INVENTORY MANAGEMENT DASHBOARD
FOR TRACKING OF SPORTS EQUIPMENT
AND FACILITIES IN A SECONDARY
SCHOOL'S SPORT CENTRE

YAP RUI YA

UNIVERSITI TUNKU ABDUL RAHMAN

INVENTORY MANAGEMENT DASHBOARD FOR TRACKING OF
SPORTS EQUIPMENT AND FACILITIES IN A SECONDARY
SCHOOL'S SPORT CENTRE

YAP RUI YA

A project report submitted in partial fulfilment of the
requirements for the award of Bachelor of Software Engineering

(Honours)

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2025

DECLARATION

I hereby declare that this project report is based on my original work except for citations
and quotations which have been duly acknowledged. I also declare that it has not been

previously and concurrently submitted for any other degree or award at UTAR or other

institutions.
Name : YAPRUIYA
ID No. ;2107016

Date 1 28/4/2025

il

COPYRIGHT STATEMENT

© 2025, Yap Rui Ya.All right reserved.

This final year project report is submitted in partial fulfilment of the requirements for
the degree of Software Engineering at Universiti Tunku Abdul Rahman (UTAR). This
final year project report represents the work of the author, except where due
acknowledgement has been made in the text. No part of this final year project report
may be reproduced, stored, or transmitted in any form or by any means, whether
electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the author or UTAR, in accordance with UTAR’s Intellectual Property
Policy.

il

ACKNOWLEDGEMENTS

I would like to extend my heartfelt appreciation to everyone who have contributed to
accomplish the milestones of this project. This report was prepared as part of the
academic requirements for the Lee Kong Chian Faculty of Engineering and Science at
Tunku Abdul Rahman University (UTAR to help students complete their graduation

studies.

I would like to express my gratitude to Ms Gunavathi a/p Duraisamy as my research
supervisor for her valuable advice, sensible opinions, guidance and enormous patience
across all of the research’s timelines. In this case, the research would not have been
completed as required within the set parameters without her careful guidance and

suggestions.

I would also like to express my sincere gratitude to my parents, relatives and all the
people who have support me in one-way, moral support and insights along the way.

The respect and trust they placed in me motivates me to keep striving forward.

Lastly, I wish to show my appreciation for the volunteers who took part within the user
acceptance testing. Their enthusiastic participation and insightful feedback were crucial

to improve the overall quality of the project which greatly attributed to its success.

v
ABSTRACT

Manual inventory management in secondary school sports centres often results in
misplaced equipment, overbooked facilities, and inefficient maintenance tracking. This
project aims to address these issues by developing an Inventory Management
Dashboard that digitalizes the management of sports equipment and facilities. The
system integrates QR code-based tracking, real-time updates, and a centralized booking
platform to enhance operational accuracy and accountability. Using a prototyping
methodology, the system was iteratively designed, developed, and refined through
continuous user feedback from stakeholders, including administrators, quartermasters,
teachers, and students. The solution was implemented as a web-based application using
React.js for the frontend, Laravel for the backend, and a MySQL database for persistent
storage. Key features include role-based access control, QR code generation and
scanning for equipment check-in and check-out, real-time inventory and facility
booking, maintenance scheduling, and an analytics dashboard for performance insights
and decision-making. The system underwent comprehensive unit testing, integration
testing, and user acceptance testing, confirming its functionality, usability, and
effectiveness in meeting user requirements. Results demonstrate significant
improvements in inventory accuracy, booking transparency, and maintenance
monitoring. The developed dashboard offers a scalable and user-friendly solution that
reduces manual workload, minimizes errors, and promotes data-driven management of
sports resources. Future improvements may include the integration of predictive
maintenance, automated reporting, and multi-school scalability to broaden its impact

across educational institutions.

Keywords: inventory management; sports facilities; QR code tracking; web

application; React.js; Laravel; MySQL; prototyping methodology

Subject Area: QA76.76 Computer software

TABLE OF CONTENTS

DECLARATION
COPYRIGHT STATEMENT
ACKNOWLEDGEMENTS
ABSTRACT

TABLE OF CONTENTS
LIST OF TABLES

LIST OF FIGURES

LIST OF APPENDICES

CHAPTER
1 INTRODUCTION
1.1 General Introduction
1.2 Project Background

1.3 Problem Statement

1.3.1 Inefficient Equipment Tracking System

1.3.2 Overbooking and Underutilization of Facilities

1.3.3 Lack of Maintenance Tracking

1.3.4 Poor Reporting and Decision-Making

1.4 Aim and Objectives
1.5 Project Scope
1.5.1 Target User

1.5.1.1 Functionality for Teachers & Students

1.5.2 Project Out-of-Scope
1.6 Project Solution
1.7 Project Approach
2 LITERATURE REVIEW

2.1 Introduction

2.2 Challenges of Manual Inventory Management
2.3 Software Development Methodology (SDLC)

2.3.1 Overview of SDLC

ii
il

iv

ix
xii

xxi

—_— = e

O 00 3 O O O W»n W W NN

—_ = e e e
NN NN N O

2.3.2 Waterfall Development Methodology
2.3.3 Agile Development Methodology
2.3.4 Prototyping Development Methodology
2.3.5 Comparison of the Evaluated Development
Methodologies
2.3.6 Conclusion of Methodology
2.4 Web Application Framework
2.4.1 React Native
2.42 Vuejs
2.4.3 Laravel
2.4.4 Express.js
2.4.5 Conclusion of Web Application Framework
2.5 Existing Similar Application
2.5.1 Odoo
2.5.2 Dashcode
2.5.3 ECOUNT (Inventory / Barcode Software)
2.5.4 Comparison of Existing Similar Application
2.5.5 Conclusion of existing similar applications
METHODOLOGY AND WORK PLAN
3.1 Introduction
3.2 Prototyping Methodology

3.2.1 Requirements Planning

3.2.2 Design Process Using Prototyping Methodology

33 Final Implementation Phase
3.4 System Testing
3.4.1 Unit Testing
3.4.2 Integration Testing
3.4.3 User Acceptance Testing (UAT)
3.4.4 Bug Fixing and Final Refinements
3.5 Project Plan
3.5.1 Work Breakdown Structure (WBS)
3.5.2 Work Plan
3.6 Development Tools
3.6.1 Visual Studio Code

13
17
19

22
23
24
24
25
27
28
29
30
30
36
40
43
45
47
47
47
48

53
53
53
54
54
54
54
54
57
58
58

vi

3.6.2 Axure RP
3.6.3 React
3.6.4 Laravel
3.6.5 MySQL
3.6.6 Enterprise Architect
3.6.7 WampServer
3.6.8 phpMyAdmin
RESULTS AND DISCUSSION
4.1 Introduction
4.2 Fact Findings
4.2.1 Analysis
4.3 Requirements Specification
4.3.1 Functional Requirements
4.3.2 Non-Functional Requirements
4.4 Use Case Modelling
4.4.1 Use Case Diagram
4.4.2 Use Case Description
4.5 Prototype Screenshot
SYSTEM DESIGN
5.1 Introduction
5.2 System Architecture Design
5.2.1 Presentation Layer
5.2.2 Application Layer
5.2.3 Data Layer
53 Modelling Diagram

5.3.1 Entity Relationship Diagram (ERD)

5.3.2 Entity Relationship
5.3.3 Data Dictionary
5.4 User Interface Design
5.4.1 Login Module
5.4.2 Dashboard Module
5.4.3 Product Management Module
5.4.4 Inventory Management Module
5.4.5 Stock Check Module

58
59
59
59
59
60
60
61
61
61
62
76
76
79
80
80
81
100
107
107
107
108
108
109
110
110
111
112
117
117
118
119
123
123

vii

viii

5.4.6 Booking Module 125

5.4.7 Reservation Module 126

5.4.8 Member Module 128

5.4.9 User Module 130

6 SYSTEM IMPLEMENTATION 132
6.1 Introduction 132

6.2 Project Setup 132

6.2.1 Database Setup 136

6.3 System Modules 136

6.3.1 Modules for Web-based Application 136

7 SYSTEM TESTING 215
7.1 Introduction 215

7.2 Unit Testing 215

7.2.1 Conclusion of Unit Testing 230

7.3 Integration Testing 230

7.3.1 Conclusion of integration testing 235

7.4 User Acceptance Testing 235

7.4.1 Findings 245

7.4.2 Achievements 245

8 CONCLUSION AND FUTURE WORK 247
8.1 Conclusion 247

8.2 Achieved Objectives 247

8.3 Limitations and Future Work 248
REFERENCES 249

APPENDICES 255

Table 2.1:

Table 2.2:

Table 2.3:

Table 2.4:

Table 2.5:

Table 2.6:

Table 2.7:

Table 2.8:

Table 2.9:

Table 2.10:

Table 2.11:

Table 2.12:

Table 5.1:

Table 5.2:

Table 5.3:

Table 5.4:

Table 5.5:

Table 5.6:

Table 5.7:

Table 5.8:

Table 7.1:

Table 7.2:

Table 7.3:

Table 7.4:

LIST OF TABLES

Advantage and Disadvantage of Waterfall Methodology
Advantage and Disadvantage of Agile Methodology
Advantage and Disadvantage of Prototyping Methodology
Comparisons Between Different Methodologies
Advantage and Disadvantage of React Native
Advantage and Disadvantage of Vue.js

Advantage and Disadvantage of Laravel

Advantage and Disadvantage of Express.js
Advantage and Disadvantage of Odoo

Advantage and Disadvantage of Dashboard
Advantage and Disadvantage of React Native
Comparison of Existing Similar Application
Entities Description Table

Data Dictionary for Product Table

Data Dictionary for Booking Table

Data Dictionary for Inventories Table

Data Dictionary for Reservation Table

Data Dictionary for Stockcheck Table

Data Dictionary for Users Table

Data Dictionary for Members Table

Unit testing of User Login

Unit testing of Member Login

Unit testing of Add User

Unit testing of Edit User

22

25

26

28

29

35

40

42

43

111

112

113

114

115

116

116

117

216

217

218

218

X

Table 7.5:

Table 7.6:

Table 7.7:

Table 7.8:

Table 7.9:

Table 7.10:

Table 7.11:

Table 7.12:

Table 7.13:

Table 7.14:

Table 7.15:

Table 7.16:

Table 7.17:

Table 7.18:

Table 7.19:

Table 7.20:

Table 7.21:

Table 7.22:

Table 7.23:

Table 7.24:

Table 7.25:

Table 7.26:

Table 7.27:

Table 7.28:

Table 7.29:

Unit testing of Delete User

Unit testing of Change Password (User)
Unit testing of List User

Unit testing of Search User

Unit testing of Add Member

Unit testing of Edit Member

Unit testing of Delete Member

Unit testing of Change Password (Member)
Unit testing of List Member

Unit testing of Search Member

Unit testing of List Inventory

Unit testing of Add Product

Unit testing of Delete Product

Unit testing of Edit Product

Unit testing of List Product

Unit testing of Search Product

Unit testing of Print QR Code

Unit testing of Stock Check

Unit testing of Member Booking

Unit testing of Search Booking

Unit testing of Add Reservation

Unit testing of Edit Reservation Management

Unit testing of List Reservation

Unit testing of Search Reservation

Unit testing of Delete Reservation Management

218

219

219

219

220

220

220

221

221

221

222

222

222

223

223

223

223

224

225

225

226

227

227

227

227

Table 7.30:

Table 7.31:

Table 7.32:

Table 7.33:

Table 7.34:

Table 7.35:

Table 7.36:

Table 7.37:

Table 7.38:

Table 7.39:

Table 7.40:

Table 8.1:

Unit testing of View Dashboard

Unit testing of View Member Booking
Unit testing of View Member Reservation
Unit testing of View Home Page

Unit testing of View History

Unit testing of Notification

Testing Integration 1

Testing Integration 2

Testing Integration 3

Testing Integration 4

Testing Integration 5

Limitation and Future Work

228

228

228

228

228

229

232

232

232

233

234

248

X1

Figure 2.1:

Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:

Figure 2.9:

Figure 2.10:
Figure 2.11:
Figure 2.12:
Figure 2.13:
Figure 2.14:
Figure 2.15:
Figure 2.16:
Figure 2.17:
Figure 2.18:
Figure 2.19:
Figure 2.20:
Figure 2.21:
Figure 2.22:

Figure 2.23:

LIST OF FIGURES

Software Development Life Cycle (SDLC) (GeeksforGeeks,

2020)

Waterfall Model

Login Page

Sign Up Page

Instant Access Page

Main Page

Dashboards Page

Inventory Page

Barcode Page.

Barcode Scanner Page

Product Page

Add new product Page

Add new product Page- quantity
Log in Page

Sign up Page

Analytics Dashboard Page
Analytics Dashboard Page-2
Calendar Page

Invoice Page

Add Invoice Page

Barcode Inventory Management
Connect Barcode Scanner using OTG Cable

Scan Barcode using Mobile Application

13

14

30

31

31

31

32

32

33

33

34

34

35

36

37

37

38

38

39

39

40

41

41

Xii

Figure 2.24:
Figure 3.1:
Figure 1.1:
Figure 3.3:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:

Figure 4.7:

Figure 4.8:

Figure 4.9:

Figure 4.10:
Figure 4.11:
Figure 4.12:
Figure 4.13:
Figure 4.14:
Figure 4.15:
Figure 4.16:
Figure 4.17:
Figure 4.18:
Figure 4.19:
Figure 4.20:

Figure 4.21:

7 types of Barcodes

End-to-End Methodology Flow

End-to-End Prototyping and Testing Flowchart
Development Tools

Current Method of Tracking Sports Equipment
School of Respondents

School Location of Respondents

School Size of Respondents

Availability of a Sports Centre

Current Method of Managing Sports Equipment

Involvement of Teachers or Student Clubs in Equipment

Management

Frequency of Inventory Checking

Methods Used for Inventory Auditing

Common Challenges in Equipment Management
Current Method of Tracking Sports Equipment
Frequency of Misplaced or Lost Equipment
Importance of Real-Time Equipment Tracking
Frequency of Equipment Shortages

Most Common Issue with Sports Equipment
Current Method of Booking Sports Facilities
Frequency of Booking Conflicts or Underutilization
Benefits of a Real-Time Booking System
Frequency of Scheduling Conflicts

Most Common Facility-Related Issues

Interest in an Online Facility Booking System

42

48

50

58

62

62

63

63

64

64

65

65

66

66

67

67

68

68

69

69

70

70

71

71

72

xiii

Figure 4.22:
Figure 4.23:
Figure 4.24:
Figure 4.25:
Figure 4.26:
Figure 4.27:
Figure 4.28:
Figure 4.29:
Figure 4.30:
Figure 4.31:
Figure 4.32:
Figure 4.33:
Figure 4.34:
Figure 4.35:
Figure 4.36:
Figure 4.37:
Figure 4.38:
Figure 4.39:
Figure 4.40:
Figure 4.41:

Figure 4.42:

Figure 5.1:
Figure 5.2:
Figure 5.3:

Figure 5.4:

Current Method for Managing Maintenance Schedules
Frequency of Delayed Maintenance or Unsafe Equipment
Frequency of Equipment Maintenance Inspections
Satisfaction Level with the Current Maintenance Process
Current Method of Report Generation

Usefulness of a Dashboard

Easy Access to Sports Equipment and Facility Information
Desired Additional Features in a Management Dashboard
Use Case Diagram

Login Module

View History Module

Booking Module

Make Reservation Module

Home Page

Dashboard Module

Product Management Module

Inventory Management Module

Reservation Management Module

Booking Management Module

User Management Module

Member Management Module

Overview of System Architecture Design

Entity Relationship Diagram

Login page

Dashboard page — Part 1

72

73

73

74

74

75

75

76

80

100

101

101

102

102

103

103

104

104

105

105

106

107

110

117

118

Xiv

Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:

Figure 5.9:

Figure 5.10:
Figure 5.11:
Figure 5.12:
Figure 5.13:
Figure 5.14:
Figure 5.15:
Figure 5.16:
Figure 5.17:
Figure 5.18:
Figure 5.19:
Figure 5.20:
Figure 5.21:
Figure 5.22:
Figure 5.23:
Figure 5.24:
Figure 5.25:
Figure 5.26:
Figure 5.27:
Figure 5.28:

Figure 5.29:

Dashboard page — Part 2

Dashboard page — Part 3

Product List Page

Product Page - Print Icon

Product Page - Print Quantity Input Field
Product Page - Printing Page

Product Add Page

Product Page Filter Function

Product Page - QR Code Pop Up Modal
Product Page — Edit Icon Button
Product Edit Page

Product Page- Delete Icon

Product Page-Delete Confirmation Prompts

Inventory List page

Stock Check List

Stock Check List - Display Data Based on Date and Outlet.

Add Stock Check

Add Stock Check - List

Booking List

Booking List - Delete Confirmation
Booking List- Filter Function
Reservation List

Reservation List- Filter Function
Reservation List - Delete Confirmation

Reservation Add Page

118

118

119

119

119

120

120

121

121

121

122

122

122

123

123

124

124

125

125

125

126

126

127

127

127

XV

Figure 5.30:
Figure 5.31:
Figure 5.32:
Figure 5.33:
Figure 5.34:
Figure 5.35:
Figure 5.36:
Figure 5.37:
Figure 5.38:
Figure 5.39:
Figure 5.40:

Figure 5.41:

Figure 6.1:
Figure 6.2:
Figure 6.3:
Figure 6.4:
Figure 6.5:
Figure 6.6:
Figure 6.7:
Figure 6.8:

Figure 6.9:

Figure 6.10:
Figure 6.11:
Figure 6.12:

Figure 6.13:

Reservation Edit Page

Member List Page

Member Page - Delete Confirmation
Member Add Page

Member Edit Page

Member Change Password Page
User List Page

User Add Page

User Edit Page

User Delete Confirmation

User Change Password Page

User Profile Page

Wampserver Official Website
Composer Official Website

Node.js Official Website
WampServer Running (Green)
vite.config.js

Code Snippet of app.jsx

Code Snippet of welcome,blade.php
Database Connection Config
useState Hook

Code Segment for Login Functionality
Login Page -Unauthorized for Wrong Passwords
Login Page- Account Not Found

Login Page- Account Inactive

128

128

128

129

129

129

130

130

130

131

131

131

132

133

133

133

134

135

135

136

136

137

138

138

138

XVi

Figure 6.14:
Figure 6.15:
Figure 6.16:
Figure 6.17:
Figure 6.18:
Figure 6.19:
Figure 6.20:
Figure 6.21:
Figure 6.22:
Figure 6.23:
Figure 6.24:
Figure 6.25:
Figure 6.26:
Figure 6.27:
Figure 6.28:
Figure 6.29:
Figure 6.30:
Figure 6.31:
Figure 6.32:
Figure 6.33:
Figure 6.34:
Figure 6.35:
Figure 6.36:
Figure 6.37:

Figure 6.38:

Login Page -Verify Empty Field

Login Page - User Input Form

Login Function

Load Dashboard Data Function

Get Equipment Status Chart Data

Get the Most Used Product Data

Fetch Booking Data Function

Time Range Selector Function

Code Segment to Retrieve the List of Product Data
Code Segment to Filter Product by Name
Generate Product ID & QR Code

Handle Form Input

Image Upload with Preview

Submit the Product Data

Code Segment to Retrieve Product Data

Code Segment to Handle Change - Part 1

Code Segment to Handle Change - Part 2

Code segment to Handle Image Change

Code Segment to Handle Delete

Code segment to Handle QR Code Pop Up Model
Code Segment for Handle Printing Function
Code Segment to Retrieve A List of Products
Code Segment for Store Function

Error Message Display for Duplicate Product Name

Code Segment to Display Product

139

139

140

141

141

142

142

143

144

145

145

146

146

147

148

149

149

150

150

151

152

154

155

156

156

Xvii

Figure 6.39:
Figure 6.40:
Figure 6.41:
Figure 6.42:
Figure 6.43:
Figure 6.44:
Figure 6.45:
Figure 6.46:
Figure 6.47:
Figure 6.48:
Figure 6.49:
Figure 6.50:
Figure 6.51:
Figure 6.52:
Figure 6.53:
Figure 6.54:
Figure 6.55:
Figure 6.56:
Figure 6.57:
Figure 6.58:
Figure 6.60:
Figure 6.61:
Figure 6.62:
Figure 6.63:

Figure 6.64:

Code Segment for Update Purpose

Code Segment for Destroy Function

Code Segment for Fetching Data from API

Code Segment to Retrieve to Inventory Data

Code Segments to Display Inventory Data

Code Segment for Generating Inventory Overview

Code Segment Fetches Products by Outlets

Handle Submit Function
Stock Check Page - Mismatch Data

Fetch Stock Check Function

Code Segment for Creating New Stock Check

Index Function

Show Function
Booking List Page
Fetch Booking Data
Format Time Function
Handle Delete Function
Index Function

Show Function
Checkout Function
Checkin Function
Close Expired Reservation Function
Destroy Function
myBookings Function

Fetch Reservation Function

157

158

159

160

160

161

162

163

163

164

165

166

167

167

168

168

169

169

170

170

172

173

174

175

176

Xviii

Figure 6.65:
Figure 6.66:
Figure 6.67:
Figure 6.68:
Figure 6.69:
Figure 6.70:
Figure 6.71:
Figure 6.72:
Figure 6.73:
Figure 6.74:
Figure 6.75:
Figure 6.76:
Figure 6.77:
Figure 6.78:
Figure 6.79:
Figure 6.80:
Figure 6.81:
Figure 6.82:
Figure 6.83:
Figure 6.84:
Figure 6.85:
Figure 6.86:
Figure 6.87:
Figure 6.88:

Figure 6.89:

Search Function

Get Status Classes Function
Reservation Page - Different Status
ReservationPast Function

Disabled Buton

Handle Delete Function

FetchData Function

Fetch Available Quantity Function
Handle Submit Function
Reservation Page -Successful Notification
Reservation Accepted Mail
ReservationAcceptedMail.blade.php
Mail Setup in .env()

The Output Results of Notification
Index Function

Store Function

Available Quantity Function
Update Function

Accept Function

Reject Function

Destroy Function

myReservation Function

Weekly Stas -Part1

Weekly Stas -Part2

FetchUser Function

176

177

177

177

178

178

179

180

181

181

182

183

183

184

184

185

186

187

188

189

189

190

191

192

194

XiX

Figure 6.90:
Figure 6.91:
Figure 6.92:
Figure 6.93:
Figure 6.94:
Figure 6.95:
Figure 6.96:
Figure 6.97:
Figure 6.98:

Figure 6.99:

Figure 6.100:
Figure 6.101:
Figure 6.102:
Figure 6.103:
Figure 6.104:
Figure 6.105:
Figure 6.106:
Figure 6.107:
Figure 6.108:
Figure 6.109:
Figure 6.110:
Figure 6.111:
Figure 6.112:
Figure 6.113:

Figure 6.114:

User Profile Page

User Edit Page

Error Message

Fetch Data Function
Handle Delete Function
Index Function

Show Function

Update Function

Change Password Function
Destroy Function

Home Page (Member)
Fetch Product Function
Booking Page Function
Fetch Product and Booking Function
Handle Checkout Function
Handle Check in Function
Reserve Booking Page
FetchBooking Function
Handle Reserve Function
Fetch Availability Quantity
Handle Quantity Change
History Page

Fetch Data Function
Handle Check Out Function

Reservation Date Pass Function

195

195

195

197

198

198

199

199

200

200

201

202

203

204

205

206

207

207

208

209

209

211

212

213

214

XX

XX1

LIST OF APPENDICES

Appendix A: Hardcopy records and Manual Entry 255

Appendix B : WBS Gantt Chart 257

CHAPTER 1

INTRODUCTION

1.1 General Introduction

The main purpose of this project is to develop an Inventory Management Dashboard
for tracking sports equipment and facilities in a secondary school's sports centre. This
system will enhance the efficiency of inventory management for stakeholders to
efficiently manage sports inventory by ensuring the availability and proper utilization
of equipment and facilities. The project aims to replace traditional manual record-
keeping methods, which have very low efficiency rates due to ineffective tracking and
higher chances of error to a digital solution.

This dashboard will provide a centralized platform for monitoring inventory
levels, tracking equipment usage, and scheduling maintenance activities. It will also
enhance transparency, streamline operations, and improve resource allocation within
the school's sports centre.

Thus, the project's background, problem statement, objectives, scope,

suggested solution, and methodology will be covered in detail in Chapter 1.

1.2 Project Background

Nowadays, sports and other extracurricular activities are integrated into the educational
process, which makes the management of sports facilities and equipment become more
important. This cause Effective inventory management become more crucial in order
to ensuring the availability and proper utilization of resources in various fields
especially education and sports. However, many schools still rely on manual inventory
tracking systems such as paper-based records and spreadsheets. These systems are
prone to errors, inefficiencies, and difficulties in tracking equipment availability and
maintenance needs. This outdated approach leads to operational inefficiencies,
unaccounted losses, and delays in equipment allocation, ultimately affecting the quality
of sports programs. Therefore, inventory management is an important function for any
organization dealing with physical commodities to ensure the right quantity of products
are available at the right time to avoid the problems of overstocking and understocking

(Madamidola et al., 2024).

According to Macadamidola et al. (2024), the development of inventory
management systems has greatly improved inventory tracking accuracy and operational
efficiency, which has introduced modern technologies such as barcode scanning, Radio
Frequency Identification (RFID), and the Internet of Things (IoT). Due to the continue
increasing of efficiency demands, school have to turned into digital solutions to
improve inventory tracking and overcome overstocking, understocking, and poor
tracking accuracy problems. However, many schools have yet to adopt these
innovations, the main reason is due to a lack of awareness or the absence of a
customised solution designed for educational institutions.

The motivation of this project is to bridge the gap between traditional
inventory tracking and modern digital solutions. The purpose of this project is to
develop an Inventory Management Dashboard for Tracking of Sports Equipment
and Facilities in a Secondary School's Sport Centre which will provide a centralized
digital platform that allows secondary schools can effectively track their sports

resources, monitor facility usage, and schedule maintenance activities.

1.3 Problem Statement

1.3.1 Inefficient Equipment Tracking System

Many secondary schools have adopted digital teaching and learning solutions, but
sports equipment management is still largely neglected. The research shows that the
current investigations into digital technologies within physical education are focused
mainly on areas such as gamified teaching, wearable devices, and collaborative learning
but fewer studies addressing resource and facility management (Jastrow, Greve,
Thumel, Krieger, & Siilenbach, 2022). Ideally, the school sport centre will have a real-
time and automated system to track all sport equipment so that each equipment can be
clearly to be tracked and easily accessed to teachers and students. However, the sports
centre still relies on manual tracking methods such as paper logs or spreadsheets to
track sports equipment which are very time consuming and error prone.

Besides, the manual tracking method also makes it difficult for staff to locate
equipment when needed as the equipment is often lost or damaged. This inefficiency
can lead to communication issues and human errors which result in delayed events,
frustration among students and staff, and increased costs due to lost or damaged

equipment (Ko, Azambuja, & Lee, 2016). Without real-time visibility of equipment

availability, physical activity and training sessions are unnecessarily disrupted. Even
though many secondary schools have integrated digital tools into their classrooms to
improve learning, the adoption of digital solutions for managing sports facilities and
equipment has been largely disregarded. To address this issue, an inventory
management tracking system using QR codes can be implemented. This system will
provide real-time updates on equipment availability which can significantly reduce
manual tracking errors, improve inventory management, and create a smoother

experience for both teachers and students.

1.3.2 Overbooking and Underutilization of Facilities

In Malaysia, the overall utilisation rate of sports facilities stands at approximately 46.9%
of capacity has indicating significant underutilisation (Aman et al., 2020). The school
sports centre should have a centralized scheduling system that ensures optimal
utilization of all equipment. This system would prevent overbooking, underutilization,
minimize conflicts, and ensure that every equipment is used efficiently. However, a lot
of schools continue to use manual tracking method which can cause the scheduling
disputes for teachers and students. For example, popular facilities such as basketball
courts are often fully booked during peak hours, while other facilities such as tennis
courts are not fully utilized. Even with sufficient sports facilities, these are often
underutilised due to less awareness (Sadiq et al., 2023). The lack of structured inventory
management system may increase the operating costs and resulting in a waste of
resources.

Besides, the manual tracking methods makes it difficult to track historical
booking data which may prevent the administrative from optimising the use of facilities
based on demand. As a result, it makes the staffs and students difficult to plan their
activities efficiently, and the last-minute changes or cancellations further disrupt the
scheduling process. At the same time, it may also limit the potential for school training
sessions and events. To solve this problem, a dashboard that provides real-time
availability and booking status of facilities is required to optimize usage and improve

user CXpCI'iCl’lCC.

1.3.3 Lack of Maintenance Tracking
Inspecting sports equipment is important for preventing costly losses or serious damage.

The most effective time for inspection is before beginning of each sporting season to

ensure that the equipment compiles with safety standards and protecting the users and
spectators’ safety when using it (Morrow, 2018). Sports equipment and facilities often
require maintenance to ensure safety, longevity and optimal performance, but the
current system fails to track maintenance schedules effectively. This leads to delayed
repairs, the equipment is unsafe, and the resources have a shortened lifespan. The
research shows that the rising of maintenance costs has driven the use of computerised
models to enhance equipment utilisation and reduce expenditure in comparison to
reactive or temporary maintenance procedure (Sayyed, 2015). Therefore, a sports centre
should have a proactive maintenance tracking system that can monitor maintenance
schedules and tracks the condition of equipment and facilities. This advanced system
would mitigate the chances of breakdown disasters, enhance safety, and save money on
expensive repairs in the future.

The use of manual tracking method may pose major risks because facilities
and equipment can be ignored until they reach a critical failure point. Okirie AJ,
Barnabas M, Adagbon JE (2024) mentioned that the manual tracking can result in
ineffective maintenance resource allocation, decreased equipment reliability, and
higher maintenance expenses. This negative approach puts the health and safety of the
students and staff at risk by preventing physical activity and simultaneously increases
operating costs through emergency repairs or premature replacement of equipment.
Moreover, the lack of a structured maintenance tracking system also means that
facilities staff have a lack of knowledge about the condition of sports resources, making
it difficult to plan for necessary repairs or replacements. The absence of essential safety
inspection systems, equipment management protocols and regular maintenance
programmes may compromise safety and accelerate equipment deterioration (Wu, Lu
and Ma, 2025).

To address these challenges, a module that tracks maintenance tasks and
ensures regular inspection and upkeep of sporting equipment must be implemented to
assist facilities and expand their capabilities. Preventive maintenance is better than
reactive maintenance. This is because preventive maintenance plays important role in
facility upkeep which help to prevent unexpected equipment failures and costly repairs
and extends the service life of assets and system (Hawkes, 2025). In addition, the
integration of QR codes on each piece of equipment will allow staff to quickly check
maintenance status and report issues instantly to ensure a safe sporting environment for

students and staff.

1.3.4 Poor Reporting and Decision-Making

Effective management of sports centres requires accurate data on equipment usage,
facility bookings and maintenance activities. However, allocation of resources and
budgeting for repairs, equipment purchases, and other activities is challenging for staff
as they lack reliable reports that are based on analysis of usage trends. In sports
management, big data and analytics have become essential in guiding decision-makers
because they allow interpreting large datasets to drive operational strategies (Watanabe
et al., 2021). Therefore, sports centres need to be equipped with holistic reporting and
analytics systems that generate real-time insights to support data-driven decision-
making and improve overall efficiency.

Besides, data recorded in manually may be inconsistently and leading to errors
and incomplete information. Without a clear understanding of how often equipment is
used, which facilities are in high demand or when maintenance is required, decisions
tend to be made on assumptions instead of facts. Such inefficiencies can lead to
misallocation of resources, unnecessary expenditure and lack of improvement in the
functioning of the sports centres. Therefore, a reporting and analysis module should be
incorporated into the inventory management system. The module will provide detailed
analysis of the equipment and other resources used, facilities booked, and maintenance
done, and provide real-time accurate data to assist administrators in decision making
and resource allocation. According to Peter Drucker's well-known quote, "What gets
measured gets managed,", data allows system to make better decisions and promote
efficient decision (7 Ways Data Can Drive Better Facilities Management Decisions,
2025). By integrating data visualisation tools such as interactive dashboards and trend
analysis charts, the system will be able to make better decisions by identifying peak
usage times and forecasting equipment replacement needs. In addition, automated
report generation will streamline administrative tasks, reduce manual workload and
improve operational efficiency. The management in the sports centres will make better
decisions in the facility's utilization to increase sustainability and user satisfaction long

term with such a system in place.

1.4 Aim and Objectives
This project intends to achieve the following objectives:
1. To develop a web application with dashboard on tracking of the

movement and inventory of the sport equipment and facilities.

2. To develop equipment tracking and maintenance features using QR
code.
3. To develop a mobile application with QR code scanning feature for the

equipment whenever there’s an in & out movement from the sport
center.
4. To evaluate the effectiveness proposed system by conducting the user

acceptance testing with the selected school.

1.5 Project Scope

This project aims to develop a web-based Inventory Management Dashboard and
mobile app for scanning to streamline the management of sports equipment and
facilities at a secondary school’s sports centre. The system will centralize equipment
tracking, automate facility scheduling, enable proactive maintenance management, and

provide data-driven insights for decision-making.

1.5.1 Target User
The intended users of this system are:

. Teachers & Students: Primary users who can rent sports equipment.

. Administrators: Authorized personnel responsible for managing

sports equipment and overall operations within the school's sports.

. Quarter masters: The authorized personnels (students) who are
responsible for managing the inventory, do stock check, tracking the

equipment’s in and out, and manage the booking.

1.5.1.1 Functionality for Teachers & Students

1.5.1.1.1 Equipment Reservation & Rental

Teachers and students can view the availability of sports equipment in real time through
a user-friendly interface. This feature ensures that users can quickly determine which
equipment us available at any given time. Users can also reserve equipment for specific
time slots. For example, during class hours or extracurricular activities. This ensures
that users have all the equipment they needed for their planned activities. Besides, users
can track the equipment when equipment was borrowed and view the return dates

through booking history.

1.5.1.1.2 Equipment Return & Notifications

Users can mark equipment as “check in” or “check out” in the system and the system
will updating its availability status automatically once the users have finished using the
booked equipment. This feature ensures that equipment is returned to the pool of
available equipment in a timely manner and preventing overbooking. In addition, the
system will automatically send reminders to notify users about the upcoming due dates
and alert them when the equipment is overdue. This notification will be sent in advance

so that users have sufficient time to return the equipment.

1.5.1.1.3 QR Code scanning for reservation and booking

Users can scan the QR code by using their mobile phone to make reservations and
booking. After scanning, users need to login or sign up to the website. After login, it
will navigate to specific equipment page to allow users to “check in” or “check out”.

The system will update the availability of the equipment immediately.

1.5.1.2 Functionality for Administrators and Quarter masters

1.5.1.2.1 Inventory Management

Administrators and Quarter masters have full control over the inventory management
of sports equipment. They can add, view, update and delete equipment details such as
the condition and quantity of equipment. This feature ensures that inventory always up-
to-date and avoid discrepancies or confusion over equipment availability.
Administrators can also update the equipment records by using QR code scanning

which making the inventory management become faster and efficient. Besides,

administrators can track and change the equipment status in real time. The status can
be categorized as ‘available’, ‘rented’ or ‘under maintenance’ to allow users to view

information.

1.5.1.2.2 Role-Based Access Control

Administrators can assign specific permissions to different users to ensure only
authorised user can access to certain features. For example, only administrators can
limit the amount of equipment booking and view the analysed result displayed on the
dashboard, while other users without the permission will only have access to basic
functions which is reserving and returning the equipment. This ensures that only
appropriate administrative privileges have access to sensitive data on equipment usage,

booking trends and overall system performance in order to avoid misuse.

1.5.1.2.3 User Access Control

Administrators can assign specific roles and permissions to users as needed. For
example, teachers can prioritize the use of certain equipment and extend the rental time
based on the teaching and activities needs, while students will be restricted on
maximum rental time to ensure that equipment are returned on time and available for

others to use.

1.5.1.2.4 QR code generation

Only administrators can generate QR code for each category of equipment or facility.
By using QR code, it can direct users to a centralized system page which can reduce
manual process that may cause mistakes made by human errors. Sharing QR codes for
grouped items can simplify management and allow more accurate tracking of

equipment bookings.

1.5.2 Project Out-of-Scope

There are some features are outside the scope of the project. Firstly, the system does
not include the financial tracking or budget management for the purchase of new
equipment. This is because the main focus of the project is on inventory tracking rather

than financial management. Secondly, the system does not support automated

assessment or predictive maintenance as the inspection and maintenance decisions still
require manual intervention. Thirdly, the project was only limited to secondary school
sport centre and was not designed for broader multi-school or district-wide use. Lastly,
the system will only rely on QR code scanning with the existing mobile devices without
using the hardware such as barcode scanner. It will also not track the equipment location

via GPS.

1.6 Project Solution

The project is focus on developing an inventory management dashboard tailored for
secondary school's sport centre. The objective of the project is to address the
inefficiencies in equipment tracking, facilities reservation and maintenance
management. The system will combine with the proven technology with innovative
features to ensure scalability, real time updates and user-centered design.

