

DISEASE PREDICTION WEB APPLICATION

USING MACHINE LEARNING

FOO JIA YU

UNIVERSITI TUNKU ABDUL RAHMAN

DISEASE PREDICTION WEB APPLICATION USING MACHINE

LEARNING

FOO JIA YU

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Software Engineering

(Honours)

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2025

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that

it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Name : FOO JIA YU

ID No. : 2105105

Date : 01/07/2025

COPYRIGHT STATEMENT

© 2025, FOO JIA YU. All right reserved.

This final year project report is submitted in partial fulfilment of the

requirements for the degree of Bachelor of Software Engineering (Honours) at

Universiti Tunku Abdul Rahman (UTAR). This final year project report

represents the work of the author, except where due acknowledgement has been

made in the text. No part of this final year project report may be reproduced,

stored, or transmitted in any form or by any means, whether electronic,

mechanical, photocopying, recording, or otherwise, without the prior written

permission of the author or UTAR, in accordance with UTAR’s Intellectual

Property Policy.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to Dr. Fatimah Audah

binti Md. Zaki as my research supervisor and Mr Kelwin Tan Seen Tiong as my

research moderator for their invaluable advice, guidance, enormous patience

and constructive feedback throughout the duration of the research.

I sincerely thank my academic advisor, Dr. Khor Kok Chin, for his

exceptional guidance and support throughout my degree program. I would also

like to thank all the lecturers and the faculty and the departmental members from

Lee Kong Chian Faculty of Engineering and Science for creating a pleasant

working environment throughout my years in UTAR.

Special thanks go to my fellow classmates and friends for their

collaboration, discussions, and encouragement during challenging times. Their

support helped me kept motivation and progress steadily.

Finally, I am deeply grateful to my family for their unconditional love,

patience, and unwavering trust. Their encouragement has been my greatest

source of strength and inspiration throughout my academic journey.

ABSTRACT

In recent years, the prevalence of diseases has increased and the demand for

quick diagnosis tools is growing. This has highlighted the need for machine

learning-based web applications for disease predictions is important in the

healthcare system for early diagnosis. This project presents the design and

development of a web-based disease prediction application that employs

machine learning and natural language processing technologies to assist users

in identifying potential health conditions. The motivation for this project is to

improving access to early diagnosis, reduce the burden on medical staff and

getting general medical advice anywhere and anytime. The methodology

involved develop and train machine learning models on Symptom-Disease

Prediction Dataset (SDPD) to achieve precise predictions, integrate the model

into web application built on Flask and React, and employ Google Gemini to

generate general medical recommendations and extract symptoms. System

testing was conducted through multiple testing methods, including unit testing,

integration testing, user acceptance testing (UAT) and user interface design

feedback collected through Google Forms. The results indicate that the machine

learning model achieved a prediction accuracy at approximately 97%. User

acceptance testing validated that over 90% of users rated the usability and ease

of use of the system at 4 or higher on a 5-point Likert scale. The study concluded

that the system successfully achieved its objectives, delivering a practical, user-

friendly, and intelligent healthcare support system. However, it also

acknowledged limitations such as dependence on dataset quality, lack of

coverage for rare or new diseases, and multilingual support. Future work will

focus on expanding dataset variety, integrating multilingual support, and

incorporating of contextual health data to further enhance prediction accuracy

and precision.

Keywords: Disease prediction, Machine Learning, Web Application, Large

Language model, Natural Language Processing

Subject Area: QA76 – Computer Science

i

TABLE OF CONTENTS

DECLARATION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS i

LIST OF TABLES vi

LIST OF FIGURES viii

LIST OF SYMBOLS / ABBREVIATIONS xii

LIST OF APPENDICES xiii

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 2

1.3 Problem Statement 3

1.3.1 Long waiting times for patients to get

diagnosis 3

1.3.2 Increased Risk of Human Errors 4

1.3.3 Limited accessibility for remote areas 4

1.4 Aim and Objectives 5

1.5 Scope and Limitation of the Study 5

1.5.1 Limitation 10

1.6 Proposed Solution 11

1.7 Project Approach 12

2 LITERATURE REVIEW 13

2.1 Introduction 13

2.2 Research and Comparison Model 13

2.2.1 Research Models 13

2.2.2 Compare Existing Models 17

2.2.3 Summary of Comparative Models 22

ii

2.3 Compare Existing Web App 24

2.3.1 Symptomate 24

2.3.2 WebMD Symptom Checker 27

2.3.3 Your.MD (Healthily) 31

2.3.4 Summary of Existing Applications 36

2.4 Evaluation Metrics 37

2.4.1 Accuracy 37

2.4.2 Sensitivity (Recall) 37

2.4.3 Specificity 38

2.4.4 Precision 38

2.4.5 F1-Score (F-Measure) 38

2.4.6 Summary of Evaluation Metrics 39

2.5 Dataset Sources 40

2.5.1 Summary of Data Source 42

2.6 Web Application Framework 43

2.6.1 Backend Framework 43

2.6.2 Frontend Framework 46

2.7 Summary 48

3 METHODOLOGY AND WORK PLAN 50

3.1 Introduction 50

3.2 Software Development Life Cycle (SDLC)

Methodology 50

3.2.1 Waterfall 50

3.2.2 Spiral 52

3.2.3 Agile 53

3.2.4 Summary of SDLC Methodology 54

3.3 Waterfall Methodology 55

3.4 Requirements Analysis 56

3.5 System Design 57

3.6 Implementation Phase 58

3.6.1 Machine Learning Model Development 58

3.6.2 Web Applications Development 62

3.6.3 Integration of ML Model with Web

Application 63

iii

3.7 System Testing 63

3.8 Tools and Technologies 64

3.8.1 Flask 64

3.8.2 React 64

3.8.3 Scikit-learn 64

3.8.4 MySQL 65

3.8.5 GitHub 65

3.8.6 Postman 65

3.9 Project Plan 65

3.9.1 Work Breakdown Structure (WBS) 66

3.9.2 Gantt Chart 68

4 PROJECT SPECIFICATIONS 71

4.1 Introduction 71

4.2 Requirements Specification 71

4.2.1 Functional Requirements Specification 71

4.2.2 Non-functional Requirements Specification

 72

4.3 Use Case Modelling 73

4.3.1 Use Case Diagram 73

4.3.2 Use Case Description 74

4.4 System Flow Diagram 84

4.5 Interface Flow Diagram 86

4.6 Low Fidelity Prototype 86

4.6.1 Welcome Page 86

4.6.2 Login Page 87

4.6.3 Sign Up Page 88

4.6.4 Home Page 88

4.6.5 Select Input Method Page 89

4.6.6 Dropdown List Input Symptoms Page 90

4.6.7 Free Text Input Symptoms Page 90

4.6.8 Predicted Results Page 92

4.6.9 View Medical Advice Page 92

4.6.10 View Historical Results Page 93

4.6.11 Profile Page 94

iv

4.6.12 Update Profile Page 94

4.6.13 Change Password Page 95

4.7 Preliminary Results 96

4.7.1 Model Performance 96

4.7.2 Dropdown List Input 97

4.7.3 Free-Text Input 97

5 SYSTEM DESIGN 99

5.1 Introduction 99

5.2 System Architecture Design 99

5.3 Data Model Design 101

5.3.1 Entity Relationship Diagram (ERD) 101

5.3.2 Data Dictionary 102

5.4 User Interface Design 105

5.4.1 Welcome Page 105

5.4.2 Login Page 106

5.4.3 Sign Up Page 106

5.4.4 Home Page 107

5.4.5 Select Input Method Page 107

5.4.6 Dropdown List Input Symptoms Page 108

5.4.7 Free Text Input Symptoms Page 109

5.4.8 Predicted Results Page 109

5.4.9 View Medical Advice Page 110

5.4.10 History Page 111

5.4.11 Profile Page 111

5.4.12 Update Profile Page 112

5.4.13 Change Password Page 112

5.5 Prompt Design Study 113

5.5.1 Prompt Styles 113

5.5.2 Prompt Testing 114

5.5.3 Comparison and Discussion 123

5.5.4 Summary 124

6 SYSTEM IMPLEMENTATION 125

6.1 Introduction 125

6.2 Machine Learning Model Development 125

v

6.2.1 Data Preprocessing 125

6.2.2 Model Training 127

6.2.3 Model Optimization 127

6.2.4 Model Evaluation 132

6.3 Web Application Development 135

6.3.1 Frontend Development 135

6.4 Backend Development 144

6.4.1 Project Architecture 145

6.4.2 API Endpoints 147

6.4.3 Implementation of Google Gemini API 152

7 SYSTEM TESTING 154

7.1 Introduction 154

7.2 Unit Testing 154

7.2.1 Registration Feature 155

7.2.2 Login Feature 158

7.2.3 Profile 160

7.2.4 Update Profile Feature 162

7.2.5 Change Password Feature 163

7.2.6 Select Input Method Feature 165

7.2.7 Dropdown Input Feature 166

7.2.8 Free Text Feature 167

7.2.9 Prediction Result 168

7.2.10 General Medical Advice 169

7.2.11 Historical 170

7.3 Integration Testing 171

7.4 User Acceptance Testing (UAT) 175

7.4.1 User Acceptance Testing Result 175

7.5 User Interface Design Feedback 177

8 CONCLUSION AND RECOMMENDATION 179

8.1 Introduction 179

8.2 Achievement of Objectives 179

8.3 Limitations and Recommendations for Future

Works 181

REFERENCES 183

vi

APPENDICES 189

LIST OF TABLES

Table 1.1: List of diseases included in the system 6

Table 1.2: List of the 132 symptoms supported by the system. 7

Table 2.1: Related Work 15

Table 2.2: Comparison between DT, SVM, RF, KNN, and NB. 22

Table 2.3: Comparison between Symptomate, WebMD Symptom
Checker, and Your.MD (Healthily). 36

Table 2.4 Comparison of different evaluation metrics. 39

Table 2.5: Comparison of different data source 42

Table 2.6: Comparison between Flask and Django 45

Table 2.7: Comparison between React and Angular 48

Table 3.1: Comparison of different SDLC Methodology 54

Table 4.1: Functional Requirements 71

Table 4.2: Non-functional requirements 72

Table 4.3: Use case description of Login Account 74

Table 4.4: Use case description of Register account 75

Table 4.5: Use case description of Input Symptoms 76

Table 4.6: Use case description of View Predicted Results 77

Table 4.7: Use case description of View Medical Results 78

Table 4.8: Use case description of Store Predicted Results 79

Table 4.9： Use case description of View Historical Results 80

Table 4.10: Use case description of View Profile 82

Table 4.11: Use case description of Update Profile 83

vii

Table 5.1: users Table Data Dictionary 103

Table 5.2: symptoms Table Data Dictionary 103

Table 5.3: diseases Table Data Dictionary 103

Table 5.4: prediction_history Table Data Dictionary 103

Table 5.5: medical_advice Table Data Dictionary 104

Table 5.6: predicted_symptom junction table Data Dictionary 104

Table 5.7: predicted_disease junction table Data Dictionary 105

Table 5.8: Diabetes Results on Prompt Testing 118

Table 5.9: Hypertension Results on Prompt Testing 122

Table 6.1: Prediction Verification Results 134

Table 6.2: API Endpoints Overview 150

Table 7.1: Unit Test Case for Registration Feature 155

Table 7.2: Unit Test Case for Login Feature 158

Table 7.3: Unit Test Case for Profile 160

Table 7.4: Unit Test Case for Update Profile Feature 162

Table 7.5: Unit Test Case for Change Password Feature 163

Table 7.6: Unit Test Case for Select Input Method Feature 165

Table 7.7: Unit Test Case for Dropdown Input Feature 166

Table 7.8: Unit Test Case for Free Text Input Feature 167

Table 7.9: Unit Test for Prediction Result 168

Table 7.10: Unit Test Case for General Medical Advice 169

Table 7.11: Unit Test Case for Historical 170

Table 7.12: Integration Test Cases 172

Table 7.13: User Acceptance Testing Result. 175

Table 7.14: User Interface Design Feedback 177

viii

LIST OF FIGURES

Figure 1.1: System Design Overview 11

Figure 1.2: Waterfall Methodology 12

Figure 2.1: Decision Tree Structure Diagram. 18

Figure 2.2: Support Vector Machine (SVM) Diagram. 19

Figure 2.3: Random Forest (RF) algorithm diagram. 20

Figure 2.4: K-Nearest Neighbors (KNN) diagram. 21

Figure 2.5: Symptomate Survey Respondent’s Page. 24

Figure 2.6: Symptomate User Input Symptoms Page 25

Figure 2.7: Example of a Multi-Select Symptoms Interview Question
Page. 26

Figure 2.8: Example of Predicted Result. 27

Figure 2.9: Example of WebMD Symptom Checker Info Page. 28

Figure 2.10: Example of WebMD Input Symptom Page. 29

Figure 2.11: Example of WebMD Input Symptom Page for Select
Symptoms by Body Location. 29

Figure 2.12: Example of the Conditions Page. 30

Figure 2.13: Example of the Conditions Details Page. 31

Figure 2.14: Healthily Gender Page. 32

Figure 2.15: Healthily Chatbot Page. 33

Figure 2.16: Healthily Select Symptom Page. 33

Figure 2.17: Healthily Symptom Checker Page prompting user to
indicate the duration of symptoms. 34

Figure 2.18: Healthily prompting user to indicate the health background.
 34

Figure 2.19: Healthily Prediction Report Page. 35

ix

Figure 3.1: Waterfall Model 51

Figure 3.2: Spiral Model 52

Figure 3.3: Agile Model 53

Figure 3.4: Waterfall Methodology Flowchart 56

Figure 3.5: System Design Diagram 58

Figure 3.6: Model Development Flowchart 59

Figure 3.7: Overview of the Project Timeline 68

Figure 3.8: Project Preparatory and Project Initiation Timelines 68

Figure 3.9: Literature Review and Methodology Timelines 69

Figure 3.10: Requirements Analysis and System Design Timelines 69

Figure 3.11: System Development Timelines 70

Figure 3.12: System Testing and Closing Timelines 70

Figure 4.1: Use case diagram 73

Figure 4.2: System Flow Diagram 85

Figure 4.3: Interface Flow Diagram 86

Figure 4.4: Welcome Page 87

Figure 4.5: Login Page 87

Figure 4.6: Sign Up Page 88

Figure 4.7: Home Page 89

Figure 4.8: Select Input Method Page 89

Figure 4.9: Dropdown List Input Symptoms Page 90

Figure 4.10: Free Text Input Symptoms Page 91

Figure 4.11: Predicted Results Page 92

Figure 4.12: View Medical Advice Page 93

Figure 4.13: View Historical Results Page 93

x

Figure 4.14: Profile Page 94

Figure 4.15: Update Profile Page 95

Figure 4.16: Change Password Page 95

Figure 4.17: Preliminary Model Performance Metrics 96

Figure 4.18: Sample of Per-Disease Performance Metrics 97

Figure 4.19: Sample Dropdown List Input and Prediction Results 97

Figure 4.20: Sample of Free-Text Input and Prediction Output 98

Figure 5.1: Three-tier Architecture Diagram 99

Figure 5.2: System Architecture Design 100

Figure 5.3: Entity Relationship Diagram (ERD) 102

Figure 5.4: Actual Welcome Page 106

Figure 5.5: Actual Login Page 106

Figure 5.6: Actual Sign Up Page 107

Figure 5.7: Actual Home Page 107

Figure 5.8: Actual Select Input Method Page 108

Figure 5.9: Actual Dropdown List Input Symptoms Page 108

Figure 5.10: Actual Free Text Input Symptoms Page 109

Figure 5.11: Actual Predicted Results Page 109

Figure 5.12: Actual View Medical Advice Page 110

Figure 5.13: Actual History Page 111

Figure 5.14: Actual Profile Page 111

Figure 5.15: Actual Update Profile Page 112

Figure 5.16: Actual Change Password Page 112

Figure 6.1: Code Snippet for Handling Missing Value 126

Figure 6.2: Code Snippet for Remove Duplicate Rows in Dataset 126

xi

Figure 6.3: Code Snippet for Data Splitting 127

Figure 6.4: Model Architecture 127

Figure 6.5: Hyperparameter Tuning for three models 129

Figure 6.6: Random Forest Optimization Results 130

Figure 6.7: Learning Curve of Random Forest 130

Figure 6.8: Support Vector Machine Optimization Results 131

Figure 6.9: Heatmap diagram of SVM 131

Figure 6.10: Decision Tree Optimization Results 132

Figure 6.11: Testing set results of 3 models 132

Figure 6.12: Model Performance on Test Set 133

Figure 6.13: Token Storage Logic 136

Figure 6.14: Attach Token to Secured API Requests 136

Figure 6.15: Code Snippet for Registration Form Validation 138

Figure 6.16: Code Snippet for Login Form Validation 139

Figure 6.17: Code Snippet for Dropdown Symptom Selection Validation
 139

Figure 6.18: Code Snippet for Free Text Symptoms Input Validation 140

Figure 6.19: Code Snippet for Update Profile Form Validation 141

Figure 6.20: Code Snippet for Change Password Input Validation 141

Figure 6.21: Code Snippet of Project Setup 145

Figure 6.22: Code Snippet for JWT Decorator 146

Figure 6.23: get_connection() function 146

Figure 6.24: Code Snippet for Load ML Model 147

Figure 6.25: Extract Symptoms Function 147

Figure 6.26: Generate Structured Medical Advice via Google Gemini
API 153

xii

LIST OF SYMBOLS / ABBREVIATIONS

AI Artificial Intelligence

ML Machine Learning

RT Random Forest

DT Decision Tree

SVM Support Vector Machine

KNN K-Nearest Neighbors

NB Naïve Bayes

SDLC Software development lifecycle

API Application programming interface

WBS Work Breakdown Structure

TP True Positive

TN True Negative

FP False Positive

FN False Negative

WHO World Health Organization

xiii

LIST OF APPENDICES

Appendix A: Questionnaire for User Acceptance Testing (UAT) 189

Appendix B: Results for User Acceptance Testing (UAT) 192

Appendix C: Questionnaire for User Interface (UI) Design Feedback 196

Appendix D: Results for User Interface Design Feedback 199

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

The World Health Organization (WHO) states that the chronic diseases such as

diabetes and cardiovascular account for 74% of global deaths annually, but

many chronic diseases can be prevented through early detection (WHO, 2024).

Nowadays, people are more concerned about health after the breakdown of a

pandemic. Rapid advances in technology and artificial intelligence (AI) are

having a significant impact on the healthcare industry. Traditional diagnosis

processes in the healthcare domain are time-consuming and costly. As there are

many different diseases worldwide, the healthcare staff may have some

limitations in their skills and knowledge of certain diseases. This may limit their

ability to make early diagnoses of some particular diseases. However, machine

learning-based healthcare systems may not have these limitations and can

become a powerful tool for early diagnosis.

 Machine learning (ML) is a subfield of Artificial Intelligence (AI) that

focuses on allowing computers and machines to mimic human learning, carry

out activities autonomously, and enhance the performance and accuracy of

predictions through past and large datasets (IBM, 2021). Machine learning is

used to train machines to handle complex data more efficiently and effectively

and provide accurate results. There are two phases of the machine learning

algorithm, which are Training and Testing (Sharmila et al., 2024). Healthcare

issues can be effectively addressed using Machine Learning Technologies.

Through the use of Machine Learning, many time-consuming tasks can now be

completed quickly and with minimal effort and also helps to reduce human

errors.

 Different diseases may have some similar or different symptoms.

These overlapping symptoms may confuse medical professionals in the

diagnosis process. Therefore, the disease prediction system can use machine

learning to predict diseases based on patient symptoms. This can assist medical

2

staff in making a diagnosis and reduce human errors. There were few existing

applications that can predict disease based on a patient’s symptoms and other

features. Unlike WebMD, this system focuses on provide medical advice based

on the potential diseases. This project focuses on developing a disease

prediction web application by using machine learning. By using symptoms

inputted or selected by users, the system can predict potential illnesses and

provide recommendations for the users. This application can enhance early

detection and help medical professionals and individuals in making decisions

about their health.

1.2 Importance of the Study

In recent years, the prevalence of diseases has increased and the demand for

quick diagnosis tools is growing. This has highlighted the need for machine

learning-based web applications for disease predictions is important in the

healthcare system for early diagnosis. This study focuses on developing a

disease prediction web application by using machine learning. The web

application analyses the user-input symptoms and diagnoses the potential

disease for the user. The users can seek medical advice and recommendations

earlier by analysing the symptoms early.

 In addition, the disease prediction system can automatically diagnose

the disease and reduce the workload of medical staff. This saves the time of

healthcare professionals in diagnosing the disease one by one, therefore, they

have more time to concentrate on some complex cases. This can make the

diagnostic process more efficient and simpler. Besides that, it can assist

healthcare professionals to make the diagnosis and reduce human errors. This is

due to the reason that the symptoms of many diseases may overlap, which can

confuse the medical professionals and prevent them from making a correct

judgment based on the symptoms.

 Furthermore, healthcare personnel may not have skills in particular

areas, which will make it difficult for them to make decisions about the diseases.

Therefore, the disease prediction system can assist both healthcare staff and

individuals in making well-informed choices regarding their health. This study

3

focuses on developing a web application for predicting diseases by utilizing

machine learning techniques. By using the symptoms entered by users, the

system can predict potential diseases and provide some recommendations to the

users. This application aims at early diagnosis of diseases, reduces diagnostic

errors, and can help users to make a correct judgment about illnesses. Moreover,

the system can be used as a preliminary diagnosis tool to guide the users to seek

appropriate medical advice and medical attention.

1.3 Problem Statement

In the past few years, disease diagnosis has frequently been dependent on the

experience and knowledge of medical experts, which may occasionally result in

delays or incorrect diagnoses. Moreover, some individuals who live in distant

areas or have limited access to healthcare facilities may find it difficult to get

medical services. Therefore, the disease prediction system can assist in early

diagnosis based on symptoms entered by users. There were some problems in

the current healthcare system, including:

1.3.1 Long waiting times for patients to get diagnosis

One of the biggest problems faced by current healthcare systems is the long

waiting times for patients to receive a diagnosis. According to Datuk Dr N.

Marimuthu, the waiting time for patients in public hospitals is up to 3 hours and

should be reduced to 30 minutes as in the public health clinics (BERNAME,

2024). This is because of the large number of patients and limited availability

of medical staff. As a result, some patients may choose to self-medicate rather

than wait for a professional diagnosis, delaying proper treatment since the

treatment process often involves long waiting times. Besides that, these delays

may also lead to worsening conditions for patients, particularly those with

chronic illnesses. According to Newman-Toker et al. (2024), the diagnostic

errors including misdiagnosis and delayed diagnosis resulted in 795,000 serious

harms. These included 371,000 deaths and 424,000 permanent disabilities,

underscoring the severity of the human toll. The machine learning-based disease

prediction system can prevent this issue by providing users with an initial

4

assessment of a user before visiting a healthcare facility and providing

assistance to medical staff to improve diagnostic accuracy.

1.3.2 Increased Risk of Human Errors

Furthermore, human error is inevitable in the healthcare system. Although

healthcare professionals have specialized knowledge and experience, they may

also make some mistakes when diagnosing the disease because the symptoms

of the patients may overlap with those of other diseases. This may result in

misdiagnosis, leading to incorrect treatments of the patients and potentially

causing severe complications. About 200,000 patients die each year from

preventable medical errors (Kavanagh et al., 2017). Moreover, some of incorrect

patients’ records may also kept in the healthcare system due to human mistakes.

This may mislead the doctors when diagnosing the disease for patients. Utilizing

machine learning models can minimize the likelihood of errors and increase the

accuracy of the disease predictions by using large datasets of medical records.

1.3.3 Limited accessibility for remote areas

Due to the inadequate numbers of hospitals and doctors in some remote or rural

areas, people living there have limited access to healthcare services depending

on their region. If they want to have access to comprehensive and refined

healthcare services and facilities, they may have to travel to other regions or

countries, which is time-consuming and costly. Rural residents often face

barriers to health care that limit their ability to access needed medical services

(Rural Health Information Hub, 2024). If the patients suffer from serious

diseases, they may not be able to get timely diagnosis in rural areas. The disease

prediction system can help to prediction their disease early based on the

symptoms and can give some medical advice for them. This can lower the

chance of serious complications and provide access to the basic healthcare

information. In addition, the system can guide individuals to seek medical

attention when they may be suffering from some disease.

5

1.4 Aim and Objectives

The primary aim of this project is to develop a web-based application that can

allow users to predict their disease based on user-inputted or selected symptoms.

This system is based on machine learning and the model are trained with the

selected dataset to ensure the accuracy of the results. The selected dataset is

Symptom-Disease Prediction Dataset (SDPD), which is sourced from Mendeley.

Besides that, the disease prediction system will serve as a tool for early

diagnosis of disease, helping users to know the potential disease they may be

suffering from based on their symptoms when they feel unwell. Moreover, the

system will provide users with possible solutions for further action, better

understanding, or medical treatment after a diagnosis of a disease they may have.

The disease prediction project is designed to accomplish the following

objectives:

1. To develop and train a machine learning model capable of predicting

specific diseases, achieving a prediction accuracy of 85% or higher on

the test dataset.

2. To design a user-friendly web application and evaluate its usability

through User Acceptance Testing (UAT), ensuring that at least 90% of

users rate its ease of use as 4 or higher on a 5-point Likert scale.

3. To design and test different prompts for large language model (Google

Gemini), evaluating their effectiveness in advice generation and validate

the outputs against trusted medical sources.

1.5 Scope and Limitation of the Study

This project aims to develop a web application to predict potential diseases for

users, which also provides medical advice and recommendations on the

potential diseases users may have and allows users to input their symptoms for

prediction. The scope of this project is including:

i. User-friendly web interface

A simple and responsive web interface where users can enter their

symptoms for prediction. In addition, provides two options for users

to enter the symptoms which are a predefined dropdown list of

symptoms or manually enter symptoms via a free-text field.

6

ii. Machine learning model training

A trained machine learning model is able to analyse the user input

or selected input symptoms and predict the potential diseases users

may have. The model utilizes Random Forests algorithm for the

prediction process.

iii. Server-side applications

A server-side application that can process user inputs, interacts with

the machine learning models and returns the predictions to the user.

Implement APIs to handle the data flow between the front end and

the machine learning model.

iv. Database to store user information

Develop a database for storing the user history such as user inputs

and predicted results. This can help user to track their symptoms and

potential diseases over time.

v. Included Diseases:

There are 41 diseases included in the system, as listed in Table 1.1

and Table 1.2 presents the 131 symptoms supported by the system.

Table 1.1: List of diseases included in the system

Fungal

Infection

Allergy

GERD

Chronic

Cholestasi

s

Drug

Reaction

AIDS Diabetes Gastroenteri

tis

Bronchial

Asthma

Hypertens

ion

Migraine Peptic

Ulcer

Disease

Cervical

Spondylosis

Paralysis

(brain

hemorrhag

e)

Jaundice

Malaria Chickenpox Dengue Typhoid Hepatitis

A

Hepatitis

B

Hepatitis C Hepatitis D Hepatitis

E

Alcoholic

Hepatitis

7

Tubercul

osis

Common

Cold

Pneumonia Dimorphic

Hemmorh

oids

(piles)

Heart

Attack

Varicose

Veins

Hypothyroi

dism

Hyperthyroi

dism

Hypoglyce

mia

Osteoarth

ritis

Arthritis Vertigo Acne Urinary

Tract

Infection

Psoriasis

Impetigo

Table 1.2: List of the 132 symptoms supported by the system.

