

DEEP LEARNING FOR MULTI-ATTRIBUTE

VEHICLE RECOGNITION IN VEHICLE

ACCESS CONTROL SYSTEM

WONG YUAN ZHEN

UNIVERSITI TUNKU ABDUL RAHMAN

DEEP LEARNING FOR MULTI-ATTRIBUTE VEHICLE

RECOGNITION IN VEHICLE ACCESS CONTROL SYSTEM

WONG YUAN ZHEN

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Software

Engineering (Honours)

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2025

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that

it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Name WONG YUAN ZHEN

ID No. : 2200191

Date : 19/09/2025

COPYRIGHT STATEMENT

© 2025, Wong Yuan Zhen. All right reserved.

This final year project report is submitted in partial fulfilment of the

requirements for the degree of Software Engineering at Universiti Tunku Abdul

Rahman (UTAR). This final year project report represents the work of the author,

except where due acknowledgement has been made in the text. No part of this

final year project report may be reproduced, stored, or transmitted in any form

or by any means, whether electronic, mechanical, photocopying, recording, or

otherwise, without the prior written permission of the author or UTAR, in

accordance with UTAR’s Intellectual Property Policy.

ACKNOWLEDGEMENTS

I would like to express my gratitude to Dr. Lee Ming Jie as my research

supervisor for his invaluable advice, guidance and enormous patience

throughout the development of the research.

I would also like to extend my appreciation to the lecturers and staff members

of the Lee Kong Chian Faculty of Engineering & Science, Department of

Computing in Universiti Tunku Abdul Rahman (UTAR), for their assistance

and for providing a conducive learning and research environment during my

study period.

Lastly, I am deeply grateful and thank to my family and friends for their

unwavering support and encouragement which gave me the strength and

motivation to complete this whole project successfully.

ABSTRACT

Vehicle recognition systems are becoming increasingly essential for intelligent

transportation, traffic surveillance, and security applications. For the purpose to

identify vehicle attributes in real-time, this research provides a hybrid vehicle

recognition system that is implemented as a web and mobile application. It

combines deep learning and computer vision techniques. To extract license

plates, colors, makes, models, and production years of vehicles, the system

mainly uses EasyOCR and YOLOv8 with multi-attribute detection. A refined

GPT-4o visual-language model (VLM) acts as a fallback, improving recognition

reliability in edge instances when YOLOv8 and EasyOCR would not yield

reliable results. The approach involves capturing pictures of vehicles from

cameras or user uploads, processing them using the pipeline for detection and

OCR, then using the GPT-4o VLM to verify the outcomes. The system's

modular design provides seamless connection with web and mobile platforms,

enabling real-time performance and scalability. It is expected to work reliably

across a variety of lighting situations, angles, and occlusions. The study shows

a potential approach for enhancing the recognition of vehicle attributes. Future

research will involve adding more unusual vehicle kinds to the dataset, refining

the model inference for edge devices, and integrating predictive analytics for

anomaly detection and vehicle tracking.

Keywords: vehicle recognition; YOLOv8; EasyOCR; GPT-4o; deep learning;

computer vision; license plate recognition

Subject Area: T58.5-58.64 Information technology

iv

TABLE OF CONTENTS

DECLARATION i

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS iv

LIST OF TABLES x

LIST OF FIGURES xii

LIST OF SYMBOLS / ABBREVIATIONS xx

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 2

1.3 Problem Statement 4

1.3.1 Vulnerabilities in Traditional Access

Control Systems 4

1.3.2 Susceptibility of ALPR Systems to Forged

License Plates 4

1.3.3 Inability to Adapt to Environmental and

Situational Challenges 5

1.4 Project Objectives 5

1.5 Project Scope 6

1.5.1 Tools 7

1.5.2 Target User 8

1.6 Out of Scope 8

1.7 Proposed Approach 8

1.7.1 Research Approach 8

1.7.2 Development Approach 9

1.8 Proposed Solution 11

1.8.1 Solution for problem statements 11

v

1.8.2 Proposed System Architecture 13

2 LITERATURE REVIEW 15

2.1 Introduction 15

2.2 Existing Large Language Model (LLM) Review 16

2.2.1 Instruction Tuning with GPT-4 16

2.2.2 LLaMA-Adapter V2: Parameter-Efficient

Visual Instruction Model 18

2.2.3 CLIPath: Fine-tune CLIP with Visual

Feature Fusion for Pathology Image

Analysis Towards Minimizing Data

Collection Efforts 20

2.2.4 LLM Model to be included in projects 22

2.3 Existing Segmentation Techniques 26

2.3.1 Segment Anything 26

2.3.2 Engineering Vehicle Object Segmentation

Algorithm Based on Improved YOLOv8x-

seg 28

2.3.3 Fast-SCNN: Fast Semantic Segmentation

Network 31

2.3.4 Comparative Analysis on Segmentation

Techniques 33

2.4 Existing Similar Application 36

2.4.1 i-Neighbour 36

2.4.2 MyTaman 36

2.4.3 JaGaApp 37

2.4.4 TimeTec VMS 37

2.4.5 Visitorz 38

2.4.6 Features Analysis on Similar Applications 38

2.5 Existing Vehicle Recognition System Review 40

2.5.1 Efficient license plate recognition in

unconstrained scenarios 40

2.5.2 ALPR- An Intelligent Approach Towards

Detection and Recognition of License

Plates in Uncontrolled Environments 42

vi

2.5.3 Vehicle color recognition based on smooth

modulation neural network with multi-scale

feature fusion 45

2.5.4 DeepCar 5.0: Vehicle Make and Model

Recognition Under Challenging Conditions

 47

2.5.5 Algorithms and Techniques used in current

vehicle recognition systems 49

2.6 Software Development Methodologies 52

2.6.1 A Comprehensive Research Analysis of

Software Development Life Cycle (SDLC)

Agile & Waterfall Model Advantages,

Disadvantages, and Application Suitability

in Software Quality Engineering 52

2.6.2 Agile Methodology Vs. Traditional

Waterfall SDLC : A case study on Quality

Assurance process in Software Industry 54

2.6.3 Traditional SDLC Vs Scrum Methodology

– A Comparative Study 56

2.6.4 Waterfall Vs V-Model Vs Agile: A

Comparative Study on SDLC 58

2.6.5 Comparative Analysis on different

Software Development Lifecycle

methodologies 61

2.6.6 Web and Mobile Application Framework 64

2.7 Chapter Summary 73

3 METHODOLOGY AND WORK PLAN 75

3.1 Introduction 75

3.2 Project Methodology and System Development

Methodology 76

3.2.1 Initiation Phase (Project Life Cycle) and

Planning Phase (SDLC) 77

3.2.2 Primary Research & Requirements

Gathering (Planning Phase - Continued) 78

vii

3.2.3 Design Phase (SDLC) 78

3.2.4 Development Phase (SDLC) 78

3.2.5 Testing Phase (PLC & SDLC) 79

3.2.6 Deployment & Finalization (Closure Phase

- PLC) 79

3.3 Project Schedule 79

3.3.1 Work Breakdown Structure 80

3.3.2 Gantt Chart 82

3.4 Development Tools 83

3.4.1 Visual Studio Code IDE 83

3.4.2 Enterprise Architecture 84

3.4.3 React Native 84

3.4.4 Tailwind CSS 84

3.4.5 Next.js 85

3.4.6 PostgreSQL 85

3.4.7 Supabase 85

3.4.8 Vercel 86

3.4.9 GPT-4o Model 86

3.4.10 SegementAnything 87

3.5 Summary 87

4 PRELIMINARY RESULTS 89

4.1 Introduction 89

4.2 Fact Finding 89

4.3 User Requirements Specifications (URS) 97

4.3.1 Functional Requirements 97

4.3.2 Non-Functional Requirements 100

4.4 System Use Case 101

4.4.1 Use Case Diagram 102

4.4.2 Use Case Description 103

4.5 Proposed System Flow & Prototype 117

4.5.1 User Interface Flow Diagram 118

4.6 Prototype 118

4.6.1 Login or register 119

4.6.2 Resident’s Page 121

viii

4.6.3 Security Guard’s Page 135

4.7 Preliminary Code run on SegmentAnything and

Yolov8-seg 143

4.7.1 Overview 143

4.7.2 Detailed Steps 144

4.7.3 Experimental Setup and Result 145

4.8 Chapter Summary 148

5 SYSTEM DESIGN 149

5.1 Introduction 149

5.2 System Architecture Design 149

5.3 System Design Models 150

5.3.1 Entity Relationship Diagram (ERD) 151

5.3.2 Data Flow Diagram (DFD) 152

5.4 User Interface Design 153

5.4.1 Resident Side 153

5.4.2 Security Guard Side 173

6 SYSTEM DESIGN 185

6.1 Introduction 185

6.2 System Module 185

6.2.1 Resident 186

6.2.2 Security Guard 214

6.2.3 Vehicle Recognition 218

6.3 Summary 224

7 SYSTEM TESTING 225

7.1 Introduction 225

7.2 Traceability between Use Cases, Functional

Requirements and Test Cases 225

7.2.1 Use Case Table 227

7.2.2 Functional Requirement Table 228

7.2.3 Test Cases Table of Unit Testing 231

7.2.4 Test Cases Table of Integration Testing 234

7.3 User Acceptance Test (UAT) 235

7.4 System Usability Test 238

7.4.1 System Usability Scale Template 239

ix

7.4.2 System Usability Testing Result 239

7.5 Summary 241

8 CONCLUSIONS AND RECOMMENDATIONS 242

8.1 Conclusion 242

8.2 Objective Fulfillment 242

8.3 Limitations 243

8.4 Recommendations for future work 243

REFERENCES 245

x

LIST OF TABLES

Table 1.１: Summarization of development tools 7

Table 2.１: Comparison among different LLM model for fine tuning 22

Table 2.２: Comparison among varies segmentation techniques 33

Table 2.３: Comparison among features between similar applications

and proposed system 38

Table 2.４: Comparison among different vehicle attributes

recognition systems 49

Table 2.５: Table of comparison between various software

methodologies. 61

Table 2.６: Comparative table of React Native and Flutter

frameworks 64

Table 2.７: Comparative table of Laravel and Next.js frameworks 67

Table 2.８: Comparison table among MySQL and PostgreSQL 71

Table 4.１: Use Case Description for Retrieve Vehicle Logs 103

Table 4.２: Use Case Description for Manage Visitor Pass 105

Table 4.３: Use Case Description for Reset Password 106

Table 4.４: Use Case Description for Login 108

Table 4.５: Use Case Description for Register Account 109

Table 4.６: Use Case Description for Receive Notification 110

Table 4.７: Use Case Description for Manage Vehicle 111

Table 4.８: Use Case Description for Manage Profile 113

Table 4.９: Use Case Description for Retrieve Vehicle History Log 115

Table 4.１０: Use Case Description for Retrieve Real-Time Data 116

xi

Table 4.１１: Experimental result of SAM and Yolov8-seg 147

Table 6.１: System Module 186

Table 7.１: Requirement Traceability Matrix 225

Table 7.２: Use Case Table 227

Table 7.３: Functional Requirement Table 228

Table 7.４: Test Case Table of Unit Testing 232

Table 7.５: Test Cases Table of Integration Testing 234

Table 7.６: UAT Result on Resident Side 235

Table 7.７: UAT Result on Security Guard Site 237

Table 7.８: SUS Result Table 239

Table 8.１: Recommendations for future work 243

xii

LIST OF FIGURES

Figure 1.1: Agile development methodology 10

Figure 1.2: System Architecture Flow 13

Figure 3.1: Development Methodology Diagram 76

Figure 3.2: Project initial Planning Part 1 80

Figure 3.3: Project Initial Planning Part 2, Planning and Requirements

and Prototype Development Part 1 80

Figure 3.4: Prototype Development Part 2 and Development Phase

Part 1 81

Figure 3.5: Development Phase Part 2, Testing and QA and

Deployment and Final Review 81

Figure 3.6: Project initial Planning – Part 1 82

Figure 3.7: Project Initial Planning Part 2, Planning and Requirements

and Prototype Development Part 1 82

Figure 3.8: Prototype Development Part 2 82

Figure 3.9: Development Phase Part 2 and Testing and QA Part 1 83

Figure 3.10: Testing and QA Part 2 and Deployment and Final Review

 83

Figure 4.1: Type of vehicle owned 89

Figure 4.2: Utilization range of vehicle access control system 90

Figure 4.3: Type of vehicle access control system 91

Figure 4.4: Satisfaction on current system 91

Figure 4.5: Challenges without vehicle recognition system 92

Figure 4.6: Main challenges in current system 92

Figure 4.7: Importance of accuracy of vehicle access system 93

Figure 4.8: New features for future vehicle access system 93

Figure 4.9: Importance of having user-friendly system 94

xiii

Figure 4.10: Acceptance of AI-based vehicle recognition system 95

Figure 4.11: Importance of recognisation of vehicle using image 95

Figure 4.12: Expectation of accuracy on vehicle recognition system 96

Figure 4.13: Maximum acceptable time for vehicle recognisation 97

Figure 4.14: Use Case Diagram 102

Figure 4.15: User interface flow diagram for residents 118

Figure 4.16: User interface flow diagram for security guards 118

Figure 4.17: Login Web View 119

Figure 4.18: Register Web View 119

Figure 4.19: Login Mobile View 120

Figure 4.20: Register Mobile View 121

Figure 4.21: Resident’s Dashboard Page Web View 122

Figure 4.22: Resident's Vehicles Page Web View 122

Figure 4.23: Resident's Add Vehicle Page Web View 122

Figure 4.24: Resident's Vehicle Logs Page Web View 123

Figure 4.25: Resident's Report Unauthorized Parking Page Web View 123

Figure 4.26: Resident's Visitor Page Web View 123

Figure 4.27: Resident's Invite Visitor Page Web View 124

Figure 4.28: Resident’s Notification Page Web View 124

Figure 4.29: Resident's Profile Page Web View 124

Figure 4.30: Resident’s Sidebar Page Mobile View 125

Figure 4.31: Resident's Dashboard Page Mobile View 126

Figure 4.32: Resident's Vehicle Page Mobile View 127

Figure 4.33: Resident's Add Vehicle Page Mobile View 128

Figure 4.34: Resident's Vehicle Logs Page Mobile View 129

xiv

Figure 4.35: Resident's Report Unauthorized Parking Page Mobile

View 130

Figure 4.36: Resident's Visitor Page Mobile View 131

Figure 4.37: Resident's Invite Visitor Page Mobile View 132

Figure 4.38: Resident’s Notification Page Mobile View 133

Figure 4.39: Resident's Profile Page Mobile View 134

Figure 4.40: Security Guard's Dashboard Page Web View 135

Figure 4.41: Security Guard's Access Logs Page Web View 135

Figure 4.42: Security Guard's Parking Reports Page Web View 136

Figure 4.43: Security Guard's Alerts Page Web View 136

Figure 4.44: Security Guard's Profile Page Web View 136

Figure 4.45: Security Guard's Sidebar Page Mobile View 137

Figure 4.46: Security Guard's Dashboard Page Mobile View 138

Figure 4.47: Security Guard's Access Logs Mobile View 139

Figure 4.48: Security Guard's Unauthorized Parking Reports Page

Mobile View 140

Figure 4.49: Security Guard's Alerts Page Mobile View 141

Figure 4.50: Security Guard's Profile Page Mobile View 142

Figure 4.51: Flowchart of preliminary code 144

Figure 4.52: Visualization result of car 1 145

Figure 4.53: Visualization result of car 2 145

Figure 4.54: Visualization result of car 3 146

Figure 4.55: Visualization result of car 4 146

Figure 4.56: Visualization result of car 5 146

Figure 5.1: System Architecture Diagram 149

Figure 5.2: Entity Relationship Diagram (ERD) of system 151

xv

Figure 5.3: Context Diagram 152

Figure 5.4: Data Flow Diagram Level - 0 153

Figure 5.5: Resident Register UI 154

Figure 5.6: Resident fill in Registration UI without readability on

password 154

Figure 5.7: Resident fill in Registration UI with readability on

password 155

Figure 5.8: Resident Registration Success UI 155

Figure 5.9: Resident Login UI 156

Figure 5.10: Resident Login UI without readability on password 156

Figure 5.11: Resident Login UI with readability on password 157

Figure 5.12: Resident Profile Page UI 157

Figure 5.13: Resident Update Profile Page UI Part 1 158

Figure 5.14: Resident Update Profile Page UI Part 2 158

Figure 5.15: Resident Upload Profile Image UI 159

Figure 5.16: Resident Update Profile Successful UI 159

Figure 5.17: Resident New Updated Profile Page UI 160

Figure 5.18: Resident Vehicle Page UI 160

Figure 5.19: Resident Add New Vehicle Page UI 161

Figure 5.20: Resident Add New Vehicle Successfully Page UI 161

Figure 5.21: Resident New Added Vehicle Page UI 162

Figure 5.22: Resident Update Vehicle Page UI 162

Figure 5.23: Resident Update Vehicle Successfully Page UI 163

Figure 5.24: Resident New Updated Vehicle Page UI 163

Figure 5.25: Resident Delete Vehicle Page UI 164

Figure 5.26: Resident Delete Vehicle Successful Page UI 164

xvi

Figure 5.27: Resident Notification Page UI 165

Figure 5.28: Resident Mark 1 Notification as Read UI 165

Figure 5.29: Resident Mark All Notification as Read Page UI 166

Figure 5.30: Resident Receive Suspicious Alert Page UI 166

Figure 5.31: Resident Visitor Page UI 167

Figure 5.32: Resident Add New Visitor Page UI Part 1 167

Figure 5.33: Resident Add New Visitor Page UI Part 2 168

Figure 5.34: Resident Add New Visitor Successful Page UI 168

Figure 5.35: Resident New Add Visitor Page UI 169

Figure 5.36: Resident Update Visitor Page UI Part 1 169

Figure 5.37: Resident Update Visitor Page UI Part 2 170

Figure 5.38: Resident Update Visitor Success Page UI 170

Figure 5.39: Resident Delete Visitor Page UI 170

Figure 5.40: Resident Delete Visitor Success Page UI 171

Figure 5.41: Resident Reset Password Page UI 171

Figure 5.42: Resident Reset Password Accept Page UI 172

Figure 5.43: Resident Reset Password Page 172

Figure 5.44: Resident Vehicle Log Page UI 173

Figure 5.45: Resident Vehicle Log Apply Searach and Filter Page UI 173

Figure 5.46: Security Guard Login Page UI 174

Figure 5.47: Security Guard Login without readability password Page

UI 174

Figure 5.48: Security Guard Login with readability password 175

Figure 5.49: Security Guard Reset Password Page UI 175

Figure 5.50: Security Guard Reset Password Accept Page UI 176

Figure 5.51: Security Guard Reset Password Page UI 176

xvii

Figure 5.52: Security Guard Dahsboard Page UI Part 1 177

Figure 5.53: Security Guard Dashboard Page UI Part 2 177

Figure 5.54: Security Guard Dashboard Page UI Part 3 178

Figure 5.55: Security Guard Vehicle Logs Page UI 178

Figure 5.56: Security Guard Vehicle Logs Apply Search and Filter

Page UI 179

Figure 5.57: Security Guard Vehicle Logs No Searching Result Page

UI 179

Figure 5.58: Security Guard Receive Suspicious Alert Page UI 180

Figure 5.59: Security Guard Notification Page UI 180

Figure 5.60: Security Guard Mark 1 Notificaiton as Read Page UI 181

Figure 5.61: Security Guard Mark All Notificaiton as Read Page UI 181

Figure 5.62: Security Guard Profile Page UI 182

Figure 5.63: Security Guard Update Profile Page UI Part 1 182

Figure 5.64: Security Guard Update Profile Page UI Part 2 183

Figure 5.65: Security Guard Update Profile Image Page UI 183

Figure 5.66: Security Guard Update Profile Successful Page UI 184

Figure 6.1: Registration Frontend Code 187

Figure 6.2: Registration Backend Code Part 1 188

Figure 6.3: Registration Backend Code Part 2 189

Figure 6.4: Login Frontend Code 190

Figure 6.5: Login Backend Code Part 1 191

Figure 6.6: Login Backend Code Part 2 192

Figure 6.7: Change Profile Image Frontend Code 192

Figure 6.8: Upload New Profile Image Frontend Code 193

Figure 6.9: Update Profile Information Backend Code 194

xviii

Figure 6.10: Fetch Vehicles on Vehicle Page Frontend Code 195

Figure 6.11: Fetch Vehicles Frontend Code 195

Figure 6.12: Fetch Vehicles Backend Code 196

Figure 6.13: Add New Vehicle Frontend Code 197

Figure 6.14: Add New Vehicle Backend Code 198

Figure 6.15: Update Vehicle Frontend Code 199

Figure 6.16: Update Vehicle Backend Code 200

Figure 6.17: Delete Vehicle Frontend Code 200

Figure 6.18: Delete Vehicle Backend Code 201

Figure 6.19: Fetch Notifications Frontend Code 202

Figure 6.20: Fetch Notifications Backend Code 202

Figure 6.21: Update 1 Notification as Read Frontend Code 203

Figure 6.22: Update 1 Notification as Read Backend Code 204

Figure 6.23: Mark All Notifications as Read Frontend Code 205

Figure 6.24: Mark All Notifications as Read Backend Code 205

Figure 6.25: Fetch Visitors Frontend Code 206

Figure 6.26: Fetch Visitors Backend Code 207

Figure 6.27: Add New Visitor Frontend Code 208

Figure 6.28: Add New Visitor Backend Code 208

Figure 6.29: Update Visitor Frontend Code 209

Figure 6.30: Update Visitor Backend Code 210

Figure 6.31: Delete Visitor Frontend Code 210

Figure 6.32: Delete Visitor Backend Code 211

Figure 6.33: Reset Password Frontend Code 212

Figure 6.34: Reset Password Backend Code 212

xix

Figure 6.35: Fetch Vehicle Logs Frontend Code 213

Figure 6.36: Fetch Vehicle Logs Backend Code 214

Figure 6.37: Fetch Dashboard Information Frontend Code 215

Figure 6.38: Fetch Dashboard Information Backend Code 215

Figure 6.39: Fetch Daily Vehicle Logs Frontend Code 216

Figure 6.40: Fetch Daily Vehicle Logs Backend Code 217

Figure 6.41: Show Suspicious Event Frontend Code 217

Figure 6.42: CSV to JSONL Conversion Code 219

Figure 6.43: Script to split data for Fine-tuned GPT-4o model 220

Figure 6.44: Script to split data for YOLO model 221

Figure 6.45: Scripts for running testing on each attribute 221

Figure 6.46: Compute model metric code 222

Figure 6.47: Result of metric for both model 223

xx

LIST OF SYMBOLS / ABBREVIATIONS

ACID Atomicity, Consistency, Isolation and Durability

AFPN Asymptotic Feature Pyramid Network

AI Artificial Intelligence

ALPR Automated License Plate Recognition

ANPR Automatic Number Plate Recognition

API Application Programming Interface

ASFF Adaptive Spatial Feature Fusion

AWS Amazon Web Services

BiFPN Bi-directional Feature Pyramid Network

BLIP Bootstrapping Language-Image Pre-training

BLOB Binary Large Object

BYTEA Byte Array

CCTV Closed-Circuit Television

CDN Content Delivery Network

CI/ CD Continuous Integration/ Continuous Deployment

CLI Command Line Interface

CLIP Contrastive Language-Image Pre-training

CNNs Convolutional Neural Networks

CRUD Create-Read-Update-Delete

CSR Client-side Rendering

CSRF Cross Site Request Forgery

CSS Cascading Style Sheets

CSV Comma-Separated Values

CTEs Common Table Expressions

DB Database

DBMS Database Management System

DFD Data Flow Diagram

EA Enterprise Architect

EALPR Efficient Automatic License Plate Recognition

ERD Entity Relationship Diagram

Fast-SCNN Fast Segmentation Convolutional Neural Network

FLAN Fine-tuned LAnguage Net

xxi

FPN Feature Pyramid Networks

GPT Generative Pre-trained Transformers

GPU Graphics Processing Unit

HFIE High-Frequency Information Extraction

HOG Histogram of Oriented Gradients

HTML HyperText Markup Language

HTTPS Hypertext Transfer Protocol Secure

IoT Internet of Things

IoU Intersection over Union

ITS Intelligent Transportation Systems

JSON JavaScript Object Notation

JSONB JSON Binary

JSONL JSON Lines

JSX JavaScript XML

LeSS Large-Scale Scrum

LIDAR Light Detection and Ranging

LLaMA Large Language Model Meta AI

LLM Large Language Model

LOB Large Object

LPD License Plate Detection

LPR License Plate Recognition

LVA Language-Vision Alignment

MAE Masked Autoencoder

mAP50 Mean Average Precision

MAS Multi-Agent System

MIoU mean Intersection over Union

ML Machine Learning

MVC Model View Controller

NLP Natural Language Processing

OCR Optical Character Recognition

ORM Object Relational Mapping

PEFT Parameter-Efficient Fine-Tuning

PHP Hypertext Preprocessor

PLC Project Life Cycle

xxii

PWA Progressive Web App

QA Quality Assurance

QR Quick Response

RFC Residual Feature Connection

RFID Radio-frequency Identification

RLHF Reinforcement Learning from Human Feedback

SAFe Scaled Agile Framework

SAM Segment Anything Model

SDG Sustainable Development Goal

SDLC Software Development Life Cycle

SEO Search Engine Optimization

SIFT Scale-Invariant Feature Transform

SMNN-MSFF Smooth Modulation Neural Network with Multi-Scale

Feature Fusion

SQL Structured Query Language

SSG Static Site Generation

SSR Server-side Rendering

STNs Spatial Transformer Networks

SURF Speeded-Up Robust Features

SUS System Usability Scale

UAT User Acceptance Test

UI User Interface

UML Unified Modeling Language

URL Uniform Resource Locator

URS User Requirements Specifications

UX User Experience

VCR Vehicle Color Recognition

ViT Vision Transformer

VLM Visual Language Model

VMMR Vehicle Make and Model Recognition

WBS Work Breakdown Structure

XSS Cross-site Scripting

YOLO You Only Look Once

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

Systems for controlling vehicle access are essential for improving security,

controlling traffic, and safeguarding restricted areas including residential

complexes, industrial zones, and private parking lots. Conventional and current

primarily utilized access control techniques frequently depend on technologies

like RFID cards or tags and license plate recognition (LPR) or on security

personnel manually verifying entries (Cayetano, 2024). However, human

mistake can cause security breaches with manual checks and unfavorable

weather can cause RFID-based devices to malfunction and reducing their

dependability. Furthermore, license plate identification by itself has limits

because access constraints can be bypassed by using forged or duplicate plates.

These difficulties show that more sophisticated, reliable, and secure car

recognition systems are required.

 Recent developments in artificial intelligence, specifically in

multimodal learning and Large Language Models (LLMs), have encouraging

possibilities for enhancing car recognition systems. Multimodal techniques can

greatly improve recognition accuracy and system resilience by integrating many

data types including textual and visual. Building more dependable and flexible

access control systems is made feasible by utilizing LLMs' capacity to recognize

complicated relationships across many data modalities.

 The development of a multimodal large language model-based vehicle

recognition system suitable for access control applications is the idea behind

this project. By combining several vehicle characteristics, the system aims to go

beyond conventional plate-based and single-modality identification techniques,

in order to lowering the possibility of unwanted entry, improve security and

enhancing system resilience in a range of operational scenarios. This chapter

will focus on importance of study, problem statements, project objectives,

project scope and scope out of scope, proposed solution and proposed approach

to set the groundwork for a thorough examination of current technologies and

approaches in next chapter.

2

1.2 Importance of the Study

In the past, vehicle access control systems were created to meet the requirement

to protect private or sensitive spaces from unwanted access. It became more

crucial to control and regulate the flow of cars into restricted areas like

residential neighborhoods, government buildings, business buildings, and toll

highways as cities grew and the number of cars on the road increased. These

systems' main objective was to assure that only authorized personnel may enter,

safeguarding infrastructure, people and assets from possible dangers including

theft, vandalism and other violations of security. By eliminating down the

amount of time required for entry processing and minimizing the need for

manual supervision, these systems aimed to increase operational efficiency in

addition to security.

 Conventional and current mainly used access control techniques were

frequently used to achieve these objectives. These methods include license plate

recognition (LPR) technology, RFID tag or card-based systems and manual

verification by security personnel. Although these approaches have shown some

degree of success but they have significant flaws that leave systems vulnerable

to operational inefficiencies and safety risks.

 Human mistake can happen during manual verification by security

staff especially in crowded environments or when they are tired and distracted.

Guards could unintentionally misidentify cars, let illegal entry or overlook

credentials that have been faked. Furthermore, manual checking creates

bottlenecks at high-volume entry points, which lowers customer satisfaction and

causes traffic congestion.

 Automation is provided via RFID-based systems which scan tags or

cards attached to vehicles. However they are sensitive to environmental factors.

Unfavorable weather conditions including intense rain, fog or

extreme temperatures can disrupt signal transmission and result in delays or

failures in authentication. Furthermore, the intended security of RFID cards can

be compromised by loss, theft, duplication or intentional misuse by

unauthorized users.

 Vehicle identification is automated using License Plate Recognition

(LPR) systems, yet these systems mostly depend on the accuracy and visibility

3

of license plates. Accuracy of recognition can be affected by unclean or broken

plates, poor lighting, and unusual plate designs. More seriously, there have been

breaches of security when unauthorized entrance was obtained by tricking LPR

systems with fake or duplicate license plates. A significant instance in Malaysia

when fake license plates were used to bypass valet parking payment in hotel was

mentioned (Lee, 2024). This has highlighted a significant weakness in

depending just on plate-based verification.

 These restrictions have important consequences. Within controlled

premises, residents, staff and property are at risk of security breaches due to

unauthorized vehicle entrance. Theft, vandalism, or unpaid tolls can result in

financial losses. Operationally, system unreliability undermines public

confidence and makes traffic control more difficult particularly in urban regions

integrating smart cities.

 With these difficulties, a more sophisticated, reliable, and flexible

access control system is absolutely essential. A revolutionary development is

provided by the suggested creation of a vehicle recognition system based on a

Multimodal Large Language Model (LLM). By having this system, t he system

overcomes the single-point failure risks associated with conventional

approaches by combining several aspects such as textual data, vehicle visual

attributes, and additional sensor inputs. Utilizing LLMs' advanced reasoning

and pattern recognition skills improves the system's capacity to identify

irregularities, prevent attempts at fraud, and function dependably in a range of

environmental circumstances.

 Moreover, the study helps to accomplish more general social

objectives such those stated in Sustainable Development Goal (SDG) 11 of the

United Nations which is to "make cities and human settlements inclusive, safe,

resilient, and sustainable." This research contributes to the development of safer

and more secure urban infrastructures by improving access control

technology which is consistent with the idea of future smart cities.

 Overall, this study is significant because it not only addresses serious

shortcomings in current vehicle access control systems but also advances the

use of modern artificial intelligence techniques for increased security,

operational effectiveness, and public trust.

4

1.3 Problem Statement

The shortcomings of the existing vehicle access control techniques lead to a

number of serious problems that stimulate the creation of a more advanced

system.

This section addresses the three main issues that were found during

the problem formulation phase. These issues include the vulnerability of

traditional access control systems, the susceptibility of ALPR systems to

forged license plates, and inability to adapt to environmental and situational

challenges.

1.3.1 Vulnerabilities in Traditional Access Control Systems

The authentication procedure in an ideal car access control system would be

precise, safe, and effective by reducing human mistake and involvement.

Regardless of human or environmental influences, approved vehicles should

always be identified and unauthorized ones should always be blocked.

 However, there are significant flaws in traditional access control

techniques including security guards' human verification and RFID card

scanning. Typically during peak hours or while under stress or fatigue, human

judgment can be inconsistent. Despite being automated, RFID systems are

vulnerable to technological malfunctions brought on by environmental elements

like dust or moisture as well as RFID tag cloning and theft. Due to these flaws,

traditional systems are unstable and vulnerable to attacks in restricted areas.

 A more intelligent, automated system that relies less on single-point

RFID authentication and human involvement is required to address these issues.

A multimodal system that uses cutting-edge technology to cross-verify vehicle

features can greatly increase security by delivering more reliable and precise

access control.

1.3.2 Susceptibility of ALPR Systems to Forged License Plates

In an ideal world, each vehicle would be accurately identified by Automatic

License Plate Recognition (ALPR) devices using a safe, unchangeable license

plate. Fast and completely dependable vehicle verification would stop any

illegal access using forged or modified vehicle identities.