The frontend of the inventory management dashboard will be developed using
React.js, a JavaScript framework known for its flexibility and real-time rendering
capabilities. React’s component-based architecture facilitates the creation of reusable
UI components, thereby enhancing the maintainability and scalability of the code
(Gackenheimer, 2015). However, Visual Studio Code (VS Code) will serve as the
primary integrated development environment (IDE) in order to provide a strong
ecosystem of extensions to streamline the development process. Besides, Axure Rp will
be used to create system prototype. It is a tool that can create wireframes, models and
interactive prototypes without writing a line of code and user can simulate complex
user interactions and interface behaviour before development work starts (Krahenbuhl,
2015).

The backend of the inventory management system will use MySQL, an open-
source relational database management system (RDBMS) to store and manage data
(Erickson, 2024). It will use Node.js to handle API request, authentication and others.
Firebase Realtime Database will store device details and facilities schedules in order to
provide real-time synchronization to avoid overbooking and ensure accurate inventory
tracking. It is a cloud-hosted NoSQL database that allows administrators to store and
transfer data across users in real-time to make sure that users have access to up-to-date
information (Firebase, 2025). Firebase which contains authentication features will also
enables secure role-based access control. This will result in the different between users

and administrators’ permission.

10

1.7 Project Approach

The project will use an iterative, user-centred development methodology combined
with modern full-stack technologies to address the inefficiency of tracking sports
equipment in secondary school sports centres. Prototyping methodology will be used
for this project in order to solve the inefficiency of the tracking sports equipment in
secondary school sports centers. Prototyping methodology is selected for this project
because it allows early development of working system models, gathering continuous
user feedback and iterative improvement of features. Therefore, it makes it suitable for
this project where the requirements are changing during the development process.

The project will be divided into several sprints and each of them will focus on
specific functionality. For example, equipment booking, inventory updates, user access
control and so on. This will allow for iterative improvements and early testing of
individual components. The Agile methodology will start with requirements gathering
and analysis where the pain points will be identified through surveys. So that, it will
ensure that the system aligns with user expectations and meet school requirements.
Besides, prototyping and design validation will be carried out by using Axure RP to
produce interactive wireframes that simulated key functionality. Users should take part
in usability testing to make sure that the design was user-friendly and meet their
requirements. According to Camburn et al. (2017), prototyping can clarify an
ambiguous or changing requirement through iterative feedback between users and
developers to ensure that the final system is aligned with the user needs.

The project will start with requirements gathering and analysis. At this phase,
the problems and requirements will be identified by using surveys and interviews to
solve the issues faced by the users. Based on the collected requirements, an early low-
fidelity prototype will be created using Axure RP which focus on basic layout, user
flows and essential functionality. This prototype will be shared with users to gather
usability feedback at an early stage.

After the early feedback is collected, the prototype will be refined and
improved over multiple cycles. Each version will add more detailed functionality and
gradually leading to high-fidelity model that closely matches to the final system. After
each iteration, users will involve in usability testing to verify the design, test navigation
flows and provide suggestions for improvements.

Throughout the process, functional feedback will be collected after each

prototype evaluation phase to identify usability issues and improve the system design.

11

Each iteration will be tested for early detection, and the issues will be solved to ensure
that the final product is reliable, intuitive and user-friendly. As Horvathova and
Vostinar mentioned that feedback is important for improving system performance as it
allows users to learn from their mistakes.

Lastly, the project will ensure that the developed inventory management
control panel is user-centred and flexible to respond to changing requirements and able
to solve the inefficiencies of manual sports equipment tracking effectively by using
prototyping methodology in order to deliver a high-quality functional system that meets

the needs of users.

12

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter reviews the existing literature on developing an inventory management
system for tracking secondary school sports equipment and facilities. It starts with
outlining the current scope and issues that emphasize the limitations of manual
inventory management systems and the need for proposed solutions. It also explores
the Software Development Life Cycle (SDLC) to outline systematic processes and
ensure it is aligned with industry standards and enhance project efficiency. The chapter
also covers the relevant techniques and approaches to evaluate the effectiveness of the
system. Besides, the chapter studies the development tools and system architectures
commonly used in similar projects. Lastly, this chapter will examined systems and
compared it with similar functionality to understand current trends, capabilities, and
limitations. These elements provide a solid theoretical and practical foundation for the

creation of the proposed system.

2.2 Challenges of Manual Inventory Management

Secondary schools use inefficient manual systems to track and manual sports equipment
and facilities which often leading to misplaced items, maintenance delays and poor
budget management. According to a report by AssetPanda, it has mentioned that
educational institutions has lose up to $250,000 (RM 1,101,874.46) per year due to
improper asset tracking. A study by Link Labs also found that 5 to 10% of recorded
assets are “ghost assets” which are assets still recorded but are actually missing or
unusable. This problem occurs is due to poor tracking or record keeping that always

rely on manual inventory management methods.

23 Software Development Methodology (SDLC)

2.3.1 Overview of SDLC
Software Development Life Cycle (SDLC) is the structured process that guides the
development of a software system. It consists of 6 phases which is planning, defining,

designing, building, testing and deployment.

13

SOLe

Testing
@

Building FEItial

Figure 2.1: Software Development Life Cycle (SDLC) (GeeksforGeeks, 2020)

SDLC can reduce the risk of project failure as it will ensure that the system
development is systematic and meet the user requirement (Jindal, Gulati & Rohilla,
2015). According to Gurung et al. (2020), each phase in SDLC is critical to produce
high-quality software systems and provides opportunities for verification and validation.
Furthermore, Kute and Thorat (2014) mentioned that using the correct SDLC can
increase clarity of project scope, improve communication between stakeholders and
better managing schedules and cost. Therefore, SDLC is important as it determines how
the projects adapt to change, meet the customer expectations and maintains quality

assurance at the same time not overbudget.

2.3.2 Waterfall Development Methodology

The waterfall methodology is a traditional and linear software development
methodology where each phase must be fully completed before progressing to the next.
The idea of the "waterfall" of development activities was first proposed by Royce (1970,
cited in Bell and Thayer, 1976) which emphasized the structured, top-down nature of
the progression of each distinct development phase, where the output of one phase
becomes the input to the next. It follows a linear and sequential path where each phase
must be completed before the next phase start. It contains six sequential phases:
Requirements Gathering & Analysis, System Design, Implementation, Testing,

Deployment, and Maintenance.

14

Requirements
Gathering & Analysis

[System Design }
{ Implementation }
[Testing]
[Deployment }
Maintenance

The first and primary step of the waterfall approach is Requirements Gathering

Figure 2.2: Waterfall Model

and Analysis phase. All the functional and non-functional requirements of system will
be collected in this phase in order to gain a comprehensive understanding of the
intended functionality of the system. Functional requirements are defined as use cases
that explain the user’s interactions with the system and contain aspects such as the
system's purpose, scope, functionality, interface requirements, and database
requirements while the non-functional requirements are defined as a constraints and
quality features such as dependability, scalability, testability, and performance (Bassil,
2012). At this phase, the detailed insights will be gathered through conducting
interviews, surveys or workshops and then recorded in Software Requirements
Specification (SRS). Software Requirements Specification (SRS) is a detailed
explanation about the development of software behaviour (Bassil, 2012). According to
Chemuturi (2013), a document will not be ‘frozen’ before it gets authorization by
appropriate body and sometimes such approval is obtained after a rigorous internal
review and quality control process. It means that once the SRS has been reviewed and
approve, the requirements are considered as ‘frozen’ which means there is no further
modification can be made. Therefore, at this phase would outline the features like QR-
code scanning and role-based access for sports equipment.

The system design phase takes place after the requirements specifications has
been completed. Software design is a unique and critical step that separates

requirements from coding and helps to ensure that development proceeds in a structured

15

and systematic manner (Royce, 1987). At this phase, software developers and designers
require to create a solution proposal such as database design, user interface layout, data
model and data structure. They also require creating logical and physical design
diagrams to visualise system components and their interactions such as Entity
Relationship Diagrams (ERDs) and Unified Modelling Language diagrams (UMLs).
The ERDs has been preferred to use in conceptual modelling due to it “easy to
understand, effectively models real-world problems, and is easily converted into
database schemas.” (Song, Evans, & Park, 1995). However, UMLs will provide
standardized approach to modelling the structure and behaviour of a system which will
improve communication among teams and help them more clearly specify, visualize
and record system documents (Visual Paradigm, 2019).

The implementation phase is a phase that transforms the system design
specification, blueprints and business requirements into an actual environment by using
the programming language and development tools (Bassil, 2012). Therefore,
developers will use a modular programming approach to implement components that
defined in the design phase and implement functionality outlined in the system
blueprint. Unit testing also plays an important role in verifying the functionality of
individual components during the implementation phase. It usually carried out
concurrently with development to ensure the software quality and detect the problem
early. It uses automated tools to effectively detect and address issues early in the
implementation phase to maintain the code quality and prevent downstream defects
(TestFyra, 2023).

Besides, the testing phase is a process that will completely validate the system
once the system is built to ensure that it meets all the requirements and has no bugs. It
is also a process of confirming that a software solution satisfies the initial requirements
and specifications and achieves its intended purpose (Bassil, 2012). During this phase,
both unit testing and system testing are carried out. Unit testing checks individual
components to verify that each unit perform as expected (GeeksforGeeks, 2019). While
system testing evaluates the entire workflow to ensure that entire system integrate
smootly (GeeksforGeeks, 2019). For example, testing that if the inventory updates
properly when a student checks out the equipment. This step is important as it must
identify and resolve any issues before the system is deployed into live use.

Maintenance phase is a last important step in waterfall methodology as it

ensures the performance and long-term functioning of the system. It is the process that

16

resolving any problems or bugs reported by user and ensuring that the system remains
functioning and meets the requirements of users. It may also have some additional
maintenance such as strengthening software stability, meeting new user requirements,
and adapting the software to the environment (Bassil, 2012). Therefore, maintenance
phase supports long-term success by ensuring that the system remains up-to-date,
reliable and meets user expectations.

According to the above explanations, it shows that the projects with clear,
well-defined requirements that are unlikely to change during development are suitable
for the waterfall methodology. Therefore, it is ideal for the projects with predictable
scope and tight deadlines or budgets. This is because the water methodology is a linear
progression where each phase must be completed before moving on to the phase and
there is no overlap between the phases (Senarath, 2021). Therefore, waterfall
methodology provides a structured approach that ensures that all specifications are fully
documented and locked down early in order to minimize the changing risk during the
project lifecycle. If project has fixed project scope and non-negotiable requirements

such as data privacy laws, the waterfall methodology is a reliable choice.

Table 2.1: Advantage and Disadvantage of Waterfall Methodology

Advantages Disadvantages

Simple and Structured: Waterfall is easy | Inflexible to Changes: Difficult to make
to understand and implement as it is a | changes once a phase is completed

clear and step-by step process.Each phase
has clearly defined milestones which
makes it easier to monitor progress and

ensure the project is completed on time.

Detailed documentation: Detailed | Late Testing: Bugs are often discovered
deliverables for each phase (e.g., SRS, | only after coding is complete.

design documents) to ensure that the
stakeholders have a clear understanding
of the project scope, requirements and

objectives.

Predictability: Helps maintain control of | High Risk: Waterfall assumes all

monitoring projects when costs, | requirements are understood from the

17

timelines, and resources are defined at

the beginning of the project.

start, which make it difficult to predict all
requirement in the early stage as the

requirement may change frequently.

Minimal customer involvement:
Stakeholders are involved only during

the requirements phases which can

Longer time to market: The linear nature
of Waterfall may slow down delivery

when a project needs to be delivered

simplify communication and avoid | more quickly.
overwhelming stakeholders.
Clear Milestones: Projects progress | Limited Flexibility: Difficult to adapt to

through different phases (requirements,

new requirements or changes.

design, coding, testing, deployment) that
provide clear checkpoints and approvals
can help teams focus on delivering one
phase before moving on to the next and

reducing the risk of scope creep.

2.3.3 Agile Development Methodology

In 2001, a lightweight and adaptive development methods were born and flourished
after gathering of 17 software engineering experts This meeting resulted in the Agile
Manifesto which outlines the core values and guides the principles that is used to
improve software agility and system development (Al-Saqqga, Sawalha & AbdelNabi,
2020). Fundamentally, Agile emphasizes individual and interactions over processes and
tools as it recognizes that successful collaboration and communication are more
important to success than rigid workflows. It emphasizes working software over
comprehensive documentation that highlights the prioritization of functional software
over extensive paperwork (Apke, 2016). Agile methodology also promotes
collaboration with customers rather than contract negotiation which encourages
customers to provide ongoing feedback to ensure the product meets the changing needs.
Lastly, it promotes reacting to change rather than following a fixed plan which allow
the developers to adjust according to shifting project needs. These values are realized

through various Agile frameworks such as Scrum, Kanban and Extreme Programming

18

(XP) and each of them may provide tools and practices to help developer teams
implement Agile values on real projects effectively.

Scrum is the most widely used Agile framework that divides the development
into iterative cycles called sprints which usually last 2-4 weeks. The process will start
with the project vision which sets the overall goal. Next, the sprint backlog is created
to prioritize a list of all required features and fixes in the form of user stories. For
example, “As a user, | want to scan QR codes to book equipment, so that I can reserve
it quickly without manual check-in”. Therefore, the sprint backlog outlines the tasks
selected for the sprint and lists out all the requirements that the developer will
concentrate on during the development cycle (Srivastava, Bhardwaj & Saraswat, 2017).

Before start of each sprint, the developers will conduct sprint planning
meetings to decide what backlog items will be completed during that sprint. Each sprint
day starts with daily standup meetings where the team members should answer
questions: What work can be accomplished in this sprint and how will the selected work
be accomplished? Daily standup meetings offer a chance to share important information
which may facilitate continuous improvement. Through meetings, teams can enhanced
communication as everyone knows what everyone else is working on, which avoids
duplication and misunderstandings.

During sprint execution, the developers design, code, and test selected features.
At the end of the sprint, they hold a sprint review to show the working product to
stakeholders and get feedback. After that, they conduct a sprint retrospective to reflect
on what went well and what could be improved in the next sprint. This methodology
repeats in cycles which allow the developers to constantly adapt and improve the
product based on feedback and changing needs.

Agile methodology also involves several key roles to ensure the process runs
smoothly. The product owner represents the stakeholder and is responsible for
managing and prioritising the product backlog which ensure that the developers remain
focused on delivering the product with the most valuable features. The Scrum Master
is responsible for driving the Agile process which enabled the developers follow the
Scrum practices and removing any barriers that may be blocking progress.
Development teams are also one of the key roles which are cross-functional and that
consisting of developers, testers, and designers who collaborate to build and deliver

working increments of the product.

19

In conclusion, Agile methodology is best suited for projects where
requirements are unclear or may change over time. For examples, school staff
requesting new features when developing a sports centre dashboard. It is also well
suited to complex projects that require frequent feedback and fast-paced environments
that require rapid incremental delivery of functional software. Below is the advantages

and disadvantages of Agile methodology.

Table 2.2: Advantage and Disadvantage of Agile Methodology

Advantages

Disadvantages

Flexibility: Agile accommodates
changing requirements even late in the

project.

High Customer Involvement Required:

Frequent interactions can be time-

consuming and demanding for users.

Faster Value Delivery: Working software

is delivered in short, regular intervals.

Unpredictable =~ Timelines: Evolving
scope can cause delays or shifting

deadlines.

Early and Continuous Testing: Bugs are
identified and fixed early through regular

testing.

Less Emphasis on Documentation: May
lead to confusion if team members

change or details are unclear.

High Stakeholder Involvement: Regular
feedback ensures the product aligns with

user needs.

Scope Creep Risk: Without strong
control, frequent changes can lead to

uncontrolled growth of features.

Increased Transparency and Visibility:
Progress is tracked through sprints and

reviews.

Not Ideal for Fixed-Requirement
Projects: May not be suitable where full

specifications must be defined upfront.

2.3.4 Prototyping Development Methodology

Prototyping is a development methodology that involves building a simplified working
model of a system or specific feature in order to better understand and improve the final
product. Prototyping is really useful for the project with unclear or changing
requirements as it is very helpful to clarify expectations early in the process.
Prototyping also allows developers and stakeholders to test usability, explore design

concept and gather valuable feedback before moving to full development. The process

can also expose potential defects or usability issues that may not be obvious from

20

documentation itself. For example, the prototype can use clickable mock-up interface
that allows user can interact with it to test its usability and provide suggestions before
the actual system is built. As Camburn et al. (2017) mentioned that prototyping plays
an important role in validating requirements, revealing critical design issues and
identifying design changes that enhance performance.

The prototyping process is a structured approach for building and refining
early models of a system to clarify requirements and improve the final product.
According to Camburn et al. (2017), prototyping helps to clarify ambiguous or
changing requirement through iterative feedback between users and developers. The
prototype methodology starts with requirements gathering phase. In this phase the
developers and designers will collaborate with stakeholders to determine the core
requirements of the system even the requirements are not yet complete or still changing.
After that, the developers build a simplified version of the system which include low-
fidelity prototypes like paper sketches or wireframes that focus on layout and
navigation flow, or high fidelity interactive digital models that more accurately
represent user experience and visual design.

In the third phase, prototype evaluation will take place which involves testing
the prototype with real users to observe how the users interact with the prototype and
identify usability problems. The fourth phase is refinement phase. In this stage, the
developers will modify the prototype based on user feedback. This may involve moving
unclear sections, improving the design or adding useful functionality. If the significant
issues remain, a new prototype iteration is made for more testing in the fifth phase
which called iterate or continue. The process will move to full development when the
stakeholders are satisfied. This iterative process helps to ensure that the final product is
both functional and user-friendly.

Prototyping is more useful in the projects where the requirements are unclear
and changing. This is due to the stakeholders are difficult to accurately express their
needs for the system. It is also suitable for the system that involve complex user
interactions such as the equipment check-out or facility booking flows in a sports centre
dashboard. Early testing of these process helps the developers able to ensure a smooth
and intuitive user experience. Prototyping is very beneficial in high-risk projects where
the errors could be expensive during complete development. This is because it allows

developers to identify and resolve potential issues early. In addition, prototyping

21

supports the creation of user-centered systems by involving actual users in the design

process and ensuring that the product meets their expectations.

Table 2.3: Advantage and Disadvantage of Prototyping Methodology

Advantages

Disadvantages

Early Feedback: Users can identify
usability or functionality issues before

development.

Scope Creep: Continuous user feedback
may lead to never-ending changes and

feature requests.

Reduced Risk — Helps catch potential
problems early, reducing the chance of

expensive fixes later.

Time or Cost Overhead: Creating and
refining multiple prototypes can slow the

development timeline.

Enhanced Stakeholder Understanding:
Prototypes help stakeholders visualize

the system, making it easier to
communicate ideas and confirm
requirements.

Misleading Expectations: Users might
assume the prototype represents the final,

complete system.

Requirements Validation: Help to clarify

Technical Limitations: Prototypes might
not reflect real-world performance or

security concerns.

ambiguous or misunderstood
requirements.

Improved Communication: Enhances
collaboration between users and

developers through tangible examples.

Limited Functionality: Some important
backend or integration elements might be

left out.

22

2.3.5 Comparison of the Evaluated Development Methodologies
Table 2.4: Comparisons Between Different Methodologies
Waterfall Agile Methodology Prototyping
Methodology Methodology
Structure Linear and Iterative and incremental. | Iterate using early
sequential. simplified
models.
Flexibility Low — difficult | High — allow to change | Moderate —
to change the | even late in the process. | changes can be
requirements made after every
once iteration.
development
starts
Customer Minimal — | Continuous — regular | High — users
Involvement mainly during | feedback through sprints | interact with
requirements and | and reviews prototypes to
delivery phases provide early
feedback
Documentation | Extensive — | Minimal — focuses on | Varies —
detailed working software over | documentation
documentation at | comprehensive may be limited,
each phase documentation focusing on the
prototype itself
Risk Identifies risks | Continuous evaluation | Identify usability
Management early but | and adjustments of risks | and design issues
addresses them | throughout the project early through user
late in the interaction ~ with
process prototypes
Best Suited For | Projects with | Projects with evolving | Projects with
well-defined requirements and the | unclear
requirements and | need for frequent | requirements or
scope feedback

23

complex user
interactions
Delivery Long — delivers | Short — deliver functional | Varies — depends
Timeline at the end of the | software periodically. on the number of
project iterations and
refinements
Cost High Low Variable
Implications

2.3.6 Conclusion of Methodology

The Prototyping Methodology is the most suitable for the developers who are working
alone on a sports equipment management system. Its iterative nature allows rapid
development and improves the system based on continuous feedback. Before the formal
development, the concepts can be tested, usability problems can be found, and
requirements can be clarified by creating early prototypes. It also can reduce the
possibility of expensive errors and ensure that the final product is aligned with the user
needs. Prototypes methodology also supports changes in requirements and priorities
which enable for flexibility and quickly modifications during development.

The waterfall methodology is not suitable for this project is because it is a rigid
and linear approach that requires each phase to be fully completed before moving on to
the next phase. This makes it difficult to adjust once the development process is start.
The lack of flexibility in the waterfall methodology also causes usability issues or
mistakes in design cannot be solve in a right way as the feedback and changes can only
be made after the project is completed. Besides, all requirements must have a clearly
understanding when using waterfall methodology are not suitable for the projects that
require user feedback and always changing requirements.

In addition, agile methodology is not suitable for this project as it requires
more resources and collaboration with others which may be challenge when the project
is lacks consistent stakeholder involvement or has limited resources. This is because
Agile methodology is relied on continuous communication, regular feedback, and
active collaboration between developers and users throughout the development process.
If developers work alone or have few opportunities for frequent reviews with

stakeholders, it may become difficult to implement agile practices such as sprint

24

reviews and backlog refinement. It may also be a challenge for independent developers
to work without a team and may cause scope creep, unclear deadlines, and inconsistent
progress when not managed well. This is because an individual developer is hard to

manage multiple iterations and respond to changing requirements.

24 Web Application Framework

2.4.1 React Native

React Native is a popular open-source framework developed by Meta (formerly
Facebook) that allows developers to build mobile applications using JavaScript and
React. Unlike traditional native development which requires separate code bases for
10S and Android, React Native enables cross-platform development with a single code
base. React has evolved to support web development through tools like React Native
for Web which allows developers to use a unified code base across mobile and web
platforms. React Native is a powerful solution for creating high quality and responsive
mobile or web apps. This is because it can access to native APIs and many community-
supported libraries. The performance and user experience are very similar with the fully
native app as it uses native components rather than web views. Therefore, its
component-based architecture that fosters code reusability making it become an
effective choice for developers who want to build scalable, maintainable mobile or web
applications as it provides easy maintenance, consistent user interface, and faster
development speed.

React Native has many advantages. One of its main advantages is code
reusability which allows developers to write single code base for both web and mobile
applications. React Native allows developers to reuse up to 90% of the code between
10S and Android platforms (Leed Software Development, 2024). This result in the
decreases in the development time and effort. It also provides a smoother user
experience by using native components to deliver near-native performance. Besides,
React Native has a rich ecosystem and strong community support that provides a variety
of libraries, plugins and tools to accelerate development and simplify tasks such as
navigation and API integration. It also supports hot reloading which can increases the
productivity by enabling developers to observe the changes without the need to rebuild

the entire program (Leed Software Development, 2024).

25

Even though React Native has many advantages, it also has some
disadvantages. One of that main limitation is its performance limitations for complex
applications that require intensive calculations or complex animations. The
responsiveness of the application may be affected by latency as the framework relies
on JavaScript bridge to communicate with native modules (Singh, 2023). Furthermore,
React Native rely on third-party libraries which can lead to compatibility issues and
security vulnerabilities if these libraries are not maintain regularly. The framework also
does not have full access to native API’s (Leed Software Development, 2024). This
result in the custom native modules need to be developed in order to implement some
specific features but these may increase the complexity to the development process.
Due to the interaction between JavaScript and native code, it causes debugging React

Native become more challenges than fully native apps as developers must expertise in

both areas.

Table 2.5: Advantage and Disadvantage of React Native

Advantages

Disadvantages

Code can be reused across web and

mobile apps.

Not so effective for apps that require

heavy processing or complex animations.

Saves time by sharing up to 90% of code

between platforms.

Latency @ may occur due to

communication through a JavaScript

bridge.

Provides near-native performance using

native components.

Relies on third-party libraries, which may

cause security or compatibility issues.

Has many libraries, tools, and a strong

developer community.

Some native features require custom

modules, which adds complexity.

Hot reloading speeds up development by

showing changes instantly.

Debugging is more difficult and requires
knowledge of both JavaScript and native

code.

24.2 Vue.js

Vue.js is an incremental JavaScript framework that is used to create user interface. Due
to its incremental nature, developers can gradually integrate it into projects. Vue.js is

focuses on view layer which make it easy to integrate with other libraries or existing

26

projects. Its core library is lightweight and provides responsive data binding and
component-based architecture which similar to frameworks like React and Angular.
Vue.js has many advantages. One of the main advantages is its beginner-
friendly and has a mild learning curve for those who are familiar with HTML, CSS, and
JavaScript (Johnson, 2023). It is because it provides a declarative and component-based
component that extends the use of standard HTML, CSS, and JavaScript (Vue.js, no
date). Its two-way data binding makes it easy to synchronize between models and views.
Vue.js also provides documentation that makes the developers to easily get started and
solve problems quickly. The component-based architecture improves code reusability,
ensure faster load times and better performance. Its flexibility also makes it suitable for
any size of the project from small to large (Epifany Bojanowska, 2018).
Besides, Vue.js has some disadvantages. One of the main disadvantages is it has smaller
community and ecosystem than React or Angular. Therefore, it has less third-party tools,
libraries, and job opportunities.Vue.js is difficult to extend as it may become more
complex for larger projects that do not have strong architectural guidance. Additionally,
plugins or support for enterprise-level features can be inconsistent if Vue.js is under
development. Lastly, the over-flexibility can lead to differences in coding styles within

a team if the strict standards are not followed (Johnson, 2023).

Table 2.6: Advantage and Disadvantage of Vue.js

Advantages Disadvantages

Beginner-friendly with a gentle learning | Smaller community compared to React

curve. and Angular.

Uses standard HTML, CSS, and Fewer third-party tools and libraries

JavaScript with a declarative approach. | available.

Two-way data binding simplifies model- | Difficult to scale for large projects with

view synchronization. poor structure.
Detailed documentation helps Can be complex to maintain in large
developers get started quickly. applications.

Flexible and suitable for both small and

large projects.

27

2.43 Laravel

Laravel is a popular open-source PHP web application framework known for its elegant
syntax, powerful features and developer-friendly tools. It follows the Model-View-
Controller (MVC) architectural pattern and is designed to improve routine operations
such as routing, authentication, sessions, and caching (Neelam Menariya, 2022). As
Laaziri et al. (2019) mentioned that Laravel can avoid the common mistake of
“spaghetti code” by developing the PHP code in neatly and easy way. Laravel also
comes with built-in support for Blade templates, the Eloquent ORM for database
administration, and the powerful Artisan CLI for the automation of the repetitive tasks
which is suitable for building scalable and maintainable web applications.

Laravel has many advantages. It provides clean and readable code that make
it easier to maintain and expand applications. The MVC architecture promote code
organization and separation of concerns. Laravel also has built-in security tools such as
protection against SQL injection, cross-site scripting (XSS), and cross-site request
forgery (CSRF). Besides, Laravel has a large community and accurate documentation
(Laaziri et al. ,2019). This allows Laravel can provide a variety of packages and
learning resources. Laravel Mix also makes it easy to compile assets and integrate with
front-end tools.

However, Laravel also has some disadvantages. One of the main
disadvantages is the learning curve can be high for beginners who are not familiar with
object-oriented programming or MVC architecture. Laravel applications can be heavy
and need to be optimized for high performance needs. If the features or packages are
not structured properly, it may lead to messy code even though Laravel provides a lot
of flexibility. Lastly, Laravel hosting requirement may limit its deployment on older
server as it too relies on modern PHP features (Neelam Menariya, 2022). Additionally,
it also has slow performance compared to other frameworks such as Node.js or
ASP.NET. Therefore, this result in Laravel is not suitable for applications that require

high performance or real-time features.

28

Table 2.7: Advantage and Disadvantage of Laravel

Advantages Disadvantages

Clean and readable code, easier to | Steep learning curve for beginners

maintain and expand. unfamiliar with OOP or MVC.

MVC architecture promotes code | Laravel applications may require

organization and separation of concerns. | optimization for high performance.

Built-in security tools: protection against | Misstructured features or packages can

SQL injection, XSS, and CSRF. lead to messy code.

Large community and detailed | Hosting requirements may limit

documentation for support and resources. | deployment on older servers.

Laravel Mix simplifies asset compilation | Slower performance compared to
and front-end integration. frameworks like Node.js or ASP.NET,

not suitable for real-time applications.

2.44 Express.js
Express.js is a fast, open, and minimalist Node.js web framework. It provides a range
of powerful features for web and mobile applications that simplify the process of
building web servers and APIs. Express.js is widely used to build backend services. It
is also well known for its ease of use, flexibility, and performance. It uses the non-
blocking, event-driven features of Node.js to handle multiple requests which makes it
become a popular choice for creating scalable and high-performance web applications.

One of the main advantages of Express.js is its simplicity and minimalism
which allows developers to build web applications and APIs in a faster way and without
unnecessary overhead. Its modular structure gives the developers freedom to create
custom frameworks and add middleware to meet developer’s requirements. Express.js
also provide many plug-ins and frameworks that make it easier to expand its
functionality. It also provides powerful routing capabilities that allow developers to
easily define and manage routes. It is also a developer-friendly framework due to it
large community support and documentation

Express.js has some disadvantages. One of the main disadvantages is minimal
functionality which means that the developers need to write more boilerplate code for
features that are pre-built in other frameworks. It also does not have built-in solutions

such as authentication or data validation. Therefore, the developers need to integrate

29

third-party tools or libraries. Besides, Express.js also inherits some of the Node.js
limitations such as inability to handle CPU-intensive operations which can affect some

of the use case performance.

Table 2.8: Advantage and Disadvantage of Express.js

Advantages Disadvantages
Simple, minimalist, and fast web | Limited functionality, requires more
application/API development. boilerplate code.
Modular structure, supports custom | Lacks built-in features like
frameworks and middleware. authentication and data validation.
Provides numerous plugins and | Requires third-party tools/libraries to

frameworks for extended functionality.

implement more features.

Powerful routing function, easy to

manage routing.

Inherits Node.js limitations and struggles

with CPU-intensive tasks.

Large community and comprehensive

documentation

2.45 Conclusion of Web Application Framework

For the frontend, React Native is the most suitable for this project as it can build
reusable components that make it easy to manage complex user interface. It also
suitable for interactive dashboards and real-time data changes such as booking status or
equipment availability. React’s virtual DOM also can improves the performance and
provide smooth delivery and responsive user experience. Furthermore, React has large
ecosystem that contains useful libraries for routing and state management. React's
component-based architecture makes it simple to divide the user interface into
manageable, reusable parts and speeding up development and maintenance.

For the backend, Laravel is most suitable for this project as it provides a clear
and structured foundation for creating scalable web applications because it is a PHP
framework with an MVC design. Laravel’s built-in tools like Eloquent ORM simplify
database management, while its Blade templating engine ensures clear separation of

frontend and backend logic. The framework also provides strong security features,

protecting against SQL injection, cross-site scripting (XSS), and cross-site request

30

forgery (CSRF). Laravel’s large community and detailed documentation make it easier
for developers to troubleshoot and extend the application’s functionality which can

provide a smooth development process for the sports equipment management system.

2.5 Existing Similar Application

2.5.1 Odoo

The Odoo Inventory Management System is a comprehensive open-source solution
designed to simplify and automate inventory operations for businesses of all sizes. The
system integrates with other Odoo applications such as sales, manufacturing, and
accounting which will provide a single method to manage the entire supply chain. The
system also provides real-time visibility of inventory levels that enable business to

make decisions and reduce stockouts.

0doo

Access and manage your documents and
databases from odoo.com.

Email

Password Forgotten?

Don't have an account?

Figure 2.3: Login Page

31

odoo

Access and manage your documents and
databases from odoo.com.

Your Email

Your Name

Password

| already have an account

® Your personal data will be handled as
outlined in our Privacy Policy.

Figure 2.4: Sign Up Page

odoo Apps industries Community Prichg Help Signin

Odoo Inventory

Instant access.

"
: ©vorone

We achieved under 10 days in Odoo what took us 100

days in NetSuite. | regularly find cases where things
cannot easily be achieved with NetSuite but are out-
of-the-box with Odoo. How come Odoo is 7x cheaper
than Netsuite? Just incredible!

5y clicking on Start Now, you a«

¢ Ghango apps slection E3

Figure 2.5: Instant Access Page

The figure show login and sign-up page which allows users to fill in their details. The
sign-up page includes email field, name field and password field while the login only
required user to fill in their email and password. It also includes the instant Access Page
which is a quick access to demo inventory management system. After signing up, user
can access to the inventory management system such as menus, fields, navbar buttons,

chatter, report actions, and multi-action views.

® 2 e Inm & ©

Discuss Dashboards Inventory Barcode Apps Settings

O

Figure 2.6: Main Page

Dashboards

LOGISTICS

Warehouse Daily Op...

Operation analysis

Fill rate sort by Top Demand

Figure 2.7: Dashboards Page

On time rate sort by Top Demand

32

Figure 2.7 shows the dashboards pages which shows the KPIs (Key Performance

Indicators) such as inventory levels, sales orders and financial metrics. Users can the

charts, graphs, and lists based on their roles.

@ Inventory Overview Operations Products Reporting Configuration

= LOCATIONS
All

« Physical Locations
~WH
~WH/stock

WH/Stodk/Asse... 4
WH/Stodk/Flat P... 3

™ TRIGGER
All
Auto

Manual

Product
[€-COMOS] Corner Desk
B [E-COMO9] Large Desk
[FURN_5001] Flipover
[FURN_5666] Table
[FURN_7777) Office Chai
[FURN_8888] OFfice Lamp
[FURN_8500] Drawer Black
[FURN_8001] Flipover
[E-cOMOS] Corner Desk ...
[E-COMOS] Large Desk

[FURN_9666] Table

3 sele

ed ¥ | @ Actions

Location ~ OnHand Forecast
WHjstock 4.00 1.00
WiH/Stock 100 400
WiH/Stock 500 -6.00
WH/Stock 200 1.00
WH/stock /asse. 4.00 4.00
WH/Stock/Asse... 8.00 8.00
WiH/Stock /Asse. 12.00 12.00
WH/Stock fasse. 00 00
WH/Stock/Flat P. 400 400
WiH/Stock/Flat P. 1.00 1.00
WHStock/Flat P. 00 00

Figure 2.8: Inventory Page

Route
o
o
[:]
(]
B o
(:]
Manufacture @

Manufacture @

Manufacture @

0.00

0.00

0.00

0.00

& Order Once
& Order Once
@ Order Once
@ Order Once
& Order Once

& Order Once

% snooze
JK snooze
Order Once

& Order Once

Automate
Automate

Automate

< Automate

< Automate

JK snooze
J snooze
% snooze

X snooze

X snooze

The figure shows the Inventory Page. It allows users to select, create, delete and update

the inventory based on user roles. It contains location tracking so that users can know

where the item is stored. It also allows user to set minimum and maximum quantity

levels for items. The real-time inventory tracking allows users to get the immediate

results into the stock levels across multiple warehouses to ensure the information is up-

to-date and accurate.

33

E Barcode Scanner Install

Scan or tap

+ Scan a product or its packaging to locate it
+ Scan a picking to open it
* Scan an operation type to start it

Figure 2.9: Barcode Page.

€ Barcode Scanner

Apply

Figure 2.10: Barcode Scanner Page

Figure 2.9 shows the Barcode Page which allow user to scan the barcode, and it also
allows user to see the operation such as receipt or delivery option or allows user to
check the amount of inventory by clicking the inventory count button. Figure 2.10

shows the Barcode Scanner Page which allows user to scan the barcode.

‘ Inventory ~ Overview Operations Products + A Pending Activation * O B

mProductsﬂ- 1171 £ > @

‘ Q Goods X Eearch...

77 burger
Price: RM 1.00
On hand: 0.00 Units

Figure 2.11: Product Page

@ nventory Overview Operations Products + A Pending Activation * [0} :]
Pmducts
W New 8+ @ X

2= Pricelists 0.00 Forecasted Documents =~ Reordering Rules | wmmp IN: 0
*= 0 Rules) 0.00 @ 0 =0 = outo
Product

W e.g. Cheese Burger

Sales
General Information Inventory
Product Type * O Goods Service Combo

Track Inventory *
Quantity On Hand 0.00
Sales Price” RM 1.00
Cost ? RM 0.00
Category

Reference

Barcode

INTERNAL NOTES

Figure 2.12: Add new product Page

34

35

‘ Inventory Overview Operations Products + A Pending Activation @ (Ol |
Products
| Y New & x

e= Pricelists 0.00 Forecasted Documents | # Reordering Rules = wesp IN: 0
: I o i 0 =~ -

*== 0 Rules Out: 0

Product

¢ e.g. Cheese Burger

Sales
General Information Inventory
OPERATIONS
Routes * = View Diagram
LOGISTICS
Responsible ? YAP RUI YA
Weight 0.00 kg
Volume 0.00 m’
Customer Lead Time* 0 days

DESCRIPTION FOR RECEIPTS

This note is added to receipt orders (e.g. where to store the product in the warehouse)

Figure 2.13: Add new product Page- quantity

Figure 2.12 and Figure 2.12 shows the product page and add new product page. In add
new product page, it allows user to select the product type and track inventory, quantity
on hand, sales price, cost, category, reference, barcode, add images, and internal note.
It also allows user to choose the inventory and fill in the logistics and description for
receipt section. In logistic section, user can fill in the weight, volume and customer lead
time. After creating a new product, it will display in the product page and it can be

editing the product information by clicking the frame as shown in Figure 2.11.

