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ABSTRACT 

 

The increasing use of Artificial Intelligence (AI) in document processing faces 

persistent challenges such as hallucination, privacy risks, and limited 

adaptability. This study presents a self-hosted multi-agent Retrieval-Augmented 

Generation (RAG) system designed to address these limitations by enhancing 

accuracy and preserving data privacy through a fully local and modular 

architecture. Built using Marker, Ollama, LangGraph, and Weaviate, the system 

enables flexible deployment and coordination between agents. Evaluation using 

the SQuAD dataset measured retrieval and generation performance through 

metrics such as Recall@3, Mean Reciprocal Rank (MRR), Context Recall, 

Faithfulness, and Answer Correctness. Two evaluation methods were employed: 

a calculation-based approach on 100 samples for quantitative assessment, and 

an LLM-as-Judge approach using GPT-4o on 20 samples for qualitative, 

human-like evaluation. Results show strong retrieval performance with a 

Recall@3 of 90%, MRR of 75%, and Context Recall of 100%, demonstrating 

accurate and consistent grounding. The generation results indicate improved 

faithfulness and contextual relevance, though challenges remain in scalability 

and factual precision. Overall, the findings show that the proposed multi-agent 

RAG system effectively mitigates hallucination and privacy concerns while 

maintaining adaptability, making it a promising approach for secure and 

accurate AI-driven document processing. 

 

Keywords: Artificial Intelligence (AI), Retrieval-Augmented Generation 

(RAG), Large Language Models (LLMs), Self-Hosted AI  

 

Subject Area: Q300-390 Cybernetics 
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CHAPTER 1 

 

1  INTRODUCTION 

 

1.1 General Introduction 

“Data really powers everything that we do.” A quote by Jeff Weiner, the CEO 

of LinkedIn, summarizes the importance of data in the modern data-driven 

world. Especially with the acceleration of technology advancement in recent 

years, the demand for and output of data have never been higher. According to 

Reinsel et al. (2018), the data generated, cloned, or recorded is expected to 

increase from 33 Zettabytes (ZB) in 2018 to 175 ZB in 2025. However, the 

number is estimated to be even bigger due to the popularization of AI-generated 

content and the digitization of industries in recent years. Thus, this situation 

increases the complexity and time taken for data handling for manual or even 

some traditional technology approaches. 

 With the lightning-fast evolution of AI technologies, useful 

information can be successfully extracted from unstructured data with a 

minimum amount of human intervention using sophisticated AI-based pipelines 

with technologies such as Computer Vision, Natural Language Processing, and 

Deep Learning. Apart from all the technologies mentioned above, Generative 

AI is also another popular technology utilized in data analysis and synthesis. 

According to Chauhan (2024), researchers have been evaluating the potential of 

Generative AI in scientific content analysis and summarization since the first 

release of ChatGPT back in 2022. Moreover, roughly 5% of scientific 

documents already contain AI-generated information, indicating that Generative 

AI has already became a part of the workflow for different document processing 

tasks (Cheng et al., 2024).  However, the approach is still far from perfect due 

to some major flaws when executing tasks like document processing. 

Consequently, an RAG system has been introduced as a potential solution to 

address the challenges mentioned above. 

According to Ramalingam (2023), RAG is a technology that utilizes a 

retrieval system to fetch information from a database and a generative AI model 

that uses the retrieved information to provide the answer. This mechanism 

allows RAG to provide answers with better precision and better timeliness due 
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to the ability of the retrieval system to fetch real-time context from the database 

(Yu et al., 2024). Thus, RAG is a more fitting option for document analysis and 

generation than a standalone Generative AI model for fields including medicine, 

law, and finance, which require answer generation with high precision and high 

context awareness. Despite all the advantages the traditional single-agent RAG 

system poses, the single-agent RAG system still faces challenges like scalability, 

flexibility issues and a lack of orchestration features (Gustavo et al., 2025). With 

the foundation from the traditional RAG system, this project aims to investigate 

and develop a project titled: Self-Hosted Multi-Agent RAG System for 

Contextual Document Processing.  
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1.2 Problem Statement 

As the popularity of AI drastically increases, the intelligence of all the latest AI 

models is also getting smarter with every iteration. People from different 

backgrounds have already adapted to using AI in their daily lives or even using 

it to automate part of their work. However, generative AI still encounters some 

challenges in document analysis and synthesis. Consequently, the RAG system 

emerges as one of the potential solutions for issues encountered by Generative 

AI. However, the normal single-agent RAG system still has room for 

improvement in some respects. Thus, this section will examine the 

challenges encountered by generative AI and single-agent RAG systems. 

 

1.2.1 Hallucination 

The most significant flaw of generative AI is hallucination. Hallucination in AI 

often refers to the situation where AI generates unrelated, senseless, and 

incorrect responses to the user-given query, the most common example being 

citing a random source that does not exist (Duan et al., 2024). Banerjee et al. 

(2024) stated that misinterpretation of input query and data fabrication due to 

the lack of supporting context from the model’s training data are a few of the 

reasons that will cause a generative AI model to produce a hallucinated response. 

Moreover, LLM relies solely on a large amount of static pre-trained data to 

generate information. Thus, a knowledge gap exists between the time of release 

of the LLM model and the latest information. Consequently, LLM might try to 

generate a response with outdated information, increasing the risk of 

hallucination when a user queries about recent information or trends (Feng et 

al., 2024). According to Zhang (2023), this phenomenon can potentially evolve 

into hallucination snowballing, where AI will commit to the first hallucinated 

answer of the response and continue to justify the incorrect response with 

fabricated facts, while the correct response can be given in another session. Thus, 

if hallucination occurs during document processing, it can significantly hurt the 

overall quality of the responses, causing the inability to meet the user’s 

requirements. 
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1.2.2 Privacy 

Moreover, privacy is also another issue for the generative AI approach. 

Enterprises’ documents often contain large amounts of sensitive information, 

such as customer information and their business-related information, that AI 

provider can secretly collect and use for their own operation. According to one 

of the most popular Generative AI models, ChatGPT’s privacy policy, OpenAI 

will have access to all device information and communication information when 

a user accesses their services. Thus, this creates a huge privacy concern when a 

large amount of sensitive information needs to be analyzed. According to Wu 

et al. (2023), it is apparent that ChatGPT has insufficient measures to protect 

users’ data in compliance with GDRP, which puts user privacy at risk. 

Furthermore, centralizing massive amounts of user data in the database of AI 

providers makes these systems attractive targets for cyberattacks, if a hacker 

successfully breaches into the database, they could exploit the sensitive 

information for malicious purposes such as identity theft and selling the data for 

monetary profit, resulting in serious losses for enterprises. 

 

1.2.4 Modularity & flexibility  

Although a single-agent RAG system is effective in solving most of the issues 

mentioned for document analysis with generative AI, the system still faces some 

challenges that hinder its capability when facing complex use cases. Lack of 

flexibility and modularity is one of the major downsides of a single-agent RAG 

system. According to Gustavo et al. (2025), the architecture of a single-agent 

RAG system can limit the performance and capability of the RAG system due 

to the generalization of all workflows in the single-agent approach, causing the 

inability of the system to adapt to different use workflows and intents. This can 

also result in less accurate responses by the AI generation component if the 

relevant context is not present in the retrieval component database or the user 

workflow is different from the system's intended workflow.   
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1.3 Aim and Objectives 

The objectives of this project are: 

 

- To develop a Retrieval-Augmented Generation (RAG) System that can extract 

relevant information from a document uploaded by the user and selected internet 

sources ensuring the response is based on grounded information. 

 

- To develop a modular RAG System with an Agentic architecture to ensure the 

system can dynamically adjust workflow to different user intent and system 

component settings. 

 

- To implement the system for local deployment, ensuring data privacy by 

eliminating reliance on external cloud services and enabling complete operation 

on a standalone machine. 

 

-To integrate with the external document processing MCP server to allow the 

system to automatically execute document processing operations with LLMs. 

 

 

  



6 

1.4 Proposed solution 

 

 
Figure 1.1: Simple outline of architecture 

 

To tackle the problem identified, A local web-based RAG application will be 

developed following the architecture diagram provided. The users can perform 

document Q&A and note generation all within a local environment without 

having to share their data with an external service provider. Other than privacy, 

the RAG system will be built to tackle the hallucination problem by ensuring all 

response generations are based on grounded information provided by the user 

or the internet. Lastly, the system will also follow an agentic design to tackle 

the modularity and flexibility issue faced by the traditional LLM solution. 

Firstly, the user will interact with the system via a React frontend 

interface that consists of multiple pages, each with their distinct functions and 

components. For each user interaction, the React frontend will send the HTTP 

requests to the FastAPI backend to process user requests. The FastAPI backend 

communicates with a local vector database, Weaviate, to store the text chunks 

from the document in vector representation and retrieve similar items in vector 

embeddings, obtaining relevant chunks of documents in response to the user’s 

queries. Additionally, the system backend also interacts with a MySQL database 

to assist in keyword searches, manage user files, and maintain chat history for 

active sessions that will be used for other system operations. 
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 For the generation capability, the FastAPI backend will interact with 

an Ollama that is responsible for hosting LLM locally, which will be used to 

generate responses without sending data to external services to maintain data 

privacy. When the query requires response generation, FastAPI will send the 

query to Ollama’s LLM model, and the response generated will be sent back to 

the FastAPI backend. When external information is required, the FastAPI 

backend utilizes a Web Search module, which forwards questions to external 

search engines to receive up-to-date information and send it back into the system 

to reduce the hallucination rate of the responses.  

Lastly, the FastAPI backend will connect to various MCP servers for 

different applications via an MCP request. To produce notes, FastAPI calls the 

relevant tools from the MCP server, which can generate notes in different 

application formats. This flexible design makes it easy for the system to support 

note generation for the application to the user's liking, aiming to increase the 

modularity of the system.  
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1.5 Scope and Limitations of the Study 

The final deliverable of this project is a self-hosted multi-agent system based on 

traditional RAG technology for document processing that can utilize different 

agents in the system to perform specialized tasks. The final product of this 

project will be in the form of a local web application with a front-end interface 

that allows users to upload their documents to a local database, interact with the 

system via querying, and change the system's operational settings. Moreover, 

the system allows users to acquire more accurate information by asking follow-

up questions. 

This system aims to deliver a modular, secure, and smart document 

analysis pipeline driven by a multi-agent framework where every agent provides 

a different range of functionalities within the complete workflow of document 

intake, orchestrating, processing, retrieval, and generation. The module that will 

be covered in this project: 

 

1. Document Upload and Database Module 

The Document Upload is implemented in this system to provide a 

way for users to upload their files in PDF format via the user 

interface. The local database module will handle uploaded document 

storage for private and efficient access for other modules. 

 

2. Orchestrator  

The orchestrator acts as the central controller for the system, which 

is responsible for dynamically adjusting the workflow based on the 

user's intent to distribute tasks to the best-suited agent, enhancing the 

system's flexibility. 

 

3. Preprocessing Agent 

The Preprocessing agent in the system will detect and extract the text 

and table from the stored file. The extracted text and table will then 

be separated into different chunks to increase the relevancy and 

efficiency of the retrieval process. After the initial chunking process, 

a tiny LLM model will be implemented in this agent to refine the 

content in the chunks to add context to the chunks and remove 
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unnecessary information, which will produce contextual chunks that 

will be stored in databases for retrieval needs. Lastly, this agent will 

also utilize an embedding model to turn the contextual chunks into 

vector representation for similarity search. 

 

4. Retrieval Agent 

The retrieval agent is responsible for retrieving pieces of 

information that are relevant to the user's query. The retrieval agent 

will consist of different retrieval methods that are suitable for 

different retrieval scenarios. This module is also responsible for 

communication between different web search modules to retrieve 

relevant information from the internet based on the user's query. 

This retrieval method can ensure the retrieved information is based 

on factual information from user-uploaded documents.  

 

5. Generation Agent 

The generation agent is responsible for the generation of the final 

response with the help of a local LLM model to reduce the chance 

of hallucination. This agent will elaborate on the retrieved 

information from the obtained retrieval agent and generate a natural 

language response based on the user’s query.  

 

6. Document processing Agent 

The document processing agent is responsible for determining an 

automated workflow that is suitable for the user's query. The 

document processing agent will manage communication between 

different tools from the connected MCP server.  

 

7. Authentication module 

A basic login and signup module will be implemented in this 

system to ensure no outsider can access the system, which can 

protect the privacy of the user’s information and documents stored 

in the local database. 
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However, there are a few limitations to the project. Firstly, the system 

will allow users to deal only with English-language document processing, and 

the specialized database search will be limited to legal, financial, and medical 

domains. Moreover, the synthesis of figures in the document will not be covered. 

In addition, the precision of generated responses may be influenced by the 

availability of unique or limited data sets and the limited computing power. 

System performance and result accuracy might further be influenced by 

hardware and computational limits. Therefore, real-time processing will not be 

the main priority of this project. Lastly, the automation agent will only cover 

auto-note generation.



11 

CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Introduction 

In this chapter, the current architecture design and technologies related to the 

development of this project are studied to understand more about the current 

solutions and get ideas on how to enhance them. Based on the analysis of past 

research work and current applications, the review aims to explore the topics 

that provide useful concepts that might help in the development of the project.  

 

2.2 Similar existing applications 

This section will review some of the popular open-source RAG projects: Open 

WebUI, Kotaemon, and RAGFlow to identify their system functionalities, 

strengths, and drawbacks. The comparison will help in the identification of 

essential design factors and features that could be included in the creation of this 

project. 

