

DEVELOPMENT OF A CROSS-PLATFORM

MOBILE APPICATION FOR MONITORING

PALM OIL MILL (POM) PROCESSES

LIM JUAN HONG

UNIVERSITI TUNKU ABDUL RAHMAN

DEVELOPMENT OF A CROSS-PLATFORM MOBILE

APPLICATION FOR MONITORING PALM OIL MILL (POM)

PROCESSES

LIM JUAN HONG

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Software Engineering

(Honours)

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2025

i

DECLARATION

I hereby declare that this project report is based on my original work except

for citations and quotations which have been duly acknowledged. I also

declare that it has not been previously and concurrently submitted for any

other degree or award at UTAR or other institutions.

Signature : ___________________________________

Name : LIM JUAN HONG

ID No. : 2105435

Date : 17/9/2025

ii

COPYRIGHT STATEMENT

© 2025, LIM JUAN HONG. All right reserved.

This final year project report is submitted in partial fulfilment of the

requirements for the degree of Bachelor of Science (Honours) Software

Engineer at Universiti Tunku Abdul Rahman (UTAR). This final year project

report represents the work of the author, except where due acknowledgement

has been made in the text. No part of this final year project report may be

reproduced, stored, or transmitted in any form or by any means, whether

electronic, mechanical, photocopying, recording, or otherwise, without the

prior written permission of the author or UTAR, in accordance with UTAR’s

Intellectual Property Policy.

iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Dr. Khor Kok

Chin for his invaluable advice, guidance and immense patience throughout the

development of this project.

Special thanks to my supportive classmate, Kim Bei Er, a fellow Software

Engineering student, who worked closely with me on the same company

during my final year project. Her continuous support and collaboration have

been truly appreciated.

I would also like to extend my appreciation to the faculty and the departmental

members from Lee Kong Chian Faculty of Engineering and Science and

Department of Computing (DC), for creating a pleasant learning environment

throughout my years in UTAR.

Lastly, my heartfelt gratitude goes to my dearest family and friends for their

unlimited help and support, which has been instrumental in the success of this

project.

iv

ABSTRACT

This collaborative project with Novaflow Engineering Sdn. Bhd. aims to

overcome the limitations of the current mobile application used for monitoring

palm oil mill (POM) processes. The existing system faces challenges in terms

of viewing the real-time data and receiving alarm notifications, which affect

operational efficiency and safety. The proposed solution for this project

involves designing and developing a cross-platform mobile application that

shall provide a visual representation of the POM process layout. The

application shall display real-time data updates, alarm notifications for critical

conditions, and improvements in the user interface for enhanced usability.

Additionally, filtering graph features is added to facilitate easy data analysis

and comparison. The system also integrates with Influx DB, the database

currently used by the company to store data. The proposed solution ensures

more efficient monitoring, enhanced safety, and improved operational

performance. In conclusion, the project delivers a practical and efficient

solution that meets the operational needs of Novaflow Engineering and

provides a robust, cross-platform application to support ongoing

improvements in the company’s POM operations.

Keywords:

palm oil mill monitoring; cross-platform mobile application; real-time data

visualization; alarm notification system; industrial process automation

Subject Area:

TS155–194 Production management. Operations management

v

TABLE OF CONTENTS

DECLARATION i

COPYRIGHT STATEMENT ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF TABLES viii

LIST OF FIGURES x

LIST OF SYMBOLS / ABBREVIATIONS xviii

LIST OF APPENDICES xix

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 2

1.3 Problem Statement 3

1.4 Aim and Objectives 5

1.5 Proposed Solution 5

1.6 Proposed Approach 7

1.7 Project Scope 8

1.8 Contribution of the Study 9

2 LITERATURE REVIEW 11

2.1 Introduction 11

2.2 Palm Oil Mill Process 12

2.3 Cross-Platform POM Mobile Application 14

2.4 Cross-Platform Framework Flutter 17

2.5 SVG Graphics 19

2.6 Alarm Notification System 20

2.7 System Usability 23

2.8 Database 27

vi

2.9 Summary 29

3 METHODOLOGY AND WORK PLAN 30

3.1 Introduction 30

3.2 Software Development Methodology 30

3.2.1 Evolutionary Prototyping Model 30

3.3 Project Plan 34

3.3.1 Work Breakdown Structure (WBS) 34

3.3.2 Gantt Chart 37

3.4 Development and Deployment Tools 40

3.4.1 Flutter 40

3.4.2 Android Studio 40

3.4.3 Xcode 41

3.4.4 Firebase 41

3.4.5 Influx DB 41

3.4.6 MySQL 41

3.4.7 Python 41

3.4.8 TestFlight 42

3.4.9 App Store Connect 42

4 PROJECT SPECIFICATION 43

4.1 Introduction 43

4.2 Requirement Specification 43

4.2.1 Functional Requirements 43

4.2.2 Non-Functional Requirements 44

4.2.3 Use Case Diagram 46

4.2.4 Use Case Description 47

4.3 Low-fidelity Prototypes 56

5 SOLUTION 57

5.1 Introduction 57

5.2 Problem-Solution Mapping 57

5.2.1 Limited Android Access and

Discontinuation of iOS Subscription 57

5.2.2 Limited Visual Representation of Real-

Time Processes 59

5.2.3 Delayed Response to Critical Conditions 60

vii

5.2.4 Limited Usability and Interface Constraints 65

5.3 Deployment of Solution 74

6 77

6 SYSTEM IMPLEMENTATION 77

6.1 Introduction 77

6.2 Project Setup 77

6.2.1 Firebase Setup 77

6.2.2 MySQL Cloud Database Setup 83

6.3 System Modules 87

6.3.1 Log In Module 87

6.3.2 Dashboard Module 90

6.3.3 Graph Monitoring Module 100

6.3.4 Alarm Management Module 111

6.3.5 User Profile & Settings Module 123

6.4 Conclusion 129

7 SYSTEM TESTING 130

7.1 Introduction 130

7.2 Unit Testing 131

7.3 System Usability Testing 145

7.3.1 Test Scenario of Usability Testing 147

7.3.2 Results of Usability Testing 149

7.4 Alpha Testing 152

7.5 Beta Testing 154

8 CONCLUSION AND RECOMMENDATION 156

8.1 Conclusion 156

8.2 Limitations and Recommendations for Future

Works 157

REFERENCES 158

APPENDICES 160

viii

LIST OF TABLES

Table 1.1: Challenges Faced by Novaflow and Proposed Solutions. 10

Table 2.1: Comparison of Features between Current Monitoring System. 16

Table 2.2: Comparison of MySQL and Firebase for Alarm Notification

System. 23

Table 4.1: Functional Requirements. 43

Table 4.2: Non-Functional Requirements. 44

Table 6.1 Required Field in Each Document. 82

Table 6.2 Data Structures of ID_alarm_history Table. 84

Table 6.3 Data Structures of ID_description_template. 85

Table 6.4 Data Structures of ID_threshold_settings. 85

Table 7.1: Unit Testing of Login Module. 131

Table 7.2: Unit Testing of the Dashboard Module. 132

Table 7.3: Unit Testing of the Graph Monitoring Module. 135

Table 7.4: Unit Testing of the Alarm Management Module. 139

Table 7.5: Unit Testing of the User Profile & Settings Module. 142

Table 7.6: Template of System Usability Scale (SUS) Survey. 145

Table 7.7: Usability Testing Scenario for Operator or Manager. 147

Table 7.8: General Guideline on the Interpretation of SUS Score. 149

Table 7.9: Summary of SUS Survey Results. 150

Table 7.10: Summary of Participants’ Most Liked Features of the

System. 151

Table 7.11: Summary of Suggestions for Improving the system from

Participants. 151

Table 7.12: Alpha Version Control History. 152

Table 7.13: Beta Version Control History. 154

ix

Table 8.1: Limitations and its Recommendations of the System. 157

x

LIST OF FIGURES

Figure 1.1: Operational Flow of POM Monitoring System. 6

Figure 1.2: Overview of Design Architecture. 7

Figure 1.3: Overview of Evolutionary Prototyping Model. 7

Figure 2.1: Co-Generation System in Palm Oil Mill. 12

Figure 2.2: Palm Oil Press Line. 13

Figure 2.3: Dashboard of SmartMachine365. 14

Figure 2.4: Alarm Monitoring System of SmartMachine365. 15

Figure 2.5: Real Time Channel Data of SmartMachine365. 15

Figure 2.6: Most Popular Development SDK. 17

Figure 2.7: Solar Monitoring App (SolaXCloud). 19

Figure 2.8: Sample 2D Vector-based Graphic. 20

Figure 2.9: Alarm Notification System. 22

Figure 2.10: Sample of SUS. 24

Figure 2.11: Sample of CSUQ. 25

Figure 2.12: Sample of UMUX. 26

Figure 2.13: User Authentication on Firebase. 28

Figure 2.14: Mapping of Devices’ Channel Data. 28

Figure 3.1: Overview of Evolutionary Prototyping Model. 30

Figure 3.2: Gantt Chart for Project Planning & Initial Requirement

Gathering. 37

Figure 3.3: Gantt Chart for Design and Prototyping. 38

Figure 3.4: Gantt Chart for Implementation. 39

Figure 3.5: Gantt Chart for Testing and Deployment. 39

Figure 4.1: Use Case Diagram for Palm Oil Mill Monitoring System. 46

xi

Figure 5.1: SmartMill365 on Android. 58

Figure 5.2: SmartMill365 on iOS. 58

Figure 5.3: SmartMill365 on iPads. 58

Figure 5.4: SmartMill365 on Android Tablet. 59

Figure 5.5: Graphical Layout Dashboard 59

Figure 5.6: Graphical Layout Dashboard on Android. 59

Figure 5.7: Active Alarm Page on Android. 61

Figure 5.8: Active Alarm Page on iOS. 61

Figure 5.9: Alarm History Page on Android. 62

Figure 5.10: Alarm History Page on iOS. 62

Figure 5.11: Alarm Record Filtered by Date on Android. 62

Figure 5.12: Alarm Record Filtered by Date on iOS. 62

Figure 5.13: Alarm Record Filtered by Days on iOS. 63

Figure 5.14: Alarm Record Filtered by Days on Android. 63

Figure 5.15: Pop-Up Notification on Android. 64

Figure 5.16: Pop-Up Notification on iOS. 64

Figure 5.17: Active Alarm Icon on Android. 64

Figure 5.18: Active Alarm Icon 64

Figure 5.19: Separate Graph View on Android. 65

Figure 5.20: Separate Graphs View on iOS. 65

Figure 5.21: Combine Graphs View on iOS. 66

Figure 5.22: Combine Graphs View on Android. 66

Figure 5.23: Graphs Filtered by Devices on iOS. 66

Figure 5.24: Graphs Filtered by Devices on Android. 66

Figure 5.25: Graphs Filtered by Time Range on Android. 67

xii

Figure 5.26: Graphs Filtered by Time Range on iOS. 67

Figure 5.27: Switching between Subgroups on Single Account for

Android. 67

Figure 5.28: Switching between Subgroups on Single Account for iOS. 67

Figure 5.29: Single Graph View on iOS. 68

Figure 5.30: Single Graph View on Android. 69

Figure 5.31: Zoom in Graph on iOS. 69

Figure 5.32: Zoom in Graph on Android. 69

Figure 5.33: Theme Selection in Settings on iOS. 70

Figure 5.34: Theme Selection in Settings on Android. 70

Figure 5.35: More Page on Android. 71

Figure 5.36: More Page on iOS. 71

Figure 5.37: Data Plotter on iOS. 71

Figure 5.38: Data Plotter on Android. 71

Figure 5.39: About Us Page on Android. 72

Figure 5.40: About Us Page on iOS. 72

Figure 5.41: FAQ Page on Android. 73

Figure 5.42: FAQ Page on iOS. 73

Figure 5.43: Privacy Policy Page on Android. 73

Figure 5.44: Privacy Policy Page on iOS. 73

Figure 5.45: Settings Page on Android. 74

Figure 5.46: Settings Page on iOS. 74

Figure 5.47: Apple App Store Listing of Smart Mill 365. 75

Figure 5.48: Android Version APK Download for Smart Mill 365. 75

Figure 5.49: Project Upload to GitHub Repository. 76

Figure 6.1 Firebase Website to Create Project. 77

xiii

Figure 6.2 Firebase Configuration File for Android Mobile Application. 78

Figure 6.3 Location to Place the google-services.json File. 78

Figure 6.4 Add Google-services Plug-In at build.gradle.kts File. 78

Figure 6.5 Firebase Configuration File for iOS Mobile Application. 79

Figure 6.6 Location to Place the GoogleService-Info.plist File. 79

Figure 6.7 Add Google-services Plug-In at build.gradle.kts File. 79

Figure 6.8: Firebase Authentication Page. 80

Figure 6.9: Create New Account. 80

Figure 6.10 Create New User Collection. 81

Figure 6.11 Create New Document for Subgroup/Site. 81

Figure 6.12 Sample Fields inside Document. 82

Figure 6.13 Sample MySQL Databases. 83

Figure 6.14: Sample Data in ID_alarm_history Table. 84

Figure 6.15 Sample Data in ID_description_template Table. 86

Figure 6.16 Sample Data in ID_threshold_settings Table. 86

Figure 6.17 Login Page 87

Figure 6.18: Login Page with Empty Input Field Error Message. 88

Figure 6.19: Login Page with Invalid Email Format Error Message. 88

Figure 6.20: Login Page with Incorrect Login Credentials Error

Message. 88

Figure 6.21: Implementation of Input Validation. 89

Figure 6.22: Implementation of Firebase Authentication State

Management. 89

Figure 6.23: Dashboard Page. 90

Figure 6.24: Implementation of Active Alarm Button. 90

Figure 6.25: Subgroup / Site Selection for Switching Dashboard. 91

xiv

Figure 6.26: List of Available Subgroups in Firebase Document. 91

Figure 6.27: Implementation of Fetching Available Subgroup. 92

Figure 6.28: Active Alarm Icon. 93

Figure 6.29: Implementation of Active Alarm Icon Logic. 93

Figure 6.30: Implementation of Active Alarm Icon. 93

Figure 6.31: Timestamp, Measurement Name, and View Graphs button. 94

Figure 6.32: Implementation of Timestamp Format. 94

Figure 6.33: Implementation of Timestamp Logic. 94

Figure 6.34: Implementation of Fetch Measurement Name. 95

Figure 6.35: Implementation of View Graphs Button. 95

Figure 6.36: SVG-based Graphical Layout. 96

Figure 6.37: Implementation of Dashboard Initialization. 96

Figure 6.38: Brand Logo Loading Indicator. 97

Figure 6.39: Implementation of Switching Subgroup Logic. 97

Figure 6.40: Dashboard Page with No Account Configuration. 98

Figure 6.41: Dashboard Page with No Device Configuration. 98

Figure 6.42: Implementation of Configuration Check Logic on

Dashboard. 99

Figure 6.43: Dashboard Page Bottom Navigation. 99

Figure 6.44: Implementation of Bottom Navigation. 99

Figure 6.45: Implementation of initState. 100

Figure 6.46: Fetching Channel Data from Firebase. 101

Figure 6.47: Fetching Device Unit from Firebase. 101

Figure 6.48: Tooltip. 102

Figure 6.49: Implementation of Tooltip. 102

Figure 6.50: Implementation of Tooltip Display Format. 102

xv

Figure 6.51: Time Range Selection. 103

Figure 6.52: Implementation of Time Range Selection Button Logic. 103

Figure 6.53: Graph Reset to Normal Size. 104

Figure 6.54: Data Fetching from Influx DB. 104

Figure 6.55: Convert to Chart and Local Time Zone. 105

Figure 6.56: Combine Graph View. 105

Figure 6.57: Implementation of Combine Graph. 106

Figure 6.58: UI for Combine Graph. 106

Figure 6.59: Separate Graph View. 107

Figure 6.60: Implementation of Separate Graph. 107

Figure 6.61: Dialog for Select Graphs. 108

Figure 6.62: Implementation of Dialog. 108

Figure 6.63: Tim Range Selection. 109

Figure 6.64: Implementation of Time Range Selection. 109

Figure 6.65: Data Summary Panel. 110

Figure 6.66: Implementation of Data Summary Panel. 110

Figure 6.67: Check alarm = ‘yes’. 111

Figure 6.68: Query Data from Influx DB. 111

Figure 6.69: Check Low and High Thresholds. 112

Figure 6.70: Insert Alarm Record into Database. 112

Figure 6.71: Adding Active Alarm to Firebase. 112

Figure 6.72: Remove Active Alarm Record from Firebase. 113

Figure 6.73: Monitoring Loop. 113

Figure 6.74: Comparing Thresholds Python running on Systemd. 113

Figure 6.75: Active Alarm Page. 114

xvi

Figure 6.76: No Active Alarm Record. 115

Figure 6.77: Implementation of Fetching Active Alarm. 115

Figure 6.78: Alarm History Page. 116

Figure 6.79: Implementation of Fetching Alarm History. 116

Figure 6.80: Alarm Record Filter by Date. 117

Figure 6.81: Alarm Record Filter by Time Range. 117

Figure 6.82: Implementation of Filtering Alarm History. 118

Figure 6.83: Implementation of Clearing Filter. 118

Figure 6.84: Implementation of Ack Function. 119

Figure 6.85: Alarm History API. 120

Figure 6.86: Acknowledgment API. 121

Figure 6.87: APIs Python Running on Systemd. 121

Figure 6.88: Pop Up Notification. 122

Figure 6.89: Implementation of Pop-Up Notification. 122

Figure 6.90: More Page. 123

Figure 6.91: Implementation of Current Login Email. 124

Figure 6.92: Implementation of Navigation to Different Sections. 124

Figure 6.93: About Us Page. 125

Figure 6.94: FAQ Page. 125

Figure 6.95: Privacy Policy Page. 126

Figure 6.96: Dark Mode Setting Page. 127

Figure 6.97: Implementation of Dark Mode Setting. 127

Figure 6.99: Data Plotter. 128

Figure 6.99: Implementation of Data Plotter. 128

Figure 6.100: Confirmation Dialog for Logout. 129

xvii

Figure 6.101: Implementation of Logout. 129

Figure 7.1: Build History for TestFlight in App Store Connect. 153

Figure 7.2: List of External Users for Beta Testing. 154

xviii

LIST OF SYMBOLS / ABBREVIATIONS

bar pressure

psi pressure

A current

ch channel

POM palm oil mill

SDG sustainable development goals

BPV back pressure vessel

BPR back pressure receiver

JIT just-in-time

AOT ahead-of-time

SVG scalable vector graphics

XML extensible markup language

PNG portable network graphics

JPEG joint photographic experts group

2D two-dimensional

SUS System Usability Scale

CSUQ Computer System Usability Questionnaire

UMUX Usability Metric for User Experience

SQL structured query language

BaaS backend-as-a-service

RDBMS relational database management system

WBS work breakdown structure

UML unified modelling language

IDE integrated development environment

FR functional requirements

NFR non-functional requirements

N/A not applicable

xix

LIST OF APPENDICES

Appendix A: Low-fidelity prototype for SmartMill365 Mobile

Application. 160

Appendix B: SUS Usability Test Responses. 165

Appendix C: Official Evaluation Letter from Novaflow. 174

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

Palm oil mills (POM) are essential for processing raw palm fruit into palm oil

with large amounts of steam and electricity (Steve et al., 2018). This project

focuses on improving the monitoring of POM processes, mainly on the devices

such as sterilizer and digester, though the implementation of IoT technology.

By transforming traditional hardware systems into IoT devices, the project

aims to enable real-time monitoring and alarm notifications for critical

conditions.

While many POM processes have become mostly automated, some

procedures still require human oversight, especially in monitoring the devices.

Operators must regularly track the channel data such as pressure (bar/psi)

and current (A) even though the process is automated, which results in time-

consumption and higher labour costs. Therefore, the integration of IoT devices

help in reducing on monitoring, lowering labour costs, and eventually

improving overall efficiency of POM processes.

The remote monitoring function shall further improve overall

management efficiency, as managers and operators able to respond quickly to

any alarms or irregularities without being physically present at the mill. This

capability also allows for better resource allocation, as managers can identify

issues and make decisions remotely. The alarm notifications ensure the critical

conditions are solved immediately, reducing the risk of errors and improving

the safety throughout the operation.

Novaflow is an engineering company that mainly focuses on

industrial automation, palm oil and sewage & water solutions. The company

aims to develop additional monitoring and automation technologies in its palm

oil solution to optimize their manufacturing operations. However, Novaflow

currently faces limitations on existing iOS mobile application

(SmartMachine365) for the palm oil industry, which is subscribed from a

third-party provider. The current solutions offer only basic functionalities and

lack accessibility for Android users. Due to these constraints, Novaflow

2

decided to develop a customized cross-platform mobile application that

provides enhanced monitoring features for managing palm oil mill processes

more efficiently.

1.2 Importance of the Study

This project is aligned with the United Nations’ Sustainable Development

Goals (SDG) and Malaysian’s government policies. The importance of the

study is outlined as below:

1.2.1 United Nations’ Sustainable Development Goals (SDG)

This project is support SDG9: Industry, Innovation, and Infrastructure by

enhancing the palm oil mills (POM) monitoring processes through

technological innovation. The development of real-time monitoring and alarm

notification system allow manager or operator to have better decision-making,

which can reduce the machine downtime and increase in palm oil mills’

operational performance.

 Besides that, this project also supports SDG12: Responsible

Consumption and Production by ensuring the resources in palm oil mills are

manage efficiently. The ability to monitor critical process conditions in real

time minimizing the error that might lead to production downtime and

equipment failures. The alarm notification system can help to prevent

unnecessary loss in palm oil mills production, leading to a more sustainable

and responsible industrial practices.

1.2.2 Malaysian’s Government Policies

This project support with Malaysia’s government policies, mainly on National

Policy on Industry 4.0 (Industry 4WRD), which aims to make digital

transformation on Malaysia’s manufacturing sector. By implementing a real-

time monitoring system for palm oil mills, this project aligns with Malaysia’s

four national goals under Industry 4.0. First, the real-time monitoring system

can increase the productivity in manufacturing sector by applying

automation and real-time data analytics to make industry operations more

efficient and reduce machine downtime. Secondly, the project contributes to

3

the economy from manufacturing sector by ensuring better resource

allocation, where the unnecessary waste is minimized. Palm oil mills can

increase their production while reducing unnecessary resource consumption

through a smart monitoring system.

 Thirdly, this project strengthens innovation capability, supporting

Malaysia’s goal on improving its global innovation ranking in

manufacturing sector. The integration of smart monitoring and notification

system reflects the adoption of Industry 4.0 technologies, leading

manufacturing industry to more advanced in technology. Lastly, this project

contributes to increase the number of high-skilled workers by encouraging

the adoption of digital tools in the manufacturing sector. The transformation

from a traditional to a smart monitoring system requires workers to develop

and apply more technological skills, aligning with Malaysia’ goal of

increasing more knowledgeable and technology-driven workforce.

1.3 Problem Statement

The four main problems that faced by Novaflow in monitoring the POM

processes are outline below:

1.3.1 Limited Android access and discontinuation of iOS subscription

Currently, Novaflow’s POM monitoring system is only available on iOS

devices, which limit the accessibility for Android users. This limitation makes

it difficult for Android user to track the devices’ channel data in real time,

especially when they are not around their desk or outside the office. In cases of

happening emergencies, delays in addressing issues can lead to production

downtime.

Additionally, Novaflow plans to discontinue the subscription for the

current iOS mobile app which is provided by a foreign company. The existing

app has limited functionality, offering only basic features. By developing a

cross-platform mobile application, both Android and iOS users able to monitor

real-time channel data from anywhere using their mobile devices, allowing for

faster responses to critical conditions.

4

1.3.2 Limited visual representation of real-time processes

Existing monitoring interfaces are lack of intuitive graphical layouts, leading

to the operators or managers difficult to interpret data efficiently. By

integrating SVG graphics, this project aims to provide a clear and dynamic

visualization of POM processes for better decision-making.

1.3.3 Delayed response to critical conditions

Many mills rely on manual checks by human operators, increasing the risk of

delayed responses to critical conditions. Since operators need to physically

track the devices’ channel data by following their scheduled rounds, sudden

critical conditions for extended periods of time may lead to production

downtime or even damage on equipment. The implementation of an alarm

notification system ensures that critical conditions are detected and addressed

immediately.

1.3.4 Limited usability and interface constraints

The current Novaflow application has limitation in usability, as it only allows

users to view single channel data at a time and lacks alarm notifications for

critical conditions. These limitations make real-time monitoring and analysis

inefficient, especially in critical situations. Additionally, managers that have

different subgroups restricts access to its subgroups’ dashboards and their

devices’ channel data. In this case, managers must manually switch between

subgroups by logging in and out, which is time-consuming and inefficient for

overseeing multiple groups and devices. Hence, this project aims to enhance

the monitoring system by improving accessibility, enabling smoother

interaction and allowing simultaneous access to multiple subgroups’

dashboards and channel data for better analysis and decision-making.

5

1.4 Aim and Objectives

The aim of this project is to design and develop a mobile application

(SmartMill365) that supports both Android and iOS devices for monitoring

palm oil mills (POM) processes.

The objectives of this project that refined based on Novaflow’s requirements

are:

a. To develop a cross-platform mobile application using Flutter that

can replace the existing company’s iOS app and ensures

accessibility for both Android and iOS users in monitoring POM

processes.

b. To integrate SVG graphics for displaying process layouts along

with real-time data display.

c. To implement an alarm notification system to alert users about

critical process conditions.

d. To enhance system usability and interface for more efficient real-

time monitoring and analysis.

1.5 Proposed Solution

Developing a cross-platform mobile application for POM processes

monitoring system is essential to address the issues described in the problem

statement above. Novaflow currently used a web-based monitoring system as

the primary platform for monitoring all the devices’ channel data. However,

the existing mobile solution, which is subscribed from a foreign company, is

limited in functionality, restricting accessibility for Android users and offering

only basic features.

The new mobile-based monitoring system developed in this project,

serve as a companion application to monitor the channel data of all the devices

with enhanced features. While the real-time channel data updates for each

device shall remain same as the existing system, the new solution have a

multi-graph view that allow users to view all channel data on a single screen,

which improving the monitoring efficiency and analysis.

Additionally, users can filter and customize displayed graphs to

focus on specific devices, compare among devices for performance analysis,

6

and adjust the time range for data display to analyse historical performance

based on their need. Furthermore, this system enables managers to access and

monitor multiple subgroups’ dashboards without the need to log in and out

repeatedly. This enhancement improves operational oversight by providing a

consolidated view of all related devices under same company and their

channel data.

Another critical enhancement is the implementation of an alarm

notification feature, which alert users when channel data exceed or below

predefined thresholds. This feature ensures immediate awareness of critical

conditions, allowing for faster responses times and improved operational

performance.

These enhancements shall make the monitoring system become more

flexible and feature-rich, allowing users to monitor critical process conditions

anytime and anywhere. As a result, the proposed solution ensured better

decision-making, enhanced operational efficiency, and improved safety

measures.

The operational flow diagram as shown in Figure 1.1 above illustrates

how the mobile application monitors channel data of the devices in the palm

oil mill (POM) process. Users start by accessing the dashboard, which displays

all available devices such as sterilizer and digester for selection. After

choosing a desired channel, the application retrieves real-time channel data

from Influx DB. The channel data such as pressure (bar/psi) and current (A)

shall then display on the mobile screen, allowing users to monitor and analyse

data effectively. Additionally, an alarm notification system is triggered if the

channel data exceeds or below a predefined level, ensuring immediate

corrective action is taken.

Figure 1.1: Operational Flow of POM Monitoring System.

7

Figure 1.2: Overview of the Design Architecture.

1.6 Proposed Approach

The software development methodology that decided to use is evolutionary

prototyping model as shown in Figure 1.3. This approach shall develop an

initial prototype with essential features, which then continuously refined

through multiple iterations based on self-evaluation and feedback from

company supervisors or industry experts (Camburn et al., 2017). By using this

method, the system shall improve progressively, reducing risks and ensuring

that the final product meets user expectations.

The project started with requirement gathering to ensure a clear

understanding of the system’s needs. Next, a prototype is then developed with

core functionalities, allowing early testing and identify areas of improvement.

This prototype then undergoes self-evaluation and review sessions with the

company supervisor to gather feedback. Based on the feedback, refinements

Figure 1.2: Overview of Design Architecture.

Figure 1.3: Overview of Evolutionary Prototyping Model.

8

are made, and additional functionalities are incorporated in following

iterations.

Each iteration of the prototype is tested before proceeding to the next

phase. Once all features are developed and validated through multiple

iterations, a final refined prototype is created and reviewed before proceeding

with the full implementation. After getting approval, the actual system

development begins. Any changes during the development process are based

on ongoing evaluations to ensure that system meets the operational needs of

the palm oil mill (POM) monitoring system.

1.7 Project Scope

The palm oil mill (POM) processes monitoring system aims to enhance

existing monitoring features by developing a cross-platform mobile

application (SmartMill365) built with Flutter framework that provides real-

time monitoring of devices’ channel data such as pressure, and alarm

notifications for critical conditions. The mobile applications are compatible

with both Android and iOS platform. Firebase authentication is implemented

to validate user logins, only allow authorized user to monitor the channel data.

 The system shall retrieve real-time channel data from Influx DB and

display them on a dashboard, allowing users to monitor all channel data. The

system shall offer additional features such as filtering and comparing

channel data across different devices and selecting custom time ranges for

historical analysis. An alarm notification system is integrated to alert users

when channel data exceed certain predefined thresholds, ensuring immediate

response are taken through the notifications. In addition, users are able to

monitor and review past alarm notifications through the application.

 Furthermore, the system shall allow managers to access and monitor

multiple subgroups’ dashboards without requiring repetitive logins. In this

case, managers can direct switch between subgroups’ dashboard through drop-

down options from the home screen. Additionally, the application shall feature

a graphical interface using SVG files to visually represent the palm oil mill

process layout with real-time channel data. This visualization helps users

quickly understand the operational status of different devices in an intuitive

9

way. A clean and user-friendly user interface is prioritized to enhance usability,

ensuring that monitoring is simple and accessible for all users.

1.8 Contribution of the Study

This project benefits to various stakeholders such as industrial operators,

automation managers, and business owners. By implementing the mobile-

based palm oil mills monitoring system, it improves the overall efficiency and

accessibility in monitor the palm oil mills operations.

One of the primary advantages of the developed mobile application is

allowed to remote access anytime and anywhere. Unlike the main existing

monitoring system which is web-based, this mobile solution ensures that

operators and managers can access the real-time channel data from device

remotely. In this situation, they are able to quickly responses to any critical

conditions, reducing any unnecessary waste or production downtime.

The implementation of alarm notification system is another

significant contribution. By alerting users when channel data exceed

predefined thresholds, the system enable users to detect the issue earlier and

make decision immediately, minimizing the risk of equipment failures and

improving operational safety. This feature mainly benefits to operators as they

no longer need to physically monitor the devices from time to time.

Additionally, the mobile application able to enhance data analysis

and performance evaluation by allowing users to compare channel data

across multiple devices. Automation managers can utilize graph filtering and

time range adjustments to analyse historical data, identify any inefficiencies

and improvement area for better productivity in future.

From a broader perspective, this project aligns with Industry4WRD,

Malaysia’s initiative to drive digital transformation in manufacturing

industry. By integrating this smart monitoring system, it contributes to the

adoption of smart manufacturing technologies in the palm oil industry. This

ensures that Nova Flow and its stakeholders remain competitive in this

technology-driven era while improving operational efficiency and decision-

making processes.

10

Table 1.1: Challenges Faced by Novaflow and Proposed Solutions.

Challenges Proposed Solutions

Rely on third-party iOS mobile

solution

Develop a customized cross-platform

mobile application follow company-

specific needs.

Lack of comprehensive real-time data

visualization

Implement a multi-graph view that

displays all channel data on single

screen for better monitoring and

analysis.

Unable to filter and compare device

performance

Implement graph filtering and time

range selection, enable users to

compare different devices’

performance.

Unable to access and monitor

subgroups’ dashboard simultaneously

Implement multi-subgroup

monitoring by allowing managers to

access multiple subgroup dashboards

without logging in and out.

Delayed response to critical

conditions

Implement alarm notification system

to alert users immediately when

channel data exceed thresholds.

Lack of intuitive graphical layout Implement SVG-based graphical

layouts on dashboard for clear and

dynamic visualization of palm oil mill

process.

c11

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

This chapter reviews existing literature and technologies related to the

development of the Palm Oil Mill (POM) Monitoring System. It explores

previous research, methodologies, and technological advancements in real-

time monitoring systems and alarm notification systems, cross-platform

mobile development, data visualization techniques, and database management.

By analysing past studies and existing applications, this chapter identifies

opportunities for improvement, forming the foundation for the proposed

solution.

 The selection of an appropriate development platform and tools is

crucial to formulate a smoother and efficient monitoring system. In this case,

Flutter with its cross-platform capabilities is chosen for this mobile

application development, as single codebase is used for both Android and iOS

platforms. Besides that, Firebase is used for user authentication and for

mapping channel data with Influx DB, ensuring secure login management and

accurate data retrieval. For real-time data storage and retrieval, Influx DB is

selected, as it is optimized for handling time-series data, making it suitable for

monitoring machine data in the palm oil mill. Additionally, SVG graphics are

implemented for dynamic and interactive real-time data visualization, ensuring

an intuitive and seamless user interface. These selected tools will then enhance

the usability, optimize performance and addressing the limitations of existing

Novaflow application.

c12

2.2 Palm Oil Mill Process

In the palm oil milling process, devices such as boilers, back pressure vessel

(BPV), sterilizers and digesters play an important role in extracting palm oil

efficiently. The monitoring system that developed in this project is crucial to

ensure that all these devices are operate efficiently, preventing any

breakdowns happened and maintaining optimal performance. The channel

real-time data such as sterilizer pressure (bar/psi) and digester electric

current (A) will be monitor from time to time, ensuring optimal steam

conditions and motor performance throughout the milling process.

The process as shown in Figure 2.1 start with the boiler, which

generates steam by heating water. This steam is then supplied to different

sections of the mill, including the sterilizer. At the meantime, back pressure

vessel (BPV) also known as back pressure receiver (BPR), will be used to

regulates and stores the excess steam that came from boiler, ensuring that the

pressure remains stable and consistent for sterilization process. In this project,

boiler and BPV will be grouped under sterilizer, as they are important

components in supplying and regulating the steam for the sterilization process.

Figure 2.1: Co-Generation System in Palm Oil Mill.

c13

Next, the sterilizer as shown in Figure 2.2 used to cook the fresh fruit

bunches under high pressure so that the fruits become soft and easier to

separate from the bunch stalks (Kandiah et al., 2006). This process also helps

deactivate the enzymes that could cause oil degradation. After sterilization, the

fruits are stripped from the bunch stalks in the threshing process, then

followed by digestion. During digestion, digestor is used to mash and break

down the sterilized palm fruits. It normally uses rotating blades to stir and

crush the fruit with heat, ensuring that the oil is extract efficiently. This step

will soften the mesocarp and separates the oil from fruit fibres, so that it will

be easier to extract crude palm oil in the following pressing stage.

Therefore, it is important to keep monitor the electric current (A) of

digester’s motor to ensure that it operates within the optimal range. By doing

so, it helps to detect any abnormalities such as mechanical failures or

insufficient energy earlier, which can prevent equipment breakdowns

happened and minimize the disruptions in the milling process.

Figure 2.2: Palm Oil Press Line.

c14

2.3 Cross-Platform POM Mobile Application

From Novaflow’s perspective, developing a cross-platform mobile

application for the POM monitoring system aims to maximize efficiency in

development, reduce development costs, and ensure broader accessibility

across different operating systems. By utilizing a single codebase without

much more changes for both iOS and Android, Novaflow can streamline the

development process, which eventually help in reducing the development time

and labour costs. This is because shorter development time will be minimizing

the need for additional manpower working on the same project.

 Additionally, this cross-platform approach developed using Flutter

framework ensures the consistency in user experience as both interface and

functionality on both operating systems are almost same. This strategy also

serves as a marketing advantage for Novaflow, allowing a wider range of

clients to access and benefit from the application. Furthermore, any changes

made after deployment and maintenance of the mobile application become

more efficient, as changes can be implemented simultaneously across

platforms, minimizing the system downtime and improving overall

performance and reliability.

 In this project, Novaflow aims to enhance the monitoring system by

addressing the limitations of existing application (SmartMachine365). The

Figure 2.3: Dashboard of SmartMachine365.

c15

current Novaflow mobile application lack of intuitive SVG graphics on the

dashboard as shown in Figure 2.3, making data visualization less interactive

and harder to interpret. Besides that, manager that have different subgroups

must log in and out repeatedly to view each subgroup’s dashboard as the

existing system only allows viewing one dashboard at one time. As a result,

this process is time-consuming and inefficient, making it difficult for

managers to monitor multiple subgroups simultaneously.

 Besides that, the alarm notification system in existing Novaflow

application is not functioning as shown in Figure 2.4 due to misconfiguration

of the alarm settings. As a result, any critical conditions might be unnoticed by

the operators or managers, leading to delay in taking corrective action.

Figure 2.4: Alarm Monitoring System of SmartMachine365.

Figure 2.5: Real Time Channel Data of SmartMachine365.

c16

Another limitation is that only one channel of data able to view at a

time as shown in Figure 2.5. This restriction limits the ability for manager or

operator to perform comparisons among different channel data for analysis

purposes.

By overcoming these limitations, this project ensures a smoother and

more efficient palm oil mill monitoring system. The implementation of

interactive SVG graphics enhances data visualization, providing a more

intuitive layout displaying the real-time channel data for users. Additionally,

the introduction of real-time alarm notification system ensures that users

able to receive instant alerts during any critical conditions, allowing for

immediate corrective action and preventing machine breakdowns. Furthermore,

multiple-channel monitoring allows users to view more than one graph

simultaneously, improving data analysis and decision making. Besides that,

the implementation of multi-subgroup dashboards allows managers to

seamlessly access different dashboards under same company without the need

to log in and out repeatedly. In short, this project significantly enhances the

existing application by delivering a more robust, efficient and responsive

monitoring system that aligns with the needs of Nova Flow’s palm oil mill

operations.

Table 2.1: Comparison of Features between Current Monitoring System.

 SmartMachine365

(existing system)

SmartMills365 (system

that will be

implemented)

Platform Supported iOS Android and iOS

Single-graph view ✔ ✔

Multi-graph view ✔

Multi-subgroup

dashboards

 ✔

Alarm notification

system

 ✔

SVG graphical

dashboard

 ✔

c17

Filtering channel’s

graph data

 ✔

2.4 Cross-Platform Framework Flutter

2.4.1 Introduction to Cross-Platform Framework

There are few cross-platform frameworks nowadays that can develop both iOS

and Android applications without any cost. According to Stack Overflow

(2019), the largest survey for software developers about their job preferences

found that the most popular cross-platform frameworks are Flutter, React

Native and Xamarin. Flutter framework achieved the most popular among the

cross-platform frameworks, which is 75.4% as shown in Figure 2.6.

Flutter, a framework that mainly develop on high-performance

applications, was developed by Google using its own programming language,

Dart (Tashildar et al., 2020). Besides that, the second most popular cross-

platform framework, React Native is developed by Facebook, mainly uses

JavaScript and React for building mobile applications (Wu, 2018). Next,

Xamarin, is a Microsoft-owned framework that uses C# and .NET to develop

cross-platform applications with native performance (Lodhi, 2024).

2.4.2 Comparison among Performance

From the perspective of performance, React Native uses JavaScript

bridge to communicate with the native operating system for rendering UI,

which can lead to slower performance especially in complex applications

Figure 2.6: Most Popular Development SDK.

c18

(Kishore et al., 2022). Besides that, Xamarin uses Just-in-Time (JIT) compiler

for Android, while iOS apps must use ahead-of-time (AOT) compilation for

Xamarin due to Apple’s restrictions (Vishal and Kushwaha, 2018). In fact,

switching between compiler can lead to an increase in app size and limit

performance optimizations. Flutter, on the other hand, does not require a

JavaScript bridge or JIT to interact with the native operating system as its

compiles directly into native machine code using Dart’s ahead-of-time

(AOT) compilation for both Android and iOS, which can lead to faster

performance and smoother the rendering process (Palumbo, 2021). As a result,

Flutter helps reduce development time and labour costs as only single

codebase is used for both iOS and Android platforms.

2.4.3 Comparison among User Interfaces

By looking at the user interface, Flutter uses its own rendering engine,

Skia that provides platform-specific customizable widgets and plugins (Sattar

et al., 2023). This allows Flutter to render UI components, images, and

animations more smoothly and efficiently, ensuring a consistent UI across

Android and iOS. In contrast, React Native uses native components, but

styling and behaviour can be inconsistent across platforms (Penta, 2004). This

can be taking more time during the testing phase to address these UI issues.

Additionally, Xamarin.Forms offers a set of tools and components that allow

developers to build cross-platform user interfaces for Xamarin framework,

reducing the needs of writing separate UI code for different platforms

(Ramadoss, 2023). However, it still has limitations in creating highly

customized UI components compared to Flutter, as Flutter’s rendering engine

provides fully customizable widgets.

Thus, Novaflow has decided to use the Flutter framework to develop

the cross-platform mobile application for the POM monitoring system, as it

offers better performance, consistency in user interface across platforms, and a

wide range of customizable widgets.

c19

2.5 SVG Graphics

Scalable Vector Graphics (SVG) is an XML-based vector image format used

to define 2D vector graphics for applications (Peng, 2000). It can be resized

without losing quality, unlike other files such as PNG and JPEG are raster

images that will become blurry when enlarged. SVG files normally smaller file

size compared to other files as it stores data as code instead of store pixel data.

Additionally, SVG supports animations and real-time data updates, therefore it

is suitable for monitoring systems.

 One real-world example of SVG-based real-time monitoring system

is solar monitoring app named as SolaXCloud as shown in Figure 2.7. This

application displays real-time solar energy consumption, battery levels, and

grid usage with an intuitive graphical interface. There are few SVG elements

used in this application. For example, dynamic energy flow lines are used to

show the real-time power distribution from solar panels to home appliances.

Besides that, it also displays the current energy usage with numbers which will

be update dynamically and allow users to click on it for further information.

Figure 2.7: Solar Monitoring App (SolaXCloud).

c20

Similarly, SVG can be used to visualize pipelines, machinery, and

real-time channel data in this palm oil mill (POM) monitoring system. For

example, a 2D vector-based graphic as shown in Figure 2.8 on the dashboard

screen will provide an interactive layout of the mill’s equipment, allowing

users to monitor real-time channel data efficiently. The real-time channel data

labels will be placed on specific areas corresponding to different machine

types, ensuring an intuitive interface for monitoring the performance of each

machine. These labels will display the real-time data with color-coded

indicating the operational status, allowing users to quickly identify the

abnormalities. For example, green for normal operation and red for critical

alerts. When user clicked on specific label, the system will display the detailed

channel data and relevant information for further monitoring and analysis.

2.6 Alarm Notification System

Alarm notification is important in monitoring systems as it uses to alert users

in critical conditions that require immediate attention and action taken.

These notifications help in maintaining stable operational processes,

preventing potential equipment failures, and reducing production downtime. In

this palm oil mills case, real-time alarms ensure that operators or managers can

take corrective action before the minor issues become serious problems. By

implementing this alarm notification system, users can enhance their reliability

and safety of their operations, reducing the risk of failures occur.

 The alarm notification implemented in this project will improve user

awareness by providing real-time alerts when predefined thresholds are

exceeded. For example, in palm oil mill, if the pressure in sterilizer exceeds a

certain limit, an alarm is triggered to notify the operators or managers. In this

Figure 2.8: Sample 2D Vector-based Graphic.

c21

case, they can take immediate corrective actions, such as adjusting the

volume or inspecting the machine to avoid any malfunctions happened.

Without implementing this proper alarm system, these issues might not be

noticed by them, which may lead to production downtime or delays.

 In this POM monitoring app, alarm notification system will consist of

two types of alarm pages which are active alarms and alarms history. The

active alarm page displays real-time alerts when the channel data exceeds or

below its predefined threshold. These predefined high and low threshold

values along with the alarm descriptions are stored in the cloud-based

MySQL database which is accessible to all authenticated users rather than

stored locally. MySQL is chosen instead of Firebase for storing these values is

because Firebase has a daily request limit where exceeding limit requires

additional payment while MySQL don’t have such restrictions. For example, if

the high threshold for Sterilizer 1 (ch3) Pressure is set at 50 psi, an alarm will

be triggered if exceeds this value. If its pressure is records 45 psi, no alarm is

activated since it is below the threshold, whereas if the pressure records 55, the

system triggers an alarm to alert users.

 On the other hand, the alarm history page use to keep record of

past alarms, including the exact time an alarm was triggered and when it was

cleared. These history records are retrieved via an API that fetches the

stored alarm data from the MySQL database when the user navigates to the

alarm history page. For example, if an alarm for high pressure in Sterilizer 1

was triggered at 10:00 AM and cleared at 10:20 AM, the system will save

these periods of time into a cloud-based MySQL database for future

reference. By implementing this alarm history function, operators or managers

can trace back the performance of each device on the app, identify any

potential weaknesses and implement preventive measures to enhance the

operational performance and stability.

c22

The continuous monitoring of threshold values is achieved through a

Python script running under systemd as shown in Figure 2.9, ensuring that

the process operates 24 hours. The script constantly checks whether devices’

latest pressure data exceed or fall below the predefined thresholds set in the

MySQL database. If a critical condition is detected, the alarm is logged into

the MySQL alarm history table.

 Active alarms records are temporarily stored in Firebase under the

active_alarm collection. Once the alarm is cleared, it is removed from this

collection. Additionally, the alarm history page includes an ACK

(Acknowledge) button that allows user to confirm they have acknowledged

that particular alarm. When the ACK button is pressed, the system logs the

acknowledging user’s email and acknowledgment time into the corresponding

MySQL alarm record. This ensures that in the future able to trace back exactly

who acknowledged the alarm and verify whether the issue raised by the alarm

was addressed. Both the alarm history and ACK APIs run on an HTTPS port

created using a reverse proxy instead of using a Firebase Functions HTTP

URL. This significantly help to reduce latency, as Firebase Functions

introduce a cold start delay of around 10 seconds for retrieving alarm records.

 By combining real-time cloud data storage, continuous monitoring,

and acknowledgment tracking, the alarm notification system in this POM

monitoring app ensures prompt responses to critical conditions, accurate

historical tracking, and improved operational reliability. The integration of

both active and history alarms not only allows operators or managers to take

immediate corrective actions when issues arise but also supports long-time

Figure 2.9: Alarm Notification System.

c23

performance analysis. This combined approach improves overall monitoring

efficiency, making the system more reliable and responsive in addressing any

failures in palm oil mill operations.

Table 2.2: Comparison of MySQL and Firebase for Alarm Notification System.

Features MySQL Cloud Database Firebase

Storage of

threshold values

and alarm

descriptions

Unlimited read/write access, no

request limits.

Limited daily request

quota, extra usage

required payment.

Fetching alarm

history API &

ACK function

Reverse proxy HTTPS API

provide faster/instant response.

Firebase Functions

having ~10s cold start

delay.

Cost No extra charge for high

request volume.

Pay per use if daily

request quota is

exceeded.

24/7 continuous

monitoring

Well-suited for 24/7 systemd-

based Python checks.

May be impacted by

request limits during

high traffic periods.

2.7 System Usability

2.7.1 Important of System Usability Test

System usability testing is important for evaluating how effectively users

interact with a system, ensuring that its functionality and interface meet user

expectations. This testing plays an important role especially for monitoring

systems where users like operators spend long hours on tracking the real-time

data. Unlike other consumer applications where interactive design is

prioritized, monitoring systems focus more on usability and reducing strain on

users. In this palm oil mill monitoring system, the designed interface must not

only be functional but also designed to minimize eye strain and fatigue. There

are some commonly used evaluation methods for system usability testing

include the System Usability Scale (SUS), Computer System Usability

Questionnaire (CSUQ), and Usability Metric for User Experience (UMUX).

c24

2.7.2 System Usability Scale (SUS)

System usability test (SUS) is a tool normally used for usability testing,

mainly focuses on assessing overall system usability by providing a numeric

usability score ranging from 0 to 100, allowing for easy benchmarking (Grier

et al., 2013). The primary advantage is its simplicity as it consists of only 10

questions as shown in Figure 2.9, making it a fast and efficient method that

save users’ time. This is particularly beneficial for operators in palm oil mill

factory, who are typically busy overseeing real-time data and have limited

time to complete the evaluation test. The SUS score will then convert into a

grading system of A to F, making it easier to interpret and compare usability

levels in future assessments. However, SUS still has some limitations where it

lacks detailed insights into specific usability problems. It does not offer

qualitative feedback on why the usability issues occur, making developer hard

to identify the precise areas of improvement.

Figure 2.10: Sample of SUS.

c25

2.7.3 Computer System Usability Questionnaire (CSUQ)

Another widely used usability evaluation method is Computer System

Usability Questionnaire (CSUQ), which mainly covers on system usefulness,

information quality, and interface quality (Azami and Ibrahim, 2019). The

questionnaire consists of 19 items which divided into four categories. The first

category is overall user satisfaction covering all 19 items, system usefulness

category covers 8 items, information quality covers 7 items, and interface

quality covers with 3 items as shown in Figure 2.10. Unlike SUS, it allows for

a more detailed user experience evaluation by gathering feedback on different

aspects of the system.

However, it is more time-consuming as it consists of more questions,

making it less suitable for situations where operators have limited time to

answer. Additionally, CSUQ don’t have a grading system, making it difficult

to compare usability over time. It also more emphasis on user satisfaction

rather than efficiency and ease of use, which may not align with the needs of a

palm oil mill monitoring system where operators prioritize fast and accurate

data interpretation over interactive design.

Figure 2.11: Sample of CSUQ.

c26

2.7.4 Usability Metric for User Experience (UMUX)

Usability Metric for User Experience (UMUX) is a usability evaluation tool

consist of 4 questions, designed to provide a quick and reliable assessment of

an application’s usability (Varela-Aldás et al., 2023). Each question has 7

levels of selection, ranging from strongly disagree to strongly agree as shown

in Figure 2.11. However, even though it is quick to answer, it provides limited

insights into specific usability aspects. Additionally, UMUX primarily focuses

on overall usability perception rather than assessing detailed usability

components like system efficiency, effectiveness and user satisfaction. While

UMUX is beneficial for quick assessments, it lacks the benchmarking

capability and grading system like SUS, making it harder to make comparison

on usability across different systems.

2.7.5 Justification for Choosing SUS in Palm Oil Monitoring System

Despite having some limitations on SUS, it still chosen for this palm oil

monitoring project due to its quick administration and ease of implementation.

Since operators’ time often occupied with real-time data monitoring, a fast and

simple usability assessment is more suitable in this case. As a result, SUS

ensures that operators can complete the evaluation efficiently without

disrupting their workflow while still providing valuable usability insights for

system improvement. Moreover, the grading system in SUS allows for easier

tracking of usability trends over time as it is measurable. In short, SUS is the

Figure 2.12: Sample of UMUX.

c27

most appropriate choice for this project as it balances efficiency and ease of

use.

2.8 Database

2.8.1 Influx DB

In this project, there are two main databases, Influx DB and Firebase are

used to manage and support different aspects of the palm oil mill monitoring

system efficiently. Firstly, Influx DB is a time-series and large-scale

database specifically designed to handle high-frequency data logging, making

it a best choice for storing and retrieving real-time channel data for various

devices in palm oil industry (Zhu, Nie, and Liu, 2023). In this project, channel

data includes pressure, current (A), and bar levels. Additionally, Influx DB is

an SQL-like query language, which means it does not need deep study and

easier to understand by non-tech people, making it a suitable choice for Nova

Flow as they are more professional on automation industry (Naqvi, Yfantidou,

and Zimanyi, 2017). As a result, Influx DB ensures that large volumes of time-

stamped data are stored efficiently while allowing for fast query execution.

On the other hand, there are some limitations on traditional

relational databases like MySQL and PostgreSQL when handling big time-

series data, channel data in this case. Those traditional databases are mainly

designed for structured and transactional data rather than continuous data

streams. All the channel data need to update on Influx DB every 5 seconds.

Hence, when the data volume increases significantly, performing queries on

historical time-series data on traditional databases can lead to high latency

and slower performance (Tahmassebpour, 2017). Additionally, relational

databases store data in normalized tables to reduce redundancy, increasing the

query complexity when retrieving historical data. In contrast, Influx DB use

efficient columnar storage with its compression algorithm to store large and

massive datasets more efficiently (Zhu, Nie, and Liu, 2023). Thus, it is proven

that Novaflow has decided to use Influx DB for real-time monitoring and data

management in the palm oil mill system.

c28

2.8.2 Firebase

Secondly, Firebase is integrated into the monitoring system to manager user

authentication and facilitate mapping between users, devices, with their

corresponding channel data in Influx DB. Firebase, developed by Google, is a

Backend-as-a-Service (BaaS) platform designed to handle large amount of

unstructured data, which relational database management system (RDBMS)

still unable to manager it effectively (Khawas and Shah, 2018). It also offering

functions such as authentication, cloud storage and real-time databases. In this

project, Firebase is utilized for secure user authentication as shown in Figure

2.12, ensuring that only authorized users can access specific device data. In

this case, it prevents any unauthorized access of users to sensitive operational

data. Additionally, Firebase plays an important role in managing mapping of

devices channels within Influx DB as shown in Figure 2.13, allowing the

Figure 2.13: User Authentication on Firebase.

Figure 2.14: Mapping of Devices’ Channel Data.

c29

system to associate user accounts with specific devices and their respective

real-time channel. This structured mapping ensures correct access to relevant

channel data without requiring complex database queries from users.

 By leveraging the capabilities of both databases, this project achieves

a well-structured and secure data management system. The combination of

Influx DB’s time-series data handling and Firebase’s authentication and data

mapping capabilities ensure real-time monitoring, efficient data retrieval, and

enhance security. Since Firebase is still offering free services, it can be

integrated into application development without additional costs, making it a

best choice for Novaflow to implement secure authentication and manage

device-channel mappings efficiently in a simple way. This integration not only

optimizes the performance of Novaflow monitoring system but also provides

users with reliable experience when accessing and analysing operational data.

2.9 Summary

In short, this chapter has reviewed the essential components required to

develop a palm oil mill monitoring system. The review covered the nature of

POM processes, cross-platform mobile development frameworks, SVG

graphics for real-time visualization, alarm notification systems, system

usability evaluation methods, and database selection. These findings will then

form a strong foundation for Chapter 3, where the chosen methodologies,

development tools, and implementation strategies will be discussed in detail to

demonstrate how the proposed system will be effectively implemented.

c30

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter discusses the software development methodology and project

planning for this palm oil mill project. The chapter will include the software

development methodology, work breakdown structure (WBS), Gann chart and

discussion on the development tools that used for developing the monitoring

system.

3.2 Software Development Methodology

In this project, Evolutionary Prototyping Model is chosen as the software

development methodology because it supports continuous improvement,

which is crucial when working with real-world industrial project. This

approach allows for continuous refinement of the prototype through multiple

iterations, ensuring that the final system is aligned with company needs and

their operational requirements.

3.2.1 Evolutionary Prototyping Model

The software development process for the palm oil mill monitoring system

suits the evolutionary prototyping model as shown in Figure 3.1, which

Figure 3.1: Overview of Evolutionary Prototyping Model.

c31

emphasizes continuous refinement through iterative feedback. The

development process begins with planning and initial requirements

gathering for building the prototype, where essential system requirements and

needs are identified through discussion and analysis. The first prototype is

then submitted to the company supervisor for evaluation to obtain feedback,

ensuring that the system’s development is heading in the right direction. The

development of subsequent prototypes with added functionalities and

refinements are submitted again for further evaluation to ensure that the

system aligns with user expectations and operational requirements. In this

process, company supervisor may discover opportunities for additional

features and request developer to add in those features. The prototype design

will then be updated and modified based on the feedback received.

When the company is satisfied with the refined prototype, the development

process moves into the implementation phase, where the code is developed

based on approved prototype. The development process will then continue to

other phase known as testing after all required functionalities and modules are

developed. It ensures that all components functioning well, and no critical

bugs or performance issues are found. Finally, the system will be deployed

once it passes all the testing stages.

This prototyping model is appropriate for projects where not all requirements

are clearly defined at the beginning stage. It allows developers to start by

identifying the components they understand, focusing on specific parts of the

system in each iteration rather than developing the entire system at once. As a

result, this method helps reduce project risks as it avoids implementing

features that are not understood.

A. Planning and Initial Requirement Gathering

The first phase of this prototyping model aims to identify the project

objectives, scope and schedule. Initial requirements are collected through the

analysis of existing palm oil mill monitoring system used by Novaflow and

discussions with the company supervisor. Reviewing on existing systems can

help identify the essential features that should be included, while the company

supervisor provides insights on any additional features needed.

c32

The following step is formulating a project plan outlining the

necessary tasks needed to finish in the project. For example, WBS and Gantt

chart help in planning the project. The WBS breaks down the project into

smaller part, while the Gann chart visually displays those tasks with its

timeline, showing the start and end dates for proper scheduling.

B. Design

In design phase, Unified Modelling Language (UML) diagrams are developed

to provide a clear visualization of the palm oil mill monitoring system. These

diagrams help the company understand how the system function. A use case

diagram is created to represent overall system functionality, while detailed use

case descriptions are written for each specific feature.

Additionally, an operational flow diagram is used to illustrate the step-by-

step process of how data and actions flow through the system. This diagram

provides a visual overview of how the system components interact, how task

are processes, and how users engage with the system in real time. All these

design elements are based on the requirements gathered during the initial

planning phase.

C. Prototyping

During the prototyping phase, an initial version of the palm oil mill monitoring

system is developed based on the gathered requirements. This prototype with

limited functionality, allows company to visualize and interact with the system

early in development. In this case, company can explore the prototype with

better understanding on how the user interface might look like instead of

relying on the written descriptions. This method provides valuable feedback

for guiding on further development.

D. User Evaluation

The prototype developed in previous phase is presented to company for

evaluation. Feedback and comments from the company are gathered and

documented during this process. This evaluation is important as it helps

developers to identify the requirements that not met and areas for

c33

improvement. In this case, it ensures that the system aligns with the company

needs and expectations.

E. Review and Refine

Company feedback collected during the evaluation phase is analysed to

improve and refine the protype. Iteration will be repeated until the company is

fully satisfied, and all the system requirements are met. After the prototype is

approved, it serves as the foundation for developing the complete system in

coming stage.

F. Implementation

The actual system is developed based on the design from prototype. All

functionalities and modules are coded to reflect the refined prototype.

G. Testing

The testing will be conducted after the development of the system is

completed. This includes unit testing, integration testing, system testing and

user acceptance testing. The goal mainly is to identify and resolve bugs, ensure

the system meets technical and design specifications.

H. Deployment

The system is prepared and ready for development after passes all testing

phases. The finalized system is then launched and made operational for actual

use.

c34

3.3 Project Plan

3.3.1 Work Breakdown Structure (WBS)

1.0 Project Planning and Initial Requirements Gathering

1.1 Preliminary planning

1.1.1 Study background of the project problem

1.1.2 Define problem statements

1.1.3 Define project objectives

1.1.4 Define project proposed solution

1.1.5 Define project proposed approach

1.1.6 Define project scope

1.2 Literature review

1.2.1 Review palm oil mill processes

1.2.2 Review existing similar palm oil mill monitoring

system

1.2.3 Review cross platform framework

1.2.4 Review SVG graphic

1.2.5 Review alarm notification system

1.2.6 Review system usability test

1.2.7 Review databases

1.3 Methodology and work plan

1.3.1 Identify suitable software development

methodology

1.3.2 Determine work plan

1.3.2.1 Create a work breakdown structure (WBS)

1.3.2.2 Create a Gantt Chart

1.3.3 Identify development tools

1.4 Project and Design Specification

1.4.1 Requirement specification

1.4.1.1 Identify functional requirements

1.4.1.2 Identify non-functional requirements

1.4.2 Create UML diagram

1.4.2.1 Develop a use case diagram

1.4.2.2 Define use case descriptions

c35

2.0 Design and Prototyping

2.1 First Iteration

2.1.1 Design user interface

2.1.2 Build low-fidelity prototype

2.1.2.1 Develop a prototype for Android-based

monitoring system

2.1.2.2 Develop a prototype for iOS-based

monitoring system

2.1.3 Evaluation and gathering feedback

2.1.4 Refine prototype

2.2 Second Iteration

2.2.1 Design

2.2.1.1 System architecture design

2.2.1.2 Database design

2.2.2 Prototyping

2.2.2.1 Develop essential features

2.2.2.2 Create database

2.2.3 Evaluation and gathering feedback

2.2.4 Refine prototype

 2.3 Third Iteration

 2.3.1 Functionality design

 2.3.2 Mobile application prototyping

 2.3.2.1 User Authentication and Authorization

 2.3.2.2 User management

 2.3.2.3 Role/Access management

 2.3.2.4 Palm oil channel management

 2.3.2.5 Database management

 2.3.2.6 Dashboard

 2.3.3 Evaluation and gathering feedback

 2.3.4 Refine prototype

3.0 Implementation

 3.1 Backend development

 3.1.1 API development

 3.1.2 Database integration

c36

 3.2 Frontend development

 3.2.1 Android platform

 3.2.2 iOS platform

 3.3 Alarm and notification system integration

4.0 Testing

 4.1 Unit testing

 4.2 Usability testing

 4.3 Alpha testing

 4.4 Beta testing

5.0 Deployment

 5.1 System Deployment

5.1.1 Prepare Android APK for deployment

 5.1.2 Deploy Android APK

 5.1.3 Prepare iOS app for deployment

 5.1.4 Deploy iOS app to Apple App Store

c37

3.3.2 Gantt Chart

Figure 3.2: Gantt Chart for Project Planning & Initial Requirement Gathering.

c38

Figure 3.3: Gantt Chart for Design and Prototyping.

c39

Figure 3.4: Gantt Chart for Implementation.

Figure 3.5: Gantt Chart for Testing and Deployment.

c40

3.4 Development and Deployment Tools

Several tools were used throughout the development and deployment process,

each playing an important role in building and managing different parts of the

palm oil monitoring system. These tools were carefully selected based on their

features during literature review stage. The following subsections are the key

tools used and how they supported the development and deployment of the

system:

3.4.1 Flutter

Flutter is a free to use UI software development kit that allows developers to

build mobile applications using a single codebase. It was chosen for the

development of the palm oil mill monitoring system mainly due to its cross-

platform feature, which allows the system to run on different devices without

the need to rewrite code for both Android and iOS platform. Additionally,

Flutter having a rich set of pre-built widgets and flexible UI design tools,

making the development process faster and more efficient. These features

made Flutter a good choice for creating a consistent, responsive, and user-

friendly interface, ensuring smooth functionality and accessibility for both

operators and managers across different screen sizes.

3.4.2 Android Studio

Android Studio is the integrated development environment (IDE) for Android

development. It offers robust features such as code editing, real time error

checking and debugging tools. In this project, Android Studio served as the

primary development environment for building and managing the codebase of

the palm oil monitoring system.

 Besides that, Android Studio also has an Android emulator for testing

the application in a simulated Android environment, allowing developers to

preview and debug the app from time to time without the need of physical

device. Its built-in Git integration enabled direct code pushing to GitHub only

with few commands, streamlining the process of version control.

c41

3.4.3 Xcode

Xcode is another integrated development environment (IDE) for iOS

application development. Since Android Studio was used as the primary

environment for writing the Flutter code, Xcode was required to build, test and

run the iOS version of the palm oil mill monitoring system. Xcode also used

for compiling and deploying the iOS version of the application during the

deployment phase.

3.4.4 Firebase

Firebase is a comprehensive backend-as-a-service platform provided by

Google, offering features like authentication and real-time databases. In this

project, Firebase is used for user authentication and device settings such as

mapping channel data with Influx DB, ensuring secure login management and

accurate data retrieval for different channels.

3.4.5 Influx DB

Influx DB is a time series database designed for storing large volumes of time-

stamped data. In this project, Influx DB was used to store live channel data

collected from the palm oil mill, such as pressure and temperature readings

from various devices. By integrating Influx DB into the system, real-time data

could be efficiently stored and retrieved without much delay.

3.4.6 MySQL

MySQL is an open-source relational database management system widely

used for structured data storage. In this project, MySQL was used to store

device threshold settings, alarm settings and maintain alarm history records.

This ensured reliable storage, easy retrieval, and long-term access to alarm-

related information.

3.4.7 Python

Python is a programming language used in this project for backend processing.

It was responsible for comparing threshold values stored in MySQL with the

current live readings from Influx DB, triggering alarms when thresholds were

c42

exceeded. Besides that, it also provided APIs to retrieve alarm records from

MySQL and update alarm acknowledgment.

3.4.8 TestFlight

TestFlight is an application testing platform by Apple that allows developers

to distribute pre-release of iOS version applications to testers. In this project,

TestFlight was used to test the iOS version of the palm oil mill monitoring

system before deploying to App Store, allowing developers and testers to

identify and resolve potential issues on real devices in a controlled

environment.

3.4.9 App Store Connect

App Store Connect is Apple’s platform for managing and deploying iOS

applications. It was used in this project to submit and deploy the iOS version

of the monitoring system to the App Store. Through App Store Connect,

application metadata, screenshots, and build version were managed effectively,

ensuring a smooth publishing process and availability of the app to end users.

c43

CHAPTER 4

4 PROJECT SPECIFICATION

4.1 Introduction

This chapter mainly focuses on the preliminary specifications of the project in

view of functional and non-functional requirements of the system, followed

by use case diagram along with each use case descriptions for the palm oil mill

monitoring system. The purpose of this chapter is to define what the system

should do and how should it behave so that company have a clear

understanding on the system’s scope and functionality.

 The use case diagram gives an overview of the system’s

functionality by identifying the interactions or relationships between users and

the system. Each use case represents the exact tasks that users can perform on

the system, while the use case descriptions provide a details explanation of

how these tasks are carried out in the system.

4.2 Requirement Specification

4.2.1 Functional Requirements

Functional requirements of the mobile application for Palm Oil Mill

Monitoring System are outlined in Table 4.1 below:

Table 4.1: Functional Requirements.

ID Functional Requirement

FR001 The mobile application shall allow the user to login account

using a valid email and password.

FR002 The mobile application shall allow the user to view a dashboard

displaying all available channels along with their live data.

FR003 The mobile application shall allow the manager to select a

subgroup under their company to view the corresponding

dashboard.

FR004 The mobile application shall allow the user to view single live

channel data in graphical format.

c44

FR005 The mobile application shall allow the user to select a specific

time range to view the corresponding past channel data in

graphical format.

FR006 The mobile application shall allow the user to view multiple

available channel data on a single screen in graphical format.

FR007 The mobile application shall allow the user to view the active

alarm that currently exceed or below the predefined thresholds.

FR008 The mobile application shall allow the user to receive an alarm

notification when a critical condition is detected.

FR009 The mobile application shall allow the user to view the history

of past alarm notifications.

4.2.2 Non-Functional Requirements

Non-functional requirements of the mobile application for Palm Oil Mill

Monitoring System are outlined in Table 4.2 below:

.

Table 4.2: Non-Functional Requirements.

ID Non-Functional Requirement Category

NFR001 The mobile application shall be

compatible with both Android and

iOS devices.

Portability

NFR002 The mobile application shall

retrieve and display live channel

data not more than 3 seconds.

Performance

NFR003 The mobile application shall

retrieve and display pass channel

data not more than 5 seconds.

Performance

NFR004 The mobile application’s response

time shall be responsive when the

user interacts with the system.

Performance

NFR005 The mobile application shall

validate user input and prevent

incorrect input formats by

Security

c45

displaying error messages to guide

the user.

NFR006 The mobile application’s interface

shall be easy to use, easy to

navigate, and easy to understand by

the user.

Reliability

c46

4.2.3 Use Case Diagram

Figure 4.1: Use Case Diagram for Palm Oil Mill Monitoring System.

c47

4.2.4 Use Case Description

Use Case Name: Login account

ID: FR001 Importance Level: High

Primary Actor: Users

Use Case Type: Detail, Essential

Stakeholders and Interests:

N/A

Brief Description:

This use case describes the process of user login to the system to monitor the palm oil mill

processes.

Trigger: The user wants to log in to the system to access the palm oil mill monitoring mobile

application.

Relationships:

 Association : Users

 Include : N/A

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The user accesses the system which shows a login screen and allows the user to enter

email and password.

2. The user filled in the email and password.

3. The system retrieves the user information from the user account database in the

firebase.

4. The system verifies the username and password. Perform 4.1 or 4.2

4.1 The username and password are correct. Continue to 5.

4.2 The username and password are incorrect. Continue to 6.

5. The user enters the system. The use case ended.

6. The system will prompt out a message to let the user renter the username or

password. Continue to 4.

Sub-flows: N/A

Alternate/Exceptional Flows: N/A

c48

Use Case Name: View Dashboard

ID: FR002 Importance Level: High

Primary Actor: Users

Use Case Type: Detail, Essential

Stakeholders and Interests: N/A

Brief Description:

This use case describes the process of viewing a dashboard that displays all available

channels along with their live data.

Trigger:

The user wants to monitor the available live channel data through dashboard.

Relationships:

 Association : Users

 Include : N/A

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The user selects the “Dashboard” option from the bottom navigation.

2. The system queries the server to retrieve the list of all available channels.

3. The system retrieves the most recent live data for each channel.

4. The system displays the channel list along with its live data and presents in a well-

organized dashboard.

5. The dashboard will automatically refresh the latest live data every 5 seconds.

Sub-flows: N/A

Alternate/Exceptional Flows:

1. Users must have valid login to access the system.

c49

Use Case Name: Select subgroup dashboard ID: FR003 Importance Level: High

Primary Actor: Manager Use Case Type: Detail, Essential

Stakeholders and Interests:

N/A

Brief Description:

This use case describes the process of a manager selecting a specific subgroup dashboard

and displays real-time data related to the selected subgroup.

Trigger:

The manager wants to view real-time data and monitor the performance of a specific

subgroup.

Relationships:

 Association : N/A

 Include : View dashboard

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The system displays a list of available subgroups on the dashboard after manager

login.

2. The manager selects a specific subgroup from the list.

3. The system queries the server to retrieve the list of all available channels for the

selected subgroup.

4. The system retrieves the most recent live data for each channel.

5. The system displays the channel list along with its live data and presents in a

well-organized dashboard.

6. The dashboard will automatically refresh the latest live data every 5 seconds.

Sub-flows: N/A

Alternate/Exceptional Flows:

1. Manager must have valid login to access the system.

c50

Use Case Name: View single channel data

ID: FR004 Importance Level: High

Primary Actor: Users

Use Case Type: Detail, Essential

Stakeholders and Interests:

N/A

Brief Description:

This use case describes the process of users viewing a single detailed live data for monitoring

its performance.

Trigger:

The user wants to view detailed live data of specific channel by tapping on the channel from

the dashboard.

Relationships:

 Association : Users

 Include : N/A

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The user navigates to the dashboard page.

2. The user taps on a specific channel from the available list.

3. The system retrieves and processes the channel’s most recent data.

4. The system displays the channel’s detailed data in graphical format.

Sub-flows: N/A

Alternate/Exceptional Flows:

1. Users must have valid login to access the system.

c51

Use Case Name: View pass channel data

ID: FR005 Importance Level: High

Primary Actor: Users

Use Case Type: Detail, Essential

Stakeholders and Interