

INVENTORY MANAGEMENT DASHBOARD

FOR TRACKING OF SPORTS EQUIPMENT

AND FACILITIES IN A SECONDARY

SCHOOL'S SPORT CENTRE

YAP RUI YA

UNIVERSITI TUNKU ABDUL RAHMAN

INVENTORY MANAGEMENT DASHBOARD FOR TRACKING OF

SPORTS EQUIPMENT AND FACILITIES IN A SECONDARY

SCHOOL'S SPORT CENTRE

YAP RUI YA

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Software Engineering

(Honours)

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2025

i

DECLARATION

I hereby declare that this project report is based on my original work except for citations

and quotations which have been duly acknowledged. I also declare that it has not been

previously and concurrently submitted for any other degree or award at UTAR or other

institutions.

Name : YAP RUI YA

ID No. : 2107016

Date : 28/4/2025

ii

COPYRIGHT STATEMENT

© 2025, Yap Rui Ya.All right reserved.

This final year project report is submitted in partial fulfilment of the requirements for

the degree of Software Engineering at Universiti Tunku Abdul Rahman (UTAR). This

final year project report represents the work of the author, except where due

acknowledgement has been made in the text. No part of this final year project report

may be reproduced, stored, or transmitted in any form or by any means, whether

electronic, mechanical, photocopying, recording, or otherwise, without the prior written

permission of the author or UTAR, in accordance with UTAR’s Intellectual Property

Policy.

iii

ACKNOWLEDGEMENTS

I would like to extend my heartfelt appreciation to everyone who have contributed to

accomplish the milestones of this project. This report was prepared as part of the

academic requirements for the Lee Kong Chian Faculty of Engineering and Science at

Tunku Abdul Rahman University (UTAR to help students complete their graduation

studies.

I would like to express my gratitude to Ms Gunavathi a/p Duraisamy as my research

supervisor for her valuable advice, sensible opinions, guidance and enormous patience

across all of the research’s timelines. In this case, the research would not have been

completed as required within the set parameters without her careful guidance and

suggestions.

I would also like to express my sincere gratitude to my parents, relatives and all the

people who have support me in one-way, moral support and insights along the way.

The respect and trust they placed in me motivates me to keep striving forward.

Lastly, I wish to show my appreciation for the volunteers who took part within the user

acceptance testing. Their enthusiastic participation and insightful feedback were crucial

to improve the overall quality of the project which greatly attributed to its success.

iv

ABSTRACT

Manual inventory management in secondary school sports centres often results in

misplaced equipment, overbooked facilities, and inefficient maintenance tracking. This

project aims to address these issues by developing an Inventory Management

Dashboard that digitalizes the management of sports equipment and facilities. The

system integrates QR code-based tracking, real-time updates, and a centralized booking

platform to enhance operational accuracy and accountability. Using a prototyping

methodology, the system was iteratively designed, developed, and refined through

continuous user feedback from stakeholders, including administrators, quartermasters,

teachers, and students. The solution was implemented as a web-based application using

React.js for the frontend, Laravel for the backend, and a MySQL database for persistent

storage. Key features include role-based access control, QR code generation and

scanning for equipment check-in and check-out, real-time inventory and facility

booking, maintenance scheduling, and an analytics dashboard for performance insights

and decision-making. The system underwent comprehensive unit testing, integration

testing, and user acceptance testing, confirming its functionality, usability, and

effectiveness in meeting user requirements. Results demonstrate significant

improvements in inventory accuracy, booking transparency, and maintenance

monitoring. The developed dashboard offers a scalable and user-friendly solution that

reduces manual workload, minimizes errors, and promotes data-driven management of

sports resources. Future improvements may include the integration of predictive

maintenance, automated reporting, and multi-school scalability to broaden its impact

across educational institutions.

Keywords: inventory management; sports facilities; QR code tracking; web

application; React.js; Laravel; MySQL; prototyping methodology

Subject Area: QA76.76 Computer software

v

TABLE OF CONTENTS

DECLARATION i

COPYRIGHT STATEMENT ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF TABLES ix

LIST OF FIGURES xii

LIST OF APPENDICES xxi

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Project Background 1

1.3 Problem Statement 2

1.3.1 Inefficient Equipment Tracking System 2

1.3.2 Overbooking and Underutilization of Facilities 3

1.3.3 Lack of Maintenance Tracking 3

1.3.4 Poor Reporting and Decision-Making 5

1.4 Aim and Objectives 6

1.5 Project Scope 6

1.5.1 Target User 6

1.5.1.1 Functionality for Teachers & Students 7

1.5.2 Project Out-of-Scope 8

1.6 Project Solution 9

1.7 Project Approach 10

2 LITERATURE REVIEW 12

2.1 Introduction 12

2.2 Challenges of Manual Inventory Management 12

2.3 Software Development Methodology (SDLC) 12

2.3.1 Overview of SDLC 12

vi

2.3.2 Waterfall Development Methodology 13

2.3.3 Agile Development Methodology 17

2.3.4 Prototyping Development Methodology 19

2.3.5 Comparison of the Evaluated Development

Methodologies 22

2.3.6 Conclusion of Methodology 23

2.4 Web Application Framework 24

2.4.1 React Native 24

2.4.2 Vue.js 25

2.4.3 Laravel 27

2.4.4 Express.js 28

2.4.5 Conclusion of Web Application Framework 29

2.5 Existing Similar Application 30

2.5.1 Odoo 30

2.5.2 Dashcode 36

2.5.3 ECOUNT (Inventory / Barcode Software) 40

2.5.4 Comparison of Existing Similar Application 43

2.5.5 Conclusion of existing similar applications 45

3 METHODOLOGY AND WORK PLAN 47

3.1 Introduction 47

3.2 Prototyping Methodology 47

3.2.1 Requirements Planning 48

3.2.2 Design Process Using Prototyping Methodology 50

3.3 Final Implementation Phase 53

3.4 System Testing 53

3.4.1 Unit Testing 53

3.4.2 Integration Testing 54

3.4.3 User Acceptance Testing (UAT) 54

3.4.4 Bug Fixing and Final Refinements 54

3.5 Project Plan 54

3.5.1 Work Breakdown Structure (WBS) 54

3.5.2 Work Plan 57

3.6 Development Tools 58

3.6.1 Visual Studio Code 58

vii

3.6.2 Axure RP 58

3.6.3 React 59

3.6.4 Laravel 59

3.6.5 MySQL 59

3.6.6 Enterprise Architect 59

3.6.7 WampServer 60

3.6.8 phpMyAdmin 60

4 RESULTS AND DISCUSSION 61

4.1 Introduction 61

4.2 Fact Findings 61

4.2.1 Analysis 62

4.3 Requirements Specification 76

4.3.1 Functional Requirements 76

4.3.2 Non-Functional Requirements 79

4.4 Use Case Modelling 80

4.4.1 Use Case Diagram 80

4.4.2 Use Case Description 81

4.5 Prototype Screenshot 100

5 SYSTEM DESIGN 107

5.1 Introduction 107

5.2 System Architecture Design 107

5.2.1 Presentation Layer 108

5.2.2 Application Layer 108

5.2.3 Data Layer 109

5.3 Modelling Diagram 110

5.3.1 Entity Relationship Diagram (ERD) 110

5.3.2 Entity Relationship 111

5.3.3 Data Dictionary 112

5.4 User Interface Design 117

5.4.1 Login Module 117

5.4.2 Dashboard Module 118

5.4.3 Product Management Module 119

5.4.4 Inventory Management Module 123

5.4.5 Stock Check Module 123

viii

5.4.6 Booking Module 125

5.4.7 Reservation Module 126

5.4.8 Member Module 128

5.4.9 User Module 130

6 SYSTEM IMPLEMENTATION 132

6.1 Introduction 132

6.2 Project Setup 132

6.2.1 Database Setup 136

6.3 System Modules 136

6.3.1 Modules for Web-based Application 136

7 SYSTEM TESTING 215

7.1 Introduction 215

7.2 Unit Testing 215

7.2.1 Conclusion of Unit Testing 230

7.3 Integration Testing 230

7.3.1 Conclusion of integration testing 235

7.4 User Acceptance Testing 235

7.4.1 Findings 245

7.4.2 Achievements 245

8 CONCLUSION AND FUTURE WORK 247

8.1 Conclusion 247

8.2 Achieved Objectives 247

8.3 Limitations and Future Work 248

REFERENCES 249

APPENDICES 255

ix

LIST OF TABLES

Table 2.1: Advantage and Disadvantage of Waterfall Methodology 16

Table 2.2: Advantage and Disadvantage of Agile Methodology 19

Table 2.3: Advantage and Disadvantage of Prototyping Methodology 21

Table 2.4: Comparisons Between Different Methodologies 22

Table 2.5: Advantage and Disadvantage of React Native 25

Table 2.6: Advantage and Disadvantage of Vue.js 26

Table 2.7: Advantage and Disadvantage of Laravel 28

Table 2.8: Advantage and Disadvantage of Express.js 29

Table 2.9: Advantage and Disadvantage of Odoo 35

Table 2.10: Advantage and Disadvantage of Dashboard 40

Table 2.11: Advantage and Disadvantage of React Native 42

Table 2.12: Comparison of Existing Similar Application 43

Table 5.1: Entities Description Table 111

Table 5.2: Data Dictionary for Product Table 112

Table 5.3: Data Dictionary for Booking Table 113

Table 5.4: Data Dictionary for Inventories Table 114

Table 5.5: Data Dictionary for Reservation Table 115

Table 5.6: Data Dictionary for Stockcheck Table 116

Table 5.7: Data Dictionary for Users Table 116

Table 5.8: Data Dictionary for Members Table 117

Table 7.1: Unit testing of User Login 216

Table 7.2: Unit testing of Member Login 217

Table 7.3: Unit testing of Add User 218

Table 7.4: Unit testing of Edit User 218

x

Table 7.5: Unit testing of Delete User 218

Table 7.6: Unit testing of Change Password (User) 219

Table 7.7: Unit testing of List User 219

Table 7.8: Unit testing of Search User 219

Table 7.9: Unit testing of Add Member 220

Table 7.10: Unit testing of Edit Member 220

Table 7.11: Unit testing of Delete Member 220

Table 7.12: Unit testing of Change Password (Member) 221

Table 7.13: Unit testing of List Member 221

Table 7.14: Unit testing of Search Member 221

Table 7.15: Unit testing of List Inventory 222

Table 7.16: Unit testing of Add Product 222

Table 7.17: Unit testing of Delete Product 222

Table 7.18: Unit testing of Edit Product 223

Table 7.19: Unit testing of List Product 223

Table 7.20: Unit testing of Search Product 223

Table 7.21: Unit testing of Print QR Code 223

Table 7.22: Unit testing of Stock Check 224

Table 7.23: Unit testing of Member Booking 225

Table 7.24: Unit testing of Search Booking 225

Table 7.25: Unit testing of Add Reservation 226

Table 7.26: Unit testing of Edit Reservation Management 227

Table 7.27: Unit testing of List Reservation 227

Table 7.28: Unit testing of Search Reservation 227

Table 7.29: Unit testing of Delete Reservation Management 227

xi

Table 7.30: Unit testing of View Dashboard 228

Table 7.31: Unit testing of View Member Booking 228

Table 7.32: Unit testing of View Member Reservation 228

Table 7.33: Unit testing of View Home Page 228

Table 7.34: Unit testing of View History 228

Table 7.35: Unit testing of Notification 229

Table 7.36: Testing Integration 1 232

Table 7.37: Testing Integration 2 232

Table 7.38: Testing Integration 3 232

Table 7.39: Testing Integration 4 233

Table 7.40: Testing Integration 5 234

Table 8.1: Limitation and Future Work 248

xii

LIST OF FIGURES

Figure 2.1: Software Development Life Cycle (SDLC) (GeeksforGeeks,

2020) 13

Figure 2.2: Waterfall Model 14

Figure 2.3: Login Page 30

Figure 2.4: Sign Up Page 31

Figure 2.5: Instant Access Page 31

Figure 2.6: Main Page 31

Figure 2.7: Dashboards Page 32

Figure 2.8: Inventory Page 32

Figure 2.9: Barcode Page. 33

Figure 2.10: Barcode Scanner Page 33

Figure 2.11: Product Page 34

Figure 2.12: Add new product Page 34

Figure 2.13: Add new product Page- quantity 35

Figure 2.14: Log in Page 36

Figure 2.15: Sign up Page 37

Figure 2.16: Analytics Dashboard Page 37

Figure 2.17: Analytics Dashboard Page-2 38

Figure 2.18: Calendar Page 38

Figure 2.19: Invoice Page 39

Figure 2.20: Add Invoice Page 39

Figure 2.21: Barcode Inventory Management 40

Figure 2.22: Connect Barcode Scanner using OTG Cable 41

Figure 2.23: Scan Barcode using Mobile Application 41

xiii

Figure 2.24: 7 types of Barcodes 42

Figure 3.1: End-to-End Methodology Flow 48

Figure 1.1: End-to-End Prototyping and Testing Flowchart 50

Figure 3.3: Development Tools 58

Figure 4.1: Current Method of Tracking Sports Equipment 62

Figure 4.2: School of Respondents 62

Figure 4.3: School Location of Respondents 63

Figure 4.4: School Size of Respondents 63

Figure 4.5: Availability of a Sports Centre 64

Figure 4.6: Current Method of Managing Sports Equipment 64

Figure 4.7: Involvement of Teachers or Student Clubs in Equipment

Management 65

Figure 4.8: Frequency of Inventory Checking 65

Figure 4.9: Methods Used for Inventory Auditing 66

Figure 4.10: Common Challenges in Equipment Management 66

Figure 4.11: Current Method of Tracking Sports Equipment 67

Figure 4.12: Frequency of Misplaced or Lost Equipment 67

Figure 4.13: Importance of Real-Time Equipment Tracking 68

Figure 4.14: Frequency of Equipment Shortages 68

Figure 4.15: Most Common Issue with Sports Equipment 69

Figure 4.16: Current Method of Booking Sports Facilities 69

Figure 4.17: Frequency of Booking Conflicts or Underutilization 70

Figure 4.18: Benefits of a Real-Time Booking System 70

Figure 4.19: Frequency of Scheduling Conflicts 71

Figure 4.20: Most Common Facility-Related Issues 71

Figure 4.21: Interest in an Online Facility Booking System 72

xiv

Figure 4.22: Current Method for Managing Maintenance Schedules 72

Figure 4.23: Frequency of Delayed Maintenance or Unsafe Equipment 73

Figure 4.24: Frequency of Equipment Maintenance Inspections 73

Figure 4.25: Satisfaction Level with the Current Maintenance Process 74

Figure 4.26: Current Method of Report Generation 74

Figure 4.27: Usefulness of a Dashboard 75

Figure 4.28: Easy Access to Sports Equipment and Facility Information 75

Figure 4.29: Desired Additional Features in a Management Dashboard 76

Figure 4.30: Use Case Diagram 80

Figure 4.31: Login Module 100

Figure 4.32: View History Module 101

Figure 4.33: Booking Module 101

Figure 4.34: Make Reservation Module 102

Figure 4.35: Home Page 102

Figure 4.36: Dashboard Module 103

Figure 4.37: Product Management Module 103

Figure 4.38: Inventory Management Module 104

Figure 4.39: Reservation Management Module 104

Figure 4.40: Booking Management Module 105

Figure 4.41: User Management Module 105

Figure 4.42: Member Management Module 106

Figure 5.1: Overview of System Architecture Design 107

Figure 5.2: Entity Relationship Diagram 110

Figure 5.3: Login page 117

Figure 5.4: Dashboard page – Part 1 118

xv

Figure 5.5: Dashboard page – Part 2 118

Figure 5.6: Dashboard page – Part 3 118

Figure 5.7: Product List Page 119

Figure 5.8: Product Page - Print Icon 119

Figure 5.9: Product Page - Print Quantity Input Field 119

Figure 5.10: Product Page - Printing Page 120

Figure 5.11: Product Add Page 120

Figure 5.12: Product Page Filter Function 121

Figure 5.13: Product Page - QR Code Pop Up Modal 121

Figure 5.14: Product Page – Edit Icon Button 121

Figure 5.15: Product Edit Page 122

Figure 5.16: Product Page- Delete Icon 122

Figure 5.17: Product Page-Delete Confirmation Prompts 122

Figure 5.18: Inventory List page 123

Figure 5.19: Stock Check List 123

Figure 5.20: Stock Check List - Display Data Based on Date and Outlet. 124

Figure 5.21: Add Stock Check 124

Figure 5.22: Add Stock Check - List 125

Figure 5.23: Booking List 125

Figure 5.24: Booking List - Delete Confirmation 125

Figure 5.25: Booking List- Filter Function 126

Figure 5.26: Reservation List 126

Figure 5.27: Reservation List- Filter Function 127

Figure 5.28: Reservation List - Delete Confirmation 127

Figure 5.29: Reservation Add Page 127

xvi

Figure 5.30: Reservation Edit Page 128

Figure 5.31: Member List Page 128

Figure 5.32: Member Page - Delete Confirmation 128

Figure 5.33: Member Add Page 129

Figure 5.34: Member Edit Page 129

Figure 5.35: Member Change Password Page 129

Figure 5.36: User List Page 130

Figure 5.37: User Add Page 130

Figure 5.38: User Edit Page 130

Figure 5.39: User Delete Confirmation 131

Figure 5.40: User Change Password Page 131

Figure 5.41: User Profile Page 131

Figure 6.1: Wampserver Official Website 132

Figure 6.2: Composer Official Website 133

Figure 6.3: Node.js Official Website 133

Figure 6.4: WampServer Running (Green) 133

Figure 6.5: vite.config.js 134

Figure 6.6: Code Snippet of app.jsx 135

Figure 6.7: Code Snippet of welcome,blade.php 135

Figure 6.8: Database Connection Config 136

Figure 6.9: useState Hook 136

Figure 6.10: Code Segment for Login Functionality 137

Figure 6.11: Login Page -Unauthorized for Wrong Passwords 138

Figure 6.12: Login Page- Account Not Found 138

Figure 6.13: Login Page- Account Inactive 138

xvii

Figure 6.14: Login Page -Verify Empty Field 139

Figure 6.15: Login Page - User Input Form 139

Figure 6.16: Login Function 140

Figure 6.17: Load Dashboard Data Function 141

Figure 6.18: Get Equipment Status Chart Data 141

Figure 6.19: Get the Most Used Product Data 142

Figure 6.20: Fetch Booking Data Function 142

Figure 6.21: Time Range Selector Function 143

Figure 6.22: Code Segment to Retrieve the List of Product Data 144

Figure 6.23: Code Segment to Filter Product by Name 145

Figure 6.24: Generate Product ID & QR Code 145

Figure 6.25: Handle Form Input 146

Figure 6.26: Image Upload with Preview 146

Figure 6.27: Submit the Product Data 147

Figure 6.28: Code Segment to Retrieve Product Data 148

Figure 6.29: Code Segment to Handle Change - Part 1 149

Figure 6.30: Code Segment to Handle Change - Part 2 149

Figure 6.31: Code segment to Handle Image Change 150

Figure 6.32: Code Segment to Handle Delete 150

Figure 6.33: Code segment to Handle QR Code Pop Up Model 151

Figure 6.34: Code Segment for Handle Printing Function 152

Figure 6.35: Code Segment to Retrieve A List of Products 154

Figure 6.36: Code Segment for Store Function 155

Figure 6.37: Error Message Display for Duplicate Product Name 156

Figure 6.38: Code Segment to Display Product 156

xviii

Figure 6.39: Code Segment for Update Purpose 157

Figure 6.40: Code Segment for Destroy Function 158

Figure 6.41: Code Segment for Fetching Data from API 159

Figure 6.42: Code Segment to Retrieve to Inventory Data 160

Figure 6.43: Code Segments to Display Inventory Data 160

Figure 6.44: Code Segment for Generating Inventory Overview 161

Figure 6.45: Code Segment Fetches Products by Outlets 162

Figure 6.46: Handle Submit Function 163

Figure 6.47: Stock Check Page - Mismatch Data 163

Figure 6.48: Fetch Stock Check Function 164

Figure 6.49: Code Segment for Creating New Stock Check 165

Figure 6.50: Index Function 166

Figure 6.51: Show Function 167

Figure 6.52: Booking List Page 167

Figure 6.53: Fetch Booking Data 168

Figure 6.54: Format Time Function 168

Figure 6.55: Handle Delete Function 169

Figure 6.56: Index Function 169

Figure 6.57: Show Function 170

Figure 6.58: Checkout Function 170

Figure 6.60: Checkin Function 172

Figure 6.61: Close Expired Reservation Function 173

Figure 6.62: Destroy Function 174

Figure 6.63: myBookings Function 175

Figure 6.64: Fetch Reservation Function 176

xix

Figure 6.65: Search Function 176

Figure 6.66: Get Status Classes Function 177

Figure 6.67: Reservation Page - Different Status 177

Figure 6.68: ReservationPast Function 177

Figure 6.69: Disabled Buton 178

Figure 6.70: Handle Delete Function 178

Figure 6.71: FetchData Function 179

Figure 6.72: Fetch Available Quantity Function 180

Figure 6.73: Handle Submit Function 181

Figure 6.74: Reservation Page -Successful Notification 181

Figure 6.75: Reservation Accepted Mail 182

Figure 6.76: ReservationAcceptedMail.blade.php 183

Figure 6.77: Mail Setup in .env() 183

Figure 6.78: The Output Results of Notification 184

Figure 6.79: Index Function 184

Figure 6.80: Store Function 185

Figure 6.81: Available Quantity Function 186

Figure 6.82: Update Function 187

Figure 6.83: Accept Function 188

Figure 6.84: Reject Function 189

Figure 6.85: Destroy Function 189

Figure 6.86: myReservation Function 190

Figure 6.87: Weekly Stas -Part1 191

Figure 6.88: Weekly Stas -Part2 192

Figure 6.89: FetchUser Function 194

xx

Figure 6.90: User Profile Page 195

Figure 6.91: User Edit Page 195

Figure 6.92: Error Message 195

Figure 6.93: Fetch Data Function 197

Figure 6.94: Handle Delete Function 198

Figure 6.95: Index Function 198

Figure 6.96: Show Function 199

Figure 6.97: Update Function 199

Figure 6.98: Change Password Function 200

Figure 6.99: Destroy Function 200

Figure 6.100: Home Page (Member) 201

Figure 6.101: Fetch Product Function 202

Figure 6.102: Booking Page Function 203

Figure 6.103: Fetch Product and Booking Function 204

Figure 6.104: Handle Checkout Function 205

Figure 6.105: Handle Check in Function 206

Figure 6.106: Reserve Booking Page 207

Figure 6.107: FetchBooking Function 207

Figure 6.108: Handle Reserve Function 208

Figure 6.109: Fetch Availability Quantity 209

Figure 6.110: Handle Quantity Change 209

Figure 6.111: History Page 211

Figure 6.112: Fetch Data Function 212

Figure 6.113: Handle Check Out Function 213

Figure 6.114: Reservation Date Pass Function 214

xxi

LIST OF APPENDICES

Appendix A: Hardcopy records and Manual Entry 255

Appendix B : WBS Gantt Chart 257

1

CHAPTER 1

INTRODUCTION

1.1 General Introduction

The main purpose of this project is to develop an Inventory Management Dashboard

for tracking sports equipment and facilities in a secondary school's sports centre. This

system will enhance the efficiency of inventory management for stakeholders to

efficiently manage sports inventory by ensuring the availability and proper utilization

of equipment and facilities. The project aims to replace traditional manual record-

keeping methods, which have very low efficiency rates due to ineffective tracking and

higher chances of error to a digital solution.

This dashboard will provide a centralized platform for monitoring inventory

levels, tracking equipment usage, and scheduling maintenance activities. It will also

enhance transparency, streamline operations, and improve resource allocation within

the school's sports centre.

Thus, the project's background, problem statement, objectives, scope,

suggested solution, and methodology will be covered in detail in Chapter 1.

1.2 Project Background

Nowadays, sports and other extracurricular activities are integrated into the educational

process, which makes the management of sports facilities and equipment become more

important. This cause Effective inventory management become more crucial in order

to ensuring the availability and proper utilization of resources in various fields

especially education and sports. However, many schools still rely on manual inventory

tracking systems such as paper-based records and spreadsheets. These systems are

prone to errors, inefficiencies, and difficulties in tracking equipment availability and

maintenance needs. This outdated approach leads to operational inefficiencies,

unaccounted losses, and delays in equipment allocation, ultimately affecting the quality

of sports programs. Therefore, inventory management is an important function for any

organization dealing with physical commodities to ensure the right quantity of products

are available at the right time to avoid the problems of overstocking and understocking

(Madamidola et al., 2024).

2

According to Macadamidola et al. (2024), the development of inventory

management systems has greatly improved inventory tracking accuracy and operational

efficiency, which has introduced modern technologies such as barcode scanning, Radio

Frequency Identification (RFID), and the Internet of Things (IoT). Due to the continue

increasing of efficiency demands, school have to turned into digital solutions to

improve inventory tracking and overcome overstocking, understocking, and poor

tracking accuracy problems. However, many schools have yet to adopt these

innovations, the main reason is due to a lack of awareness or the absence of a

customised solution designed for educational institutions.

The motivation of this project is to bridge the gap between traditional

inventory tracking and modern digital solutions. The purpose of this project is to

develop an Inventory Management Dashboard for Tracking of Sports Equipment

and Facilities in a Secondary School's Sport Centre which will provide a centralized

digital platform that allows secondary schools can effectively track their sports

resources, monitor facility usage, and schedule maintenance activities.

1.3 Problem Statement

1.3.1 Inefficient Equipment Tracking System

Many secondary schools have adopted digital teaching and learning solutions, but

sports equipment management is still largely neglected. The research shows that the

current investigations into digital technologies within physical education are focused

mainly on areas such as gamified teaching, wearable devices, and collaborative learning

but fewer studies addressing resource and facility management (Jastrow, Greve,

Thumel, Krieger, & Süßenbach, 2022). Ideally, the school sport centre will have a real-

time and automated system to track all sport equipment so that each equipment can be

clearly to be tracked and easily accessed to teachers and students. However, the sports

centre still relies on manual tracking methods such as paper logs or spreadsheets to

track sports equipment which are very time consuming and error prone.

Besides, the manual tracking method also makes it difficult for staff to locate

equipment when needed as the equipment is often lost or damaged. This inefficiency

can lead to communication issues and human errors which result in delayed events,

frustration among students and staff, and increased costs due to lost or damaged

equipment (Ko, Azambuja, & Lee, 2016). Without real-time visibility of equipment

3

availability, physical activity and training sessions are unnecessarily disrupted. Even

though many secondary schools have integrated digital tools into their classrooms to

improve learning, the adoption of digital solutions for managing sports facilities and

equipment has been largely disregarded. To address this issue, an inventory

management tracking system using QR codes can be implemented. This system will

provide real-time updates on equipment availability which can significantly reduce

manual tracking errors, improve inventory management, and create a smoother

experience for both teachers and students.

1.3.2 Overbooking and Underutilization of Facilities

In Malaysia, the overall utilisation rate of sports facilities stands at approximately 46.9%

of capacity has indicating significant underutilisation (Aman et al., 2020). The school

sports centre should have a centralized scheduling system that ensures optimal

utilization of all equipment. This system would prevent overbooking, underutilization,

minimize conflicts, and ensure that every equipment is used efficiently. However, a lot

of schools continue to use manual tracking method which can cause the scheduling

disputes for teachers and students. For example, popular facilities such as basketball

courts are often fully booked during peak hours, while other facilities such as tennis

courts are not fully utilized. Even with sufficient sports facilities, these are often

underutilised due to less awareness (Sadiq et al., 2023). The lack of structured inventory

management system may increase the operating costs and resulting in a waste of

resources.

Besides, the manual tracking methods makes it difficult to track historical

booking data which may prevent the administrative from optimising the use of facilities

based on demand. As a result, it makes the staffs and students difficult to plan their

activities efficiently, and the last-minute changes or cancellations further disrupt the

scheduling process. At the same time, it may also limit the potential for school training

sessions and events. To solve this problem, a dashboard that provides real-time

availability and booking status of facilities is required to optimize usage and improve

user experience.

1.3.3 Lack of Maintenance Tracking

Inspecting sports equipment is important for preventing costly losses or serious damage.

The most effective time for inspection is before beginning of each sporting season to

4

ensure that the equipment compiles with safety standards and protecting the users and

spectators’ safety when using it (Morrow, 2018). Sports equipment and facilities often

require maintenance to ensure safety, longevity and optimal performance, but the

current system fails to track maintenance schedules effectively. This leads to delayed

repairs, the equipment is unsafe, and the resources have a shortened lifespan. The

research shows that the rising of maintenance costs has driven the use of computerised

models to enhance equipment utilisation and reduce expenditure in comparison to

reactive or temporary maintenance procedure (Sayyed, 2015). Therefore, a sports centre

should have a proactive maintenance tracking system that can monitor maintenance

schedules and tracks the condition of equipment and facilities. This advanced system

would mitigate the chances of breakdown disasters, enhance safety, and save money on

expensive repairs in the future.

The use of manual tracking method may pose major risks because facilities

and equipment can be ignored until they reach a critical failure point. Okirie AJ,

Barnabas M, Adagbon JE (2024) mentioned that the manual tracking can result in

ineffective maintenance resource allocation, decreased equipment reliability, and

higher maintenance expenses. This negative approach puts the health and safety of the

students and staff at risk by preventing physical activity and simultaneously increases

operating costs through emergency repairs or premature replacement of equipment.

