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ABSTRACT 

 

In recent years, the prevalence of diseases has increased and the demand for 

quick diagnosis tools is growing. This has highlighted the need for machine 

learning-based web applications for disease predictions is important in the 

healthcare system for early diagnosis. This project presents the design and 

development of a web-based disease prediction application that employs 

machine learning and natural language processing technologies to assist users 

in identifying potential health conditions. The motivation for this project is to 

improving access to early diagnosis, reduce the burden on medical staff and 

getting general medical advice anywhere and anytime. The methodology 

involved develop and train machine learning models on Symptom-Disease 

Prediction Dataset (SDPD) to achieve precise predictions, integrate the model 

into web application built on Flask and React, and employ Google Gemini to 

generate general medical recommendations and extract symptoms. System 

testing was conducted through multiple testing methods, including unit testing, 

integration testing, user acceptance testing (UAT) and user interface design 

feedback collected through Google Forms. The results indicate that the machine 

learning model achieved a prediction accuracy at approximately 97%. User 

acceptance testing validated that over 90% of users rated the usability and ease 

of use of the system at 4 or higher on a 5-point Likert scale. The study concluded 

that the system successfully achieved its objectives, delivering a practical, user-

friendly, and intelligent healthcare support system. However, it also 

acknowledged limitations such as dependence on dataset quality, lack of 

coverage for rare or new diseases, and multilingual support. Future work will 

focus on expanding dataset variety, integrating multilingual support, and 

incorporating of contextual health data to further enhance prediction accuracy 

and precision. 

 

Keywords: Disease prediction, Machine Learning, Web Application, Large 

Language model, Natural Language Processing 

 

Subject Area: QA76 – Computer Science 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

The World Health Organization (WHO) states that the chronic diseases such as 

diabetes and cardiovascular account for 74% of global deaths annually, but 

many chronic diseases can be prevented through early detection (WHO, 2024). 

Nowadays, people are more concerned about health after the breakdown of a 

pandemic. Rapid advances in technology and artificial intelligence (AI) are 

having a significant impact on the healthcare industry. Traditional diagnosis 

processes in the healthcare domain are time-consuming and costly. As there are 

many different diseases worldwide, the healthcare staff may have some 

limitations in their skills and knowledge of certain diseases. This may limit their 

ability to make early diagnoses of some particular diseases. However, machine 

learning-based healthcare systems may not have these limitations and can 

become a powerful tool for early diagnosis.   

 

 Machine learning (ML) is a subfield of Artificial Intelligence (AI) that 

focuses on allowing computers and machines to mimic human learning, carry 

out activities autonomously, and enhance the performance and accuracy of 

predictions through past and large datasets (IBM, 2021). Machine learning is 

used to train machines to handle complex data more efficiently and effectively 

and provide accurate results. There are two phases of the machine learning 

algorithm, which are Training and Testing (Sharmila et al., 2024). Healthcare 

issues can be effectively addressed using Machine Learning Technologies. 

Through the use of Machine Learning, many time-consuming tasks can now be 

completed quickly and with minimal effort and also helps to reduce human 

errors. 

  

 Different diseases may have some similar or different symptoms. 

These overlapping symptoms may confuse medical professionals in the 

diagnosis process. Therefore, the disease prediction system can use machine 

learning to predict diseases based on patient symptoms.  This can assist medical 
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staff in making a diagnosis and reduce human errors. There were few existing 

applications that can predict disease based on a patient’s symptoms and other 

features. Unlike WebMD, this system focuses on provide medical advice based 

on the potential diseases. This project focuses on developing a disease 

prediction web application by using machine learning. By using symptoms 

inputted or selected by users, the system can predict potential illnesses and 

provide recommendations for the users. This application can enhance early 

detection and help medical professionals and individuals in making decisions 

about their health. 

 

1.2 Importance of the Study 

In recent years, the prevalence of diseases has increased and the demand for 

quick diagnosis tools is growing. This has highlighted the need for machine 

learning-based web applications for disease predictions is important in the 

healthcare system for early diagnosis. This study focuses on developing a 

disease prediction web application by using machine learning. The web 

application analyses the user-input symptoms and diagnoses the potential 

disease for the user. The users can seek medical advice and recommendations 

earlier by analysing the symptoms early.  

 

 In addition, the disease prediction system can automatically diagnose 

the disease and reduce the workload of medical staff. This saves the time of 

healthcare professionals in diagnosing the disease one by one, therefore, they 

have more time to concentrate on some complex cases. This can make the 

diagnostic process more efficient and simpler. Besides that, it can assist 

healthcare professionals to make the diagnosis and reduce human errors. This is 

due to the reason that the symptoms of many diseases may overlap, which can 

confuse the medical professionals and prevent them from making a correct 

judgment based on the symptoms. 

 

 Furthermore, healthcare personnel may not have skills in particular 

areas, which will make it difficult for them to make decisions about the diseases. 

Therefore, the disease prediction system can assist both healthcare staff and 

individuals in making well-informed choices regarding their health. This study 
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focuses on developing a web application for predicting diseases by utilizing 

machine learning techniques. By using the symptoms entered by users, the 

system can predict potential diseases and provide some recommendations to the 

users. This application aims at early diagnosis of diseases, reduces diagnostic 

errors, and can help users to make a correct judgment about illnesses. Moreover, 

the system can be used as a preliminary diagnosis tool to guide the users to seek 

appropriate medical advice and medical attention. 

 

1.3 Problem Statement 

In the past few years, disease diagnosis has frequently been dependent on the 

experience and knowledge of medical experts, which may occasionally result in 

delays or incorrect diagnoses. Moreover, some individuals who live in distant 

areas or have limited access to healthcare facilities may find it difficult to get 

medical services. Therefore, the disease prediction system can assist in early 

diagnosis based on symptoms entered by users. There were some problems in 

the current healthcare system, including: 

 

1.3.1 Long waiting times for patients to get diagnosis 

 

One of the biggest problems faced by current healthcare systems is the long 

waiting times for patients to receive a diagnosis. According to Datuk Dr N. 

Marimuthu, the waiting time for patients in public hospitals is up to 3 hours and 

should be reduced to 30 minutes as in the public health clinics (BERNAME, 

2024). This is because of the large number of patients and limited availability 

of medical staff. As a result, some patients may choose to self-medicate rather 

than wait for a professional diagnosis, delaying proper treatment since the 

treatment process often involves long waiting times. Besides that, these delays 

may also lead to worsening conditions for patients, particularly those with 

chronic illnesses. According to Newman-Toker et al. (2024), the diagnostic 

errors including misdiagnosis and delayed diagnosis resulted in 795,000 serious 

harms. These included 371,000 deaths and 424,000 permanent disabilities, 

underscoring the severity of the human toll. The machine learning-based disease 

prediction system can prevent this issue by providing users with an initial 
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assessment of a user before visiting a healthcare facility and providing 

assistance to medical staff to improve diagnostic accuracy. 

 

1.3.2 Increased Risk of Human Errors  

Furthermore, human error is inevitable in the healthcare system. Although 

healthcare professionals have specialized knowledge and experience, they may 

also make some mistakes when diagnosing the disease because the symptoms 

of the patients may overlap with those of other diseases. This may result in 

misdiagnosis, leading to incorrect treatments of the patients and potentially 

causing severe complications. About 200,000 patients die each year from 

preventable medical errors (Kavanagh et al., 2017). Moreover, some of incorrect 

patients’ records may also kept in the healthcare system due to human mistakes. 

This may mislead the doctors when diagnosing the disease for patients. Utilizing 

machine learning models can minimize the likelihood of errors and increase the 

accuracy of the disease predictions by using large datasets of medical records. 

 

1.3.3 Limited accessibility for remote areas  

 

Due to the inadequate numbers of hospitals and doctors in some remote or rural 

areas, people living there have limited access to healthcare services depending 

on their region. If they want to have access to comprehensive and refined 

healthcare services and facilities, they may have to travel to other regions or 

countries, which is time-consuming and costly. Rural residents often face 

barriers to health care that limit their ability to access needed medical services 

(Rural Health Information Hub, 2024). If the patients suffer from serious 

diseases, they may not be able to get timely diagnosis in rural areas. The disease 

prediction system can help to prediction their disease early based on the 

symptoms and can give some medical advice for them. This can lower the 

chance of serious complications and provide access to the basic healthcare 

information. In addition, the system can guide individuals to seek medical 

attention when they may be suffering from some disease. 
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1.4 Aim and Objectives 

The primary aim of this project is to develop a web-based application that can 

allow users to predict their disease based on user-inputted or selected symptoms. 

This system is based on machine learning and the model are trained with the 

selected dataset to ensure the accuracy of the results. The selected dataset is 

Symptom-Disease Prediction Dataset (SDPD), which is sourced from Mendeley. 

Besides that, the disease prediction system will serve as a tool for early 

diagnosis of disease, helping users to know the potential disease they may be 

suffering from based on their symptoms when they feel unwell. Moreover, the 

system will provide users with possible solutions for further action, better 

understanding, or medical treatment after a diagnosis of a disease they may have. 

The disease prediction project is designed to accomplish the following 

objectives:  

 

1. To develop and train a machine learning model capable of predicting 

specific diseases, achieving a prediction accuracy of 85% or higher on 

the test dataset. 

2. To design a user-friendly web application and evaluate its usability 

through User Acceptance Testing (UAT), ensuring that at least 90% of 

users rate its ease of use as 4 or higher on a 5-point Likert scale. 

3. To design and test different prompts for large language model (Google 

Gemini), evaluating their effectiveness in advice generation and validate 

the outputs against trusted medical sources. 

 

1.5 Scope and Limitation of the Study 

This project aims to develop a web application to predict potential diseases for 

users, which also provides medical advice and recommendations on the 

potential diseases users may have and allows users to input their symptoms for 

prediction. The scope of this project is including: 

i. User-friendly web interface 

A simple and responsive web interface where users can enter their 

symptoms for prediction. In addition, provides two options for users 

to enter the symptoms which are a predefined dropdown list of 

symptoms or manually enter symptoms via a free-text field. 
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ii. Machine learning model training 

A trained machine learning model is able to analyse the user input 

or selected input symptoms and predict the potential diseases users 

may have. The model utilizes Random Forests algorithm for the 

prediction process.  

iii. Server-side applications 

A server-side application that can process user inputs, interacts with 

the machine learning models and returns the predictions to the user. 

Implement APIs to handle the data flow between the front end and 

the machine learning model.  

iv. Database to store user information 

Develop a database for storing the user history such as user inputs 

and predicted results. This can help user to track their symptoms and 

potential diseases over time. 

v. Included Diseases:  

There are 41 diseases included in the system, as listed in Table 1.1 

and Table 1.2 presents the 131 symptoms supported by the system.  

 

Table 1.1: List of diseases included in the system 

Fungal 

Infection 

Allergy 

 

GERD 

 

Chronic 

Cholestasi

s 

Drug 

Reaction 

AIDS Diabetes Gastroenteri

tis 

Bronchial 

Asthma 

Hypertens

ion 

Migraine Peptic 

Ulcer 

Disease 

Cervical 

Spondylosis 

Paralysis 

(brain 

hemorrhag

e) 

Jaundice 

Malaria Chickenpox Dengue Typhoid Hepatitis 

A 

Hepatitis 

B 

Hepatitis C Hepatitis D Hepatitis 

E 

Alcoholic 

Hepatitis 
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Tubercul

osis 

Common 

Cold 

Pneumonia Dimorphic 

Hemmorh

oids 

(piles) 

Heart 

Attack 

Varicose 

Veins 

Hypothyroi

dism 

Hyperthyroi

dism  

Hypoglyce

mia 

Osteoarth

ritis 

Arthritis Vertigo Acne Urinary 

Tract 

Infection 

Psoriasis 

Impetigo     

 

Table 1.2: List of the 132 symptoms supported by the system. 

Itching Skin rash Nodal 

skin 

eruptions 

Continuou

s sneezing 

Shiveri

ng 

Chills 

Joint 

pain 

Stomach 

pain 

Acidity Ulcers on 

tongue 

Muscle 

wastin

g 

Vomitin

g 

Burning 

micturit

ion 

Spotting 

urination 

Fatigue  Weight 

gain 

Anxiet

y  

 

Cold 

hands 

and feets 

Mood 

swings 

Weight 

loss 

Restlessn

ess  

Lethargy  Patche

s in 

throat 

Irregular 

sugar 

level 

Cough  High 

fever 

Sunken 

eyes 

Breathless

ness  

Sweati

ng  

Dehydrat

ion  

Indigest

ion  

Headache  Yellowis

h skin 

Dark urine Nausea  Loss of 

appetite 

Pain 

behind 

the eyes 

Back pain Constipat

ion  

 

Abdomina

l pain 

Diarrh

oea  

Mild 

fever 
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Yellow 

urine 

Yellowin

g of eyes 

Acute 

liver 

failure 

Fluid 

overload 

Swelli

ng of 

stomac

h 

Swelled 

lymph 

nodes 

Malaise  Blurred 

and 

distorted 

vision 

phlegm Throat 

irritation 

Rednes

s of 

eyes 

Sinus 

pressure 

Runny 

nose 

Congesti

on  

Chest 

pain 

Weakness 

in limbs 

Fast 

heart 

rate 

Pain 

during 

bowel 

moveme

nts 

 

Pain in 

anal 

region 

Bloody 

stool 

Irritation 

in anus 

Neck pain Dizzin

ess  

Cramps  

Bruisin

g  

Obesity  Swollen 

legs 

Swollen 

blood 

vessels 

Puffy 

face 

and 

eyes 

Enlarged 

thyroid 

Brittle 

nails 

Swollen 

extremeti

es 

Excessiv

e hunger 

Extra 

marital 

contacts 

Drying 

and 

tinglin

g lips 

Slurred 

speech 

Knee 

pain 

Hip joint 

pain 

Muscle 

weakness 

Stiff neck Swelli

ng 

joints 

Moveme

nt 

stiffness 

Spinnin

g 

movem

ents 

Loss of 

balance 

Unsteadi

ness  

Weakness 

of one 

body side 

Loss of 

smell 

Bladder 

discomfo

rt 
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Foul 

smell of 

urine 

Continuo

us feel of 

urine 

Passage 

of gases 

Internal 

itching 

Toxic 

look 

(typhos

) 

Depressi

on  

Irritabili

ty  

Muscle 

pain  

Altered 

sensoriu

m 

Red spots 

over body 

Belly 

pain 

Abnorma

l 

menstrua

tion 

Dischro

mic 

patches 

Watering 

from eyes 

Increased 

appetite 

 

Polyuria  Family 

history 

Mucoid 

sputum 

Rusty 

sputum 

Lack of 

concentra

tion 

Visual 

disturban

ces 

Receiving 

blood 

transfusio

n 

 

Receiv

ing 

unsteril

e 

injectio

ns 

Coma  

Stomac

h 

bleedin

g 

Distentio

n of 

abdomen 

History 

of 

alcohol 

consump

tion 

Blood in 

sputum 

Promin

ent 

veins 

on calf 

Palpitati

ons 

Painful 

walking 

Pus filled 

pimples 

Blackhea

ds  

Scurring  Skin 

peeling 

Silver 

like 

dusting 

Small 

dents in 

nails 

Inflamma

tory nails 

Blister  Red sore 

around 

nose 

Yellow 

crust 

ooze 
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There also some limitations in this project, including: 

 

1.5.1 Limitation 

i. Not replace the medical professional 

This system is intended only as an assistant for medical professionals 

or individuals in the early diagnosis of the potential disease and does 

not replace the medical professional for given medical treatment. 

The system is only used for preliminary evaluation.  

ii. Not cover rare or new disease 

The system does not cover all the diseases, especially is some rare 

or new diseases. The symptoms and conditions of the rare or new 

disease may not be included in the training dataset, so it may be 

unable to detect the disease based on the symptoms. 

iii. Accuracy depends on the quality and quantity of dataset 

The reliability of the disease prediction model depends on the dataset, 

therefore the accuracy of the prediction results depends on the 

correctness and size of the dataset. If the dataset is limited and 

incorrect, the accuracy of predicted results will be low and 

inefficient. 

iv. External factors 

There may be some unpredictable factors to be considered when use 

the disease prediction system such as the breakdown of pandemics. 

The pandemic outbreaks may not have enough datasets to train the 

model to predict new pandemics disease in a short period of time. 

v. Only supports English input and output 

The system only accepts and generates the prediction results in 

English. This may limit the use of the system for non-English users 

and reduce the usability of the system in multilingual environment. 

The non-English users may require external translation tools to use 

the system, which may affect the accuracy and user experience.  
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1.6 Proposed Solution 

 

The aim of this project is to develop a disease prediction web application using 

machine learning based on user-inputted symptoms to address the problems 

outlined in the problem statement. The features of the web application include 

entering symptoms, accessing potential disease outcomes, medical advice, 

personal profiles and updating personal profiles. The system enables the user to 

input their symptoms through two different methods. The first is to select from 

a predefined list of 132 symptoms and the second is to enter symptoms in free-

text format and extracted the symptoms using large language model. The user 

is free to choose the symptom input option.  

A Random Forest model is being trained on selected datasets to predict 

potential outcomes. In addition, the user can also track their symptoms over time 

by viewing the historical data. By using Large Language Model, the system also 

provides actionable information such as self-care tips or general medical advice 

for different diseases, enabling users can take appropriate action before seeking 

medical attention. By providing the initial assessment, the web application aims 

to reduce waiting times and human errors, assist medical staff in prioritizing 

cases and provide early diagnosis for patients in rural areas with high rates of 

diagnostic delay. The Figure 1.1 shows the system design overview. 

 

 
Figure 1.1: System Design Overview 
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1.7 Project Approach 

This project is carried out in several structured phases to ensure systematic 

development process. The Software Development Life Cycle used in this 

project is Waterfall Methodology. There are 6 phases in the Waterfall 

Methodology. The first phase is project requirements analysis. This phase 

involves gathering project requirements by analysing existing similar disease 

prediction web applications. The second phase is system design. This phase 

involves planning the overall system structure and outlining the data flow of the 

project. In addition, the development of machine learning models includes 

dataset selection, data preprocessing, training the model, evaluating the model, 

and then integrating it with the web application. The fourth phase involves 

designing and developing a responsive web application using React for the 

frontend and Flask for the backend. The trained machine learning model will be 

integrated with the web application to process user inputs and return predicted 

results. In the subsequent phase, the system will be tested including 

functionality testing, usability testing, user acceptance testing and so on. Figure 

1.2 shows the Waterfall Methodology used for this project. The Waterfall is 

suitable for progress tracking and deliverables. This helps in estimating the 

project timeline and budget well. 

 
Figure 1.2: Waterfall Methodology 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

 

The demand for disease prediction application in healthcare field is increasing, 

and the disease prediction web application useful for early diagnose of the 

potential diseases. By utilizing the disease prediction system, can reduce the 

reliance on the expert analysis and provide advance method to identifying the 

disease based on the symptoms. This chapter presented a depth review of related 

work to disease prediction using machine learning, comparisons of different 

models, comparisons of existing web applications of disease prediction, and get 

suitable evaluation metrics for assessing predictive models.  

 

2.2 Research and Comparison Model 

Machine learning has been utilized extensively for early diagnosis in healthcare. 

This part focuses on some researching and comparing the different models.  

 

2.2.1 Research Models 

Sangeetha et al. (2024)  proposed a screening system to identify the disease 

based on user-inputted symptoms by using 3 models which are Decision Tree, 

Random Forest and Naive Bayes. Among these models, the decision tree has 

the highest accuracy, which is 97.53%, followed by Random Forest at 95.66% 

and Naïve Bayes is 93.75%. Based on the performance, the decision tree 

algorithm was chosen to integrate with the user interface in their system.  

 In addition, Ansarullah et al. (2022) proposed a risk prediction model 

that can initially detect the heart disease by using multiple machine learning 

techniques. The features used in this study contain 12 attributes entered by the 

user for early prediction of heart disease, such as demographical inputs and 

behaviour inputs. There are 5 models used by authors which are K-Nearest 

Neighbor, Naïve Bayes, Decision Tree, Random Forest, and Support Vector 

Machine. In this paper, the risk models were evaluated by different measures. 

Based on various performance metrics, the Random Forest model has the best 
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performance among these models with an accuracy of 84%, a sensitivity of 85%, 

a specificity of 83%, an error rate of only 13%, and a precision of 85%.  

 Furthermore, George et al. (2024) proposed a system that utilizes 

machine learning to provide disease predictions, complemented by chatbot, and 

doctor-patient appointment system. In this paper, the authors predicting 4 

diseases which are heart disease, kidney disease, brain tumour and breast cancer. 

The features used are age, blood pressure, cholesterol level, image of tumour 

and mammographic image analysis. The algorithms used in the prediction are 

Support Vector Machine (SVM), Random Forest, K-Nearest Neighbor (KNN) 

and Convolutional Neural Networks (CNN). For kidney disease and heart 

disease diagnosis, the Random Forest performed the best performance with 

achieving accuracy rates of 97.25% and 98.53% respectively. In contrast, the 

Convolutional Neural Networks (CNN) performed well in brain conditions and 

breast conditions with accuracy of 98.17% and 95.13% respectively. This means 

that different diseases required tailored algorithm to achieve the high accuracy 

in prediction.  

 Moreover, Rajora et al. (2021) presented a web-based disease 

prediction system by using machine learning. The users can select the symptoms 

from the given list for disease diagnosis. The authors also proposed an ensemble 

voting algorithm to provide the best disease prediction results. The selected 

algorithms include K-Nearest Neighbor (KNN), Naïve Bayes and Random 

Forest which combined together as an ensemble approach. As a result, the 

Random Forest achieved 93.65% accuracy, Naïve Bayes is 84.02% and KNN is 

93.53%. For the ensemble model, it fitted to the best model, which is Random 

Forest, 93.65%. 

 In addition, Gupta et al. (2024), used machine learning classifiers 

including Random Forest, K-Nearest Neighbour, Logistic Regression (LR), 

Decision Tree, Multi-Layer Perceptron (MLP), Support Vector Machine and 

AdaBoost to find out the best model to implement in real-life. There are 4 

diseases including in this disease prediction research, which are asthma, 

diabetes, liver disease, and kidney disease. This research paper used 4 different 

datasets to predict different disease and observed the performance metrics of 

different models. In the experiment results, the Random Forest performed best 
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on each dataset with an average accuracy score of 95.8% for kidney disease, 

87.83% for diabetes, 95.83% for asthma disease and 99.68% for liver disease.  

 

Table 2.1: Related Work 

Title Author, 

year 

ML 

algorithms 

used 

Dataset Evaluation 

Metrics  

Revolutionizing 

Healthcare: 

Screening 

system to 

identify 

Diseases using 

Machine 

learning 

approach. 

Sangeetha. 

V et al. 

(2024) 

Decision 

Tree, Naive 

Bayes, 

Random 

Forest  

 

Columbia 

website (132 

symptoms and 

40 diseases) 

Accuracy for 

DT = 97.53% 

Accuracy for 

Random 

Forest = 

95.66%  

Accuracy for 

Naïve Bayes 

= 93.75% 

Significance of 

Visible Non-

Invasive Risk 

Attributes for 

the Initial 

Prediction of 

Heart Disease 

Using Different 

Machine 

Learning 

Techniques. 

Ansarullah 

et al. 

(2022) 

Decision 

Tree, K-

Nearest 

Neighbor, 

Support 

Vector 

Machine, 

Random 

Forest and 

Naïve Bayes. 

collected from 

different 

heterogeneous 

data sources 

of Kashmir 

(India) 

through 

quantitative 

data 

collection 

methods 

(5776 

records) 

Random 

Forest - 

accuracy of 

84%, a 

sensitivity of 

85%, a 

specificity of 

83%, an error 

rate of only 

13%, and a 

precision of 

85%. 

Multiple 

Disease 

Prediction 

Using Machine 

George et 

al. (2024) 

Random 

Forest, 

Support 

Vector 

4 different 

datasets 

(Heart disease 

dataset, brain 

Random 

Forest 

achieving 

accuracy rates 
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Learning with 

Chatbot and 

Doctor-Patient 

Appointment 

System. 

Machine 

(SVM), K-

Nearest 

Neighbor 

(KNN) and 

Convolutional 

Neural 

Networks 

(CNN) 

tumor dataset, 

breast cancer 

dataset, 

Chronic 

Kidney 

Disease 

(CKD) 

dataset) 

of 97.25% 

and 98.53% 

respectively. 

Convolutional 

Neural 

Networks 

(CNN) in 

brain 

conditions 

and breast 

conditions 

with accuracy 

of 98.17% 

and 95.13% 

respectively. 

Web based 

disease 

prediction and 

recommender 

system 

Rajora, H 

et al. 

(2021) 

Naïve Bayes, 

Random 

Forest and K-

Nearest 

Neighbor 

dataset from 

National 

Centre of 

Disease 

Control 

(NCDC) 

(4921 unique 

entries)  

 

Accuracy of 

Random 

Forest is 

93.65%, 

Naïve Bayes 

is 84.02% and 

KNN is 

93.53%. 

