DEVELOPMENT OF A CROSS-PLATFORM
MOBILE APPICATION FOR MONITORING
PALM OIL MILL (POM) PROCESSES

LIM JUAN HONG

UNIVERSITI TUNKU ABDUL RAHMAN

DEVELOPMENT OF A CROSS-PLATFORM MOBILE
APPLICATION FOR MONITORING PALM OIL MILL (POM)
PROCESSES

LIM JUAN HONG

A project report submitted in partial fulfilment of the
requirements for the award of Bachelor of Software Engineering

(Honours)

Lee Kong Chian Faculty of Engineering and Science
Universiti Tunku Abdul Rahman

September 2025

DECLARATION

| hereby declare that this project report is based on my original work except
for citations and quotations which have been duly acknowledged. | also
declare that it has not been previously and concurrently submitted for any
other degree or award at UTAR or other institutions.

o

Signature
Name - LIMJUAN HONG
ID No. : 2105435

Date . 17/9/2025

COPYRIGHT STATEMENT

© 2025, LIM JUAN HONG. All right reserved.

This final year project report is submitted in partial fulfilment of the
requirements for the degree of Bachelor of Science (Honours) Software
Engineer at Universiti Tunku Abdul Rahman (UTAR). This final year project
report represents the work of the author, except where due acknowledgement
has been made in the text. No part of this final year project report may be
reproduced, stored, or transmitted in any form or by any means, whether
electronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission of the author or UTAR, in accordance with UTAR’s

Intellectual Property Policy.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Dr. Khor Kok
Chin for his invaluable advice, guidance and immense patience throughout the
development of this project.

Special thanks to my supportive classmate, Kim Bei Er, a fellow Software
Engineering student, who worked closely with me on the same company
during my final year project. Her continuous support and collaboration have

been truly appreciated.

I would also like to extend my appreciation to the faculty and the departmental
members from Lee Kong Chian Faculty of Engineering and Science and
Department of Computing (DC), for creating a pleasant learning environment
throughout my years in UTAR.

Lastly, my heartfelt gratitude goes to my dearest family and friends for their
unlimited help and support, which has been instrumental in the success of this

project.

ABSTRACT

This collaborative project with Novaflow Engineering Sdn. Bhd. aims to
overcome the limitations of the current mobile application used for monitoring
palm oil mill (POM) processes. The existing system faces challenges in terms
of viewing the real-time data and receiving alarm notifications, which affect
operational efficiency and safety. The proposed solution for this project
involves designing and developing a cross-platform mobile application that
shall provide a visual representation of the POM process layout. The
application shall display real-time data updates, alarm notifications for critical
conditions, and improvements in the user interface for enhanced usability.
Additionally, filtering graph features is added to facilitate easy data analysis
and comparison. The system also integrates with Influx DB, the database
currently used by the company to store data. The proposed solution ensures
more efficient monitoring, enhanced safety, and improved operational
performance. In conclusion, the project delivers a practical and efficient
solution that meets the operational needs of Novaflow Engineering and
provides a robust, cross-platform application to support ongoing

improvements in the company’s POM operations.

Keywords:
palm oil mill monitoring; cross-platform mobile application; real-time data

visualization; alarm notification system; industrial process automation

Subject Area:

TS155-194 Production management. Operations management

TABLE OF CONTENTS

DECLARATION i
COPYRIGHT STATEMENT I

ACKNOWLEDGEMENTS ii

ABSTRACT \Y;

TABLE OF CONTENTS v

LIST OF TABLES viii

LIST OF FIGURES X

LIST OF SYMBOLS / ABBREVIATIONS XViii

LIST OF APPENDICES XiX
CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 2

1.3 Problem Statement 3

1.4 Aim and Objectives 5

1.5 Proposed Solution 5

1.6 Proposed Approach 7

1.7 Project Scope 8

1.8 Contribution of the Study 9

2 LITERATURE REVIEW 11

2.1 Introduction 11

2.2 Palm Oil Mill Process 12

2.3 Cross-Platform POM Mobile Application 14

2.4 Cross-Platform Framework Flutter 17

2.5 SVG Graphics 19

2.6 Alarm Notification System 20

2.7 System Usability 23

2.8 Database 27

2.9

Summary

METHODOLOGY AND WORK PLAN

3.1
3.2

3.3

3.4

Introduction

Software Development Methodology
3.2.1 Evolutionary Prototyping Model
Project Plan

3.3.1 Work Breakdown Structure (WBS)
3.3.2 Gantt Chart

Development and Deployment Tools
3.4.1 Flutter

3.4.2 Android Studio

3.4.3 Xcode

3.4.4 Firebase

3.4.5 Influx DB

3.4.6 MySQL

3.4.7 Python

3.4.8 TestFlight

3.4.9 App Store Connect

PROJECT SPECIFICATION

4.1 Introduction

4.2 Requirement Specification
4.2.1 Functional Requirements
4.2.2 Non-Functional Requirements
4.2.3 Use Case Diagram
4.2.4 Use Case Description

4.3 Low-fidelity Prototypes

SOLUTION

51 Introduction

5.2 Problem-Solution Mapping

5.2.1 Limited Android Access and
Discontinuation of iOS Subscription

5.2.2 Limited Visual Representation of Real-
Time Processes

5.2.3 Delayed Response to Critical Conditions

Vi

29
30
30
30
30
34
34
37
40
40
40
41
41
41
41
41
42
42
43
43
43
43
44
46
47
56
57
57
57

57

59
60

5.2.4 Limited Usability and Interface Constraints

5.3 Deployment of Solution
6 77
6 SYSTEM IMPLEMENTATION
6.1 Introduction
6.2 Project Setup
6.2.1 Firebase Setup
6.2.2 MySQL Cloud Database Setup
6.3 System Modules
6.3.1 Log In Module
6.3.2 Dashboard Module
6.3.3 Graph Monitoring Module
6.3.4 Alarm Management Module
6.3.5 User Profile & Settings Module
6.4 Conclusion
7 SYSTEM TESTING
7.1 Introduction
7.2 Unit Testing
7.3 System Usability Testing
7.3.1 Test Scenario of Usability Testing
7.3.2 Results of Usability Testing
7.4 Alpha Testing
7.5 Beta Testing
8 CONCLUSION AND RECOMMENDATION
8.1 Conclusion
8.2 Limitations and Recommendations for Future
Works
REFERENCES

APPENDICES

vii

65
74

77
77
77
77
83
87
87
90
100
111
123
129
130
130
131
145
147
149
152
154
156
156

157
158
160

viii
LIST OF TABLES

Table 1.1: Challenges Faced by Novaflow and Proposed Solutions. 10
Table 2.1: Comparison of Features between Current Monitoring System. 16

Table 2.2: Comparison of MySQL and Firebase for Alarm Notification

System. 23
Table 4.1: Functional Requirements. 43
Table 4.2: Non-Functional Requirements. 44
Table 6.1 Required Field in Each Document. 82
Table 6.2 Data Structures of ID_alarm_history Table. 84
Table 6.3 Data Structures of ID_description_template. 85
Table 6.4 Data Structures of ID_threshold_settings. 85
Table 7.1: Unit Testing of Login Module. 131
Table 7.2: Unit Testing of the Dashboard Module. 132
Table 7.3: Unit Testing of the Graph Monitoring Module. 135
Table 7.4: Unit Testing of the Alarm Management Module. 139
Table 7.5: Unit Testing of the User Profile & Settings Module. 142
Table 7.6: Template of System Usability Scale (SUS) Survey. 145
Table 7.7: Usability Testing Scenario for Operator or Manager. 147
Table 7.8: General Guideline on the Interpretation of SUS Score. 149
Table 7.9: Summary of SUS Survey Results. 150
Table 7.10: Summary of Participants’ Most Liked Features of the

System. 151
Table 7.11: Summary of Suggestions for Improving the system from

Participants. 151
Table 7.12: Alpha Version Control History. 152

Table 7.13: Beta Version Control History. 154

Table 8.1: Limitations and its Recommendations of the System.

157

Figure 1.1:
Figure 1.2:
Figure 1.3:
Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:

Figure 2.8:

LIST OF FIGURES

Operational Flow of POM Monitoring System.
Overview of Design Architecture.

Overview of Evolutionary Prototyping Model.
Co-Generation System in Palm Oil Mill.

Palm Oil Press Line.

Dashboard of SmartMachine365.

Alarm Monitoring System of SmartMachine365.

Real Time Channel Data of SmartMachine365.
Most Popular Development SDK.
Solar Monitoring App (SolaXCloud).

Sample 2D Vector-based Graphic.

Figure 2.9: Alarm Notification System.

Figure 2.10: Sample of SUS.

Figure 2.11: Sample of CSUQ.

Figure 2.12: Sample of UMUX.

Figure 2.13: User Authentication on Firebase.

Figure 2.14: Mapping of Devices’ Channel Data.

Figure 3.1: Overview of Evolutionary Prototyping Model.

Figure 3.2: Gantt Chart for Project Planning & Initial Requirement

Gathering.

Figure 3.3: Gantt Chart for Design and Prototyping.

Figure 3.4: Gantt Chart for Implementation.

Figure 3.5: Gantt Chart for Testing and Deployment.

Figure 4.1: Use Case Diagram for Palm Oil Mill Monitoring System.

12

13

14

15

15

17

19

20

22

24

25

26

28

28

30

37

38

39

39

46

Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:
Figure 5.10

Figure 5.11

Figure 5.12:
Figure 5.13:
Figure 5.14:
Figure 5.15:
Figure 5.16:
Figure 5.17:
Figure 5.18:
Figure 5.19:
Figure 5.20:
Figure 5.21:
Figure 5.22:
Figure 5.23:
Figure 5.24:

Figure 5.25:

SmartMill365 on Android.

SmartMill365 on iOS.

SmartMill365 on iPads.

SmartMill365 on Android Tablet.
Graphical Layout Dashboard

Graphical Layout Dashboard on Android.
Active Alarm Page on Android.

Active Alarm Page on iOS.

Alarm History Page on Android.

. Alarm History Page on iOS.

. Alarm Record Filtered by Date on Android.
Alarm Record Filtered by Date on iOS.

Alarm Record Filtered by Days on iOS.

Pop-Up Notification on Android.
Pop-Up Notification on iOS.
Active Alarm Icon on Android.
Active Alarm Icon

Separate Graph View on Android.
Separate Graphs View on iOS.
Combine Graphs View on iOS.
Combine Graphs View on Android.
Graphs Filtered by Devices on iOS.

Graphs Filtered by Devices on Android.

Alarm Record Filtered by Days on Android.

Graphs Filtered by Time Range on Android.

Xi

58

58

58

59

59

59

61

61

62

62

62

62

63

63

64

64

64

64

65

65

66

66

66

66

67

Figure 5.26

Figure 5.27: Switching between Subgroups on Single Account for

Figure 5.28:
Figure 5.29:
Figure 5.30:
Figure 5.31:
Figure 5.32:
Figure 5.33:
Figure 5.34:
Figure 5.35:
Figure 5.36:
Figure 5.37:
Figure 5.38:
Figure 5.39:
Figure 5.40:
Figure 5.41:
Figure 5.42:
Figure 5.43:
Figure 5.44:
Figure 5.45:
Figure 5.46:
Figure 5.47:

Figure 5.48:

Figure 5.49

: Graphs Filtered by Time Range on iOS.

Android.

Single Graph View on iOS.

Single Graph View on Android.
Zoom in Graph on iOS.

Zoom in Graph on Android.

Theme Selection in Settings on iOS.
Theme Selection in Settings on Android.
More Page on Android.

More Page on iOS.

Data Plotter on iOS.

Data Plotter on Android.

About Us Page on Android.

About Us Page on iOS.

FAQ Page on Android.

FAQ Page on iOS.

Privacy Policy Page on Android.
Privacy Policy Page on iOS.
Settings Page on Android.

Settings Page on iOS.

Apple App Store Listing of Smart Mill 365.

: Project Upload to GitHub Repository.

Figure 6.1 Firebase Website to Create Project.

Switching between Subgroups on Single Account for iOS.

Android Version APK Download for Smart Mill 365.

Xii

67

67

67

68

69

69

69

70

70

71

71

71

71

72

72

73

73

73

73

74

74

75

75

76

77

Figure 6.2 Firebase Configuration File for Android Mobile Application.

Figure 6.3 Location to Place the google-services.json File.
Figure 6.4 Add Google-services Plug-In at build.gradle.kts File.
Figure 6.5 Firebase Configuration File for iOS Mobile Application.
Figure 6.6 Location to Place the GoogleService-Info.plist File.
Figure 6.7 Add Google-services Plug-In at build.gradle.kts File.
Figure 6.8: Firebase Authentication Page.

Figure 6.9: Create New Account.

Figure 6.10 Create New User Collection.

Figure 6.11 Create New Document for Subgroup/Site.

Figure 6.12 Sample Fields inside Document.

Figure 6.13 Sample MySQL Databases.

Figure 6.14: Sample Data in ID_alarm_history Table.

Figure 6.15 Sample Data in ID_description_template Table.
Figure 6.16 Sample Data in ID_threshold_settings Table.
Figure 6.17 Login Page

Figure 6.18: Login Page with Empty Input Field Error Message.

Figure 6.19: Login Page with Invalid Email Format Error Message.

Figure 6.20: Login Page with Incorrect Login Credentials Error

Message.

Figure 6.21: Implementation of Input Validation.

Figure 6.22: Implementation of Firebase Authentication State

Management.
Figure 6.23: Dashboard Page.
Figure 6.24: Implementation of Active Alarm Button.

Figure 6.25: Subgroup / Site Selection for Switching Dashboard.

Xiii

78

78

78

79

79

79

80

80

81

81

82

83

84

86

86

87

88

88

88

89

89

90

90

91

Figure 6.26:
Figure 6.27:
Figure 6.28:
Figure 6.29:
Figure 6.30:
Figure 6.31:
Figure 6.32:
Figure 6.33:
Figure 6.34:
Figure 6.35:
Figure 6.36:
Figure 6.37:
Figure 6.38:
Figure 6.39:

Figure 6.40:

Figure 6.41

Figure 6.42:

Figure 6.43

Figure 6.44:
Figure 6.45:
Figure 6.46:
Figure 6.47:
Figure 6.48:
Figure 6.49:

Figure 6.50:

List of Available Subgroups in Firebase Document.
Implementation of Fetching Available Subgroup.
Active Alarm Icon.

Implementation of Active Alarm Icon Logic.

Implementation of Active Alarm Icon.

Implementation of Timestamp Format.
Implementation of Timestamp Logic.
Implementation of Fetch Measurement Name.
Implementation of View Graphs Button.
SVG-based Graphical Layout.

Implementation of Dashboard Initialization.
Brand Logo Loading Indicator.

Implementation of Switching Subgroup Logic.
Dashboard Page with No Account Configuration.

: Dashboard Page with No Device Configuration.

Dashboard.
: Dashboard Page Bottom Navigation.
Implementation of Bottom Navigation.
Implementation of initState.
Fetching Channel Data from Firebase.
Fetching Device Unit from Firebase.
Tooltip.
Implementation of Tooltip.

Implementation of Tooltip Display Format.

Timestamp, Measurement Name, and View Graphs button.

Implementation of Configuration Check Logic on

Xiv

91

92

93

93

93

94

94

94

95

95

96

96

97

97

98

98

99

99

99

100

101

101

102

102

102

Figure 6.51:
Figure 6.52:
Figure 6.53:
Figure 6.54:
Figure 6.55:
Figure 6.56:
Figure 6.57:
Figure 6.58:
Figure 6.59:
Figure 6.60:
Figure 6.61:
Figure 6.62:
Figure 6.63:
Figure 6.64:
Figure 6.65:
Figure 6.66:
Figure 6.67:
Figure 6.68:
Figure 6.69:
Figure 6.70:
Figure 6.71:
Figure 6.72:
Figure 6.73:
Figure 6.74:

Figure 6.75:

Time Range Selection.

Implementation of Time Range Selection Button Logic.

Graph Reset to Normal Size.

Data Fetching from Influx DB.

Convert to Chart and Local Time Zone.
Combine Graph View.

Implementation of Combine Graph.

Ul for Combine Graph.

Separate Graph View.

Implementation of Separate Graph.
Dialog for Select Graphs.

Implementation of Dialog.

Tim Range Selection.

Implementation of Time Range Selection.
Data Summary Panel.

Implementation of Data Summary Panel.
Check alarm = ‘yes’.

Query Data from Influx DB.

Check Low and High Thresholds.

Insert Alarm Record into Database.
Adding Active Alarm to Firebase.
Remove Active Alarm Record from Firebase.

Monitoring Loop.

Comparing Thresholds Python running on Systemd.

Active Alarm Page.

XV

103

103

104

104

105

105

106

106

107

107

108

108

109

109

110

110

111

111

112

112

112

113

113

113

114

Figure 6.76:
Figure 6.77:
Figure 6.78:
Figure 6.79:
Figure 6.80:
Figure 6.81:
Figure 6.82:
Figure 6.83:
Figure 6.84:
Figure 6.85:
Figure 6.86:
Figure 6.87:
Figure 6.88:
Figure 6.89:
Figure 6.90:
Figure 6.91:
Figure 6.92:
Figure 6.93:
Figure 6.94:
Figure 6.95:
Figure 6.96:
Figure 6.97:

Figure 6.99:

Figure 6.99

No Active Alarm Record.

Implementation of Fetching Active Alarm.
Alarm History Page.

Implementation of Fetching Alarm History.
Alarm Record Filter by Date.

Alarm Record Filter by Time Range.
Implementation of Filtering Alarm History.
Implementation of Clearing Filter.
Implementation of Ack Function.

Alarm History API.

Acknowledgment API.

APIs Python Running on Systemd.

Pop Up Notification.

Implementation of Pop-Up Notification.
More Page.

Implementation of Current Login Email.

About Us Page.

FAQ Page.

Privacy Policy Page.

Dark Mode Setting Page.
Implementation of Dark Mode Setting.
Data Plotter.

: Implementation of Data Plotter.

Figure 6.100: Confirmation Dialog for Logout.

Implementation of Navigation to Different Sections.

XVvi

115

115

116

116

117

117

118

118

119

120

121

121

122

122

123

124

124

125

125

126

127

127

128

128

129

XVii
Figure 6.101: Implementation of Logout. 129

Figure 7.1: Build History for TestFlight in App Store Connect. 153

Figure 7.2: List of External Users for Beta Testing. 154

bar

psi

ch

POM
SDG
BPV
BPR
JIT
AOT
SVG
XML
PNG
JPEG
2D
SUS
CSUQ
UMUX
SQL
BaaS
RDBMS
WBS
UML
IDE
FR
NFR
N/A

LIST OF SYMBOLS / ABBREVIATIONS

pressure
pressure
current

channel

palm oil mill

sustainable development goals

back pressure vessel

back pressure receiver

just-in-time

ahead-of-time

scalable vector graphics

extensible markup language

portable network graphics

joint photographic experts group
two-dimensional

System Usability Scale

Computer System Usability Questionnaire
Usability Metric for User Experience
structured query language
backend-as-a-service

relational database management system
work breakdown structure

unified modelling language
integrated development environment
functional requirements
non-functional requirements

not applicable

XVviii

XiX

LIST OF APPENDICES

Appendix A: Low-fidelity prototype for SmartMill365 Mobile
Application. 160

Appendix B: SUS Usability Test Responses. 165

Appendix C: Official Evaluation Letter from Novaflow. 174

CHAPTER 1

INTRODUCTION

1.1 General Introduction

Palm oil mills (POM) are essential for processing raw palm fruit into palm oil
with large amounts of steam and electricity (Steve et al., 2018). This project
focuses on improving the monitoring of POM processes, mainly on the devices
such as sterilizer and digester, though the implementation of 10T technology.
By transforming traditional hardware systems into I0T devices, the project
aims to enable real-time monitoring and alarm notifications for critical
conditions.

While many POM processes have become mostly automated, some
procedures still require human oversight, especially in monitoring the devices.
Operators must regularly track the channel data such as pressure (bar/psi)
and current (A) even though the process is automated, which results in time-
consumption and higher labour costs. Therefore, the integration of 10T devices
help in reducing on monitoring, lowering labour costs, and eventually
improving overall efficiency of POM processes.

The remote monitoring function shall further improve overall
management efficiency, as managers and operators able to respond quickly to
any alarms or irregularities without being physically present at the mill. This
capability also allows for better resource allocation, as managers can identify
issues and make decisions remotely. The alarm notifications ensure the critical
conditions are solved immediately, reducing the risk of errors and improving
the safety throughout the operation.

Novaflow is an engineering company that mainly focuses on
industrial automation, palm oil and sewage & water solutions. The company
aims to develop additional monitoring and automation technologies in its palm
oil solution to optimize their manufacturing operations. However, Novaflow
currently faces limitations on existing i0S mobile application
(SmartMachine365) for the palm oil industry, which is subscribed from a
third-party provider. The current solutions offer only basic functionalities and

lack accessibility for Android users. Due to these constraints, Novaflow

decided to develop a customized cross-platform mobile application that
provides enhanced monitoring features for managing palm oil mill processes

more efficiently.

1.2 Importance of the Study
This project is aligned with the United Nations’ Sustainable Development
Goals (SDG) and Malaysian’s government policies. The importance of the

study is outlined as below:

1.2.1 United Nations’ Sustainable Development Goals (SDG)

This project is support SDG9: Industry, Innovation, and Infrastructure by
enhancing the palm oil mills (POM) monitoring processes through
technological innovation. The development of real-time monitoring and alarm
notification system allow manager or operator to have better decision-making,
which can reduce the machine downtime and increase in palm oil mills’

operational performance.

Besides that, this project also supports SDG12: Responsible
Consumption and Production by ensuring the resources in palm oil mills are
manage efficiently. The ability to monitor critical process conditions in real
time minimizing the error that might lead to production downtime and
equipment failures. The alarm notification system can help to prevent
unnecessary loss in palm oil mills production, leading to a more sustainable

and responsible industrial practices.

1.2.2 Malaysian’s Government Policies

This project support with Malaysia’s government policies, mainly on National
Policy on Industry 4.0 (Industry 4WRD), which aims to make digital
transformation on Malaysia’s manufacturing sector. By implementing a real-
time monitoring system for palm oil mills, this project aligns with Malaysia’s
four national goals under Industry 4.0. First, the real-time monitoring system
can increase the productivity in manufacturing sector by applying
automation and real-time data analytics to make industry operations more

efficient and reduce machine downtime. Secondly, the project contributes to

the economy from manufacturing sector by ensuring better resource
allocation, where the unnecessary waste is minimized. Palm oil mills can
increase their production while reducing unnecessary resource consumption
through a smart monitoring system.

Thirdly, this project strengthens innovation capability, supporting
Malaysia’s goal on improving its global innovation ranking in
manufacturing sector. The integration of smart monitoring and notification
system reflects the adoption of Industry 4.0 technologies, leading
manufacturing industry to more advanced in technology. Lastly, this project
contributes to increase the number of high-skilled workers by encouraging
the adoption of digital tools in the manufacturing sector. The transformation
from a traditional to a smart monitoring system requires workers to develop
and apply more technological skills, aligning with Malaysia’ goal of

increasing more knowledgeable and technology-driven workforce.

1.3 Problem Statement
The four main problems that faced by Novaflow in monitoring the POM

processes are outline below:

1.3.1 Limited Android access and discontinuation of iOS subscription
Currently, Novaflow’s POM monitoring system is only available on iOS
devices, which limit the accessibility for Android users. This limitation makes
it difficult for Android user to track the devices’ channel data in real time,
especially when they are not around their desk or outside the office. In cases of
happening emergencies, delays in addressing issues can lead to production
downtime.

Additionally, Novaflow plans to discontinue the subscription for the
current i0OS mobile app which is provided by a foreign company. The existing
app has limited functionality, offering only basic features. By developing a
cross-platform mobile application, both Android and iOS users able to monitor
real-time channel data from anywhere using their mobile devices, allowing for

faster responses to critical conditions.

1.3.2 Limited visual representation of real-time processes

Existing monitoring interfaces are lack of intuitive graphical layouts, leading
to the operators or managers difficult to interpret data efficiently. By
integrating SVG graphics, this project aims to provide a clear and dynamic
visualization of POM processes for better decision-making.

1.3.3 Delayed response to critical conditions

Many mills rely on manual checks by human operators, increasing the risk of
delayed responses to critical conditions. Since operators need to physically
track the devices’ channel data by following their scheduled rounds, sudden
critical conditions for extended periods of time may lead to production
downtime or even damage on equipment. The implementation of an alarm
notification system ensures that critical conditions are detected and addressed

immediately.

