs 2. Enter length, width, and | 420 % 200 % 220 cm. and container is added
height in centimetres. Weight: 1500 kg. to the list.
3. Enter maximum weight.
4. Tap Add Container.
UT89 Add a new cargo with 1. Enter cargo name. Name: Cargo X. Size: 100 | A success alert appears Pass
valid inputs 2. Enter length, width, and | X 100 X 100 cm. Weight: | and cargo is added to
height in centimetres. 50 kg. the list.
3. Enter weight.
4. Tap Add Cargo.
Table 7. 23: Unit Test Case of Export a plan to PDF.
Test Case Title | Export a plan to PDF Test Module Load Planning
Test Case ID | TC22
Pre-conditions | The user is on the Load Plan Detail screen and the plan has been saved previously.
Test Case ID Test Case Description Execution Steps Test Data Expected Result Status
UT90 Exports a plan to PDF 1. Tap the Export to PDF | Plan ID: 7 A share or download Pass

button on the detail

option appears with the

187

screen. generated file.
UT91 Exported PDF contains Tap the Export to PDF | Plan ID: 12 with saved The PDF includes the Pass
all required details button. diagram and cargo list. load plan diagram, QR
Open the downloaded code, container info,
file. cargo list, used/free/

total space, and

arrangement order.

7.3 Integration Test

Integration testing is conducted to verify that the different modules of the system interact and work together as expected. It ensures that data

flows correctly between modules, and that combined functionalities achieve the intended outcomes. For this project, integration tests cover end-

to-end flows across the User Management, Inventory Tracking, and Load Planning modules, validating that the entire system operates seamlessly

when modules are integrated.

Table 7. 24: Test Case of Integration Test.

Test Case ID

Test Case Description

Execution Steps

Expected Result

Status

ITO1

Register a new user, sign in,

scan multiple valid product

1. Tap the + button to open Add

New User modal.

New user is created and can log in

successfully.

Pass

188

QRs to perform Product
Out, create a load plan, save
it, see it in History, export to
PDF, scan the PDF QR and

start arranging

10.

Enter Name, Email, and
Password.

Tap Add and wait for the success
alert.

Navigate to Personal and tap
Logout

On Login screen, enter the newly
created Email and Password and
tap Login.

After landing on Home, go to
Personal tab.

Verify the displayed Name and 1D
match the created user.

Open Scan tab and scan QR of
product A and B, set quantity.
Tap ‘Product Out’ button.

Open Products and verify both

items’ quantities decreased.

Product stock decreases correctly
after Product Out.

Load Plan is generated with
selected container and cargo, and
diagram is shown.

User can rearrange cargo and save
the plan.

History shows the saved plan with
Pending status.

Exported PDF contains load plan
details with scannable QR.
Scanning the QR reopens the
same plan.

Arranging all cargo updates the
plan status to Finished.

189

11.

12.

13.
14.

15.
16.

17.

18.

19.

20.
21.

Go to Load Plan Tab and click
Plan Load.

Select Container 1 and add Cargo
A with quantity 5.

Tap Confirm Selection.
Drag and drop to change the
cargo placement.

Save Load Plan.

Open History and locate the new
plan card with Pending status.
Open the plan and tap Export to
PDF.
From History, tap the scan icon
and scan the QR in the PDF.
In the plan detail, open Arrange
Cargo.
Tick all cargo items.

Tap Save (Settled).

190

7.4 User Acceptance Test (UAT)

User Acceptance Testing (UAT) was conducted to ensure that the developed
mobile application for inventory tracking and cargo load planning meets the
specified functional requirements and delivers smooth user experience for its
intended end users, such as storekeepers and logistics staff in small and
medium-sized enterprises (SMEs).

A total of three testers from different backgrounds were selected to
participate in the UAT sessions to simulate real-world users. These testers
represented typical roles such as inventory staff and logistics workers who
would normally handle daily stock operations and vehicle load planning. The
testing sessions were conducted face-to-face, which allowed for direct
observation of the testers’ interactions with the application and provided
immediate opportunities to collect feedback.

Each tester was provided with an android smartphone with the
application. They were guided to perform all prepared test cases step by step,
based on the detailed instructions outlined in the UAT form. The test cases
covered the full workflow of the system, including registering and logging into
an account, adding, editing, and deleting inventory items, updating stock
quantities through manual entry or barcode scanning, generating cargo load
plans automatically or via manual rearrangement, checking cargo arrangement
through the checklist, exporting load plan reports in PDF format, and
retrieving load plan history using QR code scanning.

The results of the UAT sessions were recorded, and the detailed
results from each tester are attached in Appendix C. A results summary

collected from all three testers is tabulated as follows.

Table 7. 25: UAT Result Summary.

Tester | No. of Test Case Executed | Pass Fail Overall Result
Tester 1 15 15 0 Pass
Tester 2 15 15 0 Pass
Tester 3 15 15 0 Pass
Total 45 45 0 All Passed

191

Although all test cases were successfully passed, testers provided several valuable comments during the UAT sessions. These comments

highlight areas where the system can be further improved to enhance usability, efficiency, and flexibility. The comments were analysed as

follows.
Table 7. 26: Analysis of UAT Feedback.
Test Case ID | Test Case Title Tester Comment Analysis
UATO1 User Registration | Prefer to have different role like | The system only provides a single user type because the project
admin or staff to differentiate. scope focused on core inventory and load planning functions.
Adding role-based access control like staff and admin in the future
would enhance security and assign responsibilities more clearly.
For example, only Admin can delete items, Staff can update stock.
UATO3 Update Stock Can have push alert when the stock | Low stock is currently shown only with a red indicator. Implement
Quantity low. a push notification or popup alert would ensure that stock
replenishment is not missed, improving operational efficiency.
No history record to know who, | Now, stock updates are reflected but without an audit trail. Adding
when, how many stock updated | a stock update history log in the future.
before.
UATOS5 View Inventory Filter function is enough for this app, | Current filtering is limited to categories because only basic product

192

List

but prefer more methods to search
like by supplier, by expiry date in the

future.

attributes are stored in the database. Supplier and expiry date were
not required in the initial scope. In future versions, the product
attributes can be extended to support advanced filtering options like
supplier, expiry date, and storage location, allowing the system to
be tailored more closely to the needs of different companies with

larger inventories.

UATO7

Edit Item

Product name and min stock qty

should be edited as well.

Editing currently supports only certain attributes. However, in
future versions, the editing function can be extended to include
minimum stock quantity and other additional fields, allowing the

system to be tailored to the specific needs of each company.

UATO09

Generate Load

Plan

The load plan diagram looks a bit
crowded, suggest have zoom in or

out.