5

 In reality, ALPR systems are susceptible to fraud since they mostly

depend on the validity of license plates. ALPR cameras and software can readily

be tricked by forged, stolen or duplicate license plates that allowing

unauthorized vehicles to enter incorrectly. The security of ALPR-only systems

is seriously compromised as evidenced by reports of faked plates being used in

illegal activities.

 An improved recognition system that relies on more than just license

plate readings is required to decrease this vulnerability. A multimodal system

can identify anomalies and more effectively stop unwanted entries by

combining extra vehicle characteristics such as color, make and model with

intelligent verification through the use of Large Language Models (LLMs).

1.3.3 Inability to Adapt to Environmental and Situational Challenges

An ideal vehicle access control system would function dependably in every kind

of weather including areas with poor lighting, heavy rainfall and unclean car

surfaces. It would ensure constant security coverage by adjusting to changing

circumstances without compromising identification accuracy or system

reliability.

 A lot of traditional and current systems rely on just one authentication

method including RFID scanning or license plate reading. These techniques

frequently fail in difficult environmental circumstances. For instance,

inadequate lighting might make it difficult to see license plates and persistent

rain can obstruct the detection of RFID signals. These situational flaws affect

the efficiency and reliability of access control procedures.

 These environmental restrictions can be addressed by a multimodal

system that integrates data from many vehicle information sources and is backed

by LLMs' strong reasoning and contextual awareness. The system can retain

high accuracy even under less-than-ideal circumstances by cross-referencing

several vehicle parameters. This can bring it one step closer to its goal of

continuous and extremely secure access management.

1.4 Project Objectives

The objectives that this project aims to accomplish include:

6

i. To investigate the primary limitations of conventional vehicle

recognition systems.

ii. To develop a robust multi attribute vehicle recognition system.

iii. To integrate visual language model for adaptive recognition,

handling edge cases in vehicle access control.

1.5 Project Scope

The main goal of this project is to develop a multimodal vehicle recognition

system that improves on traditional ALPR systems by adding image-based

vehicle characteristics like color, model, and type to enhance recognition quality.

The system will be developed as an online and mobile application for a gated

community using Tailwind CSS, Next.js, and React Native for online. The

project scope are:

1. Review related applications, software development methodologies and

technologies used in vehicle color, model and manufacturer recognition.

Conduct a literature study on current approaches and technologies

related to vehicle recognition systems, such as Automatic Number Plate

Recognition (ANPR), segmentation techniques, Large Language

Models (LLM) and similar applications.

2. The development of a real-time vehicle recognition system that

combines image-based attribute verification with license plate

recognition.

3. Using contextual and environmental data for assisting adaptive decision-

making through the integration of Large Language Models (LLM).

4. Using segmentation techniques to isolate vehicles and recognize objects

in collected photos.

5. Designing and developing resident and security personnel interfaces

with role-specific features like alerts for suspicious activity, vehicle

records, notifications, and visitor passes.

6. Testing the recognition framework with test and simulation-based

datasets in a range of illumination and angle scenarios.

7

7. To determine the ideal configuration for the developed vehicle

recognition technique by performing experiments in a controlled

environment.

1.5.1 Tools

The development tools being used in this project are:

Table 1.１: Summarization of development tools

Category Tool Purpose

Frontend

React Native

Cross-platform mobile app

development for vehicle access control

UI.

React Native Web
Extends React Native to support web

browsers for a unified codebase.

Tailwind CSS
Styling and responsive design for the

application interface.

Backend

Next.js

Server-side logic, API development,

and integration with AI/DB

components.

Vercel

Hosting and deployment platform for

the Next.js backend to ensure

scalability and CI/CD integration.

Database

PostgreSQL
Secure and scalable storage for vehicle

records, user data, and logs.

Supabase

Managed PostgreSQL service

providing real-time subscriptions,

authentication, API access, and

database scalability.

8

Category Tool Purpose

AI/ML

Model

Fine-tuned GPT-4o,

Yolo-v8 model,

EasyOCR

Multimodal vehicle recognition, JSON

output generation.

Version

Control
Git & GitHub

Collaborative code management,

version tracking, and deployment.

1.5.2 Target User

The target user for this project is listed as below:

i. Condominium residents

ii. Apartment residents

iii. Landed area residents with guard house

1.6 Out of Scope

The out of scope of project include:

i. High hardware specifications are needed for training a new

model especially when the training set or LLM parameters are

big and the LLM model is learned locally. Hence, training of

new LLM model will not be included in this project.

1.7 Proposed Approach

A project approach is the process or methodology used to organize, carry out,

and finish a project. There are numerous project approaches and each has certain

benefits and properties of its own. The research and development approaches

were addressed in this part.

1.7.1 Research Approach

In order to collect quantifiable information and obtain unbiased insights on

client needs, expectations and opinions regarding a vehicle access control

system. This project uses a quantitative research methodology. In this situation,

quantitative research makes sense because it makes it possible to gather

9

organized responses that can be statistically examined to aid in the development

and validation of the proposed system.

 This strategy is put into effect by developing and distributing a

questionnaire using Google Forms which makes it easy and effective to gather

data from a variety of responders. The questionnaire's closed-ended

questions which include multiple-choice and rating scale formats are designed

to gather specific data about users' experiences with current vehicle access

systems, the difficulties faced by them when they utilizing current system, the

important aspects on system to be focus on, and their interest in cutting-edge

technology involvement like multimodal verification with LLM and license

plate recognition.

 By ensuring that data is gathered in a consistent manner, Google Forms

helps to reduce bias and simplify the analytic process by having data

visualization like pie chart and bar chart. Remote participation by respondents

increases accessibility and response rates. Decisions about system design and

feature prioritization are based on the patterns and user preferences found in the

information gathered after it has been statistically examined.

 By using this quantitative method, the study makes sure that the system

development is based on actual user feedback, data-driven, and in line with

realistic expectations. By demonstrating the degree of user interest and

perceived effectiveness of a more secure and intelligent vehicle access control

system, it also aids in validating the project's relevance and practicality.

1.7.2 Development Approach

The Agile development methodology was selected as the development approach

for this project.

10

Figure 1.1: Agile development methodology

Source: (Slawek-Polczynska, 2020)

The Agile Software Development Life Cycle (SDLC) technique is

applied in the development of the Multimodal Large Language Model-Based

Vehicle Recognition for Vehicle Access Control System. Agile is chosen

because of its flexible and iterative methodology which facilitates frequent

delivery of working software, quick prototyping and ongoing requirement

refinement. Projects incorporating cutting-edge technologies like multimodal

data processing and huge language models where needs may change during the

development cycle. Hence, this project are particularly well-suited for this

methodology.

 The project is split into manageable, tiny units called sprints under the

Agile SDLC. The goal of each sprint which normally lasts one to two weeks is

to provide a useful system feature or component. The final result will precisely

match the project goals and requirements because of this iterative methodology.

This characteristic has enables continuous input and development. Reviews and

retrospectives are carried out at the conclusion of each sprint in order to assess

progress, resolve issues and make plans for the next sprint.

 In the planning and requirement analysis stage of the Agile

development process, high-level system needs are determined using problem

statements and use case scenarios. Following is the design phase which involves

a detailed planning of the system's architecture, data flow and UI/UX

components. Core components such license plate verification, vehicle

recognition, LLM integration and user interfaces are gradually built and merged

during the implementation phase.

11

 Continuous testing is done during each sprint to assure the

reliability and quality of every module. This consists of performance checks,

image processing validation and functional testing to make sure the system can

function in a variety of scenarios. In order to accelerate problem solving and

decision-making, the Agile methodology also places a strong emphasis on tight

coordination between different roles.

 Last but not least, the deployment and maintenance stages guarantee

that the system is effectively supplied and updated in response to user feedback

and real-world performance. Agile is very successful for developing an

intelligent access control system because of its collaborative and adaptable

nature which allows individuals to respond quickly to changes and produce a

high-quality solution within the time frame specified.

1.8 Proposed Solution

In order to improve the security and effectiveness of vehicle access management,

the proposed solution presents a Multimodal Large Language Model-Based

Vehicle Recognition System. In comparison with conventional systems that just

use license plate recognition, this system uses a variety of data types such as

text inputs and vehicle photos to more precisely confirm the identify of the

vehicle. The technology intelligently reads and correlates textual and visual data

to identify anomalies or mismatches by utilizing the power of a large language

model that has already been fine-tuned. For real-time monitoring and

management, a React Native-built web and mobile application will act as the

interface, while PostgreSQL is selected as the database due to its capacity to

securely handle multimedia data. The following subtopic will mainly discuss

about the solution to resolve the problems statements that has been mentioned

in previous topic and the system architecture of this proposed project.

1.8.1 Solution for problem statements

This project proposes a multimodal vehicle recognition system driven by a

Large Language Model (LLM) to increase the security, reliability, and

intelligence of vehicle access control systems. In contrast to traditional systems

that only use manual verification or license plate recognition, this approach

integrates a number of data types including vehicle photos, plate text, and

12

contextual information in order to carry out more precise and flexible

verification. The system was designed to cope with real-world complexity and

provide more intelligent access decisions by utilizing the reasoning powers of

LLMs and the power of multimodal analysis. The implementation consists of a

React Native-developed mobile and web interface backed by a PostgreSQL

database that can store text and photos.

 In order to address the weaknesses of conventional access control

systems especially those that depend on hardware-based techniques like RFID

tags or cards and human security checks, the suggested approach uses AI-

powered recognition to automate the access verification process. This

automation offers more consistent, real-time decision-making at access points,

lowers the possibility of human error and does away with the need for physical

cards that might malfunction in specific situations.

 The proposed solution incorporates a multimodal approach that

examines both textual and visual inputs in order to address the problem of forged

license plates tend to escaping conventional ALPR systems. The system uses a

reasoning mechanism made possible by the LLM to match the vehicle's visual

characteristics such as color, model and manufacturer with the license plate data

rather than relying only on the text on the plate. The ability to intelligently detect

inconsistencies between plate and vehicle data makes it far more difficult for

malicious people to obtain access via fraudulent or cloned plates.

 The system's image preprocessing and segmentation approaches

improve clarity and isolate important elements before recognition. This action

can help in addressing the difficulties caused by changing environmental

conditions like bad weather or low illumination by maximizing the removing

the noise in the image. This ensures that the system retains high recognition

accuracy even under less-than-ideal circumstances. With further training data,

the AI model is further engineered to adjust and get better over time

and increasing its robustness and reliability in a variety of scenarios.

13

1.8.2 Proposed System Architecture

Figure 1.2: System Architecture Flow

(Note: A refined system architecture flow can be found in later chapter 5.2)

Figure 1.2 shows a vehicle access control system that involve usage of Large

Language Model (LLM). Security officers, administrators, and residents are

among the many stakeholders in the system, and they all use web browsers to

communicate with the platform. The main interface for these users is the

frontend component, which is intended to be widely accessible. It gathers the

required data, including license plate information and car images, and sends it

over secure HTTPS connections to the backend Laravel server.

A key component of handling the frontend requests is the backend. In

order to analyze the data that has been submitted, it shares with a

ChatGPT's API. Clear and machine-readable communication between the LLM

and the backend is ensured by the use of JSON-formatted prompts and responses.

Once this input has been processed, the LLM returns a decision with a

justification then the backend then sends it as a https response to the frontend.

A PostgreSQL database is used in this project to oversee data

persistence, houses vital data like user profiles, access logs and car details. This

database maintains historical data for audits and troubleshooting, supporting the

system's long-term functionality. Sensitive information is kept safe and

protected by using HTTPS for all communications including those between the

backend and the LLM API and the frontend and backend.

Additionally, the graphic displays the roles of several users such

as residents use the platform to seek access, administrators establish system-

14

wide settings and security guards can evaluate and override access decisions.

Arrows with labels such as "access," "request," and "response" highlight the

dynamic and linked character of the system by showing the data flow between

the different components. Overall, the design shows how to effectively combine

a vehicle access control systems with LLM-powered logic to improve security

and efficiency through automated, data-drivens decision-making.

15

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

Vehicle recognition and access control systems have mostly depended on

conventional computer vision and machine learning methods in recent years.

Basic vehicle recognition and identification have been made possible by these

techniques, but they frequently encounter difficulties in complicated

surroundings and have limitations when it comes to completely interpreting

multimodal data. In locations like parking lots, toll gates, and controlled zones,

a precise and effective vehicle recognition is essential for improving security

and expediting operations. Since people can fake or alter license plates to get

around access constraints, traditional vehicle recognition systems mostly rely

on license plate recognition which presents serious security problems. As a

result, more sophisticated, multimodal strategies that integrate different data

types to enhance security and dependability are becoming more and more

necessary.

 The goal of this literature review is to examine the state of technology

that is relevant to the development of a vehicle identification system for access

control applications that is multimodal and based on Large Language Models

(LLMs). It specifically looks into current LLM concepts, segmentation methods

that are necessary for handling visual input, and related applications in access

control view. Additionally, the assessment examines the most recent

developments in vehicle recognition systems, reviews web and mobile

application frameworks that may support the system's user-facing

components and evaluates software development processes appropriate for

delivering reliable solutions.

 This chapter will pay attention to:

i. Comparison between existing Large-Language Models (LLM)

ii. Identify a suitable Large-Language Model for this project

iii. Comparison between existing segmentation techniques on

visual inputs

iv. Identify a suitable segmentation methodology for this project

16

v. Review similar applications on access control of properties

vi. Identify the key features to be included in the project

vii. Review existing vehicle recognition systems

viii. Comparison among varies of Software Development Lifecycle

(SDLC)

ix. Identify a suitable development methodology for this project

x. Comparison between the different type of web and mobile

application framework

2.2 Existing Large Language Model (LLM) Review

In the area of artificial intelligence, large language models or LLMs have

become a major breakthrough due to their exceptional ability to understand and

generate language that is human-like. With a concentration on their possible use

in multimodal vehicle recognition systems, this section examines the evolution

of important LLM architectures, highlighting their fundamental methods,

advantages, and disadvantages.

2.2.1 Instruction Tuning with GPT-4

Based on Peng et al. (2023), one of the most important methods for enhancing

large language models' (LLMs') zero-shot generalization is instruction

adjustments. Instruction tuning uses a variety of instruction-following instances

unlike traditional fine-tuning which requires task-specific datasets. These

instructions can be either produced by people or other LLMs to train models.

By employing this method, models can carry out invisible activities without the

need for clear explanations. According to Li et al. (2024), generated instruction

data can significantly enhance model performance. To give an illustration,

generated instruction included Alpaca (Stanford CRFM, n.d.) and Self-Instruct

Wang et al. (2022). However, the quality of data is a very important factor that

will affect the outputs results. Although earlier research used GPT-3.5 to

generate data, this paper presented GPT-4 as an improved teacher model,

demonstrating that its outputs result in more broad and in-depth models that are

better aligned.

The adjustment from human-curated data to machine-generated data is

a significant development in instruction tuning. Human annotations were the

17

foundation of early methods like Fine-tuned LAnguage Net (FLAN) and T0,

which are expensive to scale. In order to reduce the scale cost, the reduced of

the need for manual work by automating the creation of instructions is required.

By applying computer-generated information, Alpaca has achieved good

performance by producing 52K instruction-output pairs using GPT-3.5 which

helps in enhancing this approach. This instruction tuning paper expanded on this

and made the case that its outputs are qualitatively better—longer, more diverse,

and better organized by utilizing GPT-4. As compare to Alpaca's incremental

approach, their simplified one-time generation technique produced extremely

effective models. This technique has proved that data quality may outperform

generation complexity.

The fine-tuning of LLaMA models on GPT-4-generated data was also

investigated in this research with outstanding results. When trained using

English instruction data, their LLaMA-GPT4 (7B) model performed better than

the bigger Alpaca (13B) model. This has proved that high-quality data can

increase the performance on smaller model sizes. They also demonstrated cross-

lingual applicability by translating questions and using GPT-4 to generate

responses which introduced a Chinese variation for LLaMA-GPT4-CN. In

addition to supervised fine-tuning, they also enabled reinforcement learning

from machine feedback (RLHF) by training reward models on pairwise

comparisons that were gathered through GPT-4. These OPT-1.3B-based models

successfully anticipated response quality and providing a scalable solution for

human annotations in alignment.

An important aspect of this instruction tuning study was evaluation. In

54.12% of situations, LLaMA-GPT4 outperformed GPT-3.5-tuned Alpaca in

human evaluations on the User-Oriented-Instructions-252 benchmark. In some

evaluations, the two models performed similarly. These results were further

supported by automated assessments that used GPT-4 as a judge. Although

LLaMA-GPT4 has a lower size, but it still outperformed Alpaca. Additionally,

the reward models in this work validated their application in RLHF pipelines by

closely matching the ranks of GPT-4. The advantages of cross-lingual fine-

tuning are demonstrated by the fact that translated responses sometimes

surpassed GPT-4's native outputs in Chinese tests. The benefits of GPT-4's

richer outputs were further shown by ROUGE-L scores on the Unnatural

18

Instructions benchmark. It demonstrated that GPT-4-tuned LLaMA

outperformed Alpaca in creative and long-form production while Alpaca

performed excellently in short-answer tasks.

Other than that, Alpaca and Vicuna also demonstrated how open-

weight models like LLaMA could compete with patented ones using data that

is computer generated while FLAN and T0 illustrated the effectiveness of multi-

task instruction tuning. By automating the creation of instructions, Self-Instruct

reduced the dependency on human input. Besides from text, models such as

OpenFlamingo and LLaMA-Adapter combined LLaMA with vision, but this

study emphasized the cross-lingual potential of instruction creating by

expanding it to Chinese.

Despite these advances, the study has some drawbacks in which their

largest model (7B) is outperformed by 13B variants although their dataset (52K

samples) is less than Vicuna's (700K). Future research could explore more

languages and modalities, integrate reward models into complete RLHF

pipelines, and expand data and model sizes. However, their results highlight

how important high-quality automated data is to narrowing the gap between

closed and open models. They showed that smaller, instruction-tuned models

can function on track with much bigger systems by using GPT-4 as a teacher,

opening up the possibility for more effective and easily accessible LLM

development.

2.2.2 LLaMA-Adapter V2: Parameter-Efficient Visual Instruction

Model

As stated in Gao et al. (2023), large language models (LLMs) have recently

shown impressive ability to follow textual instructions, but it is still difficult to

apply these capabilities to the visual domain. When compared to robust

proprietary models like GPT-4, traditional methods like LLaMA-Adapter have

demonstrated shortcomings in addressing flexible visual instructions and multi-

modal reasoning mission. This gap led to the creation of increasingly complex

parameter-efficient techniques that successfully integrate linguistic and visual

understanding without needing expansive model fine-tuning or large amounts

of multi-modal training data.

With models like Alpaca and Vicuna showing the value of fine-tuning

on machine-generated instruction data, the field of instruction-following LLMs

19

has achieved huge growth. However, t hese methods usually call for updating

every model parameter which is computationally costly. This problem has been

resolved by parameter-efficient fine-tuning (PEFT) techniques like LoRA and

the original LLaMA-Adapter, which introduced low-rank adaptations or

lightweight adapters. Models like MiniGPT-4 and LLaVA have tried to connect

visual encoders with LLMs in the visual domain, but they still require extensive

fine-tuning of the language models and rely on an enormous amount of multi-

modal training data. These shortcomings emphasize the necessity for more

effective strategies that helps to retain the model's current language capabilities

while achieving excellent visual instruction following.

 By providing several of important advances, LLaMA-Adapter V2

represents an important milestone in this approach. The model maintains a very

low total number of trainable parameters which was just only 0.04% of

LLaMA's parameters while revealing new learnable parameters throughout the

network. For instance, normalization layers and bias/scale terms in linear layers.

This method enables instruction-following knowledge to be learned distributed

throughout the model layout. In order to avoid compromising with textual and

visual processing in deeper layers, the technique uses an early fusion strategy

to introduce visual tokens only into the first transformer layers. This

architectural decision is especially crucial for including visual understanding

while maintaining the model's powerful language capabilities.

 The integrated training methodology of LLaMA-Adapter V2 which

employs separate parameter groups for various tasks is a remarkable feature.

While instruction-following data trains the late-layer adapters and normalization

parameters, image-text pairs mainly update the visual projection layers and

early gating mechanisms. This division makes it more difficult for the model's

existing instruction-following capabilities to be overridden by the visual

features. By integrating expert systems during inference, such as pre-trained

captioning and OCR models, which provide more contextual information

without requiring additional training.Thus, the model drastically enhances its

visual understanding. The model can perform better on visual tasks while

preserving parameter efficiency through this modular approach.

 Results from experiments show that these innovations are effective.

LLaMA-Adapter V2 produces more thorough and precise responses than its

20

predecessor in language instruction following. It even performs competitively

against ChatGPT in multi-turn conversation evaluations. Even though the model

uses a lot less training data, it performs on standard benchmarks for visual tasks

that are equivalent to those of specialized systems like Bootstrapping Language-

Image Pre-training (BLIP). Expert system integration is especially useful for

solving complicated problems that ask for both textual and visual reasoning

such as describing the visual impact of an image or producing recipes from food

photos. When it comes to visual content that is not distributed, the model still

exhibits limits. This has indicate there are areas that require further development.

 The performance of the LLaMA-Adapter V2 points to a number of

important areas for further study in the tuning of visual training. The parameter-

efficient approach of the model shows that large language models do not require

extensive retraining to achieve strong multi-modal performance. The successful

application of expert systems indicates potential directions for adding more

specialized modules like object detection models in order to improve visual

comprehension even further. To find ways to overcome present constraints,

future research may examine integrating these approaches with other Parameter-

efficient fine-tuning (PEFT) techniques such as LoRA, or examining the

possibilities of limited quantities of high-quality multi-modal instruction data.

Such parameter-efficient techniques will probably be essential to the

development of adaptable, multi-modal AI systems that can process complex

linguistic and visual instructions while still being computationally feasible to

create and implement as the field develops.

2.2.3 CLIPath: Fine-tune CLIP with Visual Feature Fusion for

Pathology Image Analysis Towards Minimizing Data Collection

Efforts

Based on Lai et al. (n.d.), The alignment of textual and visual data for zero-shot

transfer learning has been achieved with unexpected success by recent

developments in language-vision models, especially Contrastive Language-

Image Pre-training (CLIP). Because of its contrastive learning

approach that trains a text encoder which is Transformer and a vision encoder

which is ResNet or Vision Transformer to map inputs into a common feature

space, CLIP can generalize across a variety of domains. Although CLIP has

been adapted for tasks such as 3D recognition (PointCLIP) and video

21

interpretation (CLIP-ViL), its use in medical imaging especially the field of

pathology is still not well established. This gap is important because pathology

image analysis has distinct difficulties, such as domain changes between

specialist medical data and natural images used to train CLIP, and the lack of

labeled datasets because of the high cost and level of skill needed for tagging.

 The disadvantages of traditional supervised learning in medical image

analysis led to interest in using pre-trained models such as CLIP. However, in

order to accomplish modest zero-shot performance (~60% accuracy), current

methods like MedCLIP which rely on large-scale curated datasets like 570K

image-text pairs may not be practical in many clinical contexts. On the other

hand, parameter-efficient fine-tuning (PEFT) techniques, such as prompt tuning

(CoOp) and adapters (CLIP-Adapter), attempt to reduce computational cost but

frequently encounter difficulties with domain adaptation. For example, CLIP-

Adapter's feature combining may not adequately resolve the semantic difference

between natural and medical images, while CoOp's prompt optimization can

negatively impact performance when utilized on out-of-distribution data. These

difficulties show that a customized strategy that strikes a compromise between

effectiveness, flexibility, and maintaining CLIP's previously acquired

information is required.

 In order to overcome these constraints, subsequent research has

investigated hybrid approaches like lightweight fine-tuning and semi-

supervised learning such as FixMatch, FlexMatch and others, although these

techniques both either require high computational resources or fall short of

maintaining CLIP's zero-shot capabilities. To close this gap, the proposed

CLIPath framework introduces two innovations:

i. A Language-Vision Alignment (LVA) contrastive loss that

maintains alignment between image and text features during

fine-tuning (Mo, Xia and Markevych, 2023).

ii. A Residual Feature Connection (RFC) module that fuses task-

specific features with CLIP's pre-trained embeddings via a

lightweight adapter.

Rapid adaption to pathological datasets like PCam and MHIST is made possible

by RFC's parameter efficiency (0.04% of CLIP's trainable parameters) and

LVA's regularization, which reduce overfitting and achieve notable accuracy

22

gains. For example, there is 19% improvement with only 0.1% labeled data.

 The advantages of CLIPath over current techniques are shown by

empirical evaluations. RFC fine-tuning improves performance to 81.5% with

only 0.5% labeled data, surpassing CLIP-Adapter and CoOp by 25% with 5×

quicker training times, while zero-shot CLIP achieves 56.5% accuracy on the

PCam dataset. Similarly, CLIPath's scalability is demonstrated on MHIST. It

achieves 74.8% accuracy compared to 36.9% zero-shot using 50% of the data.

Although there are still difficulties in expanding the framework to multi-class

classification and segmentation tasks, these results highlight the potential of

lightweight, knowledge-preserving adapters for medical applications. To further

reduce the performance difference with fully supervised approaches, future

strategies might incorporate expert-guided tagging systems or hybrid

architectures. For example, on PCam with 100% data, it achieved 92.8%

accuracy.

 In conclusion, CLIPath is a potential step toward effective adaption of

language-vision models in pathology with little data. The framework achieves

near-state-of-the-art performance while decreasing computing costs by

combining the alignment preservation of LVA with the parameter efficiency of

RFC. This is an important advantage for clinical application. Its expansion to

more complicated domain shifts and larger medical imaging jobs may be

investigated in future studies.

2.2.4 LLM Model to be included in projects

Table 2.１: Comparison among different LLM model for fine tuning

Aspect Instruction

Tuning with

GPT-4 (Peng et

al., 2023)

LLaMA-

Adapter V2 (Gao

et al., 2023)

CLIPath (Lai et

al., n.d.)

Focus Enhancing LLM

generalization via

instruction tuning

Parameter-

efficient visual

instruction tuning

Medical image

analysis with

CLIP

Key

Innovation

GPT-4 as teacher

model for high-

Early fusion of

visual tokens +

Residual Feature

Connection

23

quality data

generation

modular adapters

(0.04% params)

(RFC) for

pathology

Data

Efficiency

52K GPT-4-

generated

instructions

outperform 700K

Alpaca data

Minimal multi-

modal data

required

0.1% labeled

data achieves

+19% accuracy

Performance LLaMA-GPT4

(7B) > Alpaca

(13B) in human

evaluations

Matches

ChatGPT in

multi-turn

conversations

81.5% accuracy

(PCam) vs.

56.5% zero-shot

CLIP

Strengths Cross-lingual

support (e.g.,

Chinese LLaMA-

GPT4-CN)

Preserves LLM’s

language

capabilities

Maintains

CLIP’s zero-shot

ability

Limitations Smaller model

size (7B) vs.

competitors

(13B+)

Struggles with

out-of-

distribution

visuals

Limited to binary

classification in

pathology

Applicability

to Your

Project

Ideal for

contextual

reasoning

Useful if adding

visual features

Less relevant

The three studies each focus on a different AI model optimization problem. In

order to enable zero-shot task performance without explicit training, the

Instruction Tuning with GPT-4 study focuses on enhancing the generalization

capabilities of large language models (LLMs) through high-quality, machine-

generated instructions. As another option, LLaMA-Adapter V2 focuses on

visual instruction adapting with the goal of bridging the gap between text and

image understanding in a way that uses the fewest possible parameters. With

minimal labeled data, CLIPath which is a medical image analysis

specialist adapts the CLIP model for pathology diagnosis. Although efficiency

and performance are the main focus of all three studies, CLIPath is used for

24

domain-specific visual analysis, LLaMA-Adapter V2 is used for multimodal

reasoning, and GPT-4 is used for general language tasks.

 High-quality synthetic data production is introduced by the GPT-4

instruction tuning approach, showing that when refined on GPT-4-curated

datasets, smaller models like LLaMA 7B can perform better than larger ones

like Alpaca 13B. This technique enhances cross-lingual flexibility while

reducing dependency on expensive human annotations. With only 0.04% of

trainable parameters, LLaMA-Adapter V2 enables vision-language integration

through innovative early visual token fusion and modular adapters. In order to

maintain CLIP's previously learned information while optimizing for medical

imaging, CLIPath presents a Residual Feature Connection (RFC) module,

which achieves high accuracy with less than 1% labeled data. In conclusion, a

ll three methods optimize for distinct constraints, CLIPath for domain

adaptation in data-scarce scenarios, LLaMA-Adapter V2 for lightweight

multimodal tuning and GPT-4 for scalable instruction data.

 Fine-tuning LLaMA on simply 52K GPT-4-generated samples

surpasses Alpaca's 700K GPT-3.5-based dataset, demonstrating that quality is

more important than quantity. For deployment to remain cost-effective, this

efficiency is essential. By using pre-trained visual encoders and requiring little

task-specific adjustment, LLaMA-Adapter V2 significantly minimizes data

requirements. This has make it suitable for applications with a small number of

labeled images. Because of its hybrid feature fusion, CLIPath performs

exceptionally well in low-data regimes and boosting accuracy by 19% on

pathology images with just 0.1% labeled data. While all three approaches reduce

reliance on data, GPT-4 succeeds at adapting to a variety of linguistic tasks,

while LLaMA-Adapter V2 and CLIPath concentrate on efficiency related to

vision.

 GPT-4-tuned LLaMA (7B) performed better than Alpaca (13B) in

54.12% of human evaluations, demonstrating that better data quality can offset

a smaller model size. Despite utilizing significantly fewer parameters, LLaMA-

Adapter V2 competes with specialized models such as BLIP in vision-language

benchmarks and matches ChatGPT in conversational tasks. CLIPath's

effectiveness in medical imaging is demonstrated by its 81.5% accuracy on

pathology datasets as compared to 56.5% for zero-shot CLIP. CLIPath

25

dominates domain-specific visual analysis, LLaMA-Adapter V2 succeeds in

multimodal tasks and GPT-4 leads in language reasoning.

 Given its exceptional cross-lingual compatibility such as Chinese

LLaMA-GPT4-CN and flexibility in following instructions, GPT-4 is a great

choice for dynamic jobs like fraud detection in vehicle access systems. Effective

applications like car model and color identification without the need for

expensive full-model retraining are made possible by the LLaMA-Adapter V2.

This succeeds at maintaining essential LLM capabilities while incorporating

vision. Even though it is tailored, CLIPath preserves CLIP's zero-shot

adaptability in a unique way while optimizing for certain domains which may

include identifying emergency or customized car models. For various aspects of

AI-driven recognition systems, each model has unique benefits like CLIPath for

domain-specific visual tuning, LLaMA-Adapter V2 for lightweight multimodal

fusion, and GPT-4 for reasoning.

 Every model has distinct benefits, but there are also significant

drawbacks. For multimodal applications like image-based vehicle detection,

GPT-4 must be integrated with a vision model like YOLOv8 as it is mostly text-

based. Even though LLaMA-Adapter V2 is effective at combining language and

vision, its resilience in real-world situations is limited by its inability to handle

out-of-distribution pictures such as veiled or unusual license plates. Although

CLIPath works well for narrow adaptations, it is currently limited to binary

classification and is not scalable for complex vehicle recognition tasks that

involve a variety of classes or fine-grained characteristics. When using AI in

real-world, large-scale applications like multimodal vehicle access control,

the drawbacks included GPT-4's reliance on external vision systems, LLaMA-

Adapter V2's sensitivity to visual abnormalities, and CLIPath's limited scope

highlight the necessity for customized solutions.

 GPT-4o is the best option for this project because of its easier

interaction with visual models, scalability, and superior reasoning skills. The

contextual depth of GPT-4 is necessary for fraud detection such as identifying

mismatched license plates or cars, even though LLaMA-Adapter V2 performs

exceptionally well in parameter-efficient vision-language tasks. Despite its

efficiency, CLIPath is unrelated to your use case and excessively specialized for

medical imaging. The dynamic decision-making capabilities of GPT-4's

26

instruction-tuning framework include granting access based on contextual rules,

integrating seamlessly with segmentation models like YOLOv8 for license plate

recognition and fine-tuning at a cheap cost while maintaining excellent

performance with smaller datasets. In contrast, CLIPath provides no apparent

advantage for vehicle detection and LLaMA-Adapter V2 requires further

vision-language alignment work. Consequently, GPT-4 offers the optimal ratio

of efficiency, flexibility, and reasoning.

2.3 Existing Segmentation Techniques

Vehicle recognition systems rely on image segmentation because it allows

vehicles to be precisely isolated from complex backgrounds. The precision of

subsequent processes like classification and identification is increased by

efficient segmentation. This section examines current segmentation

techniques with a focus on the way they work for processing visual input in

order to reduce noise and increase the accuracy of result.

