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ABSTRACT 

 

Vehicle recognition systems are becoming increasingly essential for intelligent 

transportation, traffic surveillance, and security applications. For the purpose to 

identify vehicle attributes in real-time, this research provides a hybrid vehicle 

recognition system that is implemented as a web and mobile application. It 

combines deep learning and computer vision techniques. To extract license 

plates, colors, makes, models, and production years of vehicles, the system 

mainly uses EasyOCR and YOLOv8 with multi-attribute detection. A refined 

GPT-4o visual-language model (VLM) acts as a fallback, improving recognition 

reliability in edge instances when YOLOv8 and EasyOCR would not yield 

reliable results. The approach involves capturing pictures of vehicles from 

cameras or user uploads, processing them using the pipeline for detection and 

OCR, then using the GPT-4o VLM to verify the outcomes. The system's 

modular design provides seamless connection with web and mobile platforms, 

enabling real-time performance and scalability. It is expected to work reliably 

across a variety of lighting situations, angles, and occlusions. The study shows 

a potential approach for enhancing the recognition of vehicle attributes. Future 

research will involve adding more unusual vehicle kinds to the dataset, refining 

the model inference for edge devices, and integrating predictive analytics for 

anomaly detection and vehicle tracking. 

Keywords: vehicle recognition; YOLOv8; EasyOCR; GPT-4o; deep learning; 

computer vision; license plate recognition 

Subject Area: T58.5-58.64 Information technology 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Systems for controlling vehicle access are essential for improving security, 

controlling traffic, and safeguarding restricted areas including residential 

complexes, industrial zones, and private parking lots. Conventional and current 

primarily utilized access control techniques frequently depend on technologies 

like RFID cards or tags and license plate recognition (LPR) or on security 

personnel manually verifying entries (Cayetano, 2024). However, human 

mistake can cause security breaches with manual checks and unfavorable 

weather can cause RFID-based devices to malfunction and reducing their 

dependability. Furthermore, license plate identification by itself has limits 

because access constraints can be bypassed by using forged or duplicate plates. 

These difficulties show that more sophisticated, reliable, and secure car 

recognition systems are required. 

 Recent developments in artificial intelligence, specifically in 

multimodal learning and Large Language Models (LLMs), have encouraging 

possibilities for enhancing car recognition systems. Multimodal techniques can 

greatly improve recognition accuracy and system resilience by integrating many 

data types including textual and visual. Building more dependable and flexible 

access control systems is made feasible by utilizing LLMs' capacity to recognize 

complicated relationships across many data modalities. 

 The development of a multimodal large language model-based vehicle 

recognition system suitable for access control applications is the idea behind 

this project. By combining several vehicle characteristics, the system aims to go 

beyond conventional plate-based and single-modality identification techniques, 

in order to lowering the possibility of unwanted entry, improve security and 

enhancing system resilience in a range of operational scenarios. This chapter 

will focus on importance of study, problem statements, project objectives, 

project scope and scope out of scope, proposed solution and proposed approach 

to set the groundwork for a thorough examination of current technologies and 

approaches in next chapter. 



2 

 

 

1.2 Importance of the Study 

In the past, vehicle access control systems were created to meet the requirement 

to protect private or sensitive spaces from unwanted access. It became more 

crucial to control and regulate the flow of cars into restricted areas like 

residential neighborhoods, government buildings, business buildings, and toll 

highways as cities grew and the number of cars on the road increased. These 

systems' main objective was to assure that only authorized personnel may enter, 

safeguarding infrastructure, people and assets from possible dangers including 

theft, vandalism and other violations of security. By eliminating down the 

amount of time required for entry processing and minimizing the need for 

manual supervision, these systems aimed to increase operational efficiency in 

addition to security. 

 Conventional and current mainly used access control techniques were 

frequently used to achieve these objectives. These methods include license plate 

recognition (LPR) technology, RFID tag or card-based systems and manual 

verification by security personnel. Although these approaches have shown some 

degree of success but they have significant flaws that leave systems vulnerable 

to operational inefficiencies and safety risks. 

 Human mistake can happen during manual verification by security 

staff especially in crowded environments or when they are tired and distracted. 

Guards could unintentionally misidentify cars, let illegal entry or overlook 

credentials that have been faked. Furthermore, manual checking creates 

bottlenecks at high-volume entry points, which lowers customer satisfaction and 

causes traffic congestion. 

 Automation is provided via RFID-based systems which scan tags or 

cards attached to vehicles. However they are sensitive to environmental factors. 

Unfavorable weather conditions including intense rain, fog or 

extreme temperatures can disrupt signal transmission and result in delays or 

failures in authentication. Furthermore, the intended security of RFID cards can 

be compromised by loss, theft, duplication or intentional misuse by 

unauthorized users. 

 Vehicle identification is automated using License Plate Recognition 

(LPR) systems, yet these systems mostly depend on the accuracy and visibility 
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of license plates. Accuracy of recognition can be affected by unclean or broken 

plates, poor lighting, and unusual plate designs. More seriously, there have been 

breaches of security when unauthorized entrance was obtained by tricking LPR 

systems with fake or duplicate license plates. A significant instance in Malaysia 

when fake license plates were used to bypass valet parking payment in hotel was 

mentioned (Lee, 2024). This has highlighted a significant weakness in 

depending just on plate-based verification. 

 These restrictions have important consequences. Within controlled 

premises, residents, staff and property are at risk of security breaches due to 

unauthorized vehicle entrance. Theft, vandalism, or unpaid tolls can result in 

financial losses. Operationally, system unreliability undermines public 

confidence and makes traffic control more difficult particularly in urban regions 

integrating smart cities. 

 With these difficulties, a more sophisticated, reliable, and flexible 

access control system is absolutely essential. A revolutionary development is 

provided by the suggested creation of a vehicle recognition system based on a 

Multimodal Large Language Model (LLM). By having this system, t he system 

overcomes the single-point failure risks associated with conventional 

approaches by combining several aspects such as textual data, vehicle visual 

attributes, and additional sensor inputs. Utilizing LLMs' advanced reasoning 

and pattern recognition skills improves the system's capacity to identify 

irregularities, prevent attempts at fraud, and function dependably in a range of 

environmental circumstances. 

 Moreover, the study helps to accomplish more general social 

objectives such those stated in Sustainable Development Goal (SDG) 11 of the 

United Nations which is to "make cities and human settlements inclusive, safe, 

resilient, and sustainable." This research contributes to the development of safer 

and more secure urban infrastructures by improving access control 

technology which is consistent with the idea of future smart cities. 

 Overall, this study is significant because it not only addresses serious 

shortcomings in current vehicle access control systems but also advances the 

use of modern artificial intelligence techniques for increased security, 

operational effectiveness, and public trust. 
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1.3 Problem Statement 

The shortcomings of the existing vehicle access control techniques lead to a 

number of serious problems that stimulate the creation of a more advanced 

system.  

This section addresses the three main issues that were found during 

the problem formulation phase. These issues include the vulnerability of 

traditional access control systems, the susceptibility of ALPR systems to 

forged license plates, and inability to adapt to environmental and situational 

challenges. 

 

1.3.1 Vulnerabilities in Traditional Access Control Systems 

The authentication procedure in an ideal car access control system would be 

precise, safe, and effective by reducing human mistake and involvement. 

Regardless of human or environmental influences, approved vehicles should 

always be identified and unauthorized ones should always be blocked. 

 However, there are significant flaws in traditional access control 

techniques including security guards' human verification and RFID card 

scanning. Typically during peak hours or while under stress or fatigue, human 

judgment can be inconsistent. Despite being automated, RFID systems are 

vulnerable to technological malfunctions brought on by environmental elements 

like dust or moisture as well as RFID tag cloning and theft. Due to these flaws, 

traditional systems are unstable and vulnerable to attacks in restricted areas. 

 A more intelligent, automated system that relies less on single-point 

RFID authentication and human involvement is required to address these issues. 

A multimodal system that uses cutting-edge technology to cross-verify vehicle 

features can greatly increase security by delivering more reliable and precise 

access control. 

 

1.3.2 Susceptibility of ALPR Systems to Forged License Plates 

In an ideal world, each vehicle would be accurately identified by Automatic 

License Plate Recognition (ALPR) devices using a safe, unchangeable license 

plate. Fast and completely dependable vehicle verification would stop any 

illegal access using forged or modified vehicle identities. 
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 In reality, ALPR systems are susceptible to fraud since they mostly 

depend on the validity of license plates. ALPR cameras and software can readily 

be tricked by forged, stolen or duplicate license plates that allowing 

unauthorized vehicles to enter incorrectly. The security of ALPR-only systems 

is seriously compromised as evidenced by reports of faked plates being used in 

illegal activities. 

 An improved recognition system that relies on more than just license 

plate readings is required to decrease this vulnerability. A multimodal system 

can identify anomalies and more effectively stop unwanted entries by 

combining extra vehicle characteristics such as color, make and model with 

intelligent verification through the use of Large Language Models (LLMs). 

 

1.3.3 Inability to Adapt to Environmental and Situational Challenges 

An ideal vehicle access control system would function dependably in every kind 

of weather including areas with poor lighting, heavy rainfall and unclean car 

surfaces. It would ensure constant security coverage by adjusting to changing 

circumstances without compromising identification accuracy or system 

reliability. 

 A lot of traditional and current systems rely on just one authentication 

method including RFID scanning or license plate reading. These techniques 

frequently fail in difficult environmental circumstances. For instance, 

inadequate lighting might make it difficult to see license plates and persistent 

rain can obstruct the detection of RFID signals. These situational flaws affect 

the efficiency and reliability of access control procedures. 

 These environmental restrictions can be addressed by a multimodal 

system that integrates data from many vehicle information sources and is backed 

by LLMs' strong reasoning and contextual awareness. The system can retain 

high accuracy even under less-than-ideal circumstances by cross-referencing 

several vehicle parameters. This can bring it one step closer to its goal of 

continuous and extremely secure access management. 

 

1.4 Project Objectives 

The objectives that this project aims to accomplish include: 
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i. To investigate the primary limitations of conventional vehicle 

recognition systems. 

ii. To develop a robust multi attribute vehicle recognition system. 

iii. To integrate visual language model for adaptive recognition, 

handling edge cases in vehicle access control. 

 

1.5 Project Scope 

The main goal of this project is to develop a multimodal vehicle recognition 

system that improves on traditional ALPR systems by adding image-based 

vehicle characteristics like color, model, and type to enhance recognition quality. 

The system will be developed as an online and mobile application for a gated 

community using Tailwind CSS, Next.js, and React Native for online. The 

project scope are: 

1. Review related applications, software development methodologies and 

technologies used in vehicle color, model and manufacturer recognition. 

Conduct a literature study on current approaches and technologies 

related to vehicle recognition systems, such as Automatic Number Plate 

Recognition (ANPR), segmentation techniques, Large Language 

Models (LLM) and similar applications.  

2. The development of a real-time vehicle recognition system that 

combines image-based attribute verification with license plate 

recognition.  

3. Using contextual and environmental data for assisting adaptive decision-

making through the integration of Large Language Models (LLM).  

4. Using segmentation techniques to isolate vehicles and recognize objects 

in collected photos.  

5. Designing and developing resident and security personnel interfaces 

with role-specific features like alerts for suspicious activity, vehicle 

records, notifications, and visitor passes. 

6. Testing the recognition framework with test and simulation-based 

datasets in a range of illumination and angle scenarios.  
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7. To determine the ideal configuration for the developed vehicle 

recognition technique by performing experiments in a controlled 

environment. 

 

1.5.1 Tools 

The development tools being used in this project are: 

Table 1.１: Summarization of development tools 

Category Tool Purpose 

Frontend 

React Native 

Cross-platform mobile app 

development for vehicle access control 

UI. 

React Native Web 
Extends React Native to support web 

browsers for a unified codebase. 

Tailwind CSS 
Styling and responsive design for the 

application interface. 

Backend 

Next.js 

Server-side logic, API development, 

and integration with AI/DB 

components. 

Vercel 

Hosting and deployment platform for 

the Next.js backend to ensure 

scalability and CI/CD integration. 

Database 

PostgreSQL 
Secure and scalable storage for vehicle 

records, user data, and logs. 

Supabase 

Managed PostgreSQL service 

providing real-time subscriptions, 

authentication, API access, and 

database scalability. 
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Category Tool Purpose 

AI/ML 

Model 

Fine-tuned GPT-4o, 

Yolo-v8 model, 

EasyOCR 

Multimodal vehicle recognition, JSON 

output generation. 

Version 

Control 
Git & GitHub 

Collaborative code management, 

version tracking, and deployment. 

 

1.5.2 Target User 

The target user for this project is listed as below: 

i. Condominium residents 

ii. Apartment residents 

iii. Landed area residents with guard house 

 

1.6 Out of Scope 

The out of scope of project include: 

i. High hardware specifications are needed for training a new 

model especially when the training set or LLM parameters are 

big and the LLM model is learned locally. Hence, training of 

new LLM model will not be included in this project. 

 

1.7 Proposed Approach 

A project approach is the process or methodology used to organize, carry out, 

and finish a project. There are numerous project approaches and each has certain 

benefits and properties of its own. The research and development approaches 

were addressed in this part. 

 

1.7.1 Research Approach 

In order to collect quantifiable information and obtain unbiased insights on 

client needs, expectations and opinions regarding a vehicle access control 

system. This project uses a quantitative research methodology. In this situation, 

quantitative research makes sense because it makes it possible to gather 
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organized responses that can be statistically examined to aid in the development 

and validation of the proposed system. 

 This strategy is put into effect by developing and distributing a 

questionnaire using Google Forms which makes it easy and effective to gather 

data from a variety of responders. The questionnaire's closed-ended 

questions which include multiple-choice and rating scale formats are designed 

to gather specific data about users' experiences with current vehicle access 

systems, the difficulties faced by them when they utilizing current system, the 

important aspects on system to be focus on, and their interest in cutting-edge 

technology involvement like multimodal verification with LLM and license 

plate recognition. 

 By ensuring that data is gathered in a consistent manner, Google Forms 

helps to reduce bias and simplify the analytic process by having data 

visualization like pie chart and bar chart. Remote participation by respondents 

increases accessibility and response rates. Decisions about system design and 

feature prioritization are based on the patterns and user preferences found in the 

information gathered after it has been statistically examined. 

 By using this quantitative method, the study makes sure that the system 

development is based on actual user feedback, data-driven, and in line with 

realistic expectations. By demonstrating the degree of user interest and 

perceived effectiveness of a more secure and intelligent vehicle access control 

system, it also aids in validating the project's relevance and practicality. 

 

1.7.2 Development Approach 

The Agile development methodology was selected as the development approach 

for this project. 
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Figure 1.1: Agile development methodology 

Source: (Slawek-Polczynska, 2020) 

 

The Agile Software Development Life Cycle (SDLC) technique is 

applied in the development of the Multimodal Large Language Model-Based 

Vehicle Recognition for Vehicle Access Control System. Agile is chosen 

because of its flexible and iterative methodology which facilitates frequent 

delivery of working software, quick prototyping and ongoing requirement 

refinement. Projects incorporating cutting-edge technologies like multimodal 

data processing and huge language models where needs may change during the 

development cycle. Hence, this project are particularly well-suited for this 

methodology. 

 The project is split into manageable, tiny units called sprints under the 

Agile SDLC. The goal of each sprint which normally lasts one to two weeks is 

to provide a useful system feature or component. The final result will precisely 

match the project goals and requirements because of this iterative methodology. 

This characteristic has enables continuous input and development. Reviews and 

retrospectives are carried out at the conclusion of each sprint in order to assess 

progress, resolve issues and make plans for the next sprint. 

 In the planning and requirement analysis stage of the Agile 

development process, high-level system needs are determined using problem 

statements and use case scenarios. Following is the design phase which involves 

a detailed planning of the system's architecture, data flow and UI/UX 

components. Core components such license plate verification, vehicle 

recognition, LLM integration and user interfaces are gradually built and merged 

during the implementation phase. 
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 Continuous testing is done during each sprint to assure the 

reliability and quality of every module. This consists of performance checks, 

image processing validation and functional testing to make sure the system can 

function in a variety of scenarios. In order to accelerate problem solving and 

decision-making, the Agile methodology also places a strong emphasis on tight 

coordination between different roles. 

 Last but not least, the deployment and maintenance stages guarantee 

that the system is effectively supplied and updated in response to user feedback 

and real-world performance. Agile is very successful for developing an 

intelligent access control system because of its collaborative and adaptable 

nature which allows individuals to respond quickly to changes and produce a 

high-quality solution within the time frame specified. 

 

1.8 Proposed Solution 

In order to improve the security and effectiveness of vehicle access management, 

the proposed solution presents a Multimodal Large Language Model-Based 

Vehicle Recognition System. In comparison with conventional systems that just 

use license plate recognition, this system uses a variety of data types such as 

text inputs and vehicle photos to more precisely confirm the identify of the 

vehicle. The technology intelligently reads and correlates textual and visual data 

to identify anomalies or mismatches by utilizing the power of a large language 

model that has already been fine-tuned. For real-time monitoring and 

management, a React Native-built web and mobile application will act as the 

interface, while PostgreSQL is selected as the database due to its capacity to 

securely handle multimedia data. The following subtopic will mainly discuss 

about the solution to resolve the problems statements that has been mentioned 

in previous topic and the system architecture of this proposed project. 

 

1.8.1 Solution for problem statements 

This project proposes a multimodal vehicle recognition system driven by a 

Large Language Model (LLM) to increase the security, reliability, and 

intelligence of vehicle access control systems. In contrast to traditional systems 

that only use manual verification or license plate recognition, this approach 

integrates a number of data types including vehicle photos, plate text, and 
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contextual information in order to carry out more precise and flexible 

verification. The system was designed to cope with real-world complexity and 

provide more intelligent access decisions by utilizing the reasoning powers of 

LLMs and the power of multimodal analysis. The implementation consists of a 

React Native-developed mobile and web interface backed by a PostgreSQL 

database that can store text and photos. 

 In order to address the weaknesses of conventional access control 

systems especially those that depend on hardware-based techniques like RFID 

tags or cards and human security checks, the suggested approach uses AI-

powered recognition to automate the access verification process. This 

automation offers more consistent, real-time decision-making at access points, 

lowers the possibility of human error and does away with the need for physical 

cards that might malfunction in specific situations. 

 The proposed solution incorporates a multimodal approach that 

examines both textual and visual inputs in order to address the problem of forged 

license plates tend to escaping conventional ALPR systems. The system uses a 

reasoning mechanism made possible by the LLM to match the vehicle's visual 

characteristics such as color, model and manufacturer with the license plate data 

rather than relying only on the text on the plate. The ability to intelligently detect 

inconsistencies between plate and vehicle data makes it far more difficult for 

malicious people to obtain access via fraudulent or cloned plates. 

 The system's image preprocessing and segmentation approaches 

improve clarity and isolate important elements before recognition. This action 

can help in addressing the difficulties caused by changing environmental 

conditions like bad weather or low illumination by maximizing the removing 

the noise in the image. This ensures that the system retains high recognition 

accuracy even under less-than-ideal circumstances. With further training data, 

the AI model is further engineered to adjust and get better over time 

and increasing its robustness and reliability in a variety of scenarios. 
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1.8.2 Proposed System Architecture 

 

Figure 1.2: System Architecture Flow 

(Note: A refined system architecture flow can be found in later chapter 5.2) 

Figure 1.2 shows a vehicle access control system that involve usage of Large 

Language Model (LLM). Security officers, administrators, and residents are 

among the many stakeholders in the system, and they all use web browsers to 

communicate with the platform. The main interface for these users is the 

frontend component, which is intended to be widely accessible. It gathers the 

required data, including license plate information and car images, and sends it 

over secure HTTPS connections to the backend Laravel server. 

A key component of handling the frontend requests is the backend. In 

order to analyze the data that has been submitted, it shares with a 

ChatGPT's API. Clear and machine-readable communication between the LLM 

and the backend is ensured by the use of JSON-formatted prompts and responses.  

Once this input has been processed, the LLM returns a decision with a 

justification then the backend then sends it as a https response to the frontend. 

A PostgreSQL database is used in this project to oversee data 

persistence, houses vital data like user profiles, access logs and car details. This 

database maintains historical data for audits and troubleshooting, supporting the 

system's long-term functionality. Sensitive information is kept safe and 

protected by using HTTPS for all communications including those between the 

backend and the LLM API and the frontend and backend. 

Additionally, the graphic displays the roles of several users such 

as residents use the platform to seek access, administrators establish system-
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wide settings and security guards can evaluate and override access decisions. 

Arrows with labels such as "access," "request," and "response" highlight the 

dynamic and linked character of the system by showing the data flow between 

the different components. Overall, the design shows how to effectively combine 

a vehicle access control systems with LLM-powered logic to improve security 

and efficiency through automated, data-drivens decision-making. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

Vehicle recognition and access control systems have mostly depended on 

conventional computer vision and machine learning methods in recent years. 

Basic vehicle recognition and identification have been made possible by these 

techniques, but they frequently encounter difficulties in complicated 

surroundings and have limitations when it comes to completely interpreting 

multimodal data. In locations like parking lots, toll gates, and controlled zones, 

a precise and effective vehicle recognition is essential for improving security 

and expediting operations. Since people can fake or alter license plates to get 

around access constraints, traditional vehicle recognition systems mostly rely 

on license plate recognition which presents serious security problems. As a 

result, more sophisticated, multimodal strategies that integrate different data 

types to enhance security and dependability are becoming more and more 

necessary. 

 The goal of this literature review is to examine the state of technology 

that is relevant to the development of a vehicle identification system for access 

control applications that is multimodal and based on Large Language Models 

(LLMs). It specifically looks into current LLM concepts, segmentation methods 

that are necessary for handling visual input, and related applications in access 

control view. Additionally, the assessment examines the most recent 

developments in vehicle recognition systems, reviews web and mobile 

application frameworks that may support the system's user-facing 

components and evaluates software development processes appropriate for 

delivering reliable solutions. 

 This chapter will pay attention to: 

i. Comparison between existing Large-Language Models (LLM) 

ii. Identify a suitable Large-Language Model for this project 

iii. Comparison between existing segmentation techniques on 

visual inputs 

iv. Identify a suitable segmentation methodology for this project 
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v. Review similar applications on access control of properties 

vi. Identify the key features to be included in the project 

vii. Review existing vehicle recognition systems 

viii. Comparison among varies of Software Development Lifecycle 

(SDLC) 

ix. Identify a suitable development methodology for this project 

x. Comparison between the different type of web and mobile 

application framework 

 

2.2 Existing Large Language Model (LLM) Review 

In the area of artificial intelligence, large language models or LLMs have 

become a major breakthrough due to their exceptional ability to understand and 

generate language that is human-like. With a concentration on their possible use 

in multimodal vehicle recognition systems, this section examines the evolution 

of important LLM architectures, highlighting their fundamental methods, 

advantages, and disadvantages. 

 

2.2.1 Instruction Tuning with GPT-4 

Based on Peng et al. (2023), one of the most important methods for enhancing 

large language models' (LLMs') zero-shot generalization is instruction 

adjustments. Instruction tuning uses a variety of instruction-following instances 

unlike traditional fine-tuning which requires task-specific datasets. These 

instructions can be either produced by people or other LLMs to train models. 

By employing this method, models can carry out invisible activities without the 

need for clear explanations. According to Li et al. (2024), generated instruction 

data can significantly enhance model performance. To give an illustration, 

generated instruction included Alpaca (Stanford CRFM, n.d.) and Self-Instruct 

Wang et al. (2022). However, the quality of data is a very important factor that 

will affect the outputs results. Although earlier research used GPT-3.5 to 

generate data, this paper presented GPT-4 as an improved teacher model, 

demonstrating that its outputs result in more broad and in-depth models that are 

better aligned. 

The adjustment from human-curated data to machine-generated data is 

a significant development in instruction tuning. Human annotations were the 
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foundation of early methods like Fine-tuned LAnguage Net (FLAN) and T0, 

which are expensive to scale. In order to reduce the scale cost, the reduced of 

the need for manual work by automating the creation of instructions is required. 

By applying computer-generated information, Alpaca has achieved good 

performance by producing 52K instruction-output pairs using GPT-3.5 which 

helps in enhancing this approach. This instruction tuning paper expanded on this 

and made the case that its outputs are qualitatively better—longer, more diverse, 

and better organized by utilizing GPT-4. As compare to Alpaca's incremental 

approach, their simplified one-time generation technique produced extremely 

effective models. This technique has proved that data quality may outperform 

generation complexity. 

The fine-tuning of LLaMA models on GPT-4-generated data was also 

investigated in this research with outstanding results. When trained using 

English instruction data, their LLaMA-GPT4 (7B) model performed better than 

the bigger Alpaca (13B) model. This has proved that high-quality data can 

increase the performance on smaller model sizes. They also demonstrated cross-

lingual applicability by translating questions and using GPT-4 to generate 

responses which introduced a Chinese variation for LLaMA-GPT4-CN. In 

addition to supervised fine-tuning, they also enabled reinforcement learning 

from machine feedback (RLHF) by training reward models on pairwise 

comparisons that were gathered through GPT-4. These OPT-1.3B-based models 

successfully anticipated response quality and providing a scalable solution for 

human annotations in alignment. 

An important aspect of this instruction tuning study was evaluation. In 

54.12% of situations, LLaMA-GPT4 outperformed GPT-3.5-tuned Alpaca in 

human evaluations on the User-Oriented-Instructions-252 benchmark. In some 

evaluations, the two models performed similarly. These results were further 

supported by automated assessments that used GPT-4 as a judge. Although 

LLaMA-GPT4 has a lower size, but it still outperformed Alpaca. Additionally, 

the reward models in this work validated their application in RLHF pipelines by 

closely matching the ranks of GPT-4. The advantages of cross-lingual fine-

tuning are demonstrated by the fact that translated responses sometimes 

surpassed GPT-4's native outputs in Chinese tests. The benefits of GPT-4's 

richer outputs were further shown by ROUGE-L scores on the Unnatural 
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Instructions benchmark. It demonstrated that GPT-4-tuned LLaMA 

outperformed Alpaca in creative and long-form production while Alpaca 

performed excellently in short-answer tasks.  

Other than that, Alpaca and Vicuna also demonstrated how open-

weight models like LLaMA could compete with patented ones using data that 

is computer generated while FLAN and T0 illustrated the effectiveness of multi-

task instruction tuning. By automating the creation of instructions, Self-Instruct 

reduced the dependency on human input. Besides from  text, models such as 

OpenFlamingo and LLaMA-Adapter combined LLaMA with vision, but this 

study emphasized the cross-lingual potential of instruction creating by 

expanding it to Chinese. 

Despite these advances, the study has some drawbacks in which their 

largest model (7B) is outperformed by 13B variants although their dataset (52K 

samples) is less than Vicuna's (700K). Future research could explore more 

languages and modalities, integrate reward models into complete RLHF 

pipelines, and expand data and model sizes. However, their results highlight 

how important high-quality automated data is to narrowing the gap between 

closed and open models.  They showed that smaller, instruction-tuned models 

can function on track with much bigger systems by using GPT-4 as a teacher, 

opening up the possibility for more effective and easily accessible LLM 

development. 

2.2.2 LLaMA-Adapter V2: Parameter-Efficient Visual Instruction 

Model 

As stated in Gao et al. (2023), large language models (LLMs) have recently 

shown impressive ability to follow textual instructions, but it is still difficult to 

apply these capabilities to the visual domain. When compared to robust 

proprietary models like GPT-4, traditional methods like LLaMA-Adapter have 

demonstrated shortcomings in addressing flexible visual instructions and multi-

modal reasoning mission. This gap led to the creation of increasingly complex 

parameter-efficient techniques that successfully integrate linguistic and visual 

understanding without needing expansive model fine-tuning or large amounts 

of multi-modal training data. 

With models like Alpaca and Vicuna showing the value of fine-tuning 

on machine-generated instruction data, the field of instruction-following LLMs 
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has achieved huge growth. However, t hese methods usually call for updating 

every model parameter which is computationally costly. This problem has been 

resolved by parameter-efficient fine-tuning (PEFT) techniques like LoRA and 

the original LLaMA-Adapter, which introduced low-rank adaptations or 

lightweight adapters. Models like MiniGPT-4 and LLaVA have tried to connect 

visual encoders with LLMs in the visual domain, but they still require extensive 

fine-tuning of the language models and rely on an enormous amount of multi-

modal training data. These shortcomings emphasize the necessity for more 

effective strategies that helps to retain the model's current language capabilities 

while achieving excellent visual instruction following. 

 By providing several of important advances, LLaMA-Adapter V2 

represents an important milestone in this approach. The model maintains a very 

low total number of trainable parameters which was just only 0.04% of 

LLaMA's parameters while revealing new learnable parameters throughout the 

network. For instance, normalization layers and bias/scale terms in linear layers. 

This method enables instruction-following knowledge to be learned distributed 

throughout the model layout. In order to avoid compromising with textual and 

visual processing in deeper layers, the technique uses an early fusion strategy 

to introduce visual tokens only into the first transformer layers. This 

architectural decision is especially crucial for including visual understanding 

while maintaining the model's powerful language capabilities. 

 The integrated training methodology of LLaMA-Adapter V2 which 

employs separate parameter groups for various tasks is a remarkable feature. 

While instruction-following data trains the late-layer adapters and normalization 

parameters, image-text pairs mainly update the visual projection layers and 

early gating mechanisms. This division makes it more difficult for the model's 

existing instruction-following capabilities to be overridden by the visual 

features. By integrating expert systems during inference, such as pre-trained 

captioning and OCR models, which provide more contextual information 

without requiring additional training.Thus, the model drastically enhances its 

visual understanding. The model can perform better on visual tasks while 

preserving parameter efficiency through this modular approach. 

 Results from experiments show that these innovations are effective. 

LLaMA-Adapter V2 produces more thorough and precise responses than its 
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predecessor in language instruction following. It even performs competitively 

against ChatGPT in multi-turn conversation evaluations. Even though the model 

uses a lot less training data, it performs on standard benchmarks for visual tasks 

that are equivalent to those of specialized systems like Bootstrapping Language-

Image Pre-training (BLIP). Expert system integration is especially useful for 

solving complicated problems that ask for both textual and visual reasoning 

such as describing the visual impact of an image or producing recipes from food 

photos. When it comes to visual content that is not distributed, the model still 

exhibits limits. This has indicate there are areas that require further development. 