The load plan diagram was designed to fit within a single screen to
ensure compatibility and ease of use on Android phones. However,
this approach limits visibility when dealing with complex load
plans containing many cargoes. Zoom or rotate options can be
implemented in future versions to enhance clarity and usability for

more detailed arrangements.

UATI1

Rearrange Cargo

Manually

Drag and drop function works, but

currently cargoes can overlap when

Overlap validation was not implemented to keep the drag and drop

function simple. Preventing overlap requires boundary checks and

193

rearranged manually.

grid alignment logic, which can be added later to ensure realistic

arrangements.

UATI3

View Load Plan
History

Prefer to have edit function so can
rearrange the cargo placement, no
need create a new one if using same

cargocs.

The saved load plan cannot be

edited.

Load plans are currently stored as final records for reference only.
Adding an edit feature in the future versions would save time by
letting users adjust existing plans without the need to recreate them

from scratch.

Table 7. 27: User Acceptance Testing Form (UAT).

194

User Acceptance Testing Form (UAT)

Name

Role / Position

Date of Testing
Testing Start Time Testing End Time
Test Case ID Test Case Title Test Steps Expected Results Status Comments

UATO1 Register a new user Tap + in the User List Screen. | Success alert ‘User
Enter Name, Email, Password. | added!’ shown. New
Tap Add. created user appears in

the user list with correct
name and email.

UATO02 Login an account User enters the assigned email | Users will be navigated
‘abc@gmail.com’ and to Home Screen with
password ‘123456’ in the login | welcome message.
page.

User clicks on the login button.
UATO03 Update an item’s User clicks ‘Product’ tab. A successful alert will be

195

stock quantity

Use ‘Search’ function in the
inventory list to find the
product to be adjusted.

Click the product card to opens
the product's description
screen.

Tap the ‘IN’ button, enter the

quantity and confirms.

displayed. The product's
inventory quantity and
status will be updated in
real time on the product’s

description screen.

UATO04

Update 3 items’ stock
quantity

User clicks the “Scan” tab.
The user scans the first item’s
barcode and adjusts the
quantity.

User clicks the ‘Scan’ icon at
the right bottom side in the
scan details screen and repeats
step 2 until there are no more
items to scan.

User clicks the ‘Product In’

A successful alert will be
displayed. The stock
quantity of scanned items

is updated accordingly.

196

button.

UATOS

View inventory list

Navigate to the Products tab
from the bottom menu.

View the complete list of
inventory items displayed on
the screen.

Use the category tabs or filter
option to display products by
category.

Select an inventory card to
open and view its detailed

information.

Product Detail screen
showing all details of

that product.

UATO06

Add a new item

The user clicks the “+” button
on the inventory list screen.
The user fills in the required
fields such as Product image,
Product name, Current stock

quantity, Category, and

A success message 1s
displayed: “Item added
successfully” and the
new item appears in the

inventory list

197

Minimum stock quantity

b

The user clicks the “Save’

button.

UATO7 Edit an item User selects the item to be Success alert displayed
edited from the inventory. ‘Product updated’.
Clicks the ‘three dots’ icon at Screen updates to show
the top right corner and selects | new name and category.
the ‘edit’ button.
Change product name and
category.
Tap Save to confirm changes.

UATO8 Delete an inventory The user selects the item to be | A success message is

item

deleted from the inventory.
The user clicks the ‘three dots’
icon at the top right corner and
selects the ‘trash bin’ icon
button.

The staff confirms the deletion

displayed ‘Item deleted
successfully’ and returns
back to the inventory list

screen.

198

by clicking ‘Delete’.

UATO09

Generate Load Plan
using custom
container size and

cargo dimension

The user taps the Load Plan tab
on the navigation bar.

The user selects the Set
Common Size option.

The user enters the container
dimensions and maximum load
capacity.

The user enters the cargo
dimensions.

The user returns to the Load
Plan tab and selects Plan Load.
The user chooses the container
and cargo added, then adjusts
the quantities.

The user taps Confirm
Selection.

The user reviews the generated

New container and cargo
are added into the
system. A load plan is

generated and saved.

199

load plan and taps Save.

UATIO

Generate Load Plan
using previously
defined container size

and cargo dimensions

The user taps the Load Plan tab
on the navigation bar.

The user selects the Plan Load
option.

The user chooses a previously
saved container from the list.
The user chooses one or more
previously saved cargo items.
The wuser adjusts the cargo
quantities as needed.

The user taps Confirm
Selection.

The user reviews the generated

load plan and taps Save.

A load plan with diagram
and space usage is

generated and saved.

UATI11

Rearranging cargo
item manually in a

load plan

The user opens the Load Plan
tab.

The user selects a container and

Cargo items can be
rearranged manually in

the diagram. The updated

200

cargo, then generates a load
plan.

On the Confirmation Details
screen, the user drags and
drops cargo items to rearrange
their positions.

The user taps the Save button.

arrangement is saved

successfully.

UATI2

Generate PDF report

The user opens the History tab.
The user selects a saved load
plan from the list.

On the Load Plan Detail
screen, the user taps the Export
to PDF button.

The system generates the PDF
and displays the option to view

or download it.

A PDF report is
generated successfully.
The PDF can be opened

or downloaded.

UATI13

View Load Plan
History

The wuser navigates to the

History tab.

The corresponding Load

Plan Detail screen is

201

The user searches by Load Plan
ID or uses the filter function to
filter by status.

The user taps the Load Plan

card from the list.

displayed with complete

information.

UAT14

View Load Plan
Details by Scanning
QR in PDF

The wuser navigates to the
History tab.

On the Load Plan History
screen, the user taps the Scan
button.

The user scans the QR code on

the printed PDF.

The QR code on the
printed PDF is scanned
successfully. The system
opens the corresponding

Load Plan Detail screen.

UATIS

Arrange Cargo
Checklist

The user opens the History tab.
The user selects a load plan with
status Pending.

On the Load Plan Detail screen,
the user taps the Arrange Cargo

option.

Cargo items can be
marked as arranged using
the checklist. The system
updates the load plan
status to Finished after

saving.

202

The user marks each cargo item
in the checklist as arranged.
The user taps the Save (Settled)

button.

203

7.5 System Usability Test (SUS)

In addition to User Acceptance Testing (UAT), a System Usability Test (SUS)
was conducted to evaluate the overall usability and user-friendliness of the
developed mobile application. While UAT focuses on validating whether the
system meets functional requirements, SUS is designed to measure users’
subjective perception of the system in terms of ease of use, efficiency, and
learnability.

The SUS questionnaire consisted of ten standardized statements rated
on a five-point Likert scale, ranging from Strongly Disagree (1) to Strongly
Agree (5). To conduct the SUS, each tester was given the questionnaire
immediately after completing the UAT session to ensure their feedback was
based on fresh experience. The same three testers who participated in UAT
also took part in the SUS evaluation, providing a consistent perspective across
both tests.