An 

Experimental 

Analysis of 

Multiple 

Disease 

Prediction 

Using Machine 

Learning 

Algorithms 

Gupta et 

al. (2024) 

Random 

Forest, 

Logistic 

Regression 

(LR), 

Decision 

Tree, Multi-

Layer 

Perceptron 

4 different 

datasets 

(Diabetes, 

Kidney 

Disease, Liver 

Disease and 

Asthma) 

Random 

Forest -

accuracy 

score of 

95.8% for 

kidney 

disease, 

87.83% for 

diabetes, 
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(MLP), 

AdaBoost, 

Support 

Vector 

Machine and 

K-Nearest 

Neighbour 

95.83% for 

asthma 

disease and 

99.68% for 

liver disease. 

 

 

2.2.2 Compare Existing Models 

There are various algorithms have been used to be train, and each of them having 

its advantages and limitations. There are 5 Machine Learning models are 

commonly used for disease prediction: 

 

2.2.2.1 Decision Tree (DT) 

Decision Tree is one of the most commonly used for supervised learning 

algorithm, used for both regression and classification tasks (Matzavela and 

Alepis, 2021). Moreover, Decision Tree is a tree-like structured classifier that 

starts with a single node representing the attribute tests and branch representing 

the attribute values and the leaf nodes will represent the possible outcomes 

(Kosarkar et al., 2022). Figure 2.1 shows the example of a Decision Tree and 

how the DT divide branches and produce possible results. 

 The strengths of Decision Tree are easy to use and can be learned 

quickly (Blockeel et al., 2023). The training time complexity for Decision Tree 

is O(n*log(n)*m). Moreover, it is capable of processing both qualitative and 

quantitative data types. However, Decision Tree usually performs worse when 

learning from the raw data such as text or sound. This may affect the prediction 

process since the features for prediction have to be constructed. Decision Tree 

also easily overfitted and sensitive to the small data changes and lead to totally 

different trees (Decision Tree Method: Applications, Pros & Cons, Examples, 

n.d.).  
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Figure 2.1: Decision Tree Structure Diagram. 

 

2.2.2.2 Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a type of supervised machine learning 

method commonly applied to classification tasks. (Dey et al., 2018). Vapnik 

introduced SVM as a kernel-driven model designed to handle both classification 

and regression problems in machine learning. (Cervantes et al., 2020). Kernal 

is a function that maps data to a high-dimensional space, enabling SVM to 

process non-linearly separable data (Jain, 2024). There have two types of SVM 

which are linear SVM and non-linear SVM. Figure 2.2 shows an example of a 

non-linear SVM as a kernel output in a 3-dimensional feature space. 

 The advantages of SVM are effectiveness in handling high-

dimensional space, therefore making it well-suited for datasets with a wide 

range of features. SVM is capable of managing both linear and non-linear 

datasets by utilizing kernel functions. According to Gomathy et. al., the 

accuracy score of SVM is 96.49% in predicting the diseases from patient 

symptoms. However, the computational complexity of training an SVM 

typically ranges from O(n²) to O(n³), where n represents the size of the training 

dataset. This show that SVM may be inefficient for managing large-scale 

datasets since it may require more time for training.  
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Figure 2.2: Support Vector Machine (SVM) Diagram. 

 

2.2.2.3 Random Forest (RF) 

Random Forest (RF) is a type of supervised learning algorithm and is an 

ensemble classifier that build a group of separate and non-identical decision tree 

based on the idea of randomization (Ren et al., 2017). According to Srihith et 

al. (2023), Random Forest employs an ensemble approach by generating 

numerous decision trees and combine their output to create more reliable and 

precise prediction model. They are widely used for regression and classification 

task.  Figure 2.3 show the example of Random Forest (RF) and explains the 

working of the Random Forest (RF) algorithm. 

 RF reduces the overfitting relative to use a single decision tree and 

provides feature importance score to determine which features are more 

impactful (Srihith et al., 2023). Furthermore, RF can handle large numbers of 

datasets with noise and high dimensionality and overcome the missing value 

imputation (Zhu, 2020). Zhu (2020) also claimed that the weaknesses of RF are 

difficult to interpretable result as a single decision tree and difficulty in dealing 

with high-cardinality categorical variables. According to Song et al. (2021), the 

accuracy of RF is 99.88% in diagnosis pressure ulcer from 19 variables, which 

is the best prediction performance compared to Decision Tree, SVM, and Naïve 

Bayes.  

 

Hyperplane 
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Figure 2.3: Random Forest (RF) algorithm diagram. 

 

2.2.2.4 Naïve Bayes (NB) 

Naïve Bayes is a classification technique that operates under the assumption that 

each value is independent of the other values. This means that a particular 

feature in a class is not correlated with any other feature (Kosarkar et al., 2022). 

It is mainly used in text classification. It computes the likelihood of each class 

based on the observed features and selects the highest probability of the class as 

the prediction when given new data point (Alahmar and et al., 2023). 

 The advantages of NB are ease of use and efficiency. NB can work 

well with the high-dimensional data such as text classification without causing 

a large computational burden (Beslin Pajila et al., 2023). The limitations of NB 

are that the feature independence assumption rarely holds in real world data and 

its effects precision. This could produce undesirable results, especially if the 

attributes are closely linked or interact with each other in complicated and 

intricate ways (Beslin Pajila et al., 2023). For instance, the symptoms for cough 

and fever are often correlated in disease prediction.  
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2.2.2.5 K-Nearest Neighbors (KNN) 

K-Nearest Neighbors (KNN) is a straightforward and effective algorithm that 

classifies the new data points by comparing them to the most similar classes as 

known as nearest neighbors (N) (Harish et al., 2021). The new data can be 

quickly categorized into appropriate classes when it first appears by using the 

KNN technique. KNN also known as a lazy learning algorithm because it stores 

the entire training dataset and perform computations at prediction time rather 

than learning from it instantly (Sreedevi et al., 2022). Figure 2.4 shows the 

example of K-Nearest Neighbors (KNN) algorithm working visualization. 

 The strengths of KNN are that it is a simple to implement algorithm for 

solving problems and it is very resistant and tolerant to the noise that prevailing 

in the training dataset (Bansal et al., 2022). For the KNN weaknesses, Bansal et 

al., 2022 stated that KNN determine the appropriate value of K is complex 

because it can sometimes dramatically change the results. In addition, KNN 

prediction stage is slower for larger dataset, and it requires more storage space 

compared to an effective classifier (Taunk et al., 2019).  

 

 
Figure 2.4: K-Nearest Neighbors (KNN) diagram. 
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2.2.3 Summary of Comparative Models 

All of these 5 models are classification, which is suitable for disease predictions.  

 

Table 2.2: Comparison between DT, SVM, RF, KNN, and NB. 

         Model 

 

Criteria 

Decision 

Tree 

Support 

Vector 

Machine 

(SVM) 

Random 

Forest 

K-

Nearest 

Neighbo

rs 

(KNN) 

Naïve 

Bayes 

Best Use 

Case 

Handles 

both 

categorica

l and 

numerical 

data 
 

High-

dimensio

nal data  

Robust 

classificati

on, feature 

importance 

Irregular 

decision 

boundari

es 

Text-

based or 

independ

ent 

features 

Interpretabi

lity 

High  Low  Medium  Medium  Medium  

Training 

Speed 

Fast Slow  Moderate  Very fast  Very fast 

Prediction 

Speed 

Fast Slow  Moderate  Slow  Very fast 

Handles 

Noisy Data 

Moderate  High High  Low  High  

Handles 

High 

Dimensions 

Moderate  High  High  Low  High  

Data Size 

Requiremen

t 

Small to 

medium 

Small to 

medium 

Medium to 

large 

Small to 

medium 

Small to 

medium 

Overfitting 

Risk 

High  Low  Low  Medium  Low  
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Performanc

e in Disease 

Prediction 

Good for 

interpreta

ble tasks, 

but may 

overfit 

High 

accuracy 

in high-

dimensio

nal data  

Robust, 

often high 

accuracy in 

medical 

tasks 

Good for 

simple 

datasets, 

struggles 

with high 

dimensio

ns 

High 

accuracy 

 

 

According on the comparison table above, the Decision Tree is good for 

handling the numerical and categorical data, and its interpretability is high, but 

it has high risk of overfit which can lead to incorrect disease prediction results 

compared to SVM, RF, and NB. Although SVM can handle high dimension data 

well but the interpretability and training speed of it is quite low and may not be 

suitable for disease predictions system as the system also required fast 

prediction speed. Compared to SVM, the KNN is very fast to trained since it 

skips the training phase and can simply stores the data. However, the prediction 

time of KNN is slow, the same with SVM, it may decrease the user experience 

as the waiting time for results is longer. Naïve Bayes is very fast for the training 

and predicting time, and the overfit risk is low. However, the accuracy of Naïve 

Bayes may be affected since the independent assumptions is often violated in 

medical data. The RT has not the limitations of independent assumptions 

constraints and can handle noisy data and high dimensional data well. Although 

the prediction speed of it is moderate, but also acceptable in web applications, 

and it can simply implement. Overall, the RT shows the best characteristics in 

disease predictions. 
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2.3 Compare Existing Web App 

 

There are a number of existing disease prediction web applications that can 

identify potential diseases based on user-inputted symptoms. Studying these 

similar web applications provide valuable insights of the functionality and 

requirements of the disease prediction system, which can help to identify the 

gaps and define the strengths and limitations of the existing disease prediction 

web applications. This section compares three existing web applications which 

are Symptomate, WebMD Symptom Checker, and Your.MD (Healthily). 

 

2.3.1 Symptomate 

 

The Symptomate is an Artificial Intelligence tool for symptom checker 

developed by Infermedica in 2012. This symptom checker will analyse the 

user’s symptoms, predict the diseases the user may be suffering from and 

provide some recommendations to the user for further actions. This system 

allows user to type and select the symptoms. The introduction of Symptomate 

is accepted with the terms of service and agrees to the privacy policy. The 

Symptomate has an interview for users before they enter their symptoms. The 

interview questions such as survey respondent, age, gender, and some user 

health conditions. Figure 2.5 shows the Symptomate survey respondent’s page 

for user to select. The interface of Symptomate is clear and intuitive.  

 

 
Figure 2.5: Symptomate Survey Respondent’s Page. 
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There are a few statements that need to be answered by the user to gain deeper 

insights into the user’s health conditions before starting the interview about the 

user’s symptoms. After that, user can start to enter their symptoms. When the 

user enters the symptoms, it may display some relevant symptoms for the user 

to select. The checklist-based symptom entry system is used to minimize errors 

by providing predefined options, making it accessible to users unfamiliar with 

medical terminology. The user can add multiple symptoms for more accurate 

assessment. Figure 2.6 shows the User Input Symptoms page for user to select 

and add symptoms they have. The checklist input function may limit the natural 

language understanding. The user cannot describe the symptoms using their 

word like a sentence. 

 

 
Figure 2.6: Symptomate User Input Symptoms Page 

 

In order to further diagnose the disease, the system asks several questions and 

symptoms the user may have. Figure 2.7 shows the example of a multi-select 

symptoms interview question page. The system allows the user to enter more 

than one answer to this question. This helps the user save time by clicking on 

multiple answers instead of typing them in one by one themselves. 
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Figure 2.7: Example of a Multi-Select Symptoms Interview Question Page. 

 

After that, the Symptomate system provides the potential diseases that the user 

may have. In addition, Symptomate will provide some suggestions for the 

potential diseases. If the underlying disease is mild, the system will suggest that 

self-care is sufficient. Figure 2.8 shows the example of predicted result for a 

mild disease. The system will also provide a variety of possible conditions based 

on the symptoms, rather that providing a disease prediction result for just one 

disease. The blue ‘Show common care method’ button provides some 

information and details about the predicted disease. This provides user with 

more information and have better understanding about the potential diseases. 
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Figure 2.8: Example of Predicted Result. 

 

The UI and UX of Symptomate system are simple and clear, allowing users to 

easily enter or select the symptoms. According to a study by BMJ Open, the top 

3 diagnostic accuracy of Symptomate were 27.5%, which is lower than the 

general practitioners (GP)s’ 82.1%. However, the urgency advice safety was 

high at 97.8%.  Symptomate lacks the flexibility of free text input, which would 

better capture a wide range of symptom descriptions. 

 

2.3.2 WebMD Symptom Checker 

WebMD Symptom Checker is one of the well-known online web applications 

for early diseases diagnosis. It provides a comprehensive interface for users to 

select symptoms by body location and input symptoms to obtain the possible 

conditions. Same with Symptomate, the WebMD Symptom Checker likewise 

prompts the user to provide their age and gender details. Figure 2.9 shows the 

example of WebMD Symptom Checker Info Page which requires user to enter 

age and sex before starting to enter their symptoms. The interface of WebMD 

Symptom Checker is clear but not centred enough to grab the user's attention in 

the first place. 
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Figure 2.9: Example of WebMD Symptom Checker Info Page. 

 

In the Input Symptoms page, the user can enter their symptoms and 

select the appropriate symptoms from the drop-down list. The drop-down list 

will only display the symptoms that are related to the symptoms entered by user. 

The user can choose from a wide range of symptoms by entering a keyword 

simply. Figure 2.10 shows a drop-down list of symptoms that related to skin. 

The user can also tap on body parts to select symptoms by body location. This 

is more convincing if the user does not know how to describe the symptoms in 

text. The Figure 2.11 shows the WebMD Input Symptom Page with symptoms 

selected by body location. This visualization method works well for users who 

don't know how to express symptoms, improving accessibility and user 

engagement. The selected symptoms will be displayed at the bottom part. 
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Figure 2.10: Example of WebMD Input Symptom Page. 

 

 

 
Figure 2.11: Example of WebMD Input Symptom Page for Select Symptoms 

by Body Location. 
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After adding all the symptoms, the WebMD Symptom Checker system 

starts to analyse and provide the potential conditions that match to the symptoms. 

The system provides the potential diseases and ranks them in order of strong 

matches up to the fair matches. A strong match indicates that the user may have 

a high level of potential diseases, while a fair match is the opposite. The left-

hand side of the web page displays the disease that the user may suffer from, 

and the right-hand side shows the user’s symptoms the details. Figure 2.12 

shows the example of the conditions page. The WebMD Symptom Checker 

allows user to modify their age, gender and symptoms to start over the 

prediction process. This provides users with a more flexible method of 

continuing to predict diseases, even if they enter incorrect information. 

 

 
Figure 2.12: Example of the Conditions Page. 

 

The WebMD Symptom Checker display detailed information about 

each disease for the user to better understand the disease. Figure 2.13 shows an 

example of the Condition Details page, which contain the relevant information 

for the disease. Moreover, the system also provides the treatment options for 

user to take further action.  
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Figure 2.13: Example of the Conditions Details Page. 

 

WebMD Symptom Checker provide a straightforward and appealing 

visual approach. The symptoms input methods of WebMD Symptom Checker 

are drop-based on a down list of checklists for user to select the appropriate 

symptoms or by clicking on body parts. A study by BMJ Open claimed that the 

top 3 suggestion accuracy rate of WebMD Symptom Checker is 35.5%, which 

is lower than 82.1% for general practitioners (GPs) also. This indicates that a 

moderate level of reliability for WebMD Symptom Checker. The system lacks 

a follow-up interview process for refinement of predictions, which may lead to 

overly broad results, especially if symptoms overlap. 

 

2.3.3 Your.MD (Healthily)  

 

Your.MD also known as Healthily, is a web-based symptom checker that uses 

a chatbot to help users to identify the potential illnesses. The Healthily utilized 

AI and chatbot system to analyse the symptoms and provide the user with 

guidance to the next steps based on their symptoms. The user of Healthily must 

be at least 16 years old and agree to the Privacy Policy before using the system. 

Same with the WebMD Symptom Checker and Symptomate, the system 
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requires user to enter their gender and year of birth. Figure 2.14 shows the 

Healthily Gender Page, where user to select their gender. The UI of Healthily is 

simple and clear. 

 

 
Figure 2.14: Healthily Gender Page. 

 

 

Figure 2.15 shows the chatbot page of Healthily, where user can enter 

their symptoms in words or sentence. After submitting, the Healthily system 

provides the user with relevant symptoms that they may have. The user can 

select which symptoms they may have by clicking on the checkbox of the 

symptom, and the Healthily also allows user to add additional symptoms later. 

Its conversational interface is a major advantage, allowing users to enter 

symptoms in natural language, which the system can maps to predefined 

symptoms. Figure 2.16 shows the example of Select Symptoms page for the user 

to check the symptoms they may have. The symptoms provided in Healthily are 

extracted from the words or sentences entered by the user.  If none of these 

symptoms, the Healthily will ask user to enter more specific symptoms or 

reword the symptoms. The system will then provide more options for user to 

choose from. The user can select one or more options if the symptoms appeared. 

This flexibility caters to users who prefer to describe symptoms in their own 

words and increasing inclusivity. 
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Figure 2.15: Healthily Chatbot Page. 

 

 
Figure 2.16: Healthily Select Symptom Page. 

 

After selecting the relevant symptoms, Healthily also asks follow-up 

questions about symptom duration and health context (e.g., history of diabetes) 

to refine the prediction by taking time and medical context into account. Figure 

2.17 shows symptom checker page that prompting user to indicate the duration 

of symptoms. For health background question, the user can select one or more 

options. Figure 2.18 shows the Healthily prompting the user to indicate the 

health background.  
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Figure 2.17: Healthily Symptom Checker Page prompting user to indicate the 

duration of symptoms. 

 

 
Figure 2.18: Healthily prompting user to indicate the health background. 

 

Furthermore, the Healthily provides some related symptoms that the 

user may be experiencing. This can ensure that the more accurate disease 

prediction results are provided. However, the process of Healthily is overly 

lengthy and the multiple questions stages can be frustrating for users looking for 
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a quick assessment. After answering all the questions, the Healthily generates a 

prediction report for user based on the symptoms. Figure 2.19 shows an example 

of prediction report page which include the possible causes and the summary of 

symptoms. The user can click on the possible cause to access the detail 

information about the possible disease. The summary displays the symptoms 

user selected by user in the previous questions, and the system provide 

suggestions for further action to be taken by the user. User are provided with a 

clear and straightforward understanding of the possible causes of the diseases. 

 

 
Figure 2.19: Healthily Prediction Report Page. 

 

The Healthily provide a conversational chatbot interface that allow 

user to enter symptoms with intuitive questions. However, the process of it is 

lengthy and overloaded of information. This may not be suitable for users who 

want to get a quick assessment for disease prediction. The system also offers 

some suggestions to the user after the prediction results are available. A study 

by BMJ Open stated that the top 3 suggestion accuracy rate of Your.MD 

(Healthily) is 23.5%, which is lower than 82.1% for general practitioners (GPs) 

also. This indicates that a moderate level of reliability for Your.MD (Healthily). 
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2.3.4 Summary of Existing Applications 

 

Table 2.3: Comparison between Symptomate, WebMD Symptom Checker, 

and Your.MD (Healthily). 

Feature Symptomate WebMD Symptom 

Checker 

Your.MD 

(Healthily) 

Platform Web, Mobile Web, Mobile Web, Mobile 

UI/UX Clear but lengthy 

questions set 

Interactive body 

maps with some 

accessibility issues 

Conversational 

chatbot but 

lengthy 

User Input 

Method 

Checklist Body map and 

dropdown menu 

Chatbot with 

free text 

Personalization Basic (age, 

gender) 

Basic (age, gender) Advanced (age, 

gender, 

lifestyle, risk 

factors) 

Diagnosis 

Output 

List of possible 

conditions 

List of possible 

conditions 

Suggested 

disease 

condition with 

self-care advice 

Accuracy 27.5% (BMJ 

Open) 

35.5% (BMJ Open) 

 

23.5% (BMJ 

Open) 

 

Table 2.2 shows the comparison between Symptomate, WebMD Symptom 

Checker, and Your.MD (Healthily). Based on the table above, each of these 

three existing web applications has its own advantages and disadvantages. The 

usability for Symptomate and Your.MD (Healthily) are clear and easy to use 

while WebMD Symptom Checker is more complex with many options. The 

WebMD Symptom Checker is engaging but the lengthy processes can affect the 

user experience due to the large number of questions that need to be answered. 

According to BMJ Open, the accuracy of these applications is quite low, and 

this may provide user with some inaccurate results. The diagnosis output of 
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Your.MD (Healthily) is quite good, providing the suggested disease condition 

and self-care advice that the user can take some action on after diagnosis.  

 

2.4 Evaluation Metrics 

Evaluating metrics is crucial for assessing the effectiveness of machine learning 

models, especially in medical diagnostics. The evaluation metrics helps to 

determine the usability and reliability of the models. There are a number of 

evaluation metrics that can evaluate the effectiveness of machine learning 

algorithms, such as sensitivity, accuracy, F1-Score, precision and specificity. 

The diagnosis results can be categorized as True Positive (TP), True Negative 

(TN), False Positive (FP) and False Negative (FN). TP and TN signify an 

accurate model prediction, whereas FP and FN denote an incorrect model 

diagnosis. 

 

2.4.1 Accuracy 

Accuracy refers to the ration of accurate predictions cases to the overall number 

of cases. This evaluation metric is often utilized to access the performance of 

machine learning models, especially in tasks of classification and defect 

detection (Ashfakul Karim Kausik et al., 2025). High accuracy suggests that the 

models is reliable, and the prediction results are more accurate and credible. The 

advantages of accuracy are simple and easy to use. Accuracy is reliable for 

balanced datasets. However, it can be misleading when applied to the 

imbalanced datasets.  

The equation of accuracy is expressed as:  

𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 

 

2.4.2 Sensitivity (Recall) 

Sensitivity also known as Recall, is measured by the ration of true positive cases 

accurately identified. Recall measures the capability of models to identify the 

faults in the dataset correctly (Ashfakul Karim Kausik et al., 2025). High 

sensitivity denotes that the model able to identify most true cases and reduce the 

cases of miss diagnoses because false negatives can lead to serious 
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consequences. It is important to detect the potential faults in the models and 

intervene early.  

The formula of sensitivity is:  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

 

2.4.3 Specificity 

Specificity is measured by the ratio of true negative cases correctly detected. 

This metrics reflects the ability of models to identify the true negatives in each 

available category. For example, specificity refers to recognizing that the patient 

does not have a particular disease. It is important to avoid the unnecessary 

treatments in the disease prediction. The specificity can be computed by 

dividing number of true negatives by the total of true negative and false positive.  

The formula of specificity is:  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

 

2.4.4 Precision 

Precision is measured by the ratio of precisely identified positive cases among 

the total number of expected positive cases. The precision indicates the 

reliability of a positive prediction. This is important when the false positives can 

cause high costs such as unnecessary testing. High precision ensures that the 

model predicts correctly. The formula of precision is calculated by dividing the 

number of true positive by the total of the true positive and false positive. 

The formula of precision is:  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

 

2.4.5 F1-Score (F-Measure) 

The F1-Score, also known as F-Measure, represents the harmonic average of 

precision and sensitivity (recall). It provides an equitable view of the capability 

of the model to minimize both false positive and false negative. This is 

important to detect as many true cases as possible meanwhile ensuring high 

precision. The ranges of F1-Score are between 0 and 1, where 1 indicates the 

best sensitivity and precision.  
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The formula of F1-Score is:  

𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 ×  
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

 

 

2.4.6 Summary of Evaluation Metrics 

Table 2.4 Comparison of different evaluation metrics. 

 Advantages Disadvantages 

Accuracy Simple, reliable for balanced 

datasets. 

Can be misleading in 

imbalanced datasets. 

Sensitivity 

(Recall) 

Detect true cases, minimize 

the false negatives 

May increase false positives 

Specificity Reduces false positives, avoid 

unnecessary alarm. 

May increase false 

negatives, miss actual cases. 

Precision Reliable positive predictions, 

useful when false positive is 

costly 

May reduce sensitivity, miss 

true cases 

 

F1-Score (F-

Measure) 

Balances precision and 

sensitivity, good for 

imbalanced data. 

True negatives were not 

considered. 

 

Based on the table 2.2, the accuracy is simple and contains strong overall metric 

due to the balanced dataset, but it unable to distinguish between false positives 

and false negatives, which is critical in healthcare. It is useful for comparing 

models but not sufficient as the primary metric. Specificity is important to 

prevent unnecessary alert, such as such as false predictions of disease, causing 

stress and leading to unnecessary treatment or tests. However, specificity may 

increase the false negatives and be more harmful in healthcare. For precision, it 

can ensure that the model correctly predicts disease, but prioritizing precision 

may lead to reduce in sensitivity, cause more false negatives. In addition, F1-

Score can balance sensitivity and precision, it can ensure the prediction are both 

reliable and comprehensive. However, F1-Score is not considered the true 

negatives. Sensitivity is the most suitable for the disease prediction. This is 

because it can minimize the false negatives such as missed diagnoses. A missed 

diagnosis may lead to delay in early treatment with serious consequences. 
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Although sensitivity may increase the false positives, but it is more acceptable 

than false negatives, because it is better to incorrectly predict disease than to 

miss a diagnosis. 

 

2.5 Dataset Sources 

Sangeetha et al., 2024, used the dataset collected from the Columbia website as 

the data sources in the project. The dataset included 132 symptoms and 40 

diseases. There are several symptoms used to cover 32 diseases in their project. 

