

**Self-Hosted Multi-Agent RAG System For
Contextual Document Processing**

ENG ZI JUN

UNIVERSITI TUNKU ABDUL RAHMAN

**Self-Hosted Multi-Agent RAG System For Contextual Document
Processing**

Eng Zi Jun

**A project report submitted in partial fulfilment of the
requirements for the award of Bachelor of Software
Engineering with Honours**

**Lee Kong Chian Faculty of Engineering and Science
Universiti Tunku Abdul Rahman**

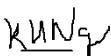
September 2025

DECLARATION

I hereby declare that this project report is based on my original work except for citations and quotations which have been duly acknowledged. I also declare that it has not been previously and concurrently submitted for any other degree or award at UTAR or other institutions.

Name Eng Zi Jun

ID No. : 2104132


Date : 7/10/2025

APPROVAL FOR SUBMISSION

I certify that this project report entitled "**Self-Hosted Multi-Agent RAG System for Contextual Document Processing**" was prepared by Eng Zi Jun has met the required standard for submission in partial fulfilment of the requirements for the award of Bachelor of Science (Honours) Software Engineering with Honours at Universiti Tunku Abdul Rahman.

Approved by,

Signature :
Supervisor : **Ir Ts Dr Hum Yan Chai**
Date : **7/10/2025**

Signature :
Co-Supervisor : **Ng Keng Hoong**
Date : **7/10/2025**

COPYRIGHT STATEMENT

© 2025, Eng Zi Jun. All rights reserved.

This final year project report is submitted in partial fulfilment of the requirements for the degree of Software Engineering at Universiti Tunku Abdul Rahman (UTAR). This final year project report represents the work of the author, except where due acknowledgement has been made in the text. No part of this final year project report may be reproduced, stored, or transmitted in any form or by any means, whether electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the author or UTAR, in accordance with UTAR's Intellectual Property Policy.

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to Associate Professor **Ir Ts Dr Hum Yan Chai** as my research supervisor and Assistant Professor **Dr Ng Keng Hoong** as my research co-supervisor for their invaluable advice, guidance, and enormous patience throughout the development of this project.

I would also like to extend my sincere thanks to the faculty and departmental members from **Lee Kong Chian Faculty of Engineering & Science** and **Department of Computing**, for creating a pleasant and supportive working environment throughout my studies at Universiti Tunku Abdul Rahman.

ABSTRACT

The increasing use of Artificial Intelligence (AI) in document processing faces persistent challenges such as hallucination, privacy risks, and limited adaptability. This study presents a self-hosted multi-agent Retrieval-Augmented Generation (RAG) system designed to address these limitations by enhancing accuracy and preserving data privacy through a fully local and modular architecture. Built using Marker, Ollama, LangGraph, and Weaviate, the system enables flexible deployment and coordination between agents. Evaluation using the SQuAD dataset measured retrieval and generation performance through metrics such as Recall@3, Mean Reciprocal Rank (MRR), Context Recall, Faithfulness, and Answer Correctness. Two evaluation methods were employed: a calculation-based approach on 100 samples for quantitative assessment, and an LLM-as-Judge approach using GPT-4o on 20 samples for qualitative, human-like evaluation. Results show strong retrieval performance with a Recall@3 of 90%, MRR of 75%, and Context Recall of 100%, demonstrating accurate and consistent grounding. The generation results indicate improved faithfulness and contextual relevance, though challenges remain in scalability and factual precision. Overall, the findings show that the proposed multi-agent RAG system effectively mitigates hallucination and privacy concerns while maintaining adaptability, making it a promising approach for secure and accurate AI-driven document processing.

Keywords: Artificial Intelligence (AI), Retrieval-Augmented Generation (RAG), Large Language Models (LLMs), Self-Hosted AI

Subject Area: Q300-390 Cybernetics

TABLE OF CONTENTS

DECLARATION	iii	
APPROVAL FOR SUBMISSION	iv	
COPYRIGHT STATEMENT	v	
ACKNOWLEDGEMENT	vi	
ABSTRACT	vii	
TABLE OF CONTENTS	viii	
LIST OF TABLES	xii	
LIST OF FIGURES	xiii	
LIST OF SYMBOLS / ABBREVIATIONS	xvii	
 CHAPTER		
1	INTRODUCTION	1
1.1	General Introduction	1
1.2	Problem Statement	3
1.2.1	Hallucination	3
1.2.2	Privacy	4
1.2.4	Modularity & flexibility	4
1.3	Aim and Objectives	5
1.4	Proposed solution	6
1.5	Scope and Limitations of the Study	8
2	LITERATURE REVIEW	11
2.1	Introduction	11
2.2	Similar existing applications	11
2.2.1	Open WebUI	11
2.2.2	Kotaemon	13
2.2.3	RAGFlow	15
2.2.4	Comparison table for similar applications	18
2.3	Multi-agent system (MAS) design pattern	20
2.3.1	Multi-agent collaboration pattern	20
2.3.2	Hierarchical pattern	21

2.3.3 Decentralized pattern	22
2.3.4 Reflection pattern	23
2.3.5 Comparison between different MAS design patterns	25
2.4 Type of RAG model	27
2.4.1 Naïve RAG	27
2.4.2 Agentic RAG	29
2.4.3 Corrective RAG	30
2.4.4 Knowledge Graph RAG	31
2.4.5 Comparison between different types of RAG	33
2.5 Multi-agent framework	35
2.5.1 LangChain	35
2.5.2 LangGraph	36
2.5.3 CrewAI	37
2.5.4 AutoGen	37
2.5.5 Comparison between different MAS development frameworks	39
2.6 Retrieval method	40
2.6.1 Sparse retrieval	40
2.6.2 Dense retrieval	41
2.6.3 Hybrid retrieval	42
2.6.4 Knowledge Graph Retrieval	43
2.6.5 Comparison between different retrieval methods	44
2.7 Conclusion	45
3 METHODOLOGY AND WORK PLAN	46
3.1 Introduction	46
3.2 Methodology	47
3.3 Development Tools	50
3.3.1 Marker	50
3.3.2 Chonkie	50
3.3.3 LangGraph & Langchain	50
3.3.4 CrossEncoder reranking	51

3.3.5	Ollama	51
3.3.6	RAGAS	51
3.3.7	Streamlit	52
3.4	Proposed Workplan	53
3.4.1	Work Breakdown Structure	53
3.4.2	Gantt chart	56
4	PROJECT SPECIFICATION	58
4.1	Introduction	58
4.2	Requirement specification	58
4.2.1	Functional requirement specification	58
4.2.2	Non-functional requirement specification	59
4.3	Use Case Diagram	60
4.4	Use Case description	60
4.4.1	Login Use Case	60
4.4.2	Sign Up Use Case	62
4.4.3	Upload File Use Case	63
4.4.4	Manage File Use Case	64
4.4.5	Ask question Use Case	65
4.4.6	Change system setting Use Case	68
4.4.7	Execute automated note generation Use Case	69
4.4.8	Summarize document	70
4.5	Activity diagram	72
4.6	Prototype section	80
5	SYSTEM DESIGN	87
5.1	Introduction	87
5.2	System flow	87
5.3	Operation mode	89
5.4	System Architecture Components	90
5.4.1	FastAPI	90
5.4.2	React	90
5.4.3	Weaviate	91
5.4.4	MySQL	91
5.4.5	Redis	91

5.5	Database schema design	92
5.5.1	MySQL database schema	92
5.5.2	Weaviate database schema	93
6	SYSTEM IMPLEMENTATION	96
6.1	Introduction	96
6.2	Software setup	96
6.3	Log in & Register module	97
6.4	File upload & File management module	100
6.5	Chat interface module	102
6.6	Settings module	110
6.7	User management module	112
7	SYSTEM TESTINGS AND DISCUSSION	113
7.1	Discussion	113
7.2	Unit test	115
8	CONCLUSION AND RECOMMENDATIONS	126
8.1	Conclusion	126
8.2	Limitations & Future Development	128
REFERENCES		129
APPENDIXES		134

LIST OF TABLES

Table 2.1: Comparison table for similar applications	18
Table 2.2: Comparison between different MAS design patterns	25
Table 2.3: Comparison between different types of RAG	33
Table 2.4: Comparison between different MAS development frameworks	39
Table 2.5: Comparison between different retrieval methods	44
Table 5.1: MySQL database schema	93
Table 5.2: Weaviate collection schema	94
Table 7.1: Test cases	115

LIST OF FIGURES

Figure 1.1: Simple outline of architecture	6
Figure 2.1: Open WebUI main chat interface	11
Figure 2.2: Open WebUI file management for one chat session	12
Figure 2.3: Open WebUI setting interface	12
Figure 2.4: Kotaemon main chat interface	13
Figure 2.5: Kotaemon file management interface	14
Figure 2.6: Kotaemon setting interface	14
Figure 2.7: RAGFlow Agent workflow management	15
Figure 2.8: RAGFlow chat interface	16
Figure 2.9: RAGFlow knowledge base	16
Figure 2.10: RAGFlow model setting	16
Figure 2.11: Multi-agent collaboration design pattern	20
Figure 2.12: Hierarchical multi-agent design pattern (Ravuru et al., 2024)	21
Figure 2.13: Decentralized multi-agent design pattern	22
Figure 2.14: Reflection multi-agent design pattern (Gustavo et al., 2025)	23
Figure 2.15: Naïve RAG flowchart (Homayoun S., 2025)	27
Figure 2.16: Weaviate Agentic RAG flowchart	29
Figure 2.17: Corrective RAG flowchart (Yan et al., 2024)	30
Figure 2.18: Knowledge Graph RAG flowchart (Sanmartin, 2024)	31
Figure 2.19: LangChain Tools Chaining Feature	35
Figure 2.20: Sparse retrieval flowchart (Kumar, 2023)	40
Figure 2.21: Dense retrieval flowchart (Kumar, 2023)	41

Figure 2.22: Hybrid retrieval flowchart (Khan, 2024)	42
Figure 2.23: Knowledge Graph retrieval flowchart (Knight, 2025)	43
Figure 3.1: Project methodology	47
Figure 3.2: Project 1 timeline	56
Figure 3.3: Project 2 timeline	57
Figure 4.1: Use case diagram	60
Figure 4.2: Login Activity diagram	72
Figure 4.3: Sign Up Activity diagram	73
Figure 4.4: Upload file Activity diagram	74
Figure 4.5: Manage file Activity diagram	75
Figure 4.6: Ask Question Activity diagram	76
Figure 4.7: Change system setting Activity diagram	77
Figure 4.8: Execute automated workflow Activity diagram	78
Figure 4.9: Summarized document activity diagram	79
Figure 4.10: Login interface	80
Figure 4.11: Error in login interface	80
Figure 4.12: Sign Up interface	81
Figure 4.13: Error in Sign Up interface	81
Figure 4.14: The file upload interface	82
Figure 4.15: The file upload interface with error	82
Figure 4.16: The file upload interface with error	82
Figure 4.17: The file management interface	83
Figure 4.18: The document chat interface	83
Figure 4.19: The document chat interface (response)	84
Figure 4.20: The document chat interface (relevant chunks)	84

Figure 4.21: The system setting interface	85
Figure 4.22: The system setting interface (toggle MCP services)	85
Figure 4.23: Error message when invalid MCP server detail input	86
Figure 5.1: System flow	87
Figure 5.2: MySQL Entity Relationship Diagram	92
Figure 5.3: Weaviate Entity Relationship Diagram	93
Figure 5.4: Weaviate database scripts	94
Figure 6.1: docker-compose scripts	96
Figure 6.2: Sign in interface for personal deployment	98
Figure 6.3: Register interface for personal deployment	98
Figure 6.4: Sign in interface for organization deployment	99
Figure 6.5: Error message	99
Figure 6.6: File upload interface	100
Figure 6.7: Select document to upload	100
Figure 6.8: After the upload button is pressed	101
Figure 6.9: File management interface	101
Figure 6.10: Chat interface for organization deployment	102
Figure 6.11: Chat interface	103
Figure 6.12: Processing user query	104
Figure 6.13: Force stop	104
Figure 6.14: Retrieval workflow	105
Figure 6.15: Unrelated query inserted	106
Figure 6.16: Document summarization	107
Figure 6.17: MCP server terminal	108
Figure 6.18: Word document generated	108

Figure 6.19: Chat History Store In Databases	109
Figure 6.20: Setting interface	110
Figure 6.21: LLM configuration	110
Figure 6.22: MCP Server configuration	111
Figure 6.23:Setting submitted	111
Figure 6.24: User management interface	112
Figure 6.25: CRUD operation for user management	112
Figure 7.1: Segment of SQuAD on hugging face	113
Figure 7.2:Result chart	113
Figure 7.3: Test automation script result	115

LIST OF SYMBOLS / ABBREVIATIONS

<i>RAG</i>	<i>Retrieval-Augmented Generation</i>
<i>LLM</i>	<i>Large language model</i>
<i>MAS</i>	<i>Multi-agent system</i>
<i>BM25</i>	<i>Best Matching 25</i>
<i>TF-IDF</i>	<i>Term Frequency and Inverse Document Frequency</i>
<i>GDPR</i>	<i>General Data Protection Regulation</i>
<i>SPDM</i>	<i>Semantic Double-Pass Merging</i>
<i>ANN</i>	<i>Approximate Nearest Neighbour</i>
<i>MRR</i>	<i>Mean Reciprocal Rank</i>
<i>SQuAD</i>	<i>Stanford Question Answering Dataset</i>

CHAPTER 1

INTRODUCTION

1.1 General Introduction

“Data really powers everything that we do.” A quote by Jeff Weiner, the CEO of LinkedIn, summarizes the importance of data in the modern data-driven world. Especially with the acceleration of technology advancement in recent years, the demand for and output of data have never been higher. According to Reinsel et al. (2018), the data generated, cloned, or recorded is expected to increase from 33 Zettabytes (ZB) in 2018 to 175 ZB in 2025. However, the number is estimated to be even bigger due to the popularization of AI-generated content and the digitization of industries in recent years. Thus, this situation increases the complexity and time taken for data handling for manual or even some traditional technology approaches.

With the lightning-fast evolution of AI technologies, useful information can be successfully extracted from unstructured data with a minimum amount of human intervention using sophisticated AI-based pipelines with technologies such as Computer Vision, Natural Language Processing, and Deep Learning. Apart from all the technologies mentioned above, Generative AI is also another popular technology utilized in data analysis and synthesis. According to Chauhan (2024), researchers have been evaluating the potential of Generative AI in scientific content analysis and summarization since the first release of ChatGPT back in 2022. Moreover, roughly 5% of scientific documents already contain AI-generated information, indicating that Generative AI has already became a part of the workflow for different document processing tasks (Cheng et al., 2024). However, the approach is still far from perfect due to some major flaws when executing tasks like document processing. Consequently, an RAG system has been introduced as a potential solution to address the challenges mentioned above.

According to Ramalingam (2023), RAG is a technology that utilizes a retrieval system to fetch information from a database and a generative AI model that uses the retrieved information to provide the answer. This mechanism allows RAG to provide answers with better precision and better timeliness due

to the ability of the retrieval system to fetch real-time context from the database (Yu et al., 2024). Thus, RAG is a more fitting option for document analysis and generation than a standalone Generative AI model for fields including medicine, law, and finance, which require answer generation with high precision and high context awareness. Despite all the advantages the traditional single-agent RAG system poses, the single-agent RAG system still faces challenges like scalability, flexibility issues and a lack of orchestration features (Gustavo et al., 2025). With the foundation from the traditional RAG system, this project aims to investigate and develop a project titled: Self-Hosted Multi-Agent RAG System for Contextual Document Processing.

1.2 Problem Statement

As the popularity of AI drastically increases, the intelligence of all the latest AI models is also getting smarter with every iteration. People from different backgrounds have already adapted to using AI in their daily lives or even using it to automate part of their work. However, generative AI still encounters some challenges in document analysis and synthesis. Consequently, the RAG system emerges as one of the potential solutions for issues encountered by Generative AI. However, the normal single-agent RAG system still has room for improvement in some respects. Thus, this section will examine the challenges encountered by generative AI and single-agent RAG systems.

1.2.1 Hallucination

The most significant flaw of generative AI is hallucination. Hallucination in AI often refers to the situation where AI generates unrelated, senseless, and incorrect responses to the user-given query, the most common example being citing a random source that does not exist (Duan et al., 2024). Banerjee et al. (2024) stated that misinterpretation of input query and data fabrication due to the lack of supporting context from the model's training data are a few of the reasons that will cause a generative AI model to produce a hallucinated response. Moreover, LLM relies solely on a large amount of static pre-trained data to generate information. Thus, a knowledge gap exists between the time of release of the LLM model and the latest information. Consequently, LLM might try to generate a response with outdated information, increasing the risk of hallucination when a user queries about recent information or trends (Feng et al., 2024). According to Zhang (2023), this phenomenon can potentially evolve into hallucination snowballing, where AI will commit to the first hallucinated answer of the response and continue to justify the incorrect response with fabricated facts, while the correct response can be given in another session. Thus, if hallucination occurs during document processing, it can significantly hurt the overall quality of the responses, causing the inability to meet the user's requirements.

1.2.2 Privacy

Moreover, privacy is also another issue for the generative AI approach. Enterprises' documents often contain large amounts of sensitive information, such as customer information and their business-related information, that AI provider can secretly collect and use for their own operation. According to one of the most popular Generative AI models, ChatGPT's privacy policy, OpenAI will have access to all device information and communication information when a user accesses their services. Thus, this creates a huge privacy concern when a large amount of sensitive information needs to be analyzed. According to Wu et al. (2023), it is apparent that ChatGPT has insufficient measures to protect users' data in compliance with GDPR, which puts user privacy at risk. Furthermore, centralizing massive amounts of user data in the database of AI providers makes these systems attractive targets for cyberattacks, if a hacker successfully breaches into the database, they could exploit the sensitive information for malicious purposes such as identity theft and selling the data for monetary profit, resulting in serious losses for enterprises.

1.2.4 Modularity & flexibility

Although a single-agent RAG system is effective in solving most of the issues mentioned for document analysis with generative AI, the system still faces some challenges that hinder its capability when facing complex use cases. Lack of flexibility and modularity is one of the major downsides of a single-agent RAG system. According to Gustavo et al. (2025), the architecture of a single-agent RAG system can limit the performance and capability of the RAG system due to the generalization of all workflows in the single-agent approach, causing the inability of the system to adapt to different use workflows and intents. This can also result in less accurate responses by the AI generation component if the relevant context is not present in the retrieval component database or the user workflow is different from the system's intended workflow.

1.3 Aim and Objectives

The objectives of this project are:

- To develop a Retrieval-Augmented Generation (RAG) System that can extract relevant information from a document uploaded by the user and selected internet sources ensuring the response is based on grounded information.
- To develop a modular RAG System with an Agentic architecture to ensure the system can dynamically adjust workflow to different user intent and system component settings.
- To implement the system for local deployment, ensuring data privacy by eliminating reliance on external cloud services and enabling complete operation on a standalone machine.

-To integrate with the external document processing MCP server to allow the system to automatically execute document processing operations with LLMs.

1.4 Proposed solution

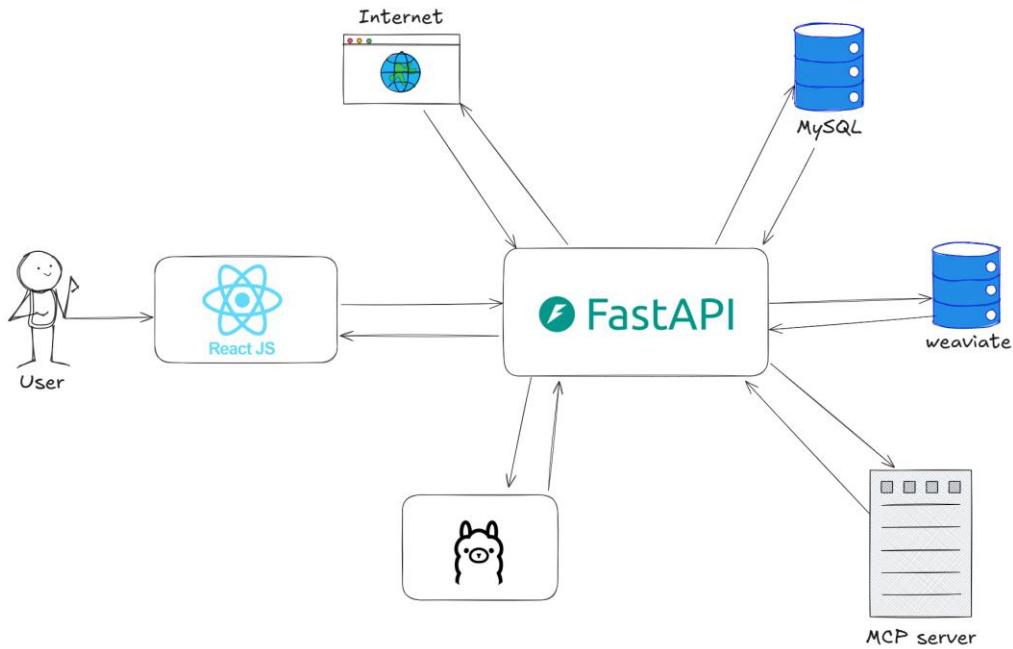


Figure 1.1: Simple outline of architecture

To tackle the problem identified, A local web-based RAG application will be developed following the architecture diagram provided. The users can perform document Q&A and note generation all within a local environment without having to share their data with an external service provider. Other than privacy, the RAG system will be built to tackle the hallucination problem by ensuring all response generations are based on grounded information provided by the user or the internet. Lastly, the system will also follow an agentic design to tackle the modularity and flexibility issue faced by the traditional LLM solution.

Firstly, the user will interact with the system via a React frontend interface that consists of multiple pages, each with their distinct functions and components. For each user interaction, the React frontend will send the HTTP requests to the FastAPI backend to process user requests. The FastAPI backend communicates with a local vector database, Weaviate, to store the text chunks from the document in vector representation and retrieve similar items in vector embeddings, obtaining relevant chunks of documents in response to the user's queries. Additionally, the system backend also interacts with a MySQL database to assist in keyword searches, manage user files, and maintain chat history for active sessions that will be used for other system operations.

For the generation capability, the FastAPI backend will interact with an Ollama that is responsible for hosting LLM locally, which will be used to generate responses without sending data to external services to maintain data privacy. When the query requires response generation, FastAPI will send the query to Ollama's LLM model, and the response generated will be sent back to the FastAPI backend. When external information is required, the FastAPI backend utilizes a Web Search module, which forwards questions to external search engines to receive up-to-date information and send it back into the system to reduce the hallucination rate of the responses.

Lastly, the FastAPI backend will connect to various MCP servers for different applications via an MCP request. To produce notes, FastAPI calls the relevant tools from the MCP server, which can generate notes in different application formats. This flexible design makes it easy for the system to support note generation for the application to the user's liking, aiming to increase the modularity of the system.

1.5 Scope and Limitations of the Study

The final deliverable of this project is a self-hosted multi-agent system based on traditional RAG technology for document processing that can utilize different agents in the system to perform specialized tasks. The final product of this project will be in the form of a local web application with a front-end interface that allows users to upload their documents to a local database, interact with the system via querying, and change the system's operational settings. Moreover, the system allows users to acquire more accurate information by asking follow-up questions.

This system aims to deliver a modular, secure, and smart document analysis pipeline driven by a multi-agent framework where every agent provides a different range of functionalities within the complete workflow of document intake, orchestrating, processing, retrieval, and generation. The module that will be covered in this project:

1. Document Upload and Database Module

The Document Upload is implemented in this system to provide a way for users to upload their files in PDF format via the user interface. The local database module will handle uploaded document storage for private and efficient access for other modules.

2. Orchestrator

The orchestrator acts as the central controller for the system, which is responsible for dynamically adjusting the workflow based on the user's intent to distribute tasks to the best-suited agent, enhancing the system's flexibility.

3. Preprocessing Agent

The Preprocessing agent in the system will detect and extract the text and table from the stored file. The extracted text and table will then be separated into different chunks to increase the relevancy and efficiency of the retrieval process. After the initial chunking process, a tiny LLM model will be implemented in this agent to refine the content in the chunks to add context to the chunks and remove

unnecessary information, which will produce contextual chunks that will be stored in databases for retrieval needs. Lastly, this agent will also utilize an embedding model to turn the contextual chunks into vector representation for similarity search.

4. Retrieval Agent

The retrieval agent is responsible for retrieving pieces of information that are relevant to the user's query. The retrieval agent will consist of different retrieval methods that are suitable for different retrieval scenarios. This module is also responsible for communication between different web search modules to retrieve relevant information from the internet based on the user's query. This retrieval method can ensure the retrieved information is based on factual information from user-uploaded documents.

5. Generation Agent

The generation agent is responsible for the generation of the final response with the help of a local LLM model to reduce the chance of hallucination. This agent will elaborate on the retrieved information from the obtained retrieval agent and generate a natural language response based on the user's query.

6. Document processing Agent

The document processing agent is responsible for determining an automated workflow that is suitable for the user's query. The document processing agent will manage communication between different tools from the connected MCP server.

7. Authentication module

A basic login and signup module will be implemented in this system to ensure no outsider can access the system, which can protect the privacy of the user's information and documents stored in the local database.

However, there are a few limitations to the project. Firstly, the system will allow users to deal only with English-language document processing, and the specialized database search will be limited to legal, financial, and medical domains. Moreover, the synthesis of figures in the document will not be covered. In addition, the precision of generated responses may be influenced by the availability of unique or limited data sets and the limited computing power. System performance and result accuracy might further be influenced by hardware and computational limits. Therefore, real-time processing will not be the main priority of this project. Lastly, the automation agent will only cover auto-note generation.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, the current architecture design and technologies related to the development of this project are studied to understand more about the current solutions and get ideas on how to enhance them. Based on the analysis of past research work and current applications, the review aims to explore the topics that provide useful concepts that might help in the development of the project.

2.2 Similar existing applications

This section will review some of the popular open-source RAG projects: Open WebUI, Kotaemon, and RAGFlow to identify their system functionalities, strengths, and drawbacks. The comparison will help in the identification of essential design factors and features that could be included in the creation of this project.

2.2.1 Open WebUI

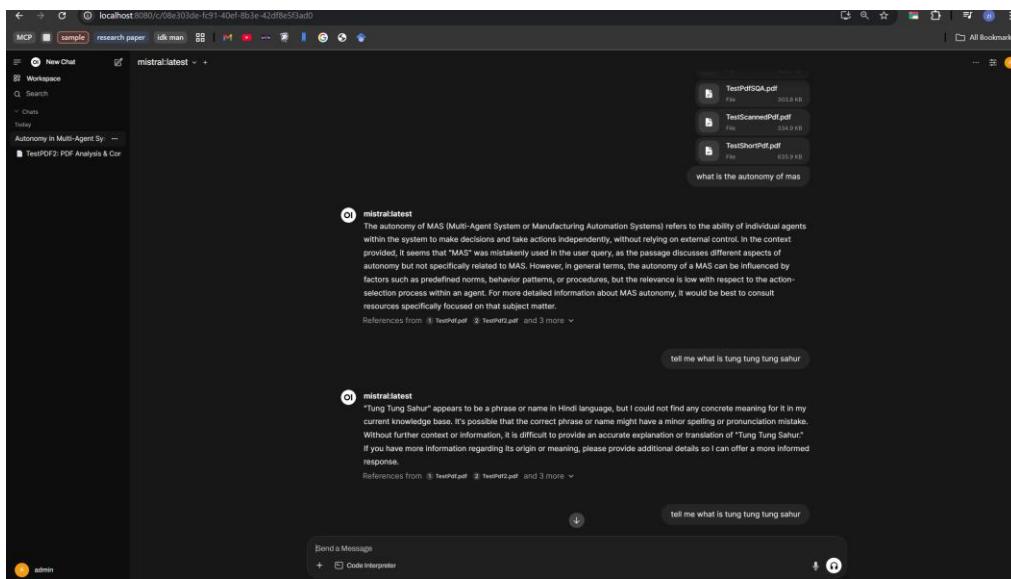


Figure 2.1: Open WebUI main chat interface

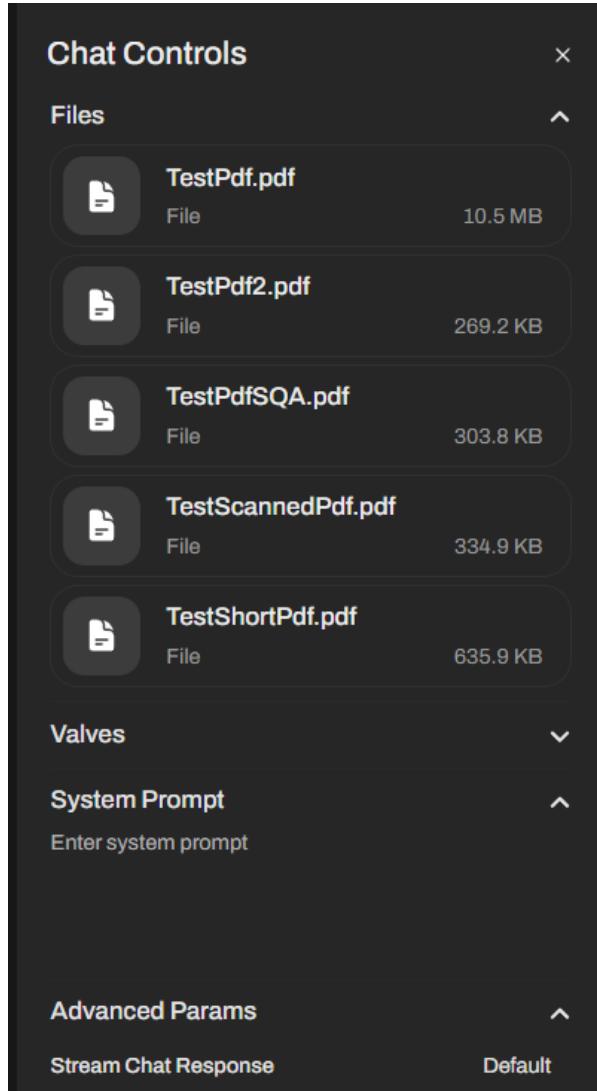


Figure 2.2: Open WebUI file management for one chat session

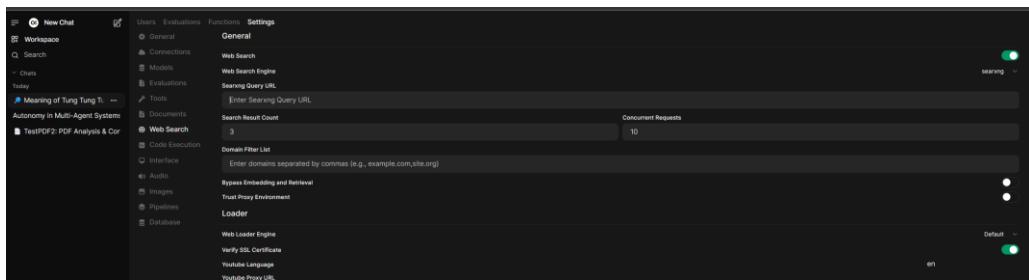


Figure 2.3: Open WebUI setting interface

Open WebUI is a popular open-source RAG tool that offers a simple, intuitive platform that enables users to perform basic RAG tasks in an entirely offline environment. Open WebUI allows users to fetch relevant information from documents with different file formats, such as PDF, markdown, and LaTeX,

making the system more flexible for different user requirements. Additionally, Open WebUI also provides web search functionality, which allows the system to fetch up-to-date information from the internet, enhancing the system's ability to provide a grounded response to the user. Open WebUI also provides user access control that ensures the security of the system. Another notable feature of Open WebUI is its complete compatibility with Ollama models, allowing users to change models or tailor components effortlessly, making it a flexible option for individuals seeking to operate local LLMs in a custom configuration.

Because of the focus on ease of use and simplicity, it lacks extra functionality that can potentially be helpful to the user. For example, Open WebUI uses a chat session-based file retrieval method, meaning users need to reimport the same file if they want to start a new chat session. Open WebUI also does not support multi-agent workflow, which can limit the capability of the system.

