DISEASE PREDICTION WEB APPLICATION
USING MACHINE LEARNING

FOO JIA YU

UNIVERSITI TUNKU ABDUL RAHMAN

DISEASE PREDICTION WEB APPLICATION USING MACHINE
LEARNING

FOO JIA YU

A project report submitted in partial fulfilment of the
requirements for the award of Bachelor of Software Engineering

(Honours)

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2025

DECLARATION

I hereby declare that this project report is based on my original work except for
citations and quotations which have been duly acknowledged. I also declare that
it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Name : FOOJIAYU

ID No. ;2105105

Date : 01/07/2025

COPYRIGHT STATEMENT

© 2025, FOO JIA YU. All right reserved.

This final year project report is submitted in partial fulfilment of the
requirements for the degree of Bachelor of Software Engineering (Honours) at
Universiti Tunku Abdul Rahman (UTAR). This final year project report
represents the work of the author, except where due acknowledgement has been
made in the text. No part of this final year project report may be reproduced,
stored, or transmitted in any form or by any means, whether electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of the author or UTAR, in accordance with UTAR’s Intellectual

Property Policy.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to Dr. Fatimah Audah
binti Md. Zaki as my research supervisor and Mr Kelwin Tan Seen Tiong as my
research moderator for their invaluable advice, guidance, enormous patience

and constructive feedback throughout the duration of the research.

I sincerely thank my academic advisor, Dr. Khor Kok Chin, for his
exceptional guidance and support throughout my degree program. I would also
like to thank all the lecturers and the faculty and the departmental members from
Lee Kong Chian Faculty of Engineering and Science for creating a pleasant

working environment throughout my years in UTAR.

Special thanks go to my fellow classmates and friends for their
collaboration, discussions, and encouragement during challenging times. Their

support helped me kept motivation and progress steadily.

Finally, I am deeply grateful to my family for their unconditional love,
patience, and unwavering trust. Their encouragement has been my greatest

source of strength and inspiration throughout my academic journey.

ABSTRACT

In recent years, the prevalence of diseases has increased and the demand for
quick diagnosis tools is growing. This has highlighted the need for machine
learning-based web applications for disease predictions is important in the
healthcare system for early diagnosis. This project presents the design and
development of a web-based disease prediction application that employs
machine learning and natural language processing technologies to assist users
in identifying potential health conditions. The motivation for this project is to
improving access to early diagnosis, reduce the burden on medical staff and
getting general medical advice anywhere and anytime. The methodology
involved develop and train machine learning models on Symptom-Disease
Prediction Dataset (SDPD) to achieve precise predictions, integrate the model
into web application built on Flask and React, and employ Google Gemini to
generate general medical recommendations and extract symptoms. System
testing was conducted through multiple testing methods, including unit testing,
integration testing, user acceptance testing (UAT) and user interface design
feedback collected through Google Forms. The results indicate that the machine
learning model achieved a prediction accuracy at approximately 97%. User
acceptance testing validated that over 90% of users rated the usability and ease
of use of the system at 4 or higher on a 5-point Likert scale. The study concluded
that the system successfully achieved its objectives, delivering a practical, user-
friendly, and intelligent healthcare support system. However, it also
acknowledged limitations such as dependence on dataset quality, lack of
coverage for rare or new diseases, and multilingual support. Future work will
focus on expanding dataset variety, integrating multilingual support, and
incorporating of contextual health data to further enhance prediction accuracy

and precision.

Keywords: Disease prediction, Machine Learning, Web Application, Large

Language model, Natural Language Processing

Subject Area: QA76 — Computer Science

TABLE OF CONTENTS

DECLARATION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS i

LIST OF TABLES vi

LIST OF FIGURES viii

LIST OF SYMBOLS / ABBREVIATIONS xii

LIST OF APPENDICES xiii
CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 2

1.3 Problem Statement 3

1.3.1 Long waiting times for patients to get

diagnosis 3

1.3.2 Increased Risk of Human Errors 4

1.3.3 Limited accessibility for remote areas 4

1.4 Aim and Objectives 5
1.5 Scope and Limitation of the Study 5
1.5.1 Limitation 10

1.6 Proposed Solution 11
1.7 Project Approach 12
2 LITERATURE REVIEW 13
2.1 Introduction 13
2.2 Research and Comparison Model 13
2.2.1 Research Models 13

2.2.2 Compare Existing Models 17

2.2.3 Summary of Comparative Models 22

23

24

2.5

2.6

2.7

Compare Existing Web App

2.3.1 Symptomate

2.3.2 WebMD Symptom Checker
2.3.3 Your.MD (Healthily)

2.3.4 Summary of Existing Applications
Evaluation Metrics

2.4.1 Accuracy

2.4.2 Sensitivity (Recall)

2.4.3 Specificity

2.4.4 Precision

2.4.5 F1-Score (F-Measure)

2.4.6 Summary of Evaluation Metrics
Dataset Sources

2.5.1 Summary of Data Source

Web Application Framework

2.6.1 Backend Framework

2.6.2 Frontend Framework

Summary

METHODOLOGY AND WORK PLAN

3.1
32

33
34
3.5
3.6

Introduction

Software Development Life Cycle (SDLC)

Methodology

3.2.1 Waterfall

3.2.2 Spiral

3.2.3 Agile

3.2.4 Summary of SDLC Methodology

Waterfall Methodology

Requirements Analysis

System Design

Implementation Phase

3.6.1 Machine Learning Model Development

3.6.2 Web Applications Development

3.6.3 Integration of ML Model with Web
Application

24
24
27
31
36
37
37
37
38
38
38
39
40
42
43
43
46
48
50
50

50
50
52
53
54
55
56
57
58
58
62

63

3.7
3.8

3.9

System Testing

Tools and Technologies
3.8.1 Flask

3.8.2 React

3.8.3 Scikit-learn
3.8.4 MySQL

3.8.5 GitHub

3.8.6 Postman

Project Plan

3.9.1 Work Breakdown Structure (WBS)
3.9.2 Gantt Chart

PROJECT SPECIFICATIONS

4.1
4.2

4.3

4.4
45
4.6

Introduction

Requirements Specification

4.2.1 Functional Requirements Specification

4.2.2 Non-functional Requirements Specification
72

Use Case Modelling

4.3.1 Use Case Diagram

4.3.2 Use Case Description

System Flow Diagram

Interface Flow Diagram

Low Fidelity Prototype

4.6.1 Welcome Page

4.6.2 Login Page

4.6.3 Sign Up Page

4.6.4 Home Page

4.6.5 Select Input Method Page

4.6.6 Dropdown List Input Symptoms Page

4.6.7 Free Text Input Symptoms Page

4.6.8 Predicted Results Page

4.6.9 View Medical Advice Page

4.6.10View Historical Results Page

4.6.11Profile Page

il

63
64
64
64
64
65
65
65
65

68
71
71
71
71

73
73
74
84
86
86
86
87
88
88
89
90
90
92
92
93
94

v

4.6.12Update Profile Page 94

4.6.13Change Password Page 95
4.7 Preliminary Results 96
4.7.1 Model Performance 96
4.7.2 Dropdown List Input 97
4.7.3 Free-Text Input 97
SYSTEM DESIGN 99
5.1 Introduction 99
5.2 System Architecture Design 99
53 Data Model Design 101
5.3.1 Entity Relationship Diagram (ERD) 101
5.3.2 Data Dictionary 102
54 User Interface Design 105
5.4.1 Welcome Page 105
5.4.2 Login Page 106
5.4.3 Sign Up Page 106
5.4.4 Home Page 107
5.4.5 Select Input Method Page 107
5.4.6 Dropdown List Input Symptoms Page 108
5.4.7 Free Text Input Symptoms Page 109
5.4.8 Predicted Results Page 109
5.4.9 View Medical Advice Page 110
5.4.10History Page 111
5.4.11Profile Page 111
5.4.12Update Profile Page 112
5.4.13Change Password Page 112
5.5 Prompt Design Study 113
5.5.1 Prompt Styles 113
5.5.2 Prompt Testing 114
5.5.3 Comparison and Discussion 123
5.5.4 Summary 124
SYSTEM IMPLEMENTATION 125
6.1 Introduction 125

6.2 Machine Learning Model Development 125

6.2.1 Data Preprocessing
6.2.2 Model Training
6.2.3 Model Optimization
6.2.4 Model Evaluation
6.3 Web Application Development
6.3.1 Frontend Development
6.4 Backend Development
6.4.1 Project Architecture
6.4.2 API Endpoints
6.4.3 Implementation of Google Gemini API
7 SYSTEM TESTING
7.1 Introduction
7.2 Unit Testing
7.2.1 Registration Feature
7.2.2 Login Feature
7.2.3 Profile
7.2.4 Update Profile Feature
7.2.5 Change Password Feature
7.2.6 Select Input Method Feature
7.2.7 Dropdown Input Feature
7.2.8 Free Text Feature
7.2.9 Prediction Result
7.2.10General Medical Advice
7.2.11Historical
7.3 Integration Testing
7.4 User Acceptance Testing (UAT)
7.4.1 User Acceptance Testing Result
7.5 User Interface Design Feedback
8 CONCLUSION AND RECOMMENDATION
8.1 Introduction
8.2 Achievement of Objectives
8.3 Limitations and Recommendations for Future
Works
REFERENCES

125
127
127
132
135
135
144
145
147
152
154
154
154
155
158
160
162
163
165
166
167
168
169
170
171
175
175
177
179
179
179

181
183

APPENDICES

Table 1.1:

Table 1.2: List of the 132 symptoms supported by the system.

Table 2.1:

Table 2.2: Comparison between DT, SVM, RF, KNN, and NB.

Table 2.3: Comparison between Symptomate, WebMD Symptom

LIST OF TABLES

List of diseases included in the system

Related Work

Checker, and Your.MD (Healthily).

Table 2.4 Comparison of different evaluation metrics.

Table 2.5:

Table 2.6:

Table 2.7:

Table 3.1:

Table 4.1:

Table 4.2:

Table 4.3:

Table 4.4:

Table 4.5:

Table 4.6:

Table 4.7:

Table 4.8:

Table 4.9:

Comparison of different data source
Comparison between Flask and Django
Comparison between React and Angular
Comparison of different SDLC Methodology
Functional Requirements

Non-functional requirements

Use case description of Login Account

Use case description of Register account

Use case description of Input Symptoms

Use case description of View Predicted Results
Use case description of View Medical Results
Use case description of Store Predicted Results

Use case description of View Historical Results

Table 4.10: Use case description of View Profile

Table 4.11: Use case description of Update Profile

vi

189

15

22

36

39

42

45

48

54

71

72

74

75

76

77

78

79

80

82

83

Table 5.1: users Table Data Dictionary

Table 5.2: symptoms Table Data Dictionary

Table 5.3: diseases Table Data Dictionary

Table 5.4: prediction_history Table Data Dictionary
Table 5.5: medical advice Table Data Dictionary

Table 5.6: predicted symptom junction table Data Dictionary
Table 5.7: predicted disease junction table Data Dictionary
Table 5.8: Diabetes Results on Prompt Testing

Table 5.9: Hypertension Results on Prompt Testing

Table 6.1: Prediction Verification Results

Table 6.2: API Endpoints Overview

Table 7.1: Unit Test Case for Registration Feature

Table 7.2: Unit Test Case for Login Feature

Table 7.3: Unit Test Case for Profile

Table 7.4: Unit Test Case for Update Profile Feature
Table 7.5: Unit Test Case for Change Password Feature
Table 7.6: Unit Test Case for Select Input Method Feature
Table 7.7: Unit Test Case for Dropdown Input Feature
Table 7.8: Unit Test Case for Free Text Input Feature
Table 7.9: Unit Test for Prediction Result

Table 7.10: Unit Test Case for General Medical Advice
Table 7.11: Unit Test Case for Historical

Table 7.12: Integration Test Cases

Table 7.13: User Acceptance Testing Result.

Table 7.14: User Interface Design Feedback

vii

103

103

103

103

104

104

105

118

122

134

150

155

158

160

162

163

165

166

167

168

169

170

172

175

177

LIST OF FIGURES

Figure 1.1: System Design Overview

Figure 1.2: Waterfall Methodology

Figure 2.1: Decision Tree Structure Diagram.

Figure 2.2: Support Vector Machine (SVM) Diagram.
Figure 2.3: Random Forest (RF) algorithm diagram.
Figure 2.4: K-Nearest Neighbors (KNN) diagram.
Figure 2.5: Symptomate Survey Respondent’s Page.
Figure 2.6: Symptomate User Input Symptoms Page

Figure 2.7: Example of a Multi-Select Symptoms Interview Question
Page.

Figure 2.8: Example of Predicted Result.
Figure 2.9: Example of WebMD Symptom Checker Info Page.
Figure 2.10: Example of WebMD Input Symptom Page.

Figure 2.11: Example of WebMD Input Symptom Page for Select
Symptoms by Body Location.

Figure 2.12: Example of the Conditions Page.

Figure 2.13: Example of the Conditions Details Page.
Figure 2.14: Healthily Gender Page.

Figure 2.15: Healthily Chatbot Page.

Figure 2.16: Healthily Select Symptom Page.

Figure 2.17: Healthily Symptom Checker Page prompting user to
indicate the duration of symptoms.

Figure 2.18: Healthily prompting user to indicate the health background.
34

Figure 2.19: Healthily Prediction Report Page.

viii

11

12

18

19

20

21

24

25

26

27

28

29

29

30

31

32

33

33

34

35

Figure 3.1: Waterfall Model

Figure 3.2: Spiral Model

Figure 3.3: Agile Model

Figure 3.4: Waterfall Methodology Flowchart

Figure 3.5: System Design Diagram

Figure 3.6: Model Development Flowchart

Figure 3.7: Overview of the Project Timeline

Figure 3.8: Project Preparatory and Project Initiation Timelines
Figure 3.9: Literature Review and Methodology Timelines
Figure 3.10: Requirements Analysis and System Design Timelines
Figure 3.11: System Development Timelines

Figure 3.12: System Testing and Closing Timelines
Figure 4.1: Use case diagram

Figure 4.2: System Flow Diagram

Figure 4.3: Interface Flow Diagram

Figure 4.4: Welcome Page

Figure 4.5: Login Page

Figure 4.6: Sign Up Page

Figure 4.7: Home Page

Figure 4.8: Select Input Method Page

Figure 4.9: Dropdown List Input Symptoms Page

Figure 4.10: Free Text Input Symptoms Page

Figure 4.11: Predicted Results Page

Figure 4.12: View Medical Advice Page

Figure 4.13: View Historical Results Page

ix

51

52

53

56

58

59

68

68

69

69

70

70

73

85

86

87

87

88

&9

89

90

91

92

93

93

Figure 4.14:
Figure 4.15:
Figure 4.16:
Figure 4.17:
Figure 4.18:
Figure 4.19:

Figure 4.20:

Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16
Figure 6.1:

Figure 6.2:

Profile Page

Update Profile Page

Change Password Page

Preliminary Model Performance Metrics
Sample of Per-Disease Performance Metrics
Sample Dropdown List Input and Prediction Results
Sample of Free-Text Input and Prediction Output
Three-tier Architecture Diagram

System Architecture Design

Entity Relationship Diagram (ERD)

Actual Welcome Page

Actual Login Page

Actual Sign Up Page

Actual Home Page

Actual Select Input Method Page

Actual Dropdown List Input Symptoms Page
: Actual Free Text Input Symptoms Page

: Actual Predicted Results Page

: Actual View Medical Advice Page

: Actual History Page

: Actual Profile Page

: Actual Update Profile Page

: Actual Change Password Page

Code Snippet for Handling Missing Value

Code Snippet for Remove Duplicate Rows in Dataset

94

95

95

96

97

97

98

99

100

102

106

106

107

107

108

108

109

109

110

111

111

112

112

126

126

Figure 6.3:
Figure 6.4:
Figure 6.5:
Figure 6.6:
Figure 6.7:
Figure 6.8:
Figure 6.9:
Figure 6.10

Figure 6.11

Figure 6.12:
Figure 6.13:
Figure 6.14:
Figure 6.15:
Figure 6.16:

Figure 6.17:

Figure 6.18:
Figure 6.19:
Figure 6.20:
Figure 6.21:
Figure 6.22:
Figure 6.23:
Figure 6.24:
Figure 6.25:

Figure 6.26: Generate Structured Medical Advice via Google Gemini

Code Snippet for Data Splitting

Model Architecture

Hyperparameter Tuning for three models
Random Forest Optimization Results
Learning Curve of Random Forest
Support Vector Machine Optimization Results
Heatmap diagram of SVM

: Decision Tree Optimization Results

: Testing set results of 3 models

Model Performance on Test Set

Token Storage Logic

Attach Token to Secured API Requests

Code Snippet for Login Form Validation

139

Code Snippet of Project Setup
Code Snippet for JWT Decorator
get_connection() function

Code Snippet for Load ML Model

Extract Symptoms Function

APT 153

Code Snippet for Registration Form Validation

Code Snippet for Dropdown Symptom Selection Validation

Code Snippet for Free Text Symptoms Input Validation
Code Snippet for Update Profile Form Validation

Code Snippet for Change Password Input Validation

X1

127

127

129

130

130

131

131

132

132

133

136

136

138

139

140

141

141

145

146

146

147

147

Al
ML
RT
DT
SVM

NB
SDLC
API
WBS
TP
TN
FP
FN
WHO

LIST OF SYMBOLS / ABBREVIATIONS

Artificial Intelligence

Machine Learning

Random Forest

Decision Tree

Support Vector Machine
K-Nearest Neighbors

Naive Bayes

Software development lifecycle
Application programming interface
Work Breakdown Structure
True Positive

True Negative

False Positive

False Negative

World Health Organization

Xii

LIST OF APPENDICES

Appendix A: Questionnaire for User Acceptance Testing (UAT)
Appendix B: Results for User Acceptance Testing (UAT)
Appendix C: Questionnaire for User Interface (UI) Design Feedback

Appendix D: Results for User Interface Design Feedback

xiii

189

192

196

199

CHAPTER 1

INTRODUCTION

1.1 General Introduction

The World Health Organization (WHO) states that the chronic diseases such as
diabetes and cardiovascular account for 74% of global deaths annually, but
many chronic diseases can be prevented through early detection (WHO, 2024).
Nowadays, people are more concerned about health after the breakdown of a
pandemic. Rapid advances in technology and artificial intelligence (Al) are
having a significant impact on the healthcare industry. Traditional diagnosis
processes in the healthcare domain are time-consuming and costly. As there are
many different diseases worldwide, the healthcare staff may have some
limitations in their skills and knowledge of certain diseases. This may limit their
ability to make early diagnoses of some particular diseases. However, machine
learning-based healthcare systems may not have these limitations and can

become a powerful tool for early diagnosis.

Machine learning (ML) is a subfield of Artificial Intelligence (Al) that
focuses on allowing computers and machines to mimic human learning, carry
out activities autonomously, and enhance the performance and accuracy of
predictions through past and large datasets (IBM, 2021). Machine learning is
used to train machines to handle complex data more efficiently and effectively
and provide accurate results. There are two phases of the machine learning
algorithm, which are Training and Testing (Sharmila et al., 2024). Healthcare
issues can be effectively addressed using Machine Learning Technologies.
Through the use of Machine Learning, many time-consuming tasks can now be
completed quickly and with minimal effort and also helps to reduce human

C1Tors.

Different diseases may have some similar or different symptoms.
These overlapping symptoms may confuse medical professionals in the
diagnosis process. Therefore, the disease prediction system can use machine

learning to predict diseases based on patient symptoms. This can assist medical

staff in making a diagnosis and reduce human errors. There were few existing
applications that can predict disease based on a patient’s symptoms and other
features. Unlike WebMD, this system focuses on provide medical advice based
on the potential diseases. This project focuses on developing a disease
prediction web application by using machine learning. By using symptoms
inputted or selected by users, the system can predict potential illnesses and
provide recommendations for the users. This application can enhance early
detection and help medical professionals and individuals in making decisions

about their health.

1.2 Importance of the Study

In recent years, the prevalence of diseases has increased and the demand for
quick diagnosis tools is growing. This has highlighted the need for machine
learning-based web applications for disease predictions is important in the
healthcare system for early diagnosis. This study focuses on developing a
disease prediction web application by using machine learning. The web
application analyses the user-input symptoms and diagnoses the potential
disease for the user. The users can seek medical advice and recommendations

earlier by analysing the symptoms early.

In addition, the disease prediction system can automatically diagnose
the disease and reduce the workload of medical staff. This saves the time of
healthcare professionals in diagnosing the disease one by one, therefore, they
have more time to concentrate on some complex cases. This can make the
diagnostic process more efficient and simpler. Besides that, it can assist
healthcare professionals to make the diagnosis and reduce human errors. This is
due to the reason that the symptoms of many diseases may overlap, which can
confuse the medical professionals and prevent them from making a correct

judgment based on the symptoms.

Furthermore, healthcare personnel may not have skills in particular
areas, which will make it difficult for them to make decisions about the diseases.
Therefore, the disease prediction system can assist both healthcare staff and

individuals in making well-informed choices regarding their health. This study

focuses on developing a web application for predicting diseases by utilizing
machine learning techniques. By using the symptoms entered by users, the
system can predict potential diseases and provide some recommendations to the
users. This application aims at early diagnosis of diseases, reduces diagnostic
errors, and can help users to make a correct judgment about illnesses. Moreover,
the system can be used as a preliminary diagnosis tool to guide the users to seek

appropriate medical advice and medical attention.

1.3 Problem Statement

In the past few years, disease diagnosis has frequently been dependent on the
experience and knowledge of medical experts, which may occasionally result in
delays or incorrect diagnoses. Moreover, some individuals who live in distant
areas or have limited access to healthcare facilities may find it difficult to get
medical services. Therefore, the disease prediction system can assist in early
diagnosis based on symptoms entered by users. There were some problems in

the current healthcare system, including:

1.3.1 Long waiting times for patients to get diagnosis

One of the biggest problems faced by current healthcare systems is the long
waiting times for patients to receive a diagnosis. According to Datuk Dr N.
Marimuthu, the waiting time for patients in public hospitals is up to 3 hours and
should be reduced to 30 minutes as in the public health clinics (BERNAME,
2024). This is because of the large number of patients and limited availability
of medical staff. As a result, some patients may choose to self-medicate rather
than wait for a professional diagnosis, delaying proper treatment since the
treatment process often involves long waiting times. Besides that, these delays
may also lead to worsening conditions for patients, particularly those with
chronic illnesses. According to Newman-Toker et al. (2024), the diagnostic
errors including misdiagnosis and delayed diagnosis resulted in 795,000 serious
harms. These included 371,000 deaths and 424,000 permanent disabilities,
underscoring the severity of the human toll. The machine learning-based disease

prediction system can prevent this issue by providing users with an initial

assessment of a user before visiting a healthcare facility and providing

assistance to medical staff to improve diagnostic accuracy.

1.3.2 Increased Risk of Human Errors

Furthermore, human error is inevitable in the healthcare system. Although
healthcare professionals have specialized knowledge and experience, they may
also make some mistakes when diagnosing the disease because the symptoms
of the patients may overlap with those of other diseases. This may result in
misdiagnosis, leading to incorrect treatments of the patients and potentially
causing severe complications. About 200,000 patients die each year from
preventable medical errors (Kavanagh et al., 2017). Moreover, some of incorrect
patients’ records may also kept in the healthcare system due to human mistakes.
This may mislead the doctors when diagnosing the disease for patients. Utilizing
machine learning models can minimize the likelihood of errors and increase the

accuracy of the disease predictions by using large datasets of medical records.

1.3.3 Limited accessibility for remote areas

Due to the inadequate numbers of hospitals and doctors in some remote or rural
areas, people living there have limited access to healthcare services depending
on their region. If they want to have access to comprehensive and refined
healthcare services and facilities, they may have to travel to other regions or
countries, which is time-consuming and costly. Rural residents often face
barriers to health care that limit their ability to access needed medical services
(Rural Health Information Hub, 2024). If the patients suffer from serious
diseases, they may not be able to get timely diagnosis in rural areas. The disease
prediction system can help to prediction their disease early based on the
symptoms and can give some medical advice for them. This can lower the
chance of serious complications and provide access to the basic healthcare
information. In addition, the system can guide individuals to seek medical

attention when they may be suffering from some disease.

14 Aim and Objectives

The primary aim of this project is to develop a web-based application that can
allow users to predict their disease based on user-inputted or selected symptoms.
This system is based on machine learning and the model are trained with the
selected dataset to ensure the accuracy of the results. The selected dataset is
Symptom-Disease Prediction Dataset (SDPD), which is sourced from Mendeley.
Besides that, the disease prediction system will serve as a tool for early
diagnosis of disease, helping users to know the potential disease they may be
suffering from based on their symptoms when they feel unwell. Moreover, the
system will provide users with possible solutions for further action, better
understanding, or medical treatment after a diagnosis of a disease they may have.
The disease prediction project is designed to accomplish the following

objectives:

1. To develop and train a machine learning model capable of predicting
specific diseases, achieving a prediction accuracy of 85% or higher on
the test dataset.

2. To design a user-friendly web application and evaluate its usability
through User Acceptance Testing (UAT), ensuring that at least 90% of
users rate its ease of use as 4 or higher on a 5-point Likert scale.

3. To design and test different prompts for large language model (Google
Gemini), evaluating their effectiveness in advice generation and validate

the outputs against trusted medical sources.

1.5 Scope and Limitation of the Study
This project aims to develop a web application to predict potential diseases for
users, which also provides medical advice and recommendations on the
potential diseases users may have and allows users to input their symptoms for
prediction. The scope of this project is including:
i. User-friendly web interface
A simple and responsive web interface where users can enter their
symptoms for prediction. In addition, provides two options for users
to enter the symptoms which are a predefined dropdown list of

symptoms or manually enter symptoms via a free-text field.

ii.

iii.

iv.

Machine learning model training

A trained machine learning model is able to analyse the user input
or selected input symptoms and predict the potential diseases users
may have. The model utilizes Random Forests algorithm for the
prediction process.

Server-side applications

A server-side application that can process user inputs, interacts with
the machine learning models and returns the predictions to the user.
Implement APIs to handle the data flow between the front end and
the machine learning model.

Database to store user information

Develop a database for storing the user history such as user inputs
and predicted results. This can help user to track their symptoms and
potential diseases over time.

Included Diseases:

There are 41 diseases included in the system, as listed in Table 1.1

and Table 1.2 presents the 131 symptoms supported by the system.

Table 1.1: List of diseases included in the system

Fungal Allergy GERD Chronic Drug
Infection Cholestasi | Reaction
S
AIDS Diabetes Gastroenteri | Bronchial | Hypertens
tis Asthma ion
Migraine Peptic Cervical Paralysis | Jaundice

Ulcer Spondylosis (brain

Disease hemorrhag
e)
Malaria | Chickenpox Dengue Typhoid | Hepatitis

A
Hepatitis | Hepatitis C | Hepatitis D | Hepatitis | Alcoholic

B E Hepatitis

Tubercul | Common | Pneumonia | Dimorphic Heart
0sis Cold Hemmorh | Attack
oids
(piles)
Varicose | Hypothyroi | Hyperthyroi | Hypoglyce | Osteoarth
Veins dism dism mia ritis
Arthritis Vertigo Acne Urinary Psoriasis
Tract
Infection
Impetigo

Table 1.2: List of the 132 symptoms supported by the system.

Itching | Skin rash | Nodal Continuou | Shiveri | Chills
skin s sneezing | ng
eruptions
Joint Stomach | Acidity | Ulcers on | Muscle | Vomitin
pain pain tongue wastin | g
g
Burning | Spotting | Fatigue | Weight Anxiet | Cold
micturit | urination gain y hands
ion and feets
Mood Weight Restlessn | Lethargy | Patche | Irregular
swings | loss ess] in | sugar
throat | level
Cough | High Sunken | Breathless | Sweati | Dehydrat
fever eyes ness ng ion
Indigest | Headache | Yellowis | Dark urine | Nausea | Loss of
ion h skin appetite
Pain Back pain | Constipat | Abdomina | Diarrh | Mild
behind ion 1 pain oea fever
the eyes

Yellow | Yellowin | Acute Fluid Swelli | Swelled
urine gofeyes | liver overload |ng of | lymph
failure stomac | nodes
h
Malaise | Blurred | phlegm | Throat Rednes | Sinus
and irritation | s of | pressure
distorted eyes
vision
Runny | Congesti | Chest Weakness | Fast Pain
nose on pain in limbs heart during
rate bowel
moveme
nts
Pain in | Bloody Irritation | Neck pain | Dizzin | Cramps
anal stool in anus ess
region
Bruisin | Obesity Swollen | Swollen Puffy | Enlarged
g legs blood face thyroid
vessels and
eyes
Brittle Swollen | Excessiv | Extra Drying | Slurred
nails extremeti | e hunger | marital and speech
es contacts tinglin
g lips
Knee Hip joint | Muscle Stiff neck | Swelli | Moveme
pain pain weakness ng nt
joints | stiffness
Spinnin | Loss of | Unsteadi | Weakness | Loss of | Bladder
g balance ness of one | smell discomfo
movem body side rt

ents

Foul Continuo | Passage | Internal Toxic | Depressi
smell of | us feel of | of gases | itching look on
urine urine (typhos
)
Irritabili | Muscle Altered | Red spots | Belly | Abnorma
ty pain sensoriu | over body | pain 1
m menstrua
tion
Dischro | Watering | Increased | Polyuria | Family | Mucoid
mic from eyes | appetite history | sputum
patches
Rusty Lack of | Visual Receiving | Receiv | Coma
sputum | concentra | disturban | blood ing
tion ces transfusio | unsteril
n e
injectio
ns
Stomac | Distentio | History | Blood in | Promin | Palpitati
h n of | of sputum ent ons
bleedin | abdomen | alcohol veins
g consump on calf
tion
Painful | Pus filled | Blackhea | Scurring Skin Silver
walking | pimples | ds peeling | like
dusting
Small Inflamma | Blister Red sore | Yellow
dents in | tory nails around crust
nails nose 00ze

10

There also some limitations in this project, including:

1.5.1

ii.

iii.

iv.

Limitation

Not replace the medical professional

This system is intended only as an assistant for medical professionals
or individuals in the early diagnosis of the potential disease and does
not replace the medical professional for given medical treatment.
The system is only used for preliminary evaluation.

Not cover rare or new disease

The system does not cover all the diseases, especially is some rare
or new diseases. The symptoms and conditions of the rare or new
disease may not be included in the training dataset, so it may be
unable to detect the disease based on the symptoms.

Accuracy depends on the quality and quantity of dataset

The reliability of the disease prediction model depends on the dataset,
therefore the accuracy of the prediction results depends on the
correctness and size of the dataset. If the dataset is limited and
incorrect, the accuracy of predicted results will be low and
inefficient.

External factors

There may be some unpredictable factors to be considered when use
the disease prediction system such as the breakdown of pandemics.
The pandemic outbreaks may not have enough datasets to train the
model to predict new pandemics disease in a short period of time.
Only supports English input and output

The system only accepts and generates the prediction results in
English. This may limit the use of the system for non-English users
and reduce the usability of the system in multilingual environment.
The non-English users may require external translation tools to use

the system, which may affect the accuracy and user experience.

11

1.6 Proposed Solution

The aim of this project is to develop a disease prediction web application using
machine learning based on user-inputted symptoms to address the problems
outlined in the problem statement. The features of the web application include
entering symptoms, accessing potential disease outcomes, medical advice,
personal profiles and updating personal profiles. The system enables the user to
input their symptoms through two different methods. The first is to select from
a predefined list of 132 symptoms and the second is to enter symptoms in free-
text format and extracted the symptoms using large language model. The user
is free to choose the symptom input option.

A Random Forest model is being trained on selected datasets to predict
potential outcomes. In addition, the user can also track their symptoms over time
by viewing the historical data. By using Large Language Model, the system also
provides actionable information such as self-care tips or general medical advice
for different diseases, enabling users can take appropriate action before seeking
medical attention. By providing the initial assessment, the web application aims
to reduce waiting times and human errors, assist medical staff in prioritizing
cases and provide early diagnosis for patients in rural areas with high rates of

diagnostic delay. The Figure 1.1 shows the system design overview.

ML Model
(Skilit-learne)
Symptom Prediction
Encoding Result
—
Input Symptoms HTTP POST Store Data [
< ’g<— "
Display Result Prediction Result
User Datab
. Backend atabase
Frontend (React.js) (Flask)

Figure 1.1: System Design Overview

12

1.7 Project Approach

This project is carried out in several structured phases to ensure systematic
development process. The Software Development Life Cycle used in this
project is Waterfall Methodology. There are 6 phases in the Waterfall
Methodology. The first phase is project requirements analysis. This phase
involves gathering project requirements by analysing existing similar disease
prediction web applications. The second phase is system design. This phase
involves planning the overall system structure and outlining the data flow of the
project. In addition, the development of machine learning models includes
dataset selection, data preprocessing, training the model, evaluating the model,
and then integrating it with the web application. The fourth phase involves
designing and developing a responsive web application using React for the
frontend and Flask for the backend. The trained machine learning model will be
integrated with the web application to process user inputs and return predicted
results. In the subsequent phase, the system will be tested including
functionality testing, usability testing, user acceptance testing and so on. Figure
1.2 shows the Waterfall Methodology used for this project. The Waterfall is
suitable for progress tracking and deliverables. This helps in estimating the

project timeline and budget well.