For the diseases cover in the project included normal fungal infection to typhoid 

diseases. They pre-processed the raw data to overcome the problems of 

inconsistent data, missing data and noisy of raw data in the dataset. By using the 

processed data, the authors trained and tested the models in a ratio of 80 to 20.  

 

 The dataset collected by Ansarullah et al. (2022) for risk modelling 

was derived from an innocation non-invasive heart disease dataset containing 

5776 entries from various heterogeneous data sources in Kashmir (India). Of 

these 5776 records, 47.5% or 2747 had heart disease, and the other 52.5% or 

3031 were in good health. The authors performed a class balance assessment 

since the heart disease database contain significantly imbalanced data that can 

lead to bias in machine learning algorithms.  

 

 In addition, George et al., 2024 used diverse dataset for multiple 

disease predictions to exam the accuracy of various algorithms. The authors 

used 4 databases to predict the heart disease, which are Cleveland, Hungary, 

Switzerland, and Long Beach V. The databases contain 76 attributes, and it 

divided into two parts for training and testing datasets. Furthermore, the authors 

used dataset brain tumour classification MRI dataset for brain tumour diagnosis. 

The brain tumour database contains 2 classes, YES for having the brain tumour, 

otherwise is No. The other dataset is UCI Repository for predicting the kidney 

disease. There are some diagnostic measurements in the dataset for predicting 

the disease. 

 

 The dataset acquired by Rajora et al., 2021 was sourced from National 

Centre of Disease Control (NCDC). The dataset demonstrates the symptoms of 
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potential diseases. The dataset includes detailed survey data and the most 

frequent symptoms among the patients. There are 4921 unique entries were 

extracted from the symptoms in the database. Individual entries may contain 

similar disease that have been identified but have different symptoms across 

different records for the same disease. Through the refinement of the initial 

entries, the dataset was organized into another dataset. 

 

 There are 4 different datasets used by Gupta et al., 2024 to predict 4 

different diseases. Firstly, is Asthma dataset which contains a total of 29 

columns and 2392 entries. This dataset is used to determine which individuals 

are most risky to have asthma disease. It includes features such as diet quality, 

smoking and so on. The second dataset is Diabetes dataset which contain 22 

columns and 253,680 entries.  The dataset includes features such as blood 

pressure, cholesterol and so on. The third dataset is liver disease dataset, which 

contain 11 characteristic and 30,691 instances. The last dataset is kidney dataset 

which contains 54 characteristic and 1659 entries. This dataset can predict the 

kidney disease based on the patient’s medical problems. All of these datasets 

were collected at Kaggle. 

 

 The Symptom-Disease Prediction Dataset (SDPD) was published by 

Jay Tucker in 2024. The dataset contains 4920 instances, 132 symptoms features 

and 41 unique diseases. This dataset is contained a variety of data needed for 

disease predictions system. The SDPD is a tabular dataset with binary symptoms 

features such as 0 or 1 represent the absence or presence of symptoms. The 

dataset is suitable for training and accessing the machine learning algorithms. 

The instance represents a unique combination of symptoms and the 

corresponding disease diagnosis.  
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2.5.1 Summary of Data Source 

Table 2.5: Comparison of different data source 

 Columb

ia 

Dataset 

Kashmir 

Dataset 

Heart 

Disease 

(CHSL

B) 

NCDC 

Dataset

s 

 

Kaggl

e 

Datas

ets 

SDPD 

Data 

Type 

Tabular, 

mixed 

(numeri

cal, 

categori

cal) 

Heterogen

eous 

(tabular, 

text) 

 

Tabular, 

mixed 

(numeri

cal, 

categori

cal) 

Tabular, 

mixed 

(numeri

cal, 

categori

cal) 

 

Tabul

ar, 

CSV 

format  

Tabular

, 132 

binary 

sympto

ms, 

categori

cal 

target 

Size and 

Scope 

132 

sympto

ms  

5776 

records 

76 

attribute

s 

4921 

unique 

entries 

Varies 

 

4,920 

instance

s, 132 

sympto

ms 

feature 

Disease 

Coverag

e 

40 

diseases 

heart 

disease 

only 

heart 

disease 

only 

Many 4 

diseas

es 

41 

unique 

diseases 

Quality High, 

clinical 

data 

Variable, 

preprocessi

ng needed 

 

High, 

some 

duplicat

es 

High, 

some 

biases 

 

High, 

some 

biases 

 

High, 

clean, 

balance

d 

Availabi

lity 

Restricte

d 

Likely 

restricted 

Public Public, 

but some 

restrictio

ns 

Public 

 

Public  
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Most of the data sources are tabular data except for the Kashmir dataset which 

is heterogeneous. The heart disease dataset (CHSLB) and Kaggle datasets are 

limited to predict a single disease such as heart disease, which may restrict users 

form predicting other disease although they are easy to access. However, the 

Columbia and NCDC datasets are broad and large-scale data, but they are more 

suited to populations health studies and may have limited access and require 

permissions. The Kashmir data source is too heterogeneous and region-specific. 

This may affect the diagnostic results of users in other regions. In addition, the 

Kashmir data source often require pre-processing before use and are of variable 

quality. The SDPD is the best suited for the disease prediction because it 

supports symptom-disease mapping using binary features, covers 41 diseases, 

and requires minimal preprocessing. The size and scope of the SDPD is also 

quite large, allowing it to cover more diseases. The quality of it also high and 

balance. 

 

2.6 Web Application Framework 

The web application frameworks are the resources and tools used by developers 

to develop the online software, manage the websites, and so on (Sheldon, 2023). 

This goal of this project is to develop a disease prediction web application using 

machine learning and therefore it is necessary to select the appropriate and right 

tools and technology stack to ensure the reliability and responsiveness of the 

system. There are two components need to be considered, which are the backend 

and frontend. This section is to evaluate these frameworks and compares the 

strengths and weaknesses of each of them.   

 

2.6.1 Backend Framework 

Backend is responsible for handle the server-side request. There are two 

backend frameworks need to be considered in this part, which are the Flask and 

Django. 

 

2.6.1.1 Flask 

Flask is a minimalistic, and micro web framework for Python, commonly 

utilizing in small to medium-size applications (GeeksforGeeks, 2023). It allows 

the developers to select their preferred libraries for additional functionality. 
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Flask is user-friendly because of its simple design and requiring minimal 

boilerplate code. Flask also allows easy integration with machine learning 

models and therefore suitable for machine learning based application. 

  

Without manual configuration, the scalability of Flask is limited. The 

features such as database configuration and authentication are required 

additional setup, which can increase the complexity to the system. The 

performance of Flask is fast for small to medium-scale applications. The Flask 

is suitable for API-driven applications such as machine learning serves that 

provide low latency due to its minimal overhead.  

 

Strengths of Flask: 

• Simple and flexible. Flask allows developers to customize the 

structure of the application to fit their needs and make it easy to 

quickly build the APIs and integrate the machine learning models. 

• Lightweight and rapid development. Flask can ensure the fast 

performance and quick setup due to its small footprint, hence it is 

suitable for small and medium-sized projects.  

 

Weakness of Flask:  

• Limited scalability. Flask requires numerous efforts to scale the 

large applications, which can complicate future scaling of the 

application. 

• Lacks built-in features. Flask requires manual integration as it lacks 

built-in tools for specific functionality. This may slow down the 

development of the system. 

 

2.6.1.2 Django 

Django is known as the “contained battery” philosophy (GeeksforGeeks, 2020). 

This means that Django is suitable for rapid development of web applications 

without having to consider about planning the application's framework in 

advance. Django offering the built-in functions such as authentication, ORM 

and so on, making it suitable for large projects. Djonga has good scalability 
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because it has built-in tools for handling the large-scale applications. The ORM 

and middleware of Djanga is important for managing the complex features and 

increased traffic.  

 

Strengths of Django: 

• Secure and scalable. Django support large-scale applications and it 

includes the middleware and authentication such as CSRF 

protection for security purpose. 

• Comprehensive Features. Django includes a variety of built-in 

tools such as authentication, ORM and other to minimize 

dependence on external libraries, and support rapid development of 

complex functionality.  

 

Weakness of Django:  

• Complexity. The structure approach of Django and the learning 

curve can be complex and difficult, which can slow down the initial 

development process. 

• Less flexible. The Django has a very steep learning curve and is 

therefore less flexible when it comes to customizing workflows. 

 

2.6.1.3 Summary of Backend Framework 

 

Table 2.6: Comparison between Flask and Django 

Features Flask Django 

Flexibility High Moderate 

Complexity Simple and lightweight Moderate and structure 

Scalability Moderate and require 

manual setup  

High, include built-in tools 

for large-scale application 

Performance Lightweight and fast  Slightly heavier  

Suitability Small to medium 

application 

Medium to large 

application 
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Although the Django includes built-in tools, but its complexity is less suitable 

for disease prediction system. The Flask is better suited for this project because 

it is simpler and more flexible, allowing for a quick setup of machine learning 

prediction APIs. In addition, Flask is suitable for small-scale or prototype 

applications. Flask also offers the ability to control the flow and design of the 

application.  

 

2.6.2 Frontend Framework 

The frontend is responsible for user engagement with the system. It should be 

responsive and dynamic in order to attract user’s attention and enhance user 

experience. There are two fronted frameworks need to be considered in this part, 

which are the React.js and Angular. 

 

2.6.2.1 React.js  

The React was built by Facebook in 2013 (GeeksforGeeks, 2023). React.js is a 

JavaScript library used to designing the user interfaces (UI) for web and mobile 

application, especially the single page application (SPAs) and allows developers 

to develop reusable UI elements (W3Schools, 2020). Due to the use of JSX and 

state management, the learning curve for React is not high. React uses a virtual 

DOM to minimize the direct DOM updates and ensure the fast rending of 

dynamic content.  

 

Strengths of React: 

• Strong community support. The ecosystem of React provides a 

wealth of resources and libraries that facilitate the development 

process.  

• Better performance and interactivity. The virtual DOM and 

reactivity of React ensure a fast, responsive user interface that able 

to enhance the user’s experience in the application. 

 

Weakness of React:  

• Learning curve. The JSX and the state management concepts is 

challenging for the developers and potentially slow down the initial 

development.  
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• Additional libraries are needed. This is because React requires 

additional routing and statement which can add complexity for 

small application.  

 

2.6.2.2 Angular   

Angular is a well-established JavaScript framework, developed using 

TypeScript, which provides a number of built-in tools for routing and form 

validation. Angular is commonly used to build robust single-page application 

(GeeksforGeeks, 2023). The Angular provides bidirectional data binding, and 

dependency injection. Angular requires setting up the modules and services for 

building the user interface, which can slow down initial development. Angular 

is suitable for large-scale applications. In addition, Angular provides 

development tools to handle and develop the complex applications faster.  

 

Strengths of Angular: 

• Scalability. The Angular highly scalable, including built-in tools 

for large applications.  

• Better user experience. The two-way data binding of Angular can 

synchronize the inputs and outputs automatically. In addition, the 

dependencies between components are managed by an integrated 

dependency injection. 

 

Weakness of Angular:  

• Learning curve. The learning curve of Angular is steep. The 

complexity of Angular is challenging for the beginners and can 

delay the initial development. 

• Overkill for small-scale applications. Angular is intended for large 

projects, where the heavier framework and real-time DOM updates 

can impact web application load times and performance. 
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2.6.2.3 Summary of Frontend Framework 

 

Table 2.7: Comparison between React and Angular 

Features React Angular 

Interactivity High, dynamic UI 

improves engagement 

High, two-way binding 
 

Complexity Moderate High 

Scalability High Very high 

Performance High, virtual DOM for 

fast updates 

Good, real DOM with 

change detection 

Community 

Support 

Excellent, large 

ecosystem 

Strong, smaller ecosystem 

 

Although the Angular is a robust frontend framework, but its complexity and 

the steeper learning curve can slow down the development process, particularly 

for the small project. The React is more suitable in this project. The React 

provides an efficiency and flexible framework. The virtual DOM of React helps 

in maintaining the excellent performance of the system. React also allow for 

integration with APIs.  

 

2.7 Summary 

In summary, this chapter provides a foundation for the development of a disease 

prediction web application using machine learning. By reviewing these research 

papers, it offers different perspectives on the project. Different models have 

different characteristics and unique advantages and disadvantages. For this 

project, the most appropriate model is Random Forest. This is because the RT 

does not the limitations of independent assumptions constraints and can handle 

noisy data and high dimensional data well.   

 

In addition, this chapter also analyses and compares the strengths and 

weaknesses of existing web applications. Each of the existing web applications 

has its own features and strengths. These strengths of the existing web 

application are utilizing as the project requirements of this project. Furthermore, 
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the evaluation metrics are also important to indicate whether the application is 

accurate and reliable. In this project, the accuracy, sensitivity (recall), precision 

and F1 score is selected as the evaluation metrics.  

 

Moreover, the selected data source for this project is the Symptom-

Disease Prediction Dataset (SDPD). This is because it supports symptom-

disease mapping using binary features, covers 41 diseases, and requires minimal 

preprocessing. Compared to different frontend and backend frameworks, the 

preferred web application frameworks are Flask and React. Flask is simpler and 

more flexible, allowing for quick setup of machine learning prediction APIs. 

Besides that, the virtual DOM of React helps keep the system's performance 

excellent.
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

The Disease Prediction Web Application using Machine Learning is allow users 

to input their symptoms and obtain accurate predictions result with a user-

friendly interface. This chapter discusses the SDLC methodology used for this 

project and provides a clear work plan. This chapter presents an outline of 

system development including integration machine learning model with 

application. In addition, the tools and technologies to support the development 

process of the system are defined within this chapter. Furthermore, the project 

schedule with Work Breakdown Structure (WBS) and Gantt chart to indicates 

the project timeline. The WBS and Gantt chart can track the progress and made 

adjustments immediately. By outlining the development process, methodology, 

and requirements of the project, the project can be clear and well-structured. 

 

3.2 Software Development Life Cycle (SDLC) Methodology 

The Software Development Life Cycle Methodology outlines a process of 

detailed plan, design, develop and testing by developers. SDLC has 7 stages, 

involving detailed planning, analysis, design, implementation, testing, 

deployment, maintenance and support (Hossain, 2023). There are many 

different SDLC methodologies, each characterized by different strengths and 

weaknesses. Choosing a suitable SDLC methodology is important to ensure the 

system is developed on time and fulfills the user requirements. This section 

analyses and compares three approaches which are Waterfall, Spiral, Iterative 

and Agile.  

 

3.2.1 Waterfall 

The Waterfall model is a traditional model that provides a sequential and linear 

approach (Saravanan et al., 2020). Waterfall is suitable for projects that have 

clearly defined requirements and without any changes. The waterfall 

methodology requires that each stage be finalized before moving on to the 
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subsequent. The flow of progress in the waterfall method is unidirectional, with 

no overlap between each stage. Figure 3.1 shows the Waterfall model process.  

 

 
Figure 3.1: Waterfall Model 

 

Advantages of Waterfall: 

• Simple to manage and predictable. This makes it easy to track the 

project progress because it is a one-way model. 

• Requirements are well documented and defined. The clear 

requirements make the project’s progress smooth and minimize the 

changes. 

• Clear and structured. The clear structure of Waterfall makes it simple 

to manage and predict the next steps in the process. 

 

Disadvantages of Waterfall:  

• Rigid and inflexible. It assumes that all requirements are clear and 

nothing has changed, so if the changes occur, it takes more time and 

money. 

• Limited adaptive capacity. Since the testing phase takes place after 

the completion of the development phase, this limits the ability to 

adapt to changes and causes problems to be detected later. 

• Late detection of problems. Dealing with problems after the 

development phase is complete can be time-consuming. 
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3.2.2 Spiral 

The Spiral model is used for risk management, which combines Iterative 

development and Waterfall model (Saravanan et al., 2020). The Spiral is 

processed through the repetitive cycles, each cycle includes planning, risk 

analysis, development, and evaluation. It allows for repeated refinement through 

multiple spirals. Figure 3.2 shows the Spiral model with multiple spirals. Each 

spiral can refine the project and addressing the risks early. The Spiral can 

identify the potential errors and reduce them in each iteration. This is suitable 

for large and complex project, but it is costly and time-consuming because it 

requires repetitive construction.  

 

 
Figure 3.2: Spiral Model 

 

Advantages of Spiral: 

• Spiral Model is excellent for risk analysis and early detection of 

potential problems. This can reduce the cost of removing defects 

after the development process. 

• Spiral offer a highly flexible to adjust on requirements or scopes 

based on the feedback. Users are allowed to involve in the project by 

testing the prototypes and providing feedback in each spiral.  
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Disadvantages of Spiral: 

• May lead to scope creep. The flexibility of the spiral model allows 

for adjustments to be made in each spiral, but this may expand the 

project requirements throughout the project process.  

• Complex, costly and time-consuming. The multiple phases make it 

difficult to manage and track the project process. The repeated works 

can be costly and time-consuming.  

 

3.2.3 Agile 

The Agile model combines iterative and incremental methodology that 

emphasizes simple, collaboration and flexibility (Hossain, 2023). The Agile 

allows systems to be built quickly with the ability to change the requirements at 

any stage of the project life cycle. This methodology focuses on user feedback 

and the adaptability of making changes to requirements and responding quickly 

to the changes. This methodology allows for the addition of features and 

functionality to improve the system. There are several different software 

development processes in the Agile field, which are Extreme Programming 

(XP), Kanban, Crystal, Scrum and other. Figure 3.3 shows the 6 stages of the 

Agile model. 

 

 
Figure 3.3: Agile Model 
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Advantages of Agile:  

• High flexibility. Agile flexibility adapts to changing needs and is 

user- centred. New features can be added in Agile even late in the 

development process. 

• High quality and low risk. Agile focuses on frequent testing 

techniques to minimize the defects and improve system reliability. 

This helps in identifying and resolving the defects early in the project 

life cycle.  

 

Disadvantages of Agile:  

• Lack of focus on documentation. This can be a challenging task in 

Agile, which focuses on software development rather than the 

documentation.  

• Predictability is limited. This is difficult to predict deadlines for agile 

projects because of changing requirements make it difficult to 

estimated timelines and costs. 

 

3.2.4 Summary of SDLC Methodology 

 

Table 3.1: Comparison of different SDLC Methodology 

 Waterfall Spiral Agile 

Process 

Structure 

Linear, sequential  Iterative cycles Iterative sprints 

Flexibility Low Moderate to High Very high 

User 

involvement 

Low High, user 

feedback on 

prototypes 

Very high, 

continuous 

feedback in 

sprints 

Requirement  Defined in early 

stage 

Throughout the 

project period 

Throughout the 

project period 

Phases Sequential phases Iterative cycles 

with risk-driven 

phases 

Iterative sprints 

with 
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collaborative 

phases 

Risk 

Management 

Poor Excellent 

 

Very good 

Testing Testing after 

development 

process 

Continuous testing 

throughout the 

development 

Continuous 

testing 

throughout 

development 

Complexity Low High Moderate 

 

 Each of the methodology has its own advantages and disadvantages, 

and different project is suitable for different software development methodology. 

Waterfall is suitable for projects where the requirements are clearly defined and 

unlikely to change. The Waterfall is less flexible, cannot adapt to changes, and 

one phase must be completed before progressing to the next. In contrast, the 

Spiral model is suitable for high-risk projects because Spiral is excellent in risk 

management. However, it is more complex compared to other methodology. 

Agile is suitable for projects that required changes throughout the project life 

cycle because it is flexible and adaptable. In short, the Agile methodology aligns 

with the project that offering high flexibility and collect user feedback for 

improvement. Agile allows for quick adaptation to user feedback and the ability 

to test the system frequently and reduce risks early. In addition, the Agile 

approach ensures rapid development of web applications with different 

functionalities. However, the Agile is lack of focus on documentation and 

unpredictable. This is difficult to estimate the project deadline. Based on this 

comparison, the Waterfall model was selected for this project due to its clear 

structure, well-defined requirements, and suitability for academic project 

timeline. 

 

3.3 Waterfall Methodology 

Software Development Life Cycle (SDLC) methodology provides a structured 

framework for managing the development of disease prediction web 

applications. In this project, the Waterfall methodology is selected as the SDLC 
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methodology. Waterfall is suitable for projects with the clear requirements and 

no changes. The requirements for this project are well defined and less variable. 

In addition, Waterfall is suitable for progress tracking and deliverables. This 

helps in estimating the project timeline and budget well. Figure 3.4 shows 

flowchart of the Waterfall methodology for this project. There are 6 phases in 

the Software Development Flowchart which are Requirements Analysis, 

System Design, Machine Learning Model development. Web Application 

development, Integration of Machine Learning Model with Application, and the 

last is System Testing.  

 
Figure 3.4: Waterfall Methodology Flowchart 

 

3.4 Requirements Analysis 

The project requirements can be gathered through several ways. In this project, 

the requirements were gathered by reviewing existing similar web applications. 

Interviews and questionnaires are not required for requirements gathering in this 

project. In chapter 2, there are several similar existing disease prediction web 

applications have been studied, which are Symptomate, WebMD Symptom 

Checker, and Your.MD (Healthily). A common feature of these web 

applications is the ability to allow users to enter symptoms via optional options 

or types. In this project, the system provides two options for users to enter the 

symptoms which are a predefined dropdown list of symptoms or manually enter 
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symptoms via a free-text field. This is a feature that has not yet been 

implemented in current disease prediction web applications. Additionally, the 

web application can predict the potential disease a user may have and return the 

results to the user thought a responsive user interface. The results include the 

potential disease and the recommendations further actions to be taken by the 

user. Furthermore, the system can store the history of users, such as user inputs, 

predicted results, and medical advice for the user. This is another feature that 

other web applications have not yet implemented. The non-functional 

requirements and functional requirement will be produced at the end of this 

phase. The detailed functional and non-functional requirements are discussed 

further in Chapter 4.  

 

3.5 System Design 

In Waterfall methodology, the system design phase follows the requirements 

analysis phase. The system design phase defines the system architecture and the 

data flow to ensure that the system is fulfil the functional and non-functional 

requirements. It includes the design of user interface, data flows, backed API 

architecture and integration with machine learning model. The design also 

includes the chosen tools and technology in preparation for the implementation 

phase of the project. Figure 3.5 presents the data flow diagram of the project. 

The data flow diagram demonstrates the process of processing user symptoms, 

generating predicted results, and clearly displaying results to meet program 

requirements. This phase provides a clear insight of the development process to 

ensure that the performance and usability standards. The deliverable for this 

phase is the generation of the system architecture design proposal. 
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Figure 3.5: System Design Diagram 

 

3.6 Implementation Phase 

There are 3 steps perform in the Implementation Phase, which are Machine 

Learning Model Development, Web Application Development and Integration 

of ML Model with Web Application. The deliverables of this phase are the 

completion of the machine learning model development, web application 

development and the integration of the ML model with web application. 

 

3.6.1 Machine Learning Model Development 

The key component of this project is developing the machine learning (ML) 

model for the Disease Prediction Web Application. This part outlines the 6 

phases ML model development process. These 6 phases include model selection, 

dataset selection, data preprocessing, feature selection, model construction and 

model evaluation. These phases are important for ensure that the model aligns 

with the project requirements and user expectations. 
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Figure 3.6: Model Development Flowchart 

 

3.6.1.1 Model Selection  

Model Selection involves selecting the most appropriate ML algorithm for the 

classification task of predicting diseases based on symptoms. After reviewing 

the relevant literature on different models, 3 ML algorithms which are Decision 

Tree, Random Forest, and Support Vector Machine are selected and assessed 

based on their performance. 

 

• Decision Tree (DT): The DT is considered because it is 

interpretability and provides the explicit decision rules. For 

example, if the cough = yes, predict disease X. This helps explain 

the prediction results to the user. However, it may overfit the 

complex datasets. 

  

• Random Forest (RT): The RT is considered because its robustness 

and high accuracy. RT is combined with multiple DT to reduce the 

overfit. It also can handle the missing data well. 
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• Support Vector Machine (SVM): The SVM is considered 

because its capability to handle high-dimensional data. SVM is 

effective in binary classification with clear margins. However, it is 

not suitable for large datasets because of the long computation time. 

  

 The selection of these models is based on their complementary 

advantages to allow for a comparative evaluation to determine the most 

appropriate model for the project. 

 

3.6.1.2 Dataset Selection 

The dataset selection phase is to determine the data source for the training and 

evaluating the ML models. The selected dataset is the Symptom-Disease 

Prediction Dataset (SDPD). This dataset was also identified in Chapter 2, and 

the SDPD was the most suitable dataset for this project compared to the different 

other datasets. This dataset is available on Mendeley Data. The SDPD dataset 

contains 4,920 instances and 132 symptoms feature covering 41 unique diseases. 

The structure of the dataset is a table with multiple rows for the patient cases 

and multiple columns for the symptoms and disease labels. The symptoms are 

binary values, with 1 indicating presence and 0 indicating absence. The dataset 

is relevant to this project as it supports a wide range of diseases and can fulfil 

the functional requirements of the project. 