Table 2.9: Advantage and Disadvantage of Odoo

Advantages

Odoo provides real-time visibility into inventory levels, movements, and locations,

enabling businesses to make informed decisions and reduce out-of-stocks.

When inventory levels is low, the system automatically generates a purchase order

to ensure timely replacement and preventing inventory overstocking.

Integration with barcode and RFID technology improves the accuracy and efficiency

of inventory handling, reduces manual errors and speeds up the process.

36

Odoo provides advanced reporting tools that provide insights into inventory

performance that can help businesses identify trends and make data-driven decisions.

Disadvantages

The initial configuration of Odoo's inventory module can be complex and time-

consuming which requiring technical expertise or external assistance.

User interface complexity.

Limited Support for Non-Standardized Processes

Limited availability of features in some regions

2.5.2 Dashcode

Dashcode is a front-end development tool that designed to create interactive and
visually appealing dashboards easily. It offers a user-friendly drag-and-drop interface
that allows developers to quickly design and prototype custom dashboards without
extensive coding knowledge. It also provides a variety of customizable widgets, such
as charts, tables, and graphs that make it easier for displaying real-time data and key
metrics. It allows faster development of small projects and prototypes but it requires
additional tool or system for more complex features such as back-end integration or

real-time updates.

) pashcode
Signin
Sign in to your account to start using Dashcode

Email

dashcode@gmail.com

Passwrod

Keep Me Signed In Forgot Password?

Or continue with

©0006

DON'T HAVE AN ACCOUNT? SIGN UP

Figure 2.14: Log in Page

37

@ DashCode
Sign up
Create an account to start using Dashcode
Name
Email
Passwrod

You Accept Our Terms And Conditions And Privacy Policy

Create An Account

Or continue with
0006
ALREADY REGISTERED?SIGN IN

Figure 2.15: Sign up Page

Above figure shows the sign up and login page. The sign up page required users to fill
in their name, email and password while the login page required users to fill in their
name and password.in the sign up page, users must make sure they tick the terms and

conditions before they enter the create an account button.

B} pashcode ® Ew ¢ © P P O & verroes v
MENU
Dashboard B Weekly V select date

@ Dashboard

@ Analytics Dashboard (Upgrade your

Totel revenue Products sold Growth

o Ecommerce Dashboard Dashcode) 584 i Vv o
o Project Dashbaord Pro plan for better results

© CRM Dashbaord

o Banking Dashboard Overview

Revenue Report ® Net Profit Revenue Free Cash Flow

~» Changelog 100
APPS

© Chat

B8 Email

I Kanban Total

249

B Calender 8

Todo

D Projects :

Fob Mar Apc May Jun Ju sep oct

Figure 2.16: Analytics Dashboard Page

38

a DashCode ® € ¢ © P P @ B enroes v
MENU
All Company Recent Activity
@ Dashboard ~
® Analytics Dashboard comMPANY CATEGORY sALEs VIEWS REVENUE)
Finance KPI Mobile app launch...
-
> Ecommerce Dashboard
@ Biffco Enterprises Ltd. o 43 6 B Finance KPI Mobile app launch...
At Technology 343 323126 2 P
i‘j Finance KPI Mobile app launch.
& Banking Dashboa @ Biffco Enterprises Ltd. nology 7% s '
© Banking Dashboard ol Technology 197% 315 $4328
Finance KPI Mobile app launch...
o changeios ((EED ® p
l‘; Biffco | td Technology 137% 329 $43765
apps B 9 Finance KPI Mobile app launch...
B chat f orcocmenrsssie Technoloay 101% 336 p— 0 Finance KPI Mabile app launch...
B Email
z Finance KPI Mobile app launch...
0 Kanban ﬁ E‘\”‘{E‘j‘f’:’;‘?ﬁfl“" Technology 9% 375 $489.80
' B) Finance kP Mobile app aunch...
) calender -
0 Bifico Enterprises Ltd Tachnology 101% 490 $421.45
B Todo Biffco@Example Com ;‘i Finance KPI Mobile app launch...
D Projects

@\ Finance KPI Mobile app launch -

<M 2 3 a4 5 >

Figure 2.17: Analytics Dashboard Page-2

Figure 2.16 and Figure 2.17 shows the analytics dashboard Page. It allows users to
interact with data easily. At the left side, it contains sidebar which allow users to easily
navigate between different sections or pages within dashboards. At the tops it contains

a search bar to allow users to filter and search the data based on specific criteria.

m DashCode ® En ¢ 0 P P @ & venroes
MeNU
Y~ ¢ > oz
L~ Changelog
the calandar " !
APPS
® New Event Planning 1 2 3 4
B chat
Meeting
B Email
= Generating Reports
6 7 8 9 10 ul 12
0 Kanban Create New theme
(1 Calender
FILTER
B Todo 13 14 5 %6 17 18 L)
Birthday Party
D Projects
B Ecommerce
20 7 2 2 2 2 2
PACES .
Meeting
& Authentication eine
1 27 2 20 a0
m ity
7:52a All Day Event Monthly Meeting

Figure 2.18: Calendar Page

Figure 2.18 shows the calendar page. It allows users to schedule the event by clicking
on the specific date and the events can be added directly. Calendar Page also allows
users to navigate between months, weeks, and days to view or add scheduled events.
Besides, clicking on a specific day or event within the calendar can reveal more details
about that event and the events on the calendar can be color-coded or labelled to indicate

their type. Dashcode also allow users to set up recurring events in the calendar.

39

E DashCode ® Em & @ P R P & e
@
B Teode
D Projects .
Invoice B) Select Date 7 Fier
A Ecommerce
PAGES o oRoER CUSTOMER oATE QuANTITY AMOUNT sTATUS AcTioN
& Authentication
1 4951 @ ey wisen 3/26/2022
m ity
. ice 2 2 “ Jenny Wil 2/6/202 $a21 H
ing
AG 339 [R 1 $38: H
Koo
4365 ® - n72021 3
5 1 @ ervvwisn siezom 840
@ oy wisen 242022 A76416
e pag
ELEMENTS 7 [R 3 $28:

Figure 2.19: Invoice Page
@ Invoice-Add
Create New Invoice

#89572935Kh
Recipient info-500

Issued Date

Name

=

o
7
o
g
5

@
C]

Phone
Email

Address

Figure 2.20: Add Invoice Page

Figure 2.19 is an invoice page. It is designed to help manage and generate invoice for
different transactions such as purchases, sales, or rentals. It displays a list of all past
invoices with details such as invoice number, date, customer name, total amount, and
status. It also has an add record button that enables users to generate a new invoice.
After clicking the button, it navigates to add invoice page as shown in Figure 2.20.it
has a form where users can input all details of invoices such as customer information,
invoice items, date and payment term. Besides, it displays the status of the invoice, such

as "Pending," "Paid," "Overdue," or "Cancelled.

Table 2.10: Advantage and Disadvantage of Dashboard

40

Advantages

Easy to navigate and use.

Customizable dashboard

Provides detailed insights.

Reduces manual work and errors.

Provides detailed insights.

Works well with various business tools.

Disadvantages

Need third-party integrations.

Requires stable connectivity.

Can be overwhelming for small businesses.

May not scale well for large businesses.

Slow response times during peak hours.

May not integrate with niche platforms easily.

2.5.3 ECOUNT (Inventory / Barcode Software)

= y Contact Try Request
E@ *+6017-2701383 Us Demo Free Trial

2 WEB-BASED M INVENTORY PRODUCTION 5 SALES & PURCHASING

:ment Online Ordering System ~ Order Management Barcode Serial/Lot No. Management ~ WMS(Warehouse N v

Barcode Inventory Management

@ ACCOU

You can scan the barcode to input the receive and release. Use the cellphone camera to scan

the barcode on the mobile app.

Figure 2.21: Barcode Inventory Management

a

ECOUNT is a cloud-based ERP system that includes inventory, barcode, warehouse

management system (WMS), sales, purchasing, accounting and other modules. It is

designed to help businesses manage stock levels, simplify warehouse operations and

improve the accuracy of inventory tracking by using barcode scanning. The system

41

allows users to generate and print barcodes, scan the barcodes using mobile devices or

external barcode scanners and manage inventory across multiple outlets in real-time.

Therefore, ECOUNT can handles the inventory control and reporting efficiently.

Connect the barcode scanner using the OTG Cable

‘n

OTG CABLE

Figure 2.22: Connect Barcode Scanner using OTG Cable

E@ Scan Barcode

E@ Sales H @ =

< List Enter My Code >

@ Sales Info.
Jan 9, 2024

FastMart x

@ Item

Vitamin 24_B_001
1SEA
13

(=) Grand Total

2.4

Figure 2.23: Scan Barcode using Mobile Application

42

The figure 2.22 and 2.23 shows that the ECOUNT allows users to scan the barcodes
using either mobile application or external devices that connect by using USB or OTG.
After scanning, the system updates stock-in or stock-out records automatically to

reduce the manual input and errors.

7 Types of Barcodes

Code39, Eanl3, Codel28, QR Code, Data Matrix, G51-DataBar Expanded, G51-DataMatrix

Code39 Eanl3 Codel28

“ “‘ II :
L]

Data Matrix Gsl-DataBar Expanded Gsl-DataMatrix

Figure 2.24: 7 types of Barcodes

Figure 2.24 shows that ECOUNT allows user to generate custom barcodes for products
that lack of manufacturer codes. Users can create their own barcode format by using
the combination of items codes, name or batch numbers. It also supports label printing

that including key details such as price, SKU and company logo.

Table 2.11: Advantage and Disadvantage of React Native

Advantages

Real-time inventory tracking

Supports barcode scanning with mobile or external devices

Multi-warehouse and location management

Barcode generation and label printing

Integrated with other ERP modules like sales, purchasing, and accounting

Cloud-based access from any device

Supports serial/lot tracking and safety stock alerts

Disadvantages

43

Requires stable internet connection

Initial setup can be time-consuming

Some advanced features only available in paid modules

Performance may vary depending on hardware and scanner compatibility

Limited custom workflows for niche industries

2.5.4 Comparison of Existing Similar Application
Table 2.12: Comparison of Existing Similar Application
Feature Odoo Inventory | Dashcode ECOUNT
Full-fledged ERP | Front-end Cloud-based ERP
with inventory development tool with strong inventory
Purpose .
management for creating and barcode
capabilities dashboards management features
User-friendly with Easy to use for basic
_ Easy to use for ‘
a variety of o inventory and barcode
Ease of Use creating simple Ul-
modules, but may features.
. based dashboards
require setup
‘ Limited to front- Moderate
Highly
_ ‘ end UI design, customization
customizable with . ‘
Customization requires external available; supports
powerful tools for
_ _ systems for custom barcodes,
inventory tracking
backend forms, and reports
Advanced Real-time tracking of
tracking of stock | Basic tracking via | stock levels, serial/lot
Inventory levels, custom-designed numbers, and
Tracking movements, widgets, requires warehouse transfers
locations, and additional setup
reordering
Provides Built-in inventory

Reporting and
Dashboards

automated and
dynamic

inventory reports,

Supports simple
dashboards but

lacks advanced

reports with export
features (Excel/PDF);

44

analytics, and

KPIs

reporting

capabilities

dashboard includes

alerts and summaries

Integration

Strong integration
with other Odoo
modules (e.g.,
sales, purchases)
and external

systems

Limited integration
capabilities,
especially for
backend or

complex systems

Integrates with other
ECOUNT modules
(sales, purchase,
accounting); API
available for third-

party systems

Multi-location

Yes, tracks

multiple storage

Needs custom

design for multi-

Yes, supports multi-
warehouse/location

tracking, transfers,

Support locations and location '
and inventory balance
warehouses management _
per location
Barcode-based
Automated and)
_ Requires manual automated stock-
real-time stock
Stock setup to track stock | in/out, real-time
movements (e.g.,
Movement movements and updates, and support
borrowed/returned
) updates for multiple
items)
movement types
Built-in barcode
Full barcode
Can be scanning via mobile
support for quick
Barcode . implemented with | camera or external
stoc
Scanning additional tools, but | scanners; supports

management and

tracking

not built-in

label generation and

printing

User Roles &

Access Control

Granular user role
management for
access control and

permissions

Limited user access
control, focused
more on visual

elements

Role-based access for
modules, menus, and
operations; user
permissions are

customizable

Scalability

Scalable for small

to enterprise-level

Primarily suited for

small to medium

Scales for SMEs with

multi-location

support; may need

45

needs with

complex features

projects, may not

scale easily

enhancements for
enterprise-grade

operations

Faster for

Rapid prototyping

Fast setup for core

' . of simple inventory | inventory/barcode
implementing out-
Speed of dashboards, but features; full ERP
of-the-box
Development) more manual effort | setup may take longer
mventory
_ for complex
solutions
systems
Extensive . Good official
. Limited]
documentation ‘ documentation; email
documentation,
Support & and a large) and phone support;
] community support
Documentation | community,) resources targeted
. mainly for Ul
official support toward SME users
. development
available
Automated Includes barcode
‘ Limited to basic o
restocking, alerts, generation, 1nventory
features like
Advanced supplier alerts, invoice
displaying stock ‘ _ '
Features management, ‘ integration, basic
data and creating
maintenance ‘ WMS; some features
. visual reports o .
tracking limited in free version
2.5.5 Conclusion of existing similar applications

Through the analysis of the existing applications such as Dashcode, Odoo and

ECOUNT, it shows that they provide a strong inventory control and asset management

solutions. Dashcode may perform well with features such as barcode scanning, real-

time updates, and maintenance scheduling that make it suitable for industries that need

to track and manage assets in real time, but it may lack some of the advanced

customization.

Odoo provides a full set of integrated modules that make it become a

multifunctional solution for organizations to manage all aspects of their business such

as inventory, sales and purchasing. Odoo also provides a powerful automation and

46

reporting tools that can help to provide the insightful analytics on equipment usage,
stock levels, and maintenance activities.

ECOUNT also provides a cloud-based ERP solution with strong support for
barcode scanning, multi-location inventory tracking and automated stock movements.
Its user-friendly interface, built-in barcode label generation, and integration with
modules like purchasing and sales make it effective for small to medium enterprises
(SMESs) looking for a cost-effective and functional inventory system.

In conclusion, it is possible to build a tracking management system that allows
for real-time monitoring, easy management of equipment across locations, and efficient
maintenance scheduling through selecting and integrating these features from Dashcode
Odoo and ECOUNT Inventory. However, it may face a challenge such as complex user
interfaces and the need for further customization and these challenges can be solved by

using custom modifications to meet the needs of the project.

47

CHAPTER 3

METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter describes the methodology and work plan for developing an inventory
management dashboard for tracking sport equipment and facilities at a secondary
school sport centre. The prototyping methodology was selected due to its early creation
of functional system models which allows continuous user feedback and iterative
refinement. The flexibility of prototyping methodology also ensures that the
stakeholder’s requirements are clearly understand and meets their needs. Besides, a
detailed Work Breakdown Structure (WBS) will be created to divide the project into
smaller tasks in various phases such as initiation, design, prototyping, testing,
deployment, and closure. The combination of prototyping methodologies and
structured planning promotes well-organized progress, effective use of resources, and

the capacity to adapt to changes.

3.2 Prototyping Methodology

This project will use Prototyping Methodology which is an iterative approach and user
will involve in this project to gradually refine the system requirement and functionality.
Prototyping methodology will be chosen as it is suitable for the projects where the
requirements are unclear or always changing. It also focuses on the early user
interaction to build a usable and effective system. Besides, the project is divided into
multiple prototype iterations, and each prototype iteration will include planning,
building, user testing, and improvement activities that allow the system to evolve based

on real user feedback.

48

Requirements
Planning

System Design

Prototyping and
User Feedback
System

Implementation

|

(Testing

Final Refinement
and Deployment

End

Figure 3.1: End-to-End Methodology Flow

3.2.1 Requirements Planning

Prototyping Methodology is a flexible and iterative development that can adapted to
changes in requirements throughout the project life cycle. It needs to collaborate with
the stakeholders such as the teachers, students and sport centre administrators to gather
information about Tracking Sports Equipment and Facilities Inventory Management
System. Its gathers the requirements through conducting interviews and questionnaire
to identify which features is required to implement in the system such as equipment
tracking and booking system. In addition, literature review will be carried out to explore
existing systems and identify best practices in inventory management. The results will
be recorded as initial user requirement which will influence early prototypes and guide

continuous improvements based on stakeholder feedback. Therefore, the prototyping

49

methodology can ensure that the system remains aligned with user requirements

throughout the development process.

3.2.1.1 Quantitative Methodology

Quantitative methodology was used to better understand the needs and the challenges
related to Tracking Sports Equipment and Facilities Inventory Management System. A
questionnaire will distribute to collect information from relevant stakeholders. The
purpose of the questionnaire was to gather information from questions that related to
equipment availability, maintenance tracking, and overall inefficiencies in the manual
process. There are 8 respondents provided valuable feedback that allow developer to
identify the essential features and functionality required to implement for the new
system. These insights provided the basis for developing the functional and non-

functional requirements of the system.

3.2.1.2 Literature Review and Existing Systems Analysis

A literature review was conducted to explore similar inventory management systems in
sports sectors. The review included comparing the advantages and disadvantages of
various system such as ease of use, equipment tracking capabilities and integration with
other systems. The review also identified industry best practices that could be
implemented in tracking sports equipment and facility inventory management systems.
Lessons learned from the systems can help to improve system requirements and

structure for more efficient and user-friendly solutions.

3.2.1.3 Requirement Specification

The requirements for a sports equipment and facility inventory management system can
be identified after collecting data and reviewing the literature. The system will include
some features such as equipment tracking, maintenance scheduling, equipment booking,
and a user-friendly interface for users. The requirements were categorized into
functional and non-functional requirements. The use case diagrams were created to
visualize the system interactions and workflows to provide a clear understanding of

system functionality.

50

3.2.2 Design Process Using Prototyping Methodology

The inventory management system designed using a prototyping approach was well
suited for this project. This is because usability is important the user requirements may
change over time. This methodology allows users to be included in early development
and collects feedback on iterative design models. Each improved prototype version
shows the user feedback has been considered to ensure that the final system is fully
functional, user-friendly and meets the requirements of the secondary school’s sport

centres. The development process consisted of 3 major prototyping iterations.

iy —

Start Prototyping
Methodology
rototyping Low Refinement

~ ~ User Testing
T Fidelity Status Badges N
Wireframes Eastls and Ul Fixes

D —
0 2
: Refinement =] TN
Prototyping High User Testing QR - —
Fidelity and > Code and Mobile s > 7 &
D L Dashboard Prototyping Integration Refinement
Backend = Testing Full = Performance
Integration Workflows and Final Fixes l
af

User
Acceptance
Testing

Integration
Testing

Deployment

Unit Testing Ready

Figure 3.2: End-to-End Prototyping and Testing Flowchart

3.2.2.1 Iteration 1: Low-Fidelity Prototype and Basic Interaction Flow

3.2.2.1.1Prototyping

In the first iteration, a low-fidelity prototype was developed to demonstrate the main
features of the system such as equipment tracking, inventory management, login
process and user roles. Axure RP will be used to create interactive wireframes that
representing the main navigation flows. This early model emphasized basic navigation
flow without full visual design details in order to quickly produce a working structure

that could be evaluated by users. At this stage does not include any backend logic.

51

3.2.2.1.2User Testing

The first iteration of the prototype was tested by a small group of stakeholders, such as
quarter master and administrators. They will explore the wireframes and mocking up
tasks such as viewing equipment and logging in. Feedback was collected based on
system usability, functionality, and clarity. The common feedback included the need
for a clearer visualisation of ‘available’ and ‘rented’ equipment. Unit tests were

conducted on specific features to ensure that basic functionality worked as expected.

3.2.2.1.3Refinement

The first prototype was refined based on user feedback and it will solve the user
interface’s problems and new functionalities are planned to be added in future iterations.
For example, add status badges for equipment and simple instructions for check in or

check out equipment.

3.2.2.2 Iteration 2: High-Fidelity Prototype with Key Features

3.2.2.2.1Prototyping

In second iteration, a high-fidelity prototype was created with expanded features and a
more realistic interface. It was expanded the system by adding new features such as
real-time equipment availability interface, equipment reservation with time slot
selection, and booking history tracking to help users monitor past and upcoming
reservations. A mobile version of the system was also developed to ensure that users
can access to the platform by using their smartphones. The QR code functionality will
include two key components which are QR code generation and QR code scanning.
Administrators will be able to generate unique QR codes for each item during the
inventory entry process. These QR codes will be printed and attached to the specific
items. For users, they will be able to scan these QR codes by using their mobile phones
to book the equipment. Administrator and quarter master are also can access to QR code
scanning. In addition, role-based access will be introduced to differentiate user

permissions based on their roles.

52

3.2.2.2.2User Testing

This version of the system was tested by both sports centre staff and end users. The
testing will focus on the new features introduced in this iteration such as the mobile
responsiveness, QR code scanning efficiency and overall system performance.
Administrators will test the QR code generation feature to ensure that QR code can be
create, print, and assign to equipment correctly. They also tested others function such
as equipment status updates, condition editing, and QR code generation. Feedback also
will be collected to evaluate how users and administrators interact with the QR code

system.

3.2.2.2.3Refinement

The mobile interface will be improved based on the feedback from end users for better
accessibility and ease of use. The QR code scanning process was simplified to ensure
quick access to booking function. On the administrative side, the QR code generation
will be improved to makes it easy to distribute and print. Dashboard and reporting will
also be improved to provide summary of equipment usage. The user interface was also

restructured to make it more intuitive and user-friendly, especially for first-time users.

3.2.2.3 Iteration 3: Backend Integration and Final Functional Testing

3.2.2.3.1 Prototyping

In the third iteration, the front-end system was integrated with the back-end database to
ensure that the data can retrieved through backend. The system was designed to provide
real-time data updates on equipment availability such as QR-based check-in and check-
out operations that can directly updated equipment status in the database. Dashboard
will also be introduced to provide analytics on equipment usage trends that allows
administrator to make a true decision making and only administrators can view

analytics data. This prototype also included full user role functionality.

3.2.2.3.2 User Testing

Integration testing was conducted to ensure that the data flow between the front-end
and back-end systems were accurately. Feedback was also collected from
administrators and end user to ensure that the system met their requirements and

expectations. Users tested full workflows, such as logging in, scanning equipment QR

53

codes, booking facilities, and checking equipment status. Performance under
concurrent user loads was also tested. In addition, final usability testing was conducted

to validate the complete system functionality.

3.2.2.3.3Refinement

Final improvements were made to optimize system performance, resolve integration
issues, and ensure that the system was prepared for deployment. After final feedback
was collected through User Acceptance Testing (UAT), the final version of the system

was ready for deployment.

33 Final Implementation Phase

After the third iteration, the project will proceed to the final implementation phase. At
this phase, a high-fidelity and user approved prototype will be converted into fully
functional web and mobile application. All frontend components developed using
React.js and it will link to the MySQL database backend. This project will only test in
localhost. Therefore, a localhost server is used to deploy and test the entire system on a

localhost environment.

34 System Testing

A structured testing strategy is implemented to ensure that the reliability, usability, and
correctness of the inventory management dashboard for tracking of sports equipment
and facilities system. The testing process involves multiple phases and each of them

focuses on different aspects of system functionality.

3.4.1 Unit Testing

Unit testing is an important aspect of software development as it allows for early defect
detection and improve code quality by using automated frameworks (Daka and Fraser,
2014). Unit testing was carried out before and after development iteration to validate
system components to ensure that each function worked as expected. This isolation
testing approach helped to detect and resolve logic-related errors early in the

development process to ensure that it will function properly for later integration.

54

3.4.2 Integration Testing

Integration testing is important in object-oriented systems where the method executions
are connected by messages across multiple components and errors only occur when
units are composed together (Jorgensen and Erickson, 1994). Therefore, integration
testing was focused on verified the communication between frontend and backend. At
this phase, developers will test the functionality and also focused on the navigation
between data and system modules to ensure that all components were worked as a

cohesive unit.

3.4.3 User Acceptance Testing (UAT)

The system will release to users for user acceptance testing (UAT) Once integration
testing was complete. These users were asked to perform user acceptance testing to
evaluate usability and functionality. As Davis and Venkatesh (2004) mentioned that
hand on usability testing of new system is usually conducted near the end of a system
development project when the system development process is nearing its final operation
state. At this phase, developers will ensure that the system was user-friendly and aligned
with the user requirements and expectations that had been identified during the planning

stage.

3.44 Bug Fixing and Final Refinements

Developers will record any bugs that had been found during all testing phases and
categorized them according to severity in order to maintain system stability. In the final
phase, developers made improvements to enhance the consistency of user interface,
resolve remaining logic issues and optimize backend queries for better performance.

The system will finalize and ready for deployment after all bugs were solve.

3.5 Project Plan

3.5.1 Work Breakdown Structure (WBS)
The project tasks are broken down into phases and subtasks for the Inventory

Management Dashboard for Tracking Sports Equipment and Facilities:

Tracking Sports Equipment and Facilities Inventory Management System

55

1. Project Preparatory
1.1. Conduct research on sports equipment tracking and facility management
systems
1.2. Discuss proposal ideas and refine scope with supervisor
1.3. Confirm final FYP title with supervisor
2. Requirements Planning
2.1. Project Initiation
2.1.1. Define project background and motivation
2.1.2. Identity key problems (overbooking, missing equipment)
2.1.3. Define specific project objectives
2.1.4. Define project scope and limitations
2.1.5. Propose system solution (Dashboard-based tracking and
booking system)
2.1.6. Define project approach (Prototyping methodology)
2.1.7. Create Work Breakdown Structure (WBS)
2.1.8. Develop Gantt chart for project scheduling
2.2. Requirements Gathering
2.2.1. Develop questionnaire
2.2.1.1. Design close-ended and open-ended questions
2.2.1.2. Identify target respondents (teachers, students,
sport centre staff)
2.2.1.3. Validate questionnaire through supervisor
2.2.2 Submit ethical clearance
2.2.3 Distribute questionnaire and collect responses
2.2.3.1 Analyse questionnaire results to identify user needs
2.2.4. Literature Review
2.2.4.1. Study software development methodologies
(Waterfall, Agile, Prototyping)
2.2.4.2. Conclude relevant approaches and technologies
2.2.4.3. Research web frameworks (React, Laravel,
MySQL)
2.2.4.4. Review existing inventory and booking
applications (e.g., Odoo, Dashcode)

2.3. Define Requirements

2.3.1. Develop functional requirements (e.g., booking, reporting,
CRUD operations)
2.3.2. Define non-functional requirements (e.g., accessibility,
performance)
2.3.3. Create use case diagram and descriptions
2.4. Develop Low-Fidelity Prototype
2.4.1. Design User Management Page
2.4.2. Design Equipment Management Page
2.4.3. Design Reservation Management Page
2.4.4. Design Booking Management Page
2.4.5. Design Track Equipment Page
2.4.6. Design Dashboard Page
2.4.7. Design Stock Check Page
2.4.8. Design Booking Page
2.4.9. Design View History Page
2.4.10. Design Member Page
2.4.11 Design Login Page
2.4.12. Design QR Code Generation and Scanning Interface
3. User Design and Iteration
3.1. First Iteration
3.1.1. Prototyping Phase 1
3.1.1.1. Implement homepage with login functionality
3.1.1.2. Create basic booking module interface
3.1.1.3. Develop equipment listing and inventory views
3.1.1.4. Build reporting module structure (dashboard)
3.1.1.5. Prototype QR Code Generation Ul for equipment
3.1.1.6 Create ERD diagram
3.1.2. Conduct User Testing and Evaluation 1
3.1.3. Refine Prototype 1 based on feedback
3.2. Second Iteration
3.2.1. Prototyping Phase 2
3.2.1.1. Improve inventory management with edit/delete

features

56

57

3.2.1.2. Improve booking management and tracking
features
3.2.1.3. Add QR code scanning functionality for equipment
check-in/out
3.2.2. Conduct User Testing and Evaluation 2
3.2.3. Refine Prototype 2
3.3. Third Iteration
3.3.1. Prototyping Phase 3
3.3.1.1. Finalize UI/UX enhancements
3.3.1.2. Test full QR code functionality
3.3.2. Link frontend and backend components
3.3.3. Conduct User Testing and Evaluation 3
3.3.4. Final refinement of prototype Construction
4.1. Coding implementation of all modules Authentication, Booking,
Inventory, Reporting, Maintenance, Dashboard
4.2. Conduct system walkthrough and informal user evaluation
5. Deployment
5.1. System Testing
5.1.1. Unit testing of individual functions (e.g., CRUD, login)
5.1.2. Integration testing (database «» backend «» frontend)
5.1.3. User Acceptance Testing (UAT) with target users
5.2 Deployment
5.3 Write report

5.4 Presentation and Demonstration

3.5.2 Work Plan
3.5.2.1 FYP 1 Gantt Chart

The FYP1 Ghantt Chart is attached in the Appendix B for reference.

3.5.2.2 FYP 2 Gantt Chart

The Fyp2 Ghantt Chart is attached in the Appendix B for reference.

58

3.6 Development Tools

This project utilized a combination of design, development and database tools to ensure
an efficient and well-structured development process. The selected tools supported
front-end and back-end development, interface prototyping and system modelling.
These tools were important to the successful implementation of an inventory

management dashboard for tracking sports equipment and facilities.

@ Laravel @ ENTERPRISE
fious ;%J e \'l_-'} d>ure
AN

Figure 3.3: Development Tools

WampSarver

php M Y

3.6.1 Visual Studio Code

Visual Studio Code (VS Code) is the main source code editor will be used during the
development of this project. This is because it supports different types of programming
languages and technologies such as HTML, CSS, JavaScript, PHP and MySQL
integration. It also provides built-in Git support, intelligent code completion, debugging
tools and an extensive marketplace for extensions which allowed developers to
customize the development environments to improve efficiency. It is also suitable for
novice and experienced developers due to its user-friendly interface and cross-platform

availability.

3.6.2 Axure RP

Axure RP is used to create interactive wireframes and prototypes of the system during
the design and planning phase. It helps to visualize the layout and functionality of user
interfaces before the development starts. Axure RP allows the developers and

stakeholders to interact with mock versions of system components. This tool is

59

important in a prototyping methodology as it allows early feedback from user and helps

to develop the interface design and improve user experience.

3.6.3 React

React is used to create the frontend of the application. React is a JavaScript library that
used to create user interface and provides responsive, dynamic UI, reusable components,
and effective DOM rendering. React’s component-based architecture makes it easier to
manage the complexity of user interaction workflows and ensures modularity and

maintainability in code.

3.64 Laravel

Laravel is the backend framework that used to handling server-side logic, user
authentication, and API development. The Model-View-Controller (MVC) architecture
of Laravel can help to organize the application structure and separate appearance from
logic. Laravel is suitable for creating scalable and safe backend due to its built-in
security features, middleware, and route management. Laravel’s Artisan CLI also
makes repetitive tasks become easier such as database migrations and controller

generation.

3.6.5 MySQL

MySQL is a relational database management system which will store and retrieve all
persistent data in the system. MySQL is used in this project due to its reliability, ease
of use, and compatibility with Laravel. Through Laravel’s Eloquent ORM, MySQL
tables can be queried and updated using expressive, readable PHP code which makes

data handling become easier and safety.

3.6.6 Enterprise Architect

Enterprise Architect is used for advanced UML modelling and system architecture
documentation. It supports the development of comprehensive system design models
such as use case diagrams, class diagrams, sequence diagrams, and component
diagrams. It is a useful for formal software engineering documentation as it can
supports traceability from requirements to implementation and shows the complex

system behaviour, workflows, and interaction logic between modules.

60

3.6.7 WampServer

WampServer is used as a local web server environment to host and run the Laravel
backend during development and testing. It provides an integrated stack of Apache,
MySQL, and PHP that allows applications to run on the local machine without the need
for an external server. WampServer is important for the projects that need to run on

localhost.

3.6.8 phpMyAdmin

phpMyAdmin is a web-based interface that used to manage the MySQL database. It
comes together with WampServer to carry out database operations such as creating
tables, performing queries, editing records, and exporting data. It is useful for users who

need to inspect or maintain their database without writing SQL commands.

61

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

This chapter shows the requirements specification of the proposed Inventory
Management Dashboard for the school sports centre. It provides a detailed overview of
the functional and non-functional requirements. This chapter also provides a use case
diagram that highlights the roles and activities of the main stakeholders such as teachers,
students, quarter master and administrators. This chapter also provides screenshots of

early prototypes to present the user interface and fact findings.

4.2 Fact Findings

To better understand the existing challenges and needs of the school’s sports equipment
and facilities management, the school staff has provided some evidence and
information that shows their current workflow. The equipment inventory count process
is manual which they use handwritten form to track their equipment. The bookings for
sport equipment and facilities are also recorded manually in a book by staff which may
cause a lot of human error, mistakes and inconsistency.

For inventory records, the school uses a basic Microsoft Excel spreadsheet
with only 3 columns which is equipment name, instock and damage. The inventory
quantities are updated manually by staff. They also mentioned that all inventory records,
booking requests and tracking processes are maintained in hard copy which relying on
handwritten logs and physical documentation. These limitations mention the needs for
a centralized and digital system that can improve overall process in order to increase its
efficiency, transparency in sport equipment management system. An image illustrating
the current manual stock check and booking method used by the school is attached in

Appendix A for reference.

62

4.2.1 Analysis

Section A: School Profile

School name
8 responses

6

5 (62.5%)

1 (12.5%) 1 (12.5%) 1 (12.5%)

Katholik High School SMJK KATHOLIK SMJK KATHOLIK PJ SMJK Katholik PJ

Figure 4.1: Current Method of Tracking Sports Equipment

Based on the above pie chart, the respondents are all from the same school.
Is your school Primary or Secondary?
8 responses

@ Primary
@ Secondary

Figure 4.2: School of Respondents

Figure 4.1 shows that 100% of the respondents come from the secondary school.

63

School Location

8 responses

3
3 (37.5%)

1(12.5%) 1 (12.5%) 1(12.5%) 1 (12.5%) 1 (12.5%)

0
Jalan 10/3, Seksyen 10, 46000 Petal... PJ, Jalan Gasing Petaling jaya
PJ Petaling Jaya SELANGOR

Figure 4.3: School Location of Respondents

It was found that the school was located in Petaling Jaya even the respondents entered

different location.

School Size (Total Number of Students and Teachers)

8 responses

2
2 (25%)

1(12.5%)

2000+ 3000 students with around 100... 4000 probably 1k idk
2500-3000 3000+ Very big | think

Figure 4.4: School Size of Respondents

There are 8 respondents answer about the school size where 25% of respondents answer
4000 which is the highest, 12.5% of respondents answer 2000+,12.5% of respondents
answer 2500-3000, 12.5% of respondents answer 3000 students with around 100
teachers, 12.5% of respondents choose very big I think and 12.5% of respondents
answer probably 1k.

64

Does the School Have a Sports Center?
8 responses

® Yes
® No

Figure 4.5: Availability of a Sports Centre

There are 100% of respondents choose yes which shows that all respondents school
have sports centre. This finding supports the relevance and importance of improving

sports facility and equipment management systems.

How do you manage the sport equipment or facilities?

8 responses

@ Manually
@ Using spreadsheets

Figure 4.6: Current Method of Managing Sports Equipment

Many respondents (87.5%) manage sports equipment manually and only 12.5% use
spreadsheets. This shows that most of the school rely on traditional paper-based

methods.

65

Do teachers and/or student clubs get involved in managing and tracking the sports equipment?
8 responses

® Yes
® No

Figure 4.7: Involvement of Teachers or Student Clubs in Equipment Management

Most respondents (87.5%) indicated that teachers and student clubs are involved in
managing and tracking sports equipment and only 12.5% shows that there are no
teacher and/or student involves in equipment management. This shows that the school
encourage a collaborative environment where both students and staff contribute to

resource management.

How often do you perform inventory checking?
8 responses

@ Daily

@ Weekly
Monthly

@ Quarterly

@ Annually

Figure 4.8: Frequency of Inventory Checking

Daily inventory checking is conducted by 87.5% of respondents, while the remaining
12.5% check weekly. This high frequency of checking implies a strong effort to
maintain accurate inventory even though the manually process still lead to

inefficiencies.

66

How do you perform the inventory auditing report or activities?
8 responses

@ Manually
@ Using spreadsheets (e.g., Excel, Google
Sheets)

@ Using specialized inventory managem...
@ Regular audits performed by staff
@ Audits performed by students or stude...
@ Automated tracking systems (e.g., bar...
@ Regular checks based on usage frequ...
@ Random audits to verify inventory

@ Monthly/quarterly/yearly full inventory...

Figure 4.9: Methods Used for Inventory Auditing

Half of the respondents (50%) stated they perform inventory audits manually, while
37.5% rely on audits by student clubs, and 12.5% conduct regular checks based on
equipment usage frequency. This shows a lack of formal auditing tools and an over-

reliance on labour-intensive methods.