 The performance of the LLaMA-Adapter V2 points to a number of 

important areas for further study in the tuning of visual training. The parameter-

efficient approach of the model shows that large language models do not require 

extensive retraining to achieve strong multi-modal performance. The successful 

application of expert systems indicates potential directions for adding more 

specialized modules like object detection models in order to improve visual 

comprehension even further. To find ways to overcome present constraints, 

future research may examine integrating these approaches with other Parameter-

efficient fine-tuning (PEFT) techniques such as LoRA, or examining the 

possibilities of limited quantities of high-quality multi-modal instruction data. 

Such parameter-efficient techniques will probably be essential to the 

development of adaptable, multi-modal AI systems that can process complex 

linguistic and visual instructions while still being computationally feasible to 

create and implement as the field develops. 

2.2.3 CLIPath: Fine-tune CLIP with Visual Feature Fusion for 

Pathology Image Analysis Towards Minimizing Data Collection 

Efforts 

Based on Lai et al. (n.d.), The alignment of textual and visual data for zero-shot 

transfer learning has been achieved with unexpected success by recent 

developments in language-vision models, especially Contrastive Language-

Image Pre-training (CLIP). Because of its contrastive learning 

approach that trains a text encoder which is Transformer and a vision encoder 

which is ResNet or Vision Transformer to map inputs into a common feature 

space, CLIP can generalize across a variety of domains. Although CLIP has 

been adapted for tasks such as 3D recognition (PointCLIP) and video 
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interpretation (CLIP-ViL), its use in medical imaging especially the field of 

pathology is still not well established. This gap is important because pathology 

image analysis has distinct difficulties, such as domain changes between 

specialist medical data and natural images used to train CLIP, and the lack of 

labeled datasets because of the high cost and level of skill needed for tagging. 

 The disadvantages of traditional supervised learning in medical image 

analysis led to interest in using pre-trained models such as CLIP. However, in 

order to accomplish modest zero-shot performance (~60% accuracy), current 

methods like MedCLIP which rely on large-scale curated datasets like 570K 

image-text pairs may not be practical in many clinical contexts. On the other 

hand, parameter-efficient fine-tuning (PEFT) techniques, such as prompt tuning 

(CoOp) and adapters (CLIP-Adapter), attempt to reduce computational cost but 

frequently encounter difficulties with domain adaptation. For example, CLIP-

Adapter's feature combining may not adequately resolve the semantic difference 

between natural and medical images, while CoOp's prompt optimization can 

negatively impact performance when utilized on out-of-distribution data. These 

difficulties show that a customized strategy that strikes a compromise between 

effectiveness, flexibility, and maintaining CLIP's previously acquired 

information is required. 

 In order to overcome these constraints, subsequent research has 

investigated hybrid approaches like lightweight fine-tuning and semi-

supervised learning such as FixMatch, FlexMatch and others, although these 

techniques both either require high computational resources or fall short of 

maintaining CLIP's zero-shot capabilities. To close this gap, the proposed 

CLIPath framework introduces two innovations:  

i. A Language-Vision Alignment (LVA) contrastive loss that 

maintains alignment between image and text features during 

fine-tuning (Mo, Xia and Markevych, 2023). 

ii. A Residual Feature Connection (RFC) module that fuses task-

specific features with CLIP's pre-trained embeddings via a 

lightweight adapter. 

Rapid adaption to pathological datasets like PCam and MHIST is made possible 

by RFC's parameter efficiency (0.04% of CLIP's trainable parameters) and 

LVA's regularization, which reduce overfitting and achieve notable accuracy 
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gains. For example, there is 19% improvement with only 0.1% labeled data.

 The advantages of CLIPath over current techniques are shown by 

empirical evaluations. RFC fine-tuning improves performance to 81.5% with 

only 0.5% labeled data, surpassing CLIP-Adapter and CoOp by 25% with 5× 

quicker training times, while zero-shot CLIP achieves 56.5% accuracy on the 

PCam dataset. Similarly, CLIPath's scalability is demonstrated on MHIST. It 

achieves 74.8% accuracy compared to 36.9% zero-shot using 50% of the data. 

Although there are still difficulties in expanding the framework to multi-class 

classification and segmentation tasks, these results highlight the potential of 

lightweight, knowledge-preserving adapters for medical applications. To further 

reduce the performance difference with fully supervised approaches, future 

strategies might incorporate expert-guided tagging systems or hybrid 

architectures. For example, on PCam with 100% data, it achieved 92.8% 

accuracy. 

 In conclusion, CLIPath is a potential step toward effective adaption of 

language-vision models in pathology with little data. The framework achieves 

near-state-of-the-art performance while decreasing computing costs by 

combining the alignment preservation of LVA with the parameter efficiency of 

RFC. This is an important advantage for clinical application. Its expansion to 

more complicated domain shifts and larger medical imaging jobs may be 

investigated in future studies.  

2.2.4 LLM Model to be included in projects 

Table 2.１: Comparison among different LLM model for fine tuning 

Aspect Instruction 

Tuning with 

GPT-4 (Peng et 

al., 2023) 

LLaMA-

Adapter V2 (Gao 

et al., 2023) 

CLIPath (Lai et 

al., n.d.) 

Focus Enhancing LLM 

generalization via 

instruction tuning 

Parameter-

efficient visual 

instruction tuning 

Medical image 

analysis with 

CLIP 

Key 

Innovation 

GPT-4 as teacher 

model for high-

Early fusion of 

visual tokens + 

Residual Feature 

Connection 
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quality data 

generation 

modular adapters 

(0.04% params) 

(RFC) for 

pathology 

Data 

Efficiency 

52K GPT-4-

generated 

instructions 

outperform 700K 

Alpaca data 

Minimal multi-

modal data 

required 

0.1% labeled 

data achieves 

+19% accuracy 

Performance LLaMA-GPT4 

(7B) > Alpaca 

(13B) in human 

evaluations 

Matches 

ChatGPT in 

multi-turn 

conversations 

81.5% accuracy 

(PCam) vs. 

56.5% zero-shot 

CLIP 

Strengths Cross-lingual 

support (e.g., 

Chinese LLaMA-

GPT4-CN) 

Preserves LLM’s 

language 

capabilities 

Maintains 

CLIP’s zero-shot 

ability 

Limitations Smaller model 

size (7B) vs. 

competitors 

(13B+) 

Struggles with 

out-of-

distribution 

visuals 

Limited to binary 

classification in 

pathology 

Applicability 

to Your 

Project 

Ideal for 

contextual 

reasoning 

Useful if adding 

visual features 

Less relevant 

 

The three studies each focus on a different AI model optimization problem. In 

order to enable zero-shot task performance without explicit training, the 

Instruction Tuning with GPT-4 study focuses on enhancing the generalization 

capabilities of large language models (LLMs) through high-quality, machine-

generated instructions. As another option, LLaMA-Adapter V2 focuses on 

visual instruction adapting with the goal of bridging the gap between text and 

image understanding in a way that uses the fewest possible parameters. With 

minimal labeled data, CLIPath which is a medical image analysis 

specialist adapts the CLIP model for pathology diagnosis. Although efficiency 

and performance are the main focus of all three studies, CLIPath is used for 
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domain-specific visual analysis, LLaMA-Adapter V2 is used for multimodal 

reasoning, and GPT-4 is used for general language tasks. 

 High-quality synthetic data production is introduced by the GPT-4 

instruction tuning approach, showing that when refined on GPT-4-curated 

datasets, smaller models like LLaMA 7B can perform better than larger ones 

like Alpaca 13B. This technique enhances cross-lingual flexibility while 

reducing dependency on expensive human annotations. With only 0.04% of 

trainable parameters, LLaMA-Adapter V2 enables vision-language integration 

through innovative early visual token fusion and modular adapters. In order to 

maintain CLIP's previously learned information while optimizing for medical 

imaging, CLIPath presents a Residual Feature Connection (RFC) module, 

which achieves high accuracy with less than 1% labeled data. In conclusion, a 

ll three methods optimize for distinct constraints, CLIPath for domain 

adaptation in data-scarce scenarios, LLaMA-Adapter V2 for lightweight 

multimodal tuning and GPT-4 for scalable instruction data. 

 Fine-tuning LLaMA on simply 52K GPT-4-generated samples 

surpasses Alpaca's 700K GPT-3.5-based dataset, demonstrating that quality is 

more important than quantity. For deployment to remain cost-effective, this 

efficiency is essential. By using pre-trained visual encoders and requiring little 

task-specific adjustment, LLaMA-Adapter V2 significantly minimizes data 

requirements. This has make it suitable for applications with a small number of 

labeled images. Because of its hybrid feature fusion, CLIPath performs 

exceptionally well in low-data regimes and boosting accuracy by 19% on 

pathology images with just 0.1% labeled data. While all three approaches reduce 

reliance on data, GPT-4 succeeds at adapting to a variety of linguistic tasks, 

while LLaMA-Adapter V2 and CLIPath concentrate on efficiency related to 

vision. 

 GPT-4-tuned LLaMA (7B) performed better than Alpaca (13B) in 

54.12% of human evaluations, demonstrating that better data quality can offset 

a smaller model size. Despite utilizing significantly fewer parameters, LLaMA-

Adapter V2 competes with specialized models such as BLIP in vision-language 

benchmarks and matches ChatGPT in conversational tasks. CLIPath's 

effectiveness in medical imaging is demonstrated by its 81.5% accuracy on 

pathology datasets as compared to 56.5% for zero-shot CLIP. CLIPath 
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dominates domain-specific visual analysis, LLaMA-Adapter V2 succeeds in 

multimodal tasks and GPT-4 leads in language reasoning. 

 Given its exceptional cross-lingual compatibility such as Chinese 

LLaMA-GPT4-CN and flexibility in following instructions, GPT-4 is a great 

choice for dynamic jobs like fraud detection in vehicle access systems. Effective 

applications like car model and color identification without the need for 

expensive full-model retraining are made possible by the LLaMA-Adapter V2. 

This succeeds at maintaining essential LLM capabilities while incorporating 

vision. Even though it is tailored, CLIPath preserves CLIP's zero-shot 

adaptability in a unique way while optimizing for certain domains which may 

include identifying emergency or customized car models. For various aspects of 

AI-driven recognition systems, each model has unique benefits like CLIPath for 

domain-specific visual tuning, LLaMA-Adapter V2 for lightweight multimodal 

fusion, and GPT-4 for reasoning. 

 Every model has distinct benefits, but there are also significant 

drawbacks. For multimodal applications like image-based vehicle detection, 

GPT-4 must be integrated with a vision model like YOLOv8 as it is mostly text-

based. Even though LLaMA-Adapter V2 is effective at combining language and 

vision, its resilience in real-world situations is limited by its inability to handle 

out-of-distribution pictures such as veiled or unusual license plates. Although 

CLIPath works well for narrow adaptations, it is currently limited to binary 

classification and is not scalable for complex vehicle recognition tasks that 

involve a variety of classes or fine-grained characteristics. When using AI in 

real-world, large-scale applications like multimodal vehicle access control, 

the drawbacks included GPT-4's reliance on external vision systems, LLaMA-

Adapter V2's sensitivity to visual abnormalities, and CLIPath's limited scope 

highlight the necessity for customized solutions. 

 GPT-4o is the best option for this project because of its easier 

interaction with visual models, scalability, and superior reasoning skills. The 

contextual depth of GPT-4 is necessary for fraud detection such as identifying 

mismatched license plates or cars, even though LLaMA-Adapter V2 performs 

exceptionally well in parameter-efficient vision-language tasks. Despite its 

efficiency, CLIPath is unrelated to your use case and excessively specialized for 

medical imaging. The dynamic decision-making capabilities of GPT-4's 
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instruction-tuning framework include granting access based on contextual rules, 

integrating seamlessly with segmentation models like YOLOv8 for license plate 

recognition and fine-tuning at a cheap cost while maintaining excellent 

performance with smaller datasets.  In contrast, CLIPath provides no apparent 

advantage for vehicle detection and LLaMA-Adapter V2 requires further 

vision-language alignment work. Consequently, GPT-4 offers the optimal ratio 

of efficiency, flexibility, and reasoning. 

 

2.3 Existing Segmentation Techniques 

Vehicle recognition systems rely on image segmentation because it allows 

vehicles to be precisely isolated from complex backgrounds. The precision of 

subsequent processes like classification and identification is increased by 

efficient segmentation. This section examines current segmentation 

techniques with a focus on the way they work for processing visual input in 

order to reduce noise and increase the accuracy of result. 

2.3.1 Segment Anything 

Natural language processing (NLP) has been transformed by recent 

developments in large language models (LLMs), which allow for fast 

engineering to enable zero-shot and few-shot generalization. Motivated by this 

achievement, Kirillov et al. (2023) present the Segment Anything Model (SAM) 

which is a foundation model for picture segmentation that requires little task-

specific training and can generalize across a variety of tasks. The main objective 

of SAM  is to build a promptable segmentation model that can produce precise 

masks from different input prompts, such text, boxes, or points, in a manner 

similar to how models like CLIP and GPT-3 adjust to new tasks through 

prompting. With this method, computer vision is undergoing an important shift 

from task-specific designs to adaptable, all-purpose models. 

A key contribution of SAM is the introduction of the promptable 

segmentation task in which the model must produce valid segmentation masks 

for any given prompt even though in ambiguous scenarios. To address this, 

SAM predicts several feasible masks. For example, a single point on a shirt 

could relate to the clothing or the person who is wearing it. There are three 

primary components to the model architecture: 
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i. a heavyweight image encoder based on a Vision Transformer 

(ViT) pre-trained by a Masked Autoencoder (MAE). 

ii. a prompt encoder that can process sparse inputs like text, boxes, 

or points. 

iii. a lightweight mask decoder that creates segmentation masks in 

real-time which is about 50 ms per prompt.  

By reusing image embeddings over several prompts, this architecture ensures 

performance while creating interactive applications possible. 

The largest segmentation dataset to date which is the SA-1B 

dataset was created by the authors using a scalable data engine to train SAM. It 

contained 1.1 billion high-quality masks from 11 million images. The data 

engine functions in three stages:  

i. semi-automatic annotation. In this stage, SAM pre-generates 

confident masks for annotators to supplement. 

ii. assisted-manual annotation in which SAM helps human 

annotators refine masks. 

iii. fully automatic mask generation where SAM predicts masks 

by using a grid of point prompts that have been filtered for 

quality and stability.  

The quality of SA-1B's masks was confirmed to be comparable to that of human 

annotations. 94% of automatically generated masks achieved an Intersection-

over-Union (IoU) of above 90% with professionally corrected versions. 

 Two innovations of SAM include its zero-shot transfer 

capabilities that enables it to carry out tasks like edge detection, instance 

segmentation, and object proposal generation without the need for extra training, 

and its ambiguity-aware design which enables it to handle unclear prompts by 

anticipating multiple masks. Experiments on 23 different datasets showed that 

SAM achieves greater human-rated mask quality and performs better in single-

point segmentation than specialist models like RITM. Furthermore, SAM's 

adaptability enables it to be integrated with other models. For instance, it can be 

used to segment data by using the bounding box outputs of an object detector as 

prompts. 

 SAM has drawbacks despite of its advantages. As compared to 

specialist techniques, it has trouble with fine-grained structures and distinct 
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borders and its text-to-mask capability is still in its early stages. Additionally in 

certain applications, real-time performance may be limited by the image 

encoder's computational cost. However, SAM's capacity to be deconstructed 

makes it an effective tool for more complex systems like ego-centric vision or 

3D reconstruction. The release of SA-1B offers a useful resource for developing 

foundation models in computer vision with a focus on responsible AI which 

includes eliminating potential biases and guaranteeing dataset variety. 

 In a nutshell, SAM combines task generalization, effective architecture 

design, and large-scale data curation. It has marked a significant advancement 

toward general-purpose segmentation models. Although community adoption is 

necessary for its long-term success, SAM establishes a standard for promptable 

vision models and opens the door for further study of flexible, scalable computer 

vision systems. The model's potential to revolutionize segmentation in both 

research and practical applications is demonstrated by its capacity to do zero-

shot segmentation and blend in seamlessly with larger operations. 

2.3.2 Engineering Vehicle Object Segmentation Algorithm Based on 

Improved YOLOv8x-seg 

Based on (Wu, Feng and Zhang, 2024), the necessity for precise object 

segmentation of engineering vehicles operating close to power transmission 

infrastructure has been brought to light by recent developments in computer 

vision for industrial safety applications. Traditional segmentation techniques 

often come fail in diverse field situations. This has made it difficult for 

automated monitoring systems to safely operate cranes, excavators, and other 

machinery near electrical grids. Modern deep learning architectures, especially 

the YOLO (You Only Look Once) family of models, have shown promising 

capabilities for real-time object detection and segmentation tasks while 

traditional methods that rely on spatial-domain processing struggle with 

background noise and small-object detection. However, recent studies have 

shown that even the most advanced YOLO implementations have limits when 

it deals with segmenting small but crucial safety components of engineering 

vehicles such as excavator arms and crane booms especially against cluttered 

backdrops close to power transmission lines. 

 By creatively combining adaptive multi-scale feature fusion and 

frequency-domain processing, the suggested HFF-YOLO architecture marks a 
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substantial breakthrough in this field. This strategy builds on the YOLOv8x-seg 

basis by introducing three significant technological advancements that together 

overcome the shortcomings of current approaches. The High-Frequency 

Information Extraction (HFIE) module first uses the Fourier Transform to 

convert input images into the frequency domain. A high-pass filter is then 

employed to eliminate texture and edge information while reducing background 

noise. The visibility of minor vehicle components that might be hidden in 

conventional spatial-domain analysis is improved by this frequency-domain 

processing. Secondly, a progressive fusion method that better maintains 

shallow-layer detail information while incorporating deep-layer semantic 

context is used by the Asymptotic Feature Pyramid Network (AFPN) to replace 

traditional feature pyramid topologies. Since AKConv supports variable kernel 

forms, its integration into AFPN significantly improves the model's capacity to 

handle objects of different scales. Lastly, to optimize the fusion process for 

multi-scale object recognition and minimize information loss between non-

adjacent layers, the Adaptive Spatial Feature Fusion (ASFF) module uses a 

Softmax-based attention mechanism to dynamically weight features from 

various network levels. 

 In this paper, a specific dataset with 3,600 annotated photos which 

knowas ENV3K is created. It consists of four different kinds of engineering 

vehicles including trucks, cranes, excavators, and bulldozers that operate 

beneath electricity transmission lines in order to aid in the construction and 

assessment of this innovative architecture. This dataset, which offers a variety 

of instances of vehicles in operational situations with different dimensions, 

orientations, and backdrop complexities helps to close a significant gap in the 

training resources currently accessible for this particular application domain. 

The dataset is especially useful for benchmarking since it focuses on real-world 

situations close to power infrastructure. Hence, it can ensure that models trained 

on ENV3K must overcome the same difficulties encountered by real monitoring 

systems. 

 According to the experimental results, the HFF-YOLO method is 

effective across a variety of performance metrics. With a mAP50 of 81.2% on 

the ENV3K dataset, the model outperforms the baseline YOLOv8x-seg 

architecture by 0.8%. Particularly, the system exhibits a 4.7% increase in 



30 

 

mAP50 for crane arm recognition. This is a crucial skill for averting hazardous 

connections with power lines. By having this, the system is demonstrating its 

exceptional strength in small-object segmentation. While keeping a low 

parameter count of 54.7 million as opposed to 71.7 million in the baseline model, 

the recall rate increases from 72.6% to 73.9%. Ablation studies show that each 

of the HFIE, AFPN, and ASFF modules improve performance. Removing any 

one of them led to a 1.3% drop in mAP50, proving that all three modules work 

well together. Visual comparisons make it evident that the model performs 

better at lowering false negatives for minor vehicle parts while retaining strong 

segmentation of bigger structures. 

 Nevertheless of these developments, there are several drawbacks to the 

HFF-YOLO architecture that should be taken into account. The deployment on 

resource-constrained edge devices may be difficult due to to the large increase 

in computational cost to 503.5 GFLOPS which is 46% higher than YOLOv8x-

seg. Furthermore, not all vehicle types have the same performance advantages. 

To give an illustration, larger objects such as truck bodywork show relatively 

moderate gains in comparison to the significant improvements seen with small 

components. These results highlight areas that require further development, 

particularly with regard to optimizing the model's performance in real-world 

deployment scenarios. Possible paths include expanding training datasets to 

include more vehicle types and operating conditions, improving feature fusion 

mechanisms to sustain accuracy gains while lowering resource requirements, 

and using model compression techniques to lower computational overhead. 

 The HFF-YOLO architecture greatly improves the fields of safety 

monitoring and industrial computer vision. By effectively combining 

sophisticated feature fusion approaches with frequency-domain processing, it 

shows a promising way forward for addressing the long-standing problem of 

small-object segmentation in complicated contexts. Although there is 

architectural innovations, especially the HFIE module's innovative use of 

frequency-domain analysis may inspire new approaches to object segmentation 

beyond the specific case of engineering vehicles. However, the specialized 

ENV3K dataset offers a valuable resource for future research in this application 

domain. The HFF-YOLO technique is an achievable way to improve safety by 

more precisely identifying possible threats close to transmission lines as 
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computer vision technologies are further included into power infrastructure 

monitoring systems. Future research in this field would profit from examining 

how well these methods transfer to other industrial monitoring applications 

where it is still difficult to detect small objects in cluttered surroundings. 

 

2.3.3 Fast-SCNN: Fast Semantic Segmentation Network 

As stated in Poudel, Liwicki and Cipolla (2019), semantic segmentation has 

emerged as a key feature that makes it possible for vital applications like 

augmented reality interfaces and driverless cars in current computer vision 

systems. Although recent advancements in segmentation accuracy have been 

dominated by encoder-decoder systems, their computational complexity 

frequently makes them unsuitable for real-time applications, especially on 

embedded devices with limited resources. Conventional methods that depend 

on large pre-training datasets and high-capacity networks contribute to 

efficiency issues, posing major obstacles to implementation in latency-sensitive 

situations. A novel architecture known as Fast-SCNN (Fast Segmentation 

Convolutional Neural Network) was created by Poudel et al. to overcome these 

constraints, offers above-real-time performance on high-resolution imagery 

(1024 x 2048 pixels) with competitive accuracy and a small memory footprint. 

The fundamental innovation of Fast-SCNN is its innovative 

architecture which carefully achieves a compromise between segmentation 

performance and processing efficiency. A key component of this strategy is the 

learning to downsample module. This strategy shares low-level feature 

extraction across resolution branches and hence removing duplicated 

computations typical of multi-branch designs. This module's effective three-

layer structure which consists of two depthwise separable convolutions after a 

standard convolution. It allows for fast downsampling while maintaining 

important spatial information. In order to maintain a lean parameter count of 

only 1.11 million, the network architecture utilizes depthwise separable 

convolutions and inverted residual blocks inspired by MobileNet-V2 along with 

a global feature extractor for contextual understanding and a feature fusion 

module that integrates multi-scale information. An Nvidia Titan Xp GPU 

achieved 68.0% mean Intersection over Union (mIoU) on the Cityscapes dataset 

at 123.5 frames per second. This is a remarkable performance characteristic that 
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greatly outperforms similar real-time models like BiSeNet which achieved 71.4% 

mIoU at 57.3 fps and GUN which reached 70.4% mIoU at 33.3 fps. 

In addition to its innovative architecture, Fast-SCNN challenges 

standard procedures in network training. Unlike with standard procedures in the 

industry, the authors show that their low-capacity model benefits only slightly 

(+0.5% mIoU) from ImageNet pre-training. This result implies that aggressive 

data augmentation and longer training epochs can be effective substitutes for 

resource-intensive pre-training processes in well-designed efficient 

architectures. The model's adaptability is further demonstrated by its capacity 

to process inputs with lower resolution (512×1024 pixels) while maintaining 

competitive performance (62.8% mIoU at 285.8 fps) without necessitating 

architectural changes. As a result, it become especially appropriate for 

deployment across a range of hardware configurations. 

 The success of Fast-SCNN is confirmed by experimental assessments 

on the Cityscapes benchmark as the model maintains its real-time performance 

advantage while reaching 68.0% class-level and 84.7% category-level mIoU. 

The significance of the skip connection design is highlighted by ablation tests. 

The tests reveal a 4.92% mIoU degradation upon its removal which mostly 

affects border precision and tiny object segmentation. Regardless of the model's 

outstanding capabilities, a few limitations should be taken into consideration. 

These include an inherent accuracy-speed tradeoff. For instance, there is about 

3% lower mIoU when compared to BiSeNet. Besides that, possible difficulties 

when deploying to ultra-low-power embedded devices without the use of extra 

optimization techniques like quantization. 

 In the future, Fast-SCNN provides a strong basis for more studies on 

effective semantic segmentation. In this paper,  a number of exciting paths, such 

as hardware-specific optimizations aimed at FPGA or ASIC implementations, 

domain adaption for particular applications like medical imaging, and network 

quantization and pruning to further minimize computational overhead were 

pointed out. Fast-SCNN represents a major advancement in real-time 

segmentation capabilities by effectively combining the robustness of encoder-

decoder frameworks with the efficiency advantages of two-branch designs. This 

allows for the creation of workable solutions for deployment scenarios where 

performance cannot be compromised but computational resources are limited. 
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2.3.4 Comparative Analysis on Segmentation Techniques 

Table 2.２: Comparison among varies segmentation techniques 

Aspect Segment Anything 

(SAM) (Kirillov et 

al., no date) 

HFF-YOLO 

(Improved 

YOLOv8x-seg) 

(Wu, Feng and 

Zhang, 2024) 

Fast-SCNN 

(Poudel, Liwicki 

and Cipolla, 

2019) 

Generalization Excels in zero-shot 

and few-shot 

generalization 

across diverse tasks 

due to its 

foundation model 

nature. Can handle 

ambiguous prompts 

by predicting 

multiple masks. 

Specialized for 

engineering 

vehicles, 

particularly 

small 

components like 

crane arms, but 

lacks 

generalization 

beyond its 

trained domain. 

Optimized for 

real-time 

semantic 

segmentation in 

specific 

scenarios (e.g., 

autonomous 

driving) but not 

designed for 

generalization. 

Architecture Uses a Vision 

Transformer (ViT) 

image encoder, 

prompt encoder for 

text/boxes/points, 

and lightweight 

mask decoder for 

real-time 

performance. 

Combines 

frequency-

domain 

processing 

(HFIE module) 

with adaptive 

multi-scale 

feature fusion 

(AFPN and 

ASFF) for 

small-object 

segmentation. 

Employs 

depthwise 

separable 

convolutions 

and inverted 

residual blocks 

for efficiency, 

with a focus on 

low 

computational 

overhead. 

Performance Achieves high-

quality masks (94% 

IoU > 90%) and 

Improves 

mAP50 by 0.8% 

over YOLOv8x-

Achieves 68.0% 

mIoU at 123.5 

fps on 
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outperforms 

specialist models in 

human-rated 

quality. 

Computational cost 

may limit real-time 

applications. 

seg, with a 4.7% 

boost for crane 

arms, but 

computational 

cost increases 

by 46%. 

Cityscapes, 

making it highly 

efficient for real-

time use but 

with slightly 

lower accuracy 

than 

competitors. 

Data 

Requirements 

Trained on SA-1B 

(1.1B masks from 

11M images), 

enabling broad 

generalization. 

Requires minimal 

task-specific 

training. 

Requires 

specialized 

dataset 

(ENV3K) with 

annotated 

engineering 

vehicles, 

limiting 

adaptability to 

other domains. 

Benefits 

minimally from 

ImageNet pre-

training, relying 

instead on 

aggressive data 

augmentation 

and longer 

training epochs. 

Use Case Fit Ideal for 

applications 

requiring flexibility, 

multimodal prompts 

(text, boxes, 

points), and 

integration with 

other models. 

Best suited for 

industrial safety 

monitoring of 

engineering 

vehicles near 

power lines, 

with a focus on 

small-object 

segmentation. 

Designed for 

latency-sensitive 

applications like 

autonomous 

driving or 

augmented 

reality, where 

speed is critical. 

 

From aspect of generalization, with training on the large SA-1B dataset, 

Segment Anything (SAM) is a foundation model that excels in zero-shot and 

few-shot generalization and can handle ambiguous prompts by predicting 

several masks. This enables broad adaptability without task-specific fine-tuning. 

On the other hand, HFF-YOLO which is an improved YOLOv8x-seg is a 

specialized model that focuses on engineering vehicle segmentation, 
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specifically for industrial safety near power lines. It uses adaptive multi-scale 

feature fusion (AFPN & ASFF) and frequency-domain processing (HFIE 

module) to detect small components like crane arms, but its generalization is 

restricted to its specialized ENV3K dataset and does not support multimodal 

prompts. Fast-SCNN is not appropriate for tasks requiring flexibility or 

ambiguous prompt handling because it struggles with zero-shot adaptation and 

multimodal inputs. It is made for real-time semantic segmentation in 

constrained environments and achieves efficiency through depthwise separable 

convolutions and inverted residual blocks. 

 In order to efficiently generate high-quality masks, SAM combines a 

lightweight mask decoder, a prompt encoder that can read text, boxes, or points, 

and a Vision Transformer (ViT) as its image encoder. In order to improve small-

object segmentation, HFF-YOLO combines adaptive multi-scale feature fusion 

(AFPN and ASFF) with frequency-domain processing, which is integrated 

through its HFIE module, to improve YOLOv8x-seg. With an emphasis on 

reduced latency for real-time applications, Fast-SCNN is built with depthwise 

separable convolutions and inverted residual blocks to optimize computational 

efficiency. 

 With over 94% of its masks having an IoU above 90%, SAM produces 

extremely accurate segmentation masks that frequently beat specialist models 

in terms of human-rated quality. Real-time deployment is constrained by its 

potentially high computing cost. Despite a 46% increase in computational cost, 

HFF-YOLO greatly increases performance on small components like crane 

arms and improves mean average precision (mAP50) marginally over 

YOLOv8x-seg overall. Although its accuracy is marginally lower than that of 

other models, Fast-SCNN provides extremely quick segmentation, attaining 68% 

mIoU at 123.5 frames per second, making it perfect for applications requiring 

speed. 

 SAM can generalize widely with less task-specific training thanks to 

training on the large dataset (SA-1B), which comprises 1.1 billion masks from 

11 million pictures. HFF-YOLO's adaptation to other domains is limited 

because it depends on the specific ENV3K dataset with annotations for 

engineering vehicles. In order to accomplish its effectiveness in semantic 
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segmentation, Fast-SCNN mostly relies on substantial data augmentation and 

lengthy training schedules, with some pre-training from ImageNet. 