The testers completed the SUS individually and without external
influence, so their answers reflected their personal opinions. Once collected,
the responses were tabulated and scored using the standard SUS calculation
method. Each odd-numbered question was scored as the user’s response minus
1, while each even-numbered question was scored as 5 minus the user’s
response. The values were then summed up for each tester and multiplied by
2.5 to convert the raw score into a usability score out of 100. Finally, the three

testers’ scores were averaged to determine the overall SUS score of the system.

Table 7. 28: Template of SUS form.

Participant No:

Name

Question Strongly Strongly
Disagree Agree

1 2 3 4 5

1. I think that I would like to use this
inventory and load planning app

frequently.

2. I found the app unnecessarily complex

204

when managing inventory or planning

loads.

3. I thought the app was easy to use.

4. I think that I would need the support of

a technical person to be able to use this

app.

5. I found the barcode scanning,
inventory, and load planning functions in

this app were well integrated.

6. I experienced inconsistencies in the
app (e.g., navigation, layout, or

functions) that made it harder to use.

7. 1 believe new users can learn to use

this app without much difficulty.

8. I found the app cumbersome to use
when performing tasks like scanning or

arranging cargo.

9.1 felt very confident using the app to
manage inventory and generate load

plans.

10. I needed to learn a lot of things
before I could start using this app
effectively.

1. What do you like most about the app?

2. What did you like the least about the app?

3. Did you face any bugs, errors, or unexpected behavior while using the

system? If yes, please describe.

4. Do you have any suggestions for improving the system?

205

The results of the System Usability Test (SUS) show that the three
testers gave overall usability scores of 87.5%, 87.5%, and 80.0%, with an
average SUS score of 85.0%. According to the standard SUS benchmark scale,
a score above 68 is considered above average, while scores above 80 are
regarded as excellent. Therefore, the obtained score of 85 places the developed
system in the “Excellent Usability” category (Grade A).

This result indicates that testers found the system easy to use,
efficient, and user-friendly, with minimal difficulties in performing tasks such
as scanning items, updating stock, and generating load plans. While the UAT
comments highlighted some areas for improvement, the high SUS score
confirms that the system is already highly usable and well-accepted by its

intended users.

Table 7. 29: Summary of SUS Survey Results.

Tester Usability score for each question Total | Percentage
1234|567 8|9 10 (%)

1 3144141433433 35 87.5

2 4 141414 3|13 (3]3]14]3 35 87.5

3 313141453 3131313 32 80

Average SUS Score 85

Grade A

Apart from the standard System Usability Scale (SUS) questionnaire,
several open-ended questions were also included to give testers the
opportunity to share their personal opinions about the system. The summary of
their responses is shown below, highlighting what they liked most, what they

liked least, any issues they faced, and their suggestions for improvement.

The testers highlighted several key strengths of the system,
particularly the features that made their daily work faster and easier. Their

comments are summarized in the table below.

206

Table 7. 30: Summary of Testers’ Feedback on the Most Liked Features.

What testers liked most about the app:

The scan function is useful and quick to tracking item. My company currently
use Excel to record stock quantity, which is time-consuming and sometime
have typo mistakes. So having the scanning barcode allows the stock to be

updated instantly in the system.

The automatic arranges cargo feature. It is better than draw one by one cargo
using Excel and fit it to the container, as my company currently does, take
around 1 hours for 1 plan. With this app, it auto generates the arrangement, I

just check only, maybe 5 minutes can finish already.

Overall the system is good, easy to use and quite straightforward.

Across all three testers, no significant weaknesses or bugs were
reported. Two testers explicitly stated that they had no dislikes, while one
mentioned that the system overall worked smoothly without errors or crashes.
This feedback indicates that the system was generally stable and well-received,

with no major usability concerns raised.
Although the testers were satisfied with the system overall, the testers
also provided constructive suggestions for future enhancements. Their

feedback is summarized in the table below.

Table 7. 31: Summary of Testers’ Suggestions for System Improvement.

Suggestions for improvement:

I think it’s better if got history record for stock updates, so can know who
update the stock, when update, and how many change each time. In business
this is important, because sometimes stock got wrong number, then very hard
to find why. If got history, manager can trace back to see who update wrong

and correct it faster.

The load plan diagram all shows in one screen, so a bit crowded and hard to
see clearly. If can add zoom in or out, then easier or maybe got computer

version to do it also better.

No

207

CHAPTER 8

CONCLUSION

8.1 Conclusion

This project focuses on developing a mobile application for inventory tracking
with barcode scanning and cargo load planning optimization. The main
motivation is to overcome the inefficiencies of traditional manual or Excel-
based methods, which are often time-consuming and prone to human error. By
combining inventory management and load planning into a single application,
the system provides a faster, more accurate, and more user-friendly solution
for small and medium-sized enterprises (SMEs), particularly for storekeepers
and logistics staff.

In the initial phase, the project focuses on identifying the problem,
defining objectives, and gathering requirements. A literature review is
conducted to study traditional inventory methods, manual load planning
techniques, and existing applications, while interviews and observations are
used to validate the practical needs of storekeepers and logistics staff.
Requirements are then modelled using use cases, interface flows, and initial
prototypes.

The middle phase concentrates on designing and implementing the
system. The architecture is structured into clear modules, supported by
Firebase Firestore for real-time data management. Features such as user
management, inventory tracking with barcode scanning, cargo load planning
with both automated algorithms and manual drag-and-drop, as well as report
generation with PDF and QR code support, are developed.

Finally, in the last phase, the system is tested and validated. Unit
testing and integration testing confirm the correctness of individual modules
and their interactions. User Acceptance Testing (UAT) is carried out with
three testers, all of whom pass successfully. The System Usability Test (SUS)
further validates the user-friendliness of the application, producing an
excellent average usability score of 85%. Feedback collected highlights

strengths such as the barcode scanning and automatic cargo arrangement

208

features, while also pointing out potential improvements including stock
history tracking and enhanced load plan visualization.

In summary, the project successfully achieves its objectives and
delivers a functional mobile application that integrates inventory management

with cargo load planning in a practical and efficient way.

8.2 Objective Achievements
The project set out three main objectives as outlined in Chapter 1, all of which

were successfully achieved during the development and testing process.

1. To conduct a thorough study of algorithms for generating
optimal cargo load plans for vehicles.

2. To develop a functional mobile app for inventory tracking with
integrated cargo load planning and optimization features for
vehicle space utilization.

3. To evaluate the developed mobile app with Unit Test, System
Usability Scale (SUS) and User Acceptance Testing (UAT).

The first objective is achieved through an in-depth literature review of
existing load planning algorithms, including the Biased Random-Key Genetic
Algorithm (BRKGA) and the Binary Tree Bin Packing algorithm. After
comparison, the Binary Tree Bin Packing algorithm is selected and
implemented in the system because it provides faster and more consistent
results with lower computational complexity, making it more suitable for
SMESs and mobile environments than BRKGA.

The second objective is fully accomplished with the successful
development of a mobile application using React Native and Firebase Firestore.
The application integrates multiple modules, such as user management,
inventory tracking with barcode scanning, stock quantity updates, load plan
generation using the selected algorithm, manual cargo rearrangement through
drag-and-drop, and load plan reporting through PDF export and QR code

scanning. Together, these features form a practical and functional solution that

209

enables SMEs to manage inventory effectively while optimizing vehicle space
utilization.

Lastly, the third objective is also achieved. Unit testing is carried out
to validate the correctness of individual modules, while integration testing
confirms smooth interaction between system components. User Acceptance
Testing (UAT) is conducted with three testers, covering 15 test cases, all of
which pass successfully. In addition, a System Usability Test (SUS) is
performed, which results in an excellent usability score of 85% (Grade A).
This outcome demonstrates that the developed system is not only functional
but also user-friendly, efficient, and well-accepted by its intended end users.
8.3 Limitations and Recommendations of Future Work
Although the developed mobile application successfully meets its stated
objectives, there are still several limitations in its current version. These
limitations arise mainly from the simplified assumptions made during
development, the scope constraints defined at the start of the project, and the
need to balance usability with technical complexity. To address these issues,
several recommendations have been identified for future improvements, which

are outlined together with the limitations in the following table.

Table 8. 1: Limitation and Recommendations.

Limitations Recommendations

1 No user role differentiation Implement a role-based access

At present, all users share the | control system where admin can
same access level and functions. | manage users and perform critical
This may not reflect real business | actions, while staff are limited to

environments, where admin, | day-to-day operations.

managers, and staff need different

levels of access and control.

2 Cargo assumptions and | Enhance the algorithm to support

constraints
The system assumes all cargo

items are rectangular or square,

irregular and cylindrical cargo
shapes and integrate rules for

weight distribution, fragility, and

210

and it does not account for
irregular shapes, cylindrical items,
weight distribution, fragility, or
stacking limitations. This may
lead to wasted space or unsafe

arrangements in real-world use.

stacking restrictions. This will

make the system more realistic and
suitable for

complex logistics

environments.

No history record for stock
updates

The system does not keep track of
who updated the stock, when it
was updated, and how much was
This

changed. reduces

transparency and makes it

difficult to trace errors.

Add a stock update history log that
records each update with details
such as user, date or time, and
change in quantity. This feature
help track errors and provide a
more realistic record for business

operations.

Manual drag-and-drop cargo
arrangement allows overlap

Currently, users can place cargo
items on top of each other, which
is not realistic and may result in

confusion.

Implement boundary checks and
snap-to-grid alignment to prevent

overlapping cargo. This will

ensure more accurate
arrangements and better reflect

physical loading constraints.

Load plan diagram can be
crowded on mobile screens

When multiple cargoes are
displayed in one container, the
diagram becomes difficult to read

on smaller devices.

Add zoom and rotate functions to
improve visibility. Additionally,
consider developing a desktop or
web-based version of the system
for complex load plans where

more screen space is required.

211

REFERENCES

Asia-Pacific Economic Cooperation. (2017). Current Situation of Heavy
Vehicle Overloading in Malaysia. [online] Available at:
https://mddb.apec.org/Documents/2017/TPTWG/WKSP1/17_%20tptwg_
wkspl 018.pdf.

Barratt, M., Kull, T.J. and Sodero, A.C. (2018). Inventory record inaccuracy
dynamics and the role of employees within multi-channel distribution

center inventory systems. Journal of Operations Management, 63(1),
pp.6—24. doi: https://doi.org/10.1016/j.jom.2018.09.003.

BYJUS. (n.d.). Cube and Cuboid Shape (Definition, Formulas & Properties).
[online] Available at: https://byjus.com/maths/cuboid-and-cube/.

Chan, C.W., Sathiapriya, A.R. and Razali, N.F. (2023). Inventory
Management Systems (IMS). Journal of Applied Technology and
Innovation, [online] 7(3), pp.2600—7304. doi:
http://dx.doi.org/10.1088/1742-6596/1573/1/012038.

Chopra, C. (2021). Why Manual Inventory Tracking Must Be Replaced with
Automated Inventory Tracking? [online] Infizo. Available at:
https://www.infizo.com/stock/blog/manual-vs-automated-inventory-
tracking.

Douglas, C. (2025). An Ultimate Guide to Throwaway Prototyping - Visily.
[online] www.visily.ai. Available at:
https://www.visily.ai/blog/throwaway-prototyping/.

Gaur, P. (2023). The Importance of Load Planning: Tips for Efficient and Safe
Shipment. [online] Cargoflip.com. Available at:
https://www.cargoflip.com/post/load-planning#google vignette.

GeeksforGeeks. (2025). Software Engineering | Incremental process model -
GeeksforGeeks. [online] Available at:
https://www.geeksforgeeks.org/software-engineering-incremental-
process-model/.

Gongalves, J.F. and Resende, M.G.C. (2013). A biased random key genetic
algorithm for 2D and 3D bin packing problems. International Journal of
Production Economics, [online] 145(2), pp.500-510. doi:
https://doi.org/10.1016/].1jpe.2013.04.019.

212

Gordon, J. (2011). Binary Tree Bin Packing Algorithm. [online]
Codeincomplete.com. Available at:
https://codeincomplete.com/articles/bin-packing/.

Kuhn, J. (2021). The Financial Impact of Manual Inventory Record Errors.
International Journal of Business and Social Science, [online] 12(10),
pp.4-5. doi: https://doi.org/10.30845/ijbss.v12n10p2.

Londe, M.A., Pessoa, L.S., Andrade, C.E. and Resende, M.G.C. (2024).
Biased random-key genetic algorithms: A review. European Journal of
Operational Research, 321(1), pp.1-22. doi:
https://doi.org/10.1016/j.ejor.2024.03.030.

Madamidola, O.A., Daramola, O., Akintola, K. and Adeboje, O. (2024). A
Review of Existing Inventory Management Systems. International
Journal of Research in Engineering and Science, [online] 12(9), pp.40—
50. Available at:
https://www.researchgate.net/publication/383947700 A Review of Exis
ting Inventory Management Systems.

Ministry of Transport Malaysia (2021). Land Transportation Acts. [online]
Mot.gov.my. Available at: https://www.mot.gov.my/en/land/acts-and-
regulations/land-transportation.

Perera, M., Hettiarachchi, M., Pabasara, T., Kulasekara, V. and Parindya, J.
(2022). Study on Throwaway Prototyping Model over PcD.UcT Model.
SW Modelling Cl Wk2, [online] p.2. doi:
https://doi.org/10.13140/RG.2.2.27238.50243.

Saraiva, R.D., Nepomuceno, N. and Pinheiro, P.R. (2015). A layer-building
algorithm for the three-dimensional multiple bin packing problem: a case
study in an automotive company. [FAC-PapersOnLine, 48(3), pp.490—
495. doi: https://doi.org/10.1016/j.ifacol.2015.06.129.

Setrag Shahikian (2024). Finale Inventory. [online] Finale Inventory.
Available at: https://www.finaleinventory.com/inventory-
management/manual-vs-automated-inventory-management-key-
distinctions-explained-ecommerce.

APPENDICES

Appendix A: Interview Questions.

213

Project Title: Developing an App for Streamlined Inventory Tracking with
Barcode Scanning and Load Planning Optimization

Interview Questions
Section 1: General Information

AWM=

Can you introduce yourself and your role in your company?

How many years of experience do you have in your career?

What type of inventory does your company manage?

Does your company currently use any inventory management system? If
yes, which one?

Section 2: Inventory Tracking

5.

6.
7.

How does your company currently track inventory (Barcode scanning
system/ Spreadsheets (e.g., Excel, Google Sheets) / Inventory
Management Software)?

How often do you conduct inventory audits?

How do you ensure inventory data accuracy and prevent discrepancies?

Section 3: Barcode Scanning Integration

8.

10.

11.

12.

Do you currently use barcode scanning in your inventory tracking? If yes,
how effective is it?

If the answer to Question 8 is yes, proceed to Questions 9-12; otherwise,
skip to Question 13

What type of barcode scanners (Handheld / Mobile App-based / Fixed-
mount) or technology do you use?

What challenges do you face when using barcode scanning for inventory
tracking?

Are there any specific software limitations you face with your current
barcode scanning system?

What features or improvements would make barcode scanning more
efficient for your company?

Section 4: Load Planning Optimization

13.

14.

15.

16.
17.

How does your company currently handle the placement of cargo into
containers or vehicles?

What are the key factors you consider when planning load optimization
(e.g., weight distribution, space utilization, delivery schedules)?

What challenges do you face in load planning?

How much time do you typically spend on load planning?

Would your organization be interested in a system that optimizes load
planning automatically?

Section 5: User Experience & App Development

18.

19.

20.

21.

22.

What features would you expect in an inventory tracking and load planning
app?

Do you require integration with existing systems (e.g., ERP, warehouse
management software)?

What platforms (mobile, tablet, desktop) would you prefer for using this
application?

Are there any additional suggestions for improving an inventory tracking
app? Please specify below.

Would you be open to testing a prototype and providing feedback during
the development process?

Appendix B: Manual Sketch of Cargo Layout in Excel.

214

@ Autosave '~ % Bookl1 « Saved to this PC v £ search
File Home Insert Pagelayout Formulas Data Review View Automate Developer Help
(B4 = dr Jaa = =(g]w R [senera 1 B B s=E
m~ : ¢ |
Paste B I U- Gl Ay Merge & Center ~ | B8 ~ O o o Conditional Formatas Cell Insert Delete Format
- = S A B Merg B-% % %N Formatting > Table v Styles v v v
Clipboard 5 Font Alignment E Number El Styles Cells
u25 v fiv
A B (o} D E F G H |] K L M N (0] P
1 28fts 31/01/25 8.30am BDA (Main
2
3 s000x730 1500730 13004710 100370 200, 7
4 lsbase2) (6708526) G ecivir @nasrijersm) e
(SNaAPORE] (e (aiavea) [l faees 7021332003001 Ry Sosuz0s 3 (MALAYSIR)
5 o o B o ¢
6
7 ’ 12000 0. 1e00x730
lorirzs) (e7ass51)
8 | Lorry usmiLise sossin i el 72047175 (]
9 | Head ! = (= emian) s
10
1 onam) |, e, e || e
12 PR || 7o Casay | | s =
13
14
15
16 A 0 C 5 I - =
17 83179116-R0 | 83511890-RO 83156154-R2 83510819-R1 | 83015765-R8 53174343-R0 | 83170379-R2 | 85118028-R0_| [g3310647-R2 | 53081328R4
18 83310157-R0 | 83179117-R0 2 83510820-R1 | 83087438-R1 83013609-R1 | 83170380-R2 | B85169853-R3 | | 37004713-R5 | | 830413275
o 38923877-R3 | 83194695-R1 83137710.R2 | | 63087443-R0 | 83087442-R1 53101589-R3 | 83108479-R1 | 83528847-R2 53038537RL
20 83192055-R1 83194696-R1 83139787-R1 83100368-R0O 83094555-R0 83505789-R1 83109200-R0 83512814-R1 83039197-RL
o 83179118-R0_| 38400443-R8 §3143273.R3 | | _B3092817-R1 | 83022486-R3 83085612-R0 83150914-R2 e
83510162-R0_| 83516379-RO 83095770-R2 83056053-R1 | 83004795-R1 83082607-R0 83150915-R2
2z 83301769-R0_| 83319869-R1 83137348 R5 83158159-R2 | 83165638-R4 | 83082061-RO
23 83151230-R1 83310164-R1 83576344-R0 | 83165639-R4 83174667-R0
24
25
26
27
28
29
30
31
< > 31 4 o ——

215

Appendix C-1: User Acceptance Testing Result of Tester 1.

User Acceptance Testing Form (UAT)
Name Yuki
Role / Position Warehouse Manager of 4 Beans Cafe
Date of Testing 9/9/2025
Testing Start Time 9.33am Testing End Time 10.57am
Test Case ID Test Case Title Test Steps Expected Results Status Comments
UATO1 Register anew user | 1. Tap + in the User List Screen. Success alert ‘User Pass
2. Enter Name, Email, Password. added!” shown. New
3. Tap Add. created user appears in
the user list with correct
name and email.
UATO02 Login an account 1. User enters the assigned email Users will be navigated Pass
‘abc(@gmail.com’ and password | to Home Screen with
‘123456’ in the login page. welcome message.
2. User clicks on the login button.
UATO03 Update an item’s 1. User clicks ‘Product’ tab. A successful alert will be Pass No history
stock quantity 2. Use ‘Search’ function in the displayed. The product's record to know

216

inventory list to find the product
to be adjusted.

Click the product card to opens
the product's description screen.
Tap the ‘IN’ button, enter the

quantity and confirms.

inventory quantity and
status will be updated in
real time on the product’s

description screen.

who, when, how
many stock

updated before.

UATO04

Update 3 items’ stock
quantity

. User clicks the “Scan” tab.

The user scans the first item’s
barcode and adjusts the

quantity.

. User clicks the ‘Scan’ icon at

the right bottom side in the scan
details screen and repeats step 2
until there are no more items to
scan.

User clicks the ‘Product In’

button.

A successful alert will be
displayed. The stock
quantity of scanned items

is updated accordingly.

Pass

UATO5

View inventory list

. Navigate to the Products tab

Product Detail screen

Pass

Filter function is

217

from the bottom menu.

. View the complete list of

inventory items displayed on the

screen.

. Use the category tabs or filter

option to display products by
category.

Select an inventory card to open
and view its detailed

information.

showing all details of

that product.

enough for this
app, but prefer
more methods to
search like by
supplier, by
expiry date in the

future.

UATO06

Add a new item

The user clicks the “+” button
on the inventory list screen.
The user fills in the required
fields such as Product image,
Product name, Current stock
quantity, Category, and
Minimum stock quantity.

The user clicks the ‘Save’

A success message is
displayed: “Item added
successfully” and the
new item appears in the

inventory list

Pass

218

button.
UATO7 Edit an item . User selects the item to be Success alert displayed Pass Min stock qty
edited from the inventory. ‘Product updated’. should be edited
Clicks the ‘three dots’ icon at Screen updates to show as well.
the top right corner and selects | new name and category.
the ‘edit’ button.
Change product name and
category.
Tap Save to confirm changes.
UATOS8 Delete an inventory The user selects the item to be A success message is Pass
item deleted from the inventory. displayed ‘Item deleted
The user clicks the ‘three dots’ | successfully’ and returns
icon at the top right corner and | back to the inventory list
selects the ‘trash bin’ icon screen.
button.
The staff confirms the deletion
by clicking ‘Delete’.
UATO09 Generate Load Plan The user taps the Load Plan tab | New container and cargo Pass

219

using custom
container size and

cargo dimension

on the navigation bar.

The user selects the Set
Common Size option.

The user enters the container
dimensions and maximum load
capacity.

The user enters the cargo
dimensions.

The user returns to the Load
Plan tab and selects Plan Load.
The user chooses the container
and cargo added, then adjusts
the quantities.

The user taps Confirm
Selection.

The user reviews the generated

load plan and taps Save.

are added into the
system. A load plan is

generated and saved.

UATI0

Generate Load Plan

The user taps the Load Plan tab

A load plan with diagram

Pass

220

using previously
defined container size

and cargo dimensions

on the navigation bar.

The user selects the Plan Load
option.

The user chooses a previously
saved container from the list.
The user chooses one or more
previously saved cargo items.
The wuser adjusts the cargo
quantities as needed.

The user taps Confirm
Selection.

The user reviews the generated

load plan and taps Save.

and space usage is

generated and saved.

UATI11

Rearranging cargo
item manually in a

load plan

The user opens the Load Plan
tab.

The user selects a container and
cargo, then generates a load

plan.

Cargo items can be
rearranged manually in
the diagram. The updated
arrangement is saved

successfully.

Pass

221

On the Confirmation Details
screen, the user drags and drops
cargo items to rearrange their
positions.

The user taps the Save button.

UATI2

Generate PDF report

The user opens the History tab.
The user selects a saved load
plan from the list.

On the Load Plan Detail screen,
the user taps the Export to PDF
button.

The system generates the PDF
and displays the option to view

or download it.

A PDF report is
generated successfully.
The PDF can be opened

or downloaded.

Pass

UATI3

View Load Plan
History

The wuser navigates to the
History tab.
The user searches by Load Plan

ID or uses the filter function to

The corresponding Load
Plan Detail screen is
displayed with complete

information.

Pass

The saved load
plan cannot be

edited.

222

filter by status.
The user taps the Load Plan

card from the list.

UATI14 View Load Plan The wuser navigates to the | The QR code on the Pass
Details by Scanning History tab. printed PDF is scanned
QR in PDF On the Load Plan History | successfully. The system
screen, the user taps the Scan | opens the corresponding
button. Load Plan Detail screen.
The user scans the QR code on
the printed PDF.
UATI15 Arrange Cargo The user opens the History tab. | Cargo items can be Pass
Checklist The user selects a load plan with | marked as arranged using

status Pending.

On the Load Plan Detail screen,
the user taps the Arrange Cargo
option.

The user marks each cargo item

in the checklist as arranged.

the checklist. The system
updates the load plan
status to Finished after

saving.

223

5. The user taps the Save (Settled)

button.

224

Appendix C-2: User Acceptance Testing Result of Tester 2.

User Acceptance Testing Form (UAT)
Name Ms Jesther
Role / Position Logistics Assistant Manager, Ametal Tech Sdn. Bhd.
Date of Testing 11/9/2025
Testing Start Time 10.14am Testing End Time 12.07pm
Test Case ID Test Case Title Test Steps Expected Results Status Comments
UATO1 Register anew user | 1. Tap + in the User List Screen. Success alert ‘User Pass
2. Enter Name, Email, Password. added!” shown. New
3. Tap Add. created user appears in
the user list with correct
name and email.
UATO02 Login an account 1. User enters the assigned email Users will be navigated Pass
‘abc(@gmail.com’ and password | to Home Screen with
‘123456’ in the login page. welcome message.
2. User clicks on the login button.
UATO03 Update an item’s 1. User clicks ‘Product’ tab. A successful alert will be Pass
stock quantity 2. Use ‘Search’ function in the displayed. The product's

225

inventory list to find the product
to be adjusted.

Click the product card to opens
the product's description screen.
Tap the ‘IN’ button, enter the

quantity and confirms.

inventory quantity and
status will be updated in
real time on the product’s

description screen.

UATO04

Update 3 items’ stock
quantity

. User clicks the “Scan” tab.

The user scans the first item’s
barcode and adjusts the

quantity.

. User clicks the ‘Scan’ icon at

the right bottom side in the scan
details screen and repeats step 2
until there are no more items to
scan.

User clicks the ‘Product In’

button.

A successful alert will be
displayed. The stock
quantity of scanned items

is updated accordingly.

Pass

UATO5

View inventory list

. Navigate to the Products tab

Product Detail screen

Pass

226

from the bottom menu.

View the complete list of
inventory items displayed on the
screen.

Use the category tabs or filter
option to display products by
category.

Select an inventory card to open
and view its detailed

information.

showing all details of

that product.

UATO06

Add a new item

The user clicks the “+” button
on the inventory list screen.
The user fills in the required
fields such as Product image,
Product name, Current stock
quantity, Category, and
Minimum stock quantity.