Itching Skin rash Nodal

skin

eruptions

Continuou

s sneezing

Shiveri

ng

Chills

Joint

pain

Stomach

pain

Acidity Ulcers on

tongue

Muscle

wastin

g

Vomitin

g

Burning

micturit

ion

Spotting

urination

Fatigue Weight

gain

Anxiet

y

Cold

hands

and feets

Mood

swings

Weight

loss

Restlessn

ess

Lethargy Patche

s in

throat

Irregular

sugar

level

Cough High

fever

Sunken

eyes

Breathless

ness

Sweati

ng

Dehydrat

ion

Indigest

ion

Headache Yellowis

h skin

Dark urine Nausea Loss of

appetite

Pain

behind

the eyes

Back pain Constipat

ion

Abdomina

l pain

Diarrh

oea

Mild

fever

8

Yellow

urine

Yellowin

g of eyes

Acute

liver

failure

Fluid

overload

Swelli

ng of

stomac

h

Swelled

lymph

nodes

Malaise Blurred

and

distorted

vision

phlegm Throat

irritation

Rednes

s of

eyes

Sinus

pressure

Runny

nose

Congesti

on

Chest

pain

Weakness

in limbs

Fast

heart

rate

Pain

during

bowel

moveme

nts

Pain in

anal

region

Bloody

stool

Irritation

in anus

Neck pain Dizzin

ess

Cramps

Bruisin

g

Obesity Swollen

legs

Swollen

blood

vessels

Puffy

face

and

eyes

Enlarged

thyroid

Brittle

nails

Swollen

extremeti

es

Excessiv

e hunger

Extra

marital

contacts

Drying

and

tinglin

g lips

Slurred

speech

Knee

pain

Hip joint

pain

Muscle

weakness

Stiff neck Swelli

ng

joints

Moveme

nt

stiffness

Spinnin

g

movem

ents

Loss of

balance

Unsteadi

ness

Weakness

of one

body side

Loss of

smell

Bladder

discomfo

rt

9

Foul

smell of

urine

Continuo

us feel of

urine

Passage

of gases

Internal

itching

Toxic

look

(typhos

)

Depressi

on

Irritabili

ty

Muscle

pain

Altered

sensoriu

m

Red spots

over body

Belly

pain

Abnorma

l

menstrua

tion

Dischro

mic

patches

Watering

from eyes

Increased

appetite

Polyuria Family

history

Mucoid

sputum

Rusty

sputum

Lack of

concentra

tion

Visual

disturban

ces

Receiving

blood

transfusio

n

Receiv

ing

unsteril

e

injectio

ns

Coma

Stomac

h

bleedin

g

Distentio

n of

abdomen

History

of

alcohol

consump

tion

Blood in

sputum

Promin

ent

veins

on calf

Palpitati

ons

Painful

walking

Pus filled

pimples

Blackhea

ds

Scurring Skin

peeling

Silver

like

dusting

Small

dents in

nails

Inflamma

tory nails

Blister Red sore

around

nose

Yellow

crust

ooze

10

There also some limitations in this project, including:

1.5.1 Limitation

i. Not replace the medical professional

This system is intended only as an assistant for medical professionals

or individuals in the early diagnosis of the potential disease and does

not replace the medical professional for given medical treatment.

The system is only used for preliminary evaluation.

ii. Not cover rare or new disease

The system does not cover all the diseases, especially is some rare

or new diseases. The symptoms and conditions of the rare or new

disease may not be included in the training dataset, so it may be

unable to detect the disease based on the symptoms.

iii. Accuracy depends on the quality and quantity of dataset

The reliability of the disease prediction model depends on the dataset,

therefore the accuracy of the prediction results depends on the

correctness and size of the dataset. If the dataset is limited and

incorrect, the accuracy of predicted results will be low and

inefficient.

iv. External factors

There may be some unpredictable factors to be considered when use

the disease prediction system such as the breakdown of pandemics.

The pandemic outbreaks may not have enough datasets to train the

model to predict new pandemics disease in a short period of time.

v. Only supports English input and output

The system only accepts and generates the prediction results in

English. This may limit the use of the system for non-English users

and reduce the usability of the system in multilingual environment.

The non-English users may require external translation tools to use

the system, which may affect the accuracy and user experience.

11

1.6 Proposed Solution

The aim of this project is to develop a disease prediction web application using

machine learning based on user-inputted symptoms to address the problems

outlined in the problem statement. The features of the web application include

entering symptoms, accessing potential disease outcomes, medical advice,

personal profiles and updating personal profiles. The system enables the user to

input their symptoms through two different methods. The first is to select from

a predefined list of 132 symptoms and the second is to enter symptoms in free-

text format and extracted the symptoms using large language model. The user

is free to choose the symptom input option.

A Random Forest model is being trained on selected datasets to predict

potential outcomes. In addition, the user can also track their symptoms over time

by viewing the historical data. By using Large Language Model, the system also

provides actionable information such as self-care tips or general medical advice

for different diseases, enabling users can take appropriate action before seeking

medical attention. By providing the initial assessment, the web application aims

to reduce waiting times and human errors, assist medical staff in prioritizing

cases and provide early diagnosis for patients in rural areas with high rates of

diagnostic delay. The Figure 1.1 shows the system design overview.

Figure 1.1: System Design Overview

12

1.7 Project Approach

This project is carried out in several structured phases to ensure systematic

development process. The Software Development Life Cycle used in this

project is Waterfall Methodology. There are 6 phases in the Waterfall

Methodology. The first phase is project requirements analysis. This phase

involves gathering project requirements by analysing existing similar disease

prediction web applications. The second phase is system design. This phase

involves planning the overall system structure and outlining the data flow of the

project. In addition, the development of machine learning models includes

dataset selection, data preprocessing, training the model, evaluating the model,

and then integrating it with the web application. The fourth phase involves

designing and developing a responsive web application using React for the

frontend and Flask for the backend. The trained machine learning model will be

integrated with the web application to process user inputs and return predicted

results. In the subsequent phase, the system will be tested including

functionality testing, usability testing, user acceptance testing and so on. Figure

1.2 shows the Waterfall Methodology used for this project. The Waterfall is

suitable for progress tracking and deliverables. This helps in estimating the

project timeline and budget well.

Figure 1.2: Waterfall Methodology

13

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

The demand for disease prediction application in healthcare field is increasing,

and the disease prediction web application useful for early diagnose of the

potential diseases. By utilizing the disease prediction system, can reduce the

reliance on the expert analysis and provide advance method to identifying the

disease based on the symptoms. This chapter presented a depth review of related

work to disease prediction using machine learning, comparisons of different

models, comparisons of existing web applications of disease prediction, and get

suitable evaluation metrics for assessing predictive models.

2.2 Research and Comparison Model

Machine learning has been utilized extensively for early diagnosis in healthcare.

This part focuses on some researching and comparing the different models.

2.2.1 Research Models

Sangeetha et al. (2024) proposed a screening system to identify the disease

based on user-inputted symptoms by using 3 models which are Decision Tree,

Random Forest and Naive Bayes. Among these models, the decision tree has

the highest accuracy, which is 97.53%, followed by Random Forest at 95.66%

and Naïve Bayes is 93.75%. Based on the performance, the decision tree

algorithm was chosen to integrate with the user interface in their system.

 In addition, Ansarullah et al. (2022) proposed a risk prediction model

that can initially detect the heart disease by using multiple machine learning

techniques. The features used in this study contain 12 attributes entered by the

user for early prediction of heart disease, such as demographical inputs and

behaviour inputs. There are 5 models used by authors which are K-Nearest

Neighbor, Naïve Bayes, Decision Tree, Random Forest, and Support Vector

Machine. In this paper, the risk models were evaluated by different measures.

Based on various performance metrics, the Random Forest model has the best

14

performance among these models with an accuracy of 84%, a sensitivity of 85%,

a specificity of 83%, an error rate of only 13%, and a precision of 85%.

 Furthermore, George et al. (2024) proposed a system that utilizes

machine learning to provide disease predictions, complemented by chatbot, and

doctor-patient appointment system. In this paper, the authors predicting 4

diseases which are heart disease, kidney disease, brain tumour and breast cancer.

The features used are age, blood pressure, cholesterol level, image of tumour

and mammographic image analysis. The algorithms used in the prediction are

Support Vector Machine (SVM), Random Forest, K-Nearest Neighbor (KNN)

and Convolutional Neural Networks (CNN). For kidney disease and heart

disease diagnosis, the Random Forest performed the best performance with

achieving accuracy rates of 97.25% and 98.53% respectively. In contrast, the

Convolutional Neural Networks (CNN) performed well in brain conditions and

breast conditions with accuracy of 98.17% and 95.13% respectively. This means

that different diseases required tailored algorithm to achieve the high accuracy

in prediction.

 Moreover, Rajora et al. (2021) presented a web-based disease

prediction system by using machine learning. The users can select the symptoms

from the given list for disease diagnosis. The authors also proposed an ensemble

voting algorithm to provide the best disease prediction results. The selected

algorithms include K-Nearest Neighbor (KNN), Naïve Bayes and Random

Forest which combined together as an ensemble approach. As a result, the

Random Forest achieved 93.65% accuracy, Naïve Bayes is 84.02% and KNN is

93.53%. For the ensemble model, it fitted to the best model, which is Random

Forest, 93.65%.

 In addition, Gupta et al. (2024), used machine learning classifiers

including Random Forest, K-Nearest Neighbour, Logistic Regression (LR),

Decision Tree, Multi-Layer Perceptron (MLP), Support Vector Machine and

AdaBoost to find out the best model to implement in real-life. There are 4

diseases including in this disease prediction research, which are asthma,

diabetes, liver disease, and kidney disease. This research paper used 4 different

datasets to predict different disease and observed the performance metrics of

different models. In the experiment results, the Random Forest performed best

15

on each dataset with an average accuracy score of 95.8% for kidney disease,

87.83% for diabetes, 95.83% for asthma disease and 99.68% for liver disease.

Table 2.1: Related Work

Title Author,

year

ML

algorithms

used

Dataset Evaluation

Metrics

Revolutionizing

Healthcare:

Screening

system to

identify

Diseases using

Machine

learning

approach.

Sangeetha.

V et al.

(2024)

Decision

Tree, Naive

Bayes,

Random

Forest

Columbia

website (132

symptoms and

40 diseases)

Accuracy for

DT = 97.53%

Accuracy for

Random

Forest =

95.66%

Accuracy for

Naïve Bayes

= 93.75%

Significance of

Visible Non-

Invasive Risk

Attributes for

the Initial

Prediction of

Heart Disease

Using Different

Machine

Learning

Techniques.

Ansarullah

et al.

(2022)

Decision

Tree, K-

Nearest

Neighbor,

Support

Vector

Machine,

Random

Forest and

Naïve Bayes.

collected from

different

heterogeneous

data sources

of Kashmir

(India)

through

quantitative

data

collection

methods

(5776

records)

Random

Forest -

accuracy of

84%, a

sensitivity of

85%, a

specificity of

83%, an error

rate of only

13%, and a

precision of

85%.

Multiple

Disease

Prediction

Using Machine

George et

al. (2024)

Random

Forest,

Support

Vector

4 different

datasets

(Heart disease

dataset, brain

Random

Forest

achieving

accuracy rates

16

Learning with

Chatbot and

Doctor-Patient

Appointment

System.

Machine

(SVM), K-

Nearest

Neighbor

(KNN) and

Convolutional

Neural

Networks

(CNN)

tumor dataset,

breast cancer

dataset,

Chronic

Kidney

Disease

(CKD)

dataset)

of 97.25%

and 98.53%

respectively.

Convolutional

Neural

Networks

(CNN) in

brain

conditions

and breast

conditions

with accuracy

of 98.17%

and 95.13%

respectively.

Web based

disease

prediction and

recommender

system

Rajora, H

et al.

(2021)

Naïve Bayes,

Random

Forest and K-

Nearest

Neighbor

dataset from

National

Centre of

Disease

Control

(NCDC)

(4921 unique

entries)

Accuracy of

Random

Forest is

93.65%,

Naïve Bayes

is 84.02% and

KNN is

93.53%.

An

Experimental

Analysis of

Multiple

Disease

Prediction

Using Machine

Learning

Algorithms

Gupta et

al. (2024)

Random

Forest,

Logistic

Regression

(LR),

Decision

Tree, Multi-

Layer

Perceptron

4 different

datasets

(Diabetes,

Kidney

Disease, Liver

Disease and

Asthma)

Random

Forest -

accuracy

score of

95.8% for

kidney

disease,

87.83% for

diabetes,

17

(MLP),

AdaBoost,

Support

Vector

Machine and

K-Nearest

Neighbour

95.83% for

asthma

disease and

99.68% for

liver disease.

2.2.2 Compare Existing Models

There are various algorithms have been used to be train, and each of them having

its advantages and limitations. There are 5 Machine Learning models are

commonly used for disease prediction:

2.2.2.1 Decision Tree (DT)

Decision Tree is one of the most commonly used for supervised learning

algorithm, used for both regression and classification tasks (Matzavela and

Alepis, 2021). Moreover, Decision Tree is a tree-like structured classifier that

starts with a single node representing the attribute tests and branch representing

the attribute values and the leaf nodes will represent the possible outcomes

(Kosarkar et al., 2022). Figure 2.1 shows the example of a Decision Tree and

how the DT divide branches and produce possible results.

 The strengths of Decision Tree are easy to use and can be learned

quickly (Blockeel et al., 2023). The training time complexity for Decision Tree

is O(n*log(n)*m). Moreover, it is capable of processing both qualitative and

quantitative data types. However, Decision Tree usually performs worse when

learning from the raw data such as text or sound. This may affect the prediction

process since the features for prediction have to be constructed. Decision Tree

also easily overfitted and sensitive to the small data changes and lead to totally

different trees (Decision Tree Method: Applications, Pros & Cons, Examples,

n.d.).

18

Figure 2.1: Decision Tree Structure Diagram.

2.2.2.2 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a type of supervised machine learning

method commonly applied to classification tasks. (Dey et al., 2018). Vapnik

introduced SVM as a kernel-driven model designed to handle both classification

and regression problems in machine learning. (Cervantes et al., 2020). Kernal

is a function that maps data to a high-dimensional space, enabling SVM to

process non-linearly separable data (Jain, 2024). There have two types of SVM

which are linear SVM and non-linear SVM. Figure 2.2 shows an example of a

non-linear SVM as a kernel output in a 3-dimensional feature space.

 The advantages of SVM are effectiveness in handling high-

dimensional space, therefore making it well-suited for datasets with a wide

range of features. SVM is capable of managing both linear and non-linear

datasets by utilizing kernel functions. According to Gomathy et. al., the

accuracy score of SVM is 96.49% in predicting the diseases from patient

symptoms. However, the computational complexity of training an SVM

typically ranges from O(n²) to O(n³), where n represents the size of the training

dataset. This show that SVM may be inefficient for managing large-scale

datasets since it may require more time for training.

19

Figure 2.2: Support Vector Machine (SVM) Diagram.

2.2.2.3 Random Forest (RF)

Random Forest (RF) is a type of supervised learning algorithm and is an

ensemble classifier that build a group of separate and non-identical decision tree

based on the idea of randomization (Ren et al., 2017). According to Srihith et

al. (2023), Random Forest employs an ensemble approach by generating

numerous decision trees and combine their output to create more reliable and

precise prediction model. They are widely used for regression and classification

task. Figure 2.3 show the example of Random Forest (RF) and explains the

working of the Random Forest (RF) algorithm.

 RF reduces the overfitting relative to use a single decision tree and

provides feature importance score to determine which features are more

impactful (Srihith et al., 2023). Furthermore, RF can handle large numbers of

datasets with noise and high dimensionality and overcome the missing value

imputation (Zhu, 2020). Zhu (2020) also claimed that the weaknesses of RF are

difficult to interpretable result as a single decision tree and difficulty in dealing

with high-cardinality categorical variables. According to Song et al. (2021), the

accuracy of RF is 99.88% in diagnosis pressure ulcer from 19 variables, which

is the best prediction performance compared to Decision Tree, SVM, and Naïve

Bayes.

Hyperplane

20

Figure 2.3: Random Forest (RF) algorithm diagram.

2.2.2.4 Naïve Bayes (NB)

Naïve Bayes is a classification technique that operates under the assumption that

each value is independent of the other values. This means that a particular

feature in a class is not correlated with any other feature (Kosarkar et al., 2022).

It is mainly used in text classification. It computes the likelihood of each class

based on the observed features and selects the highest probability of the class as

the prediction when given new data point (Alahmar and et al., 2023).

 The advantages of NB are ease of use and efficiency. NB can work

well with the high-dimensional data such as text classification without causing

a large computational burden (Beslin Pajila et al., 2023). The limitations of NB

are that the feature independence assumption rarely holds in real world data and

its effects precision. This could produce undesirable results, especially if the

attributes are closely linked or interact with each other in complicated and

intricate ways (Beslin Pajila et al., 2023). For instance, the symptoms for cough

and fever are often correlated in disease prediction.

21

2.2.2.5 K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) is a straightforward and effective algorithm that

classifies the new data points by comparing them to the most similar classes as

known as nearest neighbors (N) (Harish et al., 2021). The new data can be

quickly categorized into appropriate classes when it first appears by using the

KNN technique. KNN also known as a lazy learning algorithm because it stores

the entire training dataset and perform computations at prediction time rather

than learning from it instantly (Sreedevi et al., 2022). Figure 2.4 shows the

example of K-Nearest Neighbors (KNN) algorithm working visualization.

 The strengths of KNN are that it is a simple to implement algorithm for

solving problems and it is very resistant and tolerant to the noise that prevailing

in the training dataset (Bansal et al., 2022). For the KNN weaknesses, Bansal et

al., 2022 stated that KNN determine the appropriate value of K is complex

because it can sometimes dramatically change the results. In addition, KNN

prediction stage is slower for larger dataset, and it requires more storage space

compared to an effective classifier (Taunk et al., 2019).

Figure 2.4: K-Nearest Neighbors (KNN) diagram.

22

2.2.3 Summary of Comparative Models

All of these 5 models are classification, which is suitable for disease predictions.

Table 2.2: Comparison between DT, SVM, RF, KNN, and NB.

 Model

Criteria

Decision

Tree

Support

Vector

Machine

(SVM)

Random

Forest

K-

Nearest

Neighbo

rs

(KNN)

Naïve

Bayes

Best Use

Case

Handles

both

categorica

l and

numerical

data

High-

dimensio

nal data

Robust

classificati

on, feature

importance

Irregular

decision

boundari

es

Text-

based or

independ

ent

features

Interpretabi

lity

High Low Medium Medium Medium

Training

Speed

Fast Slow Moderate Very fast Very fast

Prediction

Speed

Fast Slow Moderate Slow Very fast

Handles

Noisy Data

Moderate High High Low High

Handles

High

Dimensions

Moderate High High Low High

Data Size

Requiremen

t

Small to

medium

Small to

medium

Medium to

large

Small to

medium

Small to

medium

Overfitting

Risk

High Low Low Medium Low

23

Performanc

e in Disease

Prediction

Good for

interpreta

ble tasks,

but may

overfit

High

accuracy

in high-

dimensio

nal data

Robust,

often high

accuracy in

medical

tasks

Good for

simple

datasets,

struggles

with high

dimensio

ns

High

accuracy

According on the comparison table above, the Decision Tree is good for

handling the numerical and categorical data, and its interpretability is high, but

it has high risk of overfit which can lead to incorrect disease prediction results

compared to SVM, RF, and NB. Although SVM can handle high dimension data

well but the interpretability and training speed of it is quite low and may not be

suitable for disease predictions system as the system also required fast

prediction speed. Compared to SVM, the KNN is very fast to trained since it

skips the training phase and can simply stores the data. However, the prediction

time of KNN is slow, the same with SVM, it may decrease the user experience

as the waiting time for results is longer. Naïve Bayes is very fast for the training

and predicting time, and the overfit risk is low. However, the accuracy of Naïve

Bayes may be affected since the independent assumptions is often violated in

medical data. The RT has not the limitations of independent assumptions

constraints and can handle noisy data and high dimensional data well. Although

the prediction speed of it is moderate, but also acceptable in web applications,

and it can simply implement. Overall, the RT shows the best characteristics in

disease predictions.

24

2.3 Compare Existing Web App

There are a number of existing disease prediction web applications that can

identify potential diseases based on user-inputted symptoms. Studying these

similar web applications provide valuable insights of the functionality and

requirements of the disease prediction system, which can help to identify the

gaps and define the strengths and limitations of the existing disease prediction

web applications. This section compares three existing web applications which

are Symptomate, WebMD Symptom Checker, and Your.MD (Healthily).

2.3.1 Symptomate

The Symptomate is an Artificial Intelligence tool for symptom checker

developed by Infermedica in 2012. This symptom checker will analyse the

user’s symptoms, predict the diseases the user may be suffering from and

provide some recommendations to the user for further actions. This system

allows user to type and select the symptoms. The introduction of Symptomate

is accepted with the terms of service and agrees to the privacy policy. The

Symptomate has an interview for users before they enter their symptoms. The

interview questions such as survey respondent, age, gender, and some user

health conditions. Figure 2.5 shows the Symptomate survey respondent’s page

for user to select. The interface of Symptomate is clear and intuitive.

Figure 2.5: Symptomate Survey Respondent’s Page.

25

There are a few statements that need to be answered by the user to gain deeper

insights into the user’s health conditions before starting the interview about the

user’s symptoms. After that, user can start to enter their symptoms. When the

user enters the symptoms, it may display some relevant symptoms for the user

to select. The checklist-based symptom entry system is used to minimize errors

by providing predefined options, making it accessible to users unfamiliar with

medical terminology. The user can add multiple symptoms for more accurate

assessment. Figure 2.6 shows the User Input Symptoms page for user to select

and add symptoms they have. The checklist input function may limit the natural

language understanding. The user cannot describe the symptoms using their

word like a sentence.

Figure 2.6: Symptomate User Input Symptoms Page

In order to further diagnose the disease, the system asks several questions and

symptoms the user may have. Figure 2.7 shows the example of a multi-select

symptoms interview question page. The system allows the user to enter more

than one answer to this question. This helps the user save time by clicking on

multiple answers instead of typing them in one by one themselves.

26

Figure 2.7: Example of a Multi-Select Symptoms Interview Question Page.

After that, the Symptomate system provides the potential diseases that the user

may have. In addition, Symptomate will provide some suggestions for the

potential diseases. If the underlying disease is mild, the system will suggest that

self-care is sufficient. Figure 2.8 shows the example of predicted result for a

mild disease. The system will also provide a variety of possible conditions based

on the symptoms, rather that providing a disease prediction result for just one

disease. The blue ‘Show common care method’ button provides some

information and details about the predicted disease. This provides user with

more information and have better understanding about the potential diseases.

27

Figure 2.8: Example of Predicted Result.

The UI and UX of Symptomate system are simple and clear, allowing users to

easily enter or select the symptoms. According to a study by BMJ Open, the top

3 diagnostic accuracy of Symptomate were 27.5%, which is lower than the

general practitioners (GP)s’ 82.1%. However, the urgency advice safety was

high at 97.8%. Symptomate lacks the flexibility of free text input, which would

better capture a wide range of symptom descriptions.

2.3.2 WebMD Symptom Checker

WebMD Symptom Checker is one of the well-known online web applications

for early diseases diagnosis. It provides a comprehensive interface for users to

select symptoms by body location and input symptoms to obtain the possible

conditions. Same with Symptomate, the WebMD Symptom Checker likewise

prompts the user to provide their age and gender details. Figure 2.9 shows the

example of WebMD Symptom Checker Info Page which requires user to enter

age and sex before starting to enter their symptoms. The interface of WebMD

Symptom Checker is clear but not centred enough to grab the user's attention in

the first place.

28

Figure 2.9: Example of WebMD Symptom Checker Info Page.

In the Input Symptoms page, the user can enter their symptoms and

select the appropriate symptoms from the drop-down list. The drop-down list

will only display the symptoms that are related to the symptoms entered by user.

The user can choose from a wide range of symptoms by entering a keyword

simply. Figure 2.10 shows a drop-down list of symptoms that related to skin.

The user can also tap on body parts to select symptoms by body location. This

is more convincing if the user does not know how to describe the symptoms in

text. The Figure 2.11 shows the WebMD Input Symptom Page with symptoms

selected by body location. This visualization method works well for users who

don't know how to express symptoms, improving accessibility and user

engagement. The selected symptoms will be displayed at the bottom part.

29

Figure 2.10: Example of WebMD Input Symptom Page.

Figure 2.11: Example of WebMD Input Symptom Page for Select Symptoms

by Body Location.

30

After adding all the symptoms, the WebMD Symptom Checker system

starts to analyse and provide the potential conditions that match to the symptoms.

The system provides the potential diseases and ranks them in order of strong

matches up to the fair matches. A strong match indicates that the user may have

a high level of potential diseases, while a fair match is the opposite. The left-

hand side of the web page displays the disease that the user may suffer from,

and the right-hand side shows the user’s symptoms the details. Figure 2.12

shows the example of the conditions page. The WebMD Symptom Checker

allows user to modify their age, gender and symptoms to start over the

prediction process. This provides users with a more flexible method of

continuing to predict diseases, even if they enter incorrect information.

Figure 2.12: Example of the Conditions Page.

The WebMD Symptom Checker display detailed information about

each disease for the user to better understand the disease. Figure 2.13 shows an

example of the Condition Details page, which contain the relevant information

for the disease. Moreover, the system also provides the treatment options for

user to take further action.

31

Figure 2.13: Example of the Conditions Details Page.

WebMD Symptom Checker provide a straightforward and appealing

visual approach. The symptoms input methods of WebMD Symptom Checker

are drop-based on a down list of checklists for user to select the appropriate

symptoms or by clicking on body parts. A study by BMJ Open claimed that the

top 3 suggestion accuracy rate of WebMD Symptom Checker is 35.5%, which

is lower than 82.1% for general practitioners (GPs) also. This indicates that a

moderate level of reliability for WebMD Symptom Checker. The system lacks

a follow-up interview process for refinement of predictions, which may lead to

overly broad results, especially if symptoms overlap.

2.3.3 Your.MD (Healthily)

Your.MD also known as Healthily, is a web-based symptom checker that uses

a chatbot to help users to identify the potential illnesses. The Healthily utilized

AI and chatbot system to analyse the symptoms and provide the user with

guidance to the next steps based on their symptoms. The user of Healthily must

be at least 16 years old and agree to the Privacy Policy before using the system.

Same with the WebMD Symptom Checker and Symptomate, the system

32

requires user to enter their gender and year of birth. Figure 2.14 shows the

Healthily Gender Page, where user to select their gender. The UI of Healthily is

simple and clear.

Figure 2.14: Healthily Gender Page.

Figure 2.15 shows the chatbot page of Healthily, where user can enter

their symptoms in words or sentence. After submitting, the Healthily system

provides the user with relevant symptoms that they may have. The user can

select which symptoms they may have by clicking on the checkbox of the

symptom, and the Healthily also allows user to add additional symptoms later.

Its conversational interface is a major advantage, allowing users to enter

symptoms in natural language, which the system can maps to predefined

symptoms. Figure 2.16 shows the example of Select Symptoms page for the user

to check the symptoms they may have. The symptoms provided in Healthily are

extracted from the words or sentences entered by the user. If none of these

symptoms, the Healthily will ask user to enter more specific symptoms or

reword the symptoms. The system will then provide more options for user to

choose from. The user can select one or more options if the symptoms appeared.

This flexibility caters to users who prefer to describe symptoms in their own

words and increasing inclusivity.

33

Figure 2.15: Healthily Chatbot Page.

Figure 2.16: Healthily Select Symptom Page.

After selecting the relevant symptoms, Healthily also asks follow-up

questions about symptom duration and health context (e.g., history of diabetes)

to refine the prediction by taking time and medical context into account. Figure

2.17 shows symptom checker page that prompting user to indicate the duration

of symptoms. For health background question, the user can select one or more

options. Figure 2.18 shows the Healthily prompting the user to indicate the

health background.

34

Figure 2.17: Healthily Symptom Checker Page prompting user to indicate the

duration of symptoms.

Figure 2.18: Healthily prompting user to indicate the health background.

Furthermore, the Healthily provides some related symptoms that the

user may be experiencing. This can ensure that the more accurate disease

prediction results are provided. However, the process of Healthily is overly

lengthy and the multiple questions stages can be frustrating for users looking for

35

a quick assessment. After answering all the questions, the Healthily generates a

prediction report for user based on the symptoms. Figure 2.19 shows an example

of prediction report page which include the possible causes and the summary of

symptoms. The user can click on the possible cause to access the detail

information about the possible disease. The summary displays the symptoms

user selected by user in the previous questions, and the system provide

suggestions for further action to be taken by the user. User are provided with a

clear and straightforward understanding of the possible causes of the diseases.

Figure 2.19: Healthily Prediction Report Page.

The Healthily provide a conversational chatbot interface that allow

user to enter symptoms with intuitive questions. However, the process of it is

lengthy and overloaded of information. This may not be suitable for users who

want to get a quick assessment for disease prediction. The system also offers

some suggestions to the user after the prediction results are available. A study

by BMJ Open stated that the top 3 suggestion accuracy rate of Your.MD

(Healthily) is 23.5%, which is lower than 82.1% for general practitioners (GPs)

also. This indicates that a moderate level of reliability for Your.MD (Healthily).