 Applications requiring flexibility and multimodal fast processing are 

most suited for SAM, which makes it perfect for complicated picture jobs or 

integration with other models. When it comes to small-object segmentation in 

safety-critical situations, such as vehicles near power lines, HFF-YOLO is 

especially useful for industrial monitoring of engineering vehicles. Fast-SCNN 

prioritizes real-time speed above wide applicability and is intended for 

applications like augmented reality and autonomous driving where low latency 

is crucial. 

 

2.4 Existing Similar Application 

2.4.1 i-Neighbour 

According to TimeTec (2025), i-Neighbour is a complete smart community 

management system designed to improve residential areas' connectivity, 

convenience and security. Numerous features are integrated onto the platform 

to help residents, management offices and security staff maintain efficient and 

safe operations. The visitor management system which enables locals to pre-

register visitors using a smartphone app, is a fundamental feature of i-Neighbour. 

A QR code is created upon registration to provide easy access to the guardhouse. 

For visitors from Malaysia, the system also facilitates MyKad registrationn 

which guarantee effective and trustworthy identity verification. 

 In addition to visitor management, i-Neighbour offers emergency 

alarms, e-billing integration, announcement distribution and facility booking. 

The portal is a one-stop shop for residential participation, allowing residents to 

handle payments and take part in community polling. i-Neighbour is scalable 

and flexible enough to accommodate a range of home configurations thanks to 

its cloud integration and language support. 

 

2.4.2 MyTaman 

As stated in Zoinla (2019), MyTaman is a community platform built on IoT and 

neighborhood security that prioritizes connectivity and safety in real time. It 

provides a combination of hardware and software solutions that enhance 

communication and surveillance in contemporary residential environments. 
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One notable feature is the MyVMS (My Visitor Management System) which 

enables locals to use a mobile app to pre-register guests. Visitors can scan their 

ID or driver's license as they arrive, and the integrated system notifies the guards. 

 In addition, MyTaman has a 24/7 emergency SOS function that, when 

used, instantly notifies security personnel and pre-programmed contacts. The 

system also has smart access features that let people use their smartphones to 

access common facilities. The platform enhances the efficiency and 

accountability of security patrols by supporting guard patrol monitoring via a 

paperless app-based system. 

 

2.4.3 JaGaApp 

Based on Red Ideas (2025), the JaGaApp, created by JaGaSolution, acts as a 

virtual link between gated community residents, security guards and 

management. It is intended to improve communal living, facilitate 

communication and guarantee neighborhood safety. Residents can speak with 

guards remotely thanks to the app's wireless intercom technology. Pre-approval 

of visitors is made possible by its visitor registration system which guarantees 

the security of entry and exit points. 

 Additional interesting characteristics include a resident feedback 

system, digital notice boards for announcements, facility booking modules and 

emergency help notifications. JaGaApp lessens dependency on manual 

procedures while promoting community involvement. The platform's appeal 

among contemporary residential complexes can be attributed to its mobile-first 

design which makes it easy to use and accessible for users of all ages. 

 

2.4.4 TimeTec VMS 

As stated in TimeTec Cloud (2025), a cloud-based visitor management system 

called TimeTec VMS was developed to update how commercial and residential 

facilities monitor and control visitor entry. The system prioritizes real-time 

control, automation and security. Each visitor is given a QR code for 

entrance and residents and staff can pre-register guests using the app. The 

platform offers a comprehensive access control solution by easily integrating 

with TimeTec IoT devices such as smart doors and turnstiles. 
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 In order to facilitate evacuation processes, TimeTec VMS additionally 

incorporates emergency list tracking which displays all visitors that are now on 

the property. The system provides comprehensive analytics and reporting 

capabilities and supports a number of languages. Because of its modular 

architecture, it may be utilized in both large corporate settings and modest 

domestic settings. 

 

2.4.5 Visitorz 

According to (VISITORZ TECH PRIVATE LIMITED, n.d.), a visitor 

management app called Visitorz was created specifically for residential 

communities with the goal of achieving easy-to-use yet efficient access control. 

Residents can use the platform to pre-register guests, who will then be given a 

QR code to scan at the gate to gain admission. In order to expedite check-ins 

and cut down on wait times, the system alerts the host when guests arrive. 

 Furthermore, Visitorz keeps a thorough access log that enables 

management and residents to monitor visitor history for security audits. 

Although it concentrates on the essential visitor-related features, the platform's 

ease of use makes it simple to implement and administer, especially for smaller 

residential areas or communities searching for a cost-effective solution. 

 

2.4.6 Features Analysis on Similar Applications 

Table 2.３: Comparison among features between similar applications and 

proposed system 

Features i-

Neighbour 

(TimeTec, 

2025) 

MyTaman 

(Zoinla, 

2019) 

JaGaApp 

(Red 

Ideas, 

2025) 

TimeTec 

VMS 

(TimeTec 

Cloud, 

2025) 

Visitorz 

(VISITORZ 

TECH 

PRIVATE 

LIMITED, 

no date) 

Proposed 

System 

Visitor Pre-

registration 

Yes Yes Yes Yes Yes Yes 

QR Code 

Access 

Yes Yes Yes Yes Yes Yes 
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ID/License 

Scanning 

No Yes No Yes No No 

Emergency 

Alerts (SOS) 

Yes Yes Yes Yes No Yes 

Wireless 

Intercom 

Yes Yes Yes Yes No No 

Facility 

Booking 

Yes No Yes No No No 

E-Billing & 

Payment 

Integration 

Yes Yes Yes Yes No No 

Guard Patrol 

Monitoring 

Yes Yes Yes Yes No Yes 

Multilingual 

Support 

Yes Yes Yes Yes No No 

AI-Based 

Vehicle 

Recognition 

No No No No No Yes 

GPT-4o 

Integration for 

Communication 

No No No No No Yes 

Real-time Data 

Analytics 

Yes Yes Yes Yes No Yes 

 

Although current programs provide a number of functions for community 

security and guest management, none integrate cutting-edge technology like AI-

based car identification or integration with massive language models like GPT-

4o. The greater security offered by the suggested system attempts to close this 

gap. Unauthorized access can be reduced with AI-powered car recognition. 

Additionally, better communication is made possible by GPT-4o integration, 
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which makes interactions between residents and the management system more 

organic and effective. Finally, proactive decision-making and better community 

management are made possible by comprehensive analytics with real-time data 

analysis. The suggested method provides a more reliable and clever answer for 

current residential communities by combining these cutting-edge technology. 

 

2.5 Existing Vehicle Recognition System Review 

Before beginning a project, examining the existing vehicle recognition systems 

can yield important information and insights that help with decision-making 

regarding the project's functionality, direction, and probability of success.  

This section will mainly focus on research for vehicle plate recognition 

part, which is the most usual ways utilized in single modal vehicle recognition 

systems to recognise a vehicle. Looking at diverse structures of license plate 

recognition system can assist in understanding the algorithm and pipelines used 

in it and findings for selecting suitable method for vehicle plate detection and 

recognition process. 

 

2.5.1 Efficient license plate recognition in unconstrained scenarios 

According to Wei et al. (2024), Efficient Automatic License Plate Recognition 

(EALPR) is a framework that designed for unconstrained scenarios. To give an 

illustration, license plates that are distorted because of issues of perspective 

which is one of the unrestricted situations. 

 A lightweight vehicle plate detection was applied in this framework. 

This has included the structure of effective object detection approach like 

anchor-free strategies, CenterNet, EfficientDet, and transformer encoder. 

Anchor free method can predict objects directly without predefined box sizes 

(Ultralytics Inc, n.d.). CenterNet is a one-stage object detection model that 

predicts object centers rather than relying on anchor boxes or region proposals 

like anchor-based method such as Faster-RCNN (Zhou, Wang and Krähenbühl, 

2019). This implies that, CenterNet is a specific anchor-free method that 

primarily utilized in this project. By utilizing this way in object detection, the 

computational cost will be decreased since does not required selection and 

tuning of anchor box sizes and ratios and the flexibility in handling irregular 
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shape object will increase. In other words, anchor-free method helps to simplify 

the detection process and accelerate the inference process. This gives a big 

contribution on achieving real-time efficiency with a speed of 74.9 frames per 

second (FPS) in EALPR framework. The higher the FPS, the better the 

performance, in which outperforming traditional anchor-based methods that 

often sacrifice speed for accuracy.  

For EfficientDet, it is a family of object detection models developed by 

Google based on EfficientNet. It relies on Bi-directional Feature Pyramid 

Network (BiFPN) for multi-scale feature fusion (MingxingTan, Ruoming Pang 

and Quoc V. Le, 2020). In simpler terms, EfficientNet can be apply in varies 

size of license plate in the captured image neither small, medium nor large. 

Based on Ferrer (2024), transformer encoder converts the input tokens into 

forms that are contextualized. Hence, it is useful when having the scenario that 

license plate only occupy a small portion of the image. As a result, the system 

can handle unrestricted distances between the vehicle and the capturing camera 

in vehicle plate detection. 

 Moreover, this EALPR also follow unified framework structure in 

which it combines vehicle and license plate detection into a single pipeline. The 

advantage of this arrangement is preventing the demand for separate networks 

and decreasing the I/O overhead. Shared feature maps were also being used 

among vehicle detection and vehicle plate detection modules in order to 

improve the efficiency. In this case, the unified framework structure helps with 

enhancing performance by minimizing the cost of computation. 

 Despite adopting an anchor-free approach, this framework has 

demonstrated through testing on numerous datasets with flying colour findings 

that it surpasses current method in terms of accuracy and speed. With 98.15% 

on OpenALPR(EU), 95.61% on OpenALPR(BR), 99.51% on AOLP(RP), 88.81% 

on SSIG, and 79.41% on CD-HARD, it reaches state-of-the-art accuracy. 

 Training data is one of the important procedures in vehicle plate 

recognition system. In this project, the model is trained with data augmentation 

strategies in order to handle different ranges such as distortion of perspective, 

changes of colour, changes in lighting and other condition that may affect the 

accuracy of recognised license plate in reality. Consequently, the robustness of 

the model may be proven. 
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 To recognise the numbers and letters from the pre-processed license 

plates, the license plate recognition (LPR) employs a per-trained OCR-net. 

Because the distorted number plates had already been corrected during the 

earlier detection step, using this per-trained OCR-net made the recognition 

procedure become simpler. Convolutional Neural Networks (CNNs), which are 

employed in the EALPR framework, were utilized to extract sequential features 

from the full license plate region using segmentation-free techniques and OCR-

net. 

 In addition, loss function is also used in the License Plate Detection 

(LPD) of this project. Loss function is a mathematical function that measures 

how well a machine learning model is performing (Dave and Cole, 2024). It 

helps to calculates the difference between the predicted output and the actual 

(ground truth) value. The loss function in this project was divided into three 

parts which included the probability error between the center of vehicle plate 

and prediction, license plate location and affine transformation parameters 

regression. 

 In a nutshell, this EALPR framework is efficient and effective when 

being utilized in unconstrained scenarios. It addresses the challenges of 

perspective distortion of vehicle plate, varies size of license plate portion in the 

image and real-time processing. 

2.5.2 ALPR- An Intelligent Approach Towards Detection and 

Recognition of License Plates in Uncontrolled Environments 

According to Bakshi et al. (2023), automatic license plate recognition (ALPR) 

systems are becoming vital tools for law enforcement, intelligent 

transportation and traffic management. In the past, these systems have 

performed best in controlled settings with frontal views of license plates and 

ideal lighting. However, as recent studies have shown, their performance 

drastically decreases when they are faced with the difficulties of uncontrolled 

surroundings that include complicated backgrounds, varying illumination, and 

oblique viewing angles. This drawback of traditional ALPR systems has 

generated a lot of interest in research into creating more reliable alternatives that 

can manage real-world situations. 

 In uncontrolled scenarios, ALPR systems face a variety of difficulties. 

Environmental elements that significantly increase noise and distortion in 
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license plate photos include motion blur, poor lighting, and extreme weather. 

Furthermore, even if they work well under ideal circumstances, commercial 

systems like OpenALPR and Sighthound show significant performance declines 

in these uncontrolled situations. These challenges highlight the urgent need for 

increasingly complex methods that can preserve high accuracy in a variety of 

difficult real-world scenarios. 

 New developments in deep learning have opened the door for 

innovative solutions to these problems. YOLOv4's integration for license plate 

detection is a major advancement because it provides real-time processing 

capabilities together with excellent accuracy. By adapting the YOLOv4 

architecture especially for license plate detection, researchers have improved 

this method a lot more. They have done this by optimizing factors like batch 

size and filter configurations to increase performance while lowering 

computational complexity. This customized version shows how general-

purpose frameworks for object detection can be successfully adapted to 

particular recognition tasks. 

 Using Spatial Transformer Networks (STNs) to correct for geometric 

distortions is a very important advancement in ALPR systems. An complicated 

three-stage procedure is used by the STN module to generate sampling 

coordinates, estimate transformation parameters using a localization network, 

and produce the rectified output using a sampler. By correcting for perspective 

distortions and different orientations, this method successfully normalizes 

license plate photos and greatly increasing the accuracy of future character 

recognition. STNs' modular design preserves end-to-end trainability while 

enabling smooth incorporation into current deep learning pipelines. 

 Deep learning architecture advancements have also helped character 

identification in ALPR systems. In order to improve image quality before 

character segmentation, modern systems use extensive preprocessing pipelines 

that include morphological operations, adaptive thresholding, and grayscale 

conversion. To properly identify individual characters, the segmentation method 

itself combines sophisticated filtering based on dimensional limitations with 

shape analysis. In order to achieve exceptional accuracy rates above 96% on 

common benchmarks, researchers have created customized CNN architectures 
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for the recognition phase that are modeled after VGGNet but tuned for license 

plate character recognition. 

 The advantage of these sophisticated ALPR systems over conventional 

methods has been proven via evaluation. Extensive testing on various 

datasets such as AOLP, SSIG and custom collections with difficult oblique 

views has consistently shown increases in speed. In challenging situations, it 

has been demonstrated that the incorporation of STNs alone increases 

recognition accuracy by about 13%. The benefits of these research-grade 

methods are demonstrated by comparisons with commercial systems especially 

when it comes to processing distorted and less-than-ideal license plate photos. 

With a mean average precision of 90%, the customized YOLOv4 detection 

component outperforms earlier iterations of the YOLO architecture. 

 Despite all of these improvements, there are still specific troubles with 

the ALPR systems in use today. The current limitation to Latin character sets 

and performance decrease in extremely low light and partial occlusions are still 

problems. Such limitations highlight crucial areas for further study such as 

creating more reliable preprocessing methods for dim lighting, integrating 

multimodal sensing strategies, and expanding recognition capabilities to 

different writing systems like Devanagari. In addition, investigating hybrid 

architectures that combine the advantages of various deep learning techniques 

could result in additional gains in computational efficiency and accuracy. 

 The development of ALPR systems is typical of more general patterns 

in pattern recognition and computer vision, where deep learning keeps pushing 

the envelope in difficult real-world applications. As these technologies advance, 

they should make it possible for ALPR solutions to become more dependable 

and adaptable. ALPR solutions shouls also able to function well in a wide range 

of environmental conditions found in real-world deployment scenarios. In 

addition to improving the state of ALPR technology, the current research in this 

area offers important new information to the broader field of object recognition 

in uncontrolled situations. 
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2.5.3 Vehicle color recognition based on smooth modulation neural 

network with multi-scale feature fusion 

Based on  Hu et al. (2023), in intelligent transportation systems, vehicle color 

recognition (VCR) has become a vital technology, especially when conventional 

license plate recognition techniques are ineffective because of obstruction, fraud, 

or low picture quality. Although traditional VCR systems usually only identify 

cars into 13 or fewer color categories, real-world applications are calling for 

more precise detection capabilities. Limited dataset diversity, class imbalance 

issues, and performance degradation under changing environmental conditions 

are only a few of the major obstacles facing current techniques. These flaws 

have prompted studies on more resilient VCR systems that can manage the 

complex nature of actual traffic situations. 

 The generation of extensive datasets is a key obstacle to the 

advancement of VCR technology. The scope of existing public datasets, such 

the C-, J-, and T-datasets, is constrained as they only cover a maximum of 13 

color groups and frequently lack variation in terms of lighting circumstances, 

weather scenarios, and vehicle kinds. The creation and assessment of 

increasingly complex VCR algorithms are severely hampered by these 

constraints. In order to fill this gap,  Hu et al. (2023) recently introduced Vehicle 

Color-24 which is a far more extensive dataset that includes 10,091 images 

taken from 100 hours of urban road surveillance video. In addition to extending 

the color taxonomy to 24 fine-grained groups, this dataset incorporates difficult 

real-world fluctuations in weather and illumination. The data's long-tail 

distribution which shows that rare colors like purple (0.04%) and pink (0.11%) 

are greatly underestimated while common colors like white (37.87%) and black 

(20.08%) are predominant. This offers both a difficulty and an opportunity for 

creating more reliable detection algorithms. 

 Innovative architectural solutions for VCR systems have been 

presented by researchers in order to address these issues. An important 

development in this field is the Smooth Modulation Neural Network with Multi-

Scale Feature Fusion (SMNN-MSFF). A multi-scale feature fusion module that 

integrates both local geometric details and high-level semantic information 

using Feature Pyramid Networks (FPN), a lightweight 42-layer VCR-ResNet 

backbone optimized for color feature extraction, and a novel improved Smooth 
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L1 loss function (VCR-Loss) created primarily to reduce the effects of class 

imbalance are some of the major innovations combined in this approach. In 

contrast to conventional focus loss techniques, the VCR-Loss performs better in 

ablation studies (94.96% vs. 91.79% mAP) by dynamically reweighting losses 

for underrepresented classes using a parameter β (empirically adjusted at 0.11). 

 The outcomes of experiments show how effective these improvements 

are in a variety of ways. According to ablation studies, the VCR-ResNet 

backbone outperforms traditional architectures like as VGG16 that get mAP 

of 62.38% and ResNet50 which has mAP 65.38% with a mAP of 68.17%. 

While the VCR-Loss achieves an amazing 36.37% gain over baseline Faster R-

CNN performance (94.96% vs. 58.59% mAP), the addition of multi-scale 

feature fusion yields a significant 15.79% boost in accuracy (74.38% mAP). 

Consistent performance advantages are demonstrated by comparative 

evaluations across various datasets. For example, the SMNN-MSFF achieved 

94.96% mAP on 24-color recognition in which beating out YOLOv4's 62.77% 

and RetinaNet's 91.79%, 97.25% mAP on the 8-color C-dataset that has beated 

on Chen et al.'s 92.63%, and the J-dataset's 97.85% and T-dataset's 90.62%. 

Unexpectedly, the system can process images in real time at 1.021 seconds on 

CPU hardware which makes it feasible to use in real-world traffic monitoring 

situations. 

 Beyond technical measures, these developments have deeper 

implications. While the SMNN-MSFF architecture shows how careful 

consideration to both model architecture and training dynamics can generate 

significant increases in recognition accuracy, the Vehicle Color-24 dataset sets 

a new standard for assessing VCR systems. The VCR-Loss function's ability to 

resolve class imbalance without the need for elaborate sampling techniques 

provides insightful information for other computer vision jobs that deal with 

comparable data distribution issues. But there are still difficulties especially 

with identifying very uncommon hue classes and sustaining performance in 

difficult conditions. This has suggests crucial areas for further study. 

 There are a number of potential directions that future research in this 

area might explore. While hybrid model architectures may improve 

performance in difficult situations like occlusion or low-light environments, 

extending identification capabilities to incorporate multilingual or multispectral 
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analysis could increase system adaptability. The class imbalance issue may be 

resolved by looking into self-supervised learning strategies, which might 

minimize the need for massive annotated datasets. VCR integration with other 

vehicle identification techniques is expected to become more and more 

significant in intelligent transportation systems, law enforcement applications, 

and urban planning projects as the technology develops. By showing how 

careful integration of dataset design, model architecture, and training 

methodology may advance the state of the art in vehicle recognition systems. In 

conclusion, SMNN-MSFF framework builds a solid foundation for these 

upcoming advancements. 

 

2.5.4 DeepCar 5.0: Vehicle Make and Model Recognition Under 

Challenging Conditions 

As stated in Amirkhani and Barshooi (2023), Vehicle Make and Model 

Recognition (VMMR) has become an essential part of Intelligent Transportation 

Systems (ITS) with applications ranging from driverless vehicles to traffic 

control, surveillance, and law enforcement. Despite its importance, VMMR has 

a number of shortcomings, primary among them being its fine-grained 

classification. Accurate recognition is challenging due to the low intra-class 

variance among similar models and the substantial inter-class variance among 

different vehicle models. Furthermore, the work is made more difficult by the 

absence of complete datasets and the dynamic situations that cars operate 

in such as changing lighting, obstacles, and poor weather. A unique multi-agent 

system (MAS) used together with ensemble learning approaches is one of the 

innovative solutions that recent suggested by researchers to address these 

problems. Through the identification and processing of important areas of 

interest (ROIs) such as headlights, grills, and bumpers, which contain unique 

characteristics for vehicle classification, this method focuses on front-view 

image analysis. 

 Traditional techniques for tracking and detecting vehicles have 

depended on hardware-based sensors such as radar and microwave systems. 

Even while these techniques work well, they are frequently expensive and 

susceptible to environmental factors. On the other hand, vision-based methods 

like Light Detection and Ranging (LIDAR), histogram of oriented gradients 
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(HOG), and closed-circuit television (CCTV) provide more flexibility and cost-

effectiveness. These techniques use sophisticated image processing algorithms 

to track and identify cars in real time. Regarding Vehicle Type Recognition 

(VTR), researchers have investigated model-based methods using 3D computer-

aided design (CAD) models as well as feature-based methods like Scale-

Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF). 

Nevertheless, these techniques are frequently vulnerable to changes in lighting 

and noise which reduces their adaptability in practical situations. 

 The current methodologies in the field of VMMR can be broadly 

divided into three categories include hybrid, part-based, and comprehensive. 

While comprehensive approaches can process full vehicle pictures, they have 

trouble with partial obstacles and different points of view. On the other hand, 

part-based methods focus on particular areas such as grills and headlights 

can provide a higher level of detail but required exact localization. The goal of 

hybrid approaches is to incorporate the best features of each of them. For 

example, channel max pooling lowers computing complexity without affecting 

accuracy. With these developments, the lack of extensive, annotated datasets 

continues to be a barrier in the field. 

 In order to resolve this barrier, the DeepCar 5.0 dataset which includes 

40,185 front and front three-quarter photos from 50 automakers and 480 vehicle 

classes was created to close this gap. It focuses on cars made between 2019 and 

2022. This dataset is one of the most complete and current resources for VMMR 

research since it includes manual annotations of ROIs such as headlights, grills, 

and bumpers and comprehensive technical specifications like engine power and 

speed. DeepCar 5.0 provides more diversity and relevance for modern vehicle 

detection tasks than other datasets such as CompCars and CityFlow. 

 This study's proposed methodology brings about a number of 

significant advancements. Initially, an attention mechanism is used to pinpoint 

crucial areas like grills and headlights which are essential for differentiating 

between car types for feature extraction. The second is the implementation of a 

multi-agent system (MAS) in which a specialized convolutional neural network 

(CNN) processes each ROI as an independent agent. For example, Agent 2 (grill) 

analyzes mesh structures using the DexiNed edge detector, whereas Agent 1 

(headlights) employs Canny edge detection to extract "identity watermarks." To 
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improve robustness, Agent 4 (fog light/scoop) uses neural style transfer, 

whereas Agent 3 (bumper) uses Gabor filters to collect texture and curvature 

characteristics. An ensemble learning technique is used to aggregate the outputs 

from these agents. In particular, a blackboard system that enables majority 

voting for final classification is used. 

 The effectiveness of this method is shown by the experimental 

findings which show an accuracy of 96.72% with manual ROI detection and 

92.14% with automatic detection using YOLOR. These numbers greatly above 

the accuracy of conventional single-network techniques like ResNet101, which 

only attains 58.91%. Additionally, the suggested method shows robustness in 

the face of challenging conditions such as partial occlusions and changing 

lighting. With a 99.01% accuracy rate, benchmarking on the CompCars dataset 

confirms its excellence. 

 In a nutshell, the combination of MAS with ensemble learning is a 

major development in VMMR which utilizing localized characteristics and 

group decision-making to improve robustness and accuracy. The launch of the 

DeepCar 5.0 dataset opens the way for further study by addressing the urgent 

requirement for current and varied training data. Expanding the framework to 

multi-view recognition and refining it for real-time deployment in dynamic 

contexts are two possible avenues for future research. In addition to advancing 

the state-of-the-art in VMMR, this work offers a flexible and scalable approach 

for practical ITS applications. 

2.5.5 Algorithms and Techniques used in current vehicle recognition 

systems 

Table 2.４: Comparison among different vehicle attributes recognition systems 

Aspect Efficient 

License 

Plate 

Recognition 

(EALPR) 

(Wei et al., 

2024) 

ALPR in 

Uncontrolled 

Environment

s (Bakshi et 

al., 2023b) 

Vehicle 

Color 

Recognition 

(VCR) (Hu 

et al., 2023) 

DeepCar 5.0 

(VMMR) 

(Amirkhani 

and Barshooi, 

2023) 
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Focus License 

plate 

recognition 

in 

unconstraine

d scenarios 

License plate 

recognition in 

uncontrolled 

environments 

Vehicle color 

recognition 

under 

varying 

environment

al conditions. 

Vehicle make 

and model 

recognition 

using multi-

agent systems 

and ensemble 

learning. 

Key 

Technique

s 

Anchor-free 

methods 

(CenterNet), 

EfficientDet, 

transformer 

encoder, 

unified 

framework. 

YOLOv4, 

Spatial 

Transformer 

Networks 

(STNs), 

customized 

CNNs for 

character 

recognition. 

Smooth 

Modulation 

Neural 

Network 

(SMNN), 

multi-scale 

feature 

fusion, VCR-

Loss for 

class 

imbalance. 

Multi-agent 

system (MAS), 

attention 

mechanisms, 

ensemble 

learning, 

DeepCar 5.0 

dataset. 

Strengths High 

accuracy (up 

to 99.51%), 

real-time 

processing 

(74.9 FPS), 

handles 

perspective 

distortion. 

Improved 

accuracy with 

STNs (13% 

increase), 

handles 

geometric 

distortions, 

real-time 

capabilities. 

High mAP 

(94.96%), 

handles class 

imbalance, 

real-time 

performance 

on CPU. 

High accuracy 

(96.72%), 

robust to 

occlusions and 

lighting 

changes, 

comprehensive 

dataset. 

Limitation

s 

Limited to 

Latin 

character 

sets, 

performance 

drops in 

Challenges 

with partial 

occlusions 

and 

extremely 

low light. 

Struggles 

with rare 

color classes, 

performance 

in extreme 

conditions. 

Requires 

precise ROI 

localization, 

complex 

implementatio

n. 
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extreme 

conditions 

 

In terms of focus, each research investigation addresses a distinct vehicle 

recognition problem. ALPR targets uncontrolled circumstances whereas 

EALPR concentrates on license plate recognition in unrestricted situations. 

While DeepCar 5.0 addresses make and model recognition, VCR focuses on 

color recognition. For thorough vehicle identification, these variations 

emphasize the necessity of a single system that combines several recognition 

tasks. 

 For key techniques, anchor-free detection (EALPR), STNs (ALPR), 

SMNN (VCR), and MAS (DeepCar 5.0) are among the methods employed. 

Although each methodology works well for a particular goal, a multimodal 

strategy that combines these cutting-edge methods might capitalize on their 

advantages to tackle more general issues. 

 From perspective of their strengths, these systems' efficacy is 

demonstrated by their excellent precision and real-time capabilities. However 

because they are specialized, they are only good at what they do. These 

advantages could be combined in a multimodal system to provide reliable 

performance in a variety of situations. 

 Despite their advantages, every system has cons of its own. For 

example, they might have encountered difficulties when managing challenging 

circumstances or uncommon classes. These variations highlight the need for a 

more adaptable approach that can handle a greater variety of problems, like 

partial occlusions, dim lighting or a variety of vehicle kinds. 

 In a nutshell, a Multimodal Large Language Model-Based Vehicle 

Recognition for Vehicle Access Control System is necessary after reviewing on 

these different types of vehicle recognition systems. The importance of 

developing the proposed project including current systems only focus on a 

single feature like make and model, color or license plates. However, when 

these functions are integrated, a multimodal approach offers a comprehensive 

solution for vehicle identification, which is essential for access control systems 

that need high reliability and accuracy. Moreover, extreme situations are 

difficult for current systems to handle. To overcome these obstacles and 
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guarantee reliable performance in real-world scenarios, a multimodal LLM-

based system can provide contextual reasoning according to the image clarity 

but not just providing a fault that allow unauthorized bypass of vehicles that 

may affect in the aspect of security. Importantly, no research has been done that 

integrates make and model, color, and license plate recognition into a unified 

framework. By providing a unique solution that expands the capabilities of 

vehicle access control systems, this proposal has closes the gap. 

 

2.6 Software Development Methodologies 

Software systems can be planned, designed, developed, tested, and maintained 

using an organized framework that is provided by the Software Development 

Life Cycle (SDLC). In order to make sure that the development process is 

effective, methodical and in line with project objectives, choosing the right 

SDLC model is essential. This section analyzes current SDLC approaches, 

assessing their applicability for creating a multimodal vehicle detection system 

and related online and mobile applications as well as their advantages and 

disadvantages. 

 

2.6.1 A Comprehensive Research Analysis of Software Development 

Life Cycle (SDLC) Agile & Waterfall Model Advantages, 

Disadvantages, and Application Suitability in Software Quality 

Engineering 

Based on Pargaonkar (2023), Software Development Life Cycle (SDLC) is 

a crucial framework of modern software engineering that offers structured 

procedures to guide the creation of software products of superior quality. 

Organizations are under growing pressure to choose SDLC models that strike a 

balance between efficiency, quality, and adaptability as market expectations and 

technological demands continue to change. By systematically comparing classic 

and modern SDLC methodologies, thorough analysis in this paper provides 

insightful information on this selection process with focus on its significance 

for software quality engineering. By connecting theoretical model features with 

real-world quality assurance issues, this study closes a significant gap in the 

literature and allows development teams and stakeholders to make better 

decisions. 
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 The conventional Waterfall model and current Agile approaches are 

the two main SDLC paradigms that are thoroughly compared in this paper. The 

Waterfall model exhibits major benefits in organized project management and 

thorough documentation due to its linear, phase-gated methodology. Because of 

these characteristics, it is especially well-suited for projects with clear, 

consistent requirements, like safety-critical applications or systems for 

regulatory compliance. However, the study also identifies significant 

shortcomings of the Waterfall technique, such as its inherent resistance to 

evolving requirements and the high chance of identifying defects at a late stage. 