Moreover, the lack of a structured maintenance tracking system also means that

facilities staff have a lack of knowledge about the condition of sports resources, making

it difficult to plan for necessary repairs or replacements. The absence of essential safety

inspection systems, equipment management protocols and regular maintenance

programmes may compromise safety and accelerate equipment deterioration (Wu, Lu

and Ma, 2025).

To address these challenges, a module that tracks maintenance tasks and

ensures regular inspection and upkeep of sporting equipment must be implemented to

assist facilities and expand their capabilities. Preventive maintenance is better than

reactive maintenance. This is because preventive maintenance plays important role in

facility upkeep which help to prevent unexpected equipment failures and costly repairs

and extends the service life of assets and system (Hawkes, 2025). In addition, the

integration of QR codes on each piece of equipment will allow staff to quickly check

maintenance status and report issues instantly to ensure a safe sporting environment for

students and staff.

5

1.3.4 Poor Reporting and Decision-Making

Effective management of sports centres requires accurate data on equipment usage,

facility bookings and maintenance activities. However, allocation of resources and

budgeting for repairs, equipment purchases, and other activities is challenging for staff

as they lack reliable reports that are based on analysis of usage trends. In sports

management, big data and analytics have become essential in guiding decision-makers

because they allow interpreting large datasets to drive operational strategies (Watanabe

et al., 2021). Therefore, sports centres need to be equipped with holistic reporting and

analytics systems that generate real-time insights to support data-driven decision-

making and improve overall efficiency.

Besides, data recorded in manually may be inconsistently and leading to errors

and incomplete information. Without a clear understanding of how often equipment is

used, which facilities are in high demand or when maintenance is required, decisions

tend to be made on assumptions instead of facts. Such inefficiencies can lead to

misallocation of resources, unnecessary expenditure and lack of improvement in the

functioning of the sports centres. Therefore, a reporting and analysis module should be

incorporated into the inventory management system. The module will provide detailed

analysis of the equipment and other resources used, facilities booked, and maintenance

done, and provide real-time accurate data to assist administrators in decision making

and resource allocation. According to Peter Drucker's well-known quote, "What gets

measured gets managed,", data allows system to make better decisions and promote

efficient decision (7 Ways Data Can Drive Better Facilities Management Decisions,

2025). By integrating data visualisation tools such as interactive dashboards and trend

analysis charts, the system will be able to make better decisions by identifying peak

usage times and forecasting equipment replacement needs. In addition, automated

report generation will streamline administrative tasks, reduce manual workload and

improve operational efficiency. The management in the sports centres will make better

decisions in the facility's utilization to increase sustainability and user satisfaction long

term with such a system in place.

6

1.4 Aim and Objectives

This project intends to achieve the following objectives:

1. To develop a web application with dashboard on tracking of the

movement and inventory of the sport equipment and facilities.

2. To develop equipment tracking and maintenance features using QR

code.

3. To develop a mobile application with QR code scanning feature for the

equipment whenever there’s an in & out movement from the sport

center.

4. To evaluate the effectiveness proposed system by conducting the user

acceptance testing with the selected school.

1.5 Project Scope

This project aims to develop a web-based Inventory Management Dashboard and

mobile app for scanning to streamline the management of sports equipment and

facilities at a secondary school’s sports centre. The system will centralize equipment

tracking, automate facility scheduling, enable proactive maintenance management, and

provide data-driven insights for decision-making.

1.5.1 Target User

The intended users of this system are:

• Teachers & Students: Primary users who can rent sports equipment.

• Administrators: Authorized personnel responsible for managing

sports equipment and overall operations within the school's sports.

• Quarter masters: The authorized personnels (students) who are

responsible for managing the inventory, do stock check, tracking the

equipment’s in and out, and manage the booking.

7

1.5.1.1 Functionality for Teachers & Students

1.5.1.1.1 Equipment Reservation & Rental

Teachers and students can view the availability of sports equipment in real time through

a user-friendly interface. This feature ensures that users can quickly determine which

equipment us available at any given time. Users can also reserve equipment for specific

time slots. For example, during class hours or extracurricular activities. This ensures

that users have all the equipment they needed for their planned activities. Besides, users

can track the equipment when equipment was borrowed and view the return dates

through booking history.

1.5.1.1.2 Equipment Return & Notifications

Users can mark equipment as “check in” or “check out” in the system and the system

will updating its availability status automatically once the users have finished using the

booked equipment. This feature ensures that equipment is returned to the pool of

available equipment in a timely manner and preventing overbooking. In addition, the

system will automatically send reminders to notify users about the upcoming due dates

and alert them when the equipment is overdue. This notification will be sent in advance

so that users have sufficient time to return the equipment.

1.5.1.1.3 QR Code scanning for reservation and booking

Users can scan the QR code by using their mobile phone to make reservations and

booking. After scanning, users need to login or sign up to the website. After login, it

will navigate to specific equipment page to allow users to “check in” or “check out”.

The system will update the availability of the equipment immediately.

1.5.1.2 Functionality for Administrators and Quarter masters

1.5.1.2.1 Inventory Management

Administrators and Quarter masters have full control over the inventory management

of sports equipment. They can add, view, update and delete equipment details such as

the condition and quantity of equipment. This feature ensures that inventory always up-

to-date and avoid discrepancies or confusion over equipment availability.

Administrators can also update the equipment records by using QR code scanning

which making the inventory management become faster and efficient. Besides,

8

administrators can track and change the equipment status in real time. The status can

be categorized as ‘available’, ‘rented’ or ‘under maintenance’ to allow users to view

information.

1.5.1.2.2 Role-Based Access Control

Administrators can assign specific permissions to different users to ensure only

authorised user can access to certain features. For example, only administrators can

limit the amount of equipment booking and view the analysed result displayed on the

dashboard, while other users without the permission will only have access to basic

functions which is reserving and returning the equipment. This ensures that only

appropriate administrative privileges have access to sensitive data on equipment usage,

booking trends and overall system performance in order to avoid misuse.

1.5.1.2.3 User Access Control

Administrators can assign specific roles and permissions to users as needed. For

example, teachers can prioritize the use of certain equipment and extend the rental time

based on the teaching and activities needs, while students will be restricted on

maximum rental time to ensure that equipment are returned on time and available for

others to use.

1.5.1.2.4 QR code generation

Only administrators can generate QR code for each category of equipment or facility.

By using QR code, it can direct users to a centralized system page which can reduce

manual process that may cause mistakes made by human errors. Sharing QR codes for

grouped items can simplify management and allow more accurate tracking of

equipment bookings.

1.5.2 Project Out-of-Scope

There are some features are outside the scope of the project. Firstly, the system does

not include the financial tracking or budget management for the purchase of new

equipment. This is because the main focus of the project is on inventory tracking rather

than financial management. Secondly, the system does not support automated

9

assessment or predictive maintenance as the inspection and maintenance decisions still

require manual intervention. Thirdly, the project was only limited to secondary school

sport centre and was not designed for broader multi-school or district-wide use. Lastly,

the system will only rely on QR code scanning with the existing mobile devices without

using the hardware such as barcode scanner. It will also not track the equipment location

via GPS.

1.6 Project Solution

The project is focus on developing an inventory management dashboard tailored for

secondary school's sport centre. The objective of the project is to address the

inefficiencies in equipment tracking, facilities reservation and maintenance

management. The system will combine with the proven technology with innovative

features to ensure scalability, real time updates and user-centered design.

 The frontend of the inventory management dashboard will be developed using

React.js, a JavaScript framework known for its flexibility and real-time rendering

capabilities. React’s component-based architecture facilitates the creation of reusable

UI components, thereby enhancing the maintainability and scalability of the code

(Gackenheimer, 2015). However, Visual Studio Code (VS Code) will serve as the

primary integrated development environment (IDE) in order to provide a strong

ecosystem of extensions to streamline the development process. Besides, Axure Rp will

be used to create system prototype. It is a tool that can create wireframes, models and

interactive prototypes without writing a line of code and user can simulate complex

user interactions and interface behaviour before development work starts (Krahenbuhl,

2015).

 The backend of the inventory management system will use MySQL, an open-

source relational database management system (RDBMS) to store and manage data

(Erickson, 2024). It will use Node.js to handle API request, authentication and others.

Firebase Realtime Database will store device details and facilities schedules in order to

provide real-time synchronization to avoid overbooking and ensure accurate inventory

tracking. It is a cloud-hosted NoSQL database that allows administrators to store and

transfer data across users in real-time to make sure that users have access to up-to-date

information (Firebase, 2025). Firebase which contains authentication features will also

enables secure role-based access control. This will result in the different between users

and administrators’ permission.

10

1.7 Project Approach

The project will use an iterative, user-centred development methodology combined

with modern full-stack technologies to address the inefficiency of tracking sports

equipment in secondary school sports centres. Prototyping methodology will be used

for this project in order to solve the inefficiency of the tracking sports equipment in

secondary school sports centers. Prototyping methodology is selected for this project

because it allows early development of working system models, gathering continuous

user feedback and iterative improvement of features. Therefore, it makes it suitable for

this project where the requirements are changing during the development process.

 The project will be divided into several sprints and each of them will focus on

specific functionality. For example, equipment booking, inventory updates, user access

control and so on. This will allow for iterative improvements and early testing of

individual components. The Agile methodology will start with requirements gathering

and analysis where the pain points will be identified through surveys. So that, it will

ensure that the system aligns with user expectations and meet school requirements.

Besides, prototyping and design validation will be carried out by using Axure RP to

produce interactive wireframes that simulated key functionality. Users should take part

in usability testing to make sure that the design was user-friendly and meet their

requirements. According to Camburn et al. (2017), prototyping can clarify an

ambiguous or changing requirement through iterative feedback between users and

developers to ensure that the final system is aligned with the user needs.

 The project will start with requirements gathering and analysis. At this phase,

the problems and requirements will be identified by using surveys and interviews to

solve the issues faced by the users. Based on the collected requirements, an early low-

fidelity prototype will be created using Axure RP which focus on basic layout, user

flows and essential functionality. This prototype will be shared with users to gather

usability feedback at an early stage.

 After the early feedback is collected, the prototype will be refined and

improved over multiple cycles. Each version will add more detailed functionality and

gradually leading to high-fidelity model that closely matches to the final system. After

each iteration, users will involve in usability testing to verify the design, test navigation

flows and provide suggestions for improvements.

 Throughout the process, functional feedback will be collected after each

prototype evaluation phase to identify usability issues and improve the system design.

11

Each iteration will be tested for early detection, and the issues will be solved to ensure

that the final product is reliable, intuitive and user-friendly. As Horváthová and

Voštinár mentioned that feedback is important for improving system performance as it

allows users to learn from their mistakes.

 Lastly, the project will ensure that the developed inventory management

control panel is user-centred and flexible to respond to changing requirements and able

to solve the inefficiencies of manual sports equipment tracking effectively by using

prototyping methodology in order to deliver a high-quality functional system that meets

the needs of users.

12

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter reviews the existing literature on developing an inventory management

system for tracking secondary school sports equipment and facilities. It starts with

outlining the current scope and issues that emphasize the limitations of manual

inventory management systems and the need for proposed solutions. It also explores

the Software Development Life Cycle (SDLC) to outline systematic processes and

ensure it is aligned with industry standards and enhance project efficiency. The chapter

also covers the relevant techniques and approaches to evaluate the effectiveness of the

system. Besides, the chapter studies the development tools and system architectures

commonly used in similar projects. Lastly, this chapter will examined systems and

compared it with similar functionality to understand current trends, capabilities, and

limitations. These elements provide a solid theoretical and practical foundation for the

creation of the proposed system.

2.2 Challenges of Manual Inventory Management

Secondary schools use inefficient manual systems to track and manual sports equipment

and facilities which often leading to misplaced items, maintenance delays and poor

budget management. According to a report by AssetPanda, it has mentioned that

educational institutions has lose up to $250,000 (RM 1,101,874.46) per year due to

improper asset tracking. A study by Link Labs also found that 5 to 10% of recorded

assets are “ghost assets” which are assets still recorded but are actually missing or

unusable. This problem occurs is due to poor tracking or record keeping that always

rely on manual inventory management methods.

2.3 Software Development Methodology (SDLC)

2.3.1 Overview of SDLC

Software Development Life Cycle (SDLC) is the structured process that guides the

development of a software system. It consists of 6 phases which is planning, defining,

designing, building, testing and deployment.

13

Figure 2.1: Software Development Life Cycle (SDLC) (GeeksforGeeks, 2020)

SDLC can reduce the risk of project failure as it will ensure that the system

development is systematic and meet the user requirement (Jindal, Gulati & Rohilla,

2015). According to Gurung et al. (2020), each phase in SDLC is critical to produce

high-quality software systems and provides opportunities for verification and validation.

Furthermore, Kute and Thorat (2014) mentioned that using the correct SDLC can

increase clarity of project scope, improve communication between stakeholders and

better managing schedules and cost. Therefore, SDLC is important as it determines how

the projects adapt to change, meet the customer expectations and maintains quality

assurance at the same time not overbudget.

2.3.2 Waterfall Development Methodology

The waterfall methodology is a traditional and linear software development

methodology where each phase must be fully completed before progressing to the next.

The idea of the "waterfall" of development activities was first proposed by Royce (1970,

cited in Bell and Thayer, 1976) which emphasized the structured, top-down nature of

the progression of each distinct development phase, where the output of one phase

becomes the input to the next. It follows a linear and sequential path where each phase

must be completed before the next phase start. It contains six sequential phases:

Requirements Gathering & Analysis, System Design, Implementation, Testing,

Deployment, and Maintenance.

14

Figure 2.2: Waterfall Model

The first and primary step of the waterfall approach is Requirements Gathering

and Analysis phase. All the functional and non-functional requirements of system will

be collected in this phase in order to gain a comprehensive understanding of the

intended functionality of the system. Functional requirements are defined as use cases

that explain the user’s interactions with the system and contain aspects such as the

system's purpose, scope, functionality, interface requirements, and database

requirements while the non-functional requirements are defined as a constraints and

quality features such as dependability, scalability, testability, and performance (Bassil,

2012). At this phase, the detailed insights will be gathered through conducting

interviews, surveys or workshops and then recorded in Software Requirements

Specification (SRS). Software Requirements Specification (SRS) is a detailed

explanation about the development of software behaviour (Bassil, 2012). According to

Chemuturi (2013), a document will not be ‘frozen’ before it gets authorization by

appropriate body and sometimes such approval is obtained after a rigorous internal

review and quality control process. It means that once the SRS has been reviewed and

approve, the requirements are considered as ‘frozen’ which means there is no further

modification can be made. Therefore, at this phase would outline the features like QR-

code scanning and role-based access for sports equipment.

The system design phase takes place after the requirements specifications has

been completed. Software design is a unique and critical step that separates

requirements from coding and helps to ensure that development proceeds in a structured

15

and systematic manner (Royce, 1987). At this phase, software developers and designers

require to create a solution proposal such as database design, user interface layout, data

model and data structure. They also require creating logical and physical design

diagrams to visualise system components and their interactions such as Entity

Relationship Diagrams (ERDs) and Unified Modelling Language diagrams (UMLs).

The ERDs has been preferred to use in conceptual modelling due to it “easy to

understand, effectively models real-world problems, and is easily converted into

database schemas.” (Song, Evans, & Park, 1995). However, UMLs will provide

standardized approach to modelling the structure and behaviour of a system which will

improve communication among teams and help them more clearly specify, visualize

and record system documents (Visual Paradigm, 2019).

The implementation phase is a phase that transforms the system design

specification, blueprints and business requirements into an actual environment by using

the programming language and development tools (Bassil, 2012). Therefore,

developers will use a modular programming approach to implement components that

defined in the design phase and implement functionality outlined in the system

blueprint. Unit testing also plays an important role in verifying the functionality of

individual components during the implementation phase. It usually carried out

concurrently with development to ensure the software quality and detect the problem

early. It uses automated tools to effectively detect and address issues early in the

implementation phase to maintain the code quality and prevent downstream defects

(TestFyra, 2023).

Besides, the testing phase is a process that will completely validate the system

once the system is built to ensure that it meets all the requirements and has no bugs. It

is also a process of confirming that a software solution satisfies the initial requirements

and specifications and achieves its intended purpose (Bassil, 2012). During this phase,

both unit testing and system testing are carried out. Unit testing checks individual

components to verify that each unit perform as expected (GeeksforGeeks, 2019). While

system testing evaluates the entire workflow to ensure that entire system integrate

smootly (GeeksforGeeks, 2019). For example, testing that if the inventory updates

properly when a student checks out the equipment. This step is important as it must

identify and resolve any issues before the system is deployed into live use.

 Maintenance phase is a last important step in waterfall methodology as it

ensures the performance and long-term functioning of the system. It is the process that

16

resolving any problems or bugs reported by user and ensuring that the system remains

functioning and meets the requirements of users. It may also have some additional

maintenance such as strengthening software stability, meeting new user requirements,

and adapting the software to the environment (Bassil, 2012). Therefore, maintenance

phase supports long-term success by ensuring that the system remains up-to-date,

reliable and meets user expectations.

According to the above explanations, it shows that the projects with clear,

well-defined requirements that are unlikely to change during development are suitable

for the waterfall methodology. Therefore, it is ideal for the projects with predictable

scope and tight deadlines or budgets. This is because the water methodology is a linear

progression where each phase must be completed before moving on to the phase and

there is no overlap between the phases (Senarath, 2021). Therefore, waterfall

methodology provides a structured approach that ensures that all specifications are fully

documented and locked down early in order to minimize the changing risk during the

project lifecycle. If project has fixed project scope and non-negotiable requirements

such as data privacy laws, the waterfall methodology is a reliable choice.

Table 2.1: Advantage and Disadvantage of Waterfall Methodology

Advantages Disadvantages

Simple and Structured: Waterfall is easy

to understand and implement as it is a

clear and step-by step process.Each phase

has clearly defined milestones which

makes it easier to monitor progress and

ensure the project is completed on time.

Inflexible to Changes: Difficult to make

changes once a phase is completed

Detailed documentation: Detailed

deliverables for each phase (e.g., SRS,

design documents) to ensure that the

stakeholders have a clear understanding

of the project scope, requirements and

objectives.

Late Testing: Bugs are often discovered

only after coding is complete.

Predictability: Helps maintain control of

monitoring projects when costs,

High Risk: Waterfall assumes all

requirements are understood from the

17

timelines, and resources are defined at

the beginning of the project.

start, which make it difficult to predict all

requirement in the early stage as the

requirement may change frequently.

Minimal customer involvement:

Stakeholders are involved only during

the requirements phases which can

simplify communication and avoid

overwhelming stakeholders.

Longer time to market: The linear nature

of Waterfall may slow down delivery

when a project needs to be delivered

more quickly.

Clear Milestones: Projects progress

through different phases (requirements,

design, coding, testing, deployment) that

provide clear checkpoints and approvals

can help teams focus on delivering one

phase before moving on to the next and

reducing the risk of scope creep.

Limited Flexibility: Difficult to adapt to

new requirements or changes.

2.3.3 Agile Development Methodology

In 2001, a lightweight and adaptive development methods were born and flourished

after gathering of 17 software engineering experts This meeting resulted in the Agile

Manifesto which outlines the core values and guides the principles that is used to

improve software agility and system development (Al-Saqqa, Sawalha & AbdelNabi,

2020). Fundamentally, Agile emphasizes individual and interactions over processes and

tools as it recognizes that successful collaboration and communication are more

important to success than rigid workflows. It emphasizes working software over

comprehensive documentation that highlights the prioritization of functional software

over extensive paperwork (Apke, 2016). Agile methodology also promotes

collaboration with customers rather than contract negotiation which encourages

customers to provide ongoing feedback to ensure the product meets the changing needs.

Lastly, it promotes reacting to change rather than following a fixed plan which allow

the developers to adjust according to shifting project needs. These values are realized

through various Agile frameworks such as Scrum, Kanban and Extreme Programming

18

(XP) and each of them may provide tools and practices to help developer teams

implement Agile values on real projects effectively.

 Scrum is the most widely used Agile framework that divides the development

into iterative cycles called sprints which usually last 2-4 weeks. The process will start

with the project vision which sets the overall goal. Next, the sprint backlog is created

to prioritize a list of all required features and fixes in the form of user stories. For

example, “As a user, I want to scan QR codes to book equipment, so that I can reserve

it quickly without manual check-in”. Therefore, the sprint backlog outlines the tasks

selected for the sprint and lists out all the requirements that the developer will

concentrate on during the development cycle (Srivastava, Bhardwaj & Saraswat, 2017).

 Before start of each sprint, the developers will conduct sprint planning

meetings to decide what backlog items will be completed during that sprint. Each sprint

day starts with daily standup meetings where the team members should answer

questions: What work can be accomplished in this sprint and how will the selected work

be accomplished? Daily standup meetings offer a chance to share important information

which may facilitate continuous improvement. Through meetings, teams can enhanced

communication as everyone knows what everyone else is working on, which avoids

duplication and misunderstandings.

 During sprint execution, the developers design, code, and test selected features.

At the end of the sprint, they hold a sprint review to show the working product to

stakeholders and get feedback. After that, they conduct a sprint retrospective to reflect

on what went well and what could be improved in the next sprint. This methodology

repeats in cycles which allow the developers to constantly adapt and improve the

product based on feedback and changing needs.

 Agile methodology also involves several key roles to ensure the process runs

smoothly. The product owner represents the stakeholder and is responsible for

managing and prioritising the product backlog which ensure that the developers remain

focused on delivering the product with the most valuable features. The Scrum Master

is responsible for driving the Agile process which enabled the developers follow the

Scrum practices and removing any barriers that may be blocking progress.

Development teams are also one of the key roles which are cross-functional and that

consisting of developers, testers, and designers who collaborate to build and deliver

working increments of the product.

19

 In conclusion, Agile methodology is best suited for projects where

requirements are unclear or may change over time. For examples, school staff

requesting new features when developing a sports centre dashboard. It is also well

suited to complex projects that require frequent feedback and fast-paced environments

that require rapid incremental delivery of functional software. Below is the advantages

and disadvantages of Agile methodology.

Table 2.2: Advantage and Disadvantage of Agile Methodology

Advantages Disadvantages

Flexibility: Agile accommodates

changing requirements even late in the

project.

High Customer Involvement Required:

Frequent interactions can be time-

consuming and demanding for users.

Faster Value Delivery: Working software

is delivered in short, regular intervals.

Unpredictable Timelines: Evolving

scope can cause delays or shifting

deadlines.

Early and Continuous Testing: Bugs are

identified and fixed early through regular

testing.

Less Emphasis on Documentation: May

lead to confusion if team members

change or details are unclear.

High Stakeholder Involvement: Regular

feedback ensures the product aligns with

user needs.

Scope Creep Risk: Without strong

control, frequent changes can lead to

uncontrolled growth of features.

Increased Transparency and Visibility:

Progress is tracked through sprints and

reviews.

Not Ideal for Fixed-Requirement

Projects: May not be suitable where full

specifications must be defined upfront.

2.3.4 Prototyping Development Methodology

Prototyping is a development methodology that involves building a simplified working

model of a system or specific feature in order to better understand and improve the final

product. Prototyping is really useful for the project with unclear or changing

requirements as it is very helpful to clarify expectations early in the process.

Prototyping also allows developers and stakeholders to test usability, explore design

concept and gather valuable feedback before moving to full development. The process

can also expose potential defects or usability issues that may not be obvious from

20

documentation itself. For example, the prototype can use clickable mock-up interface

that allows user can interact with it to test its usability and provide suggestions before

the actual system is built. As Camburn et al. (2017) mentioned that prototyping plays

an important role in validating requirements, revealing critical design issues and

identifying design changes that enhance performance.

 The prototyping process is a structured approach for building and refining

early models of a system to clarify requirements and improve the final product.

According to Camburn et al. (2017), prototyping helps to clarify ambiguous or

changing requirement through iterative feedback between users and developers. The

prototype methodology starts with requirements gathering phase. In this phase the

developers and designers will collaborate with stakeholders to determine the core

requirements of the system even the requirements are not yet complete or still changing.

After that, the developers build a simplified version of the system which include low-

fidelity prototypes like paper sketches or wireframes that focus on layout and

navigation flow, or high fidelity interactive digital models that more accurately

represent user experience and visual design.

 In the third phase, prototype evaluation will take place which involves testing

the prototype with real users to observe how the users interact with the prototype and

identify usability problems. The fourth phase is refinement phase. In this stage, the

developers will modify the prototype based on user feedback. This may involve moving

unclear sections, improving the design or adding useful functionality. If the significant

issues remain, a new prototype iteration is made for more testing in the fifth phase

which called iterate or continue. The process will move to full development when the

stakeholders are satisfied. This iterative process helps to ensure that the final product is

both functional and user-friendly.

 Prototyping is more useful in the projects where the requirements are unclear

and changing. This is due to the stakeholders are difficult to accurately express their

needs for the system. It is also suitable for the system that involve complex user

interactions such as the equipment check-out or facility booking flows in a sports centre

dashboard. Early testing of these process helps the developers able to ensure a smooth

and intuitive user experience. Prototyping is very beneficial in high-risk projects where

the errors could be expensive during complete development. This is because it allows

developers to identify and resolve potential issues early. In addition, prototyping

21

supports the creation of user-centered systems by involving actual users in the design

process and ensuring that the product meets their expectations.

Table 2.3: Advantage and Disadvantage of Prototyping Methodology

Advantages Disadvantages

Early Feedback: Users can identify

usability or functionality issues before

development.

Scope Creep: Continuous user feedback

may lead to never-ending changes and

feature requests.

Reduced Risk – Helps catch potential

problems early, reducing the chance of

expensive fixes later.

Time or Cost Overhead: Creating and

refining multiple prototypes can slow the

development timeline.

Enhanced Stakeholder Understanding:

Prototypes help stakeholders visualize

the system, making it easier to

communicate ideas and confirm

requirements.

Misleading Expectations: Users might

assume the prototype represents the final,

complete system.

Requirements Validation: Help to clarify

ambiguous or misunderstood

requirements.

Technical Limitations: Prototypes might

not reflect real-world performance or

security concerns.

Improved Communication: Enhances

collaboration between users and

developers through tangible examples.

Limited Functionality: Some important

backend or integration elements might be

left out.

22

2.3.5 Comparison of the Evaluated Development Methodologies

Table 2.4: Comparisons Between Different Methodologies

 Waterfall

Methodology

Agile Methodology Prototyping

Methodology

Structure
Linear and

sequential.

Iterative and incremental. Iterate using early

simplified

models.

Flexibility Low – difficult

to change the

requirements

once

development

starts

High – allow to change

even late in the process.

Moderate –

changes can be

made after every

iteration.

Customer

Involvement

Minimal –

mainly during

requirements and

delivery phases

Continuous – regular

feedback through sprints

and reviews

High – users

interact with

prototypes to

provide early

feedback

Documentation Extensive –

detailed

documentation at

each phase

Minimal – focuses on

working software over

comprehensive

documentation

Varies –

documentation

may be limited,

focusing on the

prototype itself

Risk

Management

Identifies risks

early but

addresses them

late in the

process

Continuous evaluation

and adjustments of risks

throughout the project

Identify usability

and design issues

early through user

interaction with

prototypes

Best Suited For Projects with

well-defined

requirements and

scope

Projects with evolving

requirements and the

need for frequent

feedback

Projects with

unclear

requirements or

23

complex user

interactions

Delivery

Timeline

Long – delivers

at the end of the

project

Short – deliver functional

software periodically.

Varies – depends

on the number of

iterations and

refinements

Cost

Implications

High Low Variable

2.3.6 Conclusion of Methodology

The Prototyping Methodology is the most suitable for the developers who are working

alone on a sports equipment management system. Its iterative nature allows rapid

development and improves the system based on continuous feedback. Before the formal

development, the concepts can be tested, usability problems can be found, and

requirements can be clarified by creating early prototypes. It also can reduce the

possibility of expensive errors and ensure that the final product is aligned with the user

needs. Prototypes methodology also supports changes in requirements and priorities

which enable for flexibility and quickly modifications during development.

 The waterfall methodology is not suitable for this project is because it is a rigid

and linear approach that requires each phase to be fully completed before moving on to

the next phase. This makes it difficult to adjust once the development process is start.

The lack of flexibility in the waterfall methodology also causes usability issues or

mistakes in design cannot be solve in a right way as the feedback and changes can only

be made after the project is completed. Besides, all requirements must have a clearly

understanding when using waterfall methodology are not suitable for the projects that

require user feedback and always changing requirements.

 In addition, agile methodology is not suitable for this project as it requires

more resources and collaboration with others which may be challenge when the project

is lacks consistent stakeholder involvement or has limited resources. This is because

Agile methodology is relied on continuous communication, regular feedback, and

active collaboration between developers and users throughout the development process.

If developers work alone or have few opportunities for frequent reviews with

stakeholders, it may become difficult to implement agile practices such as sprint

24

reviews and backlog refinement. It may also be a challenge for independent developers

to work without a team and may cause scope creep, unclear deadlines, and inconsistent

progress when not managed well. This is because an individual developer is hard to

manage multiple iterations and respond to changing requirements.