36

2.3.4 Summary of Existing Applications

Table 2.3: Comparison between Symptomate, WebMD Symptom Checker,

and Your.MD (Healthily).

Feature Symptomate WebMD Symptom

Checker

Your.MD

(Healthily)

Platform Web, Mobile Web, Mobile Web, Mobile

UI/UX Clear but lengthy

questions set

Interactive body

maps with some

accessibility issues

Conversational

chatbot but

lengthy

User Input

Method

Checklist Body map and

dropdown menu

Chatbot with

free text

Personalization Basic (age,

gender)

Basic (age, gender) Advanced (age,

gender,

lifestyle, risk

factors)

Diagnosis

Output

List of possible

conditions

List of possible

conditions

Suggested

disease

condition with

self-care advice

Accuracy 27.5% (BMJ

Open)

35.5% (BMJ Open)

23.5% (BMJ

Open)

Table 2.2 shows the comparison between Symptomate, WebMD Symptom

Checker, and Your.MD (Healthily). Based on the table above, each of these

three existing web applications has its own advantages and disadvantages. The

usability for Symptomate and Your.MD (Healthily) are clear and easy to use

while WebMD Symptom Checker is more complex with many options. The

WebMD Symptom Checker is engaging but the lengthy processes can affect the

user experience due to the large number of questions that need to be answered.

According to BMJ Open, the accuracy of these applications is quite low, and

this may provide user with some inaccurate results. The diagnosis output of

37

Your.MD (Healthily) is quite good, providing the suggested disease condition

and self-care advice that the user can take some action on after diagnosis.

2.4 Evaluation Metrics

Evaluating metrics is crucial for assessing the effectiveness of machine learning

models, especially in medical diagnostics. The evaluation metrics helps to

determine the usability and reliability of the models. There are a number of

evaluation metrics that can evaluate the effectiveness of machine learning

algorithms, such as sensitivity, accuracy, F1-Score, precision and specificity.

The diagnosis results can be categorized as True Positive (TP), True Negative

(TN), False Positive (FP) and False Negative (FN). TP and TN signify an

accurate model prediction, whereas FP and FN denote an incorrect model

diagnosis.

2.4.1 Accuracy

Accuracy refers to the ration of accurate predictions cases to the overall number

of cases. This evaluation metric is often utilized to access the performance of

machine learning models, especially in tasks of classification and defect

detection (Ashfakul Karim Kausik et al., 2025). High accuracy suggests that the

models is reliable, and the prediction results are more accurate and credible. The

advantages of accuracy are simple and easy to use. Accuracy is reliable for

balanced datasets. However, it can be misleading when applied to the

imbalanced datasets.

The equation of accuracy is expressed as:

𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹

2.4.2 Sensitivity (Recall)

Sensitivity also known as Recall, is measured by the ration of true positive cases

accurately identified. Recall measures the capability of models to identify the

faults in the dataset correctly (Ashfakul Karim Kausik et al., 2025). High

sensitivity denotes that the model able to identify most true cases and reduce the

cases of miss diagnoses because false negatives can lead to serious

38

consequences. It is important to detect the potential faults in the models and

intervene early.

The formula of sensitivity is:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

2.4.3 Specificity

Specificity is measured by the ratio of true negative cases correctly detected.

This metrics reflects the ability of models to identify the true negatives in each

available category. For example, specificity refers to recognizing that the patient

does not have a particular disease. It is important to avoid the unnecessary

treatments in the disease prediction. The specificity can be computed by

dividing number of true negatives by the total of true negative and false positive.

The formula of specificity is:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

2.4.4 Precision

Precision is measured by the ratio of precisely identified positive cases among

the total number of expected positive cases. The precision indicates the

reliability of a positive prediction. This is important when the false positives can

cause high costs such as unnecessary testing. High precision ensures that the

model predicts correctly. The formula of precision is calculated by dividing the

number of true positive by the total of the true positive and false positive.

The formula of precision is:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

2.4.5 F1-Score (F-Measure)

The F1-Score, also known as F-Measure, represents the harmonic average of

precision and sensitivity (recall). It provides an equitable view of the capability

of the model to minimize both false positive and false negative. This is

important to detect as many true cases as possible meanwhile ensuring high

precision. The ranges of F1-Score are between 0 and 1, where 1 indicates the

best sensitivity and precision.

39

The formula of F1-Score is:

𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 ×
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

2.4.6 Summary of Evaluation Metrics

Table 2.4 Comparison of different evaluation metrics.

 Advantages Disadvantages

Accuracy Simple, reliable for balanced

datasets.

Can be misleading in

imbalanced datasets.

Sensitivity

(Recall)

Detect true cases, minimize

the false negatives

May increase false positives

Specificity Reduces false positives, avoid

unnecessary alarm.

May increase false

negatives, miss actual cases.

Precision Reliable positive predictions,

useful when false positive is

costly

May reduce sensitivity, miss

true cases

F1-Score (F-

Measure)

Balances precision and

sensitivity, good for

imbalanced data.

True negatives were not

considered.

Based on the table 2.2, the accuracy is simple and contains strong overall metric

due to the balanced dataset, but it unable to distinguish between false positives

and false negatives, which is critical in healthcare. It is useful for comparing

models but not sufficient as the primary metric. Specificity is important to

prevent unnecessary alert, such as such as false predictions of disease, causing

stress and leading to unnecessary treatment or tests. However, specificity may

increase the false negatives and be more harmful in healthcare. For precision, it

can ensure that the model correctly predicts disease, but prioritizing precision

may lead to reduce in sensitivity, cause more false negatives. In addition, F1-

Score can balance sensitivity and precision, it can ensure the prediction are both

reliable and comprehensive. However, F1-Score is not considered the true

negatives. Sensitivity is the most suitable for the disease prediction. This is

because it can minimize the false negatives such as missed diagnoses. A missed

diagnosis may lead to delay in early treatment with serious consequences.

40

Although sensitivity may increase the false positives, but it is more acceptable

than false negatives, because it is better to incorrectly predict disease than to

miss a diagnosis.

2.5 Dataset Sources

Sangeetha et al., 2024, used the dataset collected from the Columbia website as

the data sources in the project. The dataset included 132 symptoms and 40

diseases. There are several symptoms used to cover 32 diseases in their project.

For the diseases cover in the project included normal fungal infection to typhoid

diseases. They pre-processed the raw data to overcome the problems of

inconsistent data, missing data and noisy of raw data in the dataset. By using the

processed data, the authors trained and tested the models in a ratio of 80 to 20.

 The dataset collected by Ansarullah et al. (2022) for risk modelling

was derived from an innocation non-invasive heart disease dataset containing

5776 entries from various heterogeneous data sources in Kashmir (India). Of

these 5776 records, 47.5% or 2747 had heart disease, and the other 52.5% or

3031 were in good health. The authors performed a class balance assessment

since the heart disease database contain significantly imbalanced data that can

lead to bias in machine learning algorithms.

 In addition, George et al., 2024 used diverse dataset for multiple

disease predictions to exam the accuracy of various algorithms. The authors

used 4 databases to predict the heart disease, which are Cleveland, Hungary,

Switzerland, and Long Beach V. The databases contain 76 attributes, and it

divided into two parts for training and testing datasets. Furthermore, the authors

used dataset brain tumour classification MRI dataset for brain tumour diagnosis.

The brain tumour database contains 2 classes, YES for having the brain tumour,

otherwise is No. The other dataset is UCI Repository for predicting the kidney

disease. There are some diagnostic measurements in the dataset for predicting

the disease.

 The dataset acquired by Rajora et al., 2021 was sourced from National

Centre of Disease Control (NCDC). The dataset demonstrates the symptoms of

41

potential diseases. The dataset includes detailed survey data and the most

frequent symptoms among the patients. There are 4921 unique entries were

extracted from the symptoms in the database. Individual entries may contain

similar disease that have been identified but have different symptoms across

different records for the same disease. Through the refinement of the initial

entries, the dataset was organized into another dataset.

 There are 4 different datasets used by Gupta et al., 2024 to predict 4

different diseases. Firstly, is Asthma dataset which contains a total of 29

columns and 2392 entries. This dataset is used to determine which individuals

are most risky to have asthma disease. It includes features such as diet quality,

smoking and so on. The second dataset is Diabetes dataset which contain 22

columns and 253,680 entries. The dataset includes features such as blood

pressure, cholesterol and so on. The third dataset is liver disease dataset, which

contain 11 characteristic and 30,691 instances. The last dataset is kidney dataset

which contains 54 characteristic and 1659 entries. This dataset can predict the

kidney disease based on the patient’s medical problems. All of these datasets

were collected at Kaggle.

 The Symptom-Disease Prediction Dataset (SDPD) was published by

Jay Tucker in 2024. The dataset contains 4920 instances, 132 symptoms features

and 41 unique diseases. This dataset is contained a variety of data needed for

disease predictions system. The SDPD is a tabular dataset with binary symptoms

features such as 0 or 1 represent the absence or presence of symptoms. The

dataset is suitable for training and accessing the machine learning algorithms.

The instance represents a unique combination of symptoms and the

corresponding disease diagnosis.

42

2.5.1 Summary of Data Source

Table 2.5: Comparison of different data source

 Columb

ia

Dataset

Kashmir

Dataset

Heart

Disease

(CHSL

B)

NCDC

Dataset

s

Kaggl

e

Datas

ets

SDPD

Data

Type

Tabular,

mixed

(numeri

cal,

categori

cal)

Heterogen

eous

(tabular,

text)

Tabular,

mixed

(numeri

cal,

categori

cal)

Tabular,

mixed

(numeri

cal,

categori

cal)

Tabul

ar,

CSV

format

Tabular

, 132

binary

sympto

ms,

categori

cal

target

Size and

Scope

132

sympto

ms

5776

records

76

attribute

s

4921

unique

entries

Varies

4,920

instance

s, 132

sympto

ms

feature

Disease

Coverag

e

40

diseases

heart

disease

only

heart

disease

only

Many 4

diseas

es

41

unique

diseases

Quality High,

clinical

data

Variable,

preprocessi

ng needed

High,

some

duplicat

es

High,

some

biases

High,

some

biases

High,

clean,

balance

d

Availabi

lity

Restricte

d

Likely

restricted

Public Public,

but some

restrictio

ns

Public

Public

43

Most of the data sources are tabular data except for the Kashmir dataset which

is heterogeneous. The heart disease dataset (CHSLB) and Kaggle datasets are

limited to predict a single disease such as heart disease, which may restrict users

form predicting other disease although they are easy to access. However, the

Columbia and NCDC datasets are broad and large-scale data, but they are more

suited to populations health studies and may have limited access and require

permissions. The Kashmir data source is too heterogeneous and region-specific.

This may affect the diagnostic results of users in other regions. In addition, the

Kashmir data source often require pre-processing before use and are of variable

quality. The SDPD is the best suited for the disease prediction because it

supports symptom-disease mapping using binary features, covers 41 diseases,

and requires minimal preprocessing. The size and scope of the SDPD is also

quite large, allowing it to cover more diseases. The quality of it also high and

balance.

2.6 Web Application Framework

The web application frameworks are the resources and tools used by developers

to develop the online software, manage the websites, and so on (Sheldon, 2023).

This goal of this project is to develop a disease prediction web application using

machine learning and therefore it is necessary to select the appropriate and right

tools and technology stack to ensure the reliability and responsiveness of the

system. There are two components need to be considered, which are the backend

and frontend. This section is to evaluate these frameworks and compares the

strengths and weaknesses of each of them.

2.6.1 Backend Framework

Backend is responsible for handle the server-side request. There are two

backend frameworks need to be considered in this part, which are the Flask and

Django.

2.6.1.1 Flask

Flask is a minimalistic, and micro web framework for Python, commonly

utilizing in small to medium-size applications (GeeksforGeeks, 2023). It allows

the developers to select their preferred libraries for additional functionality.

44

Flask is user-friendly because of its simple design and requiring minimal

boilerplate code. Flask also allows easy integration with machine learning

models and therefore suitable for machine learning based application.

Without manual configuration, the scalability of Flask is limited. The

features such as database configuration and authentication are required

additional setup, which can increase the complexity to the system. The

performance of Flask is fast for small to medium-scale applications. The Flask

is suitable for API-driven applications such as machine learning serves that

provide low latency due to its minimal overhead.

Strengths of Flask:

• Simple and flexible. Flask allows developers to customize the

structure of the application to fit their needs and make it easy to

quickly build the APIs and integrate the machine learning models.

• Lightweight and rapid development. Flask can ensure the fast

performance and quick setup due to its small footprint, hence it is

suitable for small and medium-sized projects.

Weakness of Flask:

• Limited scalability. Flask requires numerous efforts to scale the

large applications, which can complicate future scaling of the

application.

• Lacks built-in features. Flask requires manual integration as it lacks

built-in tools for specific functionality. This may slow down the

development of the system.

2.6.1.2 Django

Django is known as the “contained battery” philosophy (GeeksforGeeks, 2020).

This means that Django is suitable for rapid development of web applications

without having to consider about planning the application's framework in

advance. Django offering the built-in functions such as authentication, ORM

and so on, making it suitable for large projects. Djonga has good scalability

45

because it has built-in tools for handling the large-scale applications. The ORM

and middleware of Djanga is important for managing the complex features and

increased traffic.

Strengths of Django:

• Secure and scalable. Django support large-scale applications and it

includes the middleware and authentication such as CSRF

protection for security purpose.

• Comprehensive Features. Django includes a variety of built-in

tools such as authentication, ORM and other to minimize

dependence on external libraries, and support rapid development of

complex functionality.

Weakness of Django:

• Complexity. The structure approach of Django and the learning

curve can be complex and difficult, which can slow down the initial

development process.

• Less flexible. The Django has a very steep learning curve and is

therefore less flexible when it comes to customizing workflows.

2.6.1.3 Summary of Backend Framework

Table 2.6: Comparison between Flask and Django

Features Flask Django

Flexibility High Moderate

Complexity Simple and lightweight Moderate and structure

Scalability Moderate and require

manual setup

High, include built-in tools

for large-scale application

Performance Lightweight and fast Slightly heavier

Suitability Small to medium

application

Medium to large

application

46

Although the Django includes built-in tools, but its complexity is less suitable

for disease prediction system. The Flask is better suited for this project because

it is simpler and more flexible, allowing for a quick setup of machine learning

prediction APIs. In addition, Flask is suitable for small-scale or prototype

applications. Flask also offers the ability to control the flow and design of the

application.

2.6.2 Frontend Framework

The frontend is responsible for user engagement with the system. It should be

responsive and dynamic in order to attract user’s attention and enhance user

experience. There are two fronted frameworks need to be considered in this part,

which are the React.js and Angular.

2.6.2.1 React.js

The React was built by Facebook in 2013 (GeeksforGeeks, 2023). React.js is a

JavaScript library used to designing the user interfaces (UI) for web and mobile

application, especially the single page application (SPAs) and allows developers

to develop reusable UI elements (W3Schools, 2020). Due to the use of JSX and

state management, the learning curve for React is not high. React uses a virtual

DOM to minimize the direct DOM updates and ensure the fast rending of

dynamic content.

Strengths of React:

• Strong community support. The ecosystem of React provides a

wealth of resources and libraries that facilitate the development

process.

• Better performance and interactivity. The virtual DOM and

reactivity of React ensure a fast, responsive user interface that able

to enhance the user’s experience in the application.

Weakness of React:

• Learning curve. The JSX and the state management concepts is

challenging for the developers and potentially slow down the initial

development.

47

• Additional libraries are needed. This is because React requires

additional routing and statement which can add complexity for

small application.

2.6.2.2 Angular

Angular is a well-established JavaScript framework, developed using

TypeScript, which provides a number of built-in tools for routing and form

validation. Angular is commonly used to build robust single-page application

(GeeksforGeeks, 2023). The Angular provides bidirectional data binding, and

dependency injection. Angular requires setting up the modules and services for

building the user interface, which can slow down initial development. Angular

is suitable for large-scale applications. In addition, Angular provides

development tools to handle and develop the complex applications faster.

Strengths of Angular:

• Scalability. The Angular highly scalable, including built-in tools

for large applications.

• Better user experience. The two-way data binding of Angular can

synchronize the inputs and outputs automatically. In addition, the

dependencies between components are managed by an integrated

dependency injection.

Weakness of Angular:

• Learning curve. The learning curve of Angular is steep. The

complexity of Angular is challenging for the beginners and can

delay the initial development.

• Overkill for small-scale applications. Angular is intended for large

projects, where the heavier framework and real-time DOM updates

can impact web application load times and performance.

48

2.6.2.3 Summary of Frontend Framework

Table 2.7: Comparison between React and Angular

Features React Angular

Interactivity High, dynamic UI

improves engagement

High, two-way binding

Complexity Moderate High

Scalability High Very high

Performance High, virtual DOM for

fast updates

Good, real DOM with

change detection

Community

Support

Excellent, large

ecosystem

Strong, smaller ecosystem

Although the Angular is a robust frontend framework, but its complexity and

the steeper learning curve can slow down the development process, particularly

for the small project. The React is more suitable in this project. The React

provides an efficiency and flexible framework. The virtual DOM of React helps

in maintaining the excellent performance of the system. React also allow for

integration with APIs.

2.7 Summary

In summary, this chapter provides a foundation for the development of a disease

prediction web application using machine learning. By reviewing these research

papers, it offers different perspectives on the project. Different models have

different characteristics and unique advantages and disadvantages. For this

project, the most appropriate model is Random Forest. This is because the RT

does not the limitations of independent assumptions constraints and can handle

noisy data and high dimensional data well.

In addition, this chapter also analyses and compares the strengths and

weaknesses of existing web applications. Each of the existing web applications

has its own features and strengths. These strengths of the existing web

application are utilizing as the project requirements of this project. Furthermore,

49

the evaluation metrics are also important to indicate whether the application is

accurate and reliable. In this project, the accuracy, sensitivity (recall), precision

and F1 score is selected as the evaluation metrics.

Moreover, the selected data source for this project is the Symptom-

Disease Prediction Dataset (SDPD). This is because it supports symptom-

disease mapping using binary features, covers 41 diseases, and requires minimal

preprocessing. Compared to different frontend and backend frameworks, the

preferred web application frameworks are Flask and React. Flask is simpler and

more flexible, allowing for quick setup of machine learning prediction APIs.

Besides that, the virtual DOM of React helps keep the system's performance

excellent.

50

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

The Disease Prediction Web Application using Machine Learning is allow users

to input their symptoms and obtain accurate predictions result with a user-

friendly interface. This chapter discusses the SDLC methodology used for this

project and provides a clear work plan. This chapter presents an outline of

system development including integration machine learning model with

application. In addition, the tools and technologies to support the development

process of the system are defined within this chapter. Furthermore, the project

schedule with Work Breakdown Structure (WBS) and Gantt chart to indicates

the project timeline. The WBS and Gantt chart can track the progress and made

adjustments immediately. By outlining the development process, methodology,

and requirements of the project, the project can be clear and well-structured.

3.2 Software Development Life Cycle (SDLC) Methodology

The Software Development Life Cycle Methodology outlines a process of

detailed plan, design, develop and testing by developers. SDLC has 7 stages,

involving detailed planning, analysis, design, implementation, testing,

deployment, maintenance and support (Hossain, 2023). There are many

different SDLC methodologies, each characterized by different strengths and

weaknesses. Choosing a suitable SDLC methodology is important to ensure the

system is developed on time and fulfills the user requirements. This section

analyses and compares three approaches which are Waterfall, Spiral, Iterative

and Agile.

3.2.1 Waterfall

The Waterfall model is a traditional model that provides a sequential and linear

approach (Saravanan et al., 2020). Waterfall is suitable for projects that have

clearly defined requirements and without any changes. The waterfall

methodology requires that each stage be finalized before moving on to the

51

subsequent. The flow of progress in the waterfall method is unidirectional, with

no overlap between each stage. Figure 3.1 shows the Waterfall model process.

Figure 3.1: Waterfall Model

Advantages of Waterfall:

• Simple to manage and predictable. This makes it easy to track the

project progress because it is a one-way model.

• Requirements are well documented and defined. The clear

requirements make the project’s progress smooth and minimize the

changes.

• Clear and structured. The clear structure of Waterfall makes it simple

to manage and predict the next steps in the process.

Disadvantages of Waterfall:

• Rigid and inflexible. It assumes that all requirements are clear and

nothing has changed, so if the changes occur, it takes more time and

money.

• Limited adaptive capacity. Since the testing phase takes place after

the completion of the development phase, this limits the ability to

adapt to changes and causes problems to be detected later.

• Late detection of problems. Dealing with problems after the

development phase is complete can be time-consuming.

52

3.2.2 Spiral

The Spiral model is used for risk management, which combines Iterative

development and Waterfall model (Saravanan et al., 2020). The Spiral is

processed through the repetitive cycles, each cycle includes planning, risk

analysis, development, and evaluation. It allows for repeated refinement through

multiple spirals. Figure 3.2 shows the Spiral model with multiple spirals. Each

spiral can refine the project and addressing the risks early. The Spiral can

identify the potential errors and reduce them in each iteration. This is suitable

for large and complex project, but it is costly and time-consuming because it

requires repetitive construction.

Figure 3.2: Spiral Model

Advantages of Spiral:

• Spiral Model is excellent for risk analysis and early detection of

potential problems. This can reduce the cost of removing defects

after the development process.

• Spiral offer a highly flexible to adjust on requirements or scopes

based on the feedback. Users are allowed to involve in the project by

testing the prototypes and providing feedback in each spiral.

53

Disadvantages of Spiral:

• May lead to scope creep. The flexibility of the spiral model allows

for adjustments to be made in each spiral, but this may expand the

project requirements throughout the project process.

• Complex, costly and time-consuming. The multiple phases make it

difficult to manage and track the project process. The repeated works

can be costly and time-consuming.

3.2.3 Agile

The Agile model combines iterative and incremental methodology that

emphasizes simple, collaboration and flexibility (Hossain, 2023). The Agile

allows systems to be built quickly with the ability to change the requirements at

any stage of the project life cycle. This methodology focuses on user feedback

and the adaptability of making changes to requirements and responding quickly

to the changes. This methodology allows for the addition of features and

functionality to improve the system. There are several different software

development processes in the Agile field, which are Extreme Programming

(XP), Kanban, Crystal, Scrum and other. Figure 3.3 shows the 6 stages of the

Agile model.

Figure 3.3: Agile Model

54

Advantages of Agile:

• High flexibility. Agile flexibility adapts to changing needs and is

user- centred. New features can be added in Agile even late in the

development process.

• High quality and low risk. Agile focuses on frequent testing

techniques to minimize the defects and improve system reliability.

This helps in identifying and resolving the defects early in the project

life cycle.

Disadvantages of Agile:

• Lack of focus on documentation. This can be a challenging task in

Agile, which focuses on software development rather than the

documentation.

• Predictability is limited. This is difficult to predict deadlines for agile

projects because of changing requirements make it difficult to

estimated timelines and costs.

3.2.4 Summary of SDLC Methodology

Table 3.1: Comparison of different SDLC Methodology

 Waterfall Spiral Agile

Process

Structure

Linear, sequential Iterative cycles Iterative sprints

Flexibility Low Moderate to High Very high

User

involvement

Low High, user

feedback on

prototypes

Very high,

continuous

feedback in

sprints

Requirement Defined in early

stage

Throughout the

project period

Throughout the

project period

Phases Sequential phases Iterative cycles

with risk-driven

phases

Iterative sprints

with

55

collaborative

phases

Risk

Management

Poor Excellent

Very good

Testing Testing after

development

process

Continuous testing

throughout the

development

Continuous

testing

throughout

development

Complexity Low High Moderate

 Each of the methodology has its own advantages and disadvantages,

and different project is suitable for different software development methodology.

Waterfall is suitable for projects where the requirements are clearly defined and

unlikely to change. The Waterfall is less flexible, cannot adapt to changes, and

one phase must be completed before progressing to the next. In contrast, the

Spiral model is suitable for high-risk projects because Spiral is excellent in risk

management. However, it is more complex compared to other methodology.

Agile is suitable for projects that required changes throughout the project life

cycle because it is flexible and adaptable. In short, the Agile methodology aligns

with the project that offering high flexibility and collect user feedback for

improvement. Agile allows for quick adaptation to user feedback and the ability

to test the system frequently and reduce risks early. In addition, the Agile

approach ensures rapid development of web applications with different

functionalities. However, the Agile is lack of focus on documentation and

unpredictable. This is difficult to estimate the project deadline. Based on this

comparison, the Waterfall model was selected for this project due to its clear

structure, well-defined requirements, and suitability for academic project

timeline.

3.3 Waterfall Methodology

Software Development Life Cycle (SDLC) methodology provides a structured

framework for managing the development of disease prediction web

applications. In this project, the Waterfall methodology is selected as the SDLC

56

methodology. Waterfall is suitable for projects with the clear requirements and

no changes. The requirements for this project are well defined and less variable.

In addition, Waterfall is suitable for progress tracking and deliverables. This

helps in estimating the project timeline and budget well. Figure 3.4 shows

flowchart of the Waterfall methodology for this project. There are 6 phases in

the Software Development Flowchart which are Requirements Analysis,

System Design, Machine Learning Model development. Web Application

development, Integration of Machine Learning Model with Application, and the

last is System Testing.

Figure 3.4: Waterfall Methodology Flowchart

3.4 Requirements Analysis

The project requirements can be gathered through several ways. In this project,

the requirements were gathered by reviewing existing similar web applications.

Interviews and questionnaires are not required for requirements gathering in this

project. In chapter 2, there are several similar existing disease prediction web

applications have been studied, which are Symptomate, WebMD Symptom

Checker, and Your.MD (Healthily). A common feature of these web

applications is the ability to allow users to enter symptoms via optional options

or types. In this project, the system provides two options for users to enter the

symptoms which are a predefined dropdown list of symptoms or manually enter

57

symptoms via a free-text field. This is a feature that has not yet been

implemented in current disease prediction web applications. Additionally, the

web application can predict the potential disease a user may have and return the

results to the user thought a responsive user interface. The results include the

potential disease and the recommendations further actions to be taken by the

user. Furthermore, the system can store the history of users, such as user inputs,

predicted results, and medical advice for the user. This is another feature that

other web applications have not yet implemented. The non-functional

requirements and functional requirement will be produced at the end of this

phase. The detailed functional and non-functional requirements are discussed

further in Chapter 4.

3.5 System Design

In Waterfall methodology, the system design phase follows the requirements

analysis phase. The system design phase defines the system architecture and the

data flow to ensure that the system is fulfil the functional and non-functional

requirements. It includes the design of user interface, data flows, backed API

architecture and integration with machine learning model. The design also

includes the chosen tools and technology in preparation for the implementation

phase of the project. Figure 3.5 presents the data flow diagram of the project.

The data flow diagram demonstrates the process of processing user symptoms,

generating predicted results, and clearly displaying results to meet program

requirements. This phase provides a clear insight of the development process to

ensure that the performance and usability standards. The deliverable for this

phase is the generation of the system architecture design proposal.

58

Figure 3.5: System Design Diagram

3.6 Implementation Phase

There are 3 steps perform in the Implementation Phase, which are Machine

Learning Model Development, Web Application Development and Integration

of ML Model with Web Application. The deliverables of this phase are the

completion of the machine learning model development, web application

development and the integration of the ML model with web application.

3.6.1 Machine Learning Model Development

The key component of this project is developing the machine learning (ML)

model for the Disease Prediction Web Application. This part outlines the 6

phases ML model development process. These 6 phases include model selection,

dataset selection, data preprocessing, feature selection, model construction and

model evaluation. These phases are important for ensure that the model aligns

with the project requirements and user expectations.

59

Figure 3.6: Model Development Flowchart

3.6.1.1 Model Selection

Model Selection involves selecting the most appropriate ML algorithm for the

classification task of predicting diseases based on symptoms. After reviewing

the relevant literature on different models, 3 ML algorithms which are Decision

Tree, Random Forest, and Support Vector Machine are selected and assessed

based on their performance.

• Decision Tree (DT): The DT is considered because it is

interpretability and provides the explicit decision rules. For

example, if the cough = yes, predict disease X. This helps explain

the prediction results to the user. However, it may overfit the

complex datasets.

• Random Forest (RT): The RT is considered because its robustness

and high accuracy. RT is combined with multiple DT to reduce the

overfit. It also can handle the missing data well.