 

2.2.1 Open WebUI 

 

Figure 2.1: Open WebUI main chat interface 
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Figure 2.2: Open WebUI file management for one chat session 

 

 

Figure 2.3: Open WebUI setting interface 

 

Open WebUI is a popular open-source RAG tool that offers a simple, intuitive 

platform that enables users to perform basic RAG tasks in an entirely offline 

environment. Open WebUI allows users to fetch relevant information from 

documents with different file formats, such as PDF, markdown, and LaTeX, 
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making the system more flexible for different user requirements. Additionally, 

Open WebUI also provides web search functionality, which allows the system 

to fetch up-to-date information from the internet, enhancing the system’s ability 

to provide a grounded response to the user. Open WebUI also provides user 

access control that ensures the security of the system. Another notable feature 

of Open WebUI is its complete compatibility with Ollama models, allowing 

users to change models or tailor components effortlessly, making it a flexible 

option for individuals seeking to operate local LLMs in a custom configuration. 

 Because of the focus on ease of use and simplicity, it lacks extra 

functionality that can potentially be helpful to the user. For example, Open 

WebUI uses a chat session-based file retrieval method, meaning users need to 

reimport the same file if they want to start a new chat session. Open WebUI also 

does not support multi-agent workflow, which can limit the capability of the 

system. 

 

2.2.2 Kotaemon  

 

Figure 2.4: Kotaemon main chat interface 
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Figure 2.5: Kotaemon file management interface 

 

 

Figure 2.6: Kotaemon setting interface 

 

Kotaemon is another popular open-source RAG application that focuses on 

providing advanced document retrieval with precise document citation, suitable 

for experienced users or researchers who require clarity and precision in RAG 

processes, while still requiring an easy-to-use system. A notable feature of 

Kotaemon is its hybrid retrieval capabilities, which use both dense and sparse 

retrieval methods to increase the effectiveness of the retrieval. Additionally, 

Kotaemon is also capable of providing document preview with precise citations 

to the related section, which allows users to visually confirm the relevant 
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information that is being used by the LLM to generate its response, ensuring the 

generation is based on grounded facts, increasing the reliability of the system. 

Kotaemon manages user-uploaded files in a centralized manner, maintaining a 

consistent file reference across different chat sessions. Like Open WebUI, this 

application also features web search functionality, enabling it to retrieve up-to-

date information. Kotaemon also implements user access control to prevent 

unauthorized access in shared environments. Kotaemon is fully compatible with 

Ollama, which allows users to customize the LLM and embedding model to 

their liking.  

 Despite the advantage, Kotaemon also does not support multi-agent 

workflow, which limits its flexibility for different types of users’ workflows, 

limiting its capability to become a more robust RAG system. 

 

2.2.3 RAGFlow 

 

Figure 2.7: RAGFlow Agent workflow management 
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Figure 2.8: RAGFlow chat interface 

 

Figure 2.9: RAGFlow knowledge base 

 

 

Figure 2.10: RAGFlow model setting 
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RAGFlow is a flexible and robust open-source RAG application that allows 

users to create highly customized system pipelines with different components, 

allowing users to alter the pipeline of RAGFlow to make it more suitable for 

their use case. Unlike Kotaemon and Open WebUI, RAGFlow is one of the few 

open-source RAG applications that support a multi-agent architecture, which 

allows different components or agents to perform distinct functions for 

collaborative processing. RAGFlow also provides advanced web search 

capabilities that allow users to perform web searches on various sources such as 

Baidu, Google, Google Scholar, and Yahoo Finance. This application also 

implements user-access control as the first line of defence for unauthorized 

access to the system. RAGFlow is also entirely compatible with the Ollama 

platform, enabling users to change the model to their liking. Similar to 

Kotaemon, RAGFlow maintains a centralized knowledge base that allows 

continuous access to files throughout sessions. 

 Although RAGFlow is the most robust and adaptable RAG application 

compared, RAGFlow has the steepest learning curve required to operate the 

application effectively. Thus, it is more suitable for experienced users that 

extensive customization, agent orchestration, and system integration. 
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2.2.4 Comparison table for similar applications 

Table 2.1: Comparison table for similar applications 

Feature RAGFlow Kotaemon Open WebUI 

Key feature Advance the 

RAG pipeline 

with a variety of 

tools to support 

Advanced 

document 

interaction 

Simple 

document 

interaction 

 

Primary Focus Enterprise-grade 

customizable 

RAG workflow  

Advanced 

retrieval with a 

hybrid retrieval 

function and 

detailed citation  

Easy-to-use 

document Q&A 

Multi-agent 

support 

   

Web search    

User Access 

Control 

   

Compatible 

with Ollama 

model 

   

Ease of Use Hard Medium Easy 

File retrieval Centralized file 

retrieval 

Centralized file 

retrieval 

Session-based 

file retrieval 

In conclusion, the three application reviews in this section 

identify the varying functionalities and drawbacks offered by each tool in their 

RAG system that can be used as ideas for the development of this project. 

Leveraging the advantages of each platform, this project will include these 

essential features: 

1. Multi-agent workflow to facilitate flexible workflow adjustment to 

specialized functions and a modular pipeline. 
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2. Collaboration with external document generation tools 

for smooth subsequent use. 

3. Hybrid document retrieval techniques for improved response precision. 

Online search functionalities to enhance internal knowledge 

with current external data. 

4. User verification and access management to facilitate secure, multi-

user implementation. 

5. A clear interface and minimal setup complexity for ease of use. 

6. Compatibility with local models through Ollama, guaranteeing privacy 

and adaptability in choosing models. 

7. Centralized document retrieval to ensure file continuity throughout 

different sessions. 
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2.3 Multi-agent system (MAS) design pattern 

As the complexity of problems addressed by AI systems increases, MAS has 

developed into a strong approach to address these advancing challenges. 

Including several specialized agents that interact, cooperate, and compete, 

working towards achieving the system's objective. Therefore, this section will 

explore different design patterns commonly used in multi-agent systems to 

enhance understanding of these patterns and analyse the advantages and 

disadvantages of each pattern to decide on which pattern is more suitable to be 

implemented in this system. 

 

2.3.1 Multi-agent collaboration pattern 

 

Figure 2.11: Multi-agent collaboration design pattern 

 

Multi-agent collaboration pattern is a pattern that consists of specialized agents 

collaborating towards a shared objective by synchronizing their specific tasks. 

(Gustavo et al., 2025). Every agent in this pattern is created to execute a unique 

function or handle a problem area, such as data retrieval, classification, 

reasoning, or generation, instead of depending on one centralized entity to 

control and execute the entire workflow. This allows the system to be more 

robust and scalable by assigning specific tasks to each of the agents. For 

example, a specialized summarizer agent can be implemented in this system 

whose sole purpose is to perform summarization of documents, and which tools 

used in this agent can be fine-tuned to generate the best possible result. 

Moreover, this pattern can also allow parallel execution of tasks by distributing 
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different segments of the task to different agents, which can improve the 

processing time of the system. 

However, this design pattern requires a significant amount of 

computing power to perform, especially with agents that use LLM to perform 

their tasks. The scalability and performance of the agent will be greatly impacted 

when the computing power is limited (Guo et al., 2024). According to Singh et 

al. (2025), another challenge the multiagent collaboration pattern faces is the 

complex coordination between multiple agents, which requires the system to 

implement a robust orchestrator to manage the information flow between every 

agent to ensure seamless workflow between agents. If the orchestrator is not 

effective, problems such as agent information conflict and redundant processing 

could happen, which reduces the system’s performance. 

 

2.3.2 Hierarchical pattern 

 

Figure 2.12: Hierarchical multi-agent design pattern (Ravuru et al., 2024) 

 

Hierarchical pattern is a multi-agent design pattern that utilizes a structure and 

multi-level pattern, where the higher-level agent manages and guides 

subordinate agents to improve the effectiveness and strategic choices of the 

system (Singh et al., 2025). This pattern reflects actual hierarchical systems, like 

organizational management frameworks, in which senior decision-makers 

delegate duties to different departments according to their expertise, improving 

the decision-making, load balance, and modularity of the system by 

guaranteeing that tasks are allocated to the most suitable agents to be processed. 
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The higher-level agent in this pattern will function as the coordinator 

of the system, which is responsible for decision making and task assignment to 

the most suitable subagent (Li et al., 2024 The lower-level agents will focus on 

performing tasks, executing the operations designated to them, which can ensure 

the accuracy of the response. Moreover, the modular design of the sub-agent 

allows it to be modified independently, which increases the system's flexibility 

(Ravuru et al., 2024).  

However, this pattern also faces some difficulties. Like the Multi-

Agent Collaboration Pattern, it depends significantly on a capable orchestrator, 

since communication among sub-agents may raise orchestration overhead 

(Singh et al., 2025).  Additionally, this pattern is also vulnerable to a single-

point failure where the failure of the higher-level agent can affect the execution 

of its subagents, which can potentially result in system-wide breakdowns. 

 

2.3.3 Decentralized pattern 

 

Figure 2.13: Decentralized multi-agent design pattern 

 

A decentralized pattern is the pattern that removes the central control node in a 

multi-agent system, where the agents will link in a peer-to-peer basis and all 

agents can directly communicate with each other (Tran et al., 2025). In this 

pattern, every agent will function independently and can start communication 
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and coordinate with any agent in the network. Thus, it eliminates the need for a 

central coordinator to perform decision-making and task distribution. 

According to Jiménez et al. (2018), this pattern can increase the 

reliability of the system because if one agent node fails, the agent can still 

communicate with another replacement. In addition, this pattern can increase 

the scalability of the number of agents, where a new agent can be added to the 

decentralized network without affecting the overall workflow of the system. A 

decentralized pattern distributes the decision-making process across the system. 

While each agent has their responsibilities, the system can dynamically adjust 

the communication between agents, which can balance the load distributed to 

each agent. 

Even with its strength, the decentralization pattern also presents some 

issues. In the absence of a central controller, the system necessitates a 

sophisticated coordination protocol to effectively synchronize decision-making 

and avoid inconsistencies in agent communication. As the number of 

agents grows, these challenges become clearer, which makes an effective 

communication protocol necessary to ensure consistent performance in a larger 

system. 

 

2.3.4 Reflection pattern 

 

Figure 2.14: Reflection multi-agent design pattern (Gustavo et al., 2025) 

 

The reflection pattern is the design pattern that focuses on enabling an LLM 

agent to critically examine and iteratively refine its own outputs by re-

evaluating the initial output to perform error correction (Gustavo et al., 2025). 

This pattern resembles a human-like method of self-evaluation, in which an 
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initial response is evaluated critically, and a polished version of the output is 

generated with the feedback from the evaluation.  

This characteristic allows the system to generate a more accurate 

response by learning from earlier errors and correcting it, making this an ideal 

pattern to implement in a system where factual accuracy is crucial. The 

reflection pattern also increases the explainability of the output, where the 

reflection agent can explain the review and reasoning process for the iteration 

from the last output (Liu et al., 2024). 

As for the downside, the reflection pattern strongly relies on the 

reflection agent’s reflective ability to maintain the consistency of the output or 

else it might lead to a lazy reflector where the result is similar or worse than the 

original result (Bo et al., 2024). Moreover, employing an LLM-based reflection 

agent requires the system to have extra computational power to handle various 

rounds of reflection, possibly affecting performance and response times 
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2.3.5 Comparison between different MAS design patterns 

Table 2.2: Comparison between different MAS design patterns 

Pattern Description Strengths Limitations 

Multi-Agent 

Collaboration 

Pattern 

Specialized 

agents collaborate 

by synchronizing 

tasks towards a 

shared goal. 

- Improves 

system domain 

knowledge and 

scalability.  

- Allows parallel 

execution of 

tasks. 

- High 

computational 

power 

requirement.  

- Complex 

coordination 

needed to prevent 

redundancy and 

conflicts. 

Hierarchical 

Pattern 

Uses a structured 

multi-level 

approach where 

higher-level 

agents manage 

subagents. 

- Improves 

decision-

making, load 

balancing, and 

modularity.  

- Sub-agent can 

be modified 

independently to 

increase system 

flexibility 

- High 

dependence on a 

capable 

orchestrator.  

- Vulnerable to 

single-point 

failures. 

Decentralized 

Pattern 

Removes the 

central control 

node; agents 

communicate 

directly in a peer-

to-peer network. 

- Increases 

system 

reliability and 

scalability. 

- Distributes 

decision-making 

across agents for 

better load-

balancing. 

- Requires 

sophisticated 

coordination 

protocols.  

- Risk of 

inconsistencies in 

agent 

communication. 
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Reflection 

Pattern 

Implements a 

reflection agent 

that refines 

responses by re-

evaluating initial 

output for error 

correction. 

-Improves 

factual accuracy 

of the final 

output.  

-Increases 

explainability 

for the reasoning 

of outputs.  

 

-Performance 

depends on the 

reflection agent's 

effectiveness. 

 -Requires extra 

computational 

power. 
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2.4 Type of RAG model  

With different MAS design patterns, RAG models have become very flexible in 

adapting to different use cases. Thus, Various RAG models can be created to 

enhance retrieval efficiency, improve response accuracy, and adjust to changing 

queries. Different models utilize different multi-agent design pattern, which 

impacts their effectiveness, scalability, and dependability. This section explores 

various RAG models, such as Naïve RAG, Agentic RAG, Corrective RAG, and 

Hierarchical RAG, to assess their structural strengths and weaknesses and how 

they work. 

