
i

Self-Hosted Multi-Agent RAG System For

Contextual Document Processing

ENG ZI JUN

UNIVERSITI TUNKU ABDUL RAHMAN

ii

Self-Hosted Multi-Agent RAG System For Contextual Document

Processing

Eng Zi Jun

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Software

Engineering with Honours

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2025

iii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that

it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Name Eng Zi Jun

ID No. : 2104132

Date : 7/10/2025

iv

APPROVAL FOR SUBMISSION

I certify that this project report entitled “Self-Hosted Multi-Agent RAG

System for Contextual Document Processing” was prepared by Eng Zi Jun

has met the required standard for submission in partial fulfilment of the

requirements forthe award of Bachelor of Science (Honours) Software

Engineering with Honours at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Ir Ts Dr Hum Yan Chai

Date : 7/10/2025

Signature :

Co-Supervisor : Ng Keng Hoong

Date : 7/10/2025

v

COPYRIGHT STATEMENT

© 2025, Eng Zi Jun. All rights reserved.

This final year project report is submitted in partial fulfilment of the

requirements for the degree of Software Engineering at Universiti Tunku Abdul

Rahman (UTAR). This final year project report represents the work of the author,

except where due acknowledgement has been made in the text. No part of this

final year project report may be reproduced, stored, or transmitted in any form

or by any means, whether electronic, mechanical, photocopying, recording, or

otherwise, without the prior written permission of the author or UTAR, in

accordance with UTAR’s Intellectual Property Policy.

vi

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to Associate Professor Ir Ts Dr

Hum Yan Chai as my research supervisor and Assistant Professor Dr Ng Keng

Hoong as my research co-supervisor for their invaluable advice, guidance, and

enormous patience throughout the development of this project.

I would also like to extend my sincere thanks to the faculty and departmental

members from Lee Kong Chian Faculty of Engineering & Science and

Department of Computing, for creating a pleasant and supportive working

environment throughout my studies at Universiti Tunku Abdul Rahman.

vii

ABSTRACT

The increasing use of Artificial Intelligence (AI) in document processing faces

persistent challenges such as hallucination, privacy risks, and limited

adaptability. This study presents a self-hosted multi-agent Retrieval-Augmented

Generation (RAG) system designed to address these limitations by enhancing

accuracy and preserving data privacy through a fully local and modular

architecture. Built using Marker, Ollama, LangGraph, and Weaviate, the system

enables flexible deployment and coordination between agents. Evaluation using

the SQuAD dataset measured retrieval and generation performance through

metrics such as Recall@3, Mean Reciprocal Rank (MRR), Context Recall,

Faithfulness, and Answer Correctness. Two evaluation methods were employed:

a calculation-based approach on 100 samples for quantitative assessment, and

an LLM-as-Judge approach using GPT-4o on 20 samples for qualitative,

human-like evaluation. Results show strong retrieval performance with a

Recall@3 of 90%, MRR of 75%, and Context Recall of 100%, demonstrating

accurate and consistent grounding. The generation results indicate improved

faithfulness and contextual relevance, though challenges remain in scalability

and factual precision. Overall, the findings show that the proposed multi-agent

RAG system effectively mitigates hallucination and privacy concerns while

maintaining adaptability, making it a promising approach for secure and

accurate AI-driven document processing.

Keywords: Artificial Intelligence (AI), Retrieval-Augmented Generation

(RAG), Large Language Models (LLMs), Self-Hosted AI

Subject Area: Q300-390 Cybernetics

viii

TABLE OF CONTENTS

DECLARATION iii

APPROVAL FOR SUBMISSION iv

COPYRIGHT STATEMENT v

ACKNOWLEDGEMENT vi

ABSTRACT vii

TABLE OF CONTENTS viii

LIST OF TABLES xii

LIST OF FIGURES xiii

LIST OF SYMBOLS / ABBREVIATIONS xvii

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Problem Statement 3

1.2.1 Hallucination 3

1.2.2 Privacy 4

1.2.4 Modularity & flexibility 4

1.3 Aim and Objectives 5

1.4 Proposed solution 6

1.5 Scope and Limitations of the Study 8

2 LITERATURE REVIEW 11

2.1 Introduction 11

2.2 Similar existing applications 11

2.2.1 Open WebUI 11

2.2.2 Kotaemon 13

2.2.3 RAGFlow 15

2.2.4 Comparison table for similar applications 18

2.3 Multi-agent system (MAS) design pattern 20

2.3.1 Multi-agent collaboration pattern 20

2.3.2 Hierarchical pattern 21

ix

2.3.3 Decentralized pattern 22

2.3.4 Reflection pattern 23

2.3.5 Comparison between different MAS design

patterns 25

2.4 Type of RAG model 27

2.4.1 Naïve RAG 27

2.4.2 Agentic RAG 29

2.4.3 Corrective RAG 30

2.4.4 Knowledge Graph RAG 31

2.4.5 Comparison between different types of

RAG 33

2.5 Multi-agent framework 35

2.5.1 LangChain 35

2.5.2 LangGraph 36

2.5.3 CrewAI 37

2.5.4 AutoGen 37

2.5.5 Comparison between different MAS

development frameworks 39

2.6 Retrieval method 40

2.6.1 Sparse retrieval 40

2.6.2 Dense retrieval 41

2.6.3 Hybrid retrieval 42

2.6.4 Knowledge Graph Retrieval 43

2.6.5 Comparison between different retrieval

methods 44

2.7 Conclusion 45

3 METHODOLOGY AND WORK PLAN 46

3.1 Introduction 46

3.2 Methodology 47

3.3 Development Tools 50

3.3.1 Marker 50

3.3.2 Chonkie 50

3.3.3 LangGraph & Langchain 50

3.3.4 CrossEncoder reranking 51

x

3.3.5 Ollama 51

3.3.6 RAGAS 51

3.3.7 Streamlit 52

3.4 Proposed Workplan 53

3.4.1 Work Breakdown Structure 53

3.4.2 Gantt chart 56

4 PROJECT SPECIFICATION 58

4.1 Introduction 58

4.2 Requirement specification 58

4.2.1 Functional requirement specification 58

4.2.2 Non-functional requirement specification 59

4.3 Use Case Diagram 60

4.4 Use Case description 60

4.4.1 Login Use Case 60

4.4.2 Sign Up Use Case 62

4.4.3 Upload File Use Case 63

4.4.4 Manage File Use Case 64

4.4.5 Ask question Use Case 65

4.4.6 Change system setting Use Case 68

4.4.7 Execute automated note generation Use

Case 69

4.4.8 Summarize document 70

4.5 Activity diagram 72

4.6 Prototype section 80

5 SYSTEM DESIGN 87

5.1 Introduction 87

5.2 System flow 87

5.3 Operation mode 89

5.4 System Architecture Components 90

5.4.1 FastAPI 90

5.4.2 React 90

5.4.3 Weaviate 91

5.4.4 MySQL 91

5.4.5 Redis 91

xi

5.5 Database schema design 92

5.5.1 MySQL database schema 92

5.5.2 Weaviate database schema 93

6 SYSTEM IMPLEMENTATION 96

6.1 Introduction 96

6.2 Software setup 96

6.3 Log in & Register module 97

6.4 File upload & File management module 100

6.5 Chat interface module 102

6.6 Settings module 110

6.7 User management module 112

7 SYSTEM TESTINGS AND DISCUSSION 113

7.1 Discussion 113

7.2 Unit test 115

8 CONCLUSION AND RECOMMENDATIONS 126

8.1 Conclusion 126

8.2 Limitations & Future Development 128

REFERENCES 129

APPENDIXES 134

xii

LIST OF TABLES

Table 2.1: Comparison table for similar applications 18

Table 2.2: Comparison between different MAS design patterns 25

Table 2.3: Comparison between different types of RAG 33

Table 2.4: Comparison between different MAS development frameworks

39

Table 2.5: Comparison between different retrieval methods 44

Table 5.1: MySQL database schema 93

Table 5.2: Weaviate collection schema 94

Table 7.1:Test cases 115

xiii

LIST OF FIGURES

Figure 1.1: Simple outline of architecture 6

Figure 2.1: Open WebUI main chat interface 11

Figure 2.2: Open WebUI file management for one chat session 12

Figure 2.3: Open WebUI setting interface 12

Figure 2.4: Kotaemon main chat interface 13

Figure 2.5: Kotaemon file management interface 14

Figure 2.6: Kotaemon setting interface 14

Figure 2.7: RAGFlow Agent workflow management 15

Figure 2.8: RAGFlow chat interface 16

Figure 2.9: RAGFlow knowledge base 16

Figure 2.10: RAGFlow model setting 16

Figure 2.11: Multi-agent collaboration design pattern 20

Figure 2.12: Hierarchical multi-agent design pattern (Ravuru et al., 2024)

 21

Figure 2.13: Decentralized multi-agent design pattern 22

Figure 2.14: Reflection multi-agent design pattern (Gustavo et al., 2025)

 23

Figure 2.15: Naïve RAG flowchart (Homayoun S., 2025) 27

Figure 2.16: Weaviate Agentic RAG flowchart 29

Figure 2.17: Corrective RAG flowchart (Yan et al., 2024) 30

Figure 2.18: Knowledge Graph RAG flowchart (Sanmartin, 2024) 31

Figure 2.19: LangChain Tools Chaining Feature 35

Figure 2.20: Sparse retrieval flowchart (Kumar, 2023) 40

Figure 2.21: Dense retrieval flowchart (Kumar, 2023) 41

xiv

Figure 2.22: Hybrid retrieval flowchart (Khan, 2024) 42

Figure 2.23: Knowledge Graph retrieval flowchart (Knight, 2025) 43

Figure 3.1: Project methodology 47

Figure 3.2: Project 1 timeline 56

Figure 3.3: Project 2 timeline 57

Figure 4.1: Use case diagram 60

Figure 4.2: Login Activity diagram 72

Figure 4.3: Sign Up Activity diagram 73

Figure 4.4: Upload file Activity diagram 74

Figure 4.5: Manage file Activity diagram 75

Figure 4.6: Ask Question Activity diagram 76

Figure 4.7: Change system setting Activity diagram 77

Figure 4.8: Execute automated workflow Activity diagram 78

Figure 4.9: Summarized document activity diagram 79

Figure 4.10: Login interface 80

Figure 4.11: Error in login interface 80

Figure 4.12: Sign Up interface 81

Figure 4.13: Error in Sign Up interface 81

Figure 4.14: The file upload interface 82

Figure 4.15: The file upload interface with error 82

Figure 4.16: The file upload interface with error 82

Figure 4.17: The file management interface 83

Figure 4.18: The document chat interface 83

Figure 4.19: The document chat interface (response) 84

Figure 4.20: The document chat interface (relevant chunks) 84

xv

Figure 4.21: The system setting interface 85

Figure 4.22:The system setting interface (toggle MCP services) 85

Figure 4.23: Error message when invalid MCP server detail input 86

Figure 5.1: System flow 87

Figure 5.2: MySQL Entity Relationship Diagram 92

Figure 5.3: Weaviate Entity Relationship Diagram 93

Figure 5.4: Weaviate database scripts 94

Figure 6.1: docker-compoose scripts 96

Figure 6.2: Sign in interface for personal deployment 98

Figure 6.3: Register interface for personal deployment 98

Figure 6.4: Sign in interface for organization deployment 99

Figure 6.5: Error message 99

Figure 6.6: File upload interface 100

Figure 6.7: Select document to upload 100

Figure 6.8: After the upload button is pressed 101

Figure 6.9: File management interface 101

Figure 6.10: Chat interface for organization deployment 102

Figure 6.11: Chat interface 103

Figure 6.12: Processing user query 104

Figure 6.13: Force stop 104

Figure 6.14: Retrieval workflow 105

Figure 6.15: Unrelated query inserted 106

Figure 6.16: Document summarization 107

Figure 6.17: MCP server terminal 108

Figure 6.18: Word document generated 108

xvi

Figure 6.19: Chat History Store In Databases 109

Figure 6.20: Setting interface 110

Figure 6.21: LLM configuration 110

Figure 6.22: MCP Server configuration 111

Figure 6.23:Setting submitted 111

Figure 6.24: User management interface 112

Figure 6.25: CRUD operation for user management 112

Figure 7.1: Segment of SQuAD on hugging face 113

Figure 7.2:Result chart 113

Figure 7.3: Test automation script result 115

xvii

LIST OF SYMBOLS / ABBREVIATIONS

RAG Retrieval-Augmented Generation

LLM Large language model

MAS Multi-agent system

BM25 Best Matching 25

TF-IDF Term Frequency and Inverse Document Frequency

GDRP General Data Protection Regulation

SPDM Semantic Double-Pass Merging

ANN Approximate Nearest Neighbour

MRR Mean Reciprocal Rank

SQuAD Stanford Question Answering Dataset

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

“Data really powers everything that we do.” A quote by Jeff Weiner, the CEO

of LinkedIn, summarizes the importance of data in the modern data-driven

world. Especially with the acceleration of technology advancement in recent

years, the demand for and output of data have never been higher. According to

Reinsel et al. (2018), the data generated, cloned, or recorded is expected to

increase from 33 Zettabytes (ZB) in 2018 to 175 ZB in 2025. However, the

number is estimated to be even bigger due to the popularization of AI-generated

content and the digitization of industries in recent years. Thus, this situation

increases the complexity and time taken for data handling for manual or even

some traditional technology approaches.

 With the lightning-fast evolution of AI technologies, useful

information can be successfully extracted from unstructured data with a

minimum amount of human intervention using sophisticated AI-based pipelines

with technologies such as Computer Vision, Natural Language Processing, and

Deep Learning. Apart from all the technologies mentioned above, Generative

AI is also another popular technology utilized in data analysis and synthesis.

According to Chauhan (2024), researchers have been evaluating the potential of

Generative AI in scientific content analysis and summarization since the first

release of ChatGPT back in 2022. Moreover, roughly 5% of scientific

documents already contain AI-generated information, indicating that Generative

AI has already became a part of the workflow for different document processing

tasks (Cheng et al., 2024). However, the approach is still far from perfect due

to some major flaws when executing tasks like document processing.

Consequently, an RAG system has been introduced as a potential solution to

address the challenges mentioned above.

According to Ramalingam (2023), RAG is a technology that utilizes a

retrieval system to fetch information from a database and a generative AI model

that uses the retrieved information to provide the answer. This mechanism

allows RAG to provide answers with better precision and better timeliness due

2

to the ability of the retrieval system to fetch real-time context from the database

(Yu et al., 2024). Thus, RAG is a more fitting option for document analysis and

generation than a standalone Generative AI model for fields including medicine,

law, and finance, which require answer generation with high precision and high

context awareness. Despite all the advantages the traditional single-agent RAG

system poses, the single-agent RAG system still faces challenges like scalability,

flexibility issues and a lack of orchestration features (Gustavo et al., 2025). With

the foundation from the traditional RAG system, this project aims to investigate

and develop a project titled: Self-Hosted Multi-Agent RAG System for

Contextual Document Processing.