2.2.2 Kotaemon

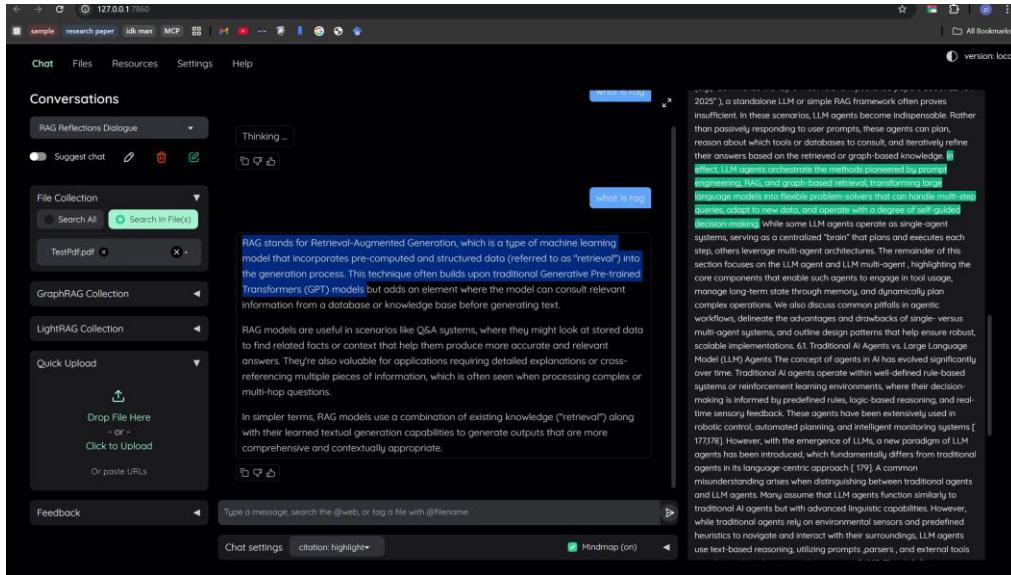


Figure 2.4: Kotaemon main chat interface

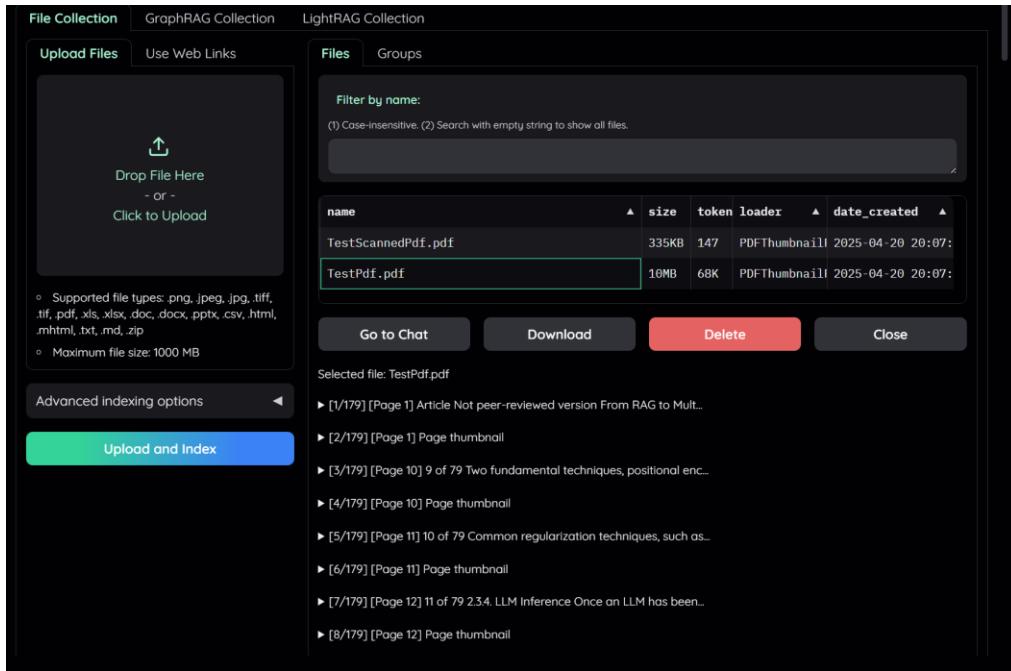


Figure 2.5: Kotaemon file management interface

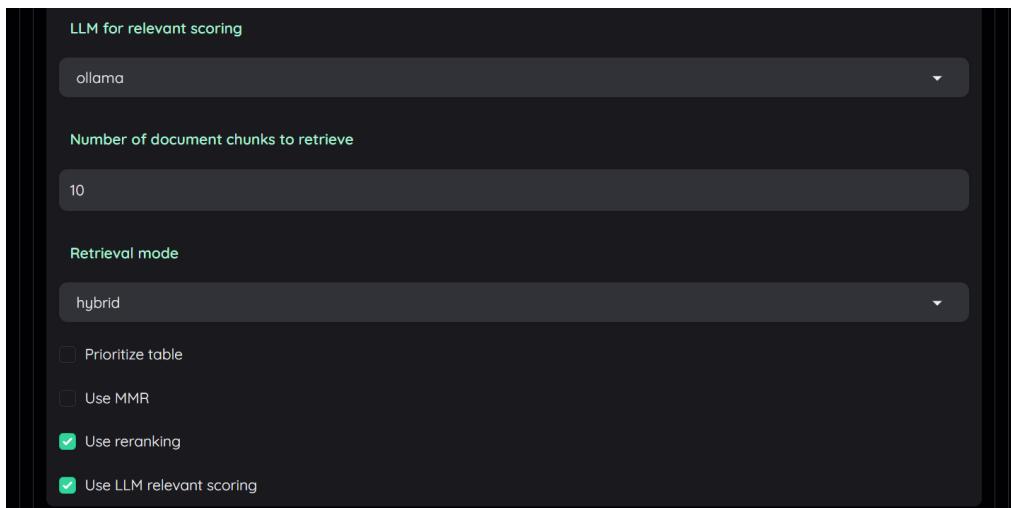


Figure 2.6: Kotaemon setting interface

Kotaemon is another popular open-source RAG application that focuses on providing advanced document retrieval with precise document citation, suitable for experienced users or researchers who require clarity and precision in RAG processes, while still requiring an easy-to-use system. A notable feature of Kotaemon is its hybrid retrieval capabilities, which use both dense and sparse retrieval methods to increase the effectiveness of the retrieval. Additionally, Kotaemon is also capable of providing document preview with precise citations to the related section, which allows users to visually confirm the relevant

information that is being used by the LLM to generate its response, ensuring the generation is based on grounded facts, increasing the reliability of the system. Kotaemon manages user-uploaded files in a centralized manner, maintaining a consistent file reference across different chat sessions. Like Open WebUI, this application also features web search functionality, enabling it to retrieve up-to-date information. Kotaemon also implements user access control to prevent unauthorized access in shared environments. Kotaemon is fully compatible with Ollama, which allows users to customize the LLM and embedding model to their liking.

Despite the advantage, Kotaemon also does not support multi-agent workflow, which limits its flexibility for different types of users' workflows, limiting its capability to become a more robust RAG system.

2.2.3 RAGFlow

Figure 2.7: RAGFlow Agent workflow management

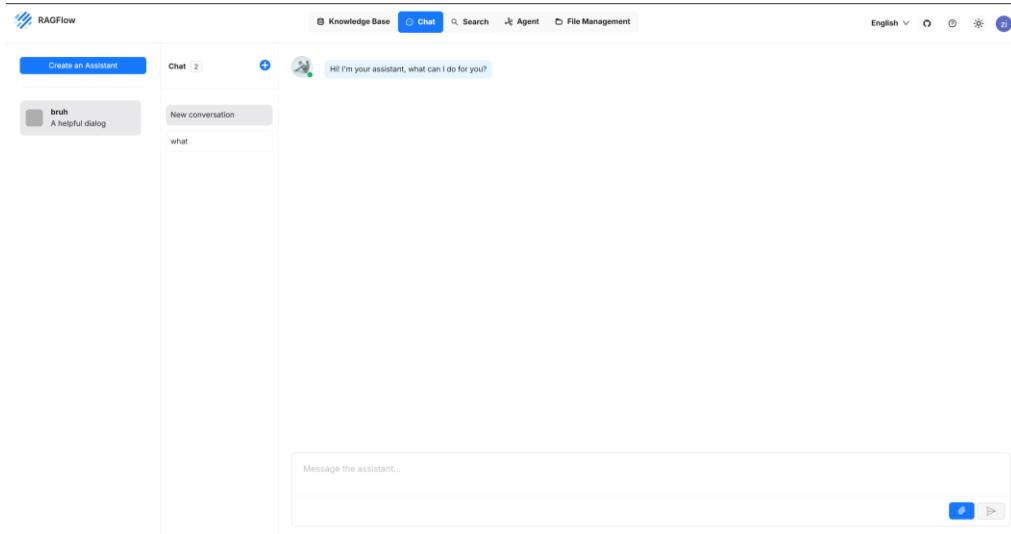


Figure 2.8: RAGFlow chat interface

Name	Upload Date	Size	Knowledge Base	Action
Topic_6 (1).pdf	23/04/2025 00:46:35	1,845.02 KB		
Testws.pdf	23/04/2025 00:46:35	141.96 KB		
TestShortPdf.pdf	23/04/2025 00:46:35	635.90 KB		
knowledgebase	20/04/2025 17:37:44	0.00 KB		

Figure 2.9: RAGFlow knowledge base

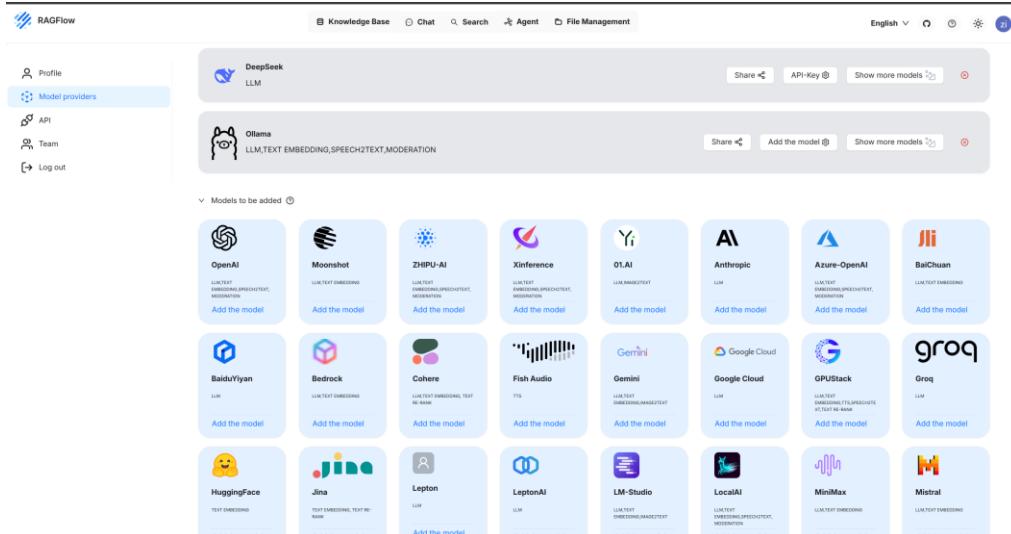


Figure 2.10: RAGFlow model setting

RAGFlow is a flexible and robust open-source RAG application that allows users to create highly customized system pipelines with different components, allowing users to alter the pipeline of RAGFlow to make it more suitable for their use case. Unlike Kotaemon and Open WebUI, RAGFlow is one of the few open-source RAG applications that support a multi-agent architecture, which allows different components or agents to perform distinct functions for collaborative processing. RAGFlow also provides advanced web search capabilities that allow users to perform web searches on various sources such as Baidu, Google, Google Scholar, and Yahoo Finance. This application also implements user-access control as the first line of defence for unauthorized access to the system. RAGFlow is also entirely compatible with the Ollama platform, enabling users to change the model to their liking. Similar to Kotaemon, RAGFlow maintains a centralized knowledge base that allows continuous access to files throughout sessions.

Although RAGFlow is the most robust and adaptable RAG application compared, RAGFlow has the steepest learning curve required to operate the application effectively. Thus, it is more suitable for experienced users that extensive customization, agent orchestration, and system integration.

2.2.4 Comparison table for similar applications

Table 2.1: Comparison table for similar applications

Feature	RAGFlow	Kotaemon	Open WebUI
Key feature	Advance the RAG pipeline with a variety of tools to support	Advanced document interaction	Simple document interaction
Primary Focus	Enterprise-grade customizable RAG workflow	Advanced retrieval with a hybrid retrieval function and detailed citation	Easy-to-use document Q&A
Multi-agent support	✓	✗	✗
Web search	✓	✓	✓
User Access Control	✓	✓	✓
Compatible with Ollama model	✓	✓	✓
Ease of Use	Hard	Medium	Easy
File retrieval	Centralized file retrieval	Centralized file retrieval	Session-based file retrieval

In conclusion, the three application reviews in this section identify the varying functionalities and drawbacks offered by each tool in their RAG system that can be used as ideas for the development of this project. Leveraging the advantages of each platform, this project will include these essential features:

1. Multi-agent workflow to facilitate flexible workflow adjustment to specialized functions and a modular pipeline.

2. Collaboration with external document generation tools for smooth subsequent use.
3. Hybrid document retrieval techniques for improved response precision. Online search functionalities to enhance internal knowledge with current external data.
4. User verification and access management to facilitate secure, multi-user implementation.
5. A clear interface and minimal setup complexity for ease of use.
6. Compatibility with local models through Ollama, guaranteeing privacy and adaptability in choosing models.
7. Centralized document retrieval to ensure file continuity throughout different sessions.

2.3 Multi-agent system (MAS) design pattern

As the complexity of problems addressed by AI systems increases, MAS has developed into a strong approach to address these advancing challenges. Including several specialized agents that interact, cooperate, and compete, working towards achieving the system's objective. Therefore, this section will explore different design patterns commonly used in multi-agent systems to enhance understanding of these patterns and analyse the advantages and disadvantages of each pattern to decide on which pattern is more suitable to be implemented in this system.

2.3.1 Multi-agent collaboration pattern

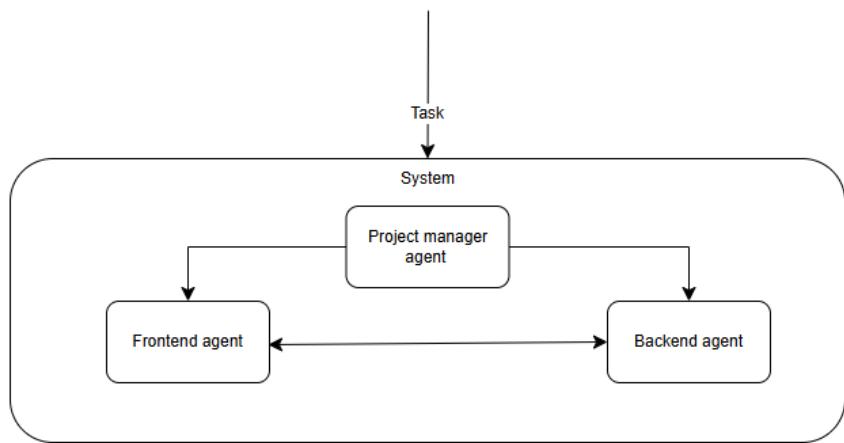


Figure 2.11: Multi-agent collaboration design pattern

Multi-agent collaboration pattern is a pattern that consists of specialized agents collaborating towards a shared objective by synchronizing their specific tasks. (Gustavo et al., 2025). Every agent in this pattern is created to execute a unique function or handle a problem area, such as data retrieval, classification, reasoning, or generation, instead of depending on one centralized entity to control and execute the entire workflow. This allows the system to be more robust and scalable by assigning specific tasks to each of the agents. For example, a specialized summarizer agent can be implemented in this system whose sole purpose is to perform summarization of documents, and which tools used in this agent can be fine-tuned to generate the best possible result. Moreover, this pattern can also allow parallel execution of tasks by distributing

different segments of the task to different agents, which can improve the processing time of the system.

However, this design pattern requires a significant amount of computing power to perform, especially with agents that use LLM to perform their tasks. The scalability and performance of the agent will be greatly impacted when the computing power is limited (Guo et al., 2024). According to Singh et al. (2025), another challenge the multiagent collaboration pattern faces is the complex coordination between multiple agents, which requires the system to implement a robust orchestrator to manage the information flow between every agent to ensure seamless workflow between agents. If the orchestrator is not effective, problems such as agent information conflict and redundant processing could happen, which reduces the system's performance.

2.3.2 Hierarchical pattern

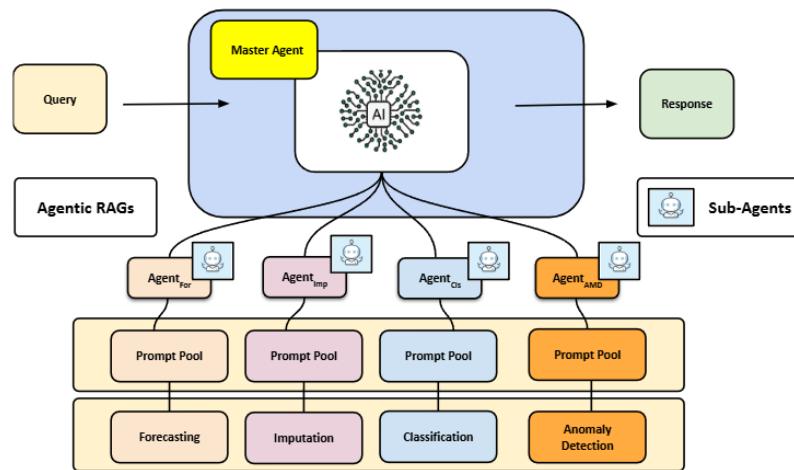


Figure 2.12: Hierarchical multi-agent design pattern (Ravuru et al., 2024)

Hierarchical pattern is a multi-agent design pattern that utilizes a structure and multi-level pattern, where the higher-level agent manages and guides subordinate agents to improve the effectiveness and strategic choices of the system (Singh et al., 2025). This pattern reflects actual hierarchical systems, like organizational management frameworks, in which senior decision-makers delegate duties to different departments according to their expertise, improving the decision-making, load balance, and modularity of the system by guaranteeing that tasks are allocated to the most suitable agents to be processed.

The higher-level agent in this pattern will function as the coordinator of the system, which is responsible for decision making and task assignment to the most suitable subagent (Li et al., 2024). The lower-level agents will focus on performing tasks, executing the operations designated to them, which can ensure the accuracy of the response. Moreover, the modular design of the sub-agent allows it to be modified independently, which increases the system's flexibility (Ravuru et al., 2024).

However, this pattern also faces some difficulties. Like the Multi-Agent Collaboration Pattern, it depends significantly on a capable orchestrator, since communication among sub-agents may raise orchestration overhead (Singh et al., 2025). Additionally, this pattern is also vulnerable to a single-point failure where the failure of the higher-level agent can affect the execution of its subagents, which can potentially result in system-wide breakdowns.

2.3.3 Decentralized pattern

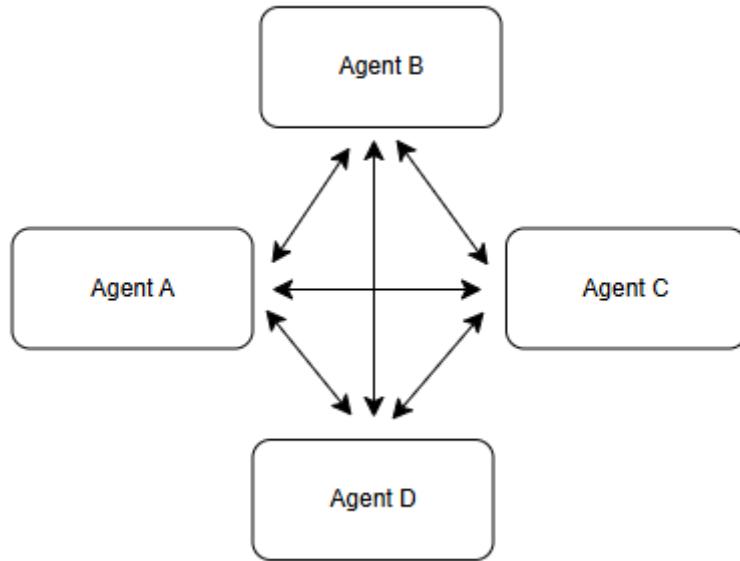


Figure 2.13: Decentralized multi-agent design pattern

A decentralized pattern is the pattern that removes the central control node in a multi-agent system, where the agents will link in a peer-to-peer basis and all agents can directly communicate with each other (Tran et al., 2025). In this pattern, every agent will function independently and can start communication

and coordinate with any agent in the network. Thus, it eliminates the need for a central coordinator to perform decision-making and task distribution.

According to Jiménez et al. (2018), this pattern can increase the reliability of the system because if one agent node fails, the agent can still communicate with another replacement. In addition, this pattern can increase the scalability of the number of agents, where a new agent can be added to the decentralized network without affecting the overall workflow of the system. A decentralized pattern distributes the decision-making process across the system. While each agent has their responsibilities, the system can dynamically adjust the communication between agents, which can balance the load distributed to each agent.

Even with its strength, the decentralization pattern also presents some issues. In the absence of a central controller, the system necessitates a sophisticated coordination protocol to effectively synchronize decision-making and avoid inconsistencies in agent communication. As the number of agents grows, these challenges become clearer, which makes an effective communication protocol necessary to ensure consistent performance in a larger system.

2.3.4 Reflection pattern

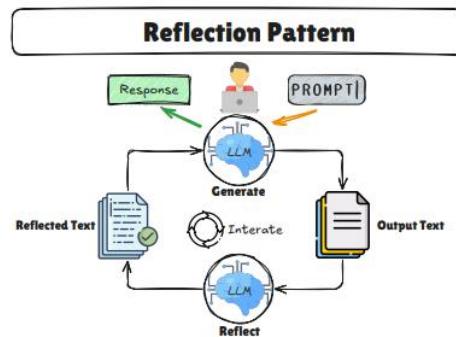


Figure 2.14: Reflection multi-agent design pattern (Gustavo et al., 2025)

The reflection pattern is the design pattern that focuses on enabling an LLM agent to critically examine and iteratively refine its own outputs by re-evaluating the initial output to perform error correction (Gustavo et al., 2025). This pattern resembles a human-like method of self-evaluation, in which an

initial response is evaluated critically, and a polished version of the output is generated with the feedback from the evaluation.

This characteristic allows the system to generate a more accurate response by learning from earlier errors and correcting it, making this an ideal pattern to implement in a system where factual accuracy is crucial. The reflection pattern also increases the explainability of the output, where the reflection agent can explain the review and reasoning process for the iteration from the last output (Liu et al., 2024).

As for the downside, the reflection pattern strongly relies on the reflection agent's reflective ability to maintain the consistency of the output or else it might lead to a lazy reflector where the result is similar or worse than the original result (Bo et al., 2024). Moreover, employing an LLM-based reflection agent requires the system to have extra computational power to handle various rounds of reflection, possibly affecting performance and response times

2.3.5 Comparison between different MAS design patterns

Table 2.2: Comparison between different MAS design patterns

Pattern	Description	Strengths	Limitations
Multi-Agent Collaboration Pattern	Specialized agents collaborate by synchronizing tasks towards a shared goal.	<ul style="list-style-type: none"> - Improves system domain knowledge and scalability. - Allows parallel execution of tasks. 	<ul style="list-style-type: none"> - High computational power requirement. - Complex coordination needed to prevent redundancy and conflicts.
Hierarchical Pattern	Uses a structured multi-level approach where higher-level agents manage subagents.	<ul style="list-style-type: none"> - Improves decision-making, load balancing, and modularity. - Sub-agent can be modified independently to increase system flexibility 	<ul style="list-style-type: none"> - High dependence on a capable orchestrator. - Vulnerable to single-point failures.
Decentralized Pattern	Removes the central control node; agents communicate directly in a peer-to-peer network.	<ul style="list-style-type: none"> - Increases system reliability and scalability. - Distributes decision-making across agents for better load-balancing. 	<ul style="list-style-type: none"> - Requires sophisticated coordination protocols. - Risk of inconsistencies in agent communication.

Reflection Pattern	<p>Implements a reflection agent that refines responses by evaluating initial output for error correction.</p>	<ul style="list-style-type: none"> -Improves factual accuracy of the final output. -Increases explainability for the reasoning of outputs. 	<ul style="list-style-type: none"> -Performance depends on the reflection agent's effectiveness. -Requires extra computational power.
---------------------------	--	--	---

2.4 Type of RAG model

With different MAS design patterns, RAG models have become very flexible in adapting to different use cases. Thus, Various RAG models can be created to enhance retrieval efficiency, improve response accuracy, and adjust to changing queries. Different models utilize different multi-agent design pattern, which impacts their effectiveness, scalability, and dependability. This section explores various RAG models, such as Naïve RAG, Agentic RAG, Corrective RAG, and Hierarchical RAG, to assess their structural strengths and weaknesses and how they work.

2.4.1 Naïve RAG

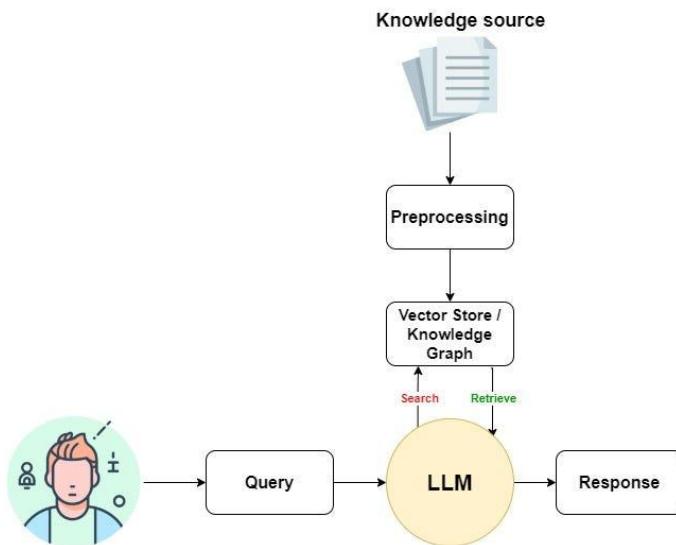


Figure 2.15: Naïve RAG flowchart (Homayoun S., 2025)

Naïve RAG is the simplest form of the RAG model, employing a straightforward, simple pipeline that obtains documents as a direct input into a generative AI to generate responses. Most of the Naïve RAG model only utilizes a single agent method that follows a basic retrieval-to-generation pipeline without extra process or enhancement, where the model will execute sequentially from fetching relevant information from the database based on the user's query and generating a response based on the relevant information.

This model uses three major components in its core: the retriever, the generator, and the storage database. The retriever is the most important component in the Naïve RAG model because the output quality is directly related to the quality of the retrieved information (Cuconasu et al., 2024). The retriever is responsible for retrieving the most relevant information from the knowledge pile based on the user's query with different retrieval algorithms, such as BM25 and TF-IDF, to rank the relevance of the information. The database acts as the knowledge base, containing documents and information chunks, which are normally executed using a vector database such as ChromaDB and Weaviate. The Generator will be responsible for the last step of the process, which is to generate insight based on the relevant information fetched with the LLM model, such as qwen2.5 or Llama3.

A key strength of the Naïve RAG model is its simplicity, as it can be easily implemented and is less demanding in computational power, making it a good option for systems that value efficiency. Moreover, the model's sequential processing allows for quick response times, making it ideal for real-time use cases. However, this model has some noteworthy drawbacks. It has no corrective mechanisms, which means the produced responses rely solely on the capabilities of the retriever. If the retriever acquires unrelated information chunks, the generator cannot validate or improve its results, resulting in possible inaccuracy. Additionally, the lack of multi-agent cooperation limits the model's capacity to address complex queries since it has no capability to process specialized tasks to specialized agents.

Nevertheless, the Naïve RAG model provides a solid foundation for more sophisticated RAG architectures. Though it works well for fundamental uses like FAQ chatbots, document searches, and basic enterprise knowledge management, advanced models like Agentic RAG, Corrective RAG, and Knowledge Graph RAG have emerged to meet the growing need for accuracy, reasoning ability in practical applications which introduced a model that

2.4.2 Agentic RAG

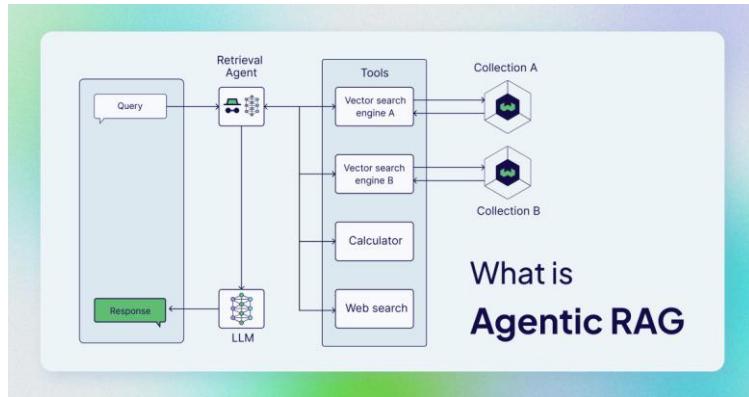


Figure 2.16: Weaviate Agentic RAG flowchart
(Cardenas and Monigatti, 2024)

The agentic RAG model is an updated version of the naïve RAG pipeline by integrating different autonomous and specialized agents to supervise various process phases. But unlike Naïve RAG, which functions in a linear process, Agentic RAG's specialized agent will allocate different tasks to specific agents based on the nature of the task, which introduces decision-making capabilities to the system that allow agents to work together to optimize retrieval, boost response generation, and increase the overall adaptability of the system.

The most significant difference between Agentic RAG and Naïve RAG is the multi-agent architecture, where Agentic RAG consists of an orchestrator agent to coordinate the communication between multiple agents specialized in tasks such as query understanding, fact-checking, or agents with domain-specific knowledge, guaranteeing that the obtained information is precise and contextually accurate.

Agentic RAG normally utilizes the Multi-Agent Collaboration Pattern found in the MAS design pattern. In this design pattern, specialized agents collaborate and work towards a common objective, aligning their efforts to improve efficiency. This design enables the system to parallelize tasks like retrieval and validation, enhancing overall efficiency when managing intricate queries or extensive document collections.

The strength of Agentic RAG is that it can enhance the precision, flexibility, and scalability of the system. By distributing tasks to independent agents, the model can improve its retrieval and response methods, reducing the

chance of generating misinformation. Moreover, an agent-based design allows the developer to tweak the agent's function to better suit the specialized task to make the system perform better. Nonetheless, these advantages increase the computational requirements, as handling several agents necessitates effective coordination and resource management (Singh et al., 2025).

2.4.3 Corrective RAG

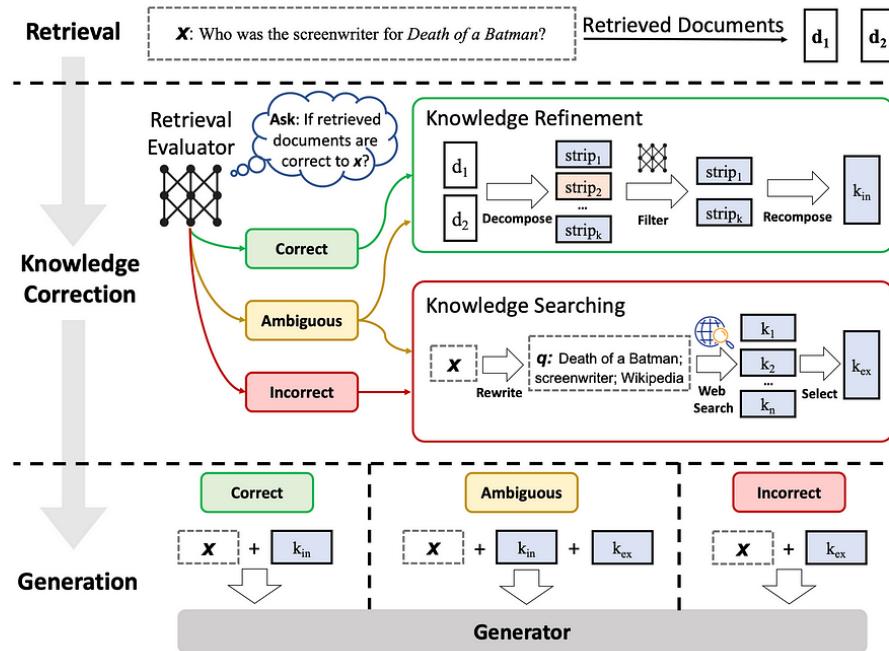


Figure 2.17: Corrective RAG flowchart (Yan et al., 2024)

The corrective RAG model is another extension of the traditional RAG model, which incorporates an additional corrective mechanism to revise the response from the retrieval module or the final Generative AI. Thus, the corrective loop greatly reduces the potential of hallucinations and retrieval inaccuracy of the model, making Corrective Rag a great option for tasks that need high accuracy and minimal margin of error.