1.3.4 Limited usability and interface constraints

The current Novaflow application has limitation in usability, as it only allows
users to view single channel data at a time and lacks alarm notifications for
critical conditions. These limitations make real-time monitoring and analysis
inefficient, especially in critical situations. Additionally, managers that have
different subgroups restricts access to its subgroups’ dashboards and their
devices’ channel data. In this case, managers must manually switch between
subgroups by logging in and out, which is time-consuming and inefficient for
overseeing multiple groups and devices. Hence, this project aims to enhance
the monitoring system by improving accessibility, enabling smoother
interaction and allowing simultaneous access to multiple subgroups’

dashboards and channel data for better analysis and decision-making.

1.4 Aim and Objectives

The aim of this project is to design and develop a mobile application
(SmartMill365) that supports both Android and iOS devices for monitoring
palm oil mills (POM) processes.

The objectives of this project that refined based on Novaflow’s requirements
are:

a. To develop a cross-platform mobile application using Flutter that
can replace the existing company’s iOS app and ensures
accessibility for both Android and iOS users in monitoring POM
processes.

b. To integrate SVG graphics for displaying process layouts along
with real-time data display.

c. To implement an alarm notification system to alert users about
critical process conditions.

d. To enhance system usability and interface for more efficient real-

time monitoring and analysis.

1.5 Proposed Solution

Developing a cross-platform mobile application for POM processes
monitoring system is essential to address the issues described in the problem
statement above. Novaflow currently used a web-based monitoring system as
the primary platform for monitoring all the devices’ channel data. However,
the existing mobile solution, which is subscribed from a foreign company, is
limited in functionality, restricting accessibility for Android users and offering
only basic features.

The new mobile-based monitoring system developed in this project,
serve as a companion application to monitor the channel data of all the devices
with enhanced features. While the real-time channel data updates for each
device shall remain same as the existing system, the new solution have a
multi-graph view that allow users to view all channel data on a single screen,
which improving the monitoring efficiency and analysis.

Additionally, users can filter and customize displayed graphs to

focus on specific devices, compare among devices for performance analysis,

and adjust the time range for data display to analyse historical performance
based on their need. Furthermore, this system enables managers to access and
monitor multiple subgroups’ dashboards without the need to log in and out
repeatedly. This enhancement improves operational oversight by providing a
consolidated view of all related devices under same company and their
channel data.

Another critical enhancement is the implementation of an alarm
notification feature, which alert users when channel data exceed or below
predefined thresholds. This feature ensures immediate awareness of critical
conditions, allowing for faster responses times and improved operational
performance.

These enhancements shall make the monitoring system become more
flexible and feature-rich, allowing users to monitor critical process conditions
anytime and anywhere. As a result, the proposed solution ensured better
decision-making, enhanced operational efficiency, and improved safety

measures.

— —
gﬁ;,ﬁ-b-»%':—.

==Es

Pull data Display Alarm notification

Dashboard display

available devices from InflaxDB channel data for critical condition

Select channel

Figure 1.1: Operational Flow of POM Monitoring System.

The operational flow diagram as shown in Figure 1.1 above illustrates
how the mobile application monitors channel data of the devices in the palm
oil mill (POM) process. Users start by accessing the dashboard, which displays
all available devices such as sterilizer and digester for selection. After
choosing a desired channel, the application retrieves real-time channel data
from Influx DB. The channel data such as pressure (bar/psi) and current (A)
shall then display on the mobile screen, allowing users to monitor and analyse
data effectively. Additionally, an alarm notification system is triggered if the
channel data exceeds or below a predefined level, ensuring immediate

corrective action is taken.

\ Request

[s
—
‘ Response

Manager / Operator Mobile-based POM

monitoring system

Database

Figure 1.2: Overview of Design Architecture.

1.6 Proposed Approach

Prototyping

7

Planning & Initial
Requirements Design User Evaluation
Gathering
e
Review and e
! User Satisfied
Refine
—_—
Deployment ‘— Implementation

N— N N ——

Figure 1.3: Overview of Evolutionary Prototyping Model.

The software development methodology that decided to use is evolutionary
prototyping model as shown in Figure 1.3. This approach shall develop an
initial prototype with essential features, which then continuously refined
through multiple iterations based on self-evaluation and feedback from
company supervisors or industry experts (Camburn et al., 2017). By using this
method, the system shall improve progressively, reducing risks and ensuring
that the final product meets user expectations.

The project started with requirement gathering to ensure a clear
understanding of the system’s needs. Next, a prototype is then developed with
core functionalities, allowing early testing and identify areas of improvement.
This prototype then undergoes self-evaluation and review sessions with the

company supervisor to gather feedback. Based on the feedback, refinements

are made, and additional functionalities are incorporated in following
iterations.

Each iteration of the prototype is tested before proceeding to the next
phase. Once all features are developed and validated through multiple
iterations, a final refined prototype is created and reviewed before proceeding
with the full implementation. After getting approval, the actual system
development begins. Any changes during the development process are based
on ongoing evaluations to ensure that system meets the operational needs of
the palm oil mill (POM) monitoring system.

1.7 Project Scope
The palm oil mill (POM) processes monitoring system aims to enhance
existing monitoring features by developing a cross-platform mobile
application (SmartMill365) built with Flutter framework that provides real-
time monitoring of devices’ channel data such as pressure, and alarm
notifications for critical conditions. The mobile applications are compatible
with both Android and iOS platform. Firebase authentication is implemented
to validate user logins, only allow authorized user to monitor the channel data.
The system shall retrieve real-time channel data from Influx DB and
display them on a dashboard, allowing users to monitor all channel data. The
system shall offer additional features such as filtering and comparing
channel data across different devices and selecting custom time ranges for
historical analysis. An alarm notification system is integrated to alert users
when channel data exceed certain predefined thresholds, ensuring immediate
response are taken through the notifications. In addition, users are able to
monitor and review past alarm notifications through the application.
Furthermore, the system shall allow managers to access and monitor
multiple subgroups’ dashboards without requiring repetitive logins. In this
case, managers can direct switch between subgroups’ dashboard through drop-
down options from the home screen. Additionally, the application shall feature
a graphical interface using SVG files to visually represent the palm oil mill
process layout with real-time channel data. This visualization helps users

quickly understand the operational status of different devices in an intuitive

way. A clean and user-friendly user interface is prioritized to enhance usability,

ensuring that monitoring is simple and accessible for all users.

1.8 Contribution of the Study

This project benefits to various stakeholders such as industrial operators,
automation managers, and business owners. By implementing the mobile-
based palm oil mills monitoring system, it improves the overall efficiency and
accessibility in monitor the palm oil mills operations.

One of the primary advantages of the developed mobile application is
allowed to remote access anytime and anywhere. Unlike the main existing
monitoring system which is web-based, this mobile solution ensures that
operators and managers can access the real-time channel data from device
remotely. In this situation, they are able to quickly responses to any critical
conditions, reducing any unnecessary waste or production downtime.

The implementation of alarm notification system is another
significant contribution. By alerting users when channel data exceed
predefined thresholds, the system enable users to detect the issue earlier and
make decision immediately, minimizing the risk of equipment failures and
improving operational safety. This feature mainly benefits to operators as they
no longer need to physically monitor the devices from time to time.

Additionally, the mobile application able to enhance data analysis
and performance evaluation by allowing users to compare channel data
across multiple devices. Automation managers can utilize graph filtering and
time range adjustments to analyse historical data, identify any inefficiencies
and improvement area for better productivity in future.

From a broader perspective, this project aligns with Industry4AWRD,
Malaysia’s initiative to drive digital transformation in manufacturing
industry. By integrating this smart monitoring system, it contributes to the
adoption of smart manufacturing technologies in the palm oil industry. This
ensures that Nova Flow and its stakeholders remain competitive in this
technology-driven era while improving operational efficiency and decision-

making processes.

10

Table 1.1: Challenges Faced by Novaflow and Proposed Solutions.

Challenges Proposed Solutions
Rely on third-party i0S mobile | Develop a customized cross-platform
solution mobile application follow company-

specific needs.

Lack of comprehensive real-time data

visualization

Implement a multi-graph view that
displays all channel data on single
better

screen for monitoring and

analysis.

Unable to filter and compare device

Implement graph filtering and time

performance range selection, enable users to
compare different devices’
performance.

Unable to access and monitor | Implement multi-subgroup

subgroups’ dashboard simultaneously

monitoring by allowing managers to
access multiple subgroup dashboards

without logging in and out.

Delayed response to critical

conditions

Implement alarm notification system
to alert users immediately when

channel data exceed thresholds.

Lack of intuitive graphical layout

SVG-based

layouts on dashboard for clear and

Implement graphical

dynamic visualization of palm oil mill

process.

cl1

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter reviews existing literature and technologies related to the
development of the Palm Oil Mill (POM) Monitoring System. It explores
previous research, methodologies, and technological advancements in real-
time monitoring systems and alarm notification systems, cross-platform
mobile development, data visualization techniques, and database management.
By analysing past studies and existing applications, this chapter identifies
opportunities for improvement, forming the foundation for the proposed
solution.

The selection of an appropriate development platform and tools is
crucial to formulate a smoother and efficient monitoring system. In this case,
Flutter with its cross-platform capabilities is chosen for this mobile
application development, as single codebase is used for both Android and iOS
platforms. Besides that, Firebase is used for user authentication and for
mapping channel data with Influx DB, ensuring secure login management and
accurate data retrieval. For real-time data storage and retrieval, Influx DB is
selected, as it is optimized for handling time-series data, making it suitable for
monitoring machine data in the palm oil mill. Additionally, SVG graphics are
implemented for dynamic and interactive real-time data visualization, ensuring
an intuitive and seamless user interface. These selected tools will then enhance
the usability, optimize performance and addressing the limitations of existing

Novaflow application.

cl2

2.2 Palm Oil Mill Process

In the palm oil milling process, devices such as boilers, back pressure vessel
(BPV), sterilizers and digesters play an important role in extracting palm oil
efficiently. The monitoring system that developed in this project is crucial to
ensure that all these devices are operate efficiently, preventing any
breakdowns happened and maintaining optimal performance. The channel
real-time data such as sterilizer pressure (bar/psi) and digester electric
current (A) will be monitor from time to time, ensuring optimal steam

conditions and motor performance throughout the milling process.

Smoke stack

Bypass
n Steam steam
; m— —

To atmosphere
L_. Electricity [——— paen

Boiler To sterilizer

— | I tHj’I — To process
L e

Turbine | Generator 3.5-4 BAR

Back pressure
receiver

Furnace

Water “3' Condenser
—

Pump

Figure 2.1: Co-Generation System in Palm Qil Mill.

The process as shown in Figure 2.1 start with the boiler, which
generates steam by heating water. This steam is then supplied to different
sections of the mill, including the sterilizer. At the meantime, back pressure
vessel (BPV) also known as back pressure receiver (BPR), will be used to
regulates and stores the excess steam that came from boiler, ensuring that the
pressure remains stable and consistent for sterilization process. In this project,
boiler and BPV will be grouped under sterilizer, as they are important

components in supplying and regulating the steam for the sterilization process.

c13

Digestor

Sterilizer

173
7 \

Steam boiler

Qil dry system Viberating screen | /Q/ ﬁ & I Thresher

Double screw
palm oil expeller

Figure 2.2: Palm Qil Press Line.

Next, the sterilizer as shown in Figure 2.2 used to cook the fresh fruit
bunches under high pressure so that the fruits become soft and easier to
separate from the bunch stalks (Kandiah et al., 2006). This process also helps
deactivate the enzymes that could cause oil degradation. After sterilization, the
fruits are stripped from the bunch stalks in the threshing process, then
followed by digestion. During digestion, digestor is used to mash and break
down the sterilized palm fruits. It normally uses rotating blades to stir and
crush the fruit with heat, ensuring that the oil is extract efficiently. This step
will soften the mesocarp and separates the oil from fruit fibres, so that it will
be easier to extract crude palm oil in the following pressing stage.

Therefore, it is important to keep monitor the electric current (A) of
digester’s motor to ensure that it operates within the optimal range. By doing
so, it helps to detect any abnormalities such as mechanical failures or
insufficient energy earlier, which can prevent equipment breakdowns

happened and minimize the disruptions in the milling process.

cl4

2.3 Cross-Platform POM Mobile Application

From Novaflow’s perspective, developing a cross-platform mobile
application for the POM monitoring system aims to maximize efficiency in
development, reduce development costs, and ensure broader accessibility
across different operating systems. By utilizing a single codebase without
much more changes for both iOS and Android, Novaflow can streamline the
development process, which eventually help in reducing the development time
and labour costs. This is because shorter development time will be minimizing
the need for additional manpower working on the same project.

Additionally, this cross-platform approach developed using Flutter
framework ensures the consistency in user experience as both interface and
functionality on both operating systems are almost same. This strategy also
serves as a marketing advantage for Novaflow, allowing a wider range of
clients to access and benefit from the application. Furthermore, any changes
made after deployment and maintenance of the mobile application become
more efficient, as changes can be implemented simultaneously across
platforms, minimizing the system downtime and improving overall

performance and reliability.

Dashboard

S
20.3 ©0.0
90.0 90.0

£©0.0

© o

Figure 2.3: Dashboard of SmartMachine365.

In this project, Novaflow aims to enhance the monitoring system by

addressing the limitations of existing application (SmartMachine365). The

cl5

current Novaflow mobile application lack of intuitive SVG graphics on the
dashboard as shown in Figure 2.3, making data visualization less interactive
and harder to interpret. Besides that, manager that have different subgroups
must log in and out repeatedly to view each subgroup’s dashboard as the
existing system only allows viewing one dashboard at one time. As a result,
this process is time-consuming and inefficient, making it difficult for

managers to monitor multiple subgroups simultaneously.

) ©

Figure 2.4: Alarm Monitoring System of SmartMachine365.

Besides that, the alarm notification system in existing Novaflow
application is not functioning as shown in Figure 2.4 due to misconfiguration
of the alarm settings. As a result, any critical conditions might be unnoticed by

the operators or managers, leading to delay in taking corrective action.

E S1Pressure

anjep ainssaid LS

Figure 2.5: Real Time Channel Data of SmartMachine365.

cl6

Another limitation is that only one channel of data able to view at a
time as shown in Figure 2.5. This restriction limits the ability for manager or
operator to perform comparisons among different channel data for analysis
purposes.

By overcoming these limitations, this project ensures a smoother and
more efficient palm oil mill monitoring system. The implementation of
interactive SVG graphics enhances data visualization, providing a more
intuitive layout displaying the real-time channel data for users. Additionally,
the introduction of real-time alarm notification system ensures that users
able to receive instant alerts during any critical conditions, allowing for
immediate corrective action and preventing machine breakdowns. Furthermore,
multiple-channel monitoring allows users to view more than one graph
simultaneously, improving data analysis and decision making. Besides that,
the implementation of multi-subgroup dashboards allows managers to
seamlessly access different dashboards under same company without the need
to log in and out repeatedly. In short, this project significantly enhances the
existing application by delivering a more robust, efficient and responsive
monitoring system that aligns with the needs of Nova Flow’s palm oil mill

operations.

Table 2.1: Comparison of Features between Current Monitoring System.

SmartMachine365 SmartMills365 (system
(existing system) that will be
implemented)
Platform Supported i0S Android and i0OS
Single-graph view v v
Multi-graph view v
Multi-subgroup v
dashboards
Alarm notification V4
system
SVG graphical v
dashboard

cl7

Filtering channel’s v
graph data

2.4 Cross-Platform Framework Flutter

24.1 Introduction to Cross-Platform Framework

NET Core 77.2% |
orchvPyTorch 77.1% |
Flutter 75.4% |
andas 74.7% | |
orFlow 73.0% | |
Nodejs 72.1% |
Apache Spark 63.5% ||
React Mative 62.5% | 1
ble 61.7% |
NET 61.0% | 1

Unity 30 60.9% 1

nreal Engine 59.5% | 1

op 53.3% |

ryEngine 42.7% [|
Puppet 3sz% |
ordova 36.7% [

he! 33.3% [

Figure 2.6: Most Popular Development SDK.

There are few cross-platform frameworks nowadays that can develop both iOS
and Android applications without any cost. According to Stack Overflow
(2019), the largest survey for software developers about their job preferences
found that the most popular cross-platform frameworks are Flutter, React
Native and Xamarin. Flutter framework achieved the most popular among the
cross-platform frameworks, which is 75.4% as shown in Figure 2.6.

Flutter, a framework that mainly develop on high-performance
applications, was developed by Google using its own programming language,
Dart (Tashildar et al., 2020). Besides that, the second most popular cross-
platform framework, React Native is developed by Facebook, mainly uses
JavaScript and React for building mobile applications (Wu, 2018). Next,
Xamarin, is a Microsoft-owned framework that uses C# and .NET to develop

cross-platform applications with native performance (Lodhi, 2024).

2.4.2 Comparison among Performance
From the perspective of performance, React Native uses JavaScript
bridge to communicate with the native operating system for rendering U,

which can lead to slower performance especially in complex applications

c18

(Kishore et al., 2022). Besides that, Xamarin uses Just-in-Time (JIT) compiler
for Android, while iOS apps must use ahead-of-time (AOT) compilation for
Xamarin due to Apple’s restrictions (Vishal and Kushwaha, 2018). In fact,
switching between compiler can lead to an increase in app size and limit
performance optimizations. Flutter, on the other hand, does not require a
JavaScript bridge or JIT to interact with the native operating system as its
compiles directly into native machine code using Dart’s ahead-of-time
(AOT) compilation for both Android and iOS, which can lead to faster
performance and smoother the rendering process (Palumbo, 2021). As a result,
Flutter helps reduce development time and labour costs as only single
codebase is used for both iOS and Android platforms.

2.4.3 Comparison among User Interfaces

By looking at the user interface, Flutter uses its own rendering engine,
Skia that provides platform-specific customizable widgets and plugins (Sattar
et al., 2023). This allows Flutter to render Ul components, images, and
animations more smoothly and efficiently, ensuring a consistent Ul across
Android and iOS. In contrast, React Native uses native components, but
styling and behaviour can be inconsistent across platforms (Penta, 2004). This
can be taking more time during the testing phase to address these Ul issues.
Additionally, Xamarin.Forms offers a set of tools and components that allow
developers to build cross-platform user interfaces for Xamarin framework,
reducing the needs of writing separate Ul code for different platforms
(Ramadoss, 2023). However, it still has limitations in creating highly
customized Ul components compared to Flutter, as Flutter’s rendering engine
provides fully customizable widgets.

Thus, Novaflow has decided to use the Flutter framework to develop
the cross-platform mobile application for the POM monitoring system, as it
offers better performance, consistency in user interface across platforms, and a

wide range of customizable widgets.

c19

2.5 SVG Graphics

Scalable Vector Graphics (SVG) is an XML-based vector image format used
to define 2D vector graphics for applications (Peng, 2000). It can be resized
without losing quality, unlike other files such as PNG and JPEG are raster
images that will become blurry when enlarged. SVG files normally smaller file
size compared to other files as it stores data as code instead of store pixel data.
Additionally, SVG supports animations and real-time data updates, therefore it

is suitable for monitoring systems.

9:41 ol T -

Example Plant 001 ¥ Q @

28°c

33.0

85.0

Earnings Today

496.02

399.01 12987.05

Figure 2.7: Solar Monitoring App (SolaXCloud).

One real-world example of SVG-based real-time monitoring system
is solar monitoring app named as SolaXCloud as shown in Figure 2.7. This
application displays real-time solar energy consumption, battery levels, and
grid usage with an intuitive graphical interface. There are few SVG elements
used in this application. For example, dynamic energy flow lines are used to
show the real-time power distribution from solar panels to home appliances.
Besides that, it also displays the current energy usage with numbers which will

be update dynamically and allow users to click on it for further information.

c20

Similarly, SVG can be used to visualize pipelines, machinery, and
real-time channel data in this palm oil mill (POM) monitoring system. For
example, a 2D vector-based graphic as shown in Figure 2.8 on the dashboard
screen will provide an interactive layout of the mill’s equipment, allowing
users to monitor real-time channel data efficiently. The real-time channel data
labels will be placed on specific areas corresponding to different machine
types, ensuring an intuitive interface for monitoring the performance of each
machine. These labels will display the real-time data with color-coded
indicating the operational status, allowing users to quickly identify the
abnormalities. For example, green for normal operation and red for critical
alerts. When user clicked on specific label, the system will display the detailed

channel data and relevant information for further monitoring and analysis.

2.6 Alarm Notification System
Alarm notification is important in monitoring systems as it uses to alert users
in critical conditions that require immediate attention and action taken.
These notifications help in maintaining stable operational processes,
preventing potential equipment failures, and reducing production downtime. In
this palm oil mills case, real-time alarms ensure that operators or managers can
take corrective action before the minor issues become serious problems. By
implementing this alarm notification system, users can enhance their reliability
and safety of their operations, reducing the risk of failures occur.

The alarm notification implemented in this project will improve user
awareness by providing real-time alerts when predefined thresholds are
exceeded. For example, in palm oil mill, if the pressure in sterilizer exceeds a

certain limit, an alarm is triggered to notify the operators or managers. In this

c21

case, they can take immediate corrective actions, such as adjusting the
volume or inspecting the machine to avoid any malfunctions happened.
Without implementing this proper alarm system, these issues might not be
noticed by them, which may lead to production downtime or delays.

In this POM monitoring app, alarm notification system will consist of
two types of alarm pages which are active alarms and alarms history. The
active alarm page displays real-time alerts when the channel data exceeds or
below its predefined threshold. These predefined high and low threshold
values along with the alarm descriptions are stored in the cloud-based
MySQL database which is accessible to all authenticated users rather than
stored locally. MySQL is chosen instead of Firebase for storing these values is
because Firebase has a daily request limit where exceeding limit requires
additional payment while MySQL don’t have such restrictions. For example, if
the high threshold for Sterilizer 1 (ch3) Pressure is set at 50 psi, an alarm will
be triggered if exceeds this value. If its pressure is records 45 psi, no alarm is
activated since it is below the threshold, whereas if the pressure records 55, the
system triggers an alarm to alert users.

On the other hand, the alarm history page use to keep record of
past alarms, including the exact time an alarm was triggered and when it was
cleared. These history records are retrieved via an API that fetches the
stored alarm data from the MySQL database when the user navigates to the
alarm history page. For example, if an alarm for high pressure in Sterilizer 1
was triggered at 10:00 AM and cleared at 10:20 AM, the system will save
these periods of time into a cloud-based MySQL database for future
reference. By implementing this alarm history function, operators or managers
can trace back the performance of each device on the app, identify any
potential weaknesses and implement preventive measures to enhance the

operational performance and stability.

c22

il |
(5;

InfluxDB .
Firebase Active Alarm Page
(Channel data) P (Temporary store

«

Active Alarm Record)

Python Script |
- 7 eyensers - e]

- o’ (Running background for <! (5

(S compare threshold) .._ R (via AP to fetch |

NG My alarm history using a
Port 5001)

MysQL MySQL Alarm History Page

(Threshold settings) (Store Alarm Record)

Figure 2.9: Alarm Notification System.

The continuous monitoring of threshold values is achieved through a
Python script running under systemd as shown in Figure 2.9, ensuring that
the process operates 24 hours. The script constantly checks whether devices’
latest pressure data exceed or fall below the predefined thresholds set in the
MySQL database. If a critical condition is detected, the alarm is logged into
the MySQL alarm history table.

Active alarms records are temporarily stored in Firebase under the
active_alarm collection. Once the alarm is cleared, it is removed from this
collection. Additionally, the alarm history page includes an ACK
(Acknowledge) button that allows user to confirm they have acknowledged
that particular alarm. When the ACK button is pressed, the system logs the
acknowledging user’s email and acknowledgment time into the corresponding
MySQL alarm record. This ensures that in the future able to trace back exactly
who acknowledged the alarm and verify whether the issue raised by the alarm
was addressed. Both the alarm history and ACK APIs run on an HTTPS port
created using a reverse proxy instead of using a Firebase Functions HTTP
URL. This significantly help to reduce latency, as Firebase Functions
introduce a cold start delay of around 10 seconds for retrieving alarm records.

By combining real-time cloud data storage, continuous monitoring,
and acknowledgment tracking, the alarm notification system in this POM
monitoring app ensures prompt responses to critical conditions, accurate
historical tracking, and improved operational reliability. The integration of
both active and history alarms not only allows operators or managers to take

immediate corrective actions when issues arise but also supports long-time

€23

performance analysis. This combined approach improves overall monitoring
efficiency, making the system more reliable and responsive in addressing any

failures in palm oil mill operations.

Table 2.2: Comparison of MySQL and Firebase for Alarm Notification System.