What are the common challenges faced during the managing and tracking activities?
8 responses

Equipment damage or loss 6 (75%)
Lack of proper tracking systems 2 (25%)
Inconsistent or inaccurate inve... 6 (75%)

Delays in equipment restocking...—0 (0%)
Difficulty in keeping track of eq... | NN 2 (25%)
Poor communication between s...|—0 (0%)

Difficulty in scheduling or acces...|—0 (0%)

Budget constraints for mainten...|—0 (0%)

0 1 2 3 4 5 6

Figure 4.10: Common Challenges in Equipment Management

The most commonly challenges faced were equipment damage or loss which contains
75% of respondents choose this challenges, inconsistent or inaccurate inventory records
have also 75% of respondents choose, and difficulty in keeping track of equipment
usage only have 25%. These findings suggest critical gaps in the current tracking

system that contribute to inefficiency and potential loss of resources.

67

How is sports equipment currently tracked in the sports center?
8 responses

@ Manually (paper-based)
@ Spreadsheets (e.g., Excel)
@ No formal system

Figure 4.11: Current Method of Tracking Sports Equipment

All respondents (100%) stated that tracking is done manually by using paper-based
methods. This stronger mention that the need for a digital solution to improve accuracy,

efficiency, and traceability.

How often do you encounter issues with misplaced or lost sports equipment?
8 responses

@ Very often (weekly)

@ Often (monthly)

@ Rarely (once or twice a year)
@ Never

Figure 4.12: Frequency of Misplaced or Lost Equipment

There are 75% of respondents reported that encounter issues with misplaced or lost
equipment on a monthly basis, while 25% face this issue weekly. This high frequency

mentions the effect of relying on manual systems.

68

How important is real-time tracking of sports equipment for your operations?
8 responses

@ Very important
@ Important

@ Neutral

@ Not important

Figure 4.13: Importance of Real-Time Equipment Tracking

There are 87.5% of respondents believe that real-time tracking is very important, with
the remaining 12.5% rating it as important. This shows the high demand and need for

an updated system that allows the real time tracking of equipment.

How often do you face shortages of sports equipment during activities?
8 responses

@ Very often (weekly)

@ Often (monthly)

@ Rarely (once or twice a year)
@ Never

A
Y

Figure 4.14: Frequency of Equipment Shortages

There are 62.5% of respondents said they rarely experience shortages, while 12.5% said
they very often experience shortages. It also has 12.5% of respondents said they are

never and often experience shortages.

What is the most common issue you face with sports equipment?
8 responses

@ Misplaced or lost equipment
@ Damaged or unsafe equipment

a @ Insufficient quantity for demand

Figure 4.15: Most Common Issue with Sports Equipment

69

There are 87.5% of respondents reported that they faced misplaced or lost equipment

and 12.5% of respondents reported that they faced insufficient quantity for demand.

How are sports facilities (e.g., courts, fields) currently booked?
8 responses

@ Manual booking (paper-based)
@ Spreadsheets (e.g., Excel)

served)

Figure 4.16: Current Method of Booking Sports Facilities

@ No formal system (first-come, first-

All respondents (100%) reported that sports facilities are booked manually by using

paper-based methods. This indicates that there is no digital system in use, and an

inventory management system can be implemented to improve efficiency.

70

How often do you face issues with overbooking or underutilization of sports facilities?

8 responses

@ Very often (weekly)
@ Often (monthly)

@ Rarely (once or twice a year)
@ Never

Y

Figure 4.17: Frequency of Booking Conflicts or Underutilization

Half of the respondents (50%) stated they rarely face issues with overbooking or
underutilized, 25% of respondents stated they encounter them monthly, 12.5% of
respondents experience them monthly and 12.5% of respondents experience them

weekly.

Would a real-time availability and booking system for facilities improve your experience?

o)

8 responses

@ Yes, significantly

@ Yes, somewhat

@ No, it wouldn't make a difference
@ Maybe

Figure 4.18: Benefits of a Real-Time Booking System

There are 50% of respondents stated that the real-time booking system can improve
experience significantly and 37.5% saying somewhat. Only 12.5% of respondents

stated that it would not make a difference.

71

How often do you face conflicts or scheduling issues when booking sports facilities?
8 responses

@ Very often (weekly)

@ Often (monthly)

@ Rarely (once or twice a year)
@ Never

Figure 4.19: Frequency of Scheduling Conflicts

There are 50% of respondents facing scheduling conflicts monthly and 50% of
respondents rarely. This shows that booking conflicts occur frequently and there is a

need to implement a better system.

What is the most common issue you face with sports facilities?
8 responses

@ Overbooking (facility unavailable when
needed)

@ Underutilization (facility often empty)

@ Poor maintenance (e.g., dirty or
damaged facilities)

@ Perhaps the region is a little small

compared to the overwhelming number
of students we have in our school

Figure 4.20: Most Common Facility-Related Issues

Overbooking and poor maintenance were each reported by 37.5% of respondents as the
most common issues face with sport facilities. 12.5% of respondents shows that the
facilities are underutilization and 12.5% of respondents shows that the facilities are too

small for the student population.

72

Would you prefer an online system for booking sports facilities?
8 responses

@ Yes, it would be very helpful
@ VYes, but only if it's easy to use
@ No

@ Maybe

Figure 4.21: Interest in an Online Facility Booking System

All respondents expressed interest in an online booking system, with 62.5% stating it
would be very helpful and 37.5% preferring it only if it is easy to use. This suggests

that user-friendliness will be key to successful adoption.

How are maintenance schedules for sports equipment and facilities currently managed?
8 responses

@ Manual reminders (e.g., notes, emails)
@ No formal system

a @ Spreadsheets (e.g., Excel)

Figure 4.22: Current Method for Managing Maintenance Schedules

Half of the respondents (50%) use manual reminders like notes or emails, 37.5% have
no formal system, and only 12.5% use spreadsheets. These results show that

maintenance planning is unstructured and need to improve.

73

How often do you encounter issues with delayed maintenance or unsafe equipment?
8 responses

@ Very often (weekly)

@ Often (monthly)

@ Rarely (once or twice a year)
@ Never

Figure 4.23: Frequency of Delayed Maintenance or Unsafe Equipment

75% of respondents stated that delayed maintenance or unsafe equipment issues are
rarely encountered. Each of 12.5% of respondents stated that delayed maintenance or

unsafe equipment issues are often and very often encountered.

How often is sports equipment inspected for maintenance?
8 responses

@ Regularly (e.g., monthly)

@ Occasionally (e.g., once a year)
@ Only when a problem is reported
@ Never

Figure 4.24: Frequency of Equipment Maintenance Inspections

There are 62.5% of respondents stated that regular sport equipment inspected are
conducted. 25% of respondents stated that equipment maintenance inspections are only
conducted when the problem is reported. 12.5% of respondents stated that equipment

maintenance inspections performed regularly.

74

How satisfied are you with the current maintenance process for sports equipment and facilities?

8 responses

6

6 (75%)

0 (0%) 0 (0%) 1 (12.5%) 1(12.5%)
. | |
1 2 3 4 5

Figure 4.25: Satisfaction Level with the Current Maintenance Process

There are 75% of respondents rated their satisfaction level as 4 out of 5 which shows
that they are sarisfied with the current maintenance process for sport equipment and

facilities. Only 1 respondent gives lower score of 3 and 1 respondent gives 5.

How are reports on equipment usage, facility bookings, and maintenance currently generated?
8 responses

@ Manually (e.g., spreadsheets)
@ Using basic tools (e.g., Excel)
@ No formal reporting system

Figure 4.26: Current Method of Report Generation

There are 75% of respondents stated that reports are created manually, while 25%
reported having no formal reporting system. This shows that current reporting methods

are not standardized and efficient.

75

How useful would a dashboard with analytics and reporting capabilities be for decision-making?

8 responses

@ Very useful

@ Somewhat useful
@ Not useful

@ Not sure

Figure 4.27: Usefulness of a Dashboard

All respondents agreed on dashboard usefulness, with 62.5% rating it as "very useful”
and 37.5% as "somewhat useful." This shows a strong interest in using a centralized

reporting and decision-making tool.

How easy is it for you to access information about sports equipment and facilities?

8 responses

3
3 (37.5%) 3 (37.5%)

2 (25%)

0 (0%) 0 (0%)
0 \ |
1 2

Figure 4.28: Easy Access to Sports Equipment and Facility Information

There are 37.5% of respondents agree that it is easy to access to sports equipment and
facilities information with each of them rating it 4 and 5. 25% of respondents choose 3

out of 5 which shows it is normal for them. This shows that the access is good.

76

What additional features would you like to see in an inventory management dashboard?

8 responses

Real-time availability of

. Lo 5 (62.5%)
equipment and facilities

Notifications for maintenance or

) 5 (62.5%)
repairs

Reporting and analytics 3(37.5%)

Figure 4.29: Desired Additional Features in a Management Dashboard

Figure 4.29 shows that 62.5% of the respondents desired to see the real time availability
of equipment and facility features in an inventory management dashboard. There are
also have 62.5% of respondents desired to see the notifications for maintenance or
repairs in the inventory management dashboard system. Reporting and analytics feature
has 37.5% of respondents desired to implement in the inventory management dashboard

system.

4.3 Requirements Specification

4.3.1 Functional Requirements

The functional requirements describe the specific operations the system must perform
to fulfill its intended use. These are organized by user roles to clarify the access rights
and responsibilities of each type of user: teachers/students, administrators, and quarter

masters.

Users (Teacher and Student):
1. Users shall be able to log in using credentials (e.g. username and
password) created by the Administrator.
2. Users shall be able to view available equipment.
Users shall be able to book equipment
4. Users shall be able to make equipment reservations through the
system.

5. Users shall be able to view the status of their own reservations.

6. Users shall be able to view their booking history.

7. Users shall be able to scan a QR codes to access equipment
information.

8. Users shall be able to scan a QR code by using mobile device to
check equipment in or out directly through the system.

9. Users shall be able to receive notifications about reservation
approvals, rejections, booking status and other relevant updates.

10. Users shall be able to log out of the system at any time.

Administrators

1. The Administrator shall be able to log in independently without a
created account

2. Administrators shall be able to create, update, edit, and delete user
accounts and assign roles (e.g., teacher, student, quarter master)

3. Administrators shall be able to add, edit, update, and delete
equipment data with detailed information such as name, type,
quantity and location.

4. The Administrator shall be able to scan QR codes to access
equipment details or validate check-ins/check-outs.

5. The Administrator shall be able to generate a QR code after creating
equipment.

6. The Administrator shall be able to print the generated QR code for
existing equipment.

7. The Administrator shall be able to view all reservation and booking
requests submitted by users.

8. The Administrator shall be able to approve, reject, or cancel any
reservation.

9. The Administrator shall be able to approve, reject, or cancel any
booking.

10. The Administrator shall be able to track equipment status, including
check-in/check-out history.

11. Administrators shall be able to manually update equipment status to

99 ¢

reflect “available,” “rented,” or “‘under maintenance” or “out of

stock”.

77

12.

13.
14.

78

The Administrator shall be able to perform stock checks to verify and
update the current availability and condition of all equipment.

The Administrator shall be able to access to dashboard.

The Administrator shall be able to log out of the system securely at

any time.

Quarter Masters

1.

10.

11.

The Quartermaster shall be able to log in using their assigned
credentials.

The Quartermaster shall be able to view equipment information and
status.

The Quartermaster shall be able to update the status of equipment.
The Quartermaster shall be able to scan QR codes to access
equipment records or validate check-ins/check-outs.

The Quartermaster shall be able to print QR codes for equipment.
The Quartermaster shall not be able to create or delete equipment
records.

The Quartermaster shall be able to approve, reject, or cancel any
booking.

The Quartermaster shall be able to approve, reject, or cancel any
reservation.

The Quartermaster shall be able to track equipment status, including
check-in/check-out history

The Quartermaster shall be able to perform stock checks to inspect,
verify, and update the availability and physical condition of
equipment.

The Quartermaster shall be able to log out of the system securely at

any time.

79

4.3.2 Non-Functional Requirements

Usability:

1.

The system shall provide a user-friendly interface that is easy to
navigate for all user roles.

The system shall provide clear and descriptive error messages to help
users correct input mistakes.

The system shall support responsive design for usability on website

and mobile devices.

Performance Requirements

1.

The system shall respond to user actions within 2 seconds for 95% of
interactions.

The system shall generate QR codes within 3 second of request.

The system shall load equipment inventory and booking data

efficiently even if the data set is large.

Security Requirements

1.

The system shall require all users to authenticate with a valid

username and password before accessing the system.

4.4 Use Case Modelling

4.4.1 Use Case Diagram

uc Model)

Administrator.

Delete Equipment
Generate QR code .
Create User
">~ ainclude»
S |

——]

Inventory Management Dashboard for Tracking of Sports Equipment and Facilities in a Secondary School's Sport Centre

@ @
A

i

«extend»
J

Notification

Manage Booking

«extend»

Make Reservation

Quarter Master

—]

Track Equipment

Print QR Code

‘Check Reservation
tatus

Manage Reservation

Update Equipment

Users

Teacher Student

Figure 4.30: Use Case Diagram

80

81

4.4.2 Use Case Description

4.4.2.1 Login

Use Case Name: Login ID: UCO001 [Importance Level: High

Primary Actor: Administrator, Quarter |Use Case Type: Detailed, Essential

master, Users (Teachers & Students)

Stakeholders and Interests:
Administrator, Quarter master, Users (Teachers & Students) — Login to access the

System

Brief Description: This use case describes the process of login by the administrator,

quarter master and users (teacher and student).

Trigger: Administrator, Quarter master or Users who want to login and after scanning

QR code.

Relationships:

Association : Administrator, Quarter master, Users (teachers and students)
Include : Create User

Extend D -

Generalization : -

Normal Flow of Events:

1. The user scans the QR code.

2. The user navigates to system login page.

3. The system prompts the customer to enter personal information which
includes username and password.

4. The user confirms his/her personal information before submitting. Perform 4.1
and 4.2

82

5. The user login successfully and the system redirects users to booking page,
equipment management page or admin dashboard page based on the user’s
role._Perform 5.1,5.2 and 5.3

Sub-flows:

4.1 If user entered wrong personal information, the system displays a notification
to user indicating that personal information incorrectly. Back to flow no.3.

4.2 If user entered personal information correctly. Flow no.5 continues.

5.1 If user role is administrator, it will redirect to admin dashboard page.

5.2 If user role is quarter master, it will redirect to equipment management page.

5.3 If user role is members, it will redirect to admin dashboard page.

Alternate/Exceptional Flows:

A. The user must have a valid login to the system.

B. The quarter master and members (teacher and student) only can login after the
administrator creates an account for them.

C. Ifaccount does exist or is inactive, please contact administrator.

4.4.2.2 Create User

Use Case Name: Create User [D: UC002 [Importance Level: High

Primary Actor: Administrator Use Case Type: Detailed, Essential

Stakeholders and Interests:
IAdministrator - Create user account for teacher, student or quarter master so that they

can access to system.

Brief Description: This use case describes the process of creating a user by the

administrator.

Trigger: An administrator who wants to create users.

Relationships:

83

Association : Administrator
Include -
Extend :-

Generalization : -

Normal Flow of Events:

1. The administrator logs into the system.

2. The administrator chooses “create user” button.

3. The system displays a form to enter user details such as username, password
and role.
The administrator fills in the required information.

The system validates the input data. Perform 5.1,5.2 and 5.3

The system creates the new user account and stores it in the database.

R

The new user account creates successfully.

Sub-flows:
5.1 If administrator fill in the required information correctly and match with the
validation. Flow no.6 continues.
5.2 If administrator fill in the required information in a wrong way such as
weak password and empty required field. Back to flow no.3.
5.3 If administrator entered the username has already existed, the system will

notify the administrator. Back to flow no.3.

Alternate/Exceptional Flows:
A. The administrator must have a valid login to the system.

B. The username cannot be repeated.

4.4.2.3 View Dashboard

Use Case Name: View Dashboard [D: UC003 [Importance Level: High

Primary Actor: Administrator Use Case Type: Detailed, Essential

84

Stakeholders and Interests:

Administrator — view visual representation of data in dashboard

Brief Description: This use case describes the process of viewing dashboard by the

administrator.

Trigger: An administrator who wants to view dashboard.

Relationships:

Association : Administrator
Include D

Extend D

Generalization : -

Normal Flow of Events:
1. The administrator logs into the system.
2. The administrator selects “Dashboard” from the navigation bar.
3. The system retrieves summary data and displays the data visually in charts,
table or count.

4. The administrator view dashboard. Perform 4.1.

Sub-flows:

4.1 If there are no usage records, the dashboard will display no data available.

Alternate/Exceptional Flows:

A. The administrator must have a valid login to the system.

4.4.2.4 Create Equipment

Use Case Name: Create Equipment ID: UC004 [Importance Level: High

Primary Actor: Administrator Use Case Type: Detailed, Essential

Stakeholders and Interests:

Administrator — wants to create equipment.

Brief Description: This use case describes the process of creating equipment by the

administrator.

85

Trigger: An administrator who wants to create equipment.

Relationships:

Association : Administrator
Include : -

Extend D -

Generalization : -

INormal Flow of Events:

1. The administrator logs into the system and navigates to Equipment
Management.
2. The administrator selects “Create Equipment.”.

3. The system displays a form to enter equipment details such as equipment
name, type, quantity, location.

The administrator fills in the required information.

4
5. The system validates the input. Perform 5.1 and 5.2
6. The system saves the new equipment record into the database.

7. The equipment creates successfully.

Sub-flows:
5.1 If any required fields are left empty or contain invalid input, the system
prompts the administrator an error messages until it fills in correctly. Back to
flow no.3.

5.2 If the required fields are validated, flow no.6 continues.

Alternate/Exceptional Flows:

A. The administrator must have a valid login to the system.

4.4.2.5 Delete Equipment

Use Case Name: Delete Equipment ID: UCO00S5 {Importance Level: High

Primary Actor: Administrator Use Case Type: Detailed, Essential

86

Stakeholders and Interests:

IAdministrator — have ability to delete equipment to keep inventory accurate.

Brief Description: This use case describes the process of deleting equipment by the

administrator.

Trigger: An administrator who wants to delete equipment.

Relationships:

Association : Administrator
Include : N/A

Extend :N/A

Generalization: N/A

INormal Flow of Events:

1. The administrator login to the system. Perform 1.1 and 1.2

The administrator navigates to equipment page.

2

3. The system displays a list of equipment details

4. The administrator selects the equipment item to be deleted.

5. The system prompts the confirmation messages for administrator to delete
the equipment.

6. The administrator confirms the deletion.

7. The system shows a confirmation message that the equipment has been

successfully deleted.

Sub-flows:
1.1 If the login is valid, the flow no.2 continues.
1.2 If the login is invalid, the system informs the user is not login and prompts

them to login again. Then repeat flow no.1.

Alternate/Exceptional Flows:
A. The administrator must have a valid login to the system.
B. If the equipment is currently reserved or checked out, the system prevents

deletion.

87

4.4.2.6 Generate QR code

Use Case Name: Generate QR code ID: UCO006 [Importance Level: High

Primary Actor: Administrator Use Case Type: Detailed, Essential

Stakeholders and Interests:

Administrator — QR code is generated to simplify tracking and identification.

Brief Description: This use case describes the process of generating QR code by the

administrator.

Trigger: An administrator who wants to generate QR code.

Relationships:

Association : Administrator
Include : N/A

Extend : N/A

Generalization: N/A

Normal Flow of Events:

1. The administrator logs in to the system.

2. The administrator navigates to “product” section. Perform 2.1
3. The administrator clicks “generate QR code” button.

4. The system generates unique QR code based on different equipment.

Sub-flows:
2.1 If the QR code is missing or damaged, the administrator can re-generate a

new one without altering the equipment record.

Alternate/Exceptional Flows:

A. The administrator must have a valid login to the system.

88

4.4.2.7 Scan QR code

Use Case Name: Scan QR code ID: UCO007 [Importance Level: High

Primary Actor: Users (Teachers and Use Case Type: Detailed, Essential

Students), Quarter master, Administrator

Stakeholders and Interests:

Users (Teachers and Students) — can book the equipment by scanning a QR code.

Brief Description: This use case describes the process of scanning QR code by the

Users (Teachers and Students), Quarter master and Administrator.

Trigger: A user who wants to scan QR code.

Relationships:

Association : Users (Teachers and Students), Quarter master, Administrator
Include : —

Extend D=

Generalization: —

Normal Flow of Events:
1. The user open QR code scanning features in mobile.

The user scans the QR code attached to the equipment.

2

3. The system reads the QR code.

4. The user navigates to login page and ask user to login.
5

The user can access to booking page.

Sub-flows:

Alternate/Exceptional Flows:
A. The user must have a valid login to the system.

B. The user must access to the camera.

89

C. Ifthe QR code is unreadable or not linked to any equipment, the system

displays an error message.

4.4.2.8 Stock Check

Use Case Name: Stock Check ID: UCO008 [Importance Level: High

Primary Actor: Administrator, Quarter [Use Case Type: Detailed, Essential

master

Stakeholders and Interests:
Quarter master — need to do stock checking for the equipment.

Administrator — need to do stock checking for the equipment.

Brief Description: This use case describes the process of stock checking by the

administrator and quarter master.

Trigger: An administrator and quarter master who wants to do stock checking.

Relationships:

Association : Administrator, Quarter master
Include : —

Extend I—

Generalization: —

INormal Flow of Events:

1. The quarter master or administrator logs into the system

2
3. The system will display a list of all equipment.
4

The quarter master or administrator needs to calculate the amount of

Perform 4.1

5. A stock check result is generated and saved.

The quarter master or administrator navigates to the “Stock Check” section.

equipment such as how many instock, damage and record it into the system.

Sub-flows:

90

4.1 If the stock check amount is not same with the actual amount, it will prompt

error message for administrator.

IAlternate/Exceptional Flows:

A. The administrator and quarter master must have a valid login to the system.

4.4.2.9 Manage Booking

Use Case Name: Manage Booking [D: UCO009 [Importance Level: High

Primary Actor: Administrator, Quarter |Use Case Type: Detailed, Essential

master

Stakeholders and Interests:
Administrator and Quarter master — allows to view, approve, reject, or cancel

equipment bookings to control equipment usage and resolve scheduling conflicts.

Brief Description: This use case describes the process of managing booking by the

administrator and quarter master.

Trigger: An administrator and quarter master who wants to manage booking.

Relationships:

Association : Administrator, Quarter master
Include : —

Extend I—

Generalization: —

INormal Flow of Events:

1. The user login the system. Perform 1.1 and 1.2

2. The user navigates to “manage booking” section.

3. The system displays a list of all booking records with statuses, id, name of
equipment, check in and check out dates. Perform 3.1

4. The user can create, edit, delete, and update booking.

5. The system updates the booking status.

91

Sub-flows:
1.1 If the login is valid, flow no.2 continues.
1.2 If the login is invalid, the system informs the user is not login and prompts
them to login again. Then repeat flow no.1.
3.1 The sdministrator can filter bookings by status, user, or date range to manage

efficiently.

Alternate/Exceptional Flows:

A. The user must have a valid login to the system.

4.4.2.10 Track Equipment

Use Case Name: Track Equipment [D: UC010 [Importance Level: High

Primary Actor: Administrator, Quarter [Use Case Type: Detailed, Essential

master

Stakeholders and Interests:
Quarter master and administrator — needs to know which items are currently checked

out, who owns them, and when they are returned.

Brief Description: This use case describes the process of tracking equipment by the

administrator and quarter master.

Trigger: An administrator and quarter master who wants to track the equipment.

Relationships:

lAssociation : Administrator, Quarter Master
Include : —

Extend I—

Generalization: —

INormal Flow of Events:
1. The user logs into the system.

2. The user accesses the “Track Equipment” section.

92

3. The system displays a list of all equipment with status aavailable, check in,
reserve, checked out, under maintenance, missing or damaged. Perform 3.1

4. The user selects an item to view its tracking details.

Sub-flows:

3.1 If an item has no usage or tracking history, the system displays a message
indicating that no records are available.

Alternate/Exceptional Flows:

A. The administrator and quarter master must have a valid login to the system.

4.4.2.11 Print QR code

Use Case Name: Print QR code ID: UCO11 {Importance Level: High

Primary Actor: Administrator Use Case Type: Detailed, Essential

Stakeholders and Interests:
Administrator — ability to print QR codes when equipment is first added or when a

QR is damaged or lost.

Brief Description: This use case describes the process of printing QR code by the

administrator.

Trigger: An administrator who wants to print the QR code.

Relationships:

Association : Administrator
Include : —

Extend i

Generalization: —

Normal Flow of Events:
1. The administrator logs into the system.
2. The administrator navigates to the equipment page.

3. The administrator selects an equipment item.

93

4. The administrator clicks “Print QR code” button.

5. The QR code is displayed in a printable format.

6. The administrator prints the QR code.
Sub-flows:

Alternate/Exceptional Flows:
A. The administrator must have a valid login to the system.
B. Ifthe QR code doesn’t exist, the system prompts the user to generate one

before printing.

4.4.2.12 Manage Reservation

Use Case Name: Manage Reservation [D: UCO012 [Importance Level: High

Primary Actor: Administrator, Quarter |Use Case Type: Detailed, Essential

master

Stakeholders and Interests:
Administrator and quarter master — who allow to approve, reject, or modify

reservation requests.

Brief Description: This use case describes the process of managing reservations by

the administrator and quarter master.

Trigger: An administrator and quarter master who wants to manage a reservation.

Relationships:

Association : administrator, quarter master
Include : —

Extend D=

Generalization: —

INormal Flow of Events:

94

1. The administrator or quarter master can access the reservation of the system.

2. The system displays a list of recent reservations in the system, including
username, 1D, status and details. Perform 2.1

3. The administrator or quarter master selects the order needs to manage.

4. The system displays the details of the selected order which includes
quantity.

5. The administrator or quarter master selects an equipment in the order to
manage its reservation status, including cancelled, approved, rejected and.
Perform 5.1

6. The administrator confirms the changes of an order.

7. The system updates the reservation in the database.

Sub-flows:

2.1 The system only displays the list of orders for this month.
5.1 If a customer requests to cancel the order, the administrator needs to cancel

the order and update the order status again.

Alternate/Exceptional Flows:

A. The administrator and quarter master must have a valid login to the system.

4.4.2.13 Update Equipment

Use Case Name: Update Equipment [D: UCO013 [Importance Level: High

Primary Actor: Administrator, Quarter |Use Case Type: Detailed, Essential

master

Stakeholders and Interests: N/A

Brief Description: This use case describes the process of updating equipment by the

customer.

Trigger: An administrator and quarter master who wants to update the equipment.

95

Relationships:

IAssociation : Administrator, Quarter master
Include : —

Extend D—

Generalization: —

INormal Flow of Events:

1. The user needs to login to the system.Perform 1.1 and 1.2

2. The user access to the “equipment section”.

3. The system displays a list of equipment data, including name, id quantity,
status and location.

The user chooses the equipment he/she wants to modify.

The user edits the information.

The user confirms the information update after the information is modified.

N » Bk

The system updates the equipment information in the database.

8. The system displays new equipment information in the system.

Sub-flows:
1.1 If the login is valid, flow no.2 continues.
1.2 If the login is invalid, the system informs the user is not login and prompts

them to login again. Then repeat flow no.1.

Alternate/Exceptional Flows:

A. The administrator or quarter master must have a valid login to the system.

4.4.2.14 View History

Use Case Name: View History [D: UC014 [Importance Level: High
Primary Actor: Users (teacher and Use Case Type: Detailed, Essential
student)

Stakeholders and Interests: N/A

Brief Description: This use case describes the process of viewing history by the

USCrs.

96

Trigger: A user who wants to view History.

Relationships:
IAssociation : Users
Include : —

Extend P—

Generalization: —

Normal Flow of Events:
1. The member chooses the view history option.
2. The system displays the booking history list.
Sub-flows:

Alternate/Exceptional Flows:

A. The users must have a valid login to the system.

4.4.2.15 Book Equipment

Use Case Name: Book Equipment [D: UCO15 [Importance Level: High
Primary Actor: Users (teacher and Use Case Type: Detailed, Essential
student)

Stakeholders and Interests: N/A

Brief Description: This use case describes the process of booking equipment by the

users.

Trigger: A user who wants to book equipment.

Relationships:

97

Association : Users
Include : Notification
Extend -

Generalization: -

INormal Flow of Events:

1. The user scans the QR code that attach on specific equipment.

2. The system asks user to login. Perform2.1 and2.2.
3. The system displays the equipment name and check in or check out button.
4. User needs to select the quantity of the equipment.

5. User clicks the check in /check out button.

Sub-flows:

2.1 If the login is valid, flow no.3 continues.
2.2 If the login is invalid, the system informs the user is not login and prompts

them to login again. Then repeat flow no.2.

Alternate/Exceptional Flows:

A. The user must have a valid login to the system.

4.4.2.16 Make Reservation

[Use Case Name: Make Reservation

ID: UCO016 {Importance Level: High

Primary Actor: Users (teacher and

student)

Use Case Type: Detailed, Essential

Stakeholders and Interests: -

JUSCrS.

Brief Description: This use case describes the process of making reservations by the

Trigger: A user who wants to make a reservation.

Relationships:

Association : Users (teacher and student)

98

Include : -
Extend : Notification

Generalization: -

Normal Flow of Events:
1. The user logs into the system and choose the “Reserve Equipment” button.
2.The system will display the equipment name, quantity, date and time and
reserve button.
3. The user selects the quantity of equipment need, date and time that he/she
prefers.
4. The user clicks the make reservation button.
5. The reservation request is submitted and display successful message and
display pending status in history page.
Sub-flows:

Alternate/Exceptional Flows:

A. The user must have a valid login to the system.

4.4.2.17 Notification

Use Case Name: Notification [D: UCO017 [Importance Level: High
Primary Actor: Users (teacher and Use Case Type: Detailed, Essential
student)

Stakeholders and Interests: N/A

Brief Description: This use case describes the process of sending notification to the

jusers.

Trigger: A system event occurs (e.g., reservation approved, reservation rejected).

Relationships:

lAssociation : Users(teacher and student)

99

Include i
Extend 1=

Generalization; —

Normal Flow of Events:
1. The member can login to the system.
2. Once the member login, he/she will receive notification about his/her booking

or reservation status.

Sub-flows:

Alternate/Exceptional Flows:
A. The administrator must have a valid login to the system.

B. Notification will be trigger when user make booking and reservation.

4.4.2.18 View Reservation Status

Use Case Name: View Reservation Status [D: UCO018 [Importance Level: High

Primary Actor: Users (Teacher and Use Case Type: Detailed, Essential
Student)

Stakeholders and Interests:

[Users — who want to view the reservation status.

Brief Description: This use case describes the process of view reservation status by

the user.

Trigger: A user who wants to view reservation status.

Relationships:

lAssociation : Users (Teacher and Student)
Include D—

Extend D—

Generalization : —

100

INormal Flow of Events:

1. The user scan QR code.
2. The user login the system. Perform 2.1 and 2.2
3. The user chooses “my reservation”.
4. The user retrieves the user submitted reservations from database.
5. The user displays the reservation status such as approved or rejected.
6. The user views the reservation status in history.
Sub-flows:

2.1 If the login is valid, flow no.3 continues.

2.2 If the login is invalid, the system informs the user is not login and prompts

them to login again. Then repeat flow no.2.

Alternate/Exceptional Flows:

A. The user must have a valid login to the system.

B. The reservation record show in history.

4.5

Prototype Screenshot

Username

Password

Figure 4.31: Login Module

Badminton | x1
Date:

Time:

Location:

Status:

Figure 4.32: View History Module

Badminton

- 4+

‘ Check -In

‘ Check Out 1

Figure 4.33: Booking Module

101

102

Reservation

Badminton

-m +

Date: | ‘

Time: | ‘

Location: ‘

make reservation

Figure 4.34: Make Reservation Module

Home Page —

Badminton

| Reservation |

Figure 4.35: Home Page

103

. Usemame

Dashboard

\

I's B
ToTal Booking

Total Products)

[ToTal Booking

Egquipment Lists

Statictics

' Statictics

Figure 4.36: Dashboard Module

- Usermame

Product

Filter

Add Product

NO

NAME

QUANTITY

STATUS

QR CODE

ACTION

1234

Badminton

30

ACTIVE

[GENEEATE PRINT

£ @

Figure 4.37: Product Management Module

104

L Qa a Usemame
‘ Inventory
Filter Add Inventory
Product l
vercony QM ROOM
NO [ind NAME IN-STOCK MISSING DAMAGE ACTION
Stock Check
1 1234 Badminton 20 2 1 @ m
2
UP STORE
Mertbers NO P NAME IN-STOCK. MISSING PAMAGE ACTION
Veers } 1 1234 Badminton 20 2 1 3 m'
2
.)
Figure 4.38: Inventory Management Module
L Q & Usemame
) Reservation
Poshboard |
Filter Add Reservation
Product]
Inventory
NO USERNAME NAME PATE TIME QUANTITY STATUS ACTION
Stock Check
1 ABC Badminton 20 2 PENDING m’

Booking

Reservation

Members

ey

i

z

Figure 4.39: Reservation Management Module

105

L Qa a Usemarme
Booking
» |
Filter Add Booking
Product]
UP STORE ~
Inventory
NO USERNAME NAME DATE TIME QUANTITY STATUS ACTION
Stock Cheek
1 ABC Badwminton 200512025 12:20pm 2 CHECK IN 3 m

Booking

Reservation

JulrE

Pashboard

Product

i

Inventory

Stock Check

Booking

Reservation

Users.

s

z

Figure 4.40: Booking Management Module

. Usemame
User
Filter Add User]
NO USERNAME STATUS ACTION
1 ABC administrator ACTIVE 3 ‘m
2 ALl Guaer master INACTIVE B[‘ m

Figure 4.41: User Management Module

106

L Q & Usemame
Member
[Dashboard ‘ -
Filter Add User
[Product ‘
Inventory ‘ NO USERNAME BOLE STATUS ACTION
N
‘ Stock Check 1 1 ABC teacher ACTIVE @ 'm
‘ Booking J 2 ALl student INACTIVE Gf m

Figure 4.42: Member Management Module

107

CHAPTER 5

SYSTEM DESIGN

5.1 Introduction

This chapter describes the system design for the Sports Centre Management System
that covers the application architecture, database design, data modelling (ERD), data
dictionary and data flow diagram (DFD). The design adopts 3-tier architecture to
manage users/members, products, bookings and so on, which defines the core entities
and relationships. This chapter will explain the system architecture, model the data
using an ERD and Data Dictionary derived from tables, and illustrate the system's
processes with a Data Flow Diagram (DFD). The design ensures the system meets its

goal of efficient tracking for sports equipment and facilities.

5.2 System Architecture Design

()
° 0 . U .
99 Laravel | . e
RESTful APIS Queries U
00 Requests < * Processes Request ‘:'U
an Results (e.g: validate login, Results
- - CRUD) ‘

* Formats Response)

Results

Results

Figure 5.1: Overview of System Architecture Design

The system architecture implemented in this project follows a three-tier structure

consisting of the presentation layer, the application layer, and the data layer.

108

5.2.1 Presentation Layer

The presentation layer is developed using React]S, which is a JavaScript library creates
a dynamic and responsive user interfaces for both web and mobile devices. It builds as
a Single Page Application (SPA) that allows user seamless navigation and real-time
updates without full page reloads. The React]S frontend can communicate with the
Laravel backend to allow efficient data exchange through RESTful APIs using JSON.
React.js is a component-based architecture starts with the root component that renders
entire application and enhances maintainability and scalability through reusable UI
components such as user authentication, inventory management, reservations, and
booking.

JSX allows developers to write HTML-like syntax within JavaScript and
simplifies the components creation which is used to design user interfaces. The Virtual
DOM also optimizes rendering performance to ensure a responsive experience that
update in real time. Ul library likes Ant Design or Material Ul can act as third-party
libraries integrated into React.js components as it provides pre-built components for

polished UI. This ensures consistency and responsive across web and mobile access.

5.2.2 Application Layer

The application layer is developed using Laravel on WAMPServer. It processes
requests from the frontend, perform CRUD (create, read, update, delete) rules, validates
data, and interacts with the database. It is a Model-View-Controller (MVC) architecture
that handles server-side logic which separates into three different layers to ensure the
scalability and maintainability of system (GeeksforGeeks, 2023):

. Model: Manages the data in the MySQL database using Laravel’s
Eloquent ORM.

. View: Provides the response in JSON format that the frontend (ReactJS)
can interpret and render.

. Controller: Handles incoming requests, applies business rules,
validates data, and coordinates communication between the model and
the view.

Laravel also provides built-in features such as authentication, middleware, and
role-based access control. Role-based access control is used to differentiate permission

between users and members to ensure secure and each type of user and member has

109

corrected permissions access to system functionalities. For example, administrators can
manage the entire system, but the quarter master can only manage several functions of
the system.

The Laravel backend interacts with a MySQL database hosted on WAMPServer.
Eloquent ORM also simplifies database interactions with MySQL as it allows flexible
PHP code for querying and updating data. Laravel’s built-in security features also
protect against vulnerabilities like SQL injection, cross-site scripting (XSS), and cross-
site request forgery (CSRF) (Discipline Infotech, 2023). The backend also processes
frontend requests through RESTful APIs, such as retrieving device details, handling
bookings, or generating QR codes. Laravel's Artisan command-line tool automates

tasks like database migration and seeding which simplifies the development workflow.

5.2.3 Data Layer

The data layer is developed using MySQL, a reliable open-source relational database
management system, hosted on WampServer for local development and testing.
WampServer provides an integrated stack of Apache, MySQL, and PHP that allows
local testing without relying on external servers (Y, 2018). The phpMyAdmin included
with WampServer offers a web-based MySQL management interface, facilitating
operations such as table creation, data inspection, and query execution. Laravel's
Eloquent ORM also supports high-performance operations to ensure efficient
interaction with MySQL. The database is intended to manage massive datasets and

maintain responsiveness while achieving efficient operation through optimised queries.