Corrective RAG's automated feedback system is the main difference separating it from Naïve RAG. Rather than producing a response in one cycle, Corrective RAG closely adheres to the Reflection Pattern in the MAS design pattern. In this model, a reflection module constantly evaluates and enhances outputs from the generator, confirming that earlier errors are rectified in subsequent versions. This guarantees that the result is both accurate and

factually consistent with the retrieved documents. Additionally, the feedback system can also be implemented at the retrieval layer. According to Yan et al. (2024), a corrective module can also be implemented at the retrieval layer of the system which can evaluate the retrieved information and execute corrective action if the information is unrelated to the query, this can greatly reduce the potential of inaccuracy because the retrieval module is the most important part of the RAG system

However, the downside of Corrective RAG is that it demands extra computational resources to handle various cycles of retrieval and generation, which may lead to longer response times and increased resource consumption. Furthermore, excessive correction may arise if the validation process is too intense, resulting in unwarranted changes that fail to enhance the response and instead sabotage the final accuracy.

2.4.4 Knowledge Graph RAG

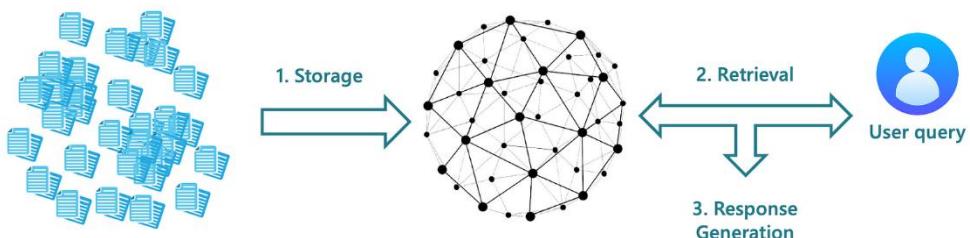


Figure 2.18: Knowledge Graph RAG flowchart (Sanmartin, 2024)

The Knowledge Graph RAG is a special type of RAG model that integrates a Knowledge Graph to perform retrieval and reasoning that replaces the retriever in the Naïve RAG model. Li, Miao, et al. (2024) stated that, unlike the retrieval method used in Naïve RAGs such as BM25 and TF-IDF that uses similarity or keyword for searching, Knowledge Graph provides the ability to reason that fills the gap for tasks that require complex reasoning to solve. Thus, Knowledge Graph RAG is effective in handling complex queries and data relationships that require deep reasoning. Moreover, the Knowledge graph can combine different sources of both structured and unstructured data, offering a more comprehensive knowledge base compared to a vector database (Peng et al., 2023). According

to Sanmartin (2024), Knowledge Graph RAG shows a significant reduction in the hallucination rate, which means that the Knowledge Graph retrieval method can help to retrieve grounded information that is more accurate.

However, Knowledge Graph RAG, building and sustaining a high-quality Knowledge Graph demands a large amount of effort, as it needs to be frequently refreshed to stay accurate and thorough. Moreover, the performance of KG-RAG also heavily relies on the quality of the foundational Knowledge graph. Consequently, if the graph is of low quality or incomplete, the accuracy of the retrieval could be impacted, since the retrieval is fully based on the connectivity of the information within the foundation graph. (Peng et al., 2023)

2.4.5 Comparison between different types of RAG

Table 2.3: Comparison between different types of RAG

Type of RAG	Naïve RAG	Agentic RAG	Corrective RAG	Knowledge Graph RAG
Core Architecture	Linear and single-agent pipeline	Multi-agent pipeline with various specialized agents	RAG with a corrective feedback mechanism	RAG with knowledge graph-based retrieval and reasoning
Key Mechanism	Basic retrieval to the generation pipeline	Orchestrator agent coordinating specialized agents	Automated feedback system for error correction	Reasoning via linked knowledge entities from a knowledge graph
Retrieval Method	BM25, TF-IDF similarity search	BM25, TF-IDF similarity search with parallel capability	Standard retrieval with corrective layer	Reasoning based from knowledge graph
Strengths	<ul style="list-style-type: none"> -Simple implementation -Low computational resources required 	<ul style="list-style-type: none"> -Enhanced precision -Flexible task allocation - Improved adaptability 	<ul style="list-style-type: none"> -Lower hallucination rate -Higher response factual accuracy 	<ul style="list-style-type: none"> -Possesses reasoning capabilities -Can handle complex data

	<ul style="list-style-type: none"> -Short response times 			<ul style="list-style-type: none"> relationships - Reduce hallucination rate
Limitations	<ul style="list-style-type: none"> -No corrective mechanisms - Limited complex query handling - Depends only on the retriever's capabilities 	<ul style="list-style-type: none"> - High computational power needs -Complex agent orchestration needed 	<ul style="list-style-type: none"> -High computational resources -Potential over-correction -Longer response times 	<ul style="list-style-type: none"> -Complex graph maintenance - Performance depends on knowledge graph quality

2.5 Multi-agent framework

Multi-agent frameworks offer a uniform setting that enhances communication, collaboration, and decision-making among agents. These frameworks provide crucial tools, libraries, and protocols that facilitate the development of MAS while guaranteeing scalability and effectiveness. This chapter examines different multi-agent frameworks, emphasizing their structures, capabilities, and appropriateness for various application areas. Understanding these frameworks can help with the choices regarding the appropriate tools to create intelligent, adaptive, and cooperative multi-agent RAG systems.

2.5.1 LangChain

LangChain is a robust framework for developing and orchestrating LLM-based applications. It provided many intuitive tools and APIs for developer to implement in their LLM-driven application, which simplified the complexity of the development. (IBM, 2023). LangChain will serve as the abstraction layer for complex data source integration and the LLM mechanism, significantly reducing the time required for application development. This allows developers to modify just the template and library, rather than coding business logic from scratch. (Amazon Web Services, Inc., n.d.). Another key feature of LangChain is that it provides ways for developers to develop their custom pipeline with tools of their choice by providing chains (user-defined pipeline) in the framework (Oguzhan Topsakal and Tahir Cetin Akinci, 2023)

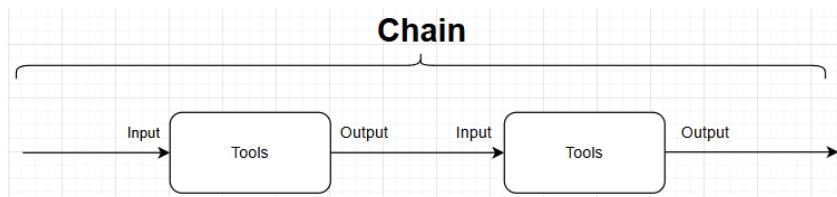


Figure 2.19: LangChain Tools Chaining Feature

A major advantage of LangChain is its capability to improve information retrieval through integration with vector databases, APIs, and various external information sources. Hence, this strength is especially beneficial in multi-agent RAG systems, where specialized agents need to gather, evaluate, and link relevant information effectively to generate an accurate result.

Moreover, the modular framework design also increases its scalability, enabling it to adapt to progressively complicated agent-based architectures. Lastly, Langchain's strong community backing is also one of its strengths, as extensive documentation is provided by the team along with example products for developers to learn from their peers.

Despite its advantages, the lack of a built-in orchestration feature for multi-agent systems is a major drawback for a multi-agent-based application, which means an extra solution needs to be developed to handle the interaction and synchronization for multiple agents. Additionally, it is a significant computational requirement, especially when maintaining long-term memory and executing ongoing reasoning in an advanced setting.

2.5.2 LangGraph

LangGraph is another AI agent workflow orchestrator created by the same team as LangChain as its successor. Therefore, LangGraph also possesses support from a strong community. But unlike LangChain, LangGraph uses a graph-based architecture to manage the relationship between each agent (Clark, 2025). This allows the developer to define the communication between the agents with a directed graph that provides a more dynamic and stateful workflow. LangGraph also provides persistent state management, allowing the agents to remember the conversation history and use it to provide contextual information to the task execution. (Wang and Duan, 2024). According to (Wang and Duan, 2024), LangGraph also provides the necessary tools to support different types of workflows such as hierarchical, human-in-the-loop, and single-agent systems which greatly improve the flexibility of this framework.

However, LangGraph also has some issues. Although its structured workflow provides flexibility, a solid foundation of graph-based programming knowledge is necessary to fully leverage its features, which can increase the learning curve for developers. Moreover, LangGraph incurs high computational costs to maintain stateful workflows and handle numerous agent interactions, especially in a multi-agent RAG system where the system must manage extensive data retrieval and synthesis assignments to produce accurate responses.

2.5.3 CrewAI

CrewAI is another lightweight and flexible multi-agent framework worth considering. The key characteristic for CrewAI is its emphasis on a role-playing architecture, in which CrewAI assigns specific roles to each agent and efficiently distributes tasks among them to achieve the ultimate goal (Winland et al., 2024). Through a role-based architecture, CrewAI allows developers to build specialized agents that collaborate dynamically, enhancing task execution while ensuring modularity and scalability.

A significant advantage of CrewAI is its simplicity and easy configuration, which makes it an ideal option for developers aiming to establish agent-based workflows quickly without the complexities of dependency-driven orchestration. Additionally, CrewAI also provides an automatic task delegation, and flexibility in task management feature which allows agents to communicate and assign tasks effectively (Duan and Wang, 2024). Additionally, CrewAI is capable of parallel task execution, which can increase both processing speed and efficiency in environments with multiple agents.

However, CrewAI is not suitable for very complex agent workflows, since it does not provide the sophisticated decision-making and dependency-tracking features available in graph-based systems such as LangGraph, which can limit the flexibility of this framework, making it not suitable for dynamically changing workflows that need to adapt constantly.

2.5.4 AutoGen

AutoGen is another multi-agent development framework developed by Microsoft. Similar to CrewAI, AutoGen utilizes a role-specific architecture, but it places more focus on agent-to-agent communication to maintain a multi-agent operation (Zeeshan et al., 2025). This allows AutoGen to ensure a modular system design where every agent can engage in a structured discussion to produce the most accurate result. Furthermore, AutoGen also supports different patterns of conversation to be implemented, which can increase the customization ability and flexibility of the agent structure (Wu, Bansal, et al., 2023)

As for the disadvantage of AutoGen. Its dependence on LLM-based decision-making is computationally heavy and requires significant processing

capabilities to maintain ongoing agent interactions. Moreover, the coordination of its conversation agents adds complexity since overseeing several independent agents needs precise adjustments to avoid unnecessary processing, miscommunication, or contradictory actions, especially in a large conversational network. Lastly, AutoGen provides less defined task sequencing compared to other similar frameworks, potentially resulting in more unpredictable execution flows in complex implementations.

2.5.5 Comparison between different MAS development frameworks

Table 2.4: Comparison between different MAS development frameworks

Framework	Strengths	Weaknesses
LangChain	<ul style="list-style-type: none"> - Simplifies LLM-based development. - Flexible for custom pipelines. - Supports vector databases & external sources. - Strong community support. 	<ul style="list-style-type: none"> - No built-in multi-agent orchestration. - High computational requirements.
LangGraph	<ul style="list-style-type: none"> - Graph-based structured workflows. - Persistent state management. - Supports flexible workflows. - Strong community support. 	<ul style="list-style-type: none"> - Requires graph-based programming knowledge. - High computational cost.
CrewAI	<ul style="list-style-type: none"> - Role-based task delegation. - Lightweight & easy to configure. - Built-in task delegation. - Supports parallel execution. 	<ul style="list-style-type: none"> - Lacks advanced decision-making & tracking. - Less flexible for dynamic workflows.
AutoGen	<ul style="list-style-type: none"> - Strong agent-to-agent communication. - Highly modular & customizable. - Supports various conversation patterns. 	<ul style="list-style-type: none"> - High computational demand. - Complex agent coordination. - Less defined task sequencing.

2.6 Retrieval method

Two of the most important components in the RAG system are the retrieval component and the generation component. The quality of both the retrieval and generation components will directly impact the accuracy and quality of the system's final response to the user query. The retrieval component will be in control for recognizing and extracting the relevant information from any given database based on the user's query before passing the relevant information to the generation component for response elaboration and generation. Thus, without an effective retrieval component, the generation component's response accuracy will also be hindered. This section will explore different retrieval methods that are commonly used in a RAG system.

2.6.1 Sparse retrieval

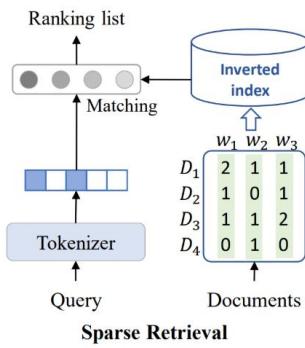


Figure 2.20: Sparse retrieval flowchart (Kumar, 2023)

Sparse retrieval is a retrieval algorithm that focuses more on keyword matching, which Sparser retrieval will compare the input document and text as a high-level vector where the values are mostly zero. Then, the input text is compared based on the existence of a specific keyword, where the more relevant of the current word is to the current input text, the higher score the sparse will return in the high value. One of the most popular sparse retrieval algorithms is BM25, which is the extension of TF-IDF. Thus, Sparse retrieval is excellent in use cases where keyword matching is crucial. Sparse retrieval's advantage is its lightweight nature, which demands little computing resources while delivering high-speed performance, making it work well for general search cases. As for the downside, sparse retrieval lack the ability to capture the underlying context and meaning

of the text, which causes it to struggle with synonyms and complex text structure. (Milvus, 2025)

2.6.2 Dense retrieval

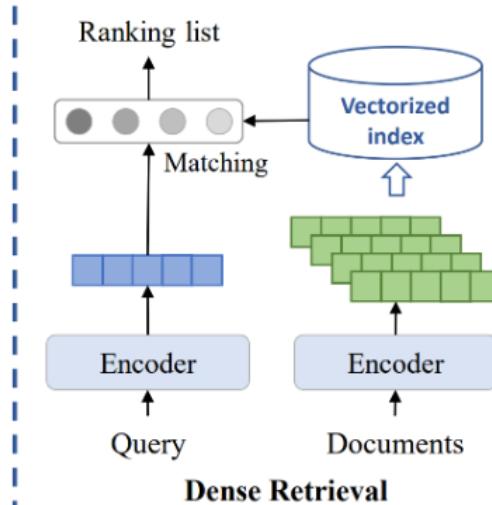


Figure 2.21: Dense retrieval flowchart (Kumar, 2023)

Dense retrieval is another popular retrieval method that is widely used in RAG systems and differs from sparse retrieval it focuses more on the semantic similarity of the text provided. First, the retrieval will utilize a pre-trained embedding model to convert the text provided into a dense group of vector representations in which more related text, such as ‘car’, ‘engine’ will be closer to each other in the vector space. These data will then be stored in a vector database and use algorithms such as, FANN search algorithm to retrieve the relevant information to the user’s query. Unlike sparse retrieval, this retrieval method can understand the underlying meaning of the text, which makes this method effective at getting the user’s intent and allows the text structure and query to be more flexible. However, the downsides of this retrieval method are that it demands more computational resources due to the execution of the embedding model and the reduced interpretability since the vector format outcomes may be less clear compared to conventional keyword-driven approaches. (Milvus, 2025)

2.6.3 Hybrid retrieval

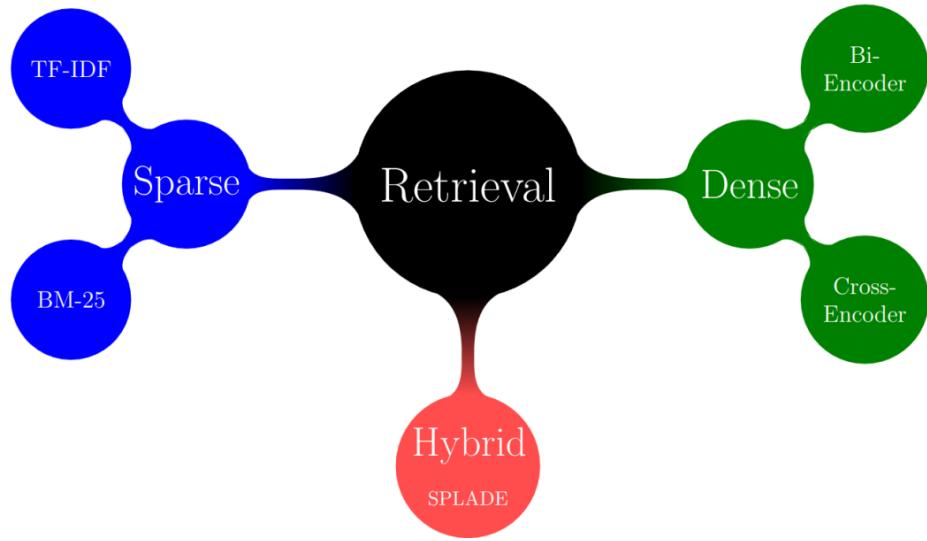


Figure 2.22: Hybrid retrieval flowchart (Khan, 2024)

Hybrid retrieval is a combined retrieval method that utilizes dense and sparse retrieval methods to perform searching. This can be achieved by combining the scores from a sparse retriever's result with a dense retriever's result or by using a re-ranker module to rank the results obtained from one approach with the other. This way, hybrid retrieval can be more flexible to adapt to the complex scenario where both keyword and semantic similarity are required to retrieve an accurate piece of information. While hybrid systems tend to be complex to coordinate and it is more resource-heavy because of the retrieval, reranking or weighting, they frequently produce more reliable outcomes, making them an excellent choice for multi-agent RAG frameworks that manage various document structures.

2.6.4 Knowledge Graph Retrieval

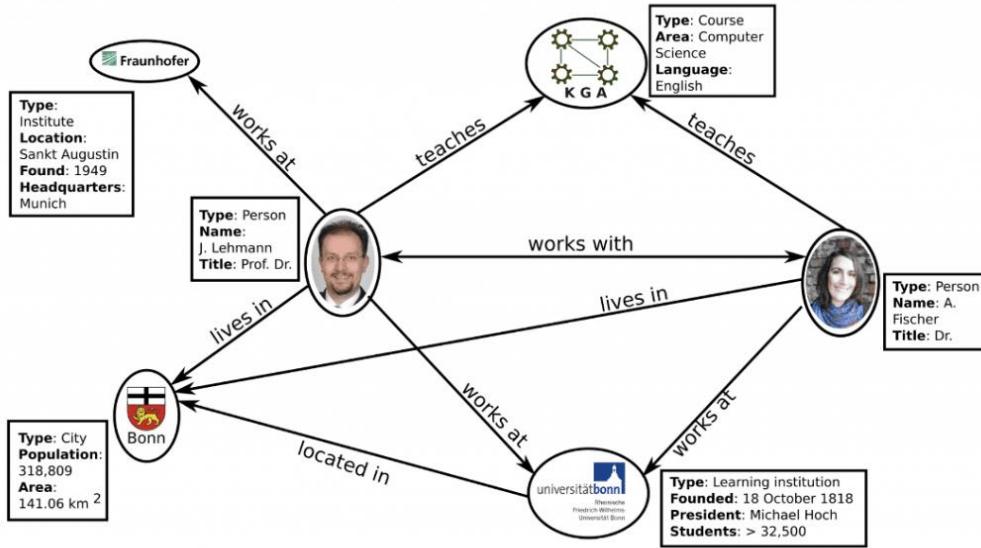


Figure 2.23: Knowledge Graph retrieval flowchart (Knight, 2025)

Knowledge Graph retrieval is a retrieval method that utilizes a more sophisticated Knowledge Graph for information retrieval. Knowledge Graph is a technique where data is stored as a node with an interconnected link to relevant nodes with a directed link. Thus, this structure allows meaningful information to be extracted with reason-based retrieval, which is particularly important in fields such as law and medicine where information relationships and logical reasoning are essential to retrieve relevant information. Although it provides significant accuracy and contextual richness, Knowledge Graph retrieval the Knowledge Graph retrieval method retrieval quality may vary depending on the completeness of the Knowledge Graph, and the Knowledge Graph requires regular maintenance to keep the knowledge base updated. (Peng et al., 2023).

2.6.5 Comparison between different retrieval methods

Table 2.5: Comparison between different retrieval methods

Retrieval Method	Advantages	Disadvantages
Sparse Retrieval	- Fast, lightweight, effective for keyword-based queries	- Cannot understand context or synonyms, - Limited to exact matches
Dense Retrieval	- Understands context and intent - Flexible query structure	- High computational cost - Low interpretability
Hybrid Retrieval	- Balances keyword precision with semantic understanding - Improved accuracy	- Complex integration - Resource-intensive
Knowledge Graph Retrieval	- Provides reasoning-based results - Highly contextual	- Requires complex setup, ongoing maintenance - Dependency on knowledge graph quality

2.7 Conclusion

To summarize, the literature review on design patterns for multi-agent systems, types of RAG models, and multi-agent frameworks offers important insights for creating an efficient local multi-agent RAG system. The results emphasize the need to employ different strategies to tackle issues in information retrieval, agent collaboration, and response formulation for a multi-agent RAG system. The strengths and weaknesses of different aspects are also reviewed to find the appropriate stacks and designs to be implemented in this project.

The following components will be considered for the development of this project.

1. A hierarchical multi-agent architecture

This architecture is used to coordinate specialized agents and ensure effective task distribution. Streamlining the task distribution process and increasing the modularity of this system.

2. Agentic mechanisms

This design is used in this system to effectively distribute tasks to the most suitable agent. Increasing the adaptability of the system.

3. Graph-based workflow orchestration

This orchestration technique is used to manage the task distribution, communication, and relationships between agents, aiming to increase the modularity and the clarity of the system

4. Hybrid-based retrieval techniques

This retrieval technique is used to ensure more accurate retrieval results and reduce the rate of hallucination for both keywords and similarity retrieval tasks.

CHAPTER 3

METHODOLOGY AND WORK PLAN

3.1 Introduction

This section will discuss the development methodology, work plan, and development tools used to develop this project. A systematic development methodology is implemented to ensure steady improvement, modular execution, and continuous refinement. Each phase in the development methodology will be thoroughly discussed with its intention and aim. Additionally, this section will break down each phase into well-defined tasks, which will be mapped into a comprehensive Work Breakdown Structure (WBS) to gain. Lastly, this section will outline the tools and framework used during the project development, such as a vector database and chunking tools. These technologies support the system's fundamental functions, including document intake, semantic search, natural language creation, and performance assessment while maintaining self-host.

3.2 Methodology

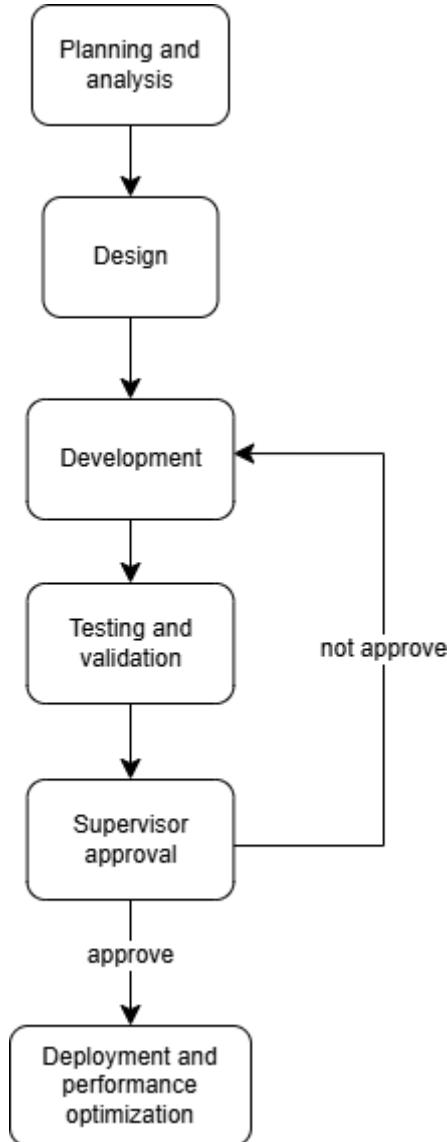


Figure 3.1: Project methodology

The development of the Self-Hosted Multi-Agent RAG System for Contextual Document Processing will follow the Prototype Development Model. This method is selected because of its iterative characteristics, enabling continuous refinement and the ability to incorporate user input to ensure the system maintains certain standards while preserving performance and security. The prototype approach allows for quick testing and verification of various multi-agent strategies before the system architecture is finalized, minimizing inefficiencies and ensuring a robust solution. The initiative will be split into five iterative stages, with every stage enhancing the system's capabilities according

to testing outcomes and user feedback, ensuring a continuous enhancement toward a complete system.

The first phase is requirement analysis and project planning. During this phase, the project objective will be defined along with the problem statement and the scope of the project, which will ensure the objective is feasible to develop. The requirements will also be collected from surveys to collect requirements regarding the functional and non-functional requirements of the project. The multi-agent design will also be established by specifying agent roles and the tools involved for each agent during this phase. Additionally, the tools that are required for the development of this system will be properly identified and studied to ensure that they are compatible with the system's development.

For the second phase, the system design phase will be carried out to extend from the last phase to convert the collected information into a comprehensive technical outline. A system architecture will be designed during this phase to outline the overall system flow from ingress to response, agent functionality, and communication between different agents. In addition to initial use-case situations, with use-case diagram and use-case description are outlined. A rough UI/UX design prototype will also be developed with Streamlit to outline the user interaction process via the interface with some basic functionalities.

After the system design phase, the prototype development stage will be performed. The prototype of the preprocessing agent will be developed with Chonkie and marker-pdf for document chunking, and the primary hybrid retrieval system will be established by combining a document database, Weaviate which is capable of performing hybrid search while capable of scaling to high storage. A basic RAG-based retrieval and generation model will be created to lay a foundation for the more complex development needed in the future. The basic agent coordination for task delegation will be established, along with initial testing using RAGAS with sample datasets to confirm system workflow and fundamental retrieval accuracy. The MAS design will be introduced with different agent tasks and roles, including a reranking system using CrossEncoder to prioritize relevant information and a validation system for verifying facts. Subsequently, communication between agents will be

established via the MAS framework, LangGraph, to support cooperative decision-making.

The following stage, Testing and Validation, will focus on assessing the system to measure its robustness via unit testing and integration testing. Functional testing will ensure each agent operates properly, while performance testing will evaluate the performance of the system component with various metrics, such as the accuracy metric. During the development, supervisor approval will be collected according to test outcomes to determine if the system's development is suitable to move into the next phase. If not, any recognized problems will be recorded, and the development process will return to the last prototype development phase to address the identified issues before proceeding.

For the last stage, Deployment and Performance Optimization, the system will be packaged for real-world deployment. Measures for security and privacy, including access control and options for on-premises deployment, will be implemented.

3.3 Development Tools

3.3.1 Marker

Marker is a Python library that is capable of converting content from a complex file format, such as PDF, into a separate markdown file while maintaining the original formatting. Different from other PDF file content scrapers, Marker is capable of both the standard PDF parsing method and the OCR method, making it capable of extracting content from a scanned or image-based PDF file. Additionally, Marker is also capable of extracting and preserving the content in tabular format, an important feature that other PDF parsing solutions lack. In this system, Marker will be the ingest point of the user's uploaded file, used to parse the content of the PDF file into markdown format to assist later processes like information chunking and storing.

3.3.2 Chonkie

Chonkie is an easy-to-use and lightweight Python library that is designed to breakdown long document content into smaller, meaningful chunks of text. This process is essential for this system because it allows the system to extract only the most relevant sections of a document to the user query, instead of returning complete documents. Chonkie supports various built-in chunking strategies such as SemanticChunking, SentenceChunking and SDPMChunking that can change based on user preference. Thus, Chonkie will be implemented into the Preprocessing agent, making sure that the document can be segmented for more effective retrieval.

3.3.3 LangGraph & Langchain

Langchain will be integrated into this system to utilize some tools like ChatOllama which will streamline the integration with the Ollama LLM model, MarkdownHeaderTextSplitter that will support the chunking process and more that will speedup the development of this project. In this system, LangGraph will be used to turn the system into a graph-based workflow, and the agents, such as preprocessing and generation agents, will function as nodes with edges to link nodes from one to another and to show data passing and flow between nodes. By organizing the workflow as a graph, a new agent can be added into

the system with minimum interference to the current workflow, improving the flexibility of the system.

3.3.4 CrossEncoder reranking

To implement a hybrid retrieval method into the system, CrossEncoder reranking will be utilized to evaluate the relevance of the information retrieved from the hybrid retrieval (BM-25) and rank the outcome based on a deeper understanding of the context with a pre-trained CrossEncoder model. Despite being more computationally demanding than the other retrieval methods, CrossEncoder reranking can greatly improve the quality of the retrieval information by minimizing irrelevant or unclear results. Thus, CrossEncoder reranking will be used in this system to evaluate and rank the results from both the hybrid retrieval.

3.3.5 Ollama

Ollama is an open-source project that can act as a platform to run various and download open-source LLM models such as Llama, Gemma, and Mistral locally. Ollama provides an easy-to-use solution that allows users to interact directly via a command-line interface for model installation and execution. Additionally, Langchain provided seamless integration with Ollama via the LLM wrappers, which can simplify the LLM handling operation in this system. In this system, Ollama is used as the local LLM hosting engine that will be used in various phases in this project, such as the generation agent and query-enhancing agent. Thus, Ollama will be used in this system to integrate local LLM into this system.

3.3.6 RAGAS

RAGAS is an open-source LLM benchmark framework to evaluate the accuracy and performance of LLM-based applications, which provides built-in methods and metrics, such as Contextual Relevancy and Faithfulness, that can be used to measure the performance of the generated output. In this project, RAGAS will be used to assess the retrieval and generation accuracy of the RAG component by comparing produced responses with another built in LLM-as-judge approach to determine the effectiveness of the model in obtaining contextually relevant data and determining if the produced responses are accurate and consistent with

the initial source materials. Thus, RAGAS will be a tool to evaluate the performance of the agents in this system.

3.3.7 Streamlit

Streamlit is an open-source Python framework that allows users to build an interactive data Python application with minimal coding requirements. Streamlit automatically handles the element rendering without needing complex syntax, making it suitable for the quick prototyping nature for the development of this project. In this project, Streamlit will be used to create the first prototype for Project 1, focusing on showing the core functionality of the system in an easy-to-use web-based interface.