 

2.4.1 Naïve RAG  

 

 

Figure 2.15: Naïve RAG flowchart (Homayoun S., 2025) 

Naïve RAG is the simplest form of the RAG model, employing a 

straightforward, simple pipeline that obtains documents as a direct input into a 

generative AI to generate responses. Most of the Naïve RAG model only utilizes 

a single agent method that follows a basic retrieval-to-generation pipeline 

without extra process or enhancement, where the model will execute 

sequentially from fetching relevant information from the database based on the 

user’s query and generating a response based on the relevant information. 
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This model uses three major components in its core: the retriever, the 

generator, and the storage database. The retriever is the most important 

component in the Naïve RAG model because the output quality is directly 

related to the quality of the retrieved information (Cuconasu et al., 2024). The 

retriever is responsible for retrieving the most relevant information from the 

knowledge pile based on the user’s query with different retrieval algorithms, 

such as BM25 and TF-IDF, to rank the relevance of the information. The 

database acts as the knowledge base, containing documents and information 

chunks, which are normally executed using a vector database such as 

ChromaDB and Weaviate. The Generator will be responsible for the last step of 

the process, which is to generate insight based on the relevant information 

fetched with the LLM model, such as qwen2.5 or Llama3. 

A key strength of the Naïve RAG model is its simplicity, as it can be 

easily implemented and is less demanding in computational power, making it a 

good option for systems that value efficiency. Moreover, the model's sequential 

processing allows for quick response times, making it ideal for real-time use 

cases. However, this model has some noteworthy drawbacks. It has no 

corrective mechanisms, which means the produced responses rely solely on the 

capabilities of the retriever. If the retriever acquires unrelated information 

chunks, the generator cannot validate or improve its results, resulting in possible 

inaccuracy. Additionally, the lack of multi-agent cooperation limits the model's 

capacity to address complex queries since it has no capability to process 

specialized tasks to specialized agents.  

Nevertheless, the Naïve RAG model provides a solid foundation for 

more sophisticated RAG architectures. Though it works well for fundamental 

uses like FAQ chatbots, document searches, and basic enterprise knowledge 

management, advanced models like Agentic RAG, Corrective RAG, and 

Knowledge Graph RAG have emerged to meet the growing need for accuracy, 

reasoning ability in practical applications 

which introduced a model that 
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2.4.2 Agentic RAG  

 

Figure 2.16: Weaviate Agentic RAG flowchart  

(Cardenas and Monigatti, 2024) 

 

The agentic RAG model is an updated version of the naïve RAG pipeline by 

integrating different autonomous and specialized agents to supervise various 

process phases. But unlike Naïve RAG, which functions in a linear process, 

Agentic RAG’s specialized agent will allocate different tasks to specific agents 

based on the nature of the task, which introduces decision-making capabilities 

to the system that allow agents to work together to optimize retrieval, boost 

response generation, and increase the overall adaptability of the system 

The most significant difference between Agentic RAG and Naïve RAG 

is the multi-agent architecture, where Agentic RAG consists of an orchestrator 

agent to coordinate the communication between multiple agents specialized in 

tasks such as query understanding, fact-checking, or agents with domain-

specific knowledge, guaranteeing that the obtained information is precise and 

contextually accurate. 

Agentic RAG normally utilizes the Multi-Agent Collaboration Pattern 

found in the MAS design pattern. In this design pattern, specialized agents 

collaborate and work towards a common objective, aligning their efforts to 

improve efficiency. This design enables the system to parallelize tasks like 

retrieval and validation, enhancing overall efficiency when managing intricate 

queries or extensive document collections 

The strength of Agentic RAG is that it can enhance the precision, 

flexibility, and scalability of the system. By distributing tasks to independent 

agents, the model can improve its retrieval and response methods, reducing the 
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chance of generating misinformation. Moreover, an agent-based design allows 

the developer to tweak the agent’s function to better suit the specialized task to 

make the system perform better. Nonetheless, these advantages increase the 

computational requirements, as handling several agents necessitates effective 

coordination and resource management (Singh et al., 2025). 

 

2.4.3 Corrective RAG  

 

Figure 2.17: Corrective RAG flowchart (Yan et al., 2024) 

 

The corrective RAG model is another extension of the traditional RAG model, 

which incorporates an additional corrective mechanism to revise the response 

from the retrieval module or the final Generative AI. Thus, the corrective loop 

greatly reduces the potential of hallucinations and retrieval inaccuracy of the 

model, making Corrective Rag a great option for tasks that need high accuracy 

and minimal margin of error. 

Corrective RAG’s automated feedback system is the main difference 

separating it from Naïve RAG. Rather than producing a response in one cycle, 

Corrective RAG closely adheres to the Reflection Pattern in the MAS design 

pattern. In this model, a reflection module constantly evaluates and enhances 

outputs from the generator, confirming that earlier errors are rectified in 

subsequent versions. This guarantees that the result is both accurate and 
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factually consistent with the retrieved documents. Additionally, the feedback 

system can also be implemented at the retrieval layer. According to Yan et al. 

(2024), a corrective module can also be implemented at the retrieval layer of the 

system which can evaluate the retrieved information and execute corrective 

action if the information is unrelated to the query, this can greatly reduce the 

potential of inaccuracy because the retrieval module is the most important part 

of the RAG system 

However, the downside of Corrective RAG is that it demands extra 

computational resources to handle various cycles of retrieval and generation, 

which may lead to longer response times and increased resource consumption. 

Furthermore, excessive correction may arise if the validation process is too 

intense, resulting in unwarranted changes that fail to enhance the response and 

instead sabotage the final accuracy. 

 

2.4.4 Knowledge Graph RAG  

 

 

Figure 2.18: Knowledge Graph RAG flowchart (Sanmartin, 2024) 

 

The Knowledge Graph RAG is a special type of RAG model that integrates a 

Knowledge Graph to perform retrieval and reasoning that replaces the retriever 

in the Naïve RAG model. Li, Miao, et al. (2024) stated that, unlike the retrieval 

method used in Naïve RAGs such as BM25 and TF-IDF that uses similarity or 

keyword for searching, Knowledge Graph provides the ability to reason that fills 

the gap for tasks that require complex reasoning to solve. Thus, Knowledge 

Graph RAG is effective in handling complex queries and data relationships that 

require deep reasoning. Moreover, the Knowledge graph can combine different 

sources of both structured and unstructured data, offering a more comprehensive 

knowledge base compared to a vector database (Peng et al., 2023). According 
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to Sanmartin (2024), Knowledge Graph RAG shows a significant reduction in 

the hallucination rate, which means that the Knowledge Graph retrieval method 

can help to retrieve grounded information that is more accurate. 

However, Knowledge Graph RAG, building and sustaining a high-

quality Knowledge Graph demands a large amount of effort, as it needs to be 

frequently refreshed to stay accurate and thorough. Moreover, the performance 

of KG-RAG also heavily relies on the quality of the foundational Knowledge 

graph. Consequently, if the graph is of low quality or incomplete, the accuracy 

of the retrieval could be impacted, since the retrieval is fully based on the 

connectivity of the information within the foundation graph. (Peng et al., 2023) 
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2.4.5 Comparison between different types of RAG  

Table 2.3: Comparison between different types of RAG 

Type of 

RAG 

Naïve RAG Agentic 

RAG 

Corrective 

RAG 

Knowledge 

Graph 

RAG 

Core 

Architectur

e 

Linear and 

single-agent 

pipeline 

Multi-agent 

pipeline with 

various 

specialized 

agents 

RAG with a 

corrective 

feedback 

mechanism  

RAG with 

knowledge 

graph-based 

retrieval 

and 

reasoning 

Key 

Mechanism 

Basic retrieval 

to the 

generation 

pipeline 

Orchestrator 

agent 

coordinating 

specialized 

agents 

Automated 

feedback 

system for 

error 

correction 

Reasoning 

via linked 

knowledge 

entities 

from a 

knowledge 

graph  
 

Retrieval 

Method 

BM25, TF-

IDF similarity 

search 

BM25, TF-

IDF 

similarity 

search with 

parallel 

capability 

Standard 

retrieval with 

corrective 

layer 

Reasoning 

based from 

knowledge 

graph 

Strengths -Simple 

implementatio

n 

-Low 

computational 

resources 

required 

-Enhanced 

precision 

-Flexible 

task 

allocation 

- Improved 

adaptability 

-Lower 

hallucination 

rate 

-Higher 

response 

factual 

accuracy 

 

-Possesses 

reasoning 

capabilities 

-Can handle 

complex 

data 
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-Short 

response times 

relationship

s 

- Reduce 

hallucinatio

n rate 

 
Limitations -No corrective 

mechanisms 

- Limited 

complex query 

handling 

- Depends 

only on the 

retriever’s 

capabilities 

- High 

computationa

l power 

needs 

-Complex 

agent 

orchestration 

needed 

-High 

computationa

l resources 

-Potential 

over-

correction 

-Longer 

response 

times 

-Complex 

graph 

maintenanc

e 

- 

Performanc

e depends 

on 

knowledge 

graph 

quality 
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2.5 Multi-agent framework 

Multi-agent frameworks offer a uniform setting that enhances communication, 

collaboration, and decision-making among agents. These frameworks provide 

crucial tools, libraries, and protocols that facilitate the development of MAS 

while guaranteeing scalability and effectiveness. This chapter examines 

different multi-agent frameworks, emphasizing their structures, capabilities, 

and appropriateness for various application areas. Understanding these 

frameworks can help with the choices regarding the appropriate tools to create 

intelligent, adaptive, and cooperative multi-agent RAG systems.  

 

2.5.1 LangChain 

LangChain is a robust framework for developing and orchestrating LLM-based 

applications. It provided many intuitive tools and APIs for developer to 

implement in their LLM-driven application, which simplified the complexity of 

the development. (IBM, 2023). LangChain will serve as the abstraction layer for 

complex data source integration and the LLM mechanism, significantly 

reducing the time required for application development. This allows developers 

to modify just the template and library, rather than coding business logic from 

scratch. (Amazon Web Services, Inc., n.d.). Another key feature of LangChain 

is that it provides ways for developers to develop their custom pipeline with 

tools of their choice by providing chains (user-defined pipeline) in the 

framework (Oguzhan Topsakal and Tahir Cetin Akinci, 2023) 

 

 

Figure 2.19: LangChain Tools Chaining Feature 

 

A major advantage of LangChain is its capability to improve 

information retrieval through integration with vector databases, APIs, and 

various external information sources. Hence, this strength is especially 

beneficial in multi-agent RAG systems, where specialized agents need to gather, 

evaluate, and link relevant information effectively to generate an accurate result. 
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Moreover, the modular framework design also increases its scalability, enabling 

it to adapt to progressively complicated agent-based architectures. Lastly, 

Langchain's strong community backing is also one of its strengths, as extensive 

documentation is provided by the team along with example products for 

developers to learn from their peers. 

Despite its advantages, the lack of a built-in orchestration feature for 

multi-agent systems is a major drawback for a multi-agent-based application, 

which means an extra solution needs to be developed to handle the interaction 

and synchronization for multiple agents. Additionally, it is a significant 

computational requirement, especially when maintaining long-term memory 

and executing ongoing reasoning in an advanced setting. 

 

2.5.2 LangGraph 

LangGraph is another AI agent workflow orchestrator created by the same team 

as LangChain as its successor. Therefore, LangGraph also possesses support 

from a strong community. But unlike LangChain, LangGraph uses a graph-

based architecture to manage the relationship between each agent (Clark, 2025). 

This allows the developer to define the communication between the agents with 

a directed graph that provides a more dynamic and stateful workflow. 

LangGraph also provides persistent state management, allowing the agents to 

remember the conversation history and use it to provide contextual information 

to the task execution. (Wang and Duan, 2024). According to (Wang and Duan, 

2024), LangGraph also provides the necessary tools to support different types 

of workflows such as hierarchical, human-in-the-loop, and single-agent systems 

which greatly improve the flexibility of this framework. 

However, LangGraph also has some issues. Although its structured 

workflow provides flexibility, a solid foundation of graph-based programming 

knowledge is necessary to fully leverage its features, which can increase the 

learning curve for developers. Moreover, LangGraph incurs high computational 

costs to maintain stateful workflows and handle numerous agent interactions, 

especially in a multi-agent RAG system where the system must manage 

extensive data retrieval and synthesis assignments to produce accurate 

responses. 
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2.5.3 CrewAI 

CrewAI is another lightweight and flexible multi-agent framework worth 

considering. The key characteristic for CrewAI is its emphasis on a role-playing 

architecture, in which CrewAI assigns specific roles to each agent and 

efficiently distributes tasks among them to achieve the ultimate goal (Winland 

et al., 2024). Through a role-based architecture, CrewAI allows developers 

to build specialized agents that collaborate dynamically, enhancing task 

execution while ensuring modularity and scalability. 

A significant advantage of CrewAI is its simplicity and easy 

configuration, which makes it an ideal option for developers aiming to establish 

agent-based workflows quickly without the complexities of dependency-driven 

orchestration. Additionally, CrewAI also provides an automatic task delegation, 

and flexibility in task management feature which allows agents to communicate 

and assign tasks effectively (Duan and Wang, 2024). Additionally, CrewAI is 

capable of parallel task execution, which can increase both processing speed 

and efficiency in environments with multiple agents.  

However, CrewAI is not suitable for very complex agent workflows, 

since it does not provide the sophisticated decision-making and dependency-

tracking features available in graph-based systems such as LangGraph, which 

can limit the flexibility of this framework, making it not suitable for dynamically 

changing workflows that need to adapt constantly. 