2.4 Web Application Framework

2.4.1 React Native

React Native is a popular open-source framework developed by Meta (formerly

Facebook) that allows developers to build mobile applications using JavaScript and

React. Unlike traditional native development which requires separate code bases for

iOS and Android, React Native enables cross-platform development with a single code

base. React has evolved to support web development through tools like React Native

for Web which allows developers to use a unified code base across mobile and web

platforms. React Native is a powerful solution for creating high quality and responsive

mobile or web apps. This is because it can access to native APIs and many community-

supported libraries. The performance and user experience are very similar with the fully

native app as it uses native components rather than web views. Therefore, its

component-based architecture that fosters code reusability making it become an

effective choice for developers who want to build scalable, maintainable mobile or web

applications as it provides easy maintenance, consistent user interface, and faster

development speed.

 React Native has many advantages. One of its main advantages is code

reusability which allows developers to write single code base for both web and mobile

applications. React Native allows developers to reuse up to 90% of the code between

iOS and Android platforms (Leed Software Development, 2024). This result in the

decreases in the development time and effort. It also provides a smoother user

experience by using native components to deliver near-native performance. Besides,

React Native has a rich ecosystem and strong community support that provides a variety

of libraries, plugins and tools to accelerate development and simplify tasks such as

navigation and API integration. It also supports hot reloading which can increases the

productivity by enabling developers to observe the changes without the need to rebuild

the entire program (Leed Software Development, 2024).

25

 Even though React Native has many advantages, it also has some

disadvantages. One of that main limitation is its performance limitations for complex

applications that require intensive calculations or complex animations. The

responsiveness of the application may be affected by latency as the framework relies

on JavaScript bridge to communicate with native modules (Singh, 2023). Furthermore,

React Native rely on third-party libraries which can lead to compatibility issues and

security vulnerabilities if these libraries are not maintain regularly. The framework also

does not have full access to native API’s (Leed Software Development, 2024). This

result in the custom native modules need to be developed in order to implement some

specific features but these may increase the complexity to the development process.

Due to the interaction between JavaScript and native code, it causes debugging React

Native become more challenges than fully native apps as developers must expertise in

both areas.

Table 2.5: Advantage and Disadvantage of React Native

Advantages Disadvantages

Code can be reused across web and

mobile apps.

Not so effective for apps that require

heavy processing or complex animations.

Saves time by sharing up to 90% of code

between platforms.

Latency may occur due to

communication through a JavaScript

bridge.

Provides near-native performance using

native components.

Relies on third-party libraries, which may

cause security or compatibility issues.

Has many libraries, tools, and a strong

developer community.

Some native features require custom

modules, which adds complexity.

Hot reloading speeds up development by

showing changes instantly.

Debugging is more difficult and requires

knowledge of both JavaScript and native

code.

2.4.2 Vue.js

Vue.js is an incremental JavaScript framework that is used to create user interface. Due

to its incremental nature, developers can gradually integrate it into projects. Vue.js is

focuses on view layer which make it easy to integrate with other libraries or existing

26

projects. Its core library is lightweight and provides responsive data binding and

component-based architecture which similar to frameworks like React and Angular.

 Vue.js has many advantages. One of the main advantages is its beginner-

friendly and has a mild learning curve for those who are familiar with HTML, CSS, and

JavaScript (Johnson, 2023). It is because it provides a declarative and component-based

component that extends the use of standard HTML, CSS, and JavaScript (Vue.js, no

date). Its two-way data binding makes it easy to synchronize between models and views.

Vue.js also provides documentation that makes the developers to easily get started and

solve problems quickly. The component-based architecture improves code reusability,

ensure faster load times and better performance. Its flexibility also makes it suitable for

any size of the project from small to large (Epifany Bojanowska, 2018).

 Besides, Vue.js has some disadvantages. One of the main disadvantages is it has smaller

community and ecosystem than React or Angular. Therefore, it has less third-party tools,

libraries, and job opportunities.Vue.js is difficult to extend as it may become more

complex for larger projects that do not have strong architectural guidance. Additionally,

plugins or support for enterprise-level features can be inconsistent if Vue.js is under

development. Lastly, the over-flexibility can lead to differences in coding styles within

a team if the strict standards are not followed (Johnson, 2023).

Table 2.6: Advantage and Disadvantage of Vue.js

Advantages Disadvantages

Beginner-friendly with a gentle learning

curve.

Smaller community compared to React

and Angular.

Uses standard HTML, CSS, and

JavaScript with a declarative approach.

Fewer third-party tools and libraries

available.

Two-way data binding simplifies model-

view synchronization.

Difficult to scale for large projects with

poor structure.

Detailed documentation helps

developers get started quickly.

Can be complex to maintain in large

applications.

Flexible and suitable for both small and

large projects.

27

2.4.3 Laravel

Laravel is a popular open-source PHP web application framework known for its elegant

syntax, powerful features and developer-friendly tools. It follows the Model-View-

Controller (MVC) architectural pattern and is designed to improve routine operations

such as routing, authentication, sessions, and caching (Neelam Menariya, 2022). As

Laaziri et al. (2019) mentioned that Laravel can avoid the common mistake of

“spaghetti code” by developing the PHP code in neatly and easy way. Laravel also

comes with built-in support for Blade templates, the Eloquent ORM for database

administration, and the powerful Artisan CLI for the automation of the repetitive tasks

which is suitable for building scalable and maintainable web applications.

 Laravel has many advantages. It provides clean and readable code that make

it easier to maintain and expand applications. The MVC architecture promote code

organization and separation of concerns. Laravel also has built-in security tools such as

protection against SQL injection, cross-site scripting (XSS), and cross-site request

forgery (CSRF). Besides, Laravel has a large community and accurate documentation

(Laaziri et al. ,2019). This allows Laravel can provide a variety of packages and

learning resources. Laravel Mix also makes it easy to compile assets and integrate with

front-end tools.

 However, Laravel also has some disadvantages. One of the main

disadvantages is the learning curve can be high for beginners who are not familiar with

object-oriented programming or MVC architecture. Laravel applications can be heavy

and need to be optimized for high performance needs. If the features or packages are

not structured properly, it may lead to messy code even though Laravel provides a lot

of flexibility. Lastly, Laravel hosting requirement may limit its deployment on older

server as it too relies on modern PHP features (Neelam Menariya, 2022). Additionally,

it also has slow performance compared to other frameworks such as Node.js or

ASP.NET. Therefore, this result in Laravel is not suitable for applications that require

high performance or real-time features.

28

Table 2.7: Advantage and Disadvantage of Laravel

Advantages Disadvantages

Clean and readable code, easier to

maintain and expand.

Steep learning curve for beginners

unfamiliar with OOP or MVC.

MVC architecture promotes code

organization and separation of concerns.

Laravel applications may require

optimization for high performance.

Built-in security tools: protection against

SQL injection, XSS, and CSRF.

Misstructured features or packages can

lead to messy code.

Large community and detailed

documentation for support and resources.

Hosting requirements may limit

deployment on older servers.

Laravel Mix simplifies asset compilation

and front-end integration.

Slower performance compared to

frameworks like Node.js or ASP.NET,

not suitable for real-time applications.

2.4.4 Express.js

Express.js is a fast, open, and minimalist Node.js web framework. It provides a range

of powerful features for web and mobile applications that simplify the process of

building web servers and APIs. Express.js is widely used to build backend services. It

is also well known for its ease of use, flexibility, and performance. It uses the non-

blocking, event-driven features of Node.js to handle multiple requests which makes it

become a popular choice for creating scalable and high-performance web applications.

 One of the main advantages of Express.js is its simplicity and minimalism

which allows developers to build web applications and APIs in a faster way and without

unnecessary overhead. Its modular structure gives the developers freedom to create

custom frameworks and add middleware to meet developer’s requirements. Express.js

also provide many plug-ins and frameworks that make it easier to expand its

functionality. It also provides powerful routing capabilities that allow developers to

easily define and manage routes. It is also a developer-friendly framework due to it

large community support and documentation

 Express.js has some disadvantages. One of the main disadvantages is minimal

functionality which means that the developers need to write more boilerplate code for

features that are pre-built in other frameworks. It also does not have built-in solutions

such as authentication or data validation. Therefore, the developers need to integrate

29

third-party tools or libraries. Besides, Express.js also inherits some of the Node.js

limitations such as inability to handle CPU-intensive operations which can affect some

of the use case performance.

Table 2.8: Advantage and Disadvantage of Express.js

Advantages Disadvantages

Simple, minimalist, and fast web

application/API development.

Limited functionality, requires more

boilerplate code.

Modular structure, supports custom

frameworks and middleware.

Lacks built-in features like

authentication and data validation.

Provides numerous plugins and

frameworks for extended functionality.

Requires third-party tools/libraries to

implement more features.

Powerful routing function, easy to

manage routing.

Inherits Node.js limitations and struggles

with CPU-intensive tasks.

Large community and comprehensive

documentation

2.4.5 Conclusion of Web Application Framework

For the frontend, React Native is the most suitable for this project as it can build

reusable components that make it easy to manage complex user interface. It also

suitable for interactive dashboards and real-time data changes such as booking status or

equipment availability. React’s virtual DOM also can improves the performance and

provide smooth delivery and responsive user experience. Furthermore, React has large

ecosystem that contains useful libraries for routing and state management. React's

component-based architecture makes it simple to divide the user interface into

manageable, reusable parts and speeding up development and maintenance.

 For the backend, Laravel is most suitable for this project as it provides a clear

and structured foundation for creating scalable web applications because it is a PHP

framework with an MVC design. Laravel’s built-in tools like Eloquent ORM simplify

database management, while its Blade templating engine ensures clear separation of

frontend and backend logic. The framework also provides strong security features,

protecting against SQL injection, cross-site scripting (XSS), and cross-site request

30

forgery (CSRF). Laravel’s large community and detailed documentation make it easier

for developers to troubleshoot and extend the application’s functionality which can

provide a smooth development process for the sports equipment management system.

2.5 Existing Similar Application

2.5.1 Odoo

The Odoo Inventory Management System is a comprehensive open-source solution

designed to simplify and automate inventory operations for businesses of all sizes. The

system integrates with other Odoo applications such as sales, manufacturing, and

accounting which will provide a single method to manage the entire supply chain. The

system also provides real-time visibility of inventory levels that enable business to

make decisions and reduce stockouts.

Figure 2.3: Login Page

31

Figure 2.4: Sign Up Page

Figure 2.5: Instant Access Page

The figure show login and sign-up page which allows users to fill in their details. The

sign-up page includes email field, name field and password field while the login only

required user to fill in their email and password. It also includes the instant Access Page

which is a quick access to demo inventory management system. After signing up, user

can access to the inventory management system such as menus, fields, navbar buttons,

chatter, report actions, and multi-action views.

Figure 2.6: Main Page

32

Figure 2.7: Dashboards Page

Figure 2.7 shows the dashboards pages which shows the KPIs (Key Performance

Indicators) such as inventory levels, sales orders and financial metrics. Users can the

charts, graphs, and lists based on their roles.

Figure 2.8: Inventory Page

The figure shows the Inventory Page. It allows users to select, create, delete and update

the inventory based on user roles. It contains location tracking so that users can know

where the item is stored. It also allows user to set minimum and maximum quantity

levels for items. The real-time inventory tracking allows users to get the immediate

results into the stock levels across multiple warehouses to ensure the information is up-

to-date and accurate.

33

Figure 2.9: Barcode Page.

Figure 2.10: Barcode Scanner Page

Figure 2.9 shows the Barcode Page which allow user to scan the barcode, and it also

allows user to see the operation such as receipt or delivery option or allows user to

check the amount of inventory by clicking the inventory count button. Figure 2.10

shows the Barcode Scanner Page which allows user to scan the barcode.

34

Figure 2.11: Product Page

Figure 2.12: Add new product Page

35

Figure 2.13: Add new product Page- quantity

Figure 2.12 and Figure 2.12 shows the product page and add new product page. In add

new product page, it allows user to select the product type and track inventory, quantity

on hand, sales price, cost, category, reference, barcode, add images, and internal note.

It also allows user to choose the inventory and fill in the logistics and description for

receipt section. In logistic section, user can fill in the weight, volume and customer lead

time. After creating a new product, it will display in the product page and it can be

editing the product information by clicking the frame as shown in Figure 2.11.

Table 2.9: Advantage and Disadvantage of Odoo

Advantages

Odoo provides real-time visibility into inventory levels, movements, and locations,

enabling businesses to make informed decisions and reduce out-of-stocks.

When inventory levels is low, the system automatically generates a purchase order

to ensure timely replacement and preventing inventory overstocking.

Integration with barcode and RFID technology improves the accuracy and efficiency

of inventory handling, reduces manual errors and speeds up the process.

36

Odoo provides advanced reporting tools that provide insights into inventory

performance that can help businesses identify trends and make data-driven decisions.

Disadvantages

The initial configuration of Odoo's inventory module can be complex and time-

consuming which requiring technical expertise or external assistance.

User interface complexity.

Limited Support for Non-Standardized Processes

Limited availability of features in some regions

2.5.2 Dashcode

Dashcode is a front-end development tool that designed to create interactive and

visually appealing dashboards easily. It offers a user-friendly drag-and-drop interface

that allows developers to quickly design and prototype custom dashboards without

extensive coding knowledge. It also provides a variety of customizable widgets, such

as charts, tables, and graphs that make it easier for displaying real-time data and key

metrics. It allows faster development of small projects and prototypes but it requires

additional tool or system for more complex features such as back-end integration or

real-time updates.

Figure 2.14: Log in Page

37

Figure 2.15: Sign up Page

Above figure shows the sign up and login page. The sign up page required users to fill

in their name, email and password while the login page required users to fill in their

name and password.in the sign up page, users must make sure they tick the terms and

conditions before they enter the create an account button.

Figure 2.16: Analytics Dashboard Page

38

Figure 2.17: Analytics Dashboard Page-2

Figure 2.16 and Figure 2.17 shows the analytics dashboard Page. It allows users to

interact with data easily. At the left side, it contains sidebar which allow users to easily

navigate between different sections or pages within dashboards. At the tops it contains

a search bar to allow users to filter and search the data based on specific criteria.

Figure 2.18: Calendar Page

Figure 2.18 shows the calendar page. It allows users to schedule the event by clicking

on the specific date and the events can be added directly. Calendar Page also allows

users to navigate between months, weeks, and days to view or add scheduled events.

Besides, clicking on a specific day or event within the calendar can reveal more details

about that event and the events on the calendar can be color-coded or labelled to indicate

their type. Dashcode also allow users to set up recurring events in the calendar.

39

Figure 2.19: Invoice Page

Figure 2.20: Add Invoice Page

Figure 2.19 is an invoice page. It is designed to help manage and generate invoice for

different transactions such as purchases, sales, or rentals. It displays a list of all past

invoices with details such as invoice number, date, customer name, total amount, and

status. It also has an add record button that enables users to generate a new invoice.

After clicking the button, it navigates to add invoice page as shown in Figure 2.20.it

has a form where users can input all details of invoices such as customer information,

invoice items, date and payment term. Besides, it displays the status of the invoice, such

as "Pending," "Paid," "Overdue," or "Cancelled.

40

Table 2.10: Advantage and Disadvantage of Dashboard

Advantages

Easy to navigate and use.

Customizable dashboard

Provides detailed insights.

Reduces manual work and errors.

Provides detailed insights.

Works well with various business tools.

Disadvantages

Need third-party integrations.

Requires stable connectivity.

Can be overwhelming for small businesses.

May not scale well for large businesses.

Slow response times during peak hours.

May not integrate with niche platforms easily.

2.5.3 ECOUNT (Inventory / Barcode Software)

Figure 2.21: Barcode Inventory Management

ECOUNT is a cloud‑based ERP system that includes inventory, barcode, warehouse

management system (WMS), sales, purchasing, accounting and other modules. It is

designed to help businesses manage stock levels, simplify warehouse operations and

improve the accuracy of inventory tracking by using barcode scanning. The system

41

allows users to generate and print barcodes, scan the barcodes using mobile devices or

external barcode scanners and manage inventory across multiple outlets in real-time.

Therefore, ECOUNT can handles the inventory control and reporting efficiently.

Figure 2.22: Connect Barcode Scanner using OTG Cable

Figure 2.23: Scan Barcode using Mobile Application

42

The figure 2.22 and 2.23 shows that the ECOUNT allows users to scan the barcodes

using either mobile application or external devices that connect by using USB or OTG.

After scanning, the system updates stock-in or stock-out records automatically to

reduce the manual input and errors.

Figure 2.24: 7 types of Barcodes

Figure 2.24 shows that ECOUNT allows user to generate custom barcodes for products

that lack of manufacturer codes. Users can create their own barcode format by using

the combination of items codes, name or batch numbers. It also supports label printing

that including key details such as price, SKU and company logo.

Table 2.11: Advantage and Disadvantage of React Native

Advantages

Real-time inventory tracking

Supports barcode scanning with mobile or external devices

Multi-warehouse and location management

Barcode generation and label printing

Integrated with other ERP modules like sales, purchasing, and accounting

Cloud-based access from any device

Supports serial/lot tracking and safety stock alerts

Disadvantages

43

2.5.4 Comparison of Existing Similar Application

Table 2.12: Comparison of Existing Similar Application

Feature Odoo Inventory Dashcode ECOUNT

Purpose

Full-fledged ERP

with inventory

management

capabilities

Front-end

development tool

for creating

dashboards

Cloud-based ERP

with strong inventory

and barcode

management features

 Ease of Use

User-friendly with

a variety of

modules, but may

require setup

Easy to use for

creating simple UI-

based dashboards

Easy to use for basic

inventory and barcode

features.

Customization

Highly

customizable with

powerful tools for

inventory tracking

Limited to front-

end UI design,

requires external

systems for

backend

Moderate

customization

available; supports

custom barcodes,

forms, and reports

Inventory

Tracking

Advanced

tracking of stock

levels,

movements,

locations, and

reordering

Basic tracking via

custom-designed

widgets, requires

additional setup

Real-time tracking of

stock levels, serial/lot

numbers, and

warehouse transfers

Reporting and

Dashboards

Provides

automated and

dynamic

inventory reports,

Supports simple

dashboards but

lacks advanced

Built-in inventory

reports with export

features (Excel/PDF);

Requires stable internet connection

Initial setup can be time-consuming

Some advanced features only available in paid modules

Performance may vary depending on hardware and scanner compatibility

Limited custom workflows for niche industries

44

analytics, and

KPIs

reporting

capabilities

dashboard includes

alerts and summaries

Integration

Strong integration

with other Odoo

modules (e.g.,

sales, purchases)

and external

systems

Limited integration

capabilities,

especially for

backend or

complex systems

Integrates with other

ECOUNT modules

(sales, purchase,

accounting); API

available for third-

party systems

Multi-location

Support

Yes, tracks

multiple storage

locations and

warehouses

Needs custom

design for multi-

location

management

Yes, supports multi-

warehouse/location

tracking, transfers,

and inventory balance

per location

Stock

Movement

Automated and

real-time stock

movements (e.g.,

borrowed/returned

items)

Requires manual

setup to track stock

movements and

updates

Barcode-based

automated stock-

in/out, real-time

updates, and support

for multiple

movement types

Barcode

Scanning

Full barcode

support for quick

stock

management and

tracking

Can be

implemented with

additional tools, but

not built-in

Built-in barcode

scanning via mobile

camera or external

scanners; supports

label generation and

printing

User Roles &

Access Control

Granular user role

management for

access control and

permissions

Limited user access

control, focused

more on visual

elements

Role-based access for

modules, menus, and

operations; user

permissions are

customizable

Scalability
Scalable for small

to enterprise-level

Primarily suited for

small to medium

Scales for SMEs with

multi-location

support; may need

45

needs with

complex features

projects, may not

scale easily

enhancements for

enterprise-grade

operations

Speed of

Development

Faster for

implementing out-

of-the-box

inventory

solutions

Rapid prototyping

of simple inventory

dashboards, but

more manual effort

for complex

systems

Fast setup for core

inventory/barcode

features; full ERP

setup may take longer

Support &

Documentation

Extensive

documentation

and a large

community,

official support

available

Limited

documentation,

community support

mainly for UI

development

Good official

documentation; email

and phone support;

resources targeted

toward SME users

Advanced

Features

Automated

restocking, alerts,

supplier

management,

maintenance

tracking

Limited to basic

features like

displaying stock

data and creating

visual reports

Includes barcode

generation, inventory

alerts, invoice

integration, basic

WMS; some features

limited in free version

2.5.5 Conclusion of existing similar applications

Through the analysis of the existing applications such as Dashcode, Odoo and

ECOUNT, it shows that they provide a strong inventory control and asset management

solutions. Dashcode may perform well with features such as barcode scanning, real-

time updates, and maintenance scheduling that make it suitable for industries that need

to track and manage assets in real time, but it may lack some of the advanced

customization.

Odoo provides a full set of integrated modules that make it become a

multifunctional solution for organizations to manage all aspects of their business such

as inventory, sales and purchasing. Odoo also provides a powerful automation and

46

reporting tools that can help to provide the insightful analytics on equipment usage,

stock levels, and maintenance activities.

ECOUNT also provides a cloud-based ERP solution with strong support for

barcode scanning, multi-location inventory tracking and automated stock movements.

Its user-friendly interface, built-in barcode label generation, and integration with

modules like purchasing and sales make it effective for small to medium enterprises

(SMEs) looking for a cost-effective and functional inventory system.

In conclusion, it is possible to build a tracking management system that allows

for real-time monitoring, easy management of equipment across locations, and efficient

maintenance scheduling through selecting and integrating these features from Dashcode

Odoo and ECOUNT Inventory. However, it may face a challenge such as complex user

interfaces and the need for further customization and these challenges can be solved by

using custom modifications to meet the needs of the project.

47

CHAPTER 3

METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter describes the methodology and work plan for developing an inventory

management dashboard for tracking sport equipment and facilities at a secondary

school sport centre. The prototyping methodology was selected due to its early creation

of functional system models which allows continuous user feedback and iterative

refinement. The flexibility of prototyping methodology also ensures that the

stakeholder’s requirements are clearly understand and meets their needs. Besides, a

detailed Work Breakdown Structure (WBS) will be created to divide the project into

smaller tasks in various phases such as initiation, design, prototyping, testing,

deployment, and closure. The combination of prototyping methodologies and

structured planning promotes well-organized progress, effective use of resources, and

the capacity to adapt to changes.

3.2 Prototyping Methodology

This project will use Prototyping Methodology which is an iterative approach and user

will involve in this project to gradually refine the system requirement and functionality.

Prototyping methodology will be chosen as it is suitable for the projects where the

requirements are unclear or always changing. It also focuses on the early user

interaction to build a usable and effective system. Besides, the project is divided into

multiple prototype iterations, and each prototype iteration will include planning,

building, user testing, and improvement activities that allow the system to evolve based

on real user feedback.

48

Figure 3.1: End-to-End Methodology Flow

3.2.1 Requirements Planning

Prototyping Methodology is a flexible and iterative development that can adapted to

changes in requirements throughout the project life cycle. It needs to collaborate with

the stakeholders such as the teachers, students and sport centre administrators to gather

information about Tracking Sports Equipment and Facilities Inventory Management

System. Its gathers the requirements through conducting interviews and questionnaire

to identify which features is required to implement in the system such as equipment

tracking and booking system. In addition, literature review will be carried out to explore

existing systems and identify best practices in inventory management. The results will

be recorded as initial user requirement which will influence early prototypes and guide

continuous improvements based on stakeholder feedback. Therefore, the prototyping

49

methodology can ensure that the system remains aligned with user requirements

throughout the development process.

3.2.1.1 Quantitative Methodology

Quantitative methodology was used to better understand the needs and the challenges

related to Tracking Sports Equipment and Facilities Inventory Management System. A

questionnaire will distribute to collect information from relevant stakeholders. The

purpose of the questionnaire was to gather information from questions that related to

equipment availability, maintenance tracking, and overall inefficiencies in the manual

process. There are 8 respondents provided valuable feedback that allow developer to

identify the essential features and functionality required to implement for the new

system. These insights provided the basis for developing the functional and non-

functional requirements of the system.

3.2.1.2 Literature Review and Existing Systems Analysis

A literature review was conducted to explore similar inventory management systems in

sports sectors. The review included comparing the advantages and disadvantages of

various system such as ease of use, equipment tracking capabilities and integration with

other systems. The review also identified industry best practices that could be

implemented in tracking sports equipment and facility inventory management systems.

Lessons learned from the systems can help to improve system requirements and

structure for more efficient and user-friendly solutions.

3.2.1.3 Requirement Specification

The requirements for a sports equipment and facility inventory management system can

be identified after collecting data and reviewing the literature. The system will include

some features such as equipment tracking, maintenance scheduling, equipment booking,

and a user-friendly interface for users. The requirements were categorized into

functional and non-functional requirements. The use case diagrams were created to

visualize the system interactions and workflows to provide a clear understanding of

system functionality.

50

3.2.2 Design Process Using Prototyping Methodology

The inventory management system designed using a prototyping approach was well

suited for this project. This is because usability is important the user requirements may

change over time. This methodology allows users to be included in early development

and collects feedback on iterative design models. Each improved prototype version

shows the user feedback has been considered to ensure that the final system is fully

functional, user-friendly and meets the requirements of the secondary school’s sport

centres. The development process consisted of 3 major prototyping iterations.

Figure 3.2: End-to-End Prototyping and Testing Flowchart

3.2.2.1 Iteration 1: Low-Fidelity Prototype and Basic Interaction Flow

3.2.2.1.1 Prototyping

In the first iteration, a low-fidelity prototype was developed to demonstrate the main

features of the system such as equipment tracking, inventory management, login

process and user roles. Axure RP will be used to create interactive wireframes that

representing the main navigation flows. This early model emphasized basic navigation

flow without full visual design details in order to quickly produce a working structure

that could be evaluated by users. At this stage does not include any backend logic.

51

3.2.2.1.2 User Testing

The first iteration of the prototype was tested by a small group of stakeholders, such as

quarter master and administrators. They will explore the wireframes and mocking up

tasks such as viewing equipment and logging in. Feedback was collected based on

system usability, functionality, and clarity. The common feedback included the need

for a clearer visualisation of ‘available’ and ‘rented’ equipment. Unit tests were

conducted on specific features to ensure that basic functionality worked as expected.

3.2.2.1.3 Refinement

The first prototype was refined based on user feedback and it will solve the user

interface’s problems and new functionalities are planned to be added in future iterations.

For example, add status badges for equipment and simple instructions for check in or

check out equipment.

3.2.2.2 Iteration 2: High-Fidelity Prototype with Key Features

3.2.2.2.1 Prototyping

In second iteration, a high-fidelity prototype was created with expanded features and a

more realistic interface. It was expanded the system by adding new features such as

real-time equipment availability interface, equipment reservation with time slot

selection, and booking history tracking to help users monitor past and upcoming

reservations. A mobile version of the system was also developed to ensure that users

can access to the platform by using their smartphones. The QR code functionality will

include two key components which are QR code generation and QR code scanning.

Administrators will be able to generate unique QR codes for each item during the

inventory entry process. These QR codes will be printed and attached to the specific

items. For users, they will be able to scan these QR codes by using their mobile phones

to book the equipment. Administrator and quarter master are also can access to QR code

scanning. In addition, role-based access will be introduced to differentiate user

permissions based on their roles.

52

3.2.2.2.2 User Testing

This version of the system was tested by both sports centre staff and end users. The

testing will focus on the new features introduced in this iteration such as the mobile

responsiveness, QR code scanning efficiency and overall system performance.

Administrators will test the QR code generation feature to ensure that QR code can be

create, print, and assign to equipment correctly. They also tested others function such

as equipment status updates, condition editing, and QR code generation. Feedback also

will be collected to evaluate how users and administrators interact with the QR code

system.

3.2.2.2.3 Refinement

The mobile interface will be improved based on the feedback from end users for better

accessibility and ease of use. The QR code scanning process was simplified to ensure

quick access to booking function. On the administrative side, the QR code generation

will be improved to makes it easy to distribute and print. Dashboard and reporting will

also be improved to provide summary of equipment usage. The user interface was also

restructured to make it more intuitive and user-friendly, especially for first-time users.

3.2.2.3 Iteration 3: Backend Integration and Final Functional Testing

3.2.2.3.1 Prototyping

In the third iteration, the front-end system was integrated with the back-end database to

ensure that the data can retrieved through backend. The system was designed to provide

real-time data updates on equipment availability such as QR-based check-in and check-

out operations that can directly updated equipment status in the database. Dashboard

will also be introduced to provide analytics on equipment usage trends that allows

administrator to make a true decision making and only administrators can view

analytics data. This prototype also included full user role functionality.

3.2.2.3.2 User Testing

Integration testing was conducted to ensure that the data flow between the front-end

and back-end systems were accurately. Feedback was also collected from

administrators and end user to ensure that the system met their requirements and

expectations. Users tested full workflows, such as logging in, scanning equipment QR

53

codes, booking facilities, and checking equipment status. Performance under

concurrent user loads was also tested. In addition, final usability testing was conducted

to validate the complete system functionality.

3.2.2.3.3 Refinement

Final improvements were made to optimize system performance, resolve integration

issues, and ensure that the system was prepared for deployment. After final feedback

was collected through User Acceptance Testing (UAT), the final version of the system

was ready for deployment.

3.3 Final Implementation Phase

After the third iteration, the project will proceed to the final implementation phase. At

this phase, a high-fidelity and user approved prototype will be converted into fully

functional web and mobile application. All frontend components developed using

React.js and it will link to the MySQL database backend. This project will only test in

localhost. Therefore, a localhost server is used to deploy and test the entire system on a

localhost environment.

3.4 System Testing

A structured testing strategy is implemented to ensure that the reliability, usability, and

correctness of the inventory management dashboard for tracking of sports equipment

and facilities system. The testing process involves multiple phases and each of them

focuses on different aspects of system functionality.