3.4 Proposed Workplan

3.4.1 Work Breakdown Structure

1. Project Planning & Analysis

1.1 Conduct Title research

1.2 Outline problem statements and possible problem solution

1.3 Define project objective and scope

1.4 Requirement collection

1.5 Conduct literature review

1.5.1 Study of different Multi-Agent Systems (MAS)

1.5.2 Study of different RAG architecture types

1.5.3 Analysis of different retrieval methods

1.5.4 Analysis of different MAS development frameworks

1.5.5 Identification of suitability for things covered in this system

2. System Design

2.1 Design system architecture

2.1.1 Define agent functionalities

2.1.1.1 Identify functions needed

2.1.1.2 Identify the tools needed for agent

2.1.2 Define communication flow between agent

2.2 Design UI/UX interface and user interaction flow

2.3 Create UML diagrams

2.3.1 Create use case diagram

2.3.2 Create activity diagram

3. System prototype development

3.1 Set up local development environment

3.1.1 Install dependencies and libraries

3.1.2 Install LLM models

3.1.3 Configurate database

3.2 System module development

3.2.1 Develop document management module

3.2.1.1 Develop document upload system

3.2.1.2 Develop CRUD method for documents

3.2.2 Develop data preprocessing pipeline

- 3.2.2.1 Implement Marker for PDF extraction
- 3.2.2.2 Implement Chonkie chunking module
- 3.2.2.3 Implement Nomic for embedding generation
- 3.2.2.4 Develop storing function for relevant information
- 3.2.3 Develop retrieval pipeline
 - 3.2.3.1 Create Hybrid retrieval method
 - 3.2.3.2 Implement Reranker with Cross Encoder
- 3.2.4 Integrate LLM for response generation module
- 3.2.5 Conversation History Management Module
 - 3.2.5.1 Develop user interactions and response history module
 - 3.2.5.2 Referencing response history
- 3.3 Multi-Agent Workflow Implementation
 - 3.3.1 Establish specialized agent role
 - 3.3.2 Implement LangGraph framework for multiagent workflow
 - 3.3.3 Develop agent orchestrator
 - 3.3.4 Integrate developed module into multi-agent workflow
 - 3.3.4.1 Integrate data preprocessing pipeline into workflow
 - 3.3.4.2 Integrate retrieval pipeline into workflow
 - 3.3.4.3 Integrate generation pipeline into workflow
 - 3.3.5 Implement web search
 - 3.3.5.1 Develop general web search
 - 3.3.5.2 Develop advance search from specialize database
 - 3.3.6 Implement automated note generator agent
- 4. System testing and validation
 - 4.1 Perform unit testing
 - 4.2 Perform functional testing for modules
 - 4.3 Evaluate the accuracy of retrieval and generation
 - 4.4 Supervisor feedback

5. Deployment and Performance Optimization

5.1 Design and implement access control system

5.2 Final Testing and Verification

5.3 On-premises deployment (docker)

3.4.2 Gantt chart

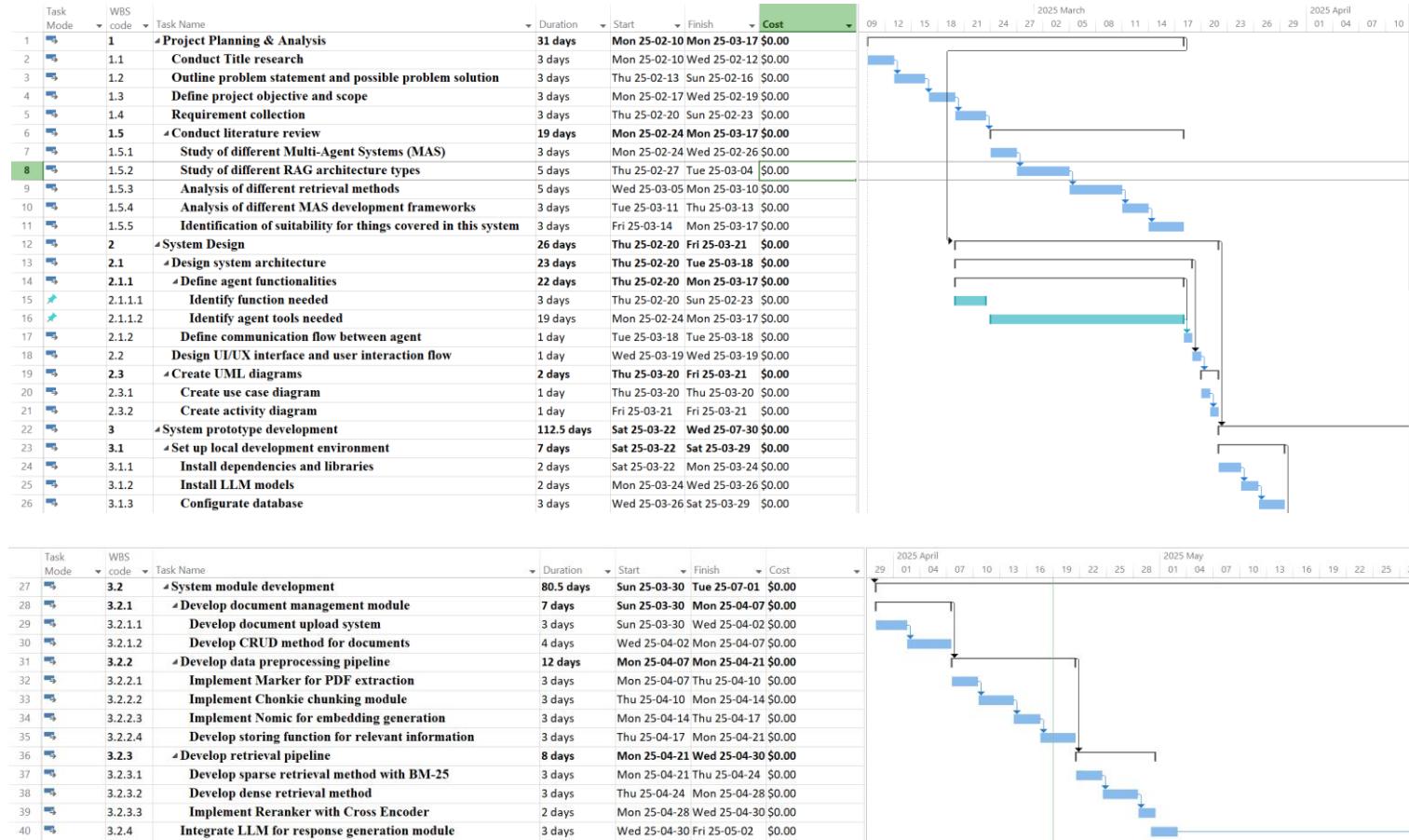


Figure 3.2: Project 1 timeline

41	3.2.5	4 Conversation History Management	8 days	Mon 25-06-23	Tue 25-07-01	\$0.00
42	3.2.5.1	Develop user interactions and response history module	3 days	Mon 25-06-23	Wed 25-06-25	\$0.00
43	3.2.5.2	Referencing response history	5 days	Thu 25-06-26	Tue 25-07-01	\$0.00
44	3.3	4 Multi-Agent Workflow Implementation	23 days	Wed 25-07-02	Mon 25-07-28	\$0.00
45	3.3.1	Establish specialized agent role	2 days	Wed 25-07-02	Thu 25-07-03	\$0.00
46	3.3.2	Implement LangGraph framework for multiagent workflow	3 days	Fri 25-07-04	Mon 25-07-07	\$0.00
47	3.3.3	Develop agent orchestrator	5 days	Tue 25-07-08	Sun 25-07-13	\$0.00
48	3.3.4	4 Integrate developed module into multiagent workflow	6 days	Mon 25-07-14	Sun 25-07-20	\$0.00
49	3.3.4.1	Integrate data preprocessing pipeline into workflow	2 days	Mon 25-07-14	Tue 25-07-15	\$0.00
50	3.3.4.2	Integrate retrieval pipeline into workflow	2 days	Wed 25-07-16	Thu 25-07-17	\$0.00
51	3.3.4.3	Integrate generation pipeline into workflow	2 days	Fri 25-07-18	Sun 25-07-20	\$0.00
52	3.3.5	4 Implement web search agent	4 days	Mon 25-07-21	Thu 25-07-24	\$0.00
53	3.3.5.1	Develop general web search	1 day	Mon 25-07-21	Mon 25-07-21	\$0.00
54	3.3.5.2	Develop advance search from specialize database	3 days	Tue 25-07-22	Thu 25-07-24	\$0.00
55	3.3.6	Implement automated note generator agent	3 days	Fri 25-07-25	Mon 25-07-28	\$0.00
56	4	4 System testing and validation	26 days	Tue 25-07-29	Wed 25-08-27	\$0.00
57	4.1	Perform unit testing	5 days	Tue 25-07-29	Sun 25-08-03	\$0.00
58	4.2	Perform functional testing for modules	5 days	Mon 25-08-04	Fri 25-08-08	\$0.00
59	4.3	Evaluate accuracy of retrieval and generation	7 days	Sat 25-08-09	Sun 25-08-17	\$0.00
60	4.4	Supervisor feedback	2 days	Mon 25-08-18	Tue 25-08-19	\$0.00
61	4.5	System refinement	7 days	Wed 25-08-20	Wed 25-08-27	\$0.00
62	5	4 Deployment and Performance Optimization	15 days	Thu 25-08-28	Sun 25-09-14	\$0.00
63	5.1	Design and implement access control system	5 days	Thu 25-08-28	Tue 25-09-02	\$0.00
64	5.2	Final Testing and verification	5 days	Wed 25-09-03	Mon 25-09-08	\$0.00
65	5.3	On-premises deployment (docker)	5 days	Tue 25-09-09	Sun 25-09-14	\$0.00

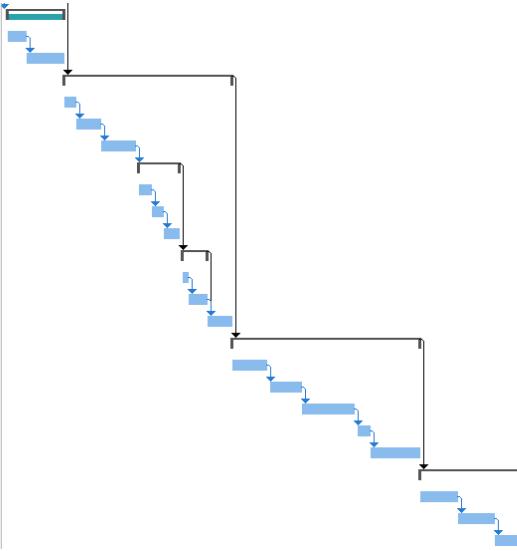


Figure 3.3: Project 2 timeline

CHAPTER 4

PROJECT SPECIFICATION

4.1 Introduction

This chapter will properly identify the project's key requirements. Additionally, two UML diagrams: a use case diagram and an activity diagram, will be included to support the project requirements. Lastly, screenshots of the system's initial prototype will be provided to demonstrate and reinforce the system specifications.

4.2 Requirement specification

4.2.1 Functional requirement specification

Requirement ID	Requirement description	Status
FR01	The System shall allow users to log in to their existing account	Done
FR02	The system shall allow users to sign up for a new account	Done
FR03	The system shall allow users to upload their PDF document	Done
FR04	The system shall allow users to view a list of their uploaded files	Done
FR05	The system shall allow users to delete the file from the database	Done
FR06	The system shall allow users to submit a natural language query	Done
FR07	The system shall allow users to view the relevant information that the system has retrieved	Done
FR08	The system shall allow users to view the LLM-generated response	Done
FR09	The system shall allow users to generate a note via a query automatically	Done

FR10	The system shall allow users to change the system LLM into their desired local LLM model	Done
FR11	The system shall allow users to toggle the status of MCP services and web search	Done
FR12	The system shall retrieve the content of the internet if the web search setting is toggled on	Done
FR13	The system shall allow users to include their own MCP server details if the MCP service is used	Done
FR14	The system shall dynamically adjust the workflow based on the user's query	Done
FR15	The system shall retrieve the correct relevant chunk from the document based on the user query	Done
FR16	The system shall allow the user to summarize the content in the uploaded document	Done

4.2.2 Non-functional requirement specification

Requirement ID	Requirement description	Status
NFR01	The System shall be intuitive and easy to use for all types of users	Done
NFR02	The system shall be implemented entirely locally without depending on external services	Done
NFR03	The system shall prevent unauthorized access	Done

4.3 Use Case Diagram

Figure 4.1: Use case diagram

4.4 Use Case description

4.4.1 Login Use Case

Use Case Name: Login	ID: US01	Importance Level: High
Primary Actor: User	Use Case Type: Detail, Essential	
Stakeholders and Interests:-		

<p>Brief Description: This use case describes how the user can login to the system</p>
<p>Trigger: The user wants to access the system.</p>
<p>Relationships:</p> <p>Association : User</p> <p>Include :-</p> <p>Extend : Sign Up- If user does not have an account</p> <p>Generalization: -</p>
<p>Normal Flow of Events:</p> <ol style="list-style-type: none"> 1. The user accesses the system 2. The system displays the login interface 3. The user enters email and password 4. The system validates the user credentials 5. If the user enters invalid credential, proceed to sub-flow 5.1 6. If the user enters valid credential, proceed to sub-flow 6.1
<p>Sub-flows:</p> <p>5.1 The user enters the wrong credentials</p> <p>5.1.1 The system displays the error message and prompts the user to re-enter</p> <p>5.1.2 Proceed to flow 3</p> <p>6.1 The user enters the correct credentials.</p> <p>6.1.1 The user proceeds to the system's main interface</p>

4.4.2 Sign Up Use Case

Use Case Name: Sign Up		ID: US02	Importance Level: High		
Primary Actor: User		Use Case Type: Detail, Essential			
Stakeholders and Interests:-					
Brief Description: This use case describes how the user can sign up for a new account					
Trigger: If the user has no existing account and wishes to sign up for one					
Relationships:					
Association : User Include : - Extend : - Generalization: -					
Normal Flow of Events:					
1. The user accesses the system 2. The user selects the sign-up option in the login interface 3. System display sign-up interface 4. The user enters their email address, password, and confirms password 5. The system validates the credentials entered 6. If the user enters invalid information, proceed to sub-flow 6.1 7. If the user enters valid information, proceed to sub-flow 7.1					

Sub-flows:

6.1 The user enters invalid information

6.1.1 The system displays the error message and prompts the user to re-enter, proceed to flow 3

7.1 The user enters the valid information

7.1.1 The user proceeds to the system's main interface

4.4.3 Upload File Use Case

Use Case Name: Upload File	ID: US03	Importance Level: High
Primary Actor: User	Use Case Type: Detail, Essential	
Stakeholders and Interests:-		
Brief Description: This use case describes how the user can upload their document into the system database		
Trigger: The user wants to upload their document to the system database for the system to reference		
Relationships: Association : User Include : - Extend : - Generalization: -		
Normal Flow of Events: 1. The user selects the file upload in the navigation menu 2. The system navigate to file upload interface		

<ol style="list-style-type: none"> 3. The user clicks the upload file option in the interface 4. The user selects one or more files from their local device with a file browser. 5. The user selects the submit option 6. The system checks the file 7. If the file is invalid, proceed to sub-flow 7.1 8. The system starts file processing 9. The system prompts a successful message
<p>Sub-flows:</p> <p>7.1 The user's file is too big or an unsupported file format</p> <p>7.1.1 The system stops the upload process</p> <p>7.1.2 The system prompts an error message, proceed to flow 3</p>

4.4.4 Manage File Use Case

Use Case Name: Manage File	ID: US04	Importance Level: High
Primary Actor: User	Use Case Type: Detail, Essential	
Stakeholders and Interests: -		
Brief Description: This use case describes how the user can manage their uploaded document		
Trigger: The user wants to manage their file in the system		
Relationships:		
Association : User		
Include : -		

<p>Extend : -</p> <p>Generalization: -</p>
<p>Normal Flow of Events:</p> <ol style="list-style-type: none"> 1. The user selects the Manage file in the navigation menu 2. The system navigates to the Manage file interface 3. The system fetches files information from the database 4. If no file is found in the database, proceed to sub-flow 4.1 5. The system displays file information 6. The user checks the delete option for the document, proceeds to sub-flow 4 .1
<p>Sub-flows:</p> <p>4.1 If no file is found in the database</p> <p>4.1.1 The system displays an error message</p> <p>5.1 If the user chooses to delete the document</p> <p>6.1.1 The user clicks the delete button</p> <p>6.1.2 The file will be deleted from the document.</p> <p>6.1.3 The system prompts a success message</p>

4.4.5 Ask question Use Case

Use Case Name: Ask question	ID: US05	Importance Level: High
-----------------------------	----------	------------------------

Primary Actor: User	Use Case Type: Detail, Essential
Stakeholders and Interests: -	
Brief Description: This use case describes how the system will respond when the user enters a query into the system	
Trigger: The user wants to ask a question	
<p>Relationships:</p> <p>Association : User</p> <p>Include : -</p> <p>Extend : -</p> <p>Generalization: -</p>	
<p>Normal Flow of Events:</p> <ol style="list-style-type: none"> 1. The user navigates to the chat interface. 2. The system navigates to chat interface 3. The user enters their question in the text input field. 4. The user clicks the submit button. 5. The system analyzes the query. 6. The system router determines the most suitable handling strategy for the query: 7. If the request can be answered directly using the LLM's internal knowledge, proceed to Sub-flow 7.1. 8. If the request requires additional information from documents or external sources, proceed to Sub-flow 8.1. 9. The Generation Node creates a grounded response using both the LLM's knowledge and the retrieved information. 10. The system prompt the final response to the user. 	

Sub-flows:
7.1 If query handled directly by LLM
7.1.1 The router pass the query directly to generation node, Proceed to flow 9
8.1 If query requires retrieval
8.1.1 The Workflow Router forwards the query to the Retrieval Node.
8.1.2 The Retrieval Node determines whether to use uploaded documents or external source
8.1.3 If the system uses external search, proceed to sub-flow 8.1.3
8.1.4 If the system uses document search, proceed to sub-flow 8.1.4
8.1.3.1 If the system uses external search
8.1.3.1.1 The ReAct agent dynamically selects the most suitable external tool:
<ul style="list-style-type: none"> General Web Search: Fetches the top 5 most relevant web pages, preprocesses the content, and applies hybrid retrieval to extract useful information. Medical Knowledge (PubMed): Retrieves relevant research articles for medical-related queries. Financial News (Yahoo Finance): Retrieves the latest finance and business news.
8.1.3.1.2 The retrieved information is passed to the Generation Node for response generation, proceed to flow 9
8.1.4.1 If the system uses document search
8.1.4.1.1 The Retrieval Node fetches relevant passages from user-uploaded documents.
8.1.4.1.2 The retrieved information is passed to the Generation Node for response generation, proceed to flow 9

4.4.6 Change system setting Use Case

Use Case Name: Change system setting		ID: US06	Importance Level: High		
Primary Actor: User	Use Case Type: Detail, Essential				
Stakeholders and Interests: -					
Brief Description: This use case describes the user flow to change the system operational setting					
Trigger: The user wants to change the details of the system					
Relationships: Association : User Include : - Extend : - Generalization: -					
Normal Flow of Events: <ol style="list-style-type: none"> The user selects the setting in the navigation menu The system navigates to the setting interface The system displays the setting menu with available system settings such as, LLM model selection, Web search configuration The user modifies the setting The user selects the save option in the settings page The System checks the validation of the setting change If the setting is valid, proceed to sub-flow 7.1 If any error occurs during validation, proceed to sub-flow 8.1 					

Sub-flows:

7.1 The setting is valid

7.1.1 The system will save the setting

7.1.2 The system prompts a success message

7.1.3 The system will alter the system workflow according to the new settings.

8.1 The setting is invalid

8.1.1 The system will prompt an error message, proceed to flow 4

4.4.7 Execute automated note generation Use Case

Use Case Name: Execute automated note generation	ID: US07	Importance Level: High
Primary Actor: User	Use Case Type: Detail, Essential	
Stakeholders and Interests: -		
Brief Description: This use case describes how the user can initiate the automation note generation workflow		
Trigger: The user wants to create generate note for the last chat history or the response of current question		
Relationships:		
Association : User Include : - Extend : - Generalization: -		
Normal Flow of Events:		
1. The user selects the chat interface 2. The system navigates to chat interface		

<ol style="list-style-type: none"> 3. The user enters a prompt related to generating a note 4. The system analyzes the user's intent 5. The system generates the response 6. The system analyzes if query requires automated workflow 7. The system executes steps and tools in the workflow 8. If the generation is successful, proceed to sub-flow 8.1 9. If any error occurs during generation, proceed to sub-flow 9.1
<p>Sub-flows:</p> <p>8.1 The generation is successful</p> <p> 8.1.1 The system prompt success message</p> <p>9.1 Error occurs during generation</p> <p> 9.1.2 The system stops the generation process</p> <p> 9.1.3 The system prompt error message, proceed to flow 3</p>

4.4.8 Summarize document Use Case

Use Case Name: Execute document summarization	ID: US08	Importance Level: High
Primary Actor: User	Use Case Type: Detail, Essential	
Stakeholders and Interests: -		
Brief Description: This use case describes how the user can initiate the document summarization workflow		
Trigger: The user wants to summarize the content in the uploaded document		

Relationships:

Association : **User**

Include : -

Extend : -

Generalization: -

Normal Flow of Events:

1. The user selects the chat interface
2. The system navigates to chat interface
3. The user enters a prompt related to document summarization
4. The system analyzes the user's intent
5. The system process to the summarization node
6. The system responds with 5 summarized passage to the frontend
7. If the summarization is successful, proceed to flow 7.1
8. If any error occurs during summarization, proceed to sub-flow 8.1

Sub-flows:

7.1 The summarization is successful

7.1.1 The system prompt the final summarized content

8.1 Error occurs during summarization

8.1.2 The system stops the summarization process

8.1.3 The system prompt error message, proceed to flow 3

4.5 Activity diagram

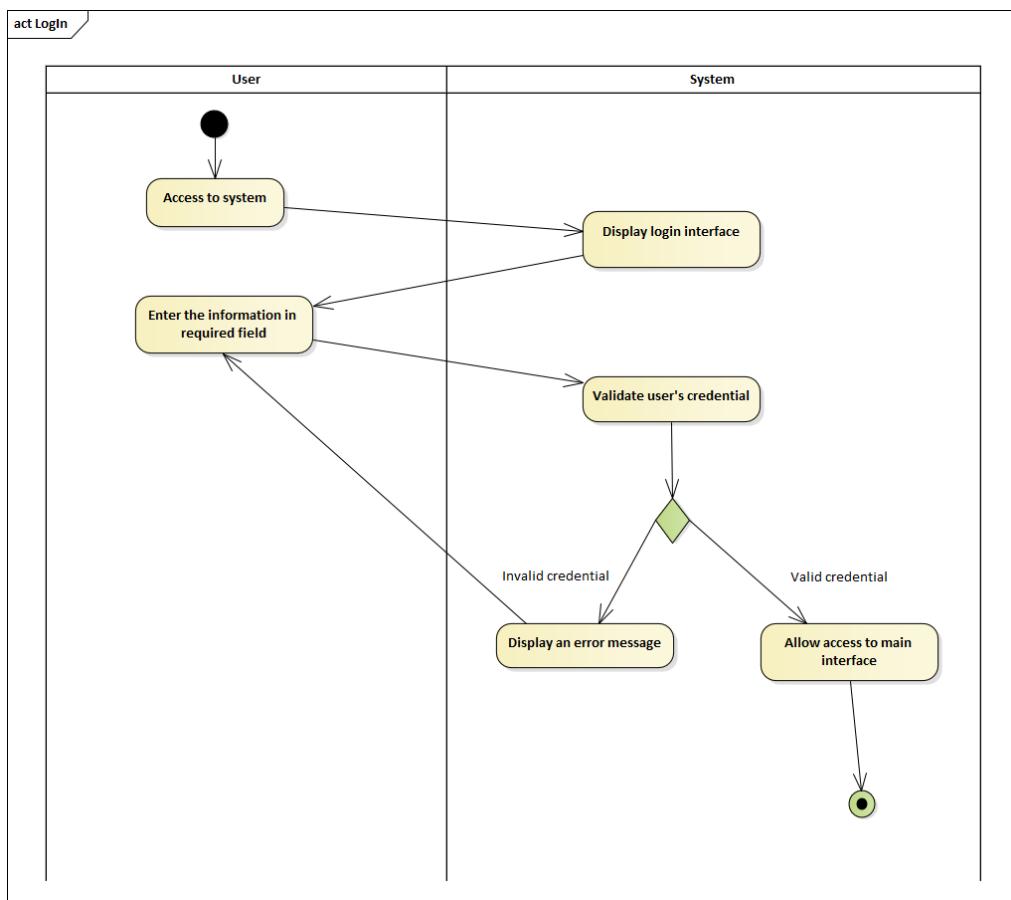


Figure 4.2: Login Activity diagram

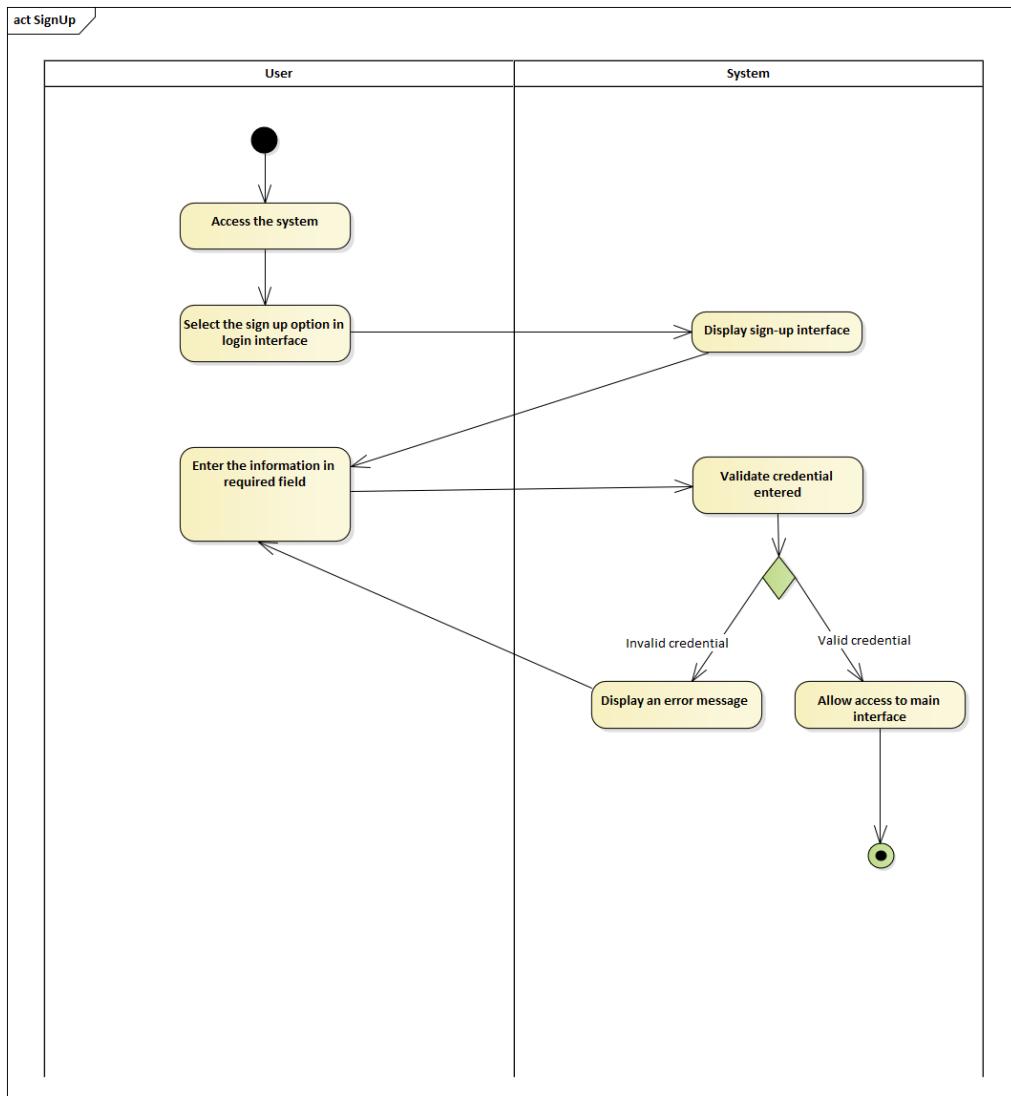


Figure 4.3: Sign Up Activity diagram

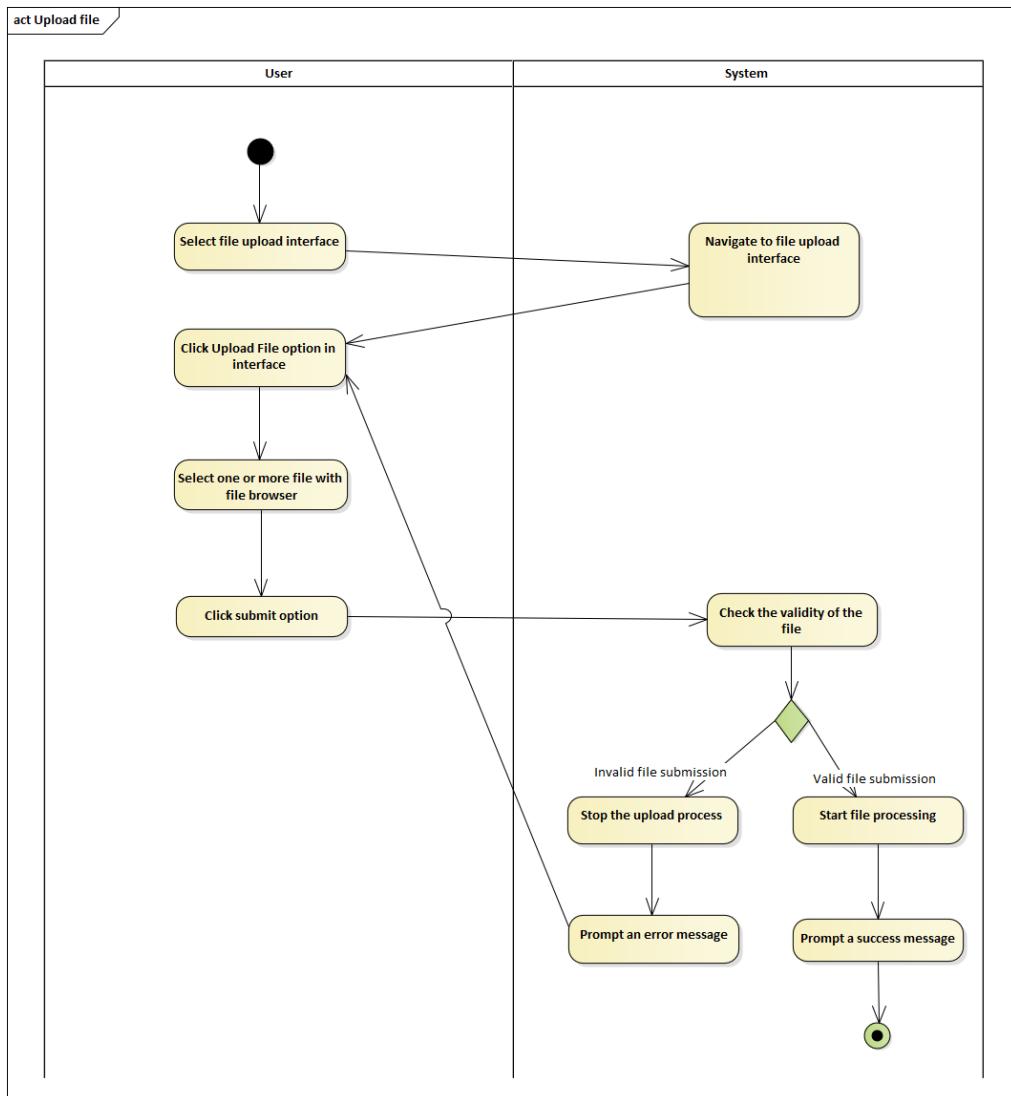


Figure 4.4: Upload file Activity diagram

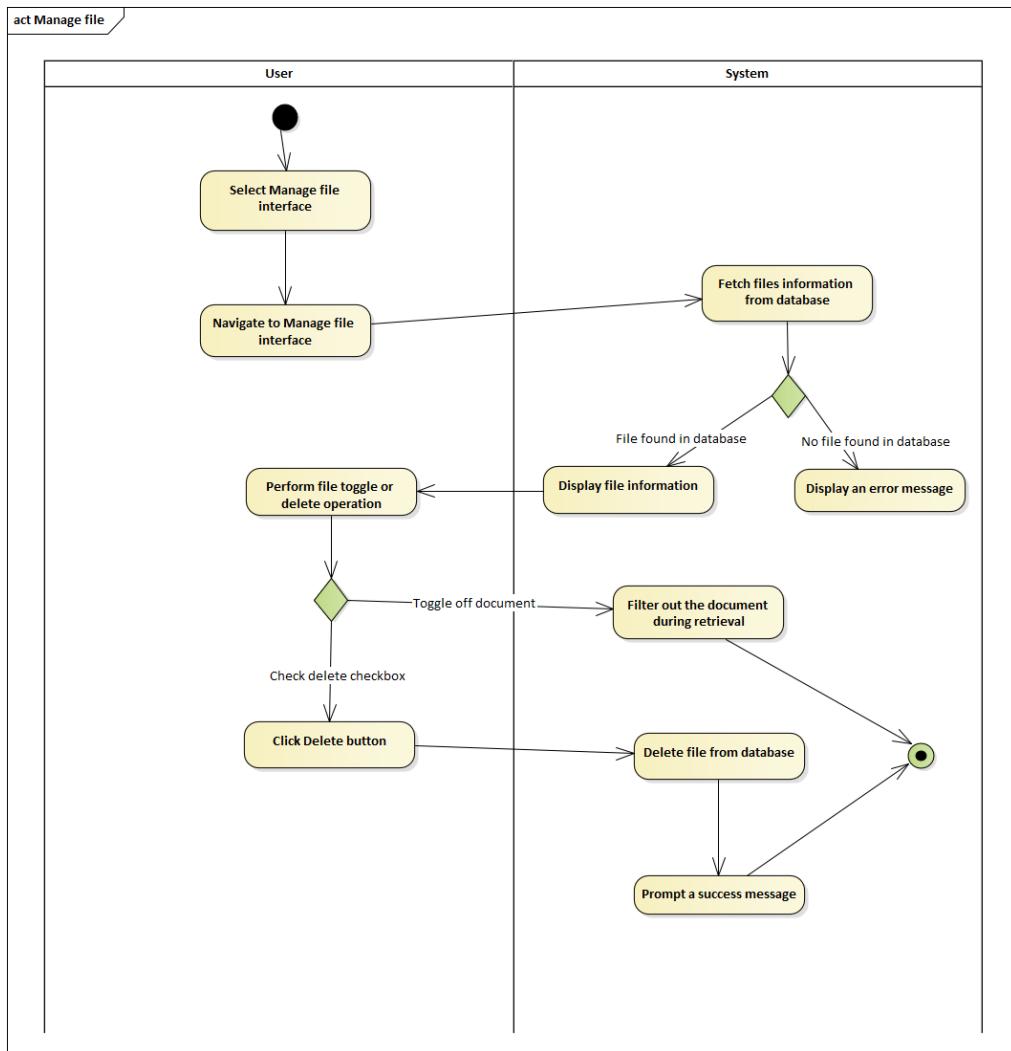


Figure 4.5: Manage file Activity diagram

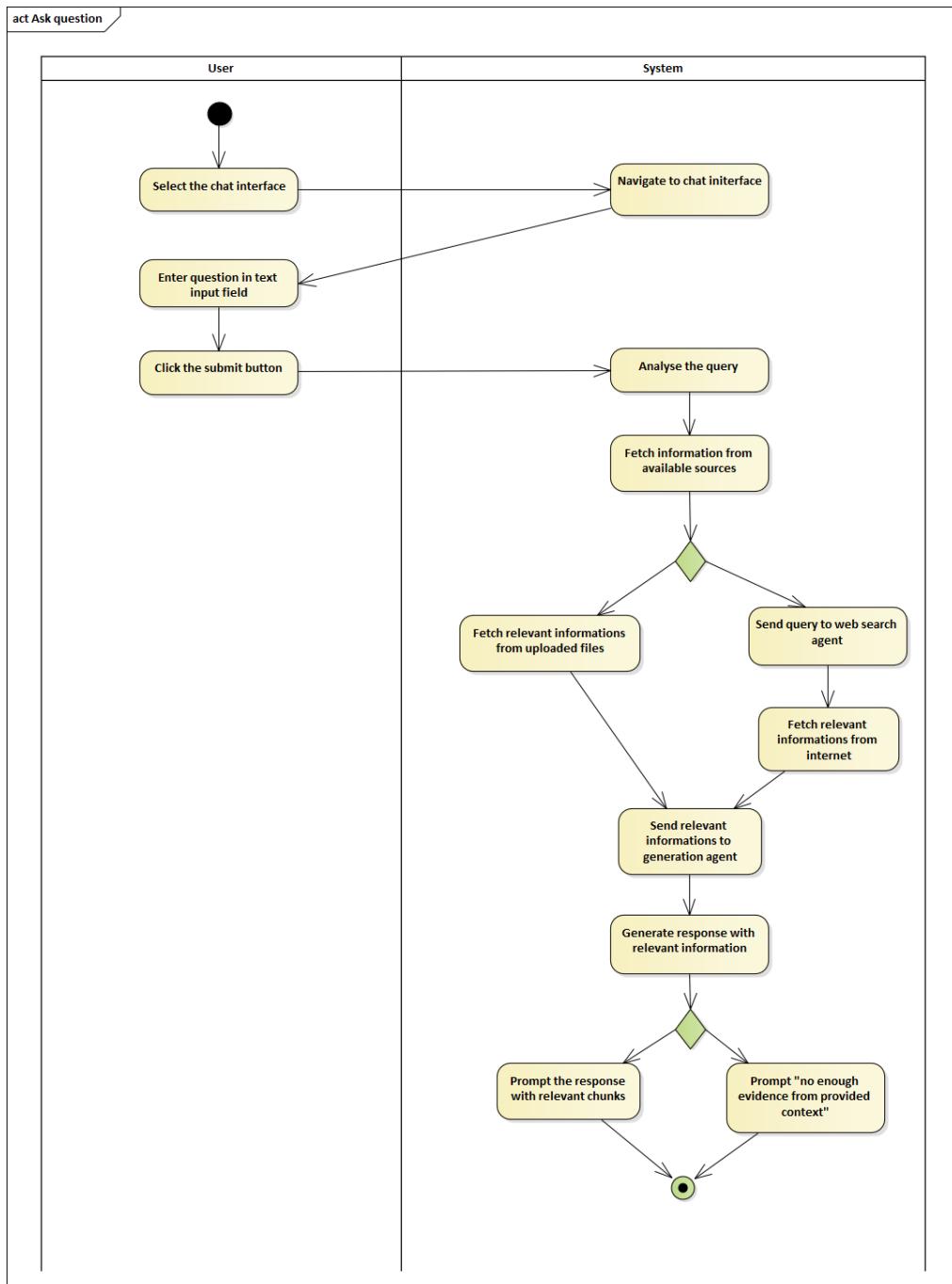


Figure 4.6: Ask Question Activity diagram

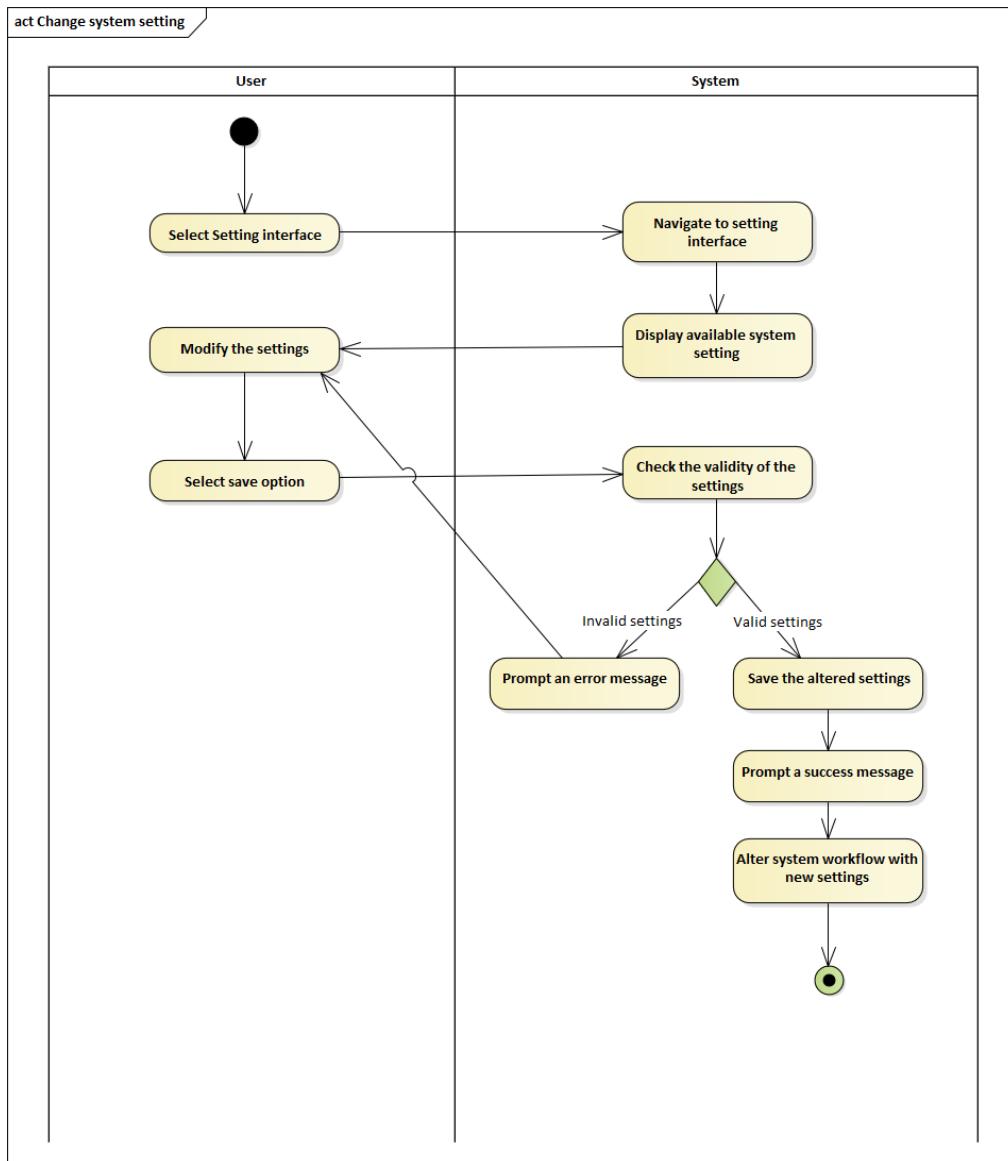


Figure 4.7: Change system setting Activity diagram

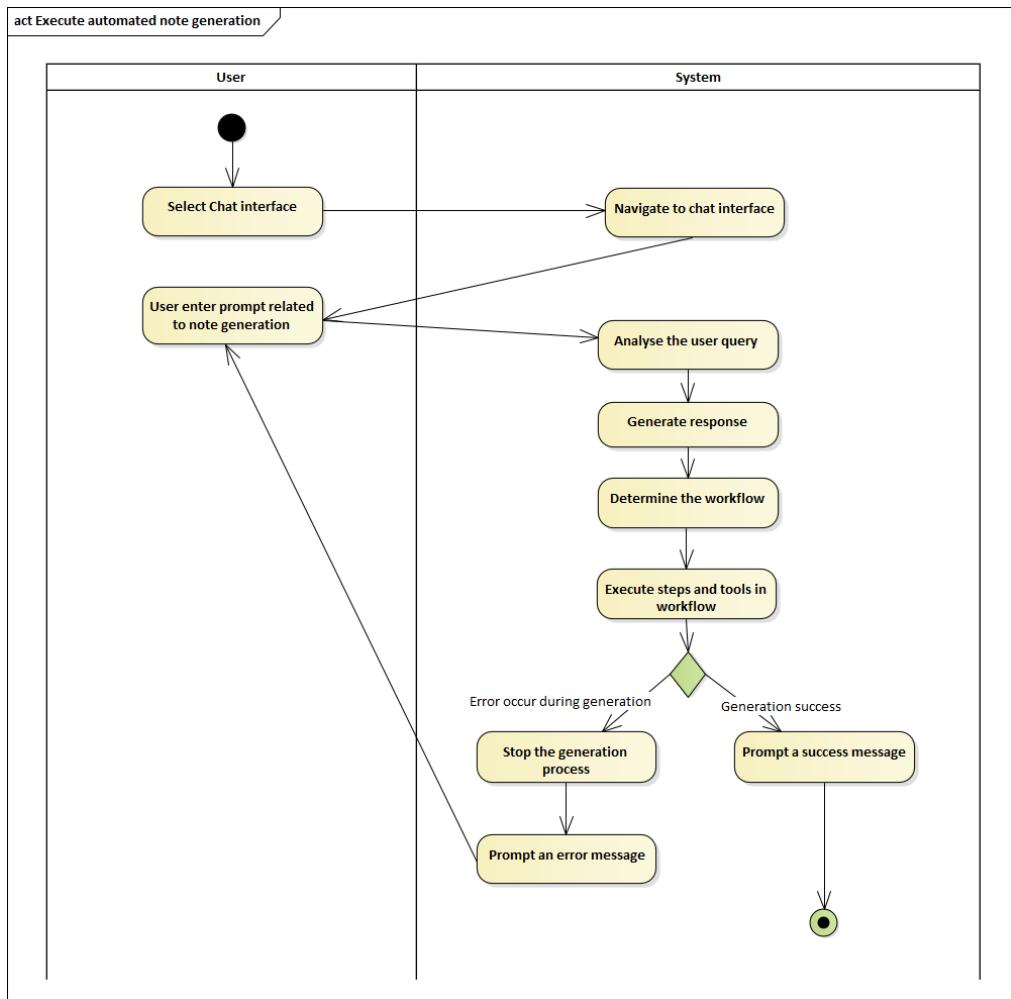


Figure 4.8: Execute automated workflow Activity diagram

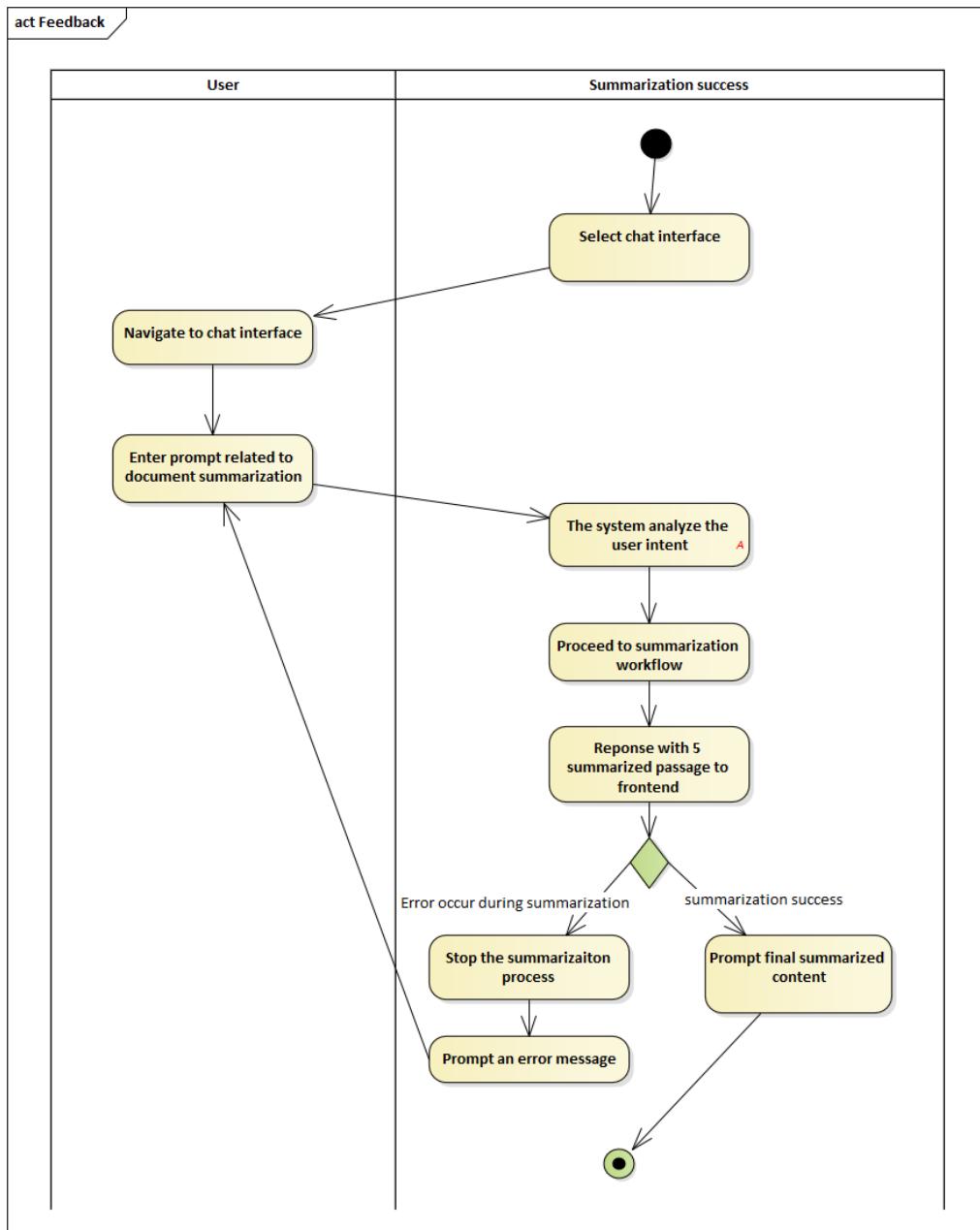


Figure 4.9: Summarized document activity diagram

4.6 Prototype section

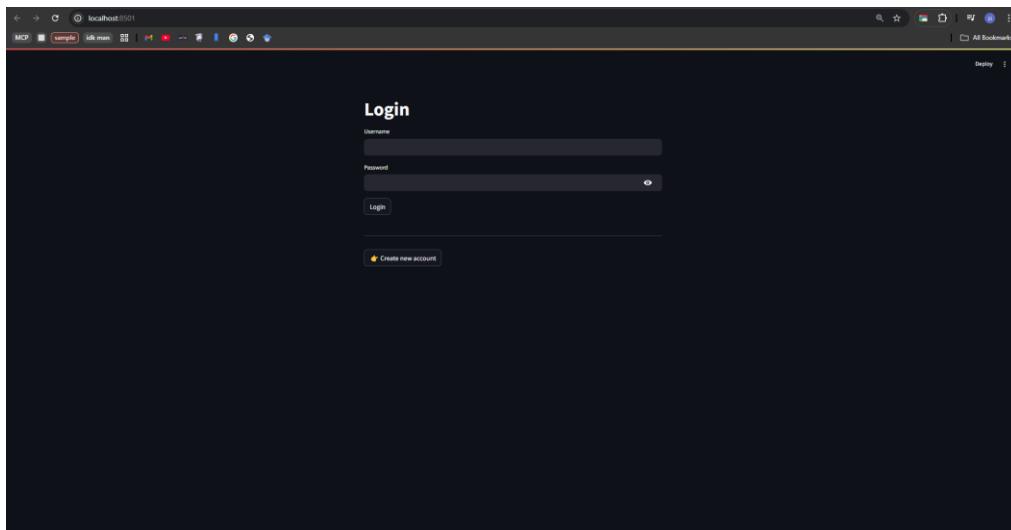


Figure 4.10: Login interface

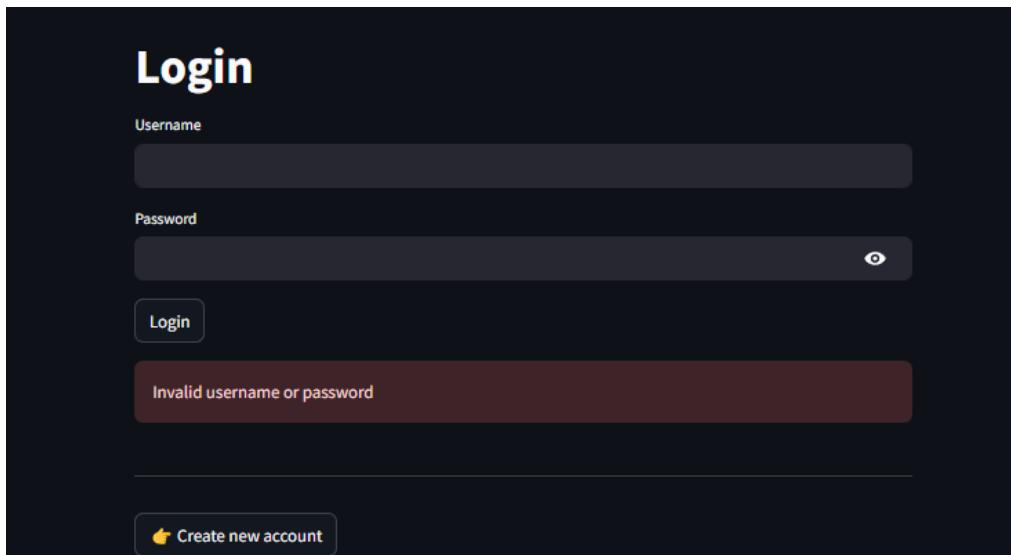


Figure 4.11: Error in login interface

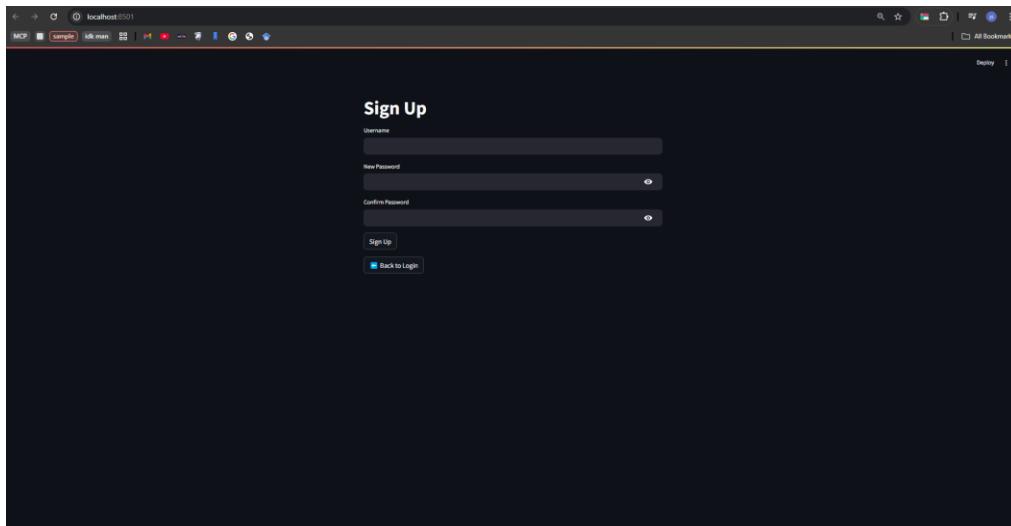


Figure 4.12: Sign Up interface

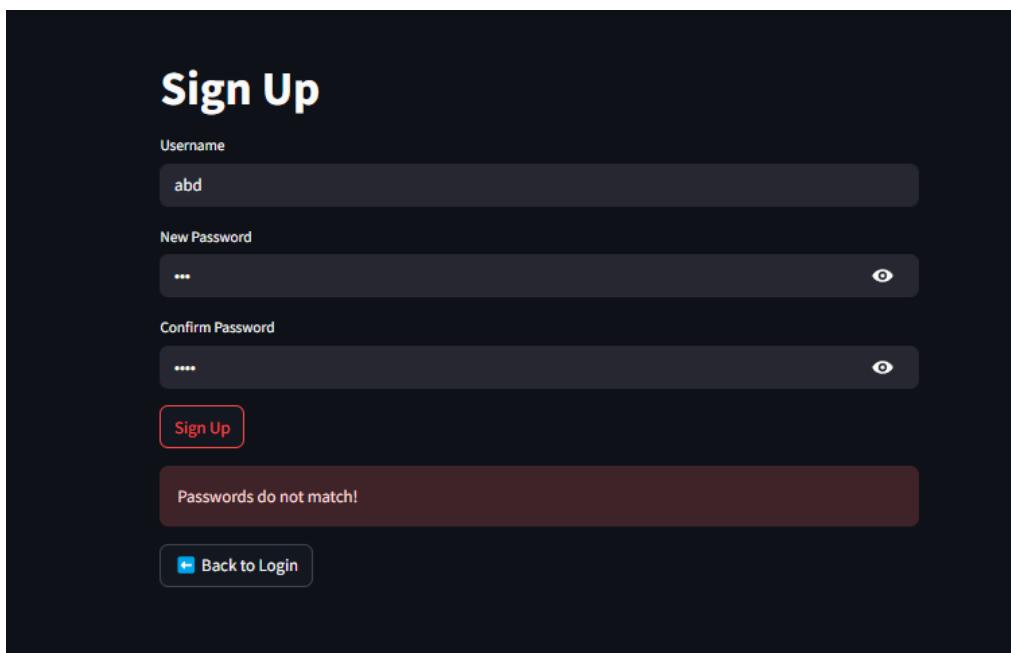


Figure 4.13: Error in Sign Up interface

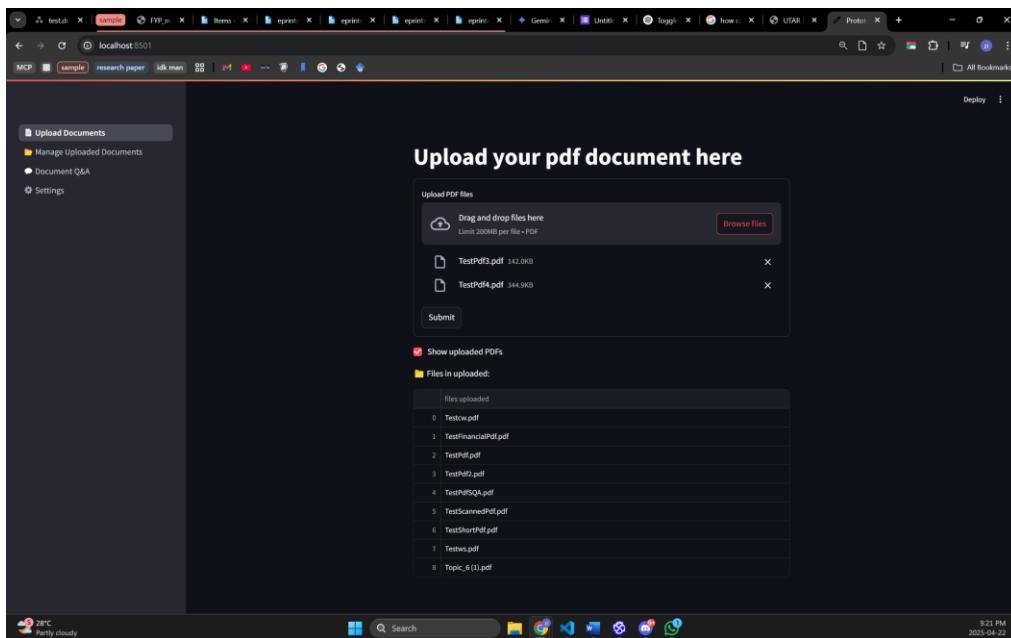


Figure 4.14: The file upload interface

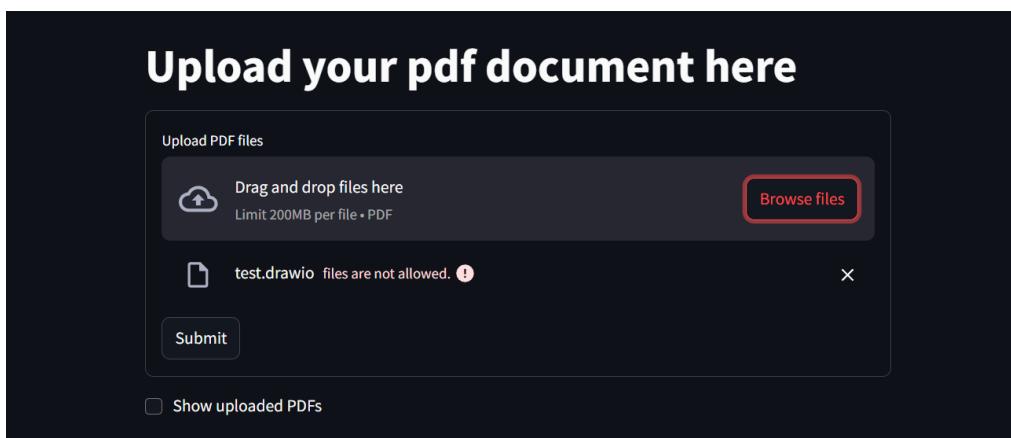


Figure 4.15: The file upload interface with error

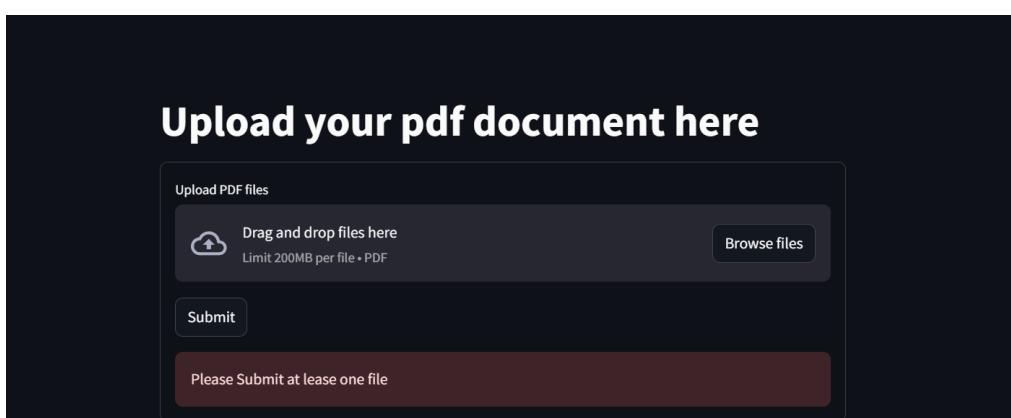


Figure 4.16: The file upload interface with error

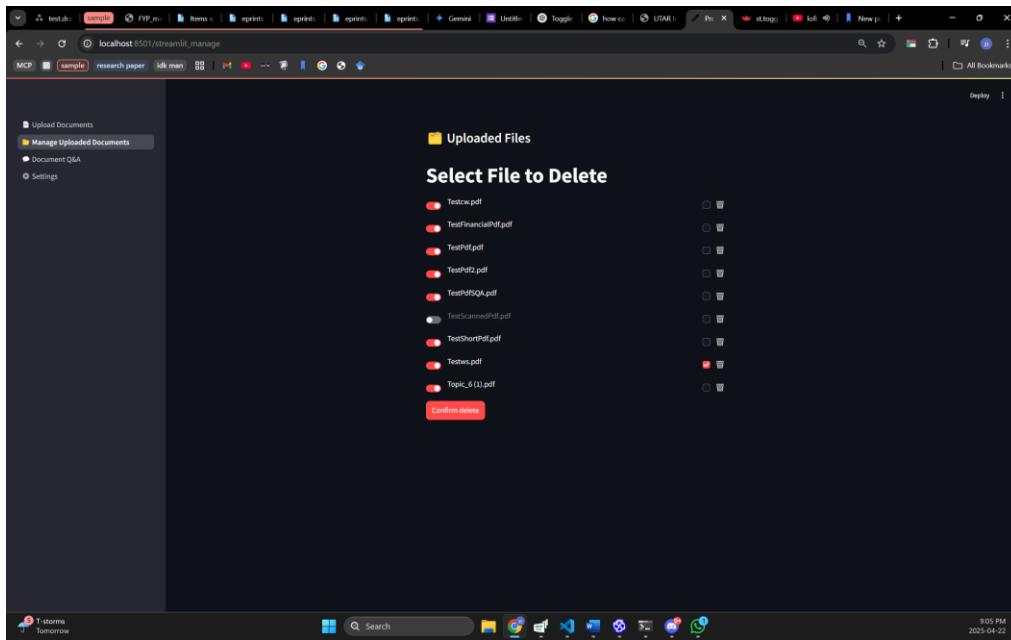


Figure 4.17: The file management interface

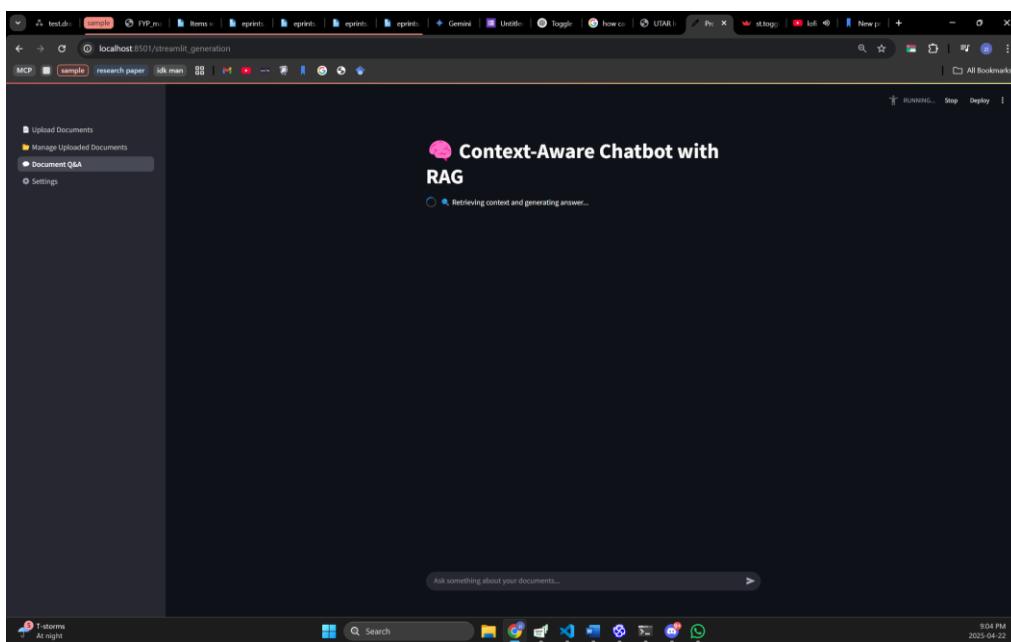


Figure 4.18: The document chat interface

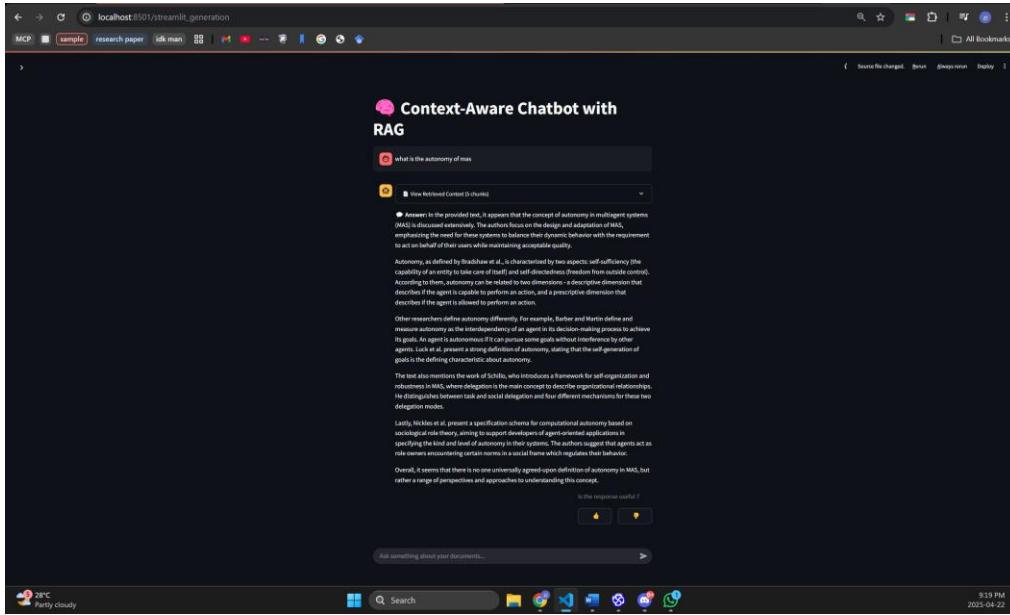


Figure 4.19: The document chat interface (response)

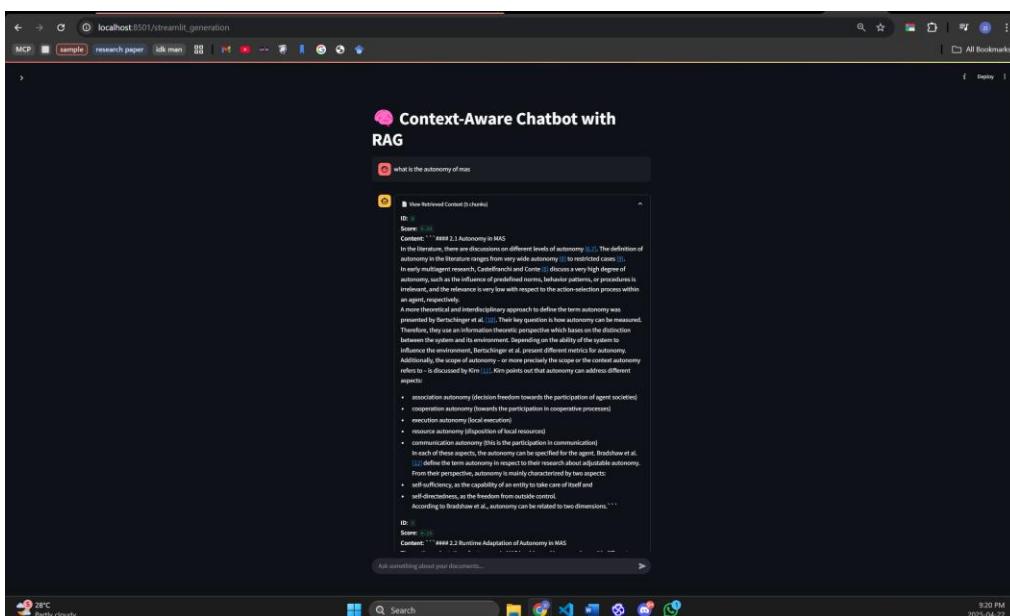


Figure 4.20: The document chat interface (relevant chunks)



Figure 4.21: The system setting interface

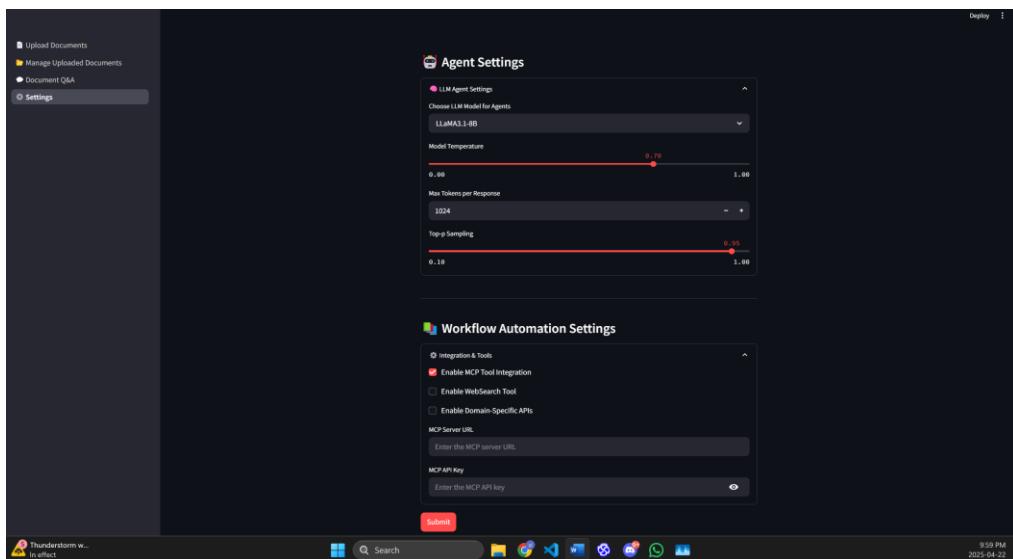


Figure 4.22: The system setting interface (toggle MCP services)

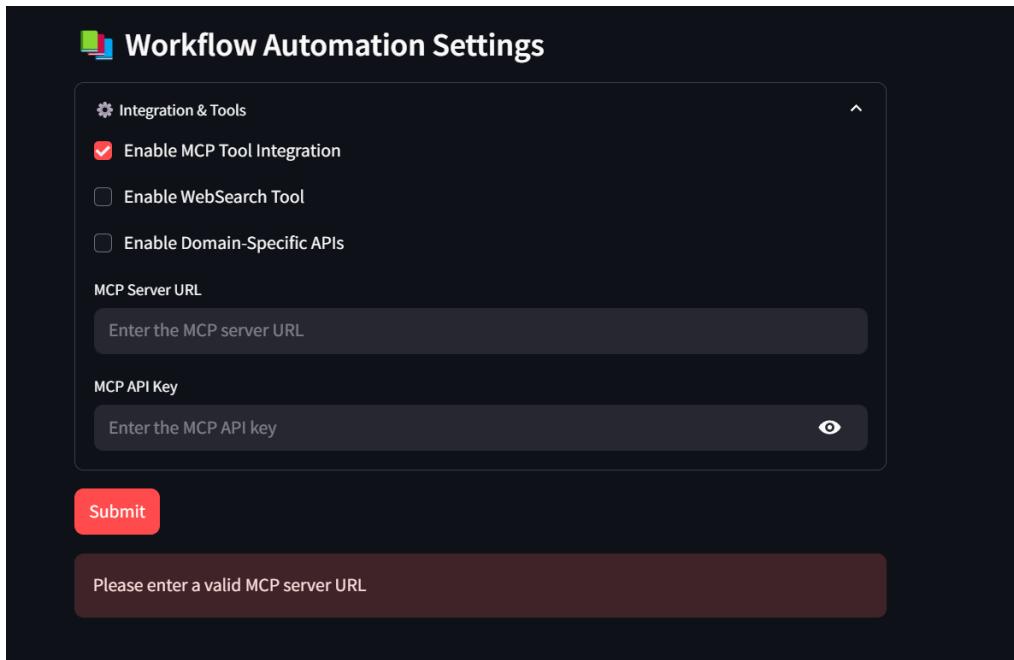


Figure 4.23: Error message when invalid MCP server detail input

CHAPTER 5

SYSTEM DESIGN

5.1 Introduction

This section will discuss the overall system design, including system flow from user query to the backend database and how the user query is processed and transported to each node. Moreover, this section will also discuss different technical components and their roles in supporting the workflow, as well as the database schema, to provide a comprehensive overview of the system architecture.

5.2 System flow

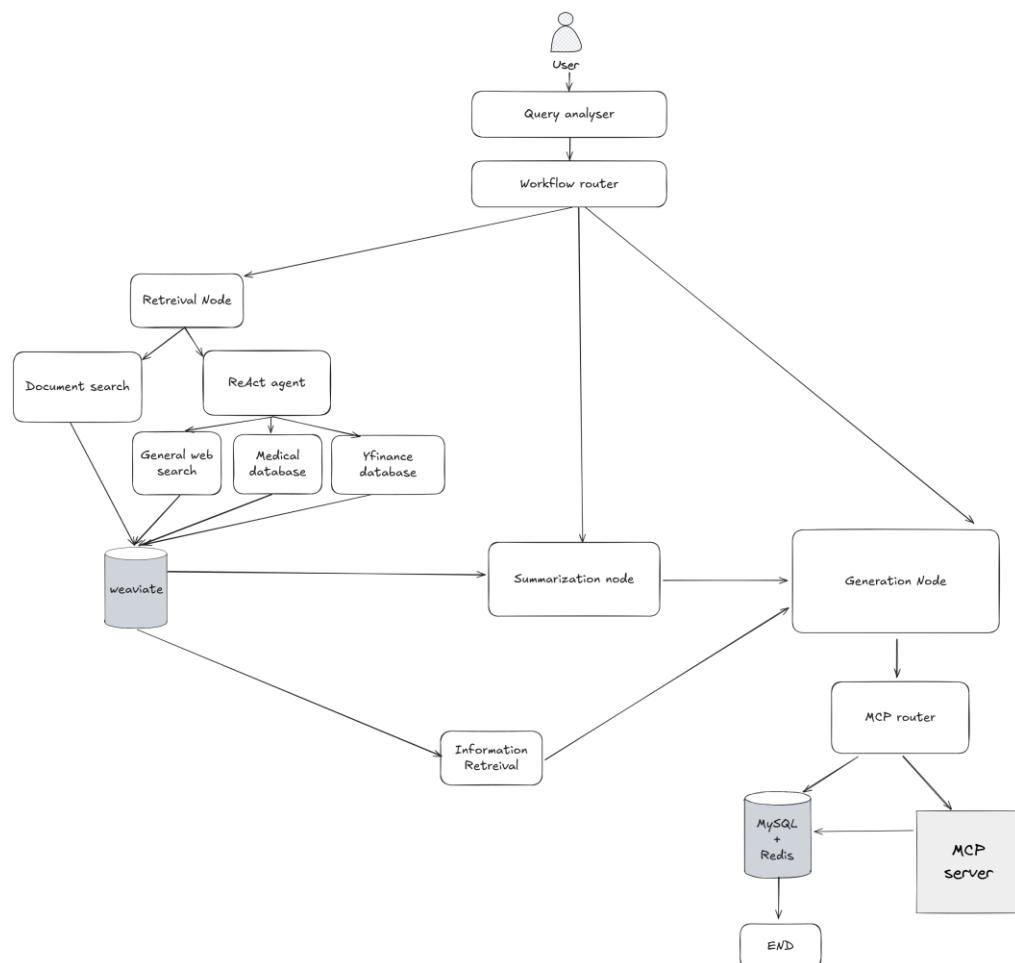


Figure 5.1: System flow

The system flow diagram illustrates the backend flow of the system, beginning with the user sending a request to the backend. The first component that processes the user request is the query analyser. The query analyser will analyse if the query is a follow-up question, if the query is a follow-up question or contains some ambiguous wording like “that”, “last-message”, or “it” that is referring to the last message, the query will be rewritten based on the message history to be more specific and searchable. For example, for a query like “what does that mean,” the query analyser will transform the query into “more detail about machine learning” if the history is related to a machine learning topic. Next, the query analyser will pass the process query to the workflow router, which will identify the most suitable task for the user query for a request that can be simply answered by the LLM's knowledge. The system will route the request to the generation node to generate a response, skipping the retrieval part for simple requests. For the document summarization request, the router will pass the request to the summarization node, which will detect the relevant document inside the database to extract the 5 most relevant chunks that can represent the document the most, then summarize the extracted chunks before passing the summary of the chunks to the generation node for the final explanation. For request that needs the latest information to support or need support information from the uploaded document that cannot be answered accurately with the knowledge base of LLM, the router will route the request to the retrieval node, which will retrieve relevant information from various sources, such as documents and external sources. Then, the relevant information will be passed into the generation node to achieve the RAG core functionality and to ensure the response is based on grounded information.

For the external search, the system employs a ReAct agent to dynamically route the retrieval request to the most suitable external search path that is most likely to provide relevant information. Three external search sources will be wrapped into tools that will pass into the ReAct agent for dynamic tool selection, including a general web search that will pass the query to the web search engine to scrape the top 5 most relevant web pages' content, then perform preprocessing and hybrid retrieval to get the most relevant information from the general web search engine. Next, the external search will connect to a medical

database source, where it will scrape the article content from the PubMed database for requests related to medical knowledge. Lastly, the external search will connect to yfinance new website, which will allow the system to fetch the latest finance or business news from Yahoo Finance page. This approach can ensure the system not only can retrieve relevant content from user-uploaded documents but also allows the system to fill the knowledge gap with the latest information from different internet sources.

After generating the response, the system will route the request query to the MCP, which the system will check if the user query contains any request about document processing, such as “create a document about machine learning” and “add content into the document machine learning.docx”. If the intent is detected, the system will start to execute the document process operation by creating a ReAct agent with all of the tools provided by the MCP server. Then the system will start to execute all of the needed tools to fulfil the user document processing requirement with the support of the generated response from the generation node.

5.3 Operation mode

This system offers two operation modes for two different workflows, which are personal and organizational workflows. First, the personal workflow will allow the user to upload and manage their document as well as change the system configuration that will only affect the system configuration of that particular user. The document storage for personal mode is fully separate among different users so that users are unable to retrieve information from documents that is not uploaded by themselves. This operation mode aims to maximize the flexibility of the system for individual users who just wish to use this system in a standalone machine.

For the organization mode, the user will be separated into two roles, which are admin and user. In this mode, only the admin will be allowed to upload, manage the document in the database, and change the system configuration used in the current flow. The uploaded document will be a shared document, which every user who has the role of user will be allowed to retrieve. Admin also has a function to manage users via CRUD operation, which will be

the only way for the system in organization mode to create new users. As for the user, they are only allowed to do two things, which are to view the document currently available in the database and perform document Q&A via the main chat interface that will perform the system flow. This approach is aimed to suit the server-client workflow where the backend server will act as a centralized knowledge base that will store all of the necessary files, allowing the system to essentially become an organization's document enquiry that can reduce the time taken for information searching and document processing.

5.4 System Architecture Components

5.4.1 FastAPI

FastAPI is a modern, high-performance web framework for building APIs with Python. It is designed with speed and scalability, which FastAPI is built to handle large numbers of requests effectively. In this system, FastAPI will be the backbone of this project, which it will be used to create api endpoint for all of the backend functionality of the system, such as preprocessing, graph workflow and user authentication. FastAPI is also crucial in making the system responsive, as it provides WebSocket functionality that will be used for real-time processing feedback and also to create a “streaming” effect for the generation node responses, making the system more responsive to user input.

5.4.2 React

React is a widely used, open-source JavaScript library developed by Facebook, designed to build dynamic and interactive user interfaces. React provided a platform that allows developers to build a user interface with modular components that can be used to develop a complex frontend system. Additionally, React also supports a wide range of UI frameworks and libraries that allow for rapid prototyping for a user-friendly interface. In this project, React is used to develop the frontend component, which is the main entry point for the user to interact with the system, ensuring a seamless and interactive experience for the user.

5.4.3 Weaviate

Weaviate is an open-source vector database that is designed for the storage of a high volume of vector embedding. Weaviate provides Docker deployment options that can be accessed without needing to be online. Additionally, the embedding can also be stored along with extra metadata, which can allow filtering operations. In this system, Weaviate will be used to store the vector embedding data generated from the nomic embedding model that converts text chunks into vector representations. Moreover, Weaviate also provides a built-in hybrid retrieval method that uses BM25 for keyword-based search and a dense search algorithm, which will be fed into a fusion algorithm that will calculate the relevancy and combine results from both search algorithms, making the retrieval component more flexible for different types of queries.

5.4.4 MySQL

MySQL is a lightweight, open-source relational database management system (RDBMS) that is widely adopted for web applications and enterprise systems due to its stability, speed, and reliability. It offers a strong, quick, and dependable method for handling significant amounts of data in an organized way. In this system, a MySQL database will be used as the secondary database, while the vector database is specialized for storing and retrieving high-dimensional text embeddings. MySQL is responsible for managing the broader system data that is essential for application functionality. For example, MySQL will also be used to store the user information for the authentication module, document information that is uploaded by the user, and the chat history for the user for persistent usage. Thus, MySQL's robust database features and ability to scale well make it a perfect choice as the secondary database in this project

5.4.5 Redis

Redis is an open source, in-memory cache system that is popular because of its reliability and lightning-fast data operation speed, while having the ability to scale to millions of messages, making it a very popular choice among different types of systems, such as web applications and speed-sensitive applications. In this system, Redis will be used to store two data, which are user authentication

tokens and chat history. For user authentication, this can ensure the user token can be fetched with minimum delay, with a given time-to-live that will eliminate the need for manual cleanup. For the chat history, this can ensure chat history can be fetched very quickly to pass into system operation to let the generation module refer to previous history, ensuring the generation module can get all the context it needs. Thus, Redis will be used in this system as the third database to store data that is time sensitive.

5.5 Database schema design

5.5.1 MySQL database schema

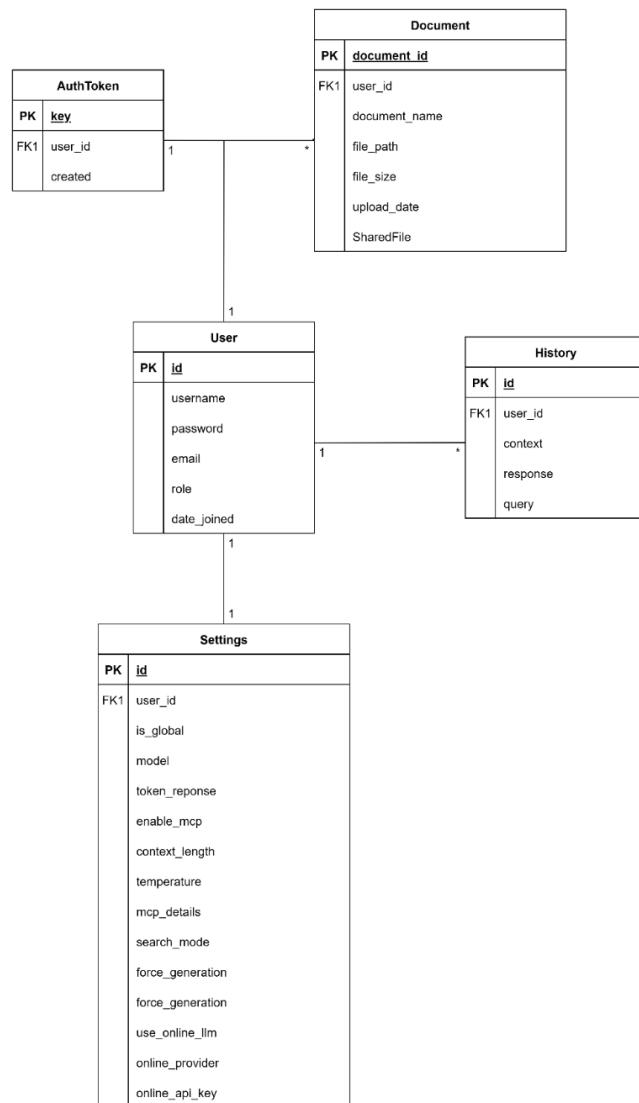


Figure 5.2: MySQL Entity Relationship Diagram

Table 5.1: MySQL database schema

Table	Description
User	This table is used to store all user information, including username and password, that will be used for authentication, and the role that will be utilized in access control
AuthToken	This table is used to store a unique JWT-based token based on different users and sessions to increase the security of the system
Settings	This table is used to store users' settings based on different user IDs, including the model used, the maximum token for response, and enable MCP component. If the deployment mode is set to organization, the only user setting that will be used is based on the value of is_global, which will be used if the value is True
History	This table is used to store users' chat history, including the context, generated context and query.
Document	This table is used to store all of the information about the document store uploaded and the related user for the document

5.5.2 Weaviate database schema

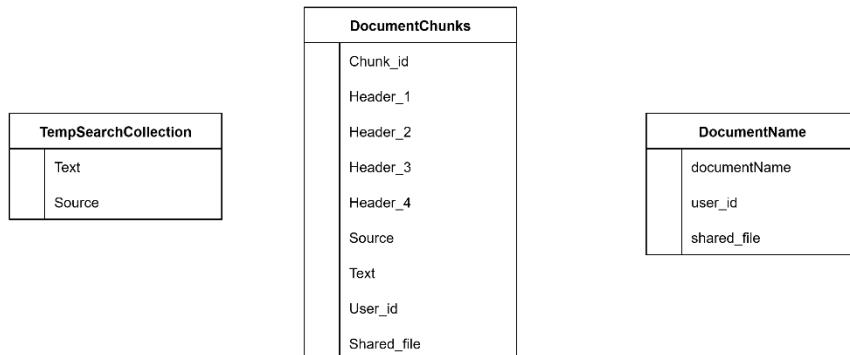


Figure 5.3: Weaviate Entity Relationship Diagram

```

Qodo Gen: Options | Test this function
def CreateTempCollection():
    try:
        client.collections.create("tempSearchCollection",
        vectorizer_config=wvc.config.Vectorizer.text2vec_ollama(model="nomic-embed-text:latest", api_endpoint="http://host.docker.internal:11434"))
    except Exception as e:
        print(f"Error: {e}")
        # client.close()

if not (client.collections.exists("DocumentName")):
    client.collections.create(
        "DocumentName",
        properties=[
            wvc.config.Property(
                name="documentName",
                data_type=wvc.config.DataType.TEXT,
                description="The main content chunk"
            ),
            wvc.config.Property(
                name="user_id",
                data_type=wvc.config.DataType.TEXT,
                description="the user_id document associate"
            ),
            wvc.config.Property(
                name="shared_file",
                data_type=wvc.config.DataType.BOOL,
                description="value determine public file",
            )
        ],
        # assume the weaviate database is running on docker instance
        vectorizer_config=wvc.config.Vectorizer.text2vec_ollama(model="nomic-embed-text", api_endpoint="http://host.docker.internal:11434")
    )

if not (client.collections.exists("DocumentChunks")):
    client.collections.create(
        "DocumentChunks",
        properties=[
            wvc.config.Property(
                name="text",
                data_type=wvc.config.DataType.TEXT,
                description="The main content chunk"
            ),
            wvc.config.Property(
                name="Header_1",
                data_type=wvc.config.DataType.TEXT,
                description="First level header",
            ),
            wvc.config.Property(
                name="Header_2",
                data_type=wvc.config.DataType.TEXT,
                description="Second level header",
            ),
            wvc.config.Property(
                name="Header_3",
                data_type=wvc.config.DataType.TEXT,
                description="Third level header",
            ),
            wvc.config.Property(
                name="Header_4",
                data_type=wvc.config.DataType.TEXT,
                description="Fourth level header",
            ),
            wvc.config.Property(
                name="Source",
                data_type=wvc.config.DataType.TEXT,
                description="source of chunk",
            ),
            wvc.config.Property(
                name="chunk_id",
                data_type=wvc.config.DataType.TEXT,
                description="chunk id",
            ),
            wvc.config.Property(
                name="user_id",
                data_type=wvc.config.DataType.TEXT,
                description="user that associate with the name",
            ),
            wvc.config.Property(
                name="shared_file",
                data_type=wvc.config.DataType.BOOL,
                description="value determine public file",
            )
        ],
        # assume the weaviate database is running on docker instance
        vectorizer_config=wvc.config.Vectorizer.text2vec_ollama(model="nomic-embed-text", api_endpoint="http://host.docker.internal:11434")
    )
    print("database created")
else:
    return

```

Figure 5.4: Weaviate database scripts

Table 5.2: Weaviate collection schema

Collection	Description
DocumentChunks	This collection is used to store all of the chunks from the user-uploaded document, with some

	additional information that will be used in the retrieval module, such as header information and source of the chunks
DocumentName	This collection is used to store all of the documents uploaded to the vector database
TempSearchCollection	This collection is used by all external search tools, including GeneralWebSearch, MedicalDatabase, and FinanceNews modules. This collection will be initialized every time the external search is invoked and will be deleted after the processing is finished.

CHAPTER 6

SYSTEM IMPLEMENTATION

6.1 Introduction

In this section, a snippet of the actual working product will be provided and explain which a detailed description of all system components, such as user authentication, file management, and chat function. setting the interface and user management interface to provide a clear view of how the system operates as a working product.

6.2 Software setup

```

> Run All Services
services:
> Run Service
weaviate:
  command:
    - --host
    - 0.0.0.0
    - --port
    - '8001'
    - --scheme
    - http
  image: cr.weaviate.io/semitechologies/weaviate:1.31.3
  ports:
    - 8001:8001
    - 50051:50051
  volumes:
    - weaviate_data:/var/lib/weaviate
  restart: on-failure
  environment:
    QUERY_DEFAULTS_LIMIT: 25
    AUTHENTICATION_ANONYMOUS_ACCESS_ENABLED: 'true'
    PERSISTENCE_DATA_PATH: '/var/lib/weaviate'
    ENABLE_API_BASED_MODULES: 'true'
    ENABLE_MODULES: 'text2vec-oilama,generative-oilama'
    CLUSTER_HOSTNAME: 'node1'

> Run Service
redis:
  image: redis:latest
  container_name: redis_memory
  ports:
    - "6379:6379"
  command: ["redis-server", "--maxmemory", "512mb", "--maxmemory-policy", "allkeys-lru"]
  restart: always

> Run Service
mysql:
  image: mysql:8.0
  container_name: mysql_db
  restart: always
  environment:
    MYSQL_DATABASE: fyp
    MYSQL_USER: app_user
    MYSQL_PASSWORD: 123123
    MYSQL_ROOT_PASSWORD: RootPass123
    MYSQL_ROOT_HOST: "%"
  ports:
    - "3306:3306"
  command: --default-authentication-plugin=mysql_native_password --character-set-server=utf8mb4 --collation-server=utf8mb4_unicode_ci
  volumes:
    - mysql_data:/var/lib/mysql
  healthcheck:
    test: ["CMD", "mysqladmin", "ping", "-h", "127.0.0.1"]
    interval: 10s
    timeout: 5s
    retries: 3
    start_period: 30s

volumes:
  weaviate_data:
  mysql_data:

```

Figure 6.1: docker-compose scripts

The system requires three external dependencies for the databases used in this system, including Redis, MySQL, and Weaviate. To utilize these services, this

system uses docker compose, which simplifies deployment and ensures consistency across development and production environments. A docker-compose file is created with the scripts above that specify the service's port, environment variable and the image version used.

The Weaviate is deployed as a vector database service using the cr.weaviate.io/semitechnologies/weaviate:1.31.3 image, which is the official Docker image release by the development team of Weaviate. It is configured to listen on port 8001 for API requests and port 50051 for gRPC communication. The setup enables API-based modules used in this system to fetch and write into the Weaviate database.

The Redis service is built with the latest official Redis Docker image that will be deployed on port 6379 and run with specify command that will set the memory settings use for the Redis service

Lastly, MySQL is deployed using the mysql:8.0 image that is configured to listen on port 3306 along with standard application user (app_user) and password authentication. Additionally, the character encoding is set to utf8mb4 with collation utf8mb4_unicode_ci to support multilingual data processing.

6.3 Log in & Register module

This system uses a standard access control where every user needs to register an account to prevent any unauthorized access to the document chat information. The only difference is that this system has two types of deployment mode, which is personal and organization deployment modes. Where the personal workflow is for individual who deploy this system on their personal computer, and the organization deployment mode is for client-server deployments

```
DEPLOYMENT_MODE = personal
```

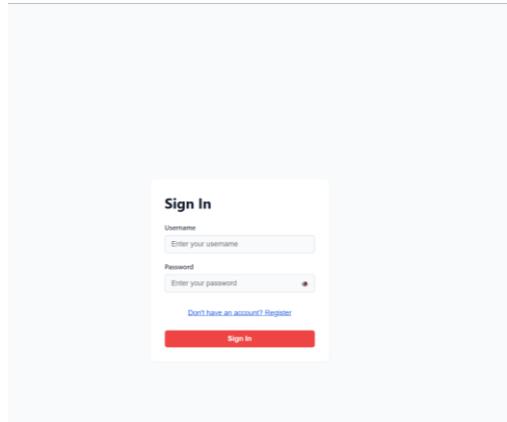


Figure 6.2: Sign in interface for personal deployment

The sign-in interface is the first interface users see when accessing the system. In this interface, user need to enter their username and the password to sign in to the actual system main interface. This interface also has a hyperlink that will take the user to the register page if their does not have an existing account.

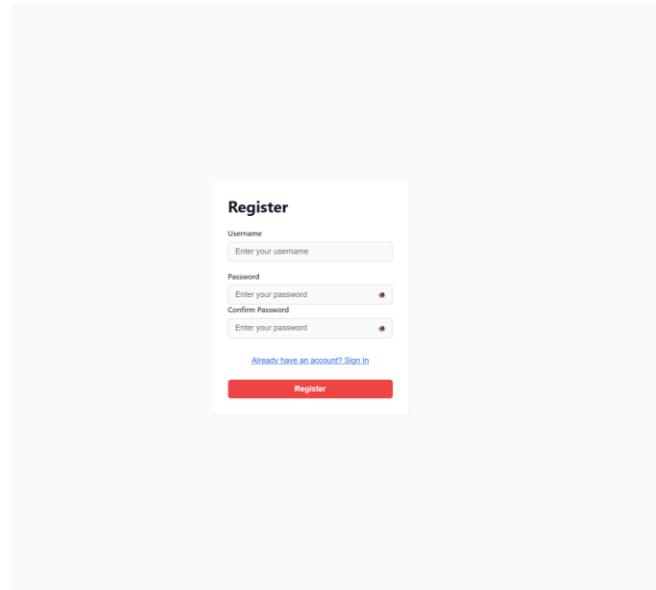


Figure 6.3: Register interface for personal deployment

The register interface is shown when the user presses the hyperlink. In this interface, the user also needs to enter their username and password that will be stored as a new user instance in the database, but in this interface user is required to enter the confirm password field to prevent any password misinput

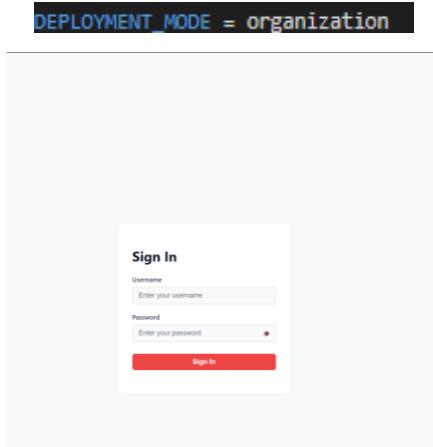


Figure 6.4: Sign in interface for organization deployment

As for the organization deployment, the user is only given the option to sign in and not register because in this workflow, the system will have two roles, which are admin and user, where only the admin can create new user accounts. Moreover, the system will create a default admin user account that allows the admin user to access the system.