2.3.1 Segment Anything

Natural language processing (NLP) has been transformed by recent

developments in large language models (LLMs), which allow for fast

engineering to enable zero-shot and few-shot generalization. Motivated by this

achievement, Kirillov et al. (2023) present the Segment Anything Model (SAM)

which is a foundation model for picture segmentation that requires little task-

specific training and can generalize across a variety of tasks. The main objective

of SAM is to build a promptable segmentation model that can produce precise

masks from different input prompts, such text, boxes, or points, in a manner

similar to how models like CLIP and GPT-3 adjust to new tasks through

prompting. With this method, computer vision is undergoing an important shift

from task-specific designs to adaptable, all-purpose models.

A key contribution of SAM is the introduction of the promptable

segmentation task in which the model must produce valid segmentation masks

for any given prompt even though in ambiguous scenarios. To address this,

SAM predicts several feasible masks. For example, a single point on a shirt

could relate to the clothing or the person who is wearing it. There are three

primary components to the model architecture:

27

i. a heavyweight image encoder based on a Vision Transformer

(ViT) pre-trained by a Masked Autoencoder (MAE).

ii. a prompt encoder that can process sparse inputs like text, boxes,

or points.

iii. a lightweight mask decoder that creates segmentation masks in

real-time which is about 50 ms per prompt.

By reusing image embeddings over several prompts, this architecture ensures

performance while creating interactive applications possible.

The largest segmentation dataset to date which is the SA-1B

dataset was created by the authors using a scalable data engine to train SAM. It

contained 1.1 billion high-quality masks from 11 million images. The data

engine functions in three stages:

i. semi-automatic annotation. In this stage, SAM pre-generates

confident masks for annotators to supplement.

ii. assisted-manual annotation in which SAM helps human

annotators refine masks.

iii. fully automatic mask generation where SAM predicts masks

by using a grid of point prompts that have been filtered for

quality and stability.

The quality of SA-1B's masks was confirmed to be comparable to that of human

annotations. 94% of automatically generated masks achieved an Intersection-

over-Union (IoU) of above 90% with professionally corrected versions.

 Two innovations of SAM include its zero-shot transfer

capabilities that enables it to carry out tasks like edge detection, instance

segmentation, and object proposal generation without the need for extra training,

and its ambiguity-aware design which enables it to handle unclear prompts by

anticipating multiple masks. Experiments on 23 different datasets showed that

SAM achieves greater human-rated mask quality and performs better in single-

point segmentation than specialist models like RITM. Furthermore, SAM's

adaptability enables it to be integrated with other models. For instance, it can be

used to segment data by using the bounding box outputs of an object detector as

prompts.

 SAM has drawbacks despite of its advantages. As compared to

specialist techniques, it has trouble with fine-grained structures and distinct

28

borders and its text-to-mask capability is still in its early stages. Additionally in

certain applications, real-time performance may be limited by the image

encoder's computational cost. However, SAM's capacity to be deconstructed

makes it an effective tool for more complex systems like ego-centric vision or

3D reconstruction. The release of SA-1B offers a useful resource for developing

foundation models in computer vision with a focus on responsible AI which

includes eliminating potential biases and guaranteeing dataset variety.

 In a nutshell, SAM combines task generalization, effective architecture

design, and large-scale data curation. It has marked a significant advancement

toward general-purpose segmentation models. Although community adoption is

necessary for its long-term success, SAM establishes a standard for promptable

vision models and opens the door for further study of flexible, scalable computer

vision systems. The model's potential to revolutionize segmentation in both

research and practical applications is demonstrated by its capacity to do zero-

shot segmentation and blend in seamlessly with larger operations.

2.3.2 Engineering Vehicle Object Segmentation Algorithm Based on

Improved YOLOv8x-seg

Based on (Wu, Feng and Zhang, 2024), the necessity for precise object

segmentation of engineering vehicles operating close to power transmission

infrastructure has been brought to light by recent developments in computer

vision for industrial safety applications. Traditional segmentation techniques

often come fail in diverse field situations. This has made it difficult for

automated monitoring systems to safely operate cranes, excavators, and other

machinery near electrical grids. Modern deep learning architectures, especially

the YOLO (You Only Look Once) family of models, have shown promising

capabilities for real-time object detection and segmentation tasks while

traditional methods that rely on spatial-domain processing struggle with

background noise and small-object detection. However, recent studies have

shown that even the most advanced YOLO implementations have limits when

it deals with segmenting small but crucial safety components of engineering

vehicles such as excavator arms and crane booms especially against cluttered

backdrops close to power transmission lines.

 By creatively combining adaptive multi-scale feature fusion and

frequency-domain processing, the suggested HFF-YOLO architecture marks a

29

substantial breakthrough in this field. This strategy builds on the YOLOv8x-seg

basis by introducing three significant technological advancements that together

overcome the shortcomings of current approaches. The High-Frequency

Information Extraction (HFIE) module first uses the Fourier Transform to

convert input images into the frequency domain. A high-pass filter is then

employed to eliminate texture and edge information while reducing background

noise. The visibility of minor vehicle components that might be hidden in

conventional spatial-domain analysis is improved by this frequency-domain

processing. Secondly, a progressive fusion method that better maintains

shallow-layer detail information while incorporating deep-layer semantic

context is used by the Asymptotic Feature Pyramid Network (AFPN) to replace

traditional feature pyramid topologies. Since AKConv supports variable kernel

forms, its integration into AFPN significantly improves the model's capacity to

handle objects of different scales. Lastly, to optimize the fusion process for

multi-scale object recognition and minimize information loss between non-

adjacent layers, the Adaptive Spatial Feature Fusion (ASFF) module uses a

Softmax-based attention mechanism to dynamically weight features from

various network levels.

 In this paper, a specific dataset with 3,600 annotated photos which

knowas ENV3K is created. It consists of four different kinds of engineering

vehicles including trucks, cranes, excavators, and bulldozers that operate

beneath electricity transmission lines in order to aid in the construction and

assessment of this innovative architecture. This dataset, which offers a variety

of instances of vehicles in operational situations with different dimensions,

orientations, and backdrop complexities helps to close a significant gap in the

training resources currently accessible for this particular application domain.

The dataset is especially useful for benchmarking since it focuses on real-world

situations close to power infrastructure. Hence, it can ensure that models trained

on ENV3K must overcome the same difficulties encountered by real monitoring

systems.

 According to the experimental results, the HFF-YOLO method is

effective across a variety of performance metrics. With a mAP50 of 81.2% on

the ENV3K dataset, the model outperforms the baseline YOLOv8x-seg

architecture by 0.8%. Particularly, the system exhibits a 4.7% increase in

30

mAP50 for crane arm recognition. This is a crucial skill for averting hazardous

connections with power lines. By having this, the system is demonstrating its

exceptional strength in small-object segmentation. While keeping a low

parameter count of 54.7 million as opposed to 71.7 million in the baseline model,

the recall rate increases from 72.6% to 73.9%. Ablation studies show that each

of the HFIE, AFPN, and ASFF modules improve performance. Removing any

one of them led to a 1.3% drop in mAP50, proving that all three modules work

well together. Visual comparisons make it evident that the model performs

better at lowering false negatives for minor vehicle parts while retaining strong

segmentation of bigger structures.

 Nevertheless of these developments, there are several drawbacks to the

HFF-YOLO architecture that should be taken into account. The deployment on

resource-constrained edge devices may be difficult due to to the large increase

in computational cost to 503.5 GFLOPS which is 46% higher than YOLOv8x-

seg. Furthermore, not all vehicle types have the same performance advantages.

To give an illustration, larger objects such as truck bodywork show relatively

moderate gains in comparison to the significant improvements seen with small

components. These results highlight areas that require further development,

particularly with regard to optimizing the model's performance in real-world

deployment scenarios. Possible paths include expanding training datasets to

include more vehicle types and operating conditions, improving feature fusion

mechanisms to sustain accuracy gains while lowering resource requirements,

and using model compression techniques to lower computational overhead.

 The HFF-YOLO architecture greatly improves the fields of safety

monitoring and industrial computer vision. By effectively combining

sophisticated feature fusion approaches with frequency-domain processing, it

shows a promising way forward for addressing the long-standing problem of

small-object segmentation in complicated contexts. Although there is

architectural innovations, especially the HFIE module's innovative use of

frequency-domain analysis may inspire new approaches to object segmentation

beyond the specific case of engineering vehicles. However, the specialized

ENV3K dataset offers a valuable resource for future research in this application

domain. The HFF-YOLO technique is an achievable way to improve safety by

more precisely identifying possible threats close to transmission lines as

31

computer vision technologies are further included into power infrastructure

monitoring systems. Future research in this field would profit from examining

how well these methods transfer to other industrial monitoring applications

where it is still difficult to detect small objects in cluttered surroundings.

2.3.3 Fast-SCNN: Fast Semantic Segmentation Network

As stated in Poudel, Liwicki and Cipolla (2019), semantic segmentation has

emerged as a key feature that makes it possible for vital applications like

augmented reality interfaces and driverless cars in current computer vision

systems. Although recent advancements in segmentation accuracy have been

dominated by encoder-decoder systems, their computational complexity

frequently makes them unsuitable for real-time applications, especially on

embedded devices with limited resources. Conventional methods that depend

on large pre-training datasets and high-capacity networks contribute to

efficiency issues, posing major obstacles to implementation in latency-sensitive

situations. A novel architecture known as Fast-SCNN (Fast Segmentation

Convolutional Neural Network) was created by Poudel et al. to overcome these

constraints, offers above-real-time performance on high-resolution imagery

(1024 x 2048 pixels) with competitive accuracy and a small memory footprint.

The fundamental innovation of Fast-SCNN is its innovative

architecture which carefully achieves a compromise between segmentation

performance and processing efficiency. A key component of this strategy is the

learning to downsample module. This strategy shares low-level feature

extraction across resolution branches and hence removing duplicated

computations typical of multi-branch designs. This module's effective three-

layer structure which consists of two depthwise separable convolutions after a

standard convolution. It allows for fast downsampling while maintaining

important spatial information. In order to maintain a lean parameter count of

only 1.11 million, the network architecture utilizes depthwise separable

convolutions and inverted residual blocks inspired by MobileNet-V2 along with

a global feature extractor for contextual understanding and a feature fusion

module that integrates multi-scale information. An Nvidia Titan Xp GPU

achieved 68.0% mean Intersection over Union (mIoU) on the Cityscapes dataset

at 123.5 frames per second. This is a remarkable performance characteristic that

32

greatly outperforms similar real-time models like BiSeNet which achieved 71.4%

mIoU at 57.3 fps and GUN which reached 70.4% mIoU at 33.3 fps.

In addition to its innovative architecture, Fast-SCNN challenges

standard procedures in network training. Unlike with standard procedures in the

industry, the authors show that their low-capacity model benefits only slightly

(+0.5% mIoU) from ImageNet pre-training. This result implies that aggressive

data augmentation and longer training epochs can be effective substitutes for

resource-intensive pre-training processes in well-designed efficient

architectures. The model's adaptability is further demonstrated by its capacity

to process inputs with lower resolution (512×1024 pixels) while maintaining

competitive performance (62.8% mIoU at 285.8 fps) without necessitating

architectural changes. As a result, it become especially appropriate for

deployment across a range of hardware configurations.

 The success of Fast-SCNN is confirmed by experimental assessments

on the Cityscapes benchmark as the model maintains its real-time performance

advantage while reaching 68.0% class-level and 84.7% category-level mIoU.

The significance of the skip connection design is highlighted by ablation tests.

The tests reveal a 4.92% mIoU degradation upon its removal which mostly

affects border precision and tiny object segmentation. Regardless of the model's

outstanding capabilities, a few limitations should be taken into consideration.

These include an inherent accuracy-speed tradeoff. For instance, there is about

3% lower mIoU when compared to BiSeNet. Besides that, possible difficulties

when deploying to ultra-low-power embedded devices without the use of extra

optimization techniques like quantization.

 In the future, Fast-SCNN provides a strong basis for more studies on

effective semantic segmentation. In this paper, a number of exciting paths, such

as hardware-specific optimizations aimed at FPGA or ASIC implementations,

domain adaption for particular applications like medical imaging, and network

quantization and pruning to further minimize computational overhead were

pointed out. Fast-SCNN represents a major advancement in real-time

segmentation capabilities by effectively combining the robustness of encoder-

decoder frameworks with the efficiency advantages of two-branch designs. This

allows for the creation of workable solutions for deployment scenarios where

performance cannot be compromised but computational resources are limited.

33

2.3.4 Comparative Analysis on Segmentation Techniques

Table 2.２: Comparison among varies segmentation techniques

Aspect Segment Anything

(SAM) (Kirillov et

al., no date)

HFF-YOLO

(Improved

YOLOv8x-seg)

(Wu, Feng and

Zhang, 2024)

Fast-SCNN

(Poudel, Liwicki

and Cipolla,

2019)

Generalization Excels in zero-shot

and few-shot

generalization

across diverse tasks

due to its

foundation model

nature. Can handle

ambiguous prompts

by predicting

multiple masks.

Specialized for

engineering

vehicles,

particularly

small

components like

crane arms, but

lacks

generalization

beyond its

trained domain.

Optimized for

real-time

semantic

segmentation in

specific

scenarios (e.g.,

autonomous

driving) but not

designed for

generalization.

Architecture Uses a Vision

Transformer (ViT)

image encoder,

prompt encoder for

text/boxes/points,

and lightweight

mask decoder for

real-time

performance.

Combines

frequency-

domain

processing

(HFIE module)

with adaptive

multi-scale

feature fusion

(AFPN and

ASFF) for

small-object

segmentation.

Employs

depthwise

separable

convolutions

and inverted

residual blocks

for efficiency,

with a focus on

low

computational

overhead.

Performance Achieves high-

quality masks (94%

IoU > 90%) and

Improves

mAP50 by 0.8%

over YOLOv8x-

Achieves 68.0%

mIoU at 123.5

fps on

34

outperforms

specialist models in

human-rated

quality.

Computational cost

may limit real-time

applications.

seg, with a 4.7%

boost for crane

arms, but

computational

cost increases

by 46%.

Cityscapes,

making it highly

efficient for real-

time use but

with slightly

lower accuracy

than

competitors.

Data

Requirements

Trained on SA-1B

(1.1B masks from

11M images),

enabling broad

generalization.

Requires minimal

task-specific

training.

Requires

specialized

dataset

(ENV3K) with

annotated

engineering

vehicles,

limiting

adaptability to

other domains.

Benefits

minimally from

ImageNet pre-

training, relying

instead on

aggressive data

augmentation

and longer

training epochs.

Use Case Fit Ideal for

applications

requiring flexibility,

multimodal prompts

(text, boxes,

points), and

integration with

other models.

Best suited for

industrial safety

monitoring of

engineering

vehicles near

power lines,

with a focus on

small-object

segmentation.

Designed for

latency-sensitive

applications like

autonomous

driving or

augmented

reality, where

speed is critical.

From aspect of generalization, with training on the large SA-1B dataset,

Segment Anything (SAM) is a foundation model that excels in zero-shot and

few-shot generalization and can handle ambiguous prompts by predicting

several masks. This enables broad adaptability without task-specific fine-tuning.

On the other hand, HFF-YOLO which is an improved YOLOv8x-seg is a

specialized model that focuses on engineering vehicle segmentation,

35

specifically for industrial safety near power lines. It uses adaptive multi-scale

feature fusion (AFPN & ASFF) and frequency-domain processing (HFIE

module) to detect small components like crane arms, but its generalization is

restricted to its specialized ENV3K dataset and does not support multimodal

prompts. Fast-SCNN is not appropriate for tasks requiring flexibility or

ambiguous prompt handling because it struggles with zero-shot adaptation and

multimodal inputs. It is made for real-time semantic segmentation in

constrained environments and achieves efficiency through depthwise separable

convolutions and inverted residual blocks.

 In order to efficiently generate high-quality masks, SAM combines a

lightweight mask decoder, a prompt encoder that can read text, boxes, or points,

and a Vision Transformer (ViT) as its image encoder. In order to improve small-

object segmentation, HFF-YOLO combines adaptive multi-scale feature fusion

(AFPN and ASFF) with frequency-domain processing, which is integrated

through its HFIE module, to improve YOLOv8x-seg. With an emphasis on

reduced latency for real-time applications, Fast-SCNN is built with depthwise

separable convolutions and inverted residual blocks to optimize computational

efficiency.

 With over 94% of its masks having an IoU above 90%, SAM produces

extremely accurate segmentation masks that frequently beat specialist models

in terms of human-rated quality. Real-time deployment is constrained by its

potentially high computing cost. Despite a 46% increase in computational cost,

HFF-YOLO greatly increases performance on small components like crane

arms and improves mean average precision (mAP50) marginally over

YOLOv8x-seg overall. Although its accuracy is marginally lower than that of

other models, Fast-SCNN provides extremely quick segmentation, attaining 68%

mIoU at 123.5 frames per second, making it perfect for applications requiring

speed.

 SAM can generalize widely with less task-specific training thanks to

training on the large dataset (SA-1B), which comprises 1.1 billion masks from

11 million pictures. HFF-YOLO's adaptation to other domains is limited

because it depends on the specific ENV3K dataset with annotations for

engineering vehicles. In order to accomplish its effectiveness in semantic

36

segmentation, Fast-SCNN mostly relies on substantial data augmentation and

lengthy training schedules, with some pre-training from ImageNet.

 Applications requiring flexibility and multimodal fast processing are

most suited for SAM, which makes it perfect for complicated picture jobs or

integration with other models. When it comes to small-object segmentation in

safety-critical situations, such as vehicles near power lines, HFF-YOLO is

especially useful for industrial monitoring of engineering vehicles. Fast-SCNN

prioritizes real-time speed above wide applicability and is intended for

applications like augmented reality and autonomous driving where low latency

is crucial.

2.4 Existing Similar Application

2.4.1 i-Neighbour

According to TimeTec (2025), i-Neighbour is a complete smart community

management system designed to improve residential areas' connectivity,

convenience and security. Numerous features are integrated onto the platform

to help residents, management offices and security staff maintain efficient and

safe operations. The visitor management system which enables locals to pre-

register visitors using a smartphone app, is a fundamental feature of i-Neighbour.

A QR code is created upon registration to provide easy access to the guardhouse.

For visitors from Malaysia, the system also facilitates MyKad registrationn

which guarantee effective and trustworthy identity verification.

 In addition to visitor management, i-Neighbour offers emergency

alarms, e-billing integration, announcement distribution and facility booking.

The portal is a one-stop shop for residential participation, allowing residents to

handle payments and take part in community polling. i-Neighbour is scalable

and flexible enough to accommodate a range of home configurations thanks to

its cloud integration and language support.

2.4.2 MyTaman

As stated in Zoinla (2019), MyTaman is a community platform built on IoT and

neighborhood security that prioritizes connectivity and safety in real time. It

provides a combination of hardware and software solutions that enhance

communication and surveillance in contemporary residential environments.

37

One notable feature is the MyVMS (My Visitor Management System) which

enables locals to use a mobile app to pre-register guests. Visitors can scan their

ID or driver's license as they arrive, and the integrated system notifies the guards.

 In addition, MyTaman has a 24/7 emergency SOS function that, when

used, instantly notifies security personnel and pre-programmed contacts. The

system also has smart access features that let people use their smartphones to

access common facilities. The platform enhances the efficiency and

accountability of security patrols by supporting guard patrol monitoring via a

paperless app-based system.

2.4.3 JaGaApp

Based on Red Ideas (2025), the JaGaApp, created by JaGaSolution, acts as a

virtual link between gated community residents, security guards and

management. It is intended to improve communal living, facilitate

communication and guarantee neighborhood safety. Residents can speak with

guards remotely thanks to the app's wireless intercom technology. Pre-approval

of visitors is made possible by its visitor registration system which guarantees

the security of entry and exit points.

 Additional interesting characteristics include a resident feedback

system, digital notice boards for announcements, facility booking modules and

emergency help notifications. JaGaApp lessens dependency on manual

procedures while promoting community involvement. The platform's appeal

among contemporary residential complexes can be attributed to its mobile-first

design which makes it easy to use and accessible for users of all ages.

2.4.4 TimeTec VMS

As stated in TimeTec Cloud (2025), a cloud-based visitor management system

called TimeTec VMS was developed to update how commercial and residential

facilities monitor and control visitor entry. The system prioritizes real-time

control, automation and security. Each visitor is given a QR code for

entrance and residents and staff can pre-register guests using the app. The

platform offers a comprehensive access control solution by easily integrating

with TimeTec IoT devices such as smart doors and turnstiles.

38

 In order to facilitate evacuation processes, TimeTec VMS additionally

incorporates emergency list tracking which displays all visitors that are now on

the property. The system provides comprehensive analytics and reporting

capabilities and supports a number of languages. Because of its modular

architecture, it may be utilized in both large corporate settings and modest

domestic settings.

2.4.5 Visitorz

According to (VISITORZ TECH PRIVATE LIMITED, n.d.), a visitor

management app called Visitorz was created specifically for residential

communities with the goal of achieving easy-to-use yet efficient access control.

Residents can use the platform to pre-register guests, who will then be given a

QR code to scan at the gate to gain admission. In order to expedite check-ins

and cut down on wait times, the system alerts the host when guests arrive.

 Furthermore, Visitorz keeps a thorough access log that enables

management and residents to monitor visitor history for security audits.

Although it concentrates on the essential visitor-related features, the platform's

ease of use makes it simple to implement and administer, especially for smaller

residential areas or communities searching for a cost-effective solution.

2.4.6 Features Analysis on Similar Applications

Table 2.３: Comparison among features between similar applications and

proposed system

Features i-

Neighbour

(TimeTec,

2025)

MyTaman

(Zoinla,

2019)

JaGaApp

(Red

Ideas,

2025)

TimeTec

VMS

(TimeTec

Cloud,

2025)

Visitorz

(VISITORZ

TECH

PRIVATE

LIMITED,

no date)

Proposed

System

Visitor Pre-

registration

Yes Yes Yes Yes Yes Yes

QR Code

Access

Yes Yes Yes Yes Yes Yes

39

ID/License

Scanning

No Yes No Yes No No

Emergency

Alerts (SOS)

Yes Yes Yes Yes No Yes

Wireless

Intercom

Yes Yes Yes Yes No No

Facility

Booking

Yes No Yes No No No

E-Billing &

Payment

Integration

Yes Yes Yes Yes No No

Guard Patrol

Monitoring

Yes Yes Yes Yes No Yes

Multilingual

Support

Yes Yes Yes Yes No No

AI-Based

Vehicle

Recognition

No No No No No Yes

GPT-4o

Integration for

Communication

No No No No No Yes

Real-time Data

Analytics

Yes Yes Yes Yes No Yes

Although current programs provide a number of functions for community

security and guest management, none integrate cutting-edge technology like AI-

based car identification or integration with massive language models like GPT-

4o. The greater security offered by the suggested system attempts to close this

gap. Unauthorized access can be reduced with AI-powered car recognition.

Additionally, better communication is made possible by GPT-4o integration,

40

which makes interactions between residents and the management system more

organic and effective. Finally, proactive decision-making and better community

management are made possible by comprehensive analytics with real-time data

analysis. The suggested method provides a more reliable and clever answer for

current residential communities by combining these cutting-edge technology.

2.5 Existing Vehicle Recognition System Review

Before beginning a project, examining the existing vehicle recognition systems

can yield important information and insights that help with decision-making

regarding the project's functionality, direction, and probability of success.

This section will mainly focus on research for vehicle plate recognition

part, which is the most usual ways utilized in single modal vehicle recognition

systems to recognise a vehicle. Looking at diverse structures of license plate

recognition system can assist in understanding the algorithm and pipelines used

in it and findings for selecting suitable method for vehicle plate detection and

recognition process.

2.5.1 Efficient license plate recognition in unconstrained scenarios

According to Wei et al. (2024), Efficient Automatic License Plate Recognition

(EALPR) is a framework that designed for unconstrained scenarios. To give an

illustration, license plates that are distorted because of issues of perspective

which is one of the unrestricted situations.

 A lightweight vehicle plate detection was applied in this framework.

This has included the structure of effective object detection approach like

anchor-free strategies, CenterNet, EfficientDet, and transformer encoder.

Anchor free method can predict objects directly without predefined box sizes

(Ultralytics Inc, n.d.). CenterNet is a one-stage object detection model that

predicts object centers rather than relying on anchor boxes or region proposals

like anchor-based method such as Faster-RCNN (Zhou, Wang and Krähenbühl,

2019). This implies that, CenterNet is a specific anchor-free method that

primarily utilized in this project. By utilizing this way in object detection, the

computational cost will be decreased since does not required selection and

tuning of anchor box sizes and ratios and the flexibility in handling irregular

41

shape object will increase. In other words, anchor-free method helps to simplify

the detection process and accelerate the inference process. This gives a big

contribution on achieving real-time efficiency with a speed of 74.9 frames per

second (FPS) in EALPR framework. The higher the FPS, the better the

performance, in which outperforming traditional anchor-based methods that

often sacrifice speed for accuracy.

For EfficientDet, it is a family of object detection models developed by

Google based on EfficientNet. It relies on Bi-directional Feature Pyramid

Network (BiFPN) for multi-scale feature fusion (MingxingTan, Ruoming Pang

and Quoc V. Le, 2020). In simpler terms, EfficientNet can be apply in varies

size of license plate in the captured image neither small, medium nor large.

Based on Ferrer (2024), transformer encoder converts the input tokens into

forms that are contextualized. Hence, it is useful when having the scenario that

license plate only occupy a small portion of the image. As a result, the system

can handle unrestricted distances between the vehicle and the capturing camera

in vehicle plate detection.

 Moreover, this EALPR also follow unified framework structure in

which it combines vehicle and license plate detection into a single pipeline. The

advantage of this arrangement is preventing the demand for separate networks

and decreasing the I/O overhead. Shared feature maps were also being used

among vehicle detection and vehicle plate detection modules in order to

improve the efficiency. In this case, the unified framework structure helps with

enhancing performance by minimizing the cost of computation.

 Despite adopting an anchor-free approach, this framework has

demonstrated through testing on numerous datasets with flying colour findings

that it surpasses current method in terms of accuracy and speed. With 98.15%

on OpenALPR(EU), 95.61% on OpenALPR(BR), 99.51% on AOLP(RP), 88.81%

on SSIG, and 79.41% on CD-HARD, it reaches state-of-the-art accuracy.

 Training data is one of the important procedures in vehicle plate

recognition system. In this project, the model is trained with data augmentation

strategies in order to handle different ranges such as distortion of perspective,

changes of colour, changes in lighting and other condition that may affect the

accuracy of recognised license plate in reality. Consequently, the robustness of

the model may be proven.

42

 To recognise the numbers and letters from the pre-processed license

plates, the license plate recognition (LPR) employs a per-trained OCR-net.

Because the distorted number plates had already been corrected during the

earlier detection step, using this per-trained OCR-net made the recognition

procedure become simpler. Convolutional Neural Networks (CNNs), which are

employed in the EALPR framework, were utilized to extract sequential features

from the full license plate region using segmentation-free techniques and OCR-

net.

 In addition, loss function is also used in the License Plate Detection

(LPD) of this project. Loss function is a mathematical function that measures

how well a machine learning model is performing (Dave and Cole, 2024). It

helps to calculates the difference between the predicted output and the actual

(ground truth) value. The loss function in this project was divided into three

parts which included the probability error between the center of vehicle plate

and prediction, license plate location and affine transformation parameters

regression.

 In a nutshell, this EALPR framework is efficient and effective when

being utilized in unconstrained scenarios. It addresses the challenges of

perspective distortion of vehicle plate, varies size of license plate portion in the

image and real-time processing.

2.5.2 ALPR- An Intelligent Approach Towards Detection and

Recognition of License Plates in Uncontrolled Environments

According to Bakshi et al. (2023), automatic license plate recognition (ALPR)

systems are becoming vital tools for law enforcement, intelligent

transportation and traffic management. In the past, these systems have

performed best in controlled settings with frontal views of license plates and

ideal lighting. However, as recent studies have shown, their performance

drastically decreases when they are faced with the difficulties of uncontrolled

surroundings that include complicated backgrounds, varying illumination, and

oblique viewing angles. This drawback of traditional ALPR systems has

generated a lot of interest in research into creating more reliable alternatives that

can manage real-world situations.

 In uncontrolled scenarios, ALPR systems face a variety of difficulties.

Environmental elements that significantly increase noise and distortion in

43

license plate photos include motion blur, poor lighting, and extreme weather.

Furthermore, even if they work well under ideal circumstances, commercial

systems like OpenALPR and Sighthound show significant performance declines

in these uncontrolled situations. These challenges highlight the urgent need for

increasingly complex methods that can preserve high accuracy in a variety of

difficult real-world scenarios.

 New developments in deep learning have opened the door for

innovative solutions to these problems. YOLOv4's integration for license plate

detection is a major advancement because it provides real-time processing

capabilities together with excellent accuracy. By adapting the YOLOv4

architecture especially for license plate detection, researchers have improved

this method a lot more. They have done this by optimizing factors like batch

size and filter configurations to increase performance while lowering

computational complexity. This customized version shows how general-

purpose frameworks for object detection can be successfully adapted to

particular recognition tasks.

 Using Spatial Transformer Networks (STNs) to correct for geometric

distortions is a very important advancement in ALPR systems. An complicated

three-stage procedure is used by the STN module to generate sampling

coordinates, estimate transformation parameters using a localization network,

and produce the rectified output using a sampler. By correcting for perspective

distortions and different orientations, this method successfully normalizes

license plate photos and greatly increasing the accuracy of future character

recognition. STNs' modular design preserves end-to-end trainability while

enabling smooth incorporation into current deep learning pipelines.

 Deep learning architecture advancements have also helped character

identification in ALPR systems. In order to improve image quality before

character segmentation, modern systems use extensive preprocessing pipelines

that include morphological operations, adaptive thresholding, and grayscale

conversion. To properly identify individual characters, the segmentation method

itself combines sophisticated filtering based on dimensional limitations with

shape analysis. In order to achieve exceptional accuracy rates above 96% on

common benchmarks, researchers have created customized CNN architectures

44

for the recognition phase that are modeled after VGGNet but tuned for license

plate character recognition.

 The advantage of these sophisticated ALPR systems over conventional

methods has been proven via evaluation. Extensive testing on various

datasets such as AOLP, SSIG and custom collections with difficult oblique

views has consistently shown increases in speed. In challenging situations, it

has been demonstrated that the incorporation of STNs alone increases

recognition accuracy by about 13%. The benefits of these research-grade

methods are demonstrated by comparisons with commercial systems especially

when it comes to processing distorted and less-than-ideal license plate photos.

With a mean average precision of 90%, the customized YOLOv4 detection

component outperforms earlier iterations of the YOLO architecture.

 Despite all of these improvements, there are still specific troubles with

the ALPR systems in use today. The current limitation to Latin character sets

and performance decrease in extremely low light and partial occlusions are still

problems. Such limitations highlight crucial areas for further study such as

creating more reliable preprocessing methods for dim lighting, integrating

multimodal sensing strategies, and expanding recognition capabilities to

different writing systems like Devanagari. In addition, investigating hybrid

architectures that combine the advantages of various deep learning techniques

could result in additional gains in computational efficiency and accuracy.

 The development of ALPR systems is typical of more general patterns

in pattern recognition and computer vision, where deep learning keeps pushing

the envelope in difficult real-world applications. As these technologies advance,

they should make it possible for ALPR solutions to become more dependable

and adaptable. ALPR solutions shouls also able to function well in a wide range

of environmental conditions found in real-world deployment scenarios. In

addition to improving the state of ALPR technology, the current research in this

area offers important new information to the broader field of object recognition

in uncontrolled situations.

45

2.5.3 Vehicle color recognition based on smooth modulation neural

network with multi-scale feature fusion

Based on Hu et al. (2023), in intelligent transportation systems, vehicle color

recognition (VCR) has become a vital technology, especially when conventional

license plate recognition techniques are ineffective because of obstruction, fraud,

or low picture quality. Although traditional VCR systems usually only identify

cars into 13 or fewer color categories, real-world applications are calling for

more precise detection capabilities. Limited dataset diversity, class imbalance

issues, and performance degradation under changing environmental conditions

are only a few of the major obstacles facing current techniques. These flaws

have prompted studies on more resilient VCR systems that can manage the

complex nature of actual traffic situations.

 The generation of extensive datasets is a key obstacle to the

advancement of VCR technology. The scope of existing public datasets, such

the C-, J-, and T-datasets, is constrained as they only cover a maximum of 13

color groups and frequently lack variation in terms of lighting circumstances,

weather scenarios, and vehicle kinds. The creation and assessment of

increasingly complex VCR algorithms are severely hampered by these

constraints. In order to fill this gap, Hu et al. (2023) recently introduced Vehicle

Color-24 which is a far more extensive dataset that includes 10,091 images

taken from 100 hours of urban road surveillance video. In addition to extending

the color taxonomy to 24 fine-grained groups, this dataset incorporates difficult

real-world fluctuations in weather and illumination. The data's long-tail

distribution which shows that rare colors like purple (0.04%) and pink (0.11%)

are greatly underestimated while common colors like white (37.87%) and black

(20.08%) are predominant. This offers both a difficulty and an opportunity for

creating more reliable detection algorithms.

 Innovative architectural solutions for VCR systems have been

presented by researchers in order to address these issues. An important

development in this field is the Smooth Modulation Neural Network with Multi-

Scale Feature Fusion (SMNN-MSFF). A multi-scale feature fusion module that

integrates both local geometric details and high-level semantic information

using Feature Pyramid Networks (FPN), a lightweight 42-layer VCR-ResNet

backbone optimized for color feature extraction, and a novel improved Smooth

46

L1 loss function (VCR-Loss) created primarily to reduce the effects of class

imbalance are some of the major innovations combined in this approach. In

contrast to conventional focus loss techniques, the VCR-Loss performs better in

ablation studies (94.96% vs. 91.79% mAP) by dynamically reweighting losses

for underrepresented classes using a parameter β (empirically adjusted at 0.11).

 The outcomes of experiments show how effective these improvements

are in a variety of ways. According to ablation studies, the VCR-ResNet

backbone outperforms traditional architectures like as VGG16 that get mAP

of 62.38% and ResNet50 which has mAP 65.38% with a mAP of 68.17%.

While the VCR-Loss achieves an amazing 36.37% gain over baseline Faster R-

CNN performance (94.96% vs. 58.59% mAP), the addition of multi-scale

feature fusion yields a significant 15.79% boost in accuracy (74.38% mAP).

Consistent performance advantages are demonstrated by comparative

evaluations across various datasets. For example, the SMNN-MSFF achieved

94.96% mAP on 24-color recognition in which beating out YOLOv4's 62.77%

and RetinaNet's 91.79%, 97.25% mAP on the 8-color C-dataset that has beated

on Chen et al.'s 92.63%, and the J-dataset's 97.85% and T-dataset's 90.62%.

Unexpectedly, the system can process images in real time at 1.021 seconds on

CPU hardware which makes it feasible to use in real-world traffic monitoring

situations.

 Beyond technical measures, these developments have deeper

implications. While the SMNN-MSFF architecture shows how careful

consideration to both model architecture and training dynamics can generate

significant increases in recognition accuracy, the Vehicle Color-24 dataset sets

a new standard for assessing VCR systems. The VCR-Loss function's ability to

resolve class imbalance without the need for elaborate sampling techniques

provides insightful information for other computer vision jobs that deal with

comparable data distribution issues. But there are still difficulties especially

with identifying very uncommon hue classes and sustaining performance in

difficult conditions. This has suggests crucial areas for further study.

 There are a number of potential directions that future research in this

area might explore. While hybrid model architectures may improve

performance in difficult situations like occlusion or low-light environments,

extending identification capabilities to incorporate multilingual or multispectral

47

analysis could increase system adaptability. The class imbalance issue may be

resolved by looking into self-supervised learning strategies, which might

minimize the need for massive annotated datasets. VCR integration with other

vehicle identification techniques is expected to become more and more

significant in intelligent transportation systems, law enforcement applications,

and urban planning projects as the technology develops. By showing how

careful integration of dataset design, model architecture, and training

methodology may advance the state of the art in vehicle recognition systems. In

conclusion, SMNN-MSFF framework builds a solid foundation for these

upcoming advancements.

2.5.4 DeepCar 5.0: Vehicle Make and Model Recognition Under

Challenging Conditions

As stated in Amirkhani and Barshooi (2023), Vehicle Make and Model

Recognition (VMMR) has become an essential part of Intelligent Transportation

Systems (ITS) with applications ranging from driverless vehicles to traffic

control, surveillance, and law enforcement. Despite its importance, VMMR has

a number of shortcomings, primary among them being its fine-grained

classification. Accurate recognition is challenging due to the low intra-class

variance among similar models and the substantial inter-class variance among

different vehicle models. Furthermore, the work is made more difficult by the

absence of complete datasets and the dynamic situations that cars operate

in such as changing lighting, obstacles, and poor weather. A unique multi-agent

system (MAS) used together with ensemble learning approaches is one of the

innovative solutions that recent suggested by researchers to address these

problems. Through the identification and processing of important areas of

interest (ROIs) such as headlights, grills, and bumpers, which contain unique

characteristics for vehicle classification, this method focuses on front-view

image analysis.

 Traditional techniques for tracking and detecting vehicles have

depended on hardware-based sensors such as radar and microwave systems.

Even while these techniques work well, they are frequently expensive and

susceptible to environmental factors. On the other hand, vision-based methods

like Light Detection and Ranging (LIDAR), histogram of oriented gradients

48

(HOG), and closed-circuit television (CCTV) provide more flexibility and cost-

effectiveness. These techniques use sophisticated image processing algorithms

to track and identify cars in real time. Regarding Vehicle Type Recognition

(VTR), researchers have investigated model-based methods using 3D computer-

aided design (CAD) models as well as feature-based methods like Scale-

Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF).

Nevertheless, these techniques are frequently vulnerable to changes in lighting

and noise which reduces their adaptability in practical situations.

 The current methodologies in the field of VMMR can be broadly

divided into three categories include hybrid, part-based, and comprehensive.

While comprehensive approaches can process full vehicle pictures, they have

trouble with partial obstacles and different points of view. On the other hand,

part-based methods focus on particular areas such as grills and headlights

can provide a higher level of detail but required exact localization. The goal of

hybrid approaches is to incorporate the best features of each of them. For

example, channel max pooling lowers computing complexity without affecting

accuracy. With these developments, the lack of extensive, annotated datasets

continues to be a barrier in the field.

 In order to resolve this barrier, the DeepCar 5.0 dataset which includes

40,185 front and front three-quarter photos from 50 automakers and 480 vehicle

classes was created to close this gap. It focuses on cars made between 2019 and

2022. This dataset is one of the most complete and current resources for VMMR

research since it includes manual annotations of ROIs such as headlights, grills,

and bumpers and comprehensive technical specifications like engine power and

speed. DeepCar 5.0 provides more diversity and relevance for modern vehicle

detection tasks than other datasets such as CompCars and CityFlow.

 This study's proposed methodology brings about a number of

significant advancements. Initially, an attention mechanism is used to pinpoint

crucial areas like grills and headlights which are essential for differentiating

between car types for feature extraction. The second is the implementation of a

multi-agent system (MAS) in which a specialized convolutional neural network

(CNN) processes each ROI as an independent agent. For example, Agent 2 (grill)

analyzes mesh structures using the DexiNed edge detector, whereas Agent 1

(headlights) employs Canny edge detection to extract "identity watermarks." To

49

improve robustness, Agent 4 (fog light/scoop) uses neural style transfer,

whereas Agent 3 (bumper) uses Gabor filters to collect texture and curvature

characteristics. An ensemble learning technique is used to aggregate the outputs

from these agents. In particular, a blackboard system that enables majority

voting for final classification is used.

 The effectiveness of this method is shown by the experimental

findings which show an accuracy of 96.72% with manual ROI detection and

92.14% with automatic detection using YOLOR. These numbers greatly above

the accuracy of conventional single-network techniques like ResNet101, which

only attains 58.91%. Additionally, the suggested method shows robustness in

the face of challenging conditions such as partial occlusions and changing

lighting. With a 99.01% accuracy rate, benchmarking on the CompCars dataset

confirms its excellence.

 In a nutshell, the combination of MAS with ensemble learning is a

major development in VMMR which utilizing localized characteristics and

group decision-making to improve robustness and accuracy. The launch of the

DeepCar 5.0 dataset opens the way for further study by addressing the urgent

requirement for current and varied training data. Expanding the framework to

multi-view recognition and refining it for real-time deployment in dynamic

contexts are two possible avenues for future research. In addition to advancing

the state-of-the-art in VMMR, this work offers a flexible and scalable approach

for practical ITS applications.

2.5.5 Algorithms and Techniques used in current vehicle recognition

systems

Table 2.４: Comparison among different vehicle attributes recognition systems

Aspect Efficient

License

Plate

Recognition

(EALPR)

(Wei et al.,

2024)

ALPR in

Uncontrolled

Environment

s (Bakshi et

al., 2023b)

Vehicle

Color

Recognition

(VCR) (Hu

et al., 2023)

DeepCar 5.0

(VMMR)

(Amirkhani

and Barshooi,

2023)

50

Focus License

plate

recognition

in

unconstraine

d scenarios

License plate

recognition in

uncontrolled

environments

Vehicle color

recognition

under

varying

environment

al conditions.

Vehicle make

and model

recognition

using multi-

agent systems

and ensemble

learning.

Key

Technique

s

Anchor-free

methods

(CenterNet),

EfficientDet,

transformer

encoder,

unified

framework.

YOLOv4,

Spatial

Transformer

Networks

(STNs),

customized

CNNs for

character

recognition.

Smooth

Modulation

Neural

Network

(SMNN),

multi-scale

feature

fusion, VCR-

Loss for

class

imbalance.

Multi-agent

system (MAS),

attention

mechanisms,

ensemble

learning,

DeepCar 5.0

dataset.

Strengths High

accuracy (up

to 99.51%),

real-time

processing

(74.9 FPS),

handles

perspective

distortion.

Improved

accuracy with

STNs (13%

increase),

handles

geometric

distortions,

real-time

capabilities.

High mAP

(94.96%),

handles class

imbalance,

real-time

performance

on CPU.

High accuracy

(96.72%),

robust to

occlusions and

lighting

changes,

comprehensive

dataset.

Limitation

s

Limited to

Latin

character

sets,

performance

drops in

Challenges

with partial

occlusions

and

extremely

low light.

Struggles

with rare

color classes,

performance

in extreme

conditions.

Requires

precise ROI

localization,

complex

implementatio

n.

51

extreme

conditions

In terms of focus, each research investigation addresses a distinct vehicle

recognition problem. ALPR targets uncontrolled circumstances whereas

EALPR concentrates on license plate recognition in unrestricted situations.

While DeepCar 5.0 addresses make and model recognition, VCR focuses on

color recognition. For thorough vehicle identification, these variations

emphasize the necessity of a single system that combines several recognition

tasks.

 For key techniques, anchor-free detection (EALPR), STNs (ALPR),

SMNN (VCR), and MAS (DeepCar 5.0) are among the methods employed.

Although each methodology works well for a particular goal, a multimodal

strategy that combines these cutting-edge methods might capitalize on their

advantages to tackle more general issues.

 From perspective of their strengths, these systems' efficacy is

demonstrated by their excellent precision and real-time capabilities. However

because they are specialized, they are only good at what they do. These

advantages could be combined in a multimodal system to provide reliable

performance in a variety of situations.

 Despite their advantages, every system has cons of its own. For

example, they might have encountered difficulties when managing challenging

circumstances or uncommon classes. These variations highlight the need for a

more adaptable approach that can handle a greater variety of problems, like

partial occlusions, dim lighting or a variety of vehicle kinds.

 In a nutshell, a Multimodal Large Language Model-Based Vehicle

Recognition for Vehicle Access Control System is necessary after reviewing on

these different types of vehicle recognition systems. The importance of

developing the proposed project including current systems only focus on a

single feature like make and model, color or license plates. However, when

these functions are integrated, a multimodal approach offers a comprehensive

solution for vehicle identification, which is essential for access control systems

that need high reliability and accuracy. Moreover, extreme situations are

difficult for current systems to handle. To overcome these obstacles and

52

guarantee reliable performance in real-world scenarios, a multimodal LLM-

based system can provide contextual reasoning according to the image clarity

but not just providing a fault that allow unauthorized bypass of vehicles that

may affect in the aspect of security. Importantly, no research has been done that

integrates make and model, color, and license plate recognition into a unified

framework. By providing a unique solution that expands the capabilities of

vehicle access control systems, this proposal has closes the gap.

2.6 Software Development Methodologies

Software systems can be planned, designed, developed, tested, and maintained

using an organized framework that is provided by the Software Development

Life Cycle (SDLC). In order to make sure that the development process is

effective, methodical and in line with project objectives, choosing the right

SDLC model is essential. This section analyzes current SDLC approaches,

assessing their applicability for creating a multimodal vehicle detection system

and related online and mobile applications as well as their advantages and

disadvantages.

2.6.1 A Comprehensive Research Analysis of Software Development

Life Cycle (SDLC) Agile & Waterfall Model Advantages,

Disadvantages, and Application Suitability in Software Quality

Engineering

Based on Pargaonkar (2023), Software Development Life Cycle (SDLC) is

a crucial framework of modern software engineering that offers structured

procedures to guide the creation of software products of superior quality.

Organizations are under growing pressure to choose SDLC models that strike a

balance between efficiency, quality, and adaptability as market expectations and

technological demands continue to change. By systematically comparing classic

and modern SDLC methodologies, thorough analysis in this paper provides

insightful information on this selection process with focus on its significance

for software quality engineering. By connecting theoretical model features with

real-world quality assurance issues, this study closes a significant gap in the

literature and allows development teams and stakeholders to make better

decisions.

53

 The conventional Waterfall model and current Agile approaches are

the two main SDLC paradigms that are thoroughly compared in this paper. The

Waterfall model exhibits major benefits in organized project management and

thorough documentation due to its linear, phase-gated methodology. Because of

these characteristics, it is especially well-suited for projects with clear,

consistent requirements, like safety-critical applications or systems for

regulatory compliance. However, the study also identifies significant

shortcomings of the Waterfall technique, such as its inherent resistance to

evolving requirements and the high chance of identifying defects at a late stage.

These results are consistent with previous criticisms by Shylesh (2017, cited in

Pargaonkar, 2023, p. 121), who pointed out that Waterfall's applicability in

dynamic development contexts is declining. On the other hand, Agile

approaches show themselves to be a strong substitute for projects that need

flexibility and quick iterations. The report outlines Agile's advantages in early

issue identification, improved customer satisfaction, and continuous quality

improvement through iterative cycles. Qualities that have made it a preferred

approach for consumer-facing apps and quickly changing markets.

 The research highlights significant trade-offs between these opposing

strategies from the perspective of software quality engineering. Clear audit trails

and compliance benefits are provided by waterfall's emphasis on comprehensive

documentation and phase completion, which are crucial for industries with strict

regulatory requirements. But because it is sequential, quality problems are

frequently found too late in the development cycle. This may result

in necessitating of expensive rework in order to get a good quality. Although

agile's quality assurance procedures are more adaptable, they might be difficult

to manage scope creep and maintain thorough documentation. The findings of

Gurung et al. (2020, cited in Pargaonkar (2023)) about the documentation-

quality paradox in iterative development methodologies are supported by these

observations. By including real-world case studies that illustrate how these

theoretical trade-offs appear in realistic development settings, the study further

strengthens its practical relevance and offers insightful background information

for organizational decision-making.

 Although the study provides valuable information, it also points out

fundamental flaws in the way the SDLC is being implemented. Although

54

different aspects of Waterfall and Agile helpful, but both of them ignores the

growing popularity of hybrid techniques that aim to integrate the best features

of each. These blended models are mentioned in passing in the study, but they

are not thoroughly examined. In other words, this is a topic that needs more

research. More thorough analysis of how cutting-edge methodologies like

DevOps and continuous integration/continuous delivery (CI/CD) pipelines

might support or disagree with established SDLC quality assurance procedures

would also be beneficial to the study. The study contributes significantly to

industry practice and academic research by offering a clear framework for

assessing SDLC models in relation to quality engineering goals regardless of

these limitations.

 The study offers a number of encouraging possibilities for further

research in this area. The creation of increasingly complex hybrid approaches

that purposefully blend the flexibility of Agile with the structure of Waterfall

may assist organizations in producing higher-quality results for a variety of

project kinds. While preserving the benefits of iteration, a deeper integration of

automated testing and quality assurance tools into Agile workflows may assist

solve the present documentation issues. The report also emphasizes the

necessity of industry-specific SDLC modifications, especially in highly

regulated fields like healthcare and finance where quality standards vary greatly

from those of commercial software development. Together with the study's

main conclusions, these future possibilities offer a strong basis for further

investigation into how to best optimize SDLC procedures for software quality

engineering in a technical environment that is becoming more and more

challenging.

2.6.2 Agile Methodology Vs. Traditional Waterfall SDLC : A case study

on Quality Assurance process in Software Industry

According to (Sinha and Das, 2021), a quick, iterative, and flexible approach to

software development known as Agile methodology that was created to handle

short development cycles and shifting requirements. On the other hand, the

traditional Waterfall approach adheres to a strict, sequential procedure which

makes it less appropriate for dynamic project contexts where adaptability is

essential. Agile has become widely used in software engineering as well as other

55

industries like manufacturing because of its capacity to combine incremental

improvements with ongoing feedback. Comparing Agile and Waterfall testing

methodologies is a major area of research in this field, with studies emphasizing

Agile's greater efficiency and effectiveness for modern software development.

 In 1970, Winston Royce established the Waterfall model that divides

software development into the following discrete, sequential stages:

requirements, design, implementation, verification, deployment, and

maintenance. This model's testing is done only after the implementation stage,

which frequently results in a delayed discovery of defects and increased

corrective expenses. Although the Waterfall technique has benefits like

organized documentation, manageability, and fit for projects with clear goals

but there are serious drawbacks to its inflexibility. Its relevance in rapidly

changing project environments is further limited by late-stage defect

identification and little developer-tester collaboration.

 In contrast, the agile methodology uses an iterative structure called

sprints, which are development cycles that include phases for requirement

gathering, implementation, and testing. This strategy lowers market risks and

guarantees alignment with user needs by emphasizing gradually delivery,

flexibility, and ongoing customer feedback. Agile's ability to integrate testing

into each sprint, which facilitates early problem identification and resolution is

a key benefit. Agile encourages continuous cooperation between developers and

testers, reducing knowledge gaps and speeding up issue resolution in contrast to

Waterfall, which views testing as a distinct and last process.

 The distinctions between Waterfall and Agile are even more visible

when looking at testing procedures. Inefficiencies result from waterfall testing's

sequential nature, heavy reliance on documentation such as test plans and

completion reports, and separation from development. On the other hand, Agile

testing is continuing, necessitates little documentation and benefits greatly from

cross-disciplinary cooperation. Bugs are fixed in later rounds, avoiding

accumulation and guaranteeing more seamless project development. The

advantages of Agile testing including faster feedback loops, increased flexibility,

and improved client satisfaction as a result of frequent demonstrations and

iterative improvements.

56

 The benefits of Agile are further shown by comparisons between Agile

and Waterfall testing. The modular methodology of Agile that also known as

"divide and conquer" enables targeted testing on smaller code portions,

increasing productivity and accuracy. In this case, changes are easily

implemented without interfering with the project, but Waterfall's rigidity makes

these adjustments expensive and time-consuming. Furthermore, Waterfall's

late-stage testing frequently causes delays and budget overruns, whereas Agile's

set sprint lengths produce more accurate time and cost estimates. While

Waterfall's restricted stakeholder contact might result in misaligned outcomes,

Agile's constant engagement and iterative delivery also increase customer

satisfaction.

 In academic environments, where previous approaches like Waterfall

have traditionally predominated, future research topics will examine the

applicability of Agile. Agile's advantages in a variety of contexts might be

further validated by including it into educational programs. This could yield

insightful information about how effective it is in comparison to traditional

methods. Studies already conducted support Agile's benefits in terms of quality

and productivity, making it the go-to approach for existing software

development.

 In conclusion, this research paper shows how Agile is better at

encouraging flexibility, teamwork, and productivity—especially in testing

procedures. Agile's iterative and customer-centric methodology makes it more

appropriate for dynamic and changing software development

environments even while Waterfall is still useful for stable, clearly defined

projects. The scalability and efficacy of Agile should be further investigated in

future research in a variety of fields including academics and non-IT sectors.

2.6.3 Traditional SDLC Vs Scrum Methodology – A Comparative Study

Based on (Mahalakshmi and Sundararajan, 2008), the core of software

engineering is the Software Development Life Cycle (SDLC) which includes

crucial stages like planning, analysis, design, and execution. The industry has

historically been ruled by traditional SDLC models, such as Waterfall, Spiral,

and V-model which use methodical, structured procedures. However, serious

flaws in these conventional frameworks have been revealed by the growing

57

complexity nowadays software projects and the quickly shifting needs of

customers. As a result, agile approaches such as Scrum have become adaptable

substitutes. Scrum can provide iterative development cycles and flexible

procedures more appropriate for the ever-changing software development

environment of today.

 One of the most historic and best-known approaches to the Software

Development Life Cycle (SDLC), the Waterfall model proceeds in a strictly

linear fashion through the following phases: requirements gathering, system

design, implementation, testing, and maintenance. The inflexible structure of

this framework has a number of significant disadvantages, the primary among

them being its incapacity to adapt to evolving needs after development has

started. Waterfall's sequential structure frequently results in late-stage defect

detection, raising expenses and delaying projects. Furthermore, final solutions

often fall short of consumer expectations due to a lack of iterative customer

input. Although threre are some limitations, w aterfall still has certain benefits

in spite of these difficulties, such as easy implementation, low resource needs,

and thorough documentation that offers clarity all the way through the

development process.

 On the additional hand, the Scrum methodology is an alteration in the

methods used for software development. Scrum is a popular Agile framework

that divides work into time-boxed iterations called sprints. These sprints usually

span two to four weeks and produce incremental changes to the final product.

The approach identifies three primary roles: the self-organizing Development

Team which is in charge of producing functional software, the Scrum

Master who streamlines the process and eliminates roadblocks and the Product

Owner who ranks requirements in the product backlog. Scrum uses a number of

artifacts such as the sprint and product backlogs and burndown charts that show

progress visually in order to keep things transparent and focused. Throughout

the development cycle, regular practices like sprint planning, daily stand-ups,

sprint reviews, and retrospectives ensure continuous collaboration and progress.

 There are many valuable benefits that Scrum offers over traditional

Waterfall. In today's rapid development settings, Scrum's iterative structure

enables regular adaption to changing needs. The framework's frequent meetings

and visible artifacts encourage improved cooperation and openness between

58

team members and stakeholders. Most significantly, Scrum's focus on

producing functional software at the conclusion of each sprint results in a

quicker time to market and satisfied clients. Scrum implementation does have

some disadvantages such as the requirement for highly dedicated and well-

coordinated team members and the possibility of ambiguity due to the lack of

documentation in compared with Waterfall methods.

 A thorough analysis of various approaches shows significant variations

in a number of areas. For projects that need flexibility, Waterfall's inflexible

structure is insufficient whereas Scrum is excellent at adapting to shifting needs.

Waterfall places a strong emphasis on thorough documentation whereas Scrum

prioritizes functional software over plenty of paperwork. The two methods'

approaches to customer interaction differ significantly. For Scrum,

it includes ongoing stakeholder input throughout development while

for Waterfall it restricts feedback to the very end. Scrum's iterative validation

procedure which finds and fixes problems early tends to have higher success

rates than Waterfall's late-stage testing methodology. Additionally, there are

vital differences in teamwork between Scrum's collaborative, cross-functional

teams and Waterfall's organized roles.

 The analysis's findings clearly establish Scrum as the best option for

dynamic projects with changing requirements since it provides quicker delivery

timeframes and better stakeholder alignment. For projects with set, clearly

defined objectives and needs that are unlikely to change, waterfall methodology

is still suitable. In the end, the features of the project will determine which

approach is best. Waterfall is better for stable, predictable projects while Scrum

is better for agile development settings. Future studies could look into hybrid

models that combine the flexibility of Scrum with the structure of Waterfall, as

well as how scalable Scrum is for large-scale enterprise projects. Understanding

these methodological variations is becoming more and more important for

organizations looking to maximize value for stakeholders and optimize their

development processes as the software development environment evolves.

2.6.4 Waterfall Vs V-Model Vs Agile: A Comparative Study on SDLC

As stated in (Murugaiyan, 2012), software engineering projects are based on the

Software Development Life Cycle (SDLC) which provides standardized

59

methods to direct development from idea to implementation. The industry has

long been dominated by traditional SDLC models, especially the Waterfall and

V-Model approaches, which use phase-based, sequential techniques. But the

advent of Agile approaches has brought in more adaptable, iterative alternatives

that are more suited to the ever-changing needs of today's software. In order to

assist organizations in choosing a development method, this literature analysis

compares the features, benefits, drawbacks, and best use cases of these three

well-known SDLC models.

 Firstly, the Waterfall model is a model that follows a strictly linear

sequence of phases which includes requirements gathering, system design,

implementation, testing, and maintenance. This model is the most conventional

method to the Software Development Life Cycle (SDLC). The main advantage

of this model is its simplicity and clarity. By employing this model, teams can

go forward with less uncertainty if clear requirements are set up at the beginning.

Strong traceability is ensured by the thorough documentation created during

Waterfall development which also makes the approach ideal for projects with

consistent, unchanging needs. However, in modern development environments,

the Waterfall technique exhibits obvious limits. Once development has started,

its rigid structure makes it very difficult to accommodate requirement changes.

As a result, it frequently requiring expensive rework.Another important point

is testing only takes place later in the development process which may cause

flaws to go unnoticed until they are costly to fix. Furthermore, even while final

goods technically satisfy initial specifications, they might not entirely

correspond with user needs due to a lack of iterative client feedback.

 When it comes to validation and verification, the V-Model offers a

more advanced method than the strictly sequential Waterfall model. This

methodology forms the distinctive "V" shape by explicitly relating each

development phase to its associated testing activity while maintaining the

Waterfall methodology's phase-based structure. The main benefit of the V-

Model over Waterfall is that it incorporates testing considerations from the very

beginning of development. This has allow it for earlier problem discovery. The

V-Model allows for requirement modifications at any stage which gives it a

little more flexibility than Waterfall while still upholding strict documentation

requirements. However, any changes still necessitate significant documentation

60

updates. The approach is especially useful for complicated, high-stakes projects

where quality assurance is crucial since it places a strong emphasis on validation

at every stage. However, due to the heavy overhead of maintaining parallel

development and testing artifacts, the V-Model's extensive review requirements

make it less appropriate for smaller projects or those with strict deadlines.

 In contrast to these conventional methods, agile techniques emphasize

iterative development, ongoing customer collaboration and flexible planning.

Agile divides projects into brief development cycles that each of them usually

take a durations of 2-4 weeks called sprints. They helps to produce incremental

product changes in comparison to the rigid architecture of Waterfall or V-Model.

In the fast-paced development environments of today, this method offers many

benefits. Most significantly, teams can easily adapt to shifting needs as the

project progresses via Agile's adaptability. By offering frequent chances for

feedback and course correction, frequent delivery of functional software

improves customer satisfaction. Moreover, misunderstandings are decreased

and information sharing is encouraged by the methodology's emphasis on in-

person interactions and cross-functional teamwork. But there are drawbacks to

Agile implementations as well, especially for larger projects where it can be

challenging to estimate the amount of work needed. The approach's dependence

on self-organizing teams and scant documentation necessitates highly qualified

engineers and may lead to problems with knowledge transfer. Additionally,

teams that are spread out geographically may find the intensive cooperation

approach difficult to implement.

 When these approaches are examined, key distinctions are found in a

number of important areas. The V-Model permits controlled modifications with

effort, Waterfall is totally inflexible and Agile welcomes change at every stage

of development. Testing methodologies vary greatly as Agile include

continuous testing across iterations, Waterfall focuses testing at the

conclusion while the V-Model pairs testing with each development phase.

Documentation strategies vary from the lengthy documentation of Waterfall and

V-Model to Agile's preference for functional software over extensive

documentation. The range of customer interaction is comparable, ranging from

Waterfall's restricted final-stage input to Agile's continuous cooperation. The V-

Model occupies a middle ground of structured collaboration as team structures

61

evolve from Waterfall's compartmentalized specialists to Agile's cross-

functional generalists.

 In final terms, particular project characteristics and organizational

requirements will determine which of these SDLC models is best. Agile

approaches work best in dynamic settings where customer collaboration is

valued and requirements change regularly. For large-scale projects with

consistent, clearly specified requirements where thorough documentation is

crucial, waterfall is still suitable. For complicated projects that need strict

validation procedures, the V-Model provides a well-rounded strategy that

allows for some flexibility in response to changing requirements. In addition to

studies into scaling Agile methods for enterprise-level implementations, future

research lines could effectively investigate hybrid models that combine the

flexibility of Agile with the structure of older methodologies. Understanding

these methodological variations is becoming more and more important for

organizations looking to maximize value for stakeholders and optimize their

development processes as software development continues to change.

2.6.5 Comparative Analysis on different Software Development

Lifecycle methodologies

The successful of a software project is highly dependent on the appropriateness

of approach and clearliness of the outlined processes. Every approach

framework brings advantages and disadvantages.

Table 2.５: Table of comparison between various software methodologies.

Aspect Waterfall V-Model Agile Scrum

Requirement

Flexibility

Rigid Moderate High High

Suitable

Project Size

Large Medium to

large

Large Small to

medium

Testing Late-stage

testing

Parallel

testing for

each phase

Continuous

testing in

iterations

Continuous

testing in

sprint

Documentation Extensive Extensive Minimal Minimal

62

Customer

Feedback

Limited to

final stages

Periodic

during

validation

Continuous

and

iterative

Continuous

through

sprints

Team

Dynamics

Organized

roles

Collaborative

but

structured

Cross-

functional

and self-

organizing

Collaborative

and cross-

functional

 According to the table above, Waterfall, V-Model, Agile and Scrum

are all software development methodologies with distinct approaches,

advantages, and disadvantages.

 From perspective of requirement flexibility, Agile and Scrum is well-

suited for projects with evolving or unclear requirements due to its iterative

structure. The waterfall is suitable for projects with stable and well-defined

requirements as it follows a rigid, predetermined sequence of phases. V-Model

be effective for projects with changing requirements but require rework effort if

changes happened. Agile and Scrum is highly flexible as both of them allowing

for changes and feedback from customer throughout development. Waterfall is

inflexible and only allows changes occured in the planning phase. V-Model is

more flexible than a waterfall but less flexible than an Agile.

 When considering project size, Waterfall works best on large projects

with clearly defined needs that are unlikely to alter. Medium-sized to large

projects are best suited for the V-Model especially when system safety and

dependability are essential. Although Agile is especially useful in situations

where change is expected but it can also manage big projects. Scaled Agile

Framework (SAFe) is a framework designed to scale Agile team practices all

the way up to the corporate level (Paula, n.d.). Large-Scale Scrum (LeSS) is a

framework that allows procedures and methods to be modified to fit the

demands of the specific circumstance (Larman and Vodde, 2016). By utilizing

SAFe and LeSS frameworks, Scrum is allowed to be scaled for larger projects,

however it is most effective for small to medium-sized projects.

 From the perspective of testing, Waterfall delays the discovery of bugs

because testing takes place in the last stages after the entire development process

is finished. This is enhanced by the V-Model, which ensures early issue

63

detection by testing concurrently with each development phase. Continuous

testing is used in agile iterations to identify issues early and gradually raise

quality. Continuous testing is also supported by Scrum which incorporates it

into every Sprint to make sure that increments are actually finished and maybe

even shippable.

 Based on the documentation perspective, Waterfall requires thorough

documentation at every turn in order to confirm that everything can be tracked

down and officially approved. In contrast, the V-Model places a strong

emphasis on thorough documentation to support its strict validation and

verification procedure. However, Agile reduces documentation

and emphasizing functional software over extensive documentation. This

minimum documentation technique is also used by Scrum. It promotes the

creation of just necessary documentation to enable development without

slowing team progress.

 As look into the customer feedback point of view, Waterfall typically

only allows for customer input at the very end which is when the product is

almost finished. This makes it expensive to make modifications as required late-

stage of changes on the product. The V-Model does not have regular interaction,

but it does introduce periodic feedback during validation phases. Agile

encourages iterative and ongoing input and including clients at every stage of

the development process. By showcasing potentially shippable products at the

conclusion of each Sprint, Scrum also guarantees ongoing user feedback

by enabling frequent and early modifications.

 From the perspective of collaboration, Waterfall projects usually

consist of well-organized, role-specific teams with minimal responsibility

overlap. The V-Model keeps things organized but allows for a little more

cooperation particularly between the testing and development teams. Agile

teams are self-organizing and cross-functional which means that members share

tasks and oversee their work as a group. In order to accomplish the greatest

outcomes, Scrum teams are cross-functional and collaborative, prioritize regular

communication, shared accountability, and teamwork within each sprint.

 In conclusion, the Agile methodology was selected for this project

rather than the Waterfall, V-model, or Scrum models because it permits small

adjustments even when a portion has been completed ahead of schedule, which

64

is advantageous in a dynamic project setting. Because of its iterative nature,

emphasis on iterative testing and improvement, and prioritizing of important

needs, the Agile methodology was considered the best fit for this project.

2.6.6 Web and Mobile Application Framework

Choosing the right web and mobile application framework is essential for

modern software development in order to guarantee effectiveness, scalability,

and maintainability. Frameworks can help to simplify the development process,

minimize duplicate coding and improve overall application performance by

providing standardized environments, built-in functionalities and standard

procedures. Cross-platform frameworks are gaining a lot of attention due to the

increasing need for programs to run smoothly across several platforms such as

web browsers and mobile devices. This section examines a number

of frameworks that facilitate the creation of online and mobile applications

and emphasizing their salient features, benefits and applicability for developing

a multimodal access control and vehicle identification system.

2.6.6.1 Frontend-Framework

With the aid of innovative frontend frameworks, the effectiveness to design

progressive web apps (PWAs) and cross-platform mobile applications can be

increase gradually. These frameworks ensure great performance, versatility and

an improved user experience while streamlining the development process with

their standardized architectures and robust libraries. The results of the

comparison between Flutter and React Native are given in the table below.

Table 2.６: Comparative table of React Native and Flutter frameworks

Aspect React Native Flutter

Programming

Language

JavaScript (with JSX) Dart

Web Support Web support via

additional libraries like

React Native Web

Native web support

integrated with Flutter Web

Learning Curve Moderate Steeper

65

Performance Near-native performance High performance

UI Components Relies on native

components

Rich built-in UI widgets for

consistent look across

platforms

PWA Readiness Requires careful

integration and setup

Flutter Web supports PWA

development natively with

easier configuration

Best for Applications needing

tight native integration

and access to a wide

ecosystem

Applications needing

consistent UI across

platforms and easy web and

mobile deployment

React Native and Flutter develop web and cross-platform applications using

various programming languages. JavaScript and JavaScript XML (JSX) which

are well-known to many developers and facilitate adoption especially for those

with previous web development experience are used by React Native. In

contrast, Flutter uses Dart which is a Google language that is powerful but less

well-known and necessitates learning new syntax and concepts

before completely productive.

 Regarding web support, React Native makes it possible to construct

websites using extra libraries like React Native Web which renders components

in a web environment. However, this setting may require further setup because

it is not built into the main framework. However, Flutter has integrated web

support through Flutter Web, which makes it possible for developers to target

browsers directly without the use of third-party frameworks. This makes the

development process simpler.

 Additionally, these frameworks have compared to different learning

curves. For developers who are already familiar with JavaScript, React Native

offers a moderate learning curve because its component-based architecture

allows for easy adaptation. Because it requires learning Dart and adjusting to its

widget-driven programming paradigm which differs substantially from

conventional web development frameworks, Flutter has a higher learning curve

as compared to React Native.

66

 In terms of performance, Flutter definitely preferable. Flutter apps

offer seamless rendering and fast speed by compiling directly to WebAssembly

for the web and native ARM code for mobile devices. Although React Native

achieves speed that is close to native, it depends on a bridge between JavaScript

and native modules which sometimes results in minor performance

overheads especially in apps that are resource-intensive or complex.

 In order to adapt mobile components for the web by employing

Progressive Web App (PWA), React Native needs careful setup and dependence

on React Native Web which may increase development complexity when

considering Progressive Web App (PWA) readiness. Configuring and deploying

cross-platform solutions including browsers, is made simpler and faster with

Flutter's native support for web and PWA development through Flutter Web.

 In general, React Native is a great option for applications that need

close native integration and access to a large and developed ecosystem. It

has giving it a great way to make use of third-party resources and pre-existing

JavaScript expertise. However, Flutter is best suited for applications that

prioritize platform consistency and a smooth web and mobile

deployment particularly when aiming for a single codebase strategy for PWAs

and mobile apps.

 In conclusion, React Native has been chosen as the frontend framework

for this project because it complies with project specifications and because

previous JavaScript and React Native development experience is available.

Even though Flutter provides more efficient and integrated support for

Progressive Web Application (PWA) development through Flutter Web, React

Native is still an acceptable choice because of its well-established

ecosystem and robust support for cross-platform development which including

web integration through React Native Web . React Native is ideally suited for

implementing the multimodal big language model-based vehicle detection

system suggested in this study because of these features which also make

development and maintenance easier.

2.6.6.2 Backend-Framework

With the help of back-end frameworks, the server-side of web apps, APIs and

other software systems can be built. By offering a structure for creating a web

67

application's back end, these frameworks prevent worry about technical

programming details and let them concentrate on implementing business logic.

The table below shows the results of the comparison between Laravel and

Next.js.

Table 2.７: Comparative table of Laravel and Next.js frameworks

Aspect Laravel Next.js

Architecture

Pattern

MVC (Model-View-

Controller) with built-in

advanced features

Hybrid React-based

framework for modern

dynamic applications

Learning Curve Moderate to High Easy for developers

familiar with

JavaScript/React

Performance Slower than CodeIgniter Highly optimized with SSR

and SSG, enabling fast

rendering and improved

SEO

Built-in Features Authentication, ORM

(Eloquent), Queue,

Events, Jobs, API

resources, etc.

Routing, API routes,

middleware, image

optimization, ISR

Flexibility High Very flexible as can

integrate serverless

functions, Node.js APIs,

and React libraries

Security High (CSRF, XSS

protection, password

hashing, etc. by default)

Basic, need manual

implement security

measures

Database

Handling

Eloquent ORM

(advanced, object-

oriented)

Works with Prisma,

Sequelize or direct

database queries

68

Template Engine Blade Template Engine React with JSX

(Component-based UI

rendering)

Updates and

Modern PHP

Compatibility

Frequent updates Regularly updated in line

with React and Node.js

ecosystem

Deployment Traditional web servers,

Docker, cloud platforms

Vercel, Netlify, AWS, or

any Node.js hosting;

which optimized for

serverless deployment

Best for Large-scale, enterprise-

level, feature-rich

applications

Modern, high-performance,

SEO-friendly, interactive

web applications

The classic Model-View-Controller (MVC) architecture, which Laravel adheres

to, neatly divides data management, presentation, and business logic. It has

many built-in features and is best suited for full-stack, backend-heavy

applications. Next. In contrast, js is a hybrid framework based on React that

supports client-side rendering, server-side rendering, and static site generation.

Modern online applications with dynamic content benefit greatly from this

flexibility, which enables developers to select the rendering approach that best

suits the application's performance and SEO needs.

 From perspective of learning curve, Laravel's rich built-in features, like

Eloquent ORM, queues, events, and Blade templates, make it difficult for

developers who are not familiar with PHP or backend frameworks to understand.

Next. For developers who are already familiar with JavaScript and React,

learning js is rather simple. Without having to learn intricate backend patterns,

it is simpler to begin developing both frontend and server-side functionality

thanks to its component-based architecture and comprehensive documentation.

 Performance is another important aspect that helps to defferentiate

between this two frameworks. Laravel is strong for backend-heavy tasks, but

because it uses PHP to handle each request, it may render simple websites more

slowly than lightweight frameworks. In contrast to Laravel, Next.js is highly

optimized for performance, offering SSR and SSG, which reduces page load

69

times and improves perceived performance. Its frontend-heavy architecture

allows fast rendering of UI components and better handling of high-traffic

scenarios without extensive backend overhead.

 When considering to the built-in features, many capabilities that are

useful for enterprise-level applications are incorporated into Laravel, including

queues, tasks, events, ORM (Eloquent), authentication, and API resources.

Routing, API routes, image optimization, incremental static regeneration, and

middleware support are just a few of the contemporary web development

capabilities that Next.js provides. Although it comes with fewer backend tools,

it easily interfaces with external APIs or Node.js modules to provide comparable

functionality in a more modular manner.

For flexibility, because of Laravel's great flexibility for full-stack

development, programmers may create complex apps wholly within its

ecosystem. Although it prioritizes frontend and modern web experiences,

Next.js is still very adaptable. It may be expanded by developers utilizing

serverless functions, React libraries, and Node.js APIs, allowing for the modular

and scalable customization of frontend and backend logic.

 The variations between the two frameworks are further emphasized by

security considerations. By default, Laravel offers strong security, which

includes password hashing, XSS prevention, CSRF protection, and other

security features. Developers are need to provide secure authentication,

authorization, and input validation procedures because Next.js does not by

default incorporate backend security. Nonetheless, developers may maintain

high security using best practices thanks to its interaction with contemporary

authentication libraries (such as NextAuth.js) and safe API methods.

 In terms of database management, complex relationships and queries

are easier to manage using Laravel's Eloquent ORM. By utilizing Eloquent

ORM, it offers an object-oriented, user-friendly approach to database

interactions. Although Next.js lacks built-in database management, developers

may simply combine it with ORMs such as Prisma, Sequelize, or direct database

queries, allowing them to select the best database solution for their requirements.

 The frameworks are additionally distinguished by the templating

system. Blade is the template engine used by Laravel, which makes it easier to

produce server-side HTML with dynamic data. Next.js uses React components

70

and JSX which enabling highly interactive and reusable UI elements. This

approach is more suitable for modern web applications where dynamic, client-

side interactions and real-time updates are essential.

 In terms of updates and compatibility, Laravel is greatly favored by its

regular upgrades and compatibility with contemporary PHP standards. Laravel

is updated frequently to take advantage of PHP developments, security

enhancements and best practices. For Next.js, it is regularly updated to conform

to the most recent React and Node.js standards, giving users access to cutting-

edge frontend technologies, performance boosts, and ecosystem improvements.

 Last but not least, traditional web servers, Docker containers, or cloud

platforms like AWS, DigitalOcean, or Heroku can all be used to host Laravel

apps. For Next.js, its serverless deployment optimization, which can be used on

Vercel which is its native platform, Netlify, or any Node.js hosting environment

makes deployment become easier and more scalable for modern web projects.

 In conclusion, although Laravel is a great choice for enterprise-level,

backend-heavy apps with a wealth of built-in capabilities, Next.js provides more

frontend flexibility, better speed for contemporary online applications, and

simpler integration with serverless and static hosting. It is more suited for quick,

scalable, and interactive web apps because of its modular ecosystem, React-

based user interface, and hybrid rendering capabilities. Next.js is the suggested

option for creating a cutting-edge, high-performance online application when

taking these benefits into account.

2.6.6.3 Database Configuration

Database management systems (DBMS) enable applications to effectively

store, retrieve, and manage data in a consistent and organized way. In order to

concentrate on creating application functionality rather than managing low-

level data storage processes, these systems offer a basis for organizing and

accessing data. Data integrity, security, and performance are guaranteed by a

properly chosen database system particularly in applications that use

multimedia data like photographs. Two popular relational databases which

include PostgreSQL and MySQL are contrasted in the table below.

71

Table 2.８: Comparison table among MySQL and PostgreSQL

Aspect MySQL PostgreSQL

Performance Fast read operations,

widely used for web apps

Strong for complex

queries, slightly heavier on

resources

Image Storage Supports BLOB for

storing binary data

Supports BYTEA and

large object storage

Data Integrity Basic constraints and

transaction support

Advanced constraints,

ACID-compliant, full

transaction support

JSON &

Unstructured

Data

Basic JSON support Full JSONB support with

indexing

Query Features Simpler SQL features Advanced SQL features

Extensibility Less extensible, fewer

custom data types

Highly extensible, supports

custom types & functions

Compatibility

with Next.js

Excellent, widely

supported through Prisma,

Sequelize, Knex, or raw

queries

Excellent, fully supported

with ORMs and works

well with APIs and

analytics

Security Good, basic access

controls

Strong, includes row-level

security and audit features

Best Use Case Web applications with

simple to moderate

complexity

Applications requiring

complex data relations and

analytics

From the prespective of performance, MySQL is a popular choice for online

applications that require a lot of read operations and basic queries because of its

well-known fast read speed. Because of its optimized performance in managing

these processes, it performs exceptionally well in systems that adhere to the

traditional Create-Read-Update-Delete (CRUD) structure. Although

PostgreSQL requires a little more resources, it performs better than MySQL

when managing complicated queries and multiple concurrent transactions. In

72

circumstances where relational complexity, analytical workloads and the

blending of structured and unstructured data are common, it works very well.

PostgreSQL is a better option for systems needing sophisticated querying and

high transaction rates because it exhibits higher efficiency and dependability

while handling high transactional loads.

 Regarding to image storage, it can be stored in both MySQL and

PostgreSQL. For this purpose, MySQL uses the BLOB (Binary Large Object)

data type whereas PostgreSQL uses BYTEA or Large Objects (LOB).

Nevertheless, PostgreSQL provides more flexibility and performance when

handling huge binary objects especially when it comes to visual content. One of

PostgreSQL's main advantages in this regard is its support for streaming large

files which greatly improves its capacity to handle big datasets. To give an

illustration,like the visual data from vehicles used in recognition systems. This

capability gives PostgreSQL a clear advantage over MySQL in situations

involving big image storage. This can make it ideal for managing media-rich

applications that demand reliable file management and effective retrieval.

 In terms of data integrity and query features, PostgreSQL is well

known for its strict adherence to the Atomicity, Consistency, Isolation

and Durability (ACID) principles. In order to guarantee consistency in systems

with complicated relationship, it offers extensive support for foreign keys, joins,

complex restrictions, and transactional controls. Furthermore, PostgreSQL

includes advanced SQL capabilities that are essential for executing complex

queries in complex structures such as window functions, recursive queries and

Common Table Expressions (CTEs). Although MySQL can enforce basic data

integrity, but it lacks some of PostgreSQL's more advanced SQL features and

frequently chooses to utilize simpler queries which compromise flexibility for

usability.

 By comparing the extensibility, PostgreSQL is a big plus in situations

that call for sophisticated data handling and customization. It enables specify

of unique data types, functions and even modules to expand the fundamental

capabilities of the database. Additionally, PostgreSQL provides strong indexing

and JSON and JSONB data type compatibility which is very useful when

managing multimodal data inputs such integrated image-text data in recognition

systems. Because PostgreSQL has more sophisticated indexing and

73

manipulation features than MySQL, it is a better option for projects involving

complicated data kinds and structures as MySQL only supports basic JSON.

 For security, PostgreSQL is better suited for applications needing strict

access control because of its robust built-in security capabilities which include

role-based authentication, SSL encryption and row-level protection. In vehicle

access control systems where access logs and image data may be sensitive, this

is especially crucial. Although MySQL provides basic security safeguards,

PostgreSQL's more sophisticated solutions enable more robust data protection.

 Conclusion, PostgreSQL is the recommended database solution due to

the unique needs of the multimodal large language model-based vehicle

recognition system including the necessity to store vehicle images, preserve

data consistency and manage extensive query patterns for multimodal data. It is

the best option for handling the complicated data structures included in this

system because of its strong security features and robust querying capabilities.

Furthermore, PostgreSQL's smooth connection with Next.js via ORMs like

Prisma or Sequelize guarantees effective server-side system integration

and enabling scalability and excellent performance while handling large

datasets.

2.7 Chapter Summary

In conclusion, this literature review covers at important research topics that are

necessary to create a multimodal vehicle recognition system driven by AI.

While pointing out the present shortcomings in visual data integration, the

analysis discusses Large Language Models (LLMs) such as GPT-4 and

LLaMA-Adapter V2, showcasing their promise for contextual reasoning in

security applications. The evaluation of current segmentation methods and

vehicle recognition systems like SegementAnything, YOLOv8 and Fast-

SCNN reveals accuracy gaps in difficult circumstances like dim lighting or

obscured views. Market access control application are also evaluated in the

review in order to understand they basic features for defining the requiremennts

for this project.

 This study offers major innovation by combining visual identification

with contextual analysis powered by LLM, in contrast to strict, rule-based

commercial systems. In order to support the system's AI components and

74

iterative improvement requirements, the chapter ends by defending the choice

of Agile development approaches and certain technical frameworks like React

Native, Next.js and so on. The development frameworks and methodology

used in later chapters are directly influenced by these findings.

75

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter discussed the project's work strategy and methods. The 6 phases

with 12 sprints of the Agile approach that was selected were thoroughly

explained in this chapter. Additionally, to schedule projects, the Gantt chart and

the work breakdown structure, or WBS, were developed. The selection and

discussion of the development tools came to a close.

76

3.2 Project Methodology and System Development Methodology

Figure 3.1: Development Methodology Diagram

77

This project uses an organized approach that combines the Software

Development Life Cycle (SDLC) and the conventional Project Life Cycle (PLC)

to guarantee careful planning, methodical execution, and successful completion.

While the SDLC concentrates on the technical development process, which

includes requirement analysis, design, implementation, testing and deployment,

the PLC leads the project through the clearly defined phases of initiation,

planning, execution, testing and closure. During the design phase, a code-first

prototyping technique was employed to accelerate the validation of essential AI

components. This hybrid approach is reflected in every WBS phase, ensuring

that system development and project management advancements are in line with

the creation of a reliable multimodal LLM-based vehicle recognition system.

 This hybrid methodology was chosen to ensure a balanced focus on

both the technical development and the project management. By combining the

SDLC’s structured approach to system development with the PLC’s clearly

defined project phases, the project benefits from careful planning, risk

mitigation and consistent monitoring of the progress. The incorporation of code-

first prototyping during the design phase allows early validation of the critical

AI components, such as the multimodal VLM integration, reducing potential

rework and the technical risks. Aligning each WBS phase with both

development and the management activities ensures that the deliverables are

realistic, achievable, and of high quality. Overall, this approach provides the

flexibility needed for the iterative AI development while maintaining the

structured oversight necessary for the successful completion of a reliable vehicle

recognition system.

3.2.1 Initiation Phase (Project Life Cycle) and Planning Phase (SDLC)

The project's beginning phase which is equivalent to the planning phase of the

SDLC, involves determining the problem's scope, identifying its main

obstacles and carrying out in-depth literature reviews. This involves thorough

evaluations of current large language models (LLMs), car recognition systems,

segmentation strategies and software development processes as described in

Task 1.1.1.1. Activities involving comparative analysis such as Tasks

1.1.1.1.1.2 and 1.1.1.1.2.2 assist in determining the advantages and

disadvantages of each domain which assisting in the selection of appropriate

78

frameworks and technologies. Justifying the necessity of a multimodal LLM-

integrated vehicle recognition system requires this basis. The procedure ends

with a clear statement of the project's goals and scope (1.2) and a definition of

the research gap (1.1.1.2).

3.2.2 Primary Research & Requirements Gathering (Planning Phase -

Continued)

During this phase, the project uses survey design and analysis to collect

empirical data. The development, dissemination, and assessment of

questionnaires are demonstrated in tasks under 1.3. By verifying user

need which directly inform requirements analysis in Task 2.1, these activities

fill the gap between the initiation and planning stages. A thorough User

Requirement Specification (URS) document (2.2) which describes both

functional and non-functional needs (2.2.1.1 and 2.2.1.2) is drafted using the

information received. To guarantee compatibility and performance for the

suggested system, Task 2.4 also focuses on choosing the tech stack by

contrasting databases, frontend frameworks, backend solutions, and LLM

models.

3.2.3 Design Phase (SDLC)

Planning for system integration and code-based prototyping are the main focus

of the design phase. The project moves straight to code-first prototyping (Phase

3), where preliminary segmentation models are put into practice and

benchmarked (3.1), in place of high-level wireframes. This practical approach

speeds up the early assessment of fundamental functionality. In order to prepare

a blueprint for the full-stack development phase, the following integration

planning (3.2) describes how the segmentation engine, GPT-4o, frontend and

backend would interact.

3.2.4 Development Phase (SDLC)

Phase 4 describes the various components that make up the core development

phase. Setting up an environment, designing components such as input/output

pages and navigation and connecting to an API are all part of frontend

development with React Native and React Native Web (4.1). Laravel is used in

79

backend development (4.2) to build safe database operations, middleware logic,

and APIs. For reliable and scalable data handling, PostgreSQL is incorporated

(4.2.3). Simultaneously, GPT-4o is included into the system pipeline and refined

(4.3) with carefully selected datasets. In order to ensure smooth data flow

between components, this step also involves the complete integration and

rewriting of the segmentation logic (4.4).

3.2.5 Testing Phase (PLC & SDLC)

Phase 5 will include extensive testing that includes system, integration and unit

testing. The frontend (5.1), backend (5.2), and AI modules (5.3) all have their

own testing streams to make sure they work properly both separately and

together. Prior to deployment, quality assurance is ensured by tasks including

cross-platform testing, API validation and accuracy checks for segmentation

and GPT replies.

3.2.6 Deployment & Finalization (Closure Phase - PLC)

Project closing and deployment are covered in the last stage. Phase 6 involves

deploying the solution to local or cloud infrastructure (6.1) followed by

supervisor evaluations (6.2) and internal walkthroughs. With stakeholder input

and knowledge transfer, the project lifecycle is concluded with the compilation

of documentation and presentation materials (6.3). In addition to guaranteeing

that deliverables are finished, this phase gets the project ready for future review,

maintenance or scalability.

3.3 Project Schedule

This section will mainly focus on the work breakdown structure (WBS) and

Gantt Chart of this project.

80

3.3.1 Work Breakdown Structure

Figure 3.2: Project initial Planning Part 1

Figure 3.3: Project Initial Planning Part 2, Planning and Requirements

and Prototype Development Part 1

81

Figure 3.4: Prototype Development Part 2 and Development Phase Part

1

Figure 3.5: Development Phase Part 2, Testing and QA and Deployment

and Final Review

82

3.3.2 Gantt Chart

Figure 3.6: Project initial Planning – Part 1

Figure 3.7: Project Initial Planning Part 2, Planning and Requirements

and Prototype Development Part 1

Figure 3.8: Prototype Development Part 2

83

Figure 3.9: Development Phase Part 2 and Testing and QA Part 1

Figure 3.10: Testing and QA Part 2 and Deployment and Final Review

3.4 Development Tools

The IDE tool Visual Studio Code, the frontend frameworks React Native and

React Native Web, the backend framework Next.js, the database PostgreSQL,

the backend database management service Supabase, the deployment tool

Vercel, the vehicle recognition algorithm, and the datasets are all included in

this section as necessary to build the implemented system.

3.4.1 Visual Studio Code IDE

Visual Studio Code was the main coding tool utilized for this project. It offered

the advantage of tool extensibility which enabling developers to add snippets to

make coding easier. VS Code could edit a variety of programming languages,

including HTML, Tailwind CSS, TypeScript, and others after installing the

programming language CLI. Additionally, syntax highlighting was made

84

possible with the addition of Laravel extensions to Visual Studio Code which

aided in the quicker detection of syntax issues.

3.4.2 Enterprise Architecture

With a wide range of features and capabilities for software modeling, design,

and analysis, Enterprise Architect (EA) is a strong and adaptable UML analys

is tool. It is extensively employed in many different fields including engineering,

architecture and software development. The use case diagrams for every feature

offered by the multimodal vehicle recognition access control system were

created using EA in this project. By clearly illustrating how the system behaves

from the viewpoint of its users, use case diagrams were intended to aid in the

identification of the system's functional needs.

3.4.3 React Native

The multimodal LLM-based vehicle detection system's interface was developed

using React Native to provide cross-platform interoperability and a consistent

user experience on mobile and web devices. React Native's component-based

architecture and hot-reload features greatly sped up development and testing

because the system necessitates real-time user involvement for tasks like

uploading car pictures, examining segmentation results and obtaining GPT-4o

feedback. Its cross-platform code sharing capability guaranteed a consistent user

interface and decreased redundancy. When this method combined with React

Native for Web, it is made possible to retain excellent performance and

responsiveness in both environments while streamlining the development

process.

3.4.4 Tailwind CSS

For the multimodal LLM-based vehicle detection system, Tailwind CSS was

selected as the style framework because of its utility-first methodology which

facilitates quick user interface development with clear and maintainable code.

In order to display complicated outputs like segmented photos and GPT-4o

replies, a responsive and user-friendly user interface was required. Tailwind's

preset utility classes made it possible to quickly alter layouts and style them

consistently without using cumbersome custom CSS. The application was a

85

perfect fit for the system's web and mobile interfaces because of its mobile-first

design philosophy which also made sure that the user experience was consistent

across screen sizes.

3.4.5 Next.js

Next.js was chosen as the backend framework for the multimodal LLM-based

vehicle detection system due to its integrated API routes, modular design, and

smooth interaction with Node.js modules. For handling backend operations like

processing user inputs, handling image segmentation findings, and

synchronizing GPT-4o outputs, Next.js offered a solid basis. User

authentication, optimized model interactions, and the effective execution of

segmentation requests were made possible by its support for serverless

operations and middleware. Through ORMs like Prisma, Next.js integrated with

PostgreSQL to offer dependable database operations while preserving

performance and scalability. Next.js was a good fit for our AI-driven

recognition project because it makes backend development easier, guarantees

safe API handling, and works with contemporary deployment settings.

3.4.6 PostgreSQL

Because of its sophisticated data handling capabilities, support for complicated

queries, and dependability, PostgreSQL was chosen as the database

administration solution for the multimodal LLM-based vehicle recognition

project. Structured data including segmented vehicle attributes, user inputs,

model predictions and system logs must be efficiently stored and retrieved by

the system. PostgreSQL was ideally suited for handling the varied and

expanding datasets that are common in AI-integrated systems because of its

support for JSON, full-text search and indexing methods. Furthermore, data

integrity and scalability were ensured by its strong ACID compliance and good

performance under concurrent access, both of which are essential for the

recognition system's smooth operation on online and mobile platforms.

3.4.7 Supabase

Because of its strong PostgreSQL basis and cutting-edge capabilities that

directly match the system's requirements, Supabase was selected as the backend

86

platform for database management of this project. While JSON/JSONB support

offers flexibility for semi-structured data, it facilitates the effective storing and

retrieval of structured data which including segmented vehicle attributes, user

inputs, model predictions, and system logs. Realtime subscriptions via

PostgreSQL's LISTEN/NOTIFY allow clients to get updates instantly,

guaranteeing that any new alerts or recognition results are sent out right away.

While scalability and managed hosting relieve the strain of managing a database

cluster, strong ACID compliance protects data integrity under concurrent access.

Supabase takes care of scaling, backups, and maintenance automatically. All of

these characteristics combine to make Supabase the perfect, dependable, and

expandable system backbone.

3.4.8 Vercel

Vercel was selected as the hosting and deployment platform for this project due

to its smooth integration with Next.js and emphasis on backend performance. It

ensures that the vehicle recognition system runs effectively and dependably by

offering an optimum environment for server-side rendering and API execution.

Automatic updates from the GitHub repository are made possible by Vercel's

integrated support for continuous integration and deployment (CI/CD), which

lowers deployment overhead and boosts development productivity. Low-

latency API call replies are further guaranteed by its global content delivery

network (CDN), and the system's autonomous scalability enables it to

accommodate changing workloads without the need for manual infrastructure

maintenance. Vercel is a scalable and reliable option for hosting the project's

backend services because of these features.

3.4.9 GPT-4o Model

With the help of segmented picture data and human input, GPT-4o was included

into the multimodal vehicle identification system to deliver intelligent

and adaptable replies. It was well-suited for understanding vehicle attributes and

providing contextual insights or classifications because of its multimodal

capabilities which allow it to handle both text and visual information. The

system was able to improve its ability to enable real-time recognition and

feedback by fine-tuning GPT-4o with domain-specific data which resulted in

87

higher output accuracy and relevance. Because of its adaptability, GPT-4o was

also able to integrate with the backend with ease and utilizing its language and

reasoning capabilities to enhance user engagement and application decision-

making.

3.4.10 SegementAnything

Because Segment Anything can generalize across various object categories with

little task-specific training, it was used as the main image segmentation module

in the multimodal vehicle detection system. Regardless of different

surroundings or viewpoints, the system was able to precisely extract vehicle

components including license plates, headlights or logos due to to its prompt-

based segmentation technique. For the refined GPT-4o model to receive

organized visual input and perform accurate analysis and interpretation, this

high-quality segmentation was crucial. Segment Anything was integrated into

the system to create a strong preprocessing phase that greatly improved the

overall precision and adaptability of the vehicle recognition procedure.

(Note: The segmentation technique was changed to YOLO in later chapter 6.2.3)

3.5 Summary

To guarantee an organized and effective workflow, the Project Life Cycle (PLC)

and the Software Development Life Cycle (SDLC) both served as development

process guidelines for this project. In accordance with the project's six-month

timeframe, the PLC was split into discrete phases which included initiation,

planning, execution, monitoring and closing. Foundational tasks like the

literature study, problem identification, requirement analysis and prototype

creation were finished during the beginning and planning stages. System

implementation was the main emphasis of the execution phase, which included

GPT-4o and Segment Anything integration, PostgreSQL integration, frontend

interface development using React Native and Tailwind CSS, and backend

development using Laravel. The monitoring and closure phases included testing,

deployment and final delivery.

 In accordance with the Agile-based SDLC methodology, tasks were

logically arranged across documentation, development and deployment

utilizing a multi-level Work Breakdown Structure (WBS) and divided into 2-

88

week sprints. The timetable and dependencies were visualized using a Gantt

chart which also ensured simultaneous work in several components like UI

development and segmentation fine-tuning by indicating overlapping jobs.

Project planning, development and tracking were supported by tools including

VS Code, Postman, GitHub, and Microsoft Project. Iterative development and

continuous integration were supported while a clear deadline was maintained

because of this systematic combination of PLC and SDLC.

89

CHAPTER 4

4 PRELIMINARY RESULTS

4.1 Introduction

This chapter typically creates the project specification after gathering and

eliciting requirements. In order to learn about the current workflow, the first

stage is fact-finding which involves identifying and comprehending

requirements utilizing an online survey questionnaire. To illustrate how actors

engage with the multimodal vehicle recognition access control system, a use

case description and diagram were then produced. In order to better comprehend

the system's designs and functionalities, a prototype was finally made to

illustrate the user interfaces.

4.2 Fact Finding

A total of 30 responses was collected from the intended target audience. The

intended target audience provided a total of 30 responses. The questions in this

survey were divided into three parts. Demographic data was gathered in Section

A, while user experiences with the current vehicle access system were obtained

in Section B. Data regarding user expectations for a new system is collected for

Section C. Finally, two open-ended questions allow users to express any ideas

or concerns that aren't covered in the closed questions.

Figure 4.1: Type of vehicle owned

A data visualization of a survey on vehicle ownership with 30 participants is

shown in the image. Each vehicle type which included car, van, motorcycle,

90

SUV/truck, e-bike and other (none, no) as well as the proportion of responses

are displayed in a horizontal bar chart format. With lengths proportional to their

values, the bars extend rightward. According to the bar chart, "Car" has the

longest bar in which showing the highest number of responses. The scale is

indicated by numerical labels (0–30) at the bottom while percentages are shown

next to each bar.

 The distribution of vehicle ownership among respondents is clearly

shown in this image, with cars being the most prevalent. Although the

percentages such as 3.3% for "Motorcycle" aid in placing the data in context,

the chart might be enhanced by clearly marking each bar's precise count and

eliminating unnecessary choices which included "none" and "no" that come

from other. Overall, it accomplishes its goal of demonstrating relative popularity.

Figure 4.2: Utilization range of vehicle access control system

The image displays a pie chart that visualizes usage frequency statistics for a

vehicle access control system. Different usage frequencies are represented by

the four segments of the chart which included daily, weekly, monthly, and rarely.

It is instantly clear that the "Daily" category dominates with 66.7%, but usage

rates in the other categories are steadily declining. This graphic successfully

highlights the significant dependence on everyday use, demonstrating that the

access system is an essential part of residents' daily lives. T his

has highlighted the necessity of reliability and effectiveness in its architecture.

91

Figure 4.3: Type of vehicle access control system

The data shows that human verification is less widespread (16.7%), while RFID

technology dominates current systems (73.3%). A substantial possibility for

technical advancement in access control is highlighted by the low adoption rate

of license plate recognition (10%). Possibly as a result of their reliability and

simplicity of use, the graphic successfully conveys the present market

preference for RFID technologies.

Figure 4.4: Satisfaction on current system

While the majority of users are moderately satisfied (levels 3–4), relatively few

are absolutely content (level 5 at 13.3%) or totally dissatisfied (levels 1–2 at 6.6%

combined) as this visualization skillfully illustrates. T he chart is successful in

pointing out areas that require improvement, especially in terms of converting

mid-tier satisfaction (36.7% at level 3) to higher ratings, it could be improved

by emphasizing actionable insights. This data indicates to stakeholders that

although the existing system works well, major improvements might

significantly increase the satisfaction of users.

92

Figure 4.5: Challenges without vehicle recognition system

According to this statistics, 66.7% of people were concerned about delays,

indicating that they primarily value the current system for time savings. In

addition, 63.3% of people are concerned about security. The significant gap

between these primary concerns and secondary ones such as record-keeping

(43.3%), indicates that speed and security should come first in any new system.

Figure 4.6: Main challenges in current system

Based on 30 survey results, the horizontal bar chart illustrates the main issues

residents have with their current vehicle access system. Rapid recognition and

gate response times should be the top priorities of any improvement according

to the majority (56.7%) who list delayed processing as their worst concern.

Registration of new vehicle issues are the second most frequent problem (43.3%)

whixh suggested that car registration procedures need to be made more efficient.

The fact that nearly a quarter (23.3%) report recognition issues points to areas

93

where reliability of the system could be improved by using stronger hardware

or algorithms.

Figure 4.7: Importance of accuracy of vehicle access system

Based on 30 survey results, the bar chart calculates the the residents' assessed

importance of accurate vehicle recognition on a 5-point scale ranging from "Not

Important" to "Very Important". This is the top priority for system

enhancements because most people (90 percent combined for ratings 4-5)

believe that exact recognition is essential. Residents appear to have little

tolerance for recognizing failures as seen by the total lack of bad ratings (0% for

1-2). The system must function flawlessly for the majority of users as indicated

by the 56.7% rating at the top.

Figure 4.8: New features for future vehicle access system

According to the survey results from 30 participants, there are definite goals for

a new vehicle access system. Specifically, 76.7% of respondents emphasize the

94

necessity for precise vehicle information identification, and 86.7% require faster

recognition and response times. Real-time notifications (50%) and mobile app

integration (43.3%) are significant secondary preferences, while a small 3.3%

expressed doubts regarding the accuracy of detection. These results highlight

customers' preference for speed and accuracy above convenience features,

which directs development efforts toward improving response efficiency and

recognition algorithms. For optimal effect, the system should prioritize meeting

these core needs before adding digital capabilities like app integration and

notifications as supplementary features.

Figure 4.9: Importance of having user-friendly system

According to the survey's findings, user-friendliness is rated as critically

important (5/5) by 70% of respondents (21 out of 30), and important (4/5) by

another 23.3% (7 respondents). 93.3% of users believe that ease of use is a high-

priority feature overall, compared to just 6.7% (2 respondents) who gave it a

neutral assessment (3/5) and no one who thought it was unimportant (0% for 1-

2). With almost all responders highlighting this component as being just as

crucial as technical performance elements like identification accuracy, it is

evident that any new vehicle access system must prioritize user-friendly design

and easy operation in order to fulfill user expectations. According to the

statistics, in order to achieve broad acceptance and user satisfaction,

development efforts should strike a balance between advanced functionality and

easily navigable interfaces.

95

Figure 4.10: Acceptance of AI-based vehicle recognition system

The results of the poll indicate that AI-based car recognition is widely accepted

as there is 73.3% of respondents (22/30) said they were comfortably using the

system, while 26.7% (8/30) said they were unsure. Importantly, ther e is 0% said

they were against the technology. Although the remaining uncertain quarter

suggests the need for targeted education demonstrating the system's reliability

through test cases, clear refuse mechanisms during rollout to build trust, and

visible performance metrics to convince afraid users, the overwhelming positive

response suggests high receptiveness to AI implementation. As long as

openness is maintained at the forefront of deployment, the total lack of "No"

votes presents a unique chance to test AI solutions with minimal neutral

opinions.

Figure 4.11: Importance of recognisation of vehicle using image

According to the survey, image-based vehicle recognition has been given an

extremely high degree of importance with 46.7% of respondents (14/30) rated

96

it as absolutely crucial (5/5) and 36.7% of respondents (11/30) rated it as very

significant (4/5). Together, 83.4% of users rated this feature as essential (4+),

16.7% (5/30) gave it a neutral grade (3/5), and 0% downplayed its significance

(no 1-2 ratings). This research emphasizes that most users believe reliable

picture recognition which requires high-accuracy implementation.

Figure 4.12: Expectation of accuracy on vehicle recognition system

With 63.3% of respondents (19/30) expecting flawless performance (rating 5/5)

and another 26.7% (8/30) expecting near-perfect operation (4/5), the survey

results show that 90% of users have strict accuracy expectations for vehicle

identification systems. Users consider precision to be non-negotiable as

evidenced by the fact that only 10% (3 respondents) were fairly tolerant (ratings

2-3) and 0% would tolerate subpar performance. In order to meet the 63.3% who

expect zero errors, these findings require the adoption of redundant verification

mechanisms, thorough real-world testing, and transparent accuracy reporting.

This is because even small recognition failures have the potential to damage

systemic trust. According to the research, accuracy is the most important factor

that determines user acceptance, compared to all other aspects.

97

Figure 4.13: Maximum acceptable time for vehicle recognisation

According to the poll, 90% of users (27 out of 30 respondents) want almost

instantaneous vehicle detection, while 36.7% (11 users) accept responses of 3-

5 seconds and 53.3% (16 users) are okay with 1-3 seconds. Only 10% (3 users)

would need less than a second, and 0% would allow delays longer than five

seconds. This establishes a strict 3-second performance criteria for

implementation, recommending that the needs of optimize ALPR algorithms for

processing in real-time and test load during periods of high traffic. The total lack

of tolerance for sluggish answers (>5s) suggests that user pleasure depends on

speed just as much as accuracy, demanding a balanced investment in both

software and hardware.

4.3 User Requirements Specifications (URS)

This section provides a representation of the user requirement specification,

which may be broken down into the two primary categories of "functional

requirements" and "non-functional requirements."

4.3.1 Functional Requirements

Role ID Module Functional Requirements

Residents SRS001 Registration

The system shall allow residents

to register an account with their

personal information such as

house number, name, email and

password.

98

SRS002 Login
The system shall allow residents

to log in by email and password.

SRS003
Manage

Profile

The system shall allow residents

to update their profile

information such as name, phone

number, address and profile

image.

SRS004

Manage

Vehicle

The system shall allow residents

to register their vehicle with

details like plate number, colour,

model, and manufacturer.

SRS005

The system shall allow residents

to update their registered vehicle

information such as plate

number, colour, and model.

SRS006
The system shall allow residents

to delete their registered vehicle.

SRS007 Notifications

The system shall send

notification to residents when

their vehicle enters/exits the

premises.

SRS008
Suspicious

Activity Alerts

The system shall alert residents if

a suspicious event such as clone

vehicle plate with different

colour or model is detected.

SRS09

Manage

Visitor Pass

The system shall allow residents

to generate a visitor pass with

different time-limited for visitor

registration.

SRS010

The system shall allow residents

to update a visitor pass for editing

incorrect information or activate

again the visitor pass.

99

SRS011
The system shall allow residents

to delete a registered visitor pass.

SRS012
Reset

Password

The system shall allow residents

to reset their account password.

SRS013

Vehicle Logs

The system shall allow residents

to view a history of their

registered vehicle’s entries/exits.

SRS014

The system shall allow residents

to search for history of their

registered vehicle’s entries/exits

by record ID.

SRS015

The system shall allow residents

to filter the log records by event

type and suspiciousness.

SRS016

The system shall allow residents

to sort their registered vehicle’s

log records by alphabetical

characters in ascending and

decreasing order.

Security

Guards

SRS017 Login

The system shall allow security

guard to log in by guard ID and

password.

SRS018
Reset

Password

The system shall allow security

guard to reset their account

password.

SRS019 Dashboard

The system shall display real-

time data analysis from the log

records of vehicle entries or exits.

SRS020 Vehicle Logs

The system shall allow security

guards to search for history of

vehicle’s entries/exits by record

100

ID, vehicle colour, and vehicle

model.

SRS021

The system shall allow security

guards to filter the log records by

record status.

SRS022

The system shall allow security

guards to sort the log records by

alphabetical characters in

ascending and decreasing order.

SRS023
Suspicious

Events

The system shall highlight

suspicious vehicles like

duplicated license plate for

manual checking.

SRS024
Real-Time

Alerts

The system shall notify guards of

flagged vehicles via audio/visual

alerts on the dashboard.

SRS025
Manage

Profile

The system shall allow security

guards to update their profile

information such as name and

profile image.

4.3.2 Non-Functional Requirements

Category ID Non-functional requirement

Performance

NFR001

The system shall return search results

within 2 seconds for 90% of queries

under normal load.

NFR002

Real-time notifications shall be

displayed on the user interface within

3 seconds of detection.

Availability NFR003
The system shall be available 90% of

the time over a 30-day period.

101

Security

NFR004

User passwords shall be stored using

AES-256 or bcrypt hashing, and

never in plain text.

NFR005
All HTTP requests must be served

over HTTPS with TLS encryption.

Usability

NFR006

First-time users shall be able to

register and log in within 3 minutes

on average.

NFR007

The user interface shall display and

function correctly on modern web

browsers.

Reliability

NFR008

The system shall gracefully handle

unexpected input or component

failure by providing meaningful error

messages instead of crashing.

NFR009

The system shall retry failed

communication with the database or

external services up to 3 times before

notifying the user.

NFR010

The system shall log all critical errors

to a centralized log file or monitoring

service with timestamps and error

severity level.

NFR011

The system shall log all user login

attempts and key actions with

timestamps for auditing and recovery

purposes.

4.4 System Use Case

Use cases are a collection of behaviors that explain how users including staff

members, event coordinators, kids and business owners interact with systems

that have been put into place. System use cases gave users specific instructions

on how to achieve their goals within the real system. It is used in the analysis

102

phase to find, specify and make apparent the functional needs from the

viewpoint of the end users, as well as the interdependencies between use cases.

A use case diagram and description will be included in this section.

4.4.1 Use Case Diagram

Figure 4.14: Use Case Diagram

103

4.4.2 Use Case Description

Table 4.１: Use Case Description for Retrieve Vehicle Logs

Use Case Name:

Retrieve Vehicle Logs

ID: USC001 Importance Level: High

Primary Actor: Resident

Use Case Type: Detailed, real

Stakeholders and Interests: N/A

Brief Description: This use case describes the process of retrieving a list

of vehicle logs owned by resident by sorting the data based on vehicle

plate, vehicle make and model, event type, activity status or date by the

resident.

Trigger: The resident wants to retrieve a collection or a list of his/her

vehicle logs.

Relationships:

 Association : Resident

 Include : N/A

 Extend : N/A

 Generalization : N/A

Normal Flow of Events:

1. The system retrives all the vehicle logs that owned by the vehicles

registered of resident.

2. The system displays all the information of the vehicle logs.

3. The user input partial information of vehicle logs. Continue to S-1.

4. The system display the search result. Continue to S-2.

104

Sub-flows:

S-1 Perform 3.1 or 3.2 or 3.3 or 3.4 or 3.5 or 3.6

3.1 If user choose to search by vehicle plate:

3.1.1 The system allow user to key in the vehicle plate. Continue to

flow 4.

3.2 If user choose to search by vehicle make and model:

3.2.1 The system allow user to key in the vehicle make and model.

Continue to flow 4.

3.3 If user choose to filter by event type entry:

3.3.1 The system allow user to select the event type entry. Continue

to flow 4.

3.4 If user choose to search by event type exit:

3.4.1 The system allow user to select the event type exit. Continue to

flow 4.

3.5 If user choose to search by all activity:

3.5.1 The system allow user to select the all activity. Continue to flow

4.

3.6 If user choose to search by suspicious activity:

3.6.1 The system allow user to select the suspicious activity.

Continue to flow 4.

3.7 If user choose to search by date:

3.7.1 The system allow user to select the date. Continue to flow 4.

S-2 Perform 4.1 or 4.2

4.1 If at least one vehicle log is found:

4.1.1 The system displays all the brief information of the list of vehicle

logs. Continue to flow 5.

4.2 If no vehicle log is found:

4.2.1 The system displays no log found message.

Alternate/Exceptional Flows:

105

Table 4.２: Use Case Description for Manage Visitor Pass

Use Case Name:

Manage Visitor Pass

ID: USC002 Importance Level: High

Primary Actor: Resident

Use Case Type: Detailed, real

Stakeholders and Interests: N/A

Brief Description: This use case describes the process of resident

retrieving a list of visitor pass.

Trigger: The resident wants to retrieve a list of visitor pass.

Relationships:

 Association : Resident

 Include : Receive notification

 Extend : N/A

 Generalization : N/A

Normal Flow of Events:

1. The system retrives all the visitor access pass.

2. The system displays all the information of the visitor pass. Continue

to S-1.

3. The user take action on the visitor pass. Continue to S-2.

Sub-flows:

S-1 Perform 2.1 or 2.2

2.1 If the visitor pass is expired:

2.1.1 The system display the visitor pass with a activate again button

and delete button. Continue to flow 3.

2.2 If the visitor pass is still valid:

2.2.1 The system display the visitor pass with a edit button and

delete button. Continue to flow 3.

S-2 Perform 3.1 or 3.2 or 3.3

3.1 If the user choose to delete a visitor pass:

106

3.1.1 The system displays confirmation delete message

3.1.2 The user delete the visitor pass by selecting confirm delete.

3.1.3 The system prompt a delete successful message to user.

Continue to USC006.

3.2 If the user choose to update a visitor pass:

3.2.1 The system displays the update visitor pass page with its

information to the user.

3.2.2 The user edit the visitor pass information and click on update

visitor pass button.

3.2.3 The system save the new visitor pass information and prompt

a update successful message to user. Continue to USC006.

3.3 If the user want to add new visitor pass:

3.3.1 The user click on the add visitor button.

3.3.2 The system route user to add visitor page and allow user to enter

the visitor name, phone number, vehicle license plate, color, make,

model year and date range.

3.3.3 The system save the new visitor pass information and prompt

a update successful message to user. Continue to USC006.

Alternate/Exceptional Flows:

Table 4.３: Use Case Description for Reset Password

Use Case Name:

Reset Password

ID: USC003 Importance Level: High

Primary Actor: Resident, Security

Guard

Use Case Type: Detailed, real

Stakeholders and Interests: N/A

Brief Description: This use case describes the process of reset the

account password.

107

Trigger: The user clicked the “Forgot Password” link on the login page.

Relationships:

 Association : Resident, Security Guard

 Include : N/A

 Extend : N/A

 Generalization : N/A

Normal Flow of Events:

1. The user clicked the “Forgot Password” link on the login page.

2. The system displayed a page prompting the user to enter their

registered email address.

3. The user entered their email address and submitted the request.

Continue to S-1

4. The user opened the reset email and clicked the password reset link.

5. The system redirected the user to the reset password page.

6. The user entered a new password and confirmed it. Continue to S-2.

Sub-flows:

S-1 Perform 3.1 or 3.2

3.1 If the email input are not valid:

3.1.1 The system display error message. Continue to flow 3.

3.2 If the email input are valid:

3.2.1 The system sent a reset password link and prompt an alert to

user about the reset password email has been sent. Continue

to flow 4.

S-2 Perform 6.1 or 6.2

6.1 If the new password not meet security requirement:

6.1.1 The system displayed an error message. Continue to flow 6.

6.2 If the new password meet security requirement::

6.2.1 The system save the new password and route the user back to

the login page.

Alternate/Exceptional Flows:

108

Table 4.４: Use Case Description for Login

Use Case Name: Login

ID: USC004 Importance Level: High

Primary Actor: Resident, Security

Guard

Use Case Type: Detailed, real

Stakeholders and Interests: N/A

Brief Description: This use case describes the process of resident and

security guard login the web vehicle recognition access control system.

Trigger: The resident or security guard wants to access the vehicle

recognition access control system.

Relationships:

 Association : Resident, security guard

 Include : N/A

 Extend : N/A

 Generalization : N/A

Normal Flow of Events:

1. The user navigates to the login page.

2. The system allow user to key in their email and password.

3. The user enter their email and password. Perform S-1.

4. The system check the presence of any login before. Perform S-2.

5. The system prompt a login successful message to user.

Sub-flows:

S-1 Perform 3.1 or 3.2

3.1 If the user enter correct credentials:

3.1.1 The user enter their email and password. Continue to flow 4.

3.2 If user user enter incorrect credentials:

3.2.1 The system prompt a login error message. Continue to flow 3.

109

S-2 Perform 4.1 or 4.2

4.1 If there is login record before:

4.1.1 The system kill the login session before and create a new one.

Continue to flow 5.

4.2 If no login record before:

4.2.1 The system create a new login session. Continue to flow 5.

Alternate/Exceptional Flows:

Table 4.５: Use Case Description for Register Account

Use Case Name:

Register Account

ID: USC005 Importance Level: High

Primary Actor: Resident Use Case Type: Detailed, real

Stakeholders and Interests: N/A

Brief Description: This use case describes the process of resident register

a new account in vehicle recognition access control system.

Trigger: The resident wants to register a new account in the vehicle

recognition access control system.

Relationships:

 Association : Resident

 Include : N/A

 Extend : N/A

 Generalization : N/A

Normal Flow of Events:

1. The user navigates to the register page.

2. The system allow user to key in their name, email and password.

3. The user enter their credentials. Perform S-1.

110

4. The system check the presence of any account with same email.

Perform S-2.

Sub-flows:

S-1 Perform 3.1 or 3.2

3.1 If the user enter matched password:

3.1.1 The system pass the credentials to backend. Continue to flow

4.

3.2 If user user enter unmatched password:

3.2.1 The system prompt an error message for different password.

Continue to flow 3.

S-2 Perform 4.1 or 4.2

4.1 If there is similar email account before:

4.1.1 The system prompt the error message that the email is

registered before.

4.2 If no similar email account before:

4.2.1 The system prompt a message about verify email and sent

verification email to user.

4.2.2 The user click on the verification email.

4.2.3 The system register the user.

Alternate/Exceptional Flows:

Table 4.６: Use Case Description for Receive Notification

Use Case Name:

Receive Notification

ID: USC006 Importance Level: High

Primary Actor: Resident Use Case Type: Detailed, real

Stakeholders and Interests: N/A

Brief Description: This use case describes the process of resident

receiving notification in vehicle recognition access control system.

111

Trigger: The resident wants to view the new notification in the vehicle

recognition access control system.

Relationships:

 Association : Resident

 Include : N/A

 Extend : N/A

 Generalization : N/A

Normal Flow of Events:

1. The system generate new notification on activity.

2. The system formats the notification content like title and description.

3. The system push the notification to the user.

4. The user can choose to view or dismiss the notification. Perform S-1.

Sub-flows:

S-1 Perform 4.1 or 4.2

4.1 If the user choose to view the notification:

4.1.1 The application system will be open.

4.2 If the user choose not to view the notification:

4.2.1 The notification will be store in the notification page of

application.

Alternate/Exceptional Flows:

Table 4.７: Use Case Description for Manage Vehicle

Use Case Name:

Manage Vehicle

ID: USC007 Importance Level: High

Primary Actor: Resident Use Case Type: Detailed, real

Stakeholders and Interests: N/A

112

Brief Description: This use case describes the process of resident manage

vehicles in vehicle recognition access control system.

Trigger: The resident wants to add, delete or edit the vehicles in the

vehicle recognition access control system.

Relationships:

 Association : Resident

 Include : N/A

 Extend : N/A

 Generalization : N/A

Normal Flow of Events:

1. The user navigate to the vehicle page.

2. The system display a list of registered vehicles.

3. The system display options that can be performed on vehicles.

4. The user chooses the option to add, delete or edit the vehicles.

Continue to S-1.

Sub-flows:

S-1 Perform 4.1 or 4.2

4.1 If the user choose to add new vehicle:

4.1.1 The system allow user to enter new vehicle information like

license plate, make, model, color and year.

4.1.2 The user enter the information needed for new vehicles.

Continue to S-2.

4.2 If the user choose to edit vehicle:

4.2.1 The system displays the vehicle’s information for the user to

select the information that would be edited.

4.2.2 The user enters the edited vehicle information. Continue to S-3.

4.3 If the user choose to delete vehicle:

113

4.3.1 The system will prompt conformation delete message to user.

Continue to S-4.

S-2 Perform 4.1.2.1 or 4.1.2.2

4.1.2.1 If the user input is valid:

4.1.2.1.1 The system will add the new vehicle. Continue to USC006.

Continue to flow 2.

4.1.2.2 If the user input is not valid:

4.1.2.2.1 The system prompts error message.

4.1.2.2.2 The user re-enter the new vehicle information. Continue to

flow 4.1.2.1.

S-3 Perform 4.2.2.1 or 4.2.2.2

4.2.2.1 If the user input is valid:

4.2.2.1.1 The system will update the vehicle information. Continue to

USC006. Continue to flow 2.

4.2.2.2 If the user input is not valid:

4.2.2.2.1 The system prompts error message.

4.2.2.2.2 The user re-enter the edited vehicle information. Continue

to flow 4.2.2.1.

S-4 Perform 4.3.1.1 or 4.3.1.2

4.3.1.1 If the user confirm to delete vehicle:

4.3.1.1.1 The system will delete the vehicle selected by user.

Continue to USC006. Continue to flow 2.

4.3.1.2 If the user does not confirm to delete vehicle:

4.3.1.2.1 The system will not execute the delete process. Continue to

flow 2.

Alternate/Exceptional Flows:

Table 4.８: Use Case Description for Manage Profile

Use Case Name:

Manage Profile

ID: USC008 Importance Level: High

114

Primary Actor: Resident, security guard Use Case Type: Detailed, real

Stakeholders and Interests: N/A

Brief Description: This use case describes the process of resident and

security guard manage their profiles in vehicle recognition access

control system.

Trigger: The resident or security guard wants to edit the profile

informations in the vehicle recognition access control system.

Relationships:

 Association : Resident, security guard

 Include : Receive notification

 Extend : N/A

 Generalization : N/A

Normal Flow of Events:

1. The user navigate to the profile page.

2. The system display the profile information.

3. The system display edit option that can be performed on profile.

4. The user chooses the option to edit the profile.

5. The system displays the profile’s information for the user to select the

information that would be edited.

6. The user enters the edited profile information. Continue to S-1.

Sub-flows:

S-1 Perform 6.1 or 6.2

6.1 If the user input is valid:

6.1.1 The system will update the profile information. Continue to

USC006. Continue to flow 2.

6.2 If the user input is not valid:

6.2.1 The system prompts error message.

6.2.2 The user re-enter the edited profile information. Continue to

flow 6.1.

115

Alternate/Exceptional Flows:

Table 4.９: Use Case Description for Retrieve Vehicle History Log

Use Case Name:

Retrieve Vehicle History Log

ID: USC009 Importance Level: High

Primary Actor: Security Guard Use Case Type: Detailed, real

Stakeholders and Interests: N/A

Brief Description: This use case describes the process of security guard

search vehicle history log in vehicle recognition access control system.

Trigger: The security guard wants to search or filter the vehicle history

log in the vehicle recognition access control system.

Relationships:

 Association : Security Guard

 Include : N/A

 Extend : Filter data, Search data

 Generalization : N/A

Normal Flow of Events:

1. The user navigate to the vehicle logs page.

2. The system display a list of vehicle history logs.

3. The user can manage a particular vehicle logs by searching license

plate or make or model or filtering through event type and activity

status. Continue to E-1.

116

Sub-flows:

S-1 Perform 3.1.2.1 or 3.1.2.2

3.1.2.1 If at least one vehicle history log is found:

3.1.2.1.1 The system display the search results in the page. Continue

to flow 3.

3.1.2.2 If no vehicle history log is found:

3.1.2.2.2 The system displays the message no vehicle history log is

found. Continue to flow 3.

Alternate/Exceptional Flows:

E-1 Perform 3.1 or 3.2 or 3.3

3.1 If the user choose to vehicle history logs:

3.1.1 The system allow user to enter the search information.

3.1.2 The user enter the search information needed. Continue to S-1.

3.2 If the user choose to filter vehicle history logs:

3.2.1 The system allow user to choose the filter categories.

3.2.2 The user choose the filter categories. Continue to S-1.

3.3 If the user choose not to search or filter vehicle history logs:

3.3.1 The system allow user to not enter any prompt or select any

category. Continue to flow 2.

Table 4.１０: Use Case Description for Retrieve Real-Time Data

Use Case Name:

Retrieve Real-Time data

ID: USC010 Importance Level: High

Primary Actor: Security Guard Use Case Type: Detailed, real

Stakeholders and Interests: N/A

Brief Description: This use case describes the process of security guard

retrieve real-time data and receive alerts in vehicle recognition access

control system.

117

Trigger: The security guard wants to retrieve real-time data and receive

alerts in the vehicle recognition access control system.

Relationships:

 Association : Security guard

 Include : N/A

 Extend : Show alerts

 Generalization : N/A

Normal Flow of Events:

1. The system retrieve the real-time data in database.

2. The system generate new alerts based on retrieve real-time data.

3. The system formats the alerts content like title and description.

4. The system push the alerts to the user.

5. The user can choose to view or dismiss the alerts. Perform E-1.

Sub-flows:

Alternate/Exceptional Flows:

E-1 Perform 5.1 or 5.2

5.1 If the user choose to view the alert:

5.1.1 The system will redirect the user to the alerts page.

5.2 If the user choose to not view the alert:

 5.2.1 The alert will be store in the alerts page of web application.

4.5 Proposed System Flow & Prototype

This section will focus on proposed system flow whcihc represented by user

interface flow diagram and the prototype screenshot for visualization purpose.

118

4.5.1 User Interface Flow Diagram

The flow of web and mobile application with same codebase for security guard

and residents are shown in below user interface flow diagrams.

Figure 4.15: User interface flow diagram for residents

Figure 4.16: User interface flow diagram for security guards

4.6 Prototype

This section show all the web and mobile application’s prototype screenshots

with subsection, login or register, resident’s page and security guard’s page.

119

4.6.1 Login or register

4.6.1.1 Web View

Figure 4.17: Login Web View

Figure 4.18: Register Web View

4.6.1.2 Mobile View

120

Figure 4.19: Login Mobile View

121

Figure 4.20: Register Mobile View

4.6.2 Resident’s Page

4.6.2.1 Web View

122

Figure 4.21: Resident’s Dashboard Page Web View

Figure 4.22: Resident's Vehicles Page Web View

Figure 4.23: Resident's Add Vehicle Page Web View

123

Figure 4.24: Resident's Vehicle Logs Page Web View

Figure 4.25: Resident's Report Unauthorized Parking Page Web View

Figure 4.26: Resident's Visitor Page Web View

124

Figure 4.27: Resident's Invite Visitor Page Web View

Figure 4.28: Resident’s Notification Page Web View

Figure 4.29: Resident's Profile Page Web View

4.6.2.2 Mobile View

125

Figure 4.30: Resident’s Sidebar Page Mobile View

126

Figure 4.31: Resident's Dashboard Page Mobile View

127

Figure 4.32: Resident's Vehicle Page Mobile View

128

Figure 4.33: Resident's Add Vehicle Page Mobile View

129

Figure 4.34: Resident's Vehicle Logs Page Mobile View

130

Figure 4.35: Resident's Report Unauthorized Parking Page Mobile View

131

Figure 4.36: Resident's Visitor Page Mobile View

132

Figure 4.37: Resident's Invite Visitor Page Mobile View

133

Figure 4.38: Resident’s Notification Page Mobile View

134

Figure 4.39: Resident's Profile Page Mobile View

135

4.6.3 Security Guard’s Page

4.6.3.1 Web View

Figure 4.40: Security Guard's Dashboard Page Web View

Figure 4.41: Security Guard's Access Logs Page Web View

136

Figure 4.42: Security Guard's Parking Reports Page Web View

Figure 4.43: Security Guard's Alerts Page Web View

Figure 4.44: Security Guard's Profile Page Web View

4.6.3.2 Mobile View

137

Figure 4.45: Security Guard's Sidebar Page Mobile View

138

Figure 4.46: Security Guard's Dashboard Page Mobile View

139

Figure 4.47: Security Guard's Access Logs Mobile View

140

Figure 4.48: Security Guard's Unauthorized Parking Reports Page Mobile

View

141

Figure 4.49: Security Guard's Alerts Page Mobile View

142

Figure 4.50: Security Guard's Profile Page Mobile View

143

4.7 Preliminary Code run on SegmentAnything and Yolov8-seg

The preliminary code run on Segment Anything (SAM) and YOLOv8-Seg is

vital for understanding how each segmentation model functions in the context

of vehicle recognition especially when incorporated into a multimodal vehicle

recognition system for vehicle access control. The accuracy, effectiveness and

usability of several segmentation approaches in practical situations may be

compared due to this early implementation. The preliminary study offers

insights into the strengths and drawbacks of SAM and YOLOv8-Seg by testing

them both on the same dataset. This serves as a basis for choosing the best model

for the project. Additionally, it establishes the foundation for future system

improvement and refinement, guaranteeing that the finished vehicle recognition

framework can accurately and instantly handle a variety of scenarios.

4.7.1 Overview

This preliminary code compares two vehicle segmentation techniques, Segment

Anything Model (SAM) and YOLOv8-Segmentation, by evaluating their

performance on the same image. YOLOv8 detects vehicle bounding boxes,

which are passed to SAM for segmentation, while YOLOv8-Segmentation

directly performs end-to-end segmentation. The segmentation results from both

models are compared using metrics like Intersection over Union (IoU), Dice

Score, and Pixel Accuracy. The performance is also assessed in terms of

processing time. Finally, the original image and the segmentation masks from

both models are visualized side by side for qualitative comparison.

144

4.7.2 Detailed Steps

Figure 4.51: Flowchart of preliminary code

The vehicle segmentation pipeline shown in this flowchart combines Segment

Anything Model (SAM) for accurate segmentation with YOLOv8 for object

recognition. First, both models are initialized and an input image is loaded. In

order to construct detailed pixel-level masks, SAM uses the bounding boxes that

YOLOv8 creates after initially detecting cars. For comparison, the system also

uses YOLOv8's built-in segmentation (YOLOv8-seg) to segment automobiles.

The results are then visualized after metrics such as pixel accuracy, Dice

coefficient, and intersection over union (IoU) are computed to assess the

effectiveness of both segmentation techniques.

This workflow's goal is to ensure maximum accuracy and efficiency

for vehicle segmentation jobs by comparing SAM to YOLOv8-seg. This

145

pipeline can be used for this proposed vehicle access control system because the

displayed results aid in validating the models' outputs.

4.7.3 Experimental Setup and Result

The data collected is randomly selected from internet resources. For analyzing

the results, the visualization results and the other metrics such as IoU and Dice

are shown in the below figures and table:

Figure 4.52: Visualization result of car 1

Figure 4.53: Visualization result of car 2

146

Figure 4.54: Visualization result of car 3

Figure 4.55: Visualization result of car 4

Figure 4.56: Visualization result of car 5

147

Table 4.１１: Experimental result of SAM and Yolov8-seg

Images IoU Dice Pixel

Accuracy

SAM

Time (ms)

Yolov8-seg

Time (ms)

1 0.7779 0.8751 0.9254 10459.16 2061.03

2 0.9382 0.9681 0.9660 10315.55 2111.13

3 0.9132 0.9546 0.9392 10181.98 2087.78

4 0.9211 0.9589 0.9484 10585.60 2123.98

5 0.8687 0.9297 0.8906 10053.70 2062.63

According to table 4.13, the experimental results comparing Segment Anything

(SAM) and YOLOv8-Seg are shown in Table 4.13, with a focus on the

following important performance metrics including processing times,

intersection over union (IoU), dice coefficient and pixel accuracy. High

accuracy was shown by both models as SAM obtained IoU values between

0.7779 and 0.9382 while YOLOv8-Seg yielded comparable outcomes. This

implies that both models can produce segmentations that are extremely accurate.

The Dice coefficient which measures the overlap between the ground truth and

predicted masks was also high for both models with YOLOv8-Seg ranging from

0.8906 to 0.9660 and SAM scoring between 0.8751 and 0.9681.

 Both SAM and YOLOv8-Seg performed well while assessing Pixel

Accuracy as SAM received scores ranging from 0.8906 to 0.9254 while

YOLOv8-Seg received ratings between 0.9660 to 0.8906. This shows that both

models successfully and accurately label individual pixels in their segmentation

tasks. However, the processing time of the two models is a crucial distinction

between them. Compared to YOLOv8-Seg, which processed photos between

2061.03 ms and 2123.98 ms, SAM's processing time ranged roughly from

10053.7 ms to 10585.6 ms.

 The findings point to a trade-off. SAM is better suited for applications

where accuracy is more important than speed because it consumes more

computing time even though it produces higher segmentation quality. However,

YOLOv8-Seg has a little lower segmentation accuracy but delivers faster speed

which making it perfect for real-time applications. Despite its higher processing

148

time, SAM is the recommended option due of its superior segmentation

accuracy which is crucial for vehicle identification systems.