60

• Support Vector Machine (SVM): The SVM is considered

because its capability to handle high-dimensional data. SVM is

effective in binary classification with clear margins. However, it is

not suitable for large datasets because of the long computation time.

 The selection of these models is based on their complementary

advantages to allow for a comparative evaluation to determine the most

appropriate model for the project.

3.6.1.2 Dataset Selection

The dataset selection phase is to determine the data source for the training and

evaluating the ML models. The selected dataset is the Symptom-Disease

Prediction Dataset (SDPD). This dataset was also identified in Chapter 2, and

the SDPD was the most suitable dataset for this project compared to the different

other datasets. This dataset is available on Mendeley Data. The SDPD dataset

contains 4,920 instances and 132 symptoms feature covering 41 unique diseases.

The structure of the dataset is a table with multiple rows for the patient cases

and multiple columns for the symptoms and disease labels. The symptoms are

binary values, with 1 indicating presence and 0 indicating absence. The dataset

is relevant to this project as it supports a wide range of diseases and can fulfil

the functional requirements of the project.

3.6.1.3 Data Preprocessing

Data preprocessing is an important stage in preparing the SDPD dataset for

model training and testing. This process aims to resolve the quality issues and

convert the raw data into a clean and structured format. There are several steps

in this phase to ensure that the ML model performs well and effectively. These

steps can be implemented by using Scikit-learn and Python libraries.

Steps involved:

• Handling missing data. This helps to impute missing values in the

SDPD dataset and prevent model errors. For binary symptom

features, the missing values are replaced with the most frequently

61

occurring values (mode), as this maintains the distribution of the

dataset.

• Categorical Label Encoding. The SDPD dataset contain binary

symptom features, but the dataset includes the categorical disease

labels such as “Fungal Infection” rather than numerical indexes.

Therefore, coding using Scikit-learn's LabelEncoder is required to

convert the categorical disease labels to integers.

• Duplicate Removal. Duplicate records may introduce bias into the

training process and potentially reduce processing speed,

particularly when handling relatively small datasets. To address

this issue, the dataset underwent duplicate scanning, and all

duplicate rows were removed.

• Data Splitting. By using Scikit-learn, the dataset can divide into

three subsets, which are training set, validation set and testing set.

The dataset can be split into 70-15-15 parts, which indicates that

70% for training, 15% for validating and 15% for testing.

These steps ensure that the data required for model training is clean and

reliable and reduce potential risks such as low model performance due to data

quality issues.

3.6.1.4 Model Building

This phase consists of training selected ML models including support vector

machine, random forest, and decision tree on pre-processed SDPD datasets. By

using Scikit-learn to implement machine learning models and ensure the models

are available for evaluation. Firstly, each model is initialized using the default

parameter such as ‘DecisionTreeClasssifier()’,

‘RandomForestClassifier(n_estimators=100)’ and ‘SVC(probability=True)’.

Furthermore, it is required for hyperparameter tuning. The GridSearchCV or

RandomizedSearchCV are used to fine-tuning the hyperparameters to improved

performance. In addition, the next step is model fitting. The models is trained

by using training set, such as X_train and y_train. For instance, by using the

62

model.fit(X_train, y_train) to train the models. This phase helps to reduce the

risks of overfitting.

3.6.1.5 Model Evaluation

Model evaluation is the step of evaluates the performance of the trained models

on test sets and select the most suitable model for project deployment. For this

disease prediction web application, various evaluation metrics were used to

comprehensively analyse model performance, especially for the classification

task. The key evaluation metrics include sensitivity and accuracy. Sensitivity

can minimize the false negatives results such as missed diagnoses. Accuracy is

frequently used to measure the overall correctness of machine learning models.

The evaluation compares all three models to select the best performer.

3.6.2 Web Applications Development

The Web Applications Development phase aims to building the core

components of the Disease Prediction Web Application using Machine

Learning. This ensures that a functional and user-friendly application is

developed before integrating it with the machine learning model. The

development process includes building the backend using Flask to handle API

requests, creating the frontend with React.js to provide an interactive user

interface, and make sure that the components meet functional and non-

functional requirements. The backend is responsible for handling HTTP

requests, processing user inputs, and preparing the application for ML model

integration. During this phase, the Flask application sets up with the necessary

routes and configurations to support the functionality of the application. In

addition, the frontend is responsible for providing a responsive and user-friendly

interface for users to input symptoms and view prediction results, fulfilling the

functional requirements and a clear output display. During this phase, the

React.js application is set up the necessary components and routes to support

user interactions.

63

3.6.3 Integration of ML Model with Web Application

The integration of the ML model with web application is important in this

project. This ensures that the well-trained model is able to process user input

symptoms and deliver the prediction results through the web application’s

interface. This process combines the ML model development with the web

application development. The integration included loading and saving the ML

model using scikit-learn, creating the API endpoint using Flask to provide

prediction service, and enabling the frontend to send the symptoms and display

the prediction results by using React. This phase can ensure that the ML model

can communicate well with the backend to provide the real-time predictions and

responses based on user input. The integration process ensures that the robust

and efficient system is developed and aligned with the requirements.

Furthermore, the Google Gemini will also integrate with the web application to

generate general medical advice for each potential disease. The completed

system will be produced at the end of the phase.

3.7 System Testing

System testing is the testing phase in the Waterfall methodology. It is important

for the reliability of Disease Prediction Web Application using Machine

Learning. This phase ensures that the integrated system is fulfil the project

requirements. The objective of testing is to validate that the web application

achieves at least 85% sensitivity for disease prediction and able to predict the

diseases accurately.

The system testing also includes testing functional requirements and

non-functional requirements. The testing phase can mitigate the potential risks

such as error predictions by evaluating the performance and reliability of the

system. There are various types of testing can be performed within the project,

including unit testing, integration testing, usability testing and user acceptance

testing. These testing helps ensure that that software system fulfils the specific

requirements and reduce potential risks such as inaccurate prediction of results

and incorrect medical advice. In this phase, the test report and bug list will be

produced at the end.

64

3.8 Tools and Technologies

These tools and technologies are important for development of the Disease

Prediction Web Application to ensure the efficient and effective implementation,

testing, and deployment. This section describes the details of the tools used in

this project. For this project, the selected tools include Flask for the backend,

React for the frontend, Scikit-learn for the model framework, MySQL for the

database, GitHub for task tracking and Postman for testing.

3.8.1 Flask

Flask is selected as the backend framework for this project. Flask is responsible

for handle the server-side request. Flask is characterized by lightweight and

rapid development. Flask can ensure the fast performance and quick setup due

to its small footprint, making it suitable for small to medium-sized projects. In

addition, Flask is simple, allowing developers to customize the structure of the

application to their requirements and to build APIs and integrate machine

learning models easily and quickly.

3.8.2 React

React is selected as the frontend framework for this project. React is responsible

for build the interactive and user-friendly interface. React has strong community

support. The ecosystem of React provides a wealth of resources and libraries

that facilitate the development process. Moreover, the React offer better

performance and interactivity than other frontend frameworks. The virtual

DOM and reactivity of React ensure a fast, responsive user interface that

enhance the user’s experience in the application.

3.8.3 Scikit-learn

Scikit-learn is selected as the machine learning framework for this project.

Scikit-learn is a Python library that provide an efficient and simple API for

traditional machine learning algorithms to predictive data analysis. Due to its

simplicity, comprehensiveness and consistency, it is widely utilizing in the field

of data science and machine learning. Scikit-learn also provides data

65

preprocessing, feature selection, evaluation tools to ensure that the ML model

meet the requirements.

3.8.4 MySQL

In this project, MySQL is chosen as the database management system. The

MySQL is responsible for storing the history of prediction such as user inputs,

prediction results, and medical recommendations. MySQL is widely used for

managing and storing the structured data. The SQL means Structured Query

Language that support data retrieval and manipulation. MySQL is reliable and

can integrates well with Flask, allowing the backend to store user data such as

input symptoms and prediction results.

3.8.5 GitHub

In this project, GitHub is chosen as the version control tool to ensure the

efficient code management. GitHub is a cloud-based platform with a repository

that allow developers to perform version control such as commits, pull requests

and more. This is important for tracking changes to the codebase. GitHub also

allow developers to create different branches to develop new features without

affecting the main codebase. In addition, it allows for backup and restoration of

data, thus preventing data loss.

3.8.6 Postman

In this project, the Postman is chosen as the API testing tool. Postman is

responsible for sending HTTP requests and return the prediction responses to

the users. It is important for testing and managing the application interface.

Postman provides a user-friendly interface and able to perform features without

additional code. Postman can also verify that the actual results match the

expected results to ensure that the accurate results are returned.

3.9 Project Plan

The project plan for the Disease Prediction Web Application using Machine

Learning provides a structured approach to managing the development process,

66

outlining the timeline and deliverables to ensure the well-structured

development process.

3.9.1 Work Breakdown Structure (WBS)

0.0 Disease Prediction Web Application using Machine Learning

1.0 Project Preparation

1.1 Study the interested proposal title

1.2 Discuss with supervisor

1.3 Confirm FYP title

2.0 Project Initiation

2.1 Draft Chapter 1: Introduction

2.1.1 General Introduction

2.1.2 Define Important of study

2.1.3 Define Problem Statements

2.1.4 Define Aim and Objectives

2.1.5 Define Scope and Limitations

2.1.6 Propose Project Solution

3.0 Literature Review

 3.1 Draft Chapter 2: Literature Review

 3.1.1 Research and Compare Models

 3.1.2 Compare Existing Web Apps

 3.1.3 Define Evaluation Metrics

 3.1.4 Identify Dataset Sources

 3.1.5 Compare Web Application Framework

 3.2 Review and Finalize Chapter 1

 3.2.1 Review draft Chapter 1 with supervisor

 3.2.2 Incorporate feedback and finalize

4.0 Methodology and Work Plan

 4.1 Draft Chapter 3: Methodology and Work Plan

 4.1.1 Compare SDLC Methodologies

 4.1.2 Discuss Tools and Technologies

 4.1.3 Create WBS

 4.1.4 Create Gantt Chart

67

 4.2 Review and Finalize Chapter 2

 4.2.1 Review draft Chapter 1 with supervisor

 4.2.2 Incorporate feedback and finalize

5.0 Requirements Analysis

 5.1 Functional Requirements

 5.2 Non-Functional Requirements

 5.3 Develop use case diagram and description

 5.4 Review and Finalize Chapter 3

5.5 Develop Prototype

5.5.1 Develop Low Fidelity Prototype

6.0 System Design

 6.1 Define system architecture and the data flow

7.0 System Development

 7.1 Machine Learning Model development

 7.1.1 Model Selection

 7.1.2 Dataset Selection

 7.1.3 Data preprocessing

 7.1.4 Model Building

 7.1.5 Model Evaluation

 7.2 Web Application Development

 7.2.1 Develop Fronted

 7.2.2 Develop Backend

 7.3 Integration of ML Model with Web App

 7.3.1 Load ML model into Flask

 7.3.2 Integrate the LLM model into existing application

8.0 System Testing

 8.1 Unit Testing

 8.2 Integration Testing

 8.3 User acceptance Testing

 8.4 User Interface Design Feedback

9.0 Closing

 9.1 Finalize project documentation

 9.2 Submit Project

68

3.9.2 Gantt Chart

3.9.2.1 Overview of the Disease Prediction Web Application using

Machine Learning Timeline

Figure 3.7 shows an overview of the project timeline. The Gantt chart below

illustrates the tasks required to complete the project. These tasks include project

preparatory, project initiation, literature review, methodology and work plan,

requirement analysis, system design, system development, system testing, and

closing. The estimated total duration to complete the project is 219 days.

Figure 3.7: Overview of the Project Timeline

3.9.2.2 Project Preparatory and Project Initiation Timelines

Figure 3.8 shows the tasks included in project preparatory and project initiation

timelines. The estimated duration of project preparatory is 21 days and project

initiation are 14 days.

Figure 3.8: Project Preparatory and Project Initiation Timelines

3.9.2.3 Literature Review and Methodology Timelines

Figure 3.9 shows the timelines for the literature review and methodology phases.

These tasks include drafting Chapter 2, reviewing and finalizing Chapter 1,

drafting Chapter 3 under the methodology timelines. The estimated duration for

the literature review is 21 days and for the methodology and work plan is 17

days.

69

Figure 3.9: Literature Review and Methodology Timelines

3.9.2.4 Requirements Analysis and System Design Timelines

Figure 3.10 shows the timelines for requirements analysis and system design

phases. The milestones for requirements analysis phase include identifying the

project requirements and completing the prototype. The milestones for system

design phase include designing the system architecture and identifying the data

flow of the system. The estimated duration for both the requirements analysis

and system design phases is 21 days each.

Figure 3.10: Requirements Analysis and System Design Timelines

3.9.2.5 System Development Timelines

Figure 3.11 shows the system development timelines. The estimated duration

this phase is 80 days. The tasks include machine learning model development,

web application development and integration of machine learning model with

the web application. The milestones for this phase include completing the ML

model and web application development and finalizing the integration.

70

Figure 3.11: System Development Timelines

3.9.2.6 System Testing and Closing Timelines

Figure 3.12 shows the timelines for system testing and closing phases. The

estimated duration for system testing phase is 21 days. The tasks in this phase

include unit testing, integration testing, user acceptance testing and user

interface design feedback. The closing phase is estimated to takes 5 days and

involves completing the project documentation.

Figure 3.12: System Testing and Closing Timelines

71

CHAPTER 4

4 PROJECT SPECIFICATIONS

4.1 Introduction

This chapter details the specifications for Disease Prediction Web Application

using Machine Learning, providing the details information on the system

requirements, design and functionality. This section presents the functional and

non-functional requirements specifications, use case modelling with use case

diagram and use case description, proposed system flow, interface system flow

and low-fidelity prototype. Use case diagram demonstrates the interaction

between user and system. This chapter ensures that the system is aligned with

the goals and objectives of this system.

4.2 Requirements Specification

This section describes the functional and non-functional requirements of the

project to ensure that the system fulfil the user expectations and requirements.

The requirements are gathered from existing similar disease prediction web

applications, which combine the strengths of the existing systems.

4.2.1 Functional Requirements Specification

The functional requirements define the specific functions of the system that

provide to fulfil the user’s needs. The Table 4.1 identifies the functional

requirements for the Disease Prediction Web Application using Machine

Learning

Table 4.1: Functional Requirements

ID Functional Requirement Statements

FR001 The system shall allow user to register an account.

FR002 The system shall allow user to login with the email and

password.

FR003 The system shall allow user to input symptoms using

predefined checklist or free text.

72

FR004 The system shall display the prediction results to user with

explanation.

FR005 The system shall provide medical advice to the user based on

the predicted results.

FR006 The system shall allow user to store the predicted results into

the database.

FR007 The system shall allow user to view the historical symptoms

and prediction results.

FR008 The system shall allow user to view their profile.

FR009 The system shall allow user to update their personal data such

as username, date of birth, gender and password.

4.2.2 Non-functional Requirements Specification

The non-functional requirements specify the performance, usability and

reliability of the system. This can ensure that the system fulfil the quality

standards. The Table 4.2 identifies the non-functional requirements for the

project.

Table 4.2: Non-functional requirements

ID Non-Functional Requirements Statements

NFR001 The system shall provide a responsive and user-friendly

interface and clear navigation.

NFR002 The system shall be secured and able to protect the predicted

results and symptoms entered by the user.

NFR003 The response time of the system should be responsive when

the user submits the symptoms.

NFR004 The system should be available all the time.

NFR005 The system should be compatible with popular browsers

including Google Chrome and Microsoft Edge.

73

4.3 Use Case Modelling

The use case modelling describes the interaction between the user and the

system. This clearly illustrates the uses of web applications. This section

includes use case diagram and use case descriptions.

4.3.1 Use Case Diagram

The Figure 4.1 shows the use case diagram for disease prediction web

application using machine learning system.

Figure 4.1: Use case diagram

74

4.3.2 Use Case Description

4.3.2.1 Login account

Table 4.3: Use case description of Login Account

Use Case Name: Login account

ID:

UC001

Importance Level:

High

Primary Actor: User

Use Case Type: Details, Essential

Stakeholders and Interests:

User – wants to login to the account to access the web application by using

email and password.

Brief Description: This use case describes how a user login to the account

to access features of the web application.

Trigger: The user wants to access the disease prediction web application.

Relationships:

 Association : User

 Include : -

 Extend : Register account

 Generalization: -

Normal Flow of Events:

1. The system displays 2 options for using the system. Perform 1.1 or

1.2.

1.1 If the store owner selects the “Login” option, the flow no.2

continues.

1.2 If the store owner selects the “Register” option, the flow ends.

2. The system displays the login screen.

3. The user enters the email and password.

4. The system checks and validates the credentials. Perform 4.1 or 4.2.

4.1 If the email and password are valid, flow no.5 continues.

4.2 If the email and password are invalid, the system will indicate that

the login was unsuccessful, the flow no.1 continues.

5. The user successfully logged into the web application and can access

the functions in the system.

75

Sub-flows: -

Alternate/Exceptional Flows:

1a. If the user selects “Register,” the system executes the Register Account

use case.

4.3.2.2 Register account

Table 4.4: Use case description of Register account

Use Case Name: Register account

ID:

UC002

Importance Level:

High

Primary Actor: User

Use Case Type: Details, Essential

Stakeholders and Interests:

User – wants to register an account to access the features of disease

prediction web application.

Brief Description: This use case describes how a user can register an

account to gain access to the web application.

Trigger: The user wants to become a user.

Relationships:

 Association : User

 Include : -

 Extend : -

 Generalization: -

Normal Flow of Events:

1. The system displays 2 options for using the system. Perform 1.1 or

1.2.

1.1 If the user selects the “Register” option, the flow no.2 continues.

1.2 If the user selects the “Login” option, the flow ends.

2. The system displays the registration form.

3. The user logs in with username and password.

4. The system validates the information provided. Perform 4.1 or 4.2.

4.1 If the information is valid, flow no.5 continues.

4.2 If the information is invalid, flow no.6 continues.

76

5. The system indicates successful registration.

6. The system indicates unsuccessful registration.

Sub-flows:

Alternate/Exceptional Flows:

1a. If the user selects “Login,” the system proceeds to the Login use case.

4.3.2.3 Input Symptoms

Table 4.5: Use case description of Input Symptoms

Use Case Name: Input Symptoms

ID:

UC003

Importance Level:

High

Primary Actor: User Use Case Type: Details, Essential

Stakeholders and Interests: User – wants to input symptoms via the

checklist.

Brief Description: This use case describes how a user enters the symptoms

into the system for prediction of diseases using a dropdown menu or free

text.

Trigger: The user wants to input their symptoms to predict potential

diseases.

Relationships:

 Association : User

 Include : -

 Extend : View Predicted Results

 Generalization: -

Normal Flow of Events:

1. The system displays two input options which are dropdown checklist

by listing 132 symptoms and a free text input box. Perform 2.1 or 2.2

2.1. If the user selects input symptoms by using dropdown menu, the

flow no.3 continues.

2.2 If the user selects input symptoms via free text, the flow no.4

continues.

77

2. The user selects one or more symptoms by checking the corresponding

boxes.

3. The user enters the symptoms in the text input box.

4. The system displays a preview or list of the selected symptoms to the

user.

5. The user clicks on the “Predict” button to submit the symptoms for

prediction.

6. The system validates that at least one symptom is selected.

Sub-flows: -

Alternate/Exceptional Flows:

6a. If the user clicks “Predict” without selecting or entering at least one

symptom in the checklist or free text input box, the system displays “Please

select at least one symptom to proceed.” message.

6b. If the input is valid, the system executes the “View Prediction Results”

use case.

4.3.2.4 View Predicted Results

Table 4.6: Use case description of View Predicted Results

Use Case Name: View Predicted Results

ID:

UC004

Importance Level:

High

Primary Actor: User

Use Case Type: Details, Essential

Stakeholders and Interests:

User – wants to view the predicted results based on the input symptoms.

Brief Description:

This use case describes how a user views the predicted results after

inputting symptoms into the system.

Trigger: The user wants to view the predicted results after completing the

“Input Symptoms” use case.

78

Relationships:

 Association : User

 Include : -

 Extend : View Medical Advice

 Generalization: -

Normal Flow of Events:

1. The system processes the input symptoms using the ML model.

2. The system displays prediction results.

3. The user views the prediction results on screen.

4. The system displays 2 buttons for back and viewing medical advice.

Sub-flows: -

Alternate/Exceptional Flows:

2a. The system displays “Unable to process prediction. Please try again later.”

message if the prediction fails due to server or model issues.

3a. The system displays “No specific condition matched. Please refine your

input.” message if the result is not found.

4.3.2.5 View Medical Advice

Table 4.7: Use case description of View Medical Results

Use Case Name: View Medical Advice

ID:

UC005

Importance Level:

High

Primary Actor: User

Use Case Type: Details, Essential

Stakeholders and Interests:

User – wants to view the medical advice related to the predicted diseases

for further action.

Brief Description: This use case describes how a user views medical advice

after receiving the disease prediction results.

79

Trigger: The user wants to seek medical advice after receiving the disease

prediction results.

Relationships:

 Association : User

 Include : -

 Extend : -

 Generalization: -

Normal Flow of Events:

1. The system displays the “View Advice” button.

2. The user clicks on “View Advice” button.

3. The system displays medical advice for the user related to predicted

diseases.

4. The system displays 2 buttons for back and storing the prediction

results and medical advice.

Sub-flows: -

Alternate/Exceptional Flows:

3a. The system display “No advice available for this condition at this time.”

message if there is no advice is available for the prediction.

4.3.2.6 Store Predicted Results

Table 4.8: Use case description of Store Predicted Results

Use Case Name: Store Predicted Results

ID:

UC006

Importance Level:

High

Primary Actor: User

Use Case Type: Details, Essential

Stakeholders and Interests: User – wants to store the prediction result for

future reference

80

Brief Description: This use case describes how a user stores the prediction

results into the system.

Trigger: The user wants to store the input symptoms, prediction results

and medical advice into database.

Relationships:

 Association : User

 Include : -

 Extend : -

 Generalization: -

Normal Flow of Events:

1. The user clicks on the “Store Results” button in the view medical

advice page.

2. The system stores the input symptoms, prediction results and medical

advice to the database.

3. The system displays successful messages when the data is successful

store in the database.

Sub-flows: -

Alternate/Exceptional Flows:

3a. The system displays the error message “Fails to save result. Please try

again” if the storage data failure occurs.

4.3.2.7 View Historical Results

Table 4.9： Use case description of View Historical Results

Use Case Name: View Historical Results ID:

UC007

Importance Level:

High

81

Primary Actor: User

Use Case Type: Details, Essential

Stakeholders and Interests: User – wants to view the past prediction results

to track the symptoms over time.

Brief Description: This use case describes how a user views their past

disease prediction results to monitor the trends.

Trigger: The user wants to view the historical information by clicking the

“View History” button.

Relationships:

 Association : User

 Include : -

 Extend : -

 Generalization: -

Normal Flow of Events:

1. The user selects the “My History” option in the home page.

2. The system retrieves the past prediction results of users from the

database.

3. The system displays a list of the past prediction results including

symptoms input.

4. The user selects the specific result to view.

5. The system displays detailed prediction results of the selected result.

Sub-flows:

Alternate/Exceptional Flows:

1a. If the user is not yet logged in, the system prompts the user to log in.

2a. The system displays “No prediction history found” message if the record

is not found.

82

4.3.2.8 View Profile

Table 4.10: Use case description of View Profile

Use Case Name: View Profile

ID:

UC008

Importance Level:

High

Primary Actor: User

Use Case Type: Details, Essential

Stakeholders and Interests:

User – wants to view their personal data.

Brief Description: This use case describes how a user views their personal

data.

Trigger: The user wants to view the profile.

Relationships:

 Association : User

 Include : -

 Extend : Update Profile

 Generalization: -

Normal Flow of Events:

1. The system displays the “My Profile” button in the header in Home

Page.

2. The user clicks on “My Profile” button.

3. The system displays the user's personal information, such as e-mail

address, date of birth and gender, on the profile page. Gender is empty

by default unless the user wants to update it.

4. The system provides a link for the user to change their password.

5. The user enters the current password, new password and confirmation

password.

6. The system checks and validates of password. Perform 6.1 or 6.2.

6.1 If the passwords are valid, flow no.7 continues.

6.2 If the passwords are invalid, the system will indicate that the

changes were unsuccessful, the flow no.4 continues.

7. The user successfully changes their password.

83

Sub-flows: -

Alternate/Exceptional Flows:

4.3.2.9 Update Profile

Table 4.11: Use case description of Update Profile

Use Case Name: Update Profile

ID:

UC009

Importance Level:

High

Primary Actor: User

Use Case Type: Details, Essential

Stakeholders and Interests:

User – wants to update their personal data.

Brief Description: This use case describes how a user updates their

personal data.

Trigger: The user wants to update the profile.

Relationships:

 Association : User

 Include : -

 Extend : -

 Generalization: -

Normal Flow of Events:

1. The system displays the “Update Profile” button in the header in

Profile Page.

2. The user clicks on “Update Profile” button to edit their personal data.

3. The system displays update forms for user including username, date

of birth and gender.

4. The user enters the new personal information.

5. The system checks and validates the information. Perform 5.1 or 5.2.

84

5.1 If the data are valid, flow no.6 continues.

5.2 If the data are invalid, the system will indicate that the update was

unsuccessful, the flow no.1 continues.

6. The user successfully updates their profile.

Sub-flows: -

Alternate/Exceptional Flows:

4.4 System Flow Diagram

The Figure 4.2 shows the system flow diagram for the disease prediction web

application using machine learning system.

85

Figure 4.2: System Flow Diagram

86

4.5 Interface Flow Diagram

The Figure 4.3 shows the interface flow diagram of Disease Prediction Web

Application using Machine Learning.

Figure 4.3: Interface Flow Diagram

4.6 Low Fidelity Prototype

4.6.1 Welcome Page

The welcome page is the first page of Disease Prediction Web Application using

Machine Learning. Welcome page includes login and register buttons for user

to access the web application.

87

Figure 4.4: Welcome Page

4.6.2 Login Page

The login page allows user to input their email address and password.

Figure 4.5: Login Page

88

4.6.3 Sign Up Page

The sign up (register) page allows users to create a new account.

Figure 4.6: Sign Up Page

4.6.4 Home Page

The Home Page allows users to access to view the history, profile and displays

the username in the header. The Home Page also allows users to choose the

input methods to predict the potential diseases. The Home Page briefly describes

about how the web application works.

89

Figure 4.7: Home Page

4.6.5 Select Input Method Page

The Select Input Method Page allows users to choose the input methods to

predict the potential diseases.

Figure 4.8: Select Input Method Page

90

4.6.6 Dropdown List Input Symptoms Page

The Dropdown List Input Symptoms Page allows user to search and select the

relevant symptoms they may have, and the “Add” button add the symptoms to

the “Selected Symptoms”. For the “Selected Symptoms”, user also allowed to

delete the symptoms. If a complete symptom is entered and click the “Prediction”

button, the system starts the prediction.

Figure 4.9: Dropdown List Input Symptoms Page

4.6.7 Free Text Input Symptoms Page

The Free Text Input Symptoms Page allows user to enter the relevant symptoms

they may have, and the “Add” button add the symptoms, the system will display

the “Matched Symptoms”. For the “Matched Symptoms”, user also allowed to

91

delete the symptoms. If a complete symptom is entered and click the “Prediction”

button, the system starts the prediction.

Figure 4.10: Free Text Input Symptoms Page

92

4.6.8 Predicted Results Page

The Predicted Results page shows potential diseases that match the user's

symptoms. The right side shows the symptoms that the user entered into the

system.

Figure 4.11: Predicted Results Page

4.6.9 View Medical Advice Page

This page is for user to view the medical advice based on predicted results.

93

Figure 4.12: View Medical Advice Page

4.6.10 View Historical Results Page

This page is for user to view their historical results in the system.

Figure 4.13: View Historical Results Page

94

4.6.11 Profile Page

The profile page allows users to view their personal information on the profile

page. Gender is empty by default unless the user wants to update it. Users can

change their password by following the link.

Figure 4.14: Profile Page

4.6.12 Update Profile Page

This page allows users to update their personal information such as username,

date of birth, and gender.

95

Figure 4.15: Update Profile Page

4.6.13 Change Password Page

This page allows user to change their password.