Software Development Flowchat

Project Requirements
Analysis
System Design
ML Model Development

Web Application
Development

Integration of ML Mode! with

Application
System Testing

Figure 1.2: Waterfall Methodology

13

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The demand for disease prediction application in healthcare field is increasing,
and the disease prediction web application useful for early diagnose of the
potential diseases. By utilizing the disease prediction system, can reduce the
reliance on the expert analysis and provide advance method to identifying the
disease based on the symptoms. This chapter presented a depth review of related
work to disease prediction using machine learning, comparisons of different
models, comparisons of existing web applications of disease prediction, and get

suitable evaluation metrics for assessing predictive models.

2.2 Research and Comparison Model
Machine learning has been utilized extensively for early diagnosis in healthcare.

This part focuses on some researching and comparing the different models.

2.2.1 Research Models

Sangeetha et al. (2024) proposed a screening system to identify the disease
based on user-inputted symptoms by using 3 models which are Decision Tree,
Random Forest and Naive Bayes. Among these models, the decision tree has
the highest accuracy, which is 97.53%, followed by Random Forest at 95.66%
and Naive Bayes is 93.75%. Based on the performance, the decision tree
algorithm was chosen to integrate with the user interface in their system.

In addition, Ansarullah et al. (2022) proposed a risk prediction model
that can initially detect the heart disease by using multiple machine learning
techniques. The features used in this study contain 12 attributes entered by the
user for early prediction of heart disease, such as demographical inputs and
behaviour inputs. There are 5 models used by authors which are K-Nearest
Neighbor, Naive Bayes, Decision Tree, Random Forest, and Support Vector
Machine. In this paper, the risk models were evaluated by different measures.

Based on various performance metrics, the Random Forest model has the best

14

performance among these models with an accuracy of 84%, a sensitivity of 85%,
a specificity of 83%, an error rate of only 13%, and a precision of 85%.

Furthermore, George et al. (2024) proposed a system that utilizes
machine learning to provide disease predictions, complemented by chatbot, and
doctor-patient appointment system. In this paper, the authors predicting 4
diseases which are heart disease, kidney disease, brain tumour and breast cancer.
The features used are age, blood pressure, cholesterol level, image of tumour
and mammographic image analysis. The algorithms used in the prediction are
Support Vector Machine (SVM), Random Forest, K-Nearest Neighbor (KNN)
and Convolutional Neural Networks (CNN). For kidney disease and heart
disease diagnosis, the Random Forest performed the best performance with
achieving accuracy rates of 97.25% and 98.53% respectively. In contrast, the
Convolutional Neural Networks (CNN) performed well in brain conditions and
breast conditions with accuracy of 98.17% and 95.13% respectively. This means
that different diseases required tailored algorithm to achieve the high accuracy
in prediction.

Moreover, Rajora et al. (2021) presented a web-based disease
prediction system by using machine learning. The users can select the symptoms
from the given list for disease diagnosis. The authors also proposed an ensemble
voting algorithm to provide the best disease prediction results. The selected
algorithms include K-Nearest Neighbor (KNN), Naive Bayes and Random
Forest which combined together as an ensemble approach. As a result, the
Random Forest achieved 93.65% accuracy, Naive Bayes is 84.02% and KNN is
93.53%. For the ensemble model, it fitted to the best model, which is Random
Forest, 93.65%.

In addition, Gupta et al. (2024), used machine learning classifiers
including Random Forest, K-Nearest Neighbour, Logistic Regression (LR),
Decision Tree, Multi-Layer Perceptron (MLP), Support Vector Machine and
AdaBoost to find out the best model to implement in real-life. There are 4
diseases including in this disease prediction research, which are asthma,
diabetes, liver disease, and kidney disease. This research paper used 4 different
datasets to predict different disease and observed the performance metrics of

different models. In the experiment results, the Random Forest performed best

15

on each dataset with an average accuracy score of 95.8% for kidney disease,

87.83% for diabetes, 95.83% for asthma disease and 99.68% for liver disease.

Table 2.1: Related Work

Title Author, ML Dataset Evaluation
year algorithms Metrics
used
Revolutionizing | Sangeetha. | Decision Columbia Accuracy for
Healthcare: V et al | Tree, Naive | website (132 | DT =97.53%
Screening (2024) Bayes, symptoms and | Accuracy for
system to Random 40 diseases) Random
identify Forest Forest =
Diseases using 95.66%
Machine Accuracy for
learning Naive Bayes
approach. =93.75%
Significance of | Ansarullah | Decision collected from | Random
Visible Non- | et al. | Tree, K- | different Forest -
Invasive Risk | (2022) Nearest heterogeneous | accuracy of
Attributes for Neighbor, data sources | 84%, a
the Initial Support of Kashmir | sensitivity of
Prediction of Vector (India) 85%, a
Heart Disease Machine, through specificity of
Using Different Random quantitative 83%, an error
Machine Forest and | data rate of only
Learning Naive Bayes. | collection 13%, and a
Techniques. methods precision of
(5776 85%.
records)

Multiple George et | Random 4 different | Random
Disease al. (2024) | Forest, datasets Forest
Prediction Support (Heart disease | achieving
Using Machine Vector dataset, brain | accuracy rates

16

Learning with Machine tumor dataset, | of 97.25%
Chatbot and (SVM), K- | breast cancer | and 98.53%
Doctor-Patient Nearest dataset, respectively.
Appointment Neighbor Chronic Convolutional
System. (KNN) and | Kidney Neural
Convolutional | Disease Networks
Neural (CKD) (CNN) in
Networks dataset) brain
(CNN) conditions
and breast
conditions
with accuracy
of 98.17%
and 95.13%
respectively.
Web based | Rajora, H | Naive Bayes, | dataset from | Accuracy of
disease et al. | Random National Random
prediction and | (2021) Forest and K- | Centre of | Forest is
recommender Nearest Disease 93.65%,
system Neighbor Control Naive Bayes
(NCDC) is 84.02% and
(4921 unique | KNN is
entries) 93.53%.
An Gupta et | Random 4 different | Random
Experimental al. (2024) | Forest, datasets Forest -
Analysis of Logistic (Diabetes, accuracy
Multiple Regression Kidney score of
Disease (LR), Disease, Liver | 95.8% for
Prediction Decision Disease and | kidney
Using Machine Tree, Multi- | Asthma) disease,
Learning Layer 87.83% for
Algorithms Perceptron diabetes,

17

(MLP), 95.83% for
AdaBoost, asthma
Support disease and
Vector 99.68% for
Machine and liver disease.
K-Nearest

Neighbour

2.2.2 Compare Existing Models
There are various algorithms have been used to be train, and each of them having
its advantages and limitations. There are 5 Machine Learning models are

commonly used for disease prediction:

2.2.2.1 Decision Tree (DT)

Decision Tree is one of the most commonly used for supervised learning
algorithm, used for both regression and classification tasks (Matzavela and
Alepis, 2021). Moreover, Decision Tree is a tree-like structured classifier that
starts with a single node representing the attribute tests and branch representing
the attribute values and the leaf nodes will represent the possible outcomes
(Kosarkar et al., 2022). Figure 2.1 shows the example of a Decision Tree and
how the DT divide branches and produce possible results.

The strengths of Decision Tree are easy to use and can be learned
quickly (Blockeel et al., 2023). The training time complexity for Decision Tree
is O(n*log(n)*m). Moreover, it is capable of processing both qualitative and
quantitative data types. However, Decision Tree usually performs worse when
learning from the raw data such as text or sound. This may affect the prediction
process since the features for prediction have to be constructed. Decision Tree
also easily overfitted and sensitive to the small data changes and lead to totally
different trees (Decision Tree Method: Applications, Pros & Cons, Examples,
n.d.).

18

Internal Node
Internal Node

Leaf Node J [Leaf Node } ‘ Internal Node J [Internal Node ’

‘ Leaf Node } [Internal Node ’

Leaf Node Leaf Node

Figure 2.1: Decision Tree Structure Diagram.

2.2.2.2 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a type of supervised machine learning
method commonly applied to classification tasks. (Dey et al., 2018). Vapnik
introduced SVM as a kernel-driven model designed to handle both classification
and regression problems in machine learning. (Cervantes et al., 2020). Kernal
is a function that maps data to a high-dimensional space, enabling SVM to
process non-linearly separable data (Jain, 2024). There have two types of SVM
which are linear SVM and non-linear SVM. Figure 2.2 shows an example of a
non-linear SVM as a kernel output in a 3-dimensional feature space.

The advantages of SVM are effectiveness in handling high-
dimensional space, therefore making it well-suited for datasets with a wide
range of features. SVM is capable of managing both linear and non-linear
datasets by utilizing kernel functions. According to Gomathy et. al., the
accuracy score of SVM is 96.49% in predicting the diseases from patient
symptoms. However, the computational complexity of training an SVM
typically ranges from O(n?) to O(n?), where n represents the size of the training
dataset. This show that SVM may be inefficient for managing large-scale

datasets since it may require more time for training.

19

@@@
N S @@@@ Hyperplane
N o S 'ED d

Figure 2.2: Support Vector Machine (SVM) Diagram.

2.2.2.3 Random Forest (RF)

Random Forest (RF) is a type of supervised learning algorithm and is an
ensemble classifier that build a group of separate and non-identical decision tree
based on the idea of randomization (Ren et al., 2017). According to Srihith et
al. (2023), Random Forest employs an ensemble approach by generating
numerous decision trees and combine their output to create more reliable and
precise prediction model. They are widely used for regression and classification
task. Figure 2.3 show the example of Random Forest (RF) and explains the
working of the Random Forest (RF) algorithm.

RF reduces the overfitting relative to use a single decision tree and
provides feature importance score to determine which features are more
impactful (Srihith et al., 2023). Furthermore, RF can handle large numbers of
datasets with noise and high dimensionality and overcome the missing value
imputation (Zhu, 2020). Zhu (2020) also claimed that the weaknesses of RF are
difficult to interpretable result as a single decision tree and difficulty in dealing
with high-cardinality categorical variables. According to Song et al. (2021), the
accuracy of RF is 99.88% in diagnosis pressure ulcer from 19 variables, which
is the best prediction performance compared to Decision Tree, SVM, and Naive

Bayes.

20

Decision Tree 1 Decision Tree 2 Decision Tree N
Result 1 Result 2 Result N

|

> Average of Majority Votes

A,

Prediction output

Figure 2.3: Random Forest (RF) algorithm diagram.

2.2.2.4 Naive Bayes (NB)

Naive Bayes is a classification technique that operates under the assumption that
each value is independent of the other values. This means that a particular
feature in a class is not correlated with any other feature (Kosarkar et al., 2022).
It is mainly used in text classification. It computes the likelihood of each class
based on the observed features and selects the highest probability of the class as
the prediction when given new data point (Alahmar and et al., 2023).

The advantages of NB are ease of use and efficiency. NB can work
well with the high-dimensional data such as text classification without causing
a large computational burden (Beslin Pajila et al., 2023). The limitations of NB
are that the feature independence assumption rarely holds in real world data and
its effects precision. This could produce undesirable results, especially if the
attributes are closely linked or interact with each other in complicated and
intricate ways (Beslin Pajila et al., 2023). For instance, the symptoms for cough

and fever are often correlated in disease prediction.

21

2.2.2.5 K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) is a straightforward and effective algorithm that
classifies the new data points by comparing them to the most similar classes as
known as nearest neighbors (N) (Harish et al., 2021). The new data can be
quickly categorized into appropriate classes when it first appears by using the
KNN technique. KNN also known as a lazy learning algorithm because it stores
the entire training dataset and perform computations at prediction time rather
than learning from it instantly (Sreedevi et al., 2022). Figure 2.4 shows the
example of K-Nearest Neighbors (KNN) algorithm working visualization.

The strengths of KNN are that it is a simple to implement algorithm for
solving problems and it is very resistant and tolerant to the noise that prevailing
in the training dataset (Bansal et al., 2022). For the KNN weaknesses, Bansal et
al., 2022 stated that KNN determine the appropriate value of K is complex
because it can sometimes dramatically change the results. In addition, KNN
prediction stage is slower for larger dataset, and it requires more storage space

compared to an effective classifier (Taunk et al., 2019).

Xz A Xz A
O O Category 2 O O Category 2
Or00 Or00
000 00 0
@, O O O
\ New Data Point KNN Y\assg:;vd?gtg;:g;ryl
© 0 — © 0
0o o0 00 C 0
O 0 o O
O Q O Category 1 O O O Category 1

v

3
>

X1

Figure 2.4: K-Nearest Neighbors (KNN) diagram.

2.2.3

Summary of Comparative Models

22

All of these 5 models are classification, which is suitable for disease predictions.

Table 2.2: Comparison between DT, SVM, RF, KNN, and NB.

Model | Decision | Support | Random K- Naive
Tree Vector Forest Nearest | Bayes
Criteria Machine Neighbo
(SVM) rs
(KNN)
Best Use | Handles High- Robust Irregular | Text-
Case both dimensio | classificati | decision | based or
categorica | nal data | on, feature | boundari | independ
1 and importance | es ent
numerical features
data
Interpretabi | High Low Medium Medium | Medium
lity
Training Fast Slow Moderate | Very fast | Very fast
Speed
Prediction Fast Slow Moderate | Slow Very fast
Speed
Handles Moderate | High High Low High
Noisy Data
Handles Moderate | High High Low High
High
Dimensions
Data Size | Small to | Small to | Medium to | Small to | Small to
Requiremen | medium | medium | large medium | medium
t
Overtfitting | High Low Low Medium | Low
Risk

23

Performanc | Good for | High Robust, Good for | High
e in Disease | interpreta | accuracy | often high | simple accuracy
Prediction ble tasks, | in high- | accuracy in | datasets,
but may | dimensio | medical struggles
overfit nal data tasks with high
dimensio
ns

According on the comparison table above, the Decision Tree is good for
handling the numerical and categorical data, and its interpretability is high, but
it has high risk of overfit which can lead to incorrect disease prediction results
compared to SVM, RF, and NB. Although SVM can handle high dimension data
well but the interpretability and training speed of it is quite low and may not be
suitable for disease predictions system as the system also required fast
prediction speed. Compared to SVM, the KNN is very fast to trained since it
skips the training phase and can simply stores the data. However, the prediction
time of KNN is slow, the same with SVM, it may decrease the user experience
as the waiting time for results is longer. Naive Bayes is very fast for the training
and predicting time, and the overfit risk is low. However, the accuracy of Naive
Bayes may be affected since the independent assumptions is often violated in
medical data. The RT has not the limitations of independent assumptions
constraints and can handle noisy data and high dimensional data well. Although
the prediction speed of it is moderate, but also acceptable in web applications,
and it can simply implement. Overall, the RT shows the best characteristics in

disease predictions.

24

23 Compare Existing Web App

There are a number of existing disease prediction web applications that can
identify potential diseases based on user-inputted symptoms. Studying these
similar web applications provide valuable insights of the functionality and
requirements of the disease prediction system, which can help to identify the
gaps and define the strengths and limitations of the existing disease prediction
web applications. This section compares three existing web applications which

are Symptomate, WebMD Symptom Checker, and Your.MD (Healthily).

2.3.1 Symptomate

The Symptomate is an Artificial Intelligence tool for symptom checker
developed by Infermedica in 2012. This symptom checker will analyse the
user’s symptoms, predict the diseases the user may be suffering from and
provide some recommendations to the user for further actions. This system
allows user to type and select the symptoms. The introduction of Symptomate
is accepted with the terms of service and agrees to the privacy policy. The
Symptomate has an interview for users before they enter their symptoms. The
interview questions such as survey respondent, age, gender, and some user
health conditions. Figure 2.5 shows the Symptomate survey respondent’s page

for user to select. The interface of Symptomate is clear and intuitive.

<« c (‘1: symptomate.com/survey/en/interview/ff811b26-66e2-4dff-bcf8-a26946192ea3 \‘.‘z)

9 Symptomate For business Restart assessment English v

Introduction < Back

patient Who is the survey for?

i it

Myself Someone el Ise

Report an issue with this question

Figure 2.5: Symptomate Survey Respondent’s Page.

25

There are a few statements that need to be answered by the user to gain deeper
insights into the user’s health conditions before starting the interview about the
user’s symptoms. After that, user can start to enter their symptoms. When the
user enters the symptoms, it may display some relevant symptoms for the user
to select. The checklist-based symptom entry system is used to minimize errors
by providing predefined options, making it accessible to users unfamiliar with
medical terminology. The user can add multiple symptoms for more accurate
assessment. Figure 2.6 shows the User Input Symptoms page for user to select
and add symptoms they have. The checklist input function may limit the natural
language understanding. The user cannot describe the symptoms using their

word like a sentence.

e Symptomate For business Restart assessment English «
Introduction < Back
Patient Add your symptoms
Sympt e
ymetoms ﬂ Q, headache X | I‘f-, 1
| ho A
/ ,"I ANARN
Headache 17/ ‘\\ \
1/ 2N\
A0 IR
Headache, mild] L3

Headache, moderate
Headache, recent
Headache, pressing
Headache, severe

Headache, sudden onset &> Rotate model

Keport an 1ssue witn this question

Figure 2.6: Symptomate User Input Symptoms Page

In order to further diagnose the disease, the system asks several questions and
symptoms the user may have. Figure 2.7 shows the example of a multi-select
symptoms interview question page. The system allows the user to enter more
than one answer to this question. This helps the user save time by clicking on

multiple answers instead of typing them in one by one themselves.

26

e Symptomate For business Restart assessment English ~
Introduction < Back
Patient Do you have any of the following symptoms?
Symptoms Select all answers that apply
Regions D Feeling sick or queasy
Interview D Fatigue
[] Vomiting

[] Diminished appetite

Fever ®

Pain when pressing the abdomen
Diarrhea

Bloating

Report an issue with this question

0O 00O0o

Figure 2.7: Example of a Multi-Select Symptoms Interview Question Page.

After that, the Symptomate system provides the potential diseases that the user
may have. In addition, Symptomate will provide some suggestions for the
potential diseases. If the underlying disease is mild, the system will suggest that
self-care is sufficient. Figure 2.8 shows the example of predicted result for a
mild disease. The system will also provide a variety of possible conditions based
on the symptoms, rather that providing a disease prediction result for just one
disease. The blue ‘Show common care method’ button provides some
information and details about the predicted disease. This provides user with

more information and have better understanding about the potential diseases.

27

e Symptomate For business Restart assessment English

Introduction

Patient Self-care may be enough

G

The symptoms you have declared may not require medical
evaluation and they usually resolve on their own. Sometimes
they can be eased with self-care methods. If the symptoms get
worse or new symptoms appear, consult a doctor.

Symptoms
Regions

Interview (D) why this recommendation?

Results
Show common care methods

Possible conditions

@am Moderate evidence
Stomach flu
Viral gastroenteritis

Show details >

@ Moderate evidence

Food poisoning
Show details >

Figure 2.8: Example of Predicted Result.

The Ul and UX of Symptomate system are simple and clear, allowing users to
easily enter or select the symptoms. According to a study by BMJ Open, the top
3 diagnostic accuracy of Symptomate were 27.5%, which is lower than the
general practitioners (GP)s’ 82.1%. However, the urgency advice safety was
high at 97.8%. Symptomate lacks the flexibility of free text input, which would

better capture a wide range of symptom descriptions.

23.2 WebMD Symptom Checker

WebMD Symptom Checker is one of the well-known online web applications
for early diseases diagnosis. It provides a comprehensive interface for users to
select symptoms by body location and input symptoms to obtain the possible
conditions. Same with Symptomate, the WebMD Symptom Checker likewise
prompts the user to provide their age and gender details. Figure 2.9 shows the
example of WebMD Symptom Checker Info Page which requires user to enter
age and sex before starting to enter their symptoms. The interface of WebMD
Symptom Checker is clear but not centred enough to grab the user's attention in

the first place.

(‘i: symptoms.webmd.com R fr)

ngMD Conditions v Drugs & Supplements v Well-Being v Symptom Checker Find a Doctor More v ‘ ‘ [Subscribe | LogIn O\

WebMD Symptom Checker wirhsoovmae

Identify possible conditions and treatment related to your symptoms.

This tool does not provide medical advice. See additional information v

Age Sex

Figure 2.9: Example of WebMD Symptom Checker Info Page.

In the Input Symptoms page, the user can enter their symptoms and
select the appropriate symptoms from the drop-down list. The drop-down list
will only display the symptoms that are related to the symptoms entered by user.
The user can choose from a wide range of symptoms by entering a keyword
simply. Figure 2.10 shows a drop-down list of symptoms that related to skin.
The user can also tap on body parts to select symptoms by body location. This
is more convincing if the user does not know how to describe the symptoms in
text. The Figure 2.11 shows the WebMD Input Symptom Page with symptoms
selected by body location. This visualization method works well for users who
don't know how to express symptoms, improving accessibility and user

engagement. The selected symptoms will be displayed at the bottom part.

W&’?MD Sym ptom Checker winzooywar

INFO SYMPTOMS CONDITIONS DETAILS TREATMENT
What are your symptoms?) -
skin x '\ \
skin cyanosis ADD \ i
peeling skin ADD 3 v ~
skin peeling ADD
shedding skin ADD
severely skinny [o0 |
red skin ADD
olefun i dblminan ~ \

< Previous

Figure 2.10: Example of WebMD Input Symptom Page.

WebMD Sym ptom Checker wimisonyar

SYMPTOMS CONDITIONS DETAILS

TREATMENT
——

ALL ARM SYMPTOMS A

What are your symptoms?

SKIN

My Symptoms

red skin

4 [

< Prevxous

Figure 2.11: Example of WebMD Input Symptom Page for Select Symptoms

by Body Location.

29

30

After adding all the symptoms, the WebMD Symptom Checker system
starts to analyse and provide the potential conditions that match to the symptoms.
The system provides the potential diseases and ranks them in order of strong
matches up to the fair matches. A strong match indicates that the user may have
a high level of potential diseases, while a fair match is the opposite. The left-
hand side of the web page displays the disease that the user may suffer from,
and the right-hand side shows the user’s symptoms the details. Figure 2.12
shows the example of the conditions page. The WebMD Symptom Checker
allows user to modify their age, gender and symptoms to start over the
prediction process. This provides users with a more flexible method of

continuing to predict diseases, even if they enter incorrect information.

WebMD Sym ptom Checker witssooy wap

Conditions that match your symptoms
UNDERSTANDING YOUR RESULTS @D

Eczema (Teen And Adult)

Gender Male Age 30 Edit
- ——
STRONG match

My Symptoms Edit
Psoriasis red skin , darkened skin on

=== / elbow
STRONG match

Contact Dermatitis

- - ’
Moderate match (63 Start Over

Granuloma Annulare
-
Fair match

< Prev“ous

Figure 2.12: Example of the Conditions Page.

The WebMD Symptom Checker display detailed information about
each disease for the user to better understand the disease. Figure 2.13 shows an
example of the Condition Details page, which contain the relevant information
for the disease. Moreover, the system also provides the treatment options for

user to take further action.

31

W@bMD Sym ptom Checker WITH BODY MAP EE]

Conditions that match your symptoms

UNDERSTANDING YOUR RESULTS € Eczema (Teen And Ad u It)
Dermatitis
Eczema (Teen And Adult)
e S CONDITION DETAILS TREATMENT OPTIONS
STRONG match
Symptoms
Psoriasis
- - Skin that is flaky, red, scaly, cozing, itchy, thickened, and

) a N N .
SECc sometimes blistered or painful

Contact Dermatitis How Common

Moderate match 3 X ; X
Up to 18% of children and about 10% of adults in the U.S. are

believed to have eczema.
Granuloma Annulare

Fair match Overview

Eczema is usually used specifically to refer to atopic dermatitis, a
chronic, inflammatory, and itchy skin condition occurring most
often in children. It often includes skin dryness, redness, itching,
swelling and oozing. Eczema can also be used widely to describe
any rash-like skin condition, and is often used interchangeably with
“dermatitis,” a... read more >

< Previous

Figure 2.13: Example of the Conditions Details Page.

WebMD Symptom Checker provide a straightforward and appealing
visual approach. The symptoms input methods of WebMD Symptom Checker
are drop-based on a down list of checklists for user to select the appropriate
symptoms or by clicking on body parts. A study by BMJ Open claimed that the
top 3 suggestion accuracy rate of WebMD Symptom Checker is 35.5%, which
is lower than 82.1% for general practitioners (GPs) also. This indicates that a
moderate level of reliability for WebMD Symptom Checker. The system lacks
a follow-up interview process for refinement of predictions, which may lead to

overly broad results, especially if symptoms overlap.

2.3.3 Your.MD (Healthily)

Your.MD also known as Healthily, is a web-based symptom checker that uses
a chatbot to help users to identify the potential illnesses. The Healthily utilized
Al and chatbot system to analyse the symptoms and provide the user with
guidance to the next steps based on their symptoms. The user of Healthily must
be at least 16 years old and agree to the Privacy Policy before using the system.

Same with the WebMD Symptom Checker and Symptomate, the system

32

requires user to enter their gender and year of birth. Figure 2.14 shows the
Healthily Gender Page, where user to select their gender. The UI of Healthily is

simple and clear.

-‘-'- Healthily Terms of service Privacy policy Explainability statement Safe use Compliance

About you
What was your assigned sex at birth?

We'll use this to make your report more accurate — we appreciate your
identifying gender might be different.

O Female

O Male

Figure 2.14: Healthily Gender Page.

Figure 2.15 shows the chatbot page of Healthily, where user can enter
their symptoms in words or sentence. After submitting, the Healthily system
provides the user with relevant symptoms that they may have. The user can
select which symptoms they may have by clicking on the checkbox of the
symptom, and the Healthily also allows user to add additional symptoms later.
Its conversational interface is a major advantage, allowing users to enter
symptoms in natural language, which the system can maps to predefined
symptoms. Figure 2.16 shows the example of Select Symptoms page for the user
to check the symptoms they may have. The symptoms provided in Healthily are
extracted from the words or sentences entered by the user. If none of these
symptoms, the Healthily will ask user to enter more specific symptoms or
reword the symptoms. The system will then provide more options for user to
choose from. The user can select one or more options if the symptoms appeared.
This flexibility caters to users who prefer to describe symptoms in their own

words and increasing inclusivity.

33

> .
» Healthily Terms of service Privacy policy Explainability statement Safe use Compliance

Your symptoms

What symptoms do you have?

Please use short sentences. For example: Headache behind
eyes

i have a headache behind eyes|

Figure 2.15: Healthily Chatbot Page.

. "
L | -'v Healthily Terms of service Privacy policy Explainability statement Safe use Compliance

Your symptoms
Sorry you're unwell - Just to check, are these
your symptoms?

Please choose all the ones you have. (If
something's missing, you can add it later.)

(7] Pain behind the eye(s)

None of these

Figure 2.16: Healthily Select Symptom Page.

After selecting the relevant symptoms, Healthily also asks follow-up
questions about symptom duration and health context (e.g., history of diabetes)
to refine the prediction by taking time and medical context into account. Figure
2.17 shows symptom checker page that prompting user to indicate the duration
of symptoms. For health background question, the user can select one or more
options. Figure 2.18 shows the Healthily prompting the user to indicate the
health background.

34

» .
L O Healthily Terms of service Privacy policy Explainability statement Safe use Compliance

Your symptoms

How long have you had this symptom?
O Few hours
O Few days
O Few weeks
(O Few months

(O More than 3 months

Figure 2.17: Healthily Symptom Checker Page prompting user to indicate the

duration of symptoms.

Health background —

Have you ever been diagnosed or suffer with
any of the following:

Select all that apply.
[J High blood pressure
[Diabetes
] Asthma
[coronary Heart Disease
[chronic kidney disease
[chronic obstructive lung disease

[Previous stroke(s)

] None of these

Figure 2.18: Healthily prompting user to indicate the health background.

Furthermore, the Healthily provides some related symptoms that the
user may be experiencing. This can ensure that the more accurate disease
prediction results are provided. However, the process of Healthily is overly

lengthy and the multiple questions stages can be frustrating for users looking for

35

a quick assessment. After answering all the questions, the Healthily generates a
prediction report for user based on the symptoms. Figure 2.19 shows an example
of prediction report page which include the possible causes and the summary of
symptoms. The user can click on the possible cause to access the detail
information about the possible disease. The summary displays the symptoms
user selected by user in the previous questions, and the system provide
suggestions for further action to be taken by the user. User are provided with a

clear and straightforward understanding of the possible causes of the diseases.

.0.. » Healthily Terms of service Privacy policy ~ Explainability statement ~ Safe use Compliance

Your report

Sun, 6 April - 9:18 Send it to my email &2

Possible causes

B cCerebral thrombosis %

This condition needs emergency medical treatment
Summary

BB Emergency
The following combination that you reported is concerning: bulging or protruding eye,
pain behind the eye(s) and pain in or around the eye(s) for few days. Go to your
nearest emergency department immediately.

What you told us: +

[How to use Healthily safely]

Starta new symptom check

Figure 2.19: Healthily Prediction Report Page.

The Healthily provide a conversational chatbot interface that allow
user to enter symptoms with intuitive questions. However, the process of it is
lengthy and overloaded of information. This may not be suitable for users who
want to get a quick assessment for disease prediction. The system also offers
some suggestions to the user after the prediction results are available. A study
by BMJ Open stated that the top 3 suggestion accuracy rate of Your.MD
(Healthily) is 23.5%, which is lower than 82.1% for general practitioners (GPs)
also. This indicates that a moderate level of reliability for Your.MD (Healthily).

234

Summary of Existing Applications

36

Table 2.3: Comparison between Symptomate, WebMD Symptom Checker,
and Your.MD (Healthily).

Feature Symptomate | WebMD Symptom Your.MD
Checker (Healthily)
Platform Web, Mobile Web, Mobile Web, Mobile
UI/ux Clear but lengthy | Interactive ~ body | Conversational
questions set maps with some | chatbot but
accessibility issues | lengthy
User Input | Checklist Body map and | Chatbot with
Method dropdown menu free text
Personalization | Basic (age, | Basic (age, gender) | Advanced (age,
gender) gender,
lifestyle, risk
factors)
Diagnosis List of possible | List of possible | Suggested
Output conditions conditions disease
condition with
self-care advice
Accuracy 27.5% (BMJ | 35.5% (BMJ Open) | 23.5% (BMJ
Open) Open)

Table 2.2 shows the comparison between Symptomate, WebMD Symptom
Checker, and Your.MD (Healthily). Based on the table above, each of these

three existing web applications has its own advantages and disadvantages. The

usability for Symptomate and Your.MD (Healthily) are clear and easy to use

while WebMD Symptom Checker is more complex with many options. The

WebMD Symptom Checker is engaging but the lengthy processes can affect the

user experience due to the large number of questions that need to be answered.

According to BMJ Open, the accuracy of these applications is quite low, and

this may provide user with some inaccurate results. The diagnosis output of

37

Your.MD (Healthily) is quite good, providing the suggested disease condition

and self-care advice that the user can take some action on after diagnosis.

24 Evaluation Metrics

Evaluating metrics is crucial for assessing the effectiveness of machine learning
models, especially in medical diagnostics. The evaluation metrics helps to
determine the usability and reliability of the models. There are a number of
evaluation metrics that can evaluate the effectiveness of machine learning
algorithms, such as sensitivity, accuracy, F1-Score, precision and specificity.
The diagnosis results can be categorized as True Positive (TP), True Negative
(TN), False Positive (FP) and False Negative (FN). TP and TN signify an
accurate model prediction, whereas FP and FN denote an incorrect model

diagnosis.

24.1 Accuracy

Accuracy refers to the ration of accurate predictions cases to the overall number
of cases. This evaluation metric is often utilized to access the performance of
machine learning models, especially in tasks of classification and defect
detection (Ashfakul Karim Kausik et al., 2025). High accuracy suggests that the
models is reliable, and the prediction results are more accurate and credible. The
advantages of accuracy are simple and easy to use. Accuracy is reliable for
balanced datasets. However, it can be misleading when applied to the
imbalanced datasets.

The equation of accuracy is expressed as:

TP+TN
TP+TN+ FP+FN

ACC =

2.4.2 Sensitivity (Recall)

Sensitivity also known as Recall, is measured by the ration of true positive cases
accurately identified. Recall measures the capability of models to identify the
faults in the dataset correctly (Ashfakul Karim Kausik ez al., 2025). High
sensitivity denotes that the model able to identify most true cases and reduce the

cases of miss diagnoses because false negatives can lead to serious

38

consequences. It is important to detect the potential faults in the models and
intervene early.

The formula of sensitivity is:

TP
TP +FN

Sensitivity =
2.4.3 Specificity
Specificity is measured by the ratio of true negative cases correctly detected.
This metrics reflects the ability of models to identify the true negatives in each
available category. For example, specificity refers to recognizing that the patient
does not have a particular disease. It is important to avoid the unnecessary
treatments in the disease prediction. The specificity can be computed by
dividing number of true negatives by the total of true negative and false positive.

The formula of specificity is:

TN
TN + FP

Specificity =
2.44 Precision
Precision is measured by the ratio of precisely identified positive cases among
the total number of expected positive cases. The precision indicates the
reliability of a positive prediction. This is important when the false positives can
cause high costs such as unnecessary testing. High precision ensures that the
model predicts correctly. The formula of precision is calculated by dividing the
number of true positive by the total of the true positive and false positive.

The formula of precision is:

TP

Precision = —————
recision TP + FP

2.4.5 F1-Score (F-Measure)

The F1-Score, also known as F-Measure, represents the harmonic average of
precision and sensitivity (recall). It provides an equitable view of the capability
of the model to minimize both false positive and false negative. This is
important to detect as many true cases as possible meanwhile ensuring high
precision. The ranges of F1-Score are between 0 and 1, where 1 indicates the

best sensitivity and precision.