These results are consistent with previous criticisms by Shylesh (2017, cited in 

Pargaonkar, 2023, p. 121), who pointed out that Waterfall's applicability in 

dynamic development contexts is declining. On the other hand, Agile 

approaches show themselves to be a strong substitute for projects that need 

flexibility and quick iterations. The report outlines Agile's advantages in early 

issue identification, improved customer satisfaction, and continuous quality 

improvement through iterative cycles. Qualities that have made it a preferred 

approach for consumer-facing apps and quickly changing markets. 

 The research highlights significant trade-offs between these opposing 

strategies from the perspective of software quality engineering. Clear audit trails 

and compliance benefits are provided by waterfall's emphasis on comprehensive 

documentation and phase completion, which are crucial for industries with strict 

regulatory requirements. But because it is sequential, quality problems are 

frequently found too late in the development cycle. This may result 

in necessitating of expensive rework in order to get a good quality. Although 

agile's quality assurance procedures are more adaptable, they might be difficult 

to manage scope creep and maintain thorough documentation. The findings of 

Gurung et al. (2020, cited in Pargaonkar (2023)) about the documentation-

quality paradox in iterative development methodologies are supported by these 

observations. By including real-world case studies that illustrate how these 

theoretical trade-offs appear in realistic development settings, the study further 

strengthens its practical relevance and offers insightful background information 

for organizational decision-making. 

 Although the study provides valuable information, it also points out 

fundamental flaws in the way the SDLC is being implemented. Although 
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different aspects of Waterfall and Agile helpful, but both of them ignores the 

growing popularity of hybrid techniques that aim to integrate the best features 

of each. These blended models are mentioned in passing in the study, but they 

are not thoroughly examined. In other words, this is a topic that needs more 

research. More thorough analysis of how cutting-edge methodologies like 

DevOps and continuous integration/continuous delivery (CI/CD) pipelines 

might support or disagree with established SDLC quality assurance procedures 

would also be beneficial to the study. The study contributes significantly to 

industry practice and academic research by offering a clear framework for 

assessing SDLC models in relation to quality engineering goals regardless of 

these limitations. 

 The study offers a number of encouraging possibilities for further 

research in this area. The creation of increasingly complex hybrid approaches 

that purposefully blend the flexibility of Agile with the structure of Waterfall 

may assist organizations in producing higher-quality results for a variety of 

project kinds. While preserving the benefits of iteration, a deeper integration of 

automated testing and quality assurance tools into Agile workflows may assist 

solve the present documentation issues. The report also emphasizes the 

necessity of industry-specific SDLC modifications, especially in highly 

regulated fields like healthcare and finance where quality standards vary greatly 

from those of commercial software development. Together with the study's 

main conclusions, these future possibilities offer a strong basis for further 

investigation into how to best optimize SDLC procedures for software quality 

engineering in a technical environment that is becoming more and more 

challenging. 

 

2.6.2 Agile Methodology Vs. Traditional Waterfall SDLC : A case study 

on Quality Assurance process in Software Industry 

According to (Sinha and Das, 2021), a quick, iterative, and flexible approach to 

software development known as Agile methodology that was created to handle 

short development cycles and shifting requirements. On the other hand, the 

traditional Waterfall approach adheres to a strict, sequential procedure which 

makes it less appropriate for dynamic project contexts where adaptability is 

essential. Agile has become widely used in software engineering as well as other 
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industries like manufacturing because of its capacity to combine incremental 

improvements with ongoing feedback. Comparing Agile and Waterfall testing 

methodologies is a major area of research in this field, with studies emphasizing 

Agile's greater efficiency and effectiveness for modern software development. 

 In 1970, Winston Royce established the Waterfall model that divides 

software development into the following discrete, sequential stages: 

requirements, design, implementation, verification, deployment, and 

maintenance. This model's testing is done only after the implementation stage, 

which frequently results in a delayed discovery of defects and increased 

corrective expenses. Although the Waterfall technique has benefits like 

organized documentation, manageability, and fit for projects with clear goals 

but there are serious drawbacks to its inflexibility. Its relevance in rapidly 

changing project environments is further limited by late-stage defect 

identification and little developer-tester collaboration. 

 In contrast, the agile methodology uses an iterative structure called 

sprints, which are development cycles that include phases for requirement 

gathering, implementation, and testing. This strategy lowers market risks and 

guarantees alignment with user needs by emphasizing gradually delivery, 

flexibility, and ongoing customer feedback. Agile's ability to integrate testing 

into each sprint, which facilitates early problem identification and resolution is 

a key benefit. Agile encourages continuous cooperation between developers and 

testers, reducing knowledge gaps and speeding up issue resolution in contrast to 

Waterfall, which views testing as a distinct and last process. 

 The distinctions between Waterfall and Agile are even more visible 

when looking at testing procedures. Inefficiencies result from waterfall testing's 

sequential nature, heavy reliance on documentation such as test plans and 

completion reports, and separation from development. On the other hand, Agile 

testing is continuing, necessitates little documentation and benefits greatly from 

cross-disciplinary cooperation. Bugs are fixed in later rounds, avoiding 

accumulation and guaranteeing more seamless project development. The 

advantages of Agile testing including faster feedback loops, increased flexibility, 

and improved client satisfaction as a result of frequent demonstrations and 

iterative improvements. 
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 The benefits of Agile are further shown by comparisons between Agile 

and Waterfall testing. The modular methodology of Agile that also known as 

"divide and conquer" enables targeted testing on smaller code portions, 

increasing productivity and accuracy. In this case, changes are easily 

implemented without interfering with the project, but Waterfall's rigidity makes 

these adjustments expensive and time-consuming. Furthermore, Waterfall's 

late-stage testing frequently causes delays and budget overruns, whereas Agile's 

set sprint lengths produce more accurate time and cost estimates. While 

Waterfall's restricted stakeholder contact might result in misaligned outcomes, 

Agile's constant engagement and iterative delivery also increase customer 

satisfaction. 

 In academic environments, where previous approaches like Waterfall 

have traditionally predominated, future research topics will examine the 

applicability of Agile. Agile's advantages in a variety of contexts might be 

further validated by including it into educational programs. This could yield 

insightful information about how effective it is in comparison to traditional 

methods. Studies already conducted support Agile's benefits in terms of quality 

and productivity, making it the go-to approach for existing software 

development. 

 In conclusion, this research paper shows how Agile is better at 

encouraging flexibility, teamwork, and productivity—especially in testing 

procedures. Agile's iterative and customer-centric methodology makes it more 

appropriate for dynamic and changing software development 

environments even while Waterfall is still useful for stable, clearly defined 

projects. The scalability and efficacy of Agile should be further investigated in 

future research in a variety of fields including academics and non-IT sectors. 

 

2.6.3 Traditional SDLC Vs Scrum Methodology – A Comparative Study 

Based on (Mahalakshmi and Sundararajan, 2008), the core of software 

engineering is the Software Development Life Cycle (SDLC) which includes 

crucial stages like planning, analysis, design, and execution. The industry has 

historically been ruled by traditional SDLC models, such as Waterfall, Spiral, 

and V-model which use methodical, structured procedures. However, serious 

flaws in these conventional frameworks have been revealed by the growing 
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complexity nowadays software projects and the quickly shifting needs of 

customers. As a result, agile approaches such as Scrum have become adaptable 

substitutes. Scrum can provide iterative development cycles and flexible 

procedures more appropriate for the ever-changing software development 

environment of today. 

 One of the most historic and best-known approaches to the Software 

Development Life Cycle (SDLC), the Waterfall model proceeds in a strictly 

linear fashion through the following phases: requirements gathering, system 

design, implementation, testing, and maintenance. The inflexible structure of 

this framework has a number of significant disadvantages, the primary among 

them being its incapacity to adapt to evolving needs after development has 

started. Waterfall's sequential structure frequently results in late-stage defect 

detection, raising expenses and delaying projects. Furthermore, final solutions 

often fall short of consumer expectations due to a lack of iterative customer 

input. Although threre are some limitations, w aterfall still has certain benefits 

in spite of these difficulties, such as easy implementation, low resource needs, 

and thorough documentation that offers clarity all the way through the 

development process. 

 On the additional hand, the Scrum methodology is an alteration in the 

methods used for software development. Scrum is a popular Agile framework 

that divides work into time-boxed iterations called sprints. These sprints usually 

span two to four weeks and produce incremental changes to the final product. 

The approach identifies three primary roles: the self-organizing Development 

Team which is in charge of producing functional software, the Scrum 

Master who streamlines the process and eliminates roadblocks and the Product 

Owner who ranks requirements in the product backlog. Scrum uses a number of 

artifacts such as the sprint and product backlogs and burndown charts that show 

progress visually in order to keep things transparent and focused. Throughout 

the development cycle, regular practices like sprint planning, daily stand-ups, 

sprint reviews, and retrospectives ensure continuous collaboration and progress. 

 There are many valuable benefits that Scrum offers over traditional 

Waterfall. In today's rapid development settings, Scrum's iterative structure 

enables regular adaption to changing needs. The framework's frequent meetings 

and visible artifacts encourage improved cooperation and openness between 
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team members and stakeholders. Most significantly, Scrum's focus on 

producing functional software at the conclusion of each sprint results in a 

quicker time to market and satisfied clients. Scrum implementation does have 

some disadvantages such as the requirement for highly dedicated and well-

coordinated team members and the possibility of ambiguity due to the lack of 

documentation in compared with Waterfall methods. 

 A thorough analysis of various approaches shows significant variations 

in a number of areas. For projects that need flexibility, Waterfall's inflexible 

structure is insufficient whereas Scrum is excellent at adapting to shifting needs. 

Waterfall places a strong emphasis on thorough documentation whereas Scrum 

prioritizes functional software over plenty of paperwork. The two methods' 

approaches to customer interaction differ significantly. For Scrum, 

it includes ongoing stakeholder input throughout development while 

for Waterfall it restricts feedback to the very end. Scrum's iterative validation 

procedure which finds and fixes problems early tends to have higher success 

rates than Waterfall's late-stage testing methodology. Additionally, there are 

vital differences in teamwork between Scrum's collaborative, cross-functional 

teams and Waterfall's organized roles. 

 The analysis's findings clearly establish Scrum as the best option for 

dynamic projects with changing requirements since it provides quicker delivery 

timeframes and better stakeholder alignment. For projects with set, clearly 

defined objectives and needs that are unlikely to change, waterfall methodology 

is still suitable. In the end, the features of the project will determine which 

approach is best. Waterfall is better for stable, predictable projects while Scrum 

is better for agile development settings. Future studies could look into hybrid 

models that combine the flexibility of Scrum with the structure of Waterfall, as 

well as how scalable Scrum is for large-scale enterprise projects. Understanding 

these methodological variations is becoming more and more important for 

organizations looking to maximize value for stakeholders and optimize their 

development processes as the software development environment evolves. 

 

2.6.4 Waterfall Vs V-Model Vs Agile: A Comparative Study on SDLC 

As stated in (Murugaiyan, 2012), software engineering projects are based on the 

Software Development Life Cycle (SDLC) which provides standardized 
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methods to direct development from idea to implementation. The industry has 

long been dominated by traditional SDLC models, especially the Waterfall and 

V-Model approaches, which use phase-based, sequential techniques. But the 

advent of Agile approaches has brought in more adaptable, iterative alternatives 

that are more suited to the ever-changing needs of today's software. In order to 

assist organizations in choosing a development method, this literature analysis 

compares the features, benefits, drawbacks, and best use cases of these three 

well-known SDLC models. 

 Firstly, the Waterfall model is a model that follows a strictly linear 

sequence of phases which includes requirements gathering, system design, 

implementation, testing, and maintenance. This model is the most conventional 

method to the Software Development Life Cycle (SDLC). The main advantage 

of this model is its simplicity and clarity. By employing this model, teams can 

go forward with less uncertainty if clear requirements are set up at the beginning. 

Strong traceability is ensured by the thorough documentation created during 

Waterfall development which also makes the approach ideal for projects with 

consistent, unchanging needs. However, in modern development environments, 

the Waterfall technique exhibits obvious limits. Once development has started, 

its rigid structure makes it very difficult to accommodate requirement changes. 

As a result, it frequently requiring expensive rework.Another  important point 

is testing only takes place later in the development process which may cause 

flaws to go unnoticed until they are costly to fix. Furthermore, even while final 

goods technically satisfy initial specifications, they might not entirely 

correspond with user needs due to a lack of iterative client feedback. 

 When it comes to validation and verification, the V-Model offers a 

more advanced method than the strictly sequential Waterfall model. This 

methodology forms the distinctive "V" shape by explicitly relating each 

development phase to its associated testing activity while maintaining the 

Waterfall methodology's phase-based structure. The main benefit of the V-

Model over Waterfall is that it incorporates testing considerations from the very 

beginning of development. This has allow it for earlier problem discovery. The 

V-Model allows for requirement modifications at any stage which gives it a 

little more flexibility than Waterfall while still upholding strict documentation 

requirements. However, any changes still necessitate significant documentation 
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updates. The approach is especially useful for complicated, high-stakes projects 

where quality assurance is crucial since it places a strong emphasis on validation 

at every stage. However, due to the heavy overhead of maintaining parallel 

development and testing artifacts, the V-Model's extensive review requirements 

make it less appropriate for smaller projects or those with strict deadlines. 

 In contrast to these conventional methods, agile techniques emphasize 

iterative development, ongoing customer collaboration and flexible planning. 

Agile divides projects into brief development cycles that each of them usually 

take a durations of 2-4 weeks called sprints. They helps to produce incremental 

product changes in comparison to the rigid architecture of Waterfall or V-Model. 

In the fast-paced development environments of today, this method offers many 

benefits. Most significantly, teams can easily adapt to shifting needs as the 

project progresses via Agile's adaptability. By offering frequent chances for 

feedback and course correction, frequent delivery of functional software 

improves customer satisfaction. Moreover, misunderstandings are decreased 

and information sharing is encouraged by the methodology's emphasis on in-

person interactions and cross-functional teamwork. But there are drawbacks to 

Agile implementations as well, especially for larger projects where it can be 

challenging to estimate the amount of work needed. The approach's dependence 

on self-organizing teams and scant documentation necessitates highly qualified 

engineers and may lead to problems with knowledge transfer. Additionally, 

teams that are spread out geographically may find the intensive cooperation 

approach difficult to implement. 

 When these approaches are examined, key distinctions are found in a 

number of important areas. The V-Model permits controlled modifications with 

effort, Waterfall is totally inflexible and Agile welcomes change at every stage 

of development. Testing methodologies vary greatly as Agile include 

continuous testing across iterations, Waterfall focuses testing at the 

conclusion while the V-Model pairs testing with each development phase. 

Documentation strategies vary from the lengthy documentation of Waterfall and 

V-Model to Agile's preference for functional software over extensive 

documentation. The range of customer interaction is comparable, ranging from 

Waterfall's restricted final-stage input to Agile's continuous cooperation. The V-

Model occupies a middle ground of structured collaboration as team structures 
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evolve from Waterfall's compartmentalized specialists to Agile's cross-

functional generalists. 

 In final terms, particular project characteristics and organizational 

requirements will determine which of these SDLC models is best. Agile 

approaches work best in dynamic settings where customer collaboration is 

valued and requirements change regularly. For large-scale projects with 

consistent, clearly specified requirements where thorough documentation is 

crucial, waterfall is still suitable. For complicated projects that need strict 

validation procedures, the V-Model provides a well-rounded strategy that 

allows for some flexibility in response to changing requirements. In addition to 

studies into scaling Agile methods for enterprise-level implementations, future 

research lines could effectively investigate hybrid models that combine the 

flexibility of Agile with the structure of older methodologies. Understanding 

these methodological variations is becoming more and more important for 

organizations looking to maximize value for stakeholders and optimize their 

development processes as software development continues to change. 

 

2.6.5 Comparative Analysis on different Software Development 

Lifecycle methodologies 

The successful of a software project is highly dependent on the appropriateness 

of approach and clearliness of the outlined processes. Every approach 

framework brings advantages and disadvantages. 

 

Table 2.５: Table of comparison between various software methodologies. 

Aspect Waterfall V-Model Agile Scrum 

Requirement 

Flexibility 

Rigid Moderate  High High 

Suitable 

Project Size 

Large Medium to 

large 

Large Small to 

medium 

Testing Late-stage 

testing 

Parallel 

testing for 

each phase 

Continuous 

testing in 

iterations 

Continuous 

testing in 

sprint 

Documentation Extensive Extensive Minimal Minimal 
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Customer 

Feedback 

Limited to 

final stages 

Periodic 

during 

validation 

Continuous 

and 

iterative 

Continuous 

through 

sprints 

Team 

Dynamics 

Organized 

roles 

Collaborative 

but 

structured 

Cross-

functional 

and self-

organizing 

Collaborative 

and cross-

functional 

 

 According to the table above, Waterfall, V-Model, Agile and Scrum 

are all software development methodologies with distinct approaches, 

advantages, and disadvantages. 

 From perspective of requirement flexibility, Agile and Scrum is well-

suited for projects with evolving or unclear requirements due to its iterative 

structure. The waterfall is suitable for projects with stable and well-defined 

requirements as it follows a rigid, predetermined sequence of phases. V-Model 

be effective for projects with changing requirements but require rework effort if 

changes happened. Agile and Scrum is highly flexible as both of them allowing 

for changes and feedback from customer throughout development. Waterfall is 

inflexible and only allows changes occured in the planning phase. V-Model is 

more flexible than a waterfall but less flexible than an Agile. 

 When considering project size, Waterfall works best on large projects 

with clearly defined needs that are unlikely to alter. Medium-sized to large 

projects are best suited for the V-Model especially when system safety and 

dependability are essential. Although Agile is especially useful in situations 

where change is expected but it can also manage big projects. Scaled Agile 

Framework (SAFe) is a framework designed to scale Agile team practices all 

the way up to the corporate level (Paula, n.d.). Large-Scale Scrum (LeSS) is a 

framework that allows procedures and methods to be modified to fit the 

demands of the specific circumstance (Larman and Vodde, 2016). By utilizing 

SAFe and LeSS frameworks, Scrum is allowed to be scaled for larger projects, 

however it is most effective for small to medium-sized projects. 

 From the perspective of testing, Waterfall delays the discovery of bugs 

because testing takes place in the last stages after the entire development process 

is finished. This is enhanced by the V-Model, which ensures early issue 
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detection by testing concurrently with each development phase. Continuous 

testing is used in agile iterations to identify issues early and gradually raise 

quality. Continuous testing is also supported by Scrum which incorporates it 

into every Sprint to make sure that increments are actually finished and maybe 

even shippable. 

 Based on the documentation perspective, Waterfall requires thorough 

documentation at every turn in order to confirm that everything can be tracked 

down and officially approved. In contrast, the V-Model places a strong 

emphasis on thorough documentation to support its strict validation and 

verification procedure. However, Agile reduces documentation 

and emphasizing functional software over extensive documentation. This 

minimum documentation technique is also used by Scrum. It promotes the 

creation of just necessary documentation to enable development without 

slowing team progress. 

 As look into the customer feedback point of view, Waterfall typically 

only allows for customer input at the very end which is when the product is 

almost finished. This makes it expensive to make modifications as required late-

stage of changes on the product. The V-Model does not have regular interaction, 

but it does introduce periodic feedback during validation phases. Agile 

encourages iterative and ongoing input and including clients at every stage of 

the development process. By showcasing potentially shippable products at the 

conclusion of each Sprint, Scrum also guarantees ongoing user feedback 

by enabling frequent and early modifications. 

 From the perspective of collaboration, Waterfall projects usually 

consist of well-organized, role-specific teams with minimal responsibility 

overlap. The V-Model keeps things organized but allows for a little more 

cooperation particularly between the testing and development teams. Agile 

teams are self-organizing and cross-functional which means that members share 

tasks and oversee their work as a group. In order to accomplish the greatest 

outcomes, Scrum teams are cross-functional and collaborative, prioritize regular 

communication, shared accountability, and teamwork within each sprint. 

 In conclusion, the Agile methodology was selected for this project 

rather than the Waterfall, V-model, or Scrum models because it permits small 

adjustments even when a portion has been completed ahead of schedule, which 
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is advantageous in a dynamic project setting. Because of its iterative nature, 

emphasis on iterative testing and improvement, and prioritizing of important 

needs, the Agile methodology was considered the best fit for this project. 

 

2.6.6 Web and Mobile Application Framework 

Choosing the right web and mobile application framework is essential for 

modern software development in order to guarantee effectiveness, scalability, 

and maintainability. Frameworks can help to simplify the development process, 

minimize duplicate coding and improve overall application performance by 

providing standardized environments, built-in functionalities and standard 

procedures. Cross-platform frameworks are gaining a lot of attention due to the 

increasing need for programs to run smoothly across several platforms such as 

web browsers and mobile devices. This section examines a number 

of frameworks that facilitate the creation of online and mobile applications 

and emphasizing their salient features, benefits and applicability for developing 

a multimodal access control and vehicle identification system. 

 

2.6.6.1 Frontend-Framework 

With the aid of innovative frontend frameworks, the effectiveness to design 

progressive web apps (PWAs) and cross-platform mobile applications can be 

increase gradually. These frameworks ensure great performance, versatility and 

an improved user experience while streamlining the development process with 

their standardized architectures and robust libraries. The results of the 

comparison between Flutter and React Native are given in the table below. 

 

Table 2.６: Comparative table of React Native and Flutter frameworks 

Aspect React Native Flutter 

Programming 

Language 

JavaScript (with JSX) Dart 

Web Support Web support via 

additional libraries like 

React Native Web 

Native web support 

integrated with Flutter Web 

Learning Curve Moderate Steeper 
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Performance Near-native performance High performance 

UI Components Relies on native 

components 

Rich built-in UI widgets for 

consistent look across 

platforms 

PWA Readiness Requires careful 

integration and setup  

Flutter Web supports PWA 

development natively with 

easier configuration 

Best for Applications needing 

tight native integration 

and access to a wide 

ecosystem 

Applications needing 

consistent UI across 

platforms and easy web and 

mobile deployment 

 

React Native and Flutter develop web and cross-platform applications using 

various programming languages. JavaScript and JavaScript XML (JSX) which 

are well-known to many developers and facilitate adoption especially for those 

with previous web development experience are used by React Native. In 

contrast, Flutter uses Dart which is a Google language that is powerful but less 

well-known and necessitates learning new syntax and concepts 

before completely productive. 

 Regarding web support, React Native makes it possible to construct 

websites using extra libraries like React Native Web which renders components 

in a web environment. However, this setting may require further setup because 

it is not built into the main framework. However, Flutter has integrated web 

support through Flutter Web, which makes it possible for developers to target 

browsers directly without the use of third-party frameworks. This makes the 

development process simpler. 

 Additionally, these frameworks have compared to different learning 

curves. For developers who are already familiar with JavaScript, React Native 

offers a moderate learning curve because its component-based architecture 

allows for easy adaptation. Because it requires learning Dart and adjusting to its 

widget-driven programming paradigm which differs substantially from 

conventional web development frameworks, Flutter has a higher learning curve 

as compared to React Native. 
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 In terms of performance, Flutter definitely preferable. Flutter apps 

offer seamless rendering and fast speed by compiling directly to WebAssembly 

for the web and native ARM code for mobile devices. Although React Native 

achieves speed that is close to native, it depends on a bridge between JavaScript 

and native modules which sometimes results in minor performance 

overheads especially in apps that are resource-intensive or complex. 

 In order to adapt mobile components for the web by employing 

Progressive Web App (PWA), React Native needs careful setup and dependence 

on React Native Web which may increase development complexity when 

considering Progressive Web App (PWA) readiness. Configuring and deploying 

cross-platform solutions including browsers, is made simpler and faster with 

Flutter's native support for web and PWA development through Flutter Web. 

 In general, React Native is a great option for applications that need 

close native integration and access to a large and developed ecosystem. It 

has giving it a great way to make use of third-party resources and pre-existing 

JavaScript expertise. However, Flutter is best suited for applications that 

prioritize platform consistency and a smooth web and mobile 

deployment particularly when aiming for a single codebase strategy for PWAs 

and mobile apps. 

 In conclusion, React Native has been chosen as the frontend framework 

for this project because it complies with project specifications and because 

previous JavaScript and React Native development experience is available. 

Even though Flutter provides more efficient and integrated support for 

Progressive Web Application (PWA) development through Flutter Web, React 

Native is still an acceptable choice because of its well-established 

ecosystem and robust support for cross-platform development which including 

web integration through React Native Web . React Native is ideally suited for 

implementing the multimodal big language model-based vehicle detection 

system suggested in this study because of these features which also make 

development and maintenance easier. 

 

2.6.6.2 Backend-Framework 

With the help of back-end frameworks, the server-side of web apps, APIs and 

other software systems can be built. By offering a structure for creating a web 
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application's back end, these frameworks prevent worry about technical 

programming details and let them concentrate on implementing business logic. 

The table below shows the results of the comparison between Laravel and 

Next.js. 

 

Table 2.７: Comparative table of Laravel and Next.js frameworks 

Aspect Laravel Next.js 

Architecture 

Pattern 

MVC (Model-View-

Controller) with built-in 

advanced features 

Hybrid React-based 

framework for modern 

dynamic applications 

Learning Curve Moderate to High Easy for developers 

familiar with 

JavaScript/React 

Performance Slower than CodeIgniter  Highly optimized with SSR 

and SSG, enabling fast 

rendering and improved 

SEO 

Built-in Features Authentication, ORM 

(Eloquent), Queue, 

Events, Jobs, API 

resources, etc. 

Routing, API routes, 

middleware, image 

optimization, ISR 

Flexibility High Very flexible as can 

integrate serverless 

functions, Node.js APIs, 

and React libraries 

Security High (CSRF, XSS 

protection, password 

hashing, etc. by default) 

Basic, need manual 

implement security 

measures 

Database 

Handling 

Eloquent ORM 

(advanced, object-

oriented) 

Works with Prisma, 

Sequelize or direct 

database queries 
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Template Engine Blade Template Engine React with JSX 

(Component-based UI 

rendering) 

Updates and 

Modern PHP 

Compatibility 

Frequent updates  Regularly updated in line 

with React and Node.js 

ecosystem 

Deployment Traditional web servers, 

Docker, cloud platforms  

Vercel, Netlify, AWS, or 

any Node.js hosting; 

which optimized for 

serverless deployment 

Best for Large-scale, enterprise-

level, feature-rich 

applications 

Modern, high-performance, 

SEO-friendly, interactive 

web applications 

 

The classic Model-View-Controller (MVC) architecture, which Laravel adheres 

to, neatly divides data management, presentation, and business logic. It has 

many built-in features and is best suited for full-stack, backend-heavy 

applications. Next. In contrast, js is a hybrid framework based on React that 

supports client-side rendering, server-side rendering, and static site generation. 

Modern online applications with dynamic content benefit greatly from this 

flexibility, which enables developers to select the rendering approach that best 

suits the application's performance and SEO needs. 

 From perspective of learning curve, Laravel's rich built-in features, like 

Eloquent ORM, queues, events, and Blade templates, make it difficult for 

developers who are not familiar with PHP or backend frameworks to understand. 

Next. For developers who are already familiar with JavaScript and React, 

learning js is rather simple. Without having to learn intricate backend patterns, 

it is simpler to begin developing both frontend and server-side functionality 

thanks to its component-based architecture and comprehensive documentation.

 Performance is another important aspect that helps to defferentiate 

between this two frameworks. Laravel is strong for backend-heavy tasks, but 

because it uses PHP to handle each request, it may render simple websites more 

slowly than lightweight frameworks. In contrast to Laravel, Next.js is highly 

optimized for performance, offering SSR and SSG, which reduces page load 
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times and improves perceived performance. Its frontend-heavy architecture 

allows fast rendering of UI components and better handling of high-traffic 

scenarios without extensive backend overhead. 

 When considering to the built-in features, many capabilities that are 

useful for enterprise-level applications are incorporated into Laravel, including 

queues, tasks, events, ORM (Eloquent), authentication, and API resources. 

Routing, API routes, image optimization, incremental static regeneration, and 

middleware support are just a few of the contemporary web development 

capabilities that Next.js provides. Although it comes with fewer backend tools, 

it easily interfaces with external APIs or Node.js modules to provide comparable 

functionality in a more modular manner.  

For flexibility, because of Laravel's great flexibility for full-stack 

development, programmers may create complex apps wholly within its 

ecosystem. Although it prioritizes frontend and modern web experiences, 

Next.js is still very adaptable. It may be expanded by developers utilizing 

serverless functions, React libraries, and Node.js APIs, allowing for the modular 

and scalable customization of frontend and backend logic. 

 The variations between the two frameworks are further emphasized by 

security considerations. By default, Laravel offers strong security, which 

includes password hashing, XSS prevention, CSRF protection, and other 

security features. Developers are need to provide secure authentication, 

authorization, and input validation procedures because Next.js does not by 

default incorporate backend security. Nonetheless, developers may maintain 

high security using best practices thanks to its interaction with contemporary 

authentication libraries (such as NextAuth.js) and safe API methods. 

 In terms of database management, complex relationships and queries 

are easier to manage using Laravel's Eloquent ORM. By utilizing Eloquent 

ORM, it offers an object-oriented, user-friendly approach to database 

interactions. Although Next.js lacks built-in database management, developers 

may simply combine it with ORMs such as Prisma, Sequelize, or direct database 

queries, allowing them to select the best database solution for their requirements. 

 The frameworks are additionally distinguished by the templating 

system. Blade is the template engine used by Laravel, which makes it easier to 

produce server-side HTML with dynamic data. Next.js uses React components 
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and JSX which enabling highly interactive and reusable UI elements. This 

approach is more suitable for modern web applications where dynamic, client-

side interactions and real-time updates are essential. 

 In terms of updates and compatibility, Laravel is greatly favored by its 

regular upgrades and compatibility with contemporary PHP standards. Laravel 

is updated frequently to take advantage of PHP developments, security 

enhancements and best practices. For Next.js, it is regularly updated to conform 

to the most recent React and Node.js standards, giving users access to cutting-

edge frontend technologies, performance boosts, and ecosystem improvements. 

 Last but not least, traditional web servers, Docker containers, or cloud 

platforms like AWS, DigitalOcean, or Heroku can all be used to host Laravel 

apps. For Next.js, its serverless deployment optimization, which can be used on 

Vercel which is its native platform, Netlify, or any Node.js hosting environment 

makes deployment become easier and more scalable for modern web projects. 