Features MySQL Cloud Database Firebase

Storage of Unlimited read/write access, no | Limited daily request
threshold values | request limits. quota, extra usage
and alarm required payment.

descriptions

Fetching alarm Reverse proxy HTTPS API Firebase Functions
history APl & provide faster/instant response. | having ~10s cold start
ACK function delay.
Cost No extra charge for high Pay per use if daily
request volume. request quota is
exceeded.

24/7 continuous | Well-suited for 24/7 systemd- | May be impacted by
monitoring based Python checks. request limits during

high traffic periods.

2.7 System Usability

2.7.1 Important of System Usability Test

System usability testing is important for evaluating how effectively users
interact with a system, ensuring that its functionality and interface meet user
expectations. This testing plays an important role especially for monitoring
systems where users like operators spend long hours on tracking the real-time
data. Unlike other consumer applications where interactive design is
prioritized, monitoring systems focus more on usability and reducing strain on
users. In this palm oil mill monitoring system, the designed interface must not
only be functional but also designed to minimize eye strain and fatigue. There
are some commonly used evaluation methods for system usability testing
include the System Usability Scale (SUS), Computer System Usability
Questionnaire (CSUQ), and Usability Metric for User Experience (UMUX).

c24

2.7.2 System Usability Scale (SUS)

System Usability Scale
Strongly Strongly
‘ disagree agree
1. I think that | would like to use this
system frequently [l I] l v J 4
1 2 3 4 5
2. | found the system unnecessarily T
complex ‘ ‘ | | v ‘ | 1
1 2 3 4 5
3. 1thought the system was easy to use | l v |] ‘ | 1
1 2 3 4 5
4. 1think | would need the support of a ’
technical person to be able to use this { v l I J l I 4
system 1 2 3 4 5
5. 1 found the various functions in this I] 7 | I] | 1
system were well integrated L |
1 2 3 4 5
.1 ht the h
6. 1 thought there was too mucl [‘ | v l ‘ |2
inconsistency in this system
1 2 3 4 5
7.1 would imagine that most people would [{ v | 1 { | 4
leam to use this system very quickly
1 2 4]
8. | found the system very
touse L T T T[T
1 2 3 4 5
9. 1felt very confident using the system [‘ | ‘ ‘ v | 4
1 2 3 4 5
10. I needed to learn a ot of things before [l 7 |] l | 3
| could get going with this system
1 2 3 4 5
Total score =22 SUS Score =22x2.5=55

Figure 2.10: Sample of SUS.

System usability test (SUS) is a tool normally used for usability testing,
mainly focuses on assessing overall system usability by providing a numeric
usability score ranging from 0 to 100, allowing for easy benchmarking (Grier
et al., 2013). The primary advantage is its simplicity as it consists of only 10
questions as shown in Figure 2.9, making it a fast and efficient method that
save users’ time. This is particularly beneficial for operators in palm oil mill
factory, who are typically busy overseeing real-time data and have limited
time to complete the evaluation test. The SUS score will then convert into a
grading system of A to F, making it easier to interpret and compare usability
levels in future assessments. However, SUS still has some limitations where it
lacks detailed insights into specific usability problems. It does not offer
qualitative feedback on why the usability issues occur, making developer hard

to identify the precise areas of improvement.

€25

2.7.3 Computer System Usability Questionnaire (CSUQ)

I Overall, 1 am satisfied with how easy it is (0 use this system
It was simplc (o usc this system
I can effectively complete my work using this system
Tam ickly usil

System usefulness

sy (0 understand.
mplete the
slem screens is clear.

Overall User Satisfaction

ks and scenarios

Information

Quality

> 17. 1 like using the interface of this s

Interfoce

8. This system has all the functions and capabilitics T expeet it to have

19. Overall, T am satisfied with this system.

~0 000000000000 0O00O000
~0 00000000 000O0000000
.0 00000000000 000O0000
-0 0000000000000 00000
»0 0000000D0O0000000000
-0 00000000000 0000000
0O 000O0O0OO0O0OODO0ODO0O0O0O0O00O

Figure 2.11: Sample of CSUQ.

Another widely used usability evaluation method is Computer System
Usability Questionnaire (CSUQ), which mainly covers on system usefulness,
information quality, and interface quality (Azami and lIbrahim, 2019). The
questionnaire consists of 19 items which divided into four categories. The first
category is overall user satisfaction covering all 19 items, system usefulness
category covers 8 items, information quality covers 7 items, and interface
quality covers with 3 items as shown in Figure 2.10. Unlike SUS, it allows for
a more detailed user experience evaluation by gathering feedback on different
aspects of the system.

However, it is more time-consuming as it consists of more questions,
making it less suitable for situations where operators have limited time to
answer. Additionally, CSUQ don’t have a grading system, making it difficult
to compare usability over time. It also more emphasis on user satisfaction
rather than efficiency and ease of use, which may not align with the needs of a
palm oil mill monitoring system where operators prioritize fast and accurate

data interpretation over interactive design.

€26

2.7.4 Usability Metric for User Experience (UMUX)

1. [This system’s] capabilities meet my requirements.

1 2 3 4 5 6 7

Strongly Strongly

Disagree Agree
2. Using [this system] is a frustrating experience.

1 2 3 4 5 6 7

Strongly Strongly

Disagree Agree
3. [This system] is easy to use.

1 2 3 4 5 6 7

Strongly Strongly

Disagree Agree
4, I have to spend too much time correcting things with

[this system].

1 2 3 4 5 6 7

Strongly Strongly

Disagree Agree

Figure 2.12: Sample of UMUX.

Usability Metric for User Experience (UMUX) is a usability evaluation tool
consist of 4 questions, designed to provide a quick and reliable assessment of
an application’s usability (Varela-Aldas et al., 2023). Each question has 7
levels of selection, ranging from strongly disagree to strongly agree as shown
in Figure 2.11. However, even though it is quick to answer, it provides limited
insights into specific usability aspects. Additionally, UMUX primarily focuses
on overall usability perception rather than assessing detailed usability
components like system efficiency, effectiveness and user satisfaction. While
UMUX is beneficial for quick assessments, it lacks the benchmarking
capability and grading system like SUS, making it harder to make comparison

on usability across different systems.

2.7.5 Justification for Choosing SUS in Palm Oil Monitoring System

Despite having some limitations on SUS, it still chosen for this palm oil
monitoring project due to its quick administration and ease of implementation.
Since operators’ time often occupied with real-time data monitoring, a fast and
simple usability assessment is more suitable in this case. As a result, SUS
ensures that operators can complete the evaluation efficiently without
disrupting their workflow while still providing valuable usability insights for
system improvement. Moreover, the grading system in SUS allows for easier

tracking of usability trends over time as it is measurable. In short, SUS is the

c27

most appropriate choice for this project as it balances efficiency and ease of

use.

2.8 Database

2.8.1 Influx DB

In this project, there are two main databases, Influx DB and Firebase are
used to manage and support different aspects of the palm oil mill monitoring
system efficiently. Firstly, Influx DB is a time-series and large-scale
database specifically designed to handle high-frequency data logging, making
it a best choice for storing and retrieving real-time channel data for various
devices in palm oil industry (Zhu, Nie, and Liu, 2023). In this project, channel
data includes pressure, current (A), and bar levels. Additionally, Influx DB is
an SQL-like query language, which means it does not need deep study and
easier to understand by non-tech people, making it a suitable choice for Nova
Flow as they are more professional on automation industry (Naqvi, Y fantidou,
and Zimanyi, 2017). As a result, Influx DB ensures that large volumes of time-
stamped data are stored efficiently while allowing for fast query execution.

On the other hand, there are some limitations on traditional
relational databases like MySQL and PostgreSQL when handling big time-
series data, channel data in this case. Those traditional databases are mainly
designed for structured and transactional data rather than continuous data
streams. All the channel data need to update on Influx DB every 5 seconds.
Hence, when the data volume increases significantly, performing queries on
historical time-series data on traditional databases can lead to high latency
and slower performance (Tahmassebpour, 2017). Additionally, relational
databases store data in normalized tables to reduce redundancy, increasing the
query complexity when retrieving historical data. In contrast, Influx DB use
efficient columnar storage with its compression algorithm to store large and
massive datasets more efficiently (Zhu, Nie, and Liu, 2023). Thus, it is proven
that Novaflow has decided to use Influx DB for real-time monitoring and data

management in the palm oil mill system.

c28

2.8.2 Firebase

¥ Firebase SmartMill365 +

' Project Dvarview Authentication

Templates Usage

osting e authent e working when Fireb ks shuts down on 25 August 2025: email link v
Cordova OAuth support fe

O\ Search by email address, phone number or user UID c

\dentifier ders rea signed in User UID

= Authentication

Firebase SmartMill365 « Cloud Firestore
collection

Add field
2 stermzers

3 ‘“sterilizerd”

4 “boiler

pv: "ch2”

"SAMYSK_PSTR_240006"

Figure 2.14: Mapping of Devices’ Channel Data.

Secondly, Firebase is integrated into the monitoring system to manager user
authentication and facilitate mapping between users, devices, with their
corresponding channel data in Influx DB. Firebase, developed by Google, is a
Backend-as-a-Service (BaaS) platform designed to handle large amount of
unstructured data, which relational database management system (RDBMS)
still unable to manager it effectively (Khawas and Shah, 2018). It also offering
functions such as authentication, cloud storage and real-time databases. In this
project, Firebase is utilized for secure user authentication as shown in Figure
2.12, ensuring that only authorized users can access specific device data. In
this case, it prevents any unauthorized access of users to sensitive operational
data. Additionally, Firebase plays an important role in managing mapping of

devices channels within Influx DB as shown in Figure 2.13, allowing the

c29

system to associate user accounts with specific devices and their respective
real-time channel. This structured mapping ensures correct access to relevant
channel data without requiring complex database queries from users.

By leveraging the capabilities of both databases, this project achieves
a well-structured and secure data management system. The combination of
Influx DB’s time-series data handling and Firebase’s authentication and data
mapping capabilities ensure real-time monitoring, efficient data retrieval, and
enhance security. Since Firebase is still offering free services, it can be
integrated into application development without additional costs, making it a
best choice for Novaflow to implement secure authentication and manage
device-channel mappings efficiently in a simple way. This integration not only
optimizes the performance of Novaflow monitoring system but also provides

users with reliable experience when accessing and analysing operational data.

2.9 Summary

In short, this chapter has reviewed the essential components required to
develop a palm oil mill monitoring system. The review covered the nature of
POM processes, cross-platform mobile development frameworks, SVG
graphics for real-time visualization, alarm notification systems, system
usability evaluation methods, and database selection. These findings will then
form a strong foundation for Chapter 3, where the chosen methodologies,
development tools, and implementation strategies will be discussed in detail to

demonstrate how the proposed system will be effectively implemented.

€30

CHAPTER 3
METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter discusses the software development methodology and project
planning for this palm oil mill project. The chapter will include the software
development methodology, work breakdown structure (WBS), Gann chart and
discussion on the development tools that used for developing the monitoring

system.

3.2 Software Development Methodology

In this project, Evolutionary Prototyping Model is chosen as the software
development methodology because it supports continuous improvement,
which is crucial when working with real-world industrial project. This
approach allows for continuous refinement of the prototype through multiple
iterations, ensuring that the final system is aligned with company needs and

their operational requirements.

3.2.1 Evolutionary Prototyping Model

Prototyping
—
-
Planning & Initial
Requirements |———3 Design User Evaluation
Gathering
A
C
Review and e
! User Satisfied
Refine

—
Deployment Testing [Implementation
N

Figure 3.1: Overview of Evolutionary Prototyping Model.

The software development process for the palm oil mill monitoring system

suits the evolutionary prototyping model as shown in Figure 3.1, which

c3l

emphasizes continuous refinement through iterative feedback. The
development process begins with planning and initial requirements
gathering for building the prototype, where essential system requirements and
needs are identified through discussion and analysis. The first prototype is
then submitted to the company supervisor for evaluation to obtain feedback,
ensuring that the system’s development is heading in the right direction. The
development of subsequent prototypes with added functionalities and
refinements are submitted again for further evaluation to ensure that the
system aligns with user expectations and operational requirements. In this
process, company supervisor may discover opportunities for additional
features and request developer to add in those features. The prototype design
will then be updated and modified based on the feedback received.

When the company is satisfied with the refined prototype, the development
process moves into the implementation phase, where the code is developed
based on approved prototype. The development process will then continue to
other phase known as testing after all required functionalities and modules are
developed. It ensures that all components functioning well, and no critical
bugs or performance issues are found. Finally, the system will be deployed
once it passes all the testing stages.

This prototyping model is appropriate for projects where not all requirements
are clearly defined at the beginning stage. It allows developers to start by
identifying the components they understand, focusing on specific parts of the
system in each iteration rather than developing the entire system at once. As a
result, this method helps reduce project risks as it avoids implementing

features that are not understood.

A. Planning and Initial Requirement Gathering

The first phase of this prototyping model aims to identify the project
objectives, scope and schedule. Initial requirements are collected through the
analysis of existing palm oil mill monitoring system used by Novaflow and
discussions with the company supervisor. Reviewing on existing systems can
help identify the essential features that should be included, while the company

supervisor provides insights on any additional features needed.

€32

The following step is formulating a project plan outlining the
necessary tasks needed to finish in the project. For example, WBS and Gantt
chart help in planning the project. The WBS breaks down the project into
smaller part, while the Gann chart visually displays those tasks with its
timeline, showing the start and end dates for proper scheduling.

B. Design

In design phase, Unified Modelling Language (UML) diagrams are developed
to provide a clear visualization of the palm oil mill monitoring system. These
diagrams help the company understand how the system function. A use case
diagram is created to represent overall system functionality, while detailed use
case descriptions are written for each specific feature.

Additionally, an operational flow diagram is used to illustrate the step-by-
step process of how data and actions flow through the system. This diagram
provides a visual overview of how the system components interact, how task
are processes, and how users engage with the system in real time. All these
design elements are based on the requirements gathered during the initial

planning phase.

C. Prototyping

During the prototyping phase, an initial version of the palm oil mill monitoring
system is developed based on the gathered requirements. This prototype with
limited functionality, allows company to visualize and interact with the system
early in development. In this case, company can explore the prototype with
better understanding on how the user interface might look like instead of
relying on the written descriptions. This method provides valuable feedback

for guiding on further development.

D. User Evaluation

The prototype developed in previous phase is presented to company for
evaluation. Feedback and comments from the company are gathered and
documented during this process. This evaluation is important as it helps

developers to identify the requirements that not met and areas for

€33

improvement. In this case, it ensures that the system aligns with the company

needs and expectations.

E. Review and Refine

Company feedback collected during the evaluation phase is analysed to
improve and refine the protype. Iteration will be repeated until the company is
fully satisfied, and all the system requirements are met. After the prototype is
approved, it serves as the foundation for developing the complete system in

coming stage.

F. Implementation
The actual system is developed based on the design from prototype. All
functionalities and modules are coded to reflect the refined prototype.

G. Testing

The testing will be conducted after the development of the system is
completed. This includes unit testing, integration testing, system testing and
user acceptance testing. The goal mainly is to identify and resolve bugs, ensure

the system meets technical and design specifications.

H. Deployment
The system is prepared and ready for development after passes all testing
phases. The finalized system is then launched and made operational for actual

use.

3.3
3.3.1
1.0

c34

Project Plan
Work Breakdown Structure (WBS)
Project Planning and Initial Requirements Gathering
1.1 Preliminary planning
1.1.1 Study background of the project problem
1.1.2 Define problem statements
1.1.3 Define project objectives
1.1.4 Define project proposed solution
1.1.5 Define project proposed approach
1.1.6 Define project scope
1.2 Literature review
1.2.1 Review palm oil mill processes
1.2.2 Review existing similar palm oil mill monitoring
system
1.2.3 Review cross platform framework
1.2.4 Review SVG graphic
1.2.5 Review alarm notification system
1.2.6 Review system usability test
1.2.7 Review databases
1.3 Methodology and work plan
1.3.1 Identify suitable software development
methodology
1.3.2 Determine work plan
1.3.2.1 Create a work breakdown structure (WBS)
1.3.2.2 Create a Gantt Chart
1.3.3 Identify development tools
1.4 Project and Design Specification
1.4.1 Requirement specification
1.4.1.1 Identify functional requirements
1.4.1.2 Identify non-functional requirements
1.4.2 Create UML diagram
1.4.2.1 Develop a use case diagram

1.4.2.2 Define use case descriptions

2.0

3.0

c35

Design and Prototyping

2.1 First Iteration

2.1.1 Design user interface
2.1.2 Build low-fidelity prototype
2.1.2.1 Develop a prototype for Android-based
monitoring system
2.1.2.2 Develop a prototype for iOS-based
monitoring system
2.1.3 Evaluation and gathering feedback
2.1.4 Refine prototype
2.2 Second Iteration
2.2.1 Design
2.2.1.1 System architecture design
2.2.1.2 Database design
2.2.2 Prototyping
2.2.2.1 Develop essential features
2.2.2.2 Create database
2.2.3 Evaluation and gathering feedback
2.2.4 Refine prototype

2.3 Third Iteration

2.3.1
2.3.2

2.3.3
2.3.4

Implementation

Functionality design

Mobile application prototyping

2.3.2.1 User Authentication and Authorization
2.3.2.2 User management

2.3.2.3 Role/Access management

2.3.2.4 Palm oil channel management

2.3.2.5 Database management

2.3.2.6 Dashboard

Evaluation and gathering feedback

Refine prototype

3.1 Backend development

311
3.1.2

API development

Database integration

4.0

5.0

€36

Frontend development

Android platform

10S platform

Alarm and notification system integration

Unit testing

Usability testing

Alpha testing

Beta testing

System Deployment

3.2
3.21
3.2.2

3.3

Testing

4.1

4.2

4.3

4.4

Deployment

5.1
5.1.1
5.1.2
5.1.3
5.14

Prepare Android APK for deployment
Deploy Android APK

Prepare iOS app for deployment
Deploy iOS app to Apple App Store

3.3.2 Gantt Chart

c37

Prelifinary Planfing 10 Fabiuary 2Maeh 214 SEESEEE

Sty background of e profect problem 0Febuay | 13Febnuary 4 [TTT T[]

Defns proem slaemens 14Feboary | 18 Fatruary 5 == ===

Diefine project abjectives 18 Febuary 21 February 3 BN ‘__ R BE BE T BE 1] Bl
Define et propesed sofon BFebury | 24 February] I

Define project propased approach 25 Fabruary 27 February 3 |

Define prjectszope Webuary | 2Wath 1 |

Uersurs v Mech | 23Marh Hd S

Review pali oil mill processes 3 March 6 March 4 _‘_‘_‘_: ‘ | |

Reviw aisting s aim ol il monioing system 7Warch 3March ad ==

Raview crse 10March 12 March a |

Revlew SVG raphic Tshamn | 15Mach ad

Reiew alarm nolfeation sysam 1B Mareh 18 March 3 B BE T Bl = Bl Bl T BE
Reviow sytem sabiiy st oM | 21 Mach 3 |

Raview databases ZMamh | 23Marh 2 |

Mathodology and werk lan 2 Narh Bh ™

Idently sullable software development methodology 20 Mareh 27 Warch] T B [T T B Bm=== j I—ﬁ | Bl B
Creaea wok breakdown e (VES) Zhach |31 March “ e

Greain a Gann Chart 1Age e “ |

Ienl deveopment oo S ™ 2

Pt snd D Spscaon T | 2 14d]

Wil uncienal requiemenis 7hrl B 3]]] 1] e]] BR BR ﬁ— [Bn
Ity non ol requirearts 10 Apr 124p1 % E—

Develop a use Gaso dagram 13 Ao 154 3 ‘

Defie us cass descrplons 1o dard mat 54 [T E==—

Figure 3.2: Gantt Chart for Project Planning & Initial Requirement Gathering.

c38

Fin Horaton 1.Juna i 14 | = ' . = | L] L[] H Bl
Design user imerface 1 Jung 3June £ I [
Deveicp a protalype for Android-brased meritoring syetem Ahune 8 une] R N R 11 R B BR
Disvelop & pretalype for i05-based muritaring tyztam 7 June 10 June u
Evaiuaticn Teadback 11 Jure 12 Jure F S
Réfina protatype 13.June 14 June b [
15.4um0 Sy 1 o
Sytam arctrs dasign 184w B4rs “ ==SHENNR
Datatass dasign 19.ura 240 54 S—
Develop essental features 24 Jure 27 Jure dd Nl 1 Nl [T Nl B T
Craale dajabase 26 June 30 June K
Evihialicn feedback 1 duly 2y 24 —
Rafina prctatype 3July 5July 3
8y 10 August e
Functinalty design & uly 8y)
Usar Authentcaton and Audhorzation 4.y 13 diy 8
Usar managesnent 14 July A8 Juy &d Bl T Nl T Bl B 1
Filelhccess management 18 iy 23 by 5
Pt il charviel 24 July 28 Jidy 5
Dalabess 20 Juy 3 July]
Dashacard 1 August 4 August #
Evaluation and gatsing foadback 5 Augat 7 hugiat) o
Rfine profotype Bhugst | 10Augst u HEES

Figure 3.3: Gantt Chart for Design and Prototyping.

c39

Implementation

Backend development 11 August 20 August 10d |

AP| development 11 August 15 August 5d ' I

Database integration 16 August 20 August 5d]

Frantend development 21 August 26 August 6d |

Anclroid platform 21 August 23 August 3d '

105 platform 24 August 26 August 3d —

Alarm and nofification system integration 27 August 31 August 5d [| .

Figure 3.4: Gantt Chart for Implementation.
aada
Testing 1 September 8 September 8d ! |
Unit testing 1 September 2 September 2d | _J_ 1
Usability testing 3 September 4 September 2d i |
ki e 5 September 6 September 2d | |
Beta testing 7 September 8 September 24 ‘ ;
System Deployment 9 September 13 September s5d ‘
Prepare Android APK for deployment 9 September 9 September 1d i‘
 Deploy Android APK 10 September 10 September 1d ‘

Prepare iOS app for deployment 11 September 12 September 2d J
Deploy iOS app to Apple App Store 13 September 13 September 1d

Figure 3.5: Gantt Chart for Testing and Deployment.

c40

34 Development and Deployment Tools

Several tools were used throughout the development and deployment process,
each playing an important role in building and managing different parts of the
palm oil monitoring system. These tools were carefully selected based on their
features during literature review stage. The following subsections are the key
tools used and how they supported the development and deployment of the
system:

3.4.1 Flutter

Flutter is a free to use Ul software development kit that allows developers to
build mobile applications using a single codebase. It was chosen for the
development of the palm oil mill monitoring system mainly due to its cross-
platform feature, which allows the system to run on different devices without
the need to rewrite code for both Android and iOS platform. Additionally,
Flutter having a rich set of pre-built widgets and flexible Ul design tools,
making the development process faster and more efficient. These features
made Flutter a good choice for creating a consistent, responsive, and user-
friendly interface, ensuring smooth functionality and accessibility for both

operators and managers across different screen sizes.

3.4.2 Android Studio

Android Studio is the integrated development environment (IDE) for Android
development. It offers robust features such as code editing, real time error
checking and debugging tools. In this project, Android Studio served as the
primary development environment for building and managing the codebase of
the palm oil monitoring system.

Besides that, Android Studio also has an Android emulator for testing
the application in a simulated Android environment, allowing developers to
preview and debug the app from time to time without the need of physical
device. Its built-in Git integration enabled direct code pushing to GitHub only

with few commands, streamlining the process of version control.

c4l

3.4.3 Xcode

Xcode is another integrated development environment (IDE) for iOS
application development. Since Android Studio was used as the primary
environment for writing the Flutter code, Xcode was required to build, test and
run the iOS version of the palm oil mill monitoring system. Xcode also used
for compiling and deploying the iOS version of the application during the

deployment phase.

3.4.4 Firebase

Firebase is a comprehensive backend-as-a-service platform provided by
Google, offering features like authentication and real-time databases. In this
project, Firebase is used for user authentication and device settings such as
mapping channel data with Influx DB, ensuring secure login management and

accurate data retrieval for different channels.

345 Influx DB

Influx DB is a time series database designed for storing large volumes of time-
stamped data. In this project, Influx DB was used to store live channel data
collected from the palm oil mill, such as pressure and temperature readings
from various devices. By integrating Influx DB into the system, real-time data

could be efficiently stored and retrieved without much delay.

3.46 MySQL

MySQL is an open-source relational database management system widely
used for structured data storage. In this project, MySQL was used to store
device threshold settings, alarm settings and maintain alarm history records.
This ensured reliable storage, easy retrieval, and long-term access to alarm-

related information.

3.4.7 Python
Python is a programming language used in this project for backend processing.
It was responsible for comparing threshold values stored in MySQL with the

current live readings from Influx DB, triggering alarms when thresholds were

c42

exceeded. Besides that, it also provided APIs to retrieve alarm records from
MySQL and update alarm acknowledgment.

3.4.8 TestFlight

TestFlight is an application testing platform by Apple that allows developers
to distribute pre-release of iOS version applications to testers. In this project,
TestFlight was used to test the iOS version of the palm oil mill monitoring
system before deploying to App Store, allowing developers and testers to
identify and resolve potential issues on real devices in a controlled

environment.

3.49 App Store Connect

App Store Connect is Apple’s platform for managing and deploying 10S
applications. It was used in this project to submit and deploy the iOS version
of the monitoring system to the App Store. Through App Store Connect,
application metadata, screenshots, and build version were managed effectively,

ensuring a smooth publishing process and availability of the app to end users.

c43

CHAPTER 4

PROJECT SPECIFICATION

4.1 Introduction

This chapter mainly focuses on the preliminary specifications of the project in
view of functional and non-functional requirements of the system, followed
by use case diagram along with each use case descriptions for the palm oil mill
monitoring system. The purpose of this chapter is to define what the system
should do and how should it behave so that company have a clear
understanding on the system’s scope and functionality.

The use case diagram gives an overview of the system’s
functionality by identifying the interactions or relationships between users and
the system. Each use case represents the exact tasks that users can perform on
the system, while the use case descriptions provide a details explanation of
how these tasks are carried out in the system.

4.2 Requirement Specification
4.2.1 Functional Requirements
Functional requirements of the mobile application for Palm Oil Mill

Monitoring System are outlined in Table 4.1 below:

Table 4.1: Functional Requirements.

ID Functional Requirement

FROO1 The mobile application shall allow the user to login account

using a valid email and password.

FR002 The mobile application shall allow the user to view a dashboard

displaying all available channels along with their live data.

FRO03 The mobile application shall allow the manager to select a
subgroup under their company to view the corresponding
dashboard.

FRO04 The mobile application shall allow the user to view single live

channel data in graphical format.

ca4

FRO05 The mobile application shall allow the user to select a specific
time range to view the corresponding past channel data in
graphical format.

FRO06 The mobile application shall allow the user to view multiple
available channel data on a single screen in graphical format.

FROO7 The mobile application shall allow the user to view the active
alarm that currently exceed or below the predefined thresholds.

FRO08 The mobile application shall allow the user to receive an alarm
notification when a critical condition is detected.

FR0O09 The mobile application shall allow the user to view the history
of past alarm notifications.

4.2.2 Non-Functional Requirements

Non-functional requirements of the mobile application for Palm Oil Mill

Monitoring System are outlined in Table 4.2 below:

Table 4.2: Non-Functional Requirements.

ID

Non-Functional Requirement

Category

NFROO1

The mobile application shall be
compatible with both Android and

iOS devices.

Portability

NFR002

The mobile application shall
retrieve and display live channel

data not more than 3 seconds.

Performance

NFROO03

The mobile application shall
retrieve and display pass channel

data not more than 5 seconds.

Performance

NFRO04

The mobile application’s response
time shall be responsive when the

user interacts with the system.

Performance

NFROO05

The mobile application shall
validate user input and prevent

incorrect input formats by

Security

c45

displaying error messages to guide

the user.

NFR006

The mobile application’s interface
shall be easy to use, easy to
navigate, and easy to understand by
the user.

Reliability

4.2.3 Use Case Diagram

c46

uc Palm Oil Monitoring System /
Palm Oil Mill Monitoring System
Login account
/ Select subgroup
i dashboard
View dashboard tinclude®
e
Users \
Receive alarm
notification

Operator Manager

P e View pass channel

data

Assumptions:

1. The end users of the mobile

application are the operator and

manager.

2. Both operator and manager are

the primary user of the system.

3. All users must have correct login

credentials to access the system.

View multiple
channel data

Figure 4.1: Use Case Diagram for Palm Oil Mill Monitoring System.

c47

4.2.4 Use Case Description
Use Case Name: Login account ID: FROO1 | Importance Level: High
Primary Actor: Users Use Case Type: Detail, Essential

Stakeholders and Interests:

N/A

Brief Description:

This use case describes the process of user login to the system to monitor the palm oil mill

processes.

Trigger: The user wants to log in to the system to access the palm oil mill monitoring mobile

application.

Relationships:

Association : Users
Include :N/A
Extend :N/A

Generalization: N/A

Normal Flow of Events:

1.

The user accesses the system which shows a login screen and allows the user to enter
email and password.

The user filled in the email and password.

The system retrieves the user information from the user account database in the
firebase.

The system verifies the username and password. Perform 4.1 or 4.2

4.1 The username and password are correct. Continue to 5.

4.2 The username and password are incorrect. Continue to 6.

The user enters the system. The use case ended.

The system will prompt out a message to let the user renter the username or
password. Continue to 4.

Sub-flows: N/A

Alternate/Exceptional Flows: N/A

c48

Use Case Name: View Dashboard

ID: FROO2 | Importance Level: High

Primary Actor: Users

Use Case Type: Detail, Essential

Stakeholders and Interests: N/A

Brief Description:

This use case describes the process of viewing a dashboard that displays all available

channels along with their live data.

Trigger:

The user wants to monitor the available live channel data through dashboard.

Relationships:

Association : Users
Include : N/A
Extend :N/A

Generalization: N/A

Normal Flow of Events:

1. The user selects the “Dashboard” option from the bottom navigation.

2. The system queries the server to retrieve the list of all available channels.

3. The system retrieves the most recent live data for each channel.

4. The system displays the channel list along with its live data and presents in a well-

organized dashboard.

5. The dashboard will automatically refresh the latest live data every 5 seconds.

Sub-flows: N/A

Alternate/Exceptional Flows:

1. Users must have valid login to access the system.

c49

Use Case Name: Select subgroup dashboard ID: FRO03 | Importance Level: High

Primary Actor: Manager Use Case Type: Detail, Essential

Stakeholders and Interests:
N/A

Brief Description:
This use case describes the process of a manager selecting a specific subgroup dashboard

and displays real-time data related to the selected subgroup.

Trigger:
The manager wants to view real-time data and monitor the performance of a specific

subgroup.

Relationships:

Association . N/A
Include : View dashboard
Extend : N/A

Generalization: N/A

Normal Flow of Events:

1. The system displays a list of available subgroups on the dashboard after manager
login.

2. The manager selects a specific subgroup from the list.

3. The system queries the server to retrieve the list of all available channels for the
selected subgroup.

4. The system retrieves the most recent live data for each channel.

5. The system displays the channel list along with its live data and presents in a
well-organized dashboard.

6. The dashboard will automatically refresh the latest live data every 5 seconds.

Sub-roWs: N/A

Alternate/Exceptional Flows:

1. Manager must have valid login to access the system.

c50

Use Case Name: View single channel data

ID: FROO4

Importance Level: High

Primary Actor: Users

Use Case Type: Detail, Essential

Stakeholders and Interests:
N/A

Brief Description:

This use case describes the process of users viewing a single detailed live data for monitoring

its performance.

The user wants to view detailed live data of specific channel by tapping on the channel from

Trigger:

the dashboard.

Relationships:
Association - Users
Include - N/A
Extend - N/A

Generalization: N/A

Normal Flow of Events:

1. The user navigates to the dashboard page.

2. The user taps on a specific channel from the available list.

3. The system retrieves and processes the channel’s most recent data.
4. The system displays the channel’s detailed data in graphical format.

Sub-flows: N/A

Alternate/Exceptional Flows:

1. Users must have valid login to access the system.

c51

Use Case Name: View pass channel data ID: FROOS5 | Importance Level: High

Primary Actor: Users Use Case Type: Detail, Essential

Stakeholders and Interests:

N/A

Brief Description:

This use case describes the process of a user viewing historical data for a specific channel.

Trigger:

A user wants to view historical data for a specific channel to analyse past performance and

investigate

issues that occurred in the past.

Relationships:

Association : User
Include :N/A
Extend :N/A

Generalization: N/A

Normal Flow of Events:

el NS =

5

The user navigates to the dashboard page.

The user taps on the desired channel from the list to view its data.

The system shows an option to select a time range for the past data.

The system retrieves the pass data from the database based on the selected time
range.

The system displays the past data in graphical format.

Sub-roWs:

N/A

Alternate/Exceptional Flows:

1. Users must have valid login to access the system.

€52

Use Case Name: View multiple channel data ID: FROO6 | Importance Level: High

Primary Actor: Users Use Case Type: Detail, Essential

Stakeholders and Interests:
N/A

Brief Description:
This use case describes the process of a user viewing the live data for multiple available

channels on a single page for analysis purposes.

Trigger:
The user wants to view live data for multiple channels on one page to track overall channel
performance and identify any issues or trends.

Relationships:

Association : Users
Include : N/A
Extend . N/A

Generalization: N/A

Normal Flow of Events:

The user navigates to the dashboard page.

The user clicks the “View Graphs” button on the top of the dashboard page.

The users select the channel according to their preferences through Filter option.
The system retrieves the most recent data for all selected channels.

The system processes and organizes the data for each channel.

The system displays the data for selected channels on one page.

The users can choose either view the selected graphs separately or combine
together.

NooogkrwbdE

Sub-flows: N/A

Alternate/Exceptional Flows:

1. Users must have valid login to access the system.

c53

Use Case Name: View active alarm ID: FROO7 | Importance Level: High

Primary Actor: Users Use Case Type: Detail, Essential

Stakeholders and Interests:
N/A

Brief Description:
This use case describes the process of a user viewing the active alarm record triggered by

available channels.

Trigger:
The user wants to view the active alarm that currently exceed or below the predefined
thresholds.

Relationships:

Association - N/A
Include :N/A
Extend :N/A

Generalization: N/A

Normal Flow of Events:

1. The user navigates to the active alarm page through the “Alarm” icon on the
header.
2. The system retrieves the current active alarm records for all available channels
from the database.
3. The system displays the active alarm history in a list format with its alarm code,
alarm triggered time and description.

Sub-flows: N/A

Alternate/Exceptional Flows:

1. Users must have valid login to access the system.

c54

Use Case Name: Receive alarm notification ID: FRO08 | Importance Level: High

Primary Actor: Users Use Case Type: Detail, Essential

Stakeholders and Interests:
N/A

Brief Description:
This use case describes the process of a user receiving alarm notifications when a monitored

channel exceeds predefined threshold values.

Trigger:
A monitored channel detects a condition that exceeds the predefined threshold, triggering an

alarm.

Relationships:

Association : Users
Include :N/A
Extend :N/A

Generalization: N/A

Normal Flow of Events:

The system continuously monitors all channel data in real-time.

A channel’s data exceeds the predefined threshold stored in the database.
The system generates an alarm event based on the configured rules.

The system immediately sends an alarm notification to the user via push
notification.

5. The user receives an alarm notification through the system.

el NS =

Sub-flows: N/A

Alternate/Exceptional Flows:

1. Users must have valid login to access the system.

c55

Use Case Name: View alarm history ID: FRO09 | Importance Level: High

Primary Actor: Users Use Case Type: Detail, Essential

Stakeholders and Interests:
N/A

Brief Description:
This use case describes the process of a user viewing the historical alarm events triggered by

available channels.

Trigger:

The user wants to review previous alarm notifications and investigate past incidents.

Relationships:

Association : Member
Include : N/A
Extend :N/A

Generalization: N/A

Normal Flow of Events:

=

The user selects the “Alarm” option from the bottom navigation.

The user can filter the alarm history based on criteria such as time range and date.

3. The system retrieves the alarm history from the database based on the filter
criteria.

4. The system displays the alarm history in a list format with its alarm code, alarm
triggered time, description and acknowledgement.

5. The user can acknowledge the particular alarm record by clicking the Ack button.

Once Ack button is pressed, it will turn into green colour.

N

Sub-flows: N/A

Alternate/Exceptional Flows:

1. Users must have valid login to access the system.

€56

4.3 Low-fidelity Prototypes

Low-fidelity prototypes with user interface (Ul) representations were
developed for the mobile application of the palm oil mill monitoring system.
The prototype includes key interfaces such as login page, dashboard page,
channel data monitoring page, active alarm page, alarm history page, and
welcoming page. The purpose of creating this prototype was to provide ideas
for visualizing a palm oil monitoring system and illustrate how it would look
and work. It served as reference point for both design and functionality,
allowing the company supervisor to make any changes or improvements when
necessary. In addition, feedback will be collected after the low-fidelity
prototype is presented to the company supervisor, which will be used for
further refinement. The low-fidelity prototype is shown in Appendix A.

c57

CHAPTER 5

SOLUTION

5.1 Introduction

This chapter presents the solutions that implemented in the system to solve the
problems mentioned in Chapter 1. The system design has progressed from a
low-fidelity prototype to a high-fidelity interface, with the implementation on
usability and functionality. Each problem identified in the Chapter 1 is
resolved through the modules and features developed in this project. This
solution not only addresses the highlighted issues but also serves as the actual
implementation adopted by the company in their daily operations.

5.2 Problem-Solution Mapping

5.2.1 Limited Android Access and Discontinuation of iOS Subscription
The previous company application was constrained to limited Android access
and the discontinuation of the iOS subscription, where managers and operators
were unable to monitor the palm oil mill operation through the mobile app.
With the implementation of this proposed system, both Android and iOS

platforms are supported, allowing broader accessibility for all users.

The application is developed using a cross-platform framework,
Flutter, which ensures the updates and new features are released
simultaneously for both Android and iOS. As a result, users are no longer
restricted by their device type. For example, manager using iPhones and
operators using Android phones can both access the same system without
compatibility issues. In addition, the app also supports iPads and Android
tablets, providing a larger screen option for monitoring operations. This is
useful since long time viewing of graphs on smaller phone screens can cause
eye strain. To verify this cross-platform accessibility, screenshots of the app
icons on real iI0OS and Android phones are provided as proof of successful
deployment as shown in Figure 5.1 and Figure 5.2. The compatibility on iPads

and Android tablets are shown in Figure 5.3 and Figure 5.4.

Edit Home Screen
Share App
Require Face ID

Remove App

Figure 5.2: SmartMill365 Figure 5.1: SmartMill365
on ioS. on Android.

Figure 5.3: SmartMill365 on iPads.

c58

c59

19 Th, 11 Sept b4 » 54

Figure 5.4: SmartMill365 on Android Tablet.

5.2.2 Limited Visual Representation of Real-Time Processes

The earlier application lack of intuitive graphical interface for monitoring, as
real-time processes were only represented in raw data form without a graphical
layout dashboard. Thus, this system introduces a high-fidelity SVG-based
dashboard as shown in Figure 5.5 and Figure 5.6 that dynamically displays
device information, including device name, live data from Influx DB, and its
unit from Firebase. Each device is represented by an icon with real-time status
indicators where green for online and red for offline. For disconnected devices,
it will show “Offline” text instead of device information. This visualization
improves situational awareness and makes monitoring more intuitive and

efficient.

D0 12:28

Dashboard
Dashboard

Palm Oil Mill JG

Last Updated At: Thu, 11 Sep 2025, 12:26:02

Sterilizers View Graphs

Boiler
26.93 bar

unch o
1 EFB 2 Motor
B Offline M
» G] " e

EFB 3 Motor
84844

BPV

2.97 bar

Sterilizer 1

-0.01 bar

EFB | Status
Run

Sterilizer 2

1.98 bar

EFB 2 Status
Stop

Sterilizer 3

0.00 bar

EFB 1 Usage
1120.10 hrs

Figure 5.5: Graphical Layout Dashboard Figure 5.6: Graphical Layout Dashboard
on iOS. on Android.

€60

As this project is currently developed under Phase 1 for the company,
the current dashboard design serves as a temporary implementation to
validate system feasibility. A more refined and suitable design will be
considered for future improvement, as the final graphical layout has not yet
been finalized by the company. Additionally, users can click on the device
icon to view its corresponding live graph data, enabling deeper insights into

real-time performance.

5.2.3 Delayed Response to Critical Conditions

Previously, palm oil mills relied on operator physically checking devices on
site, which increased the risk of delayed responses to sudden critical
conditions that could cause production downtime or equipment damage.
Therefore, this system implements a comprehensive alarm notification system
consisting of two main components which are Active Alarm page and Alarm
History page. The Active Alarm page displays real-time records of devices
that currently exceed of fall below predefined thresholds, where the record
automatically cleared once values return to normal. Each subgroup has its own
active alarm records, presented in a table with key information including the
alarm code, trigger time, and a dynamically generated description as shown in
Figure 5.7 and Figure 5.8 below. The threshold values and alarm description
for each device are set by the Novaflow IT team based on client or user

specifications, with a detailed explanation in Chapter 6 later on.

c61

Active Alarm
Active Alarm

Time Description

Figure 5.8: Active Alarm Page Figure 5.7: Active Alarm Page
on ioS. on Android.

The Alarm History page show past alarm records for the selected
subgroup, presented in a table form with four columns including alarm code,
alarm trigger time, description and an Acknowledge (Ack) button as shown in
Figure 5.9 and Figure 5.10. When a user acknowledges an alarm, the system
logs their email, ensuring the corrective action has been taken while also
providing a clear audit trail for future reference. Once an alarm is
acknowledged, the Ack button turns green and can only be clicked once per
record. To support usability in sites with many devices which might contain
large volumes of alarm records, the system also offers filtering options by

specific date or by days (1, 7, 30) as shown in Figure 5.11 to Figure 5.14.

€62

Alarm History

Alarm History

[Pick Date Last1Da v
[pick bate Last | Day Y, !

Alarm

Code Time Description Ack

Alarm
Code

Description

Figure 5.10: Alarm History Page on iOS. Figure 5.9: Alarm History Page on Android.

@mo 12:37

Select date

Thu, Sep 11

Cancel OK

Figure 5.12: Alarm Record Filtered by Date Figure 5.11: Alarm Record Filtered by Date
on ioOS. on Android.

€63

e 12:37

Alarm History

Alarm History

) pick Date Last 1 Day
M Pick Date Last 1 Day

Last 7 Days
Last 7 Days Alarm Y

Tim Code ime

Alarm
Code
Last 30 Days Last 30 Days

18894

Figure 5.13: Alarm Record Filtered by Days Figure 5.14: Alarm Record Filtered by Days
on iOS. on Android.

Additionally, the system provides real-time pop-up notifications as
shown in Figure 5.15 and Figure 5.16 below whenever a new active alarm
record is triggered, ensuring managers or operators are immediately aware of
the critical conditions without needing to continuously monitor the Active
Alarm page. On the Dashboard page, there are also having a small active
alarm icon shown in Figure 5.17 and Figure 5.18 that indicates the status of
active alarms for that particular subgroup. A red alarm icon signifies that an
active alarm is present, while a grey alarm icon indicates currently no active
alarms. This feature is especially useful for company that managing multiple
subgroups, as it eliminates the need for managers or operators to manually

switch between each subgroup’s Active Alarm page to check for issues.

Figure 5.16: Pop-Up Notification on iOS.

Dashboard

Falm Oil Mill JG
Falm Oil Mill SKM
Last Updatec

. Falm Oil Mill SKP
Sterilizers

Falm Oil Mill SKL

Falm Oil Mill SKR

Office Demo POM

Palm Oil Mill SKU

T

Sterilizer 1

Sterilizer 2
0.00 bar
4 4 b

Sterilizer 3
-0.01 bar

Figure 5.18: Active Alarm Icon
on iOS.

¢ Smart Mill 365 Just now

Active Alarm

Browser

Huawei Apps

c64

PG e

S] 1)
@ev ®WY@
88~)

Entertainm. . Social

99+

= Y

) - Lifestyle Folder 1

2

Insvtagrarvy\ Messaging

Figure 5.15: Pop-Up Notification

Dashboard

Palm Oil Mill JG
Palm Oil Mill SKM
Last Updatec

it Palm Oil Mill SKP
Sterilizers

Palm Oil Mill SKL

Palm Oil Mill SKR

Office Demo POM

2alm QOil Mill SKU

Sterilizer 1

2.81 bar

Sterilizer 2

Sterilizer 3

-0.01 bar

Figure 5.17: Active Alarm
on Android.

- t‘t 'i_?-

on Android.

Icon

€65

5.2.4 Limited Usability and Interface Constraints

In previous monitoring system has some usability constraints where user can
only view one channel’s data at a time, which cause real-time monitoring and
analysis inefficient, especially in critical conditions. Furthermore, managers
that have multiple subgroups face difficulty in monitoring since they must log
in and out of different accounts to access each subgroup’s dashboards and

device data, which cause time-consuming and impractical.

To overcome the issues mentioned above, the new system introduces
two major improvements on usability. First, the graph module allows users to
view channel data in two ways which are Separate Graphs and Combine
Graphs. Separate Graphs view shown in Figure 5.19 and Figure 5.20 allow
multiple graphs can be displayed simultaneously, enable users to analyse each
channel individually. Meanwhile, the Combine Graphs view shown in Figure
5.21 and Figure 5.22 allow selected channel data displayed in a single graph
for easy comparison and analysis. Additionally, users can filter the devices
they wish to monitor and adjust the time range (Last 3, 6, 12 hours) as shown

in Figure 5.23 to Figure 5.26 according to their objectives or preferences.

o 12:40

& View Graphs
< View Graphs

Last 3 Hours ~ Filter Combine
Last 6 Hours = Filter

Time: 2025-09-1112:40:45
me: 2025-08-26 17:.

BPV: 43.01 psi

si
sterilizer 2:18.93 psi
Sterilizer 3: 0.54 psi
Sterilizer 4: 0.28 psi

g
&
2
=
5
@
o
=
a

BPV (psi)

Digester 4 Mator (&)

Sterilizer 1 (psi)

Figure 5.20: Separate Graphs View Figure 5.19: Separate Graph View
on iOS. on Android.

View Graphs

Last 6 Hours ~ Filter (8

Time: 2025-08-28 17:26:30

Figure 5.21: Combine Graphs View
on iOS.

Select Graphs

vigester 1 Motor

<]

a

a

Confirm

Figure 5.23: Graphs Filtered by Devices
on ioS.

€66

@me 12:40

¢« View Graphs

Last 3 Hours ~ Filter

Time: 2025-09-1112:40:45
BPV: 43.01 psi

Sterilizer 1: 40.57 psi
Sterilizer 2:18.93 psi
Sterilizer 3: 0.54 psi
Sterilizer 4: 0.28 psi

Combine

Figure 5.22: Combine Graphs View
on Android.

e 12:41

Select Graphs

Boiler

8 0O

BPV

Sterilizer 1

a

Sterilizer 2

<]

Sterilizer 3

<]

Sterilizer 4

<]

Confirm

Figure 5.24: Graphs Filtered by Devices
on Android.

c67

mo 12:41

< View Graphs

Last 3 Hours

Last 3 Hours Filter Combine
Last 6 Hours 0

Last 12 Hours

=z
5
]
: 4
5
a
8
=
a

BPV (psi)

Digester 4 Motor (A)

Sterilizer 1 (psi)

Figure 5.26: Graphs Filtered by Time Range Figure 5.25: Graphs Filtered by Time Range
on iOS. on Android.

Second, managers with multiple subgroups can now seamlessly
switch between subgroups dashboards without repeated logins as shown in
Figure 5.27 and Figure 5.28, as all subgroups are configured under a single
account. Once a subgroup is selected on the dashboard, all components
including device data, active alarms and alarm history update simultaneously,

ensuring smooth monitoring across multiple sites.

Dashboard
Dashboard

Palm Oil Mill JG
Palm Oil Mill JG

Palm Oil Mill SKM
Palm Oil Mill SKM Last Updatec
Last Updatec

Palm OIl Mill SKP

- & Palm Oil Mill SKP Sterilizers
sterilizers

Palm Oil Mill SKL Palm Oil Mill SKL

Palm Oil Mill SKR Palm Oil Mill SKR

3 Office Demo POM } Office Demo POM

Palm Oil Mill SKU Palm Oil Mill SKU

Sterilizer 1
2.81 bar

Sterilizer 1

-0.01 bar

Sterilizer 2
-0.02 bar

Sterilizer 2
0.00 bar

Sterilizer 3
-0.01 bar

Sterilizer 3
-0.01 bar

Figure 5.28: Switching between Subgroups Figure 5.27: Switching between Subgroups

on Single Account for iOS. on Single Account for Android.

c68

In addition to Separate Graphs and Combine Graphs view, the system
also provides Single Graph view as shown in Figure 5.29 and Figure 5.30,
which remain the previous implementation where line spot values (tooltip) are
displayed on each graph point when the user tap on it. The tooltip displays the
time of the selected point, device name and the corresponding value. Several
improvements have been introduced in this view. The device unit is now
clearly displayed on graph, making the data more informative and reducing
ambiguity. A time range selection (3, 6, or 12 hours) is implemented at the
top of the graph. These time ranges are specifically designed based on the
palm oil mill process, where one complete operational cycle typically take at
least 3 hours. This ensures that users can analyse the data in more meaningful
ways that algin with the mill’s workflow.