Figure 4.16: Change Password Page

96

4.7 Preliminary Results

This section is to present the preliminary results obtained during the early

implementation and testing phases of the Random Forest model building. These

results validate the feasibility of the proposed system design. This section

focuses on the evaluate the capabilities of the Random Forest model, functional

requirements of dropdown list input system and free-text input system.

4.7.1 Model Performance

The Random Forest model was developed and trained on the Symptom-Disease

Prediction Dataset (SDPD) dataset, which includes 132 symptoms and cover 41

diseases with a total of 4920 instances. The dataset is split into two subsets

which are training, validation testing sets in a ratio of 80-20, resulting in 3936

training samples and 984 testing samples. This model was trained with 100 trees

(n_estimators=100) and 42 random states for reproducibility. The

n_estimators=100 is the number of decision trees built, and each tree is trained

on a random subset of the features and data. Prediction is combined with

majority voting to improve the accuracy and reduce the overfitting. The

random_state =42 parameter is used to assign a seed to the random number

generator, ensuring that the train-test split, as well as the tree construction are

the same each time the model is trained, thus making the results are reproducible.

The model was evaluated using Accuracy, sensitivity (recall), and F1-Score.

The overall metrics in this example are not accurate and are for demonstration

purposes only. The Figure 4.12 shows the preliminary Random Forest model

performance metrics. The Figure 4.13 shows the sample of Pre-Disease

performance metrics.

Figure 4.17: Preliminary Model Performance Metrics

97

Figure 4.18: Sample of Per-Disease Performance Metrics

4.7.2 Dropdown List Input

One of the functional requirements of the project is the system allow users to

input their symptoms by selecting the symptoms from the predefined list. This

method presents the user with the complete list of 132 symptoms in the dataset

and allows the user to select symptoms by typing the exact names. Figure 4.14

shows the sample of the dropdown list input and the prediction outputs. The

output may not be accurate and was improved in the next chapter.

Figure 4.19: Sample Dropdown List Input and Prediction Results

4.7.3 Free-Text Input

One of the functional requirements of the project is the system allow users to

input their symptoms by using free text input method. By using Google Gemini

to extract symptoms, this approach effectively handles the spelling errors and

text issues. The free text input method maps the user input to the 132 symptoms

in the dataset through the synonym dictionary. Figure 4.15 shows the sample of

98

free-text input and prediction output. The output may not be accurate and was

improved in next chapter.

Figure 4.20: Sample of Free-Text Input and Prediction Output

99

CHAPTER 5

5 SYSTEM DESIGN

5.1 Introduction

This chapter demonstrates the system design for the Disease Prediction Web

Application. The system design encompasses the system architecture, data

model design, database design, entity relationship diagram (ERD), user

interface design and prompt design. This can ensure that the final

implementation is both efficient and user-friendly. Moreover, the last section

presents a high-fidelity prototype of the user interface as a reference for the

interface design of the system.

5.2 System Architecture Design

The system architecture defines the overall structure of the web application. The

proposed disease prediction web application adopts a three-tier architecture,

comprising the frontend, backend, and database, with the machine learning

model and large language model (Google Gemini) integrated into the backend.

The Figure 5.1 shows the three-tier architecture of this project. The Figure 5.2

shows the System Architecture Design to clarify the behavioural patterns and

operational structure of the system.

Figure 5.1: Three-tier Architecture Diagram

100

Figure 5.2: System Architecture Design

The system employs a client-server architecture based on modular

design to ensure maintainability and scalability while enabling the system to

handle diverse request type efficiently. This architecture is divided into three

main tiers, including Presentation Tier, Application Tier, and Data Tier. This

layered approach achieves separation of concern, enabling each component to

be developed, tested, and extended independently. This architecture is designed

to efficiently process user request, analyse symptoms through machine learning

model, deliver predictive results in real time, and utilize large language models

to extract possible symptoms from users' free-text inputs while provide general

medical advice.

 The presentation tier serves as the user interface and user experience

(UI/UX). It enables users to register, login, input symptoms, view prediction

results, check general medical advice, and review their history. The system

using React to build dynamic and responsive frontend, utilises external CSS for

styling and supports RESTful API calls. React was chosen for its efficient

handling of dynamic updates, delivering a smooth user experience.

 For the application tier, the backend is implemented using Flask. As s

lightweight Python framework, Flask serves as the middle tier between the

frontend and the data tier. It handles user request, manages user session

authentication, validates user input, and communicates with the database. This

tier communication with the frontend by exposing RESTful API endpoints such

as /predict, /user. Both machine learning model and large language model are

101

integrated into this tier. The machine learning model is developed using scikit-

learn and is responsible for processing the input symptoms and generate

predictions by comparing them against patterns learned from training data. The

large language model is using Google Gemini API to extract free-text symptoms

inputs and generate general medical advice based on different diseases and

return it as a JSON response. The backend ensures timely return of predictions

results and supplemented by relevant medical advice.

 The data tier is used to manage the persistent storage of user data. This

tier is implemented by using MySQL, which stores user credentials and

information, symptom and disease records, prediction history, and general

medical advice. The database ensures consistency, integrity and security of

stored information as well as efficiently managing queries and updates to

support real-time interaction with the application.

 This architecture is scalable as improvements on one layer can be

implemented independently without affecting the others. Furthermore, the

modularity of the system enables the system to seamless integration of

additional features such as advanced medical knowledge bases for generating

medical recommendations.

5.3 Data Model Design

This section outlines the database design for the Disease Prediction Web

Application using Machine Learning. The database is designed to efficiently

store and manage the application data, ensuring quick retrieval and secure

storage. The design includes the conceptual data model including entities and

relationships and its physical implementation in MySQL. MySQL was selected

as the relational database management system due to its robustness, high

performance, and widespread use.

5.3.1 Entity Relationship Diagram (ERD)

The ERD visually represents the relationship between entities, as shown in

Figure 5.3.

102

Figure 5.3: Entity Relationship Diagram (ERD)

5.3.2 Data Dictionary

The following data dictionary provides a detailed description of each table,

including attributes, data types, and constraints.

Table 1: users

Column Name Data Type Description Constraints

user_id INT Unique identifier

for each user

Primary Key,

Auto increment

username VARCHAR (191) Login name of

user

Not Null

email VARCHAR (191) Email address of

user

Unique, Not Null

password_hash VARCHAR (255) Hashed password

for secure login

Not Null

dob DATE Date of birth of

user

Optional

gender VARCHAR (10) Gender of user Optional

103

created_at TIMESTAMP Account creation

timestamp

Default:

CURRENT_

TIMESTAMP

Table 5.1: users Table Data Dictionary

Table 2: symptoms

Column Name Data Type Description Constraints

symptom_id INT Unique identifier

for symptom

Primary Key,

Auto Increment

symptom_name VARCHAR (191) Symptom name Unique, Not Null

Table 5.2: symptoms Table Data Dictionary

Table 3: diseases

Column Name Data Type Description Constraints

disease_id INT Unique identifier

for disease

Primary Key,

Auto Increment

disease_name VARCHAR (191) Disease name Unique, Not Null

Table 5.3: diseases Table Data Dictionary

Table 4: prediction_history

Column Name Data Type Description Constraints

history_id INT Unique identifier for

prediction session

Primary Key,

Auto Increment

user_id INT User who made the

prediction

Foreign Key

(users – user_id)

prediction_date TIMESTAMP Date and time of

prediction

Default:

CURRENT_

TIMESTAMP

Table 5.4: prediction_history Table Data Dictionary

104

Table 5: medical_advice

Column Name Data Type Description Constraints

advice_id INT Unique identifier for

advice record

Primary Key, Auto

Increment

history_id INT Related prediction

session

Foreign Key

(prediction_history –

history_id), ON

DELETE CASCASE

disease_id INT Related disease Foreign Key (disease

– disease_id)

advice_text TEXT General medical

advice gets from

LLM

Not Null

unique_history_

disease

constraint Ensures only one

advice per (history,

disease) pair

Unique

Table 5.5: medical_advice Table Data Dictionary

Table 6: predicted_symptom (junction table)

Column Name Data Type Description Constraints

history_id INT Prediction session

ID

Foreign Key

(prediction_history –

history_id)

symptom_id INT Symptom included

in this prediction

session

Foreign Key

(symptoms –

symptom_id)

Primary Key (history_id,

symptom_id)

Composite primary

key

Table 5.6: predicted_symptom junction table Data Dictionary

105

Table 7: predicted_disease (junction table)

Column Name Data Type Description Constraints

history_id INT Prediction session

ID

Foreign Key

(prediction_history –

history_id)

disease_id INT Disease predicted Foreign Key

(diseases –

disease_id)

rank_index INT Rank of prediction Default 0

Primary Key (history_id,

disease_id)

Composite primary

key

Table 5.7: predicted_disease junction table Data Dictionary

5.4 User Interface Design

The user interface (UI) of the disease prediction web application using machine

learning prioritizes on simplicity, ease of use, and accessibility during

development, ensuring that users with varying levels of technical expertise can

effectively interact with the system. The UI design is focussed on creating an

intuitive interface that enables users to input symptoms, view disease prediction

results, and achieve seamless interaction with the system. The frontend is

implemented using React, leveraging component-based design to promote

modularity and reusability while maintaining consistency across different pages

of the application.

5.4.1 Welcome Page

Upon launching the web application, users are greeted with a welcome interface,

featuring login and registration button to facilitate secure access to the system.

The header simultaneously displays the system logo, login portal and register

portal to users.

106

Figure 5.4: Actual Welcome Page

5.4.2 Login Page

The Login page allows users to access to the system. Once authenticated, the

user is directed to the Home Page, providing access to the core features such as

symptom input and so on.

Figure 5.5: Actual Login Page

5.4.3 Sign Up Page

The Sign Up Page enables users to create account and access the system securely.

This page is designed with minimalistic form structures with clear field labels,

and real-time validation feedback to reduce user input errors.

107

Figure 5.6: Actual Sign Up Page

5.4.4 Home Page

The Home Page provides an overview of the application. It includes a brief

description of the disease prediction system. A “Get Started” button to navigate

to the prediction input form. Navigation bar with Home, History, Profile,

Username and Logout button.

Figure 5.7: Actual Home Page

5.4.5 Select Input Method Page

The symptom input interface forms a key component of the system, allowing

users to enter their health-related symptoms. To enhance usability, the page

supports multiple input methods, including dropdown list and free-text entry.

108

Figure 5.8: Actual Select Input Method Page

5.4.6 Dropdown List Input Symptoms Page

The Dropdown List Input Symptoms Page including dropdown lists, searchable

fields, and checkbox selections, ensuring that users can effectively identify their

symptoms. Users can see the selected symptoms before making predictions.

Figure 5.9: Actual Dropdown List Input Symptoms Page

109

5.4.7 Free Text Input Symptoms Page

The Free Text Input Symptoms Page allows users to enter free-text input

symptoms, enabling greater flexibility in symptom submission. This design is

intended to make the application more user-friendly, especially for the users

who may not be familiar with the medical terminology or the exact symptom

names used in the database.

Figure 5.10: Actual Free Text Input Symptoms Page

5.4.8 Predicted Results Page

After submitting the input, the system generates prediction results and displays

them on the results interface. This page highlights the predicted diseases in clear

and concise format and shows the symptoms of users next to the potential

diseases.

Figure 5.11: Actual Predicted Results Page

110

5.4.9 View Medical Advice Page

The View Medical Advice Page provides tailored description, lifestyle tips,

prevention tips, and guidance on when to seek treatment for each potential

disease. This can assist users in understanding potential next steps.

Figure 5.12: Actual View Medical Advice Page

111

5.4.10 History Page

The users can view records of the past prediction by navigating to the History

Page. This feature displays previously entered symptoms, corresponding

predictions results, and timestamps. Users may also delete the history records.

Figure 5.13: Actual History Page

5.4.11 Profile Page

The profile page allows users to view their personal details such as email address,

date of birth and gender. The page also features an “Update Profile” button that

directs users to the update profile page.

Figure 5.14: Actual Profile Page

112

5.4.12 Update Profile Page

The update profile page allows users to update personal information or change

account credentials.

Figure 5.15: Actual Update Profile Page

5.4.13 Change Password Page

This page allows users to change their password.

Figure 5.16: Actual Change Password Page

113

5.5 Prompt Design Study

The aim of this study is match to objective 3 of this project, which is to design

and test different prompts for large language model (Google Gemini),

evaluating their effectiveness in advice generation and validate the outputs

against trusted medical sources. This study is to evaluate how different prompt

designs influence the accuracy and reliability of automatically generated general

medical advice and to validate the output results against trusted medical sources

such as WHO, CDC and other.

5.5.1 Prompt Styles

There are three different prompt styles were designed and tested:

1. Zero-shot Prompt

2. Role-based Prompt

3. Step by step reasoning Prompt

5.5.1.1 Zero-shot Prompting

The zero-shot prompting are the straightforward and specific requests that

clearly guide the model what to do or answer without the need for context and

roles. This type of prompt is suitable for simple tasks where the user has a clear

understanding of the output (Gadesha, 2025). It generates responses solely using

the internal knowledge base of the model. The more precise the instructions, the

greater the likelihood of achieving the desired outcome. It focuses on core action,

making it an ideal choice for simple tasks such as generation or summarization

(Jaiman, 2024). For example, a direct instruction prompt could be “Give general

medical advice for a patient with diabetes.” The strengths of this type of prompt

are easy to design, enable to produces quick and concise responses. The

weakness of it is the outputs may be incomplete, ambiguous or overly general

since no additional guidance is given.

5.5.1.2 Role-based Prompting

A role-based prompt instructs the model to assume a specific professional or

authoritative role before generating the response (GeeksforGeeks, 2025). This

approach can influence the tone, styles and content of AI, making the output

114

more pertinent, expert, and context aware. This facilitates the customization of

responses to simulate specific viewpoint, ensuring greater contextually relevant

and consistent. For example, the role-based prompt could be “You are a health

assistant. Provide general advice for a patient with diabetes based on clinical

guidelines.” This approach often produces more concise, structured,

professional and authoritative outputs that align more closely with guideline-

based practice. However, this type of prompt does not guarantee the factual

correctness, the accuracy still depends on the model’s training data.

5.5.1.3 Chain-of-Thought (CoT) Prompting

The Chain-of-Though (CoT) prompting is a prompt engineering technique

designed to guide the Large Language Models (LLMs) to generate explicit

reasoning steps before arriving at a final answer. According to Gadesha,

Kavlakoglu and Winland, this technique significantly enhances the quality of

LLM outputs, particularly for the complex tasks involving multi-step reasoning.

This does not provide the direct command but instead guides the model to “think

out loud” by breaking down the problem into smaller logical steps (Gadesha,

Kavlakoglu and Winland, 2025). For example, the chain-of-though prompting

could be “Explain reasoning step by step about how a doctor would recommend

on lifestyle advice for a patient with diabetes and then provide the final advice.”

This approach enhances the completeness by making the model is less prone to

skip the key steps. However, CoT prompts may generate the verbose and less

concise outputs. The reasoning steps it generates may not always reflect the

actual medical decision-making process.

5.5.2 Prompt Testing

The prompt testing was conducted using Google Gemini, where three different

prompt styles (Zere-shot, Role-based, and Chain-of-Thought) were applied to

identical medical queries. The generated outputs were collected and evaluated

against the trusted medical sources. The evaluation was carried out using four

criteria, which are accuracy, clarity, completeness, and consistence with

established medical knowledge. To ensure consistency and comparability, all

115

generated response were produced using Google Gemini 2.5 Flash model and

limited to a maximum of 100 words.

5.5.2.1 Prompt Testing on Diabetes

The prompt test is focused on the diabetes disease. There are three different

prompting styles were tested to generate the general medical advice for a patient

with diabetes.

5.5.2.1.1 Zero-shot Prompting

Q: Give general medical advice for a patient with diabetes, not exceeding 100

words.

A: Managing diabetes effectively is key to a healthy life. Regularly monitor

your blood sugar levels as advised by your doctor. Follow a balanced diet rich

in whole grains, lean proteins, and vegetables, while limiting sugary drinks and

processed foods. Incorporate regular physical activity into your routine, such as

walking or swimming. Take your medications as prescribed and attend all

scheduled medical appointments. Stay hydrated and manage stress. If you notice

unusual symptoms, contact your healthcare provider immediately.

Analysis of Zero-shot prompt

This output is aligned with the Cleveland Clinic (Cleveland Clinic, 2023) and

National Library of Medicine (Reynolds and Mitri, 2024) guidelines, which

recommend regular blood sugar monitoring, balanced diet and limiting

processed foods and sugary drinks. It also consistent with Mayo Clinic advice

on physical activities and stress management (Mayo Clinic Staff, 2025). The

response also includes a red-flag warning such as “contact healthcare provider

if unusual symptoms”, which is supported by NHS guidelines (NHS Choices,

2020). Overall, the answer provided is accurate and comprehensive. However,

it does not mention a specific exercise target such as 150 minutes per week,

making it slightly less precise.

116

5.5.2.1.2 Role-based Prompting

Q: You are a health assistant. Provide general advice for a patient with diabetes

based on clinical guidelines, not exceeding 100 words.

A: For diabetes management, prioritize a balanced diet rich in whole grains,

fruits, and vegetables while limiting sugary foods and saturated fats. Engage in

regular physical activity, aiming for at least 150 minutes of moderate exercise

weekly. Monitor blood glucose levels as advised by your doctor and take

medications as prescribed. Stay hydrated, manage stress, and get adequate sleep.

Regular check-ups are crucial for monitoring complications. Always consult

your healthcare provider for personalized advice.

Analysis of Role-based Prompt

This response aligns closely with the guidelines from Medline Plus

(MedlinePlus, 2019) and Mayo Clinic (Mayo Clinic, 2024), which recommend

a healthy, balanced diets and engaging in at least 150 minutes of moderate

exercise per week. It also incorporates monitoring the blood sugar levels,

hydration and managing stress, also reflecting Mayo Clinic advice. The advice

of “regular check-ups” is consistent with World Health Organization (WHO,

2024) guidelines for long-term monitoring. Overall, this output is accurate and

reliable, meets guideline requirements, and more precise than the Zero-shot

response.

5.5.2.1.3 Chain-of-Thought (CoT) Prompting

Q: Explain reasoning step by step about how a doctor would recommend on

lifestyle advice for a patient with diabetes and then provide the final advice, not

exceeding 100 words.

A: A doctor's recommendation for a patient with diabetes involves a multi-

faceted approach.

1. Assessment: The doctor first assesses the patient's current lifestyle,

including diet, physical activity level, smoking habits, alcohol

117

consumption, and stress levels. They also consider the patient's age,

weight, and any coexisting medical conditions.

2. Education: The doctor educates the patient on the importance of

managing blood sugar levels and the long-term health risks of

uncontrolled diabetes.

3. Personalization: The doctor then tailors the advice to the patient's

specific needs and preferences. For example, a busy professional might

receive advice on meal prep, while a less active person might get

guidance on incorporating short walks into their daily routine.

4. Goal Setting: The doctor works with the patient to set realistic and

achievable goals, such as losing a specific amount of weight or aiming

for a certain number of steps per day.

5. Follow-up: The doctor schedules follow-up appointments to monitor

progress, address challenges, and make adjustments to the plan as

needed.

Final Advice: Manage diabetes through a balanced diet of whole foods, regular

exercise (aim for at least 150 minutes of moderate activity weekly), and weight

management. Monitor blood sugar, take medications as prescribed, and reduce

stress. Limit processed foods, sugary drinks, and alcohol, and avoid smoking.

Analysis of CoT Prompt

This answer provides achieves transparent reasoning by simulating a doctor’s

decision-making process. The final advice matches Mayo Clinic (Mayo clinic,

2025) guidelines, including the weekly 150 minutes exercise target, dietary

control, and stress management. It also includes red-flag symptoms for urgent

care, consistent with NHS guidance. While the content is accurate and

comprehensive, including reasoning steps make it more verbose, which slightly

reduces clarity for patient-facing advice. Additionally, compared to zero-shot

and role-based responses, this response takes longer to generate.

118

5.5.2.1.4 Summary of Diabetes Results

Table 5.8: Diabetes Results on Prompt Testing

Prompt Style Zero-shot Role-based Chain-of-

Thought

Accuracy Accurate, but

missed specific

exercise target

Accurate and

aligns with

guidelines

Accurate and

guideline-

consistent

Clarity Clear and easy to

understand
Very clear and

concise

Less clear due to

added reasoning

steps

Completeness Mostly

complete, but

lacking in detail

Comprehensive,

covers all key

aspects

Comprehensive,

includes reasoning

and final advice

Consistency Consistent with

trusted sources

Strongly

consistent with

trusted sources

Consistent, but

reasoning makes it

less concise

Response

Time

Fast response,

very quick

generation

Slightly slower, as

role framing adds

context

Slowest, as

reasoning steps

make the response

longer

All three outputs cover the essential high-level point. Role-based and Chain-of-

Thought provide slightly more clearer targets. Responses generated by each

prompt style are validated against authoritative recommendations on balanced

diet, regular physical activity, blood glucose monitoring and follow-up,

medication adherence, and when to seek medical care. These guidelines align

with WHO, CDC, Mayo Clinic and NHS guidelines. Role-based prompting

generates concise, guideline-aligned advice, including explicit weekly exercise

targets of approximately 150 minutes. Chain-of-Thought prompting provided

richer reasoning and personalized content but are longer in length. Zero-shot

generation provides acceptable high-level advice. Overall, the Role-based

prompting proves most effective at generating concise, guideline-consistent

advice for diabetes management.

119

5.5.2.2 Prompt Testing on Hypertension

The prompt test is focussed on the hypertension disease. There are three

different prompting styles to generate the general medical advice for a patient

with hypertension.

5.5.2.2.1 Zero-shot Prompting

Q: Give general medical advice for a patient with hypertension, not exceeding

100 words.

A: Managing hypertension, or high blood pressure, is crucial for your health. A

low-sodium diet is key; avoid processed foods and added salt. Incorporate

regular aerobic exercise, like brisk walking, for at least 30 minutes most days of

the week. Maintain a healthy weight, as even a small reduction can significantly

lower blood pressure. Adhere strictly to your medication schedule as prescribed

by your doctor and attend all follow-up appointments. Limit alcohol

consumption and quit smoking. Monitor your blood pressure at home and report

any concerning readings to your healthcare provider.

Analysis of Zero-shot Prompt

This response covers key advice consistent with the WHO (World Health

Organization, 2023) guidance, including healthy diet, reduced salt, exercise at

least 30 minutes most days, medication adherence, and stress management. For

the limited alcohol consumption and quit smoking are also aligns with Hello

Doktor (2017) health and wellness website. It also incorporates monitoring

blood pressure, reflecting to Centers for Disease Control and Prevention | CDC

advice (CDC, 2024). However, it does not specify quantitative targets for salt

reduction, which are detailed in WHO (World Health Organization, 2025)

guidelines such as salt <5 g per day.

5.5.2.2.2 Role-based Prompting

Q: You are a health assistant. Provide general advice for a patient with

hypertension based on clinical guidelines, not exceeding 100 words.

120

A: For managing hypertension, focus on a healthy lifestyle. Adopt a low-sodium

diet rich in fruits, vegetables, and whole grains, and limit processed foods.

Engage in regular physical activity, aiming for at least 150 minutes of moderate

exercise per week. Maintain a healthy weight, limit alcohol intake, and quit

smoking. Monitor your blood pressure regularly and take all prescribed

medications as directed. Consult your healthcare provider for personalized

guidance and treatment plans.

Analysis of Role-based Prompt

The Role-based output is highly guideline-oriented. It explicitly heart-healthy

dietary principles and specifies a weekly activity target (≥150 minutes), includes

medication adherence, and advises regular blood-pressure monitoring and

urgent care for severe symptoms. This matches WHO (World Health

Organization, 2021) recommendations and is especially useful for clear patient

instructions because of its specificity and brevity. Role-based prompting

consistently generates answers that comply with guidelines and well-suited for

integration into patient educational material.

5.5.2.2.3 Chain-of-Thought (CoT) Prompting

Q: Explain reasoning step by step about how a doctor would recommend on

lifestyle advice for a patient with hypertension and then provide the final advice,

not exceeding 100 words.

A: A doctor's recommendation for hypertension management involves a

thorough, personalized approach.

Reasoning Steps

1. Diagnosis & Risk Assessment: The doctor first confirms the diagnosis

of hypertension through multiple blood pressure (BP) readings. They

assess the patient's overall cardiovascular risk, considering factors like

age, family history, and other conditions such as diabetes or high

cholesterol. This determines the urgency and intensity of lifestyle

changes.

121

2. Educate & Motivate: The doctor explains to the patient what

hypertension is, why it's a "silent killer" with often no symptoms, and

how lifestyle changes can directly lower BP and reduce the risk of

serious complications like stroke or heart attack. They emphasize that

these changes are often the first line of treatment.

3. Tailor the Plan: The doctor creates a personalized plan based on the

patient's current habits. For example, they might recommend the DASH

diet for someone with high sodium intake or specific physical activities

for a sedentary patient. The goals are made realistic and achievable to

ensure long-term adherence.

4. Monitor & Adjust: The doctor schedules follow-up appointments to

track the patient's BP, discuss progress, and address any challenges.

They adjust the plan, which may include adding medication if lifestyle

changes alone are not sufficient to reach target BP goals.

Final Advice

Adopt a DASH-style diet rich in fruits, vegetables, and low-fat dairy, while

reducing sodium intake. Engage in regular aerobic exercise, aiming for 150

minutes weekly. Maintain a healthy weight, limit alcohol, and quit smoking.

These changes significantly lower blood pressure and reduce the risk of heart

disease and stroke.

Analysis of CoT Prompt

The CoT response includes step-by-step clinical recommendations, followed by

a final advice block that follow guidelines from Medline Plus (Berman, 2022),

Mayo Clinic (Mayo clinic, 2025) and the Hello Doktor (2017). These include

the DASH diet, 150 minutes of exercise per week, limited alcohol and stop

smoking. The CoT format enhances interpretability and shows the clinical logic

behind recommendations, which is valuable for auditing review. However, the

additional reasoning text reduces the conciseness of information delivery,

making it less suitable for direct patient use and may need to be trimmed if the

output is shown to patients.

122

5.5.2.2.4 Summary of Hypertension Results

Table 5.9: Hypertension Results on Prompt Testing

Prompt Style Zero-shot Role-based Chain-of-Thought

Accuracy Accurate,

advice matches

activity targets

Highly accurate,

explicitly

guideline-aligned

Accurate, includes

DASH and exercise

recommendations

Clarity Clear and easy

to understand
Very clear and

structured

Less clear due to

lengthy reasoning

steps

Completeness Complete,

covers diet,

exercise,

medication and

lifestyle

Comprehensive,

covers key

recommendations

Complete, includes

reasoning and final

advice

Consistency Consistent

with trusted

sources

Consistent with

trusted sources

Consistent, but

verbose compared

to guideline

wording

Response

Time

Fast, almost

immediate

response

Slightly slower

due to role framing

adds context

Slowest, as

reasoning steps

extends generation

time

Same as summary of Diabetes results, all three outputs cover the essential high-

level point. Role-based and Chain-of-Thought provide slightly more clearer

targets. Responses generated by each prompt style are validated against

authoritative recommendations on balanced diet, regular physical activity, blood

pressure monitoring and follow-up, medication adherence, and when to seek

medical care. These guidelines align with WHO, CDC, Mayo Clinic and NHS

guidelines. Chain-of-Thought prompting provided richer reasoning and

personalized content but are longer in length. Zero-shot generation provides

acceptable high-level advice. Overall, the Role-based prompting proves most

123

effective at generating concise, guideline-consistent advice for hypertension

management.

5.5.3 Comparison and Discussion

A comparative analysis of three prompting styles, which are Zero-shot, Role-

based, and Chain-of-Thought for both diabetes and hypertension revealed

significant clear differences in accuracy, clarity, completeness, consistency and

response efficiency.

5.5.3.1 Zero-shot Prompting

Zero-shot prompts generated reasonably accurate and clear suggestions in both

scenarios. However, such suggestions often lack completeness, frequently

omitting specific exercise goals or guideline-based recommendations. The

primary advantage of this prompt lies in its ability to generate responses almost

instantly, but at the cost of sacrificing depth.

5.5.3.2 Role-based Prompting

Role-based prompts consistently deliver the most reliable and guideline-

compliant responses. By positioning the model as a “health assistant,” its

recommendations become more structured, aligned with patient needs, and

consistent with the trust authoritative medical institutions such as the WHO or

CDC. This approach strikes a balance between accuracy, clarity, and

completeness while maintaining reasonable response times.