 In conclusion, although Laravel is a great choice for enterprise-level, 

backend-heavy apps with a wealth of built-in capabilities, Next.js provides more 

frontend flexibility, better speed for contemporary online applications, and 

simpler integration with serverless and static hosting. It is more suited for quick, 

scalable, and interactive web apps because of its modular ecosystem, React-

based user interface, and hybrid rendering capabilities. Next.js is the suggested 

option for creating a cutting-edge, high-performance online application when 

taking these benefits into account. 

 

2.6.6.3 Database Configuration 

Database management systems (DBMS) enable applications to effectively 

store, retrieve, and manage data in a consistent and organized way. In order to 

concentrate on creating application functionality rather than managing low-

level data storage processes, these systems offer a basis for organizing and 

accessing data. Data integrity, security, and performance are guaranteed by a 

properly chosen database system particularly in applications that use 

multimedia data like photographs. Two popular relational databases which 

include PostgreSQL and MySQL are contrasted in the table below. 
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Table 2.８: Comparison table among MySQL and PostgreSQL 

Aspect MySQL PostgreSQL 

Performance Fast read operations, 

widely used for web apps 

Strong for complex 

queries, slightly heavier on 

resources 

Image Storage Supports BLOB for 

storing binary data 

Supports BYTEA and 

large object storage 

Data Integrity Basic constraints and 

transaction support 

Advanced constraints, 

ACID-compliant, full 

transaction support 

JSON & 

Unstructured 

Data 

Basic JSON support Full JSONB support with 

indexing 

Query Features Simpler SQL features Advanced SQL features 

Extensibility Less extensible, fewer 

custom data types 

Highly extensible, supports 

custom types & functions 

Compatibility 

with Next.js 

Excellent, widely 

supported through Prisma, 

Sequelize, Knex, or raw 

queries 

Excellent, fully supported 

with ORMs and works 

well with APIs and 

analytics 

Security Good, basic access 

controls 

Strong, includes row-level 

security and audit features 

Best Use Case Web applications with 

simple to moderate 

complexity 

Applications requiring 

complex data relations and 

analytics 

 

From the prespective of performance, MySQL is a popular choice for online 

applications that require a lot of read operations and basic queries because of its 

well-known fast read speed. Because of its optimized performance in managing 

these processes, it performs exceptionally well in systems that adhere to the 

traditional Create-Read-Update-Delete (CRUD) structure. Although 

PostgreSQL requires a little more resources, it performs better than MySQL 

when managing complicated queries and multiple concurrent transactions. In 
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circumstances where relational complexity, analytical workloads and the 

blending of structured and unstructured data are common, it works very well. 

PostgreSQL is a better option for systems needing sophisticated querying and 

high transaction rates because it exhibits higher efficiency and dependability 

while handling high transactional loads. 

 Regarding to image storage, it can be stored in both MySQL and 

PostgreSQL. For this purpose, MySQL uses the BLOB (Binary Large Object) 

data type whereas PostgreSQL uses BYTEA or Large Objects (LOB). 

Nevertheless, PostgreSQL provides more flexibility and performance when 

handling huge binary objects especially when it comes to visual content. One of 

PostgreSQL's main advantages in this regard is its support for streaming large 

files which greatly improves its capacity to handle big datasets. To give an 

illustration,like the visual data from vehicles used in recognition systems. This 

capability gives PostgreSQL a clear advantage over MySQL in situations 

involving big image storage. This can make it ideal for managing media-rich 

applications that demand reliable file management and effective retrieval. 

 In terms of data integrity and query features, PostgreSQL is well 

known for its strict adherence to the Atomicity, Consistency, Isolation 

and Durability (ACID) principles. In order to guarantee consistency in systems 

with complicated relationship, it offers extensive support for foreign keys, joins, 

complex restrictions, and transactional controls. Furthermore, PostgreSQL 

includes advanced SQL capabilities that are essential for executing complex 

queries in complex structures such as window functions, recursive queries and 

Common Table Expressions (CTEs). Although MySQL can enforce basic data 

integrity, but it lacks some of PostgreSQL's more advanced SQL features and 

frequently chooses to utilize simpler queries which compromise flexibility for 

usability. 

 By comparing the extensibility, PostgreSQL is a big plus in situations 

that call for sophisticated data handling and customization. It enables specify 

of unique data types, functions and even modules to expand the fundamental 

capabilities of the database. Additionally, PostgreSQL provides strong indexing 

and JSON and JSONB data type compatibility which is very useful when 

managing multimodal data inputs such integrated image-text data in recognition 

systems. Because PostgreSQL has more sophisticated indexing and 
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manipulation features than MySQL, it is a better option for projects involving 

complicated data kinds and structures as MySQL only supports basic JSON. 

 For security, PostgreSQL is better suited for applications needing strict 

access control because of its robust built-in security capabilities which include 

role-based authentication, SSL encryption and row-level protection. In vehicle 

access control systems where access logs and image data may be sensitive, this 

is especially crucial. Although MySQL provides basic security safeguards, 

PostgreSQL's more sophisticated solutions enable more robust data protection. 

 Conclusion, PostgreSQL is the recommended database solution due to 

the unique needs of the multimodal large language model-based vehicle 

recognition system including the necessity to store vehicle images, preserve 

data consistency and manage extensive query patterns for multimodal data. It is 

the best option for handling the complicated data structures included in this 

system because of its strong security features and robust querying capabilities. 

Furthermore, PostgreSQL's smooth connection with Next.js via ORMs like 

Prisma or Sequelize guarantees effective server-side system integration 

and enabling scalability and excellent performance while handling large 

datasets. 

 

2.7 Chapter Summary 

In conclusion, this literature review covers at important research topics that are 

necessary to create a multimodal vehicle recognition system driven by AI. 

While pointing out the present shortcomings in visual data integration, the 

analysis discusses Large Language Models (LLMs) such as GPT-4 and 

LLaMA-Adapter V2, showcasing their promise for contextual reasoning in 

security applications. The evaluation of current segmentation methods and 

vehicle recognition systems like SegementAnything, YOLOv8 and Fast-

SCNN reveals accuracy gaps in difficult circumstances like dim lighting or 

obscured views. Market access control application are also evaluated in the 

review in order to understand they basic features for defining the requiremennts 

for this project. 

 This study offers major innovation by combining visual identification 

with contextual analysis powered by LLM, in contrast to strict, rule-based 

commercial systems. In order to support the system's AI components and 
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iterative improvement requirements, the chapter ends by defending the choice 

of Agile development approaches and certain technical frameworks like React 

Native, Next.js and so on. The development frameworks and methodology 

used in later chapters are directly influenced by these findings. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

This chapter discussed the project's work strategy and methods. The 6 phases 

with 12 sprints of the Agile approach that was selected were thoroughly 

explained in this chapter. Additionally, to schedule projects, the Gantt chart and 

the work breakdown structure, or WBS, were developed. The selection and 

discussion of the development tools came to a close. 
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3.2 Project Methodology and System Development Methodology 

 

Figure 3.1: Development Methodology Diagram 
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This project uses an organized approach that combines the Software 

Development Life Cycle (SDLC) and the conventional Project Life Cycle (PLC) 

to guarantee careful planning, methodical execution, and successful completion. 

While the SDLC concentrates on the technical development process, which 

includes requirement analysis, design, implementation, testing and deployment, 

the PLC leads the project through the clearly defined phases of initiation, 

planning, execution, testing and closure. During the design phase, a code-first 

prototyping technique was employed to accelerate the validation of essential AI 

components. This hybrid approach is reflected in every WBS phase, ensuring 

that system development and project management advancements are in line with 

the creation of a reliable multimodal LLM-based vehicle recognition system. 

 This hybrid methodology was chosen to ensure a balanced focus on 

both the technical development and the project management. By combining the 

SDLC’s structured approach to system development with the PLC’s clearly 

defined project phases, the project benefits from careful planning, risk 

mitigation and consistent monitoring of the progress. The incorporation of code-

first prototyping during the design phase allows early validation of the critical 

AI components, such as the multimodal VLM integration, reducing potential 

rework and the technical risks. Aligning each WBS phase with both 

development and the management activities ensures that the deliverables are 

realistic, achievable, and of high quality. Overall, this approach provides the 

flexibility needed for the iterative AI development while maintaining the 

structured oversight necessary for the successful completion of a reliable vehicle 

recognition system. 

 

3.2.1 Initiation Phase (Project Life Cycle)  and Planning Phase (SDLC) 

The project's beginning phase which is equivalent to the planning phase of the 

SDLC, involves determining the problem's scope, identifying its main 

obstacles and carrying out in-depth literature reviews. This involves thorough 

evaluations of current large language models (LLMs), car recognition systems, 

segmentation strategies and software development processes as described in 

Task 1.1.1.1. Activities involving comparative analysis such as Tasks 

1.1.1.1.1.2 and 1.1.1.1.2.2 assist in determining the advantages and 

disadvantages of each domain which assisting in the selection of appropriate 



78 

 

frameworks and technologies. Justifying the necessity of a multimodal LLM-

integrated vehicle recognition system requires this basis. The procedure ends 

with a clear statement of the project's goals and scope (1.2) and a definition of 

the research gap (1.1.1.2). 

 

3.2.2 Primary Research & Requirements Gathering (Planning Phase - 

Continued) 

During this phase, the project uses survey design and analysis to collect 

empirical data. The development, dissemination, and assessment of 

questionnaires are demonstrated in tasks under 1.3. By verifying user 

need which directly inform requirements analysis in Task 2.1, these activities 

fill the gap between the initiation and planning stages. A thorough User 

Requirement Specification (URS) document (2.2) which describes both 

functional and non-functional needs (2.2.1.1 and 2.2.1.2) is drafted using the 

information received. To guarantee compatibility and performance for the 

suggested system, Task 2.4 also focuses on choosing the tech stack by 

contrasting databases, frontend frameworks, backend solutions, and LLM 

models. 

 

3.2.3 Design Phase (SDLC) 

Planning for system integration and code-based prototyping are the main focus 

of the design phase. The project moves straight to code-first prototyping (Phase 

3), where preliminary segmentation models are put into practice and 

benchmarked (3.1), in place of high-level wireframes. This practical approach 

speeds up the early assessment of fundamental functionality. In order to prepare 

a blueprint for the full-stack development phase, the following integration 

planning (3.2) describes how the segmentation engine, GPT-4o, frontend and 

backend would interact. 

 

3.2.4 Development Phase (SDLC) 

Phase 4 describes the various components that make up the core development 

phase. Setting up an environment, designing components such as input/output 

pages and navigation and connecting to an API are all part of frontend 

development with React Native and React Native Web (4.1). Laravel is used in 
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backend development (4.2) to build safe database operations, middleware logic, 

and APIs. For reliable and scalable data handling, PostgreSQL is incorporated 

(4.2.3). Simultaneously, GPT-4o is included into the system pipeline and refined 

(4.3) with carefully selected datasets. In order to ensure smooth data flow 

between components, this step also involves the complete integration and 

rewriting of the segmentation logic (4.4). 

 

3.2.5 Testing Phase (PLC & SDLC) 

Phase 5 will include extensive testing that includes system, integration and unit 

testing. The frontend (5.1), backend (5.2), and AI modules (5.3) all have their 

own testing streams to make sure they work properly both separately and 

together. Prior to deployment, quality assurance is ensured by tasks including 

cross-platform testing, API validation and accuracy checks for segmentation 

and GPT replies. 

 

3.2.6 Deployment & Finalization (Closure Phase - PLC) 

Project closing and deployment are covered in the last stage. Phase 6 involves 

deploying the solution to local or cloud infrastructure (6.1) followed by 

supervisor evaluations (6.2) and internal walkthroughs. With stakeholder input 

and knowledge transfer, the project lifecycle is concluded with the compilation 

of documentation and presentation materials (6.3). In addition to guaranteeing 

that deliverables are finished, this phase gets the project ready for future review, 

maintenance or scalability. 

 

3.3 Project Schedule 

This section will mainly focus on the work breakdown structure (WBS) and 

Gantt Chart of this project. 
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3.3.1 Work Breakdown Structure 

 

Figure 3.2: Project initial Planning Part 1 

 

Figure 3.3: Project Initial Planning Part 2, Planning and Requirements 

and Prototype Development Part 1 
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Figure 3.4: Prototype Development Part 2 and Development Phase Part 

1 

 

Figure 3.5: Development Phase Part 2, Testing and QA and Deployment 

and Final Review 
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3.3.2 Gantt Chart 

 

Figure 3.6: Project initial Planning – Part 1 

 

Figure 3.7: Project Initial Planning Part 2, Planning and Requirements 

and Prototype Development Part 1 

 

Figure 3.8: Prototype Development Part 2  
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Figure 3.9: Development Phase Part 2 and Testing and QA Part 1 

 

Figure 3.10: Testing and QA Part 2 and Deployment and Final Review 

 

3.4 Development Tools 

The IDE tool Visual Studio Code, the frontend frameworks React Native and 

React Native Web, the backend framework Next.js, the database PostgreSQL, 

the backend database management service Supabase, the deployment tool 

Vercel, the vehicle recognition algorithm, and the datasets are all included in 

this section as necessary to build the implemented system.  

 

3.4.1 Visual Studio Code IDE 

Visual Studio Code was the main coding tool utilized for this project. It offered 

the advantage of tool extensibility which enabling developers to add snippets to 

make coding easier. VS Code could edit a variety of programming languages, 

including HTML, Tailwind CSS, TypeScript, and others after installing the 

programming language CLI. Additionally, syntax highlighting was made 
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possible with the addition of Laravel extensions to Visual Studio Code which 

aided in the quicker detection of syntax issues. 

 

3.4.2 Enterprise Architecture 

With a wide range of features and capabilities for software modeling, design, 

and analysis, Enterprise Architect (EA) is a strong and adaptable UML analys 

is tool. It is extensively employed in many different fields including engineering, 

architecture and software development. The use case diagrams for every feature 

offered by the multimodal vehicle recognition access control system were 

created using EA in this project. By clearly illustrating how the system behaves 

from the viewpoint of its users, use case diagrams were intended to aid in the 

identification of the system's functional needs. 

 

3.4.3 React Native 

The multimodal LLM-based vehicle detection system's interface was developed 

using React Native to provide cross-platform interoperability and a consistent 

user experience on mobile and web devices. React Native's component-based 

architecture and hot-reload features greatly sped up development and testing 

because the system necessitates real-time user involvement for tasks like 

uploading car pictures, examining segmentation results and obtaining GPT-4o 

feedback. Its cross-platform code sharing capability guaranteed a consistent user 

interface and decreased redundancy. When this method combined with React 

Native for Web, it is made possible to retain excellent performance and 

responsiveness in both environments while streamlining the development 

process. 

 

3.4.4 Tailwind CSS 

For the multimodal LLM-based vehicle detection system, Tailwind CSS was 

selected as the style framework because of its utility-first methodology which 

facilitates quick user interface development with clear and maintainable code. 

In order to display complicated outputs like segmented photos and GPT-4o 

replies, a responsive and user-friendly user interface was required. Tailwind's 

preset utility classes made it possible to quickly alter layouts and style them 

consistently without using cumbersome custom CSS. The application was a 
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perfect fit for the system's web and mobile interfaces because of its mobile-first 

design philosophy which also made sure that the user experience was consistent 

across screen sizes. 

 

3.4.5 Next.js 

Next.js was chosen as the backend framework for the multimodal LLM-based 

vehicle detection system due to its integrated API routes, modular design, and 

smooth interaction with Node.js modules. For handling backend operations like 

processing user inputs, handling image segmentation findings, and 

synchronizing GPT-4o outputs, Next.js offered a solid basis. User 

authentication, optimized model interactions, and the effective execution of 

segmentation requests were made possible by its support for serverless 

operations and middleware. Through ORMs like Prisma, Next.js integrated with 

PostgreSQL to offer dependable database operations while preserving 

performance and scalability. Next.js was a good fit for our AI-driven 

recognition project because it makes backend development easier, guarantees 

safe API handling, and works with contemporary deployment settings. 

 

3.4.6 PostgreSQL 

Because of its sophisticated data handling capabilities, support for complicated 

queries, and dependability, PostgreSQL was chosen as the database 

administration solution for the multimodal LLM-based vehicle recognition 

project. Structured data including segmented vehicle attributes, user inputs, 

model predictions and system logs must be efficiently stored and retrieved by 

the system. PostgreSQL was ideally suited for handling the varied and 

expanding datasets that are common in AI-integrated systems because of its 

support for JSON, full-text search and indexing methods. Furthermore, data 

integrity and scalability were ensured by its strong ACID compliance and good 

performance under concurrent access, both of which are essential for the 

recognition system's smooth operation on online and mobile platforms. 

 

3.4.7 Supabase 

Because of its strong PostgreSQL basis and cutting-edge capabilities that 

directly match the system's requirements, Supabase was selected as the backend 
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platform for database management of this project.  While JSON/JSONB support 

offers flexibility for semi-structured data, it facilitates the effective storing and 

retrieval of structured data which including segmented vehicle attributes, user 

inputs, model predictions, and system logs. Realtime subscriptions via 

PostgreSQL's LISTEN/NOTIFY allow clients to get updates instantly, 

guaranteeing that any new alerts or recognition results are sent out right away.  

While scalability and managed hosting relieve the strain of managing a database 

cluster, strong ACID compliance protects data integrity under concurrent access. 

Supabase takes care of scaling, backups, and maintenance automatically.  All of 

these characteristics combine to make Supabase the perfect, dependable, and 

expandable system backbone. 

 

3.4.8 Vercel 

Vercel was selected as the hosting and deployment platform for this project due 

to its smooth integration with Next.js and emphasis on backend performance.  It 

ensures that the vehicle recognition system runs effectively and dependably by 

offering an optimum environment for server-side rendering and API execution.  

Automatic updates from the GitHub repository are made possible by Vercel's 

integrated support for continuous integration and deployment (CI/CD), which 

lowers deployment overhead and boosts development productivity.  Low-

latency API call replies are further guaranteed by its global content delivery 

network (CDN), and the system's autonomous scalability enables it to 

accommodate changing workloads without the need for manual infrastructure 

maintenance.  Vercel is a scalable and reliable option for hosting the project's 

backend services because of these features. 

 

3.4.9 GPT-4o Model 

With the help of segmented picture data and human input, GPT-4o was included 

into the multimodal vehicle identification system to deliver intelligent 

and adaptable replies. It was well-suited for understanding vehicle attributes and 

providing contextual insights or classifications because of its multimodal 

capabilities which allow it to handle both text and visual information. The 

system was able to improve its ability to enable real-time recognition and 

feedback by fine-tuning GPT-4o with domain-specific data which resulted in 
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higher output accuracy and relevance. Because of its adaptability, GPT-4o was 

also able to integrate with the backend with ease and utilizing its language and 

reasoning capabilities to enhance user engagement and application decision-

making. 

 

3.4.10 SegementAnything 

Because Segment Anything can generalize across various object categories with 

little task-specific training, it was used as the main image segmentation module 

in the multimodal vehicle detection system. Regardless of different 

surroundings or viewpoints, the system was able to precisely extract vehicle 

components including license plates, headlights or logos due to to its prompt-

based segmentation technique. For the refined GPT-4o model to receive 

organized visual input and perform accurate analysis and interpretation, this 

high-quality segmentation was crucial. Segment Anything was integrated into 

the system to create a strong preprocessing phase that greatly improved the 

overall precision and adaptability of the vehicle recognition procedure. 

(Note: The segmentation technique was changed to YOLO in later chapter 6.2.3) 

 

3.5 Summary 

To guarantee an organized and effective workflow, the Project Life Cycle (PLC) 

and the Software Development Life Cycle (SDLC) both served as development 

process guidelines for this project. In accordance with the project's six-month 

timeframe, the PLC was split into discrete phases which included initiation, 

planning, execution, monitoring and closing. Foundational tasks like the 

literature study, problem identification, requirement analysis and prototype 

creation were finished during the beginning and planning stages. System 

implementation was the main emphasis of the execution phase, which included 

GPT-4o and Segment Anything integration, PostgreSQL integration, frontend 

interface development using React Native and Tailwind CSS, and backend 

development using Laravel. The monitoring and closure phases included testing, 

deployment and final delivery. 

 In accordance with the Agile-based SDLC methodology, tasks were 

logically arranged across documentation, development and deployment 

utilizing a multi-level Work Breakdown Structure (WBS) and divided into 2-
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week sprints. The timetable and dependencies were visualized using a Gantt 

chart which also ensured simultaneous work in several components like UI 

development and segmentation fine-tuning by indicating overlapping jobs. 

Project planning, development and tracking were supported by tools including 

VS Code, Postman, GitHub, and Microsoft Project. Iterative development and 

continuous integration were supported while a clear deadline was maintained 

because of this systematic combination of PLC and SDLC. 
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CHAPTER 4 

 

4 PRELIMINARY RESULTS 

 

4.1 Introduction 

This chapter typically creates the project specification after gathering and 

eliciting requirements. In order to learn about the current workflow, the first 

stage is fact-finding which involves identifying and comprehending 

requirements utilizing an online survey questionnaire. To illustrate how actors 

engage with the multimodal vehicle recognition access control system, a use 

case description and diagram were then produced. In order to better comprehend 

the system's designs and functionalities, a prototype was finally made to 

illustrate the user interfaces. 

 

4.2 Fact Finding 

A total of 30 responses was collected from the intended target audience. The 

intended target audience provided a total of 30 responses. The questions in this 

survey were divided into three parts. Demographic data was gathered in Section 

A, while user experiences with the current vehicle access system were obtained 

in Section B. Data regarding user expectations for a new system is collected for 

Section C. Finally, two open-ended questions allow users to express any ideas 

or concerns that aren't covered in the closed questions. 

 

Figure 4.1: Type of vehicle owned 

A data visualization of a survey on vehicle ownership with 30 participants is 

shown in the image. Each vehicle type which included car, van, motorcycle, 
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SUV/truck, e-bike and other (none, no) as well as the proportion of responses 

are displayed in a horizontal bar chart format. With lengths proportional to their 

values, the bars extend rightward. According to the bar chart, "Car" has the 

longest bar in which showing the highest number of responses. The scale is 

indicated by numerical labels (0–30) at the bottom while percentages are shown 

next to each bar. 

 The distribution of vehicle ownership among respondents is clearly 

shown in this image, with cars being the most prevalent. Although the 

percentages such as 3.3% for "Motorcycle" aid in placing the data in context, 

the chart might be enhanced by clearly marking each bar's precise count and 

eliminating unnecessary choices which included "none" and "no" that come 

from other. Overall, it accomplishes its goal of demonstrating relative popularity. 

 

Figure 4.2: Utilization range of vehicle access control system 

The image displays a pie chart that visualizes usage frequency statistics for a 

vehicle access control system. Different usage frequencies are represented by 

the four segments of the chart which included daily, weekly, monthly, and rarely. 

It is instantly clear that the "Daily" category dominates with 66.7%, but usage 

rates in the other categories are steadily declining. This graphic successfully 

highlights the significant dependence on everyday use, demonstrating that the 

access system is an essential part of residents' daily lives. T his 

has highlighted the necessity of reliability and effectiveness in its architecture. 
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Figure 4.3: Type of vehicle access control system 

The data shows that human verification is less widespread (16.7%), while RFID 

technology dominates current systems (73.3%). A substantial possibility for 

technical advancement in access control is highlighted by the low adoption rate 

of license plate recognition (10%). Possibly as a result of their reliability and 

simplicity of use, the graphic successfully conveys the present market 

preference for RFID technologies. 

 

 

Figure 4.4: Satisfaction on current system 

While the majority of users are moderately satisfied (levels 3–4), relatively few 

are absolutely content (level 5 at 13.3%) or totally dissatisfied (levels 1–2 at 6.6% 

combined) as this visualization skillfully illustrates. T he chart is successful in 

pointing out areas that require improvement, especially in terms of converting 

mid-tier satisfaction (36.7% at level 3) to higher ratings, it could be improved 

by emphasizing actionable insights.  This data indicates to stakeholders that 

although the existing system works well, major improvements might 

significantly increase the satisfaction of users. 
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Figure 4.5: Challenges without vehicle recognition system 

According to this statistics, 66.7% of people were concerned about delays, 

indicating that they primarily value the current system for time savings. In 

addition, 63.3% of people are concerned about security. The significant gap 

between these primary concerns and secondary ones such as record-keeping 

(43.3%), indicates that speed and security should come first in any new system. 

 

 

Figure 4.6: Main challenges in current system 

Based on 30 survey results, the horizontal bar chart illustrates the main issues 

residents have with their current vehicle access system. Rapid recognition and 

gate response times should be the top priorities of any improvement according 

to the majority (56.7%) who list delayed processing as their worst concern. 

Registration of new vehicle issues are the second most frequent problem (43.3%) 

whixh suggested that car registration procedures need to be made more efficient. 

The fact that nearly a quarter (23.3%) report recognition issues points to areas 



93 

 

 

where reliability of the system could be improved by using stronger hardware 

or algorithms. 

 

 

Figure 4.7: Importance of accuracy of vehicle access system 

Based on 30 survey results, the bar chart calculates the the residents' assessed 

importance of accurate vehicle recognition on a 5-point scale ranging from "Not 

Important" to "Very Important". This is the top priority for system 

enhancements because most people (90 percent combined for ratings 4-5) 

believe that exact recognition is essential. Residents appear to have little 

tolerance for recognizing failures as seen by the total lack of bad ratings (0% for 

1-2). The system must function flawlessly for the majority of users as indicated 

by the 56.7% rating at the top. 

 

 

Figure 4.8: New features for future vehicle access system 

According to the survey results from 30 participants, there are definite goals for 

a new vehicle access system. Specifically, 76.7% of respondents emphasize the 
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necessity for precise vehicle information identification, and 86.7% require faster 

recognition and response times. Real-time notifications (50%) and mobile app 

integration (43.3%) are significant secondary preferences, while a small 3.3% 

expressed doubts regarding the accuracy of detection. These results highlight 

customers' preference for speed and accuracy above convenience features, 

which directs development efforts toward improving response efficiency and 

recognition algorithms. For optimal effect, the system should prioritize meeting 

these core needs before adding digital capabilities like app integration and 

notifications as supplementary features. 

 

 

Figure 4.9: Importance of having user-friendly system 

According to the survey's findings, user-friendliness is rated as critically 

important (5/5) by 70% of respondents (21 out of 30), and important (4/5) by 

another 23.3% (7 respondents). 93.3% of users believe that ease of use is a high-

priority feature overall, compared to just 6.7% (2 respondents) who gave it a 

neutral assessment (3/5) and no one who thought it was unimportant (0% for 1-

2). With almost all responders highlighting this component as being just as 

crucial as technical performance elements like identification accuracy, it is 

evident that any new vehicle access system must prioritize user-friendly design 

and easy operation in order to fulfill user expectations. According to the 

statistics, in order to achieve broad acceptance and user satisfaction, 

development efforts should strike a balance between advanced functionality and 

easily navigable interfaces. 



95 

 

 

 

 

Figure 4.10: Acceptance of AI-based vehicle recognition system 

The results of the poll indicate that AI-based car recognition is widely accepted 

as there is 73.3% of respondents (22/30) said they were comfortably using the 

system, while 26.7% (8/30) said they were unsure. Importantly, ther e is 0% said 

they were against the technology. Although the remaining uncertain quarter 

suggests the need for targeted education demonstrating the system's reliability 

through test cases, clear refuse mechanisms during rollout to build trust, and 

visible performance metrics to convince afraid users, the overwhelming positive 

response suggests high receptiveness to AI implementation. As long as 

openness is maintained at the forefront of deployment, the total lack of "No" 

votes presents a unique chance to test AI solutions with minimal neutral 

opinions. 

 

 

Figure 4.11: Importance of recognisation of vehicle using image 

According to the survey, image-based vehicle recognition has been given an 

extremely high degree of importance with 46.7% of respondents (14/30) rated 
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it as absolutely crucial (5/5) and 36.7% of respondents (11/30) rated it as very 

significant (4/5). Together, 83.4% of users rated this feature as essential (4+), 

16.7% (5/30) gave it a neutral grade (3/5), and 0% downplayed its significance 

(no 1-2 ratings). This research emphasizes that most users believe reliable 

picture recognition which requires high-accuracy implementation.  

 

 

Figure 4.12: Expectation of accuracy on vehicle recognition system 

With 63.3% of respondents (19/30) expecting flawless performance (rating 5/5) 

and another 26.7% (8/30) expecting near-perfect operation (4/5), the survey 

results show that 90% of users have strict accuracy expectations for vehicle 

identification systems. Users consider precision to be non-negotiable as 

evidenced by the fact that only 10% (3 respondents) were fairly tolerant (ratings 

2-3) and 0% would tolerate subpar performance. In order to meet the 63.3% who 

expect zero errors, these findings require the adoption of redundant verification 

mechanisms, thorough real-world testing, and transparent accuracy reporting. 

This is because even small recognition failures have the potential to damage 

systemic trust. According to the research, accuracy is the most important factor 

that determines user acceptance, compared to all other aspects. 
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Figure 4.13: Maximum acceptable time for vehicle recognisation 

According to the poll, 90% of users (27 out of 30 respondents) want almost 

instantaneous vehicle detection, while 36.7% (11 users) accept responses of 3-

5 seconds and 53.3% (16 users) are okay with 1-3 seconds. Only 10% (3 users) 

would need less than a second, and 0% would allow delays longer than five 

seconds. This establishes a strict 3-second performance criteria for 

implementation, recommending that the needs of optimize ALPR algorithms for 

processing in real-time and test load during periods of high traffic. The total lack 

of tolerance for sluggish answers (>5s) suggests that user pleasure depends on 

speed just as much as accuracy, demanding a balanced investment in both 

software and hardware. 

 

4.3 User Requirements Specifications (URS) 

This section provides a representation of the user requirement specification, 

which may be broken down into the two primary categories of "functional 

requirements" and "non-functional requirements."  

4.3.1 Functional Requirements 

Role ID Module Functional Requirements 

Residents SRS001 Registration 

The system shall allow residents 

to register an account with their 

personal information such as 

house number, name, email and 

password. 
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SRS002 Login 
The system shall allow residents 

to log in by email and password. 

SRS003 
Manage 

Profile 

The system shall allow residents 

to update their profile 

information such as name, phone 

number, address and profile 

image. 

SRS004 

Manage 

Vehicle 

The system shall allow residents 

to register their vehicle with 

details like plate number, colour, 

model, and manufacturer. 

SRS005 

The system shall allow residents 

to update their registered vehicle 

information such as plate 

number, colour, and model. 

SRS006 
The system shall allow residents 

to delete their registered vehicle. 