3.4.1 Unit Testing

Unit testing is an important aspect of software development as it allows for early defect

detection and improve code quality by using automated frameworks (Daka and Fraser,

2014). Unit testing was carried out before and after development iteration to validate

system components to ensure that each function worked as expected. This isolation

testing approach helped to detect and resolve logic-related errors early in the

development process to ensure that it will function properly for later integration.

54

3.4.2 Integration Testing

Integration testing is important in object-oriented systems where the method executions

are connected by messages across multiple components and errors only occur when

units are composed together (Jorgensen and Erickson, 1994). Therefore, integration

testing was focused on verified the communication between frontend and backend. At

this phase, developers will test the functionality and also focused on the navigation

between data and system modules to ensure that all components were worked as a

cohesive unit.

3.4.3 User Acceptance Testing (UAT)

The system will release to users for user acceptance testing (UAT) Once integration

testing was complete. These users were asked to perform user acceptance testing to

evaluate usability and functionality. As Davis and Venkatesh (2004) mentioned that

hand on usability testing of new system is usually conducted near the end of a system

development project when the system development process is nearing its final operation

state. At this phase, developers will ensure that the system was user-friendly and aligned

with the user requirements and expectations that had been identified during the planning

stage.

3.4.4 Bug Fixing and Final Refinements

Developers will record any bugs that had been found during all testing phases and

categorized them according to severity in order to maintain system stability. In the final

phase, developers made improvements to enhance the consistency of user interface,

resolve remaining logic issues and optimize backend queries for better performance.

The system will finalize and ready for deployment after all bugs were solve.

3.5 Project Plan

3.5.1 Work Breakdown Structure (WBS)

The project tasks are broken down into phases and subtasks for the Inventory

Management Dashboard for Tracking Sports Equipment and Facilities:

Tracking Sports Equipment and Facilities Inventory Management System

55

1. Project Preparatory

1.1. Conduct research on sports equipment tracking and facility management

systems

1.2. Discuss proposal ideas and refine scope with supervisor

1.3. Confirm final FYP title with supervisor

2. Requirements Planning

2.1. Project Initiation

 2.1.1. Define project background and motivation

 2.1.2. Identify key problems (overbooking, missing equipment)

 2.1.3. Define specific project objectives

 2.1.4. Define project scope and limitations

 2.1.5. Propose system solution (Dashboard-based tracking and

booking system)

 2.1.6. Define project approach (Prototyping methodology)

 2.1.7. Create Work Breakdown Structure (WBS)

 2.1.8. Develop Gantt chart for project scheduling

2.2. Requirements Gathering

2.2.1. Develop questionnaire

2.2.1.1. Design close-ended and open-ended questions

2.2.1.2. Identify target respondents (teachers, students,

sport centre staff)

2.2.1.3. Validate questionnaire through supervisor

2.2.2 Submit ethical clearance

2.2.3 Distribute questionnaire and collect responses

2.2.3.1 Analyse questionnaire results to identify user needs

2.2.4. Literature Review

2.2.4.1. Study software development methodologies

(Waterfall, Agile, Prototyping)

2.2.4.2. Conclude relevant approaches and technologies

2.2.4.3. Research web frameworks (React, Laravel,

MySQL)

2.2.4.4. Review existing inventory and booking

applications (e.g., Odoo, Dashcode)

2.3. Define Requirements

56

2.3.1. Develop functional requirements (e.g., booking, reporting,

CRUD operations)

2.3.2. Define non-functional requirements (e.g., accessibility,

performance)

2.3.3. Create use case diagram and descriptions

2.4. Develop Low-Fidelity Prototype

2.4.1. Design User Management Page

2.4.2. Design Equipment Management Page

2.4.3. Design Reservation Management Page

2.4.4. Design Booking Management Page

2.4.5. Design Track Equipment Page

2.4.6. Design Dashboard Page

2.4.7. Design Stock Check Page

2.4.8. Design Booking Page

2.4.9. Design View History Page

2.4.10. Design Member Page

2.4.11 Design Login Page

2.4.12. Design QR Code Generation and Scanning Interface

3. User Design and Iteration

3.1. First Iteration

3.1.1. Prototyping Phase 1

3.1.1.1. Implement homepage with login functionality

3.1.1.2. Create basic booking module interface

3.1.1.3. Develop equipment listing and inventory views

3.1.1.4. Build reporting module structure (dashboard)

3.1.1.5. Prototype QR Code Generation UI for equipment

3.1.1.6 Create ERD diagram

3.1.2. Conduct User Testing and Evaluation 1

3.1.3. Refine Prototype 1 based on feedback

3.2. Second Iteration

3.2.1. Prototyping Phase 2

3.2.1.1. Improve inventory management with edit/delete

features

57

3.2.1.2. Improve booking management and tracking

features

3.2.1.3. Add QR code scanning functionality for equipment

check-in/out

3.2.2. Conduct User Testing and Evaluation 2

3.2.3. Refine Prototype 2

3.3. Third Iteration

3.3.1. Prototyping Phase 3

3.3.1.1. Finalize UI/UX enhancements

3.3.1.2. Test full QR code functionality

3.3.2. Link frontend and backend components

3.3.3. Conduct User Testing and Evaluation 3

3.3.4. Final refinement of prototype Construction

4.1. Coding implementation of all modules Authentication, Booking,

Inventory, Reporting, Maintenance, Dashboard

4.2. Conduct system walkthrough and informal user evaluation

5. Deployment

5.1. System Testing

5.1.1. Unit testing of individual functions (e.g., CRUD, login)

5.1.2. Integration testing (database ↔ backend ↔ frontend)

5.1.3. User Acceptance Testing (UAT) with target users

5.2 Deployment

 5.3 Write report

5.4 Presentation and Demonstration

3.5.2 Work Plan

3.5.2.1 FYP 1 Gantt Chart

The FYP1 Ghantt Chart is attached in the Appendix B for reference.

3.5.2.2 FYP 2 Gantt Chart

The Fyp2 Ghantt Chart is attached in the Appendix B for reference.

58

3.6 Development Tools

This project utilized a combination of design, development and database tools to ensure

an efficient and well-structured development process. The selected tools supported

front-end and back-end development, interface prototyping and system modelling.

These tools were important to the successful implementation of an inventory

management dashboard for tracking sports equipment and facilities.

Figure 3.3: Development Tools

3.6.1 Visual Studio Code

Visual Studio Code (VS Code) is the main source code editor will be used during the

development of this project. This is because it supports different types of programming

languages and technologies such as HTML, CSS, JavaScript, PHP and MySQL

integration. It also provides built-in Git support, intelligent code completion, debugging

tools and an extensive marketplace for extensions which allowed developers to

customize the development environments to improve efficiency. It is also suitable for

novice and experienced developers due to its user-friendly interface and cross-platform

availability.

3.6.2 Axure RP

Axure RP is used to create interactive wireframes and prototypes of the system during

the design and planning phase. It helps to visualize the layout and functionality of user

interfaces before the development starts. Axure RP allows the developers and

stakeholders to interact with mock versions of system components. This tool is

59

important in a prototyping methodology as it allows early feedback from user and helps

to develop the interface design and improve user experience.

3.6.3 React

React is used to create the frontend of the application. React is a JavaScript library that

used to create user interface and provides responsive, dynamic UI, reusable components,

and effective DOM rendering. React’s component-based architecture makes it easier to

manage the complexity of user interaction workflows and ensures modularity and

maintainability in code.

3.6.4 Laravel

Laravel is the backend framework that used to handling server-side logic, user

authentication, and API development. The Model-View-Controller (MVC) architecture

of Laravel can help to organize the application structure and separate appearance from

logic. Laravel is suitable for creating scalable and safe backend due to its built-in

security features, middleware, and route management. Laravel’s Artisan CLI also

makes repetitive tasks become easier such as database migrations and controller

generation.

3.6.5 MySQL

MySQL is a relational database management system which will store and retrieve all

persistent data in the system. MySQL is used in this project due to its reliability, ease

of use, and compatibility with Laravel. Through Laravel’s Eloquent ORM, MySQL

tables can be queried and updated using expressive, readable PHP code which makes

data handling become easier and safety.

3.6.6 Enterprise Architect

Enterprise Architect is used for advanced UML modelling and system architecture

documentation. It supports the development of comprehensive system design models

such as use case diagrams, class diagrams, sequence diagrams, and component

diagrams. It is a useful for formal software engineering documentation as it can

supports traceability from requirements to implementation and shows the complex

system behaviour, workflows, and interaction logic between modules.

60

3.6.7 WampServer

WampServer is used as a local web server environment to host and run the Laravel

backend during development and testing. It provides an integrated stack of Apache,

MySQL, and PHP that allows applications to run on the local machine without the need

for an external server. WampServer is important for the projects that need to run on

localhost.

3.6.8 phpMyAdmin

phpMyAdmin is a web-based interface that used to manage the MySQL database. It

comes together with WampServer to carry out database operations such as creating

tables, performing queries, editing records, and exporting data. It is useful for users who

need to inspect or maintain their database without writing SQL commands.

61

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

This chapter shows the requirements specification of the proposed Inventory

Management Dashboard for the school sports centre. It provides a detailed overview of

the functional and non-functional requirements. This chapter also provides a use case

diagram that highlights the roles and activities of the main stakeholders such as teachers,

students, quarter master and administrators. This chapter also provides screenshots of

early prototypes to present the user interface and fact findings.

4.2 Fact Findings

To better understand the existing challenges and needs of the school’s sports equipment

and facilities management, the school staff has provided some evidence and

information that shows their current workflow. The equipment inventory count process

is manual which they use handwritten form to track their equipment. The bookings for

sport equipment and facilities are also recorded manually in a book by staff which may

cause a lot of human error, mistakes and inconsistency.

For inventory records, the school uses a basic Microsoft Excel spreadsheet

with only 3 columns which is equipment name, instock and damage. The inventory

quantities are updated manually by staff. They also mentioned that all inventory records,

booking requests and tracking processes are maintained in hard copy which relying on

handwritten logs and physical documentation. These limitations mention the needs for

a centralized and digital system that can improve overall process in order to increase its

efficiency, transparency in sport equipment management system. An image illustrating

the current manual stock check and booking method used by the school is attached in

Appendix A for reference.

62

4.2.1 Analysis

Section A: School Profile

Figure 4.1: Current Method of Tracking Sports Equipment

Based on the above pie chart, the respondents are all from the same school.

Figure 4.2: School of Respondents

Figure 4.1 shows that 100% of the respondents come from the secondary school.

63

Figure 4.3: School Location of Respondents

It was found that the school was located in Petaling Jaya even the respondents entered

different location.

Figure 4.4: School Size of Respondents

There are 8 respondents answer about the school size where 25% of respondents answer

4000 which is the highest, 12.5% of respondents answer 2000+,12.5% of respondents

answer 2500-3000, 12.5% of respondents answer 3000 students with around 100

teachers, 12.5% of respondents choose very big I think and 12.5% of respondents

answer probably 1k.

64

Figure 4.5: Availability of a Sports Centre

There are 100% of respondents choose yes which shows that all respondents school

have sports centre. This finding supports the relevance and importance of improving

sports facility and equipment management systems.

Figure 4.6: Current Method of Managing Sports Equipment

Many respondents (87.5%) manage sports equipment manually and only 12.5% use

spreadsheets. This shows that most of the school rely on traditional paper-based

methods.

65

Figure 4.7: Involvement of Teachers or Student Clubs in Equipment Management

Most respondents (87.5%) indicated that teachers and student clubs are involved in

managing and tracking sports equipment and only 12.5% shows that there are no

teacher and/or student involves in equipment management. This shows that the school

encourage a collaborative environment where both students and staff contribute to

resource management.

Figure 4.8: Frequency of Inventory Checking

Daily inventory checking is conducted by 87.5% of respondents, while the remaining

12.5% check weekly. This high frequency of checking implies a strong effort to

maintain accurate inventory even though the manually process still lead to

inefficiencies.

66

Figure 4.9: Methods Used for Inventory Auditing

Half of the respondents (50%) stated they perform inventory audits manually, while

37.5% rely on audits by student clubs, and 12.5% conduct regular checks based on

equipment usage frequency. This shows a lack of formal auditing tools and an over-

reliance on labour-intensive methods.

Figure 4.10: Common Challenges in Equipment Management

The most commonly challenges faced were equipment damage or loss which contains

75% of respondents choose this challenges, inconsistent or inaccurate inventory records

have also 75% of respondents choose, and difficulty in keeping track of equipment

usage only have 25%. These findings suggest critical gaps in the current tracking

system that contribute to inefficiency and potential loss of resources.

67

Figure 4.11: Current Method of Tracking Sports Equipment

All respondents (100%) stated that tracking is done manually by using paper-based

methods. This stronger mention that the need for a digital solution to improve accuracy,

efficiency, and traceability.

Figure 4.12: Frequency of Misplaced or Lost Equipment

There are 75% of respondents reported that encounter issues with misplaced or lost

equipment on a monthly basis, while 25% face this issue weekly. This high frequency

mentions the effect of relying on manual systems.

68

Figure 4.13: Importance of Real-Time Equipment Tracking

There are 87.5% of respondents believe that real-time tracking is very important, with

the remaining 12.5% rating it as important. This shows the high demand and need for

an updated system that allows the real time tracking of equipment.

Figure 4.14: Frequency of Equipment Shortages

There are 62.5% of respondents said they rarely experience shortages, while 12.5% said

they very often experience shortages. It also has 12.5% of respondents said they are

never and often experience shortages.

69

Figure 4.15: Most Common Issue with Sports Equipment

There are 87.5% of respondents reported that they faced misplaced or lost equipment

and 12.5% of respondents reported that they faced insufficient quantity for demand.

Figure 4.16: Current Method of Booking Sports Facilities

All respondents (100%) reported that sports facilities are booked manually by using

paper-based methods. This indicates that there is no digital system in use, and an

inventory management system can be implemented to improve efficiency.

70

Figure 4.17: Frequency of Booking Conflicts or Underutilization

Half of the respondents (50%) stated they rarely face issues with overbooking or

underutilized, 25% of respondents stated they encounter them monthly, 12.5% of

respondents experience them monthly and 12.5% of respondents experience them

weekly.

Figure 4.18: Benefits of a Real-Time Booking System

There are 50% of respondents stated that the real-time booking system can improve

experience significantly and 37.5% saying somewhat. Only 12.5% of respondents

stated that it would not make a difference.

71

Figure 4.19: Frequency of Scheduling Conflicts

There are 50% of respondents facing scheduling conflicts monthly and 50% of

respondents rarely. This shows that booking conflicts occur frequently and there is a

need to implement a better system.

Figure 4.20: Most Common Facility-Related Issues

Overbooking and poor maintenance were each reported by 37.5% of respondents as the

most common issues face with sport facilities. 12.5% of respondents shows that the

facilities are underutilization and 12.5% of respondents shows that the facilities are too

small for the student population.

72

Figure 4.21: Interest in an Online Facility Booking System

All respondents expressed interest in an online booking system, with 62.5% stating it

would be very helpful and 37.5% preferring it only if it is easy to use. This suggests

that user-friendliness will be key to successful adoption.

Figure 4.22: Current Method for Managing Maintenance Schedules

Half of the respondents (50%) use manual reminders like notes or emails, 37.5% have

no formal system, and only 12.5% use spreadsheets. These results show that

maintenance planning is unstructured and need to improve.

73

Figure 4.23: Frequency of Delayed Maintenance or Unsafe Equipment

75% of respondents stated that delayed maintenance or unsafe equipment issues are

rarely encountered. Each of 12.5% of respondents stated that delayed maintenance or

unsafe equipment issues are often and very often encountered.

Figure 4.24: Frequency of Equipment Maintenance Inspections

There are 62.5% of respondents stated that regular sport equipment inspected are

conducted. 25% of respondents stated that equipment maintenance inspections are only

conducted when the problem is reported. 12.5% of respondents stated that equipment

maintenance inspections performed regularly.

74

Figure 4.25: Satisfaction Level with the Current Maintenance Process

There are 75% of respondents rated their satisfaction level as 4 out of 5 which shows

that they are sarisfied with the current maintenance process for sport equipment and

facilities. Only 1 respondent gives lower score of 3 and 1 respondent gives 5.

Figure 4.26: Current Method of Report Generation

There are 75% of respondents stated that reports are created manually, while 25%

reported having no formal reporting system. This shows that current reporting methods

are not standardized and efficient.

75

Figure 4.27: Usefulness of a Dashboard

All respondents agreed on dashboard usefulness, with 62.5% rating it as "very useful"

and 37.5% as "somewhat useful." This shows a strong interest in using a centralized

reporting and decision-making tool.

Figure 4.28: Easy Access to Sports Equipment and Facility Information

There are 37.5% of respondents agree that it is easy to access to sports equipment and

facilities information with each of them rating it 4 and 5. 25% of respondents choose 3

out of 5 which shows it is normal for them. This shows that the access is good.

76

Figure 4.29: Desired Additional Features in a Management Dashboard

Figure 4.29 shows that 62.5% of the respondents desired to see the real time availability

of equipment and facility features in an inventory management dashboard. There are

also have 62.5% of respondents desired to see the notifications for maintenance or

repairs in the inventory management dashboard system. Reporting and analytics feature

has 37.5% of respondents desired to implement in the inventory management dashboard

system.

4.3 Requirements Specification

4.3.1 Functional Requirements

The functional requirements describe the specific operations the system must perform

to fulfill its intended use. These are organized by user roles to clarify the access rights

and responsibilities of each type of user: teachers/students, administrators, and quarter

masters.

Users (Teacher and Student):

1. Users shall be able to log in using credentials (e.g. username and

password) created by the Administrator.

2. Users shall be able to view available equipment.

3. Users shall be able to book equipment

4. Users shall be able to make equipment reservations through the

system.

5. Users shall be able to view the status of their own reservations.

77

6. Users shall be able to view their booking history.

7. Users shall be able to scan a QR codes to access equipment

information.

8. Users shall be able to scan a QR code by using mobile device to

check equipment in or out directly through the system.

9. Users shall be able to receive notifications about reservation

approvals, rejections, booking status and other relevant updates.

10. Users shall be able to log out of the system at any time.

Administrators

1. The Administrator shall be able to log in independently without a

created account

2. Administrators shall be able to create, update, edit, and delete user

accounts and assign roles (e.g., teacher, student, quarter master)

3. Administrators shall be able to add, edit, update, and delete

equipment data with detailed information such as name, type,

quantity and location.

4. The Administrator shall be able to scan QR codes to access

equipment details or validate check-ins/check-outs.

5. The Administrator shall be able to generate a QR code after creating

equipment.

6. The Administrator shall be able to print the generated QR code for

existing equipment.

7. The Administrator shall be able to view all reservation and booking

requests submitted by users.

8. The Administrator shall be able to approve, reject, or cancel any

reservation.

9. The Administrator shall be able to approve, reject, or cancel any

booking.

10. The Administrator shall be able to track equipment status, including

check-in/check-out history.

11. Administrators shall be able to manually update equipment status to

reflect “available,” “rented,” or “under maintenance” or “out of

stock”.

78

12. The Administrator shall be able to perform stock checks to verify and

update the current availability and condition of all equipment.

13. The Administrator shall be able to access to dashboard.

14. The Administrator shall be able to log out of the system securely at

any time.

Quarter Masters

1. The Quartermaster shall be able to log in using their assigned

credentials.

2. The Quartermaster shall be able to view equipment information and

status.

3. The Quartermaster shall be able to update the status of equipment.

4. The Quartermaster shall be able to scan QR codes to access

equipment records or validate check-ins/check-outs.

5. The Quartermaster shall be able to print QR codes for equipment.

6. The Quartermaster shall not be able to create or delete equipment

records.

7. The Quartermaster shall be able to approve, reject, or cancel any

booking.

8. The Quartermaster shall be able to approve, reject, or cancel any

reservation.

9. The Quartermaster shall be able to track equipment status, including

check-in/check-out history

10. The Quartermaster shall be able to perform stock checks to inspect,

verify, and update the availability and physical condition of

equipment.

11. The Quartermaster shall be able to log out of the system securely at

any time.

79

4.3.2 Non-Functional Requirements

Usability:

1. The system shall provide a user-friendly interface that is easy to

navigate for all user roles.

2. The system shall provide clear and descriptive error messages to help

users correct input mistakes.

3. The system shall support responsive design for usability on website

and mobile devices.

Performance Requirements

1. The system shall respond to user actions within 2 seconds for 95% of

interactions.

2. The system shall generate QR codes within 3 second of request.

3. The system shall load equipment inventory and booking data

efficiently even if the data set is large.

Security Requirements

1. The system shall require all users to authenticate with a valid

username and password before accessing the system.

80

4.4 Use Case Modelling

4.4.1 Use Case Diagram

Figure 4.30: Use Case Diagram

81

4.4.2 Use Case Description

4.4.2.1 Login

Use Case Name: Login

ID: UC001 Importance Level: High

Primary Actor: Administrator, Quarter

master, Users (Teachers & Students)

Use Case Type: Detailed, Essential

Stakeholders and Interests:

Administrator, Quarter master, Users (Teachers & Students) – Login to access the

system

Brief Description: This use case describes the process of login by the administrator,

quarter master and users (teacher and student).

Trigger: Administrator, Quarter master or Users who want to login and after scanning

QR code.

Relationships:

Association : Administrator, Quarter master, Users (teachers and students)

Include : Create User

Extend : -

Generalization : -

Normal Flow of Events:

1. The user scans the QR code.

2. The user navigates to system login page.

3. The system prompts the customer to enter personal information which

includes username and password.

4. The user confirms his/her personal information before submitting. Perform 4.1

and 4.2

82

5. The user login successfully and the system redirects users to booking page,

equipment management page or admin dashboard page based on the user’s

role. Perform 5.1,5.2 and 5.3

Sub-flows:

4.1 If user entered wrong personal information, the system displays a notification

to user indicating that personal information incorrectly. Back to flow no.3.

4.2 If user entered personal information correctly. Flow no.5 continues.

5.1 If user role is administrator, it will redirect to admin dashboard page.

5.2 If user role is quarter master, it will redirect to equipment management page.

5.3 If user role is members, it will redirect to admin dashboard page.

Alternate/Exceptional Flows:

A. The user must have a valid login to the system.

B. The quarter master and members (teacher and student) only can login after the

administrator creates an account for them.

C. If account does exist or is inactive, please contact administrator.

4.4.2.2 Create User

Use Case Name: Create User

ID: UC002 Importance Level: High

Primary Actor: Administrator

Use Case Type: Detailed, Essential

Stakeholders and Interests:

Administrator - Create user account for teacher, student or quarter master so that they

can access to system.

Brief Description: This use case describes the process of creating a user by the

administrator.

Trigger: An administrator who wants to create users.

Relationships:

83

Association : Administrator

Include : -

Extend : -

Generalization : -

Normal Flow of Events:

1. The administrator logs into the system.

2. The administrator chooses “create user” button.

3. The system displays a form to enter user details such as username, password

and role.

4. The administrator fills in the required information.

5. The system validates the input data. Perform 5.1,5.2 and 5.3

6. The system creates the new user account and stores it in the database.

7. The new user account creates successfully.

Sub-flows:

5.1 If administrator fill in the required information correctly and match with the

validation. Flow no.6 continues.

5.2 If administrator fill in the required information in a wrong way such as

weak password and empty required field. Back to flow no.3.

5.3 If administrator entered the username has already existed, the system will

notify the administrator. Back to flow no.3.

Alternate/Exceptional Flows:

A. The administrator must have a valid login to the system.

B. The username cannot be repeated.

4.4.2.3 View Dashboard

Use Case Name: View Dashboard

ID: UC003 Importance Level: High

Primary Actor: Administrator

Use Case Type: Detailed, Essential

84

Stakeholders and Interests:

 Administrator – view visual representation of data in dashboard

Brief Description: This use case describes the process of viewing dashboard by the

administrator.

Trigger: An administrator who wants to view dashboard.

Relationships:

Association : Administrator

Include : -

Extend : -

Generalization : -

Normal Flow of Events:

1. The administrator logs into the system.

2. The administrator selects “Dashboard” from the navigation bar.

3. The system retrieves summary data and displays the data visually in charts,

table or count.

4. The administrator view dashboard. Perform 4.1.

Sub-flows:

4.1 If there are no usage records, the dashboard will display no data available.

Alternate/Exceptional Flows:

A. The administrator must have a valid login to the system.

4.4.2.4 Create Equipment

Use Case Name: Create Equipment

ID: UC004 Importance Level: High

Primary Actor: Administrator

Use Case Type: Detailed, Essential

Stakeholders and Interests:

 Administrator – wants to create equipment.

Brief Description: This use case describes the process of creating equipment by the

administrator.

85

Trigger: An administrator who wants to create equipment.

Relationships:

Association : Administrator

Include : -

Extend : -

Generalization : -

Normal Flow of Events:

1. The administrator logs into the system and navigates to Equipment

Management.

2. The administrator selects “Create Equipment.”.

3. The system displays a form to enter equipment details such as equipment

name, type, quantity, location.

4. The administrator fills in the required information.

5. The system validates the input. Perform 5.1 and 5.2

6. The system saves the new equipment record into the database.

7. The equipment creates successfully.

Sub-flows:

5.1 If any required fields are left empty or contain invalid input, the system

prompts the administrator an error messages until it fills in correctly. Back to

flow no.3.

5.2 If the required fields are validated, flow no.6 continues.

Alternate/Exceptional Flows:

A. The administrator must have a valid login to the system.

4.4.2.5 Delete Equipment

Use Case Name: Delete Equipment

ID: UC005 Importance Level: High

Primary Actor: Administrator

Use Case Type: Detailed, Essential

86

Stakeholders and Interests:

Administrator – have ability to delete equipment to keep inventory accurate.

Brief Description: This use case describes the process of deleting equipment by the

administrator.

Trigger: An administrator who wants to delete equipment.

Relationships:

Association : Administrator

Include : N/A

Extend : N/A

Generalization: N/A

Normal Flow of Events:

1. The administrator login to the system. Perform 1.1 and 1.2

2. The administrator navigates to equipment page.

3. The system displays a list of equipment details

4. The administrator selects the equipment item to be deleted.

5. The system prompts the confirmation messages for administrator to delete

the equipment.

6. The administrator confirms the deletion.

7. The system shows a confirmation message that the equipment has been

successfully deleted.

Sub-flows:

 1.1 If the login is valid, the flow no.2 continues.

 1.2 If the login is invalid, the system informs the user is not login and prompts

them to login again. Then repeat flow no.1.

Alternate/Exceptional Flows:

A. The administrator must have a valid login to the system.

B. If the equipment is currently reserved or checked out, the system prevents

deletion.

87

4.4.2.6 Generate QR code

Use Case Name: Generate QR code ID: UC006 Importance Level: High

Primary Actor: Administrator

Use Case Type: Detailed, Essential

Stakeholders and Interests:

Administrator – QR code is generated to simplify tracking and identification.

Brief Description: This use case describes the process of generating QR code by the

administrator.

Trigger: An administrator who wants to generate QR code.

Relationships:

Association : Administrator

Include : N/A

Extend : N/A

Generalization: N/A

Normal Flow of Events:

1. The administrator logs in to the system.

2. The administrator navigates to “product” section. Perform 2.1

3. The administrator clicks “generate QR code” button.

4. The system generates unique QR code based on different equipment.

Sub-flows:

 2.1 If the QR code is missing or damaged, the administrator can re-generate a

new one without altering the equipment record.

Alternate/Exceptional Flows:

A. The administrator must have a valid login to the system.

88

4.4.2.7 Scan QR code

Use Case Name: Scan QR code

ID: UC007 Importance Level: High

Primary Actor: Users (Teachers and

Students), Quarter master, Administrator

Use Case Type: Detailed, Essential

Stakeholders and Interests:

Users (Teachers and Students) – can book the equipment by scanning a QR code.

Brief Description: This use case describes the process of scanning QR code by the

Users (Teachers and Students), Quarter master and Administrator.

Trigger: A user who wants to scan QR code.

Relationships:

Association : Users (Teachers and Students), Quarter master, Administrator

Include : –

Extend : –

Generalization: –

Normal Flow of Events:

1. The user open QR code scanning features in mobile.

2. The user scans the QR code attached to the equipment.

3. The system reads the QR code.

4. The user navigates to login page and ask user to login.

5. The user can access to booking page.

Sub-flows:

Alternate/Exceptional Flows:

A. The user must have a valid login to the system.

B. The user must access to the camera.

89

C. If the QR code is unreadable or not linked to any equipment, the system

displays an error message.

4.4.2.8 Stock Check

Use Case Name: Stock Check

ID: UC008 Importance Level: High

Primary Actor: Administrator, Quarter

master

Use Case Type: Detailed, Essential

Stakeholders and Interests:

Quarter master – need to do stock checking for the equipment.

Administrator – need to do stock checking for the equipment.

Brief Description: This use case describes the process of stock checking by the

administrator and quarter master.

Trigger: An administrator and quarter master who wants to do stock checking.

Relationships:

Association : Administrator, Quarter master

Include : –

Extend : –

Generalization: –

Normal Flow of Events:

1. The quarter master or administrator logs into the system

2. The quarter master or administrator navigates to the “Stock Check” section.

3. The system will display a list of all equipment.

4. The quarter master or administrator needs to calculate the amount of

equipment such as how many instock, damage and record it into the system.