39

The formula of F1-Score is:

Precision X Sensitivity
F1—Score =2 X

Precision + Sensitivity

2.4.6 Summary of Evaluation Metrics

Table 2.4 Comparison of different evaluation metrics.

Advantages Disadvantages
Accuracy Simple, reliable for balanced | Can be misleading in
datasets. imbalanced datasets.
Sensitivity Detect true cases, minimize | May increase false positives
(Recall) the false negatives
Specificity Reduces false positives, avoid | May increase false
unnecessary alarm. negatives, miss actual cases.
Precision Reliable positive predictions, | May reduce sensitivity, miss

useful when false positive is | true cases

costly

F1-Score (F- | Balances precision and | True negatives were not
Measure) sensitivity, good for | considered.

imbalanced data.

Based on the table 2.2, the accuracy is simple and contains strong overall metric
due to the balanced dataset, but it unable to distinguish between false positives
and false negatives, which is critical in healthcare. It is useful for comparing
models but not sufficient as the primary metric. Specificity is important to
prevent unnecessary alert, such as such as false predictions of disease, causing
stress and leading to unnecessary treatment or tests. However, specificity may
increase the false negatives and be more harmful in healthcare. For precision, it
can ensure that the model correctly predicts disease, but prioritizing precision
may lead to reduce in sensitivity, cause more false negatives. In addition, F1-
Score can balance sensitivity and precision, it can ensure the prediction are both
reliable and comprehensive. However, F1-Score is not considered the true
negatives. Sensitivity is the most suitable for the disease prediction. This is
because it can minimize the false negatives such as missed diagnoses. A missed

diagnosis may lead to delay in early treatment with serious consequences.

40

Although sensitivity may increase the false positives, but it is more acceptable
than false negatives, because it is better to incorrectly predict disease than to

miss a diagnosis.

2.5 Dataset Sources

Sangeetha ef al., 2024, used the dataset collected from the Columbia website as
the data sources in the project. The dataset included 132 symptoms and 40
diseases. There are several symptoms used to cover 32 diseases in their project.
For the diseases cover in the project included normal fungal infection to typhoid
diseases. They pre-processed the raw data to overcome the problems of
inconsistent data, missing data and noisy of raw data in the dataset. By using the

processed data, the authors trained and tested the models in a ratio of 80 to 20.

The dataset collected by Ansarullah et al. (2022) for risk modelling
was derived from an innocation non-invasive heart disease dataset containing
5776 entries from various heterogeneous data sources in Kashmir (India). Of
these 5776 records, 47.5% or 2747 had heart disease, and the other 52.5% or
3031 were in good health. The authors performed a class balance assessment
since the heart disease database contain significantly imbalanced data that can

lead to bias in machine learning algorithms.

In addition, George et al., 2024 used diverse dataset for multiple
disease predictions to exam the accuracy of various algorithms. The authors
used 4 databases to predict the heart disease, which are Cleveland, Hungary,
Switzerland, and Long Beach V. The databases contain 76 attributes, and it
divided into two parts for training and testing datasets. Furthermore, the authors
used dataset brain tumour classification MRI dataset for brain tumour diagnosis.
The brain tumour database contains 2 classes, YES for having the brain tumour,
otherwise is No. The other dataset is UCI Repository for predicting the kidney
disease. There are some diagnostic measurements in the dataset for predicting

the disease.

The dataset acquired by Rajora et al., 2021 was sourced from National

Centre of Disease Control (NCDC). The dataset demonstrates the symptoms of

41

potential diseases. The dataset includes detailed survey data and the most
frequent symptoms among the patients. There are 4921 unique entries were
extracted from the symptoms in the database. Individual entries may contain
similar disease that have been identified but have different symptoms across
different records for the same disease. Through the refinement of the initial

entries, the dataset was organized into another dataset.

There are 4 different datasets used by Gupta et al., 2024 to predict 4
different diseases. Firstly, is Asthma dataset which contains a total of 29
columns and 2392 entries. This dataset is used to determine which individuals
are most risky to have asthma disease. It includes features such as diet quality,
smoking and so on. The second dataset is Diabetes dataset which contain 22
columns and 253,680 entries. The dataset includes features such as blood
pressure, cholesterol and so on. The third dataset is liver disease dataset, which
contain 11 characteristic and 30,691 instances. The last dataset is kidney dataset
which contains 54 characteristic and 1659 entries. This dataset can predict the
kidney disease based on the patient’s medical problems. All of these datasets

were collected at Kaggle.

The Symptom-Disease Prediction Dataset (SDPD) was published by
Jay Tucker in 2024. The dataset contains 4920 instances, 132 symptoms features
and 41 unique diseases. This dataset is contained a variety of data needed for
disease predictions system. The SDPD is a tabular dataset with binary symptoms
features such as 0 or 1 represent the absence or presence of symptoms. The
dataset is suitable for training and accessing the machine learning algorithms.
The instance represents a unique combination of symptoms and the

corresponding disease diagnosis.

42

2.5.1 Summary of Data Source
Table 2.5: Comparison of different data source
Columb | Kashmir | Heart NCDC | Kaggl | SDPD
ia Dataset Disease | Dataset |e
Dataset (CHSL |s Datas
B) ets
Data Tabular, | Heterogen | Tabular, | Tabular, | Tabul | Tabular
Type mixed eous mixed mixed ar, , 132
(numeri | (tabular, (numeri | (numeri | CSV | binary
cal, text) cal, cal, format | sympto
categori categori | categori ms,
cal) cal) cal) categori
cal
target
Size and | 132 5776 76 4921 Varies | 4,920
Scope sympto | records attribute | unique instance
ms S entries s, 132
sympto
ms
feature
Disease | 40 heart heart Many 4 41
Coverag | diseases | disease disease diseas | unique
e only only es diseases
Quality | High, Variable, High, High, High, | High,
clinical | preprocessi | some some some | clean,
data ng needed | duplicat | biases biases | balance
es d
Availabi | Restricte | Likely Public Public, | Public | Public
lity d restricted but some
restrictio

ns

43

Most of the data sources are tabular data except for the Kashmir dataset which
is heterogeneous. The heart disease dataset (CHSLB) and Kaggle datasets are
limited to predict a single disease such as heart disease, which may restrict users
form predicting other disease although they are easy to access. However, the
Columbia and NCDC datasets are broad and large-scale data, but they are more
suited to populations health studies and may have limited access and require
permissions. The Kashmir data source is too heterogeneous and region-specific.
This may affect the diagnostic results of users in other regions. In addition, the
Kashmir data source often require pre-processing before use and are of variable
quality. The SDPD is the best suited for the disease prediction because it
supports symptom-disease mapping using binary features, covers 41 diseases,
and requires minimal preprocessing. The size and scope of the SDPD is also
quite large, allowing it to cover more diseases. The quality of it also high and

balance.

2.6 Web Application Framework

The web application frameworks are the resources and tools used by developers
to develop the online software, manage the websites, and so on (Sheldon, 2023).
This goal of this project is to develop a disease prediction web application using
machine learning and therefore it is necessary to select the appropriate and right
tools and technology stack to ensure the reliability and responsiveness of the
system. There are two components need to be considered, which are the backend
and frontend. This section is to evaluate these frameworks and compares the

strengths and weaknesses of each of them.

2.6.1 Backend Framework
Backend is responsible for handle the server-side request. There are two
backend frameworks need to be considered in this part, which are the Flask and

Django.

2.6.1.1 Flask
Flask is a minimalistic, and micro web framework for Python, commonly
utilizing in small to medium-size applications (GeeksforGeeks, 2023). It allows

the developers to select their preferred libraries for additional functionality.

44

Flask is user-friendly because of its simple design and requiring minimal
boilerplate code. Flask also allows easy integration with machine learning

models and therefore suitable for machine learning based application.

Without manual configuration, the scalability of Flask is limited. The
features such as database configuration and authentication are required
additional setup, which can increase the complexity to the system. The
performance of Flask is fast for small to medium-scale applications. The Flask
is suitable for API-driven applications such as machine learning serves that

provide low latency due to its minimal overhead.

Strengths of Flask:

e Simple and flexible. Flask allows developers to customize the
structure of the application to fit their needs and make it easy to
quickly build the APIs and integrate the machine learning models.

e Lightweight and rapid development. Flask can ensure the fast
performance and quick setup due to its small footprint, hence it is

suitable for small and medium-sized projects.

Weakness of Flask:

e Limited scalability. Flask requires numerous efforts to scale the
large applications, which can complicate future scaling of the
application.

e Lacks built-in features. Flask requires manual integration as it lacks
built-in tools for specific functionality. This may slow down the

development of the system.

2.6.1.2 Django

Django is known as the “contained battery” philosophy (GeeksforGeeks, 2020).
This means that Django is suitable for rapid development of web applications
without having to consider about planning the application's framework in
advance. Django offering the built-in functions such as authentication, ORM

and so on, making it suitable for large projects. Djonga has good scalability

45

because it has built-in tools for handling the large-scale applications. The ORM
and middleware of Djanga is important for managing the complex features and

increased traffic.

Strengths of Django:

e Secure and scalable. Django support large-scale applications and it
includes the middleware and authentication such as CSRF
protection for security purpose.

e Comprehensive Features. Django includes a variety of built-in
tools such as authentication, ORM and other to minimize
dependence on external libraries, and support rapid development of

complex functionality.

Weakness of Django:

e Complexity. The structure approach of Django and the learning
curve can be complex and difficult, which can slow down the initial
development process.

e Less flexible. The Django has a very steep learning curve and is

therefore less flexible when it comes to customizing workflows.

2.6.1.3 Summary of Backend Framework

Table 2.6: Comparison between Flask and Django

Features Flask Django

Flexibility High Moderate

Complexity Simple and lightweight Moderate and structure

Scalability Moderate and require | High, include built-in tools
manual setup for large-scale application

Performance Lightweight and fast Slightly heavier

Suitability Small to medium | Medium to large
application application

46

Although the Django includes built-in tools, but its complexity is less suitable
for disease prediction system. The Flask is better suited for this project because
it is simpler and more flexible, allowing for a quick setup of machine learning
prediction APIs. In addition, Flask is suitable for small-scale or prototype
applications. Flask also offers the ability to control the flow and design of the

application.

2.6.2 Frontend Framework

The frontend is responsible for user engagement with the system. It should be
responsive and dynamic in order to attract user’s attention and enhance user
experience. There are two fronted frameworks need to be considered in this part,

which are the React.js and Angular.

2.6.2.1 React.js

The React was built by Facebook in 2013 (GeeksforGeeks, 2023). React.js is a
JavaScript library used to designing the user interfaces (UI) for web and mobile
application, especially the single page application (SPAs) and allows developers
to develop reusable UI elements (W3Schools, 2020). Due to the use of JSX and
state management, the learning curve for React is not high. React uses a virtual
DOM to minimize the direct DOM updates and ensure the fast rending of

dynamic content.

Strengths of React:

e Strong community support. The ecosystem of React provides a
wealth of resources and libraries that facilitate the development
process.

e Better performance and interactivity. The virtual DOM and
reactivity of React ensure a fast, responsive user interface that able

to enhance the user’s experience in the application.

Weakness of React:
e Learning curve. The JSX and the state management concepts is
challenging for the developers and potentially slow down the initial

development.

47

e Additional libraries are needed. This is because React requires
additional routing and statement which can add complexity for

small application.

2.6.2.2 Angular

Angular is a well-established JavaScript framework, developed using
TypeScript, which provides a number of built-in tools for routing and form
validation. Angular is commonly used to build robust single-page application
(GeeksforGeeks, 2023). The Angular provides bidirectional data binding, and
dependency injection. Angular requires setting up the modules and services for
building the user interface, which can slow down initial development. Angular
is suitable for large-scale applications. In addition, Angular provides

development tools to handle and develop the complex applications faster.

Strengths of Angular:

e Scalability. The Angular highly scalable, including built-in tools
for large applications.

e Better user experience. The two-way data binding of Angular can
synchronize the inputs and outputs automatically. In addition, the
dependencies between components are managed by an integrated

dependency injection.

Weakness of Angular:

e Learning curve. The learning curve of Angular is steep. The
complexity of Angular is challenging for the beginners and can
delay the initial development.

e Overkill for small-scale applications. Angular is intended for large
projects, where the heavier framework and real-time DOM updates

can impact web application load times and performance.

48

2.6.2.3 Summary of Frontend Framework

Table 2.7: Comparison between React and Angular

Features React Angular

Interactivity High, dynamic UI | High, two-way binding
improves engagement

Complexity Moderate High

Scalability High Very high

Performance High, virtual DOM for | Good, real DOM with
fast updates change detection

Community Excellent, large Strong, smaller ecosystem

Support ecosystem

Although the Angular is a robust frontend framework, but its complexity and
the steeper learning curve can slow down the development process, particularly
for the small project. The React is more suitable in this project. The React
provides an efficiency and flexible framework. The virtual DOM of React helps
in maintaining the excellent performance of the system. React also allow for

integration with APIs.

2.7 Summary

In summary, this chapter provides a foundation for the development of a disease
prediction web application using machine learning. By reviewing these research
papers, it offers different perspectives on the project. Different models have
different characteristics and unique advantages and disadvantages. For this
project, the most appropriate model is Random Forest. This is because the RT
does not the limitations of independent assumptions constraints and can handle

noisy data and high dimensional data well.

In addition, this chapter also analyses and compares the strengths and
weaknesses of existing web applications. Each of the existing web applications
has its own features and strengths. These strengths of the existing web

application are utilizing as the project requirements of this project. Furthermore,

49

the evaluation metrics are also important to indicate whether the application is
accurate and reliable. In this project, the accuracy, sensitivity (recall), precision

and F1 score is selected as the evaluation metrics.

Moreover, the selected data source for this project is the Symptom-
Disease Prediction Dataset (SDPD). This is because it supports symptom-
disease mapping using binary features, covers 41 diseases, and requires minimal
preprocessing. Compared to different frontend and backend frameworks, the
preferred web application frameworks are Flask and React. Flask is simpler and
more flexible, allowing for quick setup of machine learning prediction APIs.
Besides that, the virtual DOM of React helps keep the system's performance

excellent.

50

CHAPTER 3

METHODOLOGY AND WORK PLAN

3.1 Introduction

The Disease Prediction Web Application using Machine Learning is allow users
to input their symptoms and obtain accurate predictions result with a user-
friendly interface. This chapter discusses the SDLC methodology used for this
project and provides a clear work plan. This chapter presents an outline of
system development including integration machine learning model with
application. In addition, the tools and technologies to support the development
process of the system are defined within this chapter. Furthermore, the project
schedule with Work Breakdown Structure (WBS) and Gantt chart to indicates
the project timeline. The WBS and Gantt chart can track the progress and made
adjustments immediately. By outlining the development process, methodology,

and requirements of the project, the project can be clear and well-structured.

3.2 Software Development Life Cycle (SDLC) Methodology

The Software Development Life Cycle Methodology outlines a process of
detailed plan, design, develop and testing by developers. SDLC has 7 stages,
involving detailed planning, analysis, design, implementation, testing,
deployment, maintenance and support (Hossain, 2023). There are many
different SDLC methodologies, each characterized by different strengths and
weaknesses. Choosing a suitable SDLC methodology is important to ensure the
system is developed on time and fulfills the user requirements. This section
analyses and compares three approaches which are Waterfall, Spiral, Iterative

and Agile.

3.2.1 Waterfall

The Waterfall model is a traditional model that provides a sequential and linear
approach (Saravanan et al., 2020). Waterfall is suitable for projects that have
clearly defined requirements and without any changes. The waterfall

methodology requires that each stage be finalized before moving on to the

51

subsequent. The flow of progress in the waterfall method is unidirectional, with

no overlap between each stage. Figure 3.1 shows the Waterfall model process.

Requirement Analysis ‘l

System Design

|

Implementation

Testing T
Deployment T

Maintanance

Figure 3.1: Waterfall Model

Advantages of Waterfall:

Simple to manage and predictable. This makes it easy to track the
project progress because it is a one-way model.

Requirements are well documented and defined. The clear
requirements make the project’s progress smooth and minimize the
changes.

Clear and structured. The clear structure of Waterfall makes it simple

to manage and predict the next steps in the process.

Disadvantages of Waterfall:

Rigid and inflexible. It assumes that all requirements are clear and
nothing has changed, so if the changes occur, it takes more time and
money.

Limited adaptive capacity. Since the testing phase takes place after
the completion of the development phase, this limits the ability to
adapt to changes and causes problems to be detected later.

Late detection of problems. Dealing with problems after the

development phase is complete can be time-consuming.

52

3.2.2 Spiral

The Spiral model is used for risk management, which combines Iterative
development and Waterfall model (Saravanan et al., 2020). The Spiral is
processed through the repetitive cycles, each cycle includes planning, risk
analysis, development, and evaluation. It allows for repeated refinement through
multiple spirals. Figure 3.2 shows the Spiral model with multiple spirals. Each
spiral can refine the project and addressing the risks early. The Spiral can
identify the potential errors and reduce them in each iteration. This is suitable
for large and complex project, but it is costly and time-consuming because it

requires repetitive construction.

Planning Risk Analysis

Evaluation Development

Figure 3.2: Spiral Model

Advantages of Spiral:

e Spiral Model is excellent for risk analysis and early detection of
potential problems. This can reduce the cost of removing defects
after the development process.

e Spiral offer a highly flexible to adjust on requirements or scopes
based on the feedback. Users are allowed to involve in the project by

testing the prototypes and providing feedback in each spiral.

53

Disadvantages of Spiral:

e May lead to scope creep. The flexibility of the spiral model allows
for adjustments to be made in each spiral, but this may expand the
project requirements throughout the project process.

e Complex, costly and time-consuming. The multiple phases make it
difficult to manage and track the project process. The repeated works

can be costly and time-consuming.

3.23 Agile

The Agile model combines iterative and incremental methodology that
emphasizes simple, collaboration and flexibility (Hossain, 2023). The Agile
allows systems to be built quickly with the ability to change the requirements at
any stage of the project life cycle. This methodology focuses on user feedback
and the adaptability of making changes to requirements and responding quickly
to the changes. This methodology allows for the addition of features and
functionality to improve the system. There are several different software
development processes in the Agile field, which are Extreme Programming
(XP), Kanban, Crystal, Scrum and other. Figure 3.3 shows the 6 stages of the
Agile model.

[Development }

[Testing] [Design }
[Maintenance and } [. }
Analysis
support

-

gathering

Figure 3.3: Agile Model

3.24

54

Advantages of Agile:

High flexibility. Agile flexibility adapts to changing needs and is
user- centred. New features can be added in Agile even late in the
development process.

High quality and low risk. Agile focuses on frequent testing
techniques to minimize the defects and improve system reliability.
This helps in identifying and resolving the defects early in the project
life cycle.

Disadvantages of Agile:

Lack of focus on documentation. This can be a challenging task in
Agile, which focuses on software development rather than the
documentation.

Predictability is limited. This is difficult to predict deadlines for agile
projects because of changing requirements make it difficult to

estimated timelines and costs.

Summary of SDLC Methodology

Table 3.1: Comparison of different SDLC Methodology

Waterfall Spiral Agile
Process Linear, sequential | Iterative cycles Iterative sprints
Structure
Flexibility Low Moderate to High | Very high
User Low High, user | Very high,
involvement feedback on | continuous
prototypes feedback in
sprints
Requirement | Defined in early | Throughout the | Throughout the
stage project period project period
Phases Sequential phases | Iterative cycles | Iterative sprints
with risk-driven | with
phases

55

collaborative
phases
Risk Poor Excellent Very good
Management
Testing Testing after | Continuous testing | Continuous
development throughout the | testing
process development throughout
development
Complexity Low High Moderate

Each of the methodology has its own advantages and disadvantages,
and different project is suitable for different software development methodology.
Waterfall is suitable for projects where the requirements are clearly defined and
unlikely to change. The Waterfall is less flexible, cannot adapt to changes, and
one phase must be completed before progressing to the next. In contrast, the
Spiral model is suitable for high-risk projects because Spiral is excellent in risk
management. However, it is more complex compared to other methodology.
Agile is suitable for projects that required changes throughout the project life
cycle because it is flexible and adaptable. In short, the Agile methodology aligns
with the project that offering high flexibility and collect user feedback for
improvement. Agile allows for quick adaptation to user feedback and the ability
to test the system frequently and reduce risks early. In addition, the Agile
approach ensures rapid development of web applications with different
functionalities. However, the Agile is lack of focus on documentation and
unpredictable. This is difficult to estimate the project deadline. Based on this
comparison, the Waterfall model was selected for this project due to its clear
structure, well-defined requirements, and suitability for academic project

timeline.

33 Waterfall Methodology
Software Development Life Cycle (SDLC) methodology provides a structured
framework for managing the development of disease prediction web

applications. In this project, the Waterfall methodology is selected as the SDLC

56

methodology. Waterfall is suitable for projects with the clear requirements and
no changes. The requirements for this project are well defined and less variable.
In addition, Waterfall is suitable for progress tracking and deliverables. This
helps in estimating the project timeline and budget well. Figure 3.4 shows
flowchart of the Waterfall methodology for this project. There are 6 phases in
the Software Development Flowchart which are Requirements Analysis,
System Design, Machine Learning Model development. Web Application
development, Integration of Machine Learning Model with Application, and the

last is System Testing.

Software Development Flowchat

ML Model Davelopment
Wab Application
Development

Integration of ML Model with

Application
System Testing
End

Figure 3.4: Waterfall Methodology Flowchart

34 Requirements Analysis

The project requirements can be gathered through several ways. In this project,
the requirements were gathered by reviewing existing similar web applications.
Interviews and questionnaires are not required for requirements gathering in this
project. In chapter 2, there are several similar existing disease prediction web
applications have been studied, which are Symptomate, WebMD Symptom
Checker, and Your.MD (Healthily). A common feature of these web
applications is the ability to allow users to enter symptoms via optional options
or types. In this project, the system provides two options for users to enter the

symptoms which are a predefined dropdown list of symptoms or manually enter

57

symptoms via a free-text field. This is a feature that has not yet been
implemented in current disease prediction web applications. Additionally, the
web application can predict the potential disease a user may have and return the
results to the user thought a responsive user interface. The results include the
potential disease and the recommendations further actions to be taken by the
user. Furthermore, the system can store the history of users, such as user inputs,
predicted results, and medical advice for the user. This is another feature that
other web applications have not yet implemented. The non-functional
requirements and functional requirement will be produced at the end of this
phase. The detailed functional and non-functional requirements are discussed

further in Chapter 4.

3.5 System Design

In Waterfall methodology, the system design phase follows the requirements
analysis phase. The system design phase defines the system architecture and the
data flow to ensure that the system is fulfil the functional and non-functional
requirements. It includes the design of user interface, data flows, backed API
architecture and integration with machine learning model. The design also
includes the chosen tools and technology in preparation for the implementation
phase of the project. Figure 3.5 presents the data flow diagram of the project.
The data flow diagram demonstrates the process of processing user symptoms,
generating predicted results, and clearly displaying results to meet program
requirements. This phase provides a clear insight of the development process to
ensure that the performance and usability standards. The deliverable for this

phase is the generation of the system architecture design proposal.

58

ML Model
(Skilit-learne)
Symptom Prediction
Encoding Result
Input Symptoms HTTP POST Store Data
< <
Display Result Prediction Result
User Datab
atabase
Frontend (React js) E}?:T:::)d

Figure 3.5: System Design Diagram

3.6 Implementation Phase

There are 3 steps perform in the Implementation Phase, which are Machine
Learning Model Development, Web Application Development and Integration
of ML Model with Web Application. The deliverables of this phase are the
completion of the machine learning model development, web application

development and the integration of the ML model with web application.

3.6.1 Machine Learning Model Development

The key component of this project is developing the machine learning (ML)
model for the Disease Prediction Web Application. This part outlines the 6
phases ML model development process. These 6 phases include model selection,
dataset selection, data preprocessing, feature selection, model construction and
model evaluation. These phases are important for ensure that the model aligns

with the project requirements and user expectations.

59

Model Development Flowchat

Y
Dataset Selection TV

Data Preprocessing by

Model Building

v

Model Evaluation

Figure 3.6: Model Development Flowchart

3.6.1.1 Model Selection

Model Selection involves selecting the most appropriate ML algorithm for the
classification task of predicting diseases based on symptoms. After reviewing
the relevant literature on different models, 3 ML algorithms which are Decision
Tree, Random Forest, and Support Vector Machine are selected and assessed

based on their performance.

e Decision Tree (DT): The DT is considered because it is
interpretability and provides the explicit decision rules. For
example, if the cough = yes, predict disease X. This helps explain
the prediction results to the user. However, it may overfit the

complex datasets.

e Random Forest (RT): The RT is considered because its robustness
and high accuracy. RT is combined with multiple DT to reduce the

overfit. It also can handle the missing data well.

60

e Support Vector Machine (SVM): The SVM is considered
because its capability to handle high-dimensional data. SVM is
effective in binary classification with clear margins. However, it is

not suitable for large datasets because of the long computation time.

The selection of these models is based on their complementary
advantages to allow for a comparative evaluation to determine the most

appropriate model for the project.

3.6.1.2 Dataset Selection

The dataset selection phase is to determine the data source for the training and
evaluating the ML models. The selected dataset is the Symptom-Disease
Prediction Dataset (SDPD). This dataset was also identified in Chapter 2, and
the SDPD was the most suitable dataset for this project compared to the different
other datasets. This dataset is available on Mendeley Data. The SDPD dataset
contains 4,920 instances and 132 symptoms feature covering 41 unique diseases.
The structure of the dataset is a table with multiple rows for the patient cases
and multiple columns for the symptoms and disease labels. The symptoms are
binary values, with 1 indicating presence and 0 indicating absence. The dataset
is relevant to this project as it supports a wide range of diseases and can fulfil

the functional requirements of the project.

3.6.1.3 Data Preprocessing

Data preprocessing is an important stage in preparing the SDPD dataset for
model training and testing. This process aims to resolve the quality issues and
convert the raw data into a clean and structured format. There are several steps
in this phase to ensure that the ML model performs well and effectively. These

steps can be implemented by using Scikit-learn and Python libraries.

Steps involved:
¢ Handling missing data. This helps to impute missing values in the
SDPD dataset and prevent model errors. For binary symptom

features, the missing values are replaced with the most frequently

61

occurring values (mode), as this maintains the distribution of the
dataset.

e Categorical Label Encoding. The SDPD dataset contain binary
symptom features, but the dataset includes the categorical disease
labels such as “Fungal Infection” rather than numerical indexes.
Therefore, coding using Scikit-learn's LabelEncoder is required to
convert the categorical disease labels to integers.

¢ Duplicate Removal. Duplicate records may introduce bias into the
training process and potentially reduce processing speed,
particularly when handling relatively small datasets. To address
this issue, the dataset underwent duplicate scanning, and all
duplicate rows were removed.

e Data Splitting. By using Scikit-learn, the dataset can divide into
three subsets, which are training set, validation set and testing set.
The dataset can be split into 70-15-15 parts, which indicates that

70% for training, 15% for validating and 15% for testing.

These steps ensure that the data required for model training is clean and
reliable and reduce potential risks such as low model performance due to data

quality issues.

3.6.1.4 Model Building

This phase consists of training selected ML models including support vector
machine, random forest, and decision tree on pre-processed SDPD datasets. By
using Scikit-learn to implement machine learning models and ensure the models
are available for evaluation. Firstly, each model is initialized using the default
parameter such as ‘DecisionTreeClasssifier()’,
‘RandomForestClassifier(n_estimators=100)’ and ‘SVC(probability=True)’.
Furthermore, it is required for hyperparameter tuning. The GridSearchCV or
RandomizedSearchCV are used to fine-tuning the hyperparameters to improved
performance. In addition, the next step is model fitting. The models is trained

by using training set, such as X train and y train. For instance, by using the

62

model.fit(X train, y_train) to train the models. This phase helps to reduce the

risks of overfitting.

3.6.1.5 Model Evaluation

Model evaluation is the step of evaluates the performance of the trained models
on test sets and select the most suitable model for project deployment. For this
disease prediction web application, various evaluation metrics were used to
comprehensively analyse model performance, especially for the classification
task. The key evaluation metrics include sensitivity and accuracy. Sensitivity
can minimize the false negatives results such as missed diagnoses. Accuracy is
frequently used to measure the overall correctness of machine learning models.

The evaluation compares all three models to select the best performer.

3.6.2 Web Applications Development

The Web Applications Development phase aims to building the core
components of the Disease Prediction Web Application using Machine
Learning. This ensures that a functional and user-friendly application is
developed before integrating it with the machine learning model. The
development process includes building the backend using Flask to handle API
requests, creating the frontend with React.js to provide an interactive user
interface, and make sure that the components meet functional and non-
functional requirements. The backend is responsible for handling HTTP
requests, processing user inputs, and preparing the application for ML model
integration. During this phase, the Flask application sets up with the necessary
routes and configurations to support the functionality of the application. In
addition, the frontend is responsible for providing a responsive and user-friendly
interface for users to input symptoms and view prediction results, fulfilling the
functional requirements and a clear output display. During this phase, the
React.js application is set up the necessary components and routes to support

user interactions.

63

3.6.3 Integration of ML Model with Web Application

The integration of the ML model with web application is important in this
project. This ensures that the well-trained model is able to process user input
symptoms and deliver the prediction results through the web application’s
interface. This process combines the ML model development with the web
application development. The integration included loading and saving the ML
model using scikit-learn, creating the API endpoint using Flask to provide
prediction service, and enabling the frontend to send the symptoms and display
the prediction results by using React. This phase can ensure that the ML model
can communicate well with the backend to provide the real-time predictions and
responses based on user input. The integration process ensures that the robust
and efficient system is developed and aligned with the requirements.
Furthermore, the Google Gemini will also integrate with the web application to
generate general medical advice for each potential disease. The completed

system will be produced at the end of the phase.

3.7 System Testing

System testing is the testing phase in the Waterfall methodology. It is important
for the reliability of Disease Prediction Web Application using Machine
Learning. This phase ensures that the integrated system is fulfil the project
requirements. The objective of testing is to validate that the web application
achieves at least 85% sensitivity for disease prediction and able to predict the
diseases accurately.

The system testing also includes testing functional requirements and
non-functional requirements. The testing phase can mitigate the potential risks
such as error predictions by evaluating the performance and reliability of the
system. There are various types of testing can be performed within the project,
including unit testing, integration testing, usability testing and user acceptance
testing. These testing helps ensure that that software system fulfils the specific
requirements and reduce potential risks such as inaccurate prediction of results
and incorrect medical advice. In this phase, the test report and bug list will be

produced at the end.

64

3.8 Tools and Technologies

These tools and technologies are important for development of the Disease
Prediction Web Application to ensure the efficient and effective implementation,
testing, and deployment. This section describes the details of the tools used in
this project. For this project, the selected tools include Flask for the backend,
React for the frontend, Scikit-learn for the model framework, MySQL for the

database, GitHub for task tracking and Postman for testing.

3.8.1 Flask

Flask is selected as the backend framework for this project. Flask is responsible
for handle the server-side request. Flask is characterized by lightweight and
rapid development. Flask can ensure the fast performance and quick setup due
to its small footprint, making it suitable for small to medium-sized projects. In
addition, Flask is simple, allowing developers to customize the structure of the
application to their requirements and to build APIs and integrate machine

learning models easily and quickly.

3.8.2 React

React is selected as the frontend framework for this project. React is responsible
for build the interactive and user-friendly interface. React has strong community
support. The ecosystem of React provides a wealth of resources and libraries
that facilitate the development process. Moreover, the React offer better
performance and interactivity than other frontend frameworks. The virtual
DOM and reactivity of React ensure a fast, responsive user interface that

enhance the user’s experience in the application.

3.8.3 Scikit-learn

Scikit-learn is selected as the machine learning framework for this project.
Scikit-learn is a Python library that provide an efficient and simple API for
traditional machine learning algorithms to predictive data analysis. Due to its
simplicity, comprehensiveness and consistency, it is widely utilizing in the field

of data science and machine learning. Scikit-learn also provides data

65

preprocessing, feature selection, evaluation tools to ensure that the ML model

meet the requirements.

3.84 MySQL

In this project, MySQL is chosen as the database management system. The
MySQL is responsible for storing the history of prediction such as user inputs,
prediction results, and medical recommendations. MySQL is widely used for
managing and storing the structured data. The SQL means Structured Query
Language that support data retrieval and manipulation. MySQL is reliable and
can integrates well with Flask, allowing the backend to store user data such as

input symptoms and prediction results.

3.8.5 GitHub

In this project, GitHub is chosen as the version control tool to ensure the
efficient code management. GitHub is a cloud-based platform with a repository
that allow developers to perform version control such as commits, pull requests
and more. This is important for tracking changes to the codebase. GitHub also
allow developers to create different branches to develop new features without
affecting the main codebase. In addition, it allows for backup and restoration of

data, thus preventing data loss.

3.8.6 Postman

In this project, the Postman is chosen as the API testing tool. Postman is
responsible for sending HTTP requests and return the prediction responses to
the users. It is important for testing and managing the application interface.
Postman provides a user-friendly interface and able to perform features without
additional code. Postman can also verify that the actual results match the

expected results to ensure that the accurate results are returned.