SRS007 Notifications 

The system shall send 

notification to residents when 

their vehicle enters/exits the 

premises. 

SRS008 
Suspicious 

Activity Alerts 

The system shall alert residents if 

a suspicious event such as clone 

vehicle plate with different 

colour or model is detected. 

SRS09 

Manage 

Visitor Pass 

The system shall allow residents 

to generate a visitor pass with 

different time-limited for visitor 

registration. 

SRS010 

The system shall allow residents 

to update a visitor pass for editing 

incorrect information or activate 

again the visitor pass. 
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SRS011 
The system shall allow residents 

to delete a registered visitor pass. 

SRS012 
Reset 

Password 

The system shall allow residents 

to reset their account password. 

SRS013 

Vehicle Logs 

The system shall allow residents 

to view a history of their 

registered vehicle’s entries/exits. 

SRS014 

The system shall allow residents 

to search for history of their 

registered vehicle’s entries/exits 

by record ID. 

SRS015 

The system shall allow residents 

to filter the log records by event 

type and suspiciousness. 

SRS016 

The system shall allow residents 

to sort their registered vehicle’s 

log records by alphabetical 

characters in ascending and 

decreasing order. 

 

Security 

Guards 

SRS017 Login 

The system shall allow security 

guard to log in by guard ID and 

password. 

SRS018 
Reset 

Password 

The system shall allow security 

guard to reset their account 

password. 

SRS019 Dashboard 

The system shall display real-

time data analysis from the log 

records of vehicle entries or exits. 

SRS020 Vehicle Logs 

The system shall allow security 

guards to search for history of 

vehicle’s entries/exits by record 
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ID, vehicle colour, and vehicle 

model. 

SRS021 

The system shall allow security 

guards to filter the log records by 

record status. 

SRS022 

The system shall allow security 

guards to sort the log records by 

alphabetical characters in 

ascending and decreasing order. 

SRS023 
Suspicious 

Events 

The system shall highlight 

suspicious vehicles like 

duplicated license plate for 

manual checking. 

SRS024 
Real-Time 

Alerts 

The system shall notify guards of 

flagged vehicles via audio/visual 

alerts on the dashboard. 

SRS025 
Manage 

Profile 

The system shall allow security 

guards to update their profile 

information such as name and 

profile image. 

 

4.3.2 Non-Functional Requirements 

Category ID Non-functional requirement 

Performance 

NFR001 

The system shall return search results 

within 2 seconds for 90% of queries 

under normal load. 

NFR002 

Real-time notifications shall be 

displayed on the user interface within 

3 seconds of detection. 

Availability NFR003 
The system shall be available 90% of 

the time over a 30-day period. 
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Security 

NFR004 

User passwords shall be stored using 

AES-256 or bcrypt hashing, and 

never in plain text. 

NFR005 
All HTTP requests must be served 

over HTTPS with TLS encryption. 

Usability 

NFR006 

First-time users shall be able to 

register and log in within 3 minutes 

on average. 

NFR007 

The user interface shall display and 

function correctly on modern web 

browsers. 

Reliability 

NFR008 

The system shall gracefully handle 

unexpected input or component 

failure by providing meaningful error 

messages instead of crashing. 

NFR009 

The system shall retry failed 

communication with the database or 

external services up to 3 times before 

notifying the user. 

NFR010 

The system shall log all critical errors 

to a centralized log file or monitoring 

service with timestamps and error 

severity level. 

NFR011 

The system shall log all user login 

attempts and key actions with 

timestamps for auditing and recovery 

purposes. 

 

4.4 System Use Case 

Use cases are a collection of behaviors that explain how users including staff 

members, event coordinators, kids and business owners interact with systems 

that have been put into place. System use cases gave users specific instructions 

on how to achieve their goals within the real system. It is used in the analysis 
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phase to find, specify and make apparent the functional needs from the 

viewpoint of the end users, as well as the interdependencies between use cases. 

A use case diagram and description will be included in this section. 

 

4.4.1 Use Case Diagram 

 

Figure 4.14: Use Case Diagram 
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4.4.2 Use Case Description 

Table 4.１: Use Case Description for Retrieve Vehicle Logs 

Use Case Name:  

Retrieve Vehicle Logs 

ID: USC001 Importance Level: High 

Primary Actor: Resident 

 

Use Case Type:  Detailed, real 

Stakeholders and Interests: N/A 

Brief Description: This use case describes the process of retrieving a list 

of vehicle logs owned by resident by sorting the data based on vehicle 

plate, vehicle make and model, event type, activity status or date by the 

resident. 

Trigger: The resident wants to retrieve a collection or a list of his/her 

vehicle logs. 

Relationships: 

 Association : Resident 

 Include  : N/A 

 Extend  : N/A 

 Generalization     : N/A 

 

Normal Flow of Events: 

1. The system retrives all the vehicle logs that owned by the vehicles 

registered of resident. 

2. The system displays all the information of the vehicle logs. 

3. The user input partial information of vehicle logs. Continue to S-1. 

4. The system display the search result. Continue to S-2. 
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Sub-flows: 

S-1 Perform 3.1 or 3.2 or 3.3 or 3.4 or 3.5 or 3.6 

3.1 If user choose to search by vehicle plate: 

3.1.1 The system allow user to key in the vehicle plate. Continue to 

flow 4. 

3.2 If user choose to search by vehicle make and model: 

3.2.1 The system allow user to key in the vehicle make and model. 

Continue to flow 4. 

3.3 If user choose to filter by event type entry: 

3.3.1 The system allow user to select the event type entry. Continue 

to flow 4. 

3.4 If user choose to search by event type exit: 

3.4.1 The system allow user to select the event type exit. Continue to 

flow 4. 

3.5 If user choose to search by all activity: 

3.5.1 The system allow user to select the all activity. Continue to flow 

4. 

3.6 If user choose to search by suspicious activity: 

3.6.1 The system allow user to select the suspicious activity. 

Continue to flow 4. 

3.7 If user choose to search by date: 

3.7.1 The system allow user to select the date. Continue to flow 4. 

S-2 Perform 4.1 or 4.2 

4.1 If at least one vehicle log is found: 

4.1.1 The system displays all the brief information of the list of vehicle 

logs. Continue to flow 5. 

4.2 If no vehicle log is found: 

4.2.1 The system displays no log found message. 

 

Alternate/Exceptional Flows: 

 



105 

 

 

Table 4.２: Use Case Description for Manage Visitor Pass 

Use Case Name:  

Manage Visitor Pass 

ID: USC002 Importance Level: High 

Primary Actor: Resident 

 

Use Case Type:  Detailed, real 

Stakeholders and Interests: N/A 

Brief Description: This use case describes the process of resident 

retrieving a list of visitor pass. 

Trigger: The resident wants to retrieve a list of visitor pass. 

Relationships: 

 Association : Resident 

 Include  : Receive notification 

 Extend  : N/A 

 Generalization     : N/A 

 

Normal Flow of Events: 

1. The system retrives all the visitor access pass. 

2. The system displays all the information of the visitor pass. Continue 

to S-1. 

3. The user take action on the visitor pass. Continue to S-2. 

Sub-flows: 

S-1 Perform 2.1 or 2.2 

2.1 If the visitor pass is expired: 

2.1.1 The system display the visitor pass with a activate again button 

and delete button. Continue to flow 3. 

2.2 If the visitor pass is still valid: 

2.2.1 The system display the visitor pass with a edit button and 

delete button. Continue to flow 3. 

S-2 Perform 3.1 or 3.2 or 3.3 

3.1 If the user choose to delete a visitor pass: 
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3.1.1 The system displays confirmation delete message 

3.1.2 The user delete the visitor pass by selecting confirm delete. 

3.1.3 The system prompt a delete successful message to user. 

Continue to USC006. 

3.2 If the user choose to update a visitor pass: 

3.2.1 The system displays the update visitor pass page with its 

information to the user. 

3.2.2  The user edit the visitor pass information and click on update 

visitor pass button. 

3.2.3   The system save the new visitor pass information and prompt 

a update successful message to user. Continue to USC006. 

3.3 If the user want to add new visitor pass: 

3.3.1  The user click on the add visitor button. 

3.3.2  The system route user to add visitor page and allow user to enter 

the visitor name, phone number, vehicle license plate, color, make, 

model year and date range. 

3.3.3   The system save the new visitor pass information and prompt 

a update successful message to user. Continue to USC006. 

 

Alternate/Exceptional Flows: 

 

Table 4.３: Use Case Description for Reset Password 

Use Case Name:  

Reset Password 

ID: USC003 Importance Level: High 

Primary Actor: Resident, Security 

Guard 

Use Case Type:  Detailed, real 

Stakeholders and Interests: N/A 

Brief Description: This use case describes the process of reset the 

account password. 
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Trigger: The user clicked the “Forgot Password” link on the login page. 

Relationships: 

 Association : Resident, Security Guard 

 Include  : N/A 

 Extend  : N/A 

 Generalization     : N/A 

 

Normal Flow of Events: 

1. The user clicked the “Forgot Password” link on the login page. 

2. The system displayed a page prompting the user to enter their 

registered email address. 

3. The user entered their email address and submitted the request. 

Continue to S-1 

4. The user opened the reset email and clicked the password reset link. 

5. The system redirected the user to the reset password page. 

6. The user entered a new password and confirmed it. Continue to S-2. 

Sub-flows: 

S-1 Perform 3.1 or 3.2 

3.1 If the email input are not valid: 

3.1.1 The system display error message. Continue to flow 3. 

3.2 If the email input are valid: 

3.2.1 The system sent a reset password link and prompt an alert to 

user about the reset password email has been sent. Continue 

to flow 4. 

S-2 Perform 6.1 or 6.2 

6.1 If the new password not meet security requirement: 

6.1.1 The system displayed an error message. Continue to flow 6. 

6.2 If the new password meet security requirement:: 

6.2.1 The system save the new password and route the user back to 

the login page. 

Alternate/Exceptional Flows: 
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Table 4.４: Use Case Description for Login 

Use Case Name: Login 

 

ID: USC004 Importance Level: High 

Primary Actor: Resident, Security 

Guard 

Use Case Type:  Detailed, real 

Stakeholders and Interests: N/A 

Brief Description: This use case describes the process of resident and 

security guard login the web vehicle recognition access control system. 

Trigger: The resident or security guard wants to access the vehicle 

recognition access control system. 

Relationships: 

 Association : Resident, security guard 

 Include  : N/A 

 Extend  : N/A 

 Generalization     : N/A 

 

Normal Flow of Events: 

1. The user navigates to the login page. 

2. The system allow user to key in their email and password. 

3. The user enter their email and password. Perform S-1. 

4. The system check the presence of any login before. Perform S-2. 

5. The system prompt a login successful message to user. 

Sub-flows: 

S-1 Perform 3.1 or 3.2 

3.1 If the user enter correct credentials: 

3.1.1 The user enter their email and password. Continue to flow 4. 

3.2 If user user enter incorrect credentials: 

3.2.1 The system prompt a login error message. Continue to flow 3. 
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S-2 Perform 4.1 or 4.2 

4.1 If there is login record before: 

4.1.1 The system kill the login session before and create a new one. 

Continue to flow 5. 

4.2 If no login record before: 

4.2.1 The system create a new login session. Continue to flow 5. 

 

 

Alternate/Exceptional Flows: 

 

Table 4.５: Use Case Description for Register Account 

Use Case Name:  

Register Account 

ID: USC005 Importance Level: High 

Primary Actor: Resident Use Case Type:  Detailed, real 

Stakeholders and Interests: N/A 

Brief Description: This use case describes the process of resident register 

a new account in vehicle recognition access control system. 

Trigger: The resident wants to register a new account in the vehicle 

recognition access control system. 

Relationships: 

 Association : Resident 

 Include  : N/A 

 Extend  : N/A 

 Generalization     : N/A 

 

Normal Flow of Events: 

1. The user navigates to the register page. 

2. The system allow user to key in their name, email and password. 

3. The user enter their credentials. Perform S-1. 
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4. The system check the presence of any account with same email. 

Perform S-2. 

Sub-flows: 

S-1 Perform 3.1 or 3.2 

3.1 If the user enter matched password: 

3.1.1 The system pass the credentials to backend. Continue to flow 

4. 

3.2 If user user enter unmatched password: 

3.2.1 The system prompt an error message for different password. 

Continue to flow 3. 

S-2 Perform 4.1 or 4.2 

4.1 If there is similar email account before: 

4.1.1 The system prompt the error message that the email is 

registered before.  

4.2 If no similar email account before: 

4.2.1 The system prompt a message about verify email and sent 

verification email to user. 

4.2.2 The user click on the verification email. 

4.2.3 The system register the user. 

Alternate/Exceptional Flows: 

 

Table 4.６: Use Case Description for Receive Notification 

Use Case Name:  

Receive Notification 

ID: USC006 Importance Level: High 

Primary Actor: Resident Use Case Type:  Detailed, real 

Stakeholders and Interests: N/A 

Brief Description: This use case describes the process of resident 

receiving notification in vehicle recognition access control system. 
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Trigger: The resident wants to view the new notification in the vehicle 

recognition access control system. 

Relationships: 

 Association : Resident 

 Include  : N/A 

 Extend  : N/A 

 Generalization     : N/A 

 

Normal Flow of Events: 

1. The system generate new notification on activity. 

2. The system formats the notification content like title and description. 

3. The system push the notification to the user. 

4. The user can choose to view or dismiss the notification. Perform S-1. 

Sub-flows: 

S-1 Perform 4.1 or 4.2 

4.1 If the user choose to view the notification: 

4.1.1 The application system will be open.  

4.2 If the user choose not to view the notification: 

4.2.1 The notification will be store in the notification page of 

application.  

Alternate/Exceptional Flows: 

 

Table 4.７: Use Case Description for Manage Vehicle 

Use Case Name:  

Manage Vehicle 

ID: USC007 Importance Level: High 

Primary Actor: Resident Use Case Type:  Detailed, real 

Stakeholders and Interests: N/A 
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Brief Description: This use case describes the process of resident manage 

vehicles in vehicle recognition access control system. 

 

Trigger: The resident wants to add, delete or edit the vehicles in the 

vehicle recognition access control system. 

Relationships: 

 Association : Resident 

 Include  : N/A 

 Extend  : N/A 

 Generalization     : N/A 

 

Normal Flow of Events: 

1. The user navigate to the vehicle page. 

2. The system display a list of registered vehicles. 

3. The system display options that can be performed on vehicles. 

4. The user chooses the option to add, delete or edit the vehicles. 

Continue to S-1. 

Sub-flows: 

S-1 Perform 4.1 or 4.2 

4.1 If the user choose to add new vehicle: 

4.1.1 The system allow user to enter new vehicle information like 

license plate, make, model, color and year. 

4.1.2 The user enter the information needed for new vehicles. 

Continue to S-2. 

4.2 If the user choose to edit vehicle: 

4.2.1 The system displays the vehicle’s information for the user to 

select the information that would be edited.  

4.2.2 The user enters the edited vehicle information. Continue to S-3. 

4.3 If the user choose to delete vehicle: 
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4.3.1 The system will prompt conformation delete message to user. 

Continue to S-4. 

S-2 Perform 4.1.2.1 or 4.1.2.2 

4.1.2.1 If the user input is valid: 

4.1.2.1.1 The system will add the new vehicle. Continue to USC006. 

Continue to flow 2. 

4.1.2.2 If the user input is not valid: 

4.1.2.2.1 The system prompts error message.  

4.1.2.2.2 The user re-enter the new vehicle information. Continue to 

flow 4.1.2.1. 

S-3 Perform 4.2.2.1 or 4.2.2.2 

4.2.2.1 If the user input is valid: 

4.2.2.1.1 The system will update the vehicle information. Continue to 

USC006. Continue to flow 2. 

4.2.2.2 If the user input is not valid: 

4.2.2.2.1 The system prompts error message.  

4.2.2.2.2 The user re-enter the edited vehicle information. Continue 

to flow 4.2.2.1. 

S-4 Perform 4.3.1.1 or 4.3.1.2 

4.3.1.1 If the user confirm to delete vehicle: 

4.3.1.1.1 The system will delete the vehicle selected by user. 

Continue to USC006. Continue to flow 2. 

4.3.1.2 If the user does not confirm to delete vehicle: 

4.3.1.2.1 The system will not execute the delete process. Continue to 

flow 2. 

 

Alternate/Exceptional Flows: 

 

Table 4.８: Use Case Description for Manage Profile 

Use Case Name:  

Manage Profile 

ID: USC008 Importance Level: High 
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Primary Actor: Resident, security guard Use Case Type:  Detailed, real 

Stakeholders and Interests: N/A 

Brief Description: This use case describes the process of resident and 

security guard manage their profiles in vehicle recognition access 

control system. 

Trigger: The resident or security guard wants to edit the profile 

informations in the vehicle recognition access control system. 

Relationships: 

 Association : Resident, security guard 

 Include  : Receive notification 

 Extend  : N/A 

 Generalization     : N/A 

 

Normal Flow of Events: 

1. The user navigate to the profile page. 

2. The system display the profile information. 

3. The system display edit option that can be performed on profile. 

4. The user chooses the option to edit the profile. 

5. The system displays the profile’s information for the user to select the 

information that would be edited. 

6. The user enters the edited profile information. Continue to S-1. 

Sub-flows: 

S-1 Perform 6.1 or 6.2 

6.1 If the user input is valid: 

6.1.1 The system will update the profile information. Continue to 

USC006. Continue to flow 2. 

6.2 If the user input is not valid: 

6.2.1 The system prompts error message.  

6.2.2 The user re-enter the edited profile information. Continue to 

flow 6.1. 
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Alternate/Exceptional Flows: 

 

 

Table 4.９: Use Case Description for Retrieve Vehicle History Log 

Use Case Name:  

Retrieve Vehicle History Log 

ID: USC009 Importance Level: High 

Primary Actor: Security Guard Use Case Type:  Detailed, real 

Stakeholders and Interests: N/A 

Brief Description: This use case describes the process of security guard 

search vehicle history log in vehicle recognition access control system. 

Trigger: The security guard wants to search or filter the vehicle history 

log in the vehicle recognition access control system. 

Relationships: 

 Association : Security Guard 

 Include  : N/A 

 Extend  : Filter data, Search data 

 Generalization     : N/A 

 

Normal Flow of Events: 

1. The user navigate to the vehicle logs page. 

2. The system display a list of vehicle history logs. 

3. The user can manage a particular vehicle logs by searching license 

plate or make or model or filtering through event type and activity 

status. Continue to E-1. 
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Sub-flows: 

S-1 Perform 3.1.2.1 or 3.1.2.2 

3.1.2.1 If at least one vehicle history log is found: 

3.1.2.1.1 The system display the search results in the page. Continue 

to flow 3. 

3.1.2.2 If no vehicle history log is found: 

3.1.2.2.2 The system displays the message no vehicle history log is 

found. Continue to flow 3. 

Alternate/Exceptional Flows: 

E-1 Perform 3.1 or 3.2 or 3.3 

3.1 If the user choose to vehicle history logs: 

3.1.1 The system allow user to enter the search information. 

3.1.2 The user enter the search information needed. Continue to S-1. 

3.2 If the user choose to filter vehicle history logs: 

3.2.1 The system allow user to choose the filter categories.  

3.2.2 The user choose the filter categories. Continue to S-1. 

3.3 If the user choose not to search or filter vehicle history logs: 

3.3.1 The system allow user to not enter any prompt or select any 

category. Continue to flow 2. 

 

 

Table 4.１０: Use Case Description for Retrieve Real-Time Data 

Use Case Name:  

Retrieve Real-Time data 

ID: USC010 Importance Level: High 

Primary Actor: Security Guard Use Case Type:  Detailed, real 

Stakeholders and Interests: N/A 

Brief Description: This use case describes the process of security guard 

retrieve real-time data and receive alerts in vehicle recognition access 

control system. 
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Trigger: The security guard wants to retrieve real-time data and receive 

alerts in the vehicle recognition access control system. 

Relationships: 

 Association : Security guard 

 Include  : N/A 

 Extend  : Show alerts 

 Generalization     : N/A 

 

Normal Flow of Events: 

1. The system retrieve the real-time data in database. 

2. The system generate new alerts based on retrieve real-time data. 

3. The system formats the alerts content like title and description. 

4. The system push the alerts to the user. 

5. The user can choose to view or dismiss the alerts. Perform E-1. 

Sub-flows: 

Alternate/Exceptional Flows: 

E-1 Perform 5.1 or 5.2 

5.1 If the user choose to view the alert: 

5.1.1 The system will redirect the user to the alerts page.  

5.2 If the user choose to not view the alert: 

              5.2.1 The alert will be store in the alerts page of web application. 

 

4.5 Proposed System Flow & Prototype 

This section will focus on proposed system flow whcihc represented by user 

interface flow diagram and the prototype screenshot for visualization purpose. 
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4.5.1 User Interface Flow Diagram 

The flow of web and mobile application  with same codebase for security guard 

and residents are shown in below user interface flow diagrams. 

 

 

Figure 4.15: User interface flow diagram for residents 

 

Figure 4.16: User interface flow diagram for security guards 

 

4.6 Prototype 

This section show all the web and mobile application’s prototype screenshots 

with subsection, login or register, resident’s page and security guard’s page. 

 



119 

 

 

4.6.1 Login or register 

4.6.1.1 Web View 

 

Figure 4.17: Login Web View 

 

Figure 4.18: Register Web View 

4.6.1.2 Mobile View 
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Figure 4.19: Login Mobile View 
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Figure 4.20:  Register Mobile View 

4.6.2 Resident’s Page 

4.6.2.1 Web View 
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Figure 4.21: Resident’s Dashboard Page Web View 

 

Figure 4.22: Resident's Vehicles Page Web View 

 

Figure 4.23:  Resident's Add Vehicle Page Web View 
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Figure 4.24: Resident's Vehicle Logs Page Web View 

 

Figure 4.25: Resident's Report Unauthorized Parking Page Web View 

 

Figure 4.26: Resident's Visitor Page Web View 



124 

 

 

 

Figure 4.27: Resident's Invite Visitor Page Web View 

 

Figure 4.28: Resident’s Notification Page Web View 

 

Figure 4.29: Resident's Profile Page Web View 

4.6.2.2 Mobile View 



125 

 

 

 

Figure 4.30: Resident’s Sidebar Page Mobile View 
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Figure 4.31: Resident's Dashboard Page Mobile View 
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Figure 4.32: Resident's Vehicle Page Mobile View 
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Figure 4.33: Resident's Add Vehicle Page Mobile View 
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Figure 4.34: Resident's Vehicle Logs Page Mobile View 
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Figure 4.35: Resident's Report Unauthorized Parking Page Mobile View 
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Figure 4.36: Resident's Visitor Page Mobile View 
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Figure 4.37: Resident's Invite Visitor Page Mobile View 
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Figure 4.38: Resident’s Notification Page Mobile View 
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Figure 4.39: Resident's Profile Page Mobile View 
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4.6.3 Security Guard’s Page 

4.6.3.1 Web View 

 

Figure 4.40: Security Guard's Dashboard Page Web View 

 

Figure 4.41: Security Guard's Access Logs Page Web View 
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Figure 4.42: Security Guard's Parking Reports Page Web View 

 

Figure 4.43: Security Guard's Alerts Page Web View 

 

Figure 4.44: Security Guard's Profile Page Web View 

4.6.3.2 Mobile View 
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Figure 4.45: Security Guard's Sidebar Page Mobile View 
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Figure 4.46: Security Guard's Dashboard Page Mobile View 
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Figure 4.47: Security Guard's Access Logs Mobile View 
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Figure 4.48: Security Guard's Unauthorized Parking Reports Page Mobile 

View 
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Figure 4.49: Security Guard's Alerts Page Mobile View 
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Figure 4.50: Security Guard's Profile Page Mobile View 
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4.7 Preliminary Code run on SegmentAnything and Yolov8-seg 

The preliminary code run on Segment Anything (SAM) and YOLOv8-Seg is 

vital for understanding how each segmentation model functions in the context 

of vehicle recognition especially when incorporated into a multimodal vehicle 

recognition system for vehicle access control. The accuracy, effectiveness and 

usability of several segmentation approaches in practical situations may be 

compared due to this early implementation. The preliminary study offers 

insights into the strengths and drawbacks of SAM and YOLOv8-Seg by testing 

them both on the same dataset. This serves as a basis for choosing the best model 

for the project. Additionally, it establishes the foundation for future system 

improvement and refinement, guaranteeing that the finished vehicle recognition 

framework can accurately and instantly handle a variety of scenarios. 

 

4.7.1 Overview 

This preliminary code compares two vehicle segmentation techniques, Segment 

Anything Model (SAM) and YOLOv8-Segmentation, by evaluating their 

performance on the same image. YOLOv8 detects vehicle bounding boxes, 

which are passed to SAM for segmentation, while YOLOv8-Segmentation 

directly performs end-to-end segmentation. The segmentation results from both 

models are compared using metrics like Intersection over Union (IoU), Dice 

Score, and Pixel Accuracy. The performance is also assessed in terms of 

processing time. Finally, the original image and the segmentation masks from 

both models are visualized side by side for qualitative comparison. 
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4.7.2 Detailed Steps 

 

Figure 4.51: Flowchart of preliminary code 

The vehicle segmentation pipeline shown in this flowchart combines Segment 

Anything Model (SAM) for accurate segmentation with YOLOv8 for object 

recognition. First, both models are initialized and an input image is loaded. In 

order to construct detailed pixel-level masks, SAM uses the bounding boxes that 

YOLOv8 creates after initially detecting cars. For comparison, the system also 

uses YOLOv8's built-in segmentation (YOLOv8-seg) to segment automobiles. 

The results are then visualized after metrics such as pixel accuracy, Dice 

coefficient, and intersection over union (IoU) are computed to assess the 

effectiveness of both segmentation techniques. 

This workflow's goal is to ensure maximum accuracy and efficiency 

for vehicle segmentation jobs by comparing SAM to YOLOv8-seg. This 
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pipeline can be used for this proposed vehicle access control system because the 

displayed results aid in validating the models' outputs. 

 

4.7.3 Experimental Setup and Result 

The data collected is randomly selected from internet resources. For analyzing 

the results, the visualization results and the other metrics such as IoU and Dice 

are shown in the below figures and table: 

 

Figure 4.52: Visualization result of car 1 

 

Figure 4.53: Visualization result of car 2 
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Figure 4.54: Visualization result of car 3 

 

Figure 4.55: Visualization result of car 4 

 

Figure 4.56: Visualization result of car 5 
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Table 4.１１: Experimental result of SAM and Yolov8-seg 

Images IoU Dice Pixel 

Accuracy 

SAM 

Time (ms) 

Yolov8-seg 

Time (ms) 

1 0.7779 0.8751 0.9254 10459.16 2061.03 

2 0.9382 0.9681 0.9660 10315.55 2111.13 

3 0.9132 0.9546 0.9392 10181.98 2087.78 

4 0.9211 0.9589 0.9484 10585.60 2123.98 

5 0.8687 0.9297 0.8906 10053.70 2062.63 

 

According to table 4.13, the experimental results comparing Segment Anything 

(SAM) and YOLOv8-Seg are shown in Table 4.13, with a focus on the 

following important performance metrics including processing times, 

intersection over union (IoU), dice coefficient and pixel accuracy. High 

accuracy was shown by both models as SAM obtained IoU values between 

0.7779 and 0.9382 while YOLOv8-Seg yielded comparable outcomes. This 

implies that both models can produce segmentations that are extremely accurate. 

The Dice coefficient which measures the overlap between the ground truth and 

predicted masks was also high for both models with YOLOv8-Seg ranging from 

0.8906 to 0.9660 and SAM scoring between 0.8751 and 0.9681. 

 Both SAM and YOLOv8-Seg performed well while assessing Pixel 

Accuracy as SAM received scores ranging from 0.8906 to 0.9254 while 

YOLOv8-Seg received ratings between 0.9660 to 0.8906. This shows that both 

models successfully and accurately label individual pixels in their segmentation 

tasks. However, the processing time of the two models is a crucial distinction 

between them. Compared to YOLOv8-Seg, which processed photos between 

2061.03 ms and 2123.98 ms, SAM's processing time ranged roughly from 

10053.7 ms to 10585.6 ms. 

 The findings point to a trade-off. SAM is better suited for applications 

where accuracy is more important than speed because it consumes more 

computing time even though it produces higher segmentation quality. However, 

YOLOv8-Seg has a little lower segmentation accuracy but delivers faster speed 

which making it perfect for real-time applications. Despite its higher processing 
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time, SAM is the recommended option due of its superior segmentation 

accuracy which is crucial for vehicle identification systems. 

(Note: The segmentation technique was changed to YOLO in later chapter 6.2.3) 

4.8 Chapter Summary 

The project's initial findings are presented in this chapter which provides 

information on the system's development process and early results.  A summary 

of the work completed so far opens the chapter which is followed by a fact-

finding phase that examined important data relevant to the project.  

Understanding the goals and expectations of the system requires knowledge of 

both functional and non-functional needs which are described in the User needs 

Specifications (URS) section. 

System use cases are also included in this chapter, along with a use 

case diagram and descriptions that provide readers a clear idea of how the 

system will work in practical situations.  Additionally, the prototype and 

suggested system flow are presented, showcasing the expected user interface 

flow and preliminary design components. 

The initial code runs of the SegmentAnything and YOLOv8-seg 

models which are essential to the vehicle detection system under 

development are specifically covered in Section 4.6. This part contains an 

examination of the experimental setup and outcomes, a thorough description of 

the procedures followed and a summary of the models' performance. Insights 

on the advantages and disadvantages of the selected segmentation models are 

provided by this early testing, which is essential for improving the system's 

performance in later phases of development. 
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CHAPTER 5 

 

5 SYSTEM DESIGN 

5.1 Introduction 

This chapter gave a summary of the system's design and included a number of 

diagrams and the system architecture that showed the system's structure. The 

flow of data or information through the system was represented in a data flow 

diagram (DFD). The use cases covered in earlier chapters served as the 

foundation for the processes in the data flow diagram. Level-0 DFD and a 

context diagram were also included in this chapter. Lastly, the screenshots of 

the developed system's user interface flow design were displayed. For easier 

reading and understanding, all the screenshots were arranged according to the 

system modules. 

 

5.2 System Architecture Design 

 

Figure 5.1: System Architecture Diagram 

The figure above showed the system architecture of the proposed vehicle 

recognition and monitoring system which combined the web-based and artificial 

intelligence components. Residents and security personnel were the primary 

users of the architecture which interacting with the system via the web browsers. 

Modern web programming languages including React Native, TypeScript, 

HTML, CSS, and TailwindCSS were used in the development of the 

application's frontend as they offered a responsive and user-friendly interface 

for managing the residents, visitors, vehicles and notifications. To ensure the 
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safe data flow throughout the system, HTTPS requests and replies were used to 

establish communication between the frontend and the backend. 

The Next.js-powered backend server which served as the primary 

processing unit for managing the user requests was at the heart of the 

architecture. The database layer and the AI recognition services were the two 

primary components that the backend communicated with. Supabase managed 

all the structured data, including user profiles, residents, visitors, vehicles, 

records and notifications. It also integrated with the auth.users to offer 

authentication and authorization. In the meantime, the backend sent vehicle 

images to the AI modules for tasks such as recognition. 

Following the processing, the Next.js backend received the JSON 

replies from the Supabase and the AI modules. It then compiled and formatted 

the data before returning it to the frontend. This made it possible for the users 

especially the security personnel to effectively monitor the access in real time, 

identify questionable records and confirm the identities of vehicles. Vercel was 

used to deploy the full backend system and this had guaranted the scalability, 

dependability, and cloud-based accessibility. In conclusion, this architecture 

supported the intelligent monitoring and effective communication within the 

system by facilitating a smooth integration between the frontend interfaces, 

backend logic, safe data storage and AI-powered recognition. 

 

5.3 System Design Models 

This section presented a entity relationship illustration that described the 

structured view of the database concepts and their relationships.  



151 

 

 

5.3.1 Entity Relationship Diagram (ERD) 

 

Figure 5.2: Entity Relationship Diagram (ERD) of system 

Figure 5.2 above illustrated the Entity Relationship Diagram (ERD) of the 

system that includes seven primary tables which are auth.users, profiles, 

residents, visitors, cars, records, and notifications. The auth.users table is the 

authentication layer provided by Supabase. The function of the auth users table 

is to store each system user’s core login credentials like email and password. It 

is expanded by the profiles table, which serves as the main link between other 

modules and stores extra user information like name, role, and profile picture 

url. By collecting resident-specific data like address and phone number, the 

residents table extends profiles even further. Meanwhile, the visitors table keeps 

track of temporary users' contact information, their duration of visit, and 

optional vehicle linkages. Vehicle-related data, including license plate number, 

model, manufacturer, color, and year, are stored in the vehicle's table and are 

associated with either a resident through profiles table or a visitor. Vehicle-

related occurrences and events are recorded in the records table along with the 

type, description, and status of the case which is suspicious or resolved. Last but 

not least, the notifications table provides users with system-generated messages 

and alerts based on their events or behaviors. Secure authentication through 

auth.users, smooth resident and visitor linkage through profiles, and effective 

vehicle, incident, and system-wide communication monitoring are all 

guaranteed by this schema design. 
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5.3.2 Data Flow Diagram (DFD) 

The Data Flow Diagram (DFD) was used to represent the flow of information 

within the system. It illustrated how the data entered the system, the processes 

that transformed the data and also the outputs generated. By providing a clear 

and structured view of the interactions between users, processes, and data stores, 

the DFD helped in understanding the overall functionality of the system at 

different levels of the abstraction. 

 

5.3.2.1 Context Diagram 

The context diagram provided in this section illustrated the system at the highest 

level of the abstraction. The diagram outlined the system’s boundaries and 

demonstrated the flow of the information between the users and the system 

without detailing the internal processes. 

 

Figure 5.3: Context Diagram 

 

5.3.2.2 DFD Level – 0 

The Level 0 DFD provides a high-level overview of the system. It showed the 

main processes, external entities and also the data flows. It defines the system 

boundaries and illustrates how the data moves between the users, the system, 
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and data stores. In other words, it highlighted the core functions such as vehicle 

registration, recognition, and data storage in this project. 

 

Figure 5.4: Data Flow Diagram Level - 0 

 

5.4 User Interface Design 

User Interface (UI) Design defines how the users interact with the vehicle 

recognition system. It focuses on creating the intuitive, user-friendly screens for 

both residents and security guards and also ensuring that all system functions 

such as the vehicle registration, visitor pass generation, recognition results and 

access management are easily accessible and efficiently navigable to the user. 

Good UI design improves the user experience, reduces errors and supports the 

smooth operation of the system on the web platform.  

 

5.4.1 Resident Side 

Resident Side UI Design focuses on creating an intuitive and user-friendly 

interface for the residents to interact with the system. 

 

5.4.1.1 Registration 
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Figure 5.5: Resident Register UI 

 

Figure 5.6: Resident fill in Registration UI without readability on 

password 
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Figure 5.7: Resident fill in Registration UI with readability on password 

 

Figure 5.8: Resident Registration Success UI 

 

5.4.1.2 Login 



156 

 

 

 

Figure 5.9: Resident Login UI 

 

Figure 5.10: Resident Login UI without readability on password 
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Figure 5.11: Resident Login UI with readability on password 

 

5.4.1.3 Manage Profile 

 

Figure 5.12: Resident Profile Page UI 
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Figure 5.13: Resident Update Profile Page UI Part 1 

 

Figure 5.14: Resident Update Profile Page UI Part 2 
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Figure 5.15: Resident Upload Profile Image UI 

 

Figure 5.16: Resident Update Profile Successful UI 
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Figure 5.17: Resident New Updated Profile Page UI 

 

5.4.1.4 Manage Vehicle 

 

Figure 5.18: Resident Vehicle Page UI 
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Figure 5.19: Resident Add New Vehicle Page UI 

 

Figure 5.20: Resident Add New Vehicle Successfully Page UI 
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Figure 5.21: Resident New Added Vehicle Page UI 

 

Figure 5.22: Resident Update Vehicle Page UI 
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Figure 5.23: Resident Update Vehicle Successfully Page UI 

 

Figure 5.24: Resident New Updated Vehicle Page UI 



164 

 

 

 

Figure 5.25: Resident Delete Vehicle Page UI 

 

Figure 5.26: Resident Delete Vehicle Successful Page UI 

 

5.4.1.5 Notifications 
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Figure 5.27: Resident Notification Page UI 

 

Figure 5.28: Resident Mark 1 Notification as Read UI 
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Figure 5.29: Resident Mark All Notification as Read Page UI 

 

5.4.1.6 Suspicious Activity Alerts 

 

Figure 5.30: Resident Receive Suspicious Alert Page UI 

 

5.4.1.7 Manage Visitor Pass 



167 

 

 

 

Figure 5.31: Resident Visitor Page UI 

 

Figure 5.32: Resident Add New Visitor Page UI Part 1 
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Figure 5.33: Resident Add New Visitor Page UI Part 2 

 

 

Figure 5.34: Resident Add New Visitor Successful Page UI 
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Figure 5.35: Resident New Add Visitor Page UI 

 

Figure 5.36: Resident Update Visitor Page UI Part 1 
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Figure 5.37: Resident Update Visitor Page UI Part 2 

 

Figure 5.38: Resident Update Visitor Success Page UI 

 

Figure 5.39: Resident Delete Visitor Page UI 
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Figure 5.40: Resident Delete Visitor Success Page UI 

 

5.4.1.8 Reset Password 

 

 

Figure 5.41: Resident Reset Password Page UI 
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Figure 5.42: Resident Reset Password Accept Page UI 

 

Figure 5.43: Resident Reset Password Page 

 

5.4.1.9 Vehicle Logs 
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Figure 5.44: Resident Vehicle Log Page UI 

 

Figure 5.45: Resident Vehicle Log Apply Searach and Filter Page UI 

 

5.4.2 Security Guard Side 

Security Guard Side UI Design focuses on creating an intuitive and user-

friendly interface for security guard to interact with the system. 

 

5.4.2.1 Login 
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Figure 5.46: Security Guard Login Page UI 

 

Figure 5.47: Security Guard Login without readability password Page UI 
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Figure 5.48: Security Guard Login with readability password 

 

5.4.2.2 Reset Password 

 

Figure 5.49: Security Guard Reset Password Page UI 
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Figure 5.50: Security Guard Reset Password Accept Page UI 

 

 

Figure 5.51: Security Guard Reset Password Page UI 

 

5.4.2.3 Dashboard 
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Figure 5.52: Security Guard Dahsboard Page UI Part 1 

 

Figure 5.53: Security Guard Dashboard Page UI Part 2 
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Figure 5.54: Security Guard Dashboard Page UI Part 3 

 

5.4.2.4 Vehicle Logs 

 

Figure 5.55: Security Guard Vehicle Logs Page UI 
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Figure 5.56: Security Guard Vehicle Logs Apply Search and Filter Page 

UI 

 

Figure 5.57: Security Guard Vehicle Logs No Searching Result Page UI 

 

5.4.2.5 Suspicious Events 
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Figure 5.58: Security Guard Receive Suspicious Alert Page UI 

 

5.4.2.6 Real-Time Alerts 

 

Figure 5.59: Security Guard Notification Page UI 
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Figure 5.60: Security Guard Mark 1 Notificaiton as Read Page UI 

 

Figure 5.61: Security Guard Mark All Notificaiton as Read Page UI 

 

5.4.2.7 Manage Profile 
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Figure 5.62: Security Guard Profile Page UI 

 

Figure 5.63: Security Guard Update Profile Page UI Part 1 
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Figure 5.64: Security Guard Update Profile Page UI Part 2 

 

Figure 5.65: Security Guard Update Profile Image Page UI 
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Figure 5.66: Security Guard Update Profile Successful Page UI 
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CHAPTER 6 

 

6 SYSTEM DESIGN 

 

6.1 Introduction 

This chapter provides a complete overview of the entire system's 

implementation, including the variety of modules created to meet the unique use 

cases and functional requirements described in the previous chapter. To ensure 

an accurate understanding of the system's design and capabilities, each module 

is carefully studied with a focus on its own set of features and functionalities. 

 Supabase serves as the system's backend platform in this project. It 

offers a serverless and scalable infrastructure that includes authentication, 

database administration, and real-time APIs. Supabase's PostgreSQL database 

allows for efficient storing and retrieval of processed data, while the built-in 

authentication service ensures safe access control. In other words, Supabase 

provides a modern, cloud-native architecture that simplifies data management 

and allows for seamless interaction between the client application and the 

backend. 

 In addition to backend services, YOLOv8 which is a state-of-the-art 

object detection model is also used to handle vehicle recognition tasks. The 

workflow begins with data preprocessing, where the raw dataset consisting of 

vehicle images undergoes cleaning, annotation, and normalization. This step 

ensures that the input data is consistent and optimized for model training. The 

preprocessed dataset is then used to train the YOLOv8 model, where vehicle 

attribute such as color, model, year and manufacturer are fine-tuned to achieve 

multimodal recognition of vehicle rather than only rely on license plate. 

  

6.2 System Module 

Table 6.1 presented below provides a comprehensive list of the modules 

developed in this project. As a result, to gain a better knowledge of the modules 

integrated into each system, all modules are categorized according to their 

intended users, as shown below. 
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Table 6.１: System Module 

Target User Module 

Residents Registration 

Login 

Manage Profile 

Manage Vehicle 

Notifications 

Suspicious Activity Alerts 

Manage Visitor Pass 

Reset Password 

Vehicle Logs 

Security Guards Login 

Reset Password 

Dashboard 

Vehicle Logs 

Suspicious Event 

Real-Time Alerts 

 

6.2.1 Resident 

The Resident user in the implemented system includes a number of features 

targeted at improving the user experience and facilitating smooth interaction 

across the platform. It is primarily intended to meet the demands of those who 

interact with the system in the position as the residents. 

 

6.2.1.1 Registration 

The implemented system provides a secure and easy registration method for 

residents powered by Supabase authentication which is a modern, cloud-native 

solution that interfaces directly with PostgreSQL. This solution ensures that user 

data is handled consistently throughout numerous system modules, in addition 

to authentication. 
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Figure 6.1: Registration Frontend Code 

 In the code, the register function will firstly ensure the password and 

confirm password is match before sending the data to backend. While waiting 

for backend’s response, the loading sign which is the “Creating account” words 

will appear to provide system feedback for user in order to let them know the 

data is being processed rather than the button is not clicked. Once the account 

is created successfully, an alert will be prompt to the user for them to click on 

the email sent to them for activating their account. After that, the system will 

switch to login part which give convenience to user. 
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Figure 6.2: Registration Backend Code Part 1 

During registration, the system validates required fields such as email, 

password, and name before securely creating the user account using Supabase 

Auth. Passwords are encrypted and email confirmation is required to prevent 

illegal access. To improve functionality, user information is saved in the profiles 

database, while a corresponding record in the residents table determines the 

resident's role in the system. 
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Figure 6.3: Registration Backend Code Part 2 

To guarantee data integrity, robust rollback procedures are also provided, 

ensuring that incomplete or failed insertions do not result in invalid records in 

the database. By combining Supabase authentication with structured data 

integration, the solution creates an efficient and secure resident-focused access 

process that maintains usability and system stability. 

 

6.2.1.2 Login 

For login module, a secure mechanism was developed to authenticate residents 

and security guard and then grant them access to role-specific functionalities. 

The process is powered by Supabase Authentication, which provides robust and 

scalable user session management while ensuring data security. 
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Figure 6.4: Login Frontend Code 

When user wants to sign in, the system first ensures that both the email address 

and the password are entered before submitting the request. After successful 

login, the user will be route to different page based on the user role in the profile 

table.  
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Figure 6.5: Login Backend Code Part 1 

The credentials are then handled by Supabase Auth which checks the 

user's information. A secure session token will be generated after successful 

authentication by user. This token is saved locally to keep the user authenticated 

during their interactions with the system.  

In the event of invalid credentials or server-side failures, the system is 

configured to return clear error messages while blocking unauthorized access. 

By integrating Supabase's secure session handling with structured profile 

validation, the login mechanism provides an efficient, role-based authentication 

procedure that improves system security and user experience. 
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Figure 6.6: Login Backend Code Part 2 

After having the secure session, the profile information to be shown is then read 

by using searchParam function to pass the unique user id to the database. The 

profile information is then set to the AuthContext to ease the pass of profile data 

among each page to get relevant information from database. 

 

6.2.1.3 Manage Profile 

This module optimizes the user experience by allowing updates to details like 

name, phone number, address, and profile image, while guaranteeing that all 

changes are securely kept in the system's database via Supabase integration. 

 

Figure 6.7: Change Profile Image Frontend Code 

When user want to update their profile image, they starts the procedure 

by selecting a new profile image from their device's image picker capabilities 
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after clicking the edit button in profile information. When an image is selected, 

the system briefly adjusts the interface to reflect the new selection. 

 

Figure 6.8: Upload New Profile Image Frontend Code 

When a resident approves and saves their profile updates, the system 

ensures that a valid user session is active before proceeding with the update 

request. The new data, which includes the profile image URL, contact number, 

and address, is subsequently transferred to the backend using a secure API 

endpoint. 
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Figure 6.9: Update Profile Information Backend Code 

On the backend, the system handles the update request by modifying 

two essential tables which include the profiles table that contains general 

information such as the resident's name and profile image. The other one is 

the residents table, which provides role-specific information such as phone 

number and address that is not suitable for security guard role. This dual update 

guarantees that all resident-related information is consistent and appropriately 

formatted throughout the database. In the event of an error during the update, 

the system gives the user clear feedback while preventing incomplete or 

incorrect data from being stored. 

 

6.2.1.4 Manage Vehicle 

This module basically is to allow residents to conveniently register, maintain, 

and manage their automobiles within the platform. This module guarantees that 

all vehicle-related data is regularly maintained and securely saved, while also 

providing residents with a user-friendly interface for managing their records. 
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Figure 6.10: Fetch Vehicles on Vehicle Page Frontend Code 

 

Figure 6.11: Fetch Vehicles Frontend Code 

 While entering the vehicle page, the system will show the loading page 

and check whether the user is login or not by checking its id to ensure valid 

access of vehicle data. Once confirmed, the system will then fetch the vehicle 

data from backend by using the parameter pass in the endpoint which is the user 

id. After getting all the vehicle data, they will be shown on the vehicle page and 

deactivate the loading page. If any error occur during the process, the loading 

page will also be deactivated. 
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Figure 6.12: Fetch Vehicles Backend Code 

 In the backend, it will try to get either the user id or the visitor id to 

filter out the car that is registered by the login user. It use the supabaseAdmin 

to access the vehicles table as the row level security of the table is enable. In 

this case, the supabaseAdmin use the service role key to access the table rather 

than using supabase that use anon key to access. This ensure restrict rules to get 

data from the database and increase the security level as the service role key is 

not exposed to the frontend but only use in backend. After that, the vehicle’s are 

selected accordingly and return as json format with the status code. 
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Figure 6.13: Add New Vehicle Frontend Code 

 When a resident registers a new vehicle, the system receives 

information such the plate number, make, model, color and manufacturer year. 

The field are checking before calling the endpoint to add a new vehicle by using 

the user id as referencing for making other action on it. A json format data is 

send along to the endpoint to add new vehicle. Once getting a response from the 

endpoint. The vehicleEvent will emit a refresh signal to refresh the list of vehicle 

in the vehicle page to ensure the vehicle list is always up-to-date. 
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Figure 6.14: Add New Vehicle Backend Code 

 Similar to frontend, backend code also check whether the require field 

is passed in or not before adding the vehicle. If missing require body, it will 

directly return the error message with status code as response data. On the other 

hands, if all the require data is exist, it will pass it to database and return a json 

response which include the success message and status code 201 which 

represent created. 
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Figure 6.15: Update Vehicle Frontend Code 

This function updates a vehicle’s information in a backend database. It first 

validates that all required fields which are plate number, manufacturer, model, 

colour, and year all are filled, showing an alert if any are missing. Once 

validated, it sets a loading state and sends a PUT request to the backend API 

with the updated vehicle details that including the vehicle ID and a flag for 

`is_default`. After receiving a response, it checks if the update was successful: 

if so, it shows a custom toast notification and the emits a refresh event to update 

the other components, and navigates the user back to the vehicles screen; if not, 

it alerts the user of an error. Finally, regardless of success or failure, it resets the 

loading state, clears the selected vehicle, and resets the form fields. 
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Figure 6.16: Update Vehicle Backend Code 

This code defines an asynchronous PUT API handler for updating vehicle 

records in a Supabase database. It first extracts the JSON body from the 

incoming request and destructures the vehicle information, including vehicleId, 

plate, colour, model, manufacturer, year and is_default. Using the Supabase 

admin client, it updates the corresponding record in the "vehicles" table where 

the vehicle_id matches the provided vehicleId. If the update succeeds, it returns 

a JSON response indicating success; if any error occurs during the update, it 

catches the error and returns a JSON response with the error message and a 500 

status code. The console.log(body) line allows debugging by logging the 

received data. 

 

Figure 6.17: Delete Vehicle Frontend Code 

This code snippet is an asynchronous function that deletes a vehicle from the 

backend. It sends a DELETE request to the API endpoint with the `vehicleId` 

as a query parameter. After receiving the response, it parses the JSON data and 

checks if the deletion was successful. If so, it refreshes the vehicle list by calling 

`fetchVehicles()` and shows a custom toast notification confirming the deletion, 

including the vehicle plate number. If the request fails, it displays an alert with 

the error message from the server or a default failure message. Any unexpected 

errors during the request are caught and displayed using a standard alert. 
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Figure 6.18: Delete Vehicle Backend Code 

This code defines an asynchronous DELETE API handler for removing a 

vehicle from the Supabase database. It first extracts the vehicleId from the 

request’s URL query parameters and returns a 400 error if vehicleId is missing. 

Using the Supabase admin client, it deletes the record in the "vehicles" table 

where vehicle_id matches the provided ID. If the deletion succeeds, it responds 

with a JSON object indicating success and a 200 status code. If any error occurs 

during the process, it catches the error and returns a JSON response with the 

error message and a 500 status code. 

 

6.2.1.5 Notifications 



202 

 

 

 

Figure 6.19: Fetch Notifications Frontend Code 

 

Figure 6.20: Fetch Notifications Backend Code 

This code snippet is an asynchronous function that fetches notifications for a 

specific resident from the backend. It sends a GET request to the notifications 

API with the user’s ID as a query parameter. If the response is not OK, it throws 
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an error with the HTTP status. Once the response is received, it parses the JSON 

data and logs it for debugging. The code then checks the structure of the returned 

data: if `data.notifications` exists, it updates the local `notifications` state; if the 

data itself is an array, it uses that directly; otherwise, it logs a warning about an 

unexpected response shape. Any errors during the fetch are caught and logged, 

and finally, the loading state is set to false.  

 

 

Figure 6.21: Update 1 Notification as Read Frontend Code 
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Figure 6.22: Update 1 Notification as Read Backend Code 

This code updates a notification’s status in the backend. It sends a PUT request 

to the notifications API with a JSON body containing the notification id and its 

updated is_read status. After receiving the response, it parses the JSON data and 

checks if the request was successful. If not, it throws an error using the returned 

message or a default error message. On success, it logs the updated notification 

data for debugging and returns it. Any errors during the request are caught and 

logged to the console.  

 



205 

 

 

 

Figure 6.23: Mark All Notifications as Read Frontend Code 

 

Figure 6.24: Mark All Notifications as Read Backend Code 

This function marks all notifications for a resident as read. It sends a PATCH 

request to the notifications API with the user’s ID in the request body. If the 

response is not OK, it throws an error with the HTTP status. Upon a successful 

response, it logs a confirmation message and calls fetchNotifications() to refresh 
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the local notification state. Any errors during the request are caught and logged 

to the console for debugging. 

 

6.2.1.6 Manage Visitor Pass 

 

Figure 6.25: Fetch Visitors Frontend Code 
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Figure 6.26: Fetch Visitors Backend Code 

These code snippets show an asynchronous function that fetches a list of visitors 

for a specific user and their associated vehicles. It first sends a GET request to 

the visitor API with the user’s ID. If the response is successful, it parses the 

JSON data and ensures that visitorsList is an array. Then, for each visitor, it 

sends a separate GET request to the vehicle API to fetch vehicles linked to that 

visitor, combining the visitor and vehicle data into a single object. Any errors 

while fetching individual vehicles are caught and logged, with an empty vehicle 

array returned for that visitor. Finally, the combined visitor-vehicle data is 

stored in state via setVisitors(), the loading state is cleared, and the visitor list is 

logged for debugging. 
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Figure 6.27: Add New Visitor Frontend Code 

 

Figure 6.28: Add New Visitor Backend Code 

The function handleAddVisitor validates that all required visitor and vehicle 

fields are filled. If not, it shows an error alert or toast depending on the platform. 

If validation passes, it sets a loading state and sends a POST request to the 
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backend API with the visitor and vehicle details, including adjusted start and 

end dates. On success, it emits a refresh event, shows a success toast, and 

navigates to the visitors screen; if it fails, it shows an error alert. 

 

 

Figure 6.29: Update Visitor Frontend Code 
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Figure 6.30: Update Visitor Backend Code 

The code performs similar validation as above code which add new visitor. Then, 

it sets the loading state, and sends a PUT request to update an existing visitor 

and their vehicle details. It includes the visitor ID and the vehicle ID for 

updating. After receiving the response, it handles success by emitting a refresh 

event, showing a success toast, and navigating back, or shows an error alert if 

the update fails. In both cases, the loading state is cleared, and the form is reset 

after the operation. 

 

Figure 6.31: Delete Visitor Frontend Code 
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Figure 6.32: Delete Visitor Backend Code 

These code snippets show an asynchronous function that deletes a visitor from 

the backend. It sends a DELETE request to the visitor API with the visitorId as 

a query parameter. After receiving the response, it parses the JSON data and 

checks if the deletion was successful. If so, it refreshes the visitor list by calling 

fetchVisitors() and shows a custom toast notification confirming the deletion, 

including the visitor’s name. If the deletion fails, it displays an alert with the 

error message returned from the server or a default failure message. Any 

unexpected errors during the request are caught and displayed using an alert. 

 

6.2.1.7 Reset Password 
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Figure 6.33: Reset Password Frontend Code 

 

Figure 6.34: Reset Password Backend Code 

These code snippet handled password reset functionality using Supabase 

authentication in a React component. 

The useEffect hook runs on component mount to check the current 

session via supabase.auth.getSession(). If there is no active session, it sets a 

message indicating that the reset link is invalid or expired. 

The handleSubmit function updates the user’s password by calling 

supabase.auth.updateUser() with the new password. If an error occurs, it 

displays the error message; otherwise, it shows a success message and, after a 

2-second delay, redirects the user back to the login page using router.push("/"). 

 

6.2.1.8 Vehicle Logs 
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Figure 6.35: Fetch Vehicle Logs Frontend Code 
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Figure 6.36: Fetch Vehicle Logs Backend Code 

These code snippets show an asynchronous function that fetches vehicle access 

records for a specific resident. It first sends a GET request to the vehicle API 

using the user’s ID to retrieve the list of vehicles. If the request fails, it throws 

an error. It then extracts vehicle IDs from the response; if no vehicles are found, 

it logs a warning and clears the records state. Next, it constructs a query string 

with all vehicle IDs and sends another GET request to the records API to fetch 

related access records. The response is parsed, and the records state is updated 

depending on whether the response contains a records field or is directly an array. 

Any unexpected response shapes are logged as warnings. Errors during the fetch 

are caught and logged, and the loading state is cleared in the finally block. 

 

6.2.2 Security Guard 

6.2.2.1 Dashboard 
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Figure 6.37: Fetch Dashboard Information Frontend Code 

 

Figure 6.38: Fetch Dashboard Information Backend Code 
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This code snippet defines an asynchronous function, fetchRecordsForGuard, 

that fetches vehicle access records for security guards. It sends a GET request 

to the records API with isGuard=true to retrieve relevant records. After parsing 

the JSON response, it checks for request success; if unsuccessful, it logs an error. 

The code then calculates key statistics: the total number of entries, total exits, 

the count of suspicious activities, and the number of vehicles currently inside 

(entries minus exits). These values are stored in state variables using 

setTotalEntries, setTotalExits, setSuspiciousActivities, and setVehiclesInside. 

Any errors during the fetch are caught and logged, and the loading state is 

cleared in the finally block. Finally, the function is called if the current user’s 

role is "security_guard". 

 

6.2.2.2 Vehicle Logs 

 

Figure 6.39: Fetch Daily Vehicle Logs Frontend Code 
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This code snippet is an asynchronous function that fetches all vehicle access 

records from the backend. It sends a GET request to the records API and checks 

if the response is successful, throwing an error if it isn’t. After parsing the JSON 

response, it updates the local records state based on the response shape using 

data.records if available, or the data itself if it is an array. Any unexpected 

response structures are logged as warnings. Errors encountered during the fetch 

are caught and logged, and the loading state is cleared in the finally block. 

 

6.2.2.3 Suspicious Event 

 

Figure 6.41: Show Suspicious Event Frontend Code 

Figure 6.40: Fetch Daily Vehicle Logs Backend Code 
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This JSX snippet conditionally renders a vehicle access record based on whether 

it is marked as suspicious. If record.suspicious is true, it highlights the record 

with a red “Suspicious” badge, displays the vehicle name and plate in bold, and 

shows the suspicious activity description in red text. If record.suspicious is false, 

it simply displays the vehicle name and plate in bold along with the owner’s 

name in smaller, gray text. The layout uses flexbox styling to align and space 

elements properly, ensuring that suspicious records are visually distinguished 

from normal ones. 

 

6.2.3 Vehicle Recognition 

Vehicle Recognition is responsible for identifying and verifying vehicles 

entering or exiting the premises. This module involves two separate systems: a 

YOLOv8 Multi-Attribute model for detecting and classifying vehicle attributes 

such as brand, model, colour, and year, and a multimodal VLM-based system 

for analyzing and reasoning about vehicle information. The development of 

each system includes data preprocessing, model training, and testing to optimize 

performance. After training, both models are evaluated using relevant metrics 

to assess their accuracy and reliability, ensuring that the recognition system can 

effectively cross-reference vehicle information with registered data for precise 

identification. 

 Segment Anything (SAM) was first chosen as the main picture 

segmentation module because of its capacity to accurately extract the whole 

vehicle component. However, YOLOv8 was chosen to replace SAM since the 

project requirements include end-to-end vehicle detection and recognition. In 

other words, YOLOv8 provides a single framework for entire vehicle 

identification, training, and real-time performance as compared to SAM which 

is superior at component-level segmentation. It was a more realistic answer for 

the system's goals because of its great precision and efficiency in directly 

detecting vehicles in a variety of situations. This change made it possible for the 

multimodal vehicle detection system to grow efficiently while preserving 

processing speed and resilience. 

 

6.2.3.1 Data preprocessing 
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The dataset use to train both of these model are 1 image folder and 1 csv file 

which includes the image path, vehicle make, model, year, color and plate that 

act as ground truth. It contains a total of 1202 vehicle images which include 

different car manufacturer like Kia, Perodua, Proton, Nissan, Honda, Hyundai, 

Audi, Toyota, BMW and so on. Due to time constraints, each model is just cover 

with around 10-20 images. 

 

Figure 6.42: CSV to JSONL Conversion Code 

This Python script converts a CSV file containing vehicle data into a JSONL 

format suitable for fine-tuning a multimodal VLM which is the GPT-4o model. 

For each row in the CSV, which includes columns such as image_path, make, 

model, year, color, and license_plate, the script creates a training record with 

three messages: a system message defining the assistant as a vehicle recognition 

assistant, a user message containing a text prompt to identify the vehicle along 

with the image URL, and an assistant message providing the ground truth 

vehicle attributes in JSON format. Each record is written as a separate line in 

the output JSONL file, preparing the dataset for training the model to accurately 

identify vehicle attributes from images. 
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Figure 6.43: Script to split data for Fine-tuned GPT-4o model 

This Python script splits a JSONL dataset into training, validation, and test sets 

for model fine-tuning. It reads all lines from the input JSONL file, shuffles them 

randomly to ensure unbiased distribution, and then divides the data into 70% 

training, 15% validation, and 15% test sets. Each subset is written to separate 

files (train.jsonl, validation.jsonl, test.jsonl). 

6.2.3.1.1 Yolov8 

The YOLOv8 preprocessing workflow began with installing the Ultralytics 

library and running a pretrained YOLOv8 model on the dataset to detect 

vehicles using the command “yolo detect predict model=yolov8s.pt 

source=your_dataset/images save_txt=True”.  
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Figure 6.44: Script to split data for YOLO model 

After detection, irrelevant labels were removed, keeping only the vehicle class, 

and the largest bounding boxes in each image were extracted along with their 

corresponding label files. The dataset was then split to align with GPT-4o’s 

dataset partitioning, ensuring consistency between the two systems for training 

and evaluation. 

 

Figure 6.45: Scripts for running testing on each attribute 

Finally, separate YOLOv8 models were trained for each attribute—color, make, 

model, and year. Inference tests were run on each attribute, and EasyOCR was 
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used to extract license plates. The predictions were then compared against 

ground truth labels to compute the evaluation metrics. 

6.2.3.1.2 GPT 4-o 

The GPT-4o system utilized the same dataset with preprocessing tailored for 

VLM input. Text-based vehicle attributes and images were paired to create 

multimodal input suitable for fine-tuning the model. No bounding box 

extraction was needed since GPT-4o reasons over the entire image. 

 

6.2.3.2 Comparison of Yolo-V8 + EasyOCR and GPT-4o Metric Result 

agaist ground truth 

Once done all the testing, the code below is being run to get the metric for both 

model. 

 

Figure 6.46: Compute model metric code 

This Python script is designed to evaluate and compare the performance of 

YOLOv8 + EasyOCR and GPT-4o on vehicle recognition tasks using a ground 

truth dataset. It begins by loading the ground truth CSV file, which contains the 

actual vehicle attributes, along with YOLOv8 predictions for each attribute 

(make, model, year, color, license plate) stored in separate CSV files, and GPT-

4o predictions stored in a JSONL file. YOLOv8 predictions are mapped to their 
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base image names, removing suffixes from cropped images, while GPT-4o 

predictions are indexed directly by the image names. 

The script uses a compute_metrics function to calculate both attribute-

level accuracy and whole-body accuracy, which measures whether all vehicle 

attributes were correctly predicted for an image. It compares each predicted 

attribute against the corresponding ground truth, counting correct predictions 

per attribute and determining if the entire vehicle was correctly recognized. 

Only images present in both the ground truth and prediction datasets are 

evaluated to ensure a fair comparison. 

Finally, the results are written to an output file, metrics_results.txt, 

showing the accuracy for each attribute as well as the overall whole-body 

accuracy for both YOLOv8 + EasyOCR and GPT-4o. This process provides a 

clear comparison of the two models’ capabilities, highlighting the strengths and 

weaknesses of YOLOv8 for attribute detection and GPT-4o for complete 

vehicle recognition. 

 

Figure 6.47: Result of metric for both model 

The evaluation results show a clear performance difference between YOLOv8 

+ EasyOCR and GPT-4o in vehicle recognition on 181 test images. 

For YOLOv8, the attribute-level accuracies are moderate to low. It 

correctly predicts color in 70.5% of cases, make in 55.5%, model in 38.7%, and 

year in 29.5%. However, it completely fails at predicting license plates (0.0%) 
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and consequently achieves a whole-body accuracy of 0.0%, meaning it never 

predicts all attributes correctly for any single image. This suggests that YOLOv8 

struggles with fine-grained attributes and license plate recognition, likely 

because of the limited training on partial or small vehicle details and reliance on 

EasyOCR for plate extraction. 

In contrast, GPT-4o achieves very high attribute-level accuracies with 

make (99.4%), model (98.3%), year (97.2%), color (98.9%), and license plate 

(85.1%). The whole-body accuracy is 82.3%, indicating that in most images, 

GPT-4o correctly predicts all vehicle attributes simultaneously. This 

demonstrates that GPT-4o is far more effective at holistic vehicle recognition, 

particularly in handling multiple attributes at once and extracting license plate 

information accurately. 

Overall, the metrics highlight that while YOLOv8 is useful for coarse 

attribute detection, GPT-4o provides significantly more accurate and complete 

vehicle recognition, making it more reliable for systems requiring precise multi-

attribute identification. 

 

6.3 Summary 

The system integrates frontend-backend functionalities with AI-based vehicle 

recognition. Modules for residents and security guards handle vehicles, visitors, 

notifications, and activity records through Supabase, ensuring validation, real-

time updates, and role-specific views. 

On the AI side, two recognition systems were developed. YOLOv8 + 

EasyOCR processed vehicle images with bounding box analysis and attribute-

specific models, while GPT-4o used a fine-tuned JSONL dataset for holistic 

attribute recognition. Evaluation showed GPT-4o outperforms YOLOv8 in both 

attribute-level and whole-vehicle accuracy, highlighting the VLM-based 

approach’s effectiveness. 

Overall, the system combines robust management features with 

accurate multimodal vehicle recognition for real-world deployment. 
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CHAPTER 7  

 

7 SYSTEM TESTING 

 

7.1 Introduction 

The requirement traceability matrices, use case tables, and functional tables are 

the main components of this chapter.  It also assesses the test cases and their 

outcomes, as well as the unit and integration testing.  In order to make sure the 

system satisfies both functional and user experience objectives, the chapter 

concludes by discussing the evaluation of User Acceptance Testing (UAT) and 

System Usability Scale (SUS). 

 

7.2 Traceability between Use Cases, Functional Requirements and 

Test Cases 

Throughout the project lifecycle, a Requirement Traceability Matrix (RTM) is 

a tool that helps make sure that all project requirements are recorded, monitored, 

and met. 

Table 7.１: Requirement Traceability Matrix 

Use 

Case ID 

Use Case 

Name 

Functional 

Requirement 

ID(s) 

Test Case 

ID(s) 

Test Case 

Description 

USC001 Retrieve 

Vehicle Logs 

SRS013 

SRS014 

SRS015 

SRS016 

TC008 

TC009 

Verify resident 

can view, search, 

filter, and sort 

vehicle logs 

USC002 Manage 

Visitor Pass 

SRS009 

SRS010 

SRS011 

TC010 

TC011 

TC012 

Verify resident 

can create, update, 

and delete visitor 

passes 

USC003 Reset 

Password 

SRS012 

SRS018 

TC003 Verify resident 

and security guard 

can reset their 

password 
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USC004 Login SRS002 

SRS017 

TC002 Verify resident 

and security guard 

can log in with 

correct credentials 

USC005 Register 

Account 

SRS001 TC001 Verify resident 

can register a new 

account with all 

required info 

USC006 Receive 

Notification 

SRS007 

SRS008 

TC013 Verify residents 

receive 

notifications for 

vehicle 

entries/exits and 

suspicious 

activities 

USC007 Manage 

Vehicle 

SRS004 

SRS005 

SRS006 

TC005 

TC006 

TC007 

Verify residents 

can register, 

update, and delete 

vehicle 

information 

USC008 Manage 

Profile 

SRS003 

SRS025 

TC004 Verify residents 

and guards can 

update their 

profile 

information 

USC009 Retrieve 

Vehicle 

History Log 

SRS020 

SRS021 

SRS022 

SRS023 

TC008 

TC009 

Verify guards can 

search, filter, sort, 

and detect 

suspicious 

vehicles in history 

logs 
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USC010 Retrieve 

Real-Time 

Data 

SRS019 

SRS024 

TC015 Verify guards 

receive real-time 

data and alerts for 

flagged vehicles 

 

7.2.1 Use Case Table 

A Use Case Table lists each use case together with its unique identity, major 

actor or actors, preconditions, main flow, alternate flows, and expected results 

to give an organized picture of the system's functional requirements.  It makes 

it easier to track how users interact with the system, makes it clear what each 

actor is responsible for, and guarantees that all functional requirements are 

recorded so they can be referred to during development, testing, and validation. 

Table 7.２: Use Case Table 

ID Use Case Name Description 

USC001 Retrieve Vehicle 

Logs 

This use case describes the process of 

retrieving a list of vehicle logs owned by 

resident by sorting the data based on 

vehicle plate, vehicle make and model, 

event type, activity status or date by the 

resident. 

USC002 Manage Visitor 

Pass 

This use case describes the process of 

resident retrieving a list of visitor pass. 

USC003 Reset Password This use case describes the process of 

reset the account password. 

USC004 Login This use case describes the process of 

resident and security guard login the web 

vehicle recognition access control 

system. 

USC005 Register Account This use case describes the process of 

resident register a new account in vehicle 

recognition access control system. 
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USC006 Receive 

Notification 

This use case describes the process of 

resident receiving notification in vehicle 

recognition access control system. 

USC007 Manage Vehicle 
This use case describes the process of 

resident manage vehicles in vehicle 

recognition access control system. 

USC008 Manage Profile This use case describes the process of 

resident and security guard manage their 

profiles in vehicle recognition access 

control system. 

USC009 Retrieve Vehicle 

History Log 

This use case describes the process of 

security guard search vehicle history log 

in vehicle recognition access control 

system. 

USC010 Retrieve Real-

Time Data 

This use case describes the process of 

security guard retrieve real-time data and 

receive alerts in vehicle recognition 

access control system. 

 

7.2.2 Functional Requirement Table 

Functional Requirement  table lists the precise features that the system needs to 

have.  A unique ID, a description of the need, its priority or importance level, 

and any pertinent dependencies or constraints are usually included with each 

entry.  This table guarantees that every system function is precisely specified, 

traceable, and able to be methodically checked during testing to make sure the 

system fulfills its intended function. 

Table 7.３: Functional Requirement Table 

Role ID Module Functional Requirements 

Residents SRS001 Registration 

The system shall allow residents 

to register an account with their 

personal information such as 
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house number, name, email and 

password. 

SRS002 Login 
The system shall allow residents 

to log in by email and password. 

SRS003 
Manage 

Profile 

The system shall allow residents 

to update their profile 

information such as name, phone 

number, address and profile 

image. 

SRS004 

Manage 

Vehicle 

The system shall allow residents 

to register their vehicle with 

details like plate number, colour, 

model, and manufacturer. 

SRS005 

The system shall allow residents 

to update their registered vehicle 

information such as plate 

number, colour, and model. 

SRS006 
The system shall allow residents 

to delete their registered vehicle. 

SRS007 Notifications 

The system shall send 

notification to residents when 

their vehicle enters/exits the 

premises. 

SRS008 
Suspicious 

Activity Alerts 

The system shall alert residents if 

a suspicious event such as clone 

vehicle plate with different 

colour or model is detected. 

SRS09 
Manage 

Visitor Pass 

The system shall allow residents 

to generate a visitor pass with 

different time-limited for visitor 

registration. 

SRS010 
The system shall allow residents 

to update a visitor pass for editing 
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incorrect information or activate 

again the visitor pass. 

SRS011 
The system shall allow residents 

to delete a registered visitor pass. 

SRS012 
Reset 

Password 

The system shall allow residents 

to reset their account password. 

SRS013 

Vehicle Logs 

The system shall allow residents 

to view a history of their 

registered vehicle’s entries/exits. 

SRS014 

The system shall allow residents 

to search for history of their 

registered vehicle’s entries/exits 

by record ID. 

SRS015 

The system shall allow residents 

to filter the log records by event 

type and suspiciousness. 

SRS016 

The system shall allow residents 

to sort their registered vehicle’s 

log records by alphabetical 

characters in ascending and 

decreasing order. 

 

Security 

Guards 

SRS017 Login 

The system shall allow security 

guard to log in by guard ID and 

password. 

SRS018 
Reset 

Password 

The system shall allow security 

guard to reset their account 

password. 

SRS019 Dashboard 

The system shall display real-

time data analysis from the log 

records of vehicle entries or exits. 

SRS020 Vehicle Logs 
The system shall allow security 

guards to search for history of 
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vehicle’s entries/exits by record 

ID, vehicle colour, and vehicle 

model. 

SRS021 

The system shall allow security 

guards to filter the log records by 

record status. 

SRS022 

The system shall allow security 

guards to sort the log records by 

alphabetical characters in 

ascending and decreasing order. 

SRS023 
Suspicious 

Events 

The system shall highlight 

suspicious vehicles like 

duplicated license plate for 

manual checking. 

SRS024 
Real-Time 

Alerts 

The system shall notify guards of 

flagged vehicles via audio/visual 

alerts on the dashboard. 

SRS025 
Manage 

Profile 

The system shall allow security 

guards to update their profile 

information such as name and 

profile image. 

 

7.2.3 Test Cases Table of Unit Testing 

The unit tests carried out for every single system module are shown in this part.  

Registration, login, password reset, profile management, vehicle management, 

visitor pass handling, alerts, and vehicle logs are just a few of the features that 

unit testing aims to confirm operate properly when used separately.  The module 

or feature being tested, the actions or inputs made, the anticipated output or 

result, and whether the test passed or failed are all specified in each test case.  

Before connecting the system's core functionalities with additional modules, 

these tests make sure they function as intended. 



232 

 

 

Table 7.４: Test Case Table of Unit Testing 

Test 

Case 

ID 

Module / 

Feature 

Description Input / Action Expected 

Output / Result 

Pass/Fail 

TC001 Registration Verify 

resident can 

register an 

account 

Enter name, 

email and 

password 

Account created 

successfully, 

confirmation 

message shown 

Pass 

TC002 Login Verify login 

functionality 

for resident 

and security 

guard 

Enter email 

and password 

User 

successfully 

logged in 

Pass 

TC003 Reset 

Password 

Verify 

password 

reset for 

resident and 

guard 

Enter new 

password 

Password 

updated, 

confirmation 

message shown 

Pass 

TC004 Manage 

Profile 

Verify 

profile 

update 

functionality 

Update name, 

phone, 

address, 

profile image 

Updated profile 

information is 

saved 

Pass 

TC005 Manage 

Vehicle 

Verify 

vehicle 

registration 

Enter vehicle 

plate, color, 

model, 

manufacturer 

and year 

Vehicle added 

to the system 

Pass 

TC006 Manage 

Vehicle 

Verify 

vehicle 

update 

Update vehicle 

plate, color, 

model, 

manufacturer 

and year 

Updated vehicle 

details are saved 

Pass 
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TC007 Manage 

Vehicle 

Verify 

vehicle 

deletion 

Select vehicle 

to delete 

Vehicle 

removed from 

the system 

Pass 

TC008 Vehicle 

Logs 

Verify 

viewing 

vehicle 

history log 

Request 

vehicle logs 

Logs displayed 

correctly, 

sortable and 

filterable 

Pass 

TC009 Vehicle 

Logs 

Verify 

filtering and 

sorting logs 

Filter by event 

type, 

suspiciousness 

Logs filtered 

and sorted 

correctly 

Pass 

TC010 Manage 

Visitor Pass 

Verify 

visitor pass 

creation 

Enter visitor 

name, phone 

number, 

vehicle’s 

attibutes and 

time slot 

Visitor pass 

generated 

successfully 

Pass 

TC011 Manage 

Visitor Pass 

Verify 

visitor pass 

update 

Update visitor 

info 

Visitor pass 

updated 

correctly 

Pass 

TC012 Manage 

Visitor Pass 

Verify 

visitor pass 

deletion 

Select visitor 

pass to delete 

Visitor pass 

removed 

Pass 

TC013 Notifications Verify 

receiving 

notifications 

Vehicle 

entry/exit 

occurs 

Notification 

received in app 

Pass 

TC014 Suspicious 

Activity 

Alerts 

Verify 

system 

highlights 

suspicious 

vehicles 

Duplicate 

plate or 

unusual event 

Alerts displayed 

for 

residents/guards 

Pass 

TC015 Real-Time 

Data 

Dashboard 

Verify 

dashboard 

updates 

Vehicle 

enters/exits 

Dashboard 

shows correct 

counts 

Pass 
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vehicle 

entries/exits 

 

 

7.2.4 Test Cases Table of Integration Testing 

The integration testing that was done to confirm how the various system 

modules interacted with one another is presented in this section. 

Table 7.５: Test Cases Table of Integration Testing 

Test 

Case ID 

Modules / 

Features 

Integrated 

Description Input / 

Action 

Expected 

Output / 

Result 

Pass/Fail 

ITC001 Registration 

+ Login 

Verify that a 

newly 

registered 

resident can 

log in 

successfully 

Register 

a new 

account, 

then 

attempt 

login 

Resident 

account 

created and 

login 

successful 

Pass 

ITC002 Manage 

Profile + 

Login 

Verify 

profile 

updates 

persist 

across 

sessions 

Update 

profile 

info, log 

out, log 

in again 

Updated 

profile 

information 

retained 

Pass 

ITC003 Manage 

Visitor Pass 

+ 

Notifications 

Verify that 

creating a 

visitor pass 

triggers 

notifications 

Create a 

visitor 

pass for a 

vehicle 

entry 

Notification 

received in 

app 

Pass 

ITC004 Suspicious 

Activity 

Alerts + 

Vehicle 

Logs 

Verify 

suspicious 

vehicles are 

highlighted 

Duplicate 

plate or 

unusual 

vehicle 

entry 

Alerts 

triggered 

and logs 

marked as 

suspicious 

Pass 
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in logs and 

alerts 

 

7.3 User Acceptance Test (UAT) 

To make sure the system satisfies the requirements and is prepared for 

deployment, the User Acceptance Test (UAT) assesses it from the viewpoint of 

the end user.  Usability, functionality, and general satisfaction feedback are 

gathered.  Verifying that the system satisfies business requirements, performs 

as anticipated in real-world situations, and is suitable for operational usage is 

the aim of UAT. 

 

7.3.1.1 Test Results of User Acceptance Test 

The User Acceptance Test (UAT) results provide an overview of the results of 

every test case that end users have run to confirm that the system is prepared for 

deployment.  The outcomes highlight any flaws or problems encountered and 

show whether each functionality operated as intended.  With the majority of test 

cases passing and only minor changes needed for a few functionalities, the UAT 

overall verified that the system satisfies user requirements, operates dependably, 

and has an intuitive interface. 

 

7.3.1.2 Resident Side 

Table 7.６: UAT Result on Resident Side 

No. Question Average Rating of 

Likert Scale (1-5) 

Q1. Can you successfully register an account 

using your house number, name, email, and 

password? 

4.8 

Q2. Are you able to log in using your registered 

email and password? 

5 

Q3. Can you reset your password successfully? 4.8 

Q4. Can you update your profile information 

such as name, phone number, and profile 

image? 

4.6 
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Q5. Are you able to register your vehicle with its 

plate number, color, year, model, and 

manufacturer? 

4.4 

Q6. Can you update your registered vehicle’s 

details like plate number, color, and model? 

4.6 

Q7. Can you delete your vehicle from the 

system? 

4.4 

Q8. Do you receive a notification when your 

vehicle enters or exits the premises? 

4.6 

Q9. Are you alerted when suspicious activity 

(e.g., duplicated plate with different 

model/color) is detected? 

4.4 

Q10. Are you able to generate a visitor pass with a 

time limit? 

4.2 

Q11. Can you view your own vehicle's entry/exit 

log history? 

4.6 

Q12. Are you able to search vehicle logs by record 

ID? 

4.6 

Q13. Can you filter log records by event status? 4.6 

Q14. Can you sort vehicle logs? 4.4 

 

Based on participant ratings on a Likert scale, the User Acceptance Test (UAT) 

results show that the system is very efficient and easy to use. With an average 

rating of 4.8 for Q1, users were able to properly create accounts and log in with 

their registered credentials, earning a flawless score of 5. With average scores 

of 4.8 and 4.6, respectively, the password reset and profile update capabilities 

were also well evaluated, indicating that important account management tools 

are dependable and easy to use. 

 Feedback on vehicle management features was also quite positive. 

Updates and deletions of vehicle information were marginally higher at 4.6 and 

4.4, indicating that the system facilitates easy car record maintenance. Users 

were able to register their automobiles with comprehensive features such license 

plate number, color, year, model, and manufacturer, scoring an average of 4.4. 
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Both alerts for suspicious activity and notifications for vehicle entry and exit 

performed well, scoring 4.6 and 4.4, respectively, showing that the system can 

deliver timely updates and uphold security awareness. 

 With an average rating of 4.2 for creating passes with time limits, 

visitor pass management had a moderately high score, indicating that while it is 

functional, there may be some need for improvement in terms of user 

convenience or clarity. Users successfully viewed, searched, filtered, and sorted 

their car logs, demonstrating the effectiveness and usability of data retrieval and 

organization. Log management functionalities worked well, with users average 

between 4.4 and 4.6. All things considered, the UAT shows that the system 

satisfies user expectations, is generally easy to use, and offers essential features 

for residents. For the best user experience, only minor adjustments are advised. 

 

 

7.3.1.3 Security Guard Side 

Table 7.７: UAT Result on Security Guard Site 

No. Question Average Rating of 

Likert Scale (1-5) 

Q1. Can you log in with your guard ID and 

password? 

5 

Q2. Can you reset your password successfully? 4.6 

Q3. Can you update your profile information 

such as name, phone number, and password? 

4.6 

Q4. Does the dashboard display data of vehicle 

entries/exits? 

4.6 

Q5. Can you search entry/exit records  by various 

fields (e.g., record ID, vehicle model, vehicle 

color)  ? 

4.6 

Q6. Can you filter log records by various fields 

(e.g., record status)? 

4.2 

Q7. Can you sort records as required? 4.4 
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Q8. Does the system highlight suspicious 

vehicles like duplicated plates? 

4.4 

Q9. Do you receive audio or visual alerts for 

flagged vehicles? 

4.4 

 

The security guard User Acceptance Test (UAT) results demonstrate that the 

system operates efficiently and satisfies operational requirements. A flawless 

score of five was obtained for logging in using a guard ID and password, 

indicating that authentication is simple and trustworthy. Both the profile update 

and password reset tools received ratings of 4.6, demonstrating how user-

friendly and effective account management features are. 

 The dashboard's ability to show car entry and leave statistics received 

a score of 4.6 as well, demonstrating how easy and transparent real-time 

monitoring is. The user experience could be improved with small usability 

enhancements. Record management capabilities, such as searching by fields like 

record ID, car model, or color, obtained similarly good scores (4.6), whereas 

filtering records received a slightly lower score (4.2). Data organization is 

typically effective, as seen by the 4.4 score for sorting records as needed. 

 Although there may be some space for improvement in alert visibility 

or clarity, security features like highlighting suspicious vehicles and sending 

audio/visual alerts for flagged vehicles received ratings of 4.4, demonstrating 

that the system effectively supports situational awareness and quick response. 

All things considered, the UAT verifies that the system is mainly user-friendly, 

dependable, and useful for security guard operations. 

 

7.4 System Usability Test 

A standardized instrument for assessing the general usability of the vehicle 

recognition access control system is the System Usability Scale (SUS).  Ten 

Likert-scale questions are used to gather user input on usability, effectiveness, 

learnability, and satisfaction.  Both the resident and security guard interfaces' 

strengths and potential areas for development can be determined with the use of 

the SUS results, which offer a quantitative assessment of user experience.  By 
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ensuring that the system is both functional and easy to use, this evaluation 

promotes successful adoption and day-to-day operations. 

 

7.4.1 System Usability Scale Template 

The template of SUS 10 questions used in this project was shown below: 

1. I think I would like to use this system frequently. 

2. I found the system unnecessarily complex. 

3. I thought the system was easy to use. 

4. I think I would need the support of a technical person to use this system. 

5. I found the various functions in this system were well integrated. 

6. I thought there was too much inconsistency in this system. 

7. I would imagine that most people would learn to use this system very 

quickly. 

8. I found the system very cumbersome to use. 

9. I felt very confident using the system. 

10. I needed to learn a lot of things before I could get going with this system. 

 

7.4.2 System Usability Testing Result 

The System Usability Scale (SUS) is a popular, efficient, and trustworthy 

instrument for evaluating how user-friendly a system, product, or service is.  It 

is a 10-question survey that alternates between positive and negative statements 

on a 5-point Likert scale from "Strongly Disagree" to "Strongly Agree."  The 

answers are combined into a single score between 0 and 100, with 68 serving as 

the standard for average usability. The higher the SUS scores, the better the 

usability. 

Table 7.８: SUS Result Table 

Tester Score for each item Total 

1 2 3 4 5 6 7 8 9 10 

Resident Side 

Tester 1 5 1 5 1 4 1 5 1 5 1 97.5 

Tester 2 4 3 3 4 4 2 4 2 4 3 62.5 

Tester 3 4 1 4 1 5 1 4 1 5 2 90.0 

Tester 4 4 1 5 2 5 1 5 1 4 2 90.0 
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Tester 5 5 2 4 2 4 2 3 2 4 2 75.0 

Security Guard Side 

Tester 1 5 1 5 1 4 1 4 1 5 1 95.0 

Tester 2 5 1 5 2 4 2 5 1 4 2 87.5 

Tester 3 4 3 4 3 4 3 5 4 5 5 60.0 

Tester 4 5 1 5 1 5 1 5 1 5 2 97.5 

Tester 5 4 2 4 2 4 2 4 2 4 2 75.0 

Average SUS Score 83.0 

 

Five testers from each group participated in the SUS evaluation, which was 

carried out on the resident and security guard sides of the vehicle recognition 

access control system. Although one tester reported a lower score of 62.5, 

indicating some small usability concerns or individual difficulty with some 

system elements, the resident side's SUS scores varied from 62.5 to 97.5, 

indicating a generally good level of usability. Most resident testers had scores 

above 75, indicating that the system is generally easy to use and straightforward 

for completing essential functions including notifications, vehicle management, 

and registration. 

 The SUS scores for security guards varied from 60.0 to 97.5, indicating 

that the dashboard, record search, and alert features were easy to use for the 

majority of users. The lowest score of 60.0 might draw attention to certain 

locations where vehicle log filtering or sorting needs to be improved. In spite of 

this, the system received great ratings from most security guard testers, 

demonstrating its excellent usability for tracking suspicious activity and real-

time vehicle entries and exits. 

 All testers' average SUS score was 83.0, which is regarded as a good 

usability rating. This implies that both residents and security personnel find the 

system to be well-designed, effective, and satisfactory. Although the system 

exhibits excellent general user acceptance and operational efficacy, minor 

improvements should be explored to improve learnability and consistency, 

especially in more difficult aspects like record filtering or guest pass 

administration. 
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7.5 Summary 

This chapter provided a thorough analysis of the vehicle recognition access 

control system, including testing, functional requirements, requirement 

traceability, and user input.  All system features were correctly validated thanks 

to the requirement traceability matrix, which connected system use cases with 

functional requirements and matching test cases.  In order to verify that essential 

features including registration, login, vehicle management, notifications, and 

suspicious behavior warnings worked as intended, unit and integration testing 

tables recorded the validation of individual modules and their interactions. 

 Strong user satisfaction was demonstrated by the User Acceptance Test 

(UAT) findings which showed that residents and security guards were able to 

successfully complete essential tasks such account administration, car 

registration, log retrieval, and real-time monitoring. All of these tasks received 

high Likert scale ratings. With an overall average score of 83.0, the System 

Usability Scale (SUS) study also showed good usability, suggesting that the 

system was easy to use and efficient for the security guards' and residents' 

operating requirements. When taken as a whole, these assessments verify that 

the system satisfies its functional specifications, is easy to use, and is prepared 

for implementation in practical situations. 
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CHAPTER 8 

 

8 CONCLUSIONS AND RECOMMENDATIONS 

 

8.1 Conclusion 

The planning, design, development, and testing stages of the Vehicle 

Recognition Access Control System project took six months to complete.  By 

combining GPT-4o for adaptive visual-language-based recognition and 

YOLOv8 for multi-attribute recognition, the project effectively overcame the 

drawbacks of traditional vehicle recognition systems.  In addition to receiving 

real-time notifications and alerts for suspicious activity, the system enables 

residents and security personnel to effectively manage accounts, vehicles, and 

visitor cards.  Data preprocessing, model training, inference, and performance 

evaluation were all part of the iterative cycles of coding, training, and testing 

that were used to construct YOLOv8 and GPT-4o.  High functionality and 

usability were demonstrated by the test results, with GPT-4o exhibiting higher 

recognition accuracy across all aspects and YOLOv8 performing well for some 

attributes but having trouble with whole-body and license plate identification. 

 

8.2 Objective Fulfillment 

A thorough literature review and analysis of current access control solutions 

allowed for the accomplishment of the first goal, which was to look into the 

main drawbacks of traditional vehicle recognition systems. The study 

emphasized issues such poor handling of edge cases, limited attribute 

identification, and imprecise recognition in complex scenarios. 

 Using EasyOCR for license plate extraction and models for car make, 

model, color, and year, the second goal—creating a multi-attribute vehicle 

recognition system with YOLOv8—was achieved. For residents and security 

personnel, YOLOv8 successfully identified and categorized vehicle attributes. 

 The third goal was accomplished by fine-tuning a visual language 

model (GPT-4o) using annotated vehicle data in JSONL format in order to 

integrate it for adaptive recognition and edge case management. GPT-4o proved 

its strength in adaptive recognition settings by exhibiting high accuracy across 
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all aspects, including whole-vehicle and license plate identification. The system 

is easy to use, efficient, and well-liked by both residents and security guards, 

according to user acceptance testing and system usability review. 

 

8.3 Limitations 

The Vehicle Recognition Access Control System was developed successfully, 

although during the project, a number of drawbacks were found.  First, there is 

currently a limit of one car registration per tourist which may limit flexibility in 

situations when a visitor has more than one vehicle.  Secondly, because there 

isn't a specific admin interface for managing guard accounts, the administrator 

must install security guards manually, which could limit scalability and 

administrative simplicity.  Lastly, the requirement that residents and security 

personnel read all system messages prior to signing out may have an impact on 

usability and efficiency, particularly in busy settings where prompt access and 

message handling are crucial. 

 

8.4 Recommendations for future work 

Potential areas for further investigation, development or application of the 

current project or study are highlighted in this part on recommendations for 

future work.  It points out shortcomings that might be fixed, provides 

improvements to methods and makes recommendations for new features, lines 

of inquiry, or technological advancements that could be used in the future.  By 

guaranteeing continuity and expansion beyond the current work's purview, this 

section aids in directing future endeavors. 

Table 8.１: Recommendations for future work 

No Recommendation Description 

1 Improved YOLOv8 

Accuracy 

Enhance YOLOv8 performance by increasing 

dataset size, including partial or small vehicles, 

and refining bounding box annotations to 

improve recognition accuracy for challenging 

scenarios. 

2 Enhanced GPT-4o 

Fine-tuning 

Expand the GPT-4o dataset with more diverse 

vehicle examples and attributes to improve 
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adaptive recognition for edge cases and rare 

vehicle types. 

3 Expanded User 

Testing 

Conduct larger-scale usability and acceptance 

testing with more diverse residents and security 

personnel to validate system reliability and 

uncover additional improvements. 

4 Real-Time System 

Optimization 

Explore edge computing or server optimization 

to reduce inference latency for real-time 

recognition, alerts, and notifications, enhancing 

overall responsiveness. 

5 Mobile-Based 

Application 

Develop a mobile version of the system to allow 

residents and security guards to access features 

conveniently on smartphones and tablets. This 

can improve usability, real-time monitoring, and 

overall system accessibility. 
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