The user clicks the ‘Save’

A success message is
displayed: “Item added
successfully” and the
new item appears in the

inventory list

Pass

227

button.
UATO07 Edit an item . User selects the item to be Success alert displayed Pass
edited from the inventory. ‘Product updated’.
Clicks the ‘three dots’ icon at Screen updates to show
the top right corner and selects | new name and category.
the ‘edit’ button.
Change product name and
category.
Tap Save to confirm changes.
UATOS8 Delete an inventory The user selects the item to be A success message is Pass
item deleted from the inventory. displayed ‘Item deleted
The user clicks the ‘three dots’ | successfully’ and returns
icon at the top right corner and | back to the inventory list
selects the ‘trash bin’ icon screen.
button.
The staff confirms the deletion
by clicking ‘Delete’.
UAT09 Generate Load Plan The user taps the Load Plan tab | New containers and Pass The load plan

228

using custom
container size and

cargo dimension

on the navigation bar.

The user selects the Set
Common Size option.

The user enters the container
dimensions and maximum load
capacity.

The user enters the cargo
dimensions.

The user returns to the Load
Plan tab and selects Plan Load.
The user chooses the container
and cargo added, then adjusts
the quantities.

The user taps Confirm
Selection.

The user reviews the generated

load plan and taps Save.

cargo are added into the
system. A load plan is

generated and saved.

diagram looks a
bit crowded,
suggest have

zoom in or out.

UATI0

Generate Load Plan

The user taps the Load Plan tab

A load plan with diagram

Pass

229

using previously
defined container size

and cargo dimensions

on the navigation bar.

The user selects the Plan Load
option.

The user chooses a previously
saved container from the list.
The user chooses one or more
previously saved cargo items.
The wuser adjusts the cargo
quantities as needed.

The user taps Confirm
Selection.

The user reviews the generated

load plan and taps Save.

and space usage is

generated and saved.

UATI11

Rearranging cargo
item manually in a

load plan

The user opens the Load Plan
tab.

The user selects a container and
cargo, then generates a load

plan.

Cargo items can be
rearranged manually in
the diagram. The updated
arrangement is saved

successfully.

Pass

Drag and drop
function works,
but currently
cargoes can

overlap when

230

On the Confirmation Details
screen, the user drags and drops
cargo items to rearrange their
positions.

The user taps the Save button.

rearranged

manually.

UATI2

Generate PDF report

The user opens the History tab.
The user selects a saved load
plan from the list.

On the Load Plan Detail screen,
the user taps the Export to PDF
button.

The system generates the PDF
and displays the option to view

or download it.

A PDF report is
generated successfully.
The PDF can be opened

or downloaded.

Pass

UATI3

View Load Plan
History

The wuser navigates to the
History tab.
The user searches by Load Plan

ID or uses the filter function to

The corresponding Load
Plan Detail screen is
displayed with complete

information.

Prefer to have
edit function so
can rearrange the

cargo placement,

231

filter by status.
The user taps the Load Plan

card from the list.

no need create a
new one if using

Same cargocs.

UATI14 View Load Plan The wuser navigates to the | The QR code on the Pass
Details by Scanning History tab. printed PDF is scanned
QR in PDF On the Load Plan History | successfully. The system
screen, the user taps the Scan | opens the corresponding
button. Load Plan Detail screen.
The user scans the QR code on
the printed PDF.
UATI15 Arrange Cargo The user opens the History tab. | Cargo items can be Pass
Checklist The user selects a load plan with | marked as arranged using

status Pending.

On the Load Plan Detail screen,
the user taps the Arrange Cargo
option.

The user marks each cargo item

in the checklist as arranged.

the checklist. The system
updates the load plan
status to Finished after

saving.

232

5. The user taps the Save (Settled)

button.

233

Appendix C-3: User Acceptance Testing Result of Tester 3.

User Acceptance Testing Form (UAT)
Name Mr Luo
Role / Position Worker of TaiYi Machinery Equipment Co., Ltd.
Date of Testing 15/9/2025
Testing Start Time 3.49pm Testing End Time | 4.22pm
Test Case ID Test Case Title Test Steps Expected Results Status Comments
UATO1 Register anew user | 1. Tap + in the User List Screen. Success alert ‘User Pass Prefer to have
2. Enter Name, Email, Password. added!” shown. New different role like
3. Tap Add. created user appears in admin or staff to
the user list with correct differentiate.
name and email.
UATO02 Login an account 1. User enters the assigned email Users will be navigated Pass
‘abc(@gmail.com’ and password | to Home Screen with
‘123456’ in the login page. welcome message.
2. User clicks on the login button.
UATO03 Update an item’s 1. User clicks ‘Product’ tab. A successful alert will be Pass Can have push
stock quantity 2. Use ‘Search’ function in the displayed. The product's alert when the

234

inventory list to find the product
to be adjusted.

Click the product card to opens
the product's description screen.
Tap the ‘IN’ button, enter the

quantity and confirms.

inventory quantity and
status will be updated in
real time on the product’s

description screen.

stock low.

UATO04

Update 3 items’ stock
quantity

. User clicks the “Scan” tab.

The user scans the first item’s
barcode and adjusts the

quantity.

. User clicks the ‘Scan’ icon at

the right bottom side in the scan
details screen and repeats step 2
until there are no more items to
scan.

User clicks the ‘Product In’

button.

A successful alert will be
displayed. The stock
quantity of scanned items

is updated accordingly.

Pass

UATO5

View inventory list

. Navigate to the Products tab

Product Detail screen

Pass

235

from the bottom menu.

View the complete list of
inventory items displayed on the
screen.

Use the category tabs or filter
option to display products by
category.

Select an inventory card to open
and view its detailed

information.

showing all details of

that product.

UATO06

Add a new item

The user clicks the “+” button
on the inventory list screen.
The user fills in the required
fields such as Product image,
Product name, Current stock
quantity, Category, and
Minimum stock quantity.

The user clicks the ‘Save’

A success message is
displayed: “Item added
successfully” and the
new item appears in the

inventory list

Pass

236

button.
UATO07 Edit an item . User selects the item to be Success alert displayed Pass
edited from the inventory. ‘Product updated’.
Clicks the ‘three dots’ icon at Screen updates to show
the top right corner and selects | new name and category.
the ‘edit’ button.
Change product name and
category.
Tap Save to confirm changes.
UATOS8 Delete an inventory The user selects the item to be A success message is Pass
item deleted from the inventory. displayed ‘Item deleted
The user clicks the ‘three dots’ | successfully’ and returns
icon at the top right corner and | back to the inventory list
selects the ‘trash bin’ icon screen.
button.
The staff confirms the deletion
by clicking ‘Delete’.
UATO09 Generate Load Plan The user taps the Load Plan tab | New container and cargo Pass

237

using custom
container size and

cargo dimension

10.

on the navigation bar.

The user selects the Set
Common Size option.