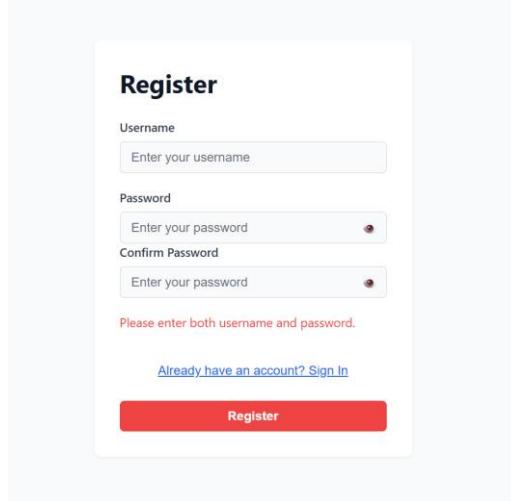


Figure 6.5: Error message

If any invalid credentials or format, such as an empty password or username, or an unmatched password, are entered into the system, the error message will be displayed under the input field in both the register and login interface

6.4 File upload & File management module

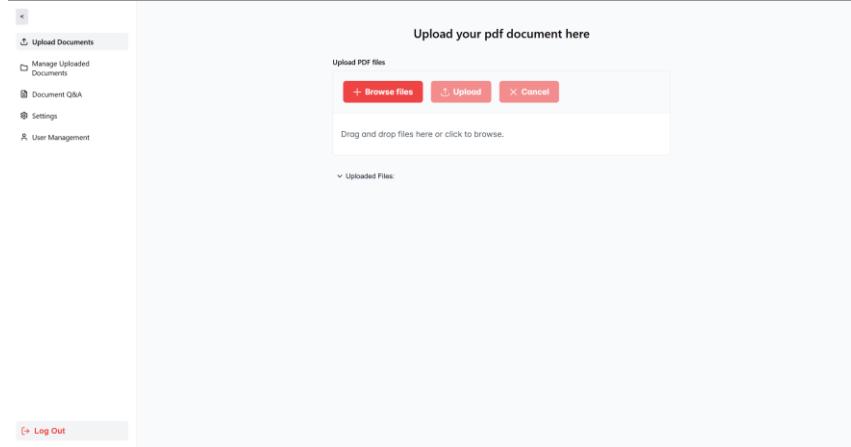


Figure 6.6: File upload interface

For every subsequent interface, a sidebar will be used to navigate to different interfaces and log back in to the sign-in interface. The File upload interface will be the first interface users see after signing in or registering, and users can upload the PDF document they want with the browse file component

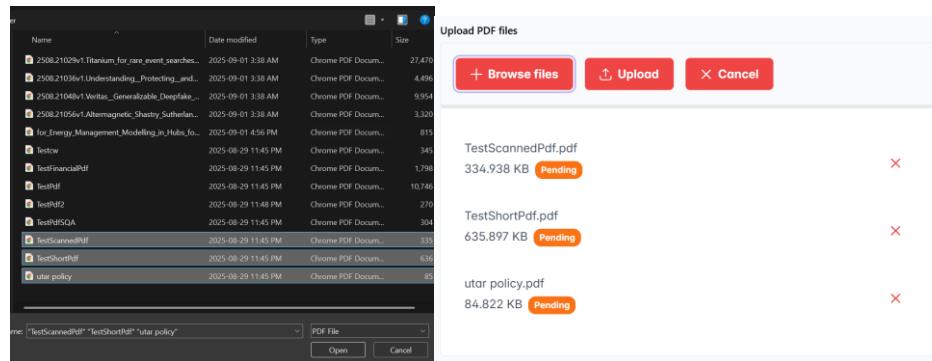


Figure 6.7: Select document to upload

After the user selects the document user, the file explorer will pop up, and the user is given the option to start or cancel the document upload process

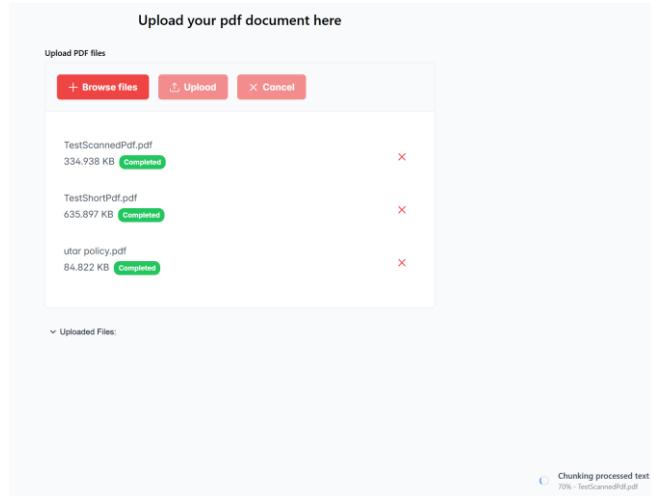


Figure 6.8: After the upload button is pressed

After the upload button is pressed, the system will initialize the upload pipeline. First, the system will store the uploaded file into the destination file system and the MySQL and Weaviate databases, and the interface will show upload completed if the upload is successful. Then, the system will start the preprocessing pipeline, where the document will be converted to a markdown file format, chunked into multiple pieces, and stored in the vector database to ensure the subsequent process can extract relevant information from the document. The preprocessing will be handled in the background, and the interface will show the progress of the document processing at the bottom right corner for a more responsive user experience.

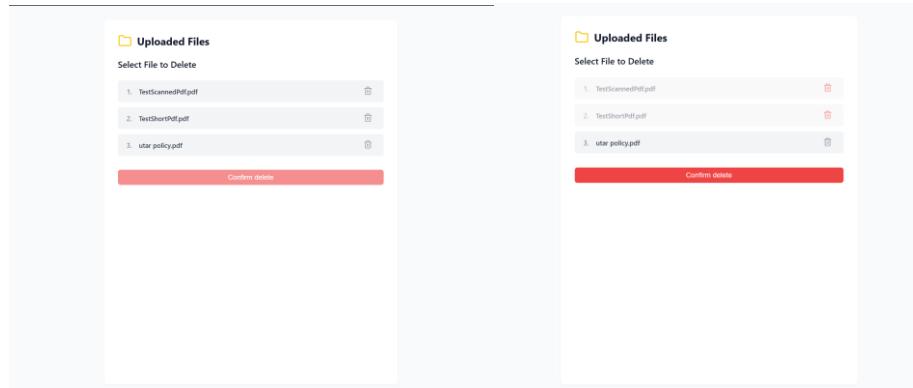


Figure 6.9: File management interface

After the user uploads their document, all uploaded and processed files will show in the file management interface. In this interface, the user can only

perform one operation: deleting the document. The user can check all the files they want to delete and press the "Confirm Delete" button to remove the document and all its content from the MySQL and Weaviate databases. For the organization workflow, the uploaded file is shared among all users with the role "user" or "admin" where "users" can fetch relevant information from the file uploaded by the admin.

6.5 Chat interface module

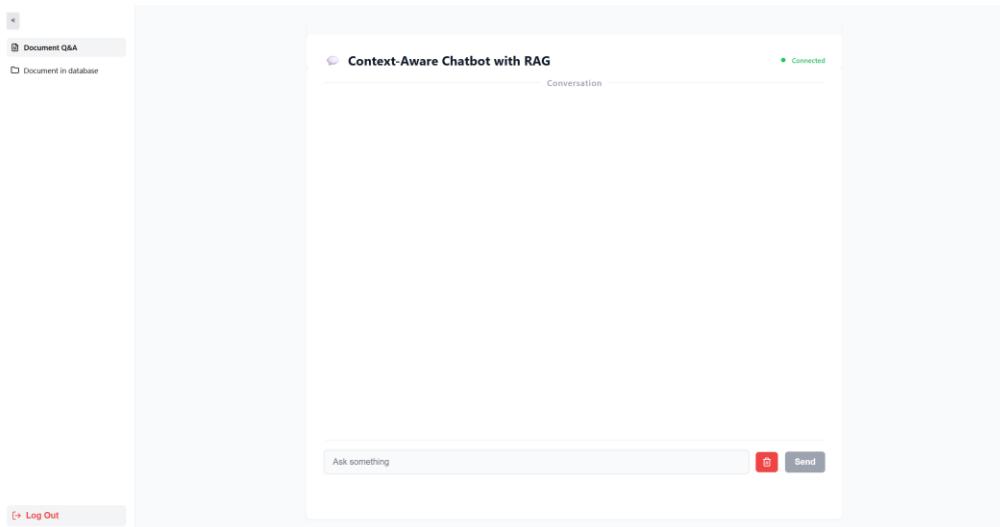


Figure 6.10: Chat interface for organization deployment

As for the account with the role user in organization deployment mode, the chat interface will be their first interface where they are only allowed to perform two operations in this system, including asking a question and viewing the available document in the database.

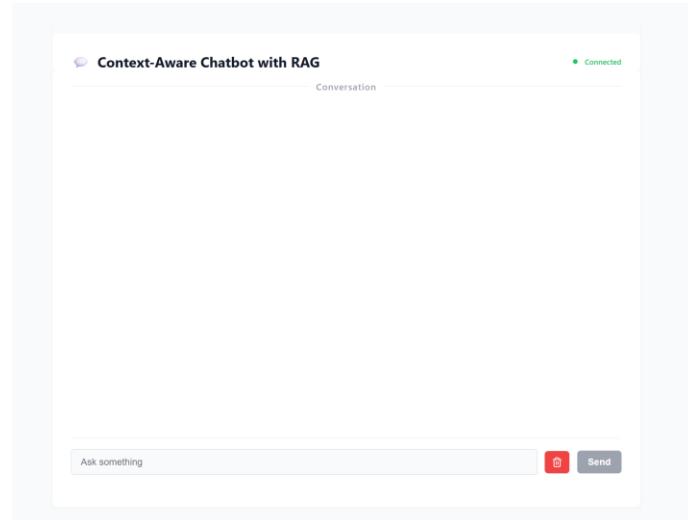
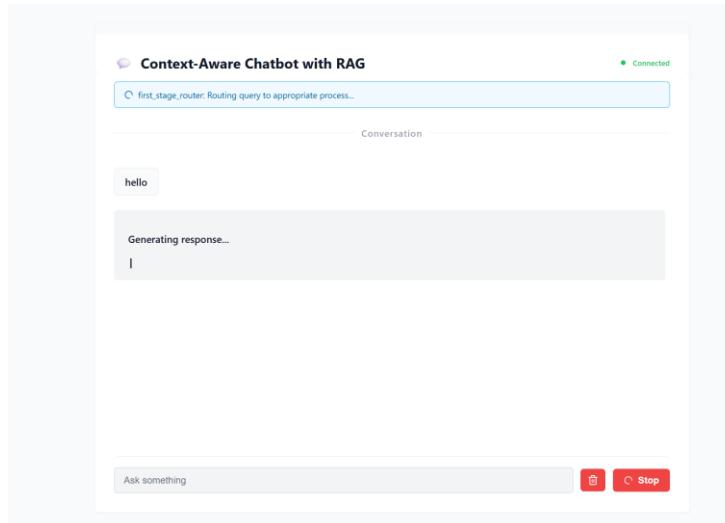



Figure 6.11: Chat interface

The Chat interface will be the main interaction point for the user and this system is designed to be as simple as possible for the user to work. In this interface, user can ask their questions, where the system will determine the best workflow to resolve the question with different processes such as retrieval, generation, and document automation, as shown in Figure 5.1.

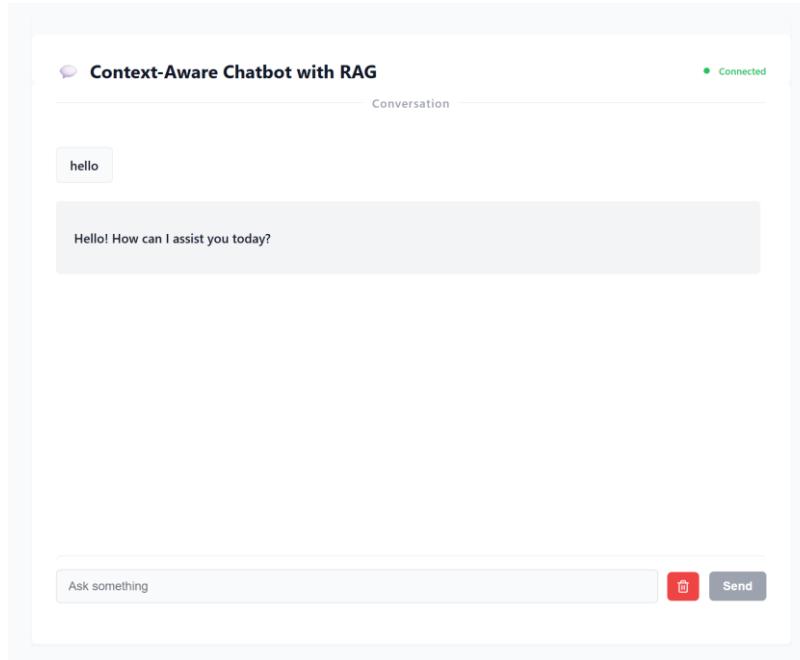


Figure 6.12: Processing user query

After the user enters the query into the system, the system will determine the most suitable workflow according to the user's query. For example, the system will route to the generation process for simple requests like a greeting, and the system will show the current progress stage at the top of the chat interface, such as the first stage router: routing the query to the appropriate workflow. After the process finishes, the system will stream the response token by token, similar to OpenAI ChatGPT. Therefore, the user does not need to wait after the full response is generated; they can see the output in real time, giving a more responsive user experience.

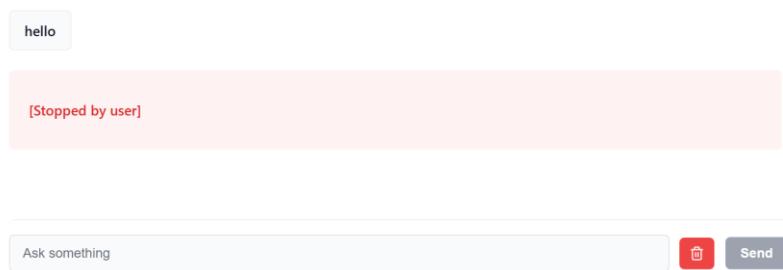


Figure 6.13: Force stop

During any stage before the full response is generated, users are allowed to stop the system process by pressing the stop button, which will stop all processes of the system and allow the user to enter a new query.

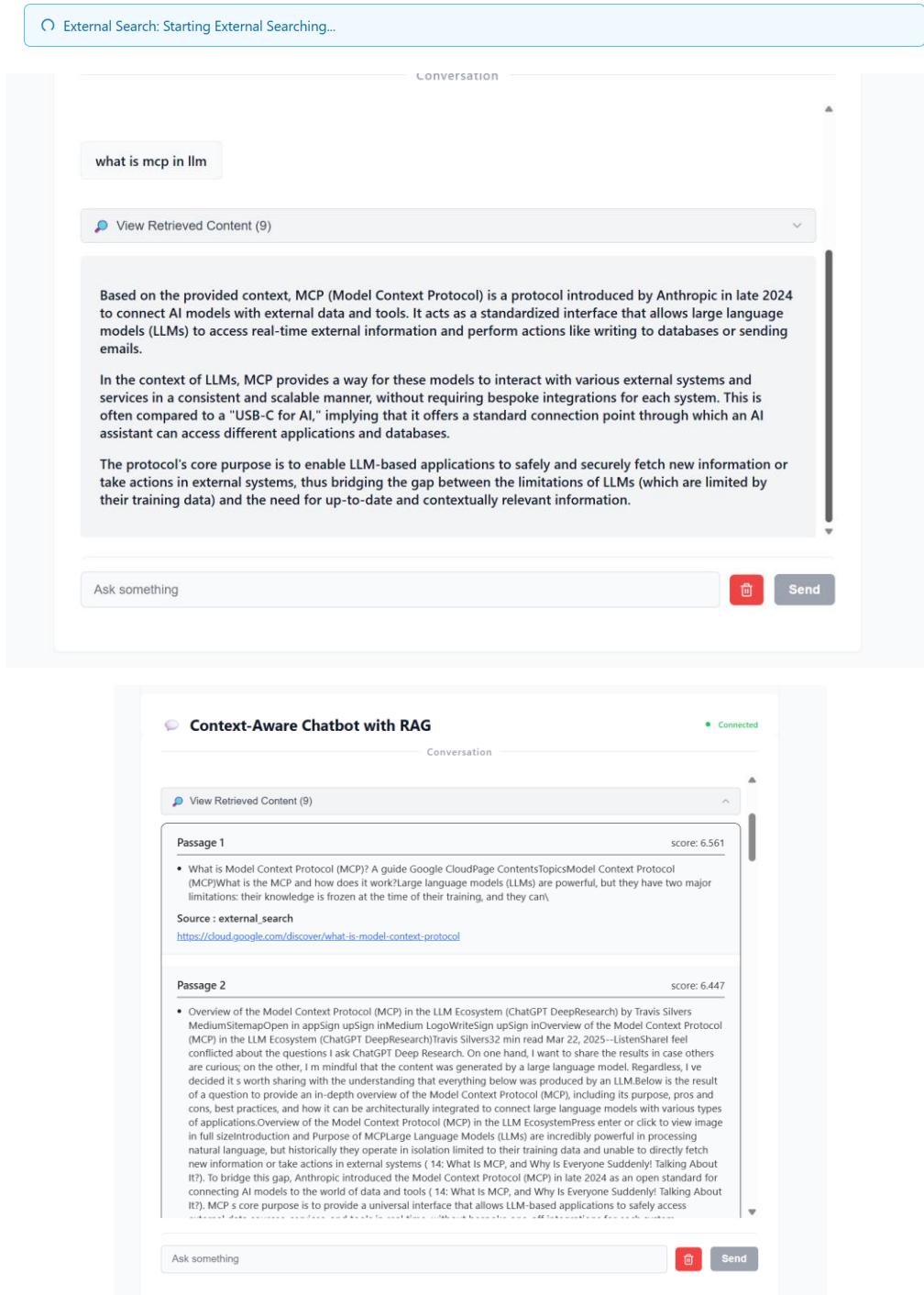


Figure 6.14: Retrieval workflow

When the user query requires additional information to support the generation, the system will initiate the retrieval process depending on the user's settings. If the user chooses to retrieve from the internet in the setting, the system will scrape the information from the relevant websites or database and use it for response generation and return the relevant information to the frontend interface. Otherwise, the system will initialize the document search process that will fetch all relevant chunks or information from the deviate database with hybrid retrieval. Thus, the user can see the relevant information in the dropdown menu in the interface while the response is being generated

Figure 6.15: Unrelated query inserted

If the system fails to retrieve relevant information from the vector database. The system will not elaborate on the wrong response, and it will suggest that the user switch the retrieval source, ensuring the response generated is fully based on grounded information.

The screenshot shows a user interface for summarizing a document. At the top, a blue header bar contains the text "Summarizing passage: summarizing passage 5". Below this is a "Conversation" section with a "summarize the content in utar policy" button. A "View Retrieved Content (4)" button is shown, leading to a detailed view of "Passage 1". The passage content is as follows:

Passage 1 score: N/A

- This passage outlines the procedures and requirements for applying for a sabbatical leave at Universiti Tunku Abdul Rahman. The policy emphasizes that an application must be submitted at least three months prior to the intended start date, ensuring adequate time for review and planning. The application process includes several key documents such as letters from supervisors on postgraduate studies progress (if applicable), statements of assurance from sponsors confirming facility availability, indication of funding sources, and a statement detailing contributions made by the staff member during their sabbatical leave. The policy also specifies that each application must be evaluated by the Dean/Director/Head who will conduct an assessment based on certain criteria. A minimum score point of 1 is required for eligibility. If approved, provisions need to be made to cover the teaching duties of the applicant while they are away. The application then undergoes a multi-step process: it is submitted with recommendations from the Head and Dean/Director to IPSR (Institutional Planning and Strategy Review) for verification before being forwarded to DHR (Human Resource Department). Only fully completed forms, supported by all necessary documents, will be accepted. This rigorous process ensures that sabbatical leave applications are thoroughly evaluated and managed in a structured manner, while also safeguarding the continuity of teaching and research

Source : passage 1

Below this, another "summarize the content in utar policy" button is shown, followed by a "View Retrieved Content (5)" button. The content summary is as follows:

This comprehensive summary covers the key points and themes from the provided summaries:
 The book likely discusses policies and procedures related to sabbatical leaves at Universiti Tunku Abdul Rahman (UTAR), with a focus on detailed application processes, evaluation criteria, and administrative steps. The policy outlines that applications must be submitted at least three months in advance, accompanied by various supporting documents such as letters from supervisors, statements of assurance, funding sources, and contributions made during the leave period. These applications are evaluated based on specific criteria by the Dean/Director/Head, with a minimum score point required for approval.
 The policy also addresses provisions to cover teaching duties while staff members are on sabbatical leave and outlines a multi-step process involving IPSR (Institutional Planning and Strategy Review) and DHR (Human Resource Department). Only fully completed forms supported by all necessary documents will be accepted, ensuring thorough evaluation and management of the application process.
 Additionally, the book may include statistics or data tables summarizing research funding and publication outcomes at UTAR. For instance, it details external research grants, with specific breakdowns for amounts less than RM20,0, as well as international journal publications indexed in ISI Web of Science or other recognized databases. This information provides insights into the

At the bottom, there is an "Ask something" input field and a "Send" button.

Figure 6.16: Document summarization

When the system detects a summarization keyword together with a matching document name in the document name vector database, the system will automatically initiate the summarization workflow. In this workflow, the system will fetch the 5 most relevant passages from the document and summarize the passage content one by one, and send the summarized passage content to the frontend. After summarizing all of 5 passages, the system combines the summarized content, analyses it in context, and generates a final comprehensive explanation of the overall document.

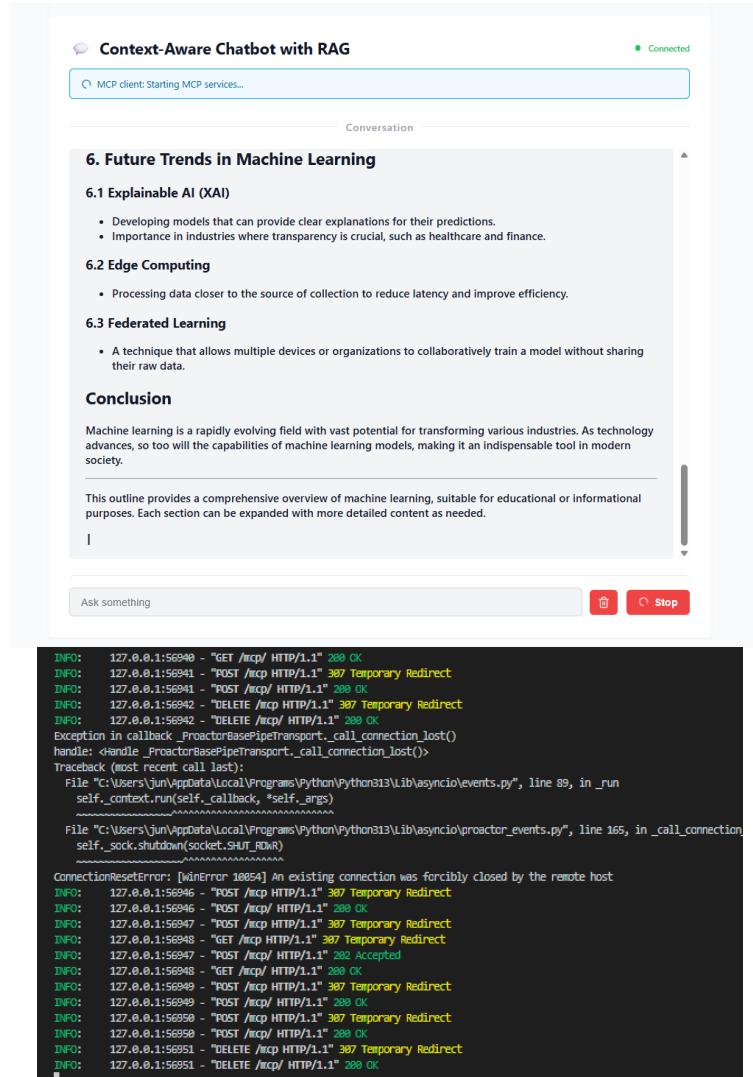


Figure 6.17: MCP server terminal

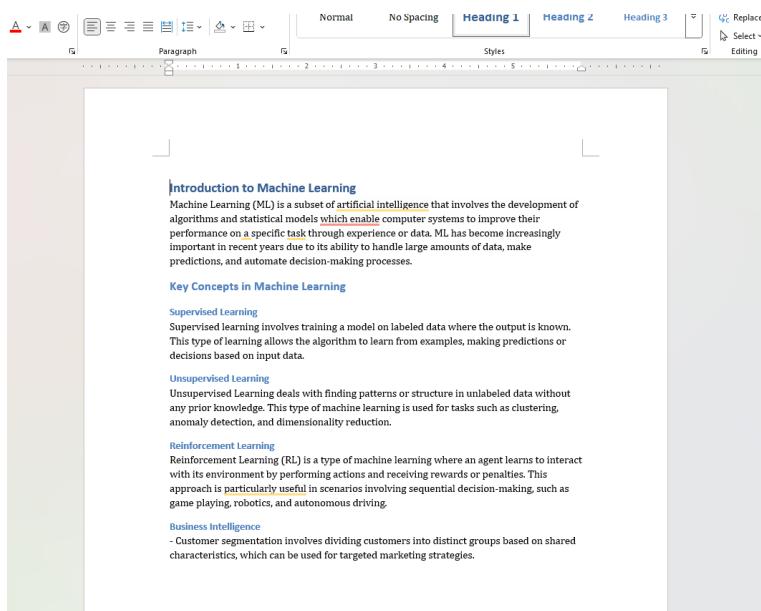


Figure 6.18: Word document generated

After the final response is generated, the system re-analyses the user query to check whether it contains a document-related operation, such as creating a new document or adding content to an existing one. If detected, the system will initialize the document automation workflow. In this workflow, the system will communicate with the external MCP server that provides access to various tools for document processing. Based on the query, the system invokes the necessary tools through the MCP server to execute the required document automation tasks.

		id	query	context	response	user_id
<input type="checkbox"/>		2	hello	[]	Hello! How can I assist you today?	3
<input type="checkbox"/>		3	summarize testsqa	[]	It seems there was a brief greeting exchange, but ...	3
<input type="checkbox"/>		4	summarize testpdf	[]	It seems like you're asking for a summary of a doc...	3
<input type="checkbox"/>		7	summarize utar policy	[{"text": "This section of the policy outlines the..."}]	### Comprehensive Summary The book covers multip...	3
<input type="checkbox"/>		8	hello	[{"text": "#### *4.3. Re-Ranking* \nRe-ranking re..."}]	Hello! It seems like you're just saying "hello," w... I don't know based on the provided context.	3
<input type="checkbox"/>		9	something	[{"text": "ed region in which the optimal altitude..."}]	The g...	3
<input type="checkbox"/>		10	anything	[{"text": "#### Loans and receivables \nTrade rec..."}]	I don't know based on the provided context. The gi...	3
<input type="checkbox"/>		11	something	[{"text": "ed region in which the optimal altitude..."}]	I don't know based on the provided context. The gi...	3
<input type="checkbox"/>		30	summarize the content in testpdf2	[]	## Machine Learning: An Introduction	3
<input type="checkbox"/>		31	create a document about machine learning	[]	## What is ...	3

```
[{"type": "human", "content": "what are the terms and conditions for taking a leave?"}, {"type": "human", "content": "hello"}, {"type": "ai", "content": "Hello! How can I assist you today?"}, {"type": "ai", "content": "Based on the provided context, here are the terms and conditions for taking a sabbatical leave:\n1. **Discharge of Responsibilities**: Staff must discharge their teaching and other responsibilities for the year before taking sabbatical leave.\n2. **Timing**: Sabbatical leave is normally taken at the beginning of a semester to avoid interrupting scheduled teaching duties.\n3. **Salary**: The staff member continues to draw full basic salary during the period of sabbatical leave, but no additional allowances are provided by the University.\n4. **Remunerative Employment**: Staff on sabbatical leave may not accept remunerative employment without written consent from the University; fellowships or similar stipends are excluded."}]
```

Figure 6.19: Chat History Store In Databases

After finishing one chat response, the content of the chat session will be stored in two databases, which are MySQL for long-term storage and Redis for short-term storage. The history store in MySQL will be used to ensure the previous chat can be fetched even if the user logs out or goes to a different interface. Meanwhile, Redis is leveraged for its fast retrieval capabilities, allowing the generation module to access recent conversation history quickly. To prevent context overload, only the last three conversation entries are stored in Redis, ensuring that responses remain both efficient and contextually accurate.

6.6 Settings module

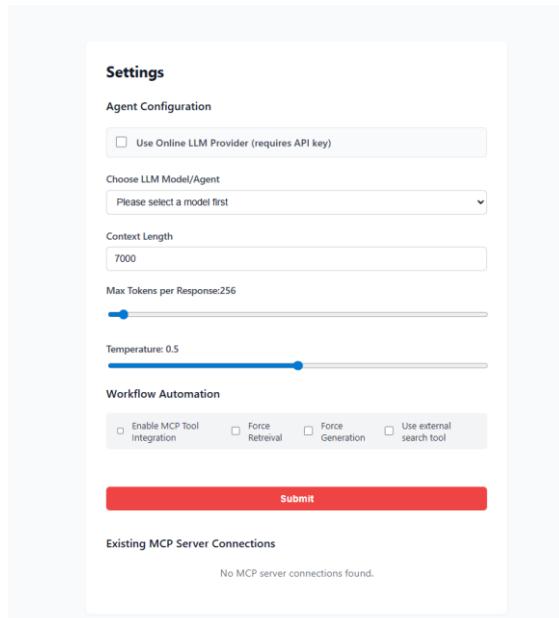


Figure 6.20: Setting interface

The setting module will allow the user to customize various component configurations of the system, including the LM model used, context length limit, output token limit, temperature, and workflow configuration.

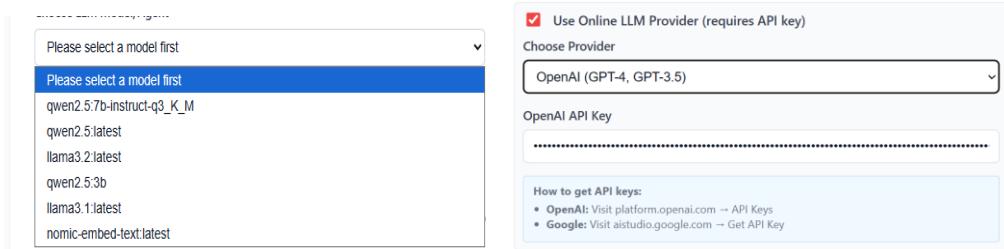


Figure 6.21: LLM configuration

For the local model, the system will detect all of the Ollama LLM models in the system, and the user can choose the LLM model to use in this system. But the system also allows users to integrate an external LLM connection via API, where users can check the use online LLM provider option, and they can choose to use either the OpenAI model or the Gemini model in this system.

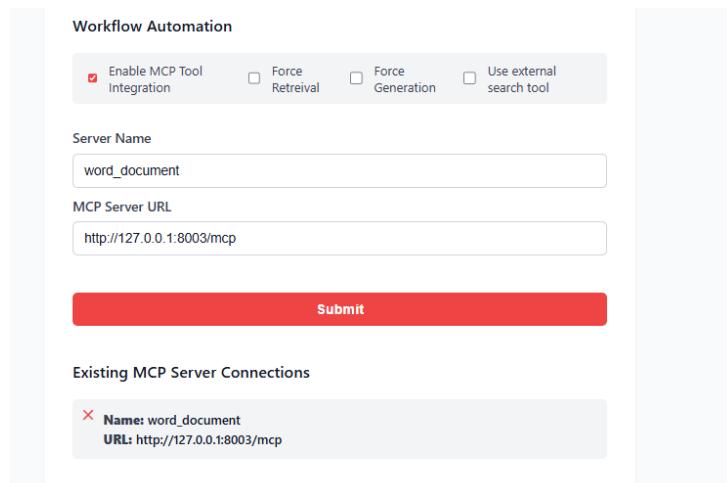


Figure 6.22: MCP Server configuration

To enable external document workflow, the user can check the Enable MCP Tool Integration option in the settings. Once enabled, the system displays an input field where the user can enter the MCP server URL to establish a connection via HttpStreamable. After creating a new server connection, the list of connected servers will show at the bottom of the settings interface, and the user can delete if needed.

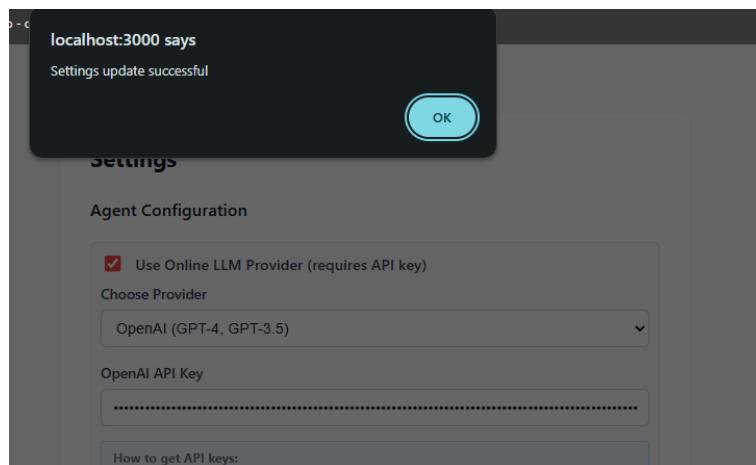


Figure 6.23:Setting submitted

After the user completes their setting changes and submits them, the system will display a confirmation message indicating that the update has been successfully applied. This notification ensures that the user is clearly informed of the successful update.

6.7 User management module

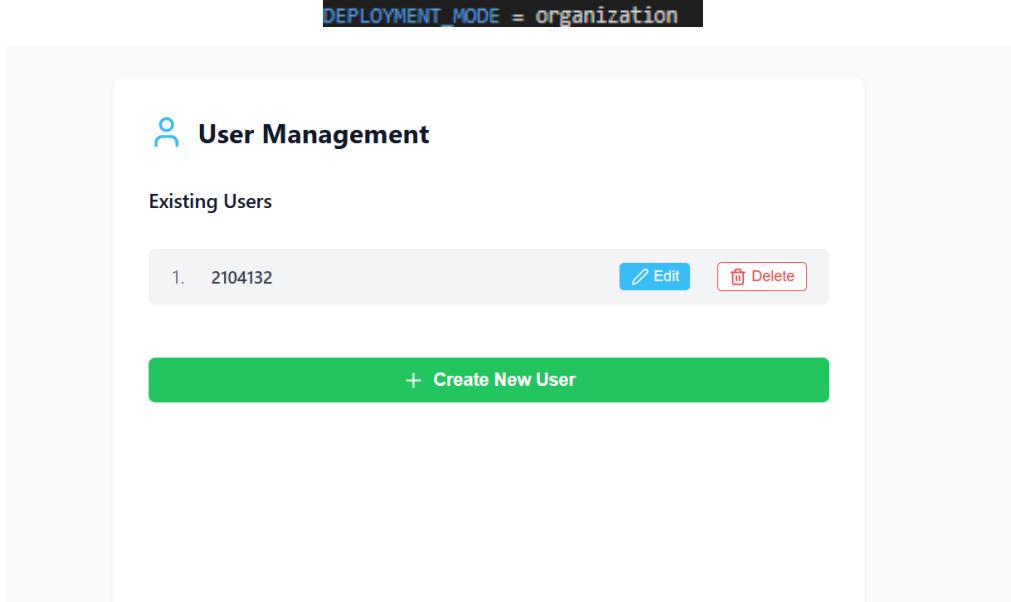


Figure 6.24: User management interface

For the organization workflow, the account with the role admin will have a new interface option, which is the user management interface. In this interface, the admin can see all of the users in this system and perform CRUD actions on the users.

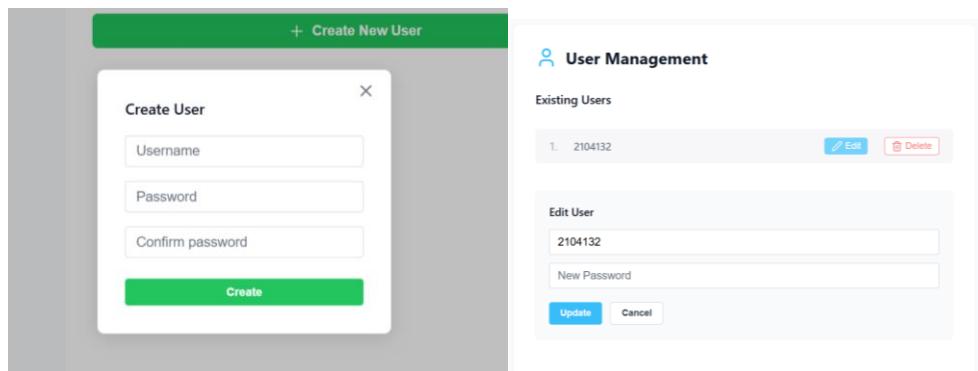


Figure 6.25: CRUD operation for user management

The admin can create a new user, update the information about an existing user and delete any user. When any of the options is chosen, the system displays an input form where the admin can enter the required details to apply the changes.

CHAPTER 7

SYSTEM TESTINGS AND DISCUSSION

7.1 Discussion

Figure 7.1: Segment of SQuAD on hugging face

To evaluate the performance of the two-core component in this system, which includes the retrieval and generation components. The performance of the component is evaluated with the Stanford Question Answering Dataset (SQuAD), a popular benchmark dataset for measuring question-answering systems. The SQuAD dataset contains passages from various Wikipedia articles with provided questions and golden answers to the questions, making it suitable for the evaluation of the retrieval and the generation components in this system.

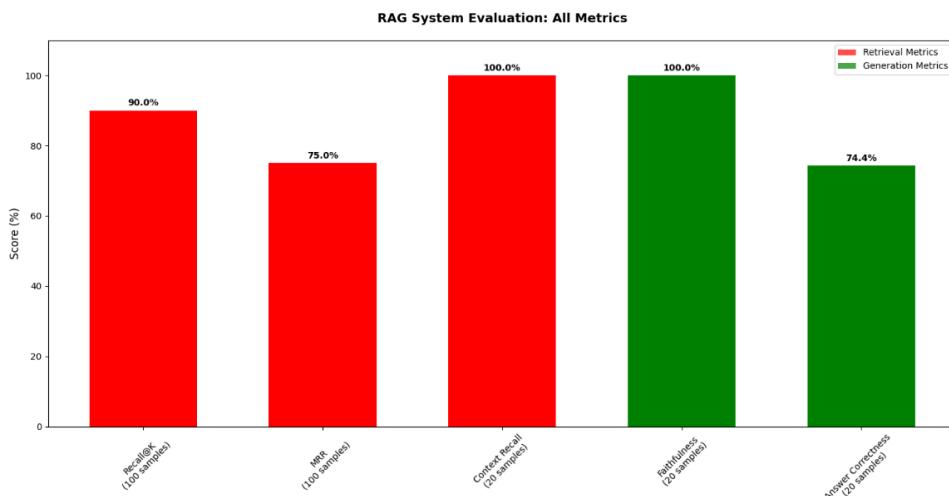


Figure 7.2:Result chart

The chart presents the evaluation results of the multi-agent RAG system with SQuAD across two categories of metrics: retrieval performance and generation performance. The retrieval performance is measured with metrics such as Recall@3, Mean Reciprocal Rank (MRR) and Context Recall, while the generation performance is measured with metrics such as Faithfulness and AnswerCorrectness. Moreover, two evaluation approaches were used, with a calculation-based method applied to a sample size of 100, and an LLM-as-Judge method using the GPT-4o model, applied to a smaller sample size of 20 due to token and request limitations. The LLM-as-Judge approach was adopted because some metrics are difficult to measure with a calculation-based method and this approach can leverage the flexibility of LLM to provide more human-like evaluation for the answer quality.

For retrieval, the system's retrieval component achieves a Recall@3 of 90% which means that out of 100 samples, the most relevant context is present within the top 3 passages retrieved by the system. Moreover, the retrieval component also achieved an MRR score of 75%, meaning that the correct context is retrieved at an average rank of top 2 or 1. Lastly, the system manages to score 100% in context recall, which, as referenced in SQuAD, through reference context demonstrates the retrieval component's ability to consistently retrieve the correct context.

For generations, the system generation component performs excellently in terms of Faithfulness, which the system achieves a perfect score, meaning that the generation is consistently grounded in its responses based on the retrieved context without hallucinating. However, the system only achieves 74.4% accuracy in the AnswerCorrectness metric, meaning that although the answer is accurate most of the time but there are still times when the response generated is not accurate. It is important to note that this evaluation was conducted using the Llama 3.1:8B model, which is relatively small. Thus, this limitation can possibly contribute to the lower accuracy observed.

7.2 Unit test

Unit testing was performed to evaluate every major component to ensure the module functions as intended. To ensure proper traceability, the unit test cases were designed in alignment with the defined use cases. This approach ensure a clear link between system requirements and the corresponding test scenarios.


```

FastApibackend/tests/test_AskQuestion.py::test_run_query_sync_completes_without_exit_or_stop PASSED
FastApibackend/tests/test_AskQuestion.py::test_run_query_sync_no_exit_called_on_success PASSED
FastApibackend/tests/test_AskQuestion.py::test_run_query_sync_passes_correct_state_to_graph PASSED
FastApibackend/tests/test_AskQuestion.py::test_run_query_sync_stops_on_error_and_reraises_on_exception PASSED
FastApibackend/tests/test_AskQuestion.py::test_run_query_sync_emits_stopped_on_agent_stopped_exception PASSED
FastApibackend/tests/test_AskQuestion.py::test_run_query_sync_emits_error_and_reraises_on_exception PASSED
FastApibackend/tests/test_AskQuestion.py::test_wcp_tool_no_tool_config_no_yes PASSED
FastApibackend/tests/test_AskQuestion.py::test_wcp_tool_no_tool_config_yes PASSED
FastApibackend/tests/test_AskQuestion.py::test_wcp_tool_router_disabled PASSED
FastApibackend/tests/test_AskQuestion.py::test_wcp_tool_router_stopped PASSED
FastApibackend/tests/test_AskQuestion.py::test_wcp_tool_router_stopped_no_doc_not_available PASSED
FastApibackend/tests/test_AskQuestion.py::test_wcp_wrapper_run PASSED
FastApibackend/tests/test_AskQuestion.py::test_add_history PASSED
FastApibackend/tests/test_AskQuestion.py::test_add_history_no_doc_not_available PASSED
FastApibackend/tests/test_AskQuestion.py::test_follow_up_no_history PASSED
FastApibackend/tests/test_AskQuestion.py::test_follow_up_yes PASSED
FastApibackend/tests/test_AskQuestion.py::test_force_retrieval PASSED
FastApibackend/tests/test_AskQuestion.py::test_router_force_retrieval PASSED
FastApibackend/tests/test_AskQuestion.py::test_router_force_generation PASSED
FastApibackend/tests/test_AskQuestion.py::test_router_no_doc_not_available_no_doc_not_available PASSED
FastApibackend/tests/test_AskQuestion.py::test_router_no_doc_not_available_no_doc_not_available_no_doc_not_available PASSED
FastApibackend/tests/test_AskQuestion.py::test_router_stopped_in_first_stage PASSED
FastApibackend/tests/test_AskQuestion.py::test_router_stopped_in_second_stage PASSED
FastApibackend/tests/test_AskQuestion.py::test_document_search_node_stop_event PASSED
FastApibackend/tests/test_AskQuestion.py::test_document_search_node_missing_keys PASSED
FastApibackend/tests/test_AskQuestion.py::test_summary_node_stop_event PASSED
FastApibackend/tests/test_AskQuestion.py::test_UICard_external_search_medical_actual PASSED
FastApibackend/tests/test_AskQuestion.py::test_medical_search_with_qwen7b1m PASSED

=====
----- warnings summary -----
C:\Users\Alaa\your_project\Py\final\FastApibackend\TableCreation.py:16: MovedInWarning: The "declarative_base()" function is now available as sqlalchemy.orm.declarative_base(). (deprecated since: 2.0) (Background on SQLAlchme 2.0 at: https://sa
alchme.readthedocs.io/en/2024.0.0/_modules/sqlalchemy/orm/declarative.html
  Base = declarative_base()
-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
11 passed, 1 warning in 0.02s (0.01s avg)

-----
```

Figure 7.3: Test automation script result

Table 7.1: Test cases

Test CaseID	Test Title	Expected result	Test data	Use case	Status
UTC001	Test sign in with a valid credential	User successfully accessed to the main interface	1. Name : 2104132 2. Password: 123	UC01	Pass
UTC002	Test sign in with empty username and password	System prompt username and password cannot be empty	-		Pass
UTC003	Test sign in with invalid credentials	System prompt error	1. Name: nonUser		Pass

		message: “Invalid credentials. Please verify your input.”	2. Password: 123123		
UTC004	Test sign in with the existing authentication token in the database.	System skips the sign-in step and navigates to the main interface	1. Token		Pass
UTC005	Test register with a valid credential	User successfully accessed to the main interface	1. Name: 2104132 2. Password:12 3123 3. Confirm password: 123123	UC02	Pass
UTC006	Test register with an empty field	System prompt username and password cannot be empty	-		Pass
UTC007	Test register with an unmatched password	System error message “password does not match”	1. Name: 2104132 2. Password: 123123		Pass

			3. Confirm password: 123		
UTC008	Test upload a document with a valid file type and size	System successfully initialized the preprocessing process	1. Document: utarpolicy.pdf (85KB)	UC03	Pass
UTC009	Test upload with an invalid document type	System prompt error message: "Only PDF files are allowed!"	1. Document: test.png		Pass
UTC010	Test upload with an invalid size	System prompt error message "Invalid file size"	1. Document: Testpdf.pdf (25MB)		Pass
UTC011	Test manage file interface with the existing file	The system displays all the uploaded file lists	-	UC04	Pass
UTC012	Test file deletion in the manage file interface	The system successfully deleted the document	-		Pass

UTC013	Test manage file interface with no existing file	The system displays “No files uploaded.”	-		Pass
UTC014	Test system routing with force generation setting on	The system routes the user request to the generation node	1. Query: “what is an apple” 2. force_generation: True	UC05	Pass
UTC015	Test system routing with force retrieval setting on	The system routes the user request to the retrieval decision node	1. Query: “what are the different types of rag?” 2. force_retrieval: True		Pass
UTC016	Test system routing with a simple request	The system routes user requests to the generation node	1. Query: “What is the capital of France?”		Pass
UTC017	Test system routing with a query that requires the latest information	The system routes the user request to the retrieval decision node	1. Query: “What is MCP, and what are the applications?”		Pass

UTC018	Test system feature with follow-up question	The system analyse and enhances the user query based on the conversation history	1. Query: “Explain more on that.”		Pass
UTC019	Test external search routing with general question	The system routes user request to general web search	1. Query: “What is MCP, and what is the applications?”		Pass
UTC020	Test external search routing with medical medical-specific question	The system route user requests to the medical database search tool	1. Query: “What is the effect of anabolic steroids?”		Pass
UTC021	Test external search routing with the finance new specific question	The system routes user requests to the finance new search tool	1. Query: “Why is Tesla stock down today?”		Pass
UTC022	Test system routing to	The system routes user	1. Query: “why are the		Pass

	document search with no document available	requests to the generation node	different types of rag?”		
UTC023	Test stop feature system processing	The system stops the process and returns the response “stopped by user”	-	Pass	
UTC024	Test system response with a question not in the document	The system responds with “The context provided can not answer your question, want to switch to external search?”	1. Query: “who is the winner of cs austin major”	Pass	
UTC025	Test system response with a question cannot be found on the internet	The system responds with “The context provided can not answer	1. Query: “what is the term and condition for utar staff?”	Pass	

		your question. want to switch to document search?"			
UTC026	Test system response with error occurs during processing	The system displays error message at the chat interface	-		Pass
UTC027	Test system setting changed with a different LLM model applied	The system successfull y saved and applied the updated LLM model	1. Model: qwen2.5:7b	UC06	Pass
UTC028	Test system setting changed, external LLM model applied	The system successfull y saved and applied the updated LLM model	1. use_online_ll m : True 2. online_provi der: openai 3. online_api_k ey		Pass
UTC029	Test system setting changes with LLM configuration updated	The system successfull y saved and applied the updated LLM	1. token_respon se: 6000 2. context_lengt h:7000 3. temperature: 0.4		Pass

		configuration			
UTC030	Test system setting changes with workflow configuration updated	The system successfully saved and applied the updated workflow configuration	1. force_retrieval: True 2. search_mode :external search		Pass
UTC031	Test system setting changes with the MCP workflow configuration updated	The system successfully saved and applied the updated MCP server details	1. enable_mcp: True 2. mcp_details: "[{"name": "word_document", "url": "http://127.0.1:8003/mcp"}]"	UC07	Pass
UTC032	Test system setting change in the organization deployment mode	The system successfully saves the updated settings. The is_global flag is set to True, and accounts with the role "user"	1. Deployment_mode: organization		Pass

		can use the shared settings.		
UTC033	Test the document's automated workflow with a valid server connection	The system successfull y routes to McpAgent node and communicates with the MCP server to create a document	<ol style="list-style-type: none"> 1. Query: "Create a document about machine learning." 2. enable_mcp: True 3. mcp_details: "[{"name": "word_document", "url": "http://127.0.1:8003/mcp"}]" 	Pass
UTC034	Test the document automated workflow with no MCP detail entered	The system skips the document automation workflow	<ol style="list-style-type: none"> 1. Query: "Create a document about machine learning." 2. Enable_mcp: True 3. Mcp_details: [] 	Pass
UTC035	Test the document automated workflow	The system displays an alert error message	<ol style="list-style-type: none"> 1. Query: "Create a document about 	Pass

	with invalid MCP details	<p>“Error: No MCP servers are reachable. Skipping MCP step.”</p>	<p>machine learning.”</p> <ol style="list-style-type: none"> 2. Enable_mcp: True 3. Mcp_details: “[{"name": “word_document”, “url”: “dummy”}] 		
UTC036	Test the document summarization workflow with a valid summarization request	The system successfull y routes the request to the summariza tion node and summarizes the document	1. Query: “summarize the content in utar policy”	UC08	Pass
UTC037	Test the document summarization workflow with no document available	The system skips the summariza tion step	1. Query: “summarize content in utar policy”		Pass
UTC038	Test the document summarization workflow with failed	The system stops the system process and	-		Pass

	summarizati on	displays an error message			
--	-------------------	---------------------------------	--	--	--

CHAPTER 8

CONCLUSION AND RECOMMENDATIONS

8.1 Conclusion

This is a seven-month project that lasted two semesters from February to September. This project set out to design and develop a Self-Hosted Multi-Agent Retrieval-Augmented Generation (RAG) System for Contextual Document Processing, which follows a set of objectives to address problems identified in common LLM solutions in document processing tasks, including hallucinations, privacy concerns, and lack of modularity. During the planning of this project, the project scope and initial proposed solution were also outlined to provide clearer direction for development. Additionally, a literature review on different existing RAG solutions, MAS design patterns, types of RAG, MAS frameworks, and types of retrieval methods in RAG systems is also carried out to provide a complete study on different aspects of the RAG model and determine which approach and component to be implemented into this system.

After the literature review, a prototype-based development methodology is carefully chosen to ensure an iterative development that allows for continuous refinement and testing throughout the project because of the rapid advancement of different AI tools. Each stage of the development was structured to validate the functionality of the system component before proceeding to develop the full multi-agent workflow. Additionally, various useful tools are chosen, such as marker-pdf, Ollama, and LangGraph, that are used to speed up the development process by providing a ready-to-use component that can provide a solid foundation for the development of this system. During this stage, a clear work plan and timeline are outlined with a work breakdown structure to ensure that the deliverable can be provided on the appropriate deadline. This ensures that every deliverable is aligned with the tight seven-month deadline, which encompasses all phases from initial planning to final project testing.

Moving on to the requirement gathering stage, the system requirements are identified from all of the prior planning phases. Use case and activity

diagrams are created to help with the visualization of all of the required functionality of this system. All of the functional and non-functional requirements are identified and recorded to provide a clear guideline for development and testing. The first single-agent RAG system prototype is developed in this stage to provide an overall demonstration of which functionality and design the system will follow to the stakeholders and serve as the foundation for subsequent development of a more complete and robust solution.

The system design for the final solution is developed with an outline of communication between system components and agents. This will be used to support the iteration from the single-agent RAG prototype to the intended final solution. The major frameworks and external services are also identified to help in producing a robust solution.

After the second planning phase, the final system was developed and delivered in line with all defined objectives and requirements by integrating the multi-agent workflow along with the necessary functionalities. The behaviour of the final product was thoroughly recorded to maintain traceability and confirm the completeness of the project.

Lastly, the final system testing is carried out via performance and unit testing, in which the system performances are evaluated with different metrics such as accuracy, ReCall@3, MRR, and faithfulness. This can demonstrate that the system performs effectively in reducing hallucination rate and producing reliable responses. Although some limitations remain in terms of correctness due to smaller-scale LLMs and computational constraints, the system proves that a modular and extensible multi-agent RAG pipeline can function effectively in a self-hosted environment. After that, unit testing is performed based on the use case determined to ensure all major functionality was implemented correctly and that the project objectives were successfully achieved.

In conclusion, this project successfully achieved its objectives by delivering a working solution for a privacy-preserving, modular, and context-aware document processing system. The outcomes highlight the feasibility of integrating multi-agent architectures with RAG technology to produce accurate and reliable results while safeguarding data privacy.

8.2 Limitations & Future Development

Although all of the objectives are successfully achieved in this project, several limitations remain. The system currently only supports English only document processing and is restricted to external search in only three databases, including general web search, finance news database, and medical database. Moreover, the system currently only focuses on textual content processing and does not include any figures and visual data processing. Due to the limitation of the hardware, the response precision is also heavily limited by the scale of the local LLM used and the lack of domain-specific LLM fine-tuning, which the hardware limitation also constrains the real-time capabilities of this system.

Despite the constraints mentioned, the project provides a strong foundation for future development. Potential areas of enhancement include extending the system to support multilingual document processing, improving accessibility and usability across different contexts. Additionally, the integration of multimodal document analysis, including figures, tables, and diagrams, could enrich the scope of content processing. Optimizing the multi-agent workflow for scalability, such as through distributed processing and hardware acceleration, would enable deployment in large-scale enterprise environments. Expanding automation capabilities beyond note generation, incorporating adaptive retrieval strategies, and advancing toward real-time processing would further increase the system's versatility and impact.

By following these directions, this project can evolve into a robust document processing system that can provide immense value to individuals and organizations, positioning itself as a robust and adaptable solution for future enterprise and research applications.

REFERENCES

Amazon Web Services, Inc., *What is LangChain? - LangChain Explained - AWS* [Online]. Available at: <https://aws.amazon.com/what-is/langchain/>.

Banerjee, S., Agarwal, A. and Singla, S., 2024, *LLMs Will Always Hallucinate, and We Need to Live With This* [Online]. Available at: <https://arxiv.org/abs/2409.05746>.

Bo, X. et al., 2024. Reflective Multi-Agent Collaboration based on Large Language Models. *Advances in Neural Information Processing Systems*, 37, pp.138595–138631. Available at: https://proceedings.neurips.cc/paper_files/paper/2024/hash/fa54b0edce5eef0bb07654e8ee800cb4-Abstract-Conference.html [Accessed: 15 March 2025].

Cardenas, E. and Monigatti, L., 2024, *What is Agentic RAG* [Online]. Available at: <https://weaviate.io/blog/what-is-agentic-rag>.

Chauhan, C., 2024. The Impact of Generative Artificial Intelligence in Scientific Content Synthesis for Authors. *American Journal Of Pathology*, 194(8).

Cheng, H. et al., 2024. Have AI-Generated Texts from LLM Infiltrated the Realm of Scientific Writing? A Large-Scale Analysis of Preprint Platforms. *bioRxiv (Cold Spring Harbor Laboratory)*.

Clark, B., 2025, *What is LangGraph?* [Online]. Available at: <https://www.ibm.com/think/topics/langgraph>.

Cuconasu, F. et al., 2024. The Power of Noise: Redefining Retrieval for RAG Systems. Available at: <https://arxiv.org/pdf/2401.14887>.

Duan, H., Yang, Y. and Tam, K.Y., 2024, *Do LLMs Know about Hallucination? An Empirical Investigation of LLM's Hidden States* [Online]. Available at: <https://arxiv.org/abs/2402.09733> [Accessed: 5 March 2025].

Duan, Z. and Wang, J., 2024, *Exploration of LLM Multi-Agent Application Implementation Based on LangGraph+CrewAI* [Online]. Available at: <https://arxiv.org/abs/2411.18241>.

Feng, S. et al., 2024, *Don't Hallucinate, Abstain: Identifying LLM Knowledge Gaps via Multi-LLM Collaboration* [Online]. Available at: <https://arxiv.org/abs/2402.00367>.

Guo, T. et al., 2024. *Large Language Model based Multi-Agents: A Survey of Progress and Challenges*,

Gustavo et al., 2025. From RAG to Multi-Agent Systems: A Survey of Modern Approaches in LLM Development. *From RAG to Multi-Agent Systems: A Survey of Modern Approaches in LLM Development*.

Homayoun S., 2025, *6 Types of Retrieval-Augmented Generation (RAG) Techniques You Should Know* [Online]. Available at: <https://homayounsrp.medium.com/6-types-of-retrieval-augmented-generation-rag-techniques-you-should-know-b45de9071c79#bypass> [Accessed: 26 April 2025].

IBM, 2023, *LangChain* [Online]. Available at: <https://www.ibm.com/think/topics/langchain>.

Jiménez, A., García-Díaz, V. and Bolaños, S., 2018. A Decentralized Framework for Multi-Agent Robotic Systems. *Sensors*, 18(2), p.417.

Khan, N., 2024, *Introduction Information retrieval is the task of finding documents that satisfy an information need from a large collection of documents. Given the vast amount of data, efficient information retrieval techniques are essential to a number of applications from web search to recommendations to convers* [Online]. Available at: <https://www.linkedin.com/pulse/retrieval-techniques-sparse-dense-hybrid-najeeb-khan-ph-d--wmtpc/> [Accessed: 26 April 2025].

Knight, M., 2025, *What Is a Knowledge Graph? - DATAVERSITY* [Online]. Available at: <https://www.dataversity.net/what-is-a-knowledge-graph/> [Accessed: 26 April 2025].

Kumar, S., 2023, *Generative Retrieval for End-to-End Search Systems* [Online]. Available at: <https://blog.reachsumit.com/posts/2023/09/generative-retrieval/> [Accessed: 26 April 2025].

Li, M., Miao, S. and Li, P., 2024, *Simple is Effective: The Roles of Graphs and Large Language Models in Knowledge-Graph-Based Retrieval-Augmented Generation* [Online]. Available at: <https://arxiv.org/abs/2410.20724>.

Li, X. et al., 2024. A survey on LLM-based multi-agent systems: workflow, infrastructure, and challenges. , 1(1).

Liu, Y. et al., 2024, *Agent Design Pattern Catalogue: A Collection of Architectural Patterns for Foundation Model based Agents* [Online]. Available at: <https://arxiv.org/abs/2405.10467>.

Mahadevkar, S.V. et al., 2024. Exploring AI-driven approaches for unstructured document analysis and future horizons. *Journal of big data*, 11(1).

Milvus, 2025, *What is the difference between sparse and dense retrieval?* [Online]. Available at: <https://milvus.io/ai-quick-reference/what-is-the-difference-between-sparse-and-dense-retrieval> [Accessed: 12 April 2025].

Oguzhan Topsakal and Tahir Cetin Akinci, 2023. Creating Large Language Model Applications Utilizing LangChain: A Primer on Developing LLM Apps Fast. *International Conference on Applied Engineering and Natural Sciences*, 1(1), pp.1050–1056.

Peng, C., Xia, F., Naseriparsa, M. and Osborne, F., 2023, *Knowledge Graphs: Opportunities and Challenges* [Online]. Available at: <https://arxiv.org/abs/2303.13948> [Accessed: 25 April 2025].

Ramalingam, S., 2023. *RAG in Action: Building the Future of AI-Driven Applications*, Libertatem Media Private Limited.

Ravuru, C., Sakhinana, Sagar Srinivas and Runkana, V., 2024, *Agentic Retrieval-Augmented Generation for Time Series Analysis* [Online]. Available at: <https://arxiv.org/abs/2408.14484>.

Reinsel, D., Gantz, J. and Rydning, J., 2018. *The Digitization of the World From Edge to Core*,

Sanmartin, D., 2024, *KG-RAG: Bridging the Gap Between Knowledge and Creativity* [Online]. Available at: <https://arxiv.org/abs/2405.12035>.

Singh, A., Ehtesham, A., Kumar, S. and Khoei, Tala Talaei, 2025, *Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG* [Online]. Available at: <https://arxiv.org/abs/2501.09136>.

Tran, K.-T. et al., 2025, *Multi-Agent Collaboration Mechanisms: A Survey of LLMs* [Online]. Available at: <https://arxiv.org/abs/2501.06322#page=5.32> [Accessed: 15 March 2025].

Wang, J. and Duan, Z., 2024, *Agent AI with LangGraph: A Modular Framework for Enhancing Machine Translation Using Large Language Models* [Online]. Available at: <https://arxiv.org/abs/2412.03801> [Accessed: 26 January 2025].

Winland, V., Syed, M. and Gutowska, A., 2024, *crewAI* [Online]. Available at: <https://www.ibm.com/think/topics/crew-ai>.

Wu, Q. et al., 2023, *AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation* [Online]. Available at: <https://arxiv.org/abs/2308.08155>.

Wu, X., Duan, R. and Ni, J., 2023. Unveiling Security, Privacy, and Ethical Concerns of ChatGPT. *Journal of Information and Intelligence*, 2(2). Available at: <https://www.sciencedirect.com/science/article/pii/S2949715923000707>.

Yan, S.-Q., Gu, J.-C., Zhu, Y. and Ling, Z.-H., 2024, *Corrective Retrieval Augmented Generation* [Online]. Available at: <https://arxiv.org/abs/2401.15884> [Accessed: 25 March 2025].

Yu, C., Yan, J. and Cai, N., 2024. ChatGPT in higher education: factors influencing ChatGPT user satisfaction and continued use intention. *Frontiers in education*, 9(1).

Zeeshan, T., Kumar, A., Pirttikangas, S. and Tarkoma, S., 2025, *Large Language Model Based Multi-Agent System Augmented Complex Event Processing Pipeline for Internet of Multimedia Things* [Online]. Available at: <https://arxiv.org/abs/2501.00906> [Accessed: 16 March 2025].

Zhang, M. et al., 2023. *How Language Model Hallucinations Can Snowball*,

APPENDIXES