 

3.6.1.3 Data Preprocessing 

Data preprocessing is an important stage in preparing the SDPD dataset for 

model training and testing. This process aims to resolve the quality issues and 

convert the raw data into a clean and structured format. There are several steps 

in this phase to ensure that the ML model performs well and effectively. These 

steps can be implemented by using Scikit-learn and Python libraries.  

 

Steps involved: 

• Handling missing data. This helps to impute missing values in the 

SDPD dataset and prevent model errors. For binary symptom 

features, the missing values are replaced with the most frequently 
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occurring values (mode), as this maintains the distribution of the 

dataset. 

• Categorical Label Encoding. The SDPD dataset contain binary 

symptom features, but the dataset includes the categorical disease 

labels such as “Fungal Infection” rather than numerical indexes. 

Therefore, coding using Scikit-learn's LabelEncoder is required to 

convert the categorical disease labels to integers. 

• Duplicate Removal. Duplicate records may introduce bias into the 

training process and potentially reduce processing speed, 

particularly when handling relatively small datasets. To address 

this issue, the dataset underwent duplicate scanning, and all 

duplicate rows were removed. 

• Data Splitting. By using Scikit-learn, the dataset can divide into 

three subsets, which are training set, validation set and testing set. 

The dataset can be split into 70-15-15 parts, which indicates that 

70% for training, 15% for validating and 15% for testing.  

 

These steps ensure that the data required for model training is clean and 

reliable and reduce potential risks such as low model performance due to data 

quality issues. 

 

3.6.1.4 Model Building 

This phase consists of training selected ML models including support vector 

machine, random forest, and decision tree on pre-processed SDPD datasets. By 

using Scikit-learn to implement machine learning models and ensure the models 

are available for evaluation. Firstly, each model is initialized using the default 

parameter such as ‘DecisionTreeClasssifier()’, 

‘RandomForestClassifier(n_estimators=100)’ and ‘SVC(probability=True)’. 

Furthermore, it is required for hyperparameter tuning. The GridSearchCV or 

RandomizedSearchCV are used to fine-tuning the hyperparameters to improved 

performance. In addition, the next step is model fitting. The models is trained 

by using training set, such as X_train and y_train. For instance, by using the 
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model.fit(X_train, y_train) to train the models. This phase helps to reduce the 

risks of overfitting. 

 

3.6.1.5 Model Evaluation 

Model evaluation is the step of evaluates the performance of the trained models 

on test sets and select the most suitable model for project deployment. For this 

disease prediction web application, various evaluation metrics were used to 

comprehensively analyse model performance, especially for the classification 

task. The key evaluation metrics include sensitivity and accuracy. Sensitivity 

can minimize the false negatives results such as missed diagnoses. Accuracy is 

frequently used to measure the overall correctness of machine learning models. 

The evaluation compares all three models to select the best performer.  

 

3.6.2 Web Applications Development 

The Web Applications Development phase aims to building the core 

components of the Disease Prediction Web Application using Machine 

Learning. This ensures that a functional and user-friendly application is 

developed before integrating it with the machine learning model. The 

development process includes building the backend using Flask to handle API 

requests, creating the frontend with React.js to provide an interactive user 

interface, and make sure that the components meet functional and non-

functional requirements. The backend is responsible for handling HTTP 

requests, processing user inputs, and preparing the application for ML model 

integration. During this phase, the Flask application sets up with the necessary 

routes and configurations to support the functionality of the application. In 

addition, the frontend is responsible for providing a responsive and user-friendly 

interface for users to input symptoms and view prediction results, fulfilling the 

functional requirements and a clear output display. During this phase, the 

React.js application is set up the necessary components and routes to support 

user interactions. 
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3.6.3 Integration of ML Model with Web Application 

The integration of the ML model with web application is important in this 

project. This ensures that the well-trained model is able to process user input 

symptoms and deliver the prediction results through the web application’s 

interface. This process combines the ML model development with the web 

application development. The integration included loading and saving the ML 

model using scikit-learn, creating the API endpoint using Flask to provide 

prediction service, and enabling the frontend to send the symptoms and display 

the prediction results by using React. This phase can ensure that the ML model 

can communicate well with the backend to provide the real-time predictions and 

responses based on user input. The integration process ensures that the robust 

and efficient system is developed and aligned with the requirements.  

Furthermore, the Google Gemini will also integrate with the web application to 

generate general medical advice for each potential disease. The completed 

system will be produced at the end of the phase.  

 

3.7 System Testing  

System testing is the testing phase in the Waterfall methodology. It is important 

for the reliability of Disease Prediction Web Application using Machine 

Learning. This phase ensures that the integrated system is fulfil the project 

requirements. The objective of testing is to validate that the web application 

achieves at least 85% sensitivity for disease prediction and able to predict the 

diseases accurately.  

The system testing also includes testing functional requirements and 

non-functional requirements. The testing phase can mitigate the potential risks 

such as error predictions by evaluating the performance and reliability of the 

system. There are various types of testing can be performed within the project, 

including unit testing, integration testing, usability testing and user acceptance 

testing. These testing helps ensure that that software system fulfils the specific 

requirements and reduce potential risks such as inaccurate prediction of results 

and incorrect medical advice. In this phase, the test report and bug list will be 

produced at the end.  
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3.8 Tools and Technologies 

These tools and technologies are important for development of the Disease 

Prediction Web Application to ensure the efficient and effective implementation, 

testing, and deployment. This section describes the details of the tools used in 

this project. For this project, the selected tools include Flask for the backend, 

React for the frontend, Scikit-learn for the model framework, MySQL for the 

database, GitHub for task tracking and Postman for testing.   

 

3.8.1 Flask 

Flask is selected as the backend framework for this project. Flask is responsible 

for handle the server-side request. Flask is characterized by lightweight and 

rapid development. Flask can ensure the fast performance and quick setup due 

to its small footprint, making it suitable for small to medium-sized projects. In 

addition, Flask is simple, allowing developers to customize the structure of the 

application to their requirements and to build APIs and integrate machine 

learning models easily and quickly.  

 

3.8.2 React 

React is selected as the frontend framework for this project. React is responsible 

for build the interactive and user-friendly interface. React has strong community 

support. The ecosystem of React provides a wealth of resources and libraries 

that facilitate the development process. Moreover, the React offer better 

performance and interactivity than other frontend frameworks. The virtual 

DOM and reactivity of React ensure a fast, responsive user interface that 

enhance the user’s experience in the application. 

 

3.8.3 Scikit-learn 

Scikit-learn is selected as the machine learning framework for this project. 

Scikit-learn is a Python library that provide an efficient and simple API for 

traditional machine learning algorithms to predictive data analysis. Due to its 

simplicity, comprehensiveness and consistency, it is widely utilizing in the field 

of data science and machine learning. Scikit-learn also provides data 
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preprocessing, feature selection, evaluation tools to ensure that the ML model 

meet the requirements.  

 

3.8.4 MySQL 

In this project, MySQL is chosen as the database management system. The 

MySQL is responsible for storing the history of prediction such as user inputs, 

prediction results, and medical recommendations. MySQL is widely used for 

managing and storing the structured data. The SQL means Structured Query 

Language that support data retrieval and manipulation. MySQL is reliable and 

can integrates well with Flask, allowing the backend to store user data such as 

input symptoms and prediction results.  

 

3.8.5 GitHub 

In this project, GitHub is chosen as the version control tool to ensure the 

efficient code management. GitHub is a cloud-based platform with a repository 

that allow developers to perform version control such as commits, pull requests 

and more. This is important for tracking changes to the codebase. GitHub also 

allow developers to create different branches to develop new features without 

affecting the main codebase. In addition, it allows for backup and restoration of 

data, thus preventing data loss. 

 

3.8.6 Postman 

In this project, the Postman is chosen as the API testing tool. Postman is 

responsible for sending HTTP requests and return the prediction responses to 

the users. It is important for testing and managing the application interface. 

Postman provides a user-friendly interface and able to perform features without 

additional code. Postman can also verify that the actual results match the 

expected results to ensure that the accurate results are returned. 

 

3.9 Project Plan 

The project plan for the Disease Prediction Web Application using Machine 

Learning provides a structured approach to managing the development process, 
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outlining the timeline and deliverables to ensure the well-structured 

development process. 

 

3.9.1 Work Breakdown Structure (WBS) 

0.0 Disease Prediction Web Application using Machine Learning 

1.0 Project Preparation 

1.1 Study the interested proposal title 

1.2 Discuss with supervisor 

1.3 Confirm FYP title 

2.0 Project Initiation 

2.1 Draft Chapter 1: Introduction 

2.1.1 General Introduction 

2.1.2 Define Important of study 

2.1.3 Define Problem Statements 

2.1.4 Define Aim and Objectives 

2.1.5 Define Scope and Limitations 

2.1.6  Propose Project Solution 

3.0 Literature Review 

 3.1 Draft Chapter 2: Literature Review 

  3.1.1 Research and Compare Models 

  3.1.2 Compare Existing Web Apps 

  3.1.3 Define Evaluation Metrics 

  3.1.4 Identify Dataset Sources 

  3.1.5 Compare Web Application Framework 

 3.2 Review and Finalize Chapter 1 

  3.2.1 Review draft Chapter 1 with supervisor 

  3.2.2  Incorporate feedback and finalize 

4.0 Methodology and Work Plan 

 4.1 Draft Chapter 3: Methodology and Work Plan 

  4.1.1 Compare SDLC Methodologies 

  4.1.2 Discuss Tools and Technologies 

  4.1.3 Create WBS 

  4.1.4 Create Gantt Chart 
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 4.2 Review and Finalize Chapter 2 

  4.2.1 Review draft Chapter 1 with supervisor 

  4.2.2  Incorporate feedback and finalize 

5.0 Requirements Analysis 

 5.1 Functional Requirements 

 5.2 Non-Functional Requirements 

 5.3 Develop use case diagram and description 

 5.4  Review and Finalize Chapter 3 

5.5 Develop Prototype 

5.5.1 Develop Low Fidelity Prototype 

6.0 System Design 

 6.1 Define system architecture and the data flow 

7.0 System Development 

 7.1 Machine Learning Model development 

  7.1.1 Model Selection 

  7.1.2 Dataset Selection 

  7.1.3 Data preprocessing 

  7.1.4 Model Building 

  7.1.5 Model Evaluation 

 7.2 Web Application Development 

  7.2.1 Develop Fronted 

  7.2.2 Develop Backend 

 7.3 Integration of ML Model with Web App 

  7.3.1 Load ML model into Flask 

  7.3.2 Integrate the LLM model into existing application 

8.0 System Testing 

 8.1 Unit Testing 

 8.2 Integration Testing 

 8.3 User acceptance Testing 

 8.4 User Interface Design Feedback 

9.0 Closing 

 9.1 Finalize project documentation 

 9.2 Submit Project 
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3.9.2 Gantt Chart 

3.9.2.1 Overview of the Disease Prediction Web Application using 

Machine Learning Timeline 

Figure 3.7 shows an overview of the project timeline. The Gantt chart below 

illustrates the tasks required to complete the project. These tasks include project 

preparatory, project initiation, literature review, methodology and work plan, 

requirement analysis, system design, system development, system testing, and 

closing. The estimated total duration to complete the project is 219 days. 

 
Figure 3.7: Overview of the Project Timeline 

 

3.9.2.2 Project Preparatory and Project Initiation Timelines 

Figure 3.8 shows the tasks included in project preparatory and project initiation 

timelines. The estimated duration of project preparatory is 21 days and project 

initiation are 14 days. 

 
Figure 3.8: Project Preparatory and Project Initiation Timelines 

 

3.9.2.3 Literature Review and Methodology Timelines 

Figure 3.9 shows the timelines for the literature review and methodology phases. 

These tasks include drafting Chapter 2, reviewing and finalizing Chapter 1, 

drafting Chapter 3 under the methodology timelines. The estimated duration for 

the literature review is 21 days and for the methodology and work plan is 17 

days. 
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Figure 3.9: Literature Review and Methodology Timelines 

 

 

3.9.2.4 Requirements Analysis and System Design Timelines 

Figure 3.10 shows the timelines for requirements analysis and system design 

phases. The milestones for requirements analysis phase include identifying the 

project requirements and completing the prototype. The milestones for system 

design phase include designing the system architecture and identifying the data 

flow of the system. The estimated duration for both the requirements analysis 

and system design phases is 21 days each. 

 
Figure 3.10: Requirements Analysis and System Design Timelines 

 

3.9.2.5 System Development Timelines 

Figure 3.11 shows the system development timelines. The estimated duration 

this phase is 80 days. The tasks include machine learning model development, 

web application development and integration of machine learning model with 

the web application. The milestones for this phase include completing the ML 

model and web application development and finalizing the integration. 
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Figure 3.11: System Development Timelines 

 

3.9.2.6 System Testing and Closing Timelines 

Figure 3.12 shows the timelines for system testing and closing phases. The 

estimated duration for system testing phase is 21 days. The tasks in this phase 

include unit testing, integration testing, user acceptance testing and user 

interface design feedback. The closing phase is estimated to takes 5 days and 

involves completing the project documentation.  

 
Figure 3.12: System Testing and Closing Timelines 
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CHAPTER 4 

 

4 PROJECT SPECIFICATIONS 

 

4.1 Introduction 

This chapter details the specifications for Disease Prediction Web Application 

using Machine Learning, providing the details information on the system 

requirements, design and functionality. This section presents the functional and 

non-functional requirements specifications, use case modelling with use case 

diagram and use case description, proposed system flow, interface system flow 

and low-fidelity prototype. Use case diagram demonstrates the interaction 

between user and system. This chapter ensures that the system is aligned with 

the goals and objectives of this system.  

 

4.2 Requirements Specification 

This section describes the functional and non-functional requirements of the 

project to ensure that the system fulfil the user expectations and requirements. 

The requirements are gathered from existing similar disease prediction web 

applications, which combine the strengths of the existing systems. 

 

4.2.1 Functional Requirements Specification 

The functional requirements define the specific functions of the system that 

provide to fulfil the user’s needs. The Table 4.1 identifies the functional 

requirements for the Disease Prediction Web Application using Machine 

Learning 

 

Table 4.1: Functional Requirements 

ID Functional Requirement Statements 

FR001 The system shall allow user to register an account. 

FR002 The system shall allow user to login with the email and 

password. 

FR003 The system shall allow user to input symptoms using 

predefined checklist or free text. 
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FR004 The system shall display the prediction results to user with 

explanation. 

FR005 The system shall provide medical advice to the user based on 

the predicted results. 

FR006 The system shall allow user to store the predicted results into 

the database.   

FR007 The system shall allow user to view the historical symptoms 

and prediction results. 

FR008 The system shall allow user to view their profile. 

FR009 The system shall allow user to update their personal data such 

as username, date of birth, gender and password. 

 

4.2.2 Non-functional Requirements Specification 

The non-functional requirements specify the performance, usability and 

reliability of the system. This can ensure that the system fulfil the quality 

standards. The Table 4.2 identifies the non-functional requirements for the 

project.  

 

Table 4.2: Non-functional requirements 

ID Non-Functional Requirements Statements 

NFR001 The system shall provide a responsive and user-friendly 

interface and clear navigation.  

NFR002 The system shall be secured and able to protect the predicted 

results and symptoms entered by the user.  

NFR003 The response time of the system should be responsive when 

the user submits the symptoms. 

NFR004 The system should be available all the time. 

NFR005 The system should be compatible with popular browsers 

including Google Chrome and Microsoft Edge. 
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4.3 Use Case Modelling 

The use case modelling describes the interaction between the user and the 

system. This clearly illustrates the uses of web applications. This section   

includes use case diagram and use case descriptions. 

 

4.3.1 Use Case Diagram 

The Figure 4.1 shows the use case diagram for disease prediction web 

application using machine learning system.  

 
Figure 4.1: Use case diagram 
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4.3.2 Use Case Description 

4.3.2.1 Login account  

Table 4.3: Use case description of Login Account 

Use Case Name: Login account 

 

ID: 

UC001 

Importance Level: 

High 

Primary Actor: User 

 

Use Case Type: Details, Essential 

Stakeholders and Interests:  

User – wants to login to the account to access the web application by using 

email and password. 

Brief Description: This use case describes how a user login to the account 

to access features of the web application. 

Trigger: The user wants to access the disease prediction web application. 

Relationships: 

 Association : User 

 Include  : - 

 Extend  : Register account 

 Generalization: -  

Normal Flow of Events: 

1. The system displays 2 options for using the system. Perform 1.1 or 

1.2. 

1.1 If the store owner selects the “Login” option, the flow no.2 

continues. 

1.2 If the store owner selects the “Register” option, the flow ends. 

2. The system displays the login screen.  

3. The user enters the email and password. 

4. The system checks and validates the credentials. Perform 4.1 or 4.2. 

4.1 If the email and password are valid, flow no.5 continues. 

4.2 If the email and password are invalid, the system will indicate that 

the login was unsuccessful, the flow no.1 continues. 

5. The user successfully logged into the web application and can access 

the functions in the system. 
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Sub-flows: -  

Alternate/Exceptional Flows: 

1a. If the user selects “Register,” the system executes the Register Account 

use case. 

 

4.3.2.2 Register account 

Table 4.4: Use case description of Register account 

Use Case Name: Register account 

 

ID: 

UC002 

Importance Level: 

High 

Primary Actor: User 

 

Use Case Type: Details, Essential 

Stakeholders and Interests:  

User – wants to register an account to access the features of disease 

prediction web application. 

Brief Description: This use case describes how a user can register an 

account to gain access to the web application. 

Trigger: The user wants to become a user. 

Relationships: 

 Association : User 

 Include  : - 

 Extend  : - 

 Generalization: - 

Normal Flow of Events: 

1. The system displays 2 options for using the system. Perform 1.1 or 

1.2. 

1.1 If the user selects the “Register” option, the flow no.2 continues. 

1.2 If the user selects the “Login” option, the flow ends. 

2. The system displays the registration form.  

3. The user logs in with username and password. 

4. The system validates the information provided. Perform 4.1 or 4.2. 

4.1 If the information is valid, flow no.5 continues. 

4.2 If the information is invalid, flow no.6 continues. 
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5. The system indicates successful registration. 

6. The system indicates unsuccessful registration. 

 

Sub-flows: 

 

Alternate/Exceptional Flows: 

1a. If the user selects “Login,” the system proceeds to the Login use case. 

 

4.3.2.3 Input Symptoms 

Table 4.5: Use case description of Input Symptoms 

Use Case Name: Input Symptoms 

 

ID: 

UC003 

Importance Level: 

High 

Primary Actor: User Use Case Type: Details, Essential 

Stakeholders and Interests: User – wants to input symptoms via the 

checklist.   

Brief Description: This use case describes how a user enters the symptoms 

into the system for prediction of diseases using a dropdown menu or free 

text. 

Trigger: The user wants to input their symptoms to predict potential 

diseases. 
 
Relationships: 

 Association : User 

 Include  : - 

 Extend  : View Predicted Results 

 Generalization: - 

Normal Flow of Events: 

1. The system displays two input options which are dropdown checklist 

by listing 132 symptoms and a free text input box. Perform 2.1 or 2.2 

2.1. If the user selects input symptoms by using dropdown menu, the 

flow no.3 continues.  

2.2 If the user selects input symptoms via free text, the flow no.4 

continues. 
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2. The user selects one or more symptoms by checking the corresponding 

boxes. 

3. The user enters the symptoms in the text input box. 

4. The system displays a preview or list of the selected symptoms to the 

user. 

5. The user clicks on the “Predict” button to submit the symptoms for 

prediction. 

6. The system validates that at least one symptom is selected. 

Sub-flows: -  

Alternate/Exceptional Flows: 

6a. If the user clicks “Predict” without selecting or entering at least one 

symptom in the checklist or free text input box, the system displays “Please 

select at least one symptom to proceed.” message. 

6b. If the input is valid, the system executes the “View Prediction Results” 

use case. 

 

4.3.2.4 View Predicted Results 

Table 4.6: Use case description of View Predicted Results 

Use Case Name: View Predicted Results 

 

ID: 

UC004 

Importance Level: 

High 

Primary Actor: User  

 

Use Case Type: Details, Essential 

Stakeholders and Interests:  

User – wants to view the predicted results based on the input symptoms. 

Brief Description:  

This use case describes how a user views the predicted results after 

inputting symptoms into the system. 

 

Trigger: The user wants to view the predicted results after completing the 

“Input Symptoms” use case. 
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Relationships: 

 Association : User 

 Include  : - 

 Extend  : View Medical Advice 

 Generalization: - 

 

Normal Flow of Events: 

1. The system processes the input symptoms using the ML model. 

2. The system displays prediction results. 

3. The user views the prediction results on screen. 

4. The system displays 2 buttons for back and viewing medical advice.  

Sub-flows: - 

 

 

Alternate/Exceptional Flows: 

2a. The system displays “Unable to process prediction. Please try again later.” 

message if the prediction fails due to server or model issues. 

3a. The system displays “No specific condition matched. Please refine your 

input.” message if the result is not found. 

 

4.3.2.5 View Medical Advice 

Table 4.7: Use case description of  View Medical Results 

Use Case Name: View Medical Advice 

 

ID:  

UC005 

Importance Level: 

High 

Primary Actor: User 

 

Use Case Type: Details, Essential 

Stakeholders and Interests:  

User – wants to view the medical advice related to the predicted diseases 

for further action. 

Brief Description: This use case describes how a user views medical advice 

after receiving the disease prediction results. 
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Trigger: The user wants to seek medical advice after receiving the disease 

prediction results. 

 
 
Relationships: 

 Association : User 

 Include  : - 

 Extend  : - 

 Generalization: - 

 

Normal Flow of Events: 

1. The system displays the “View Advice” button. 

2. The user clicks on “View Advice” button.  

3. The system displays medical advice for the user related to predicted 

diseases. 

4. The system displays 2 buttons for back and storing the prediction 

results and medical advice. 

 

Sub-flows: -  

 

 

Alternate/Exceptional Flows:  

3a. The system display “No advice available for this condition at this time.” 

message if there is no advice is available for the prediction. 

 

 

4.3.2.6 Store Predicted Results 

Table 4.8: Use case description of Store Predicted Results 

Use Case Name: Store Predicted Results 

 

ID: 

UC006 

Importance Level: 

High 

Primary Actor: User 

 

Use Case Type: Details, Essential 

Stakeholders and Interests: User – wants to store the prediction result for 

future reference 
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Brief Description: This use case describes how a user stores the prediction 

results into the system. 

 

Trigger: The user wants to store the input symptoms, prediction results 

and medical advice into database. 

  

Relationships: 

 Association : User 

 Include  : - 

 Extend  : - 

 Generalization: -  

 

Normal Flow of Events: 

1. The user clicks on the “Store Results” button in the view medical 

advice page. 

2. The system stores the input symptoms, prediction results and medical 

advice to the database. 

3. The system displays successful messages when the data is successful 

store in the database.  

Sub-flows: - 

 

 

Alternate/Exceptional Flows:  

3a. The system displays the error message “Fails to save result. Please try 

again” if the storage data failure occurs. 

 

 

4.3.2.7 View Historical Results 

Table 4.9： Use case description of View Historical Results 

Use Case Name: View Historical Results  ID: 

UC007  

Importance Level: 

High 
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Primary Actor: User 

 

Use Case Type: Details, Essential 

Stakeholders and Interests: User – wants to view the past prediction results 

to track the symptoms over time.  

 

Brief Description: This use case describes how a user views their past 

disease prediction results to monitor the trends. 

 

Trigger: The user wants to view the historical information by clicking the 

“View History” button. 

  

Relationships: 

 Association : User 

 Include  : - 

 Extend  : - 

 Generalization: - 

 

Normal Flow of Events: 

1. The user selects the “My History” option in the home page. 

2. The system retrieves the past prediction results of users from the 

database. 

3. The system displays a list of the past prediction results including 

symptoms input. 

4. The user selects the specific result to view. 

5. The system displays detailed prediction results of the selected result. 

 

Sub-flows:  

 

Alternate/Exceptional Flows: 

1a. If the user is not yet logged in, the system prompts the user to log in. 

2a. The system displays “No prediction history found” message if the record 

is not found. 
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4.3.2.8 View Profile 

Table 4.10: Use case description of View Profile 

Use Case Name: View Profile 

 

ID:  

UC008 

Importance Level: 

High 

Primary Actor: User 

 

Use Case Type: Details, Essential 

Stakeholders and Interests:  

User – wants to view their personal data. 

Brief Description: This use case describes how a user views their personal 

data.  

Trigger: The user wants to view the profile. 

 
 
Relationships: 

 Association : User 

 Include  : - 

 Extend  : Update Profile 

 Generalization: - 

 

Normal Flow of Events: 

1. The system displays the “My Profile” button in the header in Home 

Page. 

2. The user clicks on “My Profile” button.  

3. The system displays the user's personal information, such as e-mail 

address, date of birth and gender, on the profile page. Gender is empty 

by default unless the user wants to update it. 

4. The system provides a link for the user to change their password.  

5. The user enters the current password, new password and confirmation 

password.  

6. The system checks and validates of password. Perform 6.1 or 6.2. 

6.1 If the passwords are valid, flow no.7 continues. 

6.2 If the passwords are invalid, the system will indicate that the 

changes were unsuccessful, the flow no.4 continues. 