Perform 4.1

5. A stock check result is generated and saved.

Sub-flows:

90

 4.1 If the stock check amount is not same with the actual amount, it will prompt

error message for administrator.

Alternate/Exceptional Flows:

A. The administrator and quarter master must have a valid login to the system.

4.4.2.9 Manage Booking

Use Case Name: Manage Booking

ID: UC009 Importance Level: High

Primary Actor: Administrator, Quarter

master

Use Case Type: Detailed, Essential

Stakeholders and Interests:

Administrator and Quarter master – allows to view, approve, reject, or cancel

equipment bookings to control equipment usage and resolve scheduling conflicts.

Brief Description: This use case describes the process of managing booking by the

administrator and quarter master.

Trigger: An administrator and quarter master who wants to manage booking.

Relationships:

Association : Administrator, Quarter master

Include : –

Extend : –

Generalization: –

Normal Flow of Events:

1. The user login the system. Perform 1.1 and 1.2

2. The user navigates to “manage booking” section.

3. The system displays a list of all booking records with statuses, id, name of

equipment, check in and check out dates. Perform 3.1

4. The user can create, edit, delete, and update booking.

5. The system updates the booking status.

91

Sub-flows:

1.1 If the login is valid, flow no.2 continues.

1.2 If the login is invalid, the system informs the user is not login and prompts

them to login again. Then repeat flow no.1.

3.1 The sdministrator can filter bookings by status, user, or date range to manage

efficiently.

Alternate/Exceptional Flows:

A. The user must have a valid login to the system.

4.4.2.10 Track Equipment

Use Case Name: Track Equipment

ID: UC010 Importance Level: High

Primary Actor: Administrator, Quarter

master

Use Case Type: Detailed, Essential

Stakeholders and Interests:

Quarter master and administrator – needs to know which items are currently checked

out, who owns them, and when they are returned.

Brief Description: This use case describes the process of tracking equipment by the

administrator and quarter master.

Trigger: An administrator and quarter master who wants to track the equipment.

Relationships:

Association : Administrator, Quarter Master

Include : –

Extend : –

Generalization: –

Normal Flow of Events:

1. The user logs into the system.

2. The user accesses the “Track Equipment” section.

92

3. The system displays a list of all equipment with status aavailable, check in,

reserve, checked out, under maintenance, missing or damaged. Perform 3.1

4. The user selects an item to view its tracking details.

Sub-flows:

3.1 If an item has no usage or tracking history, the system displays a message

indicating that no records are available.

Alternate/Exceptional Flows:

A. The administrator and quarter master must have a valid login to the system.

4.4.2.11 Print QR code

Use Case Name: Print QR code

ID: UC011 Importance Level: High

Primary Actor: Administrator

Use Case Type: Detailed, Essential

Stakeholders and Interests:

 Administrator – ability to print QR codes when equipment is first added or when a

QR is damaged or lost.

Brief Description: This use case describes the process of printing QR code by the

administrator.

Trigger: An administrator who wants to print the QR code.

Relationships:

Association : Administrator

Include : –

Extend : –

Generalization: –

Normal Flow of Events:

1. The administrator logs into the system.

2. The administrator navigates to the equipment page.

3. The administrator selects an equipment item.

93

4. The administrator clicks “Print QR code” button.

5. The QR code is displayed in a printable format.

6. The administrator prints the QR code.

Sub-flows:

Alternate/Exceptional Flows:

A. The administrator must have a valid login to the system.

B. If the QR code doesn’t exist, the system prompts the user to generate one

before printing.

4.4.2.12 Manage Reservation

Use Case Name: Manage Reservation

ID: UC012 Importance Level: High

Primary Actor: Administrator, Quarter

master

Use Case Type: Detailed, Essential

Stakeholders and Interests:

Administrator and quarter master – who allow to approve, reject, or modify

reservation requests.

Brief Description: This use case describes the process of managing reservations by

the administrator and quarter master.

Trigger: An administrator and quarter master who wants to manage a reservation.

Relationships:

Association : administrator, quarter master

Include : –

Extend : –

Generalization: –

Normal Flow of Events:

94

1. The administrator or quarter master can access the reservation of the system.

2. The system displays a list of recent reservations in the system, including

username, ID, status and details. Perform 2.1

3. The administrator or quarter master selects the order needs to manage.

4. The system displays the details of the selected order which includes

quantity.

5. The administrator or quarter master selects an equipment in the order to

manage its reservation status, including cancelled, approved, rejected and.

Perform 5.1

6. The administrator confirms the changes of an order.

7. The system updates the reservation in the database.

Sub-flows:

 2.1 The system only displays the list of orders for this month.

 5.1 If a customer requests to cancel the order, the administrator needs to cancel

the order and update the order status again.

Alternate/Exceptional Flows:

A. The administrator and quarter master must have a valid login to the system.

4.4.2.13 Update Equipment

Use Case Name: Update Equipment

ID: UC013 Importance Level: High

Primary Actor: Administrator, Quarter

master

Use Case Type: Detailed, Essential

Stakeholders and Interests: N/A

Brief Description: This use case describes the process of updating equipment by the

customer.

Trigger: An administrator and quarter master who wants to update the equipment.

95

Relationships:

Association : Administrator, Quarter master

Include : –

Extend : –

Generalization: –

Normal Flow of Events:

1. The user needs to login to the system.Perform 1.1 and 1.2

2. The user access to the “equipment section”.

3. The system displays a list of equipment data, including name, id quantity,

status and location.

4. The user chooses the equipment he/she wants to modify.

5. The user edits the information.

6. The user confirms the information update after the information is modified.

7. The system updates the equipment information in the database.

8. The system displays new equipment information in the system.

Sub-flows:

 1.1 If the login is valid, flow no.2 continues.

1.2 If the login is invalid, the system informs the user is not login and prompts

them to login again. Then repeat flow no.1.

Alternate/Exceptional Flows:

A. The administrator or quarter master must have a valid login to the system.

4.4.2.14 View History

Use Case Name: View History

ID: UC014 Importance Level: High

Primary Actor: Users (teacher and

student)

Use Case Type: Detailed, Essential

Stakeholders and Interests: N/A

Brief Description: This use case describes the process of viewing history by the

users.

96

Trigger: A user who wants to view History.

Relationships:

Association : Users

Include : –

Extend : –

Generalization: –

Normal Flow of Events:

1. The member chooses the view history option.

2. The system displays the booking history list.

Sub-flows:

Alternate/Exceptional Flows:

A. The users must have a valid login to the system.

4.4.2.15 Book Equipment

Use Case Name: Book Equipment

ID: UC015 Importance Level: High

Primary Actor: Users (teacher and

student)

Use Case Type: Detailed, Essential

Stakeholders and Interests: N/A

Brief Description: This use case describes the process of booking equipment by the

users.

Trigger: A user who wants to book equipment.

Relationships:

97

Association : Users

Include : Notification

Extend :-

Generalization: -

Normal Flow of Events:

1. The user scans the QR code that attach on specific equipment.

2. The system asks user to login. Perform2.1 and2.2.

3. The system displays the equipment name and check in or check out button.

4. User needs to select the quantity of the equipment.

5. User clicks the check in /check out button.

Sub-flows:

 2.1 If the login is valid, flow no.3 continues.

 2.2 If the login is invalid, the system informs the user is not login and prompts

them to login again. Then repeat flow no.2.

Alternate/Exceptional Flows:

A. The user must have a valid login to the system.

4.4.2.16 Make Reservation

Use Case Name: Make Reservation

ID: UC016 Importance Level: High

Primary Actor: Users (teacher and

student)

Use Case Type: Detailed, Essential

Stakeholders and Interests: -

Brief Description: This use case describes the process of making reservations by the

users.

Trigger: A user who wants to make a reservation.

Relationships:

Association : Users (teacher and student)

98

Include : -

Extend : Notification

Generalization: -

Normal Flow of Events:

1. The user logs into the system and choose the “Reserve Equipment” button.

2.The system will display the equipment name, quantity, date and time and

reserve button.

3. The user selects the quantity of equipment need, date and time that he/she

prefers.

4. The user clicks the make reservation button.

5. The reservation request is submitted and display successful message and

display pending status in history page.

Sub-flows:

Alternate/Exceptional Flows:

A. The user must have a valid login to the system.

4.4.2.17 Notification

Use Case Name: Notification

ID: UC017 Importance Level: High

Primary Actor: Users (teacher and

student)

Use Case Type: Detailed, Essential

Stakeholders and Interests: N/A

Brief Description: This use case describes the process of sending notification to the

users.

Trigger: A system event occurs (e.g., reservation approved, reservation rejected).

Relationships:

Association : Users(teacher and student)

99

Include : –

Extend : –

Generalization: –

Normal Flow of Events:

1. The member can login to the system.

2. Once the member login, he/she will receive notification about his/her booking

or reservation status.

Sub-flows:

Alternate/Exceptional Flows:

A. The administrator must have a valid login to the system.

B. Notification will be trigger when user make booking and reservation.

4.4.2.18 View Reservation Status

Use Case Name: View Reservation Status

ID: UC018 Importance Level: High

Primary Actor: Users (Teacher and

Student)

Use Case Type: Detailed, Essential

Stakeholders and Interests:

Users – who want to view the reservation status.

Brief Description: This use case describes the process of view reservation status by

the user.

Trigger: A user who wants to view reservation status.

Relationships:

Association : Users (Teacher and Student)

Include : –

Extend : –

Generalization : –

100

Normal Flow of Events:

1. The user scan QR code.

2. The user login the system. Perform 2.1 and 2.2

3. The user chooses “my reservation”.

4. The user retrieves the user submitted reservations from database.

5. The user displays the reservation status such as approved or rejected.

6. The user views the reservation status in history.

Sub-flows:

2.1 If the login is valid, flow no.3 continues.

2.2 If the login is invalid, the system informs the user is not login and prompts

them to login again. Then repeat flow no.2.

Alternate/Exceptional Flows:

A. The user must have a valid login to the system.

B. The reservation record show in history.

4.5 Prototype Screenshot

Figure 4.31: Login Module

101

Figure 4.32: View History Module

Figure 4.33: Booking Module

102

Figure 4.34: Make Reservation Module

Figure 4.35: Home Page

103

Figure 4.36: Dashboard Module

Figure 4.37: Product Management Module

104

Figure 4.38: Inventory Management Module

Figure 4.39: Reservation Management Module

105

 Figure 4.40: Booking Management Module

Figure 4.41: User Management Module

106

Figure 4.42: Member Management Module

107

CHAPTER 5

5 SYSTEM DESIGN

5.1 Introduction

This chapter describes the system design for the Sports Centre Management System

that covers the application architecture, database design, data modelling (ERD), data

dictionary and data flow diagram (DFD). The design adopts 3-tier architecture to

manage users/members, products, bookings and so on, which defines the core entities

and relationships. This chapter will explain the system architecture, model the data

using an ERD and Data Dictionary derived from tables, and illustrate the system's

processes with a Data Flow Diagram (DFD). The design ensures the system meets its

goal of efficient tracking for sports equipment and facilities.

5.2 System Architecture Design

Figure 5.1: Overview of System Architecture Design

The system architecture implemented in this project follows a three-tier structure

consisting of the presentation layer, the application layer, and the data layer.

108

5.2.1 Presentation Layer

The presentation layer is developed using ReactJS, which is a JavaScript library creates

a dynamic and responsive user interfaces for both web and mobile devices. It builds as

a Single Page Application (SPA) that allows user seamless navigation and real-time

updates without full page reloads. The ReactJS frontend can communicate with the

Laravel backend to allow efficient data exchange through RESTful APIs using JSON.

React.js is a component-based architecture starts with the root component that renders

entire application and enhances maintainability and scalability through reusable UI

components such as user authentication, inventory management, reservations, and

booking.

JSX allows developers to write HTML-like syntax within JavaScript and

simplifies the components creation which is used to design user interfaces. The Virtual

DOM also optimizes rendering performance to ensure a responsive experience that

update in real time. UI library likes Ant Design or Material UI can act as third-party

libraries integrated into React.js components as it provides pre-built components for

polished UI. This ensures consistency and responsive across web and mobile access.

5.2.2 Application Layer

The application layer is developed using Laravel on WAMPServer. It processes

requests from the frontend, perform CRUD (create, read, update, delete) rules, validates

data, and interacts with the database. It is a Model-View-Controller (MVC) architecture

that handles server-side logic which separates into three different layers to ensure the

scalability and maintainability of system (GeeksforGeeks, 2023):

• Model: Manages the data in the MySQL database using Laravel’s

Eloquent ORM.

• View: Provides the response in JSON format that the frontend (ReactJS)

can interpret and render.

• Controller: Handles incoming requests, applies business rules,

validates data, and coordinates communication between the model and

the view.

Laravel also provides built-in features such as authentication, middleware, and

role-based access control. Role-based access control is used to differentiate permission

between users and members to ensure secure and each type of user and member has

109

corrected permissions access to system functionalities. For example, administrators can

manage the entire system, but the quarter master can only manage several functions of

the system.

The Laravel backend interacts with a MySQL database hosted on WAMPServer.

Eloquent ORM also simplifies database interactions with MySQL as it allows flexible

PHP code for querying and updating data. Laravel’s built-in security features also

protect against vulnerabilities like SQL injection, cross-site scripting (XSS), and cross-

site request forgery (CSRF) (Discipline Infotech, 2023). The backend also processes

frontend requests through RESTful APIs, such as retrieving device details, handling

bookings, or generating QR codes. Laravel's Artisan command-line tool automates

tasks like database migration and seeding which simplifies the development workflow.

5.2.3 Data Layer

The data layer is developed using MySQL, a reliable open-source relational database

management system, hosted on WampServer for local development and testing.

WampServer provides an integrated stack of Apache, MySQL, and PHP that allows

local testing without relying on external servers (Y, 2018). The phpMyAdmin included

with WampServer offers a web-based MySQL management interface, facilitating

operations such as table creation, data inspection, and query execution. Laravel's

Eloquent ORM also supports high-performance operations to ensure efficient

interaction with MySQL. The database is intended to manage massive datasets and

maintain responsiveness while achieving efficient operation through optimised queries.

110

5.3 Modelling Diagram

5.3.1 Entity Relationship Diagram (ERD)

Figure 5.2: Entity Relationship Diagram

111

5.3.2 Entity Relationship

The purpose of entity relationship is to provide a clear and comprehensive definitions

for each entity within the database. It facilitates an understanding of the function,

attributes, and entity relations to ensure a shared comprehension of the database's

structure.

Table 5.1: Entities Description Table

Entity Description

Users Stores all the user (administrator / quarter

master) details including login

credentials

Members Stores all the member (student / teacher)

details including login credentials

Products Stores all the products

Inventories Stores all the reservations made by

members for future pickup or usage.

StockChecks Stores all the periodic stock check

details.

Bookings Stores all the booking and accepted

reservation details

Reservation Stores all the reservation details

112

5.3.3 Data Dictionary

Data dictionary is a centralized repository that store detailed information about the data

used in a database system (Uhrowczik, 1973). It specifies and explains the structure,

format, and meaning of each data element, including tables, fields, data types,

relationships, and constraints. The data dictionary serves as a reference for developers,

database administrators, and users. It promotes consistency, accuracy, and a clear

understanding of how data is organized and managed within the system. It plays a

crucial role in database design, maintenance, and documentation.

Table 5.2: Data Dictionary for Product Table

Column Name Description Data Type Key Nullable

id Unique identifier for

product

Bigint (20) Primary No

product_id Product code varchar(10) Unique No

name Product name varchar (255)

- No

qrcode QR code data longtext - No

quantity Product quantity int (11)

- No

outlet Outlet name Varchar (255) - no

image Product image path Varchar (255) - no

Status Product status

(active, inactive)

enum - no

created_at Record creation

timestamp

timestamp - Yes

updated_at Record update

timestamp

timestamp - Yes

113

Table 5.3: Data Dictionary for Booking Table

Column Name Description Data Type PK/FK Nullable

id Unique identifier for

booking

Bigint (20) Primary No

product_id Product identifier varchar (255)

- No

product_name Name of the product

booked

varchar (255)

- No

reservation_id References a related

reservation

Bigint (20) Foreign

(reservations)

Yes

member_id References the

member making the

booking.

Bigint (20) Foreign

(members)

No

username

Username of member varchar (255)

- No

quantity Quantity booked int (11)

- No

checkin_at Date & time of

check-in

timestamp - Yes

checkout_at Date & time of

check-out

timestamp

- Yes

status Booking status

(accepted, checkin,

checkout, closed)

Enum

('accepted',

'checkin',

'checkout',

'closed')

- No

created_at Record creation

timestamp

timestamp - Yes

updated_at Record update

timestamp

timestamp - Yes

114

Table 5.4: Data Dictionary for Inventories Table

Column Name Description Data Type PK/FK Nullable

id Unique identifier for

each inventory

record

Bigint (20) Primary No

product_id Product identifier varchar (255)

- No

instock

Number of items

available

int (11)

- No

damage Number of damaged

items

int (11)

- No

missing

Number of missing

items

int (11)

- No

reserved Number of reserved

items

int (11)

- No

rented Number of rented

items

Int (11) - No

status

Inventory status

(active, inactive)

Enum

('active',

'inactive'

- No

created_at Record creation

timestamp

timestamp - Yes

updated_at Record update

timestamp

timestamp - Yes

115

Table 5.5: Data Dictionary for Reservation Table

Column Name Description Data Type Key Nullable

Id Unique identifier for

reservation

Bigint (20) Primary No

Member_id Member making

reservation

Bigint (20) Foreign

(members)

No

Username Username of member Varchar (255) - No

Product_id Product identifier Bigint (20) - No

Product_name Product name Varchar (255) - No

Outlet Outlet name Varchar (255) - Yes

Quantity Quantity reserved Int (11) - No

Reserve_date Reservation date Date - No

Reserve_time Reservation time Time - No

status Reservation status

(pending, accepted,

rejected)

Enum

('pending',

'accepted',

'rejected')

- No

Created_at Record creation

timestamp

Timestamp - Yes

Updated_at Record update

timestamp

timestamp - Yes

116

Table 5.6: Data Dictionary for Stockcheck Table

Column Name Description Data Type Key Nullable

Id Unique identifier for

stock check

Bigint (20) Primary No

Date Date of stock check date - No

Outlet Outlet name Varchar (255) - No

items List of items

checked (JSON

format)

Json - No

Created_at Record creation

timestamp

Timestamp - Yes

Updated_at Record update

timestamp

Timestamp - Yes

Table 5.7: Data Dictionary for Users Table

Column Name Description Data Type Key Nullable

Id Unique identifier for

user

Bigint (20) Primary No

Username Login username Varchar (191) - No

Password Encrypted password Varchar (191) - No

Role Role of user

(administrator,

quarter master)

Varchar (191) - No

status account status

(Active, Inactive)

Varchar (191) - No

Created_at Record creation

timestamp

Timestamp - Yes

Updated_at Record update

timestamp

Timestamp - Yes

117

Table 5.8: Data Dictionary for Members Table

Column Name Description Data Type Key Nullable

Id Unique identifier for

member

Bigint (20) Primary No

Username Login username Varchar (255) - No

Password Encrypted password Varchar (255) - No

Role Role of member

(student, teacher)

ENUM('stude

nt', 'teacher')

- No

status account status

(Active, Inactive)

ENUM

('active',

'inactive')

- No

Created_at Record creation

timestamp

Timestamp - Yes

Updated_at Record update

timestamp

Timestamp - Yes

5.4 User Interface Design

5.4.1 Login Module

Figure 5.3: Login page

118

5.4.2 Dashboard Module

Figure 5.4: Dashboard page – Part 1

Figure 5.5: Dashboard page – Part 2

Figure 5.6: Dashboard page – Part 3

119

5.4.3 Product Management Module

Figure 5.7: Product List Page

Figure 5.8: Product Page - Print Icon

Figure 5.9: Product Page - Print Quantity Input Field

120

Figure 5.10: Product Page - Printing Page

Figure 5.11: Product Add Page

121

Figure 5.12: Product Page Filter Function

Figure 5.13: Product Page - QR Code Pop Up Modal

Figure 5.14: Product Page – Edit Icon Button

122

Figure 5.15: Product Edit Page

Figure 5.16: Product Page- Delete Icon

Figure 5.17: Product Page-Delete Confirmation Prompts

123

5.4.4 Inventory Management Module

Figure 5.18: Inventory List page

5.4.5 Stock Check Module

Figure 5.19: Stock Check List

124

Figure 5.20: Stock Check List - Display Data Based on Date and Outlet.

Figure 5.21: Add Stock Check

125

Figure 5.22: Add Stock Check - List

5.4.6 Booking Module

Figure 5.23: Booking List

Figure 5.24: Booking List - Delete Confirmation

126

Figure 5.25: Booking List- Filter Function

5.4.7 Reservation Module

Figure 5.26: Reservation List

127

Figure 5.27: Reservation List- Filter Function

Figure 5.28: Reservation List - Delete Confirmation

Figure 5.29: Reservation Add Page

128

Figure 5.30: Reservation Edit Page

5.4.8 Member Module

Figure 5.31: Member List Page

Figure 5.32: Member Page - Delete Confirmation

129

Figure 5.33: Member Add Page

Figure 5.34: Member Edit Page

Figure 5.35: Member Change Password Page

130

5.4.9 User Module

Figure 5.36: User List Page

Figure 5.37: User Add Page

Figure 5.38: User Edit Page

131

Figure 5.39: User Delete Confirmation

Figure 5.40: User Change Password Page

Figure 5.41: User Profile Page

132

CHAPTER 6

6
6

6 SYSTEM IMPLEMENTATION

6.1 Introduction

This chapter describes the process of implementing the proposed sports inventory

management system. The implementation covers the setup of the development

environment, configuration of the Laravel backend on WAMPServer, and integration

of the ReactJS frontend. The chapter also explains the main features of the system and

provides code snippets to illustrate how these features are implemented. By detailing

the project setup and implementation, this chapter demonstrates how the design from

Chapter 5 is translated into a working system.

6.2 Project Setup

The project was developed on a Windows environment using WAMPServer as the

local development server. WAMPServer provides an Apache web server, PHP, and

MySQL database required to run Laravel. The frontend application was developed

using ReactJS, while the backend was developed using Laravel. Firstly, download and

install the latest version of

• WAMPServer (Apache + PHP + MySQL):

https://www.wampserver.com/en/

Figure 6.1: Wampserver Official Website

• Composer (PHP dependency manager) from:

https://getcomposer.org/.

https://www.wampserver.com/en/
https://getcomposer.org/

133

Figure 6.2: Composer Official Website

• Node.js + npm (for the frontend) from:

https://nodejs.org/en/download.

Figure 6.3: Node.js Official Website

After installation, start WAMP and confirm Apache and MySQL are running

from the WAMP tray icon. Keep WAMP running while develop so Laravel can use the

local Apache and MySQL services.

Figure 6.4: WampServer Running (Green)

https://nodejs.org/en/download

134

 Next, create a new Laravel project (this will be the main project folder). This

will create a folder called my-app which will contain Laravel backend.

Inside the folder,install npm dependencies.This will install Vite, React, and

build tools inside the Laravel project. This ensures that React components can be

compiled and rendered smotthly within Laravel environment

Next, run the following command to install React into Laravel project:

Then, install the React Vite plugin:

Open the file vite.config.js in Laravel project and add React support

Figure 6.5: vite.config.js

The React entry point is placed inside resources/js/, create a file called app.jsx

which represents the main application component,

composer create-project laravel/Laravel:8.* my-app

cd sports-system

npm install

npm install react react-dom

npm install @vitejs/plugin-react

135

Figure 6.6: Code Snippet of app.jsx

Then, open resources/views/welcome.blade.php. This allows to load React

app inside the Blade view. This is because blade template provides the HTML structure

with root <div> where the React app is installed. Laravel can integrate React into Blade

view by using the @viteReactRefresh and @vite directives as it allows React

components to render when the Laravel server is accessed.

Figure 6.7: Code Snippet of welcome,blade.php

During development, the backend and frontend run in one environment. The

Laravel server is started with php artisan serve. For React, it is served by Vite by using

npm run dev command.When the application is accessed in the browser, Laravel

136

6.2.1 Database Setup

The .env() need to be change according to each local or production environment else it

will prevent the Laravel application from connecting to the database properly.

Figure 6.8: Database Connection Config

6.3 System Modules

The project consists of two integrated applications: a web-based application and a

mobile application. Each of these applications is designed to meet the needs of system.

The web-based application serves as a primary platform for administrators and quarter

master to manage products, inventory, bookings, reservation, stock check and members.

The mobile application allows students and teachers scan QR codes to booking the sport

equipment. Both applications ensure an efficient management of sport equipment and

facilities. At the same time, fulfil the needs of different user roles with the sports centre.

6.3.1 Modules for Web-based Application

6.3.1.1 Login Module

The login module is an important feature of the Sports Inventory Management System.

It provides authentication to ensure that only registered users and members can access

the system. It is built using React for the frontend and Axios for API communication

with the backend.

Figure 6.9: useState Hook

php artisan serve

npm run dev

137

When the user submits the login form, the entered username and password are

captured using React’s useState hook. These credentials are then sent to the backend

API (/api/login) via an Axios POST request. The backend validates the credentials and

returns either a user or member object if the login is successful.

Figure 6.10: Code Segment for Login Functionality

Based on above Figure 6.10, the login module is used the handleLogin

function. If the login is successfully (status=200), the user data is stored in localStorage

which allows the system to remain the session data even after refreshing the page. After

login, the system will redirect the user or member to different pages (/dashboard or the

redirect URL) based on the whether the login is user or member. If login fails, different

error messages are displayed based on the backend response, such as 401 Unauthorized

for wrong passwords or 404 Not Found if the account doesn’t exist. Below figure show

the error message displayed in different scenarios.

138

Figure 6.11: Login Page -Unauthorized for Wrong Passwords

Figure 6.12: Login Page- Account Not Found

Figure 6.13: Login Page- Account Inactive

139

Figure 6.14: Login Page -Verify Empty Field

Figure 6.15: Login Page - User Input Form

Based on above figure, it shows that these inputs ensure that the values are always in

sync with the component’s state. Then, submit button triggers the handleLogin function

to complete the authentication process.

140

Backend Login Function- AuthController

Figure 6.16: Login Function

The backend login function in Laravel is responsible for authenticating both system

users (administrators or quartermasters) and members (teachers or students). It ensures

secure login by validating credentials against two different database tables which are

users and members. The process starts with validating the request to make sure both

username and password fields are provided. This is done using Laravel’s built-in

validation. After validation, the system first checks the Users table to ensure the entered

username exists. If the username exists, the entered password is compared with the

stored hashed password using Laravel’s Hash::check() method. If the password matches,

the function returns a JSON response with the authenticated user’s data. Otherwise, it

responds with a 401 Unauthorized error for an invalid password.

 If user not found, the function then checks the Members table using the same

logic. This allows both administrative staff and members to log in through the same

endpoint but be authenticated based on their respective roles. If the provided username

is not found in either table, the system responds with a 404 Not Found message,

instructing the user to contact the administrator to create an account.

141

6.3.1.2 Dashboard

The Dashboard module serves as the central control panel for administrators to provide

a quick and comprehensive overview of system operations to ensure that the users can

monitor the overall performance of the sports equipment and facilities immediately.

Figure 6.17: Load Dashboard Data Function

Dashboard has Key Performance Indicators (KPIs) that display the total

number of products, bookings, reservations and members. The KPIs are fetched from

the backend (/api/dashboard-stats) to get the essential statistics such as total products

and total booking, total members and total reservations from the Laravel backend and

stored in React state. Then, the values are passed to a reusable KpiCard component to

be displayed in styled cards. Therefore, this allows administrators to assess the system

usage trend without navigating through multiple modules.

Figure 6.18: Get Equipment Status Chart Data

The equipment status is displayed using a doughnut chart which highlights the

distribution of items in stock, damaged, or missing to enable administrators to detect

issues quickly and plan for maintenance or replacements. It retrieves the data from

142

/api/inventory-summary and used doughnutData function to map the data into datasets

array so that it can display the output in doughnut chart with color codes.

Figure 6.19: Get the Most Used Product Data

Besides, Figure 6.19 shows that it fetches the top five products which means

it is the most frequently used product among members. It is fetched from /api/top-

products directly in order to identify the high-demand items.

Figure 6.20: Fetch Booking Data Function

The system uses Chart.js to implement the booking and reservation charts. It

used fetchBookingData and fetchReservationData function to allow the chart

dynamically to change between bar and line graphs depending on the selected time

range which offers a clear insight into daily, weekly or monthly activity. The selected

time range is handle using timeRangeSelector function which is shows in Figure 6.21.

143

Figure 6.21: Time Range Selector Function

144

6.3.1.3 Product Management

The Product Management is a core feature of the Inventory Management system as it

designed to display, manage and interact with a list of sports equipment products. Its

main features include displaying products grouped by outlet, filtering products by name,

paginating the product list, generating and displaying QR codes for equipment tracking,

and performing CRUD operations (edit, delete, and add products) for administrators.

These features are implemented using React.js, leveraging its component-based

architecture, state management, and third-party libraries like axios for API calls,

qrcode.react for QR code generation, and react-router-dom for navigation.

Figure 6.22: Code Segment to Retrieve the List of Product Data

Based on above figure, it shows that the module uses fetchProducts to retrieve

a list of product data from the backend database through an API call using Axios to

make a GET request to the /api/products endpoint and displays the product retrieve in

a table format.This ensures that the product list is dynamically updated and reflects the

most recent changes made to the inventory. The retrieved data is stored within a state

variable for rendering in the user interface.