 

2.5.4 AutoGen 

AutoGen is another multi-agent development framework developed by 

Microsoft. Similar to CrewAI, AutoGen utilizes a role-specific architecture, but 

it places more focus on agent-to-agent communication to maintain a multi-agent 

operation (Zeeshan et al., 2025). This allows AutoGen to ensure a modular 

system design where every agent can engage in a structured discussion to 

produce the most accurate result. Furthermore, AutoGen also supports different 

patterns of conversation to be implemented, which can increase the 

customization ability and flexibility of the agent structure (Wu, Bansal, et al., 

2023) 

As for the disadvantage of AutoGen. Its dependence on LLM-based 

decision-making is computationally heavy and requires significant processing 
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capabilities to maintain ongoing agent interactions. Moreover, the coordination 

of its conversation agents adds complexity since overseeing several independent 

agents needs precise adjustments to avoid unnecessary processing, 

miscommunication, or contradictory actions, especially in a large 

conversational network. Lastly, AutoGen provides less defined task sequencing 

compared to other similar frameworks, potentially resulting in more 

unpredictable execution flows in complex implementations. 
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2.5.5 Comparison between different MAS development frameworks 

Table 2.4: Comparison between different MAS development frameworks 

Framework Strengths Weaknesses 

LangChain -Simplifies LLM-based 

development.  

- Flexible for custom 

pipelines.  

- Supports vector databases & 

external sources.  

- Strong community support. 

- No built-in multi-agent 

orchestration.  

- High computational 

requirements. 

LangGraph 
- Graph-based structured 

workflows.  

- Persistent state 

management.  

- Supports flexible 

workflows.  

- Strong community support. 
 

- Requires graph-based 

programming knowledge.  

- High computational 

cost. 

CrewAI - Role-based task delegation. 

- Lightweight & easy to 

configure.  

- Built-in task delegation.  

- Supports parallel execution. 

- Lacks advanced 

decision-making & 

tracking.  

- Less flexible for 

dynamic workflows. 

AutoGen - Strong agent-to-agent 

communication.  

- Highly modular & 

customizable.  

- Supports various 

conversation patterns. 

- High computational 

demand.  

- Complex agent 

coordination.  

- Less defined task 

sequencing. 
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2.6 Retrieval method 

Two of the most important components in the RAG system are the retrieval 

component and the generation component. The quality of both the retrieval and 

generation components will directly impact the accuracy and quality of the 

system’s final response to the user query. The retrieval component will be in 

control for recognizing and extracting the relevant information from any given 

database based on the user’s query before passing the relevant information to 

the generation component for response elaboration and generation. Thus, 

without an effective retrieval component, the generation component's response 

accuracy will also be hindered. This section will explore different retrieval 

methods that are commonly used in a RAG system. 

 

2.6.1 Sparse retrieval 

 

Figure 2.20: Sparse retrieval flowchart (Kumar, 2023) 

 

Sparse retrieval is a retrieval algorithm that focuses more on keyword matching. 

which Sparser retrieval will compare the input document and text as a high-level 

vector where the values are mostly zero. Then, the input text is compared based 

on the existence of a specific keyword, where the more relevant of the current 

word is to the current input text, the higher score the sparse will return in the 

high value. One of the most popular sparse retrieval algorithms is BM25, which 

is the extension of TF-IDF. Thus, Sparse retrieval is excellent in use cases where 

keyword matching is crucial. Sparse retrieval’s advantage is its lightweight 

nature, which demands little computing resources while delivering high-speed 

performance, making it work well for general search cases. As for the downside, 

sparse retrieval lack the ability to capture the underlying context and meaning 
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of the text, which causes it to struggle with synonyms and complex text structure. 

(Milvus, 2025)  

 

2.6.2 Dense retrieval 

 

Figure 2.21: Dense retrieval flowchart (Kumar, 2023) 

 

Dense retrieval is another popular retrieval method that is widely used in RAG 

systems and differs from sparse retrieval it focuses more on the semantic 

similarity of the text provided. First, the retrieval will utilize a pre-trained 

embedding model to convert the text provided into a dense group of vector 

representations in which more related text, such as ‘car’, ‘engine’ will be closer 

to each other in the vector space. These data will then be stored in a vector 

database and use algorithms such as, FANN search algorithm to retrieve the 

relevant information to the user’s query. Unlike sparse retrieval, this retrieval 

method can understand the underlying meaning of the text, which makes this 

method effective at getting the user's intent and allows the text structure and 

query to be more flexible. However, the downsides of this retrieval method are 

that it demands more computational resources due to the execution of the 

embedding model and the reduced interpretability since the vector format 

outcomes may be less clear compared to conventional keyword-driven 

approaches. (Milvus, 2025)  
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2.6.3 Hybrid retrieval 

 

Figure 2.22: Hybrid retrieval flowchart (Khan, 2024) 

 

Hybrid retrieval is a combined retrieval method that utilizes dense and sparse 

retrieval methods to perform searching. This can be achieved by combining the 

scores from a sparse retriever’s result with a dense retriever’s result or by using 

a re-ranker module to rank the results obtained from one approach with the other. 

This way, hybrid retrieval can be more flexible to adapt to the complex scenario 

where both keyword and semantic similarity are required to retrieve an accurate 

piece of information. While hybrid systems tend to be complex to coordinate 

and it is more resource-heavy because of the retrieval, reranking or weighting, 

they frequently produce more reliable outcomes, making them an excellent 

choice for multi-agent RAG frameworks that manage various document 

structures.  
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2.6.4 Knowledge Graph Retrieval 

 

Figure 2.23: Knowledge Graph retrieval flowchart (Knight, 2025) 

 

Knowledge Graph retrieval is a retrieval method that utilizes a more 

sophisticated Knowledge Graph for information retrieval. Knowledge Graph is 

a technique where data is stored as a node with an interconnected link to relevant 

nodes with a directed link. Thus, this structure allows meaningful information 

to be extracted with reason-based retrieval, which is particularly important in 

fields such as law and medicine where information relationships and logical 

reasoning are essential to retrieve relevant information. Although it provides 

significant accuracy and contextual richness, Knowledge Graph retrieval the 

Knowledge Graph retrieval method retrieval quality may vary depending on the 

completeness of the Knowledge Graph, and the Knowledge Graph requires 

regular maintenance to keep the knowledge base updated. (Peng et al., 2023).  
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2.6.5 Comparison between different retrieval methods 

Table 2.5: Comparison between different retrieval methods 

Retrieval Method Advantages Disadvantages 

Sparse Retrieval - Fast, lightweight, effective 

for keyword-based queries 

- Cannot understand 

context or synonyms,  

- Limited to exact 

matches 

Dense Retrieval - Understands context and 

intent 

- Flexible query structure 

- High computational 

cost 

- Low interpretability 

Hybrid Retrieval - Balances keyword 

precision with semantic 

understanding 

- Improved accuracy 

- Complex integration 

- Resource-intensive 

Knowledge 

Graph Retrieval 

- Provides reasoning-based 

results 

- Highly contextual 

- Requires complex 

setup, ongoing 

maintenance 

- Dependency on 

knowledge graph 

quality 
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2.7 Conclusion 

To summarize, the literature review on design patterns for multi-agent systems, 

types of RAG models, and multi-agent frameworks offers important insights for 

creating an efficient local multi-agent RAG system. The results emphasize the 

need to employ different strategies to tackle issues in information retrieval, 

agent collaboration, and response formulation for a multi-agent RAG system. 

The strengths and weaknesses of different aspects are also reviewed to find the 

appropriate stacks and designs to be implemented in this project. 

 

The following components will be considered for the development of this 

project. 

1. A hierarchical multi-agent architecture  

This architecture is used to coordinate specialized agents and ensure 

effective task distribution. Streamlining the task distribution process 

and increasing the modularity of this system. 

2. Agentic mechanisms  

This design is used in this system to effectively distribute tasks to the 

most suitable agent. Increasing the adaptability of the system. 

3. Graph-based workflow orchestration  

This orchestration technique is used to manage the task distribution, 

communication, and relationships between agents, aiming to increase 

the modularity and the clarity of the system  

4. Hybrid-based retrieval techniques  

This retrieval technique is used to ensure more accurate retrieval 

results and reduce the rate of hallucination for both keywords and 

similarity retrieval tasks. 
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CHAPTER 3 

 

METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

This section will discuss the development methodology, work plan, and 

development tools used to develop this project. A systematic development 

methodology is implemented to ensure steady improvement, modular execution, 

and continuous refinement. Each phase in the development methodology will 

be thoroughly discussed with its intention and aim. Additionally, this section 

will break down each phase into well-defined tasks, which will be mapped into 

a comprehensive Work Breakdown Structure (WBS) to gain. Lastly, this section 

will outline the tools and framework used during the project development, such 

as a vector database and chunking tools. These technologies support the system's 

fundamental functions, including document intake, semantic search, natural 

language creation, and performance assessment while maintaining self-host. 
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3.2 Methodology 

 

Figure 3.1: Project methodology 

 

The development of the Self-Hosted Multi-Agent RAG System for Contextual 

Document Processing will follow the Prototype Development Model. This 

method is selected because of its iterative characteristics, enabling continuous 

refinement and the ability to incorporate user input to ensure the system 

maintains certain standards while preserving performance and security. The 

prototype approach allows for quick testing and verification of various multi-

agent strategies before the system architecture is finalized, minimizing 

inefficiencies and ensuring a robust solution. The initiative will be split into five 

iterative stages, with every stage enhancing the system’s capabilities according 
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to testing outcomes and user feedback, ensuring a continuous enhancement 

toward a complete system. 

The first phase is requirement analysis and project planning. During 

this phase, the project objective will be defined along with the problem 

statement and the scope of the project, which will ensure the objective is feasible 

to develop. The requirements will also be collected from surveys to collect 

requirements regarding the functional and non-functional requirements of the 

project. The multi-agent design will also be established by specifying agent 

roles and the tools involved for each agent during this phase. Additionally, the 

tools that are required for the development of this system will be properly 

identified and studied to ensure that they are compatible with the system's 

development. 

 For the second phase, the system design phase will be carried out to 

extend from the last phase to convert the collected information into a 

comprehensive technical outline. A system architecture will be designed during 

this phase to outline the overall system flow from ingress to response, agent 

functionality, and communication between different agents. In addition to initial 

use-case situations, with use-case diagram and use-case description are outlined. 

A rough UI/UX design prototype will also be developed with Streamlit to 

outline the user interaction process via the interface with some basic 

functionalities. 

After the system design phase, the prototype development stage will be 

performed. The prototype of the preprocessing agent will be developed with 

Chonkie and marker-pdf for document chunking, and the primary hybrid 

retrieval system will be established by combining a document database, 

Weaviate which is capable of performing hybrid search while capable of scaling 

to high storage. A basic RAG-based retrieval and generation model will be 

created to lay a foundation for the more complex development needed in the 

future. The basic agent coordination for task delegation will be established, 

along with initial testing using RAGAS with sample datasets to confirm system 

workflow and fundamental retrieval accuracy. The MAS design will be 

introduced with different agent tasks and roles, including a reranking system 

using CrossEncoder to prioritize relevant information and a validation system 

for verifying facts. Subsequently, communication between agents will be 
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established via the MAS framework, LangGraph, to support cooperative 

decision-making.  

The following stage, Testing and Validation, will focus on assessing 

the system to measure its robustness via unit testing and integration testing. 

Functional testing will ensure each agent operates properly, while performance 

testing will evaluate the performance of the system component with various 

metrics, such as the accuracy metric. During the development, supervisor 

approval will be collected according to test outcomes to determine if the 

system's development is suitable to move into the next phase. If not, any 

recognized problems will be recorded, and the development process will return 

to the last prototype development phase to address the identified issues before 

proceeding. 

For the last stage, Deployment and Performance Optimization, the 

system will be packaged for real-world deployment. Measures for security and 

privacy, including access control and options for on-premises deployment, will 

be implemented.  
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3.3 Development Tools 

3.3.1 Marker 

Marker is a Python library that is capable of converting content from a complex 

file format, such as PDF, into a separate markdown file while maintaining the 

original formatting. Different from other PDF file content scrapers, Marker is 

capable of both the standard PDF parsing method and the OCR method, making 

it capable of extracting content from a scanned or image-based PDF file. 

Additionally, Marker is also capable of extracting and preserving the content in 

tabular format, an important feature that other PDF parsing solutions lack. In 

this system, Marker will be the ingest point of the user’s uploaded file, used to 

parse the content of the PDF file into markdown format to assist later processes 

like information chunking and storing. 

 

3.3.2 Chonkie  

Chonkie is an easy-to-use and lightweight Python library that is designed to 

breakdown long document content into smaller, meaningful chunks of text. This 

process is essential for this system because it allows the system to extract only 

the most relevant sections of a document to the user query, instead of returning 

complete documents. Chonkie supports various built-in chunking strategies 

such as SemanticChunking, SentenceChunking and SDPMChunking that can 

change based on user preference. Thus, Chonkie will be implemented into the 

Preprocessing agent, making sure that the document can be segmented for more 

effective retrieval. 