110

53 Modelling Diagram

5.3.1 Entity Relationship Diagram (ERD)

Figure 5.2: Entity Relationship Diagram

111

5.3.2 Entity Relationship
The purpose of entity relationship is to provide a clear and comprehensive definitions
for each entity within the database. It facilitates an understanding of the function,

attributes, and entity relations to ensure a shared comprehension of the database's

structure.
Table 5.1: Entities Description Table

Entity Description

Users Stores all the user (administrator / quarter
master) details including login
credentials

Members Stores all the member (student / teacher)
details including login credentials

Products Stores all the products

Inventories Stores all the reservations made by
members for future pickup or usage.

StockChecks Stores all the periodic stock check
details.

Bookings Stores all the booking and accepted
reservation details

Reservation Stores all the reservation details

112

5.3.3 Data Dictionary

Data dictionary is a centralized repository that store detailed information about the data
used in a database system (Uhrowczik, 1973). It specifies and explains the structure,
format, and meaning of each data element, including tables, fields, data types,
relationships, and constraints. The data dictionary serves as a reference for developers,
database administrators, and users. It promotes consistency, accuracy, and a clear
understanding of how data is organized and managed within the system. It plays a

crucial role in database design, maintenance, and documentation.

Table 5.2: Data Dictionary for Product Table

Column Name | Description Data Type Key Nullable

id Unique identifier for | Bigint (20) Primary No
product

product id Product code varchar(10) Unique No

name Product name varchar (255) |- No

qrcode QR code data longtext - No

quantity Product quantity int (11) - No

outlet Outlet name Varchar (255) | - no

image Product image path | Varchar (255) | - no

Status Product status | enum - no
(active, inactive)

created_at Record creation timestamp - Yes
timestamp

updated at Record update | timestamp - Yes
timestamp

Table 5.3: Data Dictionary for Booking Table

113

Column Name | Description Data Type PK/FK Nullable

id Unique identifier for | Bigint (20) Primary No
booking

product id Product identifier varchar (255) | - No

product name | Name of the product | varchar (255) | - No
booked

reservation_id | References a related | Bigint (20) Foreign Yes
reservation (reservations)

member _id References the | Bigint (20) Foreign No
member making the (members)
booking.

username Username of member | varchar (255) | - No

quantity Quantity booked int (11) - No

checkin_at Date & time of timestamp - Yes
check-in

checkout at Date & time of | timestamp - Yes
check-out

status Booking status | Enum - No
(accepted, checkin, | (‘accepted',
checkout, closed) 'checkin',

'checkout',
'closed")

created_at Record creation timestamp - Yes
timestamp

updated at Record update | timestamp - Yes
timestamp

Table 5.4: Data Dictionary for Inventories Table

114

Column Name | Description Data Type PK/FK Nullable

id Unique identifier for | Bigint (20) Primary No
each inventory
record

product_id Product identifier varchar (255) | - No

instock Number of items | jnt (11) - No
available

damage Number of damaged | ;¢ (11) - No
items

missing Number of missing | int (11) - No
items

reserved Number of reserved | int (11) - No
items

rented Number of rented Int (11) - No
items

status Inventory status | Enum - No
(active, inactive) (‘active',

'Inactive’

created_at Record creation timestamp - Yes
timestamp

updated _at Record update | timestamp - Yes
timestamp

Table 5.5: Data Dictionary for Reservation Table

115

Column Name | Description Data Type Key Nullable
Id Unique identifier for | Bigint (20) Primary No
reservation
Member id Member making Bigint (20) Foreign No
reservation (members)
Username Username of member | Varchar (255) | - No
Product id Product identifier Bigint (20) - No
Product name | Product name Varchar (255) | - No
Outlet Outlet name Varchar (255) | - Yes
Quantity Quantity reserved Int (11) - No
Reserve date | Reservation date Date - No
Reserve time | Reservation time Time - No
status Reservation status | Enum - No
(pending, accepted, | ('pending,
rejected) 'accepted’,
'rejected’)
Created_at Record creation | Timestamp - Yes
timestamp
Updated at Record update | timestamp - Yes
timestamp

Table 5.6: Data Dictionary for Stockcheck Table

116

Column Name | Description Data Type Key Nullable

Id Unique identifier for | Bigint (20) Primary No
stock check

Date Date of stock check | date - No

Outlet Outlet name Varchar (255) | - No

items List of items Json - No
checked (JSON
format)

Created_at Record creation | Timestamp - Yes
timestamp

Updated_at Record update | Timestamp - Yes
timestamp

Table 5.7: Data Dictionary for Users Table

Column Name | Description Data Type Key Nullable

Id Unique identifier for | Bigint (20) Primary No
user

Username Login username Varchar (191) | - No

Password Encrypted password | Varchar (191) | - No

Role Role of user | Varchar (191) | - No
(administrator,
quarter master)

status account status | Varchar (191) | - No
(Active, Inactive)

Created_at Record creation | Timestamp - Yes
timestamp

Updated at Record update | Timestamp - Yes
timestamp

117

Table 5.8: Data Dictionary for Members Table

Column Name | Description Data Type Key Nullable

Id Unique identifier for | Bigint (20) Primary No
member

Username Login username Varchar (255) | - No

Password Encrypted password | Varchar (255) | - No

Role Role of member | ENUM('stude | - No
(student, teacher) nt', 'teacher")

status account status | ENUM - No
(Active, Inactive) (‘active',

'inactive')

Created_at Record creation | Timestamp - Yes
timestamp

Updated_at Record update | Timestamp - Yes
timestamp

5.4 User Interface Design

5.4.1 Login Module
= > -

Sports System

mmmmm

asswort

Figure 5.3: Login page

118

5.4.2 Dashboard Module

e Sports System Sports System admin
a

Toral Bookings Total Products otal Members stal Reservations
22 20 4 16
® Dashboard
P Equipment Status Top 5 Picks Product
Inventory
N Damage NN In Stoc fissing eI T —
Stock Check
Ankle/Wrist Weight
Booking
Hockey Ball 9
Reservation
Membrer Handball (1)
Use Hockey Stick
Awas Cone
Bookings Todsy Yesterday 30 Days
© svorts system Sports System admin
Reservations Today terd # Days 0 Day
s
® Dashboard : '6\
/ \
p— : / ‘-\
Stack Check /f
/
facking /
/
Reservation / \
Member / \\
User / \
/ \
{ \
/ \
/ | e e
- ~
o/ \ e
/ \ e -
4 N N
s arte 1 owg

Figure 5.5: Dashboard page — Part 2

e Sports System Sports System admin

a
Bookings Today Yesterday 30 Days
Dashboard . .
Product '
Inventory J /\
/ \
Stock Check \
/ \
Booking /./ \
; f \
Member o / \
.
/ \
/ \
/ \
\
\\ e
N —
oura ’ 0 owte v

Figure 5.6: Dashboard page — Part 3

119

5.4.3 Product Management Module

e Sports System Sports System admin

a

Product List
Dashboard
® Product
Inventory Outlet: UP STORE
Stock Check PRODUCT ID NAME QUANTITY QR CODE STATUS ACTIONS
N EE
Stock Check List 6138 Hockey Ball 150 % Active Z & o
i
Booking g
6344 Hockey Stick 27 % Active g © W
Reservation 6]
mE
Member 6129 Ping Pong Table 30 Active Z & @
R
User ol 1’5¢|I|
9120 Awas Cone 9 ,gg" 3 Active g @ o
s
mgE
3976 Ankle/Wrist Weight 12 3 Active # & w
e

Outlet: QM ROOM

Figure 5.7: Product List Page

ofc)
6138 Hockey Ball 150 : Active (4 w
e

6344 Hockey Stick 27 : Active Z © W

Figure 5.8: Product Page - Print Icon

192.168.0.26:8000 says

Enter number of QR codes to print

(i

Figure 5.9: Product Page - Print Quantity Input Field

e Sports System

Dashboard
Product
Inventory

Stock Check
Stock Check List
Baoking
Reservation
Member

User

@ Print QR Codes - Gocgle Chrome - o

@ aboutblank

More settings

m cancel

ﬂg‘% Print 1 sheet of paper
&
Destination & Microsoft Print to PDF =
Pages Al -
Layout Portrait -
Color Black and white -

STATUS

Figure 5.10: Product Page - Printing Page

Sports System admin

Add Product

Mame

Quantity

1

Status.

Active -

Qutlet

QM ROOM -

Product Image

Choose File No file chosen

QR code

Figure 5.11: Product Add Page

a

120

121

e Sports System Sports System admin

Product List
® Product
Inventory Outlet: UP STORE
Stock Check PRODUCT ID NAME QUANTITY QR CODE STATUS ACTIONS
EigE
ooking 6138 Hockey Ball 150 : Active g ©
s
Reservation BeE
6344 Hockey Stick 27 7 ¢ Active g o O
Member =
User
Outlet: QM ROOM
PRODUCT ID NAME QUANTITY QR CODE STATUS ACTIONS
ofAo)
3984 Hockey Ball 18 Eﬁ Active g 6
[
ey
3719 Hockey Stick 52 f 4 Active Z & m
Bl

Figure 5.12: Product Page Filter Function

x

Hockey Ball

E

Figure 5.13: Product Page - QR Code Pop Up Modal

L]

6138 Hockey Ball 150 % Active Z|le o
i
EpE

6344 Hockey Stick 27 f : Active Z © W
o]

Figure 5.14: Product Page — Edit Icon Button

e Sports System

MENU
Dashboard
Product
Inventory
Stock Check
Stock Check List
Booking
Reservation
Member

User

6138

6344

122

Sports System admin

Hockey Ball

Hockey Stick

Product ID
6138

Product Name

Hockey Ball

Quantity
150

Outlet
UP STORE >

Status

Active v

Product Image

Choose File | No file chosen

¥ -
L

Update Product

Figure 5.15: Product Edit Page

=
i
=

150 3 Active

27

Active

%5 :
S R

Figure 5.16: Product Page- Delete Icon

Figure 5.17: Product Page-Delete Confirmation Prompts

192.168.0.26:8000 says

Are you sure you want to delete this product?

coneel

Z © 0O

123

5.4.4 Inventory Management Module

© sports system Sports System admin

Inventory
Dashboa QM ROOM
Product Product ID Name In Stock Damage Missing Reserved Rented
* Inventory 2757 testing 1 0 0 [il
Sk Check 8452 Badminton Racket 100 0 0 i 0
. 6874 Basketball 10 5 5 © 0
Stock Check List
4312 Football 5 0 0 I 0
Baoking
3792 Handball (1) 24 0 0 © 0
Reservation
8445 Handball (P) 5 0 0 © 0
Member
3984 Hockey Ball o 5 3 [0 o
User
379 Hockey Stick 50 1 1 [0 0
4752 Netball 25 [} 0 [0
7095 Ping Pong Ball 5 0 0 0] 0
8653 Ping Pang Bat 4 0 0 [0
UP STORE
Product ID Name In Stock Damage Missing Reserved Rented

Figure 5.18: Inventory List page

5.4.5 Stock Check Module

@ Sports System Sports System admin

Stock Check Records
Dashboard

Product
Date Qutlet

Inventory

dd/mm/yyyy =] Al Qutlets

® Stock Cheek
No stack check records available. Please search above.

Figure 5.19: Stock Check List

124

© sports system Sports System admin

Stock Check Records

Date Outlet
Inventory 17409/2025 o I All Outlets ”I
* Stock Check
UP STORE
Baoking
Hesereaton Date Product In Stock Damage Missing
. 2025-09-17 Ankle/Wrist Weight 10 [2
Member
2025-09-17 Ping Pong Table 25 5 0
User
2025-09-17 Hockey Ball 150 o 0
2025-09-17 Hockey Stick 27 [0
2025-09-17 Awas Cone 9 [0

Figure 5.20: Stock Check List - Display Data Based on Date and Outlet.

e Sports System Sports System admin

Inventory Stock Check

Dashboard Date Outlet
dd/mm/yyyy =] -- Select Outlet — -

Product
Inventary
Stock Check
Booking
Reservation

User

Figure 5.21: Add Stock Check

e Sports System SogtaiSVE e
a
Inventory Stock Check
Dashboard Date Gutlet
2040972025 [u] I OM ROOM v
Product
Inventory Product ID Name Original Qty In Stock Damage Missing
stock Check 6874 Basketball 20 o 0 0
Booking
4312 Football 5 0 0 0
Reservation
3792 Handball (L) 25 0 0 0
Member
2445 Handball (P) 5 [0 0
User
3904 Hockey Ball 10 0 0 0
3719 Hockey Stick 52 0 0 0
4752 Netball 25 0 0 0
7095 Ping Pong Ball 5 0 1] 0
8653 Ping Pong Bat 4 0 0 0
8452 Badminton Racket 100 0 0 0

Figure 5.22: Add Stock Check - List

5.4.6 Booking Module

e Sports System Sports System
a
Booking List
Dashboard
Product
Inventory 0] PRODUCT ID PRODUCT NAME QrY CHECK-OUT CHECK-IN STATUS ACTION
Stock Check Alex 64 3719 Hockey Stick 1 - - Accept i}
* Booking
yapruiya@gmail.com 58 3976 Ankle/Wrist Weight 2 - - Closed o)
Reservation
14-8-2025 14-9-2025
I 57 3792 Handball (L 1 sse
Member " andball () 557 PM 557 PM e @
. 14-9-2025 14-9-2025
User - ose
ling 3792 Handball (L) 1 53 M 553 PM Closed W
" 14-9-2025 14-9-2025
ling - 3792 Handball (L) 1 c53 oM 553 M Closed i}
. . 14-9-2025 14-9-2025
member 55 6344 Hockey Stick 1 317 M 317 M Closed o
14-9-2025 14-9-2025
b - 6344 Hackey Stick 1 ace
membor ackay Stic by [t Closed o
o w g0 s y 14-8-2025 14-8-2025 @
member was Cone 237 M 249 oM Closed
14-9-2025 14-9-2025
member 53 3976 Ankle/Wrist Weight 1 R,) Closed o} v

Figure 5.23: Booking List

192.168.0.26:8000 says

Are you sure you want 1o delete this booking?

Cancel

Figure 5.24: Booking List - Delete Confirmation

e Sports System

Product
Inventory
Stack Check

* Booking

5.4.7
9 Sports System

Dasl

Product

Stack Check

Baoking

® Reservation

Sports System

Boaking List

USERNAME RESERVATION ID

ling 57
ling

ling

Figure 5.25: Booking List- Filter Function

Reservation Module

PRODUCT ID

3192

3792

3792

PRODUCT NAME

Handball (L)

Handball (1)

Handball (1)

qary

CHECK-OUT

14-9-2025
5:57PM
14-9-2025
5:53 PM

14-9-2025
5:52 PM

CHECK-IN

14-9-2025
5:57 PM
14-9-2025
5:53PM

14-9-2025
5:53 PM

126

STATUS ACTION

Sports System admin

Reservation List

QOutlet: QM ROOM

) USERNAME

64 Alex
62 yapruiya@gmail.com
59 Alax

57 ling

45 member

Outlet: UP STORE

D USERNAME
58 yapruiya@gmail.com
55 member

Figure 5.26: Reservation List

PRODUCT

Hockey Stick

Badminton Racket

Badminton Racket

Handball {L)

Badminton Racket

PRODUCT

Ankde/Wrist Weight

Hockev Stick

QUANTITY

QUANTITY

DATE

2025-09-26

2025-09-19

2025-09-17

2025-09-14

2025-09-14

DATE

2025-09-18

2025-09-14

TIME

12:08:.00

07:27.00

04:08:00

18:00:00

01:28:00

TIME

06:00:00

15:30:00

STATUS

STATUS

ACTIONS
& 0
o
jul
i}
% o
ACTIONS
o6
i

127

e Sports System Sports System admin

a
Reservation List
Dashboard
Product
wentory Outlet: UP STORE
Stock Check D USERNAME PRODUCT QUANTITY DATE TIME STATUS ACTIONS
Booking 55 member Hockey Stick 1 2025-09-14 15:30:00 Accepted g §
® Reservation
54 member Awas Cone 1 2025-09-14 17:32:00 Accepted 4 o
Member
53 member Ankle/Wrist Weight 1 2025-09-14 11:5400 Accepted |
User
50 member Ankle/Wrist Weight 1 2025-09-14 035000 Accepted ¥ oom
49 member Ankle/Wrist Weight 1 2025-09-14 0331:00 Accepted # o
48 member Ankle/Wrist Weight 1 2025-09-14 03:24:00 Accepted g o
47 member Ankle/Wrist Weight 2 2025-09-14 03:30:00 Accepted ¥
41 member Ankle/Wrist Weight 2 2025-09-14 03:30:00 Accepted CaN |
46 member Hockey Ball 4 2025-09-16 03:30:00 Accepted ¢ o

Figure 5.27: Reservation List- Filter Function

192.168.0.26:8000 says

Are you sure you want to delete this reservation?

Figure 5.28: Reservation List - Delete Confirmation

e Sports System Sports System admin

‘Add Reservation

Dashboard Member
-- Select Member -~ -
Product
Outlet
Inventory
-- Select Outlet — -~

Stock Check
Reserve Date
Booking

dd/mm/yyyy [=]
Reservation
Product
hember -- Selact Product -- ~
User

Quantity

9

Reserve Time

Figure 5.29: Reservation Add Page

128

e Sports System Sports System admin

Edit Reservation

Dashboard User: member
Product: Ankle/Wrist Weight (UP STORE)
Product Quantity
Iventory L
Stock Check Reserve Date
14/09/2025
Booking

Reserve Time
Reservation

03:31 AM
Member
Status

User Accepted v

Figure 5.30: Reservation Edit Page

5.4.8 Member Module

© sports system Sports System admin

Member List
Dashboard
Product
Inventory USERNAME ROLE STATUS ACTIONS
Stock Chedk Aex Student Active ¥ @
Booking
! member Teacher Active Z w
Reservation
ling Student Active ¢ W
* Member
User yapruiya@gmail.com Student Active ¥ m

Figure 5.31: Member List Page

192.168.0.26:8000 says

Are you sure you want to delete this member?

Figure 5.32: Member Page - Delete Confirmation

129

e Sports System Sports System admin

Add Member

Dashboard Usemame

Product

Password

Role

Student

Status

Member
Active

User

Figure 5.33: Member Add Page

e Sports System Sports System admin

Edit Member
Dashboard

Username
Product
v Alex
nventory

Role
Stock Check Student
B00king Status

Reservation Active

Vember Change Password [Tt TR RIS

Jser

Figure 5.34: Member Edit Page

e Sports System Sports System admin

Change Password

Jashboard New Password

Confirm Password

Stock Check
Update Password

vation
Member

)
User

Figure 5.35: Member Change Password Page

130

5.4.9 User Module

9 Sports System orts System i

User List
Dashboard
+ Add User
Product
USERNAME ROLE STATUS ACTIONS
Stock Check quartermaster Quarter Master Active g W
Booking
admin Administrator \ctive Z o
Reservation
haha Quarter Master Active Z 0
Member
® User Aaa Administrator Active Z o
ahah Administrator % 0
admin123 Administrator Active g o
admind56 Administrator Active Z 0
ruiya Administrator Active g oW

Figure 5.36: User List Page

@ Sports System Sports System admin

Add User
Dashboard Usemame
Product
Password
Inventory
Stock Check
Role
Booking
Administrator v
Reservation
Status
Member
e Active o

User

Figure 5.37: User Add Page

e Sports System orts System admin

Edit User
Dashboard
Username
Product
quartermaster
nventory
Role
Stock Check Quarter Master v
Booking Status
Reservation Active ¥
Member - .
e Change Password [RTE U

User

Figure 5.38: User Edit Page

131

192.168.0.26:8000 says

Are you sure you want to delete this user?

Figure 5.39: User Delete Confirmation

e Sports System Sports System admin

Change Password

Dashboard New Password
Product

Confirm Password
Inventory
Stock Check
Booking

Reservation
Member

User

Figure 5.40: User Change Password Page

e Sports System Sports System admin

Profile
Add User @ Logout
Dashboard Usemame
Product
Password
Inventory
Stock Check

Figure 5.41: User Profile Page

132

CHAPTER 6

SYSTEM IMPLEMENTATION
6.1 Introduction

This chapter describes the process of implementing the proposed sports inventory
management system. The implementation covers the setup of the development
environment, configuration of the Laravel backend on WAMPServer, and integration
of the React]S frontend. The chapter also explains the main features of the system and
provides code snippets to illustrate how these features are implemented. By detailing
the project setup and implementation, this chapter demonstrates how the design from

Chapter 5 is translated into a working system.

6.2 Project Setup

The project was developed on a Windows environment using WAMPServer as the
local development server. WAMPServer provides an Apache web server, PHP, and
MySQL database required to run Laravel. The frontend application was developed
using React]S, while the backend was developed using Laravel. Firstly, download and
install the latest version of

o WAMPServer (Apache + PHP + MySQL):

https://www.wampserver.com/en/

dows £32.038 DOWNLOAD TRAINING FORUM CLOUD HOSTING

4
7
~

WAMPSERVER, /€

START USING WAMPSERVER ‘
w

i1 START WITH WAMPSERVE

ications and is very inlui You

“ WampServer
u Apache, PHP, MySQL sous Win

will be able to tune your server without sven fouching the satiing files.

Pas da Texte

Figure 6.1: Wampserver Official Website
J Composer (PHP dependency manager) from:

https://getcomposer.org/.

https://www.wampserver.com/en/
https://getcomposer.org/

133

A Dependency Manager for PHP

Latest: 2.8.11 (changelog)
Getting Started Download
Documentation Browse Packages
Issues GitHub

Figure 6.2: Composer Official Website

. Node.js + npm (for the frontend) from:

https://nodejs.org/en/download.

Download Node.js®

GEENDSS® w2190 (L15) for & windows

Or gel a prabuill Node js® for | 3 Windows

running a
@3 Windows Installer (ms|) £ Standalone Binary (p)

Figure 6.3: Node.js Official Website

After installation, start WAMP and confirm Apache and MySQL are running
from the WAMP tray icon. Keep WAMP running while develop so Laravel can use the
local Apache and MySQL services.

® B O v |W
s € B8 @

Figure 6.4: WampServer Running (Green)

https://nodejs.org/en/download

134

Next, create a new Laravel project (this will be the main project folder). This

will create a folder called my-app which will contain Laravel backend.

composer create-project laravel/Laravel:8.* my-app

Inside the folder,install npm dependencies.This will install Vite, React, and
build tools inside the Laravel project. This ensures that React components can be

compiled and rendered smotthly within Laravel environment

cd sports-system

npm install

Next, run the following command to install React into Laravel project:

npm install react react-dom

Then, install the React Vite plugin:

npm install @yvitejs/plugin-react

Open the file vite.config.js in Laravel project and add React support

react from "

t default defineConfig({
plugins:
laravel({
input: ['res
refresh:

}))

react(),

i)
server:
‘Japi': {
target: 'ht
changeOrigin:
secure: 5

Figure 6.5: vite.config.js

The React entry point is placed inside resources/js/, create a file called app.jsx

which represents the main application component,

135

v MY-APP

~ public

t Bookingadd
vis import BookingEdit
> components
> ui

JS_app.is

t ReservationList f
t ReservationAdd

ReservationEdit
appjsx

35 DOCETEp]S i t Homepage fron
o T i t MemberBooking from

t MemberReservation from '
t History from './

> emails
welcome.blade.php
Vv routes
api.php
console.php
web.php
v storage
> app
> framework
> logs
> tests ute pe " element={<Dashb
>

i Route path="/user-a element={<U
- Route path= " element= erList

id" element= rEdit
S _env.example e ,

Figure 6.6: Code Snippet of app.jsx

Then, open resources/views/welcome.blade.php. This allows to load React
app inside the Blade view. This is because blade template provides the HTML structure
with root <div> where the React app is installed. Laravel can integrate React into Blade
view by using the @viteReactRefresh and @vite directives as it allows React

components to render when the Laravel server is accessed.

v MY-APP resource: 4 welcome.blade.php > ...
v public html
lang="en"

N resources

> css charset="UTF-8"

v s sports Inventory System

> components @viteReactRefresh
: @vite(['resources/css/app.css', 'resources/js/app.jsx'])

id="app"

J5 bootstrap.js
v views
? emails
welcome.blade.php

™ routes

Figure 6.7: Code Snippet of welcome,blade.php

During development, the backend and frontend run in one environment. The
Laravel server is started with php artisan serve. For React, it is served by Vite by using

npm run dev command.When the application is accessed in the browser, Laravel

136

php artisan serve

npm run dev

6.2.1 Database Setup
The .env() need to be change according to each local or production environment else it
will prevent the Laravel application from connecting to the database properly.

=mysql

=127.8.8.1
=3306

=sports

=root

Figure 6.8: Database Connection Config

6.3 System Modules

The project consists of two integrated applications: a web-based application and a
mobile application. Each of these applications is designed to meet the needs of system.
The web-based application serves as a primary platform for administrators and quarter
master to manage products, inventory, bookings, reservation, stock check and members.
The mobile application allows students and teachers scan QR codes to booking the sport
equipment. Both applications ensure an efficient management of sport equipment and

facilities. At the same time, fulfil the needs of different user roles with the sports centre.

6.3.1 Modules for Web-based Application

6.3.1.1 Login Module

The login module is an important feature of the Sports Inventory Management System.
It provides authentication to ensure that only registered users and members can access
the system. It is built using React for the frontend and Axios for API communication

with the backend.

[username, setUsername] useState("');

jord, setPassword] = useState(™’

Figure 6.9: useState Hook

137

When the user submits the login form, the entered username and password are
captured using React’s useState hook. These credentials are then sent to the backend
API (/api/login) via an Axios POST request. The backend validates the credentials and

returns either a user or member object if the login is successful.

handlelLogin
e.preventDefault
setError(""

gin”, { username, password });

r*, JSON.stringify(res.data.member));

1
I/

localStorage.setItem(” JSON.stringify(res.data.user));

navigate("”

Figure 6.10: Code Segment for Login Functionality

Based on above Figure 6.10, the login module is used the handleLogin
function. If the login is successfully (status=200), the user data is stored in localStorage
which allows the system to remain the session data even after refreshing the page. After
login, the system will redirect the user or member to different pages (/dashboard or the
redirect URL) based on the whether the login is user or member. If login fails, different
error messages are displayed based on the backend response, such as 401 Unauthorized
for wrong passwords or 404 Not Found if the account doesn’t exist. Below figure show

the error message displayed in different scenarios.

138

Sports System

Figure 6.13: Login Page- Account Inactive

139

Sports System

Username

Password Please fill out this field.

onSubmit={handlelogin} autoComplete="off"
classhame: :
e” className=" c t font-medium mb-1">Username

autoComplete: 2
onChange={(e) setUsername(e.target.value)

className="mb
htmlFor: d” className=" S -medium mb-1">Password

autoComplete: ‘rent
onChange={(e) setPassword(e.target.value)

Figure 6.15: Login Page - User Input Form

Based on above figure, it shows that these inputs ensure that the values are always in
sync with the component’s state. Then, submit button triggers the handleLogin function

to complete the authentication process.

140

Backend Login Function- AuthController

login(t $request)

$request->validate([

=2

to=>

:where("username’, $reguest->username)->first

:check($request->password, $user->password)
response()->json(["user’ =» $user],

return response()->json([" " => 'Invalid

$member = I
if ($memb:
O
'n response()->json(['member’
1
¥
return response()->json([’

unt not found. Please ask the administrator to

Figure 6.16: Login Function

The backend login function in Laravel is responsible for authenticating both system
users (administrators or quartermasters) and members (teachers or students). It ensures
secure login by validating credentials against two different database tables which are
users and members. The process starts with validating the request to make sure both
username and password fields are provided. This is done using Laravel’s built-in
validation. After validation, the system first checks the Users table to ensure the entered
username exists. If the username exists, the entered password is compared with the
stored hashed password using Laravel’s Hash::check() method. If the password matches,
the function returns a JSON response with the authenticated user’s data. Otherwise, it
responds with a 401 Unauthorized error for an invalid password.

If user not found, the function then checks the Members table using the same
logic. This allows both administrative staff and members to log in through the same
endpoint but be authenticated based on their respective roles. If the provided username
is not found in either table, the system responds with a 404 Not Found message,

instructing the user to contact the administrator to create an account.

141

6.3.1.2 Dashboard
The Dashboard module serves as the central control panel for administrators to provide
a quick and comprehensive overview of system operations to ensure that the users can

monitor the overall performance of the sports equipment and facilities immediately.

useEffect(

a

.then(resp
.catch(con

fetchReservat
fetchTopProducts();

>

Figure 6.17: Load Dashboard Data Function

Dashboard has Key Performance Indicators (KPIs) that display the total
number of products, bookings, reservations and members. The KPIs are fetched from
the backend (/api/dashboard-stats) to get the essential statistics such as total products
and total booking, total members and total reservations from the Laravel backend and
stored in React state. Then, the values are passed to a reusable KpiCard component to
be displayed in styled cards. Therefore, this allows administrators to assess the system

usage trend without navigating through multiple modules.

instock,

IS.missing

2

backgroundColor: ['M#EF4444°, " E#18

Figure 6.18: Get Equipment Status Chart Data

The equipment status is displayed using a doughnut chart which highlights the
distribution of items in stock, damaged, or missing to enable administrators to detect

issues quickly and plan for maintenance or replacements. It retrieves the data from

142

/api/inventory-summary and used doughnutData function to map the data into datasets
array so that it can display the output in doughnut chart with color codes.

tetchTopPreoducts =

resp =
ducts(

catch (error

tTopPro

console.error{ ' Error fe

Figure 6.19: Get the Most Used Product Data

Besides, Figure 6.19 shows that it fetches the top five products which means
it is the most frequently used product among members. It is fetched from /api/top-

products directly in order to identify the high-demand items.

fetchBookingData = (range)

ata.labels,
data: resp.data.data
type: range

ch (error

console._error{’'Error fetching booking ', error);

Figure 6.20: Fetch Booking Data Function

The system uses Chart.js to implement the booking and reservation charts. It
used fetchBookingData and fetchReservationData function to allow the chart
dynamically to change between bar and line graphs depending on the selected time
range which offers a clear insight into daily, weekly or monthly activity. The selected

time range is handle using timeRangeSelector function which is shows in Figure 6.21.

143

value, onChange, t
mb-4"

value ===

3@ Days

Figure 6.21: Time Range Selector Function

144

6.3.1.3 Product Management

The Product Management is a core feature of the Inventory Management system as it
designed to display, manage and interact with a list of sports equipment products. Its
main features include displaying products grouped by outlet, filtering products by name,
paginating the product list, generating and displaying QR codes for equipment tracking,
and performing CRUD operations (edit, delete, and add products) for administrators.
These features are implemented using React.js, leveraging its component-based
architecture, state management, and third-party libraries like axios for API calls,

qrcode.react for QR code generation, and react-router-dom for navigation.

ducts, setProducts] = useState(
fetchProducts =
t axios.get("/api/products™);

atProducts(Array.isArray(res.data) ? res.data : []);

catch (err

console.error{"Error fetching products”, err);

I3

useEffect(
fetchProducts();

» 2

Figure 6.22: Code Segment to Retrieve the List of Product Data

Based on above figure, it shows that the module uses fetchProducts to retrieve
a list of product data from the backend database through an API call using Axios to
make a GET request to the /api/products endpoint and displays the product retrieve in
a table format. This ensures that the product list is dynamically updated and reflects the
most recent changes made to the inventory. The retrieved data is stored within a state

variable for rendering in the user interface.

145

Filter Function

i

product. d Fi tolLowerCase()

/

Figure 6.23: Code Segment to Filter Product by Name

The product management module implements a search feature that allows user to filter
products by name. It will compare the user’s search input against the product dataset to

ensure that only relevant products are displayed. Below figure show the output result.

Add function

The ProductAdd is designed to allow administrators to add new sport equipment
products to the system. In the product add page, it allows administrators to generate
uique product ID and associated QR code, collect product details such as name,
quantity,status,outlet and image.

generateld = () 1

newld = Math.floor(1080@ + Math.random() * 980@).toString
setProductId(newld);

url = “${window.location.originj/home/${newld;” ;
setQriurl(url);

jrRef.current?.querySelector(”
ement.outerHTML :

Figure 6.24: Generate Product ID & QR Code

Based on Figure 6.24, it shows that a random 4-digit product ID is created
using Math.random() and combined with the system base URL. The generate link is
store in state and shows as a QR code using the react-qr-code library which need to run

npm install react-qr-code first before using this library.

146

handleChange = (e) {
setForm({ ...form, [e.target.name]: e.target.value });

I3

Figure 6.25: Handle Form Input

The handleChange functions is used to captures the product information such
as name, quantity, status (active/inactive), outlet (QM Room, UP Store, Down Store)

and image

handleImageChan

if e.tar‘get.-FiIle rget.files[@]

=
setImage(e.target.files[8]);

Figure 6.26: Image Upload with Preview

Figure 6.26 shows that the function is used to upload the image and a live

preview is shown to confirm the correct image.

147

3. appen
a.append|
.appen

.append(“qr
(image} {
formData.append("1

outlet: "OQF
tQrurl("™");

tImage(

navigate("/p
catch (err

tatus
er

ata.errors;

Figure 6.27: Submit the Product Data

Figure 6.27 shows that the handleSubmit function combined all data is into a
FormData Object and sent to /api/products. If the process is validation, it will send a
message to show that the Product Add successfully and navigate to product-list page.

Else, it will display error message and the handleSubmit function fails.

148

Edit Function

The users allow to update existing product details in the system by using edit function.
This component is implemented as a React functional component using hooks for state
management and Axios for API communication. It utilizes useParams to retrieves the
productid and executes an API call to fetch the current product data from the server.
Below figure shows the edit button and it navigates to product edit page after clicking

it.

useEffect
fetchProduct =
try {

res await

setFormDatal {

data.product_id,
.name,
5 .data.quantity,
data.status,
a.outlet,

Err.respons
rr.response.data.errors;

s . name[8

Figure 6.28: Code Segment to Retrieve Product Data

Based on above figure, it shows that the retrieve data will fill in the input field
form. Users can edit the product’s name, quantity, status, outlet, and optionally upload
a new image. The try-catch block handles error messages such as validation issues and
updates the message state for user feedback. The loading state ensures a loading

message is displayed until the data is fetched in order to enhanced user experience.

149

handleChange]
name, value e.target;
setFormData((prev) [...prev, [name]: value }

Jr

handleImagechange = (e) {
file = e.target.files[@];
if (file
setFormData((prev) ({ ...prev, image:
setPreviewImage (URL.createObjectURL(file));

Figure 6.29: Code Segment to Handle Change - Part 1

className=" m font-medium”>*Product Name

ta.name
onChange={handleChange
required

className="w-full

className=" m font-medium”>Quantity

quantity

‘hange={handleChange

className="w-ful

className m font-medium”>0utlet

The handleChange function updates formData using the spread operator to
keep other fields and ensure the input remains controlled. The required attribute

enforces client-side validation. The select element also provides predefined options for

150

outlets and status. This result that the enumeration constraints match with the database

schema.

handleImageChange = (e) |
E

file = e.target.files|8];
if (file
setFormData((prev) ({ ...prev, image: file }));

etPreviewImage(URL . createObjectURL(file));

Figure 6.31: Code segment to Handle Image Change

Based on above figure, handlelImageChange can uploads product image and
preview the image which provides device visual recognition ability. The
handlelmageChange function also capture the ‘formData.image’ and uses
URL.createObjectURL to generate a temporary preview URL. The image will display
through the storage/{image} path when images are retrieved. In order to link the storage

in project need to run.

npm run storage:link.

Delete Function

handleDelete = (productId)]
if (lwindow.confirm("A sure you want to delete this product?”)) return;

(productId});
p.product_id !== productld));

Figure 6.32: Code Segment to Handle Delete

Based on the figure above, the handleDelete function is to design to provide a secure
way to remove products from the product list. It deletes a product by sending a request
to server and there is a confirmation prompt to avoid accidental deletions. When user

triggers the delete action, the functions will display a confirmation prompt using

151

window.confirm("Are you sure you want to delete this product?"). if user click the
cancel button, the function exits immediately without making any changes. If the user
clicks ok, the function sends an HTTP DELETE request to the server using Axios.

Below figure shows the delete confirmation prompts.

QR code pop up model

The QR code popup modal implements in order to allow users to view the QR code in
a larger version as it allows administrator and quarter master can easy testing the QR
code to make booking and reservation without scanning wrong QR code. The pop-up

model can be trigger by clicking the QR code.

tedQR && (

className= [eX enter justify-center bg-black b
onClick={

dow-1g relative”

Figure 6.33: Code segment to Handle QR Code Pop Up Model

Based on the figure above, it shows that the pop-up model only appears when
the selectedQR state contains a value. The outer div uses fixed positioning combined
with a semi-transparent black background to create an overlay effect that covers the
entire viewport. The pop-up modal will close when clicking on this overlay sets
selectedQR to null. e.stopPropagation() is used to prevent accidental closure from click
inside the modal. There is a close button displayed in top right corner to allow user to
close the pop-up model. The QRCodeSVG also renders the QR code to display at the

larger size which is 250 based on the value stored in selectedQR.value.

152

QR Code Printing
To facilitate the sports equipment labelling, the system also provides a feature to print

multiple QR codes for a single product.

prompt(
1@
if (isNaN{copies) || copi

grDatalrl = aw QRCode . toDatalURL(
product . product_id.toS5tring(),
{ width: 158}

ndow = window.open(”", "_blank", "wid
ument .weide(”

Figure 6.34: Code Segment for Handle Printing Function

153

The handlePrint Function is designed to generate and printing multiple QR
codes for a selected product. It combines user input, QR code generation, dynamic
HTML rendering and browser print functionality to achieve this. The function starts by
asking the user to fill in the quantity QR code they want to print. It uses prompt() with
a default value of 1. The result is parsed into an integer using parselnt. If user input is
invalid which is not a number or quantity less than 1, the function will exist.

Next, it will generate QR Code as Data URL. The qrDataUrl function calls
QRCode.toDataURL() and this generates a base64-encoded image string of the QR
code. The QR code is created using product.product id as its value and set to a width
of 150px. This makes the QR code easy to implement because it’s embedded directly
in the HTML as an img src. After that, qrtHTML creates HTML for multiple copies.
The QR code HTML block is repeated based on the number of copies entered by the
user.Array.from({ length: copies }) creates an array with the desired length, and .map()
fills it with QR code HTML.This result that each QR block has QR image itself and
product’s name displayed below it. Then, printWindow is call and a new window is
opened using window.open(). The function creates a complete HTML document into
this window which has title, header showing product name, the dynamically generated
QR code blocks and a script to automatically print and close the window afterward. The
script inside ensures that the print dialog opens immediately and closes automatically
after printing when the page loads (window.onload = window.print()). The result output

is shown in figure xx.

154

Backend- Product Controller

index(Request $request)

$query = Product::query();

if ($request->has(outlet’) && $request-outlet !==
fquery->where('outlet’, $request->outlet);

$query->orderBy("outlet’,

return $query->get();

Figure 6.35: Code Segment to Retrieve A List of Products

The index function retrieves a list of products from the database. It allows optional
filtering by the outlet query parameter. The function will check if an outlet is specified
and applies a where filter based on the request. Then, the results are sorted by outlet in
descending order before returned as JSON. Therefore, this provides a flexible way to

list product dynamically.

155

$fail

$imagePath =
if ($reques
$imagePath

validated

Figure 6.36: Code Segment for Store Function

Based on the figure above, the store function is used to handle creating new
products. Firstly, it validates the input fields such as product ID, name, quantity, status,
store, and optional images. The validation also ensures there is no duplicate product
name exist within the same store else when clicking submit button, it will pop up

message as shown in figure below.

156

Froauct iImage

Choose File | No file chosen

Generate QR code

ID: 5206

The product name "Hockey Ball' already exists in the QM ROOM
outlet

Figure 6.37: Error Message Display for Duplicate Product Name

Besides, the uploaded images are stored in the public/product directory. The
function also handles once a new product is created, it will also create the corresponding
inventory record and initialize the instock quantity and damage and missing quantity
will at default 0. If the product is successfully created it will return a JSON response to

show that the product is successfully created.

show($productId

return Product::where(product_id®, $productId)->firstOrFail();

Figure 6.38: Code Segment to Display Product

Based on the figure above, the show function retrieves each of the products by using
the product id. It returns firstOrFail mechanism and returns a 404 response
automatically if the product does not exist. This function is used to simple read

operation for editing and display purposes.

157

est Srequest, $productld

$productId) - >»FirstOrFail();

e {$request->outlet} outlet.

->»delete($product->image);

}
tvalidated['image'] = $request->file(’

$validated["image’] = $product->image;

ct->update([

nduct_id', $product-:product_id)->First

+ intval($invemtory->remted)+ intwval($inventory) + intval(finventory-:>damage);

? finventory

Figure 6.39: Code Segment for Update Purpose

Based on the figure above, the update function finds the product that needs to be
updated by using product id that provided in request. If the product does not exist, it
throws 404 error through firstOrFail() to ensure the function always operate on a valid
product. Before updating, the function validates the incoming request data. It checks
required fields like name, quantity, status, and validates optional fields like outlet and
image. It also set a constraint that same product names are not allowed to exist within
the same outlet. The function then checks if new image has been uploaded. It deletes
the old images from storage and stores a new one in the public/products directory. If no

new image is provided, it keeps the old image. Once the validation and image handling

158

are completed, the product details are updated in the database. The fields updated
include the product’s name, quantity, status, outlet, and image. Then, the function
updates the related inventory record to ensure it consistent with the product’s updated
details. If the inventory record is newly created, it will created damage, missing,
reserved and rented column with default values 0. If the inventory already exists, it
recalculates the instock value by decreasing the occupied quantity (reserved, rented,
missing, damaged) from the total updated quantity. This prevents negative stock values
and ensures accurate stock tracking. Lastly, the function return a JSON response

message that the product and related inventory has created successfully.

destroy($productId)

$product = Product::where(' 'product_id", $productld)->firstOrFail();

if ($product->image
Storage: :disk(public’)->delete($product->image);

$product->inventory()?->delete();

$product->delete

ct and related inventory deleted successfully.’,

Figure 6.40: Code Segment for Destroy Function

Based on the figure above, the destroy function is used to delete a product and the
inventory related to the product will also be deleted. Before deleting, the function
checks if the product has an uploaded image and removes it from the storage to prevent
orphaned files. After that, it deletes the related inventory records and remove the
product itself. After deleting the product, it shows the message to notify user that the
product already deleted successfully.

159

6.3.1.4 Inventory Management

The inventory management module is used to display and manage the inventory details
based on different outlets. It allows user to view inventory items in a table format which
have Product ID, Name, In Stock, Damage, Missing, Reserved, and Rented quantities

columns.

fetchInventories =

setInventories(res.
catch (err

console.error("E

useEffect

fetchInventories();

Figure 6.41: Code Segment for Fetching Data from API

Based on above figure, fetchInventories function is used to retrieve and display
the list of inventories from /api/inventories so that the system can always get the latest
data without requiring manual refresh. The response data is stored by using
setInventories() when the validation is successful else it will display error message for
exception handling. This function allows administrator and member to view available

products in real time.

160

Backend- Inventory Controller

index()

product_id”

->get

return response()->json($inventories);

Figure 6.42: Code Segment to Retrieve to Inventory Data

Based on the figure above, the index function shows a list of all inventory records and
the product details. It uses a join between the inventories and products tables so that
both product-specific attributes (like name, image, and outlet) and inventory-related
attributes (like instock, damage, missing, reserved, and rented) are returned together.
This allows the frontend or API callers to display a complete inventory view without

requiring multiple queries.

show($productId)

:join("pr

->where(" inventc t_id", $productld
->firstOrFail();

return response()->json($inventory);

Figure 6.43: Code Segments to Display Inventory Data

Based on the Figure above, the show function retrieves the inventory details for a

specific product based on its product _id. It also joins the inventories table with products

161

to return a combined dataset of product and inventory information. It focuses on a single
record by filtering with the given product ID and ensures data integrity with

firstOrFail(), which throws an error if the product inventory does not exist.

summary()
:where("status’,

lectRaw(" () as latest updated_at’
->groupBy ("’

) $totals->total_instock,
) $totals->total damage,
) $totals->total _missing,
) $totals->total reserved,
) $totals->total rented,

Figure 6.44: Code Segment for Generating Inventory Overview

Based on the figure above, the summary function is used to generate an overview of all
active product inventory statuses. First, a subquery ensures only the most recently
updated inventory record for each product is considered to prevent the outdated data
from skewing results. The SUM function combined with COALESCE handles null
values and calculating the total quantity for each status (in stock, damaged, missing,
reserved, rented). The final response is a JSON object containing these totals, making

this function ideal for dashboard summaries or high-level reporting.

162

6.3.1.5 StockCheck Management
The stockCheck module is designed to help the administrator and quarter master
maintain accurate equipment availability records by validating and updating the

condition of each product in the inventory.

(selectedOutlet)

get (" fapi/products?outlet=%{selectedOutlet});

Figure 6.45: Code Segment Fetches Products by Outlets

Based on above figure, the stock check allows the user to select date and outlet.
After select the date and outlet, it will dynamically fetch the products stored in the
chosen outlet from fetchProducts function. Each product is displayed in a table together
with its original quantity. Then, the user is required to input the current quantity for

each item based on it condition such as in stock, damage, or missing.

163

handleSubmit
e.preventDefault

[p.product_id];
nstock || @) + (entry?.damage || @) + (entry?.missing || @);

p.name " (ID: p.product_id}).\n’
p-quantity;, bu total}’

alert("F:

Figure 6.46: Handle Submit Function

The handleSubmit function ensures data accuracy by validating the total of
these 3 categories matches the product’s original quantity. If the values do not align
with the original quantity, the system send the alert message to user and prevents
submission. Once the data is confirmed, the system combine it into a payload that
containing the date outlet and updated stock details and send it through POST request
to Laravel backend. This feature is essential because stock checks serve as a systematic
way to verify the actual physical quantity of items with the recorded inventory to

ensures that the future reservations and booking have reliable inventory data.

192.168.0.26:8000 says

Quantity mismatch for product “Ping Pong Table” (ID: 6129).

Expected total: 30, but got: §

Figure 6.47: Stock Check Page - Mismatch Data

164

{ date };
) params.outlet = outlet;

s*, { params });

item.outlet))];

1
setCurrentPages(initia
catch (err

console.error("Error fet

Figure 6.48: Fetch Stock Check Function

Based on the above figure, fetchStockChecks function used a GET request
with query parameters to fetch the stock check records for the selected date and outlet.
Once the data is retrieved, it is grouped by outlet and displayed in a table format. The
“+ Stock Check” button at the top enables quick navigation to add new stock check
page. Therefore, stock check list is easily accessible as it allows searching the stock

check by date and outlet to narrow down the results.

Backend- StockCheck Controller

store(est $request)

=Taly

$inventory = Inv

if ($inventory) {
$inventory->update(

return response(}->json($stockCheck, 201);

165

$productId)->first();

Figure 6.49: Code Segment for Creating New Stock Check

Based on the figure above, the store function is used to create new stock check records.

It validates the incoming request first to ensure the date, store, and product list are valid.

Once the validation done, it creates a new entry in the StockCheck table to store the

check date, outlet, and product details. The function also iterates through each

submitted product item after submitting the request and it will update the in-stock

quantity, damaged quantity, and missing quantity within the related inventory record.

166

$request)

$query

%query->whereDate('d , ¥request->date);

$request->filled(" et")
$query->where(o , Prequest-soutlet);

$stockChecks = $query-rget ($check) {
$items = [];
F ch ($check->items as $productId =» %data) {
$product uct: :where("product_id’, $productId)->first();

=>» $productld,

‘1220,
2?0,

check->date,
" =» $check-routlet,
=» $items,

son($stockChecks) ;

Figure 6.50: Index Function

Based on figure above, the index function is used to lists all stock checks filtered by
date and by outlet. Firstly, it validates that the request contains a required date and an
optional outlet field. The filter queries the StockCheck table and retrieves all matching
records. For each stock check, the function generates the detailed product list by linking
the product ID with the Product model to enable synchronised display the product
names with inventory data. The response contains the stock check’s ID, date, outlet,

and detailed item information which is useful for generating weekly stock check reports.

167

Figure 6.51: Show Function

Based on figure above, the show function is used to retrieve a single stock check record
by its ID. It uses findOrFail to ensure that if the given ID does not match any existing

record, the system will throw an error rather than returning an empty result.

6.3.1.6 Booking Management

The booking Management allows the administrator and quarter master to view the
booking rather than adding new booking. This is because the booking process is
targeted to be done directly by members through walk-in registration at sports center,
where the equipment is scanned using its QR code for immediate check-out and check-
in. By relying on the QR scanning process, the system ensures that the bookings are
created in real time based on actual equipment usage and reduced the manual errors risk
or duplicate records may occur. It also can reduce the work done by administrator and

quarter master and make the process for booking become efficient and convenient.

e Sports System Sports System .

Booking List

nventory RESERVATION PRODUCT CHECK- CHECK-
USERNAME D ™ PRODUCT NAME Qry ouT IN STATUS ACTION

Alex 64 3719 Hockey Stick 1 w
® Booking

Ankl t
yapruiya@gmail.com 58 3976 V\L;{:N”S 2 - - Closed ®

14-9-
14-9-2025
ling 57 3792 Handball (L) 1 2025 Closed]
5:57 PM
5:57 PM

14-9-
14-9-2025
ling - 3792 Handball (L) 1 2025 C d o

5:53 PM
553 PM

4
; 14-9-2025 143
ling - 3792 Handball (1) 1 2025 Closed 0]

5:52 PM
5:53 PM

14-9-

e 2025 Closed i v

member 55 6344 Hockev Stick 1

Figure 6.52: Booking List Page

Based on the image above, it shows that administrator and quarter master are

not allowed to edit the booking records in order to protect the data integrity and ensure

168

accountability. Booking records must remain unaltered to provide an accurate historical
record as it served as official log of equipment usage. If allowed users to edit the
booking record, it could cause the inventory usage to become not accurate as the record
can be edit. Therefore, the system ensures that the booking remains authentic, tamper-

proof, and transparently auditable.

.tolowerCa

Figure 6.53: Fetch Booking Data

The above figure shows how the bookings data is fetched, filtered and
formatted. A request is sent to /api/booking and the response data is stored in the
bookings state by using setBookings. The filteredBookings array applies the filter
method to check whether the username has lowercase version of filterText input. This

ensures that the bookings can search by using username.

formatTime =
if (!timeString

.padstart(2, "@");

Figure 6.54: Format Time Function

169

The formatTime function is used to display date and time in a readable format.
It used date-time string as input and concerts it into JavaScript Date object which result
in the day, month,year,hours and minutes are extracted. The hours are converted to 12-
hour format with AM/PM indicator and minutes are only allow 2 digit. Then it displays
the date on 1 line and the formatted time on next line to provide a clean and user-

friendly interface.

handleDelete = (bookingId)
confirmD ow.confirm

delete this book

b.id !== bookingId),

or);

Figure 6.55: Handle Delete Function

Based on the figure above, it shows that handleDelete function is used to delete
each booking record through the confirmation process. When user clicks the delete
button, a confirmation popup appears to prevent accidental deletions. If the user
confirms the action, the system sends a DELETE request to the Laravel backend Api.
Once the backend deleted the booking records from the database, the React frontend
updates the state by filtering out the deleted booking without requiring full page reload.

Backend- Booking Controller

index()

$bookings = Bookin

return response()->Json($bookings);

Figure 6.56: Index Function

Based on the figure above, the index function is used to retrieve a list of all bookings
in descending order of creation time using latest(). It returns these bookings as JSON

to make it easy for the frontend or administrators to view recent booking activity.

170

show(%id

FindOrFail($id);
son($booking) ;

Figure 6.57: Show Function

Based on the figure above, the show function is used to retrieve the details of a specific
booking by its ID. It uses findOrFail to ensure that if no booking is found, the system

will return an error.

store(Request $request)

=» $hooking,

Figure 6.58: Store Function

Based on the figure above, the store function is used to handle the creation of a new
booking. It validates incoming request data to ensure that required fields like
member _id, product_id, quantity, and booking status are correct and consistent. Once
validated, it creates a new booking record in the database and returns a success response.

This function ensures that only valid bookings enter the system.

checkout{Request $request

$validated = frequest-»validate([

1)

lempty(fvalidated
tboaking = ing: iwhere(ti id', Swvalidated
wherel vked
sfirst();
(fbocking) {

freservation = R vation::find{$validated
$reservation
$reservelateTine = ~bon: :parse] "{$reservation-sreserve_date} {$reserwvation-sreserve_time
$now = Carbon::now

fnaw->lt(freservebateTine ->subMinutes{15)) || fnow-:>gt{irescrvelateTime->addMinutes(38))
respanse{ }->jsan{
=

, 48]

fhooking->status =

thooking-scheckout_at =

thooking->sawe();

finventory = Inventory: :where('prod 1*, fbooking->product_id)-»>Ffirst();
f ($inmventory

$inventory-rinstock = max(@, finventory-»rinstock - fbooking->quantity);

$inventory-sreserved = max (8, $inventory-sreserved - fbooking-»quantity);

$inventory-srented += $booking-sguantity;

$inventory- »save

response{ |- >json
=3
=» Ebooking,
=» Einventory,

factiveBooking B ing: :where id', $wvalidated[
wwhere t_id', ¥walidated[t_id']
swhere t
sFirst]|)3
tactiveBoaking
respanse () -»json
-3
=r factiveBooking
. 4B8);

$booking = Booking::createl[
... $validated,
t =3
=3
IFH
finventory = tory: :where(product_id®, $validated]
f ($inventory
finventory-sinstock = max(@, $invenmtory->instock - $validated
finventory-srented += fwalidated| ity*];
$inventory-ssave();

response | =»jsan] [
1 -
=» $hooking,
= Rinventary,

Figure 6.59: Checkout Function

172

Based on the figure above, the checkout function is used to handle both reservation-
based and normal checkouts. If the booking is based on reservation, it verifies the timing
rules and only allowing checkout within a 15-minute window before or after the
reserved time. If valid, it updates the booking status, decreases inventory instock and
reserved quantity, and increases rented quantity. For non-reservation checkouts, it
prevents duplicate active bookings, creates new booking and updates inventory for the
same product and member to ensure the sport equipment distribution under control and

prevent misuse.

checkin($id

$booking = B ing: :FimdOrFail ($id);

ooking-sproduct_id)-»Ffirst();

ing-»quantity;
ented = ma finventory-srented - Sbooking-»quantity);

Figure 6.60: Checkin Function

Based on the figure above, the checkin function is used to complete the booking after
equipment or items have been returned. It verifies the booking is in a checkout status
and when check in, it records the checkin time and the booking status marks as closed.
When checkin, it also updates inventory by increasing instock and reducing rented

quantity to ensure that returned products are available for future use.

173

closeExpiredReservations()

$now now
$expi
->where(s
->»get
->filter ($now) {
: n: :find($booking->reservation_id);

servation) re :

teTime ::pars ($reservatior erve_date} {$reservation->reserve_time}");
Fnow->gt($r DateTime->addMinutes(15));

3

$expiredBoo
$b->status
$b->checkin_at
$b->save();

$inventory = : :where(' product_id", $b->product_id)->first();
if ($inventory) {
$invent d ed = max(®, $inventory->reserved - $b->quantity);
$inventory

Figure 6.61: Close Expired Reservation Function

Based on the figure above, the closeExpiredReservations function is used to close
bookings tied to reservations that have expired automatically. User must check out the
sport equipment reserved within the reserve date and time else the status marks as
closed. It also adjusts inventory by reducing reserved quantities, releasing the

equipment for others to use and preventing the equipment from being locked long-term.

174

destroy($id)
$booking = g::findOrFail($id);
$inventory = In /::where("product_id", $booking->product_id)->first();
if ($inventory
switch ($booking->status) {

ut”:

$inventory->instock += $booking->quantity;
$inventory->rented = max(@, $inventory->rented - $booking->quantity);

entory->reserved = max(@, %$inventory->reserved - $booking->quantity);

n":

$inventory->instock += $booking->guantity;
$in tory->rented = max(®, $inventory->rented - $booking-»quantity);

J » P t‘a q g >
b

1
J

$inventory->save();

$booking->delete();

return response()->json
' > sfully and inventory

Figure 6.62: Destroy Function

Based on the figure above, the destroy function is used to handle the deletion of a
booking while ensuring that the inventory data remains accurate and consistent with
actual item availability. findOrFail is used to find the booking records and it ensures an
error is thrown if the booking does not exist. Once the booking is found, the system
retrieves the related inventory record based on the product id of the booking. Before
deleting the booking, the function checks the booking’s status and adjusts the inventory
accordingly. If the status is checkout, the system increases the instock quantity and
reduces the rented quantity as it assumed the items are returned. If the status is accepted
which means that the item was reserved but not yet checked out, the reserved quantity
is reduced since the reservation is being cancelled. For a checkin status, it is similar
with the ‘checkout’ and it increases instock items and reducing the rented quantity. The
inventory is then saved with these updates. Once the inventory is updated, the function

deletes the booking record itself and returns a JSON response to confirm that the

175

booking has been deleted successfully, and the inventory has been updated. This
ensures that every booking deletion not only removes the record but also keeps the stock

levels accurate, preventing inconsistencies between bookings and inventory.

myBookings (Request $request)

$memberId = $request->query(member_id");

if (!$memberId

red"], 40@);

$bookings = B
-»*leftloin
-»select

-»where(” » $memberId
->orderBy(" ! Y [

-»get();

return response()->json{$bookings);

Figure 6.63: myBookings Function

Based on the figure above, the myBookings function is used to retrieves all bookings
for a specific member. It requires a member id and joins with both the products and
reservations tables to include product images and reservation details in the results. This

provides members with a detailed history of their bookings.

176

6.3.1.7 Reservation Management

item.outlet)),

console.error(”

-
LIF]
fetchReservations();

filter((res

.includes(filte .toLowerCase()),

ed.reduce((acc, res
res.outlet] = [];

Figure 6.65: Search Function

Based on the figure above, the fetchReservations funcrion is used to retrieve the
reservation data from the Laravel backend through API call using Axios and the data is
display in structured and grouped by outlets. It also implements search function that
allows the user to filter the reservation by username. Each outlet’s reservations are

separated and displayed in individual tables with pagination.

177

Figure 6.66: Get Status Classes Function

The status field is displayed using color-coded labels and each module status
will have their own color-coded labels to improve readability and quick decision

making. For example, pending in orange, accepted in green or rejected in red.

D USERNAME PRODUCT QUANTITY DATE TIME STATUS ACTIONS
59 Alex Badminton Racket 1 2025-09-17 04:08:00 Pending g w
57 ling Handball (1) 1 2025-09-14 18:00:00 Accepted g O
45 member Badminton Racket 5 2025-09-14 01:28:00 Rejected Z w

Figure 6.67: Reservation Page - Different Status

It also provides actions button for editing and deleting reservations. Edit
function is controlled by the validation rules which is when the reservation is past
(handles by isReservationDatePast function), and reservation status is completed; the

reservation cannot be modified to ensure data integrity and avoid accidental changes.

[reservelate)

Date(reserveDate

setHours(8, @, @, @);
ationDate.setHours(8, @, @, @),

return r

Figure 6.68: ReservationPast Function

178

classMame=

strokelinecap:
strokelinejoin=

isEditDi
om-full left-1/2 transform -tr

classhame=

handleDelete (id) {

window. confirm

ervations((prev) prev.filter(res.id !== id));
rror

console.error(“Er ing r ", error)

alert(

Figure 6.70: Handle Delete Function

For deletion, the system used the handleDelete function to prompt a
confirmation popup by using window.confirm() before sending a DELETE request to
Laravel. The reservation is removed from both the database and the frontend when the

handleDelete function is successfully.

Add function

179

The reservation add is used to create new reservations by selecting the member, outlet,

product, date, time and quantity,

useEffect(
fetchData

await Promis

ng data”, err);

eredProducts(products. filter((p) p.outle
lectedProduct(ik

» [outlet, products]);

Figure 6.71: FetchData Function

=== putlet));

Based on the above code snippet, the fetchData function is used to fetch

members and product data. When the user selects an outlet, the product list is

automatically filtered and only show items that available in that outlet to ensure the

product allocation in accurate.

180

useEffect(
fetchAvailableQuantitie
Jate && outlet) {

get(” /api/reservatio

params
1)
e

S
C

se.data);
a h
console.error{“Error fetching available quantities"”, err);

fetchAvailableQuantities();
s Lre reDate, outlet]);

;3

Figure 6.72: Fetch Available Quantity Function

The system sends a request to /api/reservations/available-quantities to retrieve
updated availability to retrieve updated availability when the reservation date or outlet
is change in order to prevent overbooking. When the reservation is added, the form is
validated by using the handleSubmit function to verify that a member and product
chosen, the quantity does not exceed the available stock, and the date is not in past. The
selected details are then submitted through POST request to store the reservation in
database and if the reservation is added successfully, the user will notify and it will

redirect back to the reservation-list page.

181

handleSubmit =
e.preventDefault

.error(

Figure 6.73: Handle Submit Function

192.168.0.26:8000 says

Reservation added successfully

Figure 6.74: Reservation Page -Successful Notification

182

Email notification

The reservation notification is designed to auto send email to member when their
reservation is rejected or accepted. It ensures that users are kept informed about the
status of their reservation without requiring manual follow-up. The implementation
follows three main steps: creating a Mailable class, designing an email template, and
updating the controller method to send the email when a reservation is rejected or

accepted.

php artisan make:mail ReservationAcceptedMail

Firstly, run above command in the terminal to create a mailable class to handle
the email content preparation. It is implemented using a Laravel Mailable class

combined with a Blade email template.
Mail;
I1luminate\Bus\(]
I1luminate\M
I1luminate\Queuet,
ReservationAcceptedMail

Queueable, Serializes

freservation;
$booking;

__construct($reservation, %booking)

-rreservation = %reservation;
-»booking = $booking;

-r»reservation,
-»booking,

Figure 6.75: Reservation Accepted Mail

Based on above figure, it shows that the reservation notification is

implemented in Laravel using Mailable class which is ReservationAcceptedMail. When

183

the reservation is approved, the system passes both the reservation and booking details
into mail class constructor. The email is configured with a subject line ("Your
Reservation Has Been Accepted!") and linked to a Blade view

(emails.reservation_accepted) that serves as the email template.

html

tion Accepted

'vation Has Been Accepted!
rvation->username }},
We are pleased to inform you that your reservation has been accepted.

Reservation Details:

on Date:
ation Time:

Please arrive on time to collect your items. If you have any questions, please contact us at 9123456789.

Thank you for using our service!

This is an automated message. Please do not reply to this email.

Figure 6.76: ReservationAcceptedMail.blade.php

The blade template formats the notification by using HTML layout. It greets
the member by username and displaying the needed reservation details as shown in
above Figure to ensure that members is clear about the notification message. Therefore,
the reservation notification ensures a better communication between system and its
users. If the reservation is rejected, the members also will receive notification to notify
them. Below is the output about the notification received format.

It also needs to add below information into .env().

=smtp

=eugenetiang@2@egmail . com

Figure 6.77: Mail Setup in .env()

184

A

Sports Inventory System <eugenetiang02@gmail.com>
HEER ~

Your Reservation Has Been Accepted!

Hello yapruiya@agmail com,

We are pleased to inform you that your reservation has been accepted.
Reservation Details:

* Product: Ankle/Wrist Weight

* Quantity: 1

* Reservation Date: 2025-09-18

* Reservation Time: 06:00:00

* Qutlet: UP STORE
* Booking ID: 69

Figure 6.78: The Output Results of Notification

Backend -Reservation Controller

index

- »orderBy

-*geT)5

1 response| | ->json| freservations) ;

Figure 6.79: Index Function

Based on the figure above, the index function is used to retrieve all reservations with
linked booking status. It uses a left join between the reservations and bookings tables
so that even reservations without a booking are included. The query selects all
reservation details and adds the booking’s status field, ordering results by the latest
created date. The results are returned as a JSON response and giving administrators and

quarter master an overview of reservation requests and current booking progress.

185

store(Request :!.r'equest

= $reguest-»validate([

Figure 6.80: Store Function

Based on the figure above, the store function is used to create new reservations. It
validates mandatory fields such as member ID, product details, reservation date/time,
and quantity required. If the validation is successful, the function creates a new
reservation record in the database and returns a success message and the stored
reservation data. This ensures that every reservation request is accurately recorded and

linked to the relevant member and product.

186

availableQuantities{Rkequest $request

fdate = fregues
foutlet = $requ
fexcludefeservationId = $reques

if (lgdate || !$outlet
return response()->json{[‘message’ =» 'Date and owtlet are required’], 488);

facceptedReservati n::where("'reser
-r»where
-»whEre

» $excludeReservationId);

finventories = Inventory::where('

favailableQuantities = i

1 response|) -»>json($availableQuantities);

Figure 6.81: Available Quantity Function

Based on the figure above, the availableQuantities function is used to calculate the
remaining items available for reservation on a given date and outlet. It validates the
provided date and outlet, then gathers all accepted reservations for that day while
excluding an optional reservation ID (useful during edits). It summarizes reservation
quantities per product by using database aggregation. Next, it fetches all active
inventory items and reduces the reserved amounts from the in-stock value to calculate
available quantities. The function ensures that only non-negative values are returned to

provide real-time stock availability for reservation validation.

187

update(Request $request, $id

rvation: : findOrFail({$id);

if ($reservat 5 ac

$request-rvalidate([
f =» 'required|in

Figure 6.82: Update Function

Based on the figure above, the update function is used to modify an existing reservation
to maintain integrity. If a reservation has already been accepted and is linked to a
booking that is in checkout or closed status, the system blocks updates to prevent
tampering with completed transactions and an error message is sent to notify users.
Otherwise, users are allowed to edit the system. it validates the new inputs such as
updated quantity, date, and status and updated the new data to the reservation record.

The updated reservation is then returned as a successfully message.

188

accept

dreservation = R ion: :FindOrFail($id);
finventory = Inver :where("product_id', $reservation-»product_id)-»first();

if (l!%invento

. favailable .

freservation-:save

finventory->reserved += $reservation->quamtity;
finventol

king
»member_id,
Ername,
product_id,
product_name,
»quantity,

Emember = 11 find($reservation- >member_i
if ($member && fmember->username]) {
rto($member- *username
- »send
femailStatus

{

=» femailStatus,
» freservation,
» $booking,

» $inventory,

Figure 6.83: Accept Function

189

Figure 6.84: Reject Function

Based on the figure above, the reject function is used to reject the reservation request.
It finds the reservation based on its ID and updated the status to ‘rejected’ and saves the
change. A JSON response is returned with a confirmation message and the updated
reservation. This function ensures members receive clear feedback when reservation

request cannot be fulfilled.

destroy(%id
vation: :find{$id);
1$reservation

return response()->json(["message’' =»> "Reservation not found'], 484);

freservation->delete

return re sponse

Figure 6.85: Destroy Function

Based on the figure above, the destroy function is used to handle the deletion of
reservations. It deletes the reservations from the database when the reservations exist
and found. A success message is returned to confirm the removal. If the reservation is
not found, a 404 response is sent. This ensures that only valid reservations are removed

and that users are informed when attempting to delete non-existing records.

190

myReservations t $request

fmemberId = $request->query(’

->where('re tio ver_id', $memberId
->whereln t1 tu [dir
-rorderBy("

->pet();

return response()->json($reservations);

Figure 6.86: myReservation Function

Based on the figure above, the myReservations function is used to retrieve a member's
personal booking records. This function requires a member id parameter and fetches
all bookings associated with that member. It obtains product images by joining the
products table to retrieve product images. It returns only reservations records with

status of ‘Pending’ or ‘Rejected’ and it sorted in descending create time order.

191

)-»addHours ($1i) - >Format ('Y

%i)-»format

@; $i--) {
$today opy () ->subDays(%i)->Fformat

()->»subDa

Figure 6.87: Weekly Stas -Part1

192

|| $range
tionData as

:parse($slot)->format('H:i");

vationData[$s1lot] 2? @;

1 :parse($slot) ->format

on::parse($slot)->format

$count;

-»json([
f$labels,
fdataset

Figure 6.88: Weekly Stas -Part2

Based on the figure above, the weeklyStats function is used to provide an analytical
feature that generates reservation statistics over different time periods in order to make
it useful for dashboard. The main purpose of this function is to allow administrators to
track reservation activity trends within specific timeframes such as today, yesterday,
the past 7 days, or the past 30 days. This ensures that reservation data is presented in a

structured format that can easily be visualized in charts or graphs.

193

It checks the range parameter from the request first, It sets a default to 7 days range.
Based on the selected range, it dynamically builds time slots: hourly slots for today and
yesterday, or daily slots for 7 days and 30 days. For example, if the range is today, it
creates 24 hourly time slots representing each hour of the day, while for 7 days, it
generates seven daily labels going back from today. Next, the function queries the
reservations table to calculate the reservations were created within the chosen range.
For hourly ranges (today and yesterday), it groups reservations by formatted hour
(%Y-%m-%d %H:00:00), while for daily ranges (7 days and 30 days), it groups the
data by date. The results are stored in an associative array to mapping each time slot or
date to the number of reservations. After retrieving the raw data, the function iterates
through the previously generated time slots to ensure that every slot has a corresponding
count (defaulting to O if no reservations exist for that time). Labels are then formatted
neatly — in H:i format for hours, m/d format for 7 days, and M d format for 30 days.
These labels and values are compiled into arrays named labels and dataset. The function
also returns the data as a JSON response with labels for chart axes and data for chart
values. This implementation makes it easy to integrate the data into visualization
libraries like Chart.js or Recharts to ensure administrators to monitor reservation

activity patterns in real time.

6.3.1.8 User Management

The User Management Module is a core feature of the system that provides
administrators with full control over handling user accounts through four main
components: User Add, User Edit, User Change Password, and User List. The User
Add component allows administrators to register new users by submitting details such
as username, password, role, and status through a form. Upon submission, the data is
sent via an Axios POST request to the backend API, and successful registration
redirects the administrator back to the user list. The User Edit component retrieves the
existing user’s data using their unique ID, displays it in an editable form, and updates
the details using an Axios PUT request. Additionally, it integrates a Change Password
option that navigates to the User Change Password component. This component
securely handles password updates by ensuring that the new password matches the
confirmation before sending a PUT request to the backend to update the user’s

credentials. Finally, the User List component fetches all registered users from the

194

backend API, displays them in a paginated and searchable table, and provides action
buttons for editing or deleting user accounts. Together, these components ensure a
streamlined and secure workflow for managing user accounts effectively within the

system.

headers:
Accept: "application

D;

E
.data && Array.isArray(r
a.data);

catch (err
console.error{err);
setError{"Error fetching users”

useEffect(
fetchUsers();

Figure 6.89: FetchUser Function

Based on the above figure, it shows the how the data is fetched from the
backend using Axios GET request. It uses Axios to send a GET request and specifies a
request header with Accept: "application/json" to ensure the server responds in JSON
format. Once the response is received, it checks whether the returned data is a plain
array or wrapped in a data object.It also updates the users state with the retrieved list of
users using the setUsers hook. If neither structure is valid, it sets an empty array to
prevent errors. If the API call fails, the error 1s logged in the console and the setError

hook updates the error state so it can be displayed to the user.

195

Sports System

© svorts system

Profile

Change Password @ Logout

Dashboard New Password

Figure 6.90: User Profile Page

After user click on edit button or Profile, it will navigate to user-edit page

based on specific user that shown as below:

e Sports System Sports System admin

Edit User

Yashb

Username
Product Ale

X

nventory

Role
Stack Check Quarter Master e
Booking Status.
Reservation Active v

Member
femb Change Password [RUSECeAUENY

User

Figure 6.91: User Edit Page

Edit User

Username

Quarter Master

Role

Quarter Master v
Status

Active ~

Change Password Update User

This username is already taken. Please choose another
one.

Figure 6.92: Error Message

196

The below code segment allows administrators to update user details in the
system. The useEffect hook runs when the component is first loaded or when the id
parameter changes, and it defines an asynchronous function fetchUser that sends a GET
request to /api/users/$ {id} to retrieve the selected user’s details. Once the data is fetched,
the form state is updated with the user’s username, role, and status, ensuring the form
fields are pre-filled with the current information. If the request fails, an error message
is displayed to the user. The handleChange function manages form updates by
dynamically setting the input field values in the state based on the field being modified.
It keeping the form controlled and synchronized with React state. The handleSubmit
function handles form submission by sending a PUT request to /api/users/${id} with
the updated form data. If the update is successful, it will be redirected to the user list
page. If the validation errors such as a duplicate username or general failures are caught

and displayed to guide the user. output that shows the validation is error.

197

) data.username,
data.role,

ta.status,

nsole.error
etMessage("Failed t

rm, [e.target.name]: e.

handleSubmit
entDefault

Figure 6.93: Fetch Data Function

198

Delete Function

handleDelete = userld)
conf e = window.confirm("Are you sure you

return;

5. delete(” fapifusers/E{userld});

previsers filter(({u u.id !'== userId});

Figure 6.94: Handle Delete Function

Based on above figure, the handleDelete function is used to remove a user from the
system. It is trigger when administrator clicked the delete button. A confirmation
dialogue will display through window.confirm() to ensure there is a clear user approval
before any deletion occurs in order to prevent accidental deletion occurred. After the
confirmation, the system initiates an HTTP DELETE request to the backend API
endpoint /api/users/{userld} via Axios to target the specific user ID. The setUsers()

then updated the local state to remove the deleted user from the active user list

Backend -User Controller

index()

return response()-»>json(User

Figure 6.95: Index Function

Based on the figure above, the index function is used to retrieve and display all user
records from the system. It simply queries the users table using User::all() and returns

the complete collection as a JSON response.

199

show($id)

fuser r::Find($id) ;

if (!$user
return response()->json(['me ' =» 'User not found'], 484);

return response —}jSDI‘I f;faLlSEl1 H

Figure 6.96: Show Function

Based on the figure above, the show function is used to retrieve a single user’s details
based on their ID. It uses User::find($id) to find the record, and if the user does not
exist, it returns a 404 Not Found response. Otherwise, the user’s data is returned in

JSON format.

update st $request, $id)

: :find($id);

$user->update($request->only(username’, ‘role’, 'status’));

return response()->json(['mes " => 'User updated suc

Figure 6.97: Update Function

Based on the figure above, the update function is used to modify user account
information. It validates the request to ensure that the username is unique, the role is
either "administrator" or "quarter master," and the status is set to "active" or "inactive."
If validation passes, the user record is updated with the new details. The function then
returns a success message with the updated user data to ensure that administrators can

effectively manage user information.

200

changePassword(Request $request, $id)

$request-»validate([
' r I

User::find($id);

I$user
return response()->json(['message’ => 'User not found'], 484);

$user->password = berypt($request->password) ;
$user-»save();

return response()->json(['m

Figure 6.98: Change Password Function

Based on the figure above, the changePassword function is used to update a user’s
password when the user forgets the password. It validates that a new password is
provided and meets the minimum length requirement of six characters. Once validation
passes, the function finds the user by ID, hashes the new password using berypt, and
saves it to the database. A confirmation message is then returned to ensure a secure and

proper handling of password updates.

astroy($id)
:find(%id) ;

1 response()->json(["'message’ =»> "User not found'], 484);

Zuser-rdelete();

return response()->json(["me

Figure 6.99: Destroy Function

Based on the figure above, the destroy function is used to delete a user account. It finds
the user by ID and it returns a 404-error message when user not found. If the user exits,

the record is deleted from the database, and a success message is returned. This feature

201

ensures that administrators can remove inactive or unnecessary user accounts from the

system while providing clear feedback.

6.3.1.9 Member Management

The MemberController and UserController are highly similar in structure and
functionality. Both of them are design to manage account related operations such as
creating, retrieving, updating, deleting and changing passwords. The main difference
lies in the type of accounts being managed. For example, the UserController handles
system users such as administrators and quarter masters,while the MemberController
specifically manages members like students and teachers. Both controllers follow the
same RESTful approach and validation rules to ensure consistency in implementation
and maintaining a standardized workflow for handling different types of users within

the system.

6.3.1.10 Member Booking

Sports Inventory History Logout

Product Overview

Product ID: 3452
Name: Badminton Racket
Qutlet: OM ROOM

Booking

Figure 6.100: Home Page (Member)

202

useEffect(
member = loc315torage.getItem{”new:EP")ﬂ

if (!memb
/home/${productId}”);

‘oductId}”);

(err)

console.error("Error fetching product™, err);

Figure 6.101: Fetch Product Function

The homepage ensures that only authenticated members can access product details and
perform actions such as booking or reservation. Firstly, the system checks the presence
of stored member session in localStorage. If member not found, the user is
automatically redirected to the login page with a redirect query string
(/?redirect=/home/$ {productld}) to notify them that the authentication is required. If a
valid member is found, the system retrieves the specific product details through GET
request to /api/inventories/ {productld} and displays the information such as product ID,

name, and outlet.

203

Sports Inventory History Logout

Book Product

MName: Badminton Rackst

Available: 100

1 +

o

Figure 6.102: Booking Page Function

204

~ = J50N.parse(localStorage.getltem(“member”

useEffect(
fetchProduct ()

try
)s.get(” fapi/inventor {productId}”);
setProduct
} catch (err) {

console._error(”Error fetching product”, err);

uctId) fetchProduct();
ductId]);

ng.product_id === productld) {
localStorage. removeltem(" currentBooki

productId]);

Figure 6.103: Fetch Product and Booking Function

The member booking is used to perform check out and check in sport equipment in a
structured and controlled manner. The system retrieves both the product details and
logged in member information from localStorage. When member selects a product, the
details are fetched and displayed as Figure shown. It allows member to choose the

quantity without exceeding the available stock.

205

handleCheckout =

must be 1

member_id: member.i

usernam .username,
role: member.role

product_id: t.product_id,
product _name: product.name,
product_image: ict.image,
quantity,

g r
setCurrentBooking(b
localStorage.setItem(g", JSON.stringify

sponse && err.response.status === 480) {
r.response.data.message) ;
.response.data.booking) {

setCurrentBooking(err.response.data.booking);
localStorage.setItem(" current cing”, JSON.stringify(err.response.data.booking));

t failed”, err);

Figure 6.104: Handle Checkout Function

The check out process is handled by handleCheckout function by calling
/api/bookings/checkout API that records the checkout transaction and save the booking
in state and in localStorage. It notified the user with a success message when the
equipment is checkout. If the member already have active booking, the system will alert

the user and restores the active booking data.

206

handleCheckin
if (!member
alert(

out found! Please checkout first.™);

s.put(” /api/book /${current

setCurrentBooking();

localStorage.removeltem(”current

alert("C

catch (err
console.error(”
alert(" sck-1in

Figure 6.105: Handle Check in Function

The handleCheckin function is used to updates the booking status by using PUT request
to clear the localStorage and resets the booking state to ensure that the product is

marked as checkin and receive alert messages that is about “check-in successfully”.

207

Sports Inventory History Logout

Reserve Product

MName: Badminton Rackst
Outlet: OM ROCM
Total Stock: 100

Please select a date to see availability

Reserve Date *

dd, mmyyyy a

Reserve Time *

S @

Quantity *

Figure 6.106: Reserve Booking Page

useEffect(
fetchProduct

Figure 6.107: FetchBooking Function

208

username : username,
product_id uct.product_id,
product_name: duct.name,
outlet: p ct.outlet,
quantity,

console.error(ailed”, err);
alert(

Figure 6.108: Handle Reserve Function

209

params:
date:
outlet: p
product _id: p

duct.instock;

F {quanti

se

console.error{ Erro
setAvailableQuantity(ct.instock);
finally

setlLoading(

uct.instock);

handleQuantityChange = (newQuanti 2

antity = Math.min(product.instock, availab

setQuantity(Math.max(1, Math.min(newQuantity,

2 = Math.min(product.instock, availab

Figure 6.110: Handle Quantity Change

210

The member reservation allows members to reserve the sports equipment. It retrieves
the product information using the product ID from GET request. The instock is sets as
initial available quantity. When the member selects a reservation date, another API is
called to fetch the available quantity for that date and ensure that the members cannot
reserve the items more than available quantity. The useEffect hook is used to listen the
changes of reserveDate and product. The handleQuantityChange function is used to
ensure that the selected quantity does not exceed the available quantity. This reservation
forms include date and time pickers and quantity selector. The quantity selector allows
the user to increase or decrease the number of items. After member fill in all the
required field, member clicks the “Reserve now button” to call handleReserve function
verify the input which will check the login status, selected date and time, and quantity
limits before sending POST requests to API. When member reserve the equipment
successfully, it will send an alert message and navigate to history page to see the

reservation status.

211

Sports Inventory

History
Booking History
Ankle/Wrist Weight
Product 1D: 3376
Quantity: 1
Status: Accepeed
Reserve Date: 2025-09-13
Reserve Time: 05:00:00
Chedkout Atz -
Checdkin At -
Reservation-based Booking
brey Pagelofl pog
Reservations
Badminton Racket
\‘\ Praduct ID: 2452
1, g
E‘.‘ Status: Rejected
N & Reserve Date: 2025-08-1
Stasas Y Reserve Time: 07:27:00
5&.

Brev Page 1 o0f 1 MNext

Figure 6.111: History Page

212

I x

setReservations(reservationsRes

} catch (err) {
console.error{ “Error f

Figure 6.112: Fetch Data Function

Based on the figure above, the fetchData function is used to retrieve the both the
bookings and reservations associated with a specific member. It sends GET request to
2 API endpoints which is /api/my-bookings and /api/my-reservations, passing the
member’s ID as a query parameter. Once the responses are received, the results are
stored in the component state using setBookings and setReservations to ensure that the
frontend displays the latest booking and reservation data for the logged-in member. The
function 1s wrapped inside a useEffect hook, so it runs automatically when the
component mounts or when the member.id changes to keep the displayed data always

up to date.

213

handleCheckout = booking

await axios.post("/apif
member_id: booking.member_
username: booking.username,
product_id: booking.product_id,
product_name: booking.product_name,
quantity: booking.quantity

¥ 3

reservation_id: booking.reservation_id,

)
setBookings

bookingId)

1
setBookings

err
alert{"Check-in fai

console.error{err);

Figure 6.113: Handle Check Out Function

Based on the above figure, the handleCheckout and handleCheckIn function allows the
member to check out or check in the equipments they reserved when the reservation
status is accepted. It sends a POST request to the /api/bookings/checkout endpoint with

all relevant booking details such as member id, username, product id, product name,

214

quantity, and reservation id. However, for the check in function it sends a PUT request
to the /api/bookings/{bookingld}/checkin endpoint, where {bookingld} identifies the
booking being checked in. It will send an alert to notify the member that the check out
or check in is successful and updates the data. If the operation fails, the function handles

the error by showing a failure alert and logging details to the console.

(reserveDate)

¥

Date(reserveDate);

Figure 6.114: Reservation Date Pass Function

The 1sReservationDatePassed is used to check whether a reservation date has already
passed compared to current date. If the reserveDate is valid, it returns false if no date is
provided. Then, it creates Date objects which is one for the current date and another for
reservation date. The function then compares 2 dates and returns true if the reservation
date is earlier than today to show date the reservationdate has passed. This results in the
checkout button is disabled or a warning is display when the reservation is no longer

valid.

215

CHAPTER 7
SYSTEM TESTING

7.1 Introduction

System testing is an important phase in the cycle of software development life as it
ensures that the developed system functions correctly, meets the requirements, and
provides a smooth user experience. For this project, testing was conducted at different
levels such as unit testing, integration testing, and user acceptance testing (UAT). Unit
and integration testing focused on technical verification, while UAT interaction with
the actual users (administrators, quartermasters, students and teachers) to validate

whether the system meets the intended objectives.

7.2 Unit Testing

According to Koomen and Pol, unit testing is performed by developers in a controlled
environment to verify whether software meets to the behavioural definitions specified
in its design specifications. Whitaker also mentioned that unit testing is a process of
conducting isolated examinations of independent components or groups of components.
He emphasised that testers should focus on defining the input space relevant to these
units without considering the broader system environment (Runeson, 2006).

In this project, unit testing was implemented to the proper functioning of each
independent module within the Sports Centre Inventory Management System. The
primary goal was to identify and resolve errors at the earliest stage of testing by
focusing on small, testable components such as reservation management, booking,
notification handling, inventory control, and user authentication. Each test case was
designed to verify both standard operations and system’s exception handling to ensure
that the modules were functioned as expected when valid or invalid inputs were
received and when they encountered out of bounds scenarios. By utilizing this testing
approach, this project was able to achieve higher code reliability, reduce integration
risks, and improve the overall quality of the system before moving to more complicated

testing such as integration and user acceptance testing.

Table 7.1: Unit testing of User Login

216

Test Authentication — Login Page Test Title Verifying user login functionality
Module
TCID | Test Case Name Test Steps Test Data Expected Result Status
UT-001 | Login with valid User | 1. Navigate to login page | username: admin User logged in successfully and | Pass
(Administrator/Quarter | 2. Enter correct username | password: 123456 | redirected to Dashboard
Master) & password
3. Click Login
UT-002 | Login with invalid | 1. Navigate to login page | username: admin System displays error message: | Pass
password for User 2. Enter valid username but | password: 1234567 | "Invalid password. Please try again."
wrong password
3. Click Login
UT-003 | Login with inactive | 1. Navigate to login page | username: admin2 | System displays error message: "Your | Pass
User 2. Enter valid username & | password: 123456 | account is inactive. Please contact the
password for a User with administrator."
status = inactive
3. Click Login
UT-004 | Login with non- | 1. Navigate to login page | username: member | System displays error: "Account not | Pass
existent username 2. Enter username not in | password: 123456 | found. Please ask the administrator to
users or members table create an account for you."
3. Click Login
UT-005 | Empty input fields 1. Navigate to login page | username: System shows validation error: "The | Pass
2.Leave username & | password: username field is required."
password blank
3. Click login button

Table 7.2: Unit testing of Member Login

217

Test Authentication — Login Page Test Title Verifying Member login functionality

Module

TCID | Test Case Name Test Steps Test Data Expected Result Status

UT-006 | Login with valid | 1. Navigate to login page | username: member User logged in successfully and | Pass

Member 2. Enter correct username | password: 123456 redirected to Homepage
(Teacher/Student) & password
3. Click Login
UT-007 | Login with invalid | 1. Navigate to login page | username: member System displays error message: | Pass
password for Member | 2. Enter valid username but | password: 1234567 "Invalid password. Please try
wrong password again."
3. Click Login
UT-008 | Login with inactive | 1. Navigate to login page | username: member2 System displays error message: | Pass
Member 2. Enter valid username & | password: 123456 "Your account is inactive. Please
password for a Member contact the administrator."
with status = inactive
3. Click Login
UT-009 | Login with non- | 1. Navigate to login page | username: admin System displays error: "Account | Pass
existent username 2. Enter username not in | password: 123456 not found. Please ask the
members table administrator to create an account
3. Click Login for you."

UT-010 | Empty input fields 1. Navigate to login page | username: System shows validation error: | Pass
2.Leave username & | password: "The username field is required."
password blank
3. Click login button

Table 7.3: Unit testing of Add User

218

Test User Management — CRUD & Password Update Test Title Add user to user list
Module
TCID Test Case Name Test Steps Test Data Expected Result Status
UT-011 Add new user (valid | 1. Navigate to user page username: admin User logged in successfully and | Pass
input) 2. Click “+ User” Button | password: 123456 | redirected to Dashboard
to navigate to user add
page
3. Fill in username,
password, role, and status
4. Submit form
UT-012 Add new wuser with | 1. Navigate to user page username: admin API validation fails with message | Pass
duplicate username 2. Click “+ User” Button | password: 1234567 | “This username is already taken.
to navigate to user add Please choose another one.”, status
page code 422
3. Fill in username,
password, role, and status
4. Submit form
Table 7.4: Unit testing of Edit User
Test User Management — CRUD & Password Update Test Title Edit user account from user list
Module
TC ID Test Case Name Test Steps Test Data Expected Result Status
UT-013 Edit user details 1. Navigate to user page username: userQ1 User created successfully and API | Pass
(valid input) 2. Click edit icon Button for role: quarter master | returns JSON with user object,
user that need to be edited status: inactive redirected to user list
3. Modify role or status
4. Submit form
UT-014 Edit user with 1. Navigate to user page username: adminl | API validation fails with message | Pass
duplicate username | 2. Click edit icon Button for (already exists) “This username is already taken.
user that need to be edited Please choose another one.”, status
3. Change username to an code 422
existing one
4. Submit form
Table 7.5: Unit testing of Delete User
Test User Management — CRUD & Password Update Test Title Delete user account from user list
Module
TCID Test Case Name Test Steps Test Data Expected Result Status
UT-015 Delete user (valid 1. Navigate to user page - User deleted successfully, API Pass
user) 2. Click delete Button for user returns success message, user
that need to be edited removed from list and delete in
3. Confirm delete database

Table 7.6: Unit testing of Change Password (User)

219

Test User Management — CRUD & Password Update Test Title Change user password
Module
TCID Test Case Name Test Steps Test Data Expected Result Status
UT-016 Change user 1. Navigate to Change password: Password updated successfully, Pass
password (valid Password page newpass123 API returns success message
input) 2. Enter new password and confirm Password:
confirm password newpass123
3. Submit form
UT-017 Change password 1. Navigate to Change password: System displays “Passwords do Pass
with mismatch Password page newpass123 not match”.
2. Enter different password confirm Password:
and confirm password newpass12356
3. Submit form
UT-018 Change password | 1. Navigate to Change | password: 123 System displays “The password | Pass
shorter ~ than 6 | Password page | confirm Password: | must be at least 6 characters.”
characters 2. Enter a new password with | 123
less than 6 characters
3. Submit form
Table 7.7: Unit testing of List User
Test User Management — CRUD & Password Update Test Title Display a list of user
Module
TC ID Test Case Name Test Steps Test Data Expected Result Status
UT-019 Display user list 1. Navigate to User List page | - System displays a paginated list of | Pass
users with username, role, and
status
Table 7.8: Unit testing of Search User
Test User Management — Search Test Title Search user
Module
TCID Test Case Name Test Steps Test Data Expected Result Status
UT-020 Search user in list 1. Enter keyword in search Keyword: user User list displays matching Pass

bar

2. System filters users

usernames result only

Table 7.9: Unit testing of Add Member

220

Test Member Management — CRUD & Password Update | Test Title Add member to member list
Module
TCID Test Case Name Test Steps Test Data Expected Result Status
UT-021 Add new member (valid | 1. Navigate to member username: member | Member logged in successfully and | Pass
input) page password: 123456 | redirected to member list page
2. Click “+ Member”
Button to navigate to
member add page
3. Fill in username,
password, role, and status
4. Submit form
UT-022 Add new member with | 1. Navigate to user page username: member | API validation fails with message | Pass
duplicate username 2. Click “+ Member” password: 1234567 | “This username is already taken.
button to navigate to Please choose another one.”.
member add page
3. Fill in username,
password, role, and status
4. Submit form
Table 7.10: Unit testing of Edit Member
Test Member Management — CRUD & Password Update Test Title Edit member account from member list
Module
TC ID Test Case Name Test Steps Test Data Expected Result Status
UT-023 Edit member details | 1. Navigate to member page username: Member created successfully and | Pass
(valid input) 2. Click edit icon Button for memberl redirected to member list page.
member that need to be edited | role: student
3. Modify role or status status: inactive
4. Submit form
UT-024 Edit member with 1. Navigate to member page username: API validation fails with message | Pass
duplicate username | 2. Click edit icon Button for memberl “This username is already taken.
member that need to be edited | (already exists) Please choose another one.”.
3. Change username to an
existing one
4. Submit form
Table 7.11: Unit testing of Delete Member
Test Member Management — CRUD & Password Update Test Title Delete member account from member list
Module
TCID Test Case Name Test Steps Test Data Expected Result Status
UT-025 Delete member 1. Navigate to member page - Member deleted successfully, API | Pass

(valid member)

2. Click delete Button for
member that need to be edited

3. Confirm delete

returns success message, member
removed from list and delete in

database

Table 7.12: Unit testing of Change Password (Member)

221

Test Member Management — CRUD & Password Update Test Title Change member password
Module
TCID Test Case Name Test Steps Test Data Expected Result Status
UT-026 Change member 1. Navigate to Change password: 1234567 | Password updated successfully. Pass
password (valid Password page confirm Password:
input) 2. Enter new password and 1234567
confirm password
3. Submit form
uUT-027 Change password 1. Navigate to Change password: 1234567 | System displays “Passwords do Pass
with mismatch Password page confirm Password: | not match”.
2. Enter different password 123456
and confirm password
3. Submit form
UT-028 Change password | 1. Navigate to Change password: 123 System displays “The password | Pass
shorter ~ than 6 | Password page confirm Password: | must be at least 6 characters.”
characters 2. Enter a new password with | 123
less than 6 characters
3. Submit form
Table 7.13: Unit testing of List Member
Test Member Management — CRUD & Password Update Test Title Display a list of members
Module
TC ID Test Case Name Test Steps Test Data Expected Result Status
UT-029 Display member list | 1. Navigate to Member List - System displays a paginated list of | Pass
page members with username, role, and
status
Table 7.14: Unit testing of Search Member
Test Member Management — CRUD & Password Update Test Title Search member in list
Module
TCID Test Case Name Test Steps Test Data Expected Result Status
UT-030 Search member in 1. Enter keyword in search Keyword: member | Member list displays matching Pass

list

bar

2. System filters members

usernames result only

Table 7.15: Unit testing of List Inventory

222

Test Inventory Management — Inventory Listing & Test Title Verifying inventory listing, grouping, and
Module Summary summary
TCID Test Case Name Test Steps Test Data Expected Result Status
UT-031 Display inventory 1. Navigate to Inventory page | - System displays inventory list Pass
list (valid data) with product ID, name, stock,
damage, missing, reserved, rented
UT-032 Display grouped 1. Navigate to Inventory page | - System displays the inventory Pass
inventory by outlet based on outlets
Table 7.16: Unit testing of Add Product
Test Product Management — CRUD Test Title Add product to product list
Module
TCID Test Case Name Test Steps Test Data Expected Result Status
UT-033 Add new product (valid | 1. Navigate to Product Name: “Basketball” | Product successfully added Pass
input) Add page Quantity: 10 QR code generated
2. Fill in product details Status: Active Product listed in Product List
3. Upload image Outlet: QM ROOM | Product also added and displayed
4. Generate QR code Image: in inventory List.
5. Click Submit basketball.png
UT-034 Add new product | 1. Navigate to Product Add | Name: “Volleyball” | System displays error message: | Pass
without generating QR | page Quantity: 5 “Please generate a QR code first.”
code. 2. Fill in product details Status: Active
3. Skip QR code generation | Outlet: UP STORE
4. Click Submit
UT-035 Add duplicate product | 1. Navigate to Product Add | Name: “Basketball” | System rejects submission with | Pass
name in same outlet page Outlet: QM ROOM | error: “The product name
2. Enter product name 'Basketball' already exists in the
already existing in the QM ROOM outlet.”
outlet
3. Generate QR code
4. Submit
Table 7.17: Unit testing of Delete Product
Test Product Management — CRUD Test Title Delete product from product list
Module
TCID Test Case Name Test Steps Test Data Expected Result Status
UT-036 Delete existing 1. Go to Product List - Product deleted successfully, no Pass

product

2. Click Delete button on a
product
3. Confirm delete.

longer visible in Product List,

inventory record also deleted

Table 7.18: Unit testing of Edit Product

223

Test Product Management — CRUD Test Title Edit product from product list
Module
TCID Test Case Name Test Steps Test Data Expected Result Status
UT-037 Edit existing product | 1. Go to Product List Product: Product updated successfully, new | Pass
details (valid input) | 2. Click Edit button for a | “Basketball” quantity and image reflected in
product New Quantity: 20 | Product List
3. Modify quantity and upload | New Image:
new image basketball2.png
4. Click Update
UT-038 Edit existing product | 1. Go to Product List Name: “Football” System shows error: “The product | Pass
with duplicate name | 2. Change name to another | (already exists in name 'Football' already exists in
in outlet existing product in same outlet | QM ROOM) the QM ROOM outlet.”
3. Click Update
Table 7.19: Unit testing of List Product
Test Product Management — CRUD Test Title Display a list of products
Module
TCID Test Case Name Test Steps Test Data Expected Result Status
UT-039 Display product list | 1. Navigate to Product List - System displays a paginated list of | Pass
page products with productID, name,
quantity, QR code, status and
action
Table 7.20: Unit testing of Search Product
Test Product Management — CRUD Test Title Search product in list
Module
TCID Test Case Name Test Steps Test Data Expected Result Status
UT-040 Search product in 1. Enter keyword in search Keyword: Ball Product list displays matching Pass
list bar product name result only
2. System filters product
Table 7.21: Unit testing of Print QR Code
Test Product Management — Print QR code Test Title Print QR codes
Module
TCID Test Case Name Test Steps Test Data Expected Result Status
UT-041 Print QR codes 1. Go to Product List Product: New window opens with QR Pass
2. Select a product “Basketball” codes generated for the product
3. Click Print QR button Copies: 2 name, ready for printing

4. Enter number of copies

Table 7.22: Unit testing of Stock Check

224

Test Inventory Management — Stock Check Test Title Verifying Stock Check Creation, Listing,
Module and Validation
TCID Test Case Name Test Steps Test Data Expected Result Status
UT-042 Add new stock check | 1. Navigate to Stock Check | Date: 2025-09-20 Stock check saved successfully, | Pass
(valid data) Add page Outlet: QM ROOM | API returns JSON with created
2. Select date and outlet Product: Basketball | stock check and inventory updated
3. Enter In Stock, Damage, | (Qty: 10) —
and Missing for each | In Stock: 8,
product ensuring totals | Damage: 1,
match original quantity Missing: 1
4. Submit form
UT-043 Validation — totals not | 1. Navigate to Stock Check | Name: “Volleyball” | Alert displayed: “Quantity | Pass
matching product | Add page Quantity: 5 mismatch for product Volleyball.
quantity 2. Select date and outlet Status: Active Expected 12, but got 11.”, record
3. Enter incorrect totals | Outlet: UP STORE | not saved
(e.g., In Stock + Damage +
Missing # Product Qty)
4. Submit form
UT-044 Save stock check | 1. Navigate to Stock Check | Date: 2025-09-20 Validation error occurs: “Outlet is | Pass
without selecting outlet | Add page Outlet: empty required.” or “please select a
or date 2.Either enter date or select date.”, stock check not saved
outlet
3. Submit form
UT-045 List stock checks by | 1. Navigate to Stock Check | Date: 2025-09-20 Table displays stock checks for | Pass
date and outlet List page Outlet: UP STORE | selected date and outlet.
2. Leave date empty
3. Click Search
UT-046 List stock checks (all | 1. Navigate to Stock Check | Date: 2025-09-20 Table displays all stock checks data | Pass
outlets) List page Outlet: empty grouped by outlet
2. Leave date empty
3. Click Search
UT-047 Validation — fetch stock | 1. Navigate to Stock Check | - Alert displayed: “Please select a | Pass

checks without date

List page
2. Leave date empty
3. Click Search

date”.

Table 7.23: Unit testing of Member Booking

225

Test Member Booking Management Test Title Member booking the product by walk in
Module
TCID Test Case Name Test Steps Test Data Expected Result Status
UT-048 Checkout product 1. Scan QR code for specific | - New booking inserted into DB. Pass
product Inventory
2. Navigate to home page - instock decreases,
3.Click Booking Button - rented increases
4. Select quantity booking status become checkout.
5. Click Check out button
UT-049 Checkout same | 1. Scan QR code for specific | - System displays message that "You | Pass
product twice product already have this product checked
2. Navigate to home page out.".
3.Click Booking Button
4. Select quantity
5. Click Check out button
twice
UT-050 Checkin after | 1. Scan QR code for specific | - Booking status change to closed, | Pass
checkout product Inventory
2. Navigate to home page - instock increases,
3.Click Booking Button - rented decreases
4. Select quantity
5. Click Check in button.
Table 7.24: Unit testing of Search Booking
Test Booking Management — Search Test Title Search booking in list
Module
TCID Test Case Name Test Steps Test Data Expected Result Status
UT-051 Search booking in 1. Enter keyword in search Keyword: Ling Booking list displays matching Pass
list bar username result only
2. System filters username

Table 7.25: Unit testing of Add Reservation

226

Test Reservation Management — CRUD Test Title Add reservation to reservation list
Module
TCID Test Case Name Test Steps Test Data Expected Result Status
UT-052 Add new reservation | 1. Navigate to Reservation | Member: john Reservation successfully created | Pass
(user) Add page Product: Basketball | Reservation listed in Reservation
2. Select Member from Outlet: QM ROOM | List
dropdown Quantity: 2 Reservation status in “pending”.
3. Select Outlet Date: 2025-09-20
4. Select Date and Time Time: 10:00
5. Select Product (ensure
available quantity > 0)
6. Enter Quantity within
available stock
7. Click Submit
UT-053 Add new reservation | 1. Scan QR code for | Member: ali Reservation successfully created | Pass
based on member specific product Product: Basketball | Reservation listed in Reservation
2. Navigate to home page | Outlet: QM ROOM | List
3.Click Reservation Button | Quantity: 2 Reservation status in “pending”.
4. Select quantity, date, | Date: 2025-09-20
time Time: 10:00
5. Click Check in button.
UT-054 Add reservation | 1. Navigate to Reservation | Member: adam Error message occurs. Pass
exceeding available | Add page Product: Volleyball | Fail to make Reservation.
quantity 2. Select Member, Outlet | Outlet: UP STORE
and Date Quantity: 5
3. Select Product with | Date: 2025-09-21
available quantity Time: 11:00
4. Enter Quantity (available: 3)
5. Click Submit
UT-055 Add reservation without | 1. Navigate to Reservation | Name: “Basketball” | System displays error message to | Pass
selecting member Add page Outlet: QM ROOM | fill in the required field.
2. Leave Member field Fail to make Reservation.
empty
3. Fill in other details
4. Click Submit

Table 7.26: Unit testing of Edit Reservation Management

227

Test Reservation Management — CRUD Test Title Edit reservation to reservation list
Module
TCID Test Case Name Test Steps Test Data Expected Result Status
UT-056 Edit reservation (status: | 1. Go to Reservation List | Member: john Reservation updated successfully | Pass
pending) 2. Click Edit button for | Product: Basketball | Updated details reflected in
selected reservation. Outlet: QM ROOM | Reservation List
3. Modify the reservation | New Quantity: 3
details Date: 2025-09-20
4. Click Update Time: 10:00
UT-057 Edit reservation (locked | 1. Go to Reservation List | - Reservation is not allowed to edit. | Pass
— already accepted, | 2. Click Edit button for
rejected & used in | selected reservation.
booking) 3. Modify the reservation
details
4. Click Update
Table 7.27: Unit testing of List Reservation
Test Reservation Management — CRUD Test Title List reservation to reservation list
Module
TC ID Test Case Name Test Steps Test Data Expected Result Status
UT-058 Display reservation list | 1. Navigate to Reservation | - System displays a paginated list of | Pass
List page reservation with ID, username,
product, quantity, date,time,status
and action
Table 7.28: Unit testing of Search Reservation
Test Reservation Management — Search Test Title Search reservation in list
Module
TCID Test Case Name Test Steps Test Data Expected Result Status
UT-059 Search reservation in | 1. Enter keyword in search Keyword: Ling Reservation list displays matching | Pass
list bar username result only
2. System filters username
Table 7.29: Unit testing of Delete Reservation Management
Test Reservation Management — Delete Test Title Delete reservation in list
Module
TCID Test Case Name Test Steps Test Data Expected Result Status
UT-060 Delete existing 1. Go to Reservation List - Reservation deleted successfully, | Pass

reservation

2. Click Delete button on a

product
3. Confirm delete.

no longer visible in Reservation

List.

Table 7.30: Unit testing of View Dashboard

228

Test Dashboard Management Test Title View Dashboard

Module

TCID Test Case Name Test Steps Test Data Expected Result Status

UT-061 Display Dashboard 1. Navigate to Dashboard | - System displays dashboard output | Pass

page
Table 7.31: Unit testing of View Member Booking

Test Member Booking Test Title View member booking page

Module

TCID Test Case Name Test Steps Test Data Expected Result Status

UT-062 Display member | 1. Navigate to member- | - System displays product image, | Pass

booking booking page quantity available and input field
that allows member to check-out or
check-in.
Table 7.32: Unit testing of View Member Reservation

Test Member Reservation Test Title View member reservation page

Module

TC ID Test Case Name Test Steps Test Data Expected Result Status

UT-063 Display member | 1. Navigate to member- | - System displays product image, | Pass

reservation reservation page quantity available and input field
that allows member to make
reservation.
Table 7.33: Unit testing of View Home Page

Test Home Page Test Title View Home Page

Module

TCID Test Case Name Test Steps Test Data Expected Result Status

UT-064 Display home page 1. Navigate to home page | - System displays product overview | Pass
that allows member to make
booking or reservation.

Table 7.34: Unit testing of View History

Test History Test Title View History Page

Module

TCID Test Case Name Test Steps Test Data Expected Result Status

UT-065 Display history page 1. Navigate to history page | - System displays booking history. | Pass

Table 7.35: Unit testing of Notification

229

Test Reservation Management — Notification Test Title Notification
Module
TCID Test Case Name Test Steps Test Data Expected Result Status
UT-066 Send notification on | 1. Navigate to Reservation List | Reservation status | Email sent to member: “Your | Pass
reservation 2. Select a pending reservation | “pending” to reservation has been accepted”
acceptance 3. Edit status to Accept “accepted”
4. System triggers notification
service
UT-067 Send notification on | 1. Navigate to Reservation List | Reservation status | Email sent to member: “Your | Pass
reservation rejection | 2. Select a pending reservation | “pending” to | reservation has been rejected”
3. Edit status to Rejected “rejected”

4. System triggers notification

service

230

7.2.1 Conclusion of Unit Testing

The results of the unit testing showed that all the core modules of the system were
functioning according to their specifications. Some of the functions such as adding and
editing reservations, updating inventory, managing bookings, and sending notifications
all worked as expected. The error-handling methods also successfully prevented invalid
operations such as duplicate entries or exceeding stock limits. The consistent outcomes
across multiple test cases provided confidence that the individual components were
stable, reliable, and ready for integration testing. Overall, the successful completion of
unit testing showed that the system’s foundation architecture is stable and able to

prevent the risk of defects spreading into later stages of development.

7.3 Integration Testing

Integration testing was conducted after unit testing to validate whether different
modules in the Sports Centre Inventory Management System work together correctly.
This level of testing emphasizes interactions between modules and their interfaces,
rather than internal logic as in unit testing (Leung and White, 1990). The goal of this
testing was to ensure seamless data flow between modules such as authentication,
user/member management, booking, reservation, inventory, and notifications. Each
integration test case checks multiples modules behaved from beginning to end. This is
because there are approximately 40% of software errors can be traced back to
component interaction issues identified during the integration process (Leung and

White, 1990).

231

Table 7.36: Testing Integration 1

232

Test Reservation Management + Notification Test Title Accept/Rejected reservation and send
Module notification
TCID Test Case Name Test Steps Test Data Expected Result Status
IT-001 Reservation 1. Admin navigates to Reservation status | Reservation status changes to | Pass
acceptance triggers | Reservation List “pending” to accepted
notification 2. Accept a pending “accepted” Notification email sent to the
reservation member
3. Check member email inbox
IT-002 Reservation 1. Admin navigates to Reservation status | Reservation status changes to | Pass
rejection triggers Reservation List “pending” to | rejected
notification 2. Accept a pending “rejected” Notification email sent to the
reservation member
3. Check member email inbox
Table 7.37: Testing Integration 2
Test Booking (Checkout) + Inventory Test Title Member checkout updates inventory
Module
TCID Test Case Name Test Steps Test Data Expected Result Status
IT-003 Checkout product 1. Member scans QR code Product: Football Booking created with status = | Pass
reduces inventory in | 2. Click Booking Button Checkout Quantity: | checkout
stock quantity and 3. Select Quantity 2 Inventory: in-stock decreases by 1,
increases rented 4. Click Checkout Button rented increases by 1
quantity 5. Check inventory page
Table 7.38: Testing Integration 3
Test Booking (Checkin)+ Inventory Test Title Member checkin updates inventory
Module
TCID Test Case Name Test Steps Test Data Expected Result Status
IT-004 Checkin product 1. Member scans QR code Product: Football Booking status changes to closed | Pass

increases inventory
in stock quantity and
reduces rented

quantity

2. Click Booking Button

3. Select Quantity

4. Click Checkin Button

5. User check inventory page

Checkin Quantity:
2

Inventory: in-stock increases by 1,

rented decreases by 1

Table 7.39: Testing Integration 4

233

Test Reservation + Inventory +Booking Test Title Add reservation and check inventory
Module update
TCID Test Case Name Test Steps Test Data Expected Result Status
IT-005 Reservation make 1. Member scans QR code Member: john Inventory reserved quantity | Pass
by member. 2. Click Reservation Button Product: Basketball | increases by 2.
3. Select quantity, date and | Outlet: QM ROOM | In-stock remains unchanged, but it
time Quantity: 2 holds the quantity for that member
4. Click Submit Button Date: 2025-09-20 until the reservation date is past.
5. User checks the reservation | Time: 10:00
management and adjust the
reservation status make by
member to “Accept”.
6. Check inventory page
IT-006 Member checkout | 1. Member scans QR code Member: john Inventory reserved quantity | Pass
the reservation | 2. Click History Button. Product: Basketball | decrease by 2, in-stock decreases
product. 3. The reservation in History | Outlet: QM ROOM | and rented quantity increase.
from “pending” change to | Quantity: 2
“accept”. Date: 2025-09-20
4. Click Checkout Button | Time: 10:00
shows in reservation record. Checkout at:
5. User check inventory page | 2025-09-20
IT-007 Member checkin the | 1. Member scans QR code Member: john Inventory in-stock increase and | Pass

reservation product. | 2. Click History Button.

3. The reservation in History
change to “checkin”

4. Click Checkin Button shows
in reservation record.

5. User check inventory page

Product: Basketball
Outlet: QM ROOM
Quantity: 2

Date: 2025-09-20
Time: 10:00
Checkout at:
2025-09-20
Checkout at:
2025-09-20

rented quantity decrease.

Table 7.40: Testing Integration 5

234

Test User Management + Authentication Test Title Admin creates user account and login with
Module new credentials
TCID Test Case Name Test Steps Test Data Expected Result Status
IT-008 New user Login 1. Administrator adds new | Username: User added successfully Pass
with the role user in User Management. newadmin New user (administrator / quarter
“administrator” or 3. Create a new user with | Password: master) can login and access role-
“quarter master” administrator role or quarter | password123 based dashboard
master role or
4. Log out Username: newQM
5. Log in with new credentials | Password: 123456
IT-009 New member Login | 1. Administrator adds new | Username: Memver added successfully Pass
with the role | user in Member Management. | newmember New member (student / teacher)

“student”

“teacher”

or

3. Create a new member with
student role or teacher role.
4. Log out

5. Log in with new credentials

Password: pass123

can access home page

235

7.3.1 Conclusion of integration testing

The result of the integration testing showed that there was a seamless collaboration of
all modules within the Sports Center Inventory Management System. This is because
the functions such as notifications triggered by appointment acceptance or rejection,
real-time inventory updates during booking operations, and check-in/check-out
processes accurately reflecting stock levels were all successfully verified which
resulted in a comprehensive and fully functional workflow. Besides, the integration of
user management, member management and authentication ensured that the role-based
access control work correctly to handle administrators, quartermasters, teachers, and
student’s role. All designed integration test cases produced expected the outcomes as
expected which demonstrated a reliable and consistent interactions between modules.
In conclusion, the successful completion of integration testing shows that system
components not only function independently but also collaborate efficiently to support

end-to-end business processes.

7.4 User Acceptance Testing

User Acceptance Testing (UAT) was conducted to ensure that the system meets the
requirements and expectations of targeted users. The purpose of UAT is to validate that
the system’s workflow is align with actual usage scenarios within the sport centre
environment and ensured that all functionalities are intuitive, reliable, and efficient.
Test cases involved simulating typical user scenarios, including system login,
reservation management, booking, product checkout/in procedures and the others. The
UAT is used to invite the actual and targeted user to involved in the testing as it
provided invaluable feedback on system usability, functionality and overall satisfaction.
Therefore, User Acceptance Testing is important as serves as the final validation stage

that ensure the system is fully ready for operational use.

236

User Acceptance Testing

UAT Test ID: UAT-User Type - 1

Tester Type: Administrator

Test Date: 21/8/2025

Tester name: EugeneTiang

Test Case Module Under Tested Test Scenario Results Feedback/Comments from participants
ID
UAT-001 Authentication Login PASS —
UAT-002 Inventory Management Manage Inventory (create, delete, update,edit) PASS
UAT-003 User Management Manage User (create, delete, update,edit) PASS
UAT-004 Member Management Manage member (create, delete, update,edit) PASS
UAT-005 Product Management Manage products (create, delete, update,edit) PASS
UAT-006 Dashboard Management View Dashboard PASS
UAT-007 Reservation Management Manage Reservation (create, delete, update,edit) | PASS
UAT-008 Stock Check Management Stock Check (missing, damaged, instock) PASS
UAT-009 Booking Management Manage Bookings (delete, update,edit) PASS
UAT-010 Product Management Generate QR Code PASS
UAT-011 QR Code Integration Scan QR Code PASS
UAT-012 Product Management Print QR Code PASS
UAT-013 Authentication Logout PASS

237

User Acceptance Testing

UAT Test ID: UAT-User Type - 2

Tester Type: Administrator

Test Date: 21/8/2025

Tester name: Lim Zi Quan

Test Case Module Under Tested Test Scenario Results Feedback/Comments from participants
ID
UAT-001 Authentication Login PASS —
UAT-002 Inventory Management Manage Inventory (create, delete, update,edit) PASS
UAT-003 User Management Manage User (create, delete, update,edit) PASS
UAT-004 Member Management Manage member (create, delete, update,edit) PASS
UAT-005 Product Management Manage products (create, delete, update,edit) PASS
UAT-006 Dashboard Management View Dashboard PASS
UAT-007 Reservation Management Manage Reservation (create, delete, update,edit) | PASS
UAT-008 Stock Check Management Stock Check (missing, damaged, instock) PASS
UAT-009 Booking Management Manage Bookings (delete, update,edit) PASS
UAT-010 Product Management Generate QR Code PASS
UAT-011 QR Code Integration Scan QR Code PASS
UAT-012 Product Management Print QR Code PASS
UAT-013 Authentication Logout PASS

238

User Acceptance Testing

UAT Test ID: UAT-User Type - 3

Tester Type: Administrator

Test Date: 21/8/2025

Tester name: Soh Yi Jye

Test Case Module Under Tested Test Scenario Results Feedback/Comments from participants
ID
UAT-001 Authentication Login PASS —
UAT-002 Inventory Management Manage Inventory (create, delete, update,edit) PASS
UAT-003 User Management Manage User (create, delete, update,edit) PASS
UAT-004 Member Management Manage member (create, delete, update,edit) PASS
UAT-005 Product Management Manage products (create, delete, update,edit) PASS
UAT-006 Dashboard Management View Dashboard PASS
UAT-007 Reservation Management Manage Reservation (create, delete, update,edit) | PASS
UAT-008 Stock Check Management Stock Check (missing, damaged, instock) PASS
UAT-009 Booking Management Manage Bookings PASS
UAT-010 Product Management Generate QR Code PASS
UAT-011 QR Code Integration Scan QR Code PASS
UAT-012 Product Management Print QR Code PASS
UAT-013 Authentication Logout PASS

239

User Acceptance Testing

UAT Test ID: UAT-User Type - 4

Tester Type: Quarter Master

Test Date: 21/8/2025

Tester name: Tan Ke Ting

Test Case Module Under Tested Test Scenario Results Feedback/Comments from participants
ID
UAT-001 Authentication Login PASS
UAT-002 Inventory Management Update Inventory PASS
UAT-003 Reservation Management Manage Reservation PASS
UAT-004 Stock Check Management Stock Check (missing, damaged, instock) PASS
UAT-005 Booking Management Manage Bookings PASS
UAT-006 QR Code Integration Scan QR Code PASS
UAT-007 Product Management Print QR Code PASS
UAT-008 Authentication Logout PASS

User Acceptance Testing

UAT Test ID: UAT-User Type - 5

Tester Type: Quarter Master

Test Date: 21/8/2025

Tester name: Chow Zong Xian

Test Case Module Under Tested Test Scenario Results Feedback/Comments from participants
ID
UAT-001 Authentication Login PASS
UAT-002 Inventory Management Update Inventory PASS
UAT-003 Reservation Management Manage Reservation PASS
UAT-004 Stock Check Management Stock Check (missing, damaged, instock) PASS
UAT-005 Booking Management Manage Bookings PASS
UAT-006 QR Code Integration Scan QR Code PASS
UAT-007 Product Management Print QR Code PASS
UAT-008 Authentication Logout PASS

240

User Acceptance Testing

UAT Test ID: UAT-User Type - 6

Tester Type: Quarter Master

Test Date: 21/8/2025

Tester name: Vincy Lim

Test Case Module Under Tested Test Scenario Results Feedback/Comments from participants
ID
UAT-001 Authentication Login PASS
UAT-002 Inventory Management Update Inventory PASS
UAT-003 Reservation Management Manage Reservation PASS
UAT-004 Stock Check Management Stock Check (missing, damaged, instock) PASS
UAT-005 Booking Management Manage Bookings PASS
UAT-006 QR Code Integration Scan QR Code PASS
UAT-007 Product Management Print QR Code PASS
UAT-008 Authentication Logout PASS

User Acceptance Testing

UAT Test ID: UAT-User Type - 7

Tester Type: Quarter Master

Test Date: 21/8/2025

Tester name: Vinky Tan Zi Yi

Test Case Module Under Tested Test Scenario Results Feedback/Comments from participants
ID
UAT-001 Authentication Login PASS
UAT-002 Inventory Management Update Inventory PASS
UAT-003 Reservation Management Manage Reservation PASS
UAT-004 Stock Check Management Stock Check (missing, damaged, instock) PASS
UAT-005 Booking Management Manage Bookings PASS
UAT-006 QR Code Integration Scan QR Code PASS
UAT-007 Product Management Print QR Code PASS
UAT-008 Authentication Logout PASS

241

User Acceptance Testing

UAT Test ID: UAT-User Type — 8

Tester Type: Student

Test Date: 21/8/2025

Tester name: Chong Min Yew

Test Case Module Under Tested Test Scenario Results Feedback/Comments from participants
ID
UAT-001 Authentication Login PASS
UAT-002 Booking Management Book Equipment PASS
(Check In/Check Out)
UAT-003 Reservation Management Make Reservation PASS
UAT-004 Reservation Management Check Reservation Status PASS
UAT-005 Booking Management View History PASS
UAT-006 QR Code Integration Scan QR Code PASS
UAT-007 Notification Receive Notifications through email. PASS
UAT-008 Authentication Logout PASS
User Acceptance Testing
UAT Test ID: UAT-User Type — 9 Tester Type: Student
Test Date: 21/8/2025 Tester name: Kee Sherru
Test Case Module Under Tested Test Scenario Results Feedback/Comments from participants
ID
UAT-001 Authentication Login PASS
UAT-002 Booking Management Book Equipment PASS
(Check In/Check Out)

UAT-003 Reservation Management Make Reservation PASS
UAT-004 Reservation Management Check Reservation Status PASS
UAT-005 Booking Management View History PASS
UAT-006 QR Code Integration Scan QR Code PASS
UAT-007 Notification Receive Notifications through email. PASS
UAT-008 Authentication Logout PASS

242

User Acceptance Testing

UAT Test ID: UAT-User Type — 10

Tester Type: Student

Test Date: 21/8/2025

Tester name: Ng Jing Hong

Test Case Module Under Tested Test Scenario Results Feedback/Comments from participants
ID
UAT-001 Authentication Login PASS
UAT-002 Booking Management Book Equipment PASS
(Check In/Check Out)
UAT-003 Reservation Management Make Reservation PASS
UAT-004 Reservation Management Check Reservation Status PASS
UAT-005 Booking Management View History PASS
UAT-006 QR Code Integration Scan QR Code PASS
UAT-007 Notification Receive Notifications through email. PASS
UAT-008 Authentication Logout PASS
User Acceptance Testing
UAT Test ID: UAT-User Type — 11 Tester Type: Student
Test Date: 21/8/2025 Tester name: Lau Jing Xuan
Test Case Module Under Tested Test Scenario Results Feedback/Comments from participants
ID
UAT-001 Authentication Login PASS
UAT-002 Booking Management Book Equipment PASS
(Check In/Check Out)

UAT-003 Reservation Management Make Reservation PASS
UAT-004 Reservation Management Check Reservation Status PASS
UAT-005 Booking Management View History PASS
UAT-006 QR Code Integration Scan QR Code PASS
UAT-007 Notification Receive Notifications through email. PASS
UAT-008 Authentication Logout PASS

243

User Acceptance Testing

UAT Test ID: UAT-User Type — 12

Tester Type: Teacher

Test Date: 21/8/2025

Tester name: Tan Heng Jie

Test Case Module Under Tested Test Scenario Results Feedback/Comments from participants
ID
UAT-001 Authentication Login PASS
UAT-002 Booking Management Book Equipment PASS
(Check In/Check Out)
UAT-003 Reservation Management Make Reservation PASS
UAT-004 Reservation Management Check Reservation Status PASS
UAT-005 Booking Management View History PASS
UAT-006 QR Code Integration Scan QR Code PASS
UAT-007 Notification Receive Notification through email PASS
UAT-008 Authentication Logout PASS
User Acceptance Testing
UAT Test ID: UAT-User Type — 13 Tester Type: Teacher
Test Date: 21/8/2025 Tester name: Kriss Tee
Test Case Module Under Tested Test Scenario Results Feedback/Comments from participants
ID
UAT-001 Authentication Login PASS
UAT-002 Booking Management Book Equipment PASS
(Check In/Check Out)

UAT-003 Reservation Management Make Reservation PASS
UAT-004 Reservation Management Check Reservation Status PASS
UAT-005 Booking Management View History PASS
UAT-006 QR Code Integration Scan QR Code PASS
UAT-007 Notification Receive Notification through email PASS
UAT-008 Authentication Logout PASS

244

User Acceptance Testing

UAT Test ID: UAT-User Type — 14

Tester Type: Teacher

Test Date: 21/8/2025

Tester name: Tee Kuik Qun

Test Case Module Under Tested Test Scenario Results Feedback/Comments from participants
ID
UAT-001 Authentication Login PASS
UAT-002 Booking Management Book Equipment PASS
(Check In/Check Out)
UAT-003 Reservation Management Make Reservation PASS
UAT-004 Reservation Management Check Reservation Status PASS
UAT-005 Booking Management View History PASS
UAT-006 QR Code Integration Scan QR Code PASS
UAT-007 Notification Receive Notification through email PASS
UAT-008 Authentication Logout PASS
User Acceptance Testing

UAT Test ID: UAT-User Type — 15

Tester Type: Teacher

Test Date: 21/8/2025

Tester name: Yee Jia Xuan

Test Case Module Under Tested Test Scenario Results Feedback/Comments from participants
ID
UAT-001 Authentication Login PASS
UAT-002 Booking Management Book Equipment PASS
(Check In/Check Out)
UAT-003 Reservation Management Make Reservation PASS
UAT-004 Reservation Management Check Reservation Status PASS
UAT-005 Booking Management View History PASS
UAT-006 QR Code Integration Scan QR Code PASS
UAT-007 Notification Receive Notification through email PASS
UAT-008 Authentication Logout PASS

245

7.4.1 Findings

The User Acceptance Testing (UAT) was conducted to evaluate system’s overall
functionality, usability and deployment readiness. There are 15 testers representing
different user roles participated in the testing. Each tester performed role-specific tasks
to ensure the system met operational requirements within the school sports centre
environment.

All test cases demonstrated a 100% pass rate. This result shows that the
inventory management system had a reliable operation across various user scenarios.
Every core system module has successfully met the respective acceptance criteria. For
example, administrator can manage all the tasks efficiently, while quarter master can
do the stock check, printed QR codes, and managed booking and reservations and others
without errors. Teachers and students seamlessly logged into the system to book
equipment by scanning the QR codes for check out and check in procedures, view
booking histories, and receive email notifications. There are no major issues, system
vulnerabilities or usability barriers were reported by any participants. Test results also
confirmed the proper functioning of role-based access control to ensure users could

only access functional modules relevant to their assigned roles.

7.4.2 Achievements
The successful completion of user acceptance testing indicated a significant milestone
in the system development lifecycle. A 100% pass rate confirms that the inventory
management dashboard has achieved its intended objectives which is provide a stable,
user-friendly and efficient solution for sports equipment and facility management. The
system meets all acceptance criteria, and this demonstrate that it compliances with user
expectations and organisational requirements.
User acceptance test results validate:
. The system's functionality is complete and all essential operations
functioning without fault.
o The user interface design is intuitive which enabling effortless
operation by all users.
. QR code integration effectively supports real-time tracking and

equipment management.

246

. The notification system ensures users receive timely updates on
booking and reservation statuses.
. Role-based access control successfully implements security and

operational boundary management.

In conclusion, the user acceptance test results show that the system is ready
for deployment. The successful testing outcome highlights the project's achievement in
delivering a robust, reliable, and scalable inventory management solution. This solution
will enhance efficiency, reduce manual workload, and provide data-driven decision

support for the school sports centre.

247

CHAPTER 8
CONCLUSION AND FUTURE WORK

8.1 Conclusion

This project successfully developed a web-based Inventory Management Dashboard
and mobile app for scanning QR code to streamline the management of sports
equipment and facilities at a secondary school’s sports centre. The system was designed
to address inefficiencies of manual record-keeping and lack of visibility in inventory
movement. By integrating React for the web application and mobile application,
Laravel as the backend framework, the system provides a modern, scalable, and user-
friendly platform. The implementation of QR code technology further enhances
reliability by streamlining equipment check-in and check-out processes, reducing errors,
and improving accountability. In conclusion, the project demonstrates how technology
can significantly improve the management and monitoring of sports resources in a

school environment.

8.2 Achieved Objectives
The project has achieved the following objectives:
l. Successfully developed a web application with a dashboard for
tracking the movement and inventory of sports equipment and facilities.
2. Implemented equipment tracking and maintenance function with QR
code generation which allows user to manage equipment efficiently.
3. Designed and developed a mobile application that enables QR code
scanning for real-time updates when the equipment is checked out or
in of the sports center.
4. Conducted User Acceptance Testing (UAT) with selected users to
demonstrate the system’s effectiveness and usability in improving

sports centre operations.

8.3 Limitations and Future Work

248

Although the system achieved its targeted objectives, some limitations remain that can

be addressed in future work:

Table 8.1:

Limitation and Future Work

Limitation

Future work

Notifications are limited to email only.

Integrate SMS and mobile push

notifications for better accessibility.

System is primarily designed for local

school network use.

Deploy on a cloud-based infrastructure to

allow remote access anytime, anywhere.

Filtering and search functions are limited

(e.g., by username only)

Improve filter options to allow advanced

search (by product member,

type,

booking status, time range, etc.).

The system 1is web-based with no

dedicated mobile application.

Build a mobile app for Android/iOS to
improve convenience for teachers and

students.

Dashboard Reporting features are basic
and providing only essential information
without advanced analytics or data

visualization.

Integrate Al-driven analytics to provide
predictive insights, usage patterns, and

recommendations

Manual QR code scanning is required to

Explore integration of loT-based sensors

track equipment. for automated equipment tracking
without manual scanning.

Outlets are fixed and cannot be | Enhance the system to allow

dynamically added. administrators to create and manage new

outlets.

249

REFERENCES

Okirie, A.J., Barnabas, M. and Adagbon, J.E, 2024 ‘Maintenance Management
Optimization: Evaluating Manual and Automated Methods of Tracking Uptime
Hours for Offshore Equipment’, American Journal of IR 4 0 and Beyond, 3(1), pp.
15-27. Available at: https://doi.org/10.54536/ajirb.v3i11.3516.

Al-Saqqa, S., Sawalha, S. and AbdelNabi, H., 2020. Agile software development:
Methodologies and trends. International Journal of Interactive Mobile Technologies,

14(11).

Aman, M.S., Ponnusamy, V., Elumalai, G., Mohamed, M.N.A., Kamalden, T.F.T. and
Yahya, S., 2020. Trends and usage of sports facilities among Malaysians.
International Journal of Physiotherapy, 7(6), pp.252-255. Available at:
https://doi.org/10.15621/ijphy/2020/v716/840

Apke, L., 2016. Agile values: Working software over comprehensive documentation.
[online] Agile Doctor. Available at: https://www.agile-

doctor.com/2016/08/16/agile-values-working-software-documentation/

Asset Panda, 2022. How Asset Tracking Helps Educational Facilities Save Money.
[online] Available at: https://www.assetpanda.com/resource-center/white-

papers/asset-tracking-aids-educational-institutions/

Bassil, Y., 2012. A simulation model for the waterfall software development life cycle.

arXiv preprint arXiv:1205.6904.

Bell, T.E. and Thayer, T.A., 1976. Software requirements: Are they really a problem?
In: Proceedings of the 2nd International Conference on Software Engineering,

pp.61-68.

Camburn, B.A., Viswanathan, V.K., Linsey, J.S., Jensen, D.D., Crawford, R.H., Otto,
K. and Wood, K.L., 2017. Design prototyping methods: state of the art in strategies,
techniques, and guidelines. Design Science, 3, el3. [online] Cambridge University

Press. Available at: https://doi.org/10.1017/dsj.2017.10

https://doi.org/10.15621/ijphy/2020/v7i6/840

250

Chemuturi, M., 2013. Requirements Engineering and Management for Software

Development Projects. Springer Science & Business Media.

Daka, E. and Fraser, G., 2014. A survey on unit testing practices and problems. In: 2014
IEEE 25th International Symposium on Software Reliability Engineering, pp.201-
211.

Davis, F.D. and Venkatesh, V., 2004. Toward preprototype user acceptance testing of
new information systems: implications for software project management. IEEE

Transactions on Engineering Management, 51(1), pp.31-46.

Discipline Infotech (2023) Laravel Security Features, Disciplineinfotech.com.
Discipline Infotech. Available at: https://www.disciplineinfotech.com/blog/laravel-

security-features

Dudley, M., 2023. 6 Surprising Stats About Tool Tracking | Link Labs | Blog. [online]
Link-labs.com. Available at: https://www.link-labs.com/blog/6-surprising-stats-

about-tool-tracking/

Erickson, J., 2024. What is MySQL? [online] Oracle. Available at:

https://www.oracle.com/mysql/what-is-mysql/

Epifany Bojanowska, 2018. Naturaily: Web and Mobile Development Company from
Poland. [online] Naturaily.com. Available at: https://naturaily.com/blog/pros-cons-

vue-js/

Firebase, 2025. Firebase Realtime Database. [online] Available at:

https://firebase.google.com/docs/database#store_other types of data

Gackenheimer, C., 2015. Introduction to React. Apress.

GeeksforGeeks, 2019a. Unit Testing | Software Testing. [online] Available at:

https://www.geeksforgeeks.org/unit-testing-software-testing/

251

GeeksforGeeks, 2019b. System Testing - GeeksforGeeks. [online] Available at:
https://www.geeksforgeeks.org/system-testing/

GeeksforGeeks (2023) Laravel Features, GeeksforGeeks. Available at:
https://www.geeksforgeeks.org/php/laravel-features/.

Gurung, G., et al., 2020. Software Development Life Cycle Models — A Comparative
Study. International Journal of Scientific Research in Computer Science and

Engineering, 6(4), pp.30-37.

Hawkes, L. (2025) Facility Maintenance Plan, Click Maint CMMS. Click Maint Inc.

Available at: https://www.clickmaint.com/blog/facility-maintenance-plan

Horvathova, N. and Vostinar, M., 2018. Mistake as a source of feedback. In:
International Scientific Conference on Distance Learning in Applied Informatics

(DIVAI 2018). Stirovo, Slovakia, 24 May. Wolters Kluwer, pp.40—45.

Jastrow, F., Greve, S., Thumel, M. et al. Digital technology in physical education:
a systematic review of research from 2009 to 2020. Ger J Exerc Sport Res 52, 504—
528 (2022). https://doi.org/10.1007/s12662-022-00848-5

Jindal, S., Gulati, P. and Rohilla, P., 2015. Various Software Development Life Cycle
Models. IJRDO - Journal of Computer Science Engineering, 1(4), pp.162—-167.

Johnson, P., 2023a. 10 Reasons Why Vue.js Is Best for App Development [+ Benefits].
[online] Digital Marketing Agency in USA. Available at:
https://foreignerds.com/why-vue-js/

Johnson, P., 2023b. The Good and the Bad of Vue.js Framework Programming. [online]
Digital Marketing Agency in USA. Available at: https://foreignerds.com/the-good-

and-the-bad-of-vue-js-framework-programming/

Jorgensen, P.C. and Erickson, C., 1994. Object-oriented integration testing.
Communications of the ACM, 37(9), pp.30-38.

252

Ko, H.S., Azambuja, M. and Lee, H.F., 2016. Cloud-based materials tracking system
prototype integrated with radio frequency identification tagging

technology. Automation in Construction, 63, pp.144-154.

Krahenbuhl, J.H., 2015. Learning Axure RP Interactive Prototypes. Packt Publishing
Ltd.

Kute, S.S. and Thorat, S.D., 2014. A Review on Various Software Development Life
Cycle (SDLC) Models. International Journal of Research in Computer and
Communication Technology, 3(7), pp.776-781.

Leed Software Development, 2024. Advantages and Challenges of React Native App
Development. [online] Medium. Available at:
https://leeddev.medium.com/advantages-and-challenges-of-react-native-app-

development-56¢18d8fc834

Leung, H.K.N. and White, L. (1990) A study of integration testing and software
regression at the integration level, IEEE Xplore. Available at:
https://doi.org/10.1109/ICSM.1990.131377.

Menariya, N., 2022. Laravel: advantages and disadvantages. [online] Medium.
Available at: https://mystorywigs.medium.com/laravel-advantages-and-

disadvantages-fee90e40a41f

Morrow, D. (2018) Sports Equipment: The Importance of Athletic Equipment
Inspections | Recreation Management, recmanagement.com. Available at:
https://recmanagement.com/articles/152405/sports-equipment-importance-athletic-

equipment-inspections.

React Native, 2024. React Native — A framework for building native apps using React.

[online] Available at: https://reactnative.dev/

Royce, W.W., 1970. Managing the development of large software systems. In:
Proceedings of IEEE WESCON, pp.1-9.

253

Royce, W.W., 1987. Managing the development of large software systems: concepts
and techniques. In: Proceedings of the 9th International Conference on Software

Engineering, pp.328-338.

Runeson, P. (2006) ‘A survey of unit testing practices’, IEEE Software, 23(4), pp. 22—
29. Available at: https://doi.org/10.1109/ms.2006.91.

Sadiq, A., Khaskheli, N.A., Laghari, A.A., Sikandar, N., Alia, Rashid, N.K. and Siraj,
M.J., 2023. Availability and utilization of sports facilities at high schools of district
Faisalabad, Pakistan. Elementary Education Online, 20(2), pp.1559-1565. Available
at: https://ilkogretim-online.org/index.php/pub/article/view/2274

Sayyed, M. (2015) Artificial neural network approach for condition-based

maintenance, arXiv.org. Available at: https://arxiv.org/abs/1601.03809 (Accessed:
7 October 2025).

Senarath, U.S., 2021. Waterfall methodology, prototyping and agile development. Tech.
Rep., pp.1-16.

Shetty, M.Y., et al., 2023. Software Development Life Cycle (SDLC) in Software

Engineering — A Brief Review. Journal of Computer Science and System Software,

1(1), pp.5-9.

Singh, R.P., 2023. Pros and Cons of React Native — A Comprehensive Guide. [online]
RichestSoft. Available at: https://richestsoft.com/blog/pros-and-cons-of-react-

native/

Song, 1.Y., Evans, M. and Park, E.K., 1995. A comparative analysis of entity-
relationship diagrams. Journal of Computer and Software Engineering, 3(4),

pp.427-459.

Srivastava, A., Bhardwaj, S. and Saraswat, S., 2017. SCRUM model for agile
methodology. In: 2017 International Conference on Computing, Communication

and Automation (ICCCA), pp.864—869. IEEE.

https://doi.org/10.1109/ms.2006.91
https://ilkogretim-online.org/index.php/pub/article/view/2274

254

TestFyra, 2023. Integrating Testing Across the Software Development Life Cycle
(SDLC). [online] Medium. Available at:
https://testfyrablog.medium.com/integrating-testing-across-the-software-

development-life-cycle-sdlc-33¢770fetba6

Uhrowczik, P.P., 1973. Data dictionary/directories. IBM Systems Journal, 12(4),
pp-332-350.

Visual Paradigm, 2019. What is Unified Modeling Language (UML)? [online]
Available at: https://www.visual-paradigm.com/guide/uml-unified-modeling-

language/what-is-uml/

Vue.js, no date. vuejs.org. [online] Available at: https://vuejs.org/guide/introduction

Watanabe, N.M., Shapiro, S. and Drayer, J. (2021) ‘Big Data and Analytics in Sport
Management’, Journal of Sport Management, 35(3), pp. 197-202. Available at:
https://doi.org/10.1123/jsm.2021-0067.

7 Ways Data Can Drive Better Facilities Management Decisions (2025) Cbre.com.my.
Available at: https://www.cbre.com.my/insights/articles/7-ways-data-can-drive-

better-facilities-management-decisions

Wu, X., Lu, Y. and Ma, C., 2025. An evaluation method for safety applied to public
sports facilities in urban communities. MethodsX, 14, p.103256. Available at:
https://doi.org/10.1016/;.mex.2025.103256

Y, E. (2018) What Is WAMP — a Friendly Guide for Beginners, Hostinger Tutorials.

Available at: https://www.hostinger.com/my/tutorials/what-is-wamp

https://testfyrablog.medium.com/integrating-testing-across-the-software-development-life-cycle-sdlc-33c770fefba6
https://testfyrablog.medium.com/integrating-testing-across-the-software-development-life-cycle-sdlc-33c770fefba6
https://doi.org/10.1123/jsm.2021-0067
https://doi.org/10.1016/j.mex.2025.103256

255
APPENDICES

Appendix A: Hardcopy records and Manual Entry

= <
%4 » 5 e
= . i
s W -
Wi e - ¥ & e .
e ’ -
. ; | L
NS = i A
I 7 - Phod AY n - B - §as = A= ==
2 3 bee o T : n. -’}-— [RLT L.k
& = = T R e e £33 | Cobsss LAl A7 TR v etam S T
CL A e 1 w4 e 1 2an 5 T san “.M
3 | scaves : YN r L A Y3 s wan
_Lyhe Ter \ TR 5 - [ALLd Tam 0 Beaoe
= Taowdle . [r3 S - & wh oo 4
sohy v R g =8 ur
20l X S D 3
LR §
7
%] .
¥ == W e
n
Bla p: Iy | Riem Vo
: L - U

256

A B C D E F G
1 (QM ROOM
2 BIL BARANGAN ADA ROSAK
3 1 Badminton racket 40 6
4 2 Basketball 17
5 3 Football 5
6 4 Frisbee 8
7 5 Handball (L) 24
8 6 Handball (P) 4 1
9 7 Hockey ball 18
10 3 Haockey stick 52
11 9 Medicine ball 0
12 10 Netball 22
13 11 Ping pong ball 5
14 12 Ping pong bat 4
15 13 Rugby ball 3
16 14 Sepak takraw 19
17 15 Shuttlecock 2
18 16 Skipping rope 21 9
19 17 Small cone 18 1
20 18 Small disc cone 13
21 19 Squash racket 5
22 20 Volleyball 8
23
24 |UP STORE
25 BIL BARANGAN ADA ROSAK
26 1 Ankle/wrist weight 11
27 2 Awas cone 9
28 3 Badminton racket 36
a0 A Dacnhall has k]

257

: WBS Gantt Chart

Appendix B

FYP1- Gantt Chart

ACTVITIES

1.Project Preparatory:

(&) 1.1, Conduct research on sports equipment tracking and facility ma...

(@ 1.2 Discuss proposal Ideas and rfine scape with supervisor
&) 1.3 Confirm final FYP title with supervisor
2. Requirements Planning;
& 2..ProjectInitiation
(@) 2.1.1.Define project background
(@ 2.1.2.1dentify key problems
(@ 2.13.Define specific project objectives

(@ 2.1.4.Define project scope and limitatians

() 2.1.5. Propose system solution (Dashboard-based tracking and ...

(2 2.1.6.Define project approach (Prototyping methodalogy)

() 2.1.7. Create Work Breakdown Structure (WBS)

(9 2.1.8.Develop Gantt chart far project scheduling

(@ 22 Requirements Gathering

() 22.1.Develop questionnaire
@ 2.2.1.1. Design close-ended and open-ended questions
(@ 2.2.1.2.dentify target respondents (teachers, students, sp
(©) 2.2.1.3. validate questionnaire through supervisor

() 2.2.2 submit ethical clearance

() 223 Distribute guestionnaire and collect responses
(©) 2231 Analyze questionnaire results o identify user needs

(© 224, Lierature Review
@ 2.24.1. Study software develapment methodalogies (Water.
(©) 2.24.2. Conclude relevant approaches and technologies

(©) 2243 Research web frameworks (React, Laravel, MySQL)

(2) 2244, Review existing inventory and booking applications ...

() 23.Define Requirements

(© 23.1. Develop functional requirements (e.g., booking, reporting ..

() 2:3.2.Define non-functional reguirements (e.g., accessil

() 23.3.Create use case diagram and descriptions
@) 2.4.Develop Low-Fidelity Prototype
2.4.1. Design User Management Page
2.4.2. Design Equipment Management Page
2.4.3. Design Reservation Management Page
2.4.4. Design Booking Management Page
245, Design Track Equipment Page
246, Design Dashboard Page
2.4.7. Design Stock Check Page:
2.4.8. Design Booking Page
2.4.9. Design View History Page
24,10, Design Member Page

24.11 Design Login Page

[SHOHCROHCHCHONCHOHCHONC]

2.4.12. Design QR Code Generation and Scanning Interface

ASSIGNEE

yapruiya
yapruiya

Unassigned

Unassgned
Unsssgned
Unassgned

u

e
Unassgned
Unassgned
unassigned
Unsssgned

v

e
Unsssgnesd
Unassgned
Unassgned
Unassgned

U

ned
Unassgned
Unsssgned
Unassgned
Unassgned
Unassined
Unassgned
unassgned
Unassgned
Unassgned
Unassigned

Unassigned

Unassgned
Unassgned
Unassigned
Unassgned
Unassigned
Unassgned
Unassgned
Unassgned
Unassigned
Unassgnent
Unassgned
Unassgned
Unassgned

Unissgned

START

LY

1ren

17Fe

16i%e

20Feh

20rel

20en

24Fen

021Mar

M

DaMar

giMar

o7Mer

10ar

i

M

e

6iMar

7iMar

25iMar

27iMar

M
azmpr
azinpr
1iapr
19pr
19¢Apr
19
2impr
2iner
24tapr
24apr
2impr
2umpr
2uimpr
24mer
24tmpr
24impr
24impr
2impr
24hpr

24thpr

buE

nire
T6Fed
18Feh
19

o1y

izt
22rFeh
01
03Mar
e
[
o8Mar
03Mer
T6ibar
TRlApr
Tamer
12Mar
13Mar
Ao
T6Mar
26Mar
2z
Talhpr
otiapr
oaapr
Tounpr
Taiapr
2aiapr
L

niape

23pr

Otittay

B instagant

A5 W W Mar B w2 w2 w4 ws Agr 2025

WS EUEWEAZAMBEETET 23456 7 89 W
]_.va_mn:.@mﬂs
I 1. Conduct research on sp i dng and facii ¥

@ 12 Discuss proposal ideas and refine scope with superuisor
1B 1:3.Confirm final FYP tde with supervisor

MEUSEUVENAAREMSEETAIBINT 2345678 S NNUBUREI RS D ADEUSENERT

4
P 1
(B 21.1. vefie project background
N 22 ey key problems
[21:3. Defive specific project chjectives
[2.1 Defire project scope andmitations
B s
[215 Define project approach (Pretotyping methodeiogy)
[217 Create Work Breakdown Sructure (WES)
@ 215 Develop Gan chart for project scheduiing

r N 22

PR— 2.2.1. Develop questionnaire
D 221..Desgnc e que:
B 2212 denify rget students, staff)
B 2213 Validate questionnaire through supervisar
B 222 Subnitethical clearance
P —m— 223 Distribute questionnaire and colect responses

B 2231 Analyze questionnaire results t identfy user needs
r N 224 Literanre Review
(N 2. sty sofuwara development methodologies (Waterfall, Agie, Promtyping)
.
(N 2243 Research web frameworks (React, Laravel, MySQL)
N 2. Review exsing imentory and buc
[r— 23 Define Requireme
B 2:3.1. Deveiop funcional requirer
B 232 Define nonunctional requit

D 233 Create wse cases

I

258

FYP2- Gantt Chart

3. User Design and Iteration: 2y i

(&) 2.4, First heration Unassgned ety My

(& 3.1, Prototyping Phase 1 unasagnes 2day 18y

3 () 3.0.1.0 Implement homepage with kogin functienality Unmsgned @Ry L

4 e 3.1.1.2, Create basic booking module interface Un sasgned By iy

5 @ 3.1.13. Develog equipment listing and imentory views Unasdgned T L

E @ 3.1.1.4. Build reporting madule structure {dashboard) Unassigned dday 1 2wy

7 (%) 3..15. Prototype QR Code Generation Ul for egquigment Unzasgned 1%y 15y

8 () 3..1.6 Create EAD diagram Unmsgned 10y 1y

a & 3.1.2. Conduct User Testing and Evaluation 1 Unmugned 19y iy

[@ 3.1.3, Refine Profotype 1 based on feedback nasdgned Ty 2wy
(%) 3.2 Second Reration Unassgned SMy 0Tgen

(& 32, Pratatyping Phase 2 Unessgnes my Ty

13 () 3210 Improve Inventory management with edivdelete fe,, Unseges il iy
14 (&) 3212 \mprove booking management and tracking features Unssged ey iy
15 (Z) 3213 Add QR code scanning functisnality for equipment e, Unssdgned Tdday iy
16 (&) 322, Conduct User Testing and Evaluation 2 Unassgned oljun 034
17 (&) 323 Refine Prototype 2 Unpesgnas aun a7
(%) 3.3, Third keration Unmugned Hun T

& 331, Prototyping Phase 2 Unasigned Hiun T

2w @ 3.31.1. Analize UMUK enhancerments Unacdgned Giun g
F il @ 3.3.1.2. Test full QR code functionality Unasspned 11un R T
2 (=) 332, Link frontend and backend components unmagnes T g
23 @ 3.3.3, Conduct User Testing and Evaluation 3 Unsugned ijun 1T
4 & 334, Final refinement of profotype Unasigned Hiun ETT e
4, Construction: @ ijul Eiap

(%) 4.9, Coding implementation of all modules unasagnes LITE Nimug

27 (Z) Authentication, Booking. Inventary, Reporting, Maintenance Da. Unesgnes o1 Nimug
28 @ 4,2, Conduct systam walkthrough and informal user evaluation Unssgned S e
5. Dieploymment: S Hiap

(Z) 5.1, System Testing Unzssgned [145ep

3 (&) 519, Unitesting of individual functions (&g, CRUD, lagin) unasagnes nasep G5
2 @ 5.1.2. Imegration tesung {database 7 backend 7 frontend) Unmaigned Wiap Wi
33 @ 5.1.3, User Acceptance Testing (UAT) with target users Unmugned Nap Tase
£} @ 5.2 Deployment unassgned 15Eap 1
1 (Z) 5.3Wrie repert Unassgned 2sep =5
36 (Z) 5.4 Presentation and Demonstration unasagnes 05ep A5

[[v o el s

w 1] . v . o B e t . L Wi

EI L A R RPN AN AR A NN RN RN AN IR T R TN RN AN N RO SARI AN AR ANEN I YN NE NIRRT AN

]wkﬁzxa

[r—————) i
— npghee’
0 5 gy
I o g
- 1113 Dokt by ety o
[gt e
[JEETere
| T
[ST
[[y
[P) i
|y IR
1] 21 e ety e
I 112 ey et g e
[14 il e
| 12 ket et
I i e

[i iy

[R— 1] gy

B o et e

I o oa oy
B
I i ik

[RIS
] e
F i
(R s g v Ty s
1 oo gt s v
l
FRSSS—— 515521 et
[s . A
I ey e
[[
I i
i
[|