From Ul perspective, the graph has been expanded to its maximum
size, giving users a larger and clearer visualization for a better monitoring
experience. Additionally, a blank space has been reserved beside the Y-axis
values. This is specially designed to accommodate devices with screen island
layouts, ensuring that the Y-axis values remain visible and not blocked by the
island. As many modern devices no matter Apple or Android now adopting
this design, the enhancements improve accessibility and delivers a seamless
monitoring experience across different screen types.

As Single Graph view serves as the main monitoring tool, it also
allows to zoom in or out as shown in Figure 5.31 and Figure 5.32 for a closer
analysis of the data and pan across the timeline for better navigation. When a
different time range is selected, the graph resets to its normal size, maintaining

consistency in the viewing experience.

Digester 4 Motor o ° 12h

y 4
A "
‘\ Tuesday 26 Aug at 12:16 || [
Y Digester 4 Motor: 47.58 A \|
y esiblteidl]

Figure 5.29: Single Graph View on iOS.

€69

“ Boiler 3h a @

psi

hao

p M‘W‘MU M AN Thursday 11 Sep at 11:54 M
= M\/‘/\ VY M| Boiler: 422.10 psi \ [
410 : /

v

10:00 10:20 10:40 11:qo0 1:20 11:40 12:90 12:20 12:40

Figure 5.30: Single Graph View on Android.

] OO

e
| W WMW m n”u“

10:50 10:55 11:00 1:05 10 s 20

=l

10:40

Figure 5.31: Zoom in Graph on iOS.

¢« Boiler 3h 6 @

psi
“ W | 4’4
[| / \ “ A A
423.4 [,‘-“»\,/; M’\Uﬂ f%lh\ / \ // W 1/ \ " ‘\ \
A |/ \ \ N "
N My Y\ 71 [ﬂ W v:«wl v \,
[\ ‘ A
418.4 [Wi 'i \
\ | \
/ “: / \\/ ‘/\ A
| \ \/
413.4 ,/ | o
[V
/
408.43 1
110 115 1:20 11:25 11:30 1:35 11:40

Figure 5.32: Zoom in Graph on Android.

Another critical usability feature is the implementation of theme selection as
shown in Figure 5.33 and Figure 5.34. Since managers or operators may
monitor the device performance for extended periods of time, reducing eye

strain is essential. To address this issue, the system allows users to choose

c70

between dark theme and light theme based on their preferences or situational
needs. Furthermore, users can set the application theme to automatically
follow their device settings, offering an additional option for user convenience.
This ensures a consistent visual experience across the system and other
applications on the device, whether in light or dark mode.

Cme 12:43 A=l CEe

Figure 5.33: Theme Selection in Settings Figure 5.34: Theme Selection in Settings
on iosS. on Android.

Lastly, the More page shown in Figure 5.35 and Figure 5.36 contains
several general app functionalities such as About Us, Frequently Asked
Questions (FAQ), Privacy Policy, and Settings. At the top of this page, the
current logged-in user’s account email is displayed for clear identification. In
addition, the page includes a Data Plotter feature as shown in Figure 5.37 and
Figure 5.38 requested by the company. It allows users to upload CSV files for
plotting graphs and export the generated graphs as PDF files. Users can also

log out through this page to securely end their session.

9117

o Logged In As:
*= rhlundu@rsb.com.my

About Us

Data Plotter
Privacy P
Settings

Logout

Figure 5.36: More Page on iOS.

n{\/aFLouw

Upload CSV file here

=T -

© & v-dataplotter-ad495e.web.app ¢

@ m ©

Figure 5.37: Data Plotter on iOS.

c7l

0 12:43 & .l G

e LoggedInAs:
“* demo@novaflow.com.my

About Us
FAQ

Data Plotter
Privacy Policy
Settings

Logout

Powered By

Version v2.2.9
(©]

Figure 5.35: More Page on Android.

oo 12:43 & il @Ey

O (& taplotter-a495eweb.app) (2) ::

Upload CSV file here

Figure 5.38: Data Plotter on Android.

c72

The About Us, FAQ, Privacy Policy and Settings pages are shown

below. All information was provided by the company. These pages are

important because the About Us page helps users understand the company’s

background and mission, the FAQ page addresses common questions to

improve user experience and reduce support requests, and the Privacy Policy

page informs users about how their personal data is collected, used, and

protected, ensuring transparency and building trust.

2:52 il 56 @%

Novaflow Technology Sdn Bhd

About Us

bet!

Our History

T Location

Contact Us

Figure 5.40: About Us Page on iOS.

@0 12:43 &=l G

Novaflow Technology Sdn Bhd

e inIndus
building

de:
s Smart M = for Palm Oil Mills
« Smart Fa
Manufacturing Ind
Our mission
nd
decisions.

Our History

- 2006 - Novaflow Engineering Sdn Bhd

Figure 5.39: About Us Page on Android.

c73

2:52 il 56 @5 L ki

What is this app used for? What is this app used for

How do I register an

account?
How do | register an account? I forgot my password. What
should | do?
1 forgot my password. What should | do?

Why is my data not

?

Why is my data not updating? updating?
Can | access multiple
sites?

Can | access multiple sites? 3
Is the data in real-time?

Is the data in real-time?
Will I receive alerts?

Wwill I receive alerts?

Is my data secure?
Is my data secure?

. Does this app work offline?

How can | get suppo How can | get support?

Figure 5.42: FAQ Page on iOS. Figure 5.41: FAQ Page on Android.

2:52 ull 56 @) Dm0 12:43 & ™G

Smart Mill 365

Published by: Novaflow Technology Sdn Bhd
Last updated: 1-July 5
Website: www.novaflow.com.my

Smart Mill 365

Published by: Novaflow Technology
Sdn Bhd

Last updated: 1-July-2025
Website: www.novaflow.com.my
Contact: biz@novaflow.com.my

Contact: biz@novaflow.com.my

1. Introduction

1. Introduction

At Novaflow Technology Sdn Bhd, we
are committed to protecting your
personal and operational data. This
Privacy Policy explains how Smart Mill
365 collects, uses, and protects your

owing types of

information when using the app.

2. Information We Collect

The Smart Mill 365 app collects the
following types of information:

« Personal Information
o Full name
o Email address
o Phone number
o Company and site information

+ System & Usage Data
o Equipment sta

o Alarm and event |

forms * Device & Location Data

o Device information
o GPS/\occmon (via device or loT

et

Figure 5.44: Privacy Policy Page oniOS. Figure 5.43: Privacy Policy Page on Android.

3. How We Collect Information
« From user registration forms submitted to

74

2:52 il 56 € LB

Dark Mode

Figure 5.46: Settings Page on iOS. Figure 5.45: Settings Page on Android.

5.3 Deployment of Solution

For the iOS version, the application was successfully deployed to the Apple
App Store as shown in Figure 5.47 below, which showing the completion of
the development and deployment cycle for the iOS platform. Prior to the
official release, TestFlight was used extensively for both internal testing by
the development team and external testing by selected testers and stakeholders
to identify and resolve the potential issues, ensuring that the application met
company requirements and Apple’s quality standards. This testing process
helped verify that all functionalities operated as intended under different

conditions before making the application publish to public.

c75

Smart Mill 365

What's New >

Preview

Figure 5.47: Apple App Store Listing of Smart Mill 365.

For the Android version, the company is in the process of preparing
the Google Play developer account. While the functionality is being finalized,
the application is temporarily distributed in APK format as shown in Figure
5.48 below, enabling direct installation on Android devices for testing and
usage. This approach ensures that testers and stakeholders can continue
evaluating the app’s performance, identifying improvements, and providing
feedback. The company will decide on the official deployment to the Google
Play Store once the developer account is fully active and any final refinements

are completed.

Smart Mill 365

Figure 5.48: Android Version APK Download for Smart Mill 365.

c76

All project folders and source code have been uploaded to a GitHub
repository shared by Novaflow. This ensures centralized version control and
easy collaboration among developers. By hosting the code on GitHub, the
project can be easily maintained and improved in the future. The repository
has also been formally handed over to the company, allowing Novaflow to
take full ownership and continue for further development or deployment in

future.

G % github.com/kaz

azubazoo |/ smartmill365 &

s 11 Pullrequests () Actions [Projects () Security [+ Insights 3

@ smartmill365 #ree

P main = | ¥ 1Branch © 07Tags Q Gotofile t Addfile - | ¢>Code * About
smartmill365

@ juanhong26 Updated late o0c: coksage 5 37 Commits
0 Re

I android

I assets

| fonts d er project com 6m jo Y K

I functions

- Releases
ios

I b

I Jinux

Figure 5.49: Project Upload to GitHub Repository.

c77

CHAPTER 6

SYSTEM IMPLEMENTATION

6.1 Introduction

This chapter presents the implementation of the SmartMill365 system, detail
out the setup of Firebase and MySQL cloud database, and the development of
its five main modules such as Login, Dashboard, Graph Monitoring, Alarm
Management, and User Profile & Settings. It explains how each component
was built and integrated to achieve real-time monitoring, alarm handling, and

user interaction.

6.2 Project Setup
6.2.1 Firebase Setup
This section describes the steps to set up Firebase for both Android and iOS
applications used in the Smart Mill 365 system:
1. A google account is needed to set up a Firebase project.
2. Once a Google account is ready, go to

https://console.firebase.google.com/ to create a new Firebase project

by clicking the “Create a Firebase project” button in the Firebase

console as shown in Figure 6.1 below:

< c =

@ Firebase

Yv&roiects
BN

A SmartMill3s5
smartmill3¢
[.
Create a Firebase
project

Figure 6.1 Firebase Website to Create Project.

3. Link the Firebase Project that created in previous step with the Flutter
App. Each app will generate its own SDK setup file as shown in
Figure 6.2 and Figure 6.5 respectively, which must be placed in the

corresponding project folder as shown in Figure 6.3 and Figure 6.6.

https://console.firebase.google.com/

c78

e Android:
o Downloads the google-services.json file from Firebase.

SmartMill365 ~ Project settings

SDK setup and configuration

com.example.projects

com.sm365.projects

105, | Projects (ios))
ik 1:153633706587:android:33a13025da2af9d1b1657¢

Figure 6.2 Firebase Configuration File for Android Mobile Application.

o Place it in the android/app/ directory of the Flutter project.

v 4 projects
>
v [D android [projects_android]
> D
> D kotlin

v Dapp
> Osrc
&2 build.gradle.kts
{} google-services.json
> D gradle

Figure 6.3 Location to Place the google-services.json File.

o Then, add the Google-services Gradle plug-in as a dependency
in the project-level build.gradle.kts file to enable processing of
the google-services.json configuration, which is required for the

Firebase SDK to function properly.

buildscript {
v [gradle repositories {
v 3 wrapper google()
mavenCentral()

< gradle-wrapper.properties }

@ .gitignore dependencies {
&2 build.gradle.kts

&3 gradle.properties

classpath(

}_

Figure 6.4 Add Google-services Plug-In at build.gradle.kts File.

c79

e iOS:
o Downloads GoogleService-Info.plist file.

(ORI SDK setup and configuration

&) com.example.projects Need to reconfigure the Firebase SDKs for your app? Revisit the SDK setup instructions or just
download the configuration file containing keys and identifiers for your app.

Z) com.sm365.projects

See SDK instructions & GoogleService-Info.plist

Apple apps

1gg,) Projects (ios) AppID @
TR 1:153633706587:i0s:3dabbcaac842b1bab1657e

Figure 6.5 Firebase Configuration File for iOS Mobile Application.

o Place it in the ios/Runner/ directory of the Flutter project.

B alarmhistory_api.py M build B AppDelegate.swift

@ analysis_options.yam!| B Flutter B Assets.xcassets

@ android B GoogleService-Info.plist @ Base.lproj

i assets B Podfile B GeneratedPluginRegistrant.h
= build B Podfile.lock M GanaratedPluninRaaistrant m
B database.py i Pods B GoogleService-Info.plist
M firebase.json ™ Runner B Into.plist

l flutter_01.png B Runner.xcodeproj B Runner-Bridging-Header.h
M fonts B Runner.xcworkspace B Runner.entitlements

@ functions I RunnerTests

M ios

. lib

M linux

W macos

R projects.iml

B pubspec.lock

@ pubspec.yaml

B README.md

R smartmill365-...80b0207.json

M test

W web

B windows

Figure 6.6 Location to Place the GoogleService-Info.plist File.

o Then, add the Google-services Gradle plug-in as a dependency
in the project-level build.gradle.kts file to enable processing of
the google-services.json configuration, which is required for the

Firebase SDK to function properly.

C7 projects plugins {
id(

¥

java
> [5] pages

& firebase_options.dart
& allprojects {

~ [projects_android
v [3 android

3 .kotlin

> Derrors
[3 sessions = "${rc dDir}/${project.name}
subprojec
project.evaluationDepends0n(

i

Figure 6.7 Add Google-services Plug-In at build.gradle.kts File.

c80

4. Navigate to Authentication in Firebase Console as shown in Figure
6.8 below to set up user account. Click the “Add user” button to create
a new account by entering their desired Login Email and Password as
shown in Figure 6.9. These credentials will be used later for logging
into the application.
Note: All user accounts for the Smart Mill 365 app are created by the
Novaflow IT team.

SmartMill365 ~

Authentication

Users Sign-in method Templates Usage Settings

The following authentic when Firel Links shuts down on 25 August 2025: email link ~ +

authentication for mobi

umber or user UID c
Signed In ser UID

Created

RmAHeT1oRfw.

Figure 6.8: Firebase Authentication Page.

SmartMill365 ~ Authentication

Q_ search by email address, phone number or user UID (&

Add an Email/Password user

Email Password

engineer@novaflow.com.my Password@123

Figure 6.9: Create New Account.

5. Navigate to the Firestore Database / Cloud Firestore in Firebase
Console. Create a new collection where the collection name must be

same as the user’s login email address as shown in Figure 6.10 below.

c8l

SmartMill365 ~
Cloud Firestore (4 AskGeminihowto get started with Firestore

Start a collection

o Give the collection an ID (2) Add its first document

Figure 6.10 Create New User Collection.

6. Next step is to create Document(s) inside the Collection as shown in
Figure 6.11. For users with multiple subgroups/sites need to create a
separate document for each subgroup/site, while for users with only 1
subgroup/site, only 1 document need to be created.

Add a document

Parent path
/demo@novaflow.com.my

Document ID (3

demo_Genting_PSTC|

Field Type

= | string - @

@ Add field

Figure 6.11 Create New Document for Subgroup/Site.

7. Then add all required fields in each document. Each document must

include the following fields in Table 6.1:

Table 6.1 Required Field in Each Document.

c82

Field Name Type Description

availablefield Array List of available devices
(Boiler, BPV, Sterilizer 1)

id String Influx DB’s ID
(SAMYSK_PSTR_240006)

measurement String Influx DB’s measurement
(PSTR, PSDG)

measurement_name | String Category name displayed on
dashboard (Sterilizers/Digestors)

name String Site/subgroup name displayed on
dashboard (POM Genting Group)

device_channel Map Mapping of device to channels
(BPV: chl, Boiler: ch2)

device_unit Map Mapping of devices to units
(BPV: bar, Boiler: psi)

device_event Map Mapping of devices to event

(0: Stop, 1: Run, 2: E-stop)

A sample output is shown in Figure 6.12 below:

SmartMill365 ~ Cloud Firestore

Figure 6.12 Sample Fields inside Document.

c83

6.2.2 MySQL Cloud Database Setup

Note: Since the database operations and structure inside the phpMyAdmin can
only be created by Novaflow (as my side is blocked from performing CRUD
operations due to company’s concern that I might accidentally remove data or
amend table structures), I will not demonstrate the process step by step. | will
only identify and mention the steps that need to be taken.

1. Prepare a MySQL cloud database account.

2. Create a Group named POM (Palm Oil Mill) so that POM-related
databases are categorized properly and won’t accidentally mix with
other groups.

3. Inside this group, create different databases for different users. For
example, POM_BorneoAgro and POM_Genting.

4. Inside each user database, create 3 structures/tables:

e |D_alarm_history

e |ID_description_template

e |D_threshold_settings

The ID in the table name must match with the Firebase / Influx DB id,
otherwise the system will not be able to retrieve or store data. For
structures/table names example,

e SAMYJ PSTR 250022 alarm_history

e SAMYJ PSTR 250022 description_template

e SAMYJ PSTR 250022 threshold_settings

A sample of Step 2 to Step 4 is shown in the Figure 6.13 below:

Recent Favorites

L e
R 7:_‘_} POM
—~— | POM_BorneoAgro
o New

T - » SAMYSK_PSTR_250036_alarm_history
+ - SAMYSK PSTR_ 250036 description_template
+ - SAMYSK_PSTR_250036_threshold_settings
—— POM_Genting

o New
+- 4 SAMYJ_PSTR_250022_alarm_history
+ - SAMYJ_PSTR_250022_description_template
+-» SAMYJ_PSTR_250022_threshold_settings

Figure 6.13 Sample MySQL Databases.

c84

5. Each table contains its own specific data structure. The data structures

of the

ID_alarm_history,

ID_description_template, and

ID_threshold_settings tables are described in the following sections:

Table 6.2 Data Structures of ID_alarm_history Table.

Field Name

Data Type

Description

id

int

Unique identifier for each alarm
record

channel_name

varchar (255)

Devices (BPV, Boiler, Sterilizer 1)

variable

varchar (255)

Devices unit (pressure, bar, amp)

start_time

datetime

Time when the alarm was triggered

end_time

datetime

Time when the alarm ended

description

text

Alarm message (Sterilizer 1 is
below the limit of 20.0 psi)

last_value

float

Value recorded at the moment the

alarm was triggered

acknowledge

enum (‘Yes', 'No")

Acknowledgment status, default is
IINOII

ack_user

varchar (255)

Email of the user who

acknowledged the alarm

(demo@novaflow.com.my)

The sample record of Alarm History Table is shown below:

SELECT * FROM "SANYSK_PDIG_258034_alarm_history"

O Profiling [Editinline][Edit] [Explain SQL] [Create PHP code] [Refresh |
1 v > Number of rows: 25 ~ Filter rows: | Search this tablo Sortby key: | None v
Extra opt
T w id channel_name variable start_time end_time description last value acknowledge ack_user
& Edit 3¢ Copy @ Delete 1 Press 3 malor-amp 2025-06-17 11:09:44 2025-07-03 19:46:49 Press 3 is below the limit of 50.0 A 0.03 No NULL
O ¢ t @ Delete 3 Digestor 2 motor-amp 2025-08-17 11:10:23 2025-06-17 12:15:35 Digestor 2 is balow the limit of 40.0 A 33.35 No
&7 Edit y (@ Delete 4 Digestor 3 motor-amp 2025-08-17 11:10:24 2025-08-06 10:17:44 Digestor 3 is below the limit of 40.0 A 0 Ne
O 7Edit 3&Copy @ Delete 5 Digestord motor-amp 2025-06-17 11:10:29 2025-06-17 11:13:56 Digestor 4 has exceeded the limit of 50.0 A 53.57 No
& Edit 3 Copy @ Delete 6 Digestor 5 motor-amp 2025-06-17 11:10:35 2025-06-17 20-48:40 Digestor 5 is below the limit of 40.0 A 0 Ne
0 @ Delete 7 Digestor 4 motor-amp 2025-08-17 11:14:02 2025-06-17 11:14:13 Digestor 4 has exceeded the limit of 50.0 A 50.4 No
8 Digestor 4 motor-amp 2025-06-17 11:18:41 2025-06-17 11:18:52 Digestor 4 is below the limit of 0.0 A 39.81 No
0O lete 9 Digestor 4 moto p 2025-06-17 11:18:58 2025-06-17 11:25:45 Digestor 4 is below the limit of 40.0 A 39.3 No
o Edit 3& Copy @ Delete 10 Digestor 4 motor-amp 2025-08-17 11:27:27 2025-08-17 11:23:48 Digestor 4 has exceeded the limit of 50.0 A 50.71 No NULL

Figure 6.14: Sample Data in ID_alarm_history Table.

c85

Table 6.3 Data Structures of ID_description_template.

Field Name Data Type Description
id int Unique identifier of the description
alarm_type enum (below’, Indicates whether the alarm
exceed) condition is triggered by being
below or exceeding the limit
description text

Alarm description text (is below
the limit of / has exceeded the
limit of)

Table 6.4 Data Structures of ID_threshold_settings.

Field Name Data Type Description

id int Unique identifier for threshold
settings

site_id varchar (255) Influx DB’s ID
(SAMYSK_PSTR_250002)

channel_key varchar (255) Device channel (chl, ch2)

channel_name varchar (255) Device name (Boiler, BPV)

variable varchar (255) Device variable (pressure)

unit varchar (255) Device unit (bar, psi)

bucket varchar (255) Bucket name (Mill)

measurement varchar (255) Measurement type (PSTR, PDIG)

alarm enum (‘Yes', 'No") | Alarm status (On/Off)

threshold_high float Upper threshold limit (50)

threshold_low float Lower threshold limit (20)

c86

6. After creating the tables based on the defined data structures, filled in
some predefined threshold values and device configurations into the
databases, except for the alarm history table. The sample data for
ID_description_template and ID_threshold_settings tables is shown

below:

[0 Satver 192:168.0:90) 5) Database: POMGEGAGN = [Tablo SAMYULPS TR 250022 desciption emplats

~] Browse [Structure [SQL , Search ¥ Insert =} Export [Import * Operations 2 Triggers
+ Showing rows 0 - 1 (2 total, Query took 0.0008 seconds.)
SELECT * FROM 'SAMYJ_PSTR_256822_description_template’
O Profiling [Edit inline 1[Edit] [Explain SQL] [Create PHP code] [Refresh |
O Showall ‘ Number of rows: 25 ~ Filter rows: | Search this table Sortby key. None ~

Extra options

T w id alarm_type description
0 g7 Edit $£Copy @ Delele 1 below is below the limit of
O 7Edit $eCopy @ Delete 2 exceed has exceeded the limit of
t () Checkal Withselected: g #Edit & Copy @ Delele & Export
(] Showall ‘ Number of rows: 25 v Filter rows: | Search this table Sort by key: None v

Figure 6.15 Sample Data in ID_description_template Table.

[7 Server: 132.168.0.90 » [Database: POM_Genting » [Table: SAMYJ_PSTR 250022 threshold_setiings

Browse) Structure [/ SQL 4 Search 3¢ Insert =} Export [id Import J* Operations 3 Triggers

+ Showing rows 0 - 4 (5 total, Query took 0.0005 seconds.)
SELECT * FROM SAMYJ_PSTR_250022_threshold_settings’

) Profiling [Edit infine] [Edit][Explain SQL] [Create PHP code] [Refresh]

O Showall | Numberofrows: 25 v Fierrows: | Search this table Sortbykey: | None v
Extra options.

Tt v id _site_id channel key channel name variable unit bucket measurement alarm threshold_high threshold_low
) /Edt $iCopy @Delete 1 SAMYJ PSTR 250022 chi Boiler pressure bar Mil PSTR No 20 0
[0 7 Edit é.i Copy @ Delete 2 SAMYJ PSTR 250022 ch2 BPV pressure bar Mill PSTR Yes 30 0
[0 ZEdt 3iCopy @Delete 3 SAMYJ PSTR 250022 chd Sterilizer 1 pressure bar Ml PSTR Yes 3 5
[¢ /Edit 3éCopy @Delete 4 SAMYJ PSTR 250022 chd Sterilizer 2 pressure bar Ml PSTR Yes 3 0

] oEdt 3:Copy @ Delote 5 SAMYJ_PSTR 250022 chS Sterilzer 3 pressuro bar Mill PSTR Yes 3 5
1 [Checkall Withselected: #Edit 3iéCopy @ Delete &) Export

Figure 6.16 Sample Data in ID_threshold_settings Table.

c87

6.3 System Modules

Modules

6.3.1Log In

6.3.2 Dashboard

6.3.3 Graph Monitoring

6.3.4 Alarm Management

6.3.5 User Profile & Settings

6.3.1 Log In Module

The login module is used for authenticating users before granting access to the
application. This process is handled using Firebase Authentication, which
securely verifies the provided email and password against stored user

credentials as shown in Figure 6.17.

Figure 6.17 Login Page

The modules included the following validation steps before authentication:

1. Empty input fields. If the email or password are left blank, the system
prevents login and display an error message shown in Figure 6.18.

2. Invalid email format. If the entered email does not match the standard
email format, the system prompts the user with an error message
shown in Figure 6.19.

3. Incorrect login credentials. If the email or password does not match
any registered account in Firebase, the system displays “Wrong email

or password” as shown in Figure 6.20.

c88

If all the validation checks above pass, Firebase Authentication verifies the
credentials. Upon successful authentication, the user is redirected to the
dashboard (home page) to start using the application.

Login

Please Sign In to continue.

demo@novaflow.com.my

A Email and password cannot be empty.

Figure 6.18: Login Page with Empty Input Field Error Message.

Login

Please Sign In to continue.

demonovaflow.com.my

A Please enter a valid email address.

Figure 6.19: Login Page with Invalid Email Format Error Message.

Login

Please Sign In to continue.

demo@novaflow.com.my

Wrong email or password

Figure 6.20: Login Page with Incorrect Login Credentials Error Message.

c89

The implementation of input validation for login credentials is shown in

Figure 6.21 below.

Figure 6.21: Implementation of Input Validation.

To handle the user login session as implemented in Figure 6.22,
FirebaseAuth.instance.authStateChanges() continuously listens to the user’s
authentication state and automatically restores the session if the user has
logged in previously, where snapshot.hasData returns true and navigates to
the Home Page; otherwise, if the user has logged out, it returns false and
shows the Login Page. This check runs every time the app starts or when the
login state changes, and because Firebase Authentication use its own client
SDK with tokens (not sessions or cookies-based), the user remains logged in

across app restarts until explicitly call signOut() in More Page.

Figure 6.22: Implementation of Firebase Authentication State Management.

€90

6.3.2 Dashboard Module

The dashboard module serves as the central or home of the system, providing
users with a real-time overview of site conditions, device statuses, and alarm
notifications. It is considered as an overview that allows users to easily

monitor and analyse the palm oil mill operations and performance.

First, the header of the dashboard screen having an alarm button as
highlighted in Figure 6.23 which allow users to quickly navigate to the Active
Alarm page. By looking into Figure 6.24, the id (eg.,
SAMKYSK _PSTR_250022) is required to pass into the Active Alarm Page
for fetching the relevant active alarm record in Firebase, which later on
discussed in Section 6.3.4 Alarm Management Module. This provides a direct

access for users to review critical alerts without having complicated steps.

Dashboard

Empty Fruits Bunch

Last Updated At: Fri, 22 Aug 2025, 14:22:35
Empty Fruits Bunch Vview Graphs

i EFB 2 Motor ;
B offline

EFB 3 Motor

EFB | Status

o O} . e

Al EFB 2 Status ;
E} Stop 7

o ¥ e
'

EFB 1 Usage
1120.10 hrs

=> ActiveAlarmPage(id: id!),

ScaffoldMessenger.of(context) . showSnackBar (

content: Text("Please select a site first. ID is still loading.™),

)

Figure 6.24: Implementation of Active Alarm Button.

c91

On top of the dashboard page, there are a container having selection
with available subgroup name as shown in Figure 6.25 where user can select
from different subgroups or site to view its own dashboard. Once the particular
subgroup is selected, it will dynamically update the dashboard to display only
the available devices and measurements for the chosen subgroup.

Dashboard

Palm il Mill J&
Palm Oil Mill SKM
Last updatec

3 Palm Ol Mill SKP

Palm Oil Mill SKL
ﬁ Palm Oil Mill SKR

.
Office Demo POM

Sterilize

ers
1

Palm Oil Mill SKU
¥ = :

-

Sterilizer 1
-0.01 bar

sterilizer 2
0.00 bar

Sterilizer 3
-0.01 bar

Figure 6.25: Subgroup / Site Selection for Switching Dashboard.

The list of available subgroups is configured and stored in the
Firebase document section as shown in Figure 6.26 below, ensuring that
administrators can easily add, update, or remove subgroup configurations
without modifying the application code.

SmartMill365 ~

+ Add ument

alarns = demo_Genting_PSTR

>

8 ‘"Boiler"

1 RO\

Figure 6.26: List of Available Subgroups in Firebase Document.

€92

When the app is running, the application retrieves these subgroups by
querying the Firebase collection associated with the current user’s login email
as shown in Figure 6.27 below. Each subgroup document contains its own
name, which then extracted and displayed in the dashboard’s selection menu.
This ensures that the dashboard dynamically reflects the latest subgroup

structure defined in Firebase without requiring manual update in source code.

~ I
- 1

.collection(userEmail)

sNotEmpty) {
hot.docs.map((doc) {
> data = doc.data() as Map<String, dynamic>;

${data['id']}",
name': '${data['name'] ?? doc.id}',

}).tolist().cast<Map<String, String>>();

Figure 6.27: Implementation of Fetching Available Subgroup.

Beside each subgroup selection, a small alarm status icon indicates
whether there are active alarms for the selected subgroup as shown in Figure
6.28. A red alarm icon indicates that active alarms are detected, while a grey
alarm icon indicates no active alarms. The system determines this by checking
against the active_alarms collection in Firebase. If the collection contains an
alarm record with the current subgroup’s ID, the icon will turn red
immediately without having to refresh the screen; otherwise, it remains grey.
This implementation allows users to respond more quickly to critical
conditions, especially for users that manage multiple subgroups or site

simultaneously.

€93

Dashboard

*alm Oil Mill JG

alm Oil Mill SKM
Last updatec

*alm Oil Mill SKP

Sterilizers

>alm OIl Mill SKL
ﬂ »alm Oil Mill SKR
.
§ Dffice Demo POM

ﬁ alm Oil Mill SKU
P 7] PSSSpe—
1,

Sterilizer 1

-0.01 bar

Sterilizer 2
0.00 bar

Sterilizer 3

-0.01 bar
©

1Subscriptic

alarmSubscription = FirebaseFirestore.
lecti 1

for (var
final data { g dynamic
if (data =

final siteld = (data['si i as String?)?.tri
if (siteId != null) {
tempMap[siteId] = true;

Figure 6.30: Implementation of Active Alarm Icon.

c94

Next, to make the dashboard more alive, a timestamp indicator (eg.,
Last Updated At: 22 Aug 2025, 14:22:35 as shown in Figure 6.31 below) is
implemented. The timestamp is synchronized with the batch data pull from
Influx DB, reflecting the most recent live data update. Since the site data from
Influx DB is updated in batch form and each site contains a channel chl, the
timestamp will always take the chl’s timestamp as the representative time as
shown in Figure 6.33. The timestamp format is then set using the
_formatiInfluxTimestamp function in Figure 6.32 and displayed out. In most
cases, it shows the current time, but in some scenarios, it may display the last
recent update time instead. If the device is totally offline, the dashboard will

display “Offline” in the place of timestamp.

Dashboard

S Empty Fruits Bunch

Last Updated At: Fri, 22 Aug 2025, 14:22:35

Empty Fruits Bunch View Graphs

EFB 2 Motor
Offline

EF8 2 Status

Stop

EFB 1 Usage
1120.10 hrs

String _formatInfluxTimestamp(String influxTime) {

teTime.parse(influxTime) .toLocal();
ss').format(dateTime);

Figure 6.32: Implementation of Timestamp Format.

if (channelName == "chl" && timestamp != null &% mounted) {

setState(() {
_latestChiTimestamp = _formatInfluxTimestamp(timestamp);

Figur 6.33: Implementation of Timestamp Logic.

€95

The Empty Fruits Bunch as shown in Figure 6.31 above, known as
measurement name is dynamically updated based on settings retrieved from
Firebase site configuration using the _fectchMeasurementName function in
Figure 6.34. This allows flexible in managing device measurement naming
without requiring hardcoded values. On the same row, a “View Graphs” text
button is provided as implemented in Figure 6.35. Users can click this button
to navigate to the Graph Monitoring Module (discussed in Section 6.3.3). This
feature enables users to view multiple devices’ graphs simultaneously, making

it easier to perform comparisons and analysis.

Future<void> _fetchMeasurementName(String subgroupEmail) asyn
try {
final doc =
.collection(cu
.doc(subgroupEmail)
-get();

if (doc.ex

reasurementName = datal 'meas

print(" @ Loaded mea
)
} else {
print(C ent for $subgroupEmail not f
],
} catch (e) {
print(fetching meas ent_name: $e");

availableFields.isNotEmpty ? availableFields[0] :

font .
fontWeight: FontWeight.bold,

color: labelColor,

)

Figure 6.35: Implementation of View Graphs Button.

€96

The implementation of the main body of the dashboard shown in

Figure 6.36 is discussed below.

Dashboard

Empty Fruits Bunch

Last Updated At: Fri, 22 Aug 2025, 14:22:35

Empbty Fruits Bunch View Graohs

EFB 2 Motor
Offline

EFB | Usage
112010 hrs i

Figure 6.36: SVG-based Graphical Layout.

When user open the application, the system will first initialize and
load all first subgroup’s device data such as device’s Influx DB ID and
measurement, measurement name and unit that configured in Firebase. During
this loading process, instead of showing an incomplete dashboard, the
application displays the company brand logo shown in Figure 6.38 with a
heartbeat-style animation as a loading indicator. This design ensures a smooth
user experience by maintaining branding consistency and preventing confusion.
Once all the relevant data has been fully retrieved and initialized, the
application proceeds to render and display the dashboard with the live device
data.

super.initState();
WidgetsBinding.instance.addPostFrameCallback((_)

_startTimer();
listenToActiveAlarms();

il .then(() {

_fetchIdForSubgroup

_fetchUnitsForFi groupE
groupEmaill);

UpEmail is null");

Figure 6.37: Implementation of Dashboard Initialization.

c97

Dashboard

Figure 6.38: Brand Logo Loading Indicator.

When user switches the dashboard between different subgroups or
site, the current dashboard data will clear and set to null as implemented in
Figure 6.39. This implementation prevents any possibility of passing incorrect
data to the newly selected subgroup. During this transition, a loading indicator
shown in Figure 6.38 above is displayed to inform user about the system is
retrieving the new subgroup’s data. Once all the device data has been fully
fetched from Firebase and Influx DB, the dashboard for the new selected

subgroup will be rendered and displayed.

Figure 6.39: Implementation of Switching Subgroup Logic.

€98

When the account only created in Firebase Authentication, but no
corresponding Firebase collection exists for that account, the system will
display the message in Figure 6.40. For accounts that already have their own
Firebase collection, but no device settings are configured (no available fields

found), the system will return the message as shown in Figure 6.41.

Dashboard

Dashboard

Figure 6.41: Dashboard Page with No Device Configuration.

€99

, textAlign: TextAlign.center,

, textAlign: TextAlign.center,

Figure 6.42: Implementation of Configuration Check Logic on Dashboard.

At the bottom of the dashboard, navigation options are provided for
Alarm History and More pages as shown in Figure 6.43 below. These give
user a quick access to past alarm records and additional system features. The
design implemented for the navigation is a curved navigation bar as this is
the one of the company’s design requirements, providing a modern look and

smooth user interaction.

Dashboard

Empty Fruits Bunch

Last Updated At: Fri, 22 Aug 2025, 14:22:35

Empty Fruits Bunch View Graphs

EFB 2 Motor
Offline

Figure 6.44: Implementation of Bottom Navigation.

€100

6.3.3 Graph Monitoring Module

The Graph Monitoring Module is one of the core components of the palm oil
mill monitoring system, where the Single Graph View serves as the main
monitoring tool. This view provides a clear and interactive visualization of

device’s channel data, enabling users to analyse performance efficiently.

Each device graph is generated using a single reusable codebase
(genericscreen.dart). This design ensures consistency across devices and
eliminates the need to manually create and modify separate codebase for
different devices. Any changes made to the code are automatically reflected in
all single graph views, significantly improving maintainability and scalability.

When navigating to the single graph view screen, the screen
automatically rotates to horizontal orientation for a better graph viewing
experience. During initialization, the app also enables full-screen mode and
sets up the zoom and pan behaviours for the graph. After that, it retrieves the
device’s data through fetchPressureData() and loads its corresponding unit

using _fetchUnitForDevice().

Figure 6.45: Implementation of initState.

c101

The device channel data is fetched from Influx DB, using the given
authorization token and URL, with correct passing of the Influx DB
measurement, id, and field for the selected channel that configured in Firebase.
Meanwhile, the unit is also directly retrieved from Firebase.

Figure 6.47: Fetching Device Unit from Firebase.

To optimize the screen space, the graph does not display values on
the graph header. Instead, it uses an interactive tooltip as show in Figure 6.48
that appears only when the user taps on a data point. The tooltip is
implemented using TrackballBehavior.builder as shown in Figure 6.49. It
shows the time of the selected point, device name, value and unit as
implemented in Figure 6.50, ensuring that the data remains informative while

maximizing the visible graph area.

€102

Digester 4 Motor o 12h

&~

"
‘F\‘ Tuesday 26 Aug at12:16 ||
L)| Digester 4 Motor: 47.58 A ‘v
/ ™

Figure 6.49: Implementation of Tooltip.

Figure 6.50: Implementation of Tooltip Display Format.

Besides that, users can choose to view the graph within specific time
ranges (3h, 6h, and 12h). The selection buttons are placed in the header section
for quick access. These buttons are implemented through the

_buildTimeRangeButton function, where each button dynamically updates

c103

its colour to indicate the active selection and triggers fetchPressureData() to

reload the graph according to the chosen range.

Digester 4 Motor ° ° 12h

- |
80
X) ol :
“ M f‘ Tuesday 26 Aug at 1216 |} h\ AA, ‘A\,M M L
" : “ \\\" \V Digester 4 Motor: 47.58 A ‘U \J | ‘

14:40

Figure 6.51: Time Range Selection.

ing label) {

: Text(label),

Figure 6.52: Implementation of Time Range Selection Button Logic.

The graph also supports interactive zooming and panning,
implemented through the ZoomPanBehavior function. Whenever a different
time range is selected, the graph automatically resets to its normal size as
implemented in Figure 6.53, ensuring consistency and preventing distorted

views across different ranges.

c104

Figure 6.53: Graph Reset to Normal Size.

For Separate Graph View and Combine Graph View, the
implementation of fetching device channel data is almost same as the logic
implemented in Single Graph View screen by using the fetchFieldData()

function.

eldData(String field, String measurement,

1dMap[field];

Figure 6.54: Data Fetching from Influx DB.

The raw data fetched from Influx DB is first processed through the
convertToChartData() function before being displayed on the graph. This
function maps each data entry in a PressureData object by parsing the pressure
values and converting timestamps. The convertUTCToLocal() function help
convert UTC timestamps into local time format, ensuring that the displayed

data aligns with the user’s local time zone.

€105

ving utcTime) {

Figure 6.55: Convert to Chart and Local Time Zone.

From the Ul implementation, the Combined Graph View shown in Figure
6.56 displays all selected graphs in a single chart with a share timeline. Each
graph line is assigned a unique colour using HSV colour space for clear
differentiation as shown in Figure 6.58. Additionally, users can temporarily
hide the corresponding line by just clicking on the device name that shown

inside the graph section.

< View Graphs

Last 3 Hours ~ Filter ((Separate’)

Time: 2025-09-0216:35:30

Sterilizer 4: 0.27 psi

Combine

Figure 6.56: Combine Graph View.

€106

ata, DateTime>(

Figure 6.58: Ul for Combine Graph.

The Separate Graph View show each selected graph in a separate card shown
in Figure 6.59 with a vertically rotated label as implemented in Figure 6.60.

This view is useful for detailed analysis of specific device channels.

€107

< View Graphs

Last 6 Hours = Filter Combine

-26 17:26:30

Digester 1 Motor (&)

=
o
&
S
2
<
=
2
r
o
k=
(-]

Figure 6.60: Implementation of Separate Graph.

When users click the Filter button, an AlertDialog is shown,
displaying a list of available channels with checkboxes. Users can select or
deselect the checkboxes to choose which graphs they want to display. The
dialog uses a StatefulBuilder to manage the temporary selection

(tempSelected) independently, so changes inside the dialog do not

€108

immediately affect the main state. When Confirm is clicked, it will update the
selected graphs with the temporary selection, closes the dialog, and refreshes
the chart dart via fetchPressureData(). If users clicked Cancel button, it will

close the dialog without saving any changes.

Select Graphs

Figure 6.62: Implementation of Dialog.

€109

After selecting the desired graphs, users can filter the data by
choosing a time range from the dropdown menu (Last 3,6,12 Hours) as shown
in Figure 6.63. This allows them to view and analyse graph data within the
selected period.

View Graphs

Last 3 Hours Filter Combine

Last 6 Hours

Last 12 Hours

Sterilizer 3: 40.16 psi

BPV (psi)

sterilizer 1 (psi)

=
@
o

=
&y

Figure 6.63: Tim Range Selection.

Figure 6.64: Implementation of Time Range Selection.

c110

On top of the selected graphs, there is a data summary panel that
shows the latest readings from all the device channel the user selected. First, it
displays the timestamp (commonTime) to indicate when the data was last
updated. Below the time, it lists each selected device (from selectedGraphs)
along with its latest value and corresponding unit (retrieved from fieldUnits).

If a device has no recent data, it shows “Offline” instead.

< View Graphs

Last 3 Hours ~ Filter Combine

Tim 025-09-0217:45:15

Figure 6.66: Implementation of Data Summary Panel.

cl11

6.3.4 Alarm Management Module

As discussed in section 6.2.2 MySQL Cloud Database Setup, all device
threshold settings are configured in the MySQL database through
phpMyAdmin. The monitoring script is written in Python and is responsible
for continuously reading each channel data received from the Influx DB. The
script is deployed as a systemd service, ensuring that it runs 24/7 in the

background without manual intervention.

Once channel data is collected, the script performs a comparison
between the real-time values from Influx DB and the threshold limits stored in
MySQL. If any parameter crosses its configured boundary, the alarm logic is
triggered. The triggered alarm is then logged back into the database with
essential details such as alarm code, alarm triggered time, alarm triggered

value and its description.

Firstly, the Python script will dynamically retrieve all active threshold
rules (alarm= ‘yes’) for each device from tables ending with

_threshold_settings.

threshold cursor = mysql conn.cursor()
threshold cursor.execute(f"SELECT * FROM {threshold table} WHERE LOWER(alarm)=
thresholds = threshold cursor.fetchall()

threshold cursor.close()
mysql conn.commit()

Figure 6.67: Check alarm = ‘yes’.
For each threshold, the script queries the most recent data within last

5 minutes.

query_influx(bucket, measurement, site id, channel_key):
quer Ve

"fmeasurement}")

id}™)

"{Ehannel_key}“]

result = query api.query(org= ow™, query=query)
for table in result:
for record in table.records:
irn record.get value()
return None

Figure 6.68: Query Data from Influx DB.

cl12

The real-time value is compared with the low and high limits that
configured in MySQL.

alarm_triggered = F&

alarm type = None

if value < threshold low:
alarm triggered = True

alarm type = "below”

elif value > threshold high:
alarm triggered = True
alarm type

Figure 6.69: Check Low and High Thresholds.

If an alarm is triggered and no active alarm exists for the channel, a
new record is inserted into the corresponding _alarm_history table with

details such as channel name, variable, timestamps, description, and last value.

mysql_cursor.execute(f"""
INSERT INTO {alarm_table}
1annel name, variable art_time ription, "last value , "ack
Es (3
(channel name, variable, now time, alarm text, value, "No"))
mysql conn.commit()

Figure 6.70: Insert Alarm Record into Database.

The active alarms are temporary inserted into the active_alarms
collection in Firebase, ensuring that the active alarms are immediately visible
in the mobile application.

firebase db.collection("active alarms").add({
nysql id": alarm id,

: site id,
e": channel name,

: alarm text,
: now_time,
: value,

br‘int("[{db_name}] B Alarm inserted to Firebase

Figure 6.71: Adding Active Alarm to Firebase.

c113

If the value returns to the normal range and an active alarm exists, the
system updates the alarm record with an end_time in MySQL and removes the
corresponding entry from Firebase.

o

mysql cursor.execute(f
UPDATE {alarm table} SET end tim
» (now time, alarm id))

mysql conn.commit()

"W

query = firebase db.collection("active alarms")\
where{"mysql id", ", alarm id).limit(1).stream()

for doc in query:
doc.reference.delete()

Figure 6.72: Remove Active Alarm Record from Firebase.

This loop run continuously, ensuring that alarms are check every
seconds. By deploying the script as a systemd service, as shown in Figure
6.74 below, the process operates in the background 24/7 without the need for

manual intervention and automatically restarts if it crashes.

while True:
print(f"\n[INFO] Running monitoring loop at {datetime.now()}")

mysql conn.ping(reconnect=True)
ion as e:

print(f"[ERROR]

time.sleep(5)

continue

E% ubuntu@milldb: ~

:~$ sudo systemctl status alarms2db

alarms2db.service — Alarms to Database Monitor Service

Loaded: loaded (/etc/systemd/system/alarms2db.service; ; preset:)

Active: since Fri 2025-09-05 10:42:58 +08; 1 week 1 day ago
Main PID: 1177 (python3)

Tasks: 16 (limit: 18791)

Memory: 105.6M (peak: 107.6M)

CPU: 1h 52min 37.449s
CGroup: {fystem.slice/alarmSZdb.serVice
177 /hc o REAT

Sep 14 09:40:03 milldb python3[1177]: [POM_UnitedTradeTeam] Thresholds - Low: 0.0, High: 90.0, Value: 73.52
Sep 14 09:40:03 milldb python3[1177]: [POM_UnitedTradeTeam] Normal value, no active alarm.

Sep 14 09:40:03 milldb python3[1177]: [POM_UnitedTradeTeam] Checking Press 1 (ch5)...

Sep 14 09:40:03 milldb python3[1177]: [POM_UnitedTradeTeam] Influx value for ch5 = 0.0

Sep 14 09:40:03 milldb python3[1177]: [POM_UnitedTradeTeam] Thresholds - Low: 0.0, High: 50.0, Value:

Sep 14 09:40:03 milldb python3[1177]: [POM_UnitedTradeTeam] Normal value, no active alarm.

Sep 14 09:40:03 milldb python3[1177]: [POM_UnitedTradeTeam] Checking Press 2 (ché)...

Sep 14 09:40:03 milldb python3[1177]: [POM_UnitedTradeTeam] Influx value for ch6 = 0.0

Sep 14 09:40:03 milldb python3[1177]: [POM_UnitedTradeTeam] Thresholds - Low: 0.0, High: 50.0, Value: 0.0

Sep 14 09:40:03 milldb python3[1177]: [POM_UnitedTradeTeam] [Clearing alarm with ID 47253
it |

Figure 6.74: Comparing Thresholds Python running on Systemd.

cl14

For the frontend part, the active alarm record that displays on the Active
Alarm page is implemented through the fetchActiveAlarms function. This
function is used to load and display the latest active alarms for a specific site.
When called, it queries the Firebase collection active_alarms, filtering records
by the current site’s ID (site_id) and only retrieving alarms with a status of
active. If alarms are found, each documents’ data is processed to extract the
MySQL alarm code (mysql_id), start time, and description. The start time
is parsed into a DateTime object, formatted into a readable string (yyyy-MM-
dd HH:mm:ss). The alarms are sorted in descending order by their start time so
that the latest alarm appears on top first. If no active alarms are found, a

short message “No active alarm found” is returned as shown in Figure 6.76.

Active Alarm

Time Description

Figure 6.75: Active Alarm Page.

c115

Active Alarm

No active alarm found

Figure 6.76: No Active Alarm Record.

Figure 6.77: Implementation of Fetching Active Alarm.

In Alarm History page, the fetchAlarms() function is implemented to
retrieve alarm history data from the backend API (/api/alarms/{site_id}).
Once the JSON responses are received, it validates the format by parses each
alarm’s start_time into local time, and prepares a clean record with alarm

code, formatted timestamps known as alarm triggered time, description

cl16

message, and acknowledgement status. The alarms are then sorted in
descending order by time (latest first) and passed to _applyFilter() for
filtering before updating the UL.

Alarm History

[Pick Date Last | Day

Alarm

Time Description
Code P

) . format(

m['acknowledge'] Il alarm['acknowledge'] == 1,

Figure 6.79: Implementation of Fetching Alarm History.

cl17

Users can filter the loaded alarms based on their preferences through
the _applyFilter() function. If the user has picked a specific date, only alarms
from the exact date are shown. Otherwise, it applies a time-range filter such as
“Last 1,7, or 30 Days”.

Thu, Aug 21

Alarm History

(M Pick Date Last 1 Day

Last 7 Days

Alarm .
Tim

Code
Last 30 Days

18894

Figure 6.81: Alarm Record Filter by Time Range.

c118

Figure 6.82: Implementation of Filtering Alarm History.

The _clearDateFilter() function resets the alarm history filter back to
its default state by clearing any previously chosen date (pickedDate = null)

and reselecting the default time range which is Last 1 Day.

_applyFilter();

Figure 6.83: Implementation of Clearing Filter.

The Ack function located in the fourth column of alarm history table
is implemented through _acknowledgeAlarm function. This function is
responsible for marking a specific alarm as acknowledged in both the MySQL
database and in the mobile application. It retrieves the alarm’ ID, the logged-in
user’s email, and the site ID from the alarms list, then send this information as
a JSON format in an HTTP POST request to the backend API endpoint
(/ack_alarm/{alarmid}). If the API responds with a 200 status code, the

function updates the alarm’s state in the app via setState() by setting its

c119

acknowledged field to true. As a result, the Ack button turn green, indicating
that the alarm has been acknowledged by the user. At the same time, the
ack_user column in MySQL database is updated with the email of user who
performed the acknowledgement, ensuring that the action is recorded for

reference in future.

Figure 6.84: Implementation of Ack Function.

Since Flutter cannot directly connect to a MySQL database,
Python with Flask is used as the backend layer to handle data retrieval and
updates. Both backend APIs for the Alarm History (/api/alarms/{site_id})
and the Acknowledgement (/ack_alarm/{alarmld}) are implemented. The
implementation of Alarm History APl shown in Figure 6.85 queries the
MySQL databases to locate the corresponding {site_id} _alarm_history table,
retrieved all alarms sorted by start time, and returns them as JSON to the

mobile app.

The implementation Acknowledgement API shown in Figure 6.86 is
triggered when a user acknowledges an alarm in the app by clicking the Ack
button, it locates the alarm record in the MySQL table, then updates it

acknowledge column to ‘Yes’ and saves the acknowledging user’s email in the

c120

ack_user column. Both API are deployed as systemd services as shown in
Figure 6.87.

lapp . route(
get_alarm_his
table_name
debug_log

if db[®].startswith

conn.close()

conn2 = get_db_connection(db_name}

ursor(dictionary

{(stri{row

table name} no

Figure 6.85: Alarm History API.

cl21

pp.route(
acknowledge_alarm
data = requ
user_email = d
site_id = data.get(’

get_base_connection()
= ba:

1

_name in datal
db_name .starts

, (alarm_id

primt(
Ursor.c
n. cli

ubuntu@mill365: ~

:~$ sudo systemctl status apialarm
apialarm.service — Gunicorn instance to serve apialarm Flask app
Loaded: loaded (/etc/systemd/system/apialarm.service; ; preset:)
Active: since Thu 2025-09-04 14:04:29 UTC; 1 week 2 days ago
Main PID: 1185 (gunicorn)
Tasks: 4 (limit: 38075)
Memory: 134.1M (peak: 184.3M)
CPU: 3min 9.630s
CGroup: /system.slice/apialarm.service

mill365 systemd[1]: Started apialarm.service - Gunicorn instance to serve apialarm Flask app.

mill365 gunicorn[1185]: [2025-09-04 14:04:29 +0000] [1185] [INFO] Starting gunicorn 23.0.0

mill365 gunicorn[1185]: [2025-09-04 14:04:29 +0000] [1185] [INFO] Listening at: http://0.0.0.0:5001 (11=

mill365 gunicorn[1185]: [2025-09-04 14:04:29 +0000] [1185] [INFO] Using worker: sync

mill365 gunicorn[1221]: [2025-09-04 14:04:29 +0000] [1221] [INFO] Booting worker with pid: 1221

mill365 gunicorn[1236]: [2025-09-04 14:04:29 +0000] [1236] [INFO] Booting worker with pid: 1236
gunicorn[1238]: [2025-09-04 14:04:29 +0000] [1238] [INFO] Booting worker with pid: 1238

Figure 6.87: APIs Python Running on Systemd.

€122

The pop-up notification shown in Figure 6.88 is triggered when a new
alarm with matching site_id is added into the Firestore active_alarms
collection. This function prevents duplicate notifications by checking against a
global list of already-notified alarms (globalNotifiedAlarmlds). When a new
alarm with a matching site_id is detected, it triggers showAlarmNotification
with the alarm’s description, ensuring users are alerted in real time about

critical events.

globalNotifiedAlarmIds.add{alarmId);

Figure 6.89: Implementation of Pop-Up Notification.

c123

6.3.5 User Profile & Settings Module

Users can navigate to “More” Page to perform additional system settings. This
page serves as a general menu hub in the app, showing the currently logged-in
users’ email at the top. It provides navigation options to different sections like
About Us, FAQ, Data Plotter, Privacy Policy, Settings, and a Logout
button, each implemented using buildMenuOption to wrap icons, labels, and
navigation logic. Most options navigate to internal pages using
Navigator.push, while the Data Plotter options open an external URL in a
browser via launchURL. The About Us, FAQ, and Privacy Policy pages are
implemented by hardcoding the information provided by the company directly
into the pages.

917

s Logged In As:
“* rhlundu@rsb.com.my

Figure 6.90: More Page.

cl124

Route(builder:

Figure 6.92: Implementation of Navigation to Different Sections.

c125

2:52 il 56 @

Novaflow Technology Sdn Bhd

About Us

N aflow Tec ¢ t of the Novaflc

trial

hat provide real-

ort Indu:

acturing Indu

to simplify industrial data an
sions

omation

ovaf:

Contact Us

Figure 6.93: About Us Page.

2:52 all 56 @5

What is this app used for?

How do | register an account?

| forgot my password. What should | do?

Why is my data not updating?

Can l access multiple sites?

Is the data in real-time?

Willl receive alerts?

Is my data secure?

Does this app work offlin

How can | get support

Figure 6.94: FAQ Page.

c126

2:52 ull 56 @3

Smart Mill 365

3. How We Collect Inform:
bmitted to Novaflow

Figure 6.95: Privacy Policy Page.

In the settings page, there is a Dark Mode section. This section creates three
radio buttons such as Dark, Light, and System, allowing users to select the
app’s theme. Each option uses value to identify the theme, groupValue to
show the currently selected option, and onChanged:
themeProvider.setThemeMode to update the app’s theme in real time when a
selection is made, with the System option following the device’s theme
settings. The reason of placing Dark Mode in the Settings tab instead of
directly on the More page is to keep the More page clean and organized, while
also allowing flexibility for adding more settings in the future without

cluttering the main menu.

cl27

Figure 6.96: Dark Mode Setting Page.

Figure 6.97: Implementation of Dark Mode Setting.

c128

The Data Plotter option in the More page provides an additional
function that navigates to an external URL using launchURL
("https://novaflow-dataplotter-a495e.web.app/*) as shown in Figure 6.99.

2 G -
{7arFLou

Upload CSV file here

- Lt

© & v-dataplotter-a495eweb.app G

B m ©

Figure 6.99: Data Plotter.

buildMenuDption(Icons.article

launchURL(' htt

b,

Figure 6.99: Implementation of Data Plotter.

Lastly is the Logout function. Users can logout the system by pressing the
Logout button at the More page. The implemented function provides a secure
and user-friendly way for users to sign out of the app. It first shows a
confirmation dialog as shown in Figure 6.100 to prevent accidentally logouts,
and if user confirms (Yes), it signs them out from Firebase Authentication

and redirects them to the Login page.

c129

Confirm Logout

Are you sure you want to log out?

Yes No

Figure 6.100: Confirmation Dialog for Logout.

logovt(BuildContext context) async 4

Figure 6.101: Implementation of Logout.

6.4 Conclusion

In conclusion, this chapter detailed the implementation of the SmartMill365
system, from Firebase and MySQL setup to the development of five modules
such as Login, Dashboard, Graph Monitoring, Alarm Management, and User
Profile & Settings. The system is now fully functional, supporting real-time
monitoring and alarm notifications. The following chapter will focus on

system testing.

€130

CHAPTER 7

SYSTEM TESTING

7.1 Introduction
In this chapter, system testing is carried out to ensure that both functional and
non-functional requirements of the system are fulfilled. The testing process
includes unit testing, which verifies the correctness of individual modules, and
usability testing used to evaluate overall user experience and ease of use of the
system. In addition to unit and usability testing, alpha testing was conducted
with internal teams, while beta testing was carried out with external users on
deployed builds for both Android and iOS platforms.
The unit testing process described in section 7.2 is conducted module
by module. An overview of the test cases for each module and their

corresponding results are shown below.

7.2 Unit Testing

Table 7.1: Unit Testing of Login Module.

cl31

Test Module | Log In Module Test Title Log in to the user account
Test Case ID | Test Case Description | Execution Steps Test Data Expect Result Status
UNT-001 Log in with wvalid |1. Enter the registered | i. Registered email Redirected to the dashboard page Pass
credentials email and password | ii. Valid password
2. Click Sign In button
UNT-002 Log in with invalid 1. Enter the wrong |i. Invalid email Display re-enter valid email address Pass
email email format and |ii. Password
password
2. Click Sign In button
UNT-003 Log in with valid email |1. Enter the registered |i. Registered email Display incorrect email or password Pass
and invalid password email but invalid |ii. Invalid password
password
2. Click Sign In button
UNT-004 Log in with empty [1. Click Sign In button | No test data Display email and password cannot be | Pass

€132

email and password

empty

Table 7.2: Unit Testing of the Dashboard Module.

UNT-005 Registered email with Navigate to the | Account with correct | All the available device channel data | Pass
Firebase collection dashboard page device settings are displayed accordingly in the
and device settings dashboard page
configuration

UNT-006 Registered email Navigate to the | No test data Display no configuration found for | Pass
without Firebase dashboard page this account
collection

UNT-007 Registered email with Navigate to the | No test data Display no device settings configured | Pass
Firebase collection dashboard page

€133

but no device settings

configuration

UNT-008 Switch subgroup and Navigate to the | A manager account | The dashboard updates the device | Pass
verify correct dashboard page with few subgroups channel data relevant to the newly
dashboard . Click on the subgroup selected subgroup

dropdown selector
. Select different
subgroup from the list

UNT-009 Channel data live Navigate to the | Account with active | The value on each device updates and | Pass
update (most recent dashboard page device display the most recent value (without
data) . Observe all value manual page refresh) with green

display on each colour dot indicator
device

UNT-010 Inactive device shows Navigate to the | Account with inactive | The device’s status indicator is shown | Pass
“Offline” status dashboard page device as “Offline” with red colour dot

. Observe inactive indicator
device
UNT-011 Subgroup alarm icon Navigate to the | 1. A subgroup withat | 1. For subgroup with at least one | Pass

€134

indicates active alarm

status

dashboard page
Observe the alarm
icon next to each

subgroup name in the

least one active
alarm
2. A subgroup with

no active alarm

active alarm, the alarm icon is red
2. For subgroup with no active alarm,

the alarm icon is grey

selection list
UNT-012 Correct quantity and Navigate to the | A manager account | The dropdown list displays the exact | Pass
name of subgroup is dashboard page with few subgroups quantity of subgroups that configured
shown Observe the list of in Firebase. Each subgroup’s name is
subgroups in the displayed correctly and matches the
dropdown menu configured data.
UNT-013 "Last Updated At" Navigate to the | Account with active | The "Last Updated At" timestamp | Pass
timestamp shows dashboard page device updates follow the time of the most
most recent data Observe the “Last recent device channel data

update time

Update At” timestamp

Table 7.3: Unit Testing of the Graph Monitoring Module.

€135

Test Module | Graph Monitoring Module Test Title Displaying device channel data in graph view
Test Case ID | Test Case Description Execution Steps Test Data Expect Result Status
UNT-014 Display graph with | 1. Navigate to the | Device with valid | Graph displays the correct data points | Pass
correct device channel dashboard page channel data in | according to the selected channel
data 2. Select a device | Firebase
channel from the
dashboard
UNT-015 Data range filter shows | 1. Navigate to the | Device with historical | Graph updates and only shows data | Pass
correct graph data dashboard page data within the selected time range
2. Select a device
channel from the
dashboard
3. Apply time range
filter
UNT-016 Graph zoom and pan | 1. Navigate to the | Active device channel | Graph zooms and pans as expected. | Pass

function works correctly

dashboard page

with data

When time range is changed, graph

€136

. Select a device

channel from the
dashboard

. Zoom into a

section of the

graph

. Pan the graph left

or right

. Change the time

range filter

resets back to normal view

UNT-017

Tooltip displays correct
info when clicking on

data point

. Navigate to the

dashboard page

. Select a device

channel from the
dashboard

. Click on any data

point in the graph

Active device channel
with data

Tooltip appears showing correct
timestamp, device name, value and

unit

Pass

UNT-017

Correct device name and

. Navigate to the

Device settings

Graph title, axis and tooltip show the

Pass

€137

unit shown from

Firebase configuration

dashboard page

. Select a

device

channel from the

dashboard

. Observe

device

name and unit on

configured in Firebase

correct device name and unit

graph labels
UNT-018 Multi-channel selection | 1. Navigate to View | Multiple active device | Graph displays multiple lines correctly | Pass
(combine graph view) Graphs page channels distinguished by legend
. Select 2 or more
channels
UNT-019 Multi-channel selection | 1. Navigate to View | Multiple active device | Each selected channel is displayed in | Pass
(separate graph view) Graphs page channels its own graph panel, with correct title
. Select 2 or more and axis
channels
UNT-020 Data summary panel | 1. Navigate to View | Multiple active device | Data summary panel shows the most | Pass
displays timestamps and Graphs page channels recent timestamp and each selected
latest values for each | 2. Select 2 or more channel’s latest value with correct unit

c138

selected channel channels
correctly . Observe the data
summary panel
above the graph
UNT-020 Data summary panel | 1. Navigate to View | Device configured in | Data summary panel displays the | Pass
shows “Offline” for Graphs page Firebase but currently | device name with status shown as
selected channel of an | 2. Select 2 or more | inactive/offline “Offline” instead of value
offline device channels
. Observe the data
summary panel
above the graph
UNT-021 Selected device channel | 1- Navigate to View | Multiple device | The unchecked channel is removed | Pass
Graphs page channels from both the graph and the data

is removed from graph
after unchecking
checkbox in filter option
(combine and separate

graph view)

. Select 2 or more

channels

. Uncheck 1 of the

previously selected

channels

summary panel immediately, while

other selected channels remain visible

€139

Table 7.4: Unit Testing of the Alarm Management Module.

Test Module | Alarm Management Module Test Title Displaying, updating and managing device alarms
Test Case ID | Test Case Description Execution Steps Test Data Expect Result Status
UNT-022 Display list of active | 1. Navigate to Active | Device that exceeds or | Alarm list displays all currently active | Pass
alarms Alarm page below predefined | alarms with correct alarm code,
2. Observe alarm list | thresholds timestamp, and description
UNT-023 Display “No active | 1. Navigate to Active | Device without active | Active Alarm page shows “No active | Pass
alarm found” when no Alarm page alarms (normal | alarm found” instead of empty list
alarms exist condition)
UNT-024 Alarm status changes to | 1. Configure a | Device with threshold | Alarm appears in active list with | Pass
active when threshold threshold configured correct details (alarm code, time,
exceeded 2. Simulate channel description)

c140

data exceed
threshold
. Refresh Active
Alarm page
UNT-025 Alarm status changes to | 1. Trigger an alarm Device with threshold | Alarm is removed from active list and | Pass
cleared when condition | 2. Simulate channel | configured only show in history page
returns to normal data returning to
normal
UNT-026 Alarm history log | 1. Navigate to Alarm | Device with | History page lists all relevant past | Pass
displays cleared History Page previously cleared | alarms with correct alarm code,
information . Review past | alarms timestamp, description and
alarms acknowledge status
UNT-027 Alarm acknowledgement Navigate to Alarm | Record in alarm | Ack button immediately turns into | Pass
works correctly History Page history list green colour
Select an alarm
record and click
the Ack button
UNT-028 Alarm filtering works | 1. Navigate to Alarm | Record in alarm | Only alarms on the selected date are | Pass

cl41

correctly (Filter by Date) History Page history list displayed
. Apply filter by
date
UNT-029 Alarm filtering works | 1. Navigate to Alarm | Record in alarm | Only alarms on the selected time | Pass
correctly (Filter by Time History Page history list ranges are displayed
Range) . Apply filter by
time range
UNT-030 No alarm history for | 1. Navigate to Alarm | No test data Alarm history page displays “No | Pass

selected time range / date

History Page

. Apply filter by

time range / date

. Ensure no alarm

exits on the
selected time range
/ date

. Observe history

list

alarm history found” for the selected

time range / date

Table 7.5: Unit Testing of the User Profile & Settings Module.

cl42

Test Module | User Profile & Settings Module Test Title Displaying user profile and settings
Test Case ID | Test Case Description Execution Steps Test Data Expect Result Status
UNT-031 Display user email L. Navigate to More | Registered user with | Profile page shows correct email Pass
correctly page email
2. Observe the current
log in email
UNT-032 Able to navigate to| 1. Navigate to More | No test data System redirects to About Us page | Pass
About Us page page successfully
2. Select About Us
UNT-033 Able to navigate to FAQ | 1. Navigate to More | No test data System redirects to FAQ page | Pass
page page successfully
2. Select FAQ
UNT-034 Able to navigate to| 1. Navigate to More | No test data System redirects to Privacy Policy | Pass
Privacy Policy page page page successfully
2. Select Privacy

Policy

c143

UNT-035 Able to change theme | 1. Navigate to More | No test data System update theme mode according | Pass
mode page and select to user selection
Settings
2. Select Dark Mode
and choose either
on/off or follow
system theme
UNT-036 Able to remember theme | 1. Set theme to Dark | No test data Dark mode remains applied after close | Pass
mode mode the app
2. Quit the app and
open again
3. Observe the
current theme
UNT-037 Able to navigate to | 1. Navigate to More | No test data Browser successfully open external | Pass
external URL (Data | page Data Plotter URL
Plotter) 2. Select Data Plotter
UNT-038 Able to logout | 1. Navigate to More | No test data User is logged out and redirect to | Pass

successfully

page

Login page

cl44

2. Click Logout
button

3. Confirm action

c145

7.3 System Usability Testing

In this project, System Usability Scale (SUS) is chosen to evaluate the
usability of the palm oil mill system. SUS is a widely used method that
provides a quick and reliable measure of system usability through a
standardized 10 questionnaire. This help to capture users’ perceptions of the
system in terms of effectiveness, efficiency and satisfaction. The SUS
evaluation in this project was conducted with selected respondents by Nova
flow to assess how intuitive and user-friendly the implemented system so that
the 4'" objective in this project is achieved.

Table 7.6: Template of System Usability Scale (SUS) Survey.

Participant No:

Name:
Question Strongly (2) Neutral 4) Strongly
Disagree (3) Agree
1 ()
1. 1 think that I

would like to
use this app

frequently.

2. | found the app
unnecessarily

complex.

3. | thought the app

was easy to use.

4.1 think that |
would need the
support of a
technical person

to use this app.

5.1 found the
various

functions in this

c146

app were well

integrated.

| thought there
was too much
inconsistency in

this app.

| would imagine
that most people
would learn to
use this app very
quickly.

| found the app
very
cumbersome to

use.

| felt very
confident using

the app.

10.

| needed to learn
a lot of things
before | could
get going with
this app.

1. What do you like most about the system?
2. What do you like least about the system?

3. Do you have any suggestions for improving the current system?

cl47

7.3.1 Test Scenario of Usability Testing

Table 7.7: Usability Testing Scenario for Operator or Manager.

Test Scenarios to act as an operator or manager

Scenario 1 — Login to an account created by the admin to access the system

Imagine you are an operator or a manager and you have been provided with
login credentials to access the palm oil mill monitoring system’s mobile
application. Your task is to log in to the application using the provided email
and password. What would you do to access the system?

Email: demo@novaflow.com.my

Password: Password@123

Scenario 2 — View the dashboard

Imagine you are using the system to monitor devices and alarms. Your task is
to access the dashboard and review the information displayed, such as device
status and channel values. How would you check whether the information

shown matches your expectations?

Scenario 3 — View graph of a device data

Imagine you are tasked to analyse a device’s historical performance. Your task
is to open the dashboard page, select a device channel, and observe the graph
such as zoom in, pan, or view tooltips. How would you interact with the graph

to get the required insights?

Scenario 4 — View multiple graphs for analysis

Imagine you needs to analyse device performance across multiple channels.
Your task is to open the view graphs page, select multiple device channels,
and view the results in both combined graph view and separate graph view.
How would you interact with the system to switch between these views and

use them for analysis purposes?

Scenario 5 — Check active alarms

Imagine you are responsible for monitoring alarms. Your task is to navigate to
the active alarm page and review the current activate alarms for particular
subgroup. Identify whether there are any active alarms, and if so, view the
details such as device name, timestamp, and description. How would you

access and confirm this information in the mobile application?

c148

Scenario 6 — Check alarm history

Imagine you are responsible for monitoring alarms. Your task is to access the
alarm history page, review the alarm list for particular subgroup, and filter by
a time range or date. How would you identify whether there are alarms and

view their details?

Scenario 7 — Acknowledge an alarm record

Imagine you are monitoring device alarms. Your task is to review the list of
alarm records and acknowledge one of them so that other users know it has
been handled. How would you perform the acknowledge action, and how

would you verify that the alarm status is updated in the mobile application?

Scenario 8 — Update theme settings

Imagine you want to customize your app experience. Your task is to navigate
to the settings page, change the theme mode, and confirm that the system
remembers your selection after re-login or re-open the app. How would you

verify that your settings are applied correctly?

Scenario 9 — Switch between subgroups

Imagine you are responsible for monitoring multiple subgroups’ devices. Your
task is to navigate to the dashboard page, use the subgroup dropdown selector,
and switch to a different subgroup. How would you confirm that the dashboard
updates to display the correct device channel data (dashboard) for the newly

selected subgroup in the mobile application?

Scenario 10 — Logout from the system

Imagine you has completed monitoring tasks or want to login using another
account. Your task is to logout of the application securely. How would you
perform the logout action, and how would you confirm that you are redirected

back to the login page in the mobile application?

c149

7.3.2 Results of Usability Testing
Five respondents were selected to provide feedback on the 10 scenarios during
the usability testing process as shown in section 7.3.1. The responses from
each tester are placed in Appendix B.

The respondents’ answers are analysed to calculate the SUS score by
assigning a corresponding number score to each response. The SUS score is
calculated using the following framework:

1. Scoring Positive Items for odd-number questions (1,3,5,7,9): Subtract
1 from the user’s response. For example, if the user selected 4, the
adjusted score is 3 (4-1).

2. Scoring Negative Items for even-number questions (2,4,6,8,10):
Subtract the user’s response from 5. For example, if the user selected 2,
the adjusted score is 3 (5-2).

3. Add all adjusted scores together to obtain the raw SUS score for each
respondent and multiplied by 2.5 to convert it to a usability score out of
100.

4. Summed up all the percentage scores for each respondent and divided
by the total number of respondents. In this case, the total percentage is
divided by 5.

The SUS score for each respondent can be determined by the method shown
above. The average SUS score for a project is 68 as shown in Table 7.8 below,
which means that a score of 68 represents the 50" percentile, indicating
average usability when compared to other systems. Scores above 68 suggest
that the system has better than average usability, while score below 68 reflect

poorer usability performance.

Table 7.8: General Guideline on the Interpretation of SUS Score.

SUS Score Grade Adjective Rating
>80.3 A Excellent
68 — 80.3 B Good

68 C Okay

€150

51 -68

Poor

<51

Awful

Based on the results obtained from SUS as shown in Table 7.9 below,

the system received an average system usability score of 94.5, representing

Grade A rating. This indicates that the mobile application is highly usable and

user-friendly.

Table 7.9: Summary of SUS Survey Results.

Participants Usability score for each question Total Percentage
Name 112|3|4|5|6|7]|8 10 (%)

Loi Teck | 4 |4 |4 (44444 4 40 100

Cheu

KennylLai |4 |4 |33 |4 |4]3]3 4 36 90

Lim Heng | 4 |3 |4 (4|4 |3 |44 4 37 92.5

Lai

Pan Sieng| 3 |4 |4 |4 |3 |4 |3 |4 3 36 90

Hua

Ting Yuen | 4 | 4 |4 4|4 |44 4 4 40 100

Kiong

Average SUS Score 94.5

Grade A

In addition to the System Usability Scale (SUS), a set of open-ended

questions was also prepared to allow respondents provide brief comments on

the palm oil mill monitoring system. This approach helped capture some

valuable feedback from the users’ thoughts and feelings towards the

implemented system. The open-ended questions are shown below:

1. What do you like most about the system?

2. What do you like least about the system?

3. Do you have any suggestions for improving the current system?

c151

The Table 7.10 below show the summary of the most like features
based on the participant feedback. However, no least-liked features or
functionality were identified by the participant during the usability testing.

Table 7.10: Summary of Participants’ Most Liked Features of the System.

Summary of Participants’ Most Liked Features of the System

The dashboard is very clean and easy to understand. I can see the real-time
device updates clearly.

The graph monitoring function is very useful, especially the zoom and tooltip
feature.

The alarm notification is clear and accurate.

The system is able to change the theme mode.

The system is very stable and responsive. | felt confident using it without any

training.

Despite no least-liked feedback from the participants, there are some
suggestions from participants for improving the system as shown in Table 7.11
below. These recommendations are valuable and useful for future

improvement on phase 2 later on to enhance the overall system usability.

Table 7.11: Summary of Suggestions for Improving the system from

Participants.

Summary for Improving the System Recommended by Participants

Allow alarm threshold settings able to configure in the mobile app.

Have auto analysis in the system based on the alarm monitoring system.

Provide more detailed documentation or video guides inside the system for

NEW USers.

Able to change password in the system.

Include a search function in the FAQ to quickly find solutions.

€152

7.4 Alpha Testing
In addition to unit testing and usability testing described in previous sections,
alpha testing was also conducted on the deployed mobile application for both
Android and iOS platforms to internal team. This testing ensured that all
released features worked as expected across platforms and met company
requirements.

To ensure traceability of changes made, version control was
recorded and maintained throughout the development cycle. Each release
version was tested for functionality, usability and performance by the internal

team. The alpha version history is shown in Table 7.12 below:

Table 7.12: Alpha Version Control History.

Version Release Date | Changes/ Notes
SM365_V2.0.1 Alpha | 28/04/2025 - Initial release
- Graph monitoring function
SM365_V2.1.0 Alpha | 14/06/2025 - Implemented alarm
notification system
SM365 V2.1.1 Alpha | 24/06/2025 - Updated Ack function for

newer Python version

- App name changed to Smart
Mill 365

- Updated app icon

SM365 V2.1.2 Alpha | 25/06/2025 - Updated new influx DB
URL and token
- Updated new login page

design

SM365 V2.1.3 Alpha | 27/06/2025 - Adjusted light and dark
mode colour

- Updated Ul for chart screen

- Unique device unit retrieve
from Firebase

- Created a generic screen for

all devices

€153

SM365_V2.1.4 Alpha

29/06/2025

Created theme settings in

app

SM365_V2.1.5 Alpha

30/06/2025

Updated app info in About
Us, FAQ and Privacy
Policy.

Updated Logout button UI.

SM365_V2.1.6 Alpha

3/07/2025

Updated new influx DB
URL

SM365_V2.1.7 Alpha

10/07/2025

Updated applicationld

Figure 7.1 below shows the latest build history of the mobile

application in TestFlight for internal testing purposes. These records provide

a trace of deployed versions that were verified by the internal team to ensure

that all features met company requirements before proceeding to external beta

testing.

A App Store Connect Apps Users and Access

Smart Ml" 365 Vv Distribution TestFlight Xcode Cloud

Feedback iOS Builds
Testers * Version1.0.2
sTAT
, -] ” @ Testing Qi
@ smartmirest
. Ready 1o Submit

extennaL TesTiNG @ o

&M SmartMillExternal Test

2 & Expired

Figure 7.1: Build History for TestFlight in App Store Connect.

€154

7.5 Beta Testing
After the completion of internal alpha testing, beta testing was conducted to
evaluate the application under real-world conditions. Unlike alpha testing,
which is limited to internal teams, beta testing involves selected external
users who provide valuable feedback on usability, performance, and overall
user experience. This stage is crucial before deployment as it helps identify
issues that may not be found during alpha testing.

Figure 7.2 below shows the list of external users in TestFlight on
App Store Connect. Each build version was distributed to selected external
users (Novaflow clients) through TestFlight for beta testing before the official
release on the App Store. Feedback gathered from these external testers help
validate functionality, usability, and performance in real-world conditions.
This serves as evidence of structured beta testing carried out before the

deployment process. The beta version history is outlined in Table 7.13 below:

Smart Mill 365 v Distribution TestFlight Xcode Cloud
Builds -

0% SmartMillExternalTestTeam

Internal Group « 7 Testers « 14 Builds

Feedback

Crashes Testers Builds Settings

Screenshots

O TESTER STATUS ~ SESSIONS ~CRASHES FEEDBACK DEVICES

Testers kzlim07@gmail.com @ Installed 1.0.0 (4) 5 _ _ iPhone 15 Pro Max
Lim Ka Z ° i0518.5
All

O karhoelim@icloud.com @ Installed 1.0.2 (14) iPhone 16 Pro
esTinG @ i0S18.6.2

& SmartMillExternalTestTe.
— loiteckcheu@gmail.com ® Installed 1.0.2 (14) a0 iPhone 14 Plus
3.5

XTERNAL TESTING @ TCLOI-Ir - T oS

M SmartMillExternalTest
@ Installed 1.0.2 (14) a0 _ _ iPhone 16 Pro Max
Sep 6, 2025 i0518.5

Additional

@ Installed 1.0.2 (14) 5 iPhone 16 Pro
M3 ~ 18 6.7
2 i0S18.6.2

Test Information -

Figure 7.2: List of External Users for Beta Testing.

Table 7.13: Beta Version Control History.

Version Release Date | Changes / Notes

SM365 V2.2.0 Beta 1/08/2025 - Graph update from every 5
seconds to 1 minute to avoid
lagging in Android

- Last Updated As: change
from current timestamps to

follow influx DB’s last

€155

timestamps

Show loading indicator
before selected subgroup’s
data fully retrieve

Fixed screens rotate issue

SM365_V2.2.1 Beta

5/08/2025

Click graph can show line
spot value

Graph able to zoom in and
out

Removed live graph to avoid
lagging

SM365_V2.2.2 Beta

7/08/2025

Updated graph screen Ul

SM365_V2.2.3 Beta

7/08/2025

Initial subgroup loading

state performance

SM365_V2.2.4 Beta

20/08/2025

Ul for loading indicator
(Novaflow logo)
Run/Stop label for
XXX_event in Firebase
Ul for Confirm button

SM365_V2.2.5 Beta

20/08/2025

Ul for bottom navigation
Update timestamps and

run/stop in view graphs page

SM365_V2.2.6 Beta

22/08/2025

Fix blank screen issue

SM365_V2.2.7 Beta

10/09/2025

Update Ul for active alarm
icon

Update version number in
app

Update error message
Added hide/unhide
password function

Add Remember Me function

during login

€156

CHAPTER 8

CONCLUSION AND RECOMMENDATION

8.1 Conclusion
This last chapter is to provide a conclusion and recommendation for future
improvement on this project. All objectives stated in Chapter 1 were

successfully achieved including:

1. To develop a cross-platform mobile application using Flutter that can
replace the existing company’s iOS app and ensures accessibility for
both Android and i1OS users in monitoring POM processes.

2. To integrate SVG graphics for displaying process layouts along with
real-time data display.

3. To implement an alarm notification system to alert users about critical
process conditions.

4. To enhance system usability and interface for more efficient real-time

monitoring and analysis.

Since the project was successful achieving all stated objectives, this
resulting a fully functional cross-platform mobile application for monitoring
palm oil mill processes. The system developed not only replaced the
company’s existing iIOS app but also improved its accessibility, real-time data
visualization and overall usability. Through systematic testing, deployment
and feedback from company, the application has been validated as a reliable
and practical solution. The application now is fully launched and actively used

by company’s clients.

The official evaluation letter from Novaflow Technology Sdn. Bhd.
is shown in Appendix C, which acknowledges the successful completion and
handover of the project, as well as my contributions and performance during

the development.

8.2

€157

Limitations and Recommendations for Future Works

During the development and testing phases of the system, some limitations

were identified by the company, the participants that involved in the usability

testing and myself. These limitations along with their recommendations are

summarized in Table 8.1 below serve as guidance for future improvement in

Phase 2 of the project by the company.

Table 8.1: Limitations and its Recommendations of the System.

Limitations

Recommendation

Lack of device performance analysis
in the system.

Implement advanced performance
analytics features to provide deeper

insights for operators and managers.

Dashboard Ul basic and not fully
suited for complex palm oil mill

processes.

Enhance the dashboard with
customizable widgets and process-
specific visualizations to better

support operational needs.

Device and alarm settings cannot be

configured directly from the mobile

app.

Enable in-app configuration of device

and alarm settings to reduce

dependency on Firebase and reliance

on Novaflow IT team.

Change and reset password function

is not available in the mobile app.

Integrate change and reset password

feature to improve user account

management and security.

Limited documentation and learning

support for new users.

Provide more detailed documentation
or video guides in the system to help

new users learned quickly.

FAQ basic and not

searchable.

section is

Include a search function in the FAQ
module to allow users to quickly find

solutions to common issues.

158

REFERENCES

Foong, S.Z., Lam, Y.L., Andiappan, V., Foo, D.C. and Ng, D.K., 2018. A systematic
approach for the synthesis and optimization of palm oil milling
processes. Industrial & Engineering Chemistry Research, 57(8), pp.2945-2955.

Camburn, B., Viswanathan, V., Linsey, J., Anderson, D., Jensen, D., Crawford, R.,
Otto, K. and Wood, K., 2017. Design prototyping methods: state of the art in
strategies, techniques, and guidelines. Design Science, 3, p.e13.

United Nations (2025). The 17 Sustainable Development Goals. [online] United
Nations. Available at: https://sdgs.un.org/goals.

Kishore, K., Khare, S., Uniyal, V. and Verma, S., 2022, October. Performance and
stability comparison of react and flutter: Cross-platform application
development. In 2022 International Conference on Cyber Resilience
(ICCR) (pp. 1-4). IEEE.

Stack Overflow. (2019). Stack Overflow Developer Survey 2019. [online] Available at:
https://survey.stackoverflow.co/2019.

Tashildar, A., Shah, N., Gala, R., Giri, T. and Chavhan, P., 2020. Application
development using flutter. International Research Journal of Modernization in
Engineering Technology and Science, 2(8), pp.1262-1266.

Palumbo, D., 2021. The Flutter framework: Analysis in a mobile enterprise
environment (Doctoral dissertation, Politecnico di Torino).

Vishal, K. and Kushwaha, A.S., 2018, August. Mobile application development
research based on xamarin platform. In 2018 4th International Conference on
Computing Sciences (ICCS) (pp. 115-118). IEEE.

Sattar, A.M., Soni, P., Ranjan, M.K., Kumar, A., Sahu, C., Saxena, S. and Chaudhari,
P., 2023. Accelerating Cross-platform Development with Flutter Framework.

Penta, H., 2004. A COMPREHENSIVE TESTING APPROACH USING JEST FOR
REACT NATIVE MOBILE APPLICATIONS (Doctoral dissertation,
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE).

Ramadoss, G., 2023. Choosing Xamarin Platform for App Development. North
American Journal of Engineering Research, 4(3).

Wu, W., 2018. React Native vs Flutter, Cross-platforms mobile application frameworks.

159

Lodhi, M.K., 2024. Comparison and Evaluation of Cross-Platform
Frameworks (Doctoral ~ dissertation, ~ Hochschule fir ~ Angewandte
Wissenschaften Hamburg).

Kandiah, S., Basiron, Y., Suki, A., Taha, R.M., Tan, Y.H. and Sulong, M., 2006.
Continuous sterilization: The new paradigm for modernizing palm oil
milling. J. Oil Palm Res, pp.144-152.

Peng, C., 2000. Scalable vector graphics (svg). In Research Seminar on Interactive
Digital Media.

Zhu, X., Nie, X. and Liu, J., 2023, September. Time Series Database Optimization
Based on InfluxDB. In 2023 International Conference on Power, Electrical
Engineering, Electronics and Control (PEEEC) (pp. 879-885). IEEE.

Nagvi, S.N.Z., Yfantidou, S. and Zimanyi, E., 2017. Time series databases and
influxdb. Studienarbeit, Université Libre de Bruxelles, 12, pp.1-44.

Tahmassebpour, M., 2017. A new method for time-series big data effective
storage. leee Access, 5, pp.10694-10699.

Khawas, C. and Shah, P., 2018. Application of firebase in android app development-a
study. International Journal of Computer Applications, 179(46), pp.49-53.

Grier, R.A., Bangor, A., Kortum, P. and Peres, S.C., 2013, September. The system
usability scale: Beyond standard usability testing. In Proceedings of the human
factors and ergonomics society annual meeting (Vol. 57, No. 1, pp. 187-191).
Sage CA: Los Angeles, CA: SAGE Publications.

Azami, H.H.R. and Ibrahim, R., 2019. Development and evaluation of massive open
online course (MOOC) as a supplementary learning tool: An initial
study. International Journal of Advanced Computer Science and
Applications, 10(7).

160

APPENDICES
Appendix A: Low-fidelity prototype for SmartMill365 Mobile Application.

e 7:22

NSMART
MLL| 365

ENGINEERING

Login

Please Sign In to continue.

Email

B8 Prassword

Login Page

Dashboard

n{{yaFLow RH Lundu

Last Updated At: Wed, 23 Apr 2025, 19:22:51

Sterilizers View All

Boiler BPV

26.97 psi 2.88 psi

Sterilizer 1 Sterilizer 2
1.93 psi 0.02 psi

Sterilizer 3 Sterilizer 4
0.00 psi 0.00 psi
= Q)

Dashboard Page

161

me 7:23

<« S| Pressure

Last Time: 2025-04-23 19:23:00
Pressure: 1.84 psi

Last 3 Hours ~

sterilizer 1 (psi)

oo 3:46

X Full Screen Chart

40

30

20

10

sterilizer 2 (psi)

0
09:46 10:28 1:10 11:51 12:33 13:15 13:56 14:38 15:20

Full Screen Live Channel Data Monitoring Page

tme 7:23

< View All

Last 3 Hours ~ @

Time: 2025-04-2319:23:20

"FT SIS A A

&

-~

s

3)

]
! 7 19:10
o B T g S aep ¥

=

@

Q.

S

>

a 1

[

All / Filtered Live Channel Data Monitoring Page

@ 1231

< Active Alarm

Alarm

o Time Description
-4-93 10
ool . Azlj‘ 00 Pump Trip

Active Alarm Page

162

Eme 12:31

Alarm History

Alarm
g Time Description Ack
25-4-2310:00
001 AM Purmp Trip Ack
]
Dashboard Alarm More

Alarm History Page

Logged In As:
manager@rsb.com.my

About Us

FAQ

Data Plotter

Privacy Policy

[> Logout
Powered By
n{yarLon
Version v2.0.0 Beta
- -
HH [©) :
Dashboard Alarm More

More Page

163

164

omo 7:36 T4 =

NOVATY

POWERED BY

n{{yarLou

VERSION v2.0.0 BETA

Welcoming Page

Appendix B: SUS Usability Test Responses.

165

Participant No: 1
Name: Loi Teck Cheu

Question Strongly
Disagree

(1)

(@)

Neutral

(3)

(4)

Strongly
Agree

()

[EEN

. I think that |
would like to
use this app

frequently.

v

2. | found the app J
unnecessarily

complex.

3. | thought the app

was easy to use.

4. 1 think that | v
would need the
support of a
technical person

to use this app.

51 found the
various
functions in this
app were well

integrated.

6. I thought there v
was too much
inconsistency in

this app.

7. 1 would imagine
that most people

would learn to

use this app very

166

quickly.
8. | found the app V4
very
cumbersome to
use.
9.1 felt very V4
confident using
the app.
10. | needed to learn J

a lot of things
before 1 could
get going with

this app.

1. What do you like most about the system?

The dashboard is very clean and easy to understand. | can see the real-

time device updates clearly.

2. What do you like least about the system?

3. Do you have any suggestions for improving the current system?

Allow alarm threshold settings able to configure in the mobile app.

Participant No: 2

Name: Kenny Lai

Question Strongly (2) Neutral 4) Strongly
Disagree (3) Agree

1) (5)

1. | think that | V4

would like to

167

use this app

frequently.

| found the app
unnecessarily

complex.

| thought the app

was easy to use.

| think that I
would need the
support of a
technical person

to use this app.

| found the
various

functions in this
app were well

integrated.

| thought there
was too much
inconsistency in

this app.

| would imagine
that most people
would learn to
use this app very

quickly.

| found the app
very
cumbersome to

use.

| felt very
confident using

the app.

168

10. | needed to learn
a lot of things
before | could
get going with
this app.

1. What do you like most about the system?

The graph monitoring function is very useful, especially the zoom and

tooltip feature.

2. What do you like least about the system?

3. Do you have any suggestions for improving the current system?

Have auto analysis in the system based on the alarm monitoring system.

Participant No: 3

Name: Lim Heng Lai

would need the

Question Strongly (2) Neutral 4) Strongly
Disagree (3) Agree
1) ()
1. | think that |1 v
would like to
use this app
frequently.
2. | found the app v
unnecessarily
complex.
3. | thought the app v
was easy to use.
4. | think that | V4

169

support of a
technical person

to use this app.

| found the
various

functions in this
app were well

integrated.

| thought there
was too much
inconsistency in

this app.

| would imagine
that most people
would learn to
use this app very

quickly.

| found the app
very
cumbersome to

use.

| felt very
confident using

the app.

10.

| needed to learn
a lot of things
before | could
get going with
this app.

170

1. What do you like most about the system?

The alarm notification is clear and accurate.

2. What do you like least about the system?

3. Do you have any suggestions for improving the current system?

Provide more detailed documentation or video guides inside the system

for new users.

Participant No: 4

Name: Pan Sieng Hua

Question Strongly (2) Neutral 4) Strongly
Disagree (3) Agree
1 ()
1. 1 think that I V4

would like to
use this app

frequently.

2. | found the app v
unnecessarily

complex.

3. | thought the app v

was easy to use.

4. 1 think that | v
would need the
support of a
technical person

to use this app.

5.1 found the v
various
functions in this

app were well

171

integrated.

| thought there V4
was too much
inconsistency in

this app.

. I would imagine v

that most people
would learn to
use this app very
quickly.

| found the app J
very

cumbersome to

use.
9.1 felt very

confident using

the app.
10. | needed to v

learn a lot of

things before |

could get
going with
this app.

1. What do you like most about the system?

The system able to change the theme mode.

2. What do you like least about the system?

3. Do you have any suggestions for improving the current system?

Able to change password in the system.

172

Participant No: 5

Name: Ting Yuen Kiong

Question

Strongly
Disagree

(1)

(2)

Neutral

(3)

(4)

Strongly
Agree

()

1. | think that I
would like to
use this app

frequently.

v

2. | found the app
unnecessarily

complex.

3. | thought the app

was easy to use.

4. 1 think that 1
would need the
support of a
technical person

to use this app.

5 1 found the
various
functions in this
app were well

integrated.

6. | thought there
was too much
inconsistency in

this app.

7. 1 would imagine
that most people
would learn to
use this app very

quickly.

173

8.

| found the app
very

cumbersome to

use.
9. I felt very
confident using
the app.
10. | needed to learn

a lot of things
before | could
get going with
this app.

1. What do you like most about the system?

The system is very stable and responsive. | felt confident using it

without any training.

2. What do you like least about the system?

3. Do you have any suggestions for improving the current system?

Include a search function in the FAQ to quickly find solutions.

174

Appendix C: Official Evaluation Letter from Novaflow.

n{\/aFLou
Novaflow Technology Sdn Bhd

Date: (6-Sep-2025

To: Dr Khor Kok Chin
Faculty of Engineering and Science
Universiti Tunku Abdul Rahman

This letter serves as an official evaluation of Lim Juan Hong, who completed his Final Year
Project (FY'P) at Novaflow Technology Sdn Bhd on Developing a Mobile Apps for Monitoring
Palm Oil Mill Process.

Throughout the course of the project, Lim Juan Hong demonstrated strong initiative and
dedication in his work. His contributions to the development of the mobile application were

meaningful, and he exhibited the following key strengths:

L.

Initiative & Independence
Lim Juan Hong showed great initiative by actively asking what needed to be done in
order to fulfill Novaflow”s requirements. With minimal supervision, he was able to

quickly pick up Flutter programming and successfully deliver a working mobile
application for both Android and 108 platforms.

. Collaboration & Creativity

He was collaborative with both the IT and automation teams at Novaflow, ensuring
smooth communication and alignment with project goals. Additionally, he displayed
creativity in designing and delivering several mobile app pages, contributing to a user-
friendly and effective solution.

Areas for Improvement

While Lim Juan Hong demonstrated excellent technical and collaborative skills, he
currently has limited exposure to real-world IT market requirements. We encourage him
to be involved in more projects, as this will help him gain broader industry knowledge
and enable him to deliver tasks and projects with greater professionalism.

Owerall Performance

In summary, Lim Juan Hong's overall performance during the Final Year Project has
been excellent. His initiative, adaptability, and ability to work both independently and
collaboratively made him a valuable contributor to the team. We are confident that with
continued exposure to industry projects, he will further develop into a highly capable
professional.

175

n{\/aFLou
Novaflow Technology Sdn Bhd

We highly recommend Lim Juan Hong for any future opportunities, as he has shown great
potential and dedication throughout his project work.

Should you require any further information regarding his performance, please feel free to contact
me at tcloi@novaflow.commy or +6019-6113569.

Yours faithfully,
@ﬁ“
et
%‘;lr rA. I?
Lot Teck Cheu

(Automation & [10T Dc’v:l.opmcnt Manager)

Novaflow Technology Sdn Bhd

(Registration Mo: 1379177K / 202001022857)

Address: Mo 30 Jalan Serendah 26041, Sckitar 26 40400 Shah Alam, Selangor Darul Ehsan.

	DECLARATION
	COPYRIGHT STATEMENT
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS / ABBREVIATIONS
	LIST OF APPENDICES
	CHAPTER 1
	1 INTRODUCTION
	1.1 General Introduction
	1.2 Importance of the Study
	1.3 Problem Statement
	1.4 Aim and Objectives
	1.5 Proposed Solution
	1.6 Proposed Approach
	1.7 Project Scope
	1.8 Contribution of the Study

	CHAPTER 2
	2 LITERATURE REVIEW
	2.1 Introduction
	2.2 Palm Oil Mill Process
	2.3 Cross-Platform POM Mobile Application
	2.4 Cross-Platform Framework Flutter
	2.5 SVG Graphics
	2.6 Alarm Notification System
	2.7 System Usability
	2.8 Database
	2.9 Summary

	CHAPTER 3
	3 METHODOLOGY AND WORK PLAN
	3.1 Introduction
	3.2 Software Development Methodology
	3.2.1 Evolutionary Prototyping Model

	3.3 Project Plan
	3.3.1 Work Breakdown Structure (WBS)
	3.3.2 Gantt Chart

	3.4 Development and Deployment Tools
	3.4.1 Flutter
	3.4.2 Android Studio
	3.4.3 Xcode
	3.4.4 Firebase
	3.4.5 Influx DB
	3.4.6 MySQL
	3.4.7 Python
	3.4.8 TestFlight
	3.4.9 App Store Connect

	CHAPTER 4
	4 PROJECT SPECIFICATION
	4.1 Introduction
	4.2 Requirement Specification
	4.2.1 Functional Requirements
	4.2.2 Non-Functional Requirements
	4.2.3 Use Case Diagram
	4.2.4 Use Case Description

	4.3 Low-fidelity Prototypes

	CHAPTER 5
	5 SOLUTION
	5.1 Introduction
	5.2 Problem-Solution Mapping
	5.2.1 Limited Android Access and Discontinuation of iOS Subscription
	5.2.2 Limited Visual Representation of Real-Time Processes
	5.2.3 Delayed Response to Critical Conditions
	5.2.4 Limited Usability and Interface Constraints

	5.3 Deployment of Solution

	CHAPTER 6
	6
	6 SYSTEM IMPLEMENTATION
	6.1 Introduction
	6.2 Project Setup
	6.2.1 Firebase Setup
	6.2.2 MySQL Cloud Database Setup

	6.3 System Modules
	6.3.1 Log In Module
	6.3.2 Dashboard Module
	6.3.3 Graph Monitoring Module
	6.3.4 Alarm Management Module
	6.3.5 User Profile & Settings Module

	6.4 Conclusion

	CHAPTER 7
	7 SYSTEM TESTING
	7.1 Introduction
	7.2 Unit Testing
	7.3 System Usability Testing
	7.3.1 Test Scenario of Usability Testing
	7.3.2 Results of Usability Testing

	7.4 Alpha Testing
	7.5 Beta Testing

	CHAPTER 8
	8 CONCLUSION AND RECOMMENDATION
	8.1 Conclusion
	8.2 Limitations and Recommendations for Future Works

	REFERENCES
	APPENDICES