3

1.2 Problem Statement

As the popularity of AI drastically increases, the intelligence of all the latest AI

models is also getting smarter with every iteration. People from different

backgrounds have already adapted to using AI in their daily lives or even using

it to automate part of their work. However, generative AI still encounters some

challenges in document analysis and synthesis. Consequently, the RAG system

emerges as one of the potential solutions for issues encountered by Generative

AI. However, the normal single-agent RAG system still has room for

improvement in some respects. Thus, this section will examine the

challenges encountered by generative AI and single-agent RAG systems.

1.2.1 Hallucination

The most significant flaw of generative AI is hallucination. Hallucination in AI

often refers to the situation where AI generates unrelated, senseless, and

incorrect responses to the user-given query, the most common example being

citing a random source that does not exist (Duan et al., 2024). Banerjee et al.

(2024) stated that misinterpretation of input query and data fabrication due to

the lack of supporting context from the model’s training data are a few of the

reasons that will cause a generative AI model to produce a hallucinated response.

Moreover, LLM relies solely on a large amount of static pre-trained data to

generate information. Thus, a knowledge gap exists between the time of release

of the LLM model and the latest information. Consequently, LLM might try to

generate a response with outdated information, increasing the risk of

hallucination when a user queries about recent information or trends (Feng et

al., 2024). According to Zhang (2023), this phenomenon can potentially evolve

into hallucination snowballing, where AI will commit to the first hallucinated

answer of the response and continue to justify the incorrect response with

fabricated facts, while the correct response can be given in another session. Thus,

if hallucination occurs during document processing, it can significantly hurt the

overall quality of the responses, causing the inability to meet the user’s

requirements.

4

1.2.2 Privacy

Moreover, privacy is also another issue for the generative AI approach.

Enterprises’ documents often contain large amounts of sensitive information,

such as customer information and their business-related information, that AI

provider can secretly collect and use for their own operation. According to one

of the most popular Generative AI models, ChatGPT’s privacy policy, OpenAI

will have access to all device information and communication information when

a user accesses their services. Thus, this creates a huge privacy concern when a

large amount of sensitive information needs to be analyzed. According to Wu

et al. (2023), it is apparent that ChatGPT has insufficient measures to protect

users’ data in compliance with GDRP, which puts user privacy at risk.

Furthermore, centralizing massive amounts of user data in the database of AI

providers makes these systems attractive targets for cyberattacks, if a hacker

successfully breaches into the database, they could exploit the sensitive

information for malicious purposes such as identity theft and selling the data for

monetary profit, resulting in serious losses for enterprises.

1.2.4 Modularity & flexibility

Although a single-agent RAG system is effective in solving most of the issues

mentioned for document analysis with generative AI, the system still faces some

challenges that hinder its capability when facing complex use cases. Lack of

flexibility and modularity is one of the major downsides of a single-agent RAG

system. According to Gustavo et al. (2025), the architecture of a single-agent

RAG system can limit the performance and capability of the RAG system due

to the generalization of all workflows in the single-agent approach, causing the

inability of the system to adapt to different use workflows and intents. This can

also result in less accurate responses by the AI generation component if the

relevant context is not present in the retrieval component database or the user

workflow is different from the system's intended workflow.

5

1.3 Aim and Objectives

The objectives of this project are:

- To develop a Retrieval-Augmented Generation (RAG) System that can extract

relevant information from a document uploaded by the user and selected internet

sources ensuring the response is based on grounded information.

- To develop a modular RAG System with an Agentic architecture to ensure the

system can dynamically adjust workflow to different user intent and system

component settings.

- To implement the system for local deployment, ensuring data privacy by

eliminating reliance on external cloud services and enabling complete operation

on a standalone machine.

-To integrate with the external document processing MCP server to allow the

system to automatically execute document processing operations with LLMs.

6

1.4 Proposed solution

Figure 1.1: Simple outline of architecture

To tackle the problem identified, A local web-based RAG application will be

developed following the architecture diagram provided. The users can perform

document Q&A and note generation all within a local environment without

having to share their data with an external service provider. Other than privacy,

the RAG system will be built to tackle the hallucination problem by ensuring all

response generations are based on grounded information provided by the user

or the internet. Lastly, the system will also follow an agentic design to tackle

the modularity and flexibility issue faced by the traditional LLM solution.

Firstly, the user will interact with the system via a React frontend

interface that consists of multiple pages, each with their distinct functions and

components. For each user interaction, the React frontend will send the HTTP

requests to the FastAPI backend to process user requests. The FastAPI backend

communicates with a local vector database, Weaviate, to store the text chunks

from the document in vector representation and retrieve similar items in vector

embeddings, obtaining relevant chunks of documents in response to the user’s

queries. Additionally, the system backend also interacts with a MySQL database

to assist in keyword searches, manage user files, and maintain chat history for

active sessions that will be used for other system operations.

7

 For the generation capability, the FastAPI backend will interact with

an Ollama that is responsible for hosting LLM locally, which will be used to

generate responses without sending data to external services to maintain data

privacy. When the query requires response generation, FastAPI will send the

query to Ollama’s LLM model, and the response generated will be sent back to

the FastAPI backend. When external information is required, the FastAPI

backend utilizes a Web Search module, which forwards questions to external

search engines to receive up-to-date information and send it back into the system

to reduce the hallucination rate of the responses.

Lastly, the FastAPI backend will connect to various MCP servers for

different applications via an MCP request. To produce notes, FastAPI calls the

relevant tools from the MCP server, which can generate notes in different

application formats. This flexible design makes it easy for the system to support

note generation for the application to the user's liking, aiming to increase the

modularity of the system.

8

1.5 Scope and Limitations of the Study

The final deliverable of this project is a self-hosted multi-agent system based on

traditional RAG technology for document processing that can utilize different

agents in the system to perform specialized tasks. The final product of this

project will be in the form of a local web application with a front-end interface

that allows users to upload their documents to a local database, interact with the

system via querying, and change the system's operational settings. Moreover,

the system allows users to acquire more accurate information by asking follow-

up questions.

This system aims to deliver a modular, secure, and smart document

analysis pipeline driven by a multi-agent framework where every agent provides

a different range of functionalities within the complete workflow of document

intake, orchestrating, processing, retrieval, and generation. The module that will

be covered in this project:

1. Document Upload and Database Module

The Document Upload is implemented in this system to provide a

way for users to upload their files in PDF format via the user

interface. The local database module will handle uploaded document

storage for private and efficient access for other modules.

2. Orchestrator

The orchestrator acts as the central controller for the system, which

is responsible for dynamically adjusting the workflow based on the

user's intent to distribute tasks to the best-suited agent, enhancing the

system's flexibility.

3. Preprocessing Agent

The Preprocessing agent in the system will detect and extract the text

and table from the stored file. The extracted text and table will then

be separated into different chunks to increase the relevancy and

efficiency of the retrieval process. After the initial chunking process,

a tiny LLM model will be implemented in this agent to refine the

content in the chunks to add context to the chunks and remove

9

unnecessary information, which will produce contextual chunks that

will be stored in databases for retrieval needs. Lastly, this agent will

also utilize an embedding model to turn the contextual chunks into

vector representation for similarity search.

4. Retrieval Agent

The retrieval agent is responsible for retrieving pieces of

information that are relevant to the user's query. The retrieval agent

will consist of different retrieval methods that are suitable for

different retrieval scenarios. This module is also responsible for

communication between different web search modules to retrieve

relevant information from the internet based on the user's query.

This retrieval method can ensure the retrieved information is based

on factual information from user-uploaded documents.

5. Generation Agent

The generation agent is responsible for the generation of the final

response with the help of a local LLM model to reduce the chance

of hallucination. This agent will elaborate on the retrieved

information from the obtained retrieval agent and generate a natural

language response based on the user’s query.

6. Document processing Agent

The document processing agent is responsible for determining an

automated workflow that is suitable for the user's query. The

document processing agent will manage communication between

different tools from the connected MCP server.

7. Authentication module

A basic login and signup module will be implemented in this

system to ensure no outsider can access the system, which can

protect the privacy of the user’s information and documents stored

in the local database.

10

However, there are a few limitations to the project. Firstly, the system

will allow users to deal only with English-language document processing, and

the specialized database search will be limited to legal, financial, and medical

domains. Moreover, the synthesis of figures in the document will not be covered.

In addition, the precision of generated responses may be influenced by the

availability of unique or limited data sets and the limited computing power.

System performance and result accuracy might further be influenced by

hardware and computational limits. Therefore, real-time processing will not be

the main priority of this project. Lastly, the automation agent will only cover

auto-note generation.

11

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, the current architecture design and technologies related to the

development of this project are studied to understand more about the current

solutions and get ideas on how to enhance them. Based on the analysis of past

research work and current applications, the review aims to explore the topics

that provide useful concepts that might help in the development of the project.

2.2 Similar existing applications

This section will review some of the popular open-source RAG projects: Open

WebUI, Kotaemon, and RAGFlow to identify their system functionalities,

strengths, and drawbacks. The comparison will help in the identification of

essential design factors and features that could be included in the creation of this

project.

2.2.1 Open WebUI

Figure 2.1: Open WebUI main chat interface

12

Figure 2.2: Open WebUI file management for one chat session

Figure 2.3: Open WebUI setting interface

Open WebUI is a popular open-source RAG tool that offers a simple, intuitive

platform that enables users to perform basic RAG tasks in an entirely offline

environment. Open WebUI allows users to fetch relevant information from

documents with different file formats, such as PDF, markdown, and LaTeX,

13

making the system more flexible for different user requirements. Additionally,

Open WebUI also provides web search functionality, which allows the system

to fetch up-to-date information from the internet, enhancing the system’s ability

to provide a grounded response to the user. Open WebUI also provides user

access control that ensures the security of the system. Another notable feature

of Open WebUI is its complete compatibility with Ollama models, allowing

users to change models or tailor components effortlessly, making it a flexible

option for individuals seeking to operate local LLMs in a custom configuration.

 Because of the focus on ease of use and simplicity, it lacks extra

functionality that can potentially be helpful to the user. For example, Open

WebUI uses a chat session-based file retrieval method, meaning users need to

reimport the same file if they want to start a new chat session. Open WebUI also

does not support multi-agent workflow, which can limit the capability of the

system.

2.2.2 Kotaemon

Figure 2.4: Kotaemon main chat interface

14

Figure 2.5: Kotaemon file management interface

Figure 2.6: Kotaemon setting interface

Kotaemon is another popular open-source RAG application that focuses on

providing advanced document retrieval with precise document citation, suitable

for experienced users or researchers who require clarity and precision in RAG

processes, while still requiring an easy-to-use system. A notable feature of

Kotaemon is its hybrid retrieval capabilities, which use both dense and sparse

retrieval methods to increase the effectiveness of the retrieval. Additionally,

Kotaemon is also capable of providing document preview with precise citations

to the related section, which allows users to visually confirm the relevant

15

information that is being used by the LLM to generate its response, ensuring the

generation is based on grounded facts, increasing the reliability of the system.

Kotaemon manages user-uploaded files in a centralized manner, maintaining a

consistent file reference across different chat sessions. Like Open WebUI, this

application also features web search functionality, enabling it to retrieve up-to-

date information. Kotaemon also implements user access control to prevent

unauthorized access in shared environments. Kotaemon is fully compatible with

Ollama, which allows users to customize the LLM and embedding model to

their liking.

 Despite the advantage, Kotaemon also does not support multi-agent

workflow, which limits its flexibility for different types of users’ workflows,

limiting its capability to become a more robust RAG system.

2.2.3 RAGFlow

Figure 2.7: RAGFlow Agent workflow management

16

Figure 2.8: RAGFlow chat interface

Figure 2.9: RAGFlow knowledge base

Figure 2.10: RAGFlow model setting

17

RAGFlow is a flexible and robust open-source RAG application that allows

users to create highly customized system pipelines with different components,

allowing users to alter the pipeline of RAGFlow to make it more suitable for

their use case. Unlike Kotaemon and Open WebUI, RAGFlow is one of the few

open-source RAG applications that support a multi-agent architecture, which

allows different components or agents to perform distinct functions for

collaborative processing. RAGFlow also provides advanced web search

capabilities that allow users to perform web searches on various sources such as

Baidu, Google, Google Scholar, and Yahoo Finance. This application also

implements user-access control as the first line of defence for unauthorized

access to the system. RAGFlow is also entirely compatible with the Ollama

platform, enabling users to change the model to their liking. Similar to

Kotaemon, RAGFlow maintains a centralized knowledge base that allows

continuous access to files throughout sessions.

 Although RAGFlow is the most robust and adaptable RAG application

compared, RAGFlow has the steepest learning curve required to operate the

application effectively. Thus, it is more suitable for experienced users that

extensive customization, agent orchestration, and system integration.

18

2.2.4 Comparison table for similar applications

Table 2.1: Comparison table for similar applications

Feature RAGFlow Kotaemon Open WebUI

Key feature Advance the

RAG pipeline

with a variety of

tools to support

Advanced

document

interaction

Simple

document

interaction

Primary Focus Enterprise-grade

customizable

RAG workflow

Advanced

retrieval with a

hybrid retrieval

function and

detailed citation

Easy-to-use

document Q&A

Multi-agent

support

Web search

User Access

Control

Compatible

with Ollama

model

Ease of Use Hard Medium Easy

File retrieval Centralized file

retrieval

Centralized file

retrieval

Session-based

file retrieval

In conclusion, the three application reviews in this section

identify the varying functionalities and drawbacks offered by each tool in their

RAG system that can be used as ideas for the development of this project.

Leveraging the advantages of each platform, this project will include these

essential features:

1. Multi-agent workflow to facilitate flexible workflow adjustment to

specialized functions and a modular pipeline.

19

2. Collaboration with external document generation tools

for smooth subsequent use.

3. Hybrid document retrieval techniques for improved response precision.

Online search functionalities to enhance internal knowledge

with current external data.

4. User verification and access management to facilitate secure, multi-

user implementation.

5. A clear interface and minimal setup complexity for ease of use.

6. Compatibility with local models through Ollama, guaranteeing privacy

and adaptability in choosing models.

7. Centralized document retrieval to ensure file continuity throughout

different sessions.

20

2.3 Multi-agent system (MAS) design pattern

As the complexity of problems addressed by AI systems increases, MAS has

developed into a strong approach to address these advancing challenges.

Including several specialized agents that interact, cooperate, and compete,

working towards achieving the system's objective. Therefore, this section will

explore different design patterns commonly used in multi-agent systems to

enhance understanding of these patterns and analyse the advantages and

disadvantages of each pattern to decide on which pattern is more suitable to be

implemented in this system.

2.3.1 Multi-agent collaboration pattern

Figure 2.11: Multi-agent collaboration design pattern

Multi-agent collaboration pattern is a pattern that consists of specialized agents

collaborating towards a shared objective by synchronizing their specific tasks.