3.9 Project Plan
The project plan for the Disease Prediction Web Application using Machine

Learning provides a structured approach to managing the development process,

66

outlining the timeline and deliverables to ensure the well-structured

development process.
3.9.1 Work Breakdown Structure (WBS)
0.0 Disease Prediction Web Application using Machine Learning
1.0 Project Preparation
1.1 Study the interested proposal title
1.2 Discuss with supervisor
1.3 Confirm FYP title
2.0 Project Initiation
2.1 Draft Chapter 1: Introduction
2.1.1 General Introduction
2.1.2 Define Important of study
2.1.3 Define Problem Statements
2.1.4 Define Aim and Objectives
2.1.5 Define Scope and Limitations
2.1.6 Propose Project Solution
3.0 Literature Review
3.1 Draft Chapter 2: Literature Review
3.1.1 Research and Compare Models
3.1.2 Compare Existing Web Apps
3.1.3 Define Evaluation Metrics
3.1.4 Identify Dataset Sources
3.1.5 Compare Web Application Framework
3.2 Review and Finalize Chapter 1
3.2.1 Review draft Chapter 1 with supervisor
3.2.2 Incorporate feedback and finalize
4.0 Methodology and Work Plan

4.1 Draft Chapter 3: Methodology and Work Plan
4.1.1 Compare SDLC Methodologies
4.1.2 Discuss Tools and Technologies
4.1.3 Create WBS
4.1.4 Create Gantt Chart

5.0

6.0

7.0

8.0

9.0

4.2

Review and Finalize Chapter 2
4.2.1 Review draft Chapter 1 with supervisor
4.2.2 Incorporate feedback and finalize

Requirements Analysis

5.1 Functional Requirements
5.2 Non-Functional Requirements
53 Develop use case diagram and description
5.4 Review and Finalize Chapter 3
5.5 Develop Prototype
5.5.1 Develop Low Fidelity Prototype
System Design
6.1 Define system architecture and the data flow

System Development

7.1 Machine Learning Model development
7.1.1 Model Selection
7.1.2 Dataset Selection
7.1.3 Data preprocessing
7.1.4 Model Building
7.1.5 Model Evaluation
7.2 Web Application Development
7.2.1 Develop Fronted
7.2.2 Develop Backend
7.3 Integration of ML Model with Web App
7.3.1 Load ML model into Flask
7.3.2 Integrate the LLM model into existing application
System Testing
8.1 Unit Testing
8.2 Integration Testing
8.3 User acceptance Testing
8.4 User Interface Design Feedback
Closing
9.1 Finalize project documentation
9.2 Submit Project

67

68

3.9.2 Gantt Chart

3.9.2.1 Overview of the Disease Prediction Web Application using
Machine Learning Timeline

Figure 3.7 shows an overview of the project timeline. The Gantt chart below

illustrates the tasks required to complete the project. These tasks include project

preparatory, project initiation, literature review, methodology and work plan,

requirement analysis, system design, system development, system testing, and

closing. The estimated total duration to complete the project is 219 days.

atr2, 2025 3, 202!
Feb Ma Apr Ma Jun) Aug Sep

W8S - Task Name | Duration v Start ~ Finish -
T Project Preparatory 21days Mon10/2/25 Sun2/3/25 —_—
82 Project Initiation 14days Mon3/3/25 Sun16/3/25 —
19 3 Literature Review 21days Mon17/3/25 Sun 6/4/25 —_—
2 a4 Methodology and Work Plan 17days Mon7/4/25 Wed 23/4/25 —
4“4 s Requirements Analysis 21days Thu24/4/25 Wed 14/5/25 —
%6 6 System Design 21days Thu15/5/25 Wed4/6/25 —_—
61 |7 System Development 80days Thu5/6/25 Sat23/8/25 = |
77 8 System Testing 21days Sat23/8/25 Fri12/9/25 —
9 Closing Sdays Sat13/9/25 Wed 17/9/25 =

Figure 3.7: Overview of the Project Timeline

3.9.2.2 Project Preparatory and Project Initiation Timelines
Figure 3.8 shows the tasks included in project preparatory and project initiation
timelines. The estimated duration of project preparatory is 21 days and project

initiation are 14 days.

SM T WTFSSMTWTFSSMTWTEFSsSsM TWT FSSMTWTEFS S MT

WBS v Task Name ~ Duration v Start ~ Finish
1 “ Project Preparatory 21days Mon 10/2/25 Sun2/3/25
2 ha Research on interested proposal title 7 days Mon 10/2/25 Sun 16/2/25 L 1
312 Discuss title 7days Mon 17/2/25 Sun 23/2/25 [1
4 13 7 days Mon 24/2/25 Sun2/3/25 L 1
14 0days Mon 10/2/25 Mon10/2/25 |« 10/2
141
142
2 14 days Mon3/3/25 Sun16/3/25
21 14days Mon3/3/25 Sun16/3/25 r 1
0 211 2days Mon3/3/25 Tue4/3/25 T—
1212 2days Wed5/3/25 Thu6/3/25 L]
213 2days Fi7/3/25 sats/3/25 —
214 2days Sun9/3/25 Mon10/3/25 —
215 3days Tue11/3/25 Thu13/3/25 L 1
216 3days Fri14/3/25 Sun16/3/25 L]
2.2 0days Mon 3/3/25 Mon 3/3/25 *33
221
222

the project

Figure 3.8: Project Preparatory and Project Initiation Timelines

3.9.2.3 Literature Review and Methodology Timelines

Figure 3.9 shows the timelines for the literature review and methodology phases.
These tasks include drafting Chapter 2, reviewing and finalizing Chapter 1,
drafting Chapter 3 under the methodology timelines. The estimated duration for

the literature review is 21 days and for the methodology and work plan is 17

days.

69

+ Duration Start ~ Finist -
21days Mon17/3/25 Sun6/4/25

31 15days Mon17/3/25 Mon31/3/25
SEREY 3days Mon17/3/25 Wed19/3/25 | 1
312 3days Thu20/3/25 Ssat22/3/25 E 1
3.13 3days Sun23/3/25 Tue25/3/25 L '
314 3days Wed26/3/25 Fri28/3/25 L]
315 3days Sat29/3/25 Mon31/3/25 [1
32 6days Tue1/4/25 Sun6/4/25 ——
321 draft Chapter 1 with supervisor 3days Tue1/a/2s Thu3/a/2s [1
322 i feedback and finalize 3days Fii4/a/25 sun6/4/25 L 1
33 “ Mile: Odays Mon17/3/25 Mon17/3/25) 17/3
33.1 e Chapter 2: Literature Review
1332 Research on paper related to the project
2 + Methodology and Work Plan 17days Mon7/4/25 Wed 23/4/25
a1 lan 12days Mon7/4/25 Fri18/4[25 ———
411 3days Mon7/4/25 Wed9/4/25 L 1
412 3days Thu10/4/25 Sat12/4/25 "]
413 3days Sun13/4/25 Tue15/4/25 L 1
414 3days Wed16/4/25 Fri18/4/25 [1
a2 Sdays Sat19/4/25 Wed23/4/25 —_—
421 2days Sat19/4/25 Sun20/4/25 —
0 422 3days Mon21/4/25 Wed23/4/25 "]
143 Odays Mon7/4/25 Mon7/4/25 *7/4
@ (a3 Identify SDLC Methodology used in project
4 432 Completed Chapter 3

Figure 3.9: Literature Review and Methodology Timelines

3.9.2.4 Requirements Analysis and System Design Timelines

Figure 3.10 shows the timelines for requirements analysis and system design
phases. The milestones for requirements analysis phase include identifying the
project requirements and completing the prototype. The milestones for system
design phase include designing the system architecture and identifying the data
flow of the system. The estimated duration for both the requirements analysis

and system design phases is 21 days each.

onv_ Start ~ Finish .|
ays Thu24/4/25 Wed 14/5/25

5.1 Thu 24/4/25 Sun 27/4/25 P J

5.2 Mon 28/4/25 Thu 1/5/25 L 1

53 Fi2/5/25 Mon5/5/25 []

5.4 Tue 6/5/25 Wed 7/5/25 —

5.4.1 Tue 6/5/25 Tue 6/5/25 L

542 Wed7/5/25 Wed7/5/25 -
155 s Thu8/s/25 Wed14/5/25 ——

5.5.1 Thu 8/5/25 Wed 14/5/25 L n

56 Thu24/a/25 Thu2e/ajzs) 24/4
4 561

5.6.2

6 s Thu15/5/25 Wed 4/6/25

6.1 s Thu1s/5/25 Wed4/6/25 L 1
5 62 Thu1s/5/25 Thu1s/5/25 «15/5
9 6.2.1
0 6.2.2

Figure 3.10: Requirements Analysis and System Design Timelines

3.9.2.5 System Development Timelines

Figure 3.11 shows the system development timelines. The estimated duration
this phase is 80 days. The tasks include machine learning model development,
web application development and integration of machine learning model with
the web application. The milestones for this phase include completing the ML

model and web application development and finalizing the integration.

70

wes - TaskName =) Duration - | start - Finish

61 7 4 System Development 80days Thu5/6/25 1

62 7.1 4 Machine Learning Model development 40days Thu5/6/25 Mon14/7/25

6 711 Model Selection 8days ThuS/6/25 Thu12/6/25 L 1

& 712 Dataset Selection 8days Fi13/6/25 Fi20/6/25 L 1

55 7.13 Data preprocessing 8days Sat21/6/25 sat28/6/25 [1

6 7.14 Model Building 8days Sun29/6/25 Sun6/7/25 " '

6 715 Model Evaluation 8days Mon7/7/25 Mon14/7/25 L 1

6 72 + Web Application Development 20days Tuel15/7/25 Sun3/8/25 ——

s 721 Develop Fronted 8days Tuel5/7/25 Tue22/7/25 L]
) 722 Develop Backend 12days Wed23/7/25 sun3/8/25 L]

773 4 Integration of ML Model with Web App 20days Sun3/8/25 Fri22/8/25 ——]
2 731 Load ML model into Flask 20days Sun3/8/25 Fri22/8/25 ['
3 74 4 Milestones: Odays Thu5/6/25 Thu5/6/25 *5/6

7 741 Completed ML Model development

75 742 Completed Web App development

76 (743 Completed Integration

Figure 3.11: System Development Timelines

3.9.2.6 System Testing and Closing Timelines

Figure 3.12 shows the timelines for system testing and closing phases. The
estimated duration for system testing phase is 21 days. The tasks in this phase
include unit testing, integration testing, user acceptance testing and user
interface design feedback. The closing phase is estimated to takes 5 days and

involves completing the project documentation.

s M T w T F s s M T T F s s M T w T F s s M T w T

WBS + TaskName - Duratiory Start nish -
s 4 System Testing 21days Sat23/8/25 Fri12/9/25

7 [8a Unit Testing Sdays Sat23/8/25 Wed27/8/25) 1
79 82 Integration Testing 6days Thu2g/8/25 Tue2/9/25 L 1

0 83 User acceptance Testing Sdays Wed3/9/25 sun7/9/25 L]
8 84 User Interface Design Feedback Sdays Mon8/9/25 Fri12/9/25 L 1
82 85 “ Milestones: Odays sat23/8/25 Sat23/s/25) 23/8
8 851 Completed system Testing
8 852 Fixed bugs and defect
) + Closing Sdays Sat13/9/25 Wed17/9/25 =]
8 91 Finalize project documentation 3days Sat13/9/25 Mon15/9/25 L 1
87 02 Submit Project 2days Tue16/9/25 Wed17/9/25 " y
@ 93 + Milestones: Odays Sat13/9/25 Sat13/9/25 . 13/9
8 931 Completed the project documentation
0 932 Submit without errors

Figure 3.12: System Testing and Closing Timelines

71

CHAPTER 4

PROJECT SPECIFICATIONS

4.1 Introduction

This chapter details the specifications for Disease Prediction Web Application
using Machine Learning, providing the details information on the system
requirements, design and functionality. This section presents the functional and
non-functional requirements specifications, use case modelling with use case
diagram and use case description, proposed system flow, interface system flow
and low-fidelity prototype. Use case diagram demonstrates the interaction
between user and system. This chapter ensures that the system is aligned with

the goals and objectives of this system.

4.2 Requirements Specification

This section describes the functional and non-functional requirements of the
project to ensure that the system fulfil the user expectations and requirements.
The requirements are gathered from existing similar disease prediction web

applications, which combine the strengths of the existing systems.

4.2.1 Functional Requirements Specification
The functional requirements define the specific functions of the system that
provide to fulfil the user’s needs. The Table 4.1 identifies the functional

requirements for the Disease Prediction Web Application using Machine

Learning
Table 4.1: Functional Requirements

ID Functional Requirement Statements

FROO1 The system shall allow user to register an account.

FR002 The system shall allow user to login with the email and
password.

FRO03 The system shall allow user to input symptoms using
predefined checklist or free text.

72

FRO04 The system shall display the prediction results to user with
explanation.

FRO05 The system shall provide medical advice to the user based on
the predicted results.

FRO06 The system shall allow user to store the predicted results into
the database.

FROO07 The system shall allow user to view the historical symptoms
and prediction results.

FROOS The system shall allow user to view their profile.

FRO09 The system shall allow user to update their personal data such

as username, date of birth, gender and password.

4.2.2 Non-functional Requirements Specification

The non-functional requirements specify the performance, usability and

reliability of the system. This can ensure that the system fulfil the quality

standards. The Table 4.2 identifies the non-functional requirements for the

project.
Table 4.2: Non-functional requirements

ID Non-Functional Requirements Statements

NFROO1 The system shall provide a responsive and user-friendly
interface and clear navigation.

NFR002 The system shall be secured and able to protect the predicted
results and symptoms entered by the user.

NFRO003 The response time of the system should be responsive when
the user submits the symptomes.

NFR004 The system should be available all the time.

NFRO005 The system should be compatible with popular browsers
including Google Chrome and Microsoft Edge.

73

4.3 Use Case Modelling
The use case modelling describes the interaction between the user and the
system. This clearly illustrates the uses of web applications. This section

includes use case diagram and use case descriptions.

4.3.1 Use Case Diagram
The Figure 4.1 shows the use case diagram for disease prediction web

application using machine learning system.

uc FYP 1 use case diagram)

Disease Prediction Web Application using Machine Learning

extension points
New User

———————————— Register account
awextend»

View Predicted Results

Input Symptoms f—————————————
«include»

extension points
User wants to seek medical
advices

™
wextends , ~
-

View Medical Advices

extension points
User want to save historical
results

User

«wextend»x

Store Predicted
Results

View Historical
Results

View Profile

————— Update Profile
wextends

extension points
User want to update profile

Figure 4.1: Use case diagram

4.3.2

74

Use Case Description

4.3.2.1 Login account

Table 4.3: Use case description of Login Account

Use Case Name: Login account ID: Importance Level:
UC001 | High
Primary Actor: User Use Case Type: Details, Essential

Stakeholders and Interests:
User — wants to login to the account to access the web application by using

email and password.

Brief Description: This use case describes how a user login to the account

to access features of the web application.

Trigger: The user wants to access the disease prediction web application.

Relationships:
Association : User
Include -
Extend : Register account
Generalization: -

Normal Flow of Events:

1.

The system displays 2 options for using the system. Perform 1.1 or

1.2.

1.1 If the store owner selects the “Login” option, the flow no.2
continues.

1.2 If the store owner selects the “Register” option, the flow ends.

The system displays the login screen.

The user enters the email and password.

The system checks and validates the credentials. Perform 4.1 or 4.2.

4.1 If the email and password are valid, flow no.5 continues.

4.2 If the email and password are invalid, the system will indicate that

the login was unsuccessful, the flow no.1 continues.

The user successfully logged into the web application and can access

the functions in the system.

75

Sub-flows: -

Alternate/Exceptional Flows:
la. If the user selects “Register,” the system executes the Register Account

use case.

4.3.2.2 Register account

Table 4.4: Use case description of Register account

Use Case Name: Register account ID: Importance Level:
UC002 | High
Primary Actor: User Use Case Type: Details, Essential

Stakeholders and Interests:
User — wants to register an account to access the features of disease

prediction web application.

Brief Description: This use case describes how a user can register an

account to gain access to the web application.

Trigger: The user wants to become a user.

Relationships:
Association : User
Include -
Extend -
Generalization: -

Normal Flow of Events:

1. The system displays 2 options for using the system. Perform 1.1 or
1.2.
1.1 If the user selects the “Register” option, the flow no.2 continues.
1.2 If the user selects the “Login” option, the flow ends.

2. The system displays the registration form.

3. The user logs in with username and password.

4. The system validates the information provided. Perform 4.1 or 4.2.
4.1 If the information is valid, flow no.5 continues.

4.2 If the information is invalid, flow no.6 continues.

76

5. The system indicates successful registration.

6. The system indicates unsuccessful registration.

Sub-flows:

Alternate/Exceptional Flows:

la. If the user selects “Login,” the system proceeds to the Login use case.

4.3.2.3 Input Symptoms

Table 4.5: Use case description of Input Symptoms

Use Case Name: Input Symptoms ID: Importance Level:
UCO003 | High
Primary Actor: User Use Case Type: Details, Essential

Stakeholders and Interests: User — wants to input symptoms via the

checklist.

Brief Description: This use case describes how a user enters the symptoms
into the system for prediction of diseases using a dropdown menu or free

text.

Trigger: The user wants to input their symptoms to predict potential

diseases.
Relationships:
Association : User
Include -
Extend : View Predicted Results
Generalization: -

Normal Flow of Events:
1. The system displays two input options which are dropdown checklist
by listing 132 symptoms and a free text input box. Perform 2.1 or 2.2
2.1. If the user selects input symptoms by using dropdown menu, the
flow no.3 continues.
2.2 If the user selects input symptoms via free text, the flow no.4

continues.

77

2. The user selects one or more symptoms by checking the corresponding
boxes.

3. The user enters the symptoms in the text input box.

4. The system displays a preview or list of the selected symptoms to the
user.

5. The user clicks on the “Predict” button to submit the symptoms for
prediction.

6. The system validates that at least one symptom is selected.

Sub-flows: -

Alternate/Exceptional Flows:

6a. If the user clicks “Predict” without selecting or entering at least one
symptom in the checklist or free text input box, the system displays “Please
select at least one symptom to proceed.” message.

6b. If the input is valid, the system executes the “View Prediction Results”

use case.

4.3.2.4 View Predicted Results
Table 4.6: Use case description of View Predicted Results

Use Case Name: View Predicted Results | ID: Importance Level:
UC004 | High
Primary Actor: User Use Case Type: Details, Essential

Stakeholders and Interests:

User — wants to view the predicted results based on the input symptoms.

Brief Description:
This use case describes how a user views the predicted results after

inputting symptoms into the system.

Trigger: The user wants to view the predicted results after completing the

“Input Symptoms” use case.

78

Relationships:
Association : User
Include t-
Extend : View Medical Advice
Generalization: -

Normal Flow of Events:
1. The system processes the input symptoms using the ML model.
2. The system displays prediction results.
3. The user views the prediction results on screen.
4.

The system displays 2 buttons for back and viewing medical advice.

Sub-flows: -

Alternate/Exceptional Flows:

2a. The system displays “Unable to process prediction. Please try again later.”
message if the prediction fails due to server or model issues.

3a. The system displays “No specific condition matched. Please refine your

input.” message if the result is not found.

4.3.2.5 View Medical Advice
Table 4.7: Use case description of View Medical Results

Use Case Name: View Medical Advice ID: Importance Level:
UCO005 | High

Primary Actor: User Use Case Type: Details, Essential

Stakeholders and Interests:
User — wants to view the medical advice related to the predicted diseases

for further action.

Brief Description: This use case describes how a user views medical advice

after receiving the disease prediction results.

79

Trigger: The user wants to seek medical advice after receiving the disease

prediction results.

Relationships:
Association : User
Include -
Extend -
Generalization: -

Normal Flow of Events:
1. The system displays the “View Advice” button.
2. The user clicks on “View Advice” button.
3. The system displays medical advice for the user related to predicted
diseases.
4. The system displays 2 buttons for back and storing the prediction

results and medical advice.

Sub-flows: -

Alternate/Exceptional Flows:
3a. The system display “No advice available for this condition at this time.”

message if there is no advice is available for the prediction.

4.3.2.6 Store Predicted Results
Table 4.8: Use case description of Store Predicted Results

Use Case Name: Store Predicted Results | ID: Importance Level:
UC006 | High
Primary Actor: User Use Case Type: Details, Essential

Stakeholders and Interests: User — wants to store the prediction result for

future reference

80

Brief Description: This use case describes how a user stores the prediction

results into the system.

Trigger: The user wants to store the input symptoms, prediction results

and medical advice into database.

Relationships:
Association : User
Include -
Extend -
Generalization: -

Normal Flow of Events:
1. The user clicks on the “Store Results” button in the view medical
advice page.
2. The system stores the input symptoms, prediction results and medical
advice to the database.
3. The system displays successful messages when the data is successful

store in the database.

Sub-flows: -

Alternate/Exceptional Flows:
3a. The system displays the error message “Fails to save result. Please try

again” if the storage data failure occurs.

4.3.2.7 View Historical Results

Table 4.9: Use case description of View Historical Results

Use Case Name: View Historical Results | ID: Importance Level:

UC007 | High

81

Primary Actor: User Use Case Type: Details, Essential

Stakeholders and Interests: User — wants to view the past prediction results

to track the symptoms over time.

Brief Description: This use case describes how a user views their past

disease prediction results to monitor the trends.

Trigger: The user wants to view the historical information by clicking the

“View History” button.

Relationships:
Association : User
Include -
Extend -
Generalization: -

Normal Flow of Events:
1. The user selects the “My History” option in the home page.
2. The system retrieves the past prediction results of users from the
database.
3. The system displays a list of the past prediction results including
symptoms input.
4. The user selects the specific result to view.

5. The system displays detailed prediction results of the selected result.

Sub-flows:

Alternate/Exceptional Flows:
la. If the user is not yet logged in, the system prompts the user to log in.
2a. The system displays “No prediction history found” message if the record

1s not found.

82

4.3.2.8 View Profile
Table 4.10: Use case description of View Profile
Use Case Name: View Profile ID: Importance Level:
UCO008 | High
Primary Actor: User Use Case Type: Details, Essential

Stakeholders and Interests:

User —

wants to view their personal data.

Brief Description: This use case describes how a user views their personal

data.

Trigger: The user wants to view the profile.

Relationships:
Association : User
Include t-
Extend : Update Profile
Generalization: -

Normal Flow of Events:

1.

The system displays the “My Profile” button in the header in Home
Page.

The user clicks on “My Profile” button.

The system displays the user's personal information, such as e-mail
address, date of birth and gender, on the profile page. Gender is empty
by default unless the user wants to update it.

The system provides a link for the user to change their password.
The user enters the current password, new password and confirmation
password.

The system checks and validates of password. Perform 6.1 or 6.2.
6.1 If the passwords are valid, flow no.7 continues.

6.2 If the passwords are invalid, the system will indicate that the
changes were unsuccessful, the flow no.4 continues.

The user successfully changes their password.

83

Sub-flows: -

Alternate/Exceptional Flows:

4.3.2.9 Update Profile
Table 4.11: Use case description of Update Profile

Use Case Name: Update Profile ID: Importance Level:
UC009 | High
Primary Actor: User Use Case Type: Details, Essential

Stakeholders and Interests:

User — wants to update their personal data.

Brief Description: This use case describes how a user updates their

personal data.

Trigger: The user wants to update the profile.

Relationships:
Association : User
Include t-
Extend t-

Generalization: -

Normal Flow of Events:
1. The system displays the “Update Profile” button in the header in
Profile Page.
2. The user clicks on “Update Profile” button to edit their personal data.
3. The system displays update forms for user including username, date
of birth and gender.
4. The user enters the new personal information.

5. The system checks and validates the information. Perform 5.1 or 5.2.

84

5.1 If the data are valid, flow no.6 continues.
5.2 If the data are invalid, the system will indicate that the update was
unsuccessful, the flow no.1 continues.

6. The user successfully updates their profile.

Sub-flows: -

Alternate/Exceptional Flows:

4.4 System Flow Diagram
The Figure 4.2 shows the system flow diagram for the disease prediction web

application using machine learning system.

View Histari

User access 1o the website
from browser

Input user email and

: Input personal information
passwart

ical Results

| S

85

Free
Text Input Method

Input Method? View Profile

Dropeown
List Input Methad

Input Symptoms

Get Predicted Results

View Medical Advice

Store to database

Figure 4.2: System Flow Diagram

Update Profile

86
4.5 Interface Flow Diagram

The Figure 4.3 shows the interface flow diagram of Disease Prediction Web

Application using Machine Learning.

Disease Prediction Web
Application

Home Screen

View Historical Results Select Input Symptoms View Profile Screen
Screen Method Screen
Update Profile Screen Change Password
Input Symptoms Screen Screen

View Predicted Results
Screen

i

i

ufiuiin
ERHEE

View Medical Advice
Screen

i

Figure 4.3: Interface Flow Diagram

4.6 Low Fidelity Prototype

4.6.1 Welcome Page

The welcome page is the first page of Disease Prediction Web Application using
Machine Learning. Welcome page includes login and register buttons for user

to access the web application.

Easily Predict Diseases by
Entering Symptoms

Get fast, Al-powered predictions based on your symptoms

Figure 4.4: Welcome Page

4.6.2 Login Page

The login page allows user to input their email address and password.

Welcome to Disease Prediciton |
Please enter your credentials.

Figure 4.5: Login Page

88

4.6.3 Sign Up Page
The sign up (register) page allows users to create a new account.

o s

Sign Up x

\Welcome to Disease Prediciton |
Please enter your credentials.

Username
Email
Date of Birth

Password

Confirm Password

1agres with all tenms and conditiens,

Already have an account? Log in

Figure 4.6: Sign Up Page

4.64 Home Page

The Home Page allows users to access to view the history, profile and displays
the username in the header. The Home Page also allows users to choose the
input methods to predict the potential diseases. The Home Page briefly describes

about how the web application works.

89

<] My History] My Profile

Predict Your Health with
Confidence

Input your symptoms and get instant disease predictions powered
by Al

Get Started

How It Works
Enter your symptoms Al analyse the symptoms Receive potential diseases

Figure 4.7: Home Page

4.6.5 Select Input Method Page
The Select Input Method Page allows users to choose the input methods to

predict the potential diseases.
En 4 MyHistory 4 My Profile Hi, Username Logout
Welcome To Disease Prediction!

Which input method do you prefer?

© Dropdown list © Freetextinput

Itching
o Skin rash

o Fever
Vomiting
o ..

Figure 4.8: Select Input Method Page

90

4.6.6 Dropdown List Input Symptoms Page

The Dropdown List Input Symptoms Page allows user to search and select the
relevant symptoms they may have, and the “Add” button add the symptoms to
the “Selected Symptoms”. For the “Selected Symptoms”, user also allowed to

delete the symptoms. If a complete symptom is entered and click the “Prediction’

button, the system starts the prediction.

s=— =

Dropdown List Symptoms Input

Please select your symptoms:

Itching
Skin rash

Fewer

Vomiting

Figure 4.9: Dropdown List Input Symptoms Page

4.6.7 Free Text Input Symptoms Page

The Free Text Input Symptoms Page allows user to enter the relevant symptoms
they may have, and the “Add” button add the symptoms, the system will display
the “Matched Symptoms”. For the “Matched Symptoms”, user also allowed to

91

delete the symptoms. If a complete symptom is entered and click the “Prediction”

button, the system starts the prediction.

Hi, Usemame: Logout:

Free Text Symptoms Input

What symptoms do you have?

Describe your symplams in a sanlence (e.g., Thawve a fever and a

oough'). Enler your symploms:

fii... x|
B x|
B x|

Figure 4.10: Free Text Input Symptoms Page

92

4.6.8 Predicted Results Page
The Predicted Results page shows potential diseases that match the user's
symptoms. The right side shows the symptoms that the user entered into the

system.

H, Username Logout

Predicted Results

Potential Diseases that matched your symptoms:

View Medical
Store Resulis

Figure 4.11: Predicted Results Page

4.6.9 View Medical Advice Page

This page is for user to view the medical advice based on predicted results.

& Medical Advices

For xxx diseases:

For xxx diseases:

For xxx diseases:

Back

Figure 4.12: View Medical Advice Page

4.6.10 View Historical Results Page

This page is for user to view their historical results in the system.

Hi, Username Logout

Historical Results

Symptoms Potential Diseases

x

x

x

Back

Figure 4.13: View Historical Results Page

93

94

4.6.11 Profile Page
The profile page allows users to view their personal information on the profile
page. Gender is empty by default unless the user wants to update it. Users can

change their password by following the link.
o st

& User Profile

Hi, Username

Email Address: .

Date of Birth:

[J

Gender:

Want to change password? Click mel

Figure 4.14: Profile Page

4.6.12 Update Profile Page
This page allows users to update their personal information such as username,

date of birth, and gender.

95

o s

& Update Profile

Hi, Username
Username: .

Date of Birth:

Gender:

Update Profile

Figure 4.15: Update Profile Page

4.6.13 Change Password Page
This page allows user to change their password.

e

Change Password

Hi, Username

Current Password:
New Password:

Confirm New Password:

Update Password

Figure 4.16: Change Password Page

96

4.7 Preliminary Results

This section is to present the preliminary results obtained during the early
implementation and testing phases of the Random Forest model building. These
results validate the feasibility of the proposed system design. This section
focuses on the evaluate the capabilities of the Random Forest model, functional

requirements of dropdown list input system and free-text input system.

471 Model Performance

The Random Forest model was developed and trained on the Symptom-Disease
Prediction Dataset (SDPD) dataset, which includes 132 symptoms and cover 41
diseases with a total of 4920 instances. The dataset is split into two subsets
which are training, validation testing sets in a ratio of 80-20, resulting in 3936
training samples and 984 testing samples. This model was trained with 100 trees
(n_estimators=100) and 42 random states for reproducibility. The
n_estimators=100 is the number of decision trees built, and each tree is trained
on a random subset of the features and data. Prediction is combined with
majority voting to improve the accuracy and reduce the overfitting. The
random_state =42 parameter is used to assign a seed to the random number
generator, ensuring that the train-test split, as well as the tree construction are
the same each time the model is trained, thus making the results are reproducible.
The model was evaluated using Accuracy, sensitivity (recall), and F1-Score.
The overall metrics in this example are not accurate and are for demonstration
purposes only. The Figure 4.12 shows the preliminary Random Forest model
performance metrics. The Figure 4.13 shows the sample of Pre-Disease

performance metrics.

overall Metrics:

Model Accuracy on Test Set: 100.00%
Macro Average Recall (Sensitivity): 1.00
Macro Average F1-Score: 1.00

Figure 4.17: Preliminary Model Performance Metrics

97

Detailed Metrics by Disease:
Disease Precision Recall (Sensitivity)F1-Score Support

Alcoholic Hepatitis

Figure 4.18: Sample of Per-Disease Performance Metrics

4.7.2 Dropdown List Input

One of the functional requirements of the project is the system allow users to
input their symptoms by selecting the symptoms from the predefined list. This
method presents the user with the complete list of 132 symptoms in the dataset
and allows the user to select symptoms by typing the exact names. Figure 4.14
shows the sample of the dropdown list input and the prediction outputs. The
output may not be accurate and was improved in the next chapter.

Choose your input method:

1. Select symptoms from the list (type each symptom)

2. Free-text input (type a sentence describing your symptoms)
Enter 1 or 2: 1

Enter your symptoms (type the symptom name exactly as shown in the list above).
When done, type ‘done’ to get the prediction.

Enter a symptom (or 'done' to finish): itching
Added symptom: itching

Enter a symptom (or 'done' to finish): skin rash
Added symptom: skin_rash

Enter a symptom (or 'done’ to finish): done

Top 5 Potential Diseases (with probabilities):
Fungal Infection: 53.00%

Drug Reaction: 21.ee%

Acne: 6.00%

chronic Cholestasis: 4.00%

Cervical Spondylosis: 3.00%

Figure 4.19: Sample Dropdown List Input and Prediction Results

4.7.3 Free-Text Input

One of the functional requirements of the project is the system allow users to
input their symptoms by using free text input method. By using Google Gemini
to extract symptoms, this approach effectively handles the spelling errors and
text issues. The free text input method maps the user input to the 132 symptoms

in the dataset through the synonym dictionary. Figure 4.15 shows the sample of

98

free-text input and prediction output. The output may not be accurate and was

improved in next chapter.

Choose your input method:

. Select symptoms from the list (type each symptom)
2. Free-text input (type a sentence describing your symptoms)
Enter 1 or 2: 2

Describe your symptoms in a sentence (e.g., 'I have a fever and a cough').

Enter your symptoms: I have a fever, I'm coughing, my nose is running, and I feel tired
Matched symptom: cough

Matched symptom: fatigue

Matched symptom: runny nose
Matched symptom: high fever

Top 5 Potential Diseases (with probabilities):
Bronchial Asthma: 49.00%

Common Cold: 8.00%

Impetigo: 8.00%

Varicose Veins: 8.00%

AIDS: 6.00%

Figure 4.20: Sample of Free-Text Input and Prediction Output

99

CHAPTER 5

SYSTEM DESIGN

5.1 Introduction

This chapter demonstrates the system design for the Disease Prediction Web
Application. The system design encompasses the system architecture, data
model design, database design, entity relationship diagram (ERD), user
interface design and prompt design. This can ensure that the final
implementation is both efficient and user-friendly. Moreover, the last section
presents a high-fidelity prototype of the user interface as a reference for the

interface design of the system.

5.2 System Architecture Design

The system architecture defines the overall structure of the web application. The
proposed disease prediction web application adopts a three-tier architecture,
comprising the frontend, backend, and database, with the machine learning
model and large language model (Google Gemini) integrated into the backend.
The Figure 5.1 shows the three-tier architecture of this project. The Figure 5.2
shows the System Architecture Design to clarify the behavioural patterns and

operational structure of the system.

Presentation Tier Application Tier Data Tier
. — N %
Backend - Flask + ML Model
Frontend - React + LLM Model Database - MySQL

Figure 5.1: Three-tier Architecture Diagram

100

ML Model Prediction Result } [
(Scikitlearn) ———————> Gemini
Large Language Model

(Google Gemini)

Symptom Prediction
Encoding Result
General advice

———
Input Symptoms HTTP POST J Store Data

> > N
Display Result Prediction Result Retrieve Data ‘

+
User ‘

Fronfon (React General advice Backend Database
rontend (React. js) (Flask)

Figure 5.2: System Architecture Design

The system employs a client-server architecture based on modular
design to ensure maintainability and scalability while enabling the system to
handle diverse request type efficiently. This architecture is divided into three
main tiers, including Presentation Tier, Application Tier, and Data Tier. This
layered approach achieves separation of concern, enabling each component to
be developed, tested, and extended independently. This architecture is designed
to efficiently process user request, analyse symptoms through machine learning
model, deliver predictive results in real time, and utilize large language models
to extract possible symptoms from users' free-text inputs while provide general

medical advice.

The presentation tier serves as the user interface and user experience
(UI/UX). It enables users to register, login, input symptoms, view prediction
results, check general medical advice, and review their history. The system
using React to build dynamic and responsive frontend, utilises external CSS for
styling and supports RESTful API calls. React was chosen for its efficient

handling of dynamic updates, delivering a smooth user experience.

For the application tier, the backend is implemented using Flask. As s
lightweight Python framework, Flask serves as the middle tier between the
frontend and the data tier. It handles user request, manages user session
authentication, validates user input, and communicates with the database. This
tier communication with the frontend by exposing RESTful API endpoints such

as /predict, /user. Both machine learning model and large language model are

101

integrated into this tier. The machine learning model is developed using scikit-
learn and is responsible for processing the input symptoms and generate
predictions by comparing them against patterns learned from training data. The
large language model is using Google Gemini API to extract free-text symptoms
inputs and generate general medical advice based on different diseases and
return it as a JSON response. The backend ensures timely return of predictions

results and supplemented by relevant medical advice.

The data tier is used to manage the persistent storage of user data. This
tier is implemented by using MySQL, which stores user credentials and
information, symptom and disease records, prediction history, and general
medical advice. The database ensures consistency, integrity and security of
stored information as well as efficiently managing queries and updates to

support real-time interaction with the application.

This architecture is scalable as improvements on one layer can be
implemented independently without affecting the others. Furthermore, the
modularity of the system enables the system to seamless integration of
additional features such as advanced medical knowledge bases for generating

medical recommendations.

53 Data Model Design

This section outlines the database design for the Disease Prediction Web
Application using Machine Learning. The database is designed to efficiently
store and manage the application data, ensuring quick retrieval and secure
storage. The design includes the conceptual data model including entities and
relationships and its physical implementation in MySQL. MySQL was selected
as the relational database management system due to its robustness, high

performance, and widespread use.

5.3.1 Entity Relationship Diagram (ERD)
The ERD visually represents the relationship between entities, as shown in

Figure 5.3.

users

PK | user_id

username
UK | email
password_hash
dob

gender

created_at

102

prediction_history

PK | history_id

medical_advice

FK | user_id

A

prediction_date

1.101.4

1.

predictied_symptom

PK,FK1

PK.FK2

history id

symptom_id

PK | advice id

FK | history_id
FK | disease_id
advice text

unique_history_disease

UK (history_id, disease_id)

A

1.1

symptoms

PK | symptom id

UK | symptom_name

3

predicted_disease

PK.FK1 | history id

PK,FK2 | disease id

rank index

1.+

1.1y

disease

PK | disease id

UK | disease_name

Figure 5.3: Entity Relationship Diagram (ERD)

5.3.2

Data Dictionary

The following data dictionary provides a detailed description of each table,

including attributes, data types, and constraints.

Table 1: users

Column Name Data Type Description Constraints
user id INT Unique identifier | Primary Key,
for each user Auto increment
username VARCHAR (191) | Login name of | Not Null
user
email VARCHAR (191) | Email address of | Unique, Not Null
user
password hash | VARCHAR (255) | Hashed password | Not Null
for secure login
dob DATE Date of birth of | Optional
user
gender VARCHAR (10) | Gender of user Optional

103

created at TIMESTAMP Account creation | Default:
timestamp CURRENT
TIMESTAMP
Table 5.1: users Table Data Dictionary
Table 2: symptoms
Column Name Data Type Description Constraints
symptom _id INT Unique identifier | Primary Key,
for symptom Auto Increment
symptom name | VARCHAR (191) | Symptom name Unique, Not Null

Table 5.2: symptoms Table Data Dictionary

Table 3: diseases

Column Name Data Type Description Constraints
disease id INT Unique identifier | Primary Key,

for disease Auto Increment
disease name VARCHAR (191) | Disease name Unique, Not Null

Table 5.3: diseases Table Data Dictionary

Table 4: prediction_history

Column Name | Data Type Description Constraints
history id INT Unique identifier for | Primary Key,
prediction session Auto Increment
user id INT User who made the Foreign Key
prediction (users —user _id)
prediction_date | TIMESTAMP | Date and time of Default:
prediction CURRENT _
TIMESTAMP

Table 5.4: prediction_history Table Data Dictionary

Table 5: medical advice

104

disease

advice per (history,

disease) pair

Column Name | Data Type Description Constraints
advice id INT Unique identifier for | Primary Key, Auto
advice record Increment
history id INT Related prediction Foreign Key
session (prediction_history —
history id), ON
DELETE CASCASE
disease id INT Related disease Foreign Key (disease
— disease_id)
advice text TEXT General medical Not Null
advice gets from
LLM
unique_history | constraint | Ensures only one Unique

Table 5.5: medical advice Table Data Dictionary

Table 6: predicted _symptom (junction table)

Column Name | Data Type Description Constraints
history id INT Prediction session Foreign Key

ID (prediction_history —

history id)

symptom_id INT Symptom included | Foreign Key

in this prediction (symptoms —

session symptom_id)
Primary Key (history_id, | Composite primary

symptom_id)

key

Table 5.6: predicted symptom junction table Data Dictionary

Table 7: predicted disease (junction table)

105

Column Name | Data Type Description Constraints
history id INT Prediction session Foreign Key
ID (prediction_history —

history id)

disease id INT Disease predicted Foreign Key
(diseases —
disease id)

rank index INT Rank of prediction | Default 0

Primary Key (history id, | Composite primary

disease id) | key

Table 5.7: predicted disease junction table Data Dictionary

5.4 User Interface Design

The user interface (UI) of the disease prediction web application using machine
learning prioritizes on simplicity, ease of use, and accessibility during
development, ensuring that users with varying levels of technical expertise can
effectively interact with the system. The UI design is focussed on creating an
intuitive interface that enables users to input symptoms, view disease prediction
results, and achieve seamless interaction with the system. The frontend is
implemented using React, leveraging component-based design to promote
modularity and reusability while maintaining consistency across different pages
of the application.

54.1 Welcome Page

Upon launching the web application, users are greeted with a welcome interface,
featuring login and registration button to facilitate secure access to the system.
The header simultaneously displays the system logo, login portal and register

portal to users.

106

€ 5 @ © locahost3000 % O @ :

Login Sign Up

Easily Predict Diseases by "!
Entering Symptoms : {)\

Get fast, Al-powered predictions based on your symptoms

All rights are reserved

Figure 5.4: Actual Welcome Page

5.4.2 Login Page
The Login page allows users to access to the system. Once authenticated, the
user is directed to the Home Page, providing access to the core features such as

symptom input and so on.

€ 5 C @ locahost3000/login e O O :

.

Welcome to Disease Prediction!
Please enter your credentials.

Email
Enter your email
Password

Enter your password Show

() Remember Me

Don't have an account? Sign Up

Figure 5.5: Actual Login Page

5.4.3 Sign Up Page
The Sign Up Page enables users to create account and access the system securely.
This page is designed with minimalistic form structures with clear field labels,

and real-time validation feedback to reduce user input errors.

107

€ 2 C O localhost3000/register cCa® 5 @

e o oo |

Welcome to Disease Predictiont
Please enter your credentials.

Date of Birth

dd fmn vy]

Password

O Iagree with all terms and conditions.

Already have an accoun? Log in

Figure 5.6: Actual Sign Up Page

5.4.4 Home Page

The Home Page provides an overview of the application. It includes a brief
description of the disease prediction system. A “Get Started” button to navigate
to the prediction input form. Navigation bar with Home, History, Profile,

Username and Logout button.

€ 5 C O locahost3000/home e~ axw 93 @

m My History My Profile @ Hijohn Logout

Predict Your Health
with Confidence

Input your symptoms and get instant disease predictions powered by Al.

How It Works

Enter your symptoms Al analyzes your Receive potential
symptoms diseases.

Allights are reserved.

Figure 5.7: Actual Home Page

5.4.5 Select Input Method Page
The symptom input interface forms a key component of the system, allowing
users to enter their health-related symptoms. To enhance usability, the page

supports multiple input methods, including dropdown list and free-text entry.

108

€ 5 C O localhost3000/select-input e« x O O

m My History My Profile @ Hi john Logout I

Welcome to Disease Prediction!

Choose your preferred input method:

Dropdown List Free Text Input
Select symptoms from a predefined list. Easy to Type your symptoms naturally in a sentence. Al
use and avoids typos. will extract relevant symptoms.

ftching E.g., ' have a fever and cough
Skin rash for 2 days..."

Fever

Vomiting

Select Dropdown Select Free Text

Figure 5.8: Actual Select Input Method Page

5.4.6 Dropdown List Input Symptoms Page
The Dropdown List Input Symptoms Page including dropdown lists, searchable
fields, and checkbox selections, ensuring that users can effectively identify their

symptoms. Users can see the selected symptoms before making predictions.

€ 2 C O locahost3000/diopdown e O 0

m My History My Profile @ Hi john Logout

Dropdown List Symptoms Input

Please select your symptoms:

Ultching

O skin Rash
[Nodal Skin Eruptions
[Continuous Sneezing
U Shivering

O chills

CJeint Pain

“
Selected Symptoms:

1} High Fever x
2) Cough x
3) Runny Nose x
4) Fatigue x

All rights are reserved

Figure 5.9: Actual Dropdown List Input Symptoms Page

109

5.4.7 Free Text Input Symptoms Page

The Free Text Input Symptoms Page allows users to enter free-text input
symptoms, enabling greater flexibility in symptom submission. This design is
intended to make the application more user-friendly, especially for the users
who may not be familiar with the medical terminology or the exact symptom

names used in the database.

€ > C @ localhost3000/free-text esxaxw O 0 :

MyDP My History My Profile @ Hi john Logout

Free Text Symptoms Input

Describe your symptoms in a sentence:

T have runny nosee, high fever, cough and feel tired for three days.

[e] [—

Matched Symptoms (edit if needed):

1) Runny Nose

2) High Fever

3) Cough

<l B B

4) Fatigue

Figure 5.10: Actual Free Text Input Symptoms Page

5.4.8 Predicted Results Page

After submitting the input, the system generates prediction results and displays
them on the results interface. This page highlights the predicted diseases in clear
and concise format and shows the symptoms of users next to the potential

diseases.

€ 5 C O localhost3000/result e ax 9 O

m My History My Profile @ Hi john Logout

Predicted Results

s that matched your symptoms: Your Symptoms:

Common Cold Strongly matched 1) High Fever
Bronchial Asthma Moderately matched 2) Runny Nose
Jaundice 7 Weakly matched 3) Fatigue

4) Cough

View Medcal Advice

A This prediction is generated by a machis
medical diagnosis. Please con:

iming model and is intended for informational purposes only. It s not a
ualified healthcare professional for proper medical advice.

Allights are reserved.

Figure 5.11: Actual Predicted Results Page

110

5.4.9 View Medical Advice Page
The View Medical Advice Page provides tailored description, lifestyle tips,
prevention tips, and guidance on when to seek treatment for each potential

disease. This can assist users in understanding potential next steps.

€ 5 C @ localhost3000/medicakadvice o O 0

My History My Profile @ Hijohn Logout

2 Advices/Suggestions

Symptoms:

I For Common Cold:

Q Description: A viral infaction of the nose and throat. Symptams include runny nose, cough, sare throat, and

congestion. Most colds clear up within 7-10 days.
() ifestyle Tips: Rest and drink plenty of fluids, Avoid close contact with sick individuals
0 Prevention Tips: Wash hands frequently, Aveid touching your face

o When to Seek Care: See a doctor if symptams worsen o last longer than 10 days

I For Bronchial Asthma:

Description: A chronic respiratory disease causing inflammatian and narrowing of the airways. Symptoms
include wheezing, coughing, shortness of breath, and chest tightness.

0 Lifestyle Tips: Avoid triggers like allergens and irritants, Use an inhaler as prescribed

(0} Prevention Tips: Manage stress levels, Get regular exercise

o When to Seek Care: Seek immediate medical attention if experiencing severe breathing difficulties

| For Common Cold:

(©) pescription: The camman cold is a viral infection of the upper respiratory tract.It's highly contagious and
typically causes symptoms like runny nose, sore throat, and cough. Most cases resolve within a week.

() vifestyle Tips: Rest and stay hydrated, Avoid touching your face
Q Prevention Tips: Wash your hands frequently, Aveid close contact with sick individuals

@) When to Seek Care: See a doctor if symptoms warsen, last longer than 10 days, or include a high fever

“ Save Prediction

fuice s dynamically generated by Gemini. This is far informational purposes only and not a substitute for professional

All rights are reserved.

Figure 5.12: Actual View Medical Advice Page

111

5.4.10 History Page
The users can view records of the past prediction by navigating to the History
Page. This feature displays previously entered symptoms, corresponding

predictions results, and timestamps. Users may also delete the history records.

e @ @ localhost3000/history T r O @
MyDP My History My Profile @ Hi john Logout

& Prediction History

2025-09-12 13:44:54

i= symptoms:
*+ Fatigue
« Cough
« High Fever
* Runny Nose

Y Potential Diseases:

+ Common Cold

Aviral infection of the nose and throat. Symptoms include runny nose, cough, sore throat, and congestion. Most
colds clear up within 7-10 days.

Rest and drink plenty of fluids, Avoid close contact with sick individuals
Read More
* Bronchial Asthma

A chronic respiratory disease causing inflammation and narrowing of the airways. Symptoms include wheezing,
coughing, shortness of breath, and chest tightness:

Avoid triggers like allergens and irritants, Use an inhaler as prescribed

Read More
« Jaundice CIIED

Yellowing of the skin and whites of the eyes due to a buildup of bilirubin in the blood. It can indicate liver or
gallbladder problems.

Eat a healthy balanced diet, Stay hydrated

Read More

Figure 5.13: Actual History Page

5.4.11 Profile Page
The profile page allows users to view their personal details such as email address,
date of birth and gender. The page also features an “Update Profile” button that

directs users to the update profile page.

€ 5 C @ localhost3000/profile ek O O :
MyDP My History My Profile @ Hi john Logout
© User Profile
Hi, john ¢
Email Address:

john@123gmail.com

Date of Birth:
28 Dec 2014

Gender:
None

Want to change password? Click me!

SR

Figure 5.14: Actual Profile Page

112

5.4.12 Update Profile Page

The update profile page allows users to update personal information or change

account credentials.

<« C @ localhost:3000/update-profile e x O O :

2, Update Profile

Hi, john! Keep your personal information up to date.

Username:

john

Date of Birth:

28/12/2014 =]

Gender:

Select Gender v

Figure 5.15: Actual Update Profile Page
5.4.13 Change Password Page

This page allows users to change their password.

<« C @ localhost:3000/change-password e A O O

Change Password

Hi, john

Current Password:

Enter your current password

New Password:

Enter your new password

Confirm New Password:

Confirm your new password

Figure 5.16: Actual Change Password Page

113

5.5 Prompt Design Study

The aim of this study is match to objective 3 of this project, which is to design
and test different prompts for large language model (Google Gemini),
evaluating their effectiveness in advice generation and validate the outputs
against trusted medical sources. This study is to evaluate how different prompt
designs influence the accuracy and reliability of automatically generated general
medical advice and to validate the output results against trusted medical sources

such as WHO, CDC and other.

5.5.1 Prompt Styles

There are three different prompt styles were designed and tested:
1. Zero-shot Prompt
2. Role-based Prompt
3. Step by step reasoning Prompt

5.5.1.1 Zero-shot Prompting

The zero-shot prompting are the straightforward and specific requests that
clearly guide the model what to do or answer without the need for context and
roles. This type of prompt is suitable for simple tasks where the user has a clear
understanding of the output (Gadesha, 2025). It generates responses solely using
the internal knowledge base of the model. The more precise the instructions, the
greater the likelihood of achieving the desired outcome. It focuses on core action,
making it an ideal choice for simple tasks such as generation or summarization
(Jaiman, 2024). For example, a direct instruction prompt could be “Give general
medical advice for a patient with diabetes.” The strengths of this type of prompt
are easy to design, enable to produces quick and concise responses. The
weakness of it is the outputs may be incomplete, ambiguous or overly general

since no additional guidance is given.

5.5.1.2 Role-based Prompting
A role-based prompt instructs the model to assume a specific professional or
authoritative role before generating the response (GeeksforGeeks, 2025). This

approach can influence the tone, styles and content of Al, making the output

114

more pertinent, expert, and context aware. This facilitates the customization of
responses to simulate specific viewpoint, ensuring greater contextually relevant
and consistent. For example, the role-based prompt could be “You are a health
assistant. Provide general advice for a patient with diabetes based on clinical
guidelines.” This approach often produces more concise, structured,
professional and authoritative outputs that align more closely with guideline-
based practice. However, this type of prompt does not guarantee the factual

correctness, the accuracy still depends on the model’s training data.

5.5.1.3 Chain-of-Thought (CoT) Prompting

The Chain-of-Though (CoT) prompting is a prompt engineering technique
designed to guide the Large Language Models (LLMs) to generate explicit
reasoning steps before arriving at a final answer. According to Gadesha,
Kavlakoglu and Winland, this technique significantly enhances the quality of
LLM outputs, particularly for the complex tasks involving multi-step reasoning.
This does not provide the direct command but instead guides the model to “think
out loud” by breaking down the problem into smaller logical steps (Gadesha,
Kavlakoglu and Winland, 2025). For example, the chain-of-though prompting
could be “Explain reasoning step by step about how a doctor would recommend
on lifestyle advice for a patient with diabetes and then provide the final advice.”
This approach enhances the completeness by making the model is less prone to
skip the key steps. However, CoT prompts may generate the verbose and less
concise outputs. The reasoning steps it generates may not always reflect the

actual medical decision-making process.

5.5.2 Prompt Testing

The prompt testing was conducted using Google Gemini, where three different
prompt styles (Zere-shot, Role-based, and Chain-of-Thought) were applied to
identical medical queries. The generated outputs were collected and evaluated
against the trusted medical sources. The evaluation was carried out using four
criteria, which are accuracy, clarity, completeness, and consistence with

established medical knowledge. To ensure consistency and comparability, all

115

generated response were produced using Google Gemini 2.5 Flash model and

limited to a maximum of 100 words.

5.5.2.1 Prompt Testing on Diabetes
The prompt test is focused on the diabetes disease. There are three different
prompting styles were tested to generate the general medical advice for a patient

with diabetes.

5.5.2.1.1 Zero-shot Prompting

Q: Give general medical advice for a patient with diabetes, not exceeding 100

words.

A: Managing diabetes effectively is key to a healthy life. Regularly monitor
your blood sugar levels as advised by your doctor. Follow a balanced diet rich
in whole grains, lean proteins, and vegetables, while limiting sugary drinks and
processed foods. Incorporate regular physical activity into your routine, such as
walking or swimming. Take your medications as prescribed and attend all
scheduled medical appointments. Stay hydrated and manage stress. If you notice

unusual symptoms, contact your healthcare provider immediately.

Analysis of Zero-shot prompt

This output is aligned with the Cleveland Clinic (Cleveland Clinic, 2023) and
National Library of Medicine (Reynolds and Mitri, 2024) guidelines, which
recommend regular blood sugar monitoring, balanced diet and limiting
processed foods and sugary drinks. It also consistent with Mayo Clinic advice
on physical activities and stress management (Mayo Clinic Staff, 2025). The
response also includes a red-flag warning such as “contact healthcare provider
if unusual symptoms”, which is supported by NHS guidelines (NHS Choices,
2020). Overall, the answer provided is accurate and comprehensive. However,
it does not mention a specific exercise target such as 150 minutes per week,

making it slightly less precise.

116

5.5.2.1.2 Role-based Prompting

Q: You are a health assistant. Provide general advice for a patient with diabetes

based on clinical guidelines, not exceeding 100 words.

A: For diabetes management, prioritize a balanced diet rich in whole grains,
fruits, and vegetables while limiting sugary foods and saturated fats. Engage in
regular physical activity, aiming for at least 150 minutes of moderate exercise
weekly. Monitor blood glucose levels as advised by your doctor and take
medications as prescribed. Stay hydrated, manage stress, and get adequate sleep.
Regular check-ups are crucial for monitoring complications. Always consult

your healthcare provider for personalized advice.

Analysis of Role-based Prompt

This response aligns closely with the guidelines from Medline Plus
(MedlinePlus, 2019) and Mayo Clinic (Mayo Clinic, 2024), which recommend
a healthy, balanced diets and engaging in at least 150 minutes of moderate
exercise per week. It also incorporates monitoring the blood sugar levels,
hydration and managing stress, also reflecting Mayo Clinic advice. The advice
of “regular check-ups” is consistent with World Health Organization (WHO,
2024) guidelines for long-term monitoring. Overall, this output is accurate and
reliable, meets guideline requirements, and more precise than the Zero-shot

response.

5.5.2.1.3 Chain-of-Thought (CoT) Prompting
Q: Explain reasoning step by step about how a doctor would recommend on
lifestyle advice for a patient with diabetes and then provide the final advice, not

exceeding 100 words.

A: A doctor's recommendation for a patient with diabetes involves a multi-
faceted approach.
1. Assessment: The doctor first assesses the patient's current lifestyle,

including diet, physical activity level, smoking habits, alcohol

117

consumption, and stress levels. They also consider the patient's age,

weight, and any coexisting medical conditions.

2. Education: The doctor educates the patient on the importance of
managing blood sugar levels and the long-term health risks of

uncontrolled diabetes.

3. Personalization: The doctor then tailors the advice to the patient's
specific needs and preferences. For example, a busy professional might
receive advice on meal prep, while a less active person might get

guidance on incorporating short walks into their daily routine.

4. Goal Setting: The doctor works with the patient to set realistic and
achievable goals, such as losing a specific amount of weight or aiming

for a certain number of steps per day.

5. Follow-up: The doctor schedules follow-up appointments to monitor
progress, address challenges, and make adjustments to the plan as

needed.

Final Advice: Manage diabetes through a balanced diet of whole foods, regular
exercise (aim for at least 150 minutes of moderate activity weekly), and weight
management. Monitor blood sugar, take medications as prescribed, and reduce

stress. Limit processed foods, sugary drinks, and alcohol, and avoid smoking.

Analysis of CoT Prompt

This answer provides achieves transparent reasoning by simulating a doctor’s
decision-making process. The final advice matches Mayo Clinic (Mayo clinic,
2025) guidelines, including the weekly 150 minutes exercise target, dietary
control, and stress management. It also includes red-flag symptoms for urgent
care, consistent with NHS guidance. While the content is accurate and
comprehensive, including reasoning steps make it more verbose, which slightly
reduces clarity for patient-facing advice. Additionally, compared to zero-shot

and role-based responses, this response takes longer to generate.

118

5.5.2.1.4 Summary of Diabetes Results

Table 5.8: Diabetes Results on Prompt Testing

Prompt Style Zero-shot Role-based Chain-of-
Thought
Accuracy Accurate, but | Accurate and | Accurate and
missed specific | aligns with | guideline-
exercise target guidelines consistent
Clarity Clearand easyto | Very clear and | Less clear due to
understand concise added reasoning
steps
Completeness | Mostly Comprehensive, Comprehensive,

complete, but | covers all key | includes reasoning

lacking in detail | aspects and final advice

Consistency | Consistent with | Strongly Consistent, but

trusted sources | consistent with | reasoning makes it

trusted sources less concise
Response Fast response, | Slightly slower, as | Slowest, as
Time very quick | role framing adds | reasoning steps
generation context make the response
longer

All three outputs cover the essential high-level point. Role-based and Chain-of-
Thought provide slightly more clearer targets. Responses generated by each
prompt style are validated against authoritative recommendations on balanced
diet, regular physical activity, blood glucose monitoring and follow-up,
medication adherence, and when to seek medical care. These guidelines align
with WHO, CDC, Mayo Clinic and NHS guidelines. Role-based prompting
generates concise, guideline-aligned advice, including explicit weekly exercise
targets of approximately 150 minutes. Chain-of-Thought prompting provided
richer reasoning and personalized content but are longer in length. Zero-shot
generation provides acceptable high-level advice. Overall, the Role-based
prompting proves most effective at generating concise, guideline-consistent

advice for diabetes management.

119

5.5.2.2 Prompt Testing on Hypertension
The prompt test is focussed on the hypertension disease. There are three
different prompting styles to generate the general medical advice for a patient

with hypertension.

5.5.2.2.1 Zero-shot Prompting

Q: Give general medical advice for a patient with hypertension, not exceeding
100 words.

A: Managing hypertension, or high blood pressure, is crucial for your health. A
low-sodium diet is key; avoid processed foods and added salt. Incorporate
regular aerobic exercise, like brisk walking, for at least 30 minutes most days of
the week. Maintain a healthy weight, as even a small reduction can significantly
lower blood pressure. Adhere strictly to your medication schedule as prescribed
by your doctor and attend all follow-up appointments. Limit alcohol
consumption and quit smoking. Monitor your blood pressure at home and report

any concerning readings to your healthcare provider.

Analysis of Zero-shot Prompt

This response covers key advice consistent with the WHO (World Health
Organization, 2023) guidance, including healthy diet, reduced salt, exercise at
least 30 minutes most days, medication adherence, and stress management. For
the limited alcohol consumption and quit smoking are also aligns with Hello
Doktor (2017) health and wellness website. It also incorporates monitoring
blood pressure, reflecting to Centers for Disease Control and Prevention | CDC
advice (CDC, 2024). However, it does not specify quantitative targets for salt
reduction, which are detailed in WHO (World Health Organization, 2025)

guidelines such as salt <5 g per day.

5.5.2.2.2 Role-based Prompting

Q: You are a health assistant. Provide general advice for a patient with

hypertension based on clinical guidelines, not exceeding 100 words.

120

A: For managing hypertension, focus on a healthy lifestyle. Adopt a low-sodium
diet rich in fruits, vegetables, and whole grains, and limit processed foods.
Engage in regular physical activity, aiming for at least 150 minutes of moderate
exercise per week. Maintain a healthy weight, limit alcohol intake, and quit
smoking. Monitor your blood pressure regularly and take all prescribed
medications as directed. Consult your healthcare provider for personalized

guidance and treatment plans.

Analysis of Role-based Prompt

The Role-based output is highly guideline-oriented. It explicitly heart-healthy
dietary principles and specifies a weekly activity target (=150 minutes), includes
medication adherence, and advises regular blood-pressure monitoring and
urgent care for severe symptoms. This matches WHO (World Health
Organization, 2021) recommendations and is especially useful for clear patient
instructions because of its specificity and brevity. Role-based prompting
consistently generates answers that comply with guidelines and well-suited for

integration into patient educational material.

5.5.2.2.3 Chain-of-Thought (CoT) Prompting

Q: Explain reasoning step by step about how a doctor would recommend on
lifestyle advice for a patient with hypertension and then provide the final advice,
not exceeding 100 words.
A: A doctor's recommendation for hypertension management involves a
thorough, personalized approach.
Reasoning Steps
1. Diagnosis & Risk Assessment: The doctor first confirms the diagnosis
of hypertension through multiple blood pressure (BP) readings. They
assess the patient's overall cardiovascular risk, considering factors like
age, family history, and other conditions such as diabetes or high
cholesterol. This determines the urgency and intensity of lifestyle

changes.

121

2. Educate & Motivate: The doctor explains to the patient what
hypertension is, why it's a "silent killer" with often no symptoms, and
how lifestyle changes can directly lower BP and reduce the risk of
serious complications like stroke or heart attack. They emphasize that

these changes are often the first line of treatment.

3. Tailor the Plan: The doctor creates a personalized plan based on the
patient's current habits. For example, they might recommend the DASH
diet for someone with high sodium intake or specific physical activities
for a sedentary patient. The goals are made realistic and achievable to

ensure long-term adherence.

4. Monitor & Adjust: The doctor schedules follow-up appointments to
track the patient's BP, discuss progress, and address any challenges.
They adjust the plan, which may include adding medication if lifestyle

changes alone are not sufficient to reach target BP goals.

Final Advice

Adopt a DASH-style diet rich in fruits, vegetables, and low-fat dairy, while
reducing sodium intake. Engage in regular aerobic exercise, aiming for 150
minutes weekly. Maintain a healthy weight, limit alcohol, and quit smoking.
These changes significantly lower blood pressure and reduce the risk of heart

disease and stroke.

Analysis of CoT Prompt

The CoT response includes step-by-step clinical recommendations, followed by
a final advice block that follow guidelines from Medline Plus (Berman, 2022),
Mayo Clinic (Mayo clinic, 2025) and the Hello Doktor (2017). These include
the DASH diet, 150 minutes of exercise per week, limited alcohol and stop
smoking. The CoT format enhances interpretability and shows the clinical logic
behind recommendations, which is valuable for auditing review. However, the
additional reasoning text reduces the conciseness of information delivery,
making it less suitable for direct patient use and may need to be trimmed if the

output is shown to patients.

5.5.2.2.4 Summary of Hypertension Results

122

Table 5.9: Hypertension Results on Prompt Testing

Prompt Style Zero-shot Role-based Chain-of-Thought
Accuracy Accurate, Highly accurate, | Accurate, includes
advice matches | explicitly DASH and exercise
activity targets | guideline-aligned | recommendations
Clarity Clear and easy | Very clear and | Less clear due to
to understand structured lengthy reasoning
steps
Completeness | Complete, Comprehensive, Complete, includes
covers diet, | covers key | reasoning and final
exercise, recommendations | advice
medication and
lifestyle
Consistency | Consistent Consistent ~ with | Consistent, but
with trusted | trusted sources verbose compared
sources to guideline
wording
Response Fast, almost | Slightly slower | Slowest, as
Time immediate due to role framing | reasoning steps
response adds context extends generation
time

Same as summary of Diabetes results, all three outputs cover the essential high-
level point. Role-based and Chain-of-Thought provide slightly more clearer
targets. Responses generated by each prompt style are validated against
authoritative recommendations on balanced diet, regular physical activity, blood
pressure monitoring and follow-up, medication adherence, and when to seek
medical care. These guidelines align with WHO, CDC, Mayo Clinic and NHS
guidelines. Chain-of-Thought prompting provided richer reasoning and
personalized content but are longer in length. Zero-shot generation provides

acceptable high-level advice. Overall, the Role-based prompting proves most

123

effective at generating concise, guideline-consistent advice for hypertension

management.

5.5.3 Comparison and Discussion

A comparative analysis of three prompting styles, which are Zero-shot, Role-
based, and Chain-of-Thought for both diabetes and hypertension revealed
significant clear differences in accuracy, clarity, completeness, consistency and

response efficiency.

5.5.3.1 Zero-shot Prompting

Zero-shot prompts generated reasonably accurate and clear suggestions in both
scenarios. However, such suggestions often lack completeness, frequently
omitting specific exercise goals or guideline-based recommendations. The
primary advantage of this prompt lies in its ability to generate responses almost

instantly, but at the cost of sacrificing depth.

5.5.3.2 Role-based Prompting

Role-based prompts consistently deliver the most reliable and guideline-
compliant responses. By positioning the model as a “health assistant,” its
recommendations become more structured, aligned with patient needs, and
consistent with the trust authoritative medical institutions such as the WHO or
CDC. This approach strikes a balance between accuracy, clarity, and

completeness while maintaining reasonable response times.

5.5.3.3 Chain-of-Thought (CoT) Prompting

Cot prompted responses are comprehensive and contextually rich, revealing the
reasoning behind medical advice to enhance transparency. However, this
advantage comes at the cost of reduced clarity due to verbosity and logical
complexity and slower response times. While the advice is accurate and
complete, the length reasoning process may be difficult for patients seeking

quick, actionable guidance to digest.

124

These results indicate that Role-based prompting strategies represent the most
effective approach for generating general medical advice using large language
models. This strategy strikes a balance between accuracy, clarity, completeness,
and efficiency, making it suitable for real-world health consultation applications.
While CoT prompts hold value in enhancing transparency and achieving high-
level reasoning, but it more suitable for backend verification on professional
user scenarios rather than direct patient communication. Zero-shot prompting
styles offer speed advantages but lack the necessary reliability and specific

guidance.

5.54 Summary

This short study evaluated three prompting styles, which are Zero-shot, Role-
based, and Chain-of-Thought for generate medical advice for diabetes and
hypertension using large language models (Google Gemini). The outputs were
compared against trusted medical resources based on 5 metrics including
accuracy, clarity, completeness, consistency, and response efficiency.

The results showed that Role-based prompting produced the most well-
balanced and guideline-consistent outputs with accuracy, clarity, and
completeness as well as maintaining reasonable response time. Zero-shot
prompting is fast and straightforward, but lacking in depth and completeness,
hence comparatively less reliable. Chain-of-Thought prompting produces
comprehensive and transparent reasoning steps, but its length expression lowers
clarity and increased response time, potentially limiting its suitability for
patient-facing contexts.