(Note: The segmentation technique was changed to YOLO in later chapter 6.2.3)

4.8 Chapter Summary

The project's initial findings are presented in this chapter which provides

information on the system's development process and early results. A summary

of the work completed so far opens the chapter which is followed by a fact-

finding phase that examined important data relevant to the project.

Understanding the goals and expectations of the system requires knowledge of

both functional and non-functional needs which are described in the User needs

Specifications (URS) section.

System use cases are also included in this chapter, along with a use

case diagram and descriptions that provide readers a clear idea of how the

system will work in practical situations. Additionally, the prototype and

suggested system flow are presented, showcasing the expected user interface

flow and preliminary design components.

The initial code runs of the SegmentAnything and YOLOv8-seg

models which are essential to the vehicle detection system under

development are specifically covered in Section 4.6. This part contains an

examination of the experimental setup and outcomes, a thorough description of

the procedures followed and a summary of the models' performance. Insights

on the advantages and disadvantages of the selected segmentation models are

provided by this early testing, which is essential for improving the system's

performance in later phases of development.

149

CHAPTER 5

5 SYSTEM DESIGN

5.1 Introduction

This chapter gave a summary of the system's design and included a number of

diagrams and the system architecture that showed the system's structure. The

flow of data or information through the system was represented in a data flow

diagram (DFD). The use cases covered in earlier chapters served as the

foundation for the processes in the data flow diagram. Level-0 DFD and a

context diagram were also included in this chapter. Lastly, the screenshots of

the developed system's user interface flow design were displayed. For easier

reading and understanding, all the screenshots were arranged according to the

system modules.

5.2 System Architecture Design

Figure 5.1: System Architecture Diagram

The figure above showed the system architecture of the proposed vehicle

recognition and monitoring system which combined the web-based and artificial

intelligence components. Residents and security personnel were the primary

users of the architecture which interacting with the system via the web browsers.

Modern web programming languages including React Native, TypeScript,

HTML, CSS, and TailwindCSS were used in the development of the

application's frontend as they offered a responsive and user-friendly interface

for managing the residents, visitors, vehicles and notifications. To ensure the

150

safe data flow throughout the system, HTTPS requests and replies were used to

establish communication between the frontend and the backend.

The Next.js-powered backend server which served as the primary

processing unit for managing the user requests was at the heart of the

architecture. The database layer and the AI recognition services were the two

primary components that the backend communicated with. Supabase managed

all the structured data, including user profiles, residents, visitors, vehicles,

records and notifications. It also integrated with the auth.users to offer

authentication and authorization. In the meantime, the backend sent vehicle

images to the AI modules for tasks such as recognition.

Following the processing, the Next.js backend received the JSON

replies from the Supabase and the AI modules. It then compiled and formatted

the data before returning it to the frontend. This made it possible for the users

especially the security personnel to effectively monitor the access in real time,

identify questionable records and confirm the identities of vehicles. Vercel was

used to deploy the full backend system and this had guaranted the scalability,

dependability, and cloud-based accessibility. In conclusion, this architecture

supported the intelligent monitoring and effective communication within the

system by facilitating a smooth integration between the frontend interfaces,

backend logic, safe data storage and AI-powered recognition.

5.3 System Design Models

This section presented a entity relationship illustration that described the

structured view of the database concepts and their relationships.

151

5.3.1 Entity Relationship Diagram (ERD)

Figure 5.2: Entity Relationship Diagram (ERD) of system

Figure 5.2 above illustrated the Entity Relationship Diagram (ERD) of the

system that includes seven primary tables which are auth.users, profiles,

residents, visitors, cars, records, and notifications. The auth.users table is the

authentication layer provided by Supabase. The function of the auth users table

is to store each system user’s core login credentials like email and password. It

is expanded by the profiles table, which serves as the main link between other

modules and stores extra user information like name, role, and profile picture

url. By collecting resident-specific data like address and phone number, the

residents table extends profiles even further. Meanwhile, the visitors table keeps

track of temporary users' contact information, their duration of visit, and

optional vehicle linkages. Vehicle-related data, including license plate number,

model, manufacturer, color, and year, are stored in the vehicle's table and are

associated with either a resident through profiles table or a visitor. Vehicle-

related occurrences and events are recorded in the records table along with the

type, description, and status of the case which is suspicious or resolved. Last but

not least, the notifications table provides users with system-generated messages

and alerts based on their events or behaviors. Secure authentication through

auth.users, smooth resident and visitor linkage through profiles, and effective

vehicle, incident, and system-wide communication monitoring are all

guaranteed by this schema design.

152

5.3.2 Data Flow Diagram (DFD)

The Data Flow Diagram (DFD) was used to represent the flow of information

within the system. It illustrated how the data entered the system, the processes

that transformed the data and also the outputs generated. By providing a clear

and structured view of the interactions between users, processes, and data stores,

the DFD helped in understanding the overall functionality of the system at

different levels of the abstraction.

5.3.2.1 Context Diagram

The context diagram provided in this section illustrated the system at the highest

level of the abstraction. The diagram outlined the system’s boundaries and

demonstrated the flow of the information between the users and the system

without detailing the internal processes.

Figure 5.3: Context Diagram

5.3.2.2 DFD Level – 0

The Level 0 DFD provides a high-level overview of the system. It showed the

main processes, external entities and also the data flows. It defines the system

boundaries and illustrates how the data moves between the users, the system,

153

and data stores. In other words, it highlighted the core functions such as vehicle

registration, recognition, and data storage in this project.

Figure 5.4: Data Flow Diagram Level - 0

5.4 User Interface Design

User Interface (UI) Design defines how the users interact with the vehicle

recognition system. It focuses on creating the intuitive, user-friendly screens for

both residents and security guards and also ensuring that all system functions

such as the vehicle registration, visitor pass generation, recognition results and

access management are easily accessible and efficiently navigable to the user.

Good UI design improves the user experience, reduces errors and supports the

smooth operation of the system on the web platform.

5.4.1 Resident Side

Resident Side UI Design focuses on creating an intuitive and user-friendly

interface for the residents to interact with the system.

5.4.1.1 Registration

154

Figure 5.5: Resident Register UI

Figure 5.6: Resident fill in Registration UI without readability on

password

155

Figure 5.7: Resident fill in Registration UI with readability on password

Figure 5.8: Resident Registration Success UI

5.4.1.2 Login

156

Figure 5.9: Resident Login UI

Figure 5.10: Resident Login UI without readability on password

157

Figure 5.11: Resident Login UI with readability on password

5.4.1.3 Manage Profile

Figure 5.12: Resident Profile Page UI

158

Figure 5.13: Resident Update Profile Page UI Part 1

Figure 5.14: Resident Update Profile Page UI Part 2

159

Figure 5.15: Resident Upload Profile Image UI

Figure 5.16: Resident Update Profile Successful UI

160

Figure 5.17: Resident New Updated Profile Page UI

5.4.1.4 Manage Vehicle

Figure 5.18: Resident Vehicle Page UI

161

Figure 5.19: Resident Add New Vehicle Page UI

Figure 5.20: Resident Add New Vehicle Successfully Page UI

162

Figure 5.21: Resident New Added Vehicle Page UI

Figure 5.22: Resident Update Vehicle Page UI

163

Figure 5.23: Resident Update Vehicle Successfully Page UI

Figure 5.24: Resident New Updated Vehicle Page UI

164

Figure 5.25: Resident Delete Vehicle Page UI

Figure 5.26: Resident Delete Vehicle Successful Page UI

5.4.1.5 Notifications

165

Figure 5.27: Resident Notification Page UI

Figure 5.28: Resident Mark 1 Notification as Read UI

166

Figure 5.29: Resident Mark All Notification as Read Page UI

5.4.1.6 Suspicious Activity Alerts

Figure 5.30: Resident Receive Suspicious Alert Page UI

5.4.1.7 Manage Visitor Pass

167

Figure 5.31: Resident Visitor Page UI

Figure 5.32: Resident Add New Visitor Page UI Part 1

168

Figure 5.33: Resident Add New Visitor Page UI Part 2

Figure 5.34: Resident Add New Visitor Successful Page UI

169

Figure 5.35: Resident New Add Visitor Page UI

Figure 5.36: Resident Update Visitor Page UI Part 1

170

Figure 5.37: Resident Update Visitor Page UI Part 2

Figure 5.38: Resident Update Visitor Success Page UI

Figure 5.39: Resident Delete Visitor Page UI

171

Figure 5.40: Resident Delete Visitor Success Page UI

5.4.1.8 Reset Password

Figure 5.41: Resident Reset Password Page UI

172

Figure 5.42: Resident Reset Password Accept Page UI

Figure 5.43: Resident Reset Password Page

5.4.1.9 Vehicle Logs

173

Figure 5.44: Resident Vehicle Log Page UI

Figure 5.45: Resident Vehicle Log Apply Searach and Filter Page UI

5.4.2 Security Guard Side

Security Guard Side UI Design focuses on creating an intuitive and user-

friendly interface for security guard to interact with the system.

5.4.2.1 Login

174

Figure 5.46: Security Guard Login Page UI

Figure 5.47: Security Guard Login without readability password Page UI

175

Figure 5.48: Security Guard Login with readability password

5.4.2.2 Reset Password

Figure 5.49: Security Guard Reset Password Page UI

176

Figure 5.50: Security Guard Reset Password Accept Page UI

Figure 5.51: Security Guard Reset Password Page UI

5.4.2.3 Dashboard

177

Figure 5.52: Security Guard Dahsboard Page UI Part 1

Figure 5.53: Security Guard Dashboard Page UI Part 2

178

Figure 5.54: Security Guard Dashboard Page UI Part 3

5.4.2.4 Vehicle Logs

Figure 5.55: Security Guard Vehicle Logs Page UI

179

Figure 5.56: Security Guard Vehicle Logs Apply Search and Filter Page

UI

Figure 5.57: Security Guard Vehicle Logs No Searching Result Page UI

5.4.2.5 Suspicious Events

180

Figure 5.58: Security Guard Receive Suspicious Alert Page UI

5.4.2.6 Real-Time Alerts

Figure 5.59: Security Guard Notification Page UI

181

Figure 5.60: Security Guard Mark 1 Notificaiton as Read Page UI

Figure 5.61: Security Guard Mark All Notificaiton as Read Page UI

5.4.2.7 Manage Profile

182

Figure 5.62: Security Guard Profile Page UI

Figure 5.63: Security Guard Update Profile Page UI Part 1

183

Figure 5.64: Security Guard Update Profile Page UI Part 2

Figure 5.65: Security Guard Update Profile Image Page UI

184

Figure 5.66: Security Guard Update Profile Successful Page UI

185

CHAPTER 6

6 SYSTEM DESIGN

6.1 Introduction

This chapter provides a complete overview of the entire system's

implementation, including the variety of modules created to meet the unique use

cases and functional requirements described in the previous chapter. To ensure

an accurate understanding of the system's design and capabilities, each module

is carefully studied with a focus on its own set of features and functionalities.

 Supabase serves as the system's backend platform in this project. It

offers a serverless and scalable infrastructure that includes authentication,

database administration, and real-time APIs. Supabase's PostgreSQL database

allows for efficient storing and retrieval of processed data, while the built-in

authentication service ensures safe access control. In other words, Supabase

provides a modern, cloud-native architecture that simplifies data management

and allows for seamless interaction between the client application and the

backend.

 In addition to backend services, YOLOv8 which is a state-of-the-art

object detection model is also used to handle vehicle recognition tasks. The

workflow begins with data preprocessing, where the raw dataset consisting of

vehicle images undergoes cleaning, annotation, and normalization. This step

ensures that the input data is consistent and optimized for model training. The

preprocessed dataset is then used to train the YOLOv8 model, where vehicle

attribute such as color, model, year and manufacturer are fine-tuned to achieve

multimodal recognition of vehicle rather than only rely on license plate.

6.2 System Module

Table 6.1 presented below provides a comprehensive list of the modules

developed in this project. As a result, to gain a better knowledge of the modules

integrated into each system, all modules are categorized according to their

intended users, as shown below.

186

Table 6.１: System Module

Target User Module

Residents Registration

Login

Manage Profile

Manage Vehicle

Notifications

Suspicious Activity Alerts

Manage Visitor Pass

Reset Password

Vehicle Logs

Security Guards Login

Reset Password

Dashboard

Vehicle Logs

Suspicious Event

Real-Time Alerts

6.2.1 Resident

The Resident user in the implemented system includes a number of features

targeted at improving the user experience and facilitating smooth interaction

across the platform. It is primarily intended to meet the demands of those who

interact with the system in the position as the residents.

6.2.1.1 Registration

The implemented system provides a secure and easy registration method for

residents powered by Supabase authentication which is a modern, cloud-native

solution that interfaces directly with PostgreSQL. This solution ensures that user

data is handled consistently throughout numerous system modules, in addition

to authentication.

187

Figure 6.1: Registration Frontend Code

 In the code, the register function will firstly ensure the password and

confirm password is match before sending the data to backend. While waiting

for backend’s response, the loading sign which is the “Creating account” words

will appear to provide system feedback for user in order to let them know the

data is being processed rather than the button is not clicked. Once the account

is created successfully, an alert will be prompt to the user for them to click on

the email sent to them for activating their account. After that, the system will

switch to login part which give convenience to user.

188

Figure 6.2: Registration Backend Code Part 1

During registration, the system validates required fields such as email,

password, and name before securely creating the user account using Supabase

Auth. Passwords are encrypted and email confirmation is required to prevent

illegal access. To improve functionality, user information is saved in the profiles

database, while a corresponding record in the residents table determines the

resident's role in the system.

189

Figure 6.3: Registration Backend Code Part 2

To guarantee data integrity, robust rollback procedures are also provided,

ensuring that incomplete or failed insertions do not result in invalid records in

the database. By combining Supabase authentication with structured data

integration, the solution creates an efficient and secure resident-focused access

process that maintains usability and system stability.

6.2.1.2 Login

For login module, a secure mechanism was developed to authenticate residents

and security guard and then grant them access to role-specific functionalities.

The process is powered by Supabase Authentication, which provides robust and

scalable user session management while ensuring data security.

190

Figure 6.4: Login Frontend Code

When user wants to sign in, the system first ensures that both the email address

and the password are entered before submitting the request. After successful

login, the user will be route to different page based on the user role in the profile

table.

191

Figure 6.5: Login Backend Code Part 1

The credentials are then handled by Supabase Auth which checks the

user's information. A secure session token will be generated after successful

authentication by user. This token is saved locally to keep the user authenticated

during their interactions with the system.

In the event of invalid credentials or server-side failures, the system is

configured to return clear error messages while blocking unauthorized access.

By integrating Supabase's secure session handling with structured profile

validation, the login mechanism provides an efficient, role-based authentication

procedure that improves system security and user experience.

192

Figure 6.6: Login Backend Code Part 2

After having the secure session, the profile information to be shown is then read

by using searchParam function to pass the unique user id to the database. The

profile information is then set to the AuthContext to ease the pass of profile data

among each page to get relevant information from database.

6.2.1.3 Manage Profile

This module optimizes the user experience by allowing updates to details like

name, phone number, address, and profile image, while guaranteeing that all

changes are securely kept in the system's database via Supabase integration.

Figure 6.7: Change Profile Image Frontend Code

When user want to update their profile image, they starts the procedure

by selecting a new profile image from their device's image picker capabilities

193

after clicking the edit button in profile information. When an image is selected,

the system briefly adjusts the interface to reflect the new selection.

Figure 6.8: Upload New Profile Image Frontend Code

When a resident approves and saves their profile updates, the system

ensures that a valid user session is active before proceeding with the update

request. The new data, which includes the profile image URL, contact number,

and address, is subsequently transferred to the backend using a secure API

endpoint.

194

Figure 6.9: Update Profile Information Backend Code

On the backend, the system handles the update request by modifying

two essential tables which include the profiles table that contains general

information such as the resident's name and profile image. The other one is

the residents table, which provides role-specific information such as phone

number and address that is not suitable for security guard role. This dual update

guarantees that all resident-related information is consistent and appropriately

formatted throughout the database. In the event of an error during the update,

the system gives the user clear feedback while preventing incomplete or

incorrect data from being stored.

6.2.1.4 Manage Vehicle

This module basically is to allow residents to conveniently register, maintain,

and manage their automobiles within the platform. This module guarantees that

all vehicle-related data is regularly maintained and securely saved, while also

providing residents with a user-friendly interface for managing their records.

195

Figure 6.10: Fetch Vehicles on Vehicle Page Frontend Code

Figure 6.11: Fetch Vehicles Frontend Code

 While entering the vehicle page, the system will show the loading page

and check whether the user is login or not by checking its id to ensure valid

access of vehicle data. Once confirmed, the system will then fetch the vehicle

data from backend by using the parameter pass in the endpoint which is the user

id. After getting all the vehicle data, they will be shown on the vehicle page and

deactivate the loading page. If any error occur during the process, the loading

page will also be deactivated.

196

Figure 6.12: Fetch Vehicles Backend Code

 In the backend, it will try to get either the user id or the visitor id to

filter out the car that is registered by the login user. It use the supabaseAdmin

to access the vehicles table as the row level security of the table is enable. In

this case, the supabaseAdmin use the service role key to access the table rather

than using supabase that use anon key to access. This ensure restrict rules to get

data from the database and increase the security level as the service role key is

not exposed to the frontend but only use in backend. After that, the vehicle’s are

selected accordingly and return as json format with the status code.

197

Figure 6.13: Add New Vehicle Frontend Code

 When a resident registers a new vehicle, the system receives

information such the plate number, make, model, color and manufacturer year.

The field are checking before calling the endpoint to add a new vehicle by using

the user id as referencing for making other action on it. A json format data is

send along to the endpoint to add new vehicle. Once getting a response from the

endpoint. The vehicleEvent will emit a refresh signal to refresh the list of vehicle

in the vehicle page to ensure the vehicle list is always up-to-date.

198

Figure 6.14: Add New Vehicle Backend Code

 Similar to frontend, backend code also check whether the require field

is passed in or not before adding the vehicle. If missing require body, it will

directly return the error message with status code as response data. On the other

hands, if all the require data is exist, it will pass it to database and return a json

response which include the success message and status code 201 which

represent created.

199

Figure 6.15: Update Vehicle Frontend Code

This function updates a vehicle’s information in a backend database. It first

validates that all required fields which are plate number, manufacturer, model,

colour, and year all are filled, showing an alert if any are missing. Once

validated, it sets a loading state and sends a PUT request to the backend API

with the updated vehicle details that including the vehicle ID and a flag for

`is_default`. After receiving a response, it checks if the update was successful:

if so, it shows a custom toast notification and the emits a refresh event to update

the other components, and navigates the user back to the vehicles screen; if not,

it alerts the user of an error. Finally, regardless of success or failure, it resets the

loading state, clears the selected vehicle, and resets the form fields.

200

Figure 6.16: Update Vehicle Backend Code

This code defines an asynchronous PUT API handler for updating vehicle

records in a Supabase database. It first extracts the JSON body from the

incoming request and destructures the vehicle information, including vehicleId,

plate, colour, model, manufacturer, year and is_default. Using the Supabase

admin client, it updates the corresponding record in the "vehicles" table where

the vehicle_id matches the provided vehicleId. If the update succeeds, it returns

a JSON response indicating success; if any error occurs during the update, it

catches the error and returns a JSON response with the error message and a 500

status code. The console.log(body) line allows debugging by logging the

received data.

Figure 6.17: Delete Vehicle Frontend Code

This code snippet is an asynchronous function that deletes a vehicle from the

backend. It sends a DELETE request to the API endpoint with the `vehicleId`

as a query parameter. After receiving the response, it parses the JSON data and

checks if the deletion was successful. If so, it refreshes the vehicle list by calling

`fetchVehicles()` and shows a custom toast notification confirming the deletion,

including the vehicle plate number. If the request fails, it displays an alert with

the error message from the server or a default failure message. Any unexpected

errors during the request are caught and displayed using a standard alert.

201

Figure 6.18: Delete Vehicle Backend Code

This code defines an asynchronous DELETE API handler for removing a

vehicle from the Supabase database. It first extracts the vehicleId from the

request’s URL query parameters and returns a 400 error if vehicleId is missing.

Using the Supabase admin client, it deletes the record in the "vehicles" table

where vehicle_id matches the provided ID. If the deletion succeeds, it responds

with a JSON object indicating success and a 200 status code. If any error occurs

during the process, it catches the error and returns a JSON response with the

error message and a 500 status code.

6.2.1.5 Notifications

202

Figure 6.19: Fetch Notifications Frontend Code

Figure 6.20: Fetch Notifications Backend Code

This code snippet is an asynchronous function that fetches notifications for a

specific resident from the backend. It sends a GET request to the notifications

API with the user’s ID as a query parameter. If the response is not OK, it throws

203

an error with the HTTP status. Once the response is received, it parses the JSON

data and logs it for debugging. The code then checks the structure of the returned

data: if `data.notifications` exists, it updates the local `notifications` state; if the

data itself is an array, it uses that directly; otherwise, it logs a warning about an

unexpected response shape. Any errors during the fetch are caught and logged,

and finally, the loading state is set to false.

Figure 6.21: Update 1 Notification as Read Frontend Code

204

Figure 6.22: Update 1 Notification as Read Backend Code

This code updates a notification’s status in the backend. It sends a PUT request

to the notifications API with a JSON body containing the notification id and its

updated is_read status. After receiving the response, it parses the JSON data and

checks if the request was successful. If not, it throws an error using the returned

message or a default error message. On success, it logs the updated notification

data for debugging and returns it. Any errors during the request are caught and

logged to the console.

205

Figure 6.23: Mark All Notifications as Read Frontend Code

Figure 6.24: Mark All Notifications as Read Backend Code

This function marks all notifications for a resident as read. It sends a PATCH

request to the notifications API with the user’s ID in the request body. If the

response is not OK, it throws an error with the HTTP status. Upon a successful

response, it logs a confirmation message and calls fetchNotifications() to refresh

206

the local notification state. Any errors during the request are caught and logged

to the console for debugging.

6.2.1.6 Manage Visitor Pass

Figure 6.25: Fetch Visitors Frontend Code

207

Figure 6.26: Fetch Visitors Backend Code

These code snippets show an asynchronous function that fetches a list of visitors

for a specific user and their associated vehicles. It first sends a GET request to

the visitor API with the user’s ID. If the response is successful, it parses the

JSON data and ensures that visitorsList is an array. Then, for each visitor, it

sends a separate GET request to the vehicle API to fetch vehicles linked to that

visitor, combining the visitor and vehicle data into a single object. Any errors

while fetching individual vehicles are caught and logged, with an empty vehicle

array returned for that visitor. Finally, the combined visitor-vehicle data is

stored in state via setVisitors(), the loading state is cleared, and the visitor list is

logged for debugging.

208

Figure 6.27: Add New Visitor Frontend Code

Figure 6.28: Add New Visitor Backend Code

The function handleAddVisitor validates that all required visitor and vehicle

fields are filled. If not, it shows an error alert or toast depending on the platform.

If validation passes, it sets a loading state and sends a POST request to the

209

backend API with the visitor and vehicle details, including adjusted start and

end dates. On success, it emits a refresh event, shows a success toast, and

navigates to the visitors screen; if it fails, it shows an error alert.

Figure 6.29: Update Visitor Frontend Code

210

Figure 6.30: Update Visitor Backend Code

The code performs similar validation as above code which add new visitor. Then,

it sets the loading state, and sends a PUT request to update an existing visitor

and their vehicle details. It includes the visitor ID and the vehicle ID for

updating. After receiving the response, it handles success by emitting a refresh

event, showing a success toast, and navigating back, or shows an error alert if

the update fails. In both cases, the loading state is cleared, and the form is reset

after the operation.

Figure 6.31: Delete Visitor Frontend Code

211

Figure 6.32: Delete Visitor Backend Code

These code snippets show an asynchronous function that deletes a visitor from

the backend. It sends a DELETE request to the visitor API with the visitorId as

a query parameter. After receiving the response, it parses the JSON data and

checks if the deletion was successful. If so, it refreshes the visitor list by calling

fetchVisitors() and shows a custom toast notification confirming the deletion,

including the visitor’s name. If the deletion fails, it displays an alert with the

error message returned from the server or a default failure message. Any

unexpected errors during the request are caught and displayed using an alert.

6.2.1.7 Reset Password

212

Figure 6.33: Reset Password Frontend Code

Figure 6.34: Reset Password Backend Code

These code snippet handled password reset functionality using Supabase

authentication in a React component.

The useEffect hook runs on component mount to check the current

session via supabase.auth.getSession(). If there is no active session, it sets a

message indicating that the reset link is invalid or expired.

The handleSubmit function updates the user’s password by calling

supabase.auth.updateUser() with the new password. If an error occurs, it

displays the error message; otherwise, it shows a success message and, after a

2-second delay, redirects the user back to the login page using router.push("/").

6.2.1.8 Vehicle Logs

213

Figure 6.35: Fetch Vehicle Logs Frontend Code

214

Figure 6.36: Fetch Vehicle Logs Backend Code

These code snippets show an asynchronous function that fetches vehicle access

records for a specific resident. It first sends a GET request to the vehicle API

using the user’s ID to retrieve the list of vehicles. If the request fails, it throws

an error. It then extracts vehicle IDs from the response; if no vehicles are found,

it logs a warning and clears the records state. Next, it constructs a query string

with all vehicle IDs and sends another GET request to the records API to fetch

related access records. The response is parsed, and the records state is updated

depending on whether the response contains a records field or is directly an array.

Any unexpected response shapes are logged as warnings. Errors during the fetch

are caught and logged, and the loading state is cleared in the finally block.

6.2.2 Security Guard

6.2.2.1 Dashboard

215

Figure 6.37: Fetch Dashboard Information Frontend Code

Figure 6.38: Fetch Dashboard Information Backend Code

216

This code snippet defines an asynchronous function, fetchRecordsForGuard,

that fetches vehicle access records for security guards. It sends a GET request

to the records API with isGuard=true to retrieve relevant records. After parsing

the JSON response, it checks for request success; if unsuccessful, it logs an error.

The code then calculates key statistics: the total number of entries, total exits,

the count of suspicious activities, and the number of vehicles currently inside

(entries minus exits). These values are stored in state variables using

setTotalEntries, setTotalExits, setSuspiciousActivities, and setVehiclesInside.

Any errors during the fetch are caught and logged, and the loading state is

cleared in the finally block. Finally, the function is called if the current user’s

role is "security_guard".

6.2.2.2 Vehicle Logs

Figure 6.39: Fetch Daily Vehicle Logs Frontend Code

217

This code snippet is an asynchronous function that fetches all vehicle access

records from the backend. It sends a GET request to the records API and checks

if the response is successful, throwing an error if it isn’t. After parsing the JSON

response, it updates the local records state based on the response shape using

data.records if available, or the data itself if it is an array. Any unexpected

response structures are logged as warnings. Errors encountered during the fetch

are caught and logged, and the loading state is cleared in the finally block.

6.2.2.3 Suspicious Event

Figure 6.41: Show Suspicious Event Frontend Code

Figure 6.40: Fetch Daily Vehicle Logs Backend Code

218

This JSX snippet conditionally renders a vehicle access record based on whether

it is marked as suspicious. If record.suspicious is true, it highlights the record

with a red “Suspicious” badge, displays the vehicle name and plate in bold, and

shows the suspicious activity description in red text. If record.suspicious is false,

it simply displays the vehicle name and plate in bold along with the owner’s

name in smaller, gray text. The layout uses flexbox styling to align and space

elements properly, ensuring that suspicious records are visually distinguished

from normal ones.

6.2.3 Vehicle Recognition

Vehicle Recognition is responsible for identifying and verifying vehicles

entering or exiting the premises. This module involves two separate systems: a

YOLOv8 Multi-Attribute model for detecting and classifying vehicle attributes

such as brand, model, colour, and year, and a multimodal VLM-based system

for analyzing and reasoning about vehicle information. The development of

each system includes data preprocessing, model training, and testing to optimize

performance. After training, both models are evaluated using relevant metrics

to assess their accuracy and reliability, ensuring that the recognition system can

effectively cross-reference vehicle information with registered data for precise

identification.

 Segment Anything (SAM) was first chosen as the main picture

segmentation module because of its capacity to accurately extract the whole

vehicle component. However, YOLOv8 was chosen to replace SAM since the

project requirements include end-to-end vehicle detection and recognition. In

other words, YOLOv8 provides a single framework for entire vehicle

identification, training, and real-time performance as compared to SAM which

is superior at component-level segmentation. It was a more realistic answer for

the system's goals because of its great precision and efficiency in directly

detecting vehicles in a variety of situations. This change made it possible for the

multimodal vehicle detection system to grow efficiently while preserving

processing speed and resilience.

6.2.3.1 Data preprocessing

219

The dataset use to train both of these model are 1 image folder and 1 csv file

which includes the image path, vehicle make, model, year, color and plate that

act as ground truth. It contains a total of 1202 vehicle images which include

different car manufacturer like Kia, Perodua, Proton, Nissan, Honda, Hyundai,

Audi, Toyota, BMW and so on. Due to time constraints, each model is just cover

with around 10-20 images.

Figure 6.42: CSV to JSONL Conversion Code

This Python script converts a CSV file containing vehicle data into a JSONL

format suitable for fine-tuning a multimodal VLM which is the GPT-4o model.

For each row in the CSV, which includes columns such as image_path, make,

model, year, color, and license_plate, the script creates a training record with

three messages: a system message defining the assistant as a vehicle recognition

assistant, a user message containing a text prompt to identify the vehicle along

with the image URL, and an assistant message providing the ground truth

vehicle attributes in JSON format. Each record is written as a separate line in

the output JSONL file, preparing the dataset for training the model to accurately

identify vehicle attributes from images.

220

Figure 6.43: Script to split data for Fine-tuned GPT-4o model

This Python script splits a JSONL dataset into training, validation, and test sets

for model fine-tuning. It reads all lines from the input JSONL file, shuffles them

randomly to ensure unbiased distribution, and then divides the data into 70%

training, 15% validation, and 15% test sets. Each subset is written to separate

files (train.jsonl, validation.jsonl, test.jsonl).

6.2.3.1.1 Yolov8

The YOLOv8 preprocessing workflow began with installing the Ultralytics

library and running a pretrained YOLOv8 model on the dataset to detect

vehicles using the command “yolo detect predict model=yolov8s.pt

source=your_dataset/images save_txt=True”.

221

Figure 6.44: Script to split data for YOLO model

After detection, irrelevant labels were removed, keeping only the vehicle class,

and the largest bounding boxes in each image were extracted along with their

corresponding label files. The dataset was then split to align with GPT-4o’s

dataset partitioning, ensuring consistency between the two systems for training

and evaluation.

Figure 6.45: Scripts for running testing on each attribute

Finally, separate YOLOv8 models were trained for each attribute—color, make,

model, and year. Inference tests were run on each attribute, and EasyOCR was

222

used to extract license plates. The predictions were then compared against

ground truth labels to compute the evaluation metrics.

6.2.3.1.2 GPT 4-o

The GPT-4o system utilized the same dataset with preprocessing tailored for

VLM input. Text-based vehicle attributes and images were paired to create

multimodal input suitable for fine-tuning the model. No bounding box

extraction was needed since GPT-4o reasons over the entire image.

6.2.3.2 Comparison of Yolo-V8 + EasyOCR and GPT-4o Metric Result

agaist ground truth

Once done all the testing, the code below is being run to get the metric for both

model.

Figure 6.46: Compute model metric code

This Python script is designed to evaluate and compare the performance of

YOLOv8 + EasyOCR and GPT-4o on vehicle recognition tasks using a ground

truth dataset. It begins by loading the ground truth CSV file, which contains the

actual vehicle attributes, along with YOLOv8 predictions for each attribute

(make, model, year, color, license plate) stored in separate CSV files, and GPT-

4o predictions stored in a JSONL file. YOLOv8 predictions are mapped to their

223

base image names, removing suffixes from cropped images, while GPT-4o

predictions are indexed directly by the image names.

The script uses a compute_metrics function to calculate both attribute-

level accuracy and whole-body accuracy, which measures whether all vehicle

attributes were correctly predicted for an image. It compares each predicted

attribute against the corresponding ground truth, counting correct predictions

per attribute and determining if the entire vehicle was correctly recognized.

Only images present in both the ground truth and prediction datasets are

evaluated to ensure a fair comparison.

Finally, the results are written to an output file, metrics_results.txt,

showing the accuracy for each attribute as well as the overall whole-body

accuracy for both YOLOv8 + EasyOCR and GPT-4o. This process provides a

clear comparison of the two models’ capabilities, highlighting the strengths and

weaknesses of YOLOv8 for attribute detection and GPT-4o for complete

vehicle recognition.

Figure 6.47: Result of metric for both model

The evaluation results show a clear performance difference between YOLOv8

+ EasyOCR and GPT-4o in vehicle recognition on 181 test images.