(Gustavo et al., 2025). Every agent in this pattern is created to execute a unique

function or handle a problem area, such as data retrieval, classification,

reasoning, or generation, instead of depending on one centralized entity to

control and execute the entire workflow. This allows the system to be more

robust and scalable by assigning specific tasks to each of the agents. For

example, a specialized summarizer agent can be implemented in this system

whose sole purpose is to perform summarization of documents, and which tools

used in this agent can be fine-tuned to generate the best possible result.

Moreover, this pattern can also allow parallel execution of tasks by distributing

21

different segments of the task to different agents, which can improve the

processing time of the system.

However, this design pattern requires a significant amount of

computing power to perform, especially with agents that use LLM to perform

their tasks. The scalability and performance of the agent will be greatly impacted

when the computing power is limited (Guo et al., 2024). According to Singh et

al. (2025), another challenge the multiagent collaboration pattern faces is the

complex coordination between multiple agents, which requires the system to

implement a robust orchestrator to manage the information flow between every

agent to ensure seamless workflow between agents. If the orchestrator is not

effective, problems such as agent information conflict and redundant processing

could happen, which reduces the system’s performance.

2.3.2 Hierarchical pattern

Figure 2.12: Hierarchical multi-agent design pattern (Ravuru et al., 2024)

Hierarchical pattern is a multi-agent design pattern that utilizes a structure and

multi-level pattern, where the higher-level agent manages and guides

subordinate agents to improve the effectiveness and strategic choices of the

system (Singh et al., 2025). This pattern reflects actual hierarchical systems, like

organizational management frameworks, in which senior decision-makers

delegate duties to different departments according to their expertise, improving

the decision-making, load balance, and modularity of the system by

guaranteeing that tasks are allocated to the most suitable agents to be processed.

22

The higher-level agent in this pattern will function as the coordinator

of the system, which is responsible for decision making and task assignment to

the most suitable subagent (Li et al., 2024 The lower-level agents will focus on

performing tasks, executing the operations designated to them, which can ensure

the accuracy of the response. Moreover, the modular design of the sub-agent

allows it to be modified independently, which increases the system's flexibility

(Ravuru et al., 2024).

However, this pattern also faces some difficulties. Like the Multi-

Agent Collaboration Pattern, it depends significantly on a capable orchestrator,

since communication among sub-agents may raise orchestration overhead

(Singh et al., 2025). Additionally, this pattern is also vulnerable to a single-

point failure where the failure of the higher-level agent can affect the execution

of its subagents, which can potentially result in system-wide breakdowns.

2.3.3 Decentralized pattern

Figure 2.13: Decentralized multi-agent design pattern

A decentralized pattern is the pattern that removes the central control node in a

multi-agent system, where the agents will link in a peer-to-peer basis and all

agents can directly communicate with each other (Tran et al., 2025). In this

pattern, every agent will function independently and can start communication

23

and coordinate with any agent in the network. Thus, it eliminates the need for a

central coordinator to perform decision-making and task distribution.

According to Jiménez et al. (2018), this pattern can increase the

reliability of the system because if one agent node fails, the agent can still

communicate with another replacement. In addition, this pattern can increase

the scalability of the number of agents, where a new agent can be added to the

decentralized network without affecting the overall workflow of the system. A

decentralized pattern distributes the decision-making process across the system.

While each agent has their responsibilities, the system can dynamically adjust

the communication between agents, which can balance the load distributed to

each agent.

Even with its strength, the decentralization pattern also presents some

issues. In the absence of a central controller, the system necessitates a

sophisticated coordination protocol to effectively synchronize decision-making

and avoid inconsistencies in agent communication. As the number of

agents grows, these challenges become clearer, which makes an effective

communication protocol necessary to ensure consistent performance in a larger

system.

2.3.4 Reflection pattern

Figure 2.14: Reflection multi-agent design pattern (Gustavo et al., 2025)

The reflection pattern is the design pattern that focuses on enabling an LLM

agent to critically examine and iteratively refine its own outputs by re-

evaluating the initial output to perform error correction (Gustavo et al., 2025).

This pattern resembles a human-like method of self-evaluation, in which an

24

initial response is evaluated critically, and a polished version of the output is

generated with the feedback from the evaluation.

This characteristic allows the system to generate a more accurate

response by learning from earlier errors and correcting it, making this an ideal

pattern to implement in a system where factual accuracy is crucial. The

reflection pattern also increases the explainability of the output, where the

reflection agent can explain the review and reasoning process for the iteration

from the last output (Liu et al., 2024).

As for the downside, the reflection pattern strongly relies on the

reflection agent’s reflective ability to maintain the consistency of the output or

else it might lead to a lazy reflector where the result is similar or worse than the

original result (Bo et al., 2024). Moreover, employing an LLM-based reflection

agent requires the system to have extra computational power to handle various

rounds of reflection, possibly affecting performance and response times

25

2.3.5 Comparison between different MAS design patterns

Table 2.2: Comparison between different MAS design patterns

Pattern Description Strengths Limitations

Multi-Agent

Collaboration

Pattern

Specialized

agents collaborate

by synchronizing

tasks towards a

shared goal.

- Improves

system domain

knowledge and

scalability.

- Allows parallel

execution of

tasks.

- High

computational

power

requirement.

- Complex

coordination

needed to prevent

redundancy and

conflicts.

Hierarchical

Pattern

Uses a structured

multi-level

approach where

higher-level

agents manage

subagents.

- Improves

decision-

making, load

balancing, and

modularity.

- Sub-agent can

be modified

independently to

increase system

flexibility

- High

dependence on a

capable

orchestrator.

- Vulnerable to

single-point

failures.

Decentralized

Pattern

Removes the

central control

node; agents

communicate

directly in a peer-

to-peer network.

- Increases

system

reliability and

scalability.

- Distributes

decision-making

across agents for

better load-

balancing.

- Requires

sophisticated

coordination

protocols.

- Risk of

inconsistencies in

agent

communication.

26

Reflection

Pattern

Implements a

reflection agent

that refines

responses by re-

evaluating initial

output for error

correction.

-Improves

factual accuracy

of the final

output.

-Increases

explainability

for the reasoning

of outputs.

-Performance

depends on the

reflection agent's

effectiveness.

 -Requires extra

computational

power.

27

2.4 Type of RAG model

With different MAS design patterns, RAG models have become very flexible in

adapting to different use cases. Thus, Various RAG models can be created to

enhance retrieval efficiency, improve response accuracy, and adjust to changing

queries. Different models utilize different multi-agent design pattern, which

impacts their effectiveness, scalability, and dependability. This section explores

various RAG models, such as Naïve RAG, Agentic RAG, Corrective RAG, and

Hierarchical RAG, to assess their structural strengths and weaknesses and how

they work.

2.4.1 Naïve RAG

Figure 2.15: Naïve RAG flowchart (Homayoun S., 2025)

Naïve RAG is the simplest form of the RAG model, employing a

straightforward, simple pipeline that obtains documents as a direct input into a

generative AI to generate responses. Most of the Naïve RAG model only utilizes

a single agent method that follows a basic retrieval-to-generation pipeline

without extra process or enhancement, where the model will execute

sequentially from fetching relevant information from the database based on the

user’s query and generating a response based on the relevant information.

28

This model uses three major components in its core: the retriever, the

generator, and the storage database. The retriever is the most important

component in the Naïve RAG model because the output quality is directly

related to the quality of the retrieved information (Cuconasu et al., 2024). The

retriever is responsible for retrieving the most relevant information from the

knowledge pile based on the user’s query with different retrieval algorithms,

such as BM25 and TF-IDF, to rank the relevance of the information. The

database acts as the knowledge base, containing documents and information

chunks, which are normally executed using a vector database such as

ChromaDB and Weaviate. The Generator will be responsible for the last step of

the process, which is to generate insight based on the relevant information

fetched with the LLM model, such as qwen2.5 or Llama3.

A key strength of the Naïve RAG model is its simplicity, as it can be

easily implemented and is less demanding in computational power, making it a

good option for systems that value efficiency. Moreover, the model's sequential

processing allows for quick response times, making it ideal for real-time use

cases. However, this model has some noteworthy drawbacks. It has no

corrective mechanisms, which means the produced responses rely solely on the

capabilities of the retriever. If the retriever acquires unrelated information

chunks, the generator cannot validate or improve its results, resulting in possible

inaccuracy. Additionally, the lack of multi-agent cooperation limits the model's

capacity to address complex queries since it has no capability to process

specialized tasks to specialized agents.

Nevertheless, the Naïve RAG model provides a solid foundation for

more sophisticated RAG architectures. Though it works well for fundamental

uses like FAQ chatbots, document searches, and basic enterprise knowledge

management, advanced models like Agentic RAG, Corrective RAG, and

Knowledge Graph RAG have emerged to meet the growing need for accuracy,

reasoning ability in practical applications

which introduced a model that

29

2.4.2 Agentic RAG

Figure 2.16: Weaviate Agentic RAG flowchart

(Cardenas and Monigatti, 2024)

The agentic RAG model is an updated version of the naïve RAG pipeline by

integrating different autonomous and specialized agents to supervise various

process phases. But unlike Naïve RAG, which functions in a linear process,

Agentic RAG’s specialized agent will allocate different tasks to specific agents

based on the nature of the task, which introduces decision-making capabilities

to the system that allow agents to work together to optimize retrieval, boost

response generation, and increase the overall adaptability of the system

The most significant difference between Agentic RAG and Naïve RAG

is the multi-agent architecture, where Agentic RAG consists of an orchestrator

agent to coordinate the communication between multiple agents specialized in

tasks such as query understanding, fact-checking, or agents with domain-

specific knowledge, guaranteeing that the obtained information is precise and

contextually accurate.

Agentic RAG normally utilizes the Multi-Agent Collaboration Pattern

found in the MAS design pattern. In this design pattern, specialized agents

collaborate and work towards a common objective, aligning their efforts to

improve efficiency. This design enables the system to parallelize tasks like

retrieval and validation, enhancing overall efficiency when managing intricate

queries or extensive document collections

The strength of Agentic RAG is that it can enhance the precision,

flexibility, and scalability of the system. By distributing tasks to independent

agents, the model can improve its retrieval and response methods, reducing the

30

chance of generating misinformation. Moreover, an agent-based design allows

the developer to tweak the agent’s function to better suit the specialized task to

make the system perform better. Nonetheless, these advantages increase the

computational requirements, as handling several agents necessitates effective

coordination and resource management (Singh et al., 2025).

2.4.3 Corrective RAG

Figure 2.17: Corrective RAG flowchart (Yan et al., 2024)

The corrective RAG model is another extension of the traditional RAG model,

which incorporates an additional corrective mechanism to revise the response

from the retrieval module or the final Generative AI. Thus, the corrective loop

greatly reduces the potential of hallucinations and retrieval inaccuracy of the

model, making Corrective Rag a great option for tasks that need high accuracy

and minimal margin of error.

Corrective RAG’s automated feedback system is the main difference

separating it from Naïve RAG. Rather than producing a response in one cycle,

Corrective RAG closely adheres to the Reflection Pattern in the MAS design

pattern. In this model, a reflection module constantly evaluates and enhances

outputs from the generator, confirming that earlier errors are rectified in

subsequent versions. This guarantees that the result is both accurate and

31

factually consistent with the retrieved documents. Additionally, the feedback

system can also be implemented at the retrieval layer. According to Yan et al.

(2024), a corrective module can also be implemented at the retrieval layer of the

system which can evaluate the retrieved information and execute corrective

action if the information is unrelated to the query, this can greatly reduce the

potential of inaccuracy because the retrieval module is the most important part

of the RAG system

However, the downside of Corrective RAG is that it demands extra

computational resources to handle various cycles of retrieval and generation,

which may lead to longer response times and increased resource consumption.

Furthermore, excessive correction may arise if the validation process is too

intense, resulting in unwarranted changes that fail to enhance the response and

instead sabotage the final accuracy.

2.4.4 Knowledge Graph RAG

Figure 2.18: Knowledge Graph RAG flowchart (Sanmartin, 2024)

The Knowledge Graph RAG is a special type of RAG model that integrates a

Knowledge Graph to perform retrieval and reasoning that replaces the retriever

in the Naïve RAG model. Li, Miao, et al. (2024) stated that, unlike the retrieval

method used in Naïve RAGs such as BM25 and TF-IDF that uses similarity or

keyword for searching, Knowledge Graph provides the ability to reason that fills

the gap for tasks that require complex reasoning to solve. Thus, Knowledge

Graph RAG is effective in handling complex queries and data relationships that

require deep reasoning. Moreover, the Knowledge graph can combine different

sources of both structured and unstructured data, offering a more comprehensive

knowledge base compared to a vector database (Peng et al., 2023). According

32

to Sanmartin (2024), Knowledge Graph RAG shows a significant reduction in

the hallucination rate, which means that the Knowledge Graph retrieval method

can help to retrieve grounded information that is more accurate.

However, Knowledge Graph RAG, building and sustaining a high-

quality Knowledge Graph demands a large amount of effort, as it needs to be

frequently refreshed to stay accurate and thorough. Moreover, the performance

of KG-RAG also heavily relies on the quality of the foundational Knowledge

graph. Consequently, if the graph is of low quality or incomplete, the accuracy

of the retrieval could be impacted, since the retrieval is fully based on the

connectivity of the information within the foundation graph. (Peng et al., 2023)

33

2.4.5 Comparison between different types of RAG

Table 2.3: Comparison between different types of RAG

Type of

RAG

Naïve RAG Agentic

RAG

Corrective

RAG

Knowledge

Graph

RAG

Core

Architectur

e

Linear and

single-agent

pipeline

Multi-agent

pipeline with

various

specialized

agents

RAG with a

corrective

feedback

mechanism

RAG with

knowledge

graph-based

retrieval

and

reasoning

Key

Mechanism

Basic retrieval

to the

generation

pipeline

Orchestrator

agent

coordinating

specialized

agents

Automated

feedback

system for

error

correction

Reasoning

via linked

knowledge

entities

from a

knowledge

graph

Retrieval

Method

BM25, TF-

IDF similarity

search

BM25, TF-

IDF

similarity

search with

parallel

capability

Standard

retrieval with

corrective

layer

Reasoning

based from

knowledge

graph

Strengths -Simple

implementatio

n

-Low

computational

resources

required

-Enhanced

precision

-Flexible

task

allocation

- Improved

adaptability

-Lower

hallucination

rate

-Higher

response

factual

accuracy

-Possesses

reasoning

capabilities

-Can handle

complex

data

34

-Short

response times

relationship

s

- Reduce

hallucinatio

n rate

Limitations -No corrective

mechanisms

- Limited

complex query

handling

- Depends

only on the

retriever’s

capabilities

- High

computationa

l power

needs

-Complex

agent

orchestration

needed

-High

computationa

l resources

-Potential

over-

correction

-Longer

response

times

-Complex

graph

maintenanc

e

-

Performanc

e depends

on

knowledge

graph

quality

35

2.5 Multi-agent framework

Multi-agent frameworks offer a uniform setting that enhances communication,

collaboration, and decision-making among agents. These frameworks provide

crucial tools, libraries, and protocols that facilitate the development of MAS

while guaranteeing scalability and effectiveness. This chapter examines

different multi-agent frameworks, emphasizing their structures, capabilities,

and appropriateness for various application areas. Understanding these

frameworks can help with the choices regarding the appropriate tools to create

intelligent, adaptive, and cooperative multi-agent RAG systems.

2.5.1 LangChain

LangChain is a robust framework for developing and orchestrating LLM-based

applications. It provided many intuitive tools and APIs for developer to

implement in their LLM-driven application, which simplified the complexity of

the development. (IBM, 2023). LangChain will serve as the abstraction layer for

complex data source integration and the LLM mechanism, significantly

reducing the time required for application development. This allows developers

to modify just the template and library, rather than coding business logic from

scratch. (Amazon Web Services, Inc., n.d.). Another key feature of LangChain

is that it provides ways for developers to develop their custom pipeline with

tools of their choice by providing chains (user-defined pipeline) in the

framework (Oguzhan Topsakal and Tahir Cetin Akinci, 2023)

Figure 2.19: LangChain Tools Chaining Feature

A major advantage of LangChain is its capability to improve

information retrieval through integration with vector databases, APIs, and

various external information sources. Hence, this strength is especially

beneficial in multi-agent RAG systems, where specialized agents need to gather,

evaluate, and link relevant information effectively to generate an accurate result.

36

Moreover, the modular framework design also increases its scalability, enabling

it to adapt to progressively complicated agent-based architectures. Lastly,

Langchain's strong community backing is also one of its strengths, as extensive

documentation is provided by the team along with example products for

developers to learn from their peers.

Despite its advantages, the lack of a built-in orchestration feature for

multi-agent systems is a major drawback for a multi-agent-based application,

which means an extra solution needs to be developed to handle the interaction

and synchronization for multiple agents. Additionally, it is a significant

computational requirement, especially when maintaining long-term memory

and executing ongoing reasoning in an advanced setting.

2.5.2 LangGraph

LangGraph is another AI agent workflow orchestrator created by the same team

as LangChain as its successor. Therefore, LangGraph also possesses support

from a strong community. But unlike LangChain, LangGraph uses a graph-

based architecture to manage the relationship between each agent (Clark, 2025).

This allows the developer to define the communication between the agents with

a directed graph that provides a more dynamic and stateful workflow.

LangGraph also provides persistent state management, allowing the agents to

remember the conversation history and use it to provide contextual information

to the task execution. (Wang and Duan, 2024). According to (Wang and Duan,

2024), LangGraph also provides the necessary tools to support different types

of workflows such as hierarchical, human-in-the-loop, and single-agent systems

which greatly improve the flexibility of this framework.

However, LangGraph also has some issues. Although its structured

workflow provides flexibility, a solid foundation of graph-based programming

knowledge is necessary to fully leverage its features, which can increase the

learning curve for developers. Moreover, LangGraph incurs high computational

costs to maintain stateful workflows and handle numerous agent interactions,

especially in a multi-agent RAG system where the system must manage

extensive data retrieval and synthesis assignments to produce accurate

responses.

37

2.5.3 CrewAI

CrewAI is another lightweight and flexible multi-agent framework worth

considering. The key characteristic for CrewAI is its emphasis on a role-playing

architecture, in which CrewAI assigns specific roles to each agent and

efficiently distributes tasks among them to achieve the ultimate goal (Winland

et al., 2024). Through a role-based architecture, CrewAI allows developers

to build specialized agents that collaborate dynamically, enhancing task

execution while ensuring modularity and scalability.

A significant advantage of CrewAI is its simplicity and easy

configuration, which makes it an ideal option for developers aiming to establish

agent-based workflows quickly without the complexities of dependency-driven

orchestration. Additionally, CrewAI also provides an automatic task delegation,

and flexibility in task management feature which allows agents to communicate

and assign tasks effectively (Duan and Wang, 2024). Additionally, CrewAI is

capable of parallel task execution, which can increase both processing speed

and efficiency in environments with multiple agents.

However, CrewAI is not suitable for very complex agent workflows,

since it does not provide the sophisticated decision-making and dependency-

tracking features available in graph-based systems such as LangGraph, which

can limit the flexibility of this framework, making it not suitable for dynamically

changing workflows that need to adapt constantly.

2.5.4 AutoGen

AutoGen is another multi-agent development framework developed by

Microsoft. Similar to CrewAI, AutoGen utilizes a role-specific architecture, but

it places more focus on agent-to-agent communication to maintain a multi-agent

operation (Zeeshan et al., 2025). This allows AutoGen to ensure a modular

system design where every agent can engage in a structured discussion to

produce the most accurate result. Furthermore, AutoGen also supports different

patterns of conversation to be implemented, which can increase the

customization ability and flexibility of the agent structure (Wu, Bansal, et al.,

2023)

As for the disadvantage of AutoGen. Its dependence on LLM-based

decision-making is computationally heavy and requires significant processing

38

capabilities to maintain ongoing agent interactions. Moreover, the coordination

of its conversation agents adds complexity since overseeing several independent

agents needs precise adjustments to avoid unnecessary processing,

miscommunication, or contradictory actions, especially in a large

conversational network. Lastly, AutoGen provides less defined task sequencing

compared to other similar frameworks, potentially resulting in more

unpredictable execution flows in complex implementations.

39

2.5.5 Comparison between different MAS development frameworks

Table 2.4: Comparison between different MAS development frameworks

Framework Strengths Weaknesses

LangChain -Simplifies LLM-based

development.

- Flexible for custom

pipelines.

- Supports vector databases &

external sources.

- Strong community support.

- No built-in multi-agent

orchestration.

- High computational

requirements.

LangGraph
- Graph-based structured

workflows.

- Persistent state

management.

- Supports flexible

workflows.

- Strong community support.

- Requires graph-based

programming knowledge.

- High computational

cost.

CrewAI - Role-based task delegation.

- Lightweight & easy to

configure.

- Built-in task delegation.

- Supports parallel execution.

- Lacks advanced

decision-making &

tracking.

- Less flexible for

dynamic workflows.

AutoGen - Strong agent-to-agent

communication.

- Highly modular &

customizable.

- Supports various

conversation patterns.

- High computational

demand.

- Complex agent

coordination.

- Less defined task

sequencing.

40

2.6 Retrieval method

Two of the most important components in the RAG system are the retrieval

component and the generation component. The quality of both the retrieval and

generation components will directly impact the accuracy and quality of the

system’s final response to the user query. The retrieval component will be in

control for recognizing and extracting the relevant information from any given

database based on the user’s query before passing the relevant information to

the generation component for response elaboration and generation. Thus,

without an effective retrieval component, the generation component's response

accuracy will also be hindered. This section will explore different retrieval

methods that are commonly used in a RAG system.

2.6.1 Sparse retrieval

Figure 2.20: Sparse retrieval flowchart (Kumar, 2023)

Sparse retrieval is a retrieval algorithm that focuses more on keyword matching.

which Sparser retrieval will compare the input document and text as a high-level

vector where the values are mostly zero. Then, the input text is compared based

on the existence of a specific keyword, where the more relevant of the current

word is to the current input text, the higher score the sparse will return in the

high value. One of the most popular sparse retrieval algorithms is BM25, which

is the extension of TF-IDF. Thus, Sparse retrieval is excellent in use cases where

keyword matching is crucial. Sparse retrieval’s advantage is its lightweight

nature, which demands little computing resources while delivering high-speed

performance, making it work well for general search cases. As for the downside,

sparse retrieval lack the ability to capture the underlying context and meaning

41

of the text, which causes it to struggle with synonyms and complex text structure.

(Milvus, 2025)

2.6.2 Dense retrieval

Figure 2.21: Dense retrieval flowchart (Kumar, 2023)

Dense retrieval is another popular retrieval method that is widely used in RAG

systems and differs from sparse retrieval it focuses more on the semantic

similarity of the text provided. First, the retrieval will utilize a pre-trained

embedding model to convert the text provided into a dense group of vector

representations in which more related text, such as ‘car’, ‘engine’ will be closer

to each other in the vector space. These data will then be stored in a vector

database and use algorithms such as, FANN search algorithm to retrieve the

relevant information to the user’s query. Unlike sparse retrieval, this retrieval

method can understand the underlying meaning of the text, which makes this

method effective at getting the user's intent and allows the text structure and

query to be more flexible. However, the downsides of this retrieval method are

that it demands more computational resources due to the execution of the

embedding model and the reduced interpretability since the vector format

outcomes may be less clear compared to conventional keyword-driven

approaches. (Milvus, 2025)

42

2.6.3 Hybrid retrieval

Figure 2.22: Hybrid retrieval flowchart (Khan, 2024)

Hybrid retrieval is a combined retrieval method that utilizes dense and sparse

retrieval methods to perform searching. This can be achieved by combining the

scores from a sparse retriever’s result with a dense retriever’s result or by using

a re-ranker module to rank the results obtained from one approach with the other.

This way, hybrid retrieval can be more flexible to adapt to the complex scenario

where both keyword and semantic similarity are required to retrieve an accurate

piece of information. While hybrid systems tend to be complex to coordinate

and it is more resource-heavy because of the retrieval, reranking or weighting,

they frequently produce more reliable outcomes, making them an excellent

choice for multi-agent RAG frameworks that manage various document

structures.

43

2.6.4 Knowledge Graph Retrieval

Figure 2.23: Knowledge Graph retrieval flowchart (Knight, 2025)

Knowledge Graph retrieval is a retrieval method that utilizes a more

sophisticated Knowledge Graph for information retrieval. Knowledge Graph is

a technique where data is stored as a node with an interconnected link to relevant

nodes with a directed link. Thus, this structure allows meaningful information

to be extracted with reason-based retrieval, which is particularly important in

fields such as law and medicine where information relationships and logical

reasoning are essential to retrieve relevant information. Although it provides

significant accuracy and contextual richness, Knowledge Graph retrieval the

Knowledge Graph retrieval method retrieval quality may vary depending on the

completeness of the Knowledge Graph, and the Knowledge Graph requires

regular maintenance to keep the knowledge base updated. (Peng et al., 2023).

44

2.6.5 Comparison between different retrieval methods

Table 2.5: Comparison between different retrieval methods

Retrieval Method Advantages Disadvantages

Sparse Retrieval - Fast, lightweight, effective

for keyword-based queries

- Cannot understand

context or synonyms,

- Limited to exact

matches

Dense Retrieval - Understands context and

intent

- Flexible query structure

- High computational

cost

- Low interpretability

Hybrid Retrieval - Balances keyword

precision with semantic

understanding

- Improved accuracy

- Complex integration

- Resource-intensive

Knowledge

Graph Retrieval

- Provides reasoning-based

results

- Highly contextual

- Requires complex

setup, ongoing

maintenance

- Dependency on

knowledge graph

quality

45

2.7 Conclusion

To summarize, the literature review on design patterns for multi-agent systems,

types of RAG models, and multi-agent frameworks offers important insights for

creating an efficient local multi-agent RAG system. The results emphasize the

need to employ different strategies to tackle issues in information retrieval,

agent collaboration, and response formulation for a multi-agent RAG system.

The strengths and weaknesses of different aspects are also reviewed to find the

appropriate stacks and designs to be implemented in this project.

The following components will be considered for the development of this

project.

1. A hierarchical multi-agent architecture

This architecture is used to coordinate specialized agents and ensure

effective task distribution. Streamlining the task distribution process

and increasing the modularity of this system.

2. Agentic mechanisms

This design is used in this system to effectively distribute tasks to the

most suitable agent. Increasing the adaptability of the system.

3. Graph-based workflow orchestration

This orchestration technique is used to manage the task distribution,

communication, and relationships between agents, aiming to increase

the modularity and the clarity of the system

4. Hybrid-based retrieval techniques

This retrieval technique is used to ensure more accurate retrieval

results and reduce the rate of hallucination for both keywords and

similarity retrieval tasks.

46

CHAPTER 3

METHODOLOGY AND WORK PLAN

3.1 Introduction

This section will discuss the development methodology, work plan, and

development tools used to develop this project. A systematic development

methodology is implemented to ensure steady improvement, modular execution,

and continuous refinement. Each phase in the development methodology will

be thoroughly discussed with its intention and aim. Additionally, this section

will break down each phase into well-defined tasks, which will be mapped into

a comprehensive Work Breakdown Structure (WBS) to gain. Lastly, this section

will outline the tools and framework used during the project development, such

as a vector database and chunking tools. These technologies support the system's

fundamental functions, including document intake, semantic search, natural

language creation, and performance assessment while maintaining self-host.

47

3.2 Methodology

Figure 3.1: Project methodology

The development of the Self-Hosted Multi-Agent RAG System for Contextual

Document Processing will follow the Prototype Development Model. This

method is selected because of its iterative characteristics, enabling continuous

refinement and the ability to incorporate user input to ensure the system

maintains certain standards while preserving performance and security. The

prototype approach allows for quick testing and verification of various multi-

agent strategies before the system architecture is finalized, minimizing

inefficiencies and ensuring a robust solution. The initiative will be split into five

iterative stages, with every stage enhancing the system’s capabilities according

48

to testing outcomes and user feedback, ensuring a continuous enhancement

toward a complete system.

The first phase is requirement analysis and project planning. During

this phase, the project objective will be defined along with the problem

statement and the scope of the project, which will ensure the objective is feasible

to develop. The requirements will also be collected from surveys to collect

requirements regarding the functional and non-functional requirements of the

project. The multi-agent design will also be established by specifying agent

roles and the tools involved for each agent during this phase. Additionally, the

tools that are required for the development of this system will be properly

identified and studied to ensure that they are compatible with the system's

development.

 For the second phase, the system design phase will be carried out to

extend from the last phase to convert the collected information into a

comprehensive technical outline. A system architecture will be designed during

this phase to outline the overall system flow from ingress to response, agent

functionality, and communication between different agents. In addition to initial

use-case situations, with use-case diagram and use-case description are outlined.

A rough UI/UX design prototype will also be developed with Streamlit to

outline the user interaction process via the interface with some basic

functionalities.

After the system design phase, the prototype development stage will be

performed. The prototype of the preprocessing agent will be developed with

Chonkie and marker-pdf for document chunking, and the primary hybrid

retrieval system will be established by combining a document database,

Weaviate which is capable of performing hybrid search while capable of scaling

to high storage. A basic RAG-based retrieval and generation model will be

created to lay a foundation for the more complex development needed in the

future. The basic agent coordination for task delegation will be established,

along with initial testing using RAGAS with sample datasets to confirm system

workflow and fundamental retrieval accuracy. The MAS design will be

introduced with different agent tasks and roles, including a reranking system

using CrossEncoder to prioritize relevant information and a validation system

for verifying facts. Subsequently, communication between agents will be

49

established via the MAS framework, LangGraph, to support cooperative

decision-making.

The following stage, Testing and Validation, will focus on assessing

the system to measure its robustness via unit testing and integration testing.

Functional testing will ensure each agent operates properly, while performance

testing will evaluate the performance of the system component with various

metrics, such as the accuracy metric. During the development, supervisor

approval will be collected according to test outcomes to determine if the

system's development is suitable to move into the next phase. If not, any

recognized problems will be recorded, and the development process will return

to the last prototype development phase to address the identified issues before

proceeding.

For the last stage, Deployment and Performance Optimization, the

system will be packaged for real-world deployment. Measures for security and

privacy, including access control and options for on-premises deployment, will

be implemented.

50

3.3 Development Tools

3.3.1 Marker

Marker is a Python library that is capable of converting content from a complex

file format, such as PDF, into a separate markdown file while maintaining the

original formatting. Different from other PDF file content scrapers, Marker is

capable of both the standard PDF parsing method and the OCR method, making

it capable of extracting content from a scanned or image-based PDF file.

Additionally, Marker is also capable of extracting and preserving the content in

tabular format, an important feature that other PDF parsing solutions lack. In

this system, Marker will be the ingest point of the user’s uploaded file, used to

parse the content of the PDF file into markdown format to assist later processes

like information chunking and storing.

3.3.2 Chonkie

Chonkie is an easy-to-use and lightweight Python library that is designed to

breakdown long document content into smaller, meaningful chunks of text. This

process is essential for this system because it allows the system to extract only

the most relevant sections of a document to the user query, instead of returning

complete documents. Chonkie supports various built-in chunking strategies

such as SemanticChunking, SentenceChunking and SDPMChunking that can

change based on user preference. Thus, Chonkie will be implemented into the

Preprocessing agent, making sure that the document can be segmented for more

effective retrieval.

3.3.3 LangGraph & Langchain

Langchain will be integrated into this system to utilize some tools like

ChatOllama which will streamline the integration with the Ollama LLM model,

MarkdownHeaderTextSplitter that will support the chunking process and more

that will speedup the development of this project. In this system. LangGraph

will be used to turn the system into a graph-based workflow, and the agents,

such as preprocessing and generation agents, will function as nodes with edges

to link nodes from one to another and to show data passing and flow between

nodes. By organizing the workflow as a graph, a new agent can be added into

51

the system with minimum interference to the current workflow, improving the

flexibility of the system.

3.3.4 CrossEncoder reranking

To implement a hybrid retrieval method into the system, CrossEncoder

reranking will be utilized to evaluate the relevance of the information retrieved

from the hybrid retrieval (BM-25) and rank the outcome based on a deeper

understanding of the context with a pre-trained CrossEncoder model. Despite

being more computationally demanding than the other retrieval methods,

CrossEncoder reranking can greatly improve the quality of the retrieval

information by minimizing irrelevant or unclear results. Thus, CrossEncoder

reranking will be used in this system to evaluate and rank the results from both

the hybrid retrieval.

3.3.5 Ollama

Ollama is an open-source project that can act as a platform to run various and

download open-source LLM models such as Llama, Gemma, and Mistral locally.

Ollama provides an easy-to-use solution that allows users to interact directly via

a command-line interface for model installation and execution. Additionally,

Langchain provided seamless integration with Ollama via the LLM wrappers,

which can simplify the LLM handling operation in this system. In this system,

Ollama is used as the local LLM hosting engine that will be used in various

phases in this project, such as the generation agent and query-enhancing agent.

Thus, Ollama will be used in this system to integrate local LLM into this system.

3.3.6 RAGAS

RAGAS is an open-source LLM benchmark framework to evaluate the accuracy

and performance of LLM-based applications, which provides built-in methods

and metrics, such as Contextual Relevancy and Faithfulness, that can be used to

measure the performance of the generated output. In this project, RAGAS will

be used to assess the retrieval and generation accuracy of the RAG component

by comparing produced responses with another built in LLM-as-judge approach

to determine the effectiveness of the model in obtaining contextually relevant

data and determining if the produced responses are accurate and consistent with

52

the initial source materials. Thus, RAGAS will be a tool to evaluate the

performance of the agents in this system.

3.3.7 Streamlit

Streamlit is an open-source Python framework that allows users to build an

interactive data Python application with minimal coding requirements. Streamlit

automatically handles the element rendering without needing complex syntax,

making it suitable for the quick prototyping nature for the development of this

project. In this project, Streamlit will be used to create the first prototype for

Project 1, focusing on showing the core functionality of the system in an easy-

to-use web-based interface.

53

3.4 Proposed Workplan

3.4.1 Work Breakdown Structure

1. Project Planning & Analysis

1.1 Conduct Title research

1.2 Outline problem statements and possible problem solution

1.3 Define project objective and scope

1.4 Requirement collection

1.5 Conduct literature review

1.5.1 Study of different Multi-Agent Systems (MAS)

1.5.2 Study of different RAG architecture types

1.5.3 Analysis of different retrieval methods

1.5.4 Analysis of different MAS development frameworks

1.5.5 Identification of suitability for things covered in this

system

2. System Design

2.1 Design system architecture

2.1.1 Define agent functionalities

2.1.1.1 Identify functions needed

2.1.1.2 Identify the tools needed for agent

2.1.2 Define communication flow between agent

2.2 Design UI/UX interface and user interaction flow

2.3 Create UML diagrams

2.3.1 Create use case diagram

2.3.2 Create activity diagram

3. System prototype development

3.1 Set up local development environment

3.1.1 Install dependencies and libraries

3.1.2 Install LLM models

3.1.3 Configurate database

3.2 System module development

3.2.1 Develop document management module

3.2.1.1 Develop document upload system

3.2.1.2 Develop CRUD method for documents

3.2.2 Develop data preprocessing pipeline

54

3.2.2.1 Implement Marker for PDF extraction

3.2.2.2 Implement Chonkie chunking module

3.2.2.3 Implement Nomic for embedding generation

3.2.2.4 Develop storing function for relevant

information

3.2.3 Develop retrieval pipeline

3.2.3.1 Create Hybrid retrieval method

3.2.3.2 Implement Reranker with Cross Encoder

3.2.4 Integrate LLM for response generation module

3.2.5 Conversation History Management Module

3.2.5.1 Develop user interactions and response history

module

3.2.5.2 Referencing response history

3.3 Multi-Agent Workflow Implementation

3.3.1 Establish specialized agent role

3.3.2 Implement LangGraph framework for multiagent

workflow

3.3.3 Develop agent orchestrator

3.3.4 Integrate developed module into multi-agent

workflow

3.3.4.1 Integrate data preprocessing pipeline into

workflow

3.3.4.2 Integrate retrieval pipeline into workflow

3.3.4.3 Integrate generation pipeline into workflow

3.3.5 Implement web search

3.3.5.1 Develop general web search

3.3.5.2 Develop advance search from specialize

database

3.3.6 Implement automated note generator agent

4. System testing and validation

4.1 Perform unit testing

4.2 Perform functional testing for modules

4.3 Evaluate the accuracy of retrieval and generation

4.4 Supervisor feedback

55

5. Deployment and Performance Optimization

5.1 Design and implement access control system

5.2 Final Testing and Verification

5.3 On-premises deployment (docker)

56

3.4.2 Gantt chart

Figure 3.2: Project 1 timeline

57

Figure 3.3: Project 2 timeline

58

CHAPTER 4

PROJECT SPECIFICATION

4.1 Introduction

This chapter will properly identify the project's key requirements. Additionally,

two UML diagrams: a use case diagram and an activity diagram, will be

included to support the project requirements. Lastly, screenshots of the system's

initial prototype will be provided to demonstrate and reinforce the system

specifications.

4.2 Requirement specification

4.2.1 Functional requirement specification

Requirement

ID

Requirement description Status

FR01 The System shall allow users to log in to their

existing account

Done

FR02 The system shall allow users to sign up for a new

account

Done

FR03 The system shall allow users to upload their PDF

document

Done

FR04 The system shall allow users to view a list of their

uploaded files

Done

FR05 The system shall allow users to delete the file from

the database

Done

FR06 The system shall allow users to submit a natural

language query

Done

FR07 The system shall allow users to view the relevant

information that the system has retrieved

Done

FR08 The system shall allow users to view the LLM-

generated response

Done

FR09 The system shall allow users to generate a note via

a query automatically

Done

59

FR10 The system shall allow users to change the system

LLM into their desired local LLM model

Done

FR11 The system shall allow users to toggle the status of

MCP services and web search

Done

FR12 The system shall retrieve the content of the internet

if the web search setting is toggled on

Done

FR13 The system shall allow users to include their own

MCP server details if the MCP service is used

Done

FR14 The system shall dynamically adjust the workflow

based on the user's query

Done

FR15 The system shall retrieve the correct relevant

chunk from the document based on the user query

Done

FR16 The system shall allow the user to summarize the

content in the uploaded document

Done

4.2.2 Non-functional requirement specification

Requirem

ent ID

Requirement description Status

NFR01 The System shall be intuitive and easy to use for all

types of users

Done

NFR02 The system shall be implemented entirely locally

without depending on external services

Done

NFR03 The system shall prevent unauthorized access Done

60

4.3 Use Case Diagram

Figure 4.1: Use case diagram

4.4 Use Case description

4.4.1 Login Use Case

Use Case Name: Login

ID: US01 Importanc

e Level:

High

Primary Actor: User

Use Case Type: Detail,

Essential

Stakeholders and Interests:-

61

Brief Description: This use case describes how the user can login to the

system

Trigger: The user wants to access the system.

Relationships:

 Association : User

 Include :-

 Extend : Sign Up- If user does not have an account

 Generalization: -

Normal Flow of Events:

1. The user accesses the system

2. The system displays the login interface

3. The user enters email and password

4. The system validates the user credentials

5. If the user enters invalid credential, proceed

to sub-flow 5.1

6. If the user enters valid credential, proceed to

sub-flow 6.1

Sub-flows:

5.1 The user enters the wrong credentials

5.1.1 The system displays the error message and prompts the user to

re-enter

5.1.2 Proceed to flow 3

6.1 The user enters the correct credentials.

6.1.1 The user proceeds to the system's main interface

62

4.4.2 Sign Up Use Case

Use Case Name: Sign Up

ID: US02 Importan

ce Level:

High

Primary Actor: User

Use Case Type: Detail,

Essential

Stakeholders and Interests:-

Brief Description: This use case describes how the user can sign up for a

new account

Trigger: If the user has no existing account and wishes to sign up for one

Relationships:

 Association : User

 Include : -

 Extend : -

 Generalization: -

Normal Flow of Events:

1. The user accesses the system

2. The user selects the sign-up option in the

login interface

3. System display sign-up interface

4. The user enters their email address,

password, and confirms password

5. The system validates the credentials entered

6. If the user enters invalid information,

proceed to sub-flow 6.1

7. If the user enters valid information, proceed

to sub-flow 7.1

63

Sub-flows:

6.1 The user enters invalid information

6.1.1 The system displays the error message and prompts the user to

re-enter, proceed to flow 3

7.1 The user enters the valid information

7.1.1 The user proceeds to the system's main interface

4.4.3 Upload File Use Case

Use Case Name: Upload File

ID: US03 Importanc

e Level:

High

Primary Actor: User

Use Case Type: Detail,

Essential

Stakeholders and Interests:-

Brief Description: This use case describes how the user can upload their

document into the system database

Trigger: The user wants to upload their document to the system database

for the system to reference

Relationships:

 Association : User

 Include : -

 Extend : -

 Generalization: -

Normal Flow of Events:

1. The user selects the file upload in the

navigation menu

2. The system navigate to file upload interface

64

3. The user clicks the upload file option in the

interface

4. The user selects one or more files from their

local device with a file browser.

5. The user selects the submit option

6. The system checks the file

7. If the file is invalid, proceed to sub-flow 7.1

8. The system starts file processing

9. The system prompts a successful message

Sub-flows:

7.1 The user’s file is too big or an unsupported file format

7.1.1 The system stops the upload process

7.1.2 The system prompts an error message, proceed to flow 3

4.4.4 Manage File Use Case

Use Case Name: Manage File

ID: US04 Importanc

e Level:

High

Primary Actor: User

Use Case Type: Detail,

Essential

Stakeholders and Interests: -

Brief Description: This use case describes how the user can manage their

uploaded document

Trigger: The user wants to manage their file in the system

Relationships:

 Association : User

 Include : -

65

 Extend : -

 Generalization: -

Normal Flow of Events:

1. The user selects the Manage file in the

navigation menu

2. The system navigates to the Manage file

interface

3. The system fetches files information from the

database

4. If no file is found in the database, proceed to

sub-flow 4.1

5. The system displays file information

6. The user checks the delete option for the

document, proceeds to sub-flow 4 .1

Sub-flows:

4.1 If no file is found in the database

4.1.1 The system displays an error message

5.1 If the user chooses to delete the document

6.1.1 The user clicks the delete button

6.1.2 The file will be deleted from the document.

6.1.3 The system prompts a success message

4.4.5 Ask question Use Case

Use Case Name: Ask question

ID: US05 Importanc

e Level:

High

66

Primary Actor: User

Use Case Type: Detail,

Essential

Stakeholders and Interests: -

Brief Description: This use case describes how the system will respond

when the user enters a query into the system

Trigger: The user wants to ask a question

Relationships:

 Association : User

 Include : -

 Extend : -

 Generalization: -

Normal Flow of Events:

1. The user navigates to the chat interface.

2. The system navigates to chat interface

3. The user enters their question in the text

input field.

4. The user clicks the submit button.

5. The system analyzes the query.

6. The system router determines the most

suitable handling strategy for the query:

7. If the request can be answered directly using

the LLM’s internal knowledge, proceed to

Sub-flow 7.1.

8. If the request requires additional

information from documents or external

sources, proceed to Sub-flow 8.1.

9. The Generation Node creates a grounded

response using both the LLM’s knowledge

and the retrieved information.

10. The system prompt the final response to the

user.

67

Sub-flows:

7.1 If query handled directly by LLM

7.1.1 The router pass the query directly to generation node, Proceed

to flow 9

8.1 If query requires retrieval

8.1.1 The Workflow Router forwards the query to the Retrieval Node.

8.1.2 The Retrieval Node determines whether to use uploaded

documents or external source

8.1.3 If the system uses external search, proceed to sub-flow 8.1.3

8.1.4 If the system uses document search, proceed to sub-flow 8.1.4

8.1.3.1 If the system uses external search

8.1.3.1.1 The ReAct agent dynamically selects the most suitable

external tool:

• General Web Search: Fetches the top 5 most relevant web pages,

preprocesses the content, and applies hybrid retrieval to extract

useful information.

• Medical Knowledge (PubMed): Retrieves relevant research

articles for medical-related queries.

• Financial News (Yahoo Finance): Retrieves the latest finance and

business news.

8.1.3.1.2 The retrieved information is passed to the Generation Node

for response generation, proceed to flow 9

8.1.4.1 If the system uses document search

8.1.4.1.1 The Retrieval Node fetches relevant passages from user-

uploaded documents.

8.1.4.1.2 The retrieved information is passed to the Generation Node

for response generation, proceed to flow 9

68

4.4.6 Change system setting Use Case

Use Case Name: Change system setting

ID: US06 Importanc

e Level:

High

Primary Actor: User

Use Case Type: Detail,

Essential

Stakeholders and Interests: -

Brief Description: This use case describes the user flow to change the

system operational setting

Trigger: The user wants to change the details of the system

Relationships:

 Association : User

 Include : -

 Extend : -

 Generalization: -

Normal Flow of Events:

1. The user selects the setting in the navigation menu

2. The system navigates to the setting interface

3. The system displays the setting menu with

available system settings such as, LLM model

selection, Web search configuration

4. The user modifies the setting

5. The user selects the save option in the settings page

6. The System checks the validation of the setting

change

7. If the setting is valid, proceed to sub-flow 7.1

8. If any error occurs during validation, proceed to

sub-flow 8.1

69

Sub-flows:

7.1 The setting is valid

7.1.1 The system will save the setting

7.1.2 The system prompts a success message

7.1.3 The system will alter the system workflow according to the new

settings.

8.1 The setting is invalid

8.1.1 The system will prompt an error message, proceed to flow 4

4.4.7 Execute automated note generation Use Case

Use Case Name: Execute automated note

generation

ID: US07 Importanc

e Level:

High

Primary Actor: User

Use Case Type: Detail,

Essential

Stakeholders and Interests: -

Brief Description: This use case describes how the user can initiate the

automation note generation workflow

Trigger: The user wants to create generate note for the last chat history

or the response of current question

Relationships:

 Association : User

 Include : -

 Extend : -

 Generalization: -

Normal Flow of Events:

1. The user selects the chat interface

2. The system navigates to chat interface

70

3. The user enters a prompt related to

generating a note

4. The system analyzes the user's intent

5. The system generation the response

6. The system analyse if query require

automated workflow

7. The system executes steps and tools in the

workflow

8. If the generation is successful, proceed to

sub-flow 8.1

9. If any error occurs during generation,

proceed to sub-flow 9.1

Sub-flows:

8.1 The generation is successful

8.1.1 The system prompt success message

9.1 Error occurs during generation

9.1.2 The system stops the generation process

9.1.3 The system prompt error message, proceed to flow 3

4.4.8 Summarize document Use Case

Use Case Name: Execute document

summarization

ID: US08 Importanc

e Level:

High

Primary Actor: User

Use Case Type: Detail,

Essential

Stakeholders and Interests: -

Brief Description: This use case describes how the user can initiate the

document summarization workflow

Trigger: The user wants to summarize the content in the uploaded

document

71

Relationships:

 Association : User

 Include : -

 Extend : -

 Generalization: -

Normal Flow of Events:

1. The user selects the chat interface

2. The system navigates to chat interface

3. The user enters a prompt related to

document summarization

4. The system analyzes the user's intent

5. The system process to the summarization

node

6. The system responds with 5 summarized

passage to the frontend

7. If the summarization is successful, proceed to

flow 7.1

8. If any error occurs during summarization,

proceed to sub-flow 8.1

Sub-flows:

7.1 The summarization is successful

7.1.1 The system prompt the final summarized content

8.1 Error occurs during summarization

8.1.2 The system stops the summarization process

8.1.3 The system prompt error message, proceed to flow 3

72

4.5 Activity diagram

Figure 4.2: Login Activity diagram

73

Figure 4.3: Sign Up Activity diagram

74

Figure 4.4: Upload file Activity diagram

75

Figure 4.5: Manage file Activity diagram

76

Figure 4.6: Ask Question Activity diagram

77

Figure 4.7: Change system setting Activity diagram

78

Figure 4.8: Execute automated workflow Activity diagram

79

Figure 4.9: Summarized document activity diagram

80

4.6 Prototype section

Figure 4.10: Login interface

Figure 4.11: Error in login interface

81

Figure 4.12: Sign Up interface

Figure 4.13: Error in Sign Up interface

82

Figure 4.14: The file upload interface

Figure 4.15: The file upload interface with error

Figure 4.16: The file upload interface with error

83

Figure 4.17: The file management interface

Figure 4.18: The document chat interface

84

Figure 4.19: The document chat interface (response)

Figure 4.20: The document chat interface (relevant chunks)

85

Figure 4.21: The system setting interface

Figure 4.22:The system setting interface (toggle MCP services)

86

Figure 4.23: Error message when invalid MCP server detail input

87

CHAPTER 5

SYSTEM DESIGN

5.1 Introduction

This section will discuss the overall system design, including system flow from

user query to the backend database and how the user query is processed and

transported to each node. Moreover, this section will also discuss different

technical components and their roles in supporting the workflow, as well as the

database schema, to provide a comprehensive overview of the system

architecture.

5.2 System flow

Figure 5.1: System flow

88

The system flow diagram illustrates the backend flow of the system, beginning

with the user sending a request to the backend. The first component that

processes the user request is the query analyser. The query analyser will analyse

if the query is a follow-up question, if the query is a follow-up question or

contains some ambiguous wording like “that”, “last-message”, or “it” that is

referring to the last message, the query will be rewritten based on the message

history to be more specific and searchable. For example, for a query like “what

does that mean,” the query analyser will transform the query into “more detail

about machine learning” if the history is related to a machine learning topic.

Next, the query analyser will pass the process query to the workflow router,

which will identify the most suitable task for the user query for a request that

can be simply answered by the LLM's knowledge. The system will route the

request to the generation node to generate a response, skipping the retrieval part

for simple requests. For the document summarization request, the router will

pass the request to the summarization node, which will detect the relevant

document inside the database to extract the 5 most relevant chunks that can

represent the document the most, then summarize the extracted chunks before

passing the summary of the chunks to the generation node for the final

explanation. For request that needs the latest information to support or need

support information from the uploaded document that cannot be answered

accurately with the knowledge base of LLM, the router will route the request to

the retrieval node, which will retrieve relevant information from various sources,

such as documents and external sources. Then, the relevant information will be

passed into the generation node to achieve the RAG core functionality and to

ensure the response is based on grounded information.

For the external search, the system employs a ReAct agent to

dynamically route the retrieval request to the most suitable external search path

that is most likely to provide relevant information. Three external search sources

will be wrapped into tools that will pass into the ReAct agent for dynamic tool

selection, including a general web search that will pass the query to the web

search engine to scrape the top 5 most relevant web pages’ content, then perform

preprocessing and hybrid retrieval to get the most relevant information from the

general web search engine. Next, the external search will connect to a medical

89

database source, where it will scrape the article content from the PubMed

database for requests related to medical knowledge. Lastly, the external search

will connect to yfinance new website, which will allow the system to fetch the

latest finance or business news from Yahoo Finance page. This approach can

ensure the system not only can retrieve relevant content from user-uploaded

documents but also allows the system to fill the knowledge gap with the latest

information from different internet sources.

After generating the response, the system will route the request query

to the MCP, which the system will check if the user query contains any request

about document processing, such as “create a document about machine learning”

and “add content into the document machine learning.docx”. If the intent is

detected, the system will start to execute the document process operation by

creating a ReAct agent with all of the tools provided by the MCP server. Then

the system will start to execute all of the needed tools to fulfil the user document

processing requirement with the support of the generated response from the

generation node.

5.3 Operation mode

This system offers two operation modes for two different workflows, which are

personal and organizational workflows. First, the personal workflow will allow

the user to upload and manage their document as well as change the system

configuration that will only affect the system configuration of that particular

user. The document storage for personal mode is fully separate among different

users so that users are unable to retrieve information from documents that is not

uploaded by themselves. This operation mode aims to maximize the flexibility

of the system for individual users who just wish to use this system in a

standalone machine.

 For the organization mode, the user will be separated into two roles,

which are admin and user. In this mode, only the admin will be allowed to

upload, manage the document in the database, and change the system

configuration used in the current flow. The uploaded document will be a shared

document, which every user who has the role of user will be allowed to retrieve.

Admin also has a function to manage users via CRUD operation, which will be

90

the only way for the system in organization mode to create new users. As for

the user, they are only allowed to do two things, which are to view the document

currently available in the database and perform document Q&A via the main

chat interface that will perform the system flow. This approach is aimed to suit

the server-client workflow where the backend server will act as a centralized

knowledge base that will store all of the necessary files, allowing the system to

essentially become an organization's document enquiry that can reduce the time

taken for information searching and document processing.

5.4 System Architecture Components

5.4.1 FastAPI

FastAPI is a modern, high-performance web framework for building APIs with

Python. It is designed with speed and scalability, which FastAPI is built to

handle large numbers of requests effectively. In this system, FastAPI will be the

backbone of this project, which it will be used to create api endpoint for all of

the backend functionality of the system, such as preprocessing, graph workflow

and user authentication. FastAPI is also crucial in making the system responsive,

as it provides WebSocket functionality that will be used for real-time processing

feedback and also to create a “streaming” effect for the generation node

responses, making the system more responsive to user input.

5.4.2 React

React is a widely used, open-source JavaScript library developed by Facebook,

designed to build dynamic and interactive user interfaces. React provided a

platform that allows developers to build a user interface with modular

components that can be used to develop a complex frontend system.

Additionally, React also supports a wide range of UI frameworks and libraries

that allow for rapid prototyping for a user-friendly interface. In this project,

React is used to develop the frontend component, which is the main entry point

for the user to interact with the system, ensuring a seamless and interactive

experience for the user.

91

5.4.3 Weaviate

Weaviate is an open-source vector database that is designed for the storage of a

high volume of vector embedding. Weaviate provides Docker deployment

options that can be accessed without needing to be online. Additionally, the

embedding can also be stored along with extra metadata, which can allow

filtering operations. In this system, Weaviate will be used to store the vector

embedding data generated from the nomic embedding model that converts text

chunks into vector representations. Moreover, Weaviate also provides a built-in

hybrid retrieval method that uses BM25 for keyword-based search and a dense

search algorithm, which will be fed into a fusion algorithm that will calculate

the relevancy and combine results from both search algorithms, making the

retrieval component more flexible for different types of queries.

5.4.4 MySQL

MySQL is a lightweight, open-source relational database management system

(RDBMS) that is widely adopted for web applications and enterprise systems

due to its stability, speed, and reliability. It offers a strong, quick, and

dependable method for handling significant amounts of data in an organized

way. In this system, a MySQL database will be used as the secondary database,

while the vector database is specialized for storing and retrieving high-

dimensional text embeddings. MySQL is responsible for managing the broader

system data that is essential for application functionality. For example, MySQL

will also be used to store the user information for the authentication module,

document information that is uploaded by the user, and the chat history for the

user for persistent usage. Thus, MySQL's robust database features and ability to

scale well make it a perfect choice as the secondary database in this project

5.4.5 Redis

Redis is an open source, in-memory cache system that is popular because of its

reliability and lightning-fast data operation speed, while having the ability to

scale to millions of messages, making it a very popular choice among different

types of systems, such as web applications and speed-sensitive applications. In

this system, Redis will be used to store two data, which are user authentication

92

tokens and chat history. For user authentication, this can ensure the user token

can be fetched with minimum delay, with a given time-to-live that will eliminate

the need for manual cleanup. For the chat history, this can ensure chat history

can be fetched very quickly to pass into system operation to let the generation

module refer to previous history, ensuring the generation module can get all the

context it needs. Thus, Redis will be used in this system as the third database to

store data that is time sensitive.

5.5 Database schema design

5.5.1 MySQL database schema

Figure 5.2: MySQL Entity Relationship Diagram

93

Table 5.1: MySQL database schema

Table Description

User This table is used to store all user information, including

username and password, that will be used for authentication,

and the role that will be utilized in access control

AuthToken This table is used to store a unique JWT-based token based on

different users and sessions to increase the security of the

system

Settings This table is used to store users’ settings based on different user

IDs, including the model used, the maximum token for

response, and enable MCP component. If the deployment mode

is set to organization, the only user setting that will be used is

based on the value of is_global, which will be used if the value

is True

History This table is used to store users’ chat history, including the

context, generated context and query.

Document This table is used to store all of the information about the

document store uploaded and the related user for the document

5.5.2 Weaviate database schema

Figure 5.3: Weaviate Entity Relationship Diagram

94

Figure 5.4: Weaviate database scripts

Table 5.2: Weaviate collection schema

Collection Description

DocumentChunks This collection is used to store all of the chunks

from the user-uploaded document, with some

95

additional information that will be used in the

retrieval module, such as header information and

source of the chunks

DocumentName This collection is used to store all of the documents

uploaded to the vector database

TempSearchCollection This collection is used by all external search tools,

including GeneralWebSearch, MedicalDatabase,

and FinanceNews modules. This collection will be

initialized every time the external search is invoked

and will be deleted after the processing is finished.

96

CHAPTER 6

SYSTEM IMPLEMENTATION

6.1 Introduction

In this section, a snippet of the actual working product will be provided and

explain which a detailed description of all system components, such as user

authentication, file management, and chat function. setting the interface and

user management interface to provide a clear view of how the system operates

as a working product.

6.2 Software setup

Figure 6.1: docker-compoose scripts

The system requires three external dependencies for the databases used in this

system, including Redis, MySQL, and Weaviate. To utilize these services, this

97

system uses docker compose, which simplifies deployment and ensures

consistency across development and production environments. A docker-

compose file is created with the scripts above that specify the service's port,

environment variable and the image version used.

The Weaviate is deployed as a vector database service using the

cr.weaviate.io/semitechnologies/weaviate:1.31.3 image, which is the official

Docker image release by the development team of Weaviate. It is configured to

listen on port 8001 for API requests and port 50051 for gRPC communication.

The setup enables API-based modules used in this system to fetch and write into

the Weaviate database.

The Redis service is built with the latest official Redis Docker image that

will be deployed on port 6379 and run with specify command that will set the

memory settings use for the Redis service

Lastly, MySQL is deployed using the mysql:8.0 image that is configured

to listen on port 3306 along with standard application user (app_user) and

password authentication. Additionally, the character encoding is set to utf8mb4

with collation utf8mb4_unicode_ci to support multilingual data processing.

6.3 Log in & Register module

This system uses a standard access control where every user needs to register an

account to prevent any unauthorized access to the document chat information.

The only difference is that this system has two types of deployment mode, which

is personal and organization deployment modes. Where the personal workflow

is for individual who deploy this system on their personal computer, and the

organization deployment mode is for client-server deployments

98

Figure 6.2: Sign in interface for personal deployment

The sign-in interface is the first interface users see when accessing the system.

In this interface, user need to enter their username and the password to sign in

to the actual system main interface. This interface also has a hyperlink that will

take the user to the register page if their does not have an existing account.

Figure 6.3: Register interface for personal deployment

The register interface is shown when the user presses the hyperlink. In this

interface, the user also needs to enter their username and password that will be

stored as a new user instance in the database, but in this interface user is required

to enter the confirm password field to prevent any password misinput

99

Figure 6.4: Sign in interface for organization deployment

As for the organization deployment, the user is only given the option to sign in

and not register because in this workflow, the system will have two roles, which

are admin and user, where only the admin can create new user accounts.

Moreover, the system will create a default admin user account that allows the

admin user to access the system.

Figure 6.5: Error message

If any invalid credentials or format, such as an empty password or username, or

an unmatched password, are entered into the system, the error message will be

displayed under the input field in both the register and login interface

100

6.4 File upload & File management module

Figure 6.6: File upload interface

For every subsequent interface, a sidebar will be used to navigate to different

interfaces and log back in to the sign-in interface. The File upload interface will

be the first interface users see after signing in or registering, and users can

upload the PDF document they want with the browse file component

Figure 6.7: Select document to upload

After the user selects the document user, the file explorer will pop up, and the

user is given the option to start or cancel the document upload process

101

Figure 6.8: After the upload button is pressed

After the upload button is pressed, the system will initialize the upload pipeline.

First, the system will store the uploaded file into the destination file system and

the MySQL and Weaviate databases, and the interface will show upload

completed if the upload is successful. Then, the system will start the

preprocessing pipeline, where the document will be converted to a markdown

file format, chunked into multiple pieces, and stored in the vector database to

ensure the subsequent process can extract relevant information from the

document. The preprocessing will be handled in the background, and the

interface will show the progress of the document processing at the bottom right

corner for a more responsive user experience.

Figure 6.9: File management interface

After the user uploads their document, all uploaded and processed files will

show in the file management interface. In this interface, the user can only

102

perform one operation: deleting the document. The user can check all the files

they want to delete and press the "Confirm Delete" button to remove the

document and all its content from the MySQL and Weaviate databases. For the

organization workflow, the uploaded file is shared among all users with the role

“user” or “admin” where “users” can fetch relevant information from the file

uploaded by the admin.

6.5 Chat interface module

Figure 6.10: Chat interface for organization deployment

As for the account with the role user in organization deployment mode, the chat

interface will be their first interface where they are only allowed to perform two

operations in this system, including asking a question and viewing the available

document in the database.

103

Figure 6.11: Chat interface

The Chat interface will be the main interaction point for the user and this system

is designed to be as simple as possible for the user to work. In this interface,

user can ask their questions, where the system will determine the best workflow

to resolve the question with different processes such as retrieval, generation, and

document automation, as shown in Figure 5.1.

104

Figure 6.12: Processing user query

After the user enters the query into the system, the system will determine the

most suitable workflow according to the user's query. For example, the system

will route to the generation process for simple requests like a greeting, and the

system will show the current progress stage at the top of the chat interface, such

as the first stage router: routing the query to the appropriate workflow. After the

process finishes, the system will stream the response token by token, similar to

OpenAI ChatGPT. Therefore, the user does not need to wait after the full

response is generated; they can see the output in real time, giving a more

responsive user experience.

Figure 6.13: Force stop

105

During any stage before the full response is generated, users are allowed to stop

the system process by pressing the stop button, which will stop all processes of

the system and allow the user to enter a new query.

Figure 6.14: Retrieval workflow

106

When the user query requires additional information to support the generation,

the system will initiate the retrieval process depending on the user's settings. If

the user chooses to retrieve from the internet in the setting, the system will

scrape the information from the relevant websites or database and use it for

response generation and return the relevant information to the frontend interface.

Otherwise, the system will initialize the document search process that will fetch

all relevant chunks or information from the deviate database with hybrid

retrieval. Thus, the user can see the relevant information in the dropdown menu

in the interface while the response is being generated

Figure 6.15: Unrelated query inserted

If the system fails to retrieve relevant information from the vector database. The

system will not elaborate on the wrong response, and it will suggest that the user

switch the retrieval source, ensuring the response generated is fully based on

grounded information.

107

Figure 6.16: Document summarization

When the system detects a summarization keyword together with a matching

document name in the document name vector database, the system will

automatically initiate the summarization workflow. In this workflow, the system

will fetch the 5 most relevant passages from the document and summarize the

passage content one by one, and send the summarized passage content to the

frontend. After summarizing all of 5 passages, the system combines the

summarized content, analyses it in context, and generates a final comprehensive

explanation of the overall document.

108

Figure 6.17: MCP server terminal

Figure 6.18: Word document generated

109

After the final response is generated, the system re-analyses the user query to

check whether it contains a document-related operation, such as creating a new

document or adding content to an existing one. If detected, the system will

initialize the document automation workflow. In this workflow, the system will

communicate with the external MCP server that provides access to various tools

for document processing. Based on the query, the system invokes the necessary

tools through the MCP server to execute the required document automation

tasks.

Figure 6.19: Chat History Store In Databases

After finishing one chat response, the content of the chat session will be stored

in two databases, which are MySQL for long-term storage and Redis for short-

term storage. The history store in MySQL will be used to ensure the previous

chat can be fetched even if the user logs out or goes to a different interface.

Meanwhile, Redis is leveraged for its fast retrieval capabilities, allowing the

generation module to access recent conversation history quickly. To prevent

context overload, only the last three conversation entries are stored in Redis,

ensuring that responses remain both efficient and contextually accurate.

110

6.6 Settings module

Figure 6.20: Setting interface

The setting module will allow the user to customize various component

configurations of the system, including the LM model used, context length limit,

output token limit, temperature, and workflow configuration.

Figure 6.21: LLM configuration

For the local model, the system will detect all of the Ollama LLM models in the

system, and the user can choose the LLM model to use in this system. But the

system also allows users to integrate an external LLM connection via API,

where users can check the use online LLM provider option, and they can choose

to use either the OpenAI model or the Gemini model in this system.

111

Figure 6.22: MCP Server configuration

To enable external document workflow, the user can check the Enable MCP

Tool Integration option in the settings. Once enabled, the system displays an

input field where the user can enter the MCP server URL to establish a

connection via HttpStreamable. After creating a new server connection, the list

of connected servers will show at the bottom of the settings interface, and the

user can delete if needed.

Figure 6.23:Setting submitted

After the user completes their setting changes and submits them, the system will

display a confirmation message indicating that the update has been successfully

applied. This notification ensures that the user is clearly informed of the

successful update.

112

6.7 User management module

Figure 6.24: User management interface

For the organization workflow, the account with the role admin will have a new

interface option, which is the user management interface. In this interface, the

admin can see all of the users in this system and perform CRUD actions on the

users.

Figure 6.25: CRUD operation for user management

The admin can create a new user, update the information about an existing user

and delete any user. When any of the options is chosen, the system displays an

input form where the admin can enter the required details to apply the changes.

113

CHAPTER 7

SYSTEM TESTINGS AND DISCUSSION

7.1 Discussion

Figure 7.1: Segment of SQuAD on hugging face

To evaluate the performance of the two-core component in this system, which

includes the retrieval and generation components. The performance of the

component is evaluated with the Stanford Question Answering Dataset

(SQuAD), a popular benchmark dataset for measuring question-answering

systems. The SQuAD dataset contains passages from various Wikipedia articles

with provided questions and golden answers to the questions, making it suitable

for the evaluation of the retrieval and the generation components in this system.

Figure 7.2:Result chart

114

The chart presents the evaluation results of the multi-agent RAG system with

SQuAD across two categories of metrics: retrieval performance and generation

performance. The retrieval performance is measured with metrics such as

Recall@3, Mean Reciprocal Rank (MRR) and Context Recall, while the

generation performance is measured with metrics such as Faithfulness and

AnswerCorrectness. Moreover, two evaluation approaches were used, with a

calculation-based method applied to a sample size of 100, and an LLM-as-Judge

method using the GPT-4o model, applied to a smaller sample size of 20 due to

token and request limitations. The LLM-as-Judge approach was adopted

because some metrics are difficult to measure with a calculation-based method

and this approach can leverage the flexibility of LLM to provide more human-

like evaluation for the answer quality.

For retrieval, the system's retrieval component achieves a Recall@3 of

90% which means that out of 100 samples, the most relevant context is present

within the top 3 passages retrieved by the system. Moreover, the retrieval

component also achieved an MRR score of 75%, meaning that the correct

context is retrieved at an average rank of top 2 or 1. Lastly, the system manages

to score 100% in context recall, which, as referenced in SQuAD, through

reference context demonstrates the retrieval component’s ability to consistently

retrieve the correct context.

For generations, the system generation component performs

excellently in terms of Faithfulness, which the system achieves a perfect score,

meaning that the generation is consistently grounded in its responses based on

the retrieved context without hallucinating. However, the system only achieves

74.4% accuracy in the AnswerCorrectness metric, meaning that although the

answer is accurate most of the time but there are still times when the response

generated is not accurate. It is important to note that this evaluation was

conducted using the Llama 3.1:8B model, which is relatively small. Thus, this

limitation can possibly contribute to the lower accuracy observed.

115

7.2 Unit test

Unit testing was performed to evaluate every major component to ensure the

module functions as intended. To ensure proper traceability, the unit test cases

were designed in alignment with the defined use cases. This approach ensure a

clear link between system requirements and the corresponding test scenarios.

Figure 7.3: Test automation script result

Table 7.1: Test cases

Test

CaseID

Test Title Expected

result

Test data Use

case

Status

UTC001 Test sign in

with a valid

credential

User

successfull

y accessed

to the main

interface

1. Name :

2104132

2. Password:

123

UC01

Pass

UTC002 Test sign in

with empty

username

and

password

System

prompt

username

and

password

cannot be

empty

- Pass

UTC003 Test sign in

with invalid

credentials

System

prompt

error

1. Name:

nonUser

Pass

116

message:

“Invalid

credentials.

Please

verify your

input.”

2. Password:

123123

UTC004 Test sign in

with the

existing

authenticati

on token in

the

database.

System

skips the

sign-in step

and

navigates

to the main

interface

1. Token Pass

UTC005 Test register

with a valid

credential

User

successfull

y accessed

to the main

interface

1. Name:

2104132

2. Password:12

3123

3. Confirm

password:

123123

UC02

Pass

UTC006 Test register

with an

empty field

System

prompt

username

and

password

cannot be

empty

- Pass

UTC007 Test register

with an

unmatched

password

System

error

message

“password

does not

match”

1. Name:

2104132

2. Password:

123123

Pass

117

3. Confirm

password:

123

UTC008 Test upload

a document

with a valid

file type and

size

System

successfull

y

initialized

the

preprocessi

ng process

1. Document:

utarpolicy.pd

f (85KB)

UC03

Pass

UTC009 Test upload

with an

invalid

document

type

System

prompt

error

message:

"Only PDF

files are

allowed!”

1. Document:

test.png

Pass

UTC010 Test upload

with an

invalid size

System

prompt

error

message

“Invalid

file size”

1. Document:

Testpdf.pdf

(25MB)

Pass

UTC011 Test manage

file interface

with the

existing file

The system

displays all

the

uploaded

file lists

- UC04

Pass

UTC012 Test file

deletion in

the manage

file interface

The system

successfull

y deleted

the

document

- Pass

118

UTC013 Test manage

file interface

with no

existing file

The system

displays

“No files

uploaded.”

- Pass

UTC014 Test system

routing with

force

generation

setting on

The system

routes the

user

request to

the

generation

node

1. Query: “what

is an apple”

2. force_genera

tion: True

UC05 Pass

UTC015 Test system

routing with

force

retrieval

setting on

The system

routes the

user

request to

the

retrieval

decision

node

1. Query: “what

are the

different

types of

rag?”

2. force_retriev

al: True

Pass

UTC016 Test system

routing with

a simple

request

The system

routes user

requests to

the

generation

node

1. Query:

“What is the

capital of

France?”

Pass

UTC017 Test system

routing with

a query that

requires the

latest

information

The system

routes the

user

request to

the

retrieval

decision

node

1. Query:

“What is

MCP, and

what are the

applications?

”

Pass

119

UTC018 Test system

feature with

follow-up

question

The system

analyse

and

enhances

the user

query

based on

the

conversatio

n history

1. Query:

“Explain

more on

that.”

Pass

UTC019 Test

external

search

routing with

general

question

The system

routes user

request to

general

web search

1. Query:

“What is

MCP, and

what is the

applications?

”

Pass

UTC020 Test

external

search

routing with

medical

medical-

specific

question

The system

route user

requests to

the medical

database

search tool

1. Query:

“What is the

effect of

anabolic

steroids?”

Pass

UTC021 Test

external

search

routing with

the finance

new specific

question

The system

routes user

requests to

the finance

new search

tool

1. Query: “Why

is Tesla stock

down

today?”

Pass

UTC022 Test system

routing to

The system

routes user

1. Query: “why

are the

Pass

120

document

search with

no

document

available

requests to

the

generation

node

different

types of

rag?”

UTC023 Test stop

feature

system

processing

The system

stops the

process

and returns

the

response

“stopped

by user”

- Pass

UTC024 Test system

response

with a

question not

in the

document

The system

responds

with “The

context

provided

can not

answer

your

question,

want to

switch to

external

search?”

1. Query: “who

is the winner

of cs austin

major”

Pass

UTC025 Test system

response

with a

question

cannot be

found on the

internet

The system

responds

with “The

context

provided

can not

answer

1. Query: “what

is the term

and condition

for utar

staff?”

Pass

121

your

question.

want to

switch to

document

search?”

UTC026 Test system

response

with error

occurs

during

processing

The system

displays

error

message at

the chat

interface

- Pass

UTC027 Test system

setting

changed

with a

different

LLM model

applied

The system

successfull

y saved

and applied

the updated

LLM

model

1. Model:

qwen2.5:7b

UC06 Pass

UTC028 Test system

setting

changed,

external

LLM model

applied

The system

successfull

y saved

and applied

the updated

LLM

model

1. use_online_ll

m : True

2. online_provi

der: openai

3. online_api_k

ey

Pass

UTC029 Test system

setting

changes

with LLM

configuratio

n updated

The system

successfull

y saved

and applied

the updated

LLM

1. token_respon

se: 6000

2. context_lengt

h:7000

3. temperature:

0.4

Pass

122

configurati

on

UTC030 Test system

setting

changes

with

workflow

configuratio

n updated

The system

successfull

y saved

and applied

the updated

workflow

configurati

on

1. force_retriev

al: True

2. search_mode

:external

search

Pass

UTC031 Test system

setting

changes

with the

MCP

workflow

configuratio

n updated

The system

successfull

y saved

and applied

the updated

MCP

server

details

1. enable_mcp:

True

2. mcp_details:

”[{\"name\":

\"word_docu

ment\",

\"url\":

\"http://127.0

.0.1:8003/mc

p\"}]”

UC07 Pass

UTC032 Test system

setting

change in

the

organization

deployment

mode

The system

successfull

y saves the

updated

settings.

The

is_global

flag is set

to True,

and

accounts

with the

role “user”

1. Deployment_

mode:

organization

Pass

123

can use the

shared

settings.

UTC033 Test the

document's

automated

workflow

with a valid

server

connection

The system

successfull

y routes to

McpAgent

node and

communic

ates with

the MCP

server to

create a

document

1. Query:

“Create a

document

about

machine

learning.”

2. enable_mcp:

True

3. mcp_details:

”[{\"name\":

\"word_docu

ment\",

\"url\":

\"http://127.0

.0.1:8003/mc

p\"}]”

Pass

UTC034 Test the

document

automated

workflow

with no

MCP detail

entered

The system

skips the

document

automation

workflow

1. Query:

“Create a

document

about

machine

learning.”

2. Enable_mcp:

True

3. Mcp_details:

[]

Pass

UTC035 Test the

document

automated

workflow

The system

displays an

alert error

message

1. Query:

“Create a

document

about

Pass

124

with invalid

MCP details

“Error: No

MCP

servers are

reachable.

Skipping

MCP

step.”

machine

learning.”

2. Enable_mcp:

True

3. Mcp_details:

"[{\"name\":

\"word_docu

ment\",

\"url\":

\"dummy\"}]

UTC036 Test the

document

summarizati

on workflow

with a valid

summarizati

on request

The system

successfull

y routes

the request

to the

summariza

tion node

and

summarize

s the

document

1. Query:

“summarize

the content in

utar policy”

UC08 Pass

UTC037 Test the

document

summarizati

on workflow

with no

document

available

The system

skips the

summariza

tion step

1. Query:

“summarize

content in

utar policy”

Pass

UTC038 Test the

document

summarizati

on workflow

with failed

The system

stops the

system

process

and

- Pass

125

summarizati

on

displays an

error

message

126

CHAPTER 8

CONCLUSION AND RECOMMENDATIONS

8.1 Conclusion

This is a seven-month project that lasted two semesters from February to

September. This project set out to design and develop a Self-Hosted Multi-

Agent Retrieval-Augmented Generation (RAG) System for Contextual

Document Processing, which follows a set of objectives to address problems

identified in common LLM solutions in document processing tasks, including

hallucinations, privacy concerns, and lack of modularity. During the planning

of this project, the project scope and initial proposed solution were also outlined

to provide clearer direction for development. Additionally, a literature review

on different existing RAG solutions, MAS design patterns, types of RAG, MAS

frameworks, and types of retrieval methods in RAG systems is also carried out

to provide a complete study on different aspects of the RAG model and

determine which approach and component to be implemented into this system.

 After the literature review, a prototype-based development

methodology is carefully chosen to ensure an iterative development that allows

for continuous refinement and testing throughout the project because of the

rapid advancement of different AI tools. Each stage of the development was

structured to validate the functionality of the system component before

proceeding to develop the full multi-agent workflow. Additionally, various

useful tools are chosen, such as marker-pdf, Ollama, and LangGraph, that are

used to speed up the development process by providing a ready-to-use

component that can provide a solid foundation for the development of this

system. During this stage, a clear work plan and timeline are outlined with a

work breakdown structure to ensure that the deliverable can be provided on the

appropriate deadline. This ensures that every deliverable is aligned with the tight

seven-month deadline, which encompasses all phases from initial planning to

final project testing.

 Moving on to the requirement gathering stage, the system requirements

are identified from all of the prior planning phases. Use case and activity

127

diagrams are created to help with the visualization of all of the required

functionality of this system. All of the functional and non-functional

requirements are identified and recorded to provide a clear guideline for

development and testing. The first single-agent RAG system prototype is

developed in this stage to provide an overall demonstration of which

functionality and design the system will follow to the stakeholders and serve as

the foundation for subsequent development of a more complete and robust

solution.

 The system design for the final solution is developed with an outline of

communication between system components and agents. This will be used to

support the iteration from the single-agent RAG prototype to the intended final

solution. The major frameworks and external services are also identified to help

in producing a robust solution.

 After the second planning phase, the final system was developed and

delivered in line with all defined objectives and requirements by integrating the

multi-agent workflow along with the necessary functionalities. The behaviour

of the final product was thoroughly recorded to maintain traceability and

confirm the completeness of the project.

 Lastly, the final system testing is carried out via performance and unit

testing, in which the system performances are evaluated with different metrics

such as accuracy, ReCall@3, MRR, and faithfulness. This can demonstrate that

the system performs effectively in reducing hallucination rate and producing

reliable responses. Although some limitations remain in terms of correctness

due to smaller-scale LLMs and computational constraints, the system proves

that a modular and extensible multi-agent RAG pipeline can function effectively

in a self-hosted environment. After that, unit testing is performed based on the

use case determined to ensure all major functionality was implemented correctly

and that the project objectives were successfully achieved.

 In conclusion, this project successfully achieved its objectives by

delivering a working solution for a privacy-preserving, modular, and context-

aware document processing system. The outcomes highlight the feasibility of

integrating multi-agent architectures with RAG technology to produce accurate

and reliable results while safeguarding data privacy.

128

8.2 Limitations & Future Development

Although all of the objectives are successfully achieved in this project, several

limitations remain. The system currently only supports English only document

processing and is restricted to external search in only three databases, including

general web search, finance news database, and medical database. Moreover,

the system currently only focuses on textual content processing and does not

include any figures and visual data processing. Due to the limitation of the

hardware, the response precision is also heavily limited by the scale of the local

LLM used and the lack of domain-specific LLM fine-tuning, which the

hardware limitation also constrains the real-time capabilities of this system.

 Despite the constraints mentioned, the project provides a strong

foundation for future development. Potential areas of enhancement include

extending the system to support multilingual document processing, improving

accessibility and usability across different contexts. Additionally, the

integration of multimodal document analysis, including figures, tables, and

diagrams, could enrich the scope of content processing. Optimizing the multi-

agent workflow for scalability, such as through distributed processing and

hardware acceleration, would enable deployment in large-scale enterprise

environments. Expanding automation capabilities beyond note generation,

incorporating adaptive retrieval strategies, and advancing toward real-time

processing would further increase the system’s versatility and impact.

 By following these directions, this project can evolve into a robust

document processing system that can provide immense value to individuals and

organizations, positioning itself as a robust and adaptable solution for future

enterprise and research applications.

129

REFERENCES

Amazon Web Services, Inc., What is LangChain? - LangChain Explained -

AWS [Online]. Available at: https://aws.amazon.com/what-is/langchain/.

Banerjee, S., Agarwal, A. and Singla, S., 2024, LLMs Will Always Hallucinate,

and We Need to Live With This [Online]. Available at:

https://arxiv.org/abs/2409.05746.

Bo, X. et al., 2024. Reflective Multi-Agent Collaboration based on Large

Language Models. Advances in Neural Information Processing Systems, 37,

pp.138595–138631. Available at:

https://proceedings.neurips.cc/paper_files/paper/2024/hash/fa54b0edce5eef0bb

07654e8ee800cb4-Abstract-Conference.html [Accessed: 15 March 2025].

Cardenas, E. and Monigatti, L., 2024, What is Agentic RAG [Online]. Available

at: https://weaviate.io/blog/what-is-agentic-rag.

Chauhan, C., 2024. The Impact of Generative Artificial Intelligence in Scientific

Content Synthesis for Authors. American Journal Of Pathology, 194(8).

Cheng, H. et al., 2024. Have AI-Generated Texts from LLM Infiltrated the

Realm of Scientific Writing? A Large-Scale Analysis of Preprint Platforms.

bioRxiv (Cold Spring Harbor Laboratory).

Clark, B., 2025, What is LangGraph? [Online]. Available at:

https://www.ibm.com/think/topics/langgraph.

Cuconasu, F. et al., 2024. The Power of Noise: Redefining Retrieval for RAG

Sys-tems. Available at: https://arxiv.org/pdf/2401.14887.

Duan, H., Yang, Y. and Tam, K.Y., 2024, Do LLMs Know about Hallucination?

An Empirical Investigation of LLM’s Hidden States [Online]. Available at:

https://arxiv.org/abs/2402.09733 [Accessed: 5 March 2025].

https://aws.amazon.com/what-is/langchain/
https://arxiv.org/abs/2409.05746
https://weaviate.io/blog/what-is-agentic-rag
https://www.ibm.com/think/topics/langgraph
https://arxiv.org/pdf/2401.14887

130

Duan, Z. and Wang, J., 2024, Exploration of LLM Multi-Agent Application

Implementation Based on LangGraph+CrewAI [Online]. Available at:

https://arxiv.org/abs/2411.18241.

Feng, S. et al., 2024, Don’t Hallucinate, Abstain: Identifying LLM Knowledge

Gaps via Multi-LLM Collaboration [Online]. Available at:

https://arxiv.org/abs/2402.00367.

Guo, T. et al., 2024. Large Language Model based Multi-Agents: A Survey of

Progress and Challenges,

Gustavo et al., 2025. From RAG to Multi-Agent Systems: A Survey of Modern

Approaches in LLM Development. From RAG to Multi-Agent Systems: A

Survey of Modern Approaches in LLM Development.

Homayoun S., 2025, 6 Types of Retrieval-Augmented Generation (RAG)

Techniques You Should Know [Online]. Available at:

https://homayounsrp.medium.com/6-types-of-retrieval-augmented-generation-

rag-techniques-you-should-know-b45de9071c79#bypass [Accessed: 26 April

2025].

IBM, 2023, LangChain [Online]. Available at:

https://www.ibm.com/think/topics/langchain.

Jiménez, A., García-Díaz, V. and Bolaños, S., 2018. A Decentralized

Framework for Multi-Agent Robotic Systems. Sensors, 18(2), p.417.

Khan, N., 2024, Introduction Information retrieval is the task of finding

documents that satisfy an information need from a large collection of

documents. Given the vast amount of data, efficient information retrieval

techniques are essential to a number of applications from web search to

recommendations to convers [Online]. Available at:

https://www.linkedin.com/pulse/retrieval-techniques-sparse-dense-hybrid-

najeeb-khan-ph-d--wmtpc/ [Accessed: 26 April 2025].

https://arxiv.org/abs/2411.18241
https://arxiv.org/abs/2402.00367
https://www.ibm.com/think/topics/langchain

131

Knight, M., 2025, What Is a Knowledge Graph? - DATAVERSITY [Online].

Available at: https://www.dataversity.net/what-is-a-knowledge-graph/

[Accessed: 26 April 2025].

Kumar, S., 2023, Generative Retrieval for End-to-End Search Systems [Online].

Available at: https://blog.reachsumit.com/posts/2023/09/generative-retrieval/

[Accessed: 26 April 2025].

Li, M., Miao, S. and Li, P., 2024, Simple is Effective: The Roles of Graphs and

Large Language Models in Knowledge-Graph-Based Retrieval-Augmented

Generation [Online]. Available at: https://arxiv.org/abs/2410.20724.

Li, X. et al., 2024. A survey on LLM-based multi-agent systems: workflow,

infrastructure, and challenges. , 1(1).

Liu, Y. et al., 2024, Agent Design Pattern Catalogue: A Collection of

Architectural Patterns for Foundation Model based Agents [Online]. Available

at: https://arxiv.org/abs/2405.10467.

Mahadevkar, S.V. et al., 2024. Exploring AI-driven approaches for unstructured

document analysis and future horizons. Journal of big data, 11(1).

Milvus, 2025, What is the difference between sparse and dense retrieval?

[Online]. Available at: https://milvus.io/ai-quick-reference/what-is-the-

difference-between-sparse-and-dense-retrieval [Accessed: 12 April 2025].

Oguzhan Topsakal and Tahir Cetin Akinci, 2023. Creating Large Language

Model Applications Utilizing LangChain: A Primer on Developing LLM Apps

Fast. International Conference on Applied Engineering and Natural Sciences,

1(1), pp.1050–1056.

Peng, C., Xia, F., Naseriparsa, M. and Osborne, F., 2023, Knowledge Graphs:

Opportunities and Challenges [Online]. Available at:

https://arxiv.org/abs/2303.13948 [Accessed: 25 April 2025].

https://arxiv.org/abs/2410.20724
https://arxiv.org/abs/2405.10467

132

Ramalingam, S., 2023. RAG in Action: Building the Future of AI-Driven

Applications, Libertatem Media Private Limited.

Ravuru, C., Sakhinana, Sagar Srinivas and Runkana, V., 2024, Agentic

Retrieval-Augmented Generation for Time Series Analysis [Online]. Available

at: https://arxiv.org/abs/2408.14484.

Reinsel, D., Gantz, J. and Rydning, J., 2018. The Digitization of the World From

Edge to Core,

Sanmartin, D., 2024, KG-RAG: Bridging the Gap Between Knowledge and

Creativity [Online]. Available at: https://arxiv.org/abs/2405.12035.

Singh, A., Ehtesham, A., Kumar, S. and Khoei, Tala Talaei, 2025, Agentic

Retrieval-Augmented Generation: A Survey on Agentic RAG [Online].

Available at: https://arxiv.org/abs/2501.09136.

Tran, K.-T. et al., 2025, Multi-Agent Collaboration Mechanisms: A Survey of

LLMs [Online]. Available at: https://arxiv.org/abs/2501.06322#page=5.32

[Accessed: 15 March 2025].

Wang, J. and Duan, Z., 2024, Agent AI with LangGraph: A Modular Framework

for Enhancing Machine Translation Using Large Language Models [Online].

Available at: https://arxiv.org/abs/2412.03801 [Accessed: 26 January 2025].

Winland, V., Syed, M. and Gutowska, A., 2024, crewAI [Online]. Available at:

https://www.ibm.com/think/topics/crew-ai.

Wu, Q. et al., 2023, AutoGen: Enabling Next-Gen LLM Applications via Multi-

Agent Conversation [Online]. Available at: https://arxiv.org/abs/2308.08155.

Wu, X., Duan, R. and Ni, J., 2023. Unveiling Security, Privacy, and Ethical

Concerns of ChatGPT. Journal of Information and Intelligence, 2(2). Available

at: https://www.sciencedirect.com/science/article/pii/S2949715923000707.

https://arxiv.org/abs/2408.14484
https://arxiv.org/abs/2405.12035
https://arxiv.org/abs/2501.09136
https://www.ibm.com/think/topics/crew-ai
https://arxiv.org/abs/2308.08155
https://www.sciencedirect.com/science/article/pii/S2949715923000707

133

Yan, S.-Q., Gu, J.-C., Zhu, Y. and Ling, Z.-H., 2024, Corrective Retrieval

Augmented Generation [Online]. Available at: https://arxiv.org/abs/2401.15884

[Accessed: 25 March 2025].

Yu, C., Yan, J. and Cai, N., 2024. ChatGPT in higher education: factors

influencing ChatGPT user satisfaction and continued use intention. Frontiers in

education, 9(1).

Zeeshan, T., Kumar, A., Pirttikangas, S. and Tarkoma, S., 2025, Large

Language Model Based Multi-Agent System Augmented Complex Event

Processing Pipeline for Internet of Multimedia Things [Online]. Available at:

https://arxiv.org/abs/2501.00906 [Accessed: 16 March 2025].

Zhang, M. et al., 2023. How Language Model Hallucinations Can Snowball,

134

APPENDIXES