Overall, role-based prompting strategies represent the most effective
approach for generating accurate and accessible health advice. This method
ensures precision and consistency with clinical guidelines while providing clear
and concise guidelines for patient use. These findings confirm that well-
designed prompts are crucial for optimizing the usability of large language
models in medical applications, aligning with the project goal of designing and

testing effective prompting strategies.

125

CHAPTER 6

SYSTEM IMPLEMENTATION

6.1 Introduction

This chapter details the implementation of the Disease Prediction Web
Application using Machine Learning, outlining the development process for the
machine learning model development, frontend development, backend
development, large language model integration and database configuration. The
system was implemented using a React frontend, a Flask backend, a MySQL

relational database, and a scikit-learn machine learning model.

6.2 Machine Learning Model Development

The Machine Learning Model was implemented using scikit-learn and trained
on the Symptom-Disease Prediction Dataset (SDPD) published by Jay Tucker
in 2024. The scikit-learn library offers a wide range of classifications algorithms.
The development process includes dataset preprocessing, model training and
evaluation. There are three models were selected for comparison, with the

highest-performing model ultimately integrated into the web application.

6.2.1 Data Preprocessing

The dataset contains symptom-disease mappings. Each record includes a set of
symptoms as input features and the corresponding disease as the target label.
The dataset used in this project is structured in a binary format, where each
symptom is represented by 0 or 1. 0 indicates absence, while 1 indicates
presence. The data preprocessing steps were designed to handle missing value,
categorical label encoding for the target, remove duplicates data, and split the

dataset to training set, validation set and testing set.

6.2.1.1 Handling Missing Value
Missing or incomplete data may degrade model performance and introduce bias.
Therefore, rows containing missing values (NaN) will be removed. The dataset

has completed missing value checks, since no missing values were detected, no

126

imputation or deletion operations are required. This ensures the integrity of the

dataset while preserving its original distribution. Figure 6.2 shows a code

snippet for handling missing value, where missing values are treated as zero.

df.isnull().sum()
print(f"mi values: {df.isnull().sum().sum

Missing values: @

Figure 6.1: Code Snippet for Handling Missing Value

6.2.1.2 Categorical Label Encoding

The target variable (prognosis) in the dataset consists of disease names, which
are categorical labels such as Diabetes or Fungal Infection. Since most machine
learning algorithms cannot directly process string labels, scikit-learn internally
converts these disease names into numerical representations during model
training. This process ensures classification models can effectively recognize
and distinguish between different disease categories while preserving the

original dataset structure.

6.2.1.3 Duplicate Removal

Duplicate records may introduce bias into the training process and potentially
reduce processing speed, particularly when handling relatively small datasets.
To address this issue, the dataset underwent duplicate scanning, and all
duplicate rows were removed. This ensures each observation contributes equally
to the training process, preventing overfitting to repeated samples. Figure 6.1
shows the code snippet of remove duplicate rows in dataset.

pd.read csv("symbipredict 2022.csv")

df.drop duplicates().reset index(drop=True)

Figure 6.2: Code Snippet for Remove Duplicate Rows in Dataset

6.2.1.4 Dataset Splitting

After data cleaning, the dataset was divided into three subsets, which are
training set, validation set and testing set. Following the standard machine
learning practice, the splitting ratio was set to 70% for training, 15% for testing
and 15% for validation. To ensure the robustness of the evaluation, at least one

sample from each disease category is randomly selected for inclusion in both

127

test and validation sets. The remaining data was allocated proportionally to
maintain the target distribution across all data splits. Figure 6.3 shows the code
snippet for data splitting. The three subsets will be saved in the project folder,
which are Training.csv, Testing.csv, and Validation.csv. All the subsets are in

CSV format and contain symptom features along with their corresponding target

labels.

target col = "
total len =

test size = round(@.15 * total len)
val size = round(®.15 * total len)

train_size = total len - test size - val size

select random per class(df, target, base seed=100):
return df.groupby(target, group keys=Fa .apply(
x: x.sample(1, random_state=(base seed + hash(x[target].iloc[@]) % 1000))

)

test holdout = select random per class(df, target col, base seed=100)

df _remaining = df.drop(test_holdout.index)

val holdout = select random per class(df remaining, target col, base seed=200)
df remaining = df remaining.drop(val holdout.index)

Figure 6.3: Code Snippet for Data Splitting

6.2.2 Model Training

Three models were selected for experimentation based on their suitability for
classification tasks, which are Random Forest, Decision Tree and Support
Vector Machine. The model training process involved training three machine
learning models to select the best-performing model for the disease prediction
task. Figure 6.4 shows the default version of three machine learning models
architecture.

models = {
"Random Forest"”: RandomForestClassifi
"Decision Tree": DecisionTreeClassifier()

Figure 6.4: Model Architecture

6.2.3 Model Optimization
The goal of model optimization is to determine the optimal combination of
hyperparameters that enhance model performance. This can prevent issues such

as overfitting or underfitting, improved accuracy, and better generalization. The

128

hyperparameter tuning was conducted on three selected algorithms. The tuning
process employed a manual grid search methos, systematically evaluating
candidate parameter values on the validation dataset. Model performance was

assessed using accuracy, precision, recall and F1 score.

1. Random Forest Classifier: The default RandomForestClassifier() uses
100 trees (n_estimators=100) with no depth restriction
(max_depth=None). While this offers flexibility, it may lead to
unnecessary complexity.

Tuning Parameters:
e max_depth: [5, 9, 10, 15],

e n_estimators: [50, 100]

2. Decision Tree Classifier: By default, DecisionTreeClassifier() grows
decision tress until all leaf nodes are pure classes.
Tuning Parameters:
e criterion: ['gint', 'entropy'],

e max_depth: [None, 5, 10]

3. Support Vector Machine (SVM): The default SVC() uses a radial basis
function (RBF) kernel with C=1.0 and gammar="scale’. This baseline
model may fail to capture complex patterns in high-dimensional data.
Tuning Parameters:

e C:[0.1,1,10],
e gamma: ['scale', 0.01, 0.001],
e kernel: ['rtbf']

Each model was evaluated on the validation set using multiple performance
metrics, including performance metrics, including accuracy, precision, recall,
F1-score. The hyperparameters yielding the highest validation accuracy were
ultimately selected for retraining on the full training set and test with testing set.

Figure 6.5 shows the hyperparameter tuning for three models.

129

svm_param grid = {
"c": [@.1, 1, 10],

Figure 6.5: Hyperparameter Tuning for three models

After evaluation on the validation set, the optimal hyperparameter for each
model were determined as follows:

e Random Forest: n_estimators = 100, max_depth =9

e Decision Tree: criterion = gini, max_depth = None

e Support Vector Machine: C = 10, gamma = 0.001, kernel =rbf

These optimizes configurations outperformed the baseline model on the
validation set and were therefore selected for subsequent testing and final

evaluation.

6.2.3.1 Model Optimization Results

This section presents the model optimization results. Figure 6.6 to 6.10 present
detailed results of hyperparameter tuning on the validation dataset. These
figures illustrate the performance of each candidate configuration across

multiple evaluation metrics, including accuracy, precision, recall and F1-score.

Random Forest

The optimization results indicate that certain configurations of Random Forest
achieved perfect validation score, with the accuracy, precision, recall and F1-
scores all reaching 1.000. While such results appear outstanding at first glance

but raise concerns of overfitting. Overfitting occurs when the model memorizes

130

the training and validation sets rather than learning generalized patterns, thereby
weakening its ability to handle unseen data. The configuration with
n_estimators = 50/100 and max_depth = 15 consistently produced perfect scores,
which were treated as overfit models. In contrast, more balanced configurations
are n_estimators = 100 and max_depth = 9, which contribute the accuracy of
97.83%. The Figure 6.6 shows the Random Forest optimization results. Figure
6.7 shows the learning curve of the Random Forest, indicate that the max_depth

with 9 has the highest accuracy without overfitting.

Tuning Random Forest...
Params: {'n_estimato , ‘max _depth': 5, ‘random state’: 42} | val Accuracy: ©.8843 | Pre n: ©.7297 | Recall: ©.8849 | F1: 0.7528
ax_dep 9, 'random state® 421 | val Acc 5 5 0.9634 | F1: 0.9512
, ‘max_depth , ‘random_s al Ac s .959 Reull 0.9756 | F1: ©.9634
‘max_depth': 15, ‘random s al Ac - isi - Recall: 1.6000 | F1: 1.0000

, ‘max_depth®: *random_s al Ac .826 ci .7659 call: ©.8293 | F1: 9.7855
‘max_depth”: i

b 'maxidepth': 2
‘max_depth”: 1‘3, randrvm t.tate : 42} | val ALLIJ

Figure 6.6: Random Forest Optimization Results

Learning Curve - Random Forest

1.0
0.9
0.8 1
=
~
z
3 0.7 1
2
0.6
—8— Train Accuracy
Validation Accuracy
0.5 4 Underfitting Zone
Good Fit Zone
Potential Overfitting Zone

2 4 6 8 10 12 14
Max Depth

Figure 6.7: Learning Curve of Random Forest

Support Vector Machine

Same as Random Forest, the optimization results indicate that certain
configurations achieved perfect validation score, with the accuracy, precision,
recall and Fl-scores all reaching 1.000. Overfitting may occur also in the
Support Vector Machine. The configuration with C = 1 or C =10 and gamma
set to ‘scale’ also result in perfect validation performance, suggesting potential

overfitting. In contrast, more balanced configurations are 'C": 10, and 'gamma':

131

0.001, which contribute the accuracy of 93.4%. The Figure 6.8 shows the
Support Vector Machine optimization results. Figure 6.9 shows the heatmap
diagram of SVM to compare different values of C and gamma to visualize the

accuracy of grid.

Tuning SVM.

params: {'C': *scale’, 'kernel’: ‘rbf'} | val Accuracy: @.1087 | Pre"<1ﬂn 9.0604 | Recall: ©.1220 | F1: ©.0673
: e.m, ‘kernel’: 'rbf'} | val Accu C : 9.1885 | Recall: ©.1707 | F1: 8.1150
: 9.001, 'kernel': ‘rbf" al Ac . 965 0.0331 | Recall: ©.6732 | F1: @.0377
‘scale’, 'kernel ‘rbf* al Ac i, 1.0000 | Recall: 1.0000 | F1: 1.0000

a': ©.01, 'kernel': cc 5 call: 1.0000 | F1: 1.0000
1, 'gamma': ©.001, 'kernel': .6739 ci .6 ca .6829 | F1: 0.6487
10, 'gamma scale', ‘kernel': 'rbf’ E 3l 8 o : 1.0000 | F1: 1.0000
10, ‘gamma‘: .01, 'kernel': ‘rbf’ al Accura ci ca .0000 | F1: 1.0000
: 10, ‘gamma’: 0.001, ‘kernel': ‘rbf'} | Val Accuracy: O 9348 | Preuurxn e 9085 | Recall: ©.9268 | F1: ©.9122

Figure 6.8: Support Vector Machine Optimization Results

SVM Validation Accuracy (C vs Gamma)

1.0
;f - 0.065 0.152 0.065 0.043 0.065
0.8
1.000 I 0.043 0.043
0.6
1.000 . 0.043 0.043
-0.4
1.000 ! 0.043 0.043
-0.2

1.000 Yy 0.043 0.043

Gamma

Figure 6.9: Heatmap diagram of SVM

Decision Tree

The tuning results of the Decision Tree classifier indicate that clear differences
in performance based on the selected criterion and maximum depth. When
trained with the default configuration (criterion= ‘gini’, max_depth=None), the
model achieved the highest validation performance with an accuracy of 71.74%.
This demonstrates that an unrestricted depth enables the decision tree to capture
the underlying patterns within the dataset effectively. In contrast, limiting the
maximum depth to 5 or 10 cause a sharp decline in performance. Such results
indicate that underfitting and the model is overly simplified and fails to
adequately capture the complexity of the data. The Figure 6.10 shows the

Decision Tree optimization results.

132

Tuning Dec 1<1r n Tree.

5 rmx depth’: Ilﬂne *random_ <tate 42} | val Accuracy: @.7174 | Precision: ©.6990 | Recall: 0.7195 | F1: 0.6875
a) 3

1087 | Precision: 81 | Recall: ©.1228 | F1: ©.0987
i 08 | Recall: @.2439 | F1: 0.2220
0.4927 | Recall: ©.5610 | F1: ©.4988
1 3354 | Recall: @.4268 | F1: 0.3474
, ‘max_ . depth’: 18, “random state’: 42} | val Accuracy: e 5217 | Precision: ©.4512 | Recall: ©.5488 | F1: 0.4704

Figure 6.10: Decision Tree Optimization Results

6.2.4 Model Evaluation

The optimized models were subsequently tested on the independent testing set
to evaluate the model’s performance. For each algorithm, predictions were
compared with against actual labels, and metrics such as accuracy, precision,
recall and Fl-score were calculated. Evaluation is crucial for determining
whether a model can effectively generalize its training results to unseen data,

rather than merely performing well on the training and validation set.

The optimal hyperparameter were determined for all three models, the
models were retained and evaluated on the independent testing dataset. This
dataset was not used during the training or validation process, ensuring that the
evaluation results accurately reflect the generalization capabilities of each
model. The results of the evaluation are presented in the Figure 6.11. The Figure

6.12 shows the bar chart of the model performance on testing set.

--- Test Set Metrics ---
Accuracy Precision Recall F1-score

Random Forest ©.978261 ©.963415 0.975610 ©.967480
Decision Tree ©.652174 ©0.583740 0.634146 ©0.595492
5M 8.956522 0©.943889 ©.951220 ©0.946341

Figure 6.11: Testing set results of 3 models

133

Model Performance on Test Set

1.0 4

0.8 1

0.6

Score

0.4 1

0.2 4
BN Accuracy

B Precision
B Recall
I Fl-score

0.0-
Random Forest Decision Tree SVM

Figure 6.12: Model Performance on Test Set

The results show that the Random Forest (RF) model outperformed the other
two algorithms across all evaluation metrics. With an accuracy rate of 97.8%
and balanced performance in precision, recall and F1-score, the Random Forest
demonstrated robust predictive capability and stability, making it the most
suitable for integrate in the system. In contrast, the Support Vector Machine
(SVM) also delivered robust performance with an accuracy rate of 95.7%.
Although slightly inferior to Random Forest across all metrics, the SVM still
demonstrated high predictive capability and strong generalization ability on
unseen data. The Decision Tree (DT) achieved only 65.2% accuracy on the
testing set, showing a significant gap compared to both Random Forest and
Support Vector Machine.

Comparative analysis indicates that while both Random Forest and
Support Vector Machine achieved highly reliable results, RF consistently
outperformed SVM across all metrics. Although DT serve as useful baseline
models, the predictive capabilities remain insufficient. Consequently, the RF
model was ultimately selected as the ensemble prediction model for the disease
prediction web application, as it achieves the optimal balance between accuracy,
precision, recall and F1 score. The RF model is saved as

"random_forest model.pkl" in the backend.

134

To ensure the correctness and reliability of the Random Forest model,
a practical validation approach was conducted in which predefined sets of
symptoms were submitted to the trained model. The top 3 predicted diseases
were then compared against conditions identified from trusted medical
resources such as Mayo Clinic, MedlinePlus and WHO. This approach aims to
validate whether predictions generated by machine learning models were
medically validity, although the system is not intended to replace professional
diagnosis.
The correctness of predictions was classified into three categories:
o Exact Match: The expected disease was among the system’s top 3
predictions.
o Partial Match: The predicted disease was medically related but not the
primary expected disease.

e No Match: The predicted diseases did not align with any expected

conditions.

Table 6.1: Prediction Verification Results

Symptom Set Expected System Predictions | Match
Disease(s) (Top 3) Type
High fever, Chills, Malaria (Centres | Malaria, Typhoid, Exact
Sweating for Disease Heart Attack
Control)
Polyuria, Excessive | Diabetes (Mayo Diabetes, Jaundice, | Exact
hunger, Weight loss | Clinic) Hyperthyroidism
Chest pain, Heart Attack Hypoglycemia, Partial
Breathlessness, (Mayo Clinic) Heart Attack,
Sweating, Malaria
Palpitations
Red spots over body, | Chickenpox Chickenpox, Fungal | Exact
Itching, Pus filled (Cleveland Infection, Drug
pimples Clinic) Reaction
Headache, Nausea, Migraine (Mayo | Migraine, Vertigo, Exact
Visual disturbances | Clinic) Malaria

135

The Table 6.1 shows the prediction verification results. Most cases
showed exact or partial alignment with existing medical resources, indicating
that the trained RF model generated predictions generally align with established
medical knowledge. The prediction verification experiment assessed the
correctness of the system’s outputs by comparing them with expected diagnoses
derived from trusted medical references (Centers for Disease Control and
Prevention, 2023; Mayo Clinic, 2023; Cleveland Clinic, 2023). However,
prediction accuracy decreased in cases involving ambiguous or overlapping
symptoms, reflecting the inherent challenges of different diagnosis. This
validation ensure that the system can effectively generate reasonable predictions,
and it should be strictly used as a decision-making support tool and cannot

replace professional medical assessments.

6.3 Web Application Development

The disease prediction system is implemented as a web-based application offers
users with a convenient, user-friendly, and highly interactive interface. Its
developed using a three-tier architecture design that include the frontend,
backend, and database. This structure ensures the modularity, scalability and
effective separation of responsibilities, facilitating maintenance and future

extension.

6.3.1 Frontend Development

The system frontend is developed using React, with a component-based
structure that is particularly well-suited for dynamic, interactive web application.
The component-based structure ensures the consistency across the pages with
reusable elements such as Header, Footer and so on. The core function of the
frontend is to serve as the user interface, enabling seamless interaction with the

system.

6.3.1.1 User Authentication and JWT Handling
Authentication is a critical component of the web application to ensure that only
authorized users can access their history and predictions. The application

utilizes JSON Web Tokens (JWT) for secure session management. Upon user

136

login, the backend issues a JWT which is securely stored in local storage or
session storage. When the frontend receives a user login request, it sends the
login credentials to the backend API via a POST request. The backend validates
the credentials and issues a JWT signed with a server-side secret key if
successful.

If the user selects the “Remember Me” option, the token is stored in
localStorage, ensuring persistence across browser sessions. Otherwise, the
token is stored in sessionStorage, which expires automatically when the browser
is closed. This ensures that sensitive endpoints such as fetching user details,
submitting symptoms or viewing prediction histories are only accessible to
authenticated users. The Figure 6.13 shows the code snippet of token storage
logic that support both persistent and temporary sessions depending on user

preferences.

it (formData.remember) {
localstorage.setItem("token™, data.token);

sessionStorage.setItem("token”, data.token);

Figure 6.13: Token Storage Logic
After the successful login, the frontend queries the backend for user
profile details using the issued token. The returned information such as
username is dynamically injected into the application state, allowing
personalized display on the interface, including showing the username on the
header. For each secured API request, the token is appended to the
Authorization header. The Figure 6.14 shows the code snippet of token included

in the Authorization header to authenticate protected API calls.

Figure 6.14: Attach Token to Secured API Requests

On the backend, Flask validates the token and extracts the user’s
identity. Only when the token is valid, the backend returns user specific data.

This ensures that sensitive features remain accessible only to authenticated users.

137

6.3.1.2 Input Validation

The web application implements input validation to ensure the data integrity,
prevent invalid input formats, and enhance security. Multiple forms in the
disease prediction web application utilize client-side validation, verifying user
input before submission to the backend. This design not only improves user
experience through immediate feedback but also effectively reduces

unnecessary server load.

6.3.1.2.1 Register Form Validation

The registration form includes multiple validation rules to ensure accurate data
entry. These rules include checking for valid email formats, verifying password
length requirements, and preventing users from submitting empty fields. The
system provides immediate feedback to users through descriptive error
messages, thereby enhancing user experience and reducing server load. When
users register, the system will prompt users to enter the username, email address,
date of birth, password, confirm password, and agree to the relevant terms and
conditions. When the validation fails, the corresponding error message is
displayed immediately on the form interface. The Figure 6.15 shows the code
snippet of registration form validation. This logic prevents invalid input and

enforces minimum password length requirements.

138

IformData.username.trim()) errors.username = “Username is requi
IformData.email

+\.\S+/. test(
= "Enter a valid

IformbData.dob date of birth is required.

Iformbata.password
.password = "Pas
e if (formData.password.length < 6
rs.password = “Pa rd must be at least 6 characters.”;

if (!formData.agree

errors.agree = "You must agree to the terms and

Figure 6.15: Code Snippet for Registration Form Validation

6.3.1.2.2 Login Form Validation

The login form integrates multiple validation mechanisms to ensure secure and
accurate user input. The primary checks include email validation and password
validation. The system validated that the email field is not empty and conforms
to a standard email pattern using a regular expression. If the input does not meet
the requirements, an inline error message is displayed. For the password
validation, the password field is required and cannot be blank. The missing input
triggers an immediate validation error. If the user login successful, the system
will redirect users to the home page. The Figure 6.15 shows the code snippet of
login form validation. The below logic ensures that only correctly formatted

data is sent to the backend, reducing the risk of invalid requests.

139

IformData.email
ors.email = equired. " 3
lvalidateEmail (f
newerrors.email = 'Plea enter a v ;5. "3 formIsvalid =

IformData.password
newerrors.password = 'Pas 'd is required.'; formIsvalid =

Figure 6.16: Code Snippet for Login Form Validation

6.3.1.2.3 Dropdown Symptom Selection Validation

The dropdown symptom input page integrates multiple validation checks to
ensure that valid data is submitted to the machine learning model. Key
validation features include search and filter, checkbox validation, and “Add”
button validation. User can dynamically search symptoms by entering the
keywords of the symptoms, with the system filtering the displayed list in real
time. Each symptom can be selected via checkbox. The system prevents
duplicated selections by filtering already added symptoms. When the user
clicking the “Add” button, the system verifies that at least one symptom is
checked. If no symptoms are selected, the alert appears on the interface. The
Figure 6.17 shows the code snippet of the validation code for an empty symptom

selection and an empty prediction request.

if (checked.length === @
alert(" & Please check at least one symptom before adding.™);
return;

if (selected.length === ¢
alert(" 4o Please add at least one symptom before predicting.”);
return;

Figure 6.17: Code Snippet for Dropdown Symptom Selection Validation

6.3.1.2.4 Free Text Symptoms Input Validation

The free text symptoms input page enables users to describe their health
condition in natural language rather than selecting symptoms manually from a
predefined list. Input validation ensures that the text is not empty before

submitting. If the user attempts to extract symptoms without providing text, the

140

system displays a warning message. After submission, the input text is sent to
the backend via secure API request with JWT authentication. The backend
applies large language model (Google Gemini) to identify and extract relevant
symptom. The extracted symptoms are displayed in a dedicated section titled
“Matched Symptoms” and users may remove the symptoms via a close icon. If
the matched symptoms are empty, the system shows an alert to remind user to
add at least one symptom. Figure 6.18 shows the code snippet for free text

symptoms input validation.

if (linputText.trim()
alert("pPle
return;

if (matchedSymptoms.length
alert({ 'Please adc
return;

Figure 6.18: Code Snippet for Free Text Symptoms Input Validation

6.3.1.2.5 Update Profile Form Validation

The update profile page enables authenticated users to modify their personal
information, ensuring that their account details remain accurate and current. The
system compares current input values with the original values retrieved from the
backend. If no changes are detected, the system prevents unnecessary API calls
by displaying a “No changes detected” alert. The username cannot be left blank,
prevents accidental submission of an empty username. For the date of birth, the
input restricted to valid date format. The gender section implemented a
predefined options such as Male and Female, reducing the risk of inconsistent
entries. The Figure 6.19 shows the code snippet for update profile form

validation.

141

if (username !== originalUsername) updatedData.username = username;
] alDob) updatedData.dob = dob;
ginalGender) updatedData.gender = gender;

edData).length === @
alert("No cha detected.™);
return;

Figure 6.19: Code Snippet for Update Profile Form Validation

6.3.1.2.6 Change Password Form Validation

The change password page enhances user account security by allowing users to
update their password. This feature protects users’ privacy and safeguards
sensitive information stored in the system. The current password field, new
password field, and confirm password field is mandatory. If left blank, the error
message is displayed to prevent empty submissions. A minimum length
requirement of 6 characters is required to encourage stronger password and
reduce vulnerability. The system ensures that both new password and confirm
password entries are match. Otherwise, the error message “Password do not
match” is shown. The Figure 6.20 shows a code snippet for change password

input validation.

if (!currentPassword.trim()

rd is requi
~d must be at least 6 characters.';
confirmPassword.trim()

newErrors.confirmPassword
it (newPassworc

JErrors.confirmPassword =

Figure 6.20: Code Snippet for Change Password Input Validation

6.3.1.3 User Experience (UX) enhancements

6.3.1.3.1 Login and Register

142

For the inline error message, the validation errors are displayed directly below
the corresponding input fields, guiding users to correct the errors. In addition,
users can toggle between hiding and showing their password, improving
usability while ensuring security. Users also can choose to persist their login

session using either localStorage or sessionStorage in login page.

6.3.1.3.2 Dropdown Symptom Selection

The dropdown symptom input page was designed not only to ensure valid date
entry but also to improve usability and provide an intuitive interaction flow for
end users. A real-time search bar allows users to quickly filter the required
symptoms from the massive symptom list by entering relevant keywords. This
reduces cognitive load and ensures that users can efficiently locate the
symptoms they intend to select.

Furthermore, users can check multiple symptoms before confirming
their selection. Once the symptoms are added, the selected symptoms are clearly
displayed in a dedicated “Selected Symptoms” section. The selected symptom
can be removed using a close icon, giving users full control to revise their
selection without having to restart the process. The system also ensures the clear
navigation control. The button such as “Back”, “Add” and “Predict” are clearly

labelled and visually distinct, reducing ambiguity in navigation.

6.3.1.3.3 Free Text Symptom Input

The free text symptom input page provides guidance through placeholder text.
The input field contains a placeholder sentence such as “I have a fever and
cough for 2 days...” to guide users on how to describe their symptoms. This
page also includes loading feedback. During symptom extraction, the “Extract
Symptoms” button will be temporarily disabled and labelled “Extracting...” to
prevent duplicate requests and indicate to the user that the system is processing.
By allowing users to remove symptoms from the extracted symptom list, the
system provides flexibility and avoid forcing incorrect inputs. If no symptoms
are selected, the user is informed through an alert. The navigation buttons like

“Back” and “Predict” are styled consistently with other input methods.

143

6.3.1.3.4 Update Profile

The user information such as username, date of birth and gender is automatically
retrieved and displayed when the page loads. This can save users time and effort.
Only modified fields are sent to backend, minimizing server load and preventing
unnecessary overwriting of unchanged data. A confirmation message “Profile
updated successfully” is displayed upon successful update. If the username is
changed, the update is immediately reflected across the web application through
the global state update. Users can return to the profile page at any time using the

“Back” button, ensure the smooth navigation.

6.3.1.3.5 Change Password

The contextual message like “Hi, [username]” fosters user engagement. The
form validation runs upon submission, immediately highlighting missing or
invalid fields to avoid wasting server requests. When the update request is in
progress, the “Update Password” button changes to “Updating...” and disabled
to prevent duplicate submissions. A Back button enables users to easily return
to the profile page. For successful update, the system displays a confirmation
alert with the backend response message and redirect users to profile page. If
the password is incorrect, a clear error message is displayed. The error messages

and button states improve usability by guiding users step by steps.

6.3.1.3.6 Result

The result page displayed the match strength indicators via icons. The
predictions are visually ranked using text and star ratings. For the strongly
matched disease show full star, for the moderately matched disease show half
of star, and the weakly matched disease show colourless star. This gives users
confidence levels in the prediction without needing to understand probabilities
machine learning outputs. The results page also displayed clear card-based
layout. Two distinct cards separate “Potential Disease” and “Your Symptoms”,
This layout helps users easily connect to their input and prediction. The “View
Medical Advice” button provides a clear next step, guiding uses to additional
information. The system displays “Loading results...” while predictions are

being processed, keeping the Ul responsive. It also includes health disclaimer

144

for trust and responsibility. This enhances trustworthiness and ensures ethical

communication of Al results.

6.3.1.3.7 General Medical Advice

The general medical advice page is designed with a strong emphasis on user
experience, ensuring the information is presented in a structured, clear, and
easily accessible manner. The system avoids displaying vague generalizations
or raw data, instead organizing recommendations into distinct sections such as
disease descriptions, lifestyle advice, prevention strategies, and guidance on
when to seek medical attention. Users can simultaneously view the correlation
between entered symptoms and the system’s predicted conditions. This
effectively builds user trust in the recommendations provided by the system.
Additionally, users can save predictions and recommendations to their personal
history for future reference, ensuring continuity in healthcare services. The page
also includes a clear disclaimer emphasizing that the advice provided is for

informational purposes only and should not replace professional medical staff.

6.3.1.3.8 History

The History page provides users with a clear and organized view of past
predictions, covering symptoms, conditions, and medical advice. Featuring a
card-based layout for enhanced readability, it uses icons for quick recognition
and allows users to expand or collapse detailed recommendations as needed.
Functions such as confirmed record deletion, real-time feedback notifications,
and token-based secure access further optimize usability and control. This
design not only elevates the overall user experience but also ensures users can

conveniently and securely review and manage their health prediction records.

6.4 Backend Development

The backend of the Disease Prediction Web Application using Machine
Learning was developed using Flask, a lightweight Python web framework
well-suited for building RESTful APIs. The backend serves as the

communication layer between frontend and machine learning model, handling

145

user authentication, symptom extraction, disease prediction, general medical
advice generation and database operations. The backend also integrates with
MySQL database. The backend defines all the API endpoints, loads the trained
Random Forest model, the random_forest model.pkl, and manages middleware
such as JWT authentication and CORS configuration. Sensitive environment
variables such as the secret key, Gemini API key and database setup are
managed using python-dotenv, ensuring secure configuration management.

Figure 6.21 shows the code snippet of project setup.

load dotenv()

app = Flask(_ name)

CORS(app, origins=["http

SECRET_KEY = 0s.getenv({"SECRET KEY™)
BASE_DIR = ©s.path.dirname(os.path.abspath(
MODEL DIR = 0s.path.join(BASE DIR, "ML model

Figure 6.21: Code Snippet of Project Setup

6.4.1 Project Architecture
The key aspects of the architecture include authentication and security, database

integration, machine learning integration, prediction history and medical advice,

and RESTful design.

6.4.1.1 JWT Decorator

The system implemented using JWT tokens with custom decorators to protect
the sensitive routes such as profile, predictions and history. If no token is found,
return a JSON response with a 401 Unauthorized status and an error message

“Token is missing”. Figure 6.22 illustrates the code snippet for JWT Decorator.

146

token_required(f):

@wraps ()
decorated(*args, **kwargs):
toke
if "

if auth_header.startswith(
token = auth_header.split(

token:
return jsonify({"error”: "Token is miss

log in again."}), 4e1

return f(current_user_id, *args, **kwargs)
rn decorated

Figure 6.22: Code Snippet for JWT Decorator

6.4.1.2 Database Integration

The MySQL database is used to persist user information, prediction history,
symptoms, diseases, and general medical advice. Database operations are
abstracted through a db_connection,py module for cleaner code management.
The get connection() function established a connection to MySQL database
using environment variables for configuration. Figure 6.23 shows a code snippet

of the get connection() function.

get connection():
return mysgl.connector.connect|(

Figure 6.23: get connection() function

6.4.1.3 Machine Learning Integration

The backend loads pretrained models and feature encodings via Joblib, enabling
real-time predictions from user inputs. Prediction made using either structured
symptom selection like dropdown, or unstructured free-text input processed
with a symptom extraction pipeline powered by external NLP helpers like

gemini_helper. The extract symptoms() function in gemini_hepler.py is used to

147

extract the user free-text input by using Google Gemini API and return the
symptoms that exist in the provided list. Figure 6.24 shows the code snippet for
loading machine learning model. Figure 6.25 shows the code snippet of the

extract symptoms function.

MODEL PATH = os.path.join{MODEL D “random f
FEATURES PATH = os.path.join(MODEL DIR, "s)

model = joblib.load(MODEL PATH)

extract symptoms(user text):
prompt = """
User input: "{user_text}”

s: {SYMPTOMS}

elled in the input.
by the input.

||! ”hig

response, model used = safe_generate_content(prompt)
raw_text = response.candidates[@].content.parts[e].text.strip()

parsed = j .loads(raw text)
if isinstance(parsed, list):
for s in parsed if s 5], model used
sed, dict) parsed:
s for s in parsed[”] if s YMPTOMS |, model used

", e, "Raw:", raw_text)

raw_text "1 raw_text:
array_str = text[raw_text.find : raw_text.rfin)+1]
symptoms loads(array_str)
ce(symptoms, list):
[s for s in symptoms if s SYMPTOMS], model used

ed:", inner_e)

Figure 6.25: Extract Symptoms Function
6.4.2 API Endpoints
The backend exposes multiple RESTful API endpoints, categorized into user
management, prediction, history and general medical advice. Each endpoint
features a lightweight design with security capabilities and follows consistent
request-response structures. JWT authentication is required for protected

endpoints to ensure authorized access.

148

6.4.2.1 User Authentication and Profile Management

POST /api/register

Registers a new user by storing their credentials and basic profile data
in the database. Input validation ensures all required fields are provided
such as username, email, password, and data of birth. Passwords are
securely stored using Werkzeug’s hashing mechanism.