5.5.3.3 Chain-of-Thought (CoT) Prompting

Cot prompted responses are comprehensive and contextually rich, revealing the

reasoning behind medical advice to enhance transparency. However, this

advantage comes at the cost of reduced clarity due to verbosity and logical

complexity and slower response times. While the advice is accurate and

complete, the length reasoning process may be difficult for patients seeking

quick, actionable guidance to digest.

124

These results indicate that Role-based prompting strategies represent the most

effective approach for generating general medical advice using large language

models. This strategy strikes a balance between accuracy, clarity, completeness,

and efficiency, making it suitable for real-world health consultation applications.

While CoT prompts hold value in enhancing transparency and achieving high-

level reasoning, but it more suitable for backend verification on professional

user scenarios rather than direct patient communication. Zero-shot prompting

styles offer speed advantages but lack the necessary reliability and specific

guidance.

5.5.4 Summary

This short study evaluated three prompting styles, which are Zero-shot, Role-

based, and Chain-of-Thought for generate medical advice for diabetes and

hypertension using large language models (Google Gemini). The outputs were

compared against trusted medical resources based on 5 metrics including

accuracy, clarity, completeness, consistency, and response efficiency.

 The results showed that Role-based prompting produced the most well-

balanced and guideline-consistent outputs with accuracy, clarity, and

completeness as well as maintaining reasonable response time. Zero-shot

prompting is fast and straightforward, but lacking in depth and completeness,

hence comparatively less reliable. Chain-of-Thought prompting produces

comprehensive and transparent reasoning steps, but its length expression lowers

clarity and increased response time, potentially limiting its suitability for

patient-facing contexts.

 Overall, role-based prompting strategies represent the most effective

approach for generating accurate and accessible health advice. This method

ensures precision and consistency with clinical guidelines while providing clear

and concise guidelines for patient use. These findings confirm that well-

designed prompts are crucial for optimizing the usability of large language

models in medical applications, aligning with the project goal of designing and

testing effective prompting strategies.

125

CHAPTER 6

6 SYSTEM IMPLEMENTATION

6.1 Introduction

This chapter details the implementation of the Disease Prediction Web

Application using Machine Learning, outlining the development process for the

machine learning model development, frontend development, backend

development, large language model integration and database configuration. The

system was implemented using a React frontend, a Flask backend, a MySQL

relational database, and a scikit-learn machine learning model.

6.2 Machine Learning Model Development

The Machine Learning Model was implemented using scikit-learn and trained

on the Symptom-Disease Prediction Dataset (SDPD) published by Jay Tucker

in 2024. The scikit-learn library offers a wide range of classifications algorithms.

The development process includes dataset preprocessing, model training and

evaluation. There are three models were selected for comparison, with the

highest-performing model ultimately integrated into the web application.

6.2.1 Data Preprocessing

The dataset contains symptom-disease mappings. Each record includes a set of

symptoms as input features and the corresponding disease as the target label.

The dataset used in this project is structured in a binary format, where each

symptom is represented by 0 or 1. 0 indicates absence, while 1 indicates

presence. The data preprocessing steps were designed to handle missing value,

categorical label encoding for the target, remove duplicates data, and split the

dataset to training set, validation set and testing set.

6.2.1.1 Handling Missing Value

Missing or incomplete data may degrade model performance and introduce bias.

Therefore, rows containing missing values (NaN) will be removed. The dataset

has completed missing value checks, since no missing values were detected, no

126

imputation or deletion operations are required. This ensures the integrity of the

dataset while preserving its original distribution. Figure 6.2 shows a code

snippet for handling missing value, where missing values are treated as zero.

Figure 6.1: Code Snippet for Handling Missing Value

6.2.1.2 Categorical Label Encoding

The target variable (prognosis) in the dataset consists of disease names, which

are categorical labels such as Diabetes or Fungal Infection. Since most machine

learning algorithms cannot directly process string labels, scikit-learn internally

converts these disease names into numerical representations during model

training. This process ensures classification models can effectively recognize

and distinguish between different disease categories while preserving the

original dataset structure.

6.2.1.3 Duplicate Removal

Duplicate records may introduce bias into the training process and potentially

reduce processing speed, particularly when handling relatively small datasets.

To address this issue, the dataset underwent duplicate scanning, and all

duplicate rows were removed. This ensures each observation contributes equally

to the training process, preventing overfitting to repeated samples. Figure 6.1

shows the code snippet of remove duplicate rows in dataset.

Figure 6.2: Code Snippet for Remove Duplicate Rows in Dataset

6.2.1.4 Dataset Splitting

After data cleaning, the dataset was divided into three subsets, which are

training set, validation set and testing set. Following the standard machine

learning practice, the splitting ratio was set to 70% for training, 15% for testing

and 15% for validation. To ensure the robustness of the evaluation, at least one

sample from each disease category is randomly selected for inclusion in both

127

test and validation sets. The remaining data was allocated proportionally to

maintain the target distribution across all data splits. Figure 6.3 shows the code

snippet for data splitting. The three subsets will be saved in the project folder,

which are Training.csv, Testing.csv, and Validation.csv. All the subsets are in

CSV format and contain symptom features along with their corresponding target

labels.

Figure 6.3: Code Snippet for Data Splitting

6.2.2 Model Training

Three models were selected for experimentation based on their suitability for

classification tasks, which are Random Forest, Decision Tree and Support

Vector Machine. The model training process involved training three machine

learning models to select the best-performing model for the disease prediction

task. Figure 6.4 shows the default version of three machine learning models

architecture.

Figure 6.4: Model Architecture

6.2.3 Model Optimization

The goal of model optimization is to determine the optimal combination of

hyperparameters that enhance model performance. This can prevent issues such

as overfitting or underfitting, improved accuracy, and better generalization. The

128

hyperparameter tuning was conducted on three selected algorithms. The tuning

process employed a manual grid search methos, systematically evaluating

candidate parameter values on the validation dataset. Model performance was

assessed using accuracy, precision, recall and F1 score.

1. Random Forest Classifier: The default RandomForestClassifier() uses

100 trees (n_estimators=100) with no depth restriction

(max_depth=None). While this offers flexibility, it may lead to

unnecessary complexity.

Tuning Parameters:

• max_depth: [5, 9, 10, 15],

• n_estimators: [50, 100]

2. Decision Tree Classifier: By default, DecisionTreeClassifier() grows

decision tress until all leaf nodes are pure classes.

Tuning Parameters:

• criterion: ['gini', 'entropy'],

• max_depth: [None, 5, 10]

3. Support Vector Machine (SVM): The default SVC() uses a radial basis

function (RBF) kernel with C=1.0 and gammar=’scale’. This baseline

model may fail to capture complex patterns in high-dimensional data.

Tuning Parameters:

• C: [0.1, 1, 10],

• gamma: ['scale', 0.01, 0.001],

• kernel: ['rbf']

Each model was evaluated on the validation set using multiple performance

metrics, including performance metrics, including accuracy, precision, recall,

F1-score. The hyperparameters yielding the highest validation accuracy were

ultimately selected for retraining on the full training set and test with testing set.

Figure 6.5 shows the hyperparameter tuning for three models.

129

Figure 6.5: Hyperparameter Tuning for three models

After evaluation on the validation set, the optimal hyperparameter for each

model were determined as follows:

• Random Forest: n_estimators = 100, max_depth = 9

• Decision Tree: criterion = gini, max_depth = None

• Support Vector Machine: C = 10, gamma = 0.001, kernel =rbf

These optimizes configurations outperformed the baseline model on the

validation set and were therefore selected for subsequent testing and final

evaluation.

6.2.3.1 Model Optimization Results

This section presents the model optimization results. Figure 6.6 to 6.10 present

detailed results of hyperparameter tuning on the validation dataset. These

figures illustrate the performance of each candidate configuration across

multiple evaluation metrics, including accuracy, precision, recall and F1-score.

Random Forest

The optimization results indicate that certain configurations of Random Forest

achieved perfect validation score, with the accuracy, precision, recall and F1-

scores all reaching 1.000. While such results appear outstanding at first glance

but raise concerns of overfitting. Overfitting occurs when the model memorizes

130

the training and validation sets rather than learning generalized patterns, thereby

weakening its ability to handle unseen data. The configuration with

n_estimators = 50/100 and max_depth = 15 consistently produced perfect scores,

which were treated as overfit models. In contrast, more balanced configurations

are n_estimators = 100 and max_depth = 9, which contribute the accuracy of

97.83%. The Figure 6.6 shows the Random Forest optimization results. Figure

6.7 shows the learning curve of the Random Forest, indicate that the max_depth

with 9 has the highest accuracy without overfitting.

Figure 6.6: Random Forest Optimization Results

Figure 6.7: Learning Curve of Random Forest

Support Vector Machine

Same as Random Forest, the optimization results indicate that certain

configurations achieved perfect validation score, with the accuracy, precision,

recall and F1-scores all reaching 1.000. Overfitting may occur also in the

Support Vector Machine. The configuration with C = 1 or C =10 and gamma

set to ‘scale’ also result in perfect validation performance, suggesting potential

overfitting. In contrast, more balanced configurations are 'C': 10, and 'gamma':

131

0.001, which contribute the accuracy of 93.4%. The Figure 6.8 shows the

Support Vector Machine optimization results. Figure 6.9 shows the heatmap

diagram of SVM to compare different values of C and gamma to visualize the

accuracy of grid.

Figure 6.8: Support Vector Machine Optimization Results

Figure 6.9: Heatmap diagram of SVM

Decision Tree

The tuning results of the Decision Tree classifier indicate that clear differences

in performance based on the selected criterion and maximum depth. When

trained with the default configuration (criterion= ‘gini’, max_depth=None), the

model achieved the highest validation performance with an accuracy of 71.74%.

This demonstrates that an unrestricted depth enables the decision tree to capture

the underlying patterns within the dataset effectively. In contrast, limiting the

maximum depth to 5 or 10 cause a sharp decline in performance. Such results

indicate that underfitting and the model is overly simplified and fails to

adequately capture the complexity of the data. The Figure 6.10 shows the

Decision Tree optimization results.

132

Figure 6.10: Decision Tree Optimization Results

6.2.4 Model Evaluation

The optimized models were subsequently tested on the independent testing set

to evaluate the model’s performance. For each algorithm, predictions were

compared with against actual labels, and metrics such as accuracy, precision,

recall and F1-score were calculated. Evaluation is crucial for determining

whether a model can effectively generalize its training results to unseen data,

rather than merely performing well on the training and validation set.

 The optimal hyperparameter were determined for all three models, the

models were retained and evaluated on the independent testing dataset. This

dataset was not used during the training or validation process, ensuring that the

evaluation results accurately reflect the generalization capabilities of each

model. The results of the evaluation are presented in the Figure 6.11. The Figure

6.12 shows the bar chart of the model performance on testing set.

Figure 6.11: Testing set results of 3 models

133

Figure 6.12: Model Performance on Test Set

The results show that the Random Forest (RF) model outperformed the other

two algorithms across all evaluation metrics. With an accuracy rate of 97.8%

and balanced performance in precision, recall and F1-score, the Random Forest

demonstrated robust predictive capability and stability, making it the most

suitable for integrate in the system. In contrast, the Support Vector Machine

(SVM) also delivered robust performance with an accuracy rate of 95.7%.

Although slightly inferior to Random Forest across all metrics, the SVM still

demonstrated high predictive capability and strong generalization ability on

unseen data. The Decision Tree (DT) achieved only 65.2% accuracy on the

testing set, showing a significant gap compared to both Random Forest and

Support Vector Machine.

Comparative analysis indicates that while both Random Forest and

Support Vector Machine achieved highly reliable results, RF consistently

outperformed SVM across all metrics. Although DT serve as useful baseline

models, the predictive capabilities remain insufficient. Consequently, the RF

model was ultimately selected as the ensemble prediction model for the disease

prediction web application, as it achieves the optimal balance between accuracy,

precision, recall and F1 score. The RF model is saved as

"random_forest_model.pkl" in the backend.

134

To ensure the correctness and reliability of the Random Forest model,

a practical validation approach was conducted in which predefined sets of

symptoms were submitted to the trained model. The top 3 predicted diseases

were then compared against conditions identified from trusted medical

resources such as Mayo Clinic, MedlinePlus and WHO. This approach aims to

validate whether predictions generated by machine learning models were

medically validity, although the system is not intended to replace professional

diagnosis.

The correctness of predictions was classified into three categories:

• Exact Match: The expected disease was among the system’s top 3

predictions.

• Partial Match: The predicted disease was medically related but not the

primary expected disease.

• No Match: The predicted diseases did not align with any expected

conditions.

Table 6.1: Prediction Verification Results

Symptom Set Expected

Disease(s)

System Predictions

(Top 3)

Match

Type

High fever, Chills,

Sweating

Malaria (Centres

for Disease

Control)

Malaria, Typhoid,

Heart Attack

Exact

Polyuria, Excessive

hunger, Weight loss

Diabetes (Mayo

Clinic)

Diabetes, Jaundice,

Hyperthyroidism

Exact

Chest pain,

Breathlessness,

Sweating,

Palpitations

Heart Attack

(Mayo Clinic)

Hypoglycemia,

Heart Attack,

Malaria

Partial

Red spots over body,

Itching, Pus filled

pimples

Chickenpox

(Cleveland

Clinic)

Chickenpox, Fungal

Infection, Drug

Reaction

Exact

Headache, Nausea,

Visual disturbances

Migraine (Mayo

Clinic)

Migraine, Vertigo,

Malaria

Exact

135

The Table 6.1 shows the prediction verification results. Most cases

showed exact or partial alignment with existing medical resources, indicating

that the trained RF model generated predictions generally align with established

medical knowledge. The prediction verification experiment assessed the

correctness of the system’s outputs by comparing them with expected diagnoses

derived from trusted medical references (Centers for Disease Control and

Prevention, 2023; Mayo Clinic, 2023; Cleveland Clinic, 2023). However,

prediction accuracy decreased in cases involving ambiguous or overlapping

symptoms, reflecting the inherent challenges of different diagnosis. This

validation ensure that the system can effectively generate reasonable predictions,

and it should be strictly used as a decision-making support tool and cannot

replace professional medical assessments.

6.3 Web Application Development

The disease prediction system is implemented as a web-based application offers

users with a convenient, user-friendly, and highly interactive interface. Its

developed using a three-tier architecture design that include the frontend,

backend, and database. This structure ensures the modularity, scalability and

effective separation of responsibilities, facilitating maintenance and future

extension.

6.3.1 Frontend Development

The system frontend is developed using React, with a component-based

structure that is particularly well-suited for dynamic, interactive web application.

The component-based structure ensures the consistency across the pages with

reusable elements such as Header, Footer and so on. The core function of the

frontend is to serve as the user interface, enabling seamless interaction with the

system.

6.3.1.1 User Authentication and JWT Handling

Authentication is a critical component of the web application to ensure that only

authorized users can access their history and predictions. The application

utilizes JSON Web Tokens (JWT) for secure session management. Upon user

136

login, the backend issues a JWT which is securely stored in local storage or

session storage. When the frontend receives a user login request, it sends the

login credentials to the backend API via a POST request. The backend validates

the credentials and issues a JWT signed with a server-side secret key if

successful.

If the user selects the “Remember Me” option, the token is stored in

localStorage, ensuring persistence across browser sessions. Otherwise, the

token is stored in sessionStorage, which expires automatically when the browser

is closed. This ensures that sensitive endpoints such as fetching user details,

submitting symptoms or viewing prediction histories are only accessible to

authenticated users. The Figure 6.13 shows the code snippet of token storage

logic that support both persistent and temporary sessions depending on user

preferences.

Figure 6.13: Token Storage Logic

After the successful login, the frontend queries the backend for user

profile details using the issued token. The returned information such as

username is dynamically injected into the application state, allowing

personalized display on the interface, including showing the username on the

header. For each secured API request, the token is appended to the

Authorization header. The Figure 6.14 shows the code snippet of token included

in the Authorization header to authenticate protected API calls.

Figure 6.14: Attach Token to Secured API Requests

 On the backend, Flask validates the token and extracts the user’s

identity. Only when the token is valid, the backend returns user specific data.

This ensures that sensitive features remain accessible only to authenticated users.

137

6.3.1.2 Input Validation

The web application implements input validation to ensure the data integrity,

prevent invalid input formats, and enhance security. Multiple forms in the

disease prediction web application utilize client-side validation, verifying user

input before submission to the backend. This design not only improves user

experience through immediate feedback but also effectively reduces

unnecessary server load.

6.3.1.2.1 Register Form Validation

The registration form includes multiple validation rules to ensure accurate data

entry. These rules include checking for valid email formats, verifying password

length requirements, and preventing users from submitting empty fields. The

system provides immediate feedback to users through descriptive error

messages, thereby enhancing user experience and reducing server load. When

users register, the system will prompt users to enter the username, email address,

date of birth, password, confirm password, and agree to the relevant terms and

conditions. When the validation fails, the corresponding error message is

displayed immediately on the form interface. The Figure 6.15 shows the code

snippet of registration form validation. This logic prevents invalid input and

enforces minimum password length requirements.

138

Figure 6.15: Code Snippet for Registration Form Validation

6.3.1.2.2 Login Form Validation

The login form integrates multiple validation mechanisms to ensure secure and

accurate user input. The primary checks include email validation and password

validation. The system validated that the email field is not empty and conforms

to a standard email pattern using a regular expression. If the input does not meet

the requirements, an inline error message is displayed. For the password

validation, the password field is required and cannot be blank. The missing input

triggers an immediate validation error. If the user login successful, the system

will redirect users to the home page. The Figure 6.15 shows the code snippet of

login form validation. The below logic ensures that only correctly formatted

data is sent to the backend, reducing the risk of invalid requests.

139

Figure 6.16: Code Snippet for Login Form Validation

6.3.1.2.3 Dropdown Symptom Selection Validation

The dropdown symptom input page integrates multiple validation checks to

ensure that valid data is submitted to the machine learning model. Key

validation features include search and filter, checkbox validation, and “Add”

button validation. User can dynamically search symptoms by entering the

keywords of the symptoms, with the system filtering the displayed list in real

time. Each symptom can be selected via checkbox. The system prevents

duplicated selections by filtering already added symptoms. When the user

clicking the “Add” button, the system verifies that at least one symptom is

checked. If no symptoms are selected, the alert appears on the interface. The

Figure 6.17 shows the code snippet of the validation code for an empty symptom

selection and an empty prediction request.

Figure 6.17: Code Snippet for Dropdown Symptom Selection Validation

6.3.1.2.4 Free Text Symptoms Input Validation

The free text symptoms input page enables users to describe their health

condition in natural language rather than selecting symptoms manually from a

predefined list. Input validation ensures that the text is not empty before

submitting. If the user attempts to extract symptoms without providing text, the

140

system displays a warning message. After submission, the input text is sent to

the backend via secure API request with JWT authentication. The backend

applies large language model (Google Gemini) to identify and extract relevant

symptom. The extracted symptoms are displayed in a dedicated section titled

“Matched Symptoms” and users may remove the symptoms via a close icon. If

the matched symptoms are empty, the system shows an alert to remind user to

add at least one symptom. Figure 6.18 shows the code snippet for free text

symptoms input validation.

Figure 6.18: Code Snippet for Free Text Symptoms Input Validation

6.3.1.2.5 Update Profile Form Validation

The update profile page enables authenticated users to modify their personal

information, ensuring that their account details remain accurate and current. The

system compares current input values with the original values retrieved from the

backend. If no changes are detected, the system prevents unnecessary API calls

by displaying a “No changes detected” alert. The username cannot be left blank,

prevents accidental submission of an empty username. For the date of birth, the

input restricted to valid date format. The gender section implemented a

predefined options such as Male and Female, reducing the risk of inconsistent

entries. The Figure 6.19 shows the code snippet for update profile form

validation.

141

Figure 6.19: Code Snippet for Update Profile Form Validation

6.3.1.2.6 Change Password Form Validation

The change password page enhances user account security by allowing users to

update their password. This feature protects users’ privacy and safeguards

sensitive information stored in the system. The current password field, new

password field, and confirm password field is mandatory. If left blank, the error

message is displayed to prevent empty submissions. A minimum length

requirement of 6 characters is required to encourage stronger password and

reduce vulnerability. The system ensures that both new password and confirm

password entries are match. Otherwise, the error message “Password do not

match” is shown. The Figure 6.20 shows a code snippet for change password

input validation.

Figure 6.20: Code Snippet for Change Password Input Validation

6.3.1.3 User Experience (UX) enhancements

6.3.1.3.1 Login and Register

142

For the inline error message, the validation errors are displayed directly below

the corresponding input fields, guiding users to correct the errors. In addition,

users can toggle between hiding and showing their password, improving

usability while ensuring security. Users also can choose to persist their login

session using either localStorage or sessionStorage in login page.

6.3.1.3.2 Dropdown Symptom Selection

The dropdown symptom input page was designed not only to ensure valid date

entry but also to improve usability and provide an intuitive interaction flow for

end users. A real-time search bar allows users to quickly filter the required

symptoms from the massive symptom list by entering relevant keywords. This

reduces cognitive load and ensures that users can efficiently locate the

symptoms they intend to select.

Furthermore, users can check multiple symptoms before confirming

their selection. Once the symptoms are added, the selected symptoms are clearly

displayed in a dedicated “Selected Symptoms” section. The selected symptom

can be removed using a close icon, giving users full control to revise their

selection without having to restart the process. The system also ensures the clear

navigation control. The button such as “Back”, “Add” and “Predict” are clearly

labelled and visually distinct, reducing ambiguity in navigation.

6.3.1.3.3 Free Text Symptom Input

The free text symptom input page provides guidance through placeholder text.

The input field contains a placeholder sentence such as “I have a fever and

cough for 2 days…” to guide users on how to describe their symptoms. This

page also includes loading feedback. During symptom extraction, the “Extract

Symptoms” button will be temporarily disabled and labelled “Extracting…” to

prevent duplicate requests and indicate to the user that the system is processing.

By allowing users to remove symptoms from the extracted symptom list, the

system provides flexibility and avoid forcing incorrect inputs. If no symptoms

are selected, the user is informed through an alert. The navigation buttons like

“Back” and “Predict” are styled consistently with other input methods.

143

6.3.1.3.4 Update Profile

The user information such as username, date of birth and gender is automatically

retrieved and displayed when the page loads. This can save users time and effort.

Only modified fields are sent to backend, minimizing server load and preventing

unnecessary overwriting of unchanged data. A confirmation message “Profile

updated successfully” is displayed upon successful update. If the username is

changed, the update is immediately reflected across the web application through

the global state update. Users can return to the profile page at any time using the

“Back” button, ensure the smooth navigation.

6.3.1.3.5 Change Password

The contextual message like “Hi, [username]” fosters user engagement. The

form validation runs upon submission, immediately highlighting missing or

invalid fields to avoid wasting server requests. When the update request is in

progress, the “Update Password” button changes to “Updating…” and disabled

to prevent duplicate submissions. A Back button enables users to easily return

to the profile page. For successful update, the system displays a confirmation

alert with the backend response message and redirect users to profile page. If

the password is incorrect, a clear error message is displayed. The error messages

and button states improve usability by guiding users step by steps.

6.3.1.3.6 Result

The result page displayed the match strength indicators via icons. The

predictions are visually ranked using text and star ratings. For the strongly

matched disease show full star, for the moderately matched disease show half

of star, and the weakly matched disease show colourless star. This gives users

confidence levels in the prediction without needing to understand probabilities

machine learning outputs. The results page also displayed clear card-based

layout. Two distinct cards separate “Potential Disease” and “Your Symptoms”,

This layout helps users easily connect to their input and prediction. The “View

Medical Advice” button provides a clear next step, guiding uses to additional

information. The system displays “Loading results…” while predictions are

being processed, keeping the UI responsive. It also includes health disclaimer

144

for trust and responsibility. This enhances trustworthiness and ensures ethical

communication of AI results.

6.3.1.3.7 General Medical Advice

The general medical advice page is designed with a strong emphasis on user

experience, ensuring the information is presented in a structured, clear, and

easily accessible manner. The system avoids displaying vague generalizations

or raw data, instead organizing recommendations into distinct sections such as

disease descriptions, lifestyle advice, prevention strategies, and guidance on

when to seek medical attention. Users can simultaneously view the correlation

between entered symptoms and the system’s predicted conditions. This

effectively builds user trust in the recommendations provided by the system.

Additionally, users can save predictions and recommendations to their personal

history for future reference, ensuring continuity in healthcare services. The page

also includes a clear disclaimer emphasizing that the advice provided is for

informational purposes only and should not replace professional medical staff.

6.3.1.3.8 History

The History page provides users with a clear and organized view of past

predictions, covering symptoms, conditions, and medical advice. Featuring a

card-based layout for enhanced readability, it uses icons for quick recognition

and allows users to expand or collapse detailed recommendations as needed.

Functions such as confirmed record deletion, real-time feedback notifications,

and token-based secure access further optimize usability and control. This

design not only elevates the overall user experience but also ensures users can

conveniently and securely review and manage their health prediction records.

6.4 Backend Development

The backend of the Disease Prediction Web Application using Machine

Learning was developed using Flask, a lightweight Python web framework

well-suited for building RESTful APIs. The backend serves as the

communication layer between frontend and machine learning model, handling

145

user authentication, symptom extraction, disease prediction, general medical

advice generation and database operations. The backend also integrates with

MySQL database. The backend defines all the API endpoints, loads the trained

Random Forest model, the random_forest_model.pkl, and manages middleware

such as JWT authentication and CORS configuration. Sensitive environment

variables such as the secret key, Gemini API key and database setup are

managed using python-dotenv, ensuring secure configuration management.

Figure 6.21 shows the code snippet of project setup.

Figure 6.21: Code Snippet of Project Setup

6.4.1 Project Architecture

The key aspects of the architecture include authentication and security, database

integration, machine learning integration, prediction history and medical advice,

and RESTful design.

6.4.1.1 JWT Decorator

The system implemented using JWT tokens with custom decorators to protect

the sensitive routes such as profile, predictions and history. If no token is found,

return a JSON response with a 401 Unauthorized status and an error message

“Token is missing”. Figure 6.22 illustrates the code snippet for JWT Decorator.

146

Figure 6.22: Code Snippet for JWT Decorator

6.4.1.2 Database Integration

The MySQL database is used to persist user information, prediction history,

symptoms, diseases, and general medical advice. Database operations are

abstracted through a db_connection,py module for cleaner code management.

The get_connection() function established a connection to MySQL database

using environment variables for configuration. Figure 6.23 shows a code snippet

of the get_connection() function.

Figure 6.23: get_connection() function

6.4.1.3 Machine Learning Integration

The backend loads pretrained models and feature encodings via Joblib, enabling

real-time predictions from user inputs. Prediction made using either structured

symptom selection like dropdown, or unstructured free-text input processed

with a symptom extraction pipeline powered by external NLP helpers like

gemini_helper. The extract_symptoms() function in gemini_hepler.py is used to

147

extract the user free-text input by using Google Gemini API and return the

symptoms that exist in the provided list. Figure 6.24 shows the code snippet for

loading machine learning model. Figure 6.25 shows the code snippet of the

extract symptoms function.

Figure 6.24: Code Snippet for Load ML Model

Figure 6.25: Extract Symptoms Function

6.4.2 API Endpoints

The backend exposes multiple RESTful API endpoints, categorized into user

management, prediction, history and general medical advice. Each endpoint

features a lightweight design with security capabilities and follows consistent

request-response structures. JWT authentication is required for protected

endpoints to ensure authorized access.

148

6.4.2.1 User Authentication and Profile Management

• POST /api/register

Registers a new user by storing their credentials and basic profile data

in the database. Input validation ensures all required fields are provided

such as username, email, password, and data of birth. Passwords are

securely stored using Werkzeug’s hashing mechanism.

• POST /api/login

Authenticates a user by verifying the provided email and password.

Upon successful validation, a JWT token is issued, which must be

attached to subsequent requests for protected endpoints.

• GET /api/user (Protected)

Returns the authenticated user’s ID and username based on the JWT

token. Used for session validation and personalization on the frontend.

• GET /api/profile (Protected)

Retrieves detailed profile information such as username, email, date of

birth, gender for the authenticated user.