 

3.3.3 LangGraph & Langchain 

Langchain will be integrated into this system to utilize some tools like 

ChatOllama which will streamline the integration with the Ollama LLM model, 

MarkdownHeaderTextSplitter that will support the chunking process and more 

that will speedup the development of this project. In this system. LangGraph 

will be used to turn the system into a graph-based workflow, and the agents, 

such as preprocessing and generation agents, will function as nodes with edges 

to link nodes from one to another and to show data passing and flow between 

nodes. By organizing the workflow as a graph, a new agent can be added into 
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the system with minimum interference to the current workflow, improving the 

flexibility of the system. 

 

3.3.4 CrossEncoder reranking 

To implement a hybrid retrieval method into the system, CrossEncoder 

reranking will be utilized to evaluate the relevance of the information retrieved 

from the hybrid retrieval (BM-25) and rank the outcome based on a deeper 

understanding of the context with a pre-trained CrossEncoder model. Despite 

being more computationally demanding than the other retrieval methods, 

CrossEncoder reranking can greatly improve the quality of the retrieval 

information by minimizing irrelevant or unclear results. Thus, CrossEncoder 

reranking will be used in this system to evaluate and rank the results from both 

the hybrid retrieval. 

 

3.3.5 Ollama 

Ollama is an open-source project that can act as a platform to run various and 

download open-source LLM models such as Llama, Gemma, and Mistral locally. 

Ollama provides an easy-to-use solution that allows users to interact directly via 

a command-line interface for model installation and execution. Additionally, 

Langchain provided seamless integration with Ollama via the LLM wrappers, 

which can simplify the LLM handling operation in this system. In this system, 

Ollama is used as the local LLM hosting engine that will be used in various 

phases in this project, such as the generation agent and query-enhancing agent. 

Thus, Ollama will be used in this system to integrate local LLM into this system. 

 

3.3.6 RAGAS 

RAGAS is an open-source LLM benchmark framework to evaluate the accuracy 

and performance of LLM-based applications, which provides built-in methods 

and metrics, such as Contextual Relevancy and Faithfulness, that can be used to 

measure the performance of the generated output. In this project, RAGAS will 

be used to assess the retrieval and generation accuracy of the RAG component 

by comparing produced responses with another built in LLM-as-judge approach 

to determine the effectiveness of the model in obtaining contextually relevant 

data and determining if the produced responses are accurate and consistent with 
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the initial source materials. Thus, RAGAS will be a tool to evaluate the 

performance of the agents in this system. 

 

3.3.7 Streamlit 

Streamlit is an open-source Python framework that allows users to build an 

interactive data Python application with minimal coding requirements. Streamlit 

automatically handles the element rendering without needing complex syntax, 

making it suitable for the quick prototyping nature for the development of this 

project. In this project, Streamlit will be used to create the first prototype for 

Project 1, focusing on showing the core functionality of the system in an easy-

to-use web-based interface.  
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3.4 Proposed Workplan 

3.4.1 Work Breakdown Structure 

1. Project Planning & Analysis 

1.1 Conduct Title research 

1.2 Outline problem statements and possible problem solution 

1.3 Define project objective and scope 

1.4 Requirement collection 

1.5 Conduct literature review 

1.5.1 Study of different Multi-Agent Systems (MAS) 

1.5.2 Study of different RAG architecture types 

1.5.3 Analysis of different retrieval methods 

1.5.4 Analysis of different MAS development frameworks 

1.5.5 Identification of suitability for things covered in this 

system  

2. System Design 

2.1 Design system architecture 

2.1.1 Define agent functionalities 

2.1.1.1 Identify functions needed 

2.1.1.2 Identify the tools needed for agent 

2.1.2 Define communication flow between agent 

2.2 Design UI/UX interface and user interaction flow 

2.3 Create UML diagrams 

2.3.1 Create use case diagram 

2.3.2 Create activity diagram  

3. System prototype development 

3.1 Set up local development environment 

3.1.1 Install dependencies and libraries  

3.1.2 Install LLM models 

3.1.3 Configurate database 

3.2 System module development 

3.2.1 Develop document management module 

3.2.1.1 Develop document upload system  

3.2.1.2 Develop CRUD method for documents 

3.2.2 Develop data preprocessing pipeline 
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3.2.2.1 Implement Marker for PDF extraction 

3.2.2.2 Implement Chonkie chunking module 

3.2.2.3 Implement Nomic for embedding generation  

3.2.2.4 Develop storing function for relevant 

information 

3.2.3 Develop retrieval pipeline 

3.2.3.1 Create Hybrid retrieval method  

3.2.3.2 Implement Reranker with Cross Encoder 

3.2.4 Integrate LLM for response generation module 

3.2.5 Conversation History Management Module 

3.2.5.1 Develop user interactions and response history 

module 

3.2.5.2 Referencing response history  

3.3 Multi-Agent Workflow Implementation 

3.3.1 Establish specialized agent role 

3.3.2 Implement LangGraph framework for multiagent 

workflow  

3.3.3 Develop agent orchestrator  

3.3.4 Integrate developed module into multi-agent 

workflow 

3.3.4.1 Integrate data preprocessing pipeline into 

workflow 

3.3.4.2 Integrate retrieval pipeline into workflow 

3.3.4.3 Integrate generation pipeline into workflow  

3.3.5 Implement web search  

3.3.5.1 Develop general web search 

3.3.5.2 Develop advance search from specialize 

database 

3.3.6 Implement automated note generator agent  

4. System testing and validation 

4.1 Perform unit testing 

4.2 Perform functional testing for modules 

4.3 Evaluate the accuracy of retrieval and generation 

4.4 Supervisor feedback 
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5. Deployment and Performance Optimization 

5.1 Design and implement access control system 

5.2 Final Testing and Verification 

5.3 On-premises deployment (docker) 
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3.4.2 Gantt chart 

 
 

 
Figure 3.2: Project 1 timeline 
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Figure 3.3: Project 2 timeline 
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CHAPTER 4 

 

PROJECT SPECIFICATION 

 

4.1 Introduction 

This chapter will properly identify the project's key requirements. Additionally, 

two UML diagrams: a use case diagram and an activity diagram, will be 

included to support the project requirements. Lastly, screenshots of the system's 

initial prototype will be provided to demonstrate and reinforce the system 

specifications. 

 

4.2 Requirement specification  

4.2.1 Functional requirement specification 

Requirement 

ID 

Requirement description Status 

 

FR01 The System shall allow users to log in to their 

existing account 

Done 

FR02 The system shall allow users to sign up for a new 

account  

Done 

FR03 The system shall allow users to upload their PDF 

document  

Done 

FR04 The system shall allow users to view a list of their 

uploaded files  

Done 

FR05 The system shall allow users to delete the file from 

the database 

Done 

FR06 The system shall allow users to submit a natural 

language query  

Done 

FR07 The system shall allow users to view the relevant 

information that the system has retrieved 

Done 

FR08 The system shall allow users to view the LLM-

generated response  

Done 

FR09 The system shall allow users to generate a note via 

a query automatically  

Done 
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FR10 The system shall allow users to change the system 

LLM into their desired local LLM model 

Done 

FR11 The system shall allow users to toggle the status of 

MCP services and web search  

Done 

FR12 The system shall retrieve the content of the internet 

if the web search setting is toggled on 

Done 

FR13 The system shall allow users to include their own 

MCP server details if the MCP service is used 

Done 

FR14 The system shall dynamically adjust the workflow 

based on the user's query 

Done 

FR15 The system shall retrieve the correct relevant 

chunk from the document based on the user query  

Done 

FR16 The system shall allow the user to summarize the 

content in the uploaded document  

Done 

 

4.2.2 Non-functional requirement specification 

Requirem

ent ID 

Requirement description Status 

 

NFR01 The System shall be intuitive and easy to use for all 

types of users  

Done 

NFR02 The system shall be implemented entirely locally 

without depending on external services 

Done 

NFR03 The system shall prevent unauthorized access Done 
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4.3 Use Case Diagram 

 

Figure 4.1: Use case diagram 

 

4.4 Use Case description  

4.4.1 Login Use Case  

Use Case Name: Login 

 

ID: US01 Importanc

e Level: 

High 

Primary Actor: User 

 

Use Case Type:  Detail, 

Essential 

Stakeholders and Interests:- 
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Brief Description: This use case describes how the user can login to the 

system  

 

Trigger: The user wants to access the system. 

Relationships: 

 Association : User 

 Include  :-  

 Extend  : Sign Up- If user does not have an account 

 Generalization: - 

 

Normal Flow of Events: 

1. The user accesses the system  

2. The system displays the login interface  

3. The user enters email and password 

4. The system validates the user credentials 

5. If the user enters invalid credential, proceed 

to sub-flow 5.1 

6. If the user enters valid credential, proceed to 

sub-flow 6.1 

 

Sub-flows: 

5.1 The user enters the wrong credentials 

5.1.1 The system displays the error message and prompts the user to 

re-enter 

5.1.2 Proceed to flow 3 

 

6.1 The user enters the correct credentials.  

6.1.1 The user proceeds to the system's main interface 
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4.4.2 Sign Up Use Case  

Use Case Name: Sign Up 

 

ID: US02 Importan

ce Level: 

High 

Primary Actor: User 

 

Use Case Type:  Detail, 

Essential 

Stakeholders and Interests:- 

 

Brief Description: This use case describes how the user can sign up for a 

new account 

 

Trigger: If the user has no existing account and wishes to sign up for one 

Relationships: 

 Association : User 

 Include  : - 

 Extend  : - 

 Generalization: - 

 

Normal Flow of Events: 

1. The user accesses the system 

2. The user selects the sign-up option in the 

login interface 

3. System display sign-up interface 

4. The user enters their email address, 

password, and confirms password 

5. The system validates the credentials entered 

6. If the user enters invalid information, 

proceed to sub-flow 6.1 

7. If the user enters valid information, proceed 

to sub-flow 7.1 
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Sub-flows: 

6.1 The user enters invalid information 

6.1.1 The system displays the error message and prompts the user to 

re-enter, proceed to flow 3 

 

7.1 The user enters the valid information 

7.1.1 The user proceeds to the system's main interface 

 

 

 

4.4.3 Upload File Use Case  

Use Case Name: Upload File  

 

ID: US03 Importanc

e Level: 

High 

Primary Actor: User 

 

Use Case Type:  Detail, 

Essential 

Stakeholders and Interests:- 

 

Brief Description: This use case describes how the user can upload their 

document into the system database 

 

Trigger: The user wants to upload their document to the system database 

for the system to reference 

Relationships: 

 Association : User 

 Include  : - 

 Extend  : - 

 Generalization: - 

 

Normal Flow of Events: 

1. The user selects the file upload in the 

navigation menu 

2. The system navigate to file upload interface 
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3. The user clicks the upload file option in the 

interface 

4. The user selects one or more files from their 

local device with a file browser. 

5. The user selects the submit option 

6. The system checks the file 

7. If the file is invalid, proceed to sub-flow 7.1 

8. The system starts file processing 

9. The system prompts a successful message 

 

Sub-flows: 

7.1 The user’s file is too big or an unsupported file format  

7.1.1 The system stops the upload process  

7.1.2 The system prompts an error message, proceed to flow 3 

 

 

 

4.4.4 Manage File Use Case  

Use Case Name: Manage File  

 

ID: US04 Importanc

e Level: 

High 

Primary Actor: User 

 

Use Case Type:  Detail, 

Essential 

Stakeholders and Interests: - 

 

Brief Description: This use case describes how the user can manage their 

uploaded document  

 

Trigger: The user wants to manage their file in the system 

Relationships: 

 Association : User 

 Include  : - 
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 Extend  : - 

 Generalization: - 

 

Normal Flow of Events: 

1. The user selects the Manage file in the 

navigation menu 

2. The system navigates to the Manage file 

interface 

3. The system fetches files information from the 

database 

4. If no file is found in the database, proceed to 

sub-flow 4.1 

5. The system displays file information  

6. The user checks the delete option for the 

document, proceeds to sub-flow 4 .1 

 

Sub-flows: 

4.1 If no file is found in the database 

4.1.1 The system displays an error message 

 

5.1 If the user chooses to delete the document 

6.1.1 The user clicks the delete button 

6.1.2 The file will be deleted from the document.  

6.1.3 The system prompts a success message 

 

 

 

 

4.4.5 Ask question Use Case  

Use Case Name: Ask question  

 

ID: US05 Importanc

e Level: 

High 
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Primary Actor: User 

 

Use Case Type:  Detail, 

Essential 

Stakeholders and Interests: - 

 

Brief Description: This use case describes how the system will respond 

when the user enters a query into the system 

Trigger: The user wants to ask a question  

Relationships: 

 Association : User 

 Include  : - 

 Extend  : - 

 Generalization: - 

 

Normal Flow of Events: 

1. The user navigates to the chat interface. 

2. The system navigates to chat interface 

3. The user enters their question in the text 

input field. 

4. The user clicks the submit button. 

5. The system analyzes the query. 

6. The system router determines the most 

suitable handling strategy for the query: 

7. If the request can be answered directly using 

the LLM’s internal knowledge, proceed to 

Sub-flow 7.1. 

8. If the request requires additional 

information from documents or external 

sources, proceed to Sub-flow 8.1. 

9. The Generation Node creates a grounded 

response using both the LLM’s knowledge 

and the retrieved information. 

10. The system prompt the final response to the 

user. 
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Sub-flows: 

7.1 If query handled directly by LLM 

7.1.1 The router pass the query directly to generation node, Proceed 

to flow 9 

 

8.1 If query requires retrieval 

8.1.1 The Workflow Router forwards the query to the Retrieval Node. 

8.1.2 The Retrieval Node determines whether to use uploaded 

documents or external source 

8.1.3 If the system uses external search, proceed to sub-flow 8.1.3 

8.1.4 If the system uses document search, proceed to sub-flow 8.1.4 

 

8.1.3.1 If the system uses external search 

8.1.3.1.1 The ReAct agent dynamically selects the most suitable 

external tool: 

• General Web Search: Fetches the top 5 most relevant web pages, 

preprocesses the content, and applies hybrid retrieval to extract 

useful information. 