POST /api/login

Authenticates a user by verifying the provided email and password.
Upon successful validation, a JWT token is issued, which must be
attached to subsequent requests for protected endpoints.

GET /api/user (Protected)

Returns the authenticated user’s ID and username based on the JWT
token. Used for session validation and personalization on the frontend.
GET /api/profile (Protected)

Retrieves detailed profile information such as username, email, date of
birth, gender for the authenticated user.

PUT /api/profile (Protected)

Allows users to update selected profile fields such as username, date of
birth, or gender. Partial updates are supported through dynamic query
construction.

PUT /api/change-password (Protected)

Enables users to securely update their password after validating their

existing password. New passwords are hashed before storage.

6.4.2.2 Symptom and Disease Management

GET /api/symptoms

Fetches the complete list of symptoms stored in the database, enabling
the frontend dropdown selection method.

GET /api/diseases

Retrieves all disease records from the database. This is used to maintain
consistency between predictions and stored disease references.

POST /api/extract-symptoms (Protected)

149

Processes free-text input and extracts symptom entities using the Gemini

Helper NLP module. This supports the unstructured input method and

ensures that symptom names align with the system’s knowledge base.

POST /api/predict (Protected)

Predicts potential diseases based on user input. Two input methods are

supported by the system:

- Dropdown-based: The user selects symptoms from a predefined list.

- Free text: The user provides natural language descriptions, which
are processed into structured symptoms before prediction.

Predictions are generated using the pre-trained Random Forest model

and returned with ranked match strengths.

6.4.2.3 Medical Advice Generation

POST /api/advice (Protected)

Accepts a list of diseases and returns general medical advice for each.
Advice is generated dynamically using the Gemini Helper module. This
provides contextual recommendations to users while reinforcing the
disclaimer that the advice is not a substitute for professional medical

consultation.

6.4.2.4 Prediction History

POST /api/history (Protected)

Saves a prediction history to the database, including selected symptoms,
predicted diseases, and corresponding general medical advice. Missing
symptoms or diseases not found in the database are also recorded for
consistency checks.

GET /api/history (Protected)

Retrieves all historical prediction records for the authenticated user,
including symptoms, predicted diseases, associated advice, and
timestamps. Results are ordered by prediction date (latest first).

DELETE /api/history/<id> (Protected)

150

Deletes a specific prediction history record belonging to the
authenticated user. The related records such as predicted symptoms and

diseases are also removed to maintain referential integrity.

6.4.2.5 API Endpoint Overview
The Table 6.1 shows the API Endpoint Overview.
Table 6.2: API Endpoints Overview

Endpoint Method Description Auth
Required
/api/register POST | Registers a new user with No
username, email,

password, and DOB.
Stores hashed password

securely.

/api/login POST | Authenticates user with No
email and password,
returns JWT token on

SuCCcess.

/api/user GET Retrieves authenticated Yes
user’s ID and username

for session validation.

/api/profile GET Fetches detailed profile Yes
(username, email, DOB,
gender).

/api/profile PUT Updates profile details Yes
(username, DOB,

gender). Partial updates

supported.
/api/change- PUT Allows user to change Yes
password password after verifying

old password.

151

/api/symptoms

GET

Returns all symptoms
stored in the system

database.

No

/api/diseases

GET

Returns all diseases
stored in the system

database.

No

/api/extract-

symptoms

POST

Extracts symptoms from
free-text input using

Gemini Helper NLP.

Yes

/api/predict

POST

Predicts potential
diseases based on
symptoms. Uses ML

model for ranked results.

Yes

/api/advice

POST

Provides general medical
advice for one or more
diseases using Gemini

Helper.

Yes

/api/history

POST

Saves prediction session
(symptoms, diseases,

advice) into history.

Yes

/api/history

GET

Retrieves all past
prediction history for the

authenticated user.

Yes

/api/history/<id>

DELETE

Deletes a specific

prediction history record.

Yes

152

6.4.3 Implementation of Google Gemini API

The backend also integrates Google Gemini API, enabling context-aware
medical advice based on disease prediction and symptom extraction. The
Gemini API was primarily utilized to extract symptoms from free-text input,
generate general medical advice, and provide personalize output. It provides
clear and user-friendly guidance on possible treatment or prevention tips after
disease prediction. Prediction model (Random Forest model) identifies possible
diseases based on symptoms, while Gemini generates structured, user-friendly
guidance presented as prevention and lifestyle recommendations. This ensures
that the application not only delivers predictive results but also provides
actionable next steps, thereby creating greater value for end users.

The objective of integrating the Google Gemini API into the backend
is to enhance user value, improve consistency and reliability, ensure user safety,
and achieve frontend compatibility. The Google Gemini API not only generates
predictive results but also delivers structured health advice to guide users
improving their lifestyle and preventing diseases. In addition, enforces a
structured JSON output format to ensure consistency across all diseases. It also
provides only general and non-diagnostic information, focusing on health
awareness, disease prevention, and guidance on when to seek professional
medical assistance. The Gemini API returns data in a machine-readable JSON

format that can be directly called and rendered by the frontend application.

6.4.3.1 Prompt Engineering and Structured Output
The function get general advice for multiple(diseases) was developed to
interact with the Google Gemini. This function constructs a carefully engineered
prompt that instructs Google Gemini return advice in a strict JSON format. For
each predicted disease, Gemini is requested to provide four specific fields,
including description, lifestyle tips, prevention tips and a guideline on when to
seek care. This structure not only improves readability but also ensures that the
generated content can be validated, parsed, and integrated into the web
application workflow.

As discussed in Chapter 5 (Prompt Design Study), the Role-based

prompting strategy demonstrated the most effective performance. It consistently

153

produced well-balanced and guideline-consistent outputs with accuracy, clarity,
and completeness as well as maintaining reasonable response time. Therefore,
role-based prompting was adopted in the Google Gemini API implementation
to generate structured medical advice for predicted diseases. By explicitly
assigning the model the role of a health assistant, the generated responses were
not only aligned with medical communication standards but also returned in a
consistent JSON format. This structured representation enables seamless
integration with the backend pipeline, ensuring that the generated advice could
be directly parsed, validated, and displayed within the web application without
requiring extensive post-processing. Figure 6.26 shows a code snippet for

generate structure medical advice via Google Gemini API.

get general advice for multiple(diseases):
if diseases:
return {}, None
prompt = """
You are a health ass

or f the fol

» '.join(diseases)

ot include

wnn

response, model used = safe generate content(prompt)
raw_text = response.candidates[@].content.parts[@].text.strip()

Figure 6.26: Generate Structured Medical Advice via Google Gemini API

154

CHAPTER 7

SYSTEM TESTING

7.1 Introduction

System testing is a critical phase in the software development lifecycle that is
utilized to ensure the disease prediction web application functions as intended
and meets both functional and non-functional requirements. This chapter
outlines the details of testing strategies, methodologies, and results for
validating system performance, usability, and reliability.

The system integrates machine learning-based disease prediction
functionality, a symptom extraction and medical advice module powered by
Google Gemini, and an architecture utilizing a Flask backend with a fully
interactive React frontend architecture. Testing ensures all modules are
compatible with each other, the system security remains uncompromised, and

users can access all intended features without errors.

7.2 Unit Testing
Unit testing focuses on verifying the correctness of individual components or

functions within a system.

155

7.2.1 Registration Feature
Table 7.1: Unit Test Case for Registration Feature
Unit Test Test Case Test Procedure Test Data Expected Result Status
Case ID Description
UTCO1 Validate empty | Leave username blank | username: “”, Error message “Username | Pass
username and submit form email: “test@gmail.com”, is required.” displayed
password: “123456”,
confirmPassword: “123456”,
dob: “2000-01-01”, agree: true
UTCo02 Validate invalid | Enter invalid email and | username: “John”, Error message “Please Pass
email format submit email: “johngmail”, enter a valid email
password: “123456”, address.” displayed
confirmPassword: “123456”,
dob: “2000-01-01”, agree: true
UTCO03 Validate empty | Leave email empty and | username: “John”, Error message “Email is | Pass
email submit email: 7, required.” displayed

password: “123456”,

156

confirmPassword: “123456”,

dob: “2000-01-017, agree: true

UTC04 Validate empty | Leave DOB blank and | username: “John”, Error message “Date of Pass
DOB submit email: “john@gmail.com”, birth is required.”
password: “123456”, displayed
confirmPassword: “123456”,
dob: “”, agree: true
UTCO05 Validate short Enter password <6 username: “John”, Error message “Password | Pass
password characters email: “john@gmail.com”, must be at least 6
password: “123”, characters.” displayed
confirmPassword: “123”,
dob: “2000-01-01”, agree: true
UTCO06 Validate Enter different username: “John”, Error message Pass
mismatched password and confirm | email: “john@mail.com”, “Passwords do not
password password password: “123456”, match.” displayed

confirmPassword: “654321”,

dob: “2000-01-01”, agree: true

157

UuTCo07 Validate empty | Leave password empty | username: “John”, Error message “Password | Pass
password and submit email: “john@gmail.com”, is required.” displayed
password: “”,
confirmPassword: “654321”,
dob: “2000-01-01”, agree: true
UTCO08 Validate terms Terms agreement username: “John”, Error message “You must | Pass
agreement checkbox not checked | email: “john@gmail.com”, agree to the terms and
password: “123456”, conditions.” displayed
confirmPassword: “123456”,
dob: “2000-01-017, agree: false
UTC09 Show/Hide Click show/hide toggle | - Password visibility Pass
password toggle | for password and toggles correctly between
confirm password fields plain text and hidden
UTC10 Successful Enter valid inputs username: “John”, Form submits Pass
frontend email: “john@gmail.com”, successfully, calls
validation password: “123456”, backend API

confirmPassword: “123456”,

dob: “2000-01-017, agree: true

158

UTCI11 Duplicate email | Enter existing email username: “John”, Error message: “Email Pass
error email: “john@gmail.com”, already exists” displayed
password: “123456”,
confirmPassword: “123456”,
dob: “2000-01-01”, agree: true
UTCI12 Redirect to Click “Already have an | - Navigated to /login page | Pass
Login page account? Log in”
7.2.2 Login Feature
Table 7.2: Unit Test Case for Login Feature
Unit Test Test Case Test Procedure Test Data Expected Result Status
Case ID Description
UTC13 Validate empty Leave email blank email: “”, Error message “Email is Pass
email and click Login password: “123456”, required.” displayed
UTC14 Validate invalid Enter email without | email: “johngmail”, Error message “Please enter | Pass

email format

proper format

password: "123456",

a valid email address.”

displayed

159

UTCI15 Validate empty Enter valid email but | email: “john@gmail.com”, Error message “Password is | Pass
password leave password password: “”, required.” displayed

UTCI16 Validate login with | Enter wrong email: “john@gmail.com”, Alert popup: “Invalid Pass
incorrect email/password and | password: “wrongpass”, credentials”
credentials submit

UTC17 Validate login with | Enter valid email & | email: “john@gmail.com”, JWT token stored in Pass
correct credentials | password, leave password: “123456” sessionStorage, redirected to
(Remember Remember Me /home
unchecked) unchecked

UTC18 Validate login with | Enter valid email & | email: “john@gmail.com”, JWT token stored in Pass
correct credentials | password, check password: “123456” localStorage, redirected to
(Remember Remember Me /home
checked)

UTC19 Validate user data | Successful login, email: “john@gmail.com”, setUsername() and Pass

fetch after login

then fetch /api/user

with Bearer token

password: “123456”

setUserld() updated with

correct values

160

UTC20 Toggle password Click “Show” button | password: “123456” Password input changes type | Pass
visibility (Show to | in password field from password to text and
Hide) button label changes to Hide
UTC21 Toggle password Click “Hide” button | password: “123456” Password input changes type | Pass
visibility (Hide to | in password field from text to password and
Show) button label changes to
Show
UTC22 Redirect to Click “Don’t have an | - Navigated to /register page Pass
Register page account? Sign Up”
7.2.3 Profile
Table 7.3: Unit Test Case for Profile
Unit Test Test Case Test Procedure Test Data Expected Result Status
Case ID Description
UTC23 Validate profile Store valid token in | token=valid Profile data fetched and Pass
fetch with valid localStorage, open displayed (username, email,
token Profile page dob, gender)

161

UTC24 Validate profile Remove token from | token=none Failed to fetch profile Pass
fetch with missing | storage, open Profile
token page

UTC25 Validate change Click “Want to - Redirected to /change- Pass
password change password? password page
navigation Click me!” link

UTC26 Validate “Update Click “Update - Redirected to /update-profile | Pass
Profile” navigation | Profile” button page

uTC27 Validate “Back” Click “Back” button | - Redirected to /home page Pass
navigation

UTC28 Validate Date of Profile response contains DOB in ISO format | DOB displayed as 05 Oct Pass

Birth formatting

contains DOB in

ISO format

dob="1999-10-05"

1999

162

7.2.4 Update Profile Feature
Table 7.4: Unit Test Case for Update Profile Feature
Unit Test Test Case Test Procedure Test Data Expected Result Status
Case ID Description
UTC29 Verify profile data | Open Update Profile | User existing profile Profile fields (username, Pass
loads on page load | page after view DOB, gender) are pre-filled
profile correctly
UTC30 Update username Change username New username: John123 Alert “Profile updated Pass
only and click Update successfully!” Redirect to
Profile page
UTC31 Update date of Change DOB and New DOB: 2005-05-05 Alert “Profile updated Pass
birth only click Update successfully!” Redirect to
Profile page
UTC32 Update gender only | Change gender from | Gender: Female Alert “Profile updated Pass
Male to Female and successfully!” Redirect to
click Update Profile page

163

UTC33 Cancel update and | Click Back button - User redirected back to Pass
click Back instead of Update Profile page
UTC34 Check invalid Clear username username: “”’ System should still allow Pass
username entry field, Click Update DOB/Gender changes, but
(empty string) username remains
unchanged
7.2.5 Change Password Feature
Table 7.5: Unit Test Case for Change Password Feature
Unit Test Test Case Test Procedure Test Data Expected Result Status
Case ID Description
UTC35 Verify all fields Leave all inputs - Errors: “Current password is | Pass
required empty and click required.”, “New password
“Update Password” is required.”, “Please

confirm your new

password.”

164

UTC36 Validate new Enter valid current Current: john123, Error: “New password must | Pass
password length password but short New: 123, be at least 6 characters.”
new password (<6 Confirm: 123
chars)
UuTC37 Validate password | Enter mismatched Current: john123, Error: “Passwords do not Pass
mismatch new and confirm New: 123456, match.”
password Confirm: 654321
UTC38 Successful Enter valid data and | Current: john123, Alert success message, Pass
password change click Update New: 123456, Redirect to /profile
Confirm: 123456
UTC39 Invalid current Enter wrong current | Current: john12345, Alert: “Old password is Pass
password password New: 123456, incorrect”
Confirm: 123456
UTC40 Back button Click Back button - Redirects user back to Pass
navigation instead of submitting /profile without changes

7.2.6 Select Input Method Feature

Table 7.6: Unit Test Case for Select Input Method Feature

165

navigation

instead of submitting

/profile without changes

Unit Test Test Case Test Procedure Test Data Expected Result Status
Case ID Description
UTC41 Validate page loads | Open Select Input page Page shows title, instruction, | Pass
correctly and two options (Dropdown
and Free Text)
UTC42 Validate dropdown | Click anywhere on User navigates to /dropdown | Pass
option navigation Dropdown option card
or button
UTC43 Validate free text Click anywhere on Free User navigates to /free-text | Pass
option navigation Text option card or
button
UTC44 Responsive layout | Resize window to small Cards remain responsive and | Pass
screen readable
UTC45 Back button Click Back button Redirects user back to Pass

166

7.2.7 Dropdown Input Feature
Table 7.7: Unit Test Case for Dropdown Input Feature
Unit Test Test Case Test Procedure Test Data Expected Result Status
Case ID Description
UTC46 Validate search Type “fever” in search | Search = fever Only symptoms matching Pass
filters symptom list | bar “fever” appear
UTC47 Validate symptom | Check a symptom (e.g., | Symptom: Fever Checkbox marked, symptom | Pass
checkbox selection | “Fever”) stored in checked
UTC48 Add selected Select multiple Selected: Fever, Symptoms appear under Pass
symptoms symptoms, Click Add | Vomiting “Selected Symptoms”
UTC49 Prevent adding Click Add without - Alert: “Please check at least Pass
empty selection selecting one symptom before adding.”
UTC50 Remove symptom | Click “X” on a selected | X Fever Symptom removed from Pass
from selected symptom selected list
UTC51 Successful Select symptoms to Fever, Cough Navigate to /result with Pass
prediction Click Predict predictions passed in state

167

UTC52 Prevent duplicate Select same symptom Fever, Fever Symptom only appears once Pass
selected symptoms | twice in selected list
7.2.8 Free Text Feature
Table 7.8: Unit Test Case for Free Text Input Feature
Unit Test Test Case Test Procedure Test Data Expected Result Status
Case ID Description
UTC53 Prevent empty Click “Extract “? Alert: “Please enter some text | Pass
submission Symptoms” with empty to describe your symptoms.”
textarea
UTC54 Successful Enter valid input and “I have fever and cough” | Extracted symptoms appear in | Pass
symptom extract “Matched Symptoms” list
extraction
UTCS55 No symptoms Enter unrelated text to | “I like pizza” Alert: “No symptoms Pass
extracted Extract extracted. Please try again.”
UTC56 Remove matched Click “X” on a matched | X Fever Symptom removed from list Pass

symptom

symptom

168

UTC57 Successful Enter text, extract, then | “I have fever and cough” | Navigate to /result with Pass
prediction predict predictions passed in state
UTCS58 Loading state Click Extract “I have fever Button text changes to Pass
behavior Symptoms “Extracting...” until done
7.2.9 Prediction Result
Table 7.9: Unit Test for Prediction Result
Unit Test Test Case Test Procedure Test Data Expected Result Status
Case ID Description
UTC59 Validate results Navigate to Result page | Backend: Diseases displayed in card Pass
load correctly with results in state results=[{disease:"Flu"}]
UTC60 Validate symptoms | Navigate to Result page | symptoms= Symptoms listed in card Pass
display with symptoms in state | ["Fever","Cough"]
UTC61 Validate match Load results with 3 diseases Star icons display correctly Pass
strength icons multiple diseases (Strong, Moderate, Weak)
UTCe62 Navigate to Click “View Medical results + symptoms Navigate to /medical-advice Pass
medical advice Advice” available with data passed

7.2.10 General Medical Advice

Table 7.10: Unit Test Case for General Medical Advice

169

successfully

with valid results

“Prediction and advice saved
successfully!” Redirect to

History

Unit Test Test Case Test Procedure Test Data Expected Result Status
Case ID Description
UTC63 Validate symptoms | Navigate with ["Fever","Cough"] Symptoms listed Pass
list symptoms in state
UTCo64 Fetch advice Navigate with results Flu — Backend returns Advice cards displayed Pass
successfully advice
UTC65 Handle no advice Backend returns empty | Flu — No advice “No advice available” shown | Pass
advice
UTC66 Save prediction Click “Save Prediction” | results + symptoms Successful Message: Pass

7.2.11 Historical

Table 7.11: Unit Test Case for Historical

170

Unit Test Test Case Test Procedure Test Data Expected Result Status
Case ID Description
UTC67 Fetch history Navigate to page with Records available Cards display with date, Pass
successfully valid token symptoms, diseases and
advice
UTC68 Handle empty Navigate with no None “No historical records found.” | Pass
history records shown
UTC69 Redirect if no Clear token, then - Redirected to login with error | Pass
token navigate message
UTC70 Delete history Click delete icon on a Record ID Record removed + success Pass
record record message
UTC71 Delete cancelled Click delete, cancel - Record not deleted Pass

confirm

171

UTC72 Expand advice text | Click “Read More” on | Advice text > 150 chars | Full text shown Pass
long advice
UTC73 Collapse advice Click “Show Less” Advice text > 150 chars | Text collapses Pass
text after expansion
UTC74 Home button Click “Home” - Navigate to home page Pass
navigation
7.3 Integration Testing

Integration testing ensures that different modules of the disease prediction web application can work together seamlessly to form a unified system.

Unlike unit testing, which verifies individual components, integration testing focuses on interactions between frontend interfaces and backend

services. This phase validates whether data flows correctly between pages, tokens are securely handled, and results are consistently stored and

retrieved. By implementing integration testing, potential issues such as API mismatches, data processing errors, or session management failures

can be identified and resolved before system deployment.

Table 7.12: Integration Test Cases

172

Integration Test Case Description Test Procedure Expected Result Status
Test Case ID
ITCO1 Verify registration integrates 1. Navigate to registration page. User is successfully registered and | Pass
with backend authentication. 2. Enter valid details. able to log in.
3. Submit.
4. Login using new account.
ITCO02 Verify login with token allows | 1. Login with valid credentials. Profile details are displayed using | Pass
access to protected pages (e.g | 2. Navigate to Profile. stored token; session persists.
Profile). 3. Refresh page.
ITCO3 Verify password change 1. Login. Old password rejected; new Pass
updates backend and login 2. Change password. password accepted.
validation. 3. Logout.
4. Login with old password (fail).
5. Login with new password (success).
ITCO4 Verify dropdown symptom 1. Navigate to symptom input page. Backend returns prediction; Pass
selection integrates with 2. Select symptoms. results displayed correctly.
disease prediction. 3. Submit.

173

ITCO5 Verify integration between 1. From Result, click “View Medical Medical advice is retrieved for Pass
Result page and Medical Advice”. predicted disease and displayed.
Advice page.
ITCO06 Verify saving prediction stores | 1. On Medical Advice page, click Prediction is stored and visible in | Pass
record in History. “Save Prediction”. History with correct details.
2. Navigate to History.
ITCO7 Verify History page fetches 1. Login. All previously saved predictions | Pass
consistent saved data. 2. Navigate to History. are displayed correctly.
ITCO8 Verify deletion of record 1. Navigate to History. Deleted record no longer appears. | Pass
updates backend and frontend. | 2. Delete a record.
3. Refresh page.
ITCO09 Verify session expiration 1. Login. User redirected to Login with Pass
handling when token is 2. Clear/expire token. session expired message.
invalid. 3. Navigate to Profile/History.
ITC10 Verify end-to-end workflow 1. Register new user. All steps succeed; saved Pass

from registration to history.

. Login.

. Input symptoms.

AW DN

. Predict disease.

prediction is available in History.

174

5. View advice.

6. Save prediction.

7. Navigate to History.

175

7.4 User Acceptance Testing (UAT)
User Acceptance Testing (UAT) is actual end users evaluated the system to
ensure that the system meets the user needs, requirements, and expectations.
The core objective of UAT is to validate whether the disease prediction web
application using machine learning functions correctly in real world scenarios
and delivers expected results. Unlike Unit Testing and Integration Testing, UAT
emphasizes usability, output correctly, and alignment with user expectations.
This project conducted a UAT by distributing structured Google Forms
questionnaires to a group of 30 users to perform hands-on testing of the system.
They evaluated core functional modules, including register and login operation,
symptom input via both dropdown menus and free text fields, disease prediction,
viewing medical recommendations, and accessing historical records.
Participants were asked to independently test the web application and provide
feedback based on their user experience. The full Google Form questionnaire is

attached in Appendix A for reference.

7.4.1 User Acceptance Testing Result
Table 7.13 shows a User Acceptance Testing Result summary.

Table 7.13: User Acceptance Testing Result.

Question Aspect 3(m) | 4(m) | S(n) | Total | Average
Evaluated Rating

Q1 Ease of 3 11 16 30 443
navigation

Q2 Ease of inputting 4 14 12 30 4.26
symptoms

Q3 Clarity of error 3 4 18 30 4.53
messages

Q4 System generated 3 10 17 30 4.46
predictions

Q5 Accuracy of 5 12 13 30 4.26
predictions

Q6 Relevance of 6 9 15 30 4.30
medical advice

176

Q7 Accessibility of 3 11 16 30 4.43
history feature
Q8 Overall 3 11 16 30 4.43

satisfaction
Q9 No major 1 12 17 30 4.53
difficulties

encountered

The results indicate that the system achieved the anticipated usability goals, with
90% of users rating most aspects at 4 points or higher. The highest-rated aspects
were clarity of error messages (4.53) and no major difficulties encountered
(4.53), indicating that the system is straightforward to operate and easy to
interact with. The only slightly lower score was for prediction accuracy,
suggesting that while the predictions are generally acceptable, users may expect
higher precision.

The moderately rated aspects included ease of inputting symptoms
(4.26), accuracy of predictions (4.26), and relevance of medical advice (4.30).
While these scores are still positive, they suggest that users see room for
improvement in these domains. In particular, symptom input enables smoother
operation, while leveraging larger datasets and more advanced models further
enhances prediction accuracy and recommendation relevance.

Open-ended feedback (Q10) provided additional suggestions such as
adding more advice information, adding dashboard page, further streamlining
the layout, add multilingual support, include more healthcare information and
so on. The full results can be found in Appendix B.

Based on the UAT results, the Disease Prediction Web Application
using Machine Learning is considered user-friendly, functionally robust, and
aligned with the user requirements. While prediction accuracy can be enhanced
and medical advice content expanded through fine tuning, the system has

successfully achieved the objectives of the user acceptance testing.

177

7.5 User Interface Design Feedback

To evaluate the usability and overall design of the system, a User Interface
Design Feedback survey via Google Forms was conducted. This survey aimed
to assess the system interface’s intuitiveness, clarity and visual appeal while
identifying areas for improvement. Respondents were asked to provide the
feedback based on their actual usage experience. Most questions were utilized
a S-point Likert scale, where 1 represented “Strongly Disagree” and 5
represented “Strongly Agree.” The full Google Form questionnaire is attached
in Appendix C for reference. Table 7.13 shows a User Interface Design

Feedback summary.

Table 7.14: User Interface Design Feedback

Question | Aspect Evaluated | 3(n) | 4(n) | 5(n) | Total | Average
Rating

Q1 Ease of use without | 2 10 18 30 4.53
training

Q2 Intuitiveness of Ul 1 15 14 30 4.43
design

Q3 Visual appeal of| 4 8 18 30 4.30
design

Q4 Colour comfort and 5 8 17 30 4.40
theme consistency

Q5 Clarity of labels | 3 10 17 30 4.46
and buttons

Q6 Navigation and 1 13 16 30 4.5
menu usability

Q7 Responsiveness 6 8 16 30 4.33
and performance

Q8 Clarity of system 3 13 14 30 4.36
feedback/error
messages

Q9 User confidence in 1 9 20 30 4.63
performing tasks

178

User Interface evaluation results indicate that users were generally satisfied,
with all average ratings above 4.3 out of 5, reflecting a strong level of
acceptance. User confidence in task execution (4.63) received the highest rating,
indicating that users felt comfortable and capable when interacting with the
system. Similarly, ease of use without training (4.53) and navigation and menu
usability (4.50) also scored exceptionally high, demonstrating that the design is
intuitive and requires minimal learning effort. Other aspects such as clarity of
labels and buttons (4.46) and intuitiveness of Ul design (4.43) also received high
ratings, highlighting effective design choices that support smooth interaction.
Meanwhile, the ratings for visual appeal of design (4.30) and responsiveness
and performance (4.33) were slightly lower than other categories, though still
positive.

Open-ended feedback (Q10) provided additional suggestions such as
add dark mode for better accessibility, provide dashboard page, add tooltips or
hints for new users, use more visuals for results, improve spacing and alignment
of elemetns and so on. The full results can be found in Appendix D. All these
results demonstrate that the web application provides a smooth and intuitive
user experience. Respondents also expressed high confidence in using the
interface for disease prediction tasks.

Overall, the survey indicated that the system’s user interface design is
intuitive and easy to use, aligning with its intended purpose and achieving
usability objectives of supporting users in efficiently and confidently utilizing

the disease prediction functionality.

179

CHAPTER 8

CONCLUSION AND RECOMMENDATION

8.1 Introduction

This conclusion outlined the achievement of the project objectives, limitation of
the project and valuable suggestions into possible future work. The Disease
Prediction Web Application using Machine Learning has been successfully
developed and tested. This system provides a user-friendly, secure and efficient
platform for predicting diseases based on user-provided health data.

In the initial of the project, it is essential to clearly define the problem
statements, project objective, project scope and reviewing the existing similar
applications to collect functional requirements and non-functional requirements.
In the development phase, the system integrates both dropdown symptom
selection and free text input method to accommodate diverse user needs. The
backend was implemented using Flask, while the frontend was built with React,
ensuring both scalability and responsiveness.

Following development and implementation, extensive testing was
conducted, including unit testing, integration testing, user acceptance testing
(UAT), and user interface design feedback collection. The integration of
machine learning, structured user interfaces, and accessibility features ensures

that the system is practical for end users.

8.2 Achievement of Objectives
The following describes the project's objectives from Chapter 1 were fulfilled

with the implemented system:

1. To develop and train a machine learning model capable of predicting
specific diseases, achieving a prediction accuracy of 85% or higher on
the test dataset.

2. To design a user-friendly web application and evaluate its usability
through User Acceptance Testing (UAT), ensuring that at least 90% of

users rate its ease of use as 4 or higher on a 5-point Likert scale.

180

3. To design and test different prompts for large language model (Google
Gemini), evaluating their effectiveness in advice generation and validate

the outputs against trusted medical sources.

The objective 1 was successfully achieved by implemented a machine learning
model trained on a structured dataset of symptoms and disease mappings.
Several models including Random Forest, Decision Tree, and Support Vector
Machine were evaluated on the validation dataset. Random Forest model
demonstrated the highest accuracy and was therefore selected for final use. The
final trained model achieved an accuracy of approximately 97% on the test
dataset, exceeding the targeted threshold of 85%, thereby validating its
reliability in predicting potential diseases based on user inputs. The final trained
model was integrated into the system.

For objective 2, the frontend of the system was developed using React
with an emphasis on intuitive navigation, clear visual design and responsiveness.
To evaluate its usability, a User Acceptance Test (UAT) was conducted using a
Google Form survey with a 5-point Likert scale. The results indicated that more
than 90% of participants rated the system ease of use as 4 or above, thus meeting
the target benchmark. This confirms that the web application successfully
achieved its goal of providing a user-friendly interface suitable for both
technical and non-technical users.

The objective 3 was addressed by conducting a prompt design study
for the Google Gemini large language model. Several prompting strategies,
including zero-shot prompt, role-based prompting, and chain-of-though prompt
were evaluated in terms of accuracy, clarity, completeness and response time.
The role-based prompting was found to deliver the most balanced outputs,
ensuring medically relevant advice while maintaining consistency with establish
guidelines. The generated advice was compared against trusted medical
resource such as WHO and MedlinePlus, to validate the accuracy and reliability.

In summary, all major objectives outlined in Chapter 1 were
successfully fulfilled. The machine learning model achieved the expected
accuracy level. The user interface confirmed its user-friendliness through User

Acceptance Testing (UAT) results. Combined with Google Gemini's prompt

181

engineering technology, it effectively implemented recommendation generation,
validated by reliable reference materials. These achievements collectively

demonstrate that the project successfully met the established objectives.

8.3 Limitations and Recommendations for Future Works
Although the system operates effectively, several limitation and improvements

or extensions can be made in future development.

Limitation Recommendations for Future Works

Not replace the medical | Integrating the system with healthcare
professional providers to ensure the predictions and
recommendations are medically validated,
ensuring enhancing trust and reliability.
Furthermore, enhance Natural Language
Processing (NLP) capability to handle
complex sentences structures and diverse

user input.

Not cover rare or new disease | By incorporating clinical trial data, the latest
medical literature, and real-time medical
databases to expand the dataset, which
would allow the system to adapt to emerging

health challenges.

Accuracy depends on the | Building larger and more diverse datasets,
quality and quantity of dataset | ideally sourced from multiple healthcare
settings, to enhance the robustness and
generalizability of predictions results.
Integrate trusted medical databases or APIs
such as Infermedia or WHO to provide more
comprehensive advice and add severity-

based guidance.

External factors Designing an adaptive system that can
integrate rapidly public health data during

such scenarios, enabling the model to

182

respond more effectively to novel
conditions. Besides that, can implement
offline functionality for areas with limited

internet access.

Only supports English input | Implement multi-language support for non-
and output English users, making the system more

inclusive and suitable for a global user base.

By implementing these recommendation and future works, the system can
gradually evolve into a more precise, reliable, and widely adopted medical
support tool, making significant contributions to early disease warning and

preventive healthcare practices.

183

REFERENCES

Ahmed, N et al. (2021) ‘Machine learning based diabetes prediction and
development of smart web application’, International Journal of
Cognitive Computing in Engineering, 2, pp. 229-241. Available at:
https://doi.org/10.1016/].1jcce.2021.12.001 (Accessed: 29 April 2025).

Alahmar, M. et al. (2023) ‘Naive Bayes Algorithms’, ResearchGate [Preprint].
Available at: https://doi.org/10.13140/RG.2.2.15378.73921
(Accessed: 29 April 2025).

Ansarullah, S.I. et al. (2022) ‘Significance of visible non-invasive risk attributes
for the initial prediction of heart disease using different machine
learning techniques’, Computational Intelligence and Neuroscience,
2022, 9580896. Available at: https://doi.org/10.1155/2022/9580896
(Accessed: 29 April 2025).

Ashfakul Karim Kausik et al. (2025) ‘Machine learning algorithms for
manufacturing quality assurance: a systematic review of performance
metrics and applications’, Array, pp. 100393. Available at:
https://doi.org/10.1016/j.array.2025.100393 (Accessed: 29 April
2025).