The user enters the container
dimensions and maximum load
capacity.

The user enters the cargo
dimensions.

The user returns to the Load
Plan tab and selects Plan Load.
The user chooses the container
and cargo added, then adjusts
the quantities.

The user taps Confirm
Selection.

The user reviews the generated

load plan and taps Save.

are added into the
system. A load plan is

generated and saved.

UATI0

Generate Load Plan

The user taps the Load Plan tab

A load plan with diagram

Pass

238

using previously
defined container size

and cargo dimensions

on the navigation bar.

The user selects the Plan Load
option.

The user chooses a previously
saved container from the list.
The user chooses one or more
previously saved cargo items.
The wuser adjusts the cargo
quantities as needed.

The user taps Confirm
Selection.

The user reviews the generated

load plan and taps Save.

and space usage is

generated and saved.

UATI11

Rearranging cargo
item manually in a

load plan

The user opens the Load Plan
tab.

The user selects a container and
cargo, then generates a load

plan.

Cargo items can be
rearranged manually in
the diagram. The updated
arrangement is saved

successfully.

Pass

239

On the Confirmation Details
screen, the user drags and drops
cargo items to rearrange their
positions.

The user taps the Save button.

UATI2

Generate PDF report

The user opens the History tab.
The user selects a saved load
plan from the list.

On the Load Plan Detail screen,
the user taps the Export to PDF
button.

The system generates the PDF
and displays the option to view

or download it.

A PDF report is
generated successfully.
The PDF can be opened

or downloaded.

Pass

UATI3

View Load Plan
History

The wuser navigates to the
History tab.
The user searches by Load Plan

ID or uses the filter function to

The corresponding Load
Plan Detail screen is
displayed with complete

information.

240

filter by status.
The user taps the Load Plan

card from the list.

UATI14 View Load Plan The wuser navigates to the | The QR code on the Pass
Details by Scanning History tab. printed PDF is scanned
QR in PDF On the Load Plan History | successfully. The system
screen, the user taps the Scan | opens the corresponding
button. Load Plan Detail screen.
The user scans the QR code on
the printed PDF.
UATI15 Arrange Cargo The user opens the History tab. | Cargo items can be Pass
Checklist The user selects a load plan with | marked as arranged using

status Pending.

On the Load Plan Detail screen,
the user taps the Arrange Cargo
option.

The user marks each cargo item

in the checklist as arranged.

the checklist. The system
updates the load plan
status to Finished after

saving.

241

5. The user taps the Save (Settled)

button.

Appendix D-1: SUS Test Result of Tester 1.

242

Participant No: 1

Name: Yuki

Question

Strongly

Disagree

Strongly
Agree

1 2 3

4 5

1. I think that I would like to use this
inventory and load planning app

frequently.

2. I found the app unnecessarily complex
when managing inventory or planning

loads.

3. I thought the app was easy to use.

4. I think that I would need the support of

a technical person to be able to use this

app.

5.1 found the barcode scanning,
inventory, and load planning functions in

this app were well integrated.

6. I experienced inconsistencies in the
app (e.g., navigation, layout, or

functions) that made it harder to use.

7. 1 believe new users can learn to use

this app without much difficulty.

8. I found the app cumbersome to use
when performing tasks like scanning or

arranging cargo.

9. 1 felt very confident using the app to
manage inventory and generate load

plans.

10. I needed to learn a lot of things
before I could start using this app

243

effectively.

1. What do you like most about the app?

The scan function is useful and quick to tracking item. My company currently

use Excel to record stock quantity, which is time-consuming and sometime

have typo mistakes. So having the scanning barcode allows the stock to be

updated instantly in the system.

2. What did you like the least about the app?
No

3. Did you face any bugs, errors, or unexpected behaviour while using the
system? If yes, please describe.

No, overall worked smoothly.

4. Do you have any suggestions for improving the system?

1 think it’s better if got history record for stock updates, so can know who

update the stock, when update, and how many change each time. In business

this is important, because sometimes stock got wrong number, then very hard

to find why. If got history, manager can trace back to see who update wrong

and correct it faster.

Appendix D-2: SUS Test Result of Tester 2.

244

Participant No: 2

Name Ms Jesther

Question

Strongly

Disagree

Strongly
Agree

1 2 3

4 5

1. I think that I would like to use this
inventory and load planning app

frequently.

v

2. I found the app unnecessarily complex
when managing inventory or planning

loads.

3. I thought the app was easy to use.

4. I think that I would need the support of

a technical person to be able to use this

app.

5.1 found the barcode scanning,
inventory, and load planning functions in

this app were well integrated.

6. I experienced inconsistencies in the
app (e.g., navigation, layout, or

functions) that made it harder to use.

7. 1 believe new users can learn to use

this app without much difficulty.

8. I found the app cumbersome to use
when performing tasks like scanning or

arranging cargo.

9. 1 felt very confident using the app to
manage inventory and generate load

plans.

10. I needed to learn a lot of things
before I could start using this app

245

effectively.

1. What do you like most about the app?

The automatic arranges cargo feature. It is better than draw one by one cargo

using Excel and fit it to the container, as my company currently does, take

around 1 hours for 1 plan. With this app, it auto generates the arrangement, 1

just check only, maybe 5 minutes can finish already.

2. What did you like the least about the app?

None

3. Did you face any bugs, errors, or unexpected behavior while using the
system? If yes, please describe.

No

4. Do you have any suggestions for improving the system?

The load plan diagram all shows in one screen, so a bit crowded and hard to

see clearly. If can add zoom in or out, then easier or maybe got computer

version to do it also better.

Appendix D-3: SUS Test Result of Tester 3.

246

Participant No: 3

Name Mr Luo

Question

Strongly

Disagree

Strongly
Agree

1 2

4 5

1. I think that I would like to use this
inventory and load planning app

frequently.

2. I found the app unnecessarily complex
when managing inventory or planning

loads.

3. I thought the app was easy to use.

4. I think that I would need the support of

a technical person to be able to use this

app.

5.1 found the barcode scanning,
inventory, and load planning functions in

this app were well integrated.

6. I experienced inconsistencies in the
app (e.g., navigation, layout, or

functions) that made it harder to use.

7. 1 believe new users can learn to use

this app without much difficulty.

8. I found the app cumbersome to use
when performing tasks like scanning or

arranging cargo.

9. 1 felt very confident using the app to
manage inventory and generate load

plans.

10. I needed to learn a lot of things
before I could start using this app

247

effectively.

1. What do you like most about the app?

Overall the system is good, easy to use and quite straightforward.

2. What did you like the least about the app?
No

3. Did you face any bugs, errors, or unexpected behaviour while using the
system? If yes, please describe.

No

4. Do you have any suggestions for improving the system?

No