• PUT /api/profile (Protected)

Allows users to update selected profile fields such as username, date of

birth, or gender. Partial updates are supported through dynamic query

construction.

• PUT /api/change-password (Protected)

Enables users to securely update their password after validating their

existing password. New passwords are hashed before storage.

6.4.2.2 Symptom and Disease Management

• GET /api/symptoms

Fetches the complete list of symptoms stored in the database, enabling

the frontend dropdown selection method.

• GET /api/diseases

Retrieves all disease records from the database. This is used to maintain

consistency between predictions and stored disease references.

• POST /api/extract-symptoms (Protected)

149

Processes free-text input and extracts symptom entities using the Gemini

Helper NLP module. This supports the unstructured input method and

ensures that symptom names align with the system’s knowledge base.

• POST /api/predict (Protected)

Predicts potential diseases based on user input. Two input methods are

supported by the system:

- Dropdown-based: The user selects symptoms from a predefined list.

- Free text: The user provides natural language descriptions, which

are processed into structured symptoms before prediction.

Predictions are generated using the pre-trained Random Forest model

and returned with ranked match strengths.

6.4.2.3 Medical Advice Generation

• POST /api/advice (Protected)

Accepts a list of diseases and returns general medical advice for each.

Advice is generated dynamically using the Gemini Helper module. This

provides contextual recommendations to users while reinforcing the

disclaimer that the advice is not a substitute for professional medical

consultation.

6.4.2.4 Prediction History

• POST /api/history (Protected)

Saves a prediction history to the database, including selected symptoms,

predicted diseases, and corresponding general medical advice. Missing

symptoms or diseases not found in the database are also recorded for

consistency checks.

• GET /api/history (Protected)

Retrieves all historical prediction records for the authenticated user,

including symptoms, predicted diseases, associated advice, and

timestamps. Results are ordered by prediction date (latest first).

• DELETE /api/history/<id> (Protected)

150

Deletes a specific prediction history record belonging to the

authenticated user. The related records such as predicted symptoms and

diseases are also removed to maintain referential integrity.

6.4.2.5 API Endpoint Overview

The Table 6.1 shows the API Endpoint Overview.

Table 6.2: API Endpoints Overview

Endpoint Method Description Auth

Required

/api/register POST Registers a new user with

username, email,

password, and DOB.

Stores hashed password

securely.

No

/api/login POST Authenticates user with

email and password,

returns JWT token on

success.

No

/api/user GET Retrieves authenticated

user’s ID and username

for session validation.

Yes

/api/profile GET Fetches detailed profile

(username, email, DOB,

gender).

Yes

/api/profile PUT Updates profile details

(username, DOB,

gender). Partial updates

supported.

Yes

/api/change-

password

PUT Allows user to change

password after verifying

old password.

Yes

151

/api/symptoms GET Returns all symptoms

stored in the system

database.

No

/api/diseases GET Returns all diseases

stored in the system

database.

No

/api/extract-

symptoms

POST Extracts symptoms from

free-text input using

Gemini Helper NLP.

Yes

/api/predict POST Predicts potential

diseases based on

symptoms. Uses ML

model for ranked results.

Yes

/api/advice POST Provides general medical

advice for one or more

diseases using Gemini

Helper.

Yes

/api/history POST Saves prediction session

(symptoms, diseases,

advice) into history.

Yes

/api/history GET Retrieves all past

prediction history for the

authenticated user.

Yes

/api/history/<id> DELETE Deletes a specific

prediction history record.

Yes

152

6.4.3 Implementation of Google Gemini API

The backend also integrates Google Gemini API, enabling context-aware

medical advice based on disease prediction and symptom extraction. The

Gemini API was primarily utilized to extract symptoms from free-text input,

generate general medical advice, and provide personalize output. It provides

clear and user-friendly guidance on possible treatment or prevention tips after

disease prediction. Prediction model (Random Forest model) identifies possible

diseases based on symptoms, while Gemini generates structured, user-friendly

guidance presented as prevention and lifestyle recommendations. This ensures

that the application not only delivers predictive results but also provides

actionable next steps, thereby creating greater value for end users.

 The objective of integrating the Google Gemini API into the backend

is to enhance user value, improve consistency and reliability, ensure user safety,

and achieve frontend compatibility. The Google Gemini API not only generates

predictive results but also delivers structured health advice to guide users

improving their lifestyle and preventing diseases. In addition, enforces a

structured JSON output format to ensure consistency across all diseases. It also

provides only general and non-diagnostic information, focusing on health

awareness, disease prevention, and guidance on when to seek professional

medical assistance. The Gemini API returns data in a machine-readable JSON

format that can be directly called and rendered by the frontend application.

6.4.3.1 Prompt Engineering and Structured Output

The function get_general_advice_for_multiple(diseases) was developed to

interact with the Google Gemini. This function constructs a carefully engineered

prompt that instructs Google Gemini return advice in a strict JSON format. For

each predicted disease, Gemini is requested to provide four specific fields,

including description, lifestyle tips, prevention tips and a guideline on when to

seek care. This structure not only improves readability but also ensures that the

generated content can be validated, parsed, and integrated into the web

application workflow.

 As discussed in Chapter 5 (Prompt Design Study), the Role-based

prompting strategy demonstrated the most effective performance. It consistently

153

produced well-balanced and guideline-consistent outputs with accuracy, clarity,

and completeness as well as maintaining reasonable response time. Therefore,

role-based prompting was adopted in the Google Gemini API implementation

to generate structured medical advice for predicted diseases. By explicitly

assigning the model the role of a health assistant, the generated responses were

not only aligned with medical communication standards but also returned in a

consistent JSON format. This structured representation enables seamless

integration with the backend pipeline, ensuring that the generated advice could

be directly parsed, validated, and displayed within the web application without

requiring extensive post-processing. Figure 6.26 shows a code snippet for

generate structure medical advice via Google Gemini API.

Figure 6.26: Generate Structured Medical Advice via Google Gemini API

154

CHAPTER 7

7 SYSTEM TESTING

7.1 Introduction

System testing is a critical phase in the software development lifecycle that is

utilized to ensure the disease prediction web application functions as intended

and meets both functional and non-functional requirements. This chapter

outlines the details of testing strategies, methodologies, and results for

validating system performance, usability, and reliability.

The system integrates machine learning-based disease prediction

functionality, a symptom extraction and medical advice module powered by

Google Gemini, and an architecture utilizing a Flask backend with a fully

interactive React frontend architecture. Testing ensures all modules are

compatible with each other, the system security remains uncompromised, and

users can access all intended features without errors.

7.2 Unit Testing

Unit testing focuses on verifying the correctness of individual components or

functions within a system.

155

7.2.1 Registration Feature

Table 7.1: Unit Test Case for Registration Feature

Unit Test

Case ID

Test Case

Description

Test Procedure Test Data Expected Result Status

UTC01 Validate empty

username

Leave username blank

and submit form

username: “”,

email: “test@gmail.com”,

password: “123456”,

confirmPassword: “123456”,

dob: “2000-01-01”, agree: true

Error message “Username

is required.” displayed

Pass

UTC02 Validate invalid

email format

Enter invalid email and

submit

username: “John”,

email: “johngmail”,

password: “123456”,

confirmPassword: “123456”,

dob: “2000-01-01”, agree: true

Error message “Please

enter a valid email

address.” displayed

Pass

UTC03 Validate empty

email

Leave email empty and

submit

username: “John”,

email: “”,

password: “123456”,

Error message “Email is

required.” displayed

Pass

156

confirmPassword: “123456”,

dob: “2000-01-01”, agree: true

UTC04 Validate empty

DOB

Leave DOB blank and

submit

username: “John”,

email: “john@gmail.com”,

password: “123456”,

confirmPassword: “123456”,

dob: “”, agree: true

Error message “Date of

birth is required.”

displayed

Pass

UTC05 Validate short

password

Enter password <6

characters

username: “John”,

email: “john@gmail.com”,

password: “123”,

confirmPassword: “123”,

dob: “2000-01-01”, agree: true

Error message “Password

must be at least 6

characters.” displayed

Pass

UTC06 Validate

mismatched

password

Enter different

password and confirm

password

username: “John”,

email: “john@mail.com”,

 password: “123456”,

confirmPassword: “654321”,

dob: “2000-01-01”, agree: true

Error message

“Passwords do not

match.” displayed

Pass

157

UTC07 Validate empty

password

Leave password empty

and submit

username: “John”,

email: “john@gmail.com”,

 password: “”,

confirmPassword: “654321”,

dob: “2000-01-01”, agree: true

Error message “Password

is required.” displayed

Pass

UTC08 Validate terms

agreement

Terms agreement

checkbox not checked

username: “John”,

email: “john@gmail.com”,

 password: “123456”,

confirmPassword: “123456”,

dob: “2000-01-01”, agree: false

Error message “You must

agree to the terms and

conditions.” displayed

Pass

UTC09 Show/Hide

password toggle

Click show/hide toggle

for password and

confirm password fields

- Password visibility

toggles correctly between

plain text and hidden

Pass

UTC10 Successful

frontend

validation

Enter valid inputs username: “John”,

email: “john@gmail.com”,

password: “123456”,

confirmPassword: “123456”,

dob: “2000-01-01”, agree: true

Form submits

successfully, calls

backend API

Pass

158

UTC11 Duplicate email

error

Enter existing email username: “John”,

email: “john@gmail.com”,

password: “123456”,

confirmPassword: “123456”,

dob: “2000-01-01”, agree: true

Error message: “Email

already exists” displayed

Pass

UTC12 Redirect to

Login page

Click “Already have an

account? Log in”

- Navigated to /login page Pass

7.2.2 Login Feature

Table 7.2: Unit Test Case for Login Feature

Unit Test

Case ID

Test Case

Description

Test Procedure Test Data Expected Result Status

UTC13 Validate empty

email

Leave email blank

and click Login

email: “”,

password: “123456”,

Error message “Email is

required.” displayed

Pass

UTC14 Validate invalid

email format

Enter email without

proper format

email: “johngmail”,

password: "123456",

Error message “Please enter

a valid email address.”

displayed

Pass

159

UTC15 Validate empty

password

Enter valid email but

leave password

email: “john@gmail.com”,

password: “”,

Error message “Password is

required.” displayed

Pass

UTC16 Validate login with

incorrect

credentials

Enter wrong

email/password and

submit

email: “john@gmail.com”,

password: “wrongpass”,

Alert popup: “Invalid

credentials”

Pass

UTC17 Validate login with

correct credentials

(Remember

unchecked)

Enter valid email &

password, leave

Remember Me

unchecked

email: “john@gmail.com”,

password: “123456”

JWT token stored in

sessionStorage, redirected to

/home

Pass

UTC18 Validate login with

correct credentials

(Remember

checked)

Enter valid email &

password, check

Remember Me

email: “john@gmail.com”,

password: “123456”

JWT token stored in

localStorage, redirected to

/home

Pass

UTC19 Validate user data

fetch after login

Successful login,

then fetch /api/user

with Bearer token

email: “john@gmail.com”,

password: “123456”

setUsername() and

setUserId() updated with

correct values

Pass

160

UTC20 Toggle password

visibility (Show to

Hide)

Click “Show” button

in password field

password: “123456” Password input changes type

from password to text and

button label changes to Hide

Pass

UTC21 Toggle password

visibility (Hide to

Show)

Click “Hide” button

in password field

password: “123456” Password input changes type

from text to password and

button label changes to

Show

Pass

UTC22 Redirect to

Register page

Click “Don’t have an

account? Sign Up”

- Navigated to /register page Pass

7.2.3 Profile

Table 7.3: Unit Test Case for Profile

Unit Test

Case ID

Test Case

Description

Test Procedure Test Data Expected Result Status

UTC23 Validate profile

fetch with valid

token

Store valid token in

localStorage, open

Profile page

token=valid Profile data fetched and

displayed (username, email,

dob, gender)

Pass

161

UTC24 Validate profile

fetch with missing

token

Remove token from

storage, open Profile

page

token=none Failed to fetch profile Pass

UTC25 Validate change

password

navigation

Click “Want to

change password?

Click me!” link

- Redirected to /change-

password page

Pass

UTC26 Validate “Update

Profile” navigation

Click “Update

Profile” button

- Redirected to /update-profile

page

Pass

UTC27 Validate “Back”

navigation

Click “Back” button - Redirected to /home page Pass

UTC28 Validate Date of

Birth formatting

Profile response

contains DOB in

ISO format

contains DOB in ISO format

dob="1999-10-05"

DOB displayed as 05 Oct

1999

Pass

162

7.2.4 Update Profile Feature

Table 7.4: Unit Test Case for Update Profile Feature

Unit Test

Case ID

Test Case

Description

Test Procedure Test Data Expected Result Status

UTC29 Verify profile data

loads on page load

Open Update Profile

page after view

profile

User existing profile Profile fields (username,

DOB, gender) are pre-filled

correctly

Pass

UTC30 Update username

only

Change username

and click Update

New username: John123 Alert “Profile updated

successfully!” Redirect to

Profile page

Pass

UTC31 Update date of

birth only

Change DOB and

click Update

New DOB: 2005-05-05 Alert “Profile updated

successfully!” Redirect to

Profile page

Pass

UTC32 Update gender only Change gender from

Male to Female and

click Update

Gender: Female Alert “Profile updated

successfully!” Redirect to

Profile page

Pass

163

UTC33 Cancel update and

click Back

Click Back button

instead of Update

- User redirected back to

Profile page

Pass

UTC34 Check invalid

username entry

(empty string)

Clear username

field, Click Update

username: “” System should still allow

DOB/Gender changes, but

username remains

unchanged

Pass

7.2.5 Change Password Feature

Table 7.5: Unit Test Case for Change Password Feature

Unit Test

Case ID

Test Case

Description

Test Procedure Test Data Expected Result Status

UTC35 Verify all fields

required

Leave all inputs

empty and click

“Update Password”

- Errors: “Current password is

required.”, “New password

is required.”, “Please

confirm your new

password.”

Pass

164

UTC36 Validate new

password length

Enter valid current

password but short

new password (<6

chars)

Current: john123,

New: 123,

Confirm: 123

Error: “New password must

be at least 6 characters.”

Pass

UTC37 Validate password

mismatch

Enter mismatched

new and confirm

password

Current: john123,

New: 123456,

Confirm: 654321

Error: “Passwords do not

match.”

Pass

UTC38 Successful

password change

Enter valid data and

click Update

Current: john123,

New: 123456,

Confirm: 123456

Alert success message,

Redirect to /profile

Pass

UTC39 Invalid current

password

Enter wrong current

password

Current: john12345,

New: 123456,

Confirm: 123456

Alert: “Old password is

incorrect”

Pass

UTC40 Back button

navigation

Click Back button

instead of submitting

- Redirects user back to

/profile without changes

Pass

165

7.2.6 Select Input Method Feature

Table 7.6: Unit Test Case for Select Input Method Feature

Unit Test

Case ID

Test Case

Description

Test Procedure Test Data Expected Result Status

UTC41 Validate page loads

correctly

Open Select Input page - Page shows title, instruction,

and two options (Dropdown

and Free Text)

Pass

UTC42 Validate dropdown

option navigation

Click anywhere on

Dropdown option card

or button

- User navigates to /dropdown Pass

UTC43 Validate free text

option navigation

Click anywhere on Free

Text option card or

button

- User navigates to /free-text Pass

UTC44 Responsive layout Resize window to small

screen

- Cards remain responsive and

readable

Pass

UTC45 Back button

navigation

Click Back button

instead of submitting

- Redirects user back to

/profile without changes

Pass

166

7.2.7 Dropdown Input Feature

Table 7.7: Unit Test Case for Dropdown Input Feature

Unit Test

Case ID

Test Case

Description

Test Procedure Test Data Expected Result Status

UTC46 Validate search

filters symptom list

Type “fever” in search

bar

Search = fever Only symptoms matching

“fever” appear

Pass

UTC47 Validate symptom

checkbox selection

Check a symptom (e.g.,

“Fever”)

Symptom: Fever Checkbox marked, symptom

stored in checked

Pass

UTC48 Add selected

symptoms

Select multiple

symptoms, Click Add

Selected: Fever,

Vomiting

Symptoms appear under

“Selected Symptoms”

Pass

UTC49 Prevent adding

empty selection

Click Add without

selecting

- Alert: “Please check at least

one symptom before adding.”

Pass

UTC50 Remove symptom

from selected

Click “X” on a selected

symptom

X Fever Symptom removed from

selected list

Pass

UTC51 Successful

prediction

Select symptoms to

Click Predict

Fever, Cough Navigate to /result with

predictions passed in state

Pass

167

UTC52 Prevent duplicate

selected symptoms

Select same symptom

twice

Fever, Fever Symptom only appears once

in selected list

Pass

7.2.8 Free Text Feature

Table 7.8: Unit Test Case for Free Text Input Feature

Unit Test

Case ID

Test Case

Description

Test Procedure Test Data Expected Result Status

UTC53 Prevent empty

submission

Click “Extract

Symptoms” with empty

textarea

“” Alert: “Please enter some text

to describe your symptoms.”

Pass

UTC54 Successful

symptom

extraction

Enter valid input and

extract

“I have fever and cough” Extracted symptoms appear in

“Matched Symptoms” list

Pass

UTC55 No symptoms

extracted

Enter unrelated text to

Extract

“I like pizza” Alert: “No symptoms

extracted. Please try again.”

Pass

UTC56 Remove matched

symptom

Click “X” on a matched

symptom

X Fever Symptom removed from list Pass

168

UTC57 Successful

prediction

Enter text, extract, then

predict

“I have fever and cough” Navigate to /result with

predictions passed in state

Pass

UTC58 Loading state

behavior

Click Extract

Symptoms

“I have fever Button text changes to

“Extracting…” until done

Pass

7.2.9 Prediction Result

Table 7.9: Unit Test for Prediction Result

Unit Test

Case ID

Test Case

Description

Test Procedure Test Data Expected Result Status

UTC59 Validate results

load correctly

Navigate to Result page

with results in state

Backend:

results=[{disease:"Flu"}]

Diseases displayed in card Pass

UTC60 Validate symptoms

display

Navigate to Result page

with symptoms in state

symptoms=

["Fever","Cough"]

Symptoms listed in card Pass

UTC61 Validate match

strength icons

Load results with

multiple diseases

3 diseases Star icons display correctly

(Strong, Moderate, Weak)

Pass

UTC62 Navigate to

medical advice

Click “View Medical

Advice”

results + symptoms

available

Navigate to /medical-advice

with data passed

Pass

169

7.2.10 General Medical Advice

Table 7.10: Unit Test Case for General Medical Advice

Unit Test

Case ID

Test Case

Description

Test Procedure Test Data Expected Result Status

UTC63 Validate symptoms

list

Navigate with

symptoms in state

["Fever","Cough"] Symptoms listed Pass

UTC64 Fetch advice

successfully

Navigate with results Flu → Backend returns

advice

Advice cards displayed Pass

UTC65 Handle no advice Backend returns empty

advice

Flu → No advice “No advice available” shown Pass

UTC66 Save prediction

successfully

Click “Save Prediction”

with valid results

results + symptoms Successful Message:

“Prediction and advice saved

successfully!” Redirect to

History

Pass

170

7.2.11 Historical

Table 7.11: Unit Test Case for Historical

Unit Test

Case ID

Test Case

Description

Test Procedure Test Data Expected Result Status

UTC67 Fetch history

successfully

Navigate to page with

valid token

Records available Cards display with date,

symptoms, diseases and

advice

Pass

UTC68 Handle empty

history

Navigate with no

records

None “No historical records found.”

shown

Pass

UTC69 Redirect if no

token

Clear token, then

navigate

- Redirected to login with error

message

Pass

UTC70 Delete history

record

Click delete icon on a

record

Record ID Record removed + success

message

Pass

UTC71 Delete cancelled Click delete, cancel

confirm

- Record not deleted Pass

171

UTC72 Expand advice text Click “Read More” on

long advice

Advice text > 150 chars Full text shown Pass

UTC73 Collapse advice

text

Click “Show Less”

after expansion

Advice text > 150 chars Text collapses Pass

UTC74 Home button

navigation

Click “Home” - Navigate to home page Pass

7.3 Integration Testing

Integration testing ensures that different modules of the disease prediction web application can work together seamlessly to form a unified system.

Unlike unit testing, which verifies individual components, integration testing focuses on interactions between frontend interfaces and backend

services. This phase validates whether data flows correctly between pages, tokens are securely handled, and results are consistently stored and

retrieved. By implementing integration testing, potential issues such as API mismatches, data processing errors, or session management failures

can be identified and resolved before system deployment.

172

Table 7.12: Integration Test Cases

Integration

Test Case ID

Test Case Description Test Procedure Expected Result Status

ITC01 Verify registration integrates

with backend authentication.

1. Navigate to registration page.

2. Enter valid details.

3. Submit.

4. Login using new account.

User is successfully registered and

able to log in.

Pass

ITC02 Verify login with token allows

access to protected pages (e.g

Profile).

1. Login with valid credentials.

2. Navigate to Profile.

3. Refresh page.

Profile details are displayed using

stored token; session persists.

Pass

ITC03 Verify password change

updates backend and login

validation.

1. Login.

2. Change password.

3. Logout.

4. Login with old password (fail).

5. Login with new password (success).

Old password rejected; new

password accepted.

Pass

ITC04 Verify dropdown symptom

selection integrates with

disease prediction.

1. Navigate to symptom input page.

2. Select symptoms.

3. Submit.

Backend returns prediction;

results displayed correctly.

Pass

173

ITC05 Verify integration between

Result page and Medical

Advice page.

1. From Result, click “View Medical

Advice”.

Medical advice is retrieved for

predicted disease and displayed.

Pass

ITC06 Verify saving prediction stores

record in History.

1. On Medical Advice page, click

“Save Prediction”.

2. Navigate to History.

Prediction is stored and visible in

History with correct details.

Pass

ITC07 Verify History page fetches

consistent saved data.

1. Login.

2. Navigate to History.

All previously saved predictions

are displayed correctly.

Pass

ITC08 Verify deletion of record

updates backend and frontend.

1. Navigate to History.

2. Delete a record.

3. Refresh page.

Deleted record no longer appears. Pass

ITC09 Verify session expiration

handling when token is

invalid.

1. Login.

2. Clear/expire token.

3. Navigate to Profile/History.

User redirected to Login with

session expired message.

Pass

ITC10 Verify end-to-end workflow

from registration to history.

1. Register new user.

2. Login.

3. Input symptoms.

4. Predict disease.

All steps succeed; saved

prediction is available in History.

Pass

174

5. View advice.

6. Save prediction.

7. Navigate to History.

175

7.4 User Acceptance Testing (UAT)

User Acceptance Testing (UAT) is actual end users evaluated the system to

ensure that the system meets the user needs, requirements, and expectations.

The core objective of UAT is to validate whether the disease prediction web

application using machine learning functions correctly in real world scenarios

and delivers expected results. Unlike Unit Testing and Integration Testing, UAT

emphasizes usability, output correctly, and alignment with user expectations.

This project conducted a UAT by distributing structured Google Forms

questionnaires to a group of 30 users to perform hands-on testing of the system.

They evaluated core functional modules, including register and login operation,

symptom input via both dropdown menus and free text fields, disease prediction,

viewing medical recommendations, and accessing historical records.

Participants were asked to independently test the web application and provide

feedback based on their user experience. The full Google Form questionnaire is

attached in Appendix A for reference.

7.4.1 User Acceptance Testing Result

Table 7.13 shows a User Acceptance Testing Result summary.

Table 7.13: User Acceptance Testing Result.

Question Aspect

Evaluated

3(n) 4(n) 5(n) Total Average

Rating

Q1 Ease of

navigation

3 11 16 30 4.43

Q2 Ease of inputting

symptoms

4 14 12 30 4.26

Q3 Clarity of error

messages

3 4 18 30 4.53

Q4 System generated

predictions

3 10 17 30 4.46

Q5 Accuracy of

predictions

5 12 13 30 4.26

Q6 Relevance of

medical advice

6 9 15 30 4.30

176

Q7 Accessibility of

history feature

3 11 16 30 4.43

Q8 Overall

satisfaction

3 11 16 30 4.43

Q9 No major

difficulties

encountered

1 12 17 30 4.53

The results indicate that the system achieved the anticipated usability goals, with

90% of users rating most aspects at 4 points or higher. The highest-rated aspects

were clarity of error messages (4.53) and no major difficulties encountered

(4.53), indicating that the system is straightforward to operate and easy to

interact with. The only slightly lower score was for prediction accuracy,

suggesting that while the predictions are generally acceptable, users may expect

higher precision.

The moderately rated aspects included ease of inputting symptoms

(4.26), accuracy of predictions (4.26), and relevance of medical advice (4.30).

While these scores are still positive, they suggest that users see room for

improvement in these domains. In particular, symptom input enables smoother

operation, while leveraging larger datasets and more advanced models further

enhances prediction accuracy and recommendation relevance.

Open-ended feedback (Q10) provided additional suggestions such as

adding more advice information, adding dashboard page, further streamlining

the layout, add multilingual support, include more healthcare information and

so on. The full results can be found in Appendix B.

 Based on the UAT results, the Disease Prediction Web Application

using Machine Learning is considered user-friendly, functionally robust, and

aligned with the user requirements. While prediction accuracy can be enhanced

and medical advice content expanded through fine tuning, the system has

successfully achieved the objectives of the user acceptance testing.

177

7.5 User Interface Design Feedback

To evaluate the usability and overall design of the system, a User Interface

Design Feedback survey via Google Forms was conducted. This survey aimed

to assess the system interface’s intuitiveness, clarity and visual appeal while

identifying areas for improvement. Respondents were asked to provide the

feedback based on their actual usage experience. Most questions were utilized

a 5-point Likert scale, where 1 represented “Strongly Disagree” and 5

represented “Strongly Agree.” The full Google Form questionnaire is attached

in Appendix C for reference. Table 7.13 shows a User Interface Design

Feedback summary.

Table 7.14: User Interface Design Feedback

Question Aspect Evaluated 3(n) 4(n) 5(n) Total Average

Rating

Q1 Ease of use without

training

2 10 18 30 4.53

Q2 Intuitiveness of UI

design

1 15 14 30 4.43

Q3 Visual appeal of

design

4 8 18 30 4.30

Q4 Colour comfort and

theme consistency

5 8 17 30 4.40

Q5 Clarity of labels

and buttons

3 10 17 30 4.46

Q6 Navigation and

menu usability

1 13 16 30 4.5

Q7 Responsiveness

and performance

6 8 16 30 4.33

Q8 Clarity of system

feedback/error

messages

3 13 14 30 4.36

Q9 User confidence in

performing tasks

1 9 20 30 4.63

178

User Interface evaluation results indicate that users were generally satisfied,

with all average ratings above 4.3 out of 5, reflecting a strong level of

acceptance. User confidence in task execution (4.63) received the highest rating,

indicating that users felt comfortable and capable when interacting with the

system. Similarly, ease of use without training (4.53) and navigation and menu

usability (4.50) also scored exceptionally high, demonstrating that the design is

intuitive and requires minimal learning effort. Other aspects such as clarity of

labels and buttons (4.46) and intuitiveness of UI design (4.43) also received high

ratings, highlighting effective design choices that support smooth interaction.

Meanwhile, the ratings for visual appeal of design (4.30) and responsiveness

and performance (4.33) were slightly lower than other categories, though still

positive.

Open-ended feedback (Q10) provided additional suggestions such as

add dark mode for better accessibility, provide dashboard page, add tooltips or

hints for new users, use more visuals for results, improve spacing and alignment

of elemetns and so on. The full results can be found in Appendix D. All these

results demonstrate that the web application provides a smooth and intuitive

user experience. Respondents also expressed high confidence in using the

interface for disease prediction tasks.

Overall, the survey indicated that the system’s user interface design is

intuitive and easy to use, aligning with its intended purpose and achieving

usability objectives of supporting users in efficiently and confidently utilizing

the disease prediction functionality.

179

CHAPTER 8

8 CONCLUSION AND RECOMMENDATION

8.1 Introduction

This conclusion outlined the achievement of the project objectives, limitation of

the project and valuable suggestions into possible future work. The Disease

Prediction Web Application using Machine Learning has been successfully

developed and tested. This system provides a user-friendly, secure and efficient

platform for predicting diseases based on user-provided health data.

 In the initial of the project, it is essential to clearly define the problem

statements, project objective, project scope and reviewing the existing similar

applications to collect functional requirements and non-functional requirements.