145

Filter Function

Figure 6.23: Code Segment to Filter Product by Name

The product management module implements a search feature that allows user to filter

products by name. It will compare the user’s search input against the product dataset to

ensure that only relevant products are displayed. Below figure show the output result.

Add function

The ProductAdd is designed to allow administrators to add new sport equipment

products to the system. In the product add page, it allows administrators to generate

uique product ID and associated QR code, collect product details such as name,

quantity,status,outlet and image.

Figure 6.24: Generate Product ID & QR Code

Based on Figure 6.24, it shows that a random 4-digit product ID is created

using Math.random() and combined with the system base URL. The generate link is

store in state and shows as a QR code using the react-qr-code library which need to run

npm install react-qr-code first before using this library.

146

Figure 6.25: Handle Form Input

The handleChange functions is used to captures the product information such

as name, quantity, status (active/inactive), outlet (QM Room, UP Store, Down Store)

and image

Figure 6.26: Image Upload with Preview

Figure 6.26 shows that the function is used to upload the image and a live

preview is shown to confirm the correct image.

147

Figure 6.27: Submit the Product Data

Figure 6.27 shows that the handleSubmit function combined all data is into a

FormData Object and sent to /api/products. If the process is validation, it will send a

message to show that the Product Add successfully and navigate to product-list page.

Else, it will display error message and the handleSubmit function fails.

148

Edit Function

The users allow to update existing product details in the system by using edit function.

This component is implemented as a React functional component using hooks for state

management and Axios for API communication. It utilizes useParams to retrieves the

productid and executes an API call to fetch the current product data from the server.

Below figure shows the edit button and it navigates to product edit page after clicking

it.

Figure 6.28: Code Segment to Retrieve Product Data

Based on above figure, it shows that the retrieve data will fill in the input field

form. Users can edit the product’s name, quantity, status, outlet, and optionally upload

a new image. The try-catch block handles error messages such as validation issues and

updates the message state for user feedback. The loading state ensures a loading

message is displayed until the data is fetched in order to enhanced user experience.

149

Figure 6.29: Code Segment to Handle Change - Part 1

Figure 6.30: Code Segment to Handle Change - Part 2

The handleChange function updates formData using the spread operator to

keep other fields and ensure the input remains controlled. The required attribute

enforces client-side validation. The select element also provides predefined options for

150

outlets and status. This result that the enumeration constraints match with the database

schema.

Figure 6.31: Code segment to Handle Image Change

Based on above figure, handleImageChange can uploads product image and

preview the image which provides device visual recognition ability. The

handleImageChange function also capture the ‘formData.image’ and uses

URL.createObjectURL to generate a temporary preview URL. The image will display

through the storage/{image} path when images are retrieved. In order to link the storage

in project need to run.

Delete Function

Figure 6.32: Code Segment to Handle Delete

Based on the figure above, the handleDelete function is to design to provide a secure

way to remove products from the product list. It deletes a product by sending a request

to server and there is a confirmation prompt to avoid accidental deletions. When user

triggers the delete action, the functions will display a confirmation prompt using

npm run storage:link.

151

window.confirm("Are you sure you want to delete this product?"). if user click the

cancel button, the function exits immediately without making any changes. If the user

clicks ok, the function sends an HTTP DELETE request to the server using Axios.

Below figure shows the delete confirmation prompts.

QR code pop up model

The QR code popup modal implements in order to allow users to view the QR code in

a larger version as it allows administrator and quarter master can easy testing the QR

code to make booking and reservation without scanning wrong QR code. The pop-up

model can be trigger by clicking the QR code.

Figure 6.33: Code segment to Handle QR Code Pop Up Model

Based on the figure above, it shows that the pop-up model only appears when

the selectedQR state contains a value. The outer div uses fixed positioning combined

with a semi-transparent black background to create an overlay effect that covers the

entire viewport. The pop-up modal will close when clicking on this overlay sets

selectedQR to null. e.stopPropagation() is used to prevent accidental closure from click

inside the modal. There is a close button displayed in top right corner to allow user to

close the pop-up model. The QRCodeSVG also renders the QR code to display at the

larger size which is 250 based on the value stored in selectedQR.value.

152

QR Code Printing

To facilitate the sports equipment labelling, the system also provides a feature to print

multiple QR codes for a single product.

Figure 6.34: Code Segment for Handle Printing Function

153

The handlePrint Function is designed to generate and printing multiple QR

codes for a selected product. It combines user input, QR code generation, dynamic

HTML rendering and browser print functionality to achieve this. The function starts by

asking the user to fill in the quantity QR code they want to print. It uses prompt() with

a default value of 1. The result is parsed into an integer using parseInt. If user input is

invalid which is not a number or quantity less than 1, the function will exist.

Next, it will generate QR Code as Data URL. The qrDataUrl function calls

QRCode.toDataURL() and this generates a base64-encoded image string of the QR

code. The QR code is created using product.product_id as its value and set to a width

of 150px. This makes the QR code easy to implement because it’s embedded directly

in the HTML as an img src. After that, qrHTML creates HTML for multiple copies.

The QR code HTML block is repeated based on the number of copies entered by the

user.Array.from({ length: copies }) creates an array with the desired length, and .map()

fills it with QR code HTML.This result that each QR block has QR image itself and

product’s name displayed below it. Then, printWindow is call and a new window is

opened using window.open(). The function creates a complete HTML document into

this window which has title, header showing product name, the dynamically generated

QR code blocks and a script to automatically print and close the window afterward. The

script inside ensures that the print dialog opens immediately and closes automatically

after printing when the page loads (window.onload = window.print()). The result output

is shown in figure xx.

154

Backend- Product Controller

Figure 6.35: Code Segment to Retrieve A List of Products

The index function retrieves a list of products from the database. It allows optional

filtering by the outlet query parameter. The function will check if an outlet is specified

and applies a where filter based on the request. Then, the results are sorted by outlet in

descending order before returned as JSON. Therefore, this provides a flexible way to

list product dynamically.

155

Figure 6.36: Code Segment for Store Function

Based on the figure above, the store function is used to handle creating new

products. Firstly, it validates the input fields such as product ID, name, quantity, status,

store, and optional images. The validation also ensures there is no duplicate product

name exist within the same store else when clicking submit button, it will pop up

message as shown in figure below.

156

Figure 6.37: Error Message Display for Duplicate Product Name

Besides, the uploaded images are stored in the public/product directory. The

function also handles once a new product is created, it will also create the corresponding

inventory record and initialize the instock quantity and damage and missing quantity

will at default 0. If the product is successfully created it will return a JSON response to

show that the product is successfully created.

Figure 6.38: Code Segment to Display Product

Based on the figure above, the show function retrieves each of the products by using

the product_id. It returns firstOrFail mechanism and returns a 404 response

automatically if the product does not exist. This function is used to simple read

operation for editing and display purposes.

157

Figure 6.39: Code Segment for Update Purpose

Based on the figure above, the update function finds the product that needs to be

updated by using product_id that provided in request. If the product does not exist, it

throws 404 error through firstOrFail() to ensure the function always operate on a valid

product. Before updating, the function validates the incoming request data. It checks

required fields like name, quantity, status, and validates optional fields like outlet and

image. It also set a constraint that same product names are not allowed to exist within

the same outlet. The function then checks if new image has been uploaded. It deletes

the old images from storage and stores a new one in the public/products directory. If no

new image is provided, it keeps the old image. Once the validation and image handling

158

are completed, the product details are updated in the database. The fields updated

include the product’s name, quantity, status, outlet, and image. Then, the function

updates the related inventory record to ensure it consistent with the product’s updated

details. If the inventory record is newly created, it will created damage, missing,

reserved and rented column with default values 0. If the inventory already exists, it

recalculates the instock value by decreasing the occupied quantity (reserved, rented,

missing, damaged) from the total updated quantity. This prevents negative stock values

and ensures accurate stock tracking. Lastly, the function return a JSON response

message that the product and related inventory has created successfully.

Figure 6.40: Code Segment for Destroy Function

Based on the figure above, the destroy function is used to delete a product and the

inventory related to the product will also be deleted. Before deleting, the function

checks if the product has an uploaded image and removes it from the storage to prevent

orphaned files. After that, it deletes the related inventory records and remove the

product itself. After deleting the product, it shows the message to notify user that the

product already deleted successfully.

159

6.3.1.4 Inventory Management

The inventory management module is used to display and manage the inventory details

based on different outlets. It allows user to view inventory items in a table format which

have Product ID, Name, In Stock, Damage, Missing, Reserved, and Rented quantities

columns.

Figure 6.41: Code Segment for Fetching Data from API

Based on above figure, fetchInventories function is used to retrieve and display

the list of inventories from /api/inventories so that the system can always get the latest

data without requiring manual refresh. The response data is stored by using

setInventories() when the validation is successful else it will display error message for

exception handling. This function allows administrator and member to view available

products in real time.

160

Backend- Inventory Controller

Figure 6.42: Code Segment to Retrieve to Inventory Data

Based on the figure above, the index function shows a list of all inventory records and

the product details. It uses a join between the inventories and products tables so that

both product-specific attributes (like name, image, and outlet) and inventory-related

attributes (like instock, damage, missing, reserved, and rented) are returned together.

This allows the frontend or API callers to display a complete inventory view without

requiring multiple queries.

Figure 6.43: Code Segments to Display Inventory Data

Based on the Figure above, the show function retrieves the inventory details for a

specific product based on its product_id. It also joins the inventories table with products

161

to return a combined dataset of product and inventory information. It focuses on a single

record by filtering with the given product ID and ensures data integrity with

firstOrFail(), which throws an error if the product inventory does not exist.

Figure 6.44: Code Segment for Generating Inventory Overview

Based on the figure above, the summary function is used to generate an overview of all

active product inventory statuses. First, a subquery ensures only the most recently

updated inventory record for each product is considered to prevent the outdated data

from skewing results. The SUM function combined with COALESCE handles null

values and calculating the total quantity for each status (in stock, damaged, missing,

reserved, rented). The final response is a JSON object containing these totals, making

this function ideal for dashboard summaries or high-level reporting.

162

6.3.1.5 StockCheck Management

The stockCheck module is designed to help the administrator and quarter master

maintain accurate equipment availability records by validating and updating the

condition of each product in the inventory.

Figure 6.45: Code Segment Fetches Products by Outlets

Based on above figure, the stock check allows the user to select date and outlet.

After select the date and outlet, it will dynamically fetch the products stored in the

chosen outlet from fetchProducts function. Each product is displayed in a table together

with its original quantity. Then, the user is required to input the current quantity for

each item based on it condition such as in stock, damage, or missing.

163

Figure 6.46: Handle Submit Function

The handleSubmit function ensures data accuracy by validating the total of

these 3 categories matches the product’s original quantity. If the values do not align

with the original quantity, the system send the alert message to user and prevents

submission. Once the data is confirmed, the system combine it into a payload that

containing the date outlet and updated stock details and send it through POST request

to Laravel backend. This feature is essential because stock checks serve as a systematic

way to verify the actual physical quantity of items with the recorded inventory to

ensures that the future reservations and booking have reliable inventory data.

Figure 6.47: Stock Check Page - Mismatch Data

164

Figure 6.48: Fetch Stock Check Function

Based on the above figure, fetchStockChecks function used a GET request

with query parameters to fetch the stock check records for the selected date and outlet.

Once the data is retrieved, it is grouped by outlet and displayed in a table format. The

“+ Stock Check” button at the top enables quick navigation to add new stock check

page. Therefore, stock check list is easily accessible as it allows searching the stock

check by date and outlet to narrow down the results.

165

Backend- StockCheck Controller

Figure 6.49: Code Segment for Creating New Stock Check

Based on the figure above, the store function is used to create new stock check records.

It validates the incoming request first to ensure the date, store, and product list are valid.

Once the validation done, it creates a new entry in the StockCheck table to store the

check date, outlet, and product details. The function also iterates through each

submitted product item after submitting the request and it will update the in-stock

quantity, damaged quantity, and missing quantity within the related inventory record.

166

Figure 6.50: Index Function

Based on figure above, the index function is used to lists all stock checks filtered by

date and by outlet. Firstly, it validates that the request contains a required date and an

optional outlet field. The filter queries the StockCheck table and retrieves all matching

records. For each stock check, the function generates the detailed product list by linking

the product ID with the Product model to enable synchronised display the product

names with inventory data. The response contains the stock check’s ID, date, outlet,

and detailed item information which is useful for generating weekly stock check reports.

167

Figure 6.51: Show Function

Based on figure above, the show function is used to retrieve a single stock check record

by its ID. It uses findOrFail to ensure that if the given ID does not match any existing

record, the system will throw an error rather than returning an empty result.

6.3.1.6 Booking Management

The booking Management allows the administrator and quarter master to view the

booking rather than adding new booking. This is because the booking process is

targeted to be done directly by members through walk-in registration at sports center,

where the equipment is scanned using its QR code for immediate check-out and check-

in. By relying on the QR scanning process, the system ensures that the bookings are

created in real time based on actual equipment usage and reduced the manual errors risk

or duplicate records may occur. It also can reduce the work done by administrator and

quarter master and make the process for booking become efficient and convenient.

Figure 6.52: Booking List Page

Based on the image above, it shows that administrator and quarter master are

not allowed to edit the booking records in order to protect the data integrity and ensure

168

accountability. Booking records must remain unaltered to provide an accurate historical

record as it served as official log of equipment usage. If allowed users to edit the

booking record, it could cause the inventory usage to become not accurate as the record

can be edit. Therefore, the system ensures that the booking remains authentic, tamper-

proof, and transparently auditable.

Figure 6.53: Fetch Booking Data

The above figure shows how the bookings data is fetched, filtered and

formatted. A request is sent to /api/booking and the response data is stored in the

bookings state by using setBookings. The filteredBookings array applies the filter

method to check whether the username has lowercase version of filterText input. This

ensures that the bookings can search by using username.

Figure 6.54: Format Time Function

169

The formatTime function is used to display date and time in a readable format.

It used date-time string as input and concerts it into JavaScript Date object which result

in the day, month,year,hours and minutes are extracted. The hours are converted to 12-

hour format with AM/PM indicator and minutes are only allow 2 digit. Then it displays

the date on 1 line and the formatted time on next line to provide a clean and user-

friendly interface.

Figure 6.55: Handle Delete Function

Based on the figure above, it shows that handleDelete function is used to delete

each booking record through the confirmation process. When user clicks the delete

button, a confirmation popup appears to prevent accidental deletions. If the user

confirms the action, the system sends a DELETE request to the Laravel backend Api.

Once the backend deleted the booking records from the database, the React frontend

updates the state by filtering out the deleted booking without requiring full page reload.

Backend- Booking Controller

Figure 6.56: Index Function

Based on the figure above, the index function is used to retrieve a list of all bookings

in descending order of creation time using latest(). It returns these bookings as JSON

to make it easy for the frontend or administrators to view recent booking activity.

170

Figure 6.57: Show Function

Based on the figure above, the show function is used to retrieve the details of a specific

booking by its ID. It uses findOrFail to ensure that if no booking is found, the system

will return an error.

Figure 6.58: Store Function

Based on the figure above, the store function is used to handle the creation of a new

booking. It validates incoming request data to ensure that required fields like

member_id, product_id, quantity, and booking status are correct and consistent. Once

validated, it creates a new booking record in the database and returns a success response.

This function ensures that only valid bookings enter the system.

171

Figure 6.59: Checkout Function

172

Based on the figure above, the checkout function is used to handle both reservation-

based and normal checkouts. If the booking is based on reservation, it verifies the timing

rules and only allowing checkout within a 15-minute window before or after the

reserved time. If valid, it updates the booking status, decreases inventory instock and

reserved quantity, and increases rented quantity. For non-reservation checkouts, it

prevents duplicate active bookings, creates new booking and updates inventory for the

same product and member to ensure the sport equipment distribution under control and

prevent misuse.

Figure 6.60: Checkin Function

Based on the figure above, the checkin function is used to complete the booking after

equipment or items have been returned. It verifies the booking is in a checkout status

and when check in, it records the checkin time and the booking status marks as closed.

When checkin, it also updates inventory by increasing instock and reducing rented

quantity to ensure that returned products are available for future use.

173

Figure 6.61: Close Expired Reservation Function

Based on the figure above, the closeExpiredReservations function is used to close

bookings tied to reservations that have expired automatically. User must check out the

sport equipment reserved within the reserve date and time else the status marks as

closed. It also adjusts inventory by reducing reserved quantities, releasing the

equipment for others to use and preventing the equipment from being locked long-term.

174

Figure 6.62: Destroy Function

Based on the figure above, the destroy function is used to handle the deletion of a

booking while ensuring that the inventory data remains accurate and consistent with

actual item availability. findOrFail is used to find the booking records and it ensures an

error is thrown if the booking does not exist. Once the booking is found, the system

retrieves the related inventory record based on the product_id of the booking. Before

deleting the booking, the function checks the booking’s status and adjusts the inventory

accordingly. If the status is checkout, the system increases the instock quantity and

reduces the rented quantity as it assumed the items are returned. If the status is accepted

which means that the item was reserved but not yet checked out, the reserved quantity

is reduced since the reservation is being cancelled. For a checkin status, it is similar

with the ‘checkout’ and it increases instock items and reducing the rented quantity. The

inventory is then saved with these updates. Once the inventory is updated, the function

deletes the booking record itself and returns a JSON response to confirm that the

175

booking has been deleted successfully, and the inventory has been updated. This

ensures that every booking deletion not only removes the record but also keeps the stock

levels accurate, preventing inconsistencies between bookings and inventory.

Figure 6.63: myBookings Function

Based on the figure above, the myBookings function is used to retrieves all bookings

for a specific member. It requires a member_id and joins with both the products and

reservations tables to include product images and reservation details in the results. This

provides members with a detailed history of their bookings.

176

6.3.1.7 Reservation Management

Figure 6.64: Fetch Reservation Function

Figure 6.65: Search Function

Based on the figure above, the fetchReservations funcrion is used to retrieve the

reservation data from the Laravel backend through API call using Axios and the data is

display in structured and grouped by outlets. It also implements search function that

allows the user to filter the reservation by username. Each outlet’s reservations are

separated and displayed in individual tables with pagination.

177

Figure 6.66: Get Status Classes Function

The status field is displayed using color-coded labels and each module status

will have their own color-coded labels to improve readability and quick decision

making. For example, pending in orange, accepted in green or rejected in red.

Figure 6.67: Reservation Page - Different Status

It also provides actions button for editing and deleting reservations. Edit

function is controlled by the validation rules which is when the reservation is past

(handles by isReservationDatePast function), and reservation status is completed; the

reservation cannot be modified to ensure data integrity and avoid accidental changes.

Figure 6.68: ReservationPast Function

178

Figure 6.69: Disabled Buton

Figure 6.70: Handle Delete Function

For deletion, the system used the handleDelete function to prompt a

confirmation popup by using window.confirm() before sending a DELETE request to

Laravel. The reservation is removed from both the database and the frontend when the

handleDelete function is successfully.

179

Add function

The reservation add is used to create new reservations by selecting the member, outlet,

product, date, time and quantity,

Figure 6.71: FetchData Function

Based on the above code snippet, the fetchData function is used to fetch

members and product data. When the user selects an outlet, the product list is

automatically filtered and only show items that available in that outlet to ensure the

product allocation in accurate.

180

Figure 6.72: Fetch Available Quantity Function

The system sends a request to /api/reservations/available-quantities to retrieve

updated availability to retrieve updated availability when the reservation date or outlet

is change in order to prevent overbooking. When the reservation is added, the form is

validated by using the handleSubmit function to verify that a member and product

chosen, the quantity does not exceed the available stock, and the date is not in past. The

selected details are then submitted through POST request to store the reservation in

database and if the reservation is added successfully, the user will notify and it will

redirect back to the reservation-list page.

181

Figure 6.73: Handle Submit Function

Figure 6.74: Reservation Page -Successful Notification

182

Email notification

The reservation notification is designed to auto send email to member when their

reservation is rejected or accepted. It ensures that users are kept informed about the

status of their reservation without requiring manual follow-up. The implementation

follows three main steps: creating a Mailable class, designing an email template, and

updating the controller method to send the email when a reservation is rejected or

accepted.

Firstly, run above command in the terminal to create a mailable class to handle

the email content preparation. It is implemented using a Laravel Mailable class

combined with a Blade email template.

Figure 6.75: Reservation Accepted Mail

Based on above figure, it shows that the reservation notification is

implemented in Laravel using Mailable class which is ReservationAcceptedMail. When

php artisan make:mail ReservationAcceptedMail

183

the reservation is approved, the system passes both the reservation and booking details

into mail class constructor. The email is configured with a subject line ("Your

Reservation Has Been Accepted!") and linked to a Blade view

(emails.reservation_accepted) that serves as the email template.

Figure 6.76: ReservationAcceptedMail.blade.php

The blade template formats the notification by using HTML layout. It greets

the member by username and displaying the needed reservation details as shown in

above Figure to ensure that members is clear about the notification message. Therefore,

the reservation notification ensures a better communication between system and its

users. If the reservation is rejected, the members also will receive notification to notify

them. Below is the output about the notification received format.

It also needs to add below information into .env().

Figure 6.77: Mail Setup in .env()

184

Figure 6.78: The Output Results of Notification

Backend -Reservation Controller

Figure 6.79: Index Function

Based on the figure above, the index function is used to retrieve all reservations with

linked booking status. It uses a left join between the reservations and bookings tables

so that even reservations without a booking are included. The query selects all

reservation details and adds the booking’s status field, ordering results by the latest

created date. The results are returned as a JSON response and giving administrators and

quarter master an overview of reservation requests and current booking progress.

185

Figure 6.80: Store Function

Based on the figure above, the store function is used to create new reservations. It

validates mandatory fields such as member ID, product details, reservation date/time,

and quantity required. If the validation is successful, the function creates a new

reservation record in the database and returns a success message and the stored

reservation data. This ensures that every reservation request is accurately recorded and

linked to the relevant member and product.

186

Figure 6.81: Available Quantity Function

Based on the figure above, the availableQuantities function is used to calculate the

remaining items available for reservation on a given date and outlet. It validates the

provided date and outlet, then gathers all accepted reservations for that day while

excluding an optional reservation ID (useful during edits). It summarizes reservation

quantities per product by using database aggregation. Next, it fetches all active

inventory items and reduces the reserved amounts from the in-stock value to calculate

available quantities. The function ensures that only non-negative values are returned to

provide real-time stock availability for reservation validation.

187

Figure 6.82: Update Function

Based on the figure above, the update function is used to modify an existing reservation

to maintain integrity. If a reservation has already been accepted and is linked to a

booking that is in checkout or closed status, the system blocks updates to prevent

tampering with completed transactions and an error message is sent to notify users.

Otherwise, users are allowed to edit the system. it validates the new inputs such as

updated quantity, date, and status and updated the new data to the reservation record.

The updated reservation is then returned as a successfully message.

188

Figure 6.83: Accept Function

189

Figure 6.84: Reject Function

Based on the figure above, the reject function is used to reject the reservation request.

It finds the reservation based on its ID and updated the status to ‘rejected’ and saves the

change. A JSON response is returned with a confirmation message and the updated

reservation. This function ensures members receive clear feedback when reservation

request cannot be fulfilled.

Figure 6.85: Destroy Function

Based on the figure above, the destroy function is used to handle the deletion of

reservations. It deletes the reservations from the database when the reservations exist

and found. A success message is returned to confirm the removal. If the reservation is

not found, a 404 response is sent. This ensures that only valid reservations are removed

and that users are informed when attempting to delete non-existing records.

190

Figure 6.86: myReservation Function

Based on the figure above, the myReservations function is used to retrieve a member's

personal booking records. This function requires a member_id parameter and fetches

all bookings associated with that member. It obtains product images by joining the

products table to retrieve product images. It returns only reservations records with

status of ‘Pending’ or ‘Rejected’ and it sorted in descending create time order.

191

Figure 6.87: Weekly Stas -Part1

192

Figure 6.88: Weekly Stas -Part2

Based on the figure above, the weeklyStats function is used to provide an analytical

feature that generates reservation statistics over different time periods in order to make

it useful for dashboard. The main purpose of this function is to allow administrators to

track reservation activity trends within specific timeframes such as today, yesterday,

the past 7 days, or the past 30 days. This ensures that reservation data is presented in a

structured format that can easily be visualized in charts or graphs.

193

It checks the range parameter from the request first, It sets a default to 7 days range.

Based on the selected range, it dynamically builds time slots: hourly slots for today and

yesterday, or daily slots for 7 days and 30 days. For example, if the range is today, it

creates 24 hourly time slots representing each hour of the day, while for 7 days, it

generates seven daily labels going back from today. Next, the function queries the

reservations table to calculate the reservations were created within the chosen range.

For hourly ranges (today and yesterday), it groups reservations by formatted hour

(%Y-%m-%d %H:00:00), while for daily ranges (7 days and 30 days), it groups the

data by date. The results are stored in an associative array to mapping each time slot or

date to the number of reservations. After retrieving the raw data, the function iterates

through the previously generated time slots to ensure that every slot has a corresponding

count (defaulting to 0 if no reservations exist for that time). Labels are then formatted

neatly — in H:i format for hours, m/d format for 7 days, and M d format for 30 days.

These labels and values are compiled into arrays named labels and dataset. The function

also returns the data as a JSON response with labels for chart axes and data for chart

values. This implementation makes it easy to integrate the data into visualization

libraries like Chart.js or Recharts to ensure administrators to monitor reservation

activity patterns in real time.

6.3.1.8 User Management

The User Management Module is a core feature of the system that provides

administrators with full control over handling user accounts through four main

components: User Add, User Edit, User Change Password, and User List. The User

Add component allows administrators to register new users by submitting details such

as username, password, role, and status through a form. Upon submission, the data is

sent via an Axios POST request to the backend API, and successful registration

redirects the administrator back to the user list. The User Edit component retrieves the

existing user’s data using their unique ID, displays it in an editable form, and updates

the details using an Axios PUT request. Additionally, it integrates a Change Password

option that navigates to the User Change Password component. This component

securely handles password updates by ensuring that the new password matches the

confirmation before sending a PUT request to the backend to update the user’s

credentials. Finally, the User List component fetches all registered users from the

194

backend API, displays them in a paginated and searchable table, and provides action

buttons for editing or deleting user accounts. Together, these components ensure a

streamlined and secure workflow for managing user accounts effectively within the

system.

Figure 6.89: FetchUser Function

Based on the above figure, it shows the how the data is fetched from the

backend using Axios GET request. It uses Axios to send a GET request and specifies a

request header with Accept: "application/json" to ensure the server responds in JSON

format. Once the response is received, it checks whether the returned data is a plain

array or wrapped in a data object.It also updates the users state with the retrieved list of

users using the setUsers hook. If neither structure is valid, it sets an empty array to

prevent errors. If the API call fails, the error is logged in the console and the setError

hook updates the error state so it can be displayed to the user.

195

Figure 6.90: User Profile Page

After user click on edit button or Profile, it will navigate to user-edit page

based on specific user that shown as below:

Figure 6.91: User Edit Page

Figure 6.92: Error Message

196

The below code segment allows administrators to update user details in the

system. The useEffect hook runs when the component is first loaded or when the id

parameter changes, and it defines an asynchronous function fetchUser that sends a GET

request to /api/users/${id} to retrieve the selected user’s details. Once the data is fetched,

the form state is updated with the user’s username, role, and status, ensuring the form

fields are pre-filled with the current information. If the request fails, an error message

is displayed to the user. The handleChange function manages form updates by

dynamically setting the input field values in the state based on the field being modified.

It keeping the form controlled and synchronized with React state. The handleSubmit

function handles form submission by sending a PUT request to /api/users/${id} with

the updated form data. If the update is successful, it will be redirected to the user list

page. If the validation errors such as a duplicate username or general failures are caught

and displayed to guide the user. output that shows the validation is error.

197

Figure 6.93: Fetch Data Function

198

Delete Function

Figure 6.94: Handle Delete Function

Based on above figure, the handleDelete function is used to remove a user from the

system. It is trigger when administrator clicked the delete button. A confirmation

dialogue will display through window.confirm() to ensure there is a clear user approval

before any deletion occurs in order to prevent accidental deletion occurred. After the

confirmation, the system initiates an HTTP DELETE request to the backend API

endpoint /api/users/{userId} via Axios to target the specific user ID. The setUsers()

then updated the local state to remove the deleted user from the active user list

Backend -User Controller

Figure 6.95: Index Function

Based on the figure above, the index function is used to retrieve and display all user

records from the system. It simply queries the users table using User::all() and returns

the complete collection as a JSON response.

199

Figure 6.96: Show Function

Based on the figure above, the show function is used to retrieve a single user’s details

based on their ID. It uses User::find($id) to find the record, and if the user does not

exist, it returns a 404 Not Found response. Otherwise, the user’s data is returned in

JSON format.

Figure 6.97: Update Function

Based on the figure above, the update function is used to modify user account

information. It validates the request to ensure that the username is unique, the role is

either "administrator" or "quarter master," and the status is set to "active" or "inactive."

If validation passes, the user record is updated with the new details. The function then

returns a success message with the updated user data to ensure that administrators can

effectively manage user information.

200

Figure 6.98: Change Password Function

Based on the figure above, the changePassword function is used to update a user’s

password when the user forgets the password. It validates that a new password is

provided and meets the minimum length requirement of six characters. Once validation

passes, the function finds the user by ID, hashes the new password using bcrypt, and

saves it to the database. A confirmation message is then returned to ensure a secure and

proper handling of password updates.