7. The user successfully changes their password. 
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Sub-flows: -  

 

 

Alternate/Exceptional Flows:  

 

 

4.3.2.9 Update Profile 

Table 4.11: Use case description of Update Profile 

Use Case Name: Update Profile 

 

ID:  

UC009 

Importance Level: 

High 

Primary Actor: User 

 

Use Case Type: Details, Essential 

Stakeholders and Interests:  

User – wants to update their personal data. 

Brief Description: This use case describes how a user updates their 

personal data.  

Trigger: The user wants to update the profile. 

 
 
Relationships: 

 Association : User 

 Include  : - 

 Extend  : - 

 Generalization: - 

 

Normal Flow of Events: 

1. The system displays the “Update Profile” button in the header in 

Profile Page. 

2. The user clicks on “Update Profile” button to edit their personal data.  

3. The system displays update forms for user including username, date 

of birth and gender. 

4. The user enters the new personal information. 

5. The system checks and validates the information. Perform 5.1 or 5.2. 
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5.1 If the data are valid, flow no.6 continues. 

5.2 If the data are invalid, the system will indicate that the update was 

unsuccessful, the flow no.1 continues. 

6. The user successfully updates their profile. 

 

Sub-flows: -  

 

 

Alternate/Exceptional Flows:  

 

 

4.4 System Flow Diagram 

The Figure 4.2 shows the system flow diagram for the disease prediction web 

application using machine learning system. 
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Figure 4.2: System Flow Diagram 
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4.5 Interface Flow Diagram 

The Figure 4.3 shows the interface flow diagram of Disease Prediction Web 

Application using Machine Learning. 

 

 
Figure 4.3: Interface Flow Diagram 

 

4.6 Low Fidelity Prototype 

4.6.1 Welcome Page  

The welcome page is the first page of Disease Prediction Web Application using 

Machine Learning. Welcome page includes login and register buttons for user 

to access the web application.   
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Figure 4.4: Welcome Page 

 

4.6.2 Login Page 

The login page allows user to input their email address and password. 

 

 
Figure 4.5: Login Page 
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4.6.3 Sign Up Page 

The sign up (register) page allows users to create a new account.  

 
Figure 4.6: Sign Up Page 

 

4.6.4 Home Page 

The Home Page allows users to access to view the history, profile and displays 

the username in the header. The Home Page also allows users to choose the 

input methods to predict the potential diseases. The Home Page briefly describes 

about how the web application works.  
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Figure 4.7: Home Page 

 

4.6.5 Select Input Method Page 

The Select Input Method Page allows users to choose the input methods to 

predict the potential diseases. 

 

Figure 4.8: Select Input Method Page 
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4.6.6 Dropdown List Input Symptoms Page 

The Dropdown List Input Symptoms Page allows user to search and select the 

relevant symptoms they may have, and the “Add” button add the symptoms to 

the “Selected Symptoms”. For the “Selected Symptoms”, user also allowed to 

delete the symptoms. If a complete symptom is entered and click the “Prediction” 

button, the system starts the prediction. 

 

 
Figure 4.9: Dropdown List Input Symptoms Page 

 

4.6.7 Free Text Input Symptoms Page 

The Free Text Input Symptoms Page allows user to enter the relevant symptoms 

they may have, and the “Add” button add the symptoms, the system will display 

the “Matched Symptoms”. For the “Matched Symptoms”, user also allowed to 
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delete the symptoms. If a complete symptom is entered and click the “Prediction” 

button, the system starts the prediction. 

 

 
Figure 4.10: Free Text Input Symptoms Page 
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4.6.8 Predicted Results Page 

The Predicted Results page shows potential diseases that match the user's 

symptoms. The right side shows the symptoms that the user entered into the 

system. 

 
Figure 4.11: Predicted Results Page 

 

4.6.9 View Medical Advice Page 

This page is for user to view the medical advice based on predicted results. 
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Figure 4.12: View Medical Advice Page 

 

4.6.10 View Historical Results Page 

This page is for user to view their historical results in the system. 

 
Figure 4.13: View Historical Results Page 
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4.6.11 Profile Page 

The profile page allows users to view their personal information on the profile 

page. Gender is empty by default unless the user wants to update it. Users can 

change their password by following the link. 

 
Figure 4.14: Profile Page 

 

4.6.12 Update Profile Page 

This page allows users to update their personal information such as username, 

date of birth, and gender.  
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Figure 4.15: Update Profile Page 

 

4.6.13 Change Password Page 

This page allows user to change their password.  

 
Figure 4.16: Change Password Page 
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4.7 Preliminary Results 

This section is to present the preliminary results obtained during the early 

implementation and testing phases of the Random Forest model building. These 

results validate the feasibility of the proposed system design. This section 

focuses on the evaluate the capabilities of the Random Forest model, functional 

requirements of dropdown list input system and free-text input system.  

 

4.7.1 Model Performance 

The Random Forest model was developed and trained on the Symptom-Disease 

Prediction Dataset (SDPD) dataset, which includes 132 symptoms and cover 41 

diseases with a total of 4920 instances. The dataset is split into two subsets 

which are training, validation testing sets in a ratio of 80-20, resulting in 3936 

training samples and 984 testing samples. This model was trained with 100 trees 

(n_estimators=100) and 42 random states for reproducibility. The 

n_estimators=100 is the number of decision trees built, and each tree is trained 

on a random subset of the features and data. Prediction is combined with 

majority voting to improve the accuracy and reduce the overfitting. The 

random_state =42 parameter is used to assign a seed to the random number 

generator, ensuring that the train-test split, as well as the tree construction are 

the same each time the model is trained, thus making the results are reproducible. 

The model was evaluated using Accuracy, sensitivity (recall), and F1-Score. 

The overall metrics in this example are not accurate and are for demonstration 

purposes only. The Figure 4.12 shows the preliminary Random Forest model 

performance metrics. The Figure 4.13 shows the sample of Pre-Disease 

performance metrics. 

 

 
Figure 4.17: Preliminary Model Performance Metrics 
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Figure 4.18: Sample of Per-Disease Performance Metrics 

 

4.7.2 Dropdown List Input 

One of the functional requirements of the project is the system allow users to 

input their symptoms by selecting the symptoms from the predefined list. This 

method presents the user with the complete list of 132 symptoms in the dataset 

and allows the user to select symptoms by typing the exact names. Figure 4.14 

shows the sample of the dropdown list input and the prediction outputs. The 

output may not be accurate and was improved in the next chapter. 

 
Figure 4.19: Sample Dropdown List Input and Prediction Results 

 

4.7.3 Free-Text Input 

One of the functional requirements of the project is the system allow users to 

input their symptoms by using free text input method. By using Google Gemini 

to extract symptoms, this approach effectively handles the spelling errors and 

text issues. The free text input method maps the user input to the 132 symptoms 

in the dataset through the synonym dictionary. Figure 4.15 shows the sample of 
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free-text input and prediction output. The output may not be accurate and was 

improved in next chapter.  

 

 
Figure 4.20: Sample of Free-Text Input and Prediction Output 
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CHAPTER 5  

 

5 SYSTEM DESIGN 

 

5.1 Introduction 

 
This chapter demonstrates the system design for the Disease Prediction Web 

Application. The system design encompasses the system architecture, data 

model design, database design, entity relationship diagram (ERD), user 

interface design and prompt design. This can ensure that the final 

implementation is both efficient and user-friendly.  Moreover, the last section 

presents a high-fidelity prototype of the user interface as a reference for the 

interface design of the system.  

 

5.2 System Architecture Design 

 
The system architecture defines the overall structure of the web application. The 

proposed disease prediction web application adopts a three-tier architecture, 

comprising the frontend, backend, and database, with the machine learning 

model and large language model (Google Gemini) integrated into the backend. 

The Figure 5.1 shows the three-tier architecture of this project. The Figure 5.2 

shows the System Architecture Design to clarify the behavioural patterns and 

operational structure of the system.   

 

 
Figure 5.1: Three-tier Architecture Diagram 
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Figure 5.2: System Architecture Design 

 

The system employs a client-server architecture based on modular 

design to ensure maintainability and scalability while enabling the system to 

handle diverse request type efficiently. This architecture is divided into three 

main tiers, including Presentation Tier, Application Tier, and Data Tier. This 

layered approach achieves separation of concern, enabling each component to 

be developed, tested, and extended independently. This architecture is designed 

to efficiently process user request, analyse symptoms through machine learning 

model, deliver predictive results in real time, and utilize large language models 

to extract possible symptoms from users' free-text inputs while provide general 

medical advice.  

 

 The presentation tier serves as the user interface and user experience 

(UI/UX). It enables users to register, login, input symptoms, view prediction 

results, check general medical advice, and review their history. The system 

using React to build dynamic and responsive frontend, utilises external CSS for 

styling and supports RESTful API calls. React was chosen for its efficient 

handling of dynamic updates, delivering a smooth user experience.  

 

 For the application tier, the backend is implemented using Flask. As s 

lightweight Python framework, Flask serves as the middle tier between the 

frontend and the data tier. It handles user request, manages user session 

authentication, validates user input, and communicates with the database. This 

tier communication with the frontend by exposing RESTful API endpoints such 

as /predict, /user. Both machine learning model and large language model are 
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integrated into this tier. The machine learning model is developed using scikit-

learn and is responsible for processing the input symptoms and generate 

predictions by comparing them against patterns learned from training data. The 

large language model is using Google Gemini API to extract free-text symptoms 

inputs and generate general medical advice based on different diseases and 

return it as a JSON response. The backend ensures timely return of predictions 

results and supplemented by relevant medical advice.  

  

 The data tier is used to manage the persistent storage of user data. This 

tier is implemented by using MySQL, which stores user credentials and 

information, symptom and disease records, prediction history, and general 

medical advice. The database ensures consistency, integrity and security of 

stored information as well as efficiently managing queries and updates to 

support real-time interaction with the application.  

 

 This architecture is scalable as improvements on one layer can be 

implemented independently without affecting the others. Furthermore, the 

modularity of the system enables the system to seamless integration of 

additional features such as advanced medical knowledge bases for generating 

medical recommendations.   

 

5.3 Data Model Design 

 
This section outlines the database design for the Disease Prediction Web 

Application using Machine Learning. The database is designed to efficiently 

store and manage the application data, ensuring quick retrieval and secure 

storage. The design includes the conceptual data model including entities and 

relationships and its physical implementation in MySQL. MySQL was selected 

as the relational database management system due to its robustness, high 

performance, and widespread use.  

 

5.3.1 Entity Relationship Diagram (ERD) 

The ERD visually represents the relationship between entities, as shown in 

Figure 5.3.  
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Figure 5.3: Entity Relationship Diagram (ERD) 

 

5.3.2 Data Dictionary 

The following data dictionary provides a detailed description of each table, 

including attributes, data types, and constraints.  

 

Table 1: users 

Column Name Data Type Description Constraints 

user_id INT Unique identifier 

for each user 

Primary Key, 

Auto increment 

username VARCHAR (191) Login name of 

user 

Not Null 

email  VARCHAR (191) Email address of 

user 

Unique, Not Null 

password_hash VARCHAR (255) Hashed password 

for secure login 

Not Null 

dob  DATE Date of birth of 

user 

Optional 

gender VARCHAR (10) Gender of user Optional 
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created_at TIMESTAMP Account creation 

timestamp 

Default: 

CURRENT_ 

TIMESTAMP 

Table 5.1: users Table Data Dictionary 

 

Table 2: symptoms 

Column Name Data Type Description Constraints 

symptom_id INT Unique identifier 

for symptom 

Primary Key, 

Auto Increment 

symptom_name  VARCHAR (191) Symptom name Unique, Not Null 

Table 5.2: symptoms Table Data Dictionary 

 

Table 3: diseases 

Column Name Data Type Description Constraints 

disease_id INT Unique identifier 

for disease 

Primary Key, 

Auto Increment 

disease_name VARCHAR (191) Disease name Unique, Not Null 

Table 5.3: diseases Table Data Dictionary 

 

Table 4: prediction_history 

Column Name Data Type Description Constraints 

history_id INT Unique identifier for 

prediction session 

Primary Key, 

Auto Increment 

user_id INT User who made the 

prediction 

Foreign Key 

(users – user_id) 

prediction_date TIMESTAMP Date and time of 

prediction  

Default: 

CURRENT_ 

TIMESTAMP 

Table 5.4: prediction_history Table Data Dictionary 
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Table 5: medical_advice 

 

Column Name Data Type Description Constraints 

advice_id INT Unique identifier for 

advice record 

Primary Key, Auto 

Increment 

history_id INT Related prediction 

session 

Foreign Key 

(prediction_history – 

history_id), ON 

DELETE CASCASE 

disease_id INT Related disease  Foreign Key (disease 

– disease_id) 

advice_text TEXT General medical 

advice gets from 

LLM 

Not Null 

unique_history_ 

disease 

constraint Ensures only one 

advice per (history, 

disease) pair 

Unique 

Table 5.5: medical_advice Table Data Dictionary 

 

Table 6: predicted_symptom (junction table) 

 

Column Name Data Type Description Constraints 

history_id INT Prediction session 

ID 

Foreign Key 

(prediction_history – 

history_id) 

symptom_id INT Symptom included 

in this prediction 

session  

Foreign Key 

(symptoms – 

symptom_id) 

Primary Key (history_id, 

symptom_id) 

Composite primary 

key 

 

Table 5.6: predicted_symptom junction table Data Dictionary 

 

 



105 
 

Table 7: predicted_disease (junction table) 

 

Column Name Data Type Description Constraints 

history_id INT Prediction session 

ID 

Foreign Key 

(prediction_history – 

history_id) 

disease_id INT Disease predicted  Foreign Key 

(diseases – 

disease_id) 

rank_index INT Rank of prediction Default 0 

Primary Key (history_id, 

disease_id) 

Composite primary 

key 

 

Table 5.7: predicted_disease junction table Data Dictionary 

 

5.4 User Interface Design 

The user interface (UI) of the disease prediction web application using machine 

learning prioritizes on simplicity, ease of use, and accessibility during 

development, ensuring that users with varying levels of technical expertise can 

effectively interact with the system. The UI design is focussed on creating an 

intuitive interface that enables users to input symptoms, view disease prediction 

results, and achieve seamless interaction with the system. The frontend is 

implemented using React, leveraging component-based design to promote 

modularity and reusability while maintaining consistency across different pages 

of the application.  

 

5.4.1 Welcome Page 

Upon launching the web application, users are greeted with a welcome interface, 

featuring login and registration button to facilitate secure access to the system. 

The header simultaneously displays the system logo, login portal and register 

portal to users. 
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Figure 5.4: Actual Welcome Page 

  

5.4.2 Login Page  

The Login page allows users to access to the system. Once authenticated, the 

user is directed to the Home Page, providing access to the core features such as 

symptom input and so on.  

 

 
Figure 5.5: Actual Login Page 

 

5.4.3 Sign Up Page 

The Sign Up Page enables users to create account and access the system securely. 

This page is designed with minimalistic form structures with clear field labels, 

and real-time validation feedback to reduce user input errors.  
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Figure 5.6: Actual Sign Up Page 

 

5.4.4 Home Page 

The Home Page provides an overview of the application. It includes a brief 

description of the disease prediction system. A “Get Started” button to navigate 

to the prediction input form. Navigation bar with Home, History, Profile, 

Username and Logout button.  

 
Figure 5.7: Actual Home Page 

 

5.4.5 Select Input Method Page 

The symptom input interface forms a key component of the system, allowing 

users to enter their health-related symptoms. To enhance usability, the page 

supports multiple input methods, including dropdown list and free-text entry.  
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Figure 5.8: Actual Select Input Method Page 

 

5.4.6 Dropdown List Input Symptoms Page 

The Dropdown List Input Symptoms Page including dropdown lists, searchable 

fields, and checkbox selections, ensuring that users can effectively identify their 

symptoms. Users can see the selected symptoms before making predictions.  

 

 

Figure 5.9: Actual Dropdown List Input Symptoms Page 
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5.4.7 Free Text Input Symptoms Page 

The Free Text Input Symptoms Page allows users to enter free-text input 

symptoms, enabling greater flexibility in symptom submission. This design is 

intended to make the application more user-friendly, especially for the users 

who may not be familiar with the medical terminology or the exact symptom 

names used in the database.  

 
Figure 5.10: Actual Free Text Input Symptoms Page 

 

5.4.8 Predicted Results Page 

After submitting the input, the system generates prediction results and displays 

them on the results interface. This page highlights the predicted diseases in clear 

and concise format and shows the symptoms of users next to the potential 

diseases. 

 
Figure 5.11: Actual Predicted Results Page 
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5.4.9 View Medical Advice Page 

The View Medical Advice Page provides tailored description, lifestyle tips, 

prevention tips, and guidance on when to seek treatment for each potential 

disease. This can assist users in understanding potential next steps. 

 

 
Figure 5.12: Actual View Medical Advice Page 
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5.4.10 History Page 

The users can view records of the past prediction by navigating to the History 

Page. This feature displays previously entered symptoms, corresponding 

predictions results, and timestamps. Users may also delete the history records. 

 
Figure 5.13: Actual History Page 

 

5.4.11 Profile Page 

The profile page allows users to view their personal details such as email address, 

date of birth and gender. The page also features an “Update Profile” button that 

directs users to the update profile page.  

 
Figure 5.14: Actual Profile Page 
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5.4.12 Update Profile Page 

 

The update profile page allows users to update personal information or change 

account credentials.  

 
Figure 5.15: Actual Update Profile Page 

 

5.4.13 Change Password Page 

 

This page allows users to change their password. 

 
Figure 5.16: Actual Change Password Page 
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5.5 Prompt Design Study 

The aim of this study is match to objective 3 of this project, which is to design 

and test different prompts for large language model (Google Gemini), 

evaluating their effectiveness in advice generation and validate the outputs 

against trusted medical sources. This study is to evaluate how different prompt 

designs influence the accuracy and reliability of automatically generated general 

medical advice and to validate the output results against trusted medical sources 

such as WHO, CDC and other. 

 

5.5.1 Prompt Styles 

There are three different prompt styles were designed and tested: 

1. Zero-shot Prompt  

2. Role-based Prompt 

3. Step by step reasoning Prompt 

 

5.5.1.1 Zero-shot Prompting 

The zero-shot prompting are the straightforward and specific requests that 

clearly guide the model what to do or answer without the need for context and 

roles. This type of prompt is suitable for simple tasks where the user has a clear 

understanding of the output (Gadesha, 2025). It generates responses solely using 

the internal knowledge base of the model. The more precise the instructions, the 

greater the likelihood of achieving the desired outcome. It focuses on core action, 

making it an ideal choice for simple tasks such as generation or summarization 

(Jaiman, 2024). For example, a direct instruction prompt could be “Give general 

medical advice for a patient with diabetes.” The strengths of this type of prompt 

are easy to design, enable to produces quick and concise responses. The 

weakness of it is the outputs may be incomplete, ambiguous or overly general 

since no additional guidance is given.  

 

5.5.1.2 Role-based Prompting 

A role-based prompt instructs the model to assume a specific professional or 

authoritative role before generating the response (GeeksforGeeks, 2025). This 

approach can influence the tone, styles and content of AI, making the output 
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more pertinent, expert, and context aware. This facilitates the customization of 

responses to simulate specific viewpoint, ensuring greater contextually relevant 

and consistent. For example, the role-based prompt could be “You are a health 

assistant. Provide general advice for a patient with diabetes based on clinical 

guidelines.” This approach often produces more concise, structured, 

professional and authoritative outputs that align more closely with guideline-

based practice. However, this type of prompt does not guarantee the factual 

correctness, the accuracy still depends on the model’s training data.  

 

5.5.1.3 Chain-of-Thought (CoT) Prompting  

The Chain-of-Though (CoT) prompting is a prompt engineering technique 

designed to guide the Large Language Models (LLMs) to generate explicit 

reasoning steps before arriving at a final answer. According to Gadesha, 

Kavlakoglu and Winland, this technique significantly enhances the quality of 

LLM outputs, particularly for the complex tasks involving multi-step reasoning. 

This does not provide the direct command but instead guides the model to “think 

out loud” by breaking down the problem into smaller logical steps (Gadesha, 

Kavlakoglu and Winland, 2025). For example, the chain-of-though prompting 

could be “Explain reasoning step by step about how a doctor would recommend 

on lifestyle advice for a patient with diabetes and then provide the final advice.” 

This approach enhances the completeness by making the model is less prone to 

skip the key steps. However, CoT prompts may generate the verbose and less 

concise outputs. The reasoning steps it generates may not always reflect the 

actual medical decision-making process.  

 

5.5.2 Prompt Testing 

The prompt testing was conducted using Google Gemini, where three different 

prompt styles (Zere-shot, Role-based, and Chain-of-Thought) were applied to 

identical medical queries. The generated outputs were collected and evaluated 

against the trusted medical sources. The evaluation was carried out using four 

criteria, which are accuracy, clarity, completeness, and consistence with 

established medical knowledge. To ensure consistency and comparability, all 
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generated response were produced using Google Gemini 2.5 Flash model and 

limited to a maximum of 100 words.  

 

5.5.2.1 Prompt Testing on Diabetes  

The prompt test is focused on the diabetes disease. There are three different 

prompting styles were tested to generate the general medical advice for a patient 

with diabetes. 

5.5.2.1.1 Zero-shot Prompting 

Q: Give general medical advice for a patient with diabetes, not exceeding 100 

words. 

 

A: Managing diabetes effectively is key to a healthy life. Regularly monitor 

your blood sugar levels as advised by your doctor. Follow a balanced diet rich 

in whole grains, lean proteins, and vegetables, while limiting sugary drinks and 

processed foods. Incorporate regular physical activity into your routine, such as 

walking or swimming. Take your medications as prescribed and attend all 

scheduled medical appointments. Stay hydrated and manage stress. If you notice 

unusual symptoms, contact your healthcare provider immediately. 

 

Analysis of Zero-shot prompt 

This output is aligned with the Cleveland Clinic (Cleveland Clinic, 2023) and 

National Library of Medicine (Reynolds and Mitri, 2024) guidelines, which 

recommend regular blood sugar monitoring, balanced diet and limiting 

processed foods and sugary drinks. It also consistent with Mayo Clinic advice 

on physical activities and stress management (Mayo Clinic Staff, 2025). The 

response also includes a red-flag warning such as “contact healthcare provider 

if unusual symptoms”, which is supported by NHS guidelines (NHS Choices, 

2020). Overall, the answer provided is accurate and comprehensive. However, 

it does not mention a specific exercise target such as 150 minutes per week, 

making it slightly less precise.  
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5.5.2.1.2 Role-based Prompting 

Q: You are a health assistant. Provide general advice for a patient with diabetes 

based on clinical guidelines, not exceeding 100 words. 

 

A: For diabetes management, prioritize a balanced diet rich in whole grains, 

fruits, and vegetables while limiting sugary foods and saturated fats. Engage in 

regular physical activity, aiming for at least 150 minutes of moderate exercise 

weekly. Monitor blood glucose levels as advised by your doctor and take 

medications as prescribed. Stay hydrated, manage stress, and get adequate sleep. 

Regular check-ups are crucial for monitoring complications. Always consult 

your healthcare provider for personalized advice. 

 

Analysis of Role-based Prompt 

This response aligns closely with the guidelines from Medline Plus 

(MedlinePlus, 2019) and Mayo Clinic (Mayo Clinic, 2024), which recommend 

a healthy, balanced diets and engaging in at least 150 minutes of moderate 

exercise per week. It also incorporates monitoring the blood sugar levels, 

hydration and managing stress, also reflecting Mayo Clinic advice. The advice 

of “regular check-ups” is consistent with World Health Organization (WHO, 

2024) guidelines for long-term monitoring. Overall, this output is accurate and 

reliable, meets guideline requirements, and more precise than the Zero-shot 

response. 

 

5.5.2.1.3 Chain-of-Thought (CoT) Prompting  

Q: Explain reasoning step by step about how a doctor would recommend on 

lifestyle advice for a patient with diabetes and then provide the final advice, not 

exceeding 100 words. 

 

A: A doctor's recommendation for a patient with diabetes involves a multi-

faceted approach. 

1. Assessment: The doctor first assesses the patient's current lifestyle, 

including diet, physical activity level, smoking habits, alcohol 
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consumption, and stress levels. They also consider the patient's age, 

weight, and any coexisting medical conditions. 

2. Education: The doctor educates the patient on the importance of 

managing blood sugar levels and the long-term health risks of 

uncontrolled diabetes. 

3. Personalization: The doctor then tailors the advice to the patient's 

specific needs and preferences. For example, a busy professional might 

receive advice on meal prep, while a less active person might get 

guidance on incorporating short walks into their daily routine. 

4. Goal Setting: The doctor works with the patient to set realistic and 

achievable goals, such as losing a specific amount of weight or aiming 

for a certain number of steps per day. 

5. Follow-up: The doctor schedules follow-up appointments to monitor 

progress, address challenges, and make adjustments to the plan as 

needed. 

Final Advice: Manage diabetes through a balanced diet of whole foods, regular 

exercise (aim for at least 150 minutes of moderate activity weekly), and weight 

management. Monitor blood sugar, take medications as prescribed, and reduce 

stress. Limit processed foods, sugary drinks, and alcohol, and avoid smoking. 

 

Analysis of CoT Prompt 

This answer provides achieves transparent reasoning by simulating a doctor’s 

decision-making process. The final advice matches Mayo Clinic (Mayo clinic, 

2025) guidelines, including the weekly 150 minutes exercise target, dietary 

control, and stress management. It also includes red-flag symptoms for urgent 

care, consistent with NHS guidance. While the content is accurate and 

comprehensive, including reasoning steps make it more verbose, which slightly 

reduces clarity for patient-facing advice. Additionally, compared to zero-shot 

and role-based responses, this response takes longer to generate. 
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5.5.2.1.4 Summary of Diabetes Results 

Table 5.8: Diabetes Results on Prompt Testing 

Prompt Style Zero-shot Role-based Chain-of-

Thought 

Accuracy Accurate, but 

missed specific 

exercise target 

Accurate and 

aligns with 

guidelines 

Accurate and 

guideline-

consistent 

Clarity Clear and easy to 

understand 
Very clear and 

concise 
 

Less clear due to 

added reasoning 

steps 

Completeness Mostly 

complete, but 

lacking in detail 

Comprehensive, 

covers all key 

aspects 

Comprehensive, 

includes reasoning 

and final advice 

Consistency Consistent with 

trusted sources 

Strongly 

consistent with 

trusted sources 

Consistent, but 

reasoning makes it 

less concise 

Response 

Time 

Fast response, 

very quick 

generation 

Slightly slower, as 

role framing adds 

context 

Slowest, as 

reasoning steps 

make the response 

longer 

 

All three outputs cover the essential high-level point. Role-based and Chain-of-

Thought provide slightly more clearer targets. Responses generated by each 

prompt style are validated against authoritative recommendations on balanced 

diet, regular physical activity, blood glucose monitoring and follow-up, 

medication adherence, and when to seek medical care. These guidelines align 

with WHO, CDC, Mayo Clinic and NHS guidelines. Role-based prompting 

generates concise, guideline-aligned advice, including explicit weekly exercise 

targets of approximately 150 minutes. Chain-of-Thought prompting provided 

richer reasoning and personalized content but are longer in length. Zero-shot 

generation provides acceptable high-level advice. Overall, the Role-based 

prompting proves most effective at generating concise, guideline-consistent 

advice for diabetes management.  
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5.5.2.2 Prompt Testing on Hypertension 

The prompt test is focussed on the hypertension disease. There are three 

different prompting styles to generate the general medical advice for a patient 

with hypertension. 

5.5.2.2.1 Zero-shot Prompting 

Q: Give general medical advice for a patient with hypertension, not exceeding 

100 words. 

A: Managing hypertension, or high blood pressure, is crucial for your health. A 

low-sodium diet is key; avoid processed foods and added salt. Incorporate 

regular aerobic exercise, like brisk walking, for at least 30 minutes most days of 

the week. Maintain a healthy weight, as even a small reduction can significantly 

lower blood pressure. Adhere strictly to your medication schedule as prescribed 

by your doctor and attend all follow-up appointments. Limit alcohol 

consumption and quit smoking. Monitor your blood pressure at home and report 

any concerning readings to your healthcare provider. 

 

Analysis of Zero-shot Prompt 

This response covers key advice consistent with the WHO (World Health 

Organization, 2023) guidance, including healthy diet, reduced salt, exercise at 

least 30 minutes most days, medication adherence, and stress management. For 

the limited alcohol consumption and quit smoking are also aligns with Hello 

Doktor (2017) health and wellness website.  It also incorporates monitoring 

blood pressure, reflecting to Centers for Disease Control and Prevention | CDC 

advice (CDC, 2024). However, it does not specify quantitative targets for salt 

reduction, which are detailed in WHO (World Health Organization, 2025) 

guidelines such as salt <5 g per day. 

 

5.5.2.2.2 Role-based Prompting 

Q: You are a health assistant. Provide general advice for a patient with 

hypertension based on clinical guidelines, not exceeding 100 words. 
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A: For managing hypertension, focus on a healthy lifestyle. Adopt a low-sodium 

diet rich in fruits, vegetables, and whole grains, and limit processed foods. 

Engage in regular physical activity, aiming for at least 150 minutes of moderate 

exercise per week. Maintain a healthy weight, limit alcohol intake, and quit 

smoking. Monitor your blood pressure regularly and take all prescribed 

medications as directed. Consult your healthcare provider for personalized 

guidance and treatment plans. 

 

Analysis of Role-based Prompt 

The Role-based output is highly guideline-oriented. It explicitly heart-healthy 

dietary principles and specifies a weekly activity target (≥150 minutes), includes 

medication adherence, and advises regular blood-pressure monitoring and 

urgent care for severe symptoms. This matches WHO (World Health 

Organization, 2021) recommendations and is especially useful for clear patient 

instructions because of its specificity and brevity. Role-based prompting 

consistently generates answers that comply with guidelines and well-suited for 

integration into patient educational material. 

 

5.5.2.2.3 Chain-of-Thought (CoT) Prompting  

Q: Explain reasoning step by step about how a doctor would recommend on 

lifestyle advice for a patient with hypertension and then provide the final advice, 

not exceeding 100 words. 

A: A doctor's recommendation for hypertension management involves a 

thorough, personalized approach. 

Reasoning Steps 

1. Diagnosis & Risk Assessment: The doctor first confirms the diagnosis 

of hypertension through multiple blood pressure (BP) readings. They 

assess the patient's overall cardiovascular risk, considering factors like 

age, family history, and other conditions such as diabetes or high 

cholesterol. This determines the urgency and intensity of lifestyle 

changes. 
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2. Educate & Motivate: The doctor explains to the patient what 

hypertension is, why it's a "silent killer" with often no symptoms, and 

how lifestyle changes can directly lower BP and reduce the risk of 

serious complications like stroke or heart attack. They emphasize that 

these changes are often the first line of treatment. 

3. Tailor the Plan: The doctor creates a personalized plan based on the 

patient's current habits. For example, they might recommend the DASH 

diet for someone with high sodium intake or specific physical activities 

for a sedentary patient. The goals are made realistic and achievable to 

ensure long-term adherence. 

4. Monitor & Adjust: The doctor schedules follow-up appointments to 

track the patient's BP, discuss progress, and address any challenges. 

They adjust the plan, which may include adding medication if lifestyle 

changes alone are not sufficient to reach target BP goals. 

Final Advice 

Adopt a DASH-style diet rich in fruits, vegetables, and low-fat dairy, while 

reducing sodium intake. Engage in regular aerobic exercise, aiming for 150 

minutes weekly. Maintain a healthy weight, limit alcohol, and quit smoking. 

These changes significantly lower blood pressure and reduce the risk of heart 

disease and stroke. 

 

Analysis of CoT Prompt 

The CoT response includes step-by-step clinical recommendations, followed by 

a final advice block that follow guidelines from Medline Plus (Berman, 2022), 

Mayo Clinic (Mayo clinic, 2025) and the Hello Doktor (2017). These include 

the DASH diet, 150 minutes of exercise per week, limited alcohol and stop 

smoking. The CoT format enhances interpretability and shows the clinical logic 

behind recommendations, which is valuable for auditing review. However, the 

additional reasoning text reduces the conciseness of information delivery, 

making it less suitable for direct patient use and may need to be trimmed if the 

output is shown to patients. 
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5.5.2.2.4 Summary of Hypertension Results 

Table 5.9: Hypertension Results on Prompt Testing 

Prompt Style Zero-shot Role-based Chain-of-Thought 

Accuracy Accurate, 

advice matches 

activity targets 

Highly accurate, 

explicitly 

guideline-aligned 

Accurate, includes 

DASH and exercise 

recommendations 

Clarity Clear and easy 

to understand 
Very clear and 

structured  
 

Less clear due to 

lengthy reasoning 

steps 

Completeness Complete, 

covers diet, 

exercise, 

medication and 

lifestyle 

Comprehensive, 

covers key 

recommendations 

Complete, includes 

reasoning and final 

advice 

Consistency Consistent 

with trusted 

sources 

Consistent with 

trusted sources 

Consistent, but 

verbose compared 

to guideline 

wording 

Response 

Time 

Fast, almost 

immediate 

response 

Slightly slower 

due to role framing 

adds context 

Slowest, as 

reasoning steps 

extends generation 

time 

 

Same as summary of Diabetes results, all three outputs cover the essential high-

level point. Role-based and Chain-of-Thought provide slightly more clearer 

targets. Responses generated by each prompt style are validated against 

authoritative recommendations on balanced diet, regular physical activity, blood 

pressure monitoring and follow-up, medication adherence, and when to seek 

medical care. These guidelines align with WHO, CDC, Mayo Clinic and NHS 

guidelines. Chain-of-Thought prompting provided richer reasoning and 

personalized content but are longer in length. Zero-shot generation provides 

acceptable high-level advice. Overall, the Role-based prompting proves most 
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effective at generating concise, guideline-consistent advice for hypertension 

management.  

 

5.5.3 Comparison and Discussion 

A comparative analysis of three prompting styles, which are Zero-shot, Role-

based, and Chain-of-Thought for both diabetes and hypertension revealed 

significant clear differences in accuracy, clarity, completeness, consistency and 

response efficiency. 

 

5.5.3.1 Zero-shot Prompting 

Zero-shot prompts generated reasonably accurate and clear suggestions in both 

scenarios. However, such suggestions often lack completeness, frequently 

omitting specific exercise goals or guideline-based recommendations. The 

primary advantage of this prompt lies in its ability to generate responses almost 

instantly, but at the cost of sacrificing depth.  

 

5.5.3.2 Role-based Prompting 

Role-based prompts consistently deliver the most reliable and guideline-

compliant responses. By positioning the model as a “health assistant,” its 

recommendations become more structured, aligned with patient needs, and 

consistent with the trust authoritative medical institutions such as the WHO or 

CDC. This approach strikes a balance between accuracy, clarity, and 

completeness while maintaining reasonable response times.  

 

5.5.3.3 Chain-of-Thought (CoT) Prompting 

Cot prompted responses are comprehensive and contextually rich, revealing the 

reasoning behind medical advice to enhance transparency. However, this 

advantage comes at the cost of reduced clarity due to verbosity and logical 

complexity and slower response times. While the advice is accurate and 

complete, the length reasoning process may be difficult for patients seeking 

quick, actionable guidance to digest.  
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These results indicate that Role-based prompting strategies represent the most 

effective approach for generating general medical advice using large language 

models. This strategy strikes a balance between accuracy, clarity, completeness, 

and efficiency, making it suitable for real-world health consultation applications. 

While CoT prompts hold value in enhancing transparency and achieving high-

level reasoning, but it more suitable for backend verification on professional 

user scenarios rather than direct patient communication. Zero-shot prompting 

styles offer speed advantages but lack the necessary reliability and specific 

guidance.  

 

5.5.4 Summary 

This short study evaluated three prompting styles, which are Zero-shot, Role-

based, and Chain-of-Thought for generate medical advice for diabetes and 

hypertension using large language models (Google Gemini). The outputs were 

compared against trusted medical resources based on 5 metrics including 

accuracy, clarity, completeness, consistency, and response efficiency.  

 The results showed that Role-based prompting produced the most well-

balanced and guideline-consistent outputs with accuracy, clarity, and 

completeness as well as maintaining reasonable response time. Zero-shot 

prompting is fast and straightforward, but lacking in depth and completeness, 

hence comparatively less reliable. Chain-of-Thought prompting produces 

comprehensive and transparent reasoning steps, but its length expression lowers 

clarity and increased response time, potentially limiting its suitability for 

patient-facing contexts.  

 Overall, role-based prompting strategies represent the most effective 

approach for generating accurate and accessible health advice. This method 

ensures precision and consistency with clinical guidelines while providing clear 

and concise guidelines for patient use. These findings confirm that well-

designed prompts are crucial for optimizing the usability of large language 

models in medical applications, aligning with the project goal of designing and 

testing effective prompting strategies. 
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CHAPTER 6  

 

6 SYSTEM IMPLEMENTATION 

 

6.1 Introduction 

This chapter details the implementation of the Disease Prediction Web 

Application using Machine Learning, outlining the development process for the 

machine learning model development, frontend development, backend 

development, large language model integration and database configuration. The 

system was implemented using a React frontend, a Flask backend, a MySQL 

relational database, and a scikit-learn machine learning model.  

 

6.2 Machine Learning Model Development 

The Machine Learning Model was implemented using scikit-learn and trained 

on the Symptom-Disease Prediction Dataset (SDPD) published by Jay Tucker 

in 2024. The scikit-learn library offers a wide range of classifications algorithms. 

The development process includes dataset preprocessing, model training and 

evaluation. There are three models were selected for comparison, with the 

highest-performing model ultimately integrated into the web application.  

 

6.2.1 Data Preprocessing  

The dataset contains symptom-disease mappings. Each record includes a set of 

symptoms as input features and the corresponding disease as the target label. 

The dataset used in this project is structured in a binary format, where each 

symptom is represented by 0 or 1. 0 indicates absence, while 1 indicates 

presence. The data preprocessing steps were designed to handle missing value, 

categorical label encoding for the target, remove duplicates data, and split the 

dataset to training set, validation set and testing set.  

 

6.2.1.1 Handling Missing Value 

Missing or incomplete data may degrade model performance and introduce bias. 

Therefore, rows containing missing values (NaN) will be removed. The dataset 

has completed missing value checks, since no missing values were detected, no 
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imputation or deletion operations are required. This ensures the integrity of the 

dataset while preserving its original distribution. Figure 6.2 shows a code 

snippet for handling missing value, where missing values are treated as zero. 

 
Figure 6.1: Code Snippet for Handling Missing Value 

 

6.2.1.2 Categorical Label Encoding 

The target variable (prognosis) in the dataset consists of disease names, which 

are categorical labels such as Diabetes or Fungal Infection. Since most machine 

learning algorithms cannot directly process string labels, scikit-learn internally 

converts these disease names into numerical representations during model 

training. This process ensures classification models can effectively recognize 

and distinguish between different disease categories while preserving the 

original dataset structure.  

 

6.2.1.3 Duplicate Removal  

Duplicate records may introduce bias into the training process and potentially 

reduce processing speed, particularly when handling relatively small datasets. 

To address this issue, the dataset underwent duplicate scanning, and all 

duplicate rows were removed. This ensures each observation contributes equally 

to the training process, preventing overfitting to repeated samples. Figure 6.1 

shows the code snippet of remove duplicate rows in dataset.  

 
Figure 6.2: Code Snippet for Remove Duplicate Rows in Dataset 

 

6.2.1.4 Dataset Splitting 

After data cleaning, the dataset was divided into three subsets, which are 

training set, validation set and testing set. Following the standard machine 

learning practice, the splitting ratio was set to 70% for training, 15% for testing 

and 15% for validation. To ensure the robustness of the evaluation, at least one 

sample from each disease category is randomly selected for inclusion in both 
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test and validation sets. The remaining data was allocated proportionally to 

maintain the target distribution across all data splits. Figure 6.3 shows the code 

snippet for data splitting. The three subsets will be saved in the project folder, 

which are Training.csv, Testing.csv, and Validation.csv. All the subsets are in 

CSV format and contain symptom features along with their corresponding target 

labels.  

 
Figure 6.3: Code Snippet for Data Splitting 

 

6.2.2 Model Training 

Three models were selected for experimentation based on their suitability for 

classification tasks, which are Random Forest, Decision Tree and Support 

Vector Machine. The model training process involved training three machine 

learning models to select the best-performing model for the disease prediction 

task. Figure 6.4 shows the default version of three machine learning models 

architecture.  

 
Figure 6.4: Model Architecture 

 

6.2.3 Model Optimization 

The goal of model optimization is to determine the optimal combination of 

hyperparameters that enhance model performance. This can prevent issues such 

as overfitting or underfitting, improved accuracy, and better generalization. The 
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hyperparameter tuning was conducted on three selected algorithms. The tuning 

process employed a manual grid search methos, systematically evaluating 

candidate parameter values on the validation dataset. Model performance was 

assessed using accuracy, precision, recall and F1 score. 

 

1. Random Forest Classifier: The default RandomForestClassifier() uses 

100 trees (n_estimators=100) with no depth restriction 

(max_depth=None). While this offers flexibility, it may lead to 

unnecessary complexity. 

Tuning Parameters: 

• max_depth: [5, 9, 10, 15], 

• n_estimators: [50, 100] 

 

2. Decision Tree Classifier: By default, DecisionTreeClassifier() grows 

decision tress until all leaf nodes are pure classes. 

Tuning Parameters: 

• criterion: ['gini', 'entropy'], 

• max_depth: [None, 5, 10] 

 

3. Support Vector Machine (SVM): The default SVC() uses a radial basis 

function (RBF) kernel with C=1.0 and gammar=’scale’. This baseline 

model may fail to capture complex patterns in high-dimensional data. 

Tuning Parameters: 

• C: [0.1, 1, 10], 

• gamma: ['scale', 0.01, 0.001], 

• kernel: ['rbf'] 

 

Each model was evaluated on the validation set using multiple performance 

metrics, including performance metrics, including accuracy, precision, recall, 

F1-score. The hyperparameters yielding the highest validation accuracy were 

ultimately selected for retraining on the full training set and test with testing set. 

Figure 6.5 shows the hyperparameter tuning for three models. 
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Figure 6.5: Hyperparameter Tuning for three models 

 

After evaluation on the validation set, the optimal hyperparameter for each 

model were determined as follows: 

• Random Forest: n_estimators = 100, max_depth = 9 

• Decision Tree: criterion = gini, max_depth = None 

• Support Vector Machine: C = 10, gamma = 0.001, kernel =rbf 

 

These optimizes configurations outperformed the baseline model on the 

validation set and were therefore selected for subsequent testing and final 

evaluation.  

 

6.2.3.1 Model Optimization Results  

This section presents the model optimization results. Figure 6.6 to 6.10 present 

detailed results of hyperparameter tuning on the validation dataset. These 

figures illustrate the performance of each candidate configuration across 

multiple evaluation metrics, including accuracy, precision, recall and F1-score.  

 

Random Forest 

The optimization results indicate that certain configurations of Random Forest 

achieved perfect validation score, with the accuracy, precision, recall and F1-

scores all reaching 1.000. While such results appear outstanding at first glance 

but raise concerns of overfitting. Overfitting occurs when the model memorizes 
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the training and validation sets rather than learning generalized patterns, thereby 

weakening its ability to handle unseen data. The configuration with 

n_estimators = 50/100 and max_depth = 15 consistently produced perfect scores, 

which were treated as overfit models. In contrast, more balanced configurations 

are n_estimators = 100 and max_depth = 9, which contribute the accuracy of 

97.83%. The Figure 6.6 shows the Random Forest optimization results. Figure 

6.7 shows the learning curve of the Random Forest, indicate that the max_depth 

with 9 has the highest accuracy without overfitting.  

 
Figure 6.6: Random Forest Optimization Results 

 
Figure 6.7: Learning Curve of Random Forest 

 

Support Vector Machine 

Same as Random Forest, the optimization results indicate that certain 

configurations achieved perfect validation score, with the accuracy, precision, 

recall and F1-scores all reaching 1.000. Overfitting may occur also in the 

Support Vector Machine. The configuration with C = 1 or C =10 and gamma 

set to ‘scale’ also result in perfect validation performance, suggesting potential 

overfitting. In contrast, more balanced configurations are 'C': 10, and 'gamma': 
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0.001, which contribute the accuracy of 93.4%. The Figure 6.8 shows the 

Support Vector Machine optimization results. Figure 6.9 shows the heatmap 

diagram of SVM to compare different values of C and gamma to visualize the 

accuracy of grid.  

 
Figure 6.8: Support Vector Machine Optimization Results 

 
Figure 6.9: Heatmap diagram of SVM 

 

Decision Tree 

The tuning results of the Decision Tree classifier indicate that clear differences 

in performance based on the selected criterion and maximum depth. When 

trained with the default configuration (criterion= ‘gini’, max_depth=None), the 

model achieved the highest validation performance with an accuracy of 71.74%. 

This demonstrates that an unrestricted depth enables the decision tree to capture 

the underlying patterns within the dataset effectively. In contrast, limiting the 

maximum depth to 5 or 10 cause a sharp decline in performance. Such results 

indicate that underfitting and the model is overly simplified and fails to 

adequately capture the complexity of the data. The Figure 6.10 shows the 

Decision Tree optimization results. 
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Figure 6.10: Decision Tree Optimization Results 

 

6.2.4 Model Evaluation 

The optimized models were subsequently tested on the independent testing set 

to evaluate the model’s performance. For each algorithm, predictions were 

compared with against actual labels, and metrics such as accuracy, precision, 

recall and F1-score were calculated. Evaluation is crucial for determining 

whether a model can effectively generalize its training results to unseen data, 

rather than merely performing well on the training and validation set.  

 

 The optimal hyperparameter were determined for all three models, the 

models were retained and evaluated on the independent testing dataset. This 

dataset was not used during the training or validation process, ensuring that the 

evaluation results accurately reflect the generalization capabilities of each 

model. The results of the evaluation are presented in the Figure 6.11. The Figure 

6.12 shows the bar chart of the model performance on testing set.  

 

 
Figure 6.11: Testing set results of 3 models 
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Figure 6.12: Model Performance on Test Set 

 

The results show that the Random Forest (RF) model outperformed the other 

two algorithms across all evaluation metrics. With an accuracy rate of 97.8% 

and balanced performance in precision, recall and F1-score, the Random Forest 

demonstrated robust predictive capability and stability, making it the most 

suitable for integrate in the system. In contrast, the Support Vector Machine 

(SVM) also delivered robust performance with an accuracy rate of 95.7%. 

Although slightly inferior to Random Forest across all metrics, the SVM still 

demonstrated high predictive capability and strong generalization ability on 

unseen data. The Decision Tree (DT) achieved only 65.2% accuracy on the 

testing set, showing a significant gap compared to both Random Forest and 

Support Vector Machine.  

Comparative analysis indicates that while both Random Forest and 

Support Vector Machine achieved highly reliable results, RF consistently 

outperformed SVM across all metrics. Although DT serve as useful baseline 

models, the predictive capabilities remain insufficient. Consequently, the RF 

model was ultimately selected as the ensemble prediction model for the disease 

prediction web application, as it achieves the optimal balance between accuracy, 

precision, recall and F1 score. The RF model is saved as 

"random_forest_model.pkl" in the backend.  
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To ensure the correctness and reliability of the Random Forest model, 

a practical validation approach was conducted in which predefined sets of 

symptoms were submitted to the trained model. The top 3 predicted diseases 

were then compared against conditions identified from trusted medical 

resources such as Mayo Clinic, MedlinePlus and WHO. This approach aims to 

validate whether predictions generated by machine learning models were 

medically validity, although the system is not intended to replace professional 

diagnosis.  

The correctness of predictions was classified into three categories: 

• Exact Match: The expected disease was among the system’s top 3 

predictions. 

• Partial Match: The predicted disease was medically related but not the 

primary expected disease. 

• No Match: The predicted diseases did not align with any expected 

conditions.  

Table 6.1: Prediction Verification Results 

Symptom Set Expected 

Disease(s) 

System Predictions 

(Top 3) 

Match 

Type 

High fever, Chills, 

Sweating 

Malaria (Centres 

for Disease 

Control) 

Malaria, Typhoid, 

Heart Attack 

Exact 

Polyuria, Excessive 

hunger, Weight loss 

Diabetes (Mayo 

Clinic) 

Diabetes, Jaundice, 

Hyperthyroidism 

Exact 

Chest pain, 

Breathlessness, 

Sweating, 

Palpitations 

Heart Attack 

(Mayo Clinic) 

Hypoglycemia, 

Heart Attack, 

Malaria 

Partial 

Red spots over body, 

Itching, Pus filled 

pimples 

Chickenpox 

(Cleveland 

Clinic) 

Chickenpox, Fungal 

Infection, Drug 

Reaction 

Exact 

Headache, Nausea, 

Visual disturbances 

Migraine (Mayo 

Clinic) 

Migraine, Vertigo, 

Malaria 

Exact 
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The Table 6.1 shows the prediction verification results. Most cases 

showed exact or partial alignment with existing medical resources, indicating 

that the trained RF model generated predictions generally align with established 

medical knowledge. The prediction verification experiment assessed the 

correctness of the system’s outputs by comparing them with expected diagnoses 

derived from trusted medical references (Centers for Disease Control and 

Prevention, 2023; Mayo Clinic, 2023; Cleveland Clinic, 2023). However, 

prediction accuracy decreased in cases involving ambiguous or overlapping 

symptoms, reflecting the inherent challenges of different diagnosis. This 

validation ensure that the system can effectively generate reasonable predictions, 

and it should be strictly used as a decision-making support tool and cannot 

replace professional medical assessments.  

 

6.3 Web Application Development 

The disease prediction system is implemented as a web-based application offers 

users with a convenient, user-friendly, and highly interactive interface. Its 

developed using a three-tier architecture design that include the frontend, 

backend, and database. This structure ensures the modularity, scalability and 

effective separation of responsibilities, facilitating maintenance and future 

extension.  

 

6.3.1 Frontend Development 

The system frontend is developed using React, with a component-based 

structure that is particularly well-suited for dynamic, interactive web application. 

The component-based structure ensures the consistency across the pages with 

reusable elements such as Header, Footer and so on.  The core function of the 

frontend is to serve as the user interface, enabling seamless interaction with the 

system.  

 

6.3.1.1 User Authentication and JWT Handling 

Authentication is a critical component of the web application to ensure that only 

authorized users can access their history and predictions. The application 

utilizes JSON Web Tokens (JWT) for secure session management. Upon user 
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login, the backend issues a JWT which is securely stored in local storage or 

session storage. When the frontend receives a user login request, it sends the 

login credentials to the backend API via a POST request. The backend validates 

the credentials and issues a JWT signed with a server-side secret key if 

successful.  

If the user selects the “Remember Me” option, the token is stored in 

localStorage, ensuring persistence across browser sessions. Otherwise, the 

token is stored in sessionStorage, which expires automatically when the browser 

is closed. This ensures that sensitive endpoints such as fetching user details, 

submitting symptoms or viewing prediction histories are only accessible to 

authenticated users. The Figure 6.13 shows the code snippet of token storage 

logic that support both persistent and temporary sessions depending on user 

preferences.  

 
Figure 6.13: Token Storage Logic 

After the successful login, the frontend queries the backend for user 

profile details using the issued token. The returned information such as 

username is dynamically injected into the application state, allowing 

personalized display on the interface, including showing the username on the 

header. For each secured API request, the token is appended to the 

Authorization header. The Figure 6.14 shows the code snippet of token included 

in the Authorization header to authenticate protected API calls.  

 
Figure 6.14: Attach Token to Secured API Requests 

 

 On the backend, Flask validates the token and extracts the user’s 

identity. Only when the token is valid, the backend returns user specific data. 

This ensures that sensitive features remain accessible only to authenticated users. 
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6.3.1.2 Input Validation 

The web application implements input validation to ensure the data integrity, 

prevent invalid input formats, and enhance security. Multiple forms in the 

disease prediction web application utilize client-side validation, verifying user 

input before submission to the backend. This design not only improves user 

experience through immediate feedback but also effectively reduces 

unnecessary server load.  

 

6.3.1.2.1 Register Form Validation 

The registration form includes multiple validation rules to ensure accurate data 

entry. These rules include checking for valid email formats, verifying password 

length requirements, and preventing users from submitting empty fields. The 

system provides immediate feedback to users through descriptive error 

messages, thereby enhancing user experience and reducing server load. When 

users register, the system will prompt users to enter the username, email address, 

date of birth, password, confirm password, and agree to the relevant terms and 

conditions. When the validation fails, the corresponding error message is 

displayed immediately on the form interface. The Figure 6.15 shows the code 

snippet of registration form validation. This logic prevents invalid input and 

enforces minimum password length requirements.  
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Figure 6.15: Code Snippet for Registration Form Validation 

6.3.1.2.2 Login Form Validation 

The login form integrates multiple validation mechanisms to ensure secure and 

accurate user input. The primary checks include email validation and password 

validation. The system validated that the email field is not empty and conforms 

to a standard email pattern using a regular expression. If the input does not meet 

the requirements, an inline error message is displayed. For the password 

validation, the password field is required and cannot be blank. The missing input 

triggers an immediate validation error. If the user login successful, the system 

will redirect users to the home page. The Figure 6.15 shows the code snippet of 

login form validation. The below logic ensures that only correctly formatted 

data is sent to the backend, reducing the risk of invalid requests.  
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Figure 6.16: Code Snippet for Login Form Validation 

 

6.3.1.2.3 Dropdown Symptom Selection Validation 

The dropdown symptom input page integrates multiple validation checks to 

ensure that valid data is submitted to the machine learning model. Key 

validation features include search and filter, checkbox validation, and “Add” 

button validation. User can dynamically search symptoms by entering the 

keywords of the symptoms, with the system filtering the displayed list in real 

time. Each symptom can be selected via checkbox. The system prevents 

duplicated selections by filtering already added symptoms. When the user 

clicking the “Add” button, the system verifies that at least one symptom is 

checked. If no symptoms are selected, the alert appears on the interface. The 

Figure 6.17 shows the code snippet of the validation code for an empty symptom 

selection and an empty prediction request.  

 

 
Figure 6.17: Code Snippet for Dropdown Symptom Selection Validation 

6.3.1.2.4 Free Text Symptoms Input Validation 

The free text symptoms input page enables users to describe their health 

condition in natural language rather than selecting symptoms manually from a 

predefined list. Input validation ensures that the text is not empty before 

submitting. If the user attempts to extract symptoms without providing text, the 
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system displays a warning message. After submission, the input text is sent to 

the backend via secure API request with JWT authentication. The backend 

applies large language model (Google Gemini) to identify and extract relevant 

symptom. The extracted symptoms are displayed in a dedicated section titled 

“Matched Symptoms” and users may remove the symptoms via a close icon. If 

the matched symptoms are empty, the system shows an alert to remind user to 

add at least one symptom. Figure 6.18 shows the code snippet for free text 

symptoms input validation. 

 

 
Figure 6.18: Code Snippet for Free Text Symptoms Input Validation 

 

6.3.1.2.5 Update Profile Form Validation 

The update profile page enables authenticated users to modify their personal 

information, ensuring that their account details remain accurate and current. The 

system compares current input values with the original values retrieved from the 

backend. If no changes are detected, the system prevents unnecessary API calls 

by displaying a “No changes detected” alert. The username cannot be left blank, 

prevents accidental submission of an empty username. For the date of birth, the 

input restricted to valid date format. The gender section implemented a 

predefined options such as Male and Female, reducing the risk of inconsistent 

entries. The Figure 6.19 shows the code snippet for update profile form 

validation.  
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Figure 6.19: Code Snippet for Update Profile Form Validation 

6.3.1.2.6 Change Password Form Validation 

The change password page enhances user account security by allowing users to 

update their password. This feature protects users’ privacy and safeguards 

sensitive information stored in the system. The current password field, new 

password field, and confirm password field is mandatory. If left blank, the error 

message is displayed to prevent empty submissions. A minimum length 

requirement of 6 characters is required to encourage stronger password and 

reduce vulnerability. The system ensures that both new password and confirm 

password entries are match. Otherwise, the error message “Password do not 

match” is shown. The Figure 6.20 shows a code snippet for change password 

input validation.  

 

 
Figure 6.20: Code Snippet for Change Password Input Validation 

 

6.3.1.3 User Experience (UX) enhancements 

6.3.1.3.1 Login and Register 
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For the inline error message, the validation errors are displayed directly below 

the corresponding input fields, guiding users to correct the errors. In addition, 

users can toggle between hiding and showing their password, improving 

usability while ensuring security. Users also can choose to persist their login 

session using either localStorage or sessionStorage in login page.  

 

6.3.1.3.2 Dropdown Symptom Selection 

The dropdown symptom input page was designed not only to ensure valid date 

entry but also to improve usability and provide an intuitive interaction flow for 

end users. A real-time search bar allows users to quickly filter the required 

symptoms from the massive symptom list by entering relevant keywords. This 

reduces cognitive load and ensures that users can efficiently locate the 

symptoms they intend to select.  

Furthermore, users can check multiple symptoms before confirming 

their selection. Once the symptoms are added, the selected symptoms are clearly 

displayed in a dedicated “Selected Symptoms” section. The selected symptom 

can be removed using a close icon, giving users full control to revise their 

selection without having to restart the process. The system also ensures the clear 

navigation control. The button such as “Back”, “Add” and “Predict” are clearly 

labelled and visually distinct, reducing ambiguity in navigation.  

6.3.1.3.3 Free Text Symptom Input 

The free text symptom input page provides guidance through placeholder text. 

The input field contains a placeholder sentence such as “I have a fever and 

cough for 2 days…” to guide users on how to describe their symptoms. This 

page also includes loading feedback. During symptom extraction, the “Extract 

Symptoms” button will be temporarily disabled and labelled “Extracting…” to 

prevent duplicate requests and indicate to the user that the system is processing. 

By allowing users to remove symptoms from the extracted symptom list, the 

system provides flexibility and avoid forcing incorrect inputs. If no symptoms 

are selected, the user is informed through an alert. The navigation buttons like 

“Back” and “Predict” are styled consistently with other input methods.  
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6.3.1.3.4 Update Profile 

The user information such as username, date of birth and gender is automatically 

retrieved and displayed when the page loads. This can save users time and effort. 

Only modified fields are sent to backend, minimizing server load and preventing 

unnecessary overwriting of unchanged data. A confirmation message “Profile 

updated successfully” is displayed upon successful update. If the username is 

changed, the update is immediately reflected across the web application through 

the global state update. Users can return to the profile page at any time using the 

“Back” button, ensure the smooth navigation.   

 

6.3.1.3.5 Change Password  

The contextual message like “Hi, [username]” fosters user engagement. The 

form validation runs upon submission, immediately highlighting missing or 

invalid fields to avoid wasting server requests. When the update request is in 

progress, the “Update Password” button changes to “Updating…” and disabled 

to prevent duplicate submissions. A Back button enables users to easily return 

to the profile page. For successful update, the system displays a confirmation 

alert with the backend response message and redirect users to profile page. If 

the password is incorrect, a clear error message is displayed. The error messages 

and button states improve usability by guiding users step by steps.  

6.3.1.3.6 Result  

The result page displayed the match strength indicators via icons. The 

predictions are visually ranked using text and star ratings. For the strongly 

matched disease show full star, for the moderately matched disease show half 

of star, and the weakly matched disease show colourless star. This gives users 

confidence levels in the prediction without needing to understand probabilities 

machine learning outputs. The results page also displayed clear card-based 

layout. Two distinct cards separate “Potential Disease” and “Your Symptoms”, 

This layout helps users easily connect to their input and prediction. The “View 

Medical Advice” button provides a clear next step, guiding uses to additional 

information. The system displays “Loading results…” while predictions are 

being processed, keeping the UI responsive. It also includes health disclaimer 
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for trust and responsibility. This enhances trustworthiness and ensures ethical 

communication of AI results.  

 

6.3.1.3.7 General Medical Advice  

The general medical advice page is designed with a strong emphasis on user 

experience, ensuring the information is presented in a structured, clear, and 

easily accessible manner. The system avoids displaying vague generalizations 

or raw data, instead organizing recommendations into distinct sections such as 

disease descriptions, lifestyle advice, prevention strategies, and guidance on 

when to seek medical attention. Users can simultaneously view the correlation 

between entered symptoms and the system’s predicted conditions. This 

effectively builds user trust in the recommendations provided by the system. 

Additionally, users can save predictions and recommendations to their personal 

history for future reference, ensuring continuity in healthcare services. The page 

also includes a clear disclaimer emphasizing that the advice provided is for 

informational purposes only and should not replace professional medical staff. 

 

6.3.1.3.8 History  

The History page provides users with a clear and organized view of past 

predictions, covering symptoms, conditions, and medical advice. Featuring a 

card-based layout for enhanced readability, it uses icons for quick recognition 

and allows users to expand or collapse detailed recommendations as needed. 

Functions such as confirmed record deletion, real-time feedback notifications, 

and token-based secure access further optimize usability and control. This 

design not only elevates the overall user experience but also ensures users can 

conveniently and securely review and manage their health prediction records.  

 

6.4 Backend Development 

The backend of the Disease Prediction Web Application using Machine 

Learning was developed using Flask, a lightweight Python web framework 

well-suited for building RESTful APIs. The backend serves as the 

communication layer between frontend and machine learning model, handling 
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user authentication, symptom extraction, disease prediction, general medical 

advice generation and database operations. The backend also integrates with 

MySQL database. The backend defines all the API endpoints, loads the trained 

Random Forest model, the random_forest_model.pkl, and manages middleware 

such as JWT authentication and CORS configuration. Sensitive environment 

variables such as the secret key, Gemini API key and database setup are 

managed using python-dotenv, ensuring secure configuration management. 

Figure 6.21 shows the code snippet of project setup. 

 

 
Figure 6.21: Code Snippet of Project Setup 

 

6.4.1 Project Architecture  

The key aspects of the architecture include authentication and security, database 

integration, machine learning integration, prediction history and medical advice, 

and RESTful design.  

 

6.4.1.1 JWT Decorator 

The system implemented using JWT tokens with custom decorators to protect 

the sensitive routes such as profile, predictions and history. If no token is found, 

return a JSON response with a 401 Unauthorized status and an error message 

“Token is missing”. Figure 6.22 illustrates the code snippet for JWT Decorator.  
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Figure 6.22: Code Snippet for JWT Decorator 

 

6.4.1.2 Database Integration 

The MySQL database is used to persist user information, prediction history, 

symptoms, diseases, and general medical advice. Database operations are 

abstracted through a db_connection,py module for cleaner code management. 

The get_connection() function established a connection to MySQL database 

using environment variables for configuration. Figure 6.23 shows a code snippet 

of the get_connection() function. 

 

 
Figure 6.23: get_connection() function 

 

6.4.1.3 Machine Learning Integration 

The backend loads pretrained models and feature encodings via Joblib, enabling 

real-time predictions from user inputs. Prediction made using either structured 

symptom selection like dropdown, or unstructured free-text input processed 

with a symptom extraction pipeline powered by external NLP helpers like 

gemini_helper. The extract_symptoms() function in gemini_hepler.py is used to 
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extract the user free-text input by using Google Gemini API and return the 

symptoms that exist in the provided list. Figure 6.24 shows the code snippet for 

loading machine learning model. Figure 6.25 shows the code snippet of the 

extract symptoms function. 

 
Figure 6.24: Code Snippet for Load ML Model 

 
Figure 6.25: Extract Symptoms Function 

6.4.2 API Endpoints 

The backend exposes multiple RESTful API endpoints, categorized into user 

management, prediction, history and general medical advice. Each endpoint 

features a lightweight design with security capabilities and follows consistent 

request-response structures. JWT authentication is required for protected 

endpoints to ensure authorized access.  
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6.4.2.1 User Authentication and Profile Management 

• POST /api/register  

Registers a new user by storing their credentials and basic profile data 

in the database. Input validation ensures all required fields are provided 

such as username, email, password, and data of birth. Passwords are 

securely stored using Werkzeug’s hashing mechanism. 

• POST /api/login 

Authenticates a user by verifying the provided email and password. 

Upon successful validation, a JWT token is issued, which must be 

attached to subsequent requests for protected endpoints. 

• GET /api/user (Protected) 

Returns the authenticated user’s ID and username based on the JWT 

token. Used for session validation and personalization on the frontend. 

• GET /api/profile (Protected) 

Retrieves detailed profile information such as username, email, date of 

birth, gender for the authenticated user. 

• PUT /api/profile (Protected) 

Allows users to update selected profile fields such as username, date of 

birth, or gender. Partial updates are supported through dynamic query 

construction. 

• PUT /api/change-password (Protected) 

Enables users to securely update their password after validating their 

existing password. New passwords are hashed before storage. 

 

6.4.2.2 Symptom and Disease Management 

• GET /api/symptoms 

Fetches the complete list of symptoms stored in the database, enabling 

the frontend dropdown selection method. 

• GET /api/diseases 

Retrieves all disease records from the database. This is used to maintain 

consistency between predictions and stored disease references. 

• POST /api/extract-symptoms (Protected) 
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Processes free-text input and extracts symptom entities using the Gemini 

Helper NLP module. This supports the unstructured input method and 

ensures that symptom names align with the system’s knowledge base.  

• POST /api/predict (Protected)  

Predicts potential diseases based on user input. Two input methods are 

supported by the system: 

- Dropdown-based: The user selects symptoms from a predefined list. 

- Free text: The user provides natural language descriptions, which 

are processed into structured symptoms before prediction. 

Predictions are generated using the pre-trained Random Forest model 

and returned with ranked match strengths.  

 

6.4.2.3 Medical Advice Generation 

• POST /api/advice (Protected) 

Accepts a list of diseases and returns general medical advice for each. 

Advice is generated dynamically using the Gemini Helper module. This 

provides contextual recommendations to users while reinforcing the 

disclaimer that the advice is not a substitute for professional medical 

consultation.  

 

6.4.2.4 Prediction History  

• POST /api/history (Protected)  

Saves a prediction history to the database, including selected symptoms, 

predicted diseases, and corresponding general medical advice. Missing 

symptoms or diseases not found in the database are also recorded for 

consistency checks.  

• GET /api/history (Protected) 

Retrieves all historical prediction records for the authenticated user, 

including symptoms, predicted diseases, associated advice, and 

timestamps. Results are ordered by prediction date (latest first).  

• DELETE /api/history/<id> (Protected) 
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Deletes a specific prediction history record belonging to the 

authenticated user. The related records such as predicted symptoms and 

diseases are also removed to maintain referential integrity. 

 

6.4.2.5 API Endpoint Overview 

The Table 6.1 shows the API Endpoint Overview.  

Table 6.2: API Endpoints Overview 

Endpoint Method Description Auth 

Required 

/api/register POST Registers a new user with 

username, email, 

password, and DOB. 

Stores hashed password 

securely. 

No 

/api/login POST Authenticates user with 

email and password, 

returns JWT token on 

success. 

No 

/api/user GET Retrieves authenticated 

user’s ID and username 

for session validation. 

Yes 

/api/profile GET Fetches detailed profile 

(username, email, DOB, 

gender). 

Yes 

/api/profile PUT Updates profile details 

(username, DOB, 

gender). Partial updates 

supported. 

Yes 

/api/change-

password 

PUT Allows user to change 

password after verifying 

old password. 

Yes 
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/api/symptoms GET Returns all symptoms 

stored in the system 

database. 

No 

/api/diseases GET Returns all diseases 

stored in the system 

database. 

No 

/api/extract-

symptoms 

POST Extracts symptoms from 

free-text input using 

Gemini Helper NLP. 

Yes 

/api/predict  POST Predicts potential 

diseases based on 

symptoms. Uses ML 

model for ranked results.  

Yes 

/api/advice  POST Provides general medical 

advice for one or more 

diseases using Gemini 

Helper.  

Yes 

/api/history  POST Saves prediction session 

(symptoms, diseases, 

advice) into history. 

Yes 

/api/history  GET Retrieves all past 

prediction history for the 

authenticated user.  

Yes 

/api/history/<id> DELETE Deletes a specific 

prediction history record. 

Yes 
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6.4.3 Implementation of Google Gemini API 

The backend also integrates Google Gemini API, enabling context-aware 

medical advice based on disease prediction and symptom extraction. The 

Gemini API was primarily utilized to extract symptoms from free-text input, 

generate general medical advice, and provide personalize output. It provides 

clear and user-friendly guidance on possible treatment or prevention tips after 

disease prediction. Prediction model (Random Forest model) identifies possible 

diseases based on symptoms, while Gemini generates structured, user-friendly 

guidance presented as prevention and lifestyle recommendations. This ensures 

that the application not only delivers predictive results but also provides 

actionable next steps, thereby creating greater value for end users. 

 The objective of integrating the Google Gemini API into the backend 

is to enhance user value, improve consistency and reliability, ensure user safety, 

and achieve frontend compatibility. The Google Gemini API not only generates 

predictive results but also delivers structured health advice to guide users 

improving their lifestyle and preventing diseases. In addition, enforces a 

structured JSON output format to ensure consistency across all diseases. It also 

provides only general and non-diagnostic information, focusing on health 

awareness, disease prevention, and guidance on when to seek professional 

medical assistance. The Gemini API returns data in a machine-readable JSON 

format that can be directly called and rendered by the frontend application.  

 

6.4.3.1 Prompt Engineering and Structured Output 

The function get_general_advice_for_multiple(diseases) was developed to 

interact with the Google Gemini. This function constructs a carefully engineered 

prompt that instructs Google Gemini return advice in a strict JSON format. For 

each predicted disease, Gemini is requested to provide four specific fields, 

including description, lifestyle tips, prevention tips and a guideline on when to 

seek care. This structure not only improves readability but also ensures that the 

generated content can be validated, parsed, and integrated into the web 

application workflow.  

 As discussed in Chapter 5 (Prompt Design Study), the Role-based 

prompting strategy demonstrated the most effective performance. It consistently 
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produced well-balanced and guideline-consistent outputs with accuracy, clarity, 

and completeness as well as maintaining reasonable response time. Therefore, 

role-based prompting was adopted in the Google Gemini API implementation 

to generate structured medical advice for predicted diseases. By explicitly 

assigning the model the role of a health assistant, the generated responses were 

not only aligned with medical communication standards but also returned in a 

consistent JSON format. This structured representation enables seamless 

integration with the backend pipeline, ensuring that the generated advice could 

be directly parsed, validated, and displayed within the web application without 

requiring extensive post-processing. Figure 6.26 shows a code snippet for 

generate structure medical advice via Google Gemini API.  

 

 
Figure 6.26: Generate Structured Medical Advice via Google Gemini API 
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CHAPTER 7 

 

7 SYSTEM TESTING 

 

7.1 Introduction 

System testing is a critical phase in the software development lifecycle that is 

utilized to ensure the disease prediction web application functions as intended 

and meets both functional and non-functional requirements. This chapter 

outlines the details of testing strategies, methodologies, and results for 

validating system performance, usability, and reliability. 

The system integrates machine learning-based disease prediction 

functionality, a symptom extraction and medical advice module powered by 

Google Gemini, and an architecture utilizing a Flask backend with a fully 

interactive React frontend architecture. Testing ensures all modules are 

compatible with each other, the system security remains uncompromised, and 

users can access all intended features without errors. 

 

7.2 Unit Testing  

Unit testing focuses on verifying the correctness of individual components or 

functions within a system. 
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7.2.1 Registration Feature 

Table 7.1: Unit Test Case for Registration Feature 

Unit Test 

Case ID 

Test Case 

Description 

Test Procedure Test Data Expected Result Status 

UTC01 Validate empty 

username 

Leave username blank 

and submit form 

username: “”, 

email: “test@gmail.com”,  

password: “123456”,  

confirmPassword: “123456”, 

dob: “2000-01-01”, agree: true 

Error message “Username 

is required.” displayed 

Pass  

UTC02 Validate invalid 

email format 

Enter invalid email and 

submit 

username: “John”,  

email: “johngmail”,  

password: “123456”,  

confirmPassword: “123456”,  

dob: “2000-01-01”, agree: true 

Error message “Please 

enter a valid email 

address.” displayed 

Pass 

UTC03 Validate empty 

email 

Leave email empty and 

submit 

username: “John”,  

email: “”,  

password: “123456”,  

Error message “Email is 

required.” displayed 

Pass 
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confirmPassword: “123456”,  

dob: “2000-01-01”, agree: true 

UTC04 Validate empty 

DOB 

Leave DOB blank and 

submit 

username: “John”,  

email: “john@gmail.com”, 

password: “123456”,  

confirmPassword: “123456”,  

dob: “”, agree: true 

Error message “Date of 

birth is required.” 

displayed 

Pass 

UTC05 Validate short 

password 

Enter password <6 

characters 

username: “John”,  

email: “john@gmail.com”,  

password: “123”,  

confirmPassword: “123”,  

dob: “2000-01-01”, agree: true 

Error message “Password 

must be at least 6 

characters.” displayed 

Pass 

UTC06 Validate 

mismatched 

password 

Enter different 

password and confirm 

password 

username: “John”,  

email: “john@mail.com”, 

 password: “123456”,  

confirmPassword: “654321”,  

dob: “2000-01-01”, agree: true 

Error message 

“Passwords do not 

match.” displayed 

Pass 
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UTC07 Validate empty 

password 

Leave password empty 

and submit 

username: “John”,  

email: “john@gmail.com”, 

 password: “”,  

confirmPassword: “654321”,  

dob: “2000-01-01”, agree: true 

Error message “Password 

is required.” displayed 

Pass 

UTC08 Validate terms 

agreement 

Terms agreement 

checkbox not checked 

username: “John”,  

email: “john@gmail.com”, 

 password: “123456”,  

confirmPassword: “123456”,  

dob: “2000-01-01”, agree: false 

Error message “You must 

agree to the terms and 

conditions.” displayed 

Pass 

UTC09 Show/Hide 

password toggle 

Click show/hide toggle 

for password and 

confirm password fields 

- Password visibility 

toggles correctly between 

plain text and hidden 

Pass 

UTC10 Successful 

frontend 

validation 

Enter valid inputs username: “John”,  

email: “john@gmail.com”,  

password: “123456”, 

confirmPassword: “123456”,  

dob: “2000-01-01”, agree: true 

Form submits 

successfully, calls 

backend API 

Pass 
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UTC11 Duplicate email 

error 

Enter existing email  username: “John”,  

email: “john@gmail.com”,  

password: “123456”, 

confirmPassword: “123456”,  

dob: “2000-01-01”, agree: true 

Error message: “Email 

already exists” displayed  

Pass 

UTC12 Redirect to 

Login page 

Click “Already have an 

account? Log in” 

- Navigated to /login page Pass 

 

7.2.2 Login Feature 

 

Table 7.2: Unit Test Case for Login Feature 

Unit Test 

Case ID 

Test Case 

Description 

Test Procedure Test Data Expected Result Status 

UTC13 Validate empty 

email 

Leave email blank 

and click Login 

email: “”,  

password: “123456”,  

Error message “Email is 

required.” displayed 

Pass  

 

UTC14 Validate invalid 

email format 

Enter email without 

proper format 

email: “johngmail”,  

password: "123456",  

Error message “Please enter 

a valid email address.” 

displayed 

Pass 
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UTC15 Validate empty 

password 

Enter valid email but 

leave password 

email: “john@gmail.com”, 

password: “”,  

Error message “Password is 

required.” displayed 

Pass 

UTC16 Validate login with 

incorrect 

credentials 

Enter wrong 

email/password and 

submit 

email: “john@gmail.com”, 

password: “wrongpass”, 

Alert popup: “Invalid 

credentials” 

Pass 

UTC17 Validate login with 

correct credentials 

(Remember 

unchecked) 

Enter valid email & 

password, leave 

Remember Me 

unchecked  

email: “john@gmail.com”, 

password: “123456” 

JWT token stored in 

sessionStorage, redirected to 

/home 

Pass 

UTC18 Validate login with 

correct credentials 

(Remember 

checked) 

Enter valid email & 

password, check 

Remember Me  

email: “john@gmail.com”, 

password: “123456” 

JWT token stored in 

localStorage, redirected to 

/home 

Pass 

UTC19 Validate user data 

fetch after login 

Successful login, 

then fetch /api/user 

with Bearer token 

email: “john@gmail.com”, 

password: “123456” 

setUsername() and 

setUserId() updated with 

correct values 

Pass 
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UTC20 Toggle password 

visibility (Show to 

Hide) 

Click “Show” button 

in password field 

password: “123456” Password input changes type 

from password to text and 

button label changes to Hide 

Pass 

UTC21 Toggle password 

visibility (Hide to 

Show) 

Click “Hide” button 

in password field 

password: “123456” Password input changes type 

from text to password and 

button label changes to 

Show 

Pass 

UTC22 Redirect to 

Register page 

Click “Don’t have an 

account? Sign Up” 

- Navigated to /register page  Pass 

 

 

7.2.3 Profile 

Table 7.3: Unit Test Case for Profile 

Unit Test 

Case ID 

Test Case 

Description 

Test Procedure Test Data Expected Result Status 

UTC23 Validate profile 

fetch with valid 

token 

Store valid token in 

localStorage, open 

Profile page 

token=valid Profile data fetched and 

displayed (username, email, 

dob, gender) 

Pass  
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UTC24 Validate profile 

fetch with missing 

token 

Remove token from 

storage, open Profile 

page 

token=none Failed to fetch profile Pass 

UTC25 Validate change 

password 

navigation 

Click “Want to 

change password? 

Click me!” link 

- Redirected to /change-

password page 

Pass 

UTC26 Validate “Update 

Profile” navigation 

Click “Update 

Profile” button 

- Redirected to /update-profile 

page 

Pass 

UTC27 Validate “Back” 

navigation 

Click “Back” button  - Redirected to /home page Pass 

UTC28 Validate Date of 

Birth formatting 

Profile response 

contains DOB in 

ISO format 

contains DOB in ISO format 

dob="1999-10-05" 

DOB displayed as 05 Oct 

1999 

Pass 
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7.2.4 Update Profile Feature 

  

Table 7.4: Unit Test Case for Update Profile Feature 

Unit Test 

Case ID 

Test Case 

Description 

Test Procedure Test Data Expected Result Status 

UTC29 Verify profile data 

loads on page load 

Open Update Profile 

page after view 

profile 

User existing profile Profile fields (username, 

DOB, gender) are pre-filled 

correctly 

Pass  

 

UTC30 Update username 

only 

Change username 

and click Update 

New username: John123 Alert “Profile updated 

successfully!” Redirect to 

Profile page 

Pass 

UTC31 Update date of 

birth only 

Change DOB and 

click Update 

New DOB: 2005-05-05 Alert “Profile updated 

successfully!” Redirect to 

Profile page 

Pass 

UTC32 Update gender only Change gender from 

Male to Female and 

click Update 

Gender: Female Alert “Profile updated 

successfully!” Redirect to 

Profile page 

Pass 
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UTC33 Cancel update and 

click Back 

Click Back button 

instead of Update  

- User redirected back to 

Profile page 

Pass 

UTC34 Check invalid 

username entry 

(empty string) 

Clear username 

field, Click Update 

username: “” System should still allow 

DOB/Gender changes, but 

username remains 

unchanged 

Pass 

 

7.2.5 Change Password Feature 

 

Table 7.5: Unit Test Case for Change Password Feature 

Unit Test 

Case ID 

Test Case 

Description 

Test Procedure Test Data Expected Result Status 

UTC35 Verify all fields 

required 

Leave all inputs 

empty and click 

“Update Password” 

- Errors: “Current password is 

required.”, “New password 

is required.”, “Please 

confirm your new 

password.” 

Pass  
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UTC36 Validate new 

password length 

Enter valid current 

password but short 

new password (<6 

chars) 

Current: john123, 

New: 123,  

Confirm: 123 

Error: “New password must 

be at least 6 characters.” 

Pass 

UTC37 Validate password 

mismatch 

Enter mismatched 

new and confirm 

password 

Current: john123, 

New: 123456,  

Confirm: 654321 

Error: “Passwords do not 

match.” 

Pass 

UTC38 Successful 

password change 

Enter valid data and 

click Update 

Current: john123, 

New: 123456,  

Confirm: 123456 

Alert success message, 

Redirect to /profile 

Pass 

UTC39 Invalid current 

password 

Enter wrong current 

password  

Current: john12345, 

New: 123456,  

Confirm: 123456 

Alert: “Old password is 

incorrect” 

Pass 

UTC40 Back button 

navigation 

Click Back button 

instead of submitting 

- Redirects user back to 

/profile without changes 

Pass 
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7.2.6 Select Input Method Feature 

 

Table 7.6: Unit Test Case for Select Input Method Feature 

Unit Test 

Case ID 

Test Case 

Description 

Test Procedure Test Data Expected Result Status 

UTC41 Validate page loads 

correctly 

Open Select Input page - Page shows title, instruction, 

and two options (Dropdown 

and Free Text) 

Pass  

 

UTC42 Validate dropdown 

option navigation 

Click anywhere on 

Dropdown option card 

or button 

- User navigates to /dropdown Pass 

UTC43 Validate free text 

option navigation 

Click anywhere on Free 

Text option card or 

button 

- User navigates to /free-text Pass 

UTC44 Responsive layout Resize window to small 

screen 

- Cards remain responsive and 

readable 

Pass 

UTC45 Back button 

navigation 

Click Back button 

instead of submitting 

- Redirects user back to 

/profile without changes 

Pass 
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7.2.7 Dropdown Input Feature 

Table 7.7: Unit Test Case for Dropdown Input Feature 

Unit Test 

Case ID 

Test Case 

Description 

Test Procedure Test Data Expected Result Status 

UTC46 Validate search 

filters symptom list 

Type “fever” in search 

bar 

Search = fever Only symptoms matching 

“fever” appear 

Pass  

 

UTC47 Validate symptom 

checkbox selection 

Check a symptom (e.g., 

“Fever”) 

Symptom: Fever Checkbox marked, symptom 

stored in checked 

Pass 

UTC48 Add selected 

symptoms 

Select multiple 

symptoms, Click Add 

Selected: Fever, 

Vomiting 

Symptoms appear under 

“Selected Symptoms” 

Pass 

UTC49 Prevent adding 

empty selection 

Click Add without 

selecting 

- Alert: “Please check at least 

one symptom before adding.” 

Pass 

UTC50 Remove symptom 

from selected 

Click “X” on a selected 

symptom 

X Fever  Symptom removed from 

selected list 

Pass 

UTC51 Successful 

prediction 

Select symptoms to 

Click Predict 

Fever, Cough Navigate to /result with 

predictions passed in state 

Pass 
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UTC52 Prevent duplicate 

selected symptoms 

Select same symptom 

twice 

Fever, Fever Symptom only appears once 

in selected list 

Pass 

 

7.2.8 Free Text Feature 

Table 7.8: Unit Test Case for Free Text Input Feature 

Unit Test 

Case ID 

Test Case 

Description 

Test Procedure Test Data Expected Result Status 

UTC53 Prevent empty 

submission 

Click “Extract 

Symptoms” with empty 

textarea 

“” Alert: “Please enter some text 

to describe your symptoms.” 

Pass  

 

UTC54 Successful 

symptom 

extraction 

Enter valid input and 

extract 

“I have fever and cough” Extracted symptoms appear in 

“Matched Symptoms” list 

Pass 

UTC55 No symptoms 

extracted 

Enter unrelated text to 

Extract 

“I like pizza” Alert: “No symptoms 

extracted. Please try again.”  

Pass 

UTC56 Remove matched 

symptom 

Click “X” on a matched 

symptom 

X Fever Symptom removed from list Pass 
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UTC57 Successful 

prediction 

Enter text, extract, then 

predict 

“I have fever and cough” Navigate to /result with 

predictions passed in state 

Pass 

UTC58 Loading state 

behavior 

Click Extract 

Symptoms 

“I have fever Button text changes to 

“Extracting…” until done 

Pass 

 

7.2.9 Prediction Result 

Table 7.9: Unit Test for Prediction Result 

Unit Test 

Case ID 

Test Case 

Description 

Test Procedure Test Data Expected Result Status 

UTC59 Validate results 

load correctly 

Navigate to Result page 

with results in state 

Backend: 

results=[{disease:"Flu"}] 

Diseases displayed in card Pass  

 

UTC60 Validate symptoms 

display 

Navigate to Result page 

with symptoms in state 

symptoms= 

["Fever","Cough"] 

Symptoms listed in card Pass 

UTC61 Validate match 

strength icons 

Load results with 

multiple diseases 

3 diseases Star icons display correctly 

(Strong, Moderate, Weak) 

Pass 

UTC62 Navigate to 

medical advice 

Click “View Medical 

Advice” 

results + symptoms 

available 

Navigate to /medical-advice 

with data passed 

Pass 
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7.2.10 General Medical Advice 

 

Table 7.10: Unit Test Case for General Medical Advice 

Unit Test 

Case ID 

Test Case 

Description 

Test Procedure Test Data Expected Result Status 

UTC63 Validate symptoms 

list 

Navigate with 

symptoms in state 

["Fever","Cough"] Symptoms listed Pass  

 

UTC64 Fetch advice 

successfully 

Navigate with results Flu → Backend returns 

advice 

Advice cards displayed Pass 

UTC65 Handle no advice Backend returns empty 

advice 

Flu → No advice “No advice available” shown Pass 

UTC66 Save prediction 

successfully 

Click “Save Prediction” 

with valid results 

results + symptoms Successful Message: 

“Prediction and advice saved 

successfully!” Redirect to 

History 

Pass 
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7.2.11 Historical  

 

Table 7.11: Unit Test Case for Historical 

Unit Test 

Case ID 

Test Case 

Description 

Test Procedure Test Data Expected Result Status 

UTC67 Fetch history 

successfully 

Navigate to page with 

valid token 

Records available Cards display with date, 

symptoms, diseases and 

advice 

Pass  

 

UTC68 Handle empty 

history 

Navigate with no 

records 

None “No historical records found.” 

shown 

Pass 

UTC69 Redirect if no 

token 

Clear token, then 

navigate 

- Redirected to login with error 

message 

Pass 

UTC70 Delete history 

record 

Click delete icon on a 

record 

Record ID Record removed + success 

message 

Pass 

UTC71 Delete cancelled Click delete, cancel 

confirm 

- Record not deleted Pass 
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UTC72 Expand advice text Click “Read More” on 

long advice 

Advice text > 150 chars Full text shown Pass 

UTC73 Collapse advice 

text 

Click “Show Less” 

after expansion 

Advice text > 150 chars Text collapses Pass 

UTC74 Home button 

navigation 

Click “Home” - Navigate to home page Pass 

 

 

7.3 Integration Testing 

Integration testing ensures that different modules of the disease prediction web application can work together seamlessly to form a unified system. 

Unlike unit testing, which verifies individual components, integration testing focuses on interactions between frontend interfaces and backend 

services. This phase validates whether data flows correctly between pages, tokens are securely handled, and results are consistently stored and 

retrieved. By implementing integration testing, potential issues such as API mismatches, data processing errors, or session management failures 

can be identified and resolved before system deployment. 
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Table 7.12: Integration Test Cases 

Integration 

Test Case ID 

Test Case Description Test Procedure Expected Result Status 

ITC01 Verify registration integrates 

with backend authentication. 

1. Navigate to registration page.  

2. Enter valid details.  

3. Submit.  

4. Login using new account. 

User is successfully registered and 

able to log in. 

Pass  

 

ITC02 Verify login with token allows 

access to protected pages (e.g 

Profile). 

1. Login with valid credentials.  

2. Navigate to Profile.  

3. Refresh page. 

Profile details are displayed using 

stored token; session persists. 

Pass 

ITC03 Verify password change 

updates backend and login 

validation. 

1. Login. 

2. Change password. 

3. Logout. 

4. Login with old password (fail). 

5. Login with new password (success). 

Old password rejected; new 

password accepted. 

Pass 

ITC04 Verify dropdown symptom 

selection integrates with 

disease prediction. 

1. Navigate to symptom input page. 

2. Select symptoms. 

3. Submit. 

Backend returns prediction; 

results displayed correctly. 

Pass 
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ITC05 Verify integration between 

Result page and Medical 

Advice page. 

1. From Result, click “View Medical 

Advice”. 

Medical advice is retrieved for 

predicted disease and displayed. 

Pass 

ITC06 Verify saving prediction stores 

record in History. 

1. On Medical Advice page, click 

“Save Prediction”. 

2. Navigate to History. 

Prediction is stored and visible in 

History with correct details.  

Pass 

ITC07 Verify History page fetches 

consistent saved data. 

1. Login. 

2. Navigate to History. 

All previously saved predictions 

are displayed correctly. 

Pass 

ITC08 Verify deletion of record 

updates backend and frontend. 

1. Navigate to History. 

2. Delete a record. 

3. Refresh page. 

Deleted record no longer appears. Pass 

ITC09 Verify session expiration 

handling when token is 

invalid. 

1. Login. 

2. Clear/expire token. 

3. Navigate to Profile/History. 

User redirected to Login with 

session expired message. 

Pass 

ITC10 Verify end-to-end workflow 

from registration to history. 

1. Register new user.  

2. Login.  

3. Input symptoms.  

4. Predict disease.  

All steps succeed; saved 

prediction is available in History. 

Pass 
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5. View advice.  

6. Save prediction.  

7. Navigate to History. 
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7.4 User Acceptance Testing (UAT) 

User Acceptance Testing (UAT) is actual end users evaluated the system to 

ensure that the system meets the user needs, requirements, and expectations. 

The core objective of UAT is to validate whether the disease prediction web 

application using machine learning functions correctly in real world scenarios 

and delivers expected results. Unlike Unit Testing and Integration Testing, UAT 

emphasizes usability, output correctly, and alignment with user expectations.  

This project conducted a UAT by distributing structured Google Forms 

questionnaires to a group of 30 users to perform hands-on testing of the system. 

They evaluated core functional modules, including register and login operation, 

symptom input via both dropdown menus and free text fields, disease prediction, 

viewing medical recommendations, and accessing historical records. 

Participants were asked to independently test the web application and provide 

feedback based on their user experience. The full Google Form questionnaire is 

attached in Appendix A for reference.  

 

7.4.1 User Acceptance Testing Result 

Table 7.13 shows a User Acceptance Testing Result summary.  

Table 7.13: User Acceptance Testing Result. 

Question Aspect 

Evaluated 

3(n) 4(n) 5(n) Total  Average 

Rating  

Q1 Ease of 

navigation  

3 11 16 30 4.43 

Q2 Ease of inputting 

symptoms 

4 14 12 30 4.26 

Q3 Clarity of error 

messages  

3 4 18 30 4.53 

Q4 System generated 

predictions 

3 10 17 30 4.46 

Q5 Accuracy of 

predictions 

5 12 13 30 4.26 

Q6 Relevance of 

medical advice 

6 9 15 30 4.30 
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Q7 Accessibility of 

history feature 

3 11 16 30 4.43 

Q8 Overall 

satisfaction 

3 11 16 30 4.43 

Q9 No major 

difficulties 

encountered  

1 12 17 30 4.53 

 

The results indicate that the system achieved the anticipated usability goals, with 

90% of users rating most aspects at 4 points or higher. The highest-rated aspects 

were clarity of error messages (4.53) and no major difficulties encountered 

(4.53), indicating that the system is straightforward to operate and easy to 

interact with. The only slightly lower score was for prediction accuracy, 

suggesting that while the predictions are generally acceptable, users may expect 

higher precision.  

The moderately rated aspects included ease of inputting symptoms 

(4.26), accuracy of predictions (4.26), and relevance of medical advice (4.30). 

While these scores are still positive, they suggest that users see room for 

improvement in these domains. In particular, symptom input enables smoother 

operation, while leveraging larger datasets and more advanced models further 

enhances prediction accuracy and recommendation relevance.  

Open-ended feedback (Q10) provided additional suggestions such as 

adding more advice information, adding dashboard page, further streamlining 

the layout, add multilingual support, include more healthcare information and 

so on. The full results can be found in Appendix B. 

 Based on the UAT results, the Disease Prediction Web Application 

using Machine Learning is considered user-friendly, functionally robust, and 

aligned with the user requirements. While prediction accuracy can be enhanced 

and medical advice content expanded through fine tuning, the system has 

successfully achieved the objectives of the user acceptance testing. 
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7.5 User Interface Design Feedback 

To evaluate the usability and overall design of the system, a User Interface 

Design Feedback survey via Google Forms was conducted. This survey aimed 

to assess the system interface’s intuitiveness, clarity and visual appeal while 

identifying areas for improvement. Respondents were asked to provide the 

feedback based on their actual usage experience. Most questions were utilized 

a 5-point Likert scale, where 1 represented “Strongly Disagree” and 5 

represented “Strongly Agree.” The full Google Form questionnaire is attached 

in Appendix C for reference. Table 7.13 shows a User Interface Design 

Feedback summary.  

 

Table 7.14: User Interface Design Feedback 

Question Aspect Evaluated 3(n) 4(n) 5(n) Total  Average 

Rating  

Q1 Ease of use without 

training 

2 10 18 30 4.53 

Q2 Intuitiveness of UI 

design 

1 15 14 30 4.43 

Q3 Visual appeal of 

design 

4 8 18 30 4.30 

Q4 Colour comfort and 

theme consistency 

5 8 17 30 4.40 

Q5 Clarity of labels 

and buttons 

3 10 17 30 4.46 

Q6 Navigation and 

menu usability 

1 13 16 30 4.5 

Q7 Responsiveness 

and performance 

6 8 16 30 4.33 

Q8 Clarity of system 

feedback/error 

messages 

3 13 14 30 4.36 

Q9 User confidence in 

performing tasks 

1 9 20 30 4.63 
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User Interface evaluation results indicate that users were generally satisfied, 

with all average ratings above 4.3 out of 5, reflecting a strong level of 

acceptance. User confidence in task execution (4.63) received the highest rating, 

indicating that users felt comfortable and capable when interacting with the 

system. Similarly, ease of use without training (4.53) and navigation and menu 

usability (4.50) also scored exceptionally high, demonstrating that the design is 

intuitive and requires minimal learning effort. Other aspects such as clarity of 

labels and buttons (4.46) and intuitiveness of UI design (4.43) also received high 

ratings, highlighting effective design choices that support smooth interaction. 

Meanwhile, the ratings for visual appeal of design (4.30) and responsiveness 

and performance (4.33) were slightly lower than other categories, though still 

positive. 

Open-ended feedback (Q10) provided additional suggestions such as 

add dark mode for better accessibility, provide dashboard page, add tooltips or 

hints for new users, use more visuals for results, improve spacing and alignment 

of elemetns and so on. The full results can be found in Appendix D. All these 

results demonstrate that the web application provides a smooth and intuitive 

user experience. Respondents also expressed high confidence in using the 

interface for disease prediction tasks.  

Overall, the survey indicated that the system’s user interface design is 

intuitive and easy to use, aligning with its intended purpose and achieving 

usability objectives of supporting users in efficiently and confidently utilizing 

the disease prediction functionality.  
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CHAPTER 8 

 

8 CONCLUSION AND RECOMMENDATION 

 

8.1 Introduction 

This conclusion outlined the achievement of the project objectives, limitation of 

the project and valuable suggestions into possible future work. The Disease 

Prediction Web Application using Machine Learning has been successfully 

developed and tested. This system provides a user-friendly, secure and efficient 

platform for predicting diseases based on user-provided health data.  

 In the initial of the project, it is essential to clearly define the problem 

statements, project objective, project scope and reviewing the existing similar 

applications to collect functional requirements and non-functional requirements. 

In the development phase, the system integrates both dropdown symptom 

selection and free text input method to accommodate diverse user needs. The 

backend was implemented using Flask, while the frontend was built with React, 

ensuring both scalability and responsiveness.  

 Following development and implementation, extensive testing was 

conducted, including unit testing, integration testing, user acceptance testing 

(UAT), and user interface design feedback collection. The integration of 

machine learning, structured user interfaces, and accessibility features ensures 

that the system is practical for end users.  

 

8.2 Achievement of Objectives 

The following describes the project's objectives from Chapter 1 were fulfilled 

with the implemented system: 

 

1. To develop and train a machine learning model capable of predicting 

specific diseases, achieving a prediction accuracy of 85% or higher on 

the test dataset. 

2. To design a user-friendly web application and evaluate its usability 

through User Acceptance Testing (UAT), ensuring that at least 90% of 

users rate its ease of use as 4 or higher on a 5-point Likert scale. 
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3. To design and test different prompts for large language model (Google 

Gemini), evaluating their effectiveness in advice generation and validate 

the outputs against trusted medical sources. 

 

The objective 1 was successfully achieved by implemented a machine learning 

model trained on a structured dataset of symptoms and disease mappings. 

Several models including Random Forest, Decision Tree, and Support Vector 

Machine were evaluated on the validation dataset. Random Forest model 

demonstrated the highest accuracy and was therefore selected for final use. The 

final trained model achieved an accuracy of approximately 97% on the test 

dataset, exceeding the targeted threshold of 85%, thereby validating its 

reliability in predicting potential diseases based on user inputs. The final trained 

model was integrated into the system. 

 For objective 2, the frontend of the system was developed using React 

with an emphasis on intuitive navigation, clear visual design and responsiveness. 

To evaluate its usability, a User Acceptance Test (UAT) was conducted using a 

Google Form survey with a 5-point Likert scale. The results indicated that more 

than 90% of participants rated the system ease of use as 4 or above, thus meeting 

the target benchmark. This confirms that the web application successfully 

achieved its goal of providing a user-friendly interface suitable for both 

technical and non-technical users. 

 The objective 3 was addressed by conducting a prompt design study 

for the Google Gemini large language model. Several prompting strategies, 

including zero-shot prompt, role-based prompting, and chain-of-though prompt 

were evaluated in terms of accuracy, clarity, completeness and response time. 

The role-based prompting was found to deliver the most balanced outputs, 

ensuring medically relevant advice while maintaining consistency with establish 

guidelines. The generated advice was compared against trusted medical 

resource such as WHO and MedlinePlus, to validate the accuracy and reliability.  

 In summary, all major objectives outlined in Chapter 1 were 

successfully fulfilled. The machine learning model achieved the expected 

accuracy level. The user interface confirmed its user-friendliness through User 

Acceptance Testing (UAT) results. Combined with Google Gemini's prompt 
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engineering technology, it effectively implemented recommendation generation, 

validated by reliable reference materials. These achievements collectively 

demonstrate that the project successfully met the established objectives. 

 

8.3 Limitations and Recommendations for Future Works 

Although the system operates effectively, several limitation and improvements 

or extensions can be made in future development. 

 

Limitation  Recommendations for Future Works 

Not replace the medical 

professional 

Integrating the system with healthcare 

providers to ensure the predictions and 

recommendations are medically validated, 

ensuring enhancing trust and reliability. 

Furthermore, enhance Natural Language 

Processing (NLP) capability to handle 

complex sentences structures and diverse 

user input. 

Not cover rare or new disease By incorporating clinical trial data, the latest 

medical literature, and real-time medical 

databases to expand the dataset, which 

would allow the system to adapt to emerging 

health challenges. 

Accuracy depends on the 

quality and quantity of dataset 

Building larger and more diverse datasets, 

ideally sourced from multiple healthcare 

settings, to enhance the robustness and 

generalizability of predictions results. 

Integrate trusted medical databases or APIs 

such as Infermedia or WHO to provide more 

comprehensive advice and add severity-

based guidance. 

External factors Designing an adaptive system that can 

integrate rapidly public health data during 

such scenarios, enabling the model to 
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respond more effectively to novel 

conditions. Besides that, can implement 

offline functionality for areas with limited 

internet access. 

Only supports English input 

and output 

Implement multi-language support for non-

English users, making the system more 

inclusive and suitable for a global user base.  

 

By implementing these recommendation and future works, the system can 

gradually evolve into a more precise, reliable, and widely adopted medical 

support tool, making significant contributions to early disease warning and 

preventive healthcare practices. 
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