• Medical Knowledge (PubMed): Retrieves relevant research 

articles for medical-related queries. 

• Financial News (Yahoo Finance): Retrieves the latest finance and 

business news. 

8.1.3.1.2 The retrieved information is passed to the Generation Node 

for response generation, proceed to flow 9 

 

8.1.4.1 If the system uses document search 

8.1.4.1.1 The Retrieval Node fetches relevant passages from user-

uploaded documents. 

8.1.4.1.2 The retrieved information is passed to the Generation Node 

for response generation, proceed to flow 9 
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4.4.6 Change system setting Use Case  

Use Case Name: Change system setting 

 

ID: US06 Importanc

e Level: 

High 

Primary Actor: User 

 

Use Case Type:  Detail, 

Essential 

Stakeholders and Interests: - 

 

Brief Description: This use case describes the user flow to change the 

system operational setting 

Trigger: The user wants to change the details of the system 

Relationships: 

 Association : User 

 Include  : - 

 Extend  : - 

 Generalization: - 

 

Normal Flow of Events: 

1. The user selects the setting in the navigation menu 

2. The system navigates to the setting interface 

3. The system displays the setting menu with 

available system settings such as, LLM model 

selection, Web search configuration 

4. The user modifies the setting  

5. The user selects the save option in the settings page  

6. The System checks the validation of the setting 

change 

7. If the setting is valid, proceed to sub-flow 7.1 

8. If any error occurs during validation, proceed to 

sub-flow 8.1 
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Sub-flows: 

7.1 The setting is valid 

7.1.1 The system will save the setting 

7.1.2 The system prompts a success message  

7.1.3 The system will alter the system workflow according to the new 

settings. 

 

8.1 The setting is invalid  

8.1.1 The system will prompt an error message, proceed to flow 4 

 

 

 

4.4.7 Execute automated note generation Use Case  

Use Case Name: Execute automated note 

generation  

 

ID: US07 Importanc

e Level: 

High 

Primary Actor: User 

 

Use Case Type:  Detail, 

Essential 

Stakeholders and Interests: - 

 

Brief Description: This use case describes how the user can initiate the 

automation note generation workflow  

Trigger: The user wants to create generate note for the last chat history 

or the response of current question 

Relationships: 

 Association : User 

 Include  : - 

 Extend  : - 

 Generalization: - 

 

Normal Flow of Events: 

1. The user selects the chat interface 

2. The system navigates to chat interface 
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3. The user enters a prompt related to 

generating a note 

4. The system analyzes the user's intent 

5. The system generation the response 

6. The system analyse if query require 

automated workflow 

7. The system executes steps and tools in the 

workflow 

8. If the generation is successful, proceed to 

sub-flow 8.1 

9. If any error occurs during generation, 

proceed to sub-flow 9.1 

 

Sub-flows: 

8.1 The generation is successful 

8.1.1 The system prompt success message  

 

9.1 Error occurs during generation 

9.1.2 The system stops the generation process 

9.1.3 The system prompt error message, proceed to flow 3 

 

4.4.8 Summarize document Use Case  

Use Case Name: Execute document 

summarization 

 

ID: US08 Importanc

e Level: 

High 

Primary Actor: User 

 

Use Case Type:  Detail, 

Essential 

Stakeholders and Interests: - 

 

Brief Description: This use case describes how the user can initiate the 

document summarization workflow  

Trigger: The user wants to summarize the content in the uploaded 

document 
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Relationships: 

 Association : User 

 Include  : - 

 Extend  : - 

 Generalization: - 

 

Normal Flow of Events: 

1. The user selects the chat interface 

2. The system navigates to chat interface 

3. The user enters a prompt related to 

document summarization 

4. The system analyzes the user's intent 

5. The system process to the summarization 

node  

6. The system responds with 5 summarized 

passage to the frontend 

7. If the summarization is successful, proceed to 

flow 7.1 

8. If any error occurs during summarization, 

proceed to sub-flow 8.1 

 

Sub-flows: 

7.1 The summarization is successful 

7.1.1 The system prompt the final summarized content 

 

8.1 Error occurs during summarization 

8.1.2 The system stops the summarization process 

8.1.3 The system prompt error message, proceed to flow 3 
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4.5 Activity diagram  

 

Figure 4.2: Login Activity diagram 

 



73 

 

 

Figure 4.3: Sign Up Activity diagram 
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Figure 4.4: Upload file Activity diagram 
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Figure 4.5: Manage file Activity diagram 
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Figure 4.6: Ask Question Activity diagram 
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Figure 4.7: Change system setting Activity diagram 
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Figure 4.8: Execute automated workflow Activity diagram 
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Figure 4.9: Summarized document activity diagram 
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4.6 Prototype section  

 

Figure 4.10: Login interface 

 

 

Figure 4.11: Error in login interface 
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Figure 4.12: Sign Up interface 

 

 

Figure 4.13: Error in Sign Up interface 
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Figure 4.14: The file upload interface 

 

 

Figure 4.15: The file upload interface with error 

 

 

Figure 4.16: The file upload interface with error 
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Figure 4.17: The file management interface 

 

 

Figure 4.18: The document chat interface 
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Figure 4.19: The document chat interface (response) 

 

 

Figure 4.20: The document chat interface (relevant chunks) 
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Figure 4.21: The system setting interface 

 

 

Figure 4.22:The system setting interface (toggle MCP services) 
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Figure 4.23: Error message when invalid MCP server detail input 
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CHAPTER 5 

 

SYSTEM DESIGN 

 

5.1 Introduction 

This section will discuss the overall system design, including system flow from 

user query to the backend database and how the user query is processed and 

transported to each node. Moreover, this section will also discuss different 

technical components and their roles in supporting the workflow, as well as the 

database schema, to provide a comprehensive overview of the system 

architecture. 

 

5.2 System flow  

 

 

Figure 5.1: System flow 
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The system flow diagram illustrates the backend flow of the system, beginning 

with the user sending a request to the backend. The first component that 

processes the user request is the query analyser. The query analyser will analyse 

if the query is a follow-up question, if the query is a follow-up question or 

contains some ambiguous wording like “that”, “last-message”, or “it” that is 

referring to the last message, the query will be rewritten based on the message 

history to be more specific and searchable. For example, for a query like “what 

does that mean,” the query analyser will transform the query into “more detail 

about machine learning” if the history is related to a machine learning topic. 

Next, the query analyser will pass the process query to the workflow router, 

which will identify the most suitable task for the user query for a request that 

can be simply answered by the LLM's knowledge. The system will route the 

request to the generation node to generate a response, skipping the retrieval part 

for simple requests. For the document summarization request, the router will 

pass the request to the summarization node, which will detect the relevant 

document inside the database to extract the 5 most relevant chunks that can 

represent the document the most, then summarize the extracted chunks before 

passing the summary of the chunks to the generation node for the final 

explanation. For request that needs the latest information to support or need 

support information from the uploaded document that cannot be answered 

accurately with the knowledge base of LLM, the router will route the request to 

the retrieval node, which will retrieve relevant information from various sources, 

such as documents and external sources. Then, the relevant information will be 

passed into the generation node to achieve the RAG core functionality and to 

ensure the response is based on grounded information. 

For the external search, the system employs a ReAct agent to 

dynamically route the retrieval request to the most suitable external search path 

that is most likely to provide relevant information. Three external search sources 

will be wrapped into tools that will pass into the ReAct agent for dynamic tool 

selection, including a general web search that will pass the query to the web 

search engine to scrape the top 5 most relevant web pages’ content, then perform 

preprocessing and hybrid retrieval to get the most relevant information from the 

general web search engine. Next, the external search will connect to a medical 
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database source, where it will scrape the article content from the PubMed 

database for requests related to medical knowledge. Lastly, the external search 

will connect to yfinance new website, which will allow the system to fetch the 

latest finance or business news from Yahoo Finance page. This approach can 

ensure the system not only can retrieve relevant content from user-uploaded 

documents but also allows the system to fill the knowledge gap with the latest 

information from different internet sources. 

After generating the response, the system will route the request query 

to the MCP, which the system will check if the user query contains any request 

about document processing, such as “create a document about machine learning” 

and “add content into the document machine learning.docx”. If the intent is 

detected, the system will start to execute the document process operation by 

creating a ReAct agent with all of the tools provided by the MCP server. Then 

the system will start to execute all of the needed tools to fulfil the user document 

processing requirement with the support of the generated response from the 

generation node. 

 

5.3 Operation mode 

This system offers two operation modes for two different workflows, which are 

personal and organizational workflows. First, the personal workflow will allow 

the user to upload and manage their document as well as change the system 

configuration that will only affect the system configuration of that particular 

user. The document storage for personal mode is fully separate among different 

users so that users are unable to retrieve information from documents that is not 

uploaded by themselves. This operation mode aims to maximize the flexibility 

of the system for individual users who just wish to use this system in a 

standalone machine. 

 For the organization mode, the user will be separated into two roles, 

which are admin and user. In this mode, only the admin will be allowed to 

upload, manage the document in the database, and change the system 

configuration used in the current flow. The uploaded document will be a shared 

document, which every user who has the role of user will be allowed to retrieve. 

Admin also has a function to manage users via CRUD operation, which will be 
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the only way for the system in organization mode to create new users. As for 

the user, they are only allowed to do two things, which are to view the document 

currently available in the database and perform document Q&A via the main 

chat interface that will perform the system flow. This approach is aimed to suit 

the server-client workflow where the backend server will act as a centralized 

knowledge base that will store all of the necessary files, allowing the system to 

essentially become an organization's document enquiry that can reduce the time 

taken for information searching and document processing. 

 

5.4 System Architecture Components 

5.4.1 FastAPI 

FastAPI is a modern, high-performance web framework for building APIs with 

Python.  It is designed with speed and scalability, which FastAPI is built to 

handle large numbers of requests effectively. In this system, FastAPI will be the 

backbone of this project, which it will be used to create api endpoint for all of 

the backend functionality of the system, such as preprocessing, graph workflow 

and user authentication. FastAPI is also crucial in making the system responsive, 

as it provides WebSocket functionality that will be used for real-time processing 

feedback and also to create a “streaming” effect for the generation node 

responses, making the system more responsive to user input. 

 

5.4.2 React 

React is a widely used, open-source JavaScript library developed by Facebook, 

designed to build dynamic and interactive user interfaces. React provided a 

platform that allows developers to build a user interface with modular 

components that can be used to develop a complex frontend system. 

Additionally, React also supports a wide range of UI frameworks and libraries 

that allow for rapid prototyping for a user-friendly interface. In this project, 

React is used to develop the frontend component, which is the main entry point 

for the user to interact with the system, ensuring a seamless and interactive 

experience for the user. 
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5.4.3 Weaviate 

Weaviate is an open-source vector database that is designed for the storage of a 

high volume of vector embedding. Weaviate provides Docker deployment 

options that can be accessed without needing to be online. Additionally, the 

embedding can also be stored along with extra metadata, which can allow 

filtering operations. In this system, Weaviate will be used to store the vector 

embedding data generated from the nomic embedding model that converts text 

chunks into vector representations. Moreover, Weaviate also provides a built-in 

hybrid retrieval method that uses BM25 for keyword-based search and a dense 

search algorithm, which will be fed into a fusion algorithm that will calculate 

the relevancy and combine results from both search algorithms, making the 

retrieval component more flexible for different types of queries. 

 

5.4.4 MySQL  

MySQL is a lightweight, open-source relational database management system 

(RDBMS) that is widely adopted for web applications and enterprise systems 

due to its stability, speed, and reliability. It offers a strong, quick, and 

dependable method for handling significant amounts of data in an organized 

way. In this system, a MySQL database will be used as the secondary database, 

while the vector database is specialized for storing and retrieving high-

dimensional text embeddings. MySQL is responsible for managing the broader 

system data that is essential for application functionality. For example, MySQL 

will also be used to store the user information for the authentication module, 

document information that is uploaded by the user, and the chat history for the 

user for persistent usage. Thus, MySQL's robust database features and ability to 

scale well make it a perfect choice as the secondary database in this project 

 

5.4.5 Redis 

Redis is an open source, in-memory cache system that is popular because of its 

reliability and lightning-fast data operation speed, while having the ability to 

scale to millions of messages, making it a very popular choice among different 

types of systems, such as web applications and speed-sensitive applications. In 

this system, Redis will be used to store two data, which are user authentication 
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tokens and chat history. For user authentication, this can ensure the user token 

can be fetched with minimum delay, with a given time-to-live that will eliminate 

the need for manual cleanup. For the chat history, this can ensure chat history 

can be fetched very quickly to pass into system operation to let the generation 

module refer to previous history, ensuring the generation module can get all the 

context it needs. Thus, Redis will be used in this system as the third database to 

store data that is time sensitive. 