Figure 6.99: Destroy Function

Based on the figure above, the destroy function is used to delete a user account. It finds

the user by ID and it returns a 404-error message when user not found. If the user exits,

the record is deleted from the database, and a success message is returned. This feature

201

ensures that administrators can remove inactive or unnecessary user accounts from the

system while providing clear feedback.

6.3.1.9 Member Management

The MemberController and UserController are highly similar in structure and

functionality. Both of them are design to manage account related operations such as

creating, retrieving, updating, deleting and changing passwords. The main difference

lies in the type of accounts being managed. For example, the UserController handles

system users such as administrators and quarter masters,while the MemberController

specifically manages members like students and teachers. Both controllers follow the

same RESTful approach and validation rules to ensure consistency in implementation

and maintaining a standardized workflow for handling different types of users within

the system.

6.3.1.10 Member Booking

Figure 6.100: Home Page (Member)

202

Figure 6.101: Fetch Product Function

The homepage ensures that only authenticated members can access product details and

perform actions such as booking or reservation. Firstly, the system checks the presence

of stored member session in localStorage. If member not found, the user is

automatically redirected to the login page with a redirect query string

(/?redirect=/home/${productId}) to notify them that the authentication is required. If a

valid member is found, the system retrieves the specific product details through GET

request to /api/inventories/{productId} and displays the information such as product ID,

name, and outlet.

203

Figure 6.102: Booking Page Function

204

Figure 6.103: Fetch Product and Booking Function

The member booking is used to perform check out and check in sport equipment in a

structured and controlled manner. The system retrieves both the product details and

logged in member information from localStorage. When member selects a product, the

details are fetched and displayed as Figure shown. It allows member to choose the

quantity without exceeding the available stock.

205

Figure 6.104: Handle Checkout Function

The check out process is handled by handleCheckout function by calling

/api/bookings/checkout API that records the checkout transaction and save the booking

in state and in localStorage. It notified the user with a success message when the

equipment is checkout. If the member already have active booking, the system will alert

the user and restores the active booking data.

206

Figure 6.105: Handle Check in Function

The handleCheckin function is used to updates the booking status by using PUT request

to clear the localStorage and resets the booking state to ensure that the product is

marked as checkin and receive alert messages that is about “check-in successfully”.

207

Figure 6.106: Reserve Booking Page

Figure 6.107: FetchBooking Function

208

Figure 6.108: Handle Reserve Function

209

Figure 6.109: Fetch Availability Quantity

Figure 6.110: Handle Quantity Change

210

The member reservation allows members to reserve the sports equipment. It retrieves

the product information using the product ID from GET request. The instock is sets as

initial available quantity. When the member selects a reservation date, another API is

called to fetch the available quantity for that date and ensure that the members cannot

reserve the items more than available quantity. The useEffect hook is used to listen the

changes of reserveDate and product. The handleQuantityChange function is used to

ensure that the selected quantity does not exceed the available quantity. This reservation

forms include date and time pickers and quantity selector. The quantity selector allows

the user to increase or decrease the number of items. After member fill in all the

required field, member clicks the “Reserve now button” to call handleReserve function

verify the input which will check the login status, selected date and time, and quantity

limits before sending POST requests to API. When member reserve the equipment

successfully, it will send an alert message and navigate to history page to see the

reservation status.

211

Figure 6.111: History Page

212

Figure 6.112: Fetch Data Function

Based on the figure above, the fetchData function is used to retrieve the both the

bookings and reservations associated with a specific member. It sends GET request to

2 API endpoints which is /api/my-bookings and /api/my-reservations, passing the

member’s ID as a query parameter. Once the responses are received, the results are

stored in the component state using setBookings and setReservations to ensure that the

frontend displays the latest booking and reservation data for the logged-in member. The

function is wrapped inside a useEffect hook, so it runs automatically when the

component mounts or when the member.id changes to keep the displayed data always

up to date.

213

Figure 6.113: Handle Check Out Function

Based on the above figure, the handleCheckout and handleCheckIn function allows the

member to check out or check in the equipments they reserved when the reservation

status is accepted. It sends a POST request to the /api/bookings/checkout endpoint with

all relevant booking details such as member_id, username, product_id, product_name,

214

quantity, and reservation_id. However, for the check in function it sends a PUT request

to the /api/bookings/{bookingId}/checkin endpoint, where {bookingId} identifies the

booking being checked in. It will send an alert to notify the member that the check out

or check in is successful and updates the data. If the operation fails, the function handles

the error by showing a failure alert and logging details to the console.

Figure 6.114: Reservation Date Pass Function

The isReservationDatePassed is used to check whether a reservation date has already

passed compared to current date. If the reserveDate is valid, it returns false if no date is

provided. Then, it creates Date objects which is one for the current date and another for

reservation date. The function then compares 2 dates and returns true if the reservation

date is earlier than today to show date the reservationdate has passed. This results in the

checkout button is disabled or a warning is display when the reservation is no longer

valid.

215

CHAPTER 7

7 SYSTEM TESTING

7.1 Introduction

System testing is an important phase in the cycle of software development life as it

ensures that the developed system functions correctly, meets the requirements, and

provides a smooth user experience. For this project, testing was conducted at different

levels such as unit testing, integration testing, and user acceptance testing (UAT). Unit

and integration testing focused on technical verification, while UAT interaction with

the actual users (administrators, quartermasters, students and teachers) to validate

whether the system meets the intended objectives.

7.2 Unit Testing

According to Koomen and Pol, unit testing is performed by developers in a controlled

environment to verify whether software meets to the behavioural definitions specified

in its design specifications. Whitaker also mentioned that unit testing is a process of

conducting isolated examinations of independent components or groups of components.

He emphasised that testers should focus on defining the input space relevant to these

units without considering the broader system environment (Runeson, 2006).

In this project, unit testing was implemented to the proper functioning of each

independent module within the Sports Centre Inventory Management System. The

primary goal was to identify and resolve errors at the earliest stage of testing by

focusing on small, testable components such as reservation management, booking,

notification handling, inventory control, and user authentication. Each test case was

designed to verify both standard operations and system’s exception handling to ensure

that the modules were functioned as expected when valid or invalid inputs were

received and when they encountered out of bounds scenarios. By utilizing this testing

approach, this project was able to achieve higher code reliability, reduce integration

risks, and improve the overall quality of the system before moving to more complicated

testing such as integration and user acceptance testing.

216

Table 7.1: Unit testing of User Login

Test

Module

Authentication – Login Page Test Title Verifying user login functionality

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-001 Login with valid User

(Administrator/Quarter

Master)

1. Navigate to login page

2. Enter correct username

& password

3. Click Login

username: admin

password: 123456

User logged in successfully and

redirected to Dashboard

Pass

UT-002 Login with invalid

password for User

1. Navigate to login page

2. Enter valid username but

wrong password

3. Click Login

username: admin

password: 1234567

System displays error message:

"Invalid password. Please try again."

Pass

UT-003 Login with inactive

User

1. Navigate to login page

2. Enter valid username &

password for a User with

status = inactive

3. Click Login

username: admin2

password: 123456

System displays error message: "Your

account is inactive. Please contact the

administrator."

Pass

UT-004 Login with non-

existent username

1. Navigate to login page

2. Enter username not in

users or members table

3. Click Login

username: member

password: 123456

System displays error: "Account not

found. Please ask the administrator to

create an account for you."

Pass

UT-005 Empty input fields 1. Navigate to login page

2.Leave username &

password blank

3. Click login button

username:

password:

System shows validation error: "The

username field is required."

Pass

217

Table 7.2: Unit testing of Member Login

Test

Module

Authentication – Login Page Test Title Verifying Member login functionality

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-006 Login with valid

Member

(Teacher/Student)

1. Navigate to login page

2. Enter correct username

& password

3. Click Login

username: member

password: 123456

User logged in successfully and

redirected to Homepage

Pass

UT-007 Login with invalid

password for Member

1. Navigate to login page

2. Enter valid username but

wrong password

3. Click Login

username: member

password: 1234567

System displays error message:

"Invalid password. Please try

again."

Pass

UT-008 Login with inactive

Member

1. Navigate to login page

2. Enter valid username &

password for a Member

with status = inactive

3. Click Login

username: member2

password: 123456

System displays error message:

"Your account is inactive. Please

contact the administrator."

Pass

UT-009 Login with non-

existent username

1. Navigate to login page

2. Enter username not in

members table

3. Click Login

username: admin

password: 123456

System displays error: "Account

not found. Please ask the

administrator to create an account

for you."

Pass

UT-010 Empty input fields 1. Navigate to login page

2.Leave username &

password blank

3. Click login button

username:

password:

System shows validation error:

"The username field is required."

Pass

218

Table 7.3: Unit testing of Add User

Table 7.4: Unit testing of Edit User

Table 7.5: Unit testing of Delete User

Test

Module

User Management – CRUD & Password Update Test Title Add user to user list

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-011 Add new user (valid

input)

1. Navigate to user page

2. Click “+ User” Button

to navigate to user add

page

3. Fill in username,

password, role, and status

4. Submit form

username: admin

password: 123456

User logged in successfully and

redirected to Dashboard

Pass

UT-012 Add new user with

duplicate username

1. Navigate to user page

2. Click “+ User” Button

to navigate to user add

page

3. Fill in username,

password, role, and status

4. Submit form

username: admin

password: 1234567

API validation fails with message

“This username is already taken.

Please choose another one.”, status

code 422

Pass

Test

Module

User Management – CRUD & Password Update Test Title Edit user account from user list

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-013 Edit user details

(valid input)

1. Navigate to user page

2. Click edit icon Button for

user that need to be edited

3. Modify role or status

4. Submit form

username: user01

role: quarter master

status: inactive

User created successfully and API

returns JSON with user object,

redirected to user list

Pass

UT-014 Edit user with

duplicate username

1. Navigate to user page

2. Click edit icon Button for

user that need to be edited

3. Change username to an

existing one

4. Submit form

username: admin1

(already exists)

API validation fails with message

“This username is already taken.

Please choose another one.”, status

code 422

Pass

Test

Module

User Management – CRUD & Password Update Test Title Delete user account from user list

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-015 Delete user (valid

user)

1. Navigate to user page

2. Click delete Button for user

that need to be edited

3. Confirm delete

- User deleted successfully, API

returns success message, user

removed from list and delete in

database

Pass

219

Table 7.6: Unit testing of Change Password (User)

Table 7.7: Unit testing of List User

Table 7.8: Unit testing of Search User

Test

Module

User Management – CRUD & Password Update Test Title Change user password

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-016 Change user

password (valid

input)

1. Navigate to Change

Password page

2. Enter new password and

confirm password

3. Submit form

password:

newpass123

confirm Password:

newpass123

Password updated successfully,

API returns success message

Pass

UT-017 Change password

with mismatch

1. Navigate to Change

Password page

2. Enter different password

and confirm password

3. Submit form

password:

newpass123

confirm Password:

newpass12356

System displays “Passwords do

not match”.

Pass

UT-018 Change password

shorter than 6

characters

1. Navigate to Change

Password page

2. Enter a new password with

less than 6 characters

3. Submit form

password: 123

confirm Password:

123

System displays “The password

must be at least 6 characters.”

Pass

Test

Module

User Management – CRUD & Password Update Test Title Display a list of user

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-019 Display user list 1. Navigate to User List page - System displays a paginated list of

users with username, role, and

status

Pass

Test

Module

User Management – Search Test Title Search user

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-020 Search user in list 1. Enter keyword in search

bar

2. System filters users

Keyword: user User list displays matching

usernames result only

Pass

220

Table 7.9: Unit testing of Add Member

Table 7.10: Unit testing of Edit Member

Table 7.11: Unit testing of Delete Member

Test

Module

Member Management – CRUD & Password Update Test Title Add member to member list

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-021 Add new member (valid

input)

1. Navigate to member

page

2. Click “+ Member”

Button to navigate to

member add page

3. Fill in username,

password, role, and status

4. Submit form

username: member

password: 123456

Member logged in successfully and

redirected to member list page

Pass

UT-022 Add new member with

duplicate username

1. Navigate to user page

2. Click “+ Member”

button to navigate to

member add page

3. Fill in username,

password, role, and status

4. Submit form

username: member

password: 1234567

API validation fails with message

“This username is already taken.

Please choose another one.”.

Pass

Test

Module

Member Management – CRUD & Password Update Test Title Edit member account from member list

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-023 Edit member details

(valid input)

1. Navigate to member page

2. Click edit icon Button for

member that need to be edited

3. Modify role or status

4. Submit form

username:

member1

role: student

status: inactive

Member created successfully and

redirected to member list page.

Pass

UT-024 Edit member with

duplicate username

1. Navigate to member page

2. Click edit icon Button for

member that need to be edited

3. Change username to an

existing one

4. Submit form

username:

member1

(already exists)

API validation fails with message

“This username is already taken.

Please choose another one.”.

Pass

Test

Module

Member Management – CRUD & Password Update Test Title Delete member account from member list

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-025 Delete member

(valid member)

1. Navigate to member page

2. Click delete Button for

member that need to be edited

3. Confirm delete

- Member deleted successfully, API

returns success message, member

removed from list and delete in

database

Pass

221

Table 7.12: Unit testing of Change Password (Member)

Table 7.13: Unit testing of List Member

Table 7.14: Unit testing of Search Member

Test

Module

Member Management – CRUD & Password Update Test Title Change member password

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-026 Change member

password (valid

input)

1. Navigate to Change

Password page

2. Enter new password and

confirm password

3. Submit form

password: 1234567

confirm Password:

1234567

Password updated successfully. Pass

UT-027 Change password

with mismatch

1. Navigate to Change

Password page

2. Enter different password

and confirm password

3. Submit form

password: 1234567

confirm Password:

123456

System displays “Passwords do

not match”.

Pass

UT-028 Change password

shorter than 6

characters

1. Navigate to Change

Password page

2. Enter a new password with

less than 6 characters

3. Submit form

password: 123

confirm Password:

123

System displays “The password

must be at least 6 characters.”

Pass

Test

Module

Member Management – CRUD & Password Update Test Title Display a list of members

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-029 Display member list 1. Navigate to Member List

page

- System displays a paginated list of

members with username, role, and

status

Pass

Test

Module

Member Management – CRUD & Password Update Test Title Search member in list

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-030 Search member in

list

1. Enter keyword in search

bar

2. System filters members

Keyword: member Member list displays matching

usernames result only

Pass

222

Table 7.15: Unit testing of List Inventory

Table 7.16: Unit testing of Add Product

Table 7.17: Unit testing of Delete Product

Test

Module

Inventory Management – Inventory Listing &

Summary

 Test Title Verifying inventory listing, grouping, and

summary

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-031 Display inventory

list (valid data)

1. Navigate to Inventory page

- System displays inventory list

with product ID, name, stock,

damage, missing, reserved, rented

Pass

UT-032 Display grouped

inventory by outlet

1. Navigate to Inventory page

- System displays the inventory

based on outlets

Pass

Test

Module

Product Management – CRUD Test Title Add product to product list

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-033 Add new product (valid

input)

1. Navigate to Product

Add page

2. Fill in product details

3. Upload image

4. Generate QR code

5. Click Submit

Name: “Basketball”

Quantity: 10

Status: Active

Outlet: QM ROOM

Image:

basketball.png

Product successfully added

QR code generated

Product listed in Product List

Product also added and displayed

in inventory List.

Pass

UT-034 Add new product

without generating QR

code.

1. Navigate to Product Add

page

2. Fill in product details

3. Skip QR code generation

4. Click Submit

Name: “Volleyball”

Quantity: 5

Status: Active

Outlet: UP STORE

System displays error message:

“Please generate a QR code first.”

Pass

UT-035 Add duplicate product

name in same outlet

1. Navigate to Product Add

page

2. Enter product name

already existing in the

outlet

3. Generate QR code

4. Submit

Name: “Basketball”

Outlet: QM ROOM

System rejects submission with

error: “The product name

'Basketball' already exists in the

QM ROOM outlet.”

Pass

Test

Module

Product Management – CRUD Test Title Delete product from product list

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-036 Delete existing

product

1. Go to Product List

2. Click Delete button on a

product

3. Confirm delete.

- Product deleted successfully, no

longer visible in Product List,

inventory record also deleted

Pass

223

Table 7.18: Unit testing of Edit Product

Table 7.19: Unit testing of List Product

Table 7.20: Unit testing of Search Product

Table 7.21: Unit testing of Print QR Code

Test

Module

Product Management – CRUD Test Title Display a list of products

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-039 Display product list 1. Navigate to Product List

page

- System displays a paginated list of

products with productID, name,

quantity, QR code, status and

action

Pass

Test

Module

Product Management – CRUD Test Title Search product in list

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-040 Search product in

list

1. Enter keyword in search

bar

2. System filters product

Keyword: Ball Product list displays matching

product name result only

Pass

Test

Module

Product Management – Print QR code Test Title Print QR codes

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-041 Print QR codes 1. Go to Product List

2. Select a product

3. Click Print QR button

4. Enter number of copies

Product:

“Basketball”

Copies: 2

New window opens with QR

codes generated for the product

name, ready for printing

Pass

Test

Module

Product Management – CRUD Test Title Edit product from product list

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-037 Edit existing product

details (valid input)

1. Go to Product List

2. Click Edit button for a

product

3. Modify quantity and upload

new image

4. Click Update

Product:

“Basketball”

New Quantity: 20

New Image:

basketball2.png

Product updated successfully, new

quantity and image reflected in

Product List

Pass

UT-038 Edit existing product

with duplicate name

in outlet

1. Go to Product List

2. Change name to another

existing product in same outlet

3. Click Update

Name: “Football”

(already exists in

QM ROOM)

System shows error: “The product

name 'Football' already exists in

the QM ROOM outlet.”

Pass

224

Table 7.22: Unit testing of Stock Check

Test

Module

Inventory Management – Stock Check Test Title Verifying Stock Check Creation, Listing,

and Validation

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-042 Add new stock check

(valid data)

1. Navigate to Stock Check

Add page

2. Select date and outlet

3. Enter In Stock, Damage,

and Missing for each

product ensuring totals

match original quantity

4. Submit form

Date: 2025-09-20

Outlet: QM ROOM

Product: Basketball

(Qty: 10) →

In Stock: 8,

Damage: 1,

Missing: 1

Stock check saved successfully,

API returns JSON with created

stock check and inventory updated

Pass

UT-043 Validation – totals not

matching product

quantity

1. Navigate to Stock Check

Add page

2. Select date and outlet

3. Enter incorrect totals

(e.g., In Stock + Damage +

Missing ≠ Product Qty)

4. Submit form

Name: “Volleyball”

Quantity: 5

Status: Active

Outlet: UP STORE

Alert displayed: “Quantity

mismatch for product Volleyball.

Expected 12, but got 11.”, record

not saved

Pass

UT-044 Save stock check

without selecting outlet

or date

1. Navigate to Stock Check

Add page

2.Either enter date or select

outlet

3. Submit form

Date: 2025-09-20

Outlet: empty

Validation error occurs: “Outlet is

required.” or “please select a

date.”, stock check not saved

Pass

UT-045 List stock checks by

date and outlet

1. Navigate to Stock Check

List page

2. Leave date empty

3. Click Search

Date: 2025-09-20

Outlet: UP STORE

Table displays stock checks for

selected date and outlet.

Pass

UT-046 List stock checks (all

outlets)

1. Navigate to Stock Check

List page

2. Leave date empty

3. Click Search

Date: 2025-09-20

Outlet: empty

Table displays all stock checks data

grouped by outlet

Pass

UT-047 Validation – fetch stock

checks without date

1. Navigate to Stock Check

List page

2. Leave date empty

3. Click Search

- Alert displayed: “Please select a

date”.

Pass

225

Table 7.23: Unit testing of Member Booking

Table 7.24: Unit testing of Search Booking

Test

Module

Member Booking Management Test Title Member booking the product by walk in

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-048 Checkout product 1. Scan QR code for specific

product

2. Navigate to home page

3.Click Booking Button

4. Select quantity

5. Click Check out button

- New booking inserted into DB.

Inventory

- instock decreases,

- rented increases

booking status become checkout.

Pass

UT-049 Checkout same

product twice

1. Scan QR code for specific

product

2. Navigate to home page

3.Click Booking Button

4. Select quantity

5. Click Check out button

twice

- System displays message that "You

already have this product checked

out.".

Pass

UT-050 Checkin after

checkout

1. Scan QR code for specific

product

2. Navigate to home page

3.Click Booking Button

4. Select quantity

5. Click Check in button.

- Booking status change to closed,

Inventory

- instock increases,

- rented decreases

Pass

Test

Module

Booking Management – Search Test Title Search booking in list

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-051 Search booking in

list

1. Enter keyword in search

bar

2. System filters username

Keyword: Ling Booking list displays matching

username result only

Pass

226

Table 7.25: Unit testing of Add Reservation

Test

Module

Reservation Management – CRUD Test Title Add reservation to reservation list

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-052 Add new reservation

(user)

1. Navigate to Reservation

Add page

2. Select Member from

dropdown

3. Select Outlet

4. Select Date and Time

5. Select Product (ensure

available quantity > 0)

6. Enter Quantity within

available stock

7. Click Submit

Member: john

Product: Basketball

Outlet: QM ROOM

Quantity: 2

Date: 2025-09-20

Time: 10:00

Reservation successfully created

Reservation listed in Reservation

List

Reservation status in “pending”.

Pass

UT-053 Add new reservation

based on member

1. Scan QR code for

specific product

2. Navigate to home page

3.Click Reservation Button

4. Select quantity, date,

time

5. Click Check in button.

Member: ali

Product: Basketball

Outlet: QM ROOM

Quantity: 2

Date: 2025-09-20

Time: 10:00

Reservation successfully created

Reservation listed in Reservation

List

Reservation status in “pending”.

Pass

UT-054 Add reservation

exceeding available

quantity

1. Navigate to Reservation

Add page

2. Select Member, Outlet

and Date

3. Select Product with

available quantity

4. Enter Quantity

5. Click Submit

Member: adam

Product: Volleyball

Outlet: UP STORE

Quantity: 5

Date: 2025-09-21

Time: 11:00

(available: 3)

Error message occurs.

Fail to make Reservation.

Pass

UT-055 Add reservation without

selecting member

1. Navigate to Reservation

Add page

2. Leave Member field

empty

3. Fill in other details

4. Click Submit

Name: “Basketball”

Outlet: QM ROOM

System displays error message to

fill in the required field.

Fail to make Reservation.

Pass

227

Table 7.26: Unit testing of Edit Reservation Management

Table 7.27: Unit testing of List Reservation

Table 7.28: Unit testing of Search Reservation

Table 7.29: Unit testing of Delete Reservation Management

Test

Module

Reservation Management – CRUD Test Title Edit reservation to reservation list

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-056 Edit reservation (status:

pending)

1. Go to Reservation List

2. Click Edit button for

selected reservation.

3. Modify the reservation

details

4. Click Update

Member: john

Product: Basketball

Outlet: QM ROOM

New Quantity: 3

Date: 2025-09-20

Time: 10:00

Reservation updated successfully

Updated details reflected in

Reservation List

Pass

UT-057 Edit reservation (locked

– already accepted,

rejected & used in

booking)

1. Go to Reservation List

2. Click Edit button for

selected reservation.

3. Modify the reservation

details

4. Click Update

- Reservation is not allowed to edit. Pass

Test

Module

Reservation Management – CRUD Test Title List reservation to reservation list

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-058 Display reservation list 1. Navigate to Reservation

List page

- System displays a paginated list of

reservation with ID, username,

product, quantity, date,time,status

and action

Pass

Test

Module

Reservation Management – Search Test Title Search reservation in list

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-059 Search reservation in

list

1. Enter keyword in search

bar

2. System filters username

Keyword: Ling Reservation list displays matching

username result only

Pass

Test

Module

Reservation Management – Delete Test Title Delete reservation in list

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-060 Delete existing

reservation

1. Go to Reservation List

2. Click Delete button on a

product

3. Confirm delete.

- Reservation deleted successfully,

no longer visible in Reservation

List.

Pass

228

Table 7.30: Unit testing of View Dashboard

Table 7.31: Unit testing of View Member Booking

Table 7.32: Unit testing of View Member Reservation

Table 7.33: Unit testing of View Home Page

Table 7.34: Unit testing of View History

Test

Module

Dashboard Management Test Title View Dashboard

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-061 Display Dashboard 1. Navigate to Dashboard

page

- System displays dashboard output Pass

Test

Module

Member Booking Test Title View member booking page

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-062 Display member

booking

1. Navigate to member-

booking page

- System displays product image,

quantity available and input field

that allows member to check-out or

check-in.

Pass

Test

Module

Member Reservation Test Title View member reservation page

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-063 Display member

reservation

1. Navigate to member-

reservation page

- System displays product image,

quantity available and input field

that allows member to make

reservation.

Pass

Test

Module

Home Page Test Title View Home Page

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-064 Display home page 1. Navigate to home page - System displays product overview

that allows member to make

booking or reservation.

Pass

Test

Module

History Test Title View History Page

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-065 Display history page 1. Navigate to history page - System displays booking history. Pass

229

Table 7.35: Unit testing of Notification

Test

Module

Reservation Management – Notification Test Title Notification

TC ID Test Case Name

Test Steps Test Data Expected Result Status

UT-066 Send notification on

reservation

acceptance

1. Navigate to Reservation List

2. Select a pending reservation

3. Edit status to Accept

4. System triggers notification

service

Reservation status

“pending” to

“accepted”

Email sent to member: “Your

reservation has been accepted”

Pass

UT-067 Send notification on

reservation rejection

1. Navigate to Reservation List

2. Select a pending reservation

3. Edit status to Rejected

4. System triggers notification

service

Reservation status

“pending” to

“rejected”

Email sent to member: “Your

reservation has been rejected”

Pass

230

7.2.1 Conclusion of Unit Testing

The results of the unit testing showed that all the core modules of the system were

functioning according to their specifications. Some of the functions such as adding and

editing reservations, updating inventory, managing bookings, and sending notifications

all worked as expected. The error-handling methods also successfully prevented invalid

operations such as duplicate entries or exceeding stock limits. The consistent outcomes

across multiple test cases provided confidence that the individual components were

stable, reliable, and ready for integration testing. Overall, the successful completion of

unit testing showed that the system’s foundation architecture is stable and able to

prevent the risk of defects spreading into later stages of development.

7.3 Integration Testing

Integration testing was conducted after unit testing to validate whether different

modules in the Sports Centre Inventory Management System work together correctly.

This level of testing emphasizes interactions between modules and their interfaces,

rather than internal logic as in unit testing (Leung and White, 1990). The goal of this

testing was to ensure seamless data flow between modules such as authentication,

user/member management, booking, reservation, inventory, and notifications. Each

integration test case checks multiples modules behaved from beginning to end. This is

because there are approximately 40% of software errors can be traced back to

component interaction issues identified during the integration process (Leung and

White, 1990).

231

232

Table 7.36: Testing Integration 1

Table 7.37: Testing Integration 2

Table 7.38: Testing Integration 3

Test

Module

Reservation Management + Notification Test Title Accept/Rejected reservation and send

notification

TC ID Test Case Name

Test Steps Test Data Expected Result Status

IT-001 Reservation

acceptance triggers

notification

1. Admin navigates to

Reservation List

2. Accept a pending

reservation

3. Check member email inbox

Reservation status

“pending” to

“accepted”

Reservation status changes to

accepted

Notification email sent to the

member

Pass

IT-002 Reservation

rejection triggers

notification

1. Admin navigates to

Reservation List

2. Accept a pending

reservation

3. Check member email inbox

Reservation status

“pending” to

“rejected”

Reservation status changes to

rejected

Notification email sent to the

member

Pass

Test

Module

Booking (Checkout) + Inventory Test Title Member checkout updates inventory

TC ID Test Case Name

Test Steps Test Data Expected Result Status

IT-003 Checkout product

reduces inventory in

stock quantity and

increases rented

quantity

1. Member scans QR code

2. Click Booking Button

3. Select Quantity

4. Click Checkout Button

5. Check inventory page

Product: Football

Checkout Quantity:

2

Booking created with status =

checkout

Inventory: in-stock decreases by 1,

rented increases by 1

Pass

Test

Module

Booking (Checkin)+ Inventory Test Title Member checkin updates inventory

TC ID Test Case Name

Test Steps Test Data Expected Result Status

IT-004 Checkin product

increases inventory

in stock quantity and

reduces rented

quantity

1. Member scans QR code

2. Click Booking Button

3. Select Quantity

4. Click Checkin Button

5. User check inventory page

Product: Football

Checkin Quantity:

2

Booking status changes to closed

Inventory: in-stock increases by 1,

rented decreases by 1

Pass

233

Table 7.39: Testing Integration 4

Test

Module

Reservation + Inventory +Booking Test Title Add reservation and check inventory

update

TC ID Test Case Name

Test Steps Test Data Expected Result Status

IT-005 Reservation make

by member.

1. Member scans QR code

2. Click Reservation Button

3. Select quantity, date and

time

4. Click Submit Button

5. User checks the reservation

management and adjust the

reservation status make by

member to “Accept”.

6. Check inventory page

Member: john

Product: Basketball

Outlet: QM ROOM

Quantity: 2

Date: 2025-09-20

Time: 10:00

Inventory reserved quantity

increases by 2.

In-stock remains unchanged, but it

holds the quantity for that member

until the reservation date is past.

Pass

IT-006 Member checkout

the reservation

product.