In the development phase, the system integrates both dropdown symptom

selection and free text input method to accommodate diverse user needs. The

backend was implemented using Flask, while the frontend was built with React,

ensuring both scalability and responsiveness.

 Following development and implementation, extensive testing was

conducted, including unit testing, integration testing, user acceptance testing

(UAT), and user interface design feedback collection. The integration of

machine learning, structured user interfaces, and accessibility features ensures

that the system is practical for end users.

8.2 Achievement of Objectives

The following describes the project's objectives from Chapter 1 were fulfilled

with the implemented system:

1. To develop and train a machine learning model capable of predicting

specific diseases, achieving a prediction accuracy of 85% or higher on

the test dataset.

2. To design a user-friendly web application and evaluate its usability

through User Acceptance Testing (UAT), ensuring that at least 90% of

users rate its ease of use as 4 or higher on a 5-point Likert scale.

180

3. To design and test different prompts for large language model (Google

Gemini), evaluating their effectiveness in advice generation and validate

the outputs against trusted medical sources.

The objective 1 was successfully achieved by implemented a machine learning

model trained on a structured dataset of symptoms and disease mappings.

Several models including Random Forest, Decision Tree, and Support Vector

Machine were evaluated on the validation dataset. Random Forest model

demonstrated the highest accuracy and was therefore selected for final use. The

final trained model achieved an accuracy of approximately 97% on the test

dataset, exceeding the targeted threshold of 85%, thereby validating its

reliability in predicting potential diseases based on user inputs. The final trained

model was integrated into the system.

 For objective 2, the frontend of the system was developed using React

with an emphasis on intuitive navigation, clear visual design and responsiveness.

To evaluate its usability, a User Acceptance Test (UAT) was conducted using a

Google Form survey with a 5-point Likert scale. The results indicated that more

than 90% of participants rated the system ease of use as 4 or above, thus meeting

the target benchmark. This confirms that the web application successfully

achieved its goal of providing a user-friendly interface suitable for both

technical and non-technical users.

 The objective 3 was addressed by conducting a prompt design study

for the Google Gemini large language model. Several prompting strategies,

including zero-shot prompt, role-based prompting, and chain-of-though prompt

were evaluated in terms of accuracy, clarity, completeness and response time.

The role-based prompting was found to deliver the most balanced outputs,

ensuring medically relevant advice while maintaining consistency with establish

guidelines. The generated advice was compared against trusted medical

resource such as WHO and MedlinePlus, to validate the accuracy and reliability.

 In summary, all major objectives outlined in Chapter 1 were

successfully fulfilled. The machine learning model achieved the expected

accuracy level. The user interface confirmed its user-friendliness through User

Acceptance Testing (UAT) results. Combined with Google Gemini's prompt

181

engineering technology, it effectively implemented recommendation generation,

validated by reliable reference materials. These achievements collectively

demonstrate that the project successfully met the established objectives.

8.3 Limitations and Recommendations for Future Works

Although the system operates effectively, several limitation and improvements

or extensions can be made in future development.

Limitation Recommendations for Future Works

Not replace the medical

professional

Integrating the system with healthcare

providers to ensure the predictions and

recommendations are medically validated,

ensuring enhancing trust and reliability.

Furthermore, enhance Natural Language

Processing (NLP) capability to handle

complex sentences structures and diverse

user input.

Not cover rare or new disease By incorporating clinical trial data, the latest

medical literature, and real-time medical

databases to expand the dataset, which

would allow the system to adapt to emerging

health challenges.

Accuracy depends on the

quality and quantity of dataset

Building larger and more diverse datasets,

ideally sourced from multiple healthcare

settings, to enhance the robustness and

generalizability of predictions results.

Integrate trusted medical databases or APIs

such as Infermedia or WHO to provide more

comprehensive advice and add severity-

based guidance.

External factors Designing an adaptive system that can

integrate rapidly public health data during

such scenarios, enabling the model to

182

respond more effectively to novel

conditions. Besides that, can implement

offline functionality for areas with limited

internet access.

Only supports English input

and output

Implement multi-language support for non-

English users, making the system more

inclusive and suitable for a global user base.

By implementing these recommendation and future works, the system can

gradually evolve into a more precise, reliable, and widely adopted medical

support tool, making significant contributions to early disease warning and

preventive healthcare practices.

183

REFERENCES

Ahmed, N et al. (2021) ‘Machine learning based diabetes prediction and
development of smart web application’, International Journal of
Cognitive Computing in Engineering, 2, pp. 229–241. Available at:
https://doi.org/10.1016/j.ijcce.2021.12.001 (Accessed: 29 April 2025).

Alahmar, M. et al. (2023) ‘Naïve Bayes Algorithms’, ResearchGate [Preprint].
Available at: https://doi.org/10.13140/RG.2.2.15378.73921
(Accessed: 29 April 2025).

Ansarullah, S.I. et al. (2022) ‘Significance of visible non-invasive risk attributes
for the initial prediction of heart disease using different machine
learning techniques’, Computational Intelligence and Neuroscience,
2022, 9580896. Available at: https://doi.org/10.1155/2022/9580896
(Accessed: 29 April 2025).

Ashfakul Karim Kausik et al. (2025) ‘Machine learning algorithms for
manufacturing quality assurance: a systematic review of performance
metrics and applications’, Array, pp. 100393. Available at:
https://doi.org/10.1016/j.array.2025.100393 (Accessed: 29 April
2025).

Bansal, M., Goyal, A. and Choudhary, A. (2022) ‘A comparative analysis of K-
Nearest Neighbor, Genetic, Support Vector Machine, Decision Tree,
and Long Short Term Memory algorithms in machine learning’,
Decision Analytics Journal, 3, 100071. Available at:
https://doi.org/10.1016/j.dajour.2022.100071 (Accessed: 29 April
2025).

Berman, J. (2022) ‘Understanding the DASH diet: MedlinePlus Medical
Encyclopedia’, MedlinePlus. Available at:
https://medlineplus.gov/ency/patientinstructions/000784.htm
(Accessed: 5 September 2025).

BERNAMA (2024) ‘Long queues at public hospitals due to high patient load,
staff shortages’, 19 January. Available at:
https://bernama.com/en/news.php?id=2389323 (Accessed: 29 April
2025).

Blockeel, H. et al. (2023) ‘Decision trees: from efficient prediction to
responsible AI’, Frontiers in Artificial Intelligence, 6, 1115069.
Available at: https://doi.org/10.3389/frai.2023.1115069 (Accessed: 29
April 2025).

CDC (2024) ‘Measure your blood pressure’, High Blood Pressure. Available at:
https://www.cdc.gov/high-blood-pressure/measure/index.html
(Accessed: 5 September 2025).

184

Cervantes, J. et al. (2020) ‘A comprehensive survey on support vector machine
classification: applications, challenges and trends’, Neurocomputing,
408, pp. 189–215. Available at:
https://doi.org/10.1016/j.neucom.2019.10.118 (Accessed: 29 April
2025).

Cleveland Clinic (2023) ‘Blood sugar monitoring: Why, how & when to check’,
Cleveland Clinic. Available at:
https://my.clevelandclinic.org/health/treatments/17956-blood-sugar-
monitoring (Accessed: 5 September 2025).

Cleveland Clinic (2025) ‘Chickenpox’, Cleveland Clinic. Available at:
https://my.clevelandclinic.org/health/diseases/4017-chickenpox
(Accessed: 6 September 2025).

Cleveland Clinic (2025) ‘Ocular migraine’, Cleveland Clinic. Available at:
https://my.clevelandclinic.org/health/diseases/24961-ocular-migraine
(Accessed: 6 September 2025).

Gadesha, V. (2025) ‘Prompt engineering techniques’, IBM, 14 July. Available
at: https://www.ibm.com/think/topics/prompt-engineering-techniques
(Accessed: 5 September 2025).

Gadesha, V., Kavlakoglu, E. and Winland, V. (2025) ‘Chain of thoughts’, IBM,
14 July. Available at: https://www.ibm.com/think/topics/chain-of-
thoughts (Accessed: 5 September 2025).

GeeksforGeeks (2020) Differences between Django vs Flask. Available at:
https://www.geeksforgeeks.org/differences-between-django-vs-flask/
(Accessed: 29 April 2025).

GeeksforGeeks (2023a3) Flask tutorial. Available at:
https://www.geeksforgeeks.org/flask-tutorial/ (Accessed: 29 April
2025).

GeeksforGeeks (2023b) Top front-end frameworks in 2023. Available at:
https://www.geeksforgeeks.org/top-front-end-frameworks/ (Accessed:
29 April 2025).

GeeksforGeeks (2025) ‘Role-based prompting’, GeeksforGeeks. Available at:
https://www.geeksforgeeks.org/artificial-intelligence/role-based-
prompting/ (Accessed: 5 September 2025).

Centers for Disease Control and Prevention (2024) Clinical features of malaria.
Available at: https://www.cdc.gov/malaria/hcp/clinical-
features/index.html/ (Accessed: 6 September 2025).

George, A.R. et al. (2024) ‘Multiple disease prediction using machine learning
with chatbot and doctor-patient appointment system’, 2024
International Conference on Sustainable Power and Control

185

Renewable Energies (ICSPCRE), pp. 1–6. Available at:
https://doi.org/10.1109/icspcre62303.2024.10674954 (Accessed: 29
April 2025).

Gilbert, S. et al. (2020) ‘How accurate are digital symptom assessment apps for
suggesting conditions and urgency advice? A clinical vignettes
comparison to GPs’, BMJ Open, 10(12), e040269. Available at:
https://doi.org/10.1136/bmjopen-2020-040269 (Accessed: 29 April
2025).

Gomathy, C. and Naidu, M.A.R. (2021) ‘The prediction of disease using
machine learning’, International Journal of Scientific Research in
Engineering and Management (IJSREM), 5(10), pp. 1–7. Available at:
https://doi.org/10.55083/ijsrem.2021.v05i10.001 (Accessed: 29 April
2025).

Gupta, S., Pal, K. and Choudhury, D. (2024) ‘An experimental analysis of
multiple disease prediction using machine learning algorithms’, in
2024 International Conference on Computing, Information, and
Networks (CICN), pp. 200–206. Available at:
https://doi.org/10.1109/cicn63059.2024.10847453 (Accessed: 29
April 2025).

Harish Rajora et al. (2021) ‘Web based disease prediction and recommender
system’, arXiv [Preprint]. Available at:
https://doi.org/10.48550/arXiv.2106.02813 (Accessed: 29 April 2025).

Hello Doktor (2017) ‘Do alcohol and cigarettes lead to hypertension’, Hello
Doktor. Available at: https://hellodoktor.com/en/alcohol-cigarettes-
lead-hypertension/ (Accessed: 5 September 2025).

Hossain, M.I. (2023) ‘Software Development Life Cycle (SDLC)
methodologies for information systems project management’,
International Journal For Multidisciplinary Research, 5(5), e6223.
Available at: https://doi.org/10.36948/ijfmr.2023.v05i05.6223
(Accessed: 29 April 2025).

Jain, A. (2024) ‘SVM kernels and its type’, Medium, 11 September. Available
at: https://medium.com/@abhishekjainindore24/svm-kernels-and-its-
type-dfc3d5f2dcd8 (Accessed: 29 April 2025).

Jaiman, A. (2024) ‘Prompt engineering’, Medium. Available at:
https://ashishjaiman.medium.com/prompt-engineering-quick-
reference-7801a033823a (Accessed: 5 September 2025).

Kavanagh. et al. (2017). ‘Estimating Hospital-Related Deaths Due to Medical
Error.’ Journal of Patient Safety, 13(1), pp.1–5. Available at:
doi:https://doi.org/10.1097/pts.0000000000000364. (Accessed: 5 May
2025).

186

Kosarkar, N. et al. (2022) ‘Disease prediction using machine learning’, in 2022
10th International Conference on Emerging Trends in Engineering and
Technology - Signal and Information Processing (ICETET-SIP-22),
Nagpur, India, pp. 1–4. Available at: https://doi.org/10.1109/ICETET-
SIP-2254415.2022.9791739 (Accessed: 29 April 2025).

Matzavela, V. and Alepis, E. (2021) ‘Decision tree learning through a predictive
model for student academic performance in intelligent M-Learning
environments’, Computers and Education: Artificial Intelligence, 2,
100035. Available at: https://doi.org/10.1016/j.caeai.2021.100035
(Accessed: 29 April 2025).

Mayo Clinic (2024) ‘Diabetes and exercise: When to monitor your blood sugar’,
Mayo Clinic. Available at: https://www.mayoclinic.org/diseases-
conditions/diabetes/in-depth/diabetes-and-exercise/art-20045697
(Accessed: 5 September 2025).

Mayo Clinic (2025) ‘Type 2 diabetes - diagnosis and treatment’, Mayo Clinic.
Available at: https://www.mayoclinic.org/diseases-conditions/type-2-
diabetes/diagnosis-treatment/drc-20351199 (Accessed: 5 September
2025).

Mayo Clinic (2024). Heart attack symptoms: Know emergency signs. [online]
Mayo Clinic. Available at: https://www.mayoclinic.org/diseases-
conditions/heart-attack/in-depth/heart-attack-symptoms/art-
20047744. (Accessed: 6 September 2025).

Mayo Clinic Staff (2025) ‘Exercise and stress: Get moving to manage stress’,
Mayo Clinic. Available at: https://www.mayoclinic.org/healthy-
lifestyle/stress-management/in-depth/exercise-and-stress/art-
20044469 (Accessed: 5 September 2025).

Mayo Clinic (2023) ‘Migraine – symptoms & causes’, Mayo Clinic. Available
at: https://www.mayoclinic.org/diseases-conditions/migraine-
headache/symptoms-causes/syc-20360201 (Accessed: 6 September
2025).

MedlinePlus (2019) ‘Diabetic diet’, MedlinePlus. Available at:
https://medlineplus.gov/diabeticdiet.html (Accessed: 5 September
2025).

Newman-Toker, D.E. et al. (2023) 'Burden of serious harms from diagnostic
error in the USA,' BMJ Quality & Safety, 33(2), pp. 109–120.
https://doi.org/10.1136/bmjqs-2021-014130 (Accessed: 29 April
2025).

NHS Choices (2020) ‘Medically unexplained symptoms’, NHS. Available at:
https://www.nhs.uk/conditions/medically-unexplained-symptoms/
(Accessed: 5 September 2025).

187

Pajila, P.J.B. et al. (2023) ‘A comprehensive survey on Naive Bayes algorithm:
advantages, limitations and applications’, in 2023 International
Conference on Sustainable Computing and Smart Systems (ICSCSS),
pp. 1497–1502. Available at:
https://doi.org/10.1109/icosec58147.2023.10276274 (Accessed: 29
April 2025).

Reynolds, A. and Mitri, J. (2024) ‘Nutritional recommendations for individuals
with diabetes’, National Institutes of Health (NIH). Available at:
https://www.ncbi.nlm.nih.gov/books/NBK279012/ (Accessed: 5
September 2025).

Rural Health Information Hub (2024). ‘Healthcare access in rural communities.’
[online] Rural Health Information Hub. Available at:
https://www.ruralhealthinfo.org/topics/healthcare-access. (Accessed:
5 May 2025).

Sangeetha, V. et al. (2024) ‘Revolutionizing healthcare: screening system to
identify diseases using machine learning approach’, in 2024
International Conference on Intelligent and Innovative Technologies
in Computing, Electrical and Electronics (IITCEE), pp. 1–6. Available
at: https://doi.org/10.1109/IITCEE59897.2024.10607516 (Accessed:
29 April 2025).

Saravanan, T. et al. (2020) ‘Comparative analysis of software life cycle models’,
in 2020 2nd International Conference on Advances in Computing,
Communication Control and Networking (ICACCCN), pp. 866–871.
Available at: https://doi.org/10.1109/icacccn51052.2020.9362931
(Accessed: 29 April 2025).

Sheldon, R. (2023) ‘What is web development framework (WDF)?’,
SearchContentManagement [online]. Available at:
https://www.techtarget.com/searchcontentmanagement/definition/web
-development-framework-WDF (Accessed: 29 April 2025).

Song, J. et al. (2021) ‘The Random Forest model has the best accuracy among
the four pressure ulcer prediction models using machine learning
algorithms’, Risk Management and Healthcare Policy, 14, pp. 1175–
1187. Available at: https://doi.org/10.2147/rmhp.s297838 (Accessed:
29 April 2025).

Sreedevi, B. et al. (2022) ‘Web based disease prediction and forecasting with
KNN and RNN using Internet of Medical Things’, in 2022
International Conference on Computer, Power and Communications
(ICCPC), pp. 192–198. Available at:
https://doi.org/10.1109/iccpc55978.2022.10072288 (Accessed: 29
April 2025).

Srihith, I.D. et al. (2023) ‘A forest of possibilities: decision trees and beyond’,
Journal of Advancement in Parallel Computing, 6(3), pp. 29–37.

188

Available at: https://doi.org/10.5281/zenodo.8372196 (Accessed: 29
April 2025).

Taunk, K. et al. (2019) ‘A brief review of nearest neighbor algorithm for
learning and classification’, in 2019 International Conference on
Intelligent Computing and Control Systems (ICCS), pp. 1258–1263.
Available at: https://doi.org/10.1109/ICCS45141.2019.9065747
(Accessed: 29 April 2025).

V. Sharmila et al. (2024) Challenges in Information, Communication and
Computing Technology, CRC Press eBooks. Informa. Available at:
https://doi.org/10.1201/9781003559085 (Accessed: 29 April 2025).

W3Schools (2020) ‘React tutorial’. Available at:
https://www.w3schools.com/react/default.asp (Accessed: 29 April
2025).

World Health Organization (2024) ‘Diabetes’, World Health Organization.
Available at: https://www.who.int/news-room/fact-
sheets/detail/diabetes (Accessed: 3 September 2025).

World Health Organization (2021) ‘Healthy diet’, World Health Organization.
Available at: https://www.who.int/initiatives/behealthy/healthy-diet
(Accessed: 5 September 2025).

World Health Organization (2023) ‘Hypertension’, World Health Organization.
Available at: https://www.who.int/news-room/fact-
sheets/detail/hypertension (Accessed: 3 September 2025).

World Health Organization (2024) ‘Noncommunicable diseases’, WHO Fact
Sheets [online]. Available at: https://www.who.int/news-room/fact-
sheets/detail/noncommunicable-diseases (Accessed: 29 April 2025).

Zhu, T. (2020) ‘Analysis on the applicability of the Random Forest’, Journal of
Physics: Conference Series, 1607(1), 012123. Available at:
https://doi.org/10.1088/1742-6596/1607/1/012123 (Accessed: 29
April 2025)

https://doi.org/10.1201/9781003559085

189

8 APPENDICES

Appendix A: Questionnaire for User Acceptance Testing (UAT)

190

191

192

Appendix B: Results for User Acceptance Testing (UAT)

193

194

195

196

Appendix C: Questionnaire for User Interface (UI) Design Feedback

197

198

199

Appendix D: Results for User Interface Design Feedback

200

201

202

	DECLARATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS / ABBREVIATIONS
	LIST OF APPENDICES
	CHAPTER 1
	1 INTRODUCTION
	1.1 General Introduction
	1.2 Importance of the Study
	1.3 Problem Statement
	1.3.1 Long waiting times for patients to get diagnosis
	1.3.2 Increased Risk of Human Errors
	1.3.3 Limited accessibility for remote areas

	1.4 Aim and Objectives
	1.5 Scope and Limitation of the Study
	1.5.1 Limitation

	1.6 Proposed Solution
	1.7 Project Approach

	CHAPTER 2
	2 LITERATURE REVIEW
	2.1 Introduction
	2.2 Research and Comparison Model
	2.2.1 Research Models
	2.2.2 Compare Existing Models
	2.2.2.1 Decision Tree (DT)
	2.2.2.2 Support Vector Machine (SVM)
	2.2.2.3 Random Forest (RF)
	2.2.2.4 Naïve Bayes (NB)
	2.2.2.5 K-Nearest Neighbors (KNN)

	2.2.3 Summary of Comparative Models

	2.3 Compare Existing Web App
	2.3.1 Symptomate
	2.3.2 WebMD Symptom Checker
	2.3.3 Your.MD (Healthily)
	2.3.4 Summary of Existing Applications

	2.4 Evaluation Metrics
	2.4.1 Accuracy
	2.4.2 Sensitivity (Recall)
	2.4.3 Specificity
	2.4.4 Precision
	2.4.5 F1-Score (F-Measure)
	2.4.6 Summary of Evaluation Metrics

	2.5 Dataset Sources
	2.5.1 Summary of Data Source

	2.6 Web Application Framework
	2.6.1 Backend Framework
	2.6.1.1 Flask
	2.6.1.2 Django
	2.6.1.3 Summary of Backend Framework

	2.6.2 Frontend Framework
	2.6.2.1 React.js
	2.6.2.2 Angular
	2.6.2.3 Summary of Frontend Framework

	2.7 Summary

	CHAPTER 3
	3 METHODOLOGY AND WORK PLAN
	3.1 Introduction
	3.2 Software Development Life Cycle (SDLC) Methodology
	3.2.1 Waterfall
	3.2.2 Spiral
	3.2.3 Agile
	3.2.4 Summary of SDLC Methodology

	3.3 Waterfall Methodology
	3.4 Requirements Analysis
	3.5 System Design
	3.6 Implementation Phase
	3.6.1 Machine Learning Model Development
	3.6.1.1 Model Selection
	3.6.1.2 Dataset Selection
	3.6.1.3 Data Preprocessing
	3.6.1.4 Model Building
	3.6.1.5 Model Evaluation

	3.6.2 Web Applications Development
	3.6.3 Integration of ML Model with Web Application

	3.7 System Testing
	3.8 Tools and Technologies
	3.8.1 Flask
	3.8.2 React
	3.8.3 Scikit-learn
	3.8.4 MySQL
	3.8.5 GitHub
	3.8.6 Postman

	3.9 Project Plan
	3.9.1 Work Breakdown Structure (WBS)
	3.9.2 Gantt Chart
	3.9.2.1 Overview of the Disease Prediction Web Application using Machine Learning Timeline
	3.9.2.2 Project Preparatory and Project Initiation Timelines
	3.9.2.3 Literature Review and Methodology Timelines
	3.9.2.4 Requirements Analysis and System Design Timelines
	3.9.2.5 System Development Timelines
	3.9.2.6 System Testing and Closing Timelines

	CHAPTER 4
	4 PROJECT SPECIFICATIONS
	4.1 Introduction
	4.2 Requirements Specification
	4.2.1 Functional Requirements Specification
	4.2.2 Non-functional Requirements Specification

	4.3 Use Case Modelling
	4.3.1 Use Case Diagram
	4.3.2 Use Case Description
	4.3.2.1 Login account
	4.3.2.2 Register account
	4.3.2.3 Input Symptoms
	4.3.2.4 View Predicted Results
	4.3.2.5 View Medical Advice
	4.3.2.6 Store Predicted Results
	4.3.2.7 View Historical Results
	4.3.2.8 View Profile
	4.3.2.9 Update Profile

	4.4 System Flow Diagram
	4.5 Interface Flow Diagram
	4.6 Low Fidelity Prototype
	4.6.1 Welcome Page
	4.6.2 Login Page
	4.6.3 Sign Up Page
	4.6.4 Home Page
	4.6.5 Select Input Method Page
	4.6.6 Dropdown List Input Symptoms Page
	4.6.7 Free Text Input Symptoms Page
	4.6.8 Predicted Results Page
	4.6.9 View Medical Advice Page
	4.6.10 View Historical Results Page
	4.6.11 Profile Page
	4.6.12 Update Profile Page
	4.6.13 Change Password Page

	4.7 Preliminary Results
	4.7.1 Model Performance
	4.7.2 Dropdown List Input
	4.7.3 Free-Text Input

	CHAPTER 5
	5 SYSTEM DESIGN
	5.1 Introduction
	5.2 System Architecture Design
	5.3 Data Model Design
	5.3.1 Entity Relationship Diagram (ERD)
	5.3.2 Data Dictionary

	5.4 User Interface Design
	5.4.1 Welcome Page
	5.4.2 Login Page
	5.4.3 Sign Up Page
	5.4.4 Home Page
	5.4.5 Select Input Method Page
	5.4.6 Dropdown List Input Symptoms Page
	5.4.7 Free Text Input Symptoms Page
	5.4.8 Predicted Results Page
	5.4.9 View Medical Advice Page
	5.4.10 History Page
	5.4.11 Profile Page
	5.4.12 Update Profile Page
	5.4.13 Change Password Page

	5.5 Prompt Design Study
	5.5.1 Prompt Styles
	5.5.1.1 Zero-shot Prompting
	5.5.1.2 Role-based Prompting
	5.5.1.3 Chain-of-Thought (CoT) Prompting

	5.5.2 Prompt Testing
	5.5.2.1 Prompt Testing on Diabetes
	5.5.2.1.1 Zero-shot Prompting
	5.5.2.1.2 Role-based Prompting
	5.5.2.1.3 Chain-of-Thought (CoT) Prompting
	5.5.2.1.4 Summary of Diabetes Results

	5.5.2.2 Prompt Testing on Hypertension
	5.5.2.2.1 Zero-shot Prompting
	5.5.2.2.2 Role-based Prompting
	5.5.2.2.3 Chain-of-Thought (CoT) Prompting
	5.5.2.2.4 Summary of Hypertension Results

	5.5.3 Comparison and Discussion
	5.5.3.1 Zero-shot Prompting
	5.5.3.2 Role-based Prompting
	5.5.3.3 Chain-of-Thought (CoT) Prompting

	5.5.4 Summary

	CHAPTER 6
	6 SYSTEM IMPLEMENTATION
	6.1 Introduction
	6.2 Machine Learning Model Development
	6.2.1 Data Preprocessing
	6.2.1.1 Handling Missing Value
	6.2.1.2 Categorical Label Encoding
	6.2.1.3 Duplicate Removal
	6.2.1.4 Dataset Splitting

	6.2.2 Model Training
	6.2.3 Model Optimization
	6.2.3.1 Model Optimization Results

	6.2.4 Model Evaluation

	6.3 Web Application Development
	6.3.1 Frontend Development
	6.3.1.1 User Authentication and JWT Handling
	6.3.1.2 Input Validation
	6.3.1.2.1 Register Form Validation
	6.3.1.2.2 Login Form Validation
	6.3.1.2.3 Dropdown Symptom Selection Validation
	6.3.1.2.4 Free Text Symptoms Input Validation
	6.3.1.2.5 Update Profile Form Validation
	6.3.1.2.6 Change Password Form Validation

	6.3.1.3 User Experience (UX) enhancements
	6.3.1.3.1 Login and Register
	6.3.1.3.2 Dropdown Symptom Selection
	6.3.1.3.3 Free Text Symptom Input
	6.3.1.3.4 Update Profile
	6.3.1.3.5 Change Password
	6.3.1.3.6 Result
	6.3.1.3.7 General Medical Advice
	6.3.1.3.8 History

	6.4 Backend Development
	6.4.1 Project Architecture
	6.4.1.1 JWT Decorator
	6.4.1.2 Database Integration
	6.4.1.3 Machine Learning Integration

	6.4.2 API Endpoints
	6.4.2.1 User Authentication and Profile Management
	6.4.2.2 Symptom and Disease Management
	6.4.2.3 Medical Advice Generation
	6.4.2.4 Prediction History
	6.4.2.5 API Endpoint Overview

	6.4.3 Implementation of Google Gemini API
	6.4.3.1 Prompt Engineering and Structured Output

	CHAPTER 7
	7 SYSTEM TESTING
	7.1 Introduction
	7.2 Unit Testing
	7.2.1 Registration Feature
	7.2.2 Login Feature
	7.2.3 Profile
	7.2.4 Update Profile Feature
	7.2.5 Change Password Feature
	7.2.6 Select Input Method Feature
	7.2.7 Dropdown Input Feature
	7.2.8 Free Text Feature
	7.2.9 Prediction Result
	7.2.10 General Medical Advice
	7.2.11 Historical

	7.3 Integration Testing
	7.4 User Acceptance Testing (UAT)
	7.4.1 User Acceptance Testing Result

	7.5 User Interface Design Feedback

	CHAPTER 8
	8 CONCLUSION AND RECOMMENDATION
	8.1 Introduction
	8.2 Achievement of Objectives
	8.3 Limitations and Recommendations for Future Works

	REFERENCES
	8 APPENDICES
	Appendix B: Results for User Acceptance Testing (UAT)