 

5.5 Database schema design  

5.5.1 MySQL database schema  

 
Figure 5.2: MySQL Entity Relationship Diagram 
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Table 5.1: MySQL database schema 

Table Description 

User This table is used to store all user information, including 

username and password, that will be used for authentication, 

and the role that will be utilized in access control 

AuthToken This table is used to store a unique JWT-based token based on 

different users and sessions to increase the security of the 

system 

Settings This table is used to store users’ settings based on different user 

IDs, including the model used, the maximum token for 

response, and enable MCP component. If the deployment mode 

is set to organization, the only user setting that will be used is 

based on the value of is_global, which will be used if the value 

is True 

History This table is used to store users’ chat history, including the 

context, generated context and query. 

Document This table is used to store all of the information about the 

document store uploaded and the related user for the document 

 

5.5.2 Weaviate database schema  

 

 

Figure 5.3: Weaviate Entity Relationship Diagram 
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Figure 5.4: Weaviate database scripts 

 

Table 5.2: Weaviate collection schema 

Collection Description 

DocumentChunks This collection is used to store all of the chunks 

from the user-uploaded document, with some 
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additional information that will be used in the 

retrieval module, such as header information and 

source of the chunks 

DocumentName This collection is used to store all of the documents 

uploaded to the vector database  

TempSearchCollection This collection is used by all external search tools, 

including GeneralWebSearch, MedicalDatabase, 

and FinanceNews modules. This collection will be 

initialized every time the external search is invoked 

and will be deleted after the processing is finished. 
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CHAPTER 6 

 

SYSTEM IMPLEMENTATION 

 

6.1 Introduction 

In this section, a snippet of the actual working product will be provided and 

explain which a detailed description of all system components, such as user 

authentication, file management, and chat function. setting the interface and 

user management interface to provide a clear view of how the system operates 

as a working product. 

 

6.2 Software setup  

 

Figure 6.1: docker-compoose scripts 

 

The system requires three external dependencies for the databases used in this 

system, including Redis, MySQL, and Weaviate. To utilize these services, this 
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system uses docker compose, which simplifies deployment and ensures 

consistency across development and production environments. A docker-

compose file is created with the scripts above that specify the service's port, 

environment variable and the image version used.  

The Weaviate is deployed as a vector database service using the 

cr.weaviate.io/semitechnologies/weaviate:1.31.3 image, which is the official 

Docker image release by the development team of Weaviate. It is configured to 

listen on port 8001 for API requests and port 50051 for gRPC communication. 

The setup enables API-based modules used in this system to fetch and write into 

the Weaviate database. 

The Redis service is built with the latest official Redis Docker image that 

will be deployed on port 6379 and run with specify command that will set the 

memory settings use for the Redis service 

Lastly, MySQL is deployed using the mysql:8.0 image that is configured 

to listen on port 3306 along with standard application user (app_user) and 

password authentication. Additionally, the character encoding is set to utf8mb4 

with collation utf8mb4_unicode_ci to support multilingual data processing. 

 

6.3 Log in & Register module 

This system uses a standard access control where every user needs to register an 

account to prevent any unauthorized access to the document chat information. 

The only difference is that this system has two types of deployment mode, which 

is personal and organization deployment modes. Where the personal workflow 

is for individual who deploy this system on their personal computer, and the 

organization deployment mode is for client-server deployments 
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Figure 6.2: Sign in interface for personal deployment 

 

The sign-in interface is the first interface users see when accessing the system. 

In this interface, user need to enter their username and the password to sign in 

to the actual system main interface. This interface also has a hyperlink that will 

take the user to the register page if their does not have an existing account. 

 

 

Figure 6.3: Register interface for personal deployment 

 

The register interface is shown when the user presses the hyperlink. In this 

interface, the user also needs to enter their username and password that will be 

stored as a new user instance in the database, but in this interface user is required 

to enter the confirm password field to prevent any password misinput  
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Figure 6.4: Sign in interface for organization deployment 

 

As for the organization deployment, the user is only given the option to sign in 

and not register because in this workflow, the system will have two roles, which 

are admin and user, where only the admin can create new user accounts. 

Moreover, the system will create a default admin user account that allows the 

admin user to access the system. 

 

 

Figure 6.5: Error message 

 

If any invalid credentials or format, such as an empty password or username, or 

an unmatched password, are entered into the system, the error message will be 

displayed under the input field in both the register and login interface 
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6.4 File upload & File management module 

 
Figure 6.6: File upload interface 

 

For every subsequent interface, a sidebar will be used to navigate to different 

interfaces and log back in to the sign-in interface. The File upload interface will 

be the first interface users see after signing in or registering, and users can 

upload the PDF document they want with the browse file component 

 

 

Figure 6.7: Select document to upload 

 

After the user selects the document user, the file explorer will pop up, and the 

user is given the option to start or cancel the document upload process  
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Figure 6.8: After the upload button is pressed 

 

After the upload button is pressed, the system will initialize the upload pipeline. 

First, the system will store the uploaded file into the destination file system and 

the MySQL and Weaviate databases, and the interface will show upload 

completed if the upload is successful. Then, the system will start the 

preprocessing pipeline, where the document will be converted to a markdown 

file format, chunked into multiple pieces, and stored in the vector database to 

ensure the subsequent process can extract relevant information from the 

document. The preprocessing will be handled in the background, and the 

interface will show the progress of the document processing at the bottom right 

corner for a more responsive user experience.  

 

 

Figure 6.9: File management interface 

 

After the user uploads their document, all uploaded and processed files will 

show in the file management interface. In this interface, the user can only 
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perform one operation: deleting the document. The user can check all the files 

they want to delete and press the "Confirm Delete" button to remove the 

document and all its content from the MySQL and Weaviate databases. For the 

organization workflow, the uploaded file is shared among all users with the role 

“user” or “admin” where “users” can fetch relevant information from the file 

uploaded by the admin.  

 

6.5 Chat interface module 

 

Figure 6.10: Chat interface for organization deployment 

 

As for the account with the role user in organization deployment mode, the chat 

interface will be their first interface where they are only allowed to perform two 

operations in this system, including asking a question and viewing the available 

document in the database. 
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Figure 6.11: Chat interface 

 

The Chat interface will be the main interaction point for the user and this system 

is designed to be as simple as possible for the user to work. In this interface, 

user can ask their questions, where the system will determine the best workflow 

to resolve the question with different processes such as retrieval, generation, and 

document automation, as shown in Figure 5.1. 
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Figure 6.12: Processing user query 

 

After the user enters the query into the system, the system will determine the 

most suitable workflow according to the user's query. For example, the system 

will route to the generation process for simple requests like a greeting, and the 

system will show the current progress stage at the top of the chat interface, such 

as the first stage router: routing the query to the appropriate workflow. After the 

process finishes, the system will stream the response token by token, similar to 

OpenAI ChatGPT. Therefore, the user does not need to wait after the full 

response is generated; they can see the output in real time, giving a more 

responsive user experience.   

 

 

Figure 6.13: Force stop 
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During any stage before the full response is generated, users are allowed to stop 

the system process by pressing the stop button, which will stop all processes of 

the system and allow the user to enter a new query. 

 

 

 

 

Figure 6.14: Retrieval workflow 
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When the user query requires additional information to support the generation, 

the system will initiate the retrieval process depending on the user's settings. If 

the user chooses to retrieve from the internet in the setting, the system will 

scrape the information from the relevant websites or database and use it for 

response generation and return the relevant information to the frontend interface. 

Otherwise, the system will initialize the document search process that will fetch 

all relevant chunks or information from the deviate database with hybrid 

retrieval. Thus, the user can see the relevant information in the dropdown menu 

in the interface while the response is being generated 

 

 

Figure 6.15: Unrelated query inserted 

 

If the system fails to retrieve relevant information from the vector database. The 

system will not elaborate on the wrong response, and it will suggest that the user 

switch the retrieval source, ensuring the response generated is fully based on 

grounded information. 
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Figure 6.16: Document summarization 

 

When the system detects a summarization keyword together with a matching 

document name in the document name vector database, the system will 

automatically initiate the summarization workflow. In this workflow, the system 

will fetch the 5 most relevant passages from the document and summarize the 

passage content one by one, and send the summarized passage content to the 

frontend. After summarizing all of 5 passages, the system combines the 

summarized content, analyses it in context, and generates a final comprehensive 

explanation of the overall document. 
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Figure 6.17: MCP server terminal 

 

 
Figure 6.18: Word document generated 



109 

 

 

After the final response is generated, the system re-analyses the user query to 

check whether it contains a document-related operation, such as creating a new 

document or adding content to an existing one. If detected, the system will 

initialize the document automation workflow. In this workflow, the system will 

communicate with the external MCP server that provides access to various tools 

for document processing. Based on the query, the system invokes the necessary 

tools through the MCP server to execute the required document automation 

tasks. 

 

 

 
Figure 6.19: Chat History Store In Databases 

 

After finishing one chat response, the content of the chat session will be stored 

in two databases, which are MySQL for long-term storage and Redis for short-

term storage. The history store in MySQL will be used to ensure the previous 

chat can be fetched even if the user logs out or goes to a different interface. 

Meanwhile, Redis is leveraged for its fast retrieval capabilities, allowing the 

generation module to access recent conversation history quickly. To prevent 

context overload, only the last three conversation entries are stored in Redis, 

ensuring that responses remain both efficient and contextually accurate. 
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6.6 Settings module 

 
Figure 6.20: Setting interface 

 

The setting module will allow the user to customize various component 

configurations of the system, including the LM model used, context length limit, 

output token limit, temperature, and workflow configuration. 

 

 
Figure 6.21: LLM configuration 

 

For the local model, the system will detect all of the Ollama LLM models in the 

system, and the user can choose the LLM model to use in this system. But the 

system also allows users to integrate an external LLM connection via API, 

where users can check the use online LLM provider option, and they can choose 

to use either the OpenAI model or the Gemini model in this system. 
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Figure 6.22: MCP Server configuration 

 

To enable external document workflow, the user can check the Enable MCP 

Tool Integration option in the settings. Once enabled, the system displays an 

input field where the user can enter the MCP server URL to establish a 

connection via HttpStreamable. After creating a new server connection, the list 

of connected servers will show at the bottom of the settings interface, and the 

user can delete if needed. 

 
Figure 6.23:Setting submitted 

 

After the user completes their setting changes and submits them, the system will 

display a confirmation message indicating that the update has been successfully 

applied. This notification ensures that the user is clearly informed of the 

successful update. 
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6.7 User management module 

 

 

Figure 6.24: User management interface 

 

For the organization workflow, the account with the role admin will have a new 

interface option, which is the user management interface. In this interface, the 

admin can see all of the users in this system and perform CRUD actions on the 

users. 

 

 

Figure 6.25: CRUD operation for user management 

 

The admin can create a new user, update the information about an existing user 

and delete any user. When any of the options is chosen, the system displays an 

input form where the admin can enter the required details to apply the changes.  
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CHAPTER 7 

 

SYSTEM TESTINGS AND DISCUSSION  

 

7.1 Discussion 

 

Figure 7.1: Segment of SQuAD on hugging face 

 

To evaluate the performance of the two-core component in this system, which 

includes the retrieval and generation components. The performance of the 

component is evaluated with the Stanford Question Answering Dataset 

(SQuAD), a popular benchmark dataset for measuring question-answering 

systems. The SQuAD dataset contains passages from various Wikipedia articles 

with provided questions and golden answers to the questions, making it suitable 

for the evaluation of the retrieval and the generation components in this system.  

 

 

Figure 7.2:Result chart 
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The chart presents the evaluation results of the multi-agent RAG system with 

SQuAD across two categories of metrics: retrieval performance and generation 

performance. The retrieval performance is measured with metrics such as 

Recall@3, Mean Reciprocal Rank (MRR) and Context Recall, while the 

generation performance is measured with metrics such as Faithfulness and 

AnswerCorrectness. Moreover, two evaluation approaches were used, with a 

calculation-based method applied to a sample size of 100, and an LLM-as-Judge 

method using the GPT-4o model, applied to a smaller sample size of 20 due to 

token and request limitations. The LLM-as-Judge approach was adopted 

because some metrics are difficult to measure with a calculation-based method 

and this approach can leverage the flexibility of LLM to provide more human-

like evaluation for the answer quality. 

For retrieval, the system's retrieval component achieves a Recall@3 of 

90% which means that out of 100 samples, the most relevant context is present 

within the top 3 passages retrieved by the system. Moreover, the retrieval 

component also achieved an MRR score of 75%, meaning that the correct 

context is retrieved at an average rank of top 2 or 1. Lastly, the system manages 

to score 100% in context recall, which, as referenced in SQuAD, through 

reference context demonstrates the retrieval component’s ability to consistently 

retrieve the correct context. 

For generations, the system generation component performs 

excellently in terms of Faithfulness, which the system achieves a perfect score, 

meaning that the generation is consistently grounded in its responses based on 

the retrieved context without hallucinating. However, the system only achieves 

74.4% accuracy in the AnswerCorrectness metric, meaning that although the 

answer is accurate most of the time but there are still times when the response 

generated is not accurate. It is important to note that this evaluation was 

conducted using the Llama 3.1:8B model, which is relatively small. Thus, this 

limitation can possibly contribute to the lower accuracy observed.  
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7.2 Unit test 

Unit testing was performed to evaluate every major component to ensure the 

module functions as intended. To ensure proper traceability, the unit test cases 

were designed in alignment with the defined use cases. This approach ensure a 

clear link between system requirements and the corresponding test scenarios. 