1. Member scans QR code

2. Click History Button.

3. The reservation in History

from “pending” change to

“accept”.

4. Click Checkout Button

shows in reservation record.

5. User check inventory page

Member: john

Product: Basketball

Outlet: QM ROOM

Quantity: 2

Date: 2025-09-20

Time: 10:00

Checkout at:

2025-09-20

Inventory reserved quantity

decrease by 2, in-stock decreases

and rented quantity increase.

Pass

IT-007 Member checkin the

reservation product.

1. Member scans QR code

2. Click History Button.

3. The reservation in History

change to “checkin”

4. Click Checkin Button shows

in reservation record.

5. User check inventory page

Member: john

Product: Basketball

Outlet: QM ROOM

Quantity: 2

Date: 2025-09-20

Time: 10:00

Checkout at:

2025-09-20

Checkout at:

2025-09-20

Inventory in-stock increase and

rented quantity decrease.

Pass

234

Table 7.40: Testing Integration 5

Test

Module

User Management + Authentication Test Title Admin creates user account and login with

new credentials

TC ID Test Case Name

Test Steps Test Data Expected Result Status

IT-008 New user Login

with the role

“administrator” or

“quarter master”

1. Administrator adds new

user in User Management.

3. Create a new user with

administrator role or quarter

master role

4. Log out

5. Log in with new credentials

Username:

newadmin

Password:

password123

or

Username: newQM

Password: 123456

User added successfully

New user (administrator / quarter

master) can login and access role-

based dashboard

Pass

IT-009 New member Login

with the role

“student” or

“teacher”

1. Administrator adds new

user in Member Management.

3. Create a new member with

student role or teacher role.

4. Log out

5. Log in with new credentials

Username:

newmember

Password: pass123

Memver added successfully

New member (student / teacher)

can access home page

Pass

235

7.3.1 Conclusion of integration testing

The result of the integration testing showed that there was a seamless collaboration of

all modules within the Sports Center Inventory Management System. This is because

the functions such as notifications triggered by appointment acceptance or rejection,

real-time inventory updates during booking operations, and check-in/check-out

processes accurately reflecting stock levels were all successfully verified which

resulted in a comprehensive and fully functional workflow. Besides, the integration of

user management, member management and authentication ensured that the role-based

access control work correctly to handle administrators, quartermasters, teachers, and

student’s role. All designed integration test cases produced expected the outcomes as

expected which demonstrated a reliable and consistent interactions between modules.

In conclusion, the successful completion of integration testing shows that system

components not only function independently but also collaborate efficiently to support

end-to-end business processes.

7.4 User Acceptance Testing

User Acceptance Testing (UAT) was conducted to ensure that the system meets the

requirements and expectations of targeted users. The purpose of UAT is to validate that

the system’s workflow is align with actual usage scenarios within the sport centre

environment and ensured that all functionalities are intuitive, reliable, and efficient.

Test cases involved simulating typical user scenarios, including system login,

reservation management, booking, product checkout/in procedures and the others. The

UAT is used to invite the actual and targeted user to involved in the testing as it

provided invaluable feedback on system usability, functionality and overall satisfaction.

Therefore, User Acceptance Testing is important as serves as the final validation stage

that ensure the system is fully ready for operational use.

236

User Acceptance Testing

UAT Test ID: UAT-User Type - 1 Tester Type: Administrator

Test Date: 21/8/2025 Tester name: EugeneTiang

Test Case

ID

Module Under Tested Test Scenario Results Feedback/Comments from participants

UAT-001 Authentication Login PASS —

UAT-002 Inventory Management Manage Inventory (create, delete, update,edit) PASS

UAT-003 User Management Manage User (create, delete, update,edit) PASS

UAT-004 Member Management Manage member (create, delete, update,edit) PASS

UAT-005 Product Management Manage products (create, delete, update,edit) PASS

UAT-006 Dashboard Management View Dashboard PASS

UAT-007 Reservation Management Manage Reservation (create, delete, update,edit) PASS

UAT-008 Stock Check Management Stock Check (missing, damaged, instock) PASS

UAT-009 Booking Management Manage Bookings (delete, update,edit) PASS

UAT-010 Product Management Generate QR Code PASS

UAT-011 QR Code Integration Scan QR Code PASS

UAT-012 Product Management Print QR Code PASS

UAT-013 Authentication Logout PASS

237

User Acceptance Testing

UAT Test ID: UAT-User Type - 2 Tester Type: Administrator

Test Date: 21/8/2025 Tester name: Lim Zi Quan

Test Case

ID

Module Under Tested Test Scenario Results Feedback/Comments from participants

UAT-001 Authentication Login PASS —

UAT-002 Inventory Management Manage Inventory (create, delete, update,edit) PASS

UAT-003 User Management Manage User (create, delete, update,edit) PASS

UAT-004 Member Management Manage member (create, delete, update,edit) PASS

UAT-005 Product Management Manage products (create, delete, update,edit) PASS

UAT-006 Dashboard Management View Dashboard PASS

UAT-007 Reservation Management Manage Reservation (create, delete, update,edit) PASS

UAT-008 Stock Check Management Stock Check (missing, damaged, instock) PASS

UAT-009 Booking Management Manage Bookings (delete, update,edit) PASS

UAT-010 Product Management Generate QR Code PASS

UAT-011 QR Code Integration Scan QR Code PASS

UAT-012 Product Management Print QR Code PASS

UAT-013 Authentication Logout PASS

238

User Acceptance Testing

UAT Test ID: UAT-User Type - 3 Tester Type: Administrator

Test Date: 21/8/2025 Tester name: Soh Yi Jye

Test Case

ID

Module Under Tested Test Scenario Results Feedback/Comments from participants

UAT-001 Authentication Login PASS —

UAT-002 Inventory Management Manage Inventory (create, delete, update,edit) PASS

UAT-003 User Management Manage User (create, delete, update,edit) PASS

UAT-004 Member Management Manage member (create, delete, update,edit) PASS

UAT-005 Product Management Manage products (create, delete, update,edit) PASS

UAT-006 Dashboard Management View Dashboard PASS

UAT-007 Reservation Management Manage Reservation (create, delete, update,edit) PASS

UAT-008 Stock Check Management Stock Check (missing, damaged, instock) PASS

UAT-009 Booking Management Manage Bookings PASS

UAT-010 Product Management Generate QR Code PASS

UAT-011 QR Code Integration Scan QR Code PASS

UAT-012 Product Management Print QR Code PASS

UAT-013 Authentication Logout PASS

239

User Acceptance Testing

UAT Test ID: UAT-User Type - 4 Tester Type: Quarter Master

Test Date: 21/8/2025 Tester name: Tan Ke Ting

Test Case

ID

Module Under Tested Test Scenario Results Feedback/Comments from participants

UAT-001 Authentication Login PASS

UAT-002 Inventory Management Update Inventory PASS

UAT-003 Reservation Management Manage Reservation PASS

UAT-004 Stock Check Management Stock Check (missing, damaged, instock) PASS

UAT-005 Booking Management Manage Bookings PASS

UAT-006 QR Code Integration Scan QR Code PASS

UAT-007 Product Management Print QR Code PASS

UAT-008 Authentication Logout PASS

User Acceptance Testing

UAT Test ID: UAT-User Type - 5 Tester Type: Quarter Master

Test Date: 21/8/2025 Tester name: Chow Zong Xian

Test Case

ID

Module Under Tested Test Scenario Results Feedback/Comments from participants

UAT-001 Authentication Login PASS

UAT-002 Inventory Management Update Inventory PASS

UAT-003 Reservation Management Manage Reservation PASS

UAT-004 Stock Check Management Stock Check (missing, damaged, instock) PASS

UAT-005 Booking Management Manage Bookings PASS

UAT-006 QR Code Integration Scan QR Code PASS

UAT-007 Product Management Print QR Code PASS

UAT-008 Authentication Logout PASS

240

User Acceptance Testing

UAT Test ID: UAT-User Type - 6 Tester Type: Quarter Master

Test Date: 21/8/2025 Tester name: Vincy Lim

Test Case

ID

Module Under Tested Test Scenario Results Feedback/Comments from participants

UAT-001 Authentication Login PASS

UAT-002 Inventory Management Update Inventory PASS

UAT-003 Reservation Management Manage Reservation PASS

UAT-004 Stock Check Management Stock Check (missing, damaged, instock) PASS

UAT-005 Booking Management Manage Bookings PASS

UAT-006 QR Code Integration Scan QR Code PASS

UAT-007 Product Management Print QR Code PASS

UAT-008 Authentication Logout PASS

User Acceptance Testing

UAT Test ID: UAT-User Type - 7 Tester Type: Quarter Master

Test Date: 21/8/2025 Tester name: Vinky Tan Zi Yi

Test Case

ID

Module Under Tested Test Scenario Results Feedback/Comments from participants

UAT-001 Authentication Login PASS

UAT-002 Inventory Management Update Inventory PASS

UAT-003 Reservation Management Manage Reservation PASS

UAT-004 Stock Check Management Stock Check (missing, damaged, instock) PASS

UAT-005 Booking Management Manage Bookings PASS

UAT-006 QR Code Integration Scan QR Code PASS

UAT-007 Product Management Print QR Code PASS

UAT-008 Authentication Logout PASS

241

User Acceptance Testing

UAT Test ID: UAT-User Type – 8 Tester Type: Student

Test Date: 21/8/2025 Tester name: Chong Min Yew

Test Case

ID

Module Under Tested Test Scenario Results Feedback/Comments from participants

UAT-001 Authentication Login PASS

UAT-002 Booking Management Book Equipment

(Check In/Check Out)

PASS

UAT-003 Reservation Management Make Reservation PASS

UAT-004 Reservation Management Check Reservation Status PASS

UAT-005 Booking Management View History PASS

UAT-006 QR Code Integration Scan QR Code PASS

UAT-007 Notification Receive Notifications through email. PASS

UAT-008 Authentication Logout PASS

User Acceptance Testing

UAT Test ID: UAT-User Type – 9 Tester Type: Student

Test Date: 21/8/2025 Tester name: Kee Sherru

Test Case

ID

Module Under Tested Test Scenario Results Feedback/Comments from participants

UAT-001 Authentication Login PASS

UAT-002 Booking Management Book Equipment

(Check In/Check Out)

PASS

UAT-003 Reservation Management Make Reservation PASS

UAT-004 Reservation Management Check Reservation Status PASS

UAT-005 Booking Management View History PASS

UAT-006 QR Code Integration Scan QR Code PASS

UAT-007 Notification Receive Notifications through email. PASS

UAT-008 Authentication Logout PASS

242

User Acceptance Testing

UAT Test ID: UAT-User Type – 10 Tester Type: Student

Test Date: 21/8/2025 Tester name: Ng Jing Hong

Test Case

ID

Module Under Tested Test Scenario Results Feedback/Comments from participants

UAT-001 Authentication Login PASS

UAT-002 Booking Management Book Equipment

(Check In/Check Out)

PASS

UAT-003 Reservation Management Make Reservation PASS

UAT-004 Reservation Management Check Reservation Status PASS

UAT-005 Booking Management View History PASS

UAT-006 QR Code Integration Scan QR Code PASS

UAT-007 Notification Receive Notifications through email. PASS

UAT-008 Authentication Logout PASS

User Acceptance Testing

UAT Test ID: UAT-User Type – 11 Tester Type: Student

Test Date: 21/8/2025 Tester name: Lau Jing Xuan

Test Case

ID

Module Under Tested Test Scenario Results Feedback/Comments from participants

UAT-001 Authentication Login PASS

UAT-002 Booking Management Book Equipment

(Check In/Check Out)

PASS

UAT-003 Reservation Management Make Reservation PASS

UAT-004 Reservation Management Check Reservation Status PASS

UAT-005 Booking Management View History PASS

UAT-006 QR Code Integration Scan QR Code PASS

UAT-007 Notification Receive Notifications through email. PASS

UAT-008 Authentication Logout PASS

243

User Acceptance Testing

UAT Test ID: UAT-User Type – 12 Tester Type: Teacher

Test Date: 21/8/2025 Tester name: Tan Heng Jie

Test Case

ID

Module Under Tested Test Scenario Results Feedback/Comments from participants

UAT-001 Authentication Login PASS

UAT-002 Booking Management Book Equipment

(Check In/Check Out)

PASS

UAT-003 Reservation Management Make Reservation PASS

UAT-004 Reservation Management Check Reservation Status PASS

UAT-005 Booking Management View History PASS

UAT-006 QR Code Integration Scan QR Code PASS

UAT-007 Notification Receive Notification through email PASS

UAT-008 Authentication Logout PASS

User Acceptance Testing

UAT Test ID: UAT-User Type – 13 Tester Type: Teacher

Test Date: 21/8/2025 Tester name: Kriss Tee

Test Case

ID

Module Under Tested Test Scenario Results Feedback/Comments from participants

UAT-001 Authentication Login PASS

UAT-002 Booking Management Book Equipment

(Check In/Check Out)

PASS

UAT-003 Reservation Management Make Reservation PASS

UAT-004 Reservation Management Check Reservation Status PASS

UAT-005 Booking Management View History PASS

UAT-006 QR Code Integration Scan QR Code PASS

UAT-007 Notification Receive Notification through email PASS

UAT-008 Authentication Logout PASS

244

User Acceptance Testing

UAT Test ID: UAT-User Type – 14 Tester Type: Teacher

Test Date: 21/8/2025 Tester name: Tee Kuik Qun

Test Case

ID

Module Under Tested Test Scenario Results Feedback/Comments from participants

UAT-001 Authentication Login PASS

UAT-002 Booking Management Book Equipment

(Check In/Check Out)

PASS

UAT-003 Reservation Management Make Reservation PASS

UAT-004 Reservation Management Check Reservation Status PASS

UAT-005 Booking Management View History PASS

UAT-006 QR Code Integration Scan QR Code PASS

UAT-007 Notification Receive Notification through email PASS

UAT-008 Authentication Logout PASS

User Acceptance Testing

UAT Test ID: UAT-User Type – 15 Tester Type: Teacher

Test Date: 21/8/2025 Tester name: Yee Jia Xuan

Test Case

ID

Module Under Tested Test Scenario Results Feedback/Comments from participants

UAT-001 Authentication Login PASS

UAT-002 Booking Management Book Equipment

(Check In/Check Out)

PASS

UAT-003 Reservation Management Make Reservation PASS

UAT-004 Reservation Management Check Reservation Status PASS

UAT-005 Booking Management View History PASS

UAT-006 QR Code Integration Scan QR Code PASS

UAT-007 Notification Receive Notification through email PASS

UAT-008 Authentication Logout PASS

245

7.4.1 Findings

The User Acceptance Testing (UAT) was conducted to evaluate system’s overall

functionality, usability and deployment readiness. There are 15 testers representing

different user roles participated in the testing. Each tester performed role-specific tasks

to ensure the system met operational requirements within the school sports centre

environment.

 All test cases demonstrated a 100% pass rate. This result shows that the

inventory management system had a reliable operation across various user scenarios.

Every core system module has successfully met the respective acceptance criteria. For

example, administrator can manage all the tasks efficiently, while quarter master can

do the stock check, printed QR codes, and managed booking and reservations and others

without errors. Teachers and students seamlessly logged into the system to book

equipment by scanning the QR codes for check out and check in procedures, view

booking histories, and receive email notifications. There are no major issues, system

vulnerabilities or usability barriers were reported by any participants. Test results also

confirmed the proper functioning of role-based access control to ensure users could

only access functional modules relevant to their assigned roles.

7.4.2 Achievements

The successful completion of user acceptance testing indicated a significant milestone

in the system development lifecycle. A 100% pass rate confirms that the inventory

management dashboard has achieved its intended objectives which is provide a stable,

user-friendly and efficient solution for sports equipment and facility management. The

system meets all acceptance criteria, and this demonstrate that it compliances with user

expectations and organisational requirements.

User acceptance test results validate:

• The system's functionality is complete and all essential operations

functioning without fault.

• The user interface design is intuitive which enabling effortless

operation by all users.

• QR code integration effectively supports real-time tracking and

equipment management.

246

• The notification system ensures users receive timely updates on

booking and reservation statuses.

• Role-based access control successfully implements security and

operational boundary management.

In conclusion, the user acceptance test results show that the system is ready

for deployment. The successful testing outcome highlights the project's achievement in

delivering a robust, reliable, and scalable inventory management solution. This solution

will enhance efficiency, reduce manual workload, and provide data-driven decision

support for the school sports centre.

247

CHAPTER 8

8 CONCLUSION AND FUTURE WORK

8.1 Conclusion

This project successfully developed a web-based Inventory Management Dashboard

and mobile app for scanning QR code to streamline the management of sports

equipment and facilities at a secondary school’s sports centre. The system was designed

to address inefficiencies of manual record-keeping and lack of visibility in inventory

movement. By integrating React for the web application and mobile application,

Laravel as the backend framework, the system provides a modern, scalable, and user-

friendly platform. The implementation of QR code technology further enhances

reliability by streamlining equipment check-in and check-out processes, reducing errors,

and improving accountability. In conclusion, the project demonstrates how technology

can significantly improve the management and monitoring of sports resources in a

school environment.

8.2 Achieved Objectives

The project has achieved the following objectives:

1. Successfully developed a web application with a dashboard for

tracking the movement and inventory of sports equipment and facilities.

2. Implemented equipment tracking and maintenance function with QR

code generation which allows user to manage equipment efficiently.

3. Designed and developed a mobile application that enables QR code

scanning for real-time updates when the equipment is checked out or

in of the sports center.

4. Conducted User Acceptance Testing (UAT) with selected users to

demonstrate the system’s effectiveness and usability in improving

sports centre operations.

248

8.3 Limitations and Future Work

Although the system achieved its targeted objectives, some limitations remain that can

be addressed in future work:

Table 8.1: Limitation and Future Work

Limitation Future work

Notifications are limited to email only. Integrate SMS and mobile push

notifications for better accessibility.

System is primarily designed for local

school network use.

Deploy on a cloud-based infrastructure to

allow remote access anytime, anywhere.

Filtering and search functions are limited

(e.g., by username only)

Improve filter options to allow advanced

search (by product type, member,

booking status, time range, etc.).

The system is web-based with no

dedicated mobile application.

Build a mobile app for Android/iOS to

improve convenience for teachers and

students.

Dashboard Reporting features are basic

and providing only essential information

without advanced analytics or data

visualization.

Integrate AI-driven analytics to provide

predictive insights, usage patterns, and

recommendations

Manual QR code scanning is required to

track equipment.

Explore integration of IoT-based sensors

for automated equipment tracking

without manual scanning.

Outlets are fixed and cannot be

dynamically added.

Enhance the system to allow

administrators to create and manage new

outlets.

249

REFERENCES

Okirie, A.J., Barnabas, M. and Adagbon, J.E, 2024 ‘Maintenance Management

Optimization: Evaluating Manual and Automated Methods of Tracking Uptime

Hours for Offshore Equipment’, American Journal of IR 4 0 and Beyond, 3(1), pp.

15–27. Available at: https://doi.org/10.54536/ajirb.v3i1.3516.

Al-Saqqa, S., Sawalha, S. and AbdelNabi, H., 2020. Agile software development:

Methodologies and trends. International Journal of Interactive Mobile Technologies,

14(11).

Aman, M.S., Ponnusamy, V., Elumalai, G., Mohamed, M.N.A., Kamalden, T.F.T. and

Yahya, S., 2020. Trends and usage of sports facilities among Malaysians.

International Journal of Physiotherapy, 7(6), pp.252-255. Available at:

https://doi.org/10.15621/ijphy/2020/v7i6/840

Apke, L., 2016. Agile values: Working software over comprehensive documentation.

[online] Agile Doctor. Available at: https://www.agile-

doctor.com/2016/08/16/agile-values-working-software-documentation/

Asset Panda, 2022. How Asset Tracking Helps Educational Facilities Save Money.

[online] Available at: https://www.assetpanda.com/resource-center/white-

papers/asset-tracking-aids-educational-institutions/

Bassil, Y., 2012. A simulation model for the waterfall software development life cycle.

arXiv preprint arXiv:1205.6904.

Bell, T.E. and Thayer, T.A., 1976. Software requirements: Are they really a problem?

In: Proceedings of the 2nd International Conference on Software Engineering,

pp.61-68.

Camburn, B.A., Viswanathan, V.K., Linsey, J.S., Jensen, D.D., Crawford, R.H., Otto,

K. and Wood, K.L., 2017. Design prototyping methods: state of the art in strategies,

techniques, and guidelines. Design Science, 3, e13. [online] Cambridge University

Press. Available at: https://doi.org/10.1017/dsj.2017.10

https://doi.org/10.15621/ijphy/2020/v7i6/840

250

Chemuturi, M., 2013. Requirements Engineering and Management for Software

Development Projects. Springer Science & Business Media.

Daka, E. and Fraser, G., 2014. A survey on unit testing practices and problems. In: 2014

IEEE 25th International Symposium on Software Reliability Engineering, pp.201-

211.

Davis, F.D. and Venkatesh, V., 2004. Toward preprototype user acceptance testing of

new information systems: implications for software project management. IEEE

Transactions on Engineering Management, 51(1), pp.31-46.

Discipline Infotech (2023) Laravel Security Features, Disciplineinfotech.com.

Discipline Infotech. Available at: https://www.disciplineinfotech.com/blog/laravel-

security-features

Dudley, M., 2023. 6 Surprising Stats About Tool Tracking | Link Labs | Blog. [online]

Link-labs.com. Available at: https://www.link-labs.com/blog/6-surprising-stats-

about-tool-tracking/

Erickson, J., 2024. What is MySQL? [online] Oracle. Available at:

https://www.oracle.com/mysql/what-is-mysql/

Epifany Bojanowska, 2018. Naturaily: Web and Mobile Development Company from

Poland. [online] Naturaily.com. Available at: https://naturaily.com/blog/pros-cons-

vue-js/

Firebase, 2025. Firebase Realtime Database. [online] Available at:

https://firebase.google.com/docs/database#store_other_types_of_data

Gackenheimer, C., 2015. Introduction to React. Apress.

GeeksforGeeks, 2019a. Unit Testing | Software Testing. [online] Available at:

https://www.geeksforgeeks.org/unit-testing-software-testing/

251

GeeksforGeeks, 2019b. System Testing - GeeksforGeeks. [online] Available at:

https://www.geeksforgeeks.org/system-testing/

GeeksforGeeks (2023) Laravel Features, GeeksforGeeks. Available at:

https://www.geeksforgeeks.org/php/laravel-features/.

Gurung, G., et al., 2020. Software Development Life Cycle Models – A Comparative

Study. International Journal of Scientific Research in Computer Science and

Engineering, 6(4), pp.30–37.

Hawkes, L. (2025) Facility Maintenance Plan, Click Maint CMMS. Click Maint Inc.

Available at: https://www.clickmaint.com/blog/facility-maintenance-plan

Horváthová, N. and Voštinár, M., 2018. Mistake as a source of feedback. In:

International Scientific Conference on Distance Learning in Applied Informatics

(DIVAI 2018). Štúrovo, Slovakia, 2–4 May. Wolters Kluwer, pp.40–45.

Jastrow, F., Greve, S., Thumel, M. et al. Digital technology in physical education:

a systematic review of research from 2009 to 2020. Ger J Exerc Sport Res 52, 504–

528 (2022). https://doi.org/10.1007/s12662-022-00848-5

Jindal, S., Gulati, P. and Rohilla, P., 2015. Various Software Development Life Cycle

Models. IJRDO - Journal of Computer Science Engineering, 1(4), pp.162–167.

Johnson, P., 2023a. 10 Reasons Why Vue.js Is Best for App Development [+ Benefits].

[online] Digital Marketing Agency in USA. Available at:

https://foreignerds.com/why-vue-js/

Johnson, P., 2023b. The Good and the Bad of Vue.js Framework Programming. [online]

Digital Marketing Agency in USA. Available at: https://foreignerds.com/the-good-

and-the-bad-of-vue-js-framework-programming/

Jorgensen, P.C. and Erickson, C., 1994. Object-oriented integration testing.

Communications of the ACM, 37(9), pp.30–38.

252

Ko, H.S., Azambuja, M. and Lee, H.F., 2016. Cloud-based materials tracking system

prototype integrated with radio frequency identification tagging

technology. Automation in Construction, 63, pp.144-154.

Krahenbuhl, J.H., 2015. Learning Axure RP Interactive Prototypes. Packt Publishing

Ltd.

Kute, S.S. and Thorat, S.D., 2014. A Review on Various Software Development Life

Cycle (SDLC) Models. International Journal of Research in Computer and

Communication Technology, 3(7), pp.776–781.

Leed Software Development, 2024. Advantages and Challenges of React Native App

Development. [online] Medium. Available at:

https://leeddev.medium.com/advantages-and-challenges-of-react-native-app-

development-56c18d8fc834

Leung, H.K.N. and White, L. (1990) A study of integration testing and software

regression at the integration level, IEEE Xplore. Available at:

https://doi.org/10.1109/ICSM.1990.131377.

Menariya, N., 2022. Laravel: advantages and disadvantages. [online] Medium.

Available at: https://mystorywigs.medium.com/laravel-advantages-and-

disadvantages-fee90e40a41f

Morrow, D. (2018) Sports Equipment: The Importance of Athletic Equipment

Inspections | Recreation Management, recmanagement.com. Available at:

https://recmanagement.com/articles/152405/sports-equipment-importance-athletic-

equipment-inspections.

React Native, 2024. React Native – A framework for building native apps using React.

[online] Available at: https://reactnative.dev/

Royce, W.W., 1970. Managing the development of large software systems. In:

Proceedings of IEEE WESCON, pp.1–9.

253

Royce, W.W., 1987. Managing the development of large software systems: concepts

and techniques. In: Proceedings of the 9th International Conference on Software

Engineering, pp.328–338.

Runeson, P. (2006) ‘A survey of unit testing practices’, IEEE Software, 23(4), pp. 22–

29. Available at: https://doi.org/10.1109/ms.2006.91.

Sadiq, A., Khaskheli, N.A., Laghari, A.A., Sikandar, N., Alia, Rashid, N.K. and Siraj,

M.J., 2023. Availability and utilization of sports facilities at high schools of district

Faisalabad, Pakistan. Elementary Education Online, 20(2), pp.1559-1565. Available

at: https://ilkogretim-online.org/index.php/pub/article/view/2274

Sayyed, M. (2015) Artificial neural network approach for condition-based

maintenance, arXiv.org. Available at: https://arxiv.org/abs/1601.03809 (Accessed:

7 October 2025).

Senarath, U.S., 2021. Waterfall methodology, prototyping and agile development. Tech.

Rep., pp.1–16.

Shetty, M.Y., et al., 2023. Software Development Life Cycle (SDLC) in Software

Engineering – A Brief Review. Journal of Computer Science and System Software,

1(1), pp.5–9.

Singh, R.P., 2023. Pros and Cons of React Native – A Comprehensive Guide. [online]

RichestSoft. Available at: https://richestsoft.com/blog/pros-and-cons-of-react-

native/

Song, I.Y., Evans, M. and Park, E.K., 1995. A comparative analysis of entity-

relationship diagrams. Journal of Computer and Software Engineering, 3(4),

pp.427–459.

Srivastava, A., Bhardwaj, S. and Saraswat, S., 2017. SCRUM model for agile

methodology. In: 2017 International Conference on Computing, Communication

and Automation (ICCCA), pp.864–869. IEEE.

https://doi.org/10.1109/ms.2006.91
https://ilkogretim-online.org/index.php/pub/article/view/2274

254

TestFyra, 2023. Integrating Testing Across the Software Development Life Cycle

(SDLC). [online] Medium. Available at:

https://testfyrablog.medium.com/integrating-testing-across-the-software-

development-life-cycle-sdlc-33c770fefba6

Uhrowczik, P.P., 1973. Data dictionary/directories. IBM Systems Journal, 12(4),

pp.332-350.

Visual Paradigm, 2019. What is Unified Modeling Language (UML)? [online]

Available at: https://www.visual-paradigm.com/guide/uml-unified-modeling-

language/what-is-uml/

Vue.js, no date. vuejs.org. [online] Available at: https://vuejs.org/guide/introduction

Watanabe, N.M., Shapiro, S. and Drayer, J. (2021) ‘Big Data and Analytics in Sport

Management’, Journal of Sport Management, 35(3), pp. 197–202. Available at:

https://doi.org/10.1123/jsm.2021-0067.

7 Ways Data Can Drive Better Facilities Management Decisions (2025) Cbre.com.my.

Available at: https://www.cbre.com.my/insights/articles/7-ways-data-can-drive-

better-facilities-management-decisions

Wu, X., Lu, Y. and Ma, C., 2025. An evaluation method for safety applied to public

sports facilities in urban communities. MethodsX, 14, p.103256. Available at:

https://doi.org/10.1016/j.mex.2025.103256

Y, E. (2018) What Is WAMP – a Friendly Guide for Beginners, Hostinger Tutorials.

Available at: https://www.hostinger.com/my/tutorials/what-is-wamp

https://testfyrablog.medium.com/integrating-testing-across-the-software-development-life-cycle-sdlc-33c770fefba6
https://testfyrablog.medium.com/integrating-testing-across-the-software-development-life-cycle-sdlc-33c770fefba6
https://doi.org/10.1123/jsm.2021-0067
https://doi.org/10.1016/j.mex.2025.103256

255

APPENDICES

Appendix A: Hardcopy records and Manual Entry

256

257

Appendix B : WBS Gantt Chart

FYP1- Gantt Chart

258

FYP2- Gantt Chart