Bansal, M., Goyal, A. and Choudhary, A. (2022) ‘A comparative analysis of K-
Nearest Neighbor, Genetic, Support Vector Machine, Decision Tree,
and Long Short Term Memory algorithms in machine learning’,
Decision Analytics Journal, 3, 100071. Available at:
https://doi.org/10.1016/j.dajour.2022.100071 (Accessed: 29 April
2025).

Berman, J. (2022) ‘Understanding the DASH diet: MedlinePlus Medical
Encyclopedia’, MedlinePlus. Available at:
https://medlineplus.gov/ency/patientinstructions/000784.htm
(Accessed: 5 September 2025).

BERNAMA (2024) ‘Long queues at public hospitals due to high patient load,

staff shortages’, 19 January. Available at:
https://bernama.com/en/news.php?id=2389323 (Accessed: 29 April
2025).

Blockeel, H. et al. (2023) ‘Decision trees: from efficient prediction to
responsible Al’, Frontiers in Artificial Intelligence, 6, 1115069.
Available at: https://doi.org/10.3389/frai.2023.1115069 (Accessed: 29
April 2025).

CDC (2024) ‘Measure your blood pressure’, High Blood Pressure. Available at:
https://www.cdc.gov/high-blood-pressure/measure/index.html
(Accessed: 5 September 2025).

184

Cervantes, J. et al. (2020) ‘A comprehensive survey on support vector machine
classification: applications, challenges and trends’, Neurocomputing,

408, pp- 189-215. Available at:
https://doi.org/10.1016/j.neucom.2019.10.118 (Accessed: 29 April
2025).

Cleveland Clinic (2023) ‘Blood sugar monitoring: Why, how & when to check’,
Cleveland Clinic. Available at:
https://my.clevelandclinic.org/health/treatments/17956-blood-sugar-
monitoring (Accessed: 5 September 2025).

Cleveland Clinic (2025) ‘Chickenpox’, Cleveland Clinic. Available at:
https://my.clevelandclinic.org/health/diseases/4017-chickenpox
(Accessed: 6 September 2025).

Cleveland Clinic (2025) ‘Ocular migraine’, Cleveland Clinic. Available at:
https://my.clevelandclinic.org/health/diseases/24961-ocular-migraine
(Accessed: 6 September 2025).

Gadesha, V. (2025) ‘Prompt engineering techniques’, /BM, 14 July. Available
at: https://www.ibm.com/think/topics/prompt-engineering-techniques
(Accessed: 5 September 2025).

Gadesha, V., Kavlakoglu, E. and Winland, V. (2025) ‘Chain of thoughts’, /BM,
14 July. Available at: https://www.ibm.com/think/topics/chain-of-
thoughts (Accessed: 5 September 2025).

GeeksforGeeks (2020) Differences between Django vs Flask. Available at:
https://www.geeksforgeeks.org/differences-between-django-vs-flask/
(Accessed: 29 April 2025).

GeeksforGeeks (2023a3) Flask tutorial. Available at:
https://www.geeksforgeeks.org/flask-tutorial/ (Accessed: 29 April
2025).

GeeksforGeeks (2023b) Top front-end frameworks in 2023. Available at:
https://www.geeksforgeeks.org/top-front-end-frameworks/ (Accessed:
29 April 2025).

GeeksforGeeks (2025) ‘Role-based prompting’, GeeksforGeeks. Available at:
https://www.geeksforgeeks.org/artificial-intelligence/role-based-
prompting/ (Accessed: 5 September 2025).

Centers for Disease Control and Prevention (2024) Clinical features of malaria.
Available at: https://www.cdc.gov/malaria/hcp/clinical-
features/index.html/ (Accessed: 6 September 2025).

George, A.R. et al. (2024) ‘Multiple disease prediction using machine learning
with chatbot and doctor-patient appointment system’, 2024
International Conference on Sustainable Power and Control

185

Renewable Energies (ICSPCRE), pp. 1-6. Available at:
https://doi.org/10.1109/icspcre62303.2024.10674954 (Accessed: 29
April 2025).

Gilbert, S. et al. (2020) ‘How accurate are digital symptom assessment apps for
suggesting conditions and urgency advice? A clinical vignettes
comparison to GPs’, BMJ Open, 10(12), e¢040269. Available at:
https://doi.org/10.1136/bmjopen-2020-040269 (Accessed: 29 April
2025).

Gomathy, C. and Naidu, M.A.R. (2021) ‘The prediction of disease using
machine learning’, International Journal of Scientific Research in
Engineering and Management (IJSREM), 5(10), pp. 1-7. Available at:
https://doi.org/10.55083/ijsrem.2021.v05110.001 (Accessed: 29 April
2025).

Gupta, S., Pal, K. and Choudhury, D. (2024) ‘An experimental analysis of
multiple disease prediction using machine learning algorithms’, in
2024 International Conference on Computing, Information, and
Networks (CICN), pp- 200-206. Available at:
https://doi.org/10.1109/cicn63059.2024.10847453 (Accessed: 29
April 2025).

Harish Rajora et al. (2021) ‘Web based disease prediction and recommender
system’, arXiv [Preprint]. Available at:
https://doi.org/10.48550/arXiv.2106.02813 (Accessed: 29 April 2025).

Hello Doktor (2017) ‘Do alcohol and cigarettes lead to hypertension’, Hello
Doktor. Available at: https://hellodoktor.com/en/alcohol-cigarettes-
lead-hypertension/ (Accessed: 5 September 2025).

Hossain, M.I. (2023) ‘Software Development Life Cycle (SDLC)
methodologies for information systems project management’,
International Journal For Multidisciplinary Research, 5(5), €6223.
Available at: https://doi.org/10.36948/1jfmr.2023.v05105.6223
(Accessed: 29 April 2025).

Jain, A. (2024) ‘SVM kernels and its type’, Medium, 11 September. Available
at: https://medium.com/@abhishekjainindore24/svm-kernels-and-its-
type-dfc3d5f2dcd8 (Accessed: 29 April 2025).

Jaiman, A. (2024) ‘Prompt engineering’, Medium. Available at:
https://ashishjaiman.medium.com/prompt-engineering-quick-
reference-7801a033823a (Accessed: 5 September 2025).

Kavanagh. et al. (2017). ‘Estimating Hospital-Related Deaths Due to Medical
Error.” Journal of Patient Safety, 13(1), pp.1-5. Available at:
doi:https://doi.org/10.1097/pts.0000000000000364. (Accessed: 5 May
2025).

186

Kosarkar, N. et al. (2022) ‘Disease prediction using machine learning’, in 2022
10th International Conference on Emerging Trends in Engineering and
Technology - Signal and Information Processing (ICETET-SIP-22),
Nagpur, India, pp. 1-4. Available at: https://doi.org/10.1109/ICETET-
SIP-2254415.2022.9791739 (Accessed: 29 April 2025).

Matzavela, V. and Alepis, E. (2021) ‘Decision tree learning through a predictive
model for student academic performance in intelligent M-Learning
environments’, Computers and Education: Artificial Intelligence, 2,
100035. Available at: https://doi.org/10.1016/j.caeai.2021.100035
(Accessed: 29 April 2025).

Mayo Clinic (2024) ‘Diabetes and exercise: When to monitor your blood sugar’,
Mayo Clinic. Available at: https://www.mayoclinic.org/diseases-
conditions/diabetes/in-depth/diabetes-and-exercise/art-20045697
(Accessed: 5 September 2025).

Mayo Clinic (2025) ‘Type 2 diabetes - diagnosis and treatment’, Mayo Clinic.
Available at: https://www.mayoclinic.org/diseases-conditions/type-2-
diabetes/diagnosis-treatment/drc-20351199 (Accessed: 5 September
2025).

Mayo Clinic (2024). Heart attack symptoms: Know emergency signs. [online]
Mayo Clinic. Available at: https://www.mayoclinic.org/diseases-
conditions/heart-attack/in-depth/heart-attack-symptoms/art-
20047744. (Accessed: 6 September 2025).

Mayo Clinic Staff (2025) ‘Exercise and stress: Get moving to manage stress’,
Mayo Clinic. Available at: https://www.mayoclinic.org/healthy-
lifestyle/stress-management/in-depth/exercise-and-stress/art-
20044469 (Accessed: 5 September 2025).

Mayo Clinic (2023) ‘Migraine — symptoms & causes’, Mayo Clinic. Available

at: https://www.mayoclinic.org/diseases-conditions/migraine-
headache/symptoms-causes/syc-20360201 (Accessed: 6 September
2025).

MedlinePlus (2019) ‘Diabetic diet’, MedlinePlus. Available at:
https://medlineplus.gov/diabeticdiet.html (Accessed: 5 September
2025).

Newman-Toker, D.E. et al. (2023) 'Burden of serious harms from diagnostic
error in the USA, BMJ Quality & Safety, 33(2), pp. 109-120.
https://doi.org/10.1136/bmjqs-2021-014130 (Accessed: 29 April
2025).

NHS Choices (2020) ‘Medically unexplained symptoms’, NHS. Available at:
https://www.nhs.uk/conditions/medically-unexplained-symptoms/
(Accessed: 5 September 2025).

187

Pajila, P.J.B. et al. (2023) ‘A comprehensive survey on Naive Bayes algorithm:
advantages, limitations and applications’, in 2023 International
Conference on Sustainable Computing and Smart Systems (ICSCSS),

pp- 1497-1502. Available at:
https://doi.org/10.1109/icosec58147.2023.10276274 (Accessed: 29
April 2025).

Reynolds, A. and Mitri, J. (2024) ‘Nutritional recommendations for individuals
with diabetes’, National Institutes of Health (NIH). Available at:
https://www.ncbi.nlm.nih.gov/books/NBK279012/ (Accessed: 5
September 2025).

Rural Health Information Hub (2024). ‘Healthcare access in rural communities.’
[online] Rural Health Information Hub. Available at:
https://www.ruralhealthinfo.org/topics/healthcare-access. (Accessed:
5 May 2025).

Sangeetha, V. et al. (2024) ‘Revolutionizing healthcare: screening system to
identify diseases using machine learning approach’, in 2024
International Conference on Intelligent and Innovative Technologies
in Computing, Electrical and Electronics (IITCEE), pp. 1-6. Available
at: https://doi.org/10.1109/IITCEES59897.2024.10607516 (Accessed:
29 April 2025).

Saravanan, T. et al. (2020) ‘Comparative analysis of software life cycle models’,
in 2020 2nd International Conference on Advances in Computing,
Communication Control and Networking (ICACCCN), pp. 866—871.
Available at: https://doi.org/10.1109/icaccen51052.2020.936293 1
(Accessed: 29 April 2025).

Sheldon, R. (2023) ‘What is web development framework (WDF)?’,
SearchContentManagement [online]. Available at:
https://www.techtarget.com/searchcontentmanagement/definition/web
-development-framework-WDF (Accessed: 29 April 2025).

Song, J. et al. (2021) ‘The Random Forest model has the best accuracy among
the four pressure ulcer prediction models using machine learning
algorithms’, Risk Management and Healthcare Policy, 14, pp. 1175—
1187. Available at: https://doi.org/10.2147/rmhp.s297838 (Accessed:
29 April 2025).

Sreedevi, B. et al. (2022) “Web based disease prediction and forecasting with
KNN and RNN using Internet of Medical Things’, in 2022
International Conference on Computer, Power and Communications

(ICCPC), pp- 192-198. Available at:
https://doi.org/10.1109/iccpc55978.2022.10072288 (Accessed: 29
April 2025).

Srihith, L.D. et al. (2023) ‘A forest of possibilities: decision trees and beyond’,
Journal of Advancement in Parallel Computing, 6(3), pp. 29-37.

188

Available at: https://doi.org/10.5281/zenodo.8372196 (Accessed: 29
April 2025).

Taunk, K. et al. (2019) ‘A brief review of nearest neighbor algorithm for
learning and classification’, in 2019 International Conference on
Intelligent Computing and Control Systems (ICCS), pp. 1258—1263.
Available at: https://doi.org/10.1109/ICCS45141.2019.9065747
(Accessed: 29 April 2025).

V. Sharmila et al. (2024) Challenges in Information, Communication and
Computing Technology, CRC Press eBooks. Informa. Available at:
https://doi.org/10.1201/9781003559085 (Accessed: 29 April 2025).

W3Schools (2020) ‘React tutorial’. Available at:
https://www.w3schools.com/react/default.asp (Accessed: 29 April
2025).

World Health Organization (2024) ‘Diabetes’, World Health Organization.
Available at: https://www.who.int/news-room/fact-
sheets/detail/diabetes (Accessed: 3 September 2025).

World Health Organization (2021) ‘Healthy diet’, World Health Organization.
Available at: https://www.who.int/initiatives/behealthy/healthy-diet
(Accessed: 5 September 2025).

World Health Organization (2023) ‘Hypertension’, World Health Organization.
Available at: https://www.who.int/news-room/fact-
sheets/detail/hypertension (Accessed: 3 September 2025).

World Health Organization (2024) ‘Noncommunicable diseases’, WHO Fact
Sheets [online]. Available at: https://www.who.int/news-room/fact-
sheets/detail/noncommunicable-diseases (Accessed: 29 April 2025).

Zhu, T. (2020) ‘Analysis on the applicability of the Random Forest’, Journal of
Physics: Conference Series, 1607(1), 012123. Available at:
https://doi.org/10.1088/1742-6596/1607/1/012123 (Accessed: 29
April 2025)

https://doi.org/10.1201/9781003559085

189

APPENDICES

Appendix A: Questionnaire for User Acceptance Testing (UAT)

1BIDAI2025, 17:29 Dismase Prediclion Web Apglication using Machine Learning - User Acceptanca Test (UAT) Feem

Disease Prediction Web Application
using Machine Learning - User
Acceptance Test (UAT) Form

Thank you for participating in the User Acceptance Testing (UAT) for my Final Year
Project titles "Disease Prediction Web Application using Machine Learning”. This form
should take approximately 3-5 minutes to complete. Your feedback is crucial to ensure
the application is functional, reliable and overall satisfaction of the system. Please
answer honestly based on your experience using the system. All responses will remain
confidential and be used solely for improving the application.

If you have any inguires, please contact Foo Jia Yu, email: jiayu03@1utar.my.

* Indicatag requirad quastion

Mark anly one oval.

184

) 22-30
(__J31-45
(=45

2. Occupation/Education Level *

Section B: User Acceptance Test

For scale-based guestions, select your answer below where:
1 = Strongly Disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 5 = Strongly Agree

hifps-Ndocs. google comformsid 1 ig0lsGTZBerf TZ5Tel Wx-dZ 128 DTworyZIBIEvU 1 FIY fedit 15

190

1BDAZ025, 1729 Disense Prediction Web Application using Machine Learning - User Acceplance Test (UAT) Foen
3. 1. How easy was it to use and navigate the system? *

Mark anly one aval.

Very Very Easy

4. 2. How easy was it to input symptoms into the system? *

Mark anly one aval.

Very Very Easy

5. 3. How clear and appropriate were the feedback or error messages when
incorrect or incomplete data was entered?

Mark anly one aval.

Mot Very Clear/Appropriate

6. 4. The system successfully generated a disease prediction based on the input *
provided.

Mark anly one aval.

Stro Strongly Agree

hitps-iidocs. google comformsid'igl IsCTZBerf TZ5 Tel Wi-dZ 128D TworyZIBIEvLI 1 FLY fedit 25

102025, 17-29 Dissase Prediction Web Apglication using Machine Lsarning - User Acceplance Test (UAT) Foem

7. 5. How accurate were the disease predictions provided by the system? *

Mark only one aval.

Mot Very Accurate

8. 6. How relevant and useful was the medical advice provided after the
prediction?

Mark only one aval.

Mot Very Relevant/Useful

9. 7. How accessible and helpful was the prediction history feature? *

Mark only one aval.

Mot Very Accessible/Helpful

10. 8. How satisfied are you with the overall system?
Mark only one oval.

() Very satisfied
() satisfied

() Neutral

() Dissatisfied

() Very dissatisfied

hitps-Ndocs. google.comTorms'd1igRIsGTIBerf TZITelWx-dZ 125 DTworyZIIBvU 1 FIY fedil

191

a5

18020325, 1720 Dixwase Prediclion Web Application using Machine Learning - User Acceplance Teet (UAT) Foem

11. 9. Did not encounter major difficulties while using the application.

Mark anly one oval.

Stro Strongly Agree

12, 10. What suggestions do you have to improve the system?
Mark only one oval.

__JNo
_\ Other:

This content is neither created nor endorsed by Google.

Google Forms

Appendix B: Results for User Acceptance Testing (UAT)

1. How easy was it to use and navigate the system?
30 responses

20
15 16 (53.3%)
10 11 (36.7%)
5
0(0%) 0(Q%) 3 (10%)
0 |
1 2 3 4 5

2. How easy was it to input symptoms into the system?
30 responses

15
14 (46.7%)

12 (40%)

4 (13.3%)
0 (?%) 0 (?%)

1 2 3 4 5

192

193

3. How clear and appropriate were the feedback or error messages when incorrect or incomplete

data was entered?
30 responses

20
18 (60%)
15
10
10 (33.3%)
5
0 (0% 0 (0%
(%) (%) 2 (6.7%)
0
1 2

4, The system successfully generated a disease prediction based on the input provided.
30 responses

20

17 (56.7%)

10 (33.3%)

0 (0%) 0 (0%) 3 (10%)

0 | |
1 2

5. How accurate were the disease predictions provided by the system?
30 responses

15

13 (43.3%)
12 (40%)

5 (16.7%)

0 (0%) 0 (0%)
0 l |
1 2

194

6. How relevant and useful was the medical advice provided after the prediction?
30 responses

15 15 (50%)
10
9 (30%)
5 6 (20%)
0 (0%) 0 (0%)
0 | |
1 2 3 4 5

7. How accessible and helpful was the prediction history feature?
30 responses

20
15 16 (53.3%)
10 11 (36.7%)

0 (0%) 0 (0%) 3 (10%)

0 | |
1 2

8. How satisfied are you with the overall system?

30 responses

@ Very satisfied
@ Satisfied

@ Neutral

@ Dissatisfied

@ Very dissatisfied

9. Did not encounter major difficulties while using the application.

30 responses

20
15
10
5
o
0 (0%) 0 (0%) 1(3,3%)

0 l |

1 2

10. What suggestions do you have to improve the system?

Al

30 responses

10. What suggestions do you have to improve the system?

30 responses

17 (56.7%)

12 (40%)

@ No

@ add more advice info

@ enable offline functionality

@ health info can be added in home page
@ can improve ui

@ add multilingual support

@ Cannot select the preferred language, ...
@ include more and emerging diseases

102V

|_|:| Copy chart

@ add a user-friendly dashboard with
visual analytics

@ provide personalized health tips based
on prediction results

@ can add dashboard page

@ include more healthcare information

@ integrate chatbot-style interaction

@ improve loading speed

A 212

195

Appendix C: Questionnaire for User Interface (UI) Design Feedback

180972025, 17:18 Disease Prediclion Web Applicalion using Machine Leaming - User Interface Design Feedback Form

Disease Prediction Web Application
using Machine Learning - User Interface
Design Feedback Form

Thank you for participating in the User Interface Design Feedback for my Final Year
Project titles "Disease Prediction Web Application using Machine Learning”. This form
should take approximately 3-5 minutes to complete. Your feedback is essential to refining
the system's design and ensuring it is visually appealing, intuitive, and accessible. Please
answer honestly based on your experience using the system. All responses will remain

confidential and be used solely for improving the application.
If you have any inquires, please contact Foo Jia Yu, email: jiayuD3@Tutar.my.
* Indicatas ranuir

ad auastion
an Auactisn

1. Age*
Mark only one oval.

18-

) 2230
3145
(=45

2. Occupation/Education Level *

Section B: Interface Design

For scale-based guestions, select your answer below where:
1 = Strongly Disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 5 = Strongly Agree

hips:idacs, geogle.comMarmsial | syPMKAra_OkKORmYUHOXSWIWFE b1 PUNIGsp Dbk edit

196

197

18/0952025, 17-18 Disease Prediction Web Application using Machine Leaming - User Interface Design Feedback Form

3. 1. How easy was it to use the system without prior training? *

Mark only one aval.

Very Very Easy

4. 2. How intuitive was the user interface (Ul) design? *

Mark only one aval.

Mot Very Intuitive

*

3. How visually appealing is the overall design of the system (e.g., colours,

5.
fonts, layout)?
Mark only one aval.
1 2 3 4 5
Mot Very Appealing
6. 4. How easy on the eyes and consistent with the theme are the colours used in *

the system?

Mark only one aval.

Mot Very Easy/Consistent

higps: fidoes. google comTarmsis | syPMKAra_OkKORmVUHOXSWIWFOyb1PUNISsp Dbk dit

198

180972025, 17:18 Disease Prediction Web Applicalion using Machine Leaming - User Inbarface Design Feedback Form

7. 5. How clear and descriptive were the menu labels and buttons? *

Mark anly one aval.

Mot [] [Very Clear

8. 6. How easy was it to navigate through the system's menus and pages? *

Mark anly one aval.

9. 7. How responsive was the application (e.g.. button clicks, loading times)? *

Mark anly one aval.

Mot] (Very Responsive

10. 8. How clear were the feedback or error messages? *

Mark only one oval.

MNat (Very Clear

hitgs:idacs. geogle.commarmaia! syPMK4ra_OkKO2mywWHOXSWWF Syb1 PUNLISspDxbkOiedit

199

180972025, 17:18 Disease Prediclion Web Applicalion using Machine Leaming - User Inberface Design Feedback Form

11. 8. How confident do you feel using the Ul for disease prediction tasks? *

Mark anly one oval

Mot Very Confident

12, 10. What Ul improvements would you suggest?
Please share any suggestions to enhance the Ul's usability, design, or functionality. If
none, you may leave this blank.

Thiz content i neither created nor endorsed by Google.

Google Forms

Appendix D: Results for User Interface Design Feedback

1. How easy was it to use the system without prior training?
30 responses

20

18 (60%)

10
10 (33.3%)

0 (0%) 0 (0%)

0 | |
1 2

2 (6.7%)

200

2. How intuitive was the user interface (UI) design?
30 responses

15 15 (50%)
14 (46.7%)
10
5
0 (0%) 0 (0%)
0 \ \
1 2

3. How visually appealing is the overall design of the system (e.g., colours, fonts, layout)?
30 responses

20
18 (60%)
15
10
8 (26.7%)
5
4 (13.3%
0 (0%) 0 (0%) (13.3%)
o \ |
1 2 3 4 5

4. How easy on the eyes and consistent with the theme are the colours used in the system?
30 responses

20
0,
15 17 (56.7%)
10
8 (26.7%)
° 5 (16.7%)
0 (0%) 0 (0%)

) \ \

1 2

5. How clear and descriptive were the menu labels and buttons?
30 responses

20

0,
15 17 (56.7%)

10 (33.3%)

0 (0%) 0 ((?%) 3 (10%)

1 2 3 4 5

6. How easy was it to navigate through the system’s menus and pages?

30 responses

20
15 16 (53.3%)
13 (43.3%)

10

5

0(0%) 0(0%)
o \ \
1 2 3 4 5

7. How responsive was the application (e.g., button clicks, loading times)?

30 responses

20
15 16 (53.3%)
10
8 (26.7%)
5 6 (20%)
0 (0%) 0(0%)
0 | |
1 2 3 4 5

8. How clear were the feedback or error messages?

30 responses

15
14 (46.7%)
13 (43.3%)
10
5
3 (10%
0 (0%) 0 (0%) (10%)
0 \ \
1 2 3 4 5

9. How confident do you feel using the Ul for disease prediction tasks?

30 responses

20
19

10

0 (Ol%)

20 (66.7%)

9 (30%)

0 (Ol%)

1

2

201

202

10. What Ul improvements would you suggest?

11 responses

can add dark mode for better accessibility
provide a dashboard with quick access features
can have more dynamic home page

Add tooltips or hints for new users

Use a cleaner, more modern layout

Add progress indicators when loading results
use more visuals (charts, graphs) for results
make buttons larger and easier to tap

Improve spacing and alignment of elements

Improve color contrast for better readability

Personalize the interface

	DECLARATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS / ABBREVIATIONS
	LIST OF APPENDICES
	CHAPTER 1
	1 INTRODUCTION
	1.1 General Introduction
	1.2 Importance of the Study
	1.3 Problem Statement
	1.3.1 Long waiting times for patients to get diagnosis
	1.3.2 Increased Risk of Human Errors
	1.3.3 Limited accessibility for remote areas

	1.4 Aim and Objectives
	1.5 Scope and Limitation of the Study
	1.5.1 Limitation

	1.6 Proposed Solution
	1.7 Project Approach

	CHAPTER 2
	2 LITERATURE REVIEW
	2.1 Introduction
	2.2 Research and Comparison Model
	2.2.1 Research Models
	2.2.2 Compare Existing Models
	2.2.2.1 Decision Tree (DT)
	2.2.2.2 Support Vector Machine (SVM)
	2.2.2.3 Random Forest (RF)
	2.2.2.4 Naïve Bayes (NB)
	2.2.2.5 K-Nearest Neighbors (KNN)

	2.2.3 Summary of Comparative Models

	2.3 Compare Existing Web App
	2.3.1 Symptomate
	2.3.2 WebMD Symptom Checker
	2.3.3 Your.MD (Healthily)
	2.3.4 Summary of Existing Applications

	2.4 Evaluation Metrics
	2.4.1 Accuracy
	2.4.2 Sensitivity (Recall)
	2.4.3 Specificity
	2.4.4 Precision
	2.4.5 F1-Score (F-Measure)
	2.4.6 Summary of Evaluation Metrics

	2.5 Dataset Sources
	2.5.1 Summary of Data Source

	2.6 Web Application Framework
	2.6.1 Backend Framework
	2.6.1.1 Flask
	2.6.1.2 Django
	2.6.1.3 Summary of Backend Framework

	2.6.2 Frontend Framework
	2.6.2.1 React.js
	2.6.2.2 Angular
	2.6.2.3 Summary of Frontend Framework

	2.7 Summary

	CHAPTER 3
	3 METHODOLOGY AND WORK PLAN
	3.1 Introduction
	3.2 Software Development Life Cycle (SDLC) Methodology
	3.2.1 Waterfall
	3.2.2 Spiral
	3.2.3 Agile
	3.2.4 Summary of SDLC Methodology

	3.3 Waterfall Methodology
	3.4 Requirements Analysis
	3.5 System Design
	3.6 Implementation Phase
	3.6.1 Machine Learning Model Development
	3.6.1.1 Model Selection
	3.6.1.2 Dataset Selection
	3.6.1.3 Data Preprocessing
	3.6.1.4 Model Building
	3.6.1.5 Model Evaluation

	3.6.2 Web Applications Development
	3.6.3 Integration of ML Model with Web Application

	3.7 System Testing
	3.8 Tools and Technologies
	3.8.1 Flask
	3.8.2 React
	3.8.3 Scikit-learn
	3.8.4 MySQL
	3.8.5 GitHub
	3.8.6 Postman

	3.9 Project Plan
	3.9.1 Work Breakdown Structure (WBS)
	3.9.2 Gantt Chart
	3.9.2.1 Overview of the Disease Prediction Web Application using Machine Learning Timeline
	3.9.2.2 Project Preparatory and Project Initiation Timelines
	3.9.2.3 Literature Review and Methodology Timelines
	3.9.2.4 Requirements Analysis and System Design Timelines
	3.9.2.5 System Development Timelines
	3.9.2.6 System Testing and Closing Timelines

	CHAPTER 4
	4 PROJECT SPECIFICATIONS
	4.1 Introduction
	4.2 Requirements Specification
	4.2.1 Functional Requirements Specification
	4.2.2 Non-functional Requirements Specification

	4.3 Use Case Modelling
	4.3.1 Use Case Diagram
	4.3.2 Use Case Description
	4.3.2.1 Login account
	4.3.2.2 Register account
	4.3.2.3 Input Symptoms
	4.3.2.4 View Predicted Results
	4.3.2.5 View Medical Advice
	4.3.2.6 Store Predicted Results
	4.3.2.7 View Historical Results
	4.3.2.8 View Profile
	4.3.2.9 Update Profile

	4.4 System Flow Diagram
	4.5 Interface Flow Diagram
	4.6 Low Fidelity Prototype
	4.6.1 Welcome Page
	4.6.2 Login Page
	4.6.3 Sign Up Page
	4.6.4 Home Page
	4.6.5 Select Input Method Page
	4.6.6 Dropdown List Input Symptoms Page
	4.6.7 Free Text Input Symptoms Page
	4.6.8 Predicted Results Page
	4.6.9 View Medical Advice Page
	4.6.10 View Historical Results Page
	4.6.11 Profile Page
	4.6.12 Update Profile Page
	4.6.13 Change Password Page

	4.7 Preliminary Results
	4.7.1 Model Performance
	4.7.2 Dropdown List Input
	4.7.3 Free-Text Input

	CHAPTER 5
	5 SYSTEM DESIGN
	5.1 Introduction
	5.2 System Architecture Design
	5.3 Data Model Design
	5.3.1 Entity Relationship Diagram (ERD)
	5.3.2 Data Dictionary

	5.4 User Interface Design
	5.4.1 Welcome Page
	5.4.2 Login Page
	5.4.3 Sign Up Page
	5.4.4 Home Page
	5.4.5 Select Input Method Page
	5.4.6 Dropdown List Input Symptoms Page
	5.4.7 Free Text Input Symptoms Page
	5.4.8 Predicted Results Page
	5.4.9 View Medical Advice Page
	5.4.10 History Page
	5.4.11 Profile Page
	5.4.12 Update Profile Page
	5.4.13 Change Password Page

	5.5 Prompt Design Study
	5.5.1 Prompt Styles
	5.5.1.1 Zero-shot Prompting
	5.5.1.2 Role-based Prompting
	5.5.1.3 Chain-of-Thought (CoT) Prompting

	5.5.2 Prompt Testing
	5.5.2.1 Prompt Testing on Diabetes
	5.5.2.1.1 Zero-shot Prompting
	5.5.2.1.2 Role-based Prompting
	5.5.2.1.3 Chain-of-Thought (CoT) Prompting
	5.5.2.1.4 Summary of Diabetes Results

	5.5.2.2 Prompt Testing on Hypertension
	5.5.2.2.1 Zero-shot Prompting
	5.5.2.2.2 Role-based Prompting
	5.5.2.2.3 Chain-of-Thought (CoT) Prompting
	5.5.2.2.4 Summary of Hypertension Results

	5.5.3 Comparison and Discussion
	5.5.3.1 Zero-shot Prompting
	5.5.3.2 Role-based Prompting
	5.5.3.3 Chain-of-Thought (CoT) Prompting

	5.5.4 Summary

	CHAPTER 6
	6 SYSTEM IMPLEMENTATION
	6.1 Introduction
	6.2 Machine Learning Model Development
	6.2.1 Data Preprocessing
	6.2.1.1 Handling Missing Value
	6.2.1.2 Categorical Label Encoding
	6.2.1.3 Duplicate Removal
	6.2.1.4 Dataset Splitting

	6.2.2 Model Training
	6.2.3 Model Optimization
	6.2.3.1 Model Optimization Results

	6.2.4 Model Evaluation

	6.3 Web Application Development
	6.3.1 Frontend Development
	6.3.1.1 User Authentication and JWT Handling
	6.3.1.2 Input Validation
	6.3.1.2.1 Register Form Validation
	6.3.1.2.2 Login Form Validation
	6.3.1.2.3 Dropdown Symptom Selection Validation
	6.3.1.2.4 Free Text Symptoms Input Validation
	6.3.1.2.5 Update Profile Form Validation
	6.3.1.2.6 Change Password Form Validation

	6.3.1.3 User Experience (UX) enhancements
	6.3.1.3.1 Login and Register
	6.3.1.3.2 Dropdown Symptom Selection
	6.3.1.3.3 Free Text Symptom Input
	6.3.1.3.4 Update Profile
	6.3.1.3.5 Change Password
	6.3.1.3.6 Result
	6.3.1.3.7 General Medical Advice
	6.3.1.3.8 History

	6.4 Backend Development
	6.4.1 Project Architecture
	6.4.1.1 JWT Decorator
	6.4.1.2 Database Integration
	6.4.1.3 Machine Learning Integration

	6.4.2 API Endpoints
	6.4.2.1 User Authentication and Profile Management
	6.4.2.2 Symptom and Disease Management
	6.4.2.3 Medical Advice Generation
	6.4.2.4 Prediction History
	6.4.2.5 API Endpoint Overview

	6.4.3 Implementation of Google Gemini API
	6.4.3.1 Prompt Engineering and Structured Output

	CHAPTER 7
	7 SYSTEM TESTING
	7.1 Introduction
	7.2 Unit Testing
	7.2.1 Registration Feature
	7.2.2 Login Feature
	7.2.3 Profile
	7.2.4 Update Profile Feature
	7.2.5 Change Password Feature
	7.2.6 Select Input Method Feature
	7.2.7 Dropdown Input Feature
	7.2.8 Free Text Feature
	7.2.9 Prediction Result
	7.2.10 General Medical Advice
	7.2.11 Historical

	7.3 Integration Testing
	7.4 User Acceptance Testing (UAT)
	7.4.1 User Acceptance Testing Result

	7.5 User Interface Design Feedback

	CHAPTER 8
	8 CONCLUSION AND RECOMMENDATION
	8.1 Introduction
	8.2 Achievement of Objectives
	8.3 Limitations and Recommendations for Future Works

	REFERENCES
	8 APPENDICES
	Appendix B: Results for User Acceptance Testing (UAT)