 

Figure 7.3: Test automation script result 

 

Table 7.1: Test cases 

Test 

CaseID 

Test Title Expected 

result 

Test data Use 

case 

Status 

UTC001 Test sign in 

with a valid 

credential 

User 

successfull

y accessed 

to the main 

interface 

1. Name : 

2104132 

2. Password: 

123 

UC01 

 

Pass 

UTC002 Test sign in 

with empty 

username 

and 

password 

System 

prompt 

username 

and 

password 

cannot be 

empty 

-  Pass 

UTC003 Test sign in 

with invalid 

credentials 

System 

prompt 

error 

1. Name: 

nonUser 

Pass 
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message: 

“Invalid 

credentials. 

Please 

verify your 

input.” 

2. Password: 

123123 

UTC004 Test sign in 

with the 

existing 

authenticati

on token in 

the 

database. 

System 

skips the 

sign-in step 

and 

navigates 

to the main 

interface 

1. Token Pass 

UTC005 Test register 

with a valid 

credential 

User 

successfull

y accessed 

to the main 

interface 

1. Name: 

2104132 

2. Password:12

3123 

3. Confirm 

password: 

123123 

UC02 

 

Pass 

UTC006 Test register 

with an 

empty field 

System 

prompt 

username 

and 

password 

cannot be 

empty 

-  Pass 

UTC007 Test register 

with an 

unmatched 

password 

System 

error 

message 

“password 

does not 

match” 

1. Name: 

2104132 

2. Password: 

123123 

Pass 
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3. Confirm 

password: 

123 

UTC008 Test upload 

a document 

with a valid 

file type and 

size 

System 

successfull

y 

initialized 

the 

preprocessi

ng process 

1. Document: 

utarpolicy.pd

f (85KB) 

UC03 

 

Pass 

UTC009 Test upload 

with an 

invalid 

document 

type 

System 

prompt 

error 

message: 

"Only PDF 

files are 

allowed!” 

1. Document: 

test.png 

Pass 

UTC010 Test upload 

with an 

invalid size  

System 

prompt 

error 

message 

“Invalid 

file size” 

1. Document: 

Testpdf.pdf 

(25MB) 

Pass 

UTC011 Test manage 

file interface 

with the 

existing file  

The system 

displays all 

the 

uploaded 

file lists 

-  UC04 

 

Pass 

UTC012 Test file 

deletion in 

the manage 

file interface 

The system 

successfull

y deleted 

the 

document  

- Pass 
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UTC013 Test manage 

file interface 

with no 

existing file  

The system 

displays 

“No files 

uploaded.” 

- Pass 

UTC014 Test system 

routing with 

force 

generation 

setting on 

The system 

routes the 

user 

request to 

the 

generation 

node  

1. Query: “what 

is an apple” 

2. force_genera

tion: True 

UC05 Pass 

UTC015 Test system 

routing with 

force 

retrieval 

setting on 

The system 

routes the 

user 

request to 

the 

retrieval 

decision 

node 

1. Query: “what 

are the 

different 

types of 

rag?” 

2. force_retriev

al: True 

Pass 

UTC016 Test system 

routing with 

a simple 

request 

The system 

routes user 

requests to 

the 

generation 

node 

1. Query: 

“What is the 

capital of 

France?” 

Pass 

UTC017 Test system 

routing with 

a query that 

requires the 

latest 

information 

The system 

routes the 

user 

request to 

the 

retrieval 

decision 

node 

1. Query: 

“What is 

MCP, and 

what are the 

applications?

” 

Pass 
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UTC018 Test system 

feature with 

follow-up 

question 

The system 

analyse 

and 

enhances 

the user 

query 

based on 

the 

conversatio

n history 

1. Query: 

“Explain 

more on 

that.” 

Pass 

UTC019 Test 

external 

search 

routing with 

general 

question  

The system 

routes user 

request to 

general 

web search 

1. Query: 

“What is 

MCP, and 

what is the 

applications?

” 

Pass 

UTC020 Test 

external 

search 

routing with 

medical 

medical-

specific 

question  

The system 

route user 

requests to 

the medical 

database 

search tool 

1. Query: 

“What is the 

effect of 

anabolic 

steroids?” 

Pass 

UTC021 Test 

external 

search 

routing with 

the finance 

new specific 

question  

The system 

routes user 

requests to 

the finance 

new search 

tool 

1. Query: “Why 

is Tesla stock 

down 

today?” 

Pass 

UTC022 Test system 

routing to 

The system 

routes user 

1. Query: “why 

are the 

Pass 
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document 

search with 

no 

document 

available  

requests to 

the 

generation 

node 

different 

types of 

rag?” 

UTC023 Test stop 

feature 

system 

processing 

The system 

stops the 

process 

and returns 

the 

response 

“stopped 

by user”  

-  Pass 

UTC024 Test system 

response 

with a 

question not 

in the 

document 

The system 

responds 

with “The 

context 

provided 

can not 

answer 

your 

question, 

want to 

switch to 

external 

search?”  

1. Query: “who 

is the winner 

of cs austin 

major” 

Pass 

UTC025 Test system 

response 

with a 

question 

cannot be 

found on the 

internet 

The system 

responds 

with “The 

context 

provided 

can not 

answer 

1. Query: “what 

is the term 

and condition 

for utar 

staff?” 

Pass 
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your 

question. 

want to 

switch to 

document 

search?”  

UTC026 Test system 

response 

with error 

occurs 

during 

processing 

The system 

displays 

error 

message at 

the chat 

interface 

- Pass 

UTC027 Test system 

setting 

changed 

with a 

different 

LLM model 

applied 

The system 

successfull

y saved 

and applied 

the updated 

LLM 

model 

1. Model: 

qwen2.5:7b 

UC06 Pass 

UTC028 Test system 

setting 

changed, 

external 

LLM model 

applied 

The system 

successfull

y saved 

and applied 

the updated 

LLM 

model 

1. use_online_ll

m : True 

2. online_provi

der: openai 

3. online_api_k

ey 

Pass 

UTC029 Test system 

setting 

changes 

with LLM 

configuratio

n updated 

The system 

successfull

y saved 

and applied 

the updated 

LLM 

1. token_respon

se: 6000 

2. context_lengt

h:7000 

3. temperature:

0.4 

Pass 



122 

 

configurati

on 

UTC030 Test system 

setting 

changes 

with 

workflow 

configuratio

n updated 

The system 

successfull

y saved 

and applied 

the updated 

workflow 

configurati

on 

1. force_retriev

al: True 

2. search_mode

:external 

search 

Pass 

UTC031 Test system 

setting 

changes 

with the 

MCP 

workflow 

configuratio

n updated 

The system 

successfull

y saved 

and applied 

the updated 

MCP 

server 

details 

1. enable_mcp:

True 

2. mcp_details:

”[{\"name\": 

\"word_docu

ment\", 

\"url\": 

\"http://127.0

.0.1:8003/mc

p\"}]” 

UC07 Pass 

UTC032 Test system 

setting 

change in 

the 

organization 

deployment 

mode 

The system 

successfull

y saves the 

updated 

settings. 

The 

is_global 

flag is set 

to True, 

and 

accounts 

with the 

role “user” 

1. Deployment_

mode: 

organization 

Pass 
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can use the 

shared 

settings. 

UTC033 Test the 

document's 

automated 

workflow 

with a valid 

server 

connection 

The system 

successfull

y routes to 

McpAgent 

node and 

communic

ates with 

the MCP 

server to 

create a 

document 

1. Query: 

“Create a 

document 

about 

machine 

learning.” 

2. enable_mcp:

True 

3. mcp_details:

”[{\"name\": 

\"word_docu

ment\", 

\"url\": 

\"http://127.0

.0.1:8003/mc

p\"}]” 

Pass 

UTC034 Test the 

document 

automated 

workflow 

with no 

MCP detail 

entered 

The system 

skips the 

document 

automation 

workflow  

1. Query: 

“Create a 

document 

about 

machine 

learning.” 

2. Enable_mcp:

True 

3. Mcp_details:

[] 

Pass 

UTC035 Test the 

document 

automated 

workflow 

The system 

displays an 

alert error 

message 

1. Query: 

“Create a 

document 

about 

Pass 
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with invalid 

MCP details 

“Error: No 

MCP 

servers are 

reachable. 

Skipping 

MCP 

step.” 

machine 

learning.” 

2. Enable_mcp:

True 

3. Mcp_details:

"[{\"name\": 

\"word_docu

ment\", 

\"url\": 

\"dummy\"}] 

UTC036 Test the 

document 

summarizati

on workflow 

with a valid 

summarizati

on request 

The system 

successfull

y routes 

the request 

to the 

summariza

tion node 

and 

summarize

s the 

document  

1. Query: 

“summarize 

the content in 

utar policy” 

 

UC08 Pass 

UTC037 Test the 

document 

summarizati

on workflow 

with no 

document 

available 

The system 

skips the 

summariza

tion step  

1. Query: 

“summarize 

content in 

utar policy” 

Pass 

UTC038 Test the 

document 

summarizati

on workflow 

with failed 

The system 

stops the 

system 

process 

and 

- Pass 
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summarizati

on 

displays an 

error 

message 
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CHAPTER 8 

 

CONCLUSION AND RECOMMENDATIONS 

 

8.1 Conclusion 

This is a seven-month project that lasted two semesters from February to 

September. This project set out to design and develop a Self-Hosted Multi-

Agent Retrieval-Augmented Generation (RAG) System for Contextual 

Document Processing, which follows a set of objectives to address problems 

identified in common LLM solutions in document processing tasks, including 

hallucinations, privacy concerns, and lack of modularity. During the planning 

of this project, the project scope and initial proposed solution were also outlined 

to provide clearer direction for development. Additionally, a literature review 

on different existing RAG solutions, MAS design patterns, types of RAG, MAS 

frameworks, and types of retrieval methods in RAG systems is also carried out 

to provide a complete study on different aspects of the RAG model and 

determine which approach and component to be implemented into this system. 

 After the literature review, a prototype-based development 

methodology is carefully chosen to ensure an iterative development that allows 

for continuous refinement and testing throughout the project because of the 

rapid advancement of different AI tools. Each stage of the development was 

structured to validate the functionality of the system component before 

proceeding to develop the full multi-agent workflow. Additionally, various 

useful tools are chosen, such as marker-pdf, Ollama, and LangGraph, that are 

used to speed up the development process by providing a ready-to-use 

component that can provide a solid foundation for the development of this 

system. During this stage, a clear work plan and timeline are outlined with a 

work breakdown structure to ensure that the deliverable can be provided on the 

appropriate deadline. This ensures that every deliverable is aligned with the tight 

seven-month deadline, which encompasses all phases from initial planning to 

final project testing. 

 Moving on to the requirement gathering stage, the system requirements 

are identified from all of the prior planning phases. Use case and activity 
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diagrams are created to help with the visualization of all of the required 

functionality of this system. All of the functional and non-functional 

requirements are identified and recorded to provide a clear guideline for 

development and testing. The first single-agent RAG system prototype is 

developed in this stage to provide an overall demonstration of which 

functionality and design the system will follow to the stakeholders and serve as 

the foundation for subsequent development of a more complete and robust 

solution. 

 The system design for the final solution is developed with an outline of 

communication between system components and agents. This will be used to 

support the iteration from the single-agent RAG prototype to the intended final 

solution. The major frameworks and external services are also identified to help 

in producing a robust solution. 

 After the second planning phase, the final system was developed and 

delivered in line with all defined objectives and requirements by integrating the 

multi-agent workflow along with the necessary functionalities. The behaviour 

of the final product was thoroughly recorded to maintain traceability and 

confirm the completeness of the project. 

 Lastly, the final system testing is carried out via performance and unit 

testing, in which the system performances are evaluated with different metrics 

such as accuracy, ReCall@3, MRR, and faithfulness. This can demonstrate that 

the system performs effectively in reducing hallucination rate and producing 

reliable responses. Although some limitations remain in terms of correctness 

due to smaller-scale LLMs and computational constraints, the system proves 

that a modular and extensible multi-agent RAG pipeline can function effectively 

in a self-hosted environment. After that, unit testing is performed based on the 

use case determined to ensure all major functionality was implemented correctly 

and that the project objectives were successfully achieved. 

 In conclusion, this project successfully achieved its objectives by 

delivering a working solution for a privacy-preserving, modular, and context-

aware document processing system. The outcomes highlight the feasibility of 

integrating multi-agent architectures with RAG technology to produce accurate 

and reliable results while safeguarding data privacy. 
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8.2 Limitations & Future Development 

Although all of the objectives are successfully achieved in this project, several 

limitations remain. The system currently only supports English only document 

processing and is restricted to external search in only three databases, including 

general web search, finance news database, and medical database. Moreover, 

the system currently only focuses on textual content processing and does not 

include any figures and visual data processing. Due to the limitation of the 

hardware, the response precision is also heavily limited by the scale of the local 

LLM used and the lack of domain-specific LLM fine-tuning, which the 

hardware limitation also constrains the real-time capabilities of this system. 

 Despite the constraints mentioned, the project provides a strong 

foundation for future development. Potential areas of enhancement include 

extending the system to support multilingual document processing, improving 

accessibility and usability across different contexts. Additionally, the 

integration of multimodal document analysis, including figures, tables, and 

diagrams, could enrich the scope of content processing. Optimizing the multi-

agent workflow for scalability, such as through distributed processing and 

hardware acceleration, would enable deployment in large-scale enterprise 

environments. Expanding automation capabilities beyond note generation, 

incorporating adaptive retrieval strategies, and advancing toward real-time 

processing would further increase the system’s versatility and impact. 

 By following these directions, this project can evolve into a robust 

document processing system that can provide immense value to individuals and 

organizations, positioning itself as a robust and adaptable solution for future 

enterprise and research applications. 
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