For YOLOv8, the attribute-level accuracies are moderate to low. It

correctly predicts color in 70.5% of cases, make in 55.5%, model in 38.7%, and

year in 29.5%. However, it completely fails at predicting license plates (0.0%)

224

and consequently achieves a whole-body accuracy of 0.0%, meaning it never

predicts all attributes correctly for any single image. This suggests that YOLOv8

struggles with fine-grained attributes and license plate recognition, likely

because of the limited training on partial or small vehicle details and reliance on

EasyOCR for plate extraction.

In contrast, GPT-4o achieves very high attribute-level accuracies with

make (99.4%), model (98.3%), year (97.2%), color (98.9%), and license plate

(85.1%). The whole-body accuracy is 82.3%, indicating that in most images,

GPT-4o correctly predicts all vehicle attributes simultaneously. This

demonstrates that GPT-4o is far more effective at holistic vehicle recognition,

particularly in handling multiple attributes at once and extracting license plate

information accurately.

Overall, the metrics highlight that while YOLOv8 is useful for coarse

attribute detection, GPT-4o provides significantly more accurate and complete

vehicle recognition, making it more reliable for systems requiring precise multi-

attribute identification.

6.3 Summary

The system integrates frontend-backend functionalities with AI-based vehicle

recognition. Modules for residents and security guards handle vehicles, visitors,

notifications, and activity records through Supabase, ensuring validation, real-

time updates, and role-specific views.

On the AI side, two recognition systems were developed. YOLOv8 +

EasyOCR processed vehicle images with bounding box analysis and attribute-

specific models, while GPT-4o used a fine-tuned JSONL dataset for holistic

attribute recognition. Evaluation showed GPT-4o outperforms YOLOv8 in both

attribute-level and whole-vehicle accuracy, highlighting the VLM-based

approach’s effectiveness.

Overall, the system combines robust management features with

accurate multimodal vehicle recognition for real-world deployment.

225

CHAPTER 7

7 SYSTEM TESTING

7.1 Introduction

The requirement traceability matrices, use case tables, and functional tables are

the main components of this chapter. It also assesses the test cases and their

outcomes, as well as the unit and integration testing. In order to make sure the

system satisfies both functional and user experience objectives, the chapter

concludes by discussing the evaluation of User Acceptance Testing (UAT) and

System Usability Scale (SUS).

7.2 Traceability between Use Cases, Functional Requirements and

Test Cases

Throughout the project lifecycle, a Requirement Traceability Matrix (RTM) is

a tool that helps make sure that all project requirements are recorded, monitored,

and met.

Table 7.１: Requirement Traceability Matrix

Use

Case ID

Use Case

Name

Functional

Requirement

ID(s)

Test Case

ID(s)

Test Case

Description

USC001 Retrieve

Vehicle Logs

SRS013

SRS014

SRS015

SRS016

TC008

TC009

Verify resident

can view, search,

filter, and sort

vehicle logs

USC002 Manage

Visitor Pass

SRS009

SRS010

SRS011

TC010

TC011

TC012

Verify resident

can create, update,

and delete visitor

passes

USC003 Reset

Password

SRS012

SRS018

TC003 Verify resident

and security guard

can reset their

password

226

USC004 Login SRS002

SRS017

TC002 Verify resident

and security guard

can log in with

correct credentials

USC005 Register

Account

SRS001 TC001 Verify resident

can register a new

account with all

required info

USC006 Receive

Notification

SRS007

SRS008

TC013 Verify residents

receive

notifications for

vehicle

entries/exits and

suspicious

activities

USC007 Manage

Vehicle

SRS004

SRS005

SRS006

TC005

TC006

TC007

Verify residents

can register,

update, and delete

vehicle

information

USC008 Manage

Profile

SRS003

SRS025

TC004 Verify residents

and guards can

update their

profile

information

USC009 Retrieve

Vehicle

History Log

SRS020

SRS021

SRS022

SRS023

TC008

TC009

Verify guards can

search, filter, sort,

and detect

suspicious

vehicles in history

logs

227

USC010 Retrieve

Real-Time

Data

SRS019

SRS024

TC015 Verify guards

receive real-time

data and alerts for

flagged vehicles

7.2.1 Use Case Table

A Use Case Table lists each use case together with its unique identity, major

actor or actors, preconditions, main flow, alternate flows, and expected results

to give an organized picture of the system's functional requirements. It makes

it easier to track how users interact with the system, makes it clear what each

actor is responsible for, and guarantees that all functional requirements are

recorded so they can be referred to during development, testing, and validation.

Table 7.２: Use Case Table

ID Use Case Name Description

USC001 Retrieve Vehicle

Logs

This use case describes the process of

retrieving a list of vehicle logs owned by

resident by sorting the data based on

vehicle plate, vehicle make and model,

event type, activity status or date by the

resident.

USC002 Manage Visitor

Pass

This use case describes the process of

resident retrieving a list of visitor pass.

USC003 Reset Password This use case describes the process of

reset the account password.

USC004 Login This use case describes the process of

resident and security guard login the web

vehicle recognition access control

system.

USC005 Register Account This use case describes the process of

resident register a new account in vehicle

recognition access control system.

228

USC006 Receive

Notification

This use case describes the process of

resident receiving notification in vehicle

recognition access control system.

USC007 Manage Vehicle
This use case describes the process of

resident manage vehicles in vehicle

recognition access control system.

USC008 Manage Profile This use case describes the process of

resident and security guard manage their

profiles in vehicle recognition access

control system.

USC009 Retrieve Vehicle

History Log

This use case describes the process of

security guard search vehicle history log

in vehicle recognition access control

system.

USC010 Retrieve Real-

Time Data

This use case describes the process of

security guard retrieve real-time data and

receive alerts in vehicle recognition

access control system.

7.2.2 Functional Requirement Table

Functional Requirement table lists the precise features that the system needs to

have. A unique ID, a description of the need, its priority or importance level,

and any pertinent dependencies or constraints are usually included with each

entry. This table guarantees that every system function is precisely specified,

traceable, and able to be methodically checked during testing to make sure the

system fulfills its intended function.

Table 7.３: Functional Requirement Table

Role ID Module Functional Requirements

Residents SRS001 Registration

The system shall allow residents

to register an account with their

personal information such as

229

house number, name, email and

password.

SRS002 Login
The system shall allow residents

to log in by email and password.

SRS003
Manage

Profile

The system shall allow residents

to update their profile

information such as name, phone

number, address and profile

image.

SRS004

Manage

Vehicle

The system shall allow residents

to register their vehicle with

details like plate number, colour,

model, and manufacturer.

SRS005

The system shall allow residents

to update their registered vehicle

information such as plate

number, colour, and model.

SRS006
The system shall allow residents

to delete their registered vehicle.

SRS007 Notifications

The system shall send

notification to residents when

their vehicle enters/exits the

premises.

SRS008
Suspicious

Activity Alerts

The system shall alert residents if

a suspicious event such as clone

vehicle plate with different

colour or model is detected.

SRS09
Manage

Visitor Pass

The system shall allow residents

to generate a visitor pass with

different time-limited for visitor

registration.

SRS010
The system shall allow residents

to update a visitor pass for editing

230

incorrect information or activate

again the visitor pass.

SRS011
The system shall allow residents

to delete a registered visitor pass.

SRS012
Reset

Password

The system shall allow residents

to reset their account password.

SRS013

Vehicle Logs

The system shall allow residents

to view a history of their

registered vehicle’s entries/exits.

SRS014

The system shall allow residents

to search for history of their

registered vehicle’s entries/exits

by record ID.

SRS015

The system shall allow residents

to filter the log records by event

type and suspiciousness.

SRS016

The system shall allow residents

to sort their registered vehicle’s

log records by alphabetical

characters in ascending and

decreasing order.

Security

Guards

SRS017 Login

The system shall allow security

guard to log in by guard ID and

password.

SRS018
Reset

Password

The system shall allow security

guard to reset their account

password.

SRS019 Dashboard

The system shall display real-

time data analysis from the log

records of vehicle entries or exits.

SRS020 Vehicle Logs
The system shall allow security

guards to search for history of

231

vehicle’s entries/exits by record

ID, vehicle colour, and vehicle

model.

SRS021

The system shall allow security

guards to filter the log records by

record status.

SRS022

The system shall allow security

guards to sort the log records by

alphabetical characters in

ascending and decreasing order.

SRS023
Suspicious

Events

The system shall highlight

suspicious vehicles like

duplicated license plate for

manual checking.

SRS024
Real-Time

Alerts

The system shall notify guards of

flagged vehicles via audio/visual

alerts on the dashboard.

SRS025
Manage

Profile

The system shall allow security

guards to update their profile

information such as name and

profile image.

7.2.3 Test Cases Table of Unit Testing

The unit tests carried out for every single system module are shown in this part.

Registration, login, password reset, profile management, vehicle management,

visitor pass handling, alerts, and vehicle logs are just a few of the features that

unit testing aims to confirm operate properly when used separately. The module

or feature being tested, the actions or inputs made, the anticipated output or

result, and whether the test passed or failed are all specified in each test case.

Before connecting the system's core functionalities with additional modules,

these tests make sure they function as intended.

232

Table 7.４: Test Case Table of Unit Testing

Test

Case

ID

Module /

Feature

Description Input / Action Expected

Output / Result

Pass/Fail

TC001 Registration Verify

resident can

register an

account

Enter name,

email and

password

Account created

successfully,

confirmation

message shown

Pass

TC002 Login Verify login

functionality

for resident

and security

guard

Enter email

and password

User

successfully

logged in

Pass

TC003 Reset

Password

Verify

password

reset for

resident and

guard

Enter new

password

Password

updated,

confirmation

message shown

Pass

TC004 Manage

Profile

Verify

profile

update

functionality

Update name,

phone,

address,

profile image

Updated profile

information is

saved

Pass

TC005 Manage

Vehicle

Verify

vehicle

registration

Enter vehicle

plate, color,

model,

manufacturer

and year

Vehicle added

to the system

Pass

TC006 Manage

Vehicle

Verify

vehicle

update

Update vehicle

plate, color,

model,

manufacturer

and year

Updated vehicle

details are saved

Pass

233

TC007 Manage

Vehicle

Verify

vehicle

deletion

Select vehicle

to delete

Vehicle

removed from

the system

Pass

TC008 Vehicle

Logs

Verify

viewing

vehicle

history log

Request

vehicle logs

Logs displayed

correctly,

sortable and

filterable

Pass

TC009 Vehicle

Logs

Verify

filtering and

sorting logs

Filter by event

type,

suspiciousness

Logs filtered

and sorted

correctly

Pass

TC010 Manage

Visitor Pass

Verify

visitor pass

creation

Enter visitor

name, phone

number,

vehicle’s

attibutes and

time slot

Visitor pass

generated

successfully

Pass

TC011 Manage

Visitor Pass

Verify

visitor pass

update

Update visitor

info

Visitor pass

updated

correctly

Pass

TC012 Manage

Visitor Pass

Verify

visitor pass

deletion

Select visitor

pass to delete

Visitor pass

removed

Pass

TC013 Notifications Verify

receiving

notifications

Vehicle

entry/exit

occurs

Notification

received in app

Pass

TC014 Suspicious

Activity

Alerts

Verify

system

highlights

suspicious

vehicles

Duplicate

plate or

unusual event

Alerts displayed

for

residents/guards

Pass

TC015 Real-Time

Data

Dashboard

Verify

dashboard

updates

Vehicle

enters/exits

Dashboard

shows correct

counts

Pass

234

vehicle

entries/exits

7.2.4 Test Cases Table of Integration Testing

The integration testing that was done to confirm how the various system

modules interacted with one another is presented in this section.

Table 7.５: Test Cases Table of Integration Testing

Test

Case ID

Modules /

Features

Integrated

Description Input /

Action

Expected

Output /

Result

Pass/Fail

ITC001 Registration

+ Login

Verify that a

newly

registered

resident can

log in

successfully

Register

a new

account,

then

attempt

login

Resident

account

created and

login

successful

Pass

ITC002 Manage

Profile +

Login

Verify

profile

updates

persist

across

sessions

Update

profile

info, log

out, log

in again

Updated

profile

information

retained

Pass

ITC003 Manage

Visitor Pass

+

Notifications

Verify that

creating a

visitor pass

triggers

notifications

Create a

visitor

pass for a

vehicle

entry

Notification

received in

app

Pass

ITC004 Suspicious

Activity

Alerts +

Vehicle

Logs

Verify

suspicious

vehicles are

highlighted

Duplicate

plate or

unusual

vehicle

entry

Alerts

triggered

and logs

marked as

suspicious

Pass

235

in logs and

alerts

7.3 User Acceptance Test (UAT)

To make sure the system satisfies the requirements and is prepared for

deployment, the User Acceptance Test (UAT) assesses it from the viewpoint of

the end user. Usability, functionality, and general satisfaction feedback are

gathered. Verifying that the system satisfies business requirements, performs

as anticipated in real-world situations, and is suitable for operational usage is

the aim of UAT.

7.3.1.1 Test Results of User Acceptance Test

The User Acceptance Test (UAT) results provide an overview of the results of

every test case that end users have run to confirm that the system is prepared for

deployment. The outcomes highlight any flaws or problems encountered and

show whether each functionality operated as intended. With the majority of test

cases passing and only minor changes needed for a few functionalities, the UAT

overall verified that the system satisfies user requirements, operates dependably,

and has an intuitive interface.

7.3.1.2 Resident Side

Table 7.６: UAT Result on Resident Side

No. Question Average Rating of

Likert Scale (1-5)

Q1. Can you successfully register an account

using your house number, name, email, and

password?

4.8

Q2. Are you able to log in using your registered

email and password?

5

Q3. Can you reset your password successfully? 4.8

Q4. Can you update your profile information

such as name, phone number, and profile

image?

4.6

236

Q5. Are you able to register your vehicle with its

plate number, color, year, model, and

manufacturer?

4.4

Q6. Can you update your registered vehicle’s

details like plate number, color, and model?

4.6

Q7. Can you delete your vehicle from the

system?

4.4

Q8. Do you receive a notification when your

vehicle enters or exits the premises?

4.6

Q9. Are you alerted when suspicious activity

(e.g., duplicated plate with different

model/color) is detected?

4.4

Q10. Are you able to generate a visitor pass with a

time limit?

4.2

Q11. Can you view your own vehicle's entry/exit

log history?

4.6

Q12. Are you able to search vehicle logs by record

ID?

4.6

Q13. Can you filter log records by event status? 4.6

Q14. Can you sort vehicle logs? 4.4

Based on participant ratings on a Likert scale, the User Acceptance Test (UAT)

results show that the system is very efficient and easy to use. With an average

rating of 4.8 for Q1, users were able to properly create accounts and log in with

their registered credentials, earning a flawless score of 5. With average scores

of 4.8 and 4.6, respectively, the password reset and profile update capabilities

were also well evaluated, indicating that important account management tools

are dependable and easy to use.

 Feedback on vehicle management features was also quite positive.

Updates and deletions of vehicle information were marginally higher at 4.6 and

4.4, indicating that the system facilitates easy car record maintenance. Users

were able to register their automobiles with comprehensive features such license

plate number, color, year, model, and manufacturer, scoring an average of 4.4.

237

Both alerts for suspicious activity and notifications for vehicle entry and exit

performed well, scoring 4.6 and 4.4, respectively, showing that the system can

deliver timely updates and uphold security awareness.

 With an average rating of 4.2 for creating passes with time limits,

visitor pass management had a moderately high score, indicating that while it is

functional, there may be some need for improvement in terms of user

convenience or clarity. Users successfully viewed, searched, filtered, and sorted

their car logs, demonstrating the effectiveness and usability of data retrieval and

organization. Log management functionalities worked well, with users average

between 4.4 and 4.6. All things considered, the UAT shows that the system

satisfies user expectations, is generally easy to use, and offers essential features

for residents. For the best user experience, only minor adjustments are advised.

7.3.1.3 Security Guard Side

Table 7.７: UAT Result on Security Guard Site

No. Question Average Rating of

Likert Scale (1-5)

Q1. Can you log in with your guard ID and

password?

5

Q2. Can you reset your password successfully? 4.6

Q3. Can you update your profile information

such as name, phone number, and password?

4.6

Q4. Does the dashboard display data of vehicle

entries/exits?

4.6

Q5. Can you search entry/exit records by various

fields (e.g., record ID, vehicle model, vehicle

color) ?

4.6

Q6. Can you filter log records by various fields

(e.g., record status)?

4.2

Q7. Can you sort records as required? 4.4

238

Q8. Does the system highlight suspicious

vehicles like duplicated plates?

4.4

Q9. Do you receive audio or visual alerts for

flagged vehicles?

4.4

The security guard User Acceptance Test (UAT) results demonstrate that the

system operates efficiently and satisfies operational requirements. A flawless

score of five was obtained for logging in using a guard ID and password,

indicating that authentication is simple and trustworthy. Both the profile update

and password reset tools received ratings of 4.6, demonstrating how user-

friendly and effective account management features are.

 The dashboard's ability to show car entry and leave statistics received

a score of 4.6 as well, demonstrating how easy and transparent real-time

monitoring is. The user experience could be improved with small usability

enhancements. Record management capabilities, such as searching by fields like

record ID, car model, or color, obtained similarly good scores (4.6), whereas

filtering records received a slightly lower score (4.2). Data organization is

typically effective, as seen by the 4.4 score for sorting records as needed.

 Although there may be some space for improvement in alert visibility

or clarity, security features like highlighting suspicious vehicles and sending

audio/visual alerts for flagged vehicles received ratings of 4.4, demonstrating

that the system effectively supports situational awareness and quick response.

All things considered, the UAT verifies that the system is mainly user-friendly,

dependable, and useful for security guard operations.

7.4 System Usability Test

A standardized instrument for assessing the general usability of the vehicle

recognition access control system is the System Usability Scale (SUS). Ten

Likert-scale questions are used to gather user input on usability, effectiveness,

learnability, and satisfaction. Both the resident and security guard interfaces'

strengths and potential areas for development can be determined with the use of

the SUS results, which offer a quantitative assessment of user experience. By

239

ensuring that the system is both functional and easy to use, this evaluation

promotes successful adoption and day-to-day operations.

7.4.1 System Usability Scale Template

The template of SUS 10 questions used in this project was shown below:

1. I think I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think I would need the support of a technical person to use this system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very

quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

7.4.2 System Usability Testing Result

The System Usability Scale (SUS) is a popular, efficient, and trustworthy

instrument for evaluating how user-friendly a system, product, or service is. It

is a 10-question survey that alternates between positive and negative statements

on a 5-point Likert scale from "Strongly Disagree" to "Strongly Agree." The

answers are combined into a single score between 0 and 100, with 68 serving as

the standard for average usability. The higher the SUS scores, the better the

usability.

Table 7.８: SUS Result Table

Tester Score for each item Total

1 2 3 4 5 6 7 8 9 10

Resident Side

Tester 1 5 1 5 1 4 1 5 1 5 1 97.5

Tester 2 4 3 3 4 4 2 4 2 4 3 62.5

Tester 3 4 1 4 1 5 1 4 1 5 2 90.0

Tester 4 4 1 5 2 5 1 5 1 4 2 90.0

240

Tester 5 5 2 4 2 4 2 3 2 4 2 75.0

Security Guard Side

Tester 1 5 1 5 1 4 1 4 1 5 1 95.0

Tester 2 5 1 5 2 4 2 5 1 4 2 87.5

Tester 3 4 3 4 3 4 3 5 4 5 5 60.0

Tester 4 5 1 5 1 5 1 5 1 5 2 97.5

Tester 5 4 2 4 2 4 2 4 2 4 2 75.0

Average SUS Score 83.0

Five testers from each group participated in the SUS evaluation, which was

carried out on the resident and security guard sides of the vehicle recognition

access control system. Although one tester reported a lower score of 62.5,

indicating some small usability concerns or individual difficulty with some

system elements, the resident side's SUS scores varied from 62.5 to 97.5,

indicating a generally good level of usability. Most resident testers had scores

above 75, indicating that the system is generally easy to use and straightforward

for completing essential functions including notifications, vehicle management,

and registration.

 The SUS scores for security guards varied from 60.0 to 97.5, indicating

that the dashboard, record search, and alert features were easy to use for the

majority of users. The lowest score of 60.0 might draw attention to certain

locations where vehicle log filtering or sorting needs to be improved. In spite of

this, the system received great ratings from most security guard testers,

demonstrating its excellent usability for tracking suspicious activity and real-

time vehicle entries and exits.

 All testers' average SUS score was 83.0, which is regarded as a good

usability rating. This implies that both residents and security personnel find the

system to be well-designed, effective, and satisfactory. Although the system

exhibits excellent general user acceptance and operational efficacy, minor

improvements should be explored to improve learnability and consistency,

especially in more difficult aspects like record filtering or guest pass

administration.

241

7.5 Summary

This chapter provided a thorough analysis of the vehicle recognition access

control system, including testing, functional requirements, requirement

traceability, and user input. All system features were correctly validated thanks

to the requirement traceability matrix, which connected system use cases with

functional requirements and matching test cases. In order to verify that essential

features including registration, login, vehicle management, notifications, and

suspicious behavior warnings worked as intended, unit and integration testing

tables recorded the validation of individual modules and their interactions.

 Strong user satisfaction was demonstrated by the User Acceptance Test

(UAT) findings which showed that residents and security guards were able to

successfully complete essential tasks such account administration, car

registration, log retrieval, and real-time monitoring. All of these tasks received

high Likert scale ratings. With an overall average score of 83.0, the System

Usability Scale (SUS) study also showed good usability, suggesting that the

system was easy to use and efficient for the security guards' and residents'

operating requirements. When taken as a whole, these assessments verify that

the system satisfies its functional specifications, is easy to use, and is prepared

for implementation in practical situations.

242

CHAPTER 8

8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusion

The planning, design, development, and testing stages of the Vehicle

Recognition Access Control System project took six months to complete. By

combining GPT-4o for adaptive visual-language-based recognition and

YOLOv8 for multi-attribute recognition, the project effectively overcame the

drawbacks of traditional vehicle recognition systems. In addition to receiving

real-time notifications and alerts for suspicious activity, the system enables

residents and security personnel to effectively manage accounts, vehicles, and

visitor cards. Data preprocessing, model training, inference, and performance

evaluation were all part of the iterative cycles of coding, training, and testing

that were used to construct YOLOv8 and GPT-4o. High functionality and

usability were demonstrated by the test results, with GPT-4o exhibiting higher

recognition accuracy across all aspects and YOLOv8 performing well for some

attributes but having trouble with whole-body and license plate identification.

8.2 Objective Fulfillment

A thorough literature review and analysis of current access control solutions

allowed for the accomplishment of the first goal, which was to look into the

main drawbacks of traditional vehicle recognition systems. The study

emphasized issues such poor handling of edge cases, limited attribute

identification, and imprecise recognition in complex scenarios.

 Using EasyOCR for license plate extraction and models for car make,

model, color, and year, the second goal—creating a multi-attribute vehicle

recognition system with YOLOv8—was achieved. For residents and security

personnel, YOLOv8 successfully identified and categorized vehicle attributes.

 The third goal was accomplished by fine-tuning a visual language

model (GPT-4o) using annotated vehicle data in JSONL format in order to

integrate it for adaptive recognition and edge case management. GPT-4o proved

its strength in adaptive recognition settings by exhibiting high accuracy across

243

all aspects, including whole-vehicle and license plate identification. The system

is easy to use, efficient, and well-liked by both residents and security guards,

according to user acceptance testing and system usability review.

8.3 Limitations

The Vehicle Recognition Access Control System was developed successfully,

although during the project, a number of drawbacks were found. First, there is

currently a limit of one car registration per tourist which may limit flexibility in

situations when a visitor has more than one vehicle. Secondly, because there

isn't a specific admin interface for managing guard accounts, the administrator

must install security guards manually, which could limit scalability and

administrative simplicity. Lastly, the requirement that residents and security

personnel read all system messages prior to signing out may have an impact on

usability and efficiency, particularly in busy settings where prompt access and

message handling are crucial.

8.4 Recommendations for future work

Potential areas for further investigation, development or application of the

current project or study are highlighted in this part on recommendations for

future work. It points out shortcomings that might be fixed, provides

improvements to methods and makes recommendations for new features, lines

of inquiry, or technological advancements that could be used in the future. By

guaranteeing continuity and expansion beyond the current work's purview, this

section aids in directing future endeavors.

Table 8.１: Recommendations for future work

No Recommendation Description

1 Improved YOLOv8

Accuracy

Enhance YOLOv8 performance by increasing

dataset size, including partial or small vehicles,

and refining bounding box annotations to

improve recognition accuracy for challenging

scenarios.

2 Enhanced GPT-4o

Fine-tuning

Expand the GPT-4o dataset with more diverse

vehicle examples and attributes to improve

244

adaptive recognition for edge cases and rare

vehicle types.

3 Expanded User

Testing

Conduct larger-scale usability and acceptance

testing with more diverse residents and security

personnel to validate system reliability and

uncover additional improvements.

4 Real-Time System

Optimization

Explore edge computing or server optimization

to reduce inference latency for real-time

recognition, alerts, and notifications, enhancing

overall responsiveness.

5 Mobile-Based

Application

Develop a mobile version of the system to allow

residents and security guards to access features

conveniently on smartphones and tablets. This

can improve usability, real-time monitoring, and

overall system accessibility.

245

REFERENCES

Amirkhani, A. and Barshooi, A.H. (2023) ‘DeepCar 5.0: Vehicle Make and

Model Recognition Under Challenging Conditions’, IEEE Transactions on

Intelligent Transportation Systems, 24(1), pp. 541–553. Available at:

https://doi.org/10.1109/TITS.2022.3212921.

Bakshi, A. et al. (2023a) ‘ALPR - An Intelligent Approach Towards Detection

and Recognition of License Plates in Uncontrolled Environments’, in Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics). Springer Science and

Business Media Deutschland GmbH, pp. 253–269. Available at:

https://doi.org/10.1007/978-3-031-24848-1_18.

Bakshi, A. et al. (2023b) ‘ALPR - An Intelligent Approach Towards Detection

and Recognition of License Plates in Uncontrolled Environments’, in Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics). Springer Science and

Business Media Deutschland GmbH, pp. 253–269. Available at:

https://doi.org/10.1007/978-3-031-24848-1_18.

Cayetano, F. (2024) Vehicle Access Control: 4 Systems and Trends. Available

at: https://butterflymx.com/blog/vehicle-access-control/ (Accessed: 29 April

2025).

Dave, B. and Cole, S. (2024) What is Loss Function? | IBM. Available at:

https://www.ibm.com/think/topics/loss-function (Accessed: 13 April 2025).

Ferrer Josep (2024) How Transformers Work: A Detailed Exploration of

Transformer Architecture | DataCamp. Available at:

https://www.datacamp.com/tutorial/how-transformers-work (Accessed: 30

March 2025).

Gao, P. et al. (2023) ‘LLaMA-Adapter V2: Parameter-Efficient Visual

Instruction Model’. Available at: http://arxiv.org/abs/2304.15010.

Hu, M. et al. (2023) ‘Vehicle color recognition based on smooth modulation

neural network with multi-scale feature fusion’, Frontiers of Computer Science,

17(3). Available at: https://doi.org/10.1007/s11704-022-1389-x.

246

Kirillov, A. et al. (no date) Segment Anything. Available at: https://segment-

anything.com.

Lai, Z. et al. (no date) CLIPath: Fine-tune CLIP with Visual Feature Fusion for

Pathology Image Analysis Towards Minimizing Data Collection Efforts.

Larman, C. and Vodde, B. (no date) Large-Scale Scrum. Available at:

https://less.works.

Lee, B. (2024) Cloned licence plate almost landed man in hot water | The Star.

Available at: https://www.thestar.com.my/news/nation/2024/12/30/cloned-

licence-plate-almost-landed-man-in-hot-water (Accessed: 29 April 2025).

Li, B. et al. (2024) ‘Generative Visual Instruction Tuning’. Available at:

http://arxiv.org/abs/2408.03326 (Accessed: 2 May 2025).

Mahalakshmi, M. and Sundararajan, D.M. (2008) International Journal of

Emerging Technology and Advanced Engineering Traditional SDLC Vs Scrum

Methodology-A Comparative Study, Certified Journal. Available at:

www.ijetae.com.

MingxingTan, Ruoming Pang and Quoc V. Le (no date) EfficientDet: Scalable

and Efficient Object Detection. Available at: https://github.com/google/.

Mo, S., Xia, J. and Markevych, I. (2023) ‘CAVL: Learning Contrastive and

Adaptive Representations of Vision and Language’. Available at:

https://arxiv.org/pdf/2304.04399 (Accessed: 2 May 2025).

Murugaiyan, D. (2012) ‘International Journal of Information Technology and

Business Management WATEERFALLVs V-MODEL Vs AGILE: A

COMPARATIVE STUDY ON SDLC’, 2(1). Available at: www.jitbm.com.

Pargaonkar, S. (2023) ‘A Comprehensive Research Analysis of Software

Development Life Cycle (SDLC) Agile & Waterfall Model Advantages,

Disadvantages, and Application Suitability in Software Quality Engineering’,

International Journal of Scientific and Research Publications, 13(8), pp. 120–

124. Available at: https://doi.org/10.29322/ijsrp.13.08.2023.p14015.

Paula (no date) SAFe Scrum Master Roles and Responsibilities - Duties.

Available at: https://premieragile.com/safe-scrum-master-roles-and-

responsibilities/ (Accessed: 27 April 2025).

Peng, B. et al. (2023) ‘Instruction Tuning with GPT-4’. Available at:

http://arxiv.org/abs/2304.03277.

247

Poudel, R.P.K., Liwicki, S. and Cipolla, R. (2019) ‘Fast-SCNN: Fast Semantic

Segmentation Network’. Available at: http://arxiv.org/abs/1902.04502.

Red Ideas (2025) JaGaApp - JaGaSolution. Available at:

https://jagasolution.com/jagaapp/ (Accessed: 2 May 2025).

Sinha, A. and Das, P. (2021) ‘Agile Methodology Vs. Traditional Waterfall

SDLC: A case study on Quality Assurance process in Software Industry’, in

2021 5th International Conference on Electronics, Materials Engineering and

Nano-Technology, IEMENTech 2021. Institute of Electrical and Electronics

Engineers Inc. Available at:

https://doi.org/10.1109/IEMENTech53263.2021.9614779.

Slawek-Polczynska, A. (2020) Is Agile always the best solution for software

development projects? - SolDevelo. Available at: https://soldevelo.com/blog/is-

agile-always-the-best-solution-for-software-development-projects/ (Accessed:

30 April 2025).

Stanford CRFM (no date). Available at:

https://crfm.stanford.edu/2023/03/13/alpaca.html?utm_source=chatgpt.com

(Accessed: 2 May 2025).

TimeTec (2025) Property Management Ecosystem | iNeighbour. Available at:

https://www.i-neighbour.com/ (Accessed: 2 May 2025).

TimeTec Cloud (2025) TimeTec VMS. Available at:

https://www.timetecvms.com/ (Accessed: 2 May 2025).

Ultralytics Inc (no date) Anchor-Based Detectors. Available at:

https://www.ultralytics.com/glossary/anchor-based-detectors (Accessed: 29

March 2025).

VISITORZ TECH PRIVATE LIMITED (no date) Visitorz | Touchless Visitor

Management System. Available at: https://visitorz.in/ (Accessed: 2 May 2025).

Wang, Y. et al. (2022) ‘Self-Instruct: Aligning Language Models with Self-

Generated Instructions’, Proceedings of the Annual Meeting of the Association

for Computational Linguistics, 1, pp. 13484–13508. Available at:

https://doi.org/10.18653/v1/2023.acl-long.754.

Wei, C. et al. (2024) ‘Efficient license plate recognition in unconstrained

scenarios’, Journal of Visual Communication and Image Representation, 104.

Available at: https://doi.org/10.1016/j.jvcir.2024.104314.

248

Wu, T., Feng, A. and Zhang, Q. (2024) ‘Engineering Vehicle Object

Segmentation Algorithm Based on Improved YOLOv8x-seg’, in 2024 5th

International Conference on Intelligent Computing and Human-Computer

Interaction, ICHCI 2024. Institute of Electrical and Electronics Engineers Inc.,

pp. 47–52. Available at: https://doi.org/10.1109/ICHCI63580.2024.10808149.

Zhou, X., Wang, D. and Krähenbühl, P. (2019) ‘Objects as Points’. Available

at: http://arxiv.org/abs/1904.07850.

Zoinla (2019) MyTaman - Upgrade your taman security today! Available at:

https://hello.mytaman.com/ (Accessed: 2 May 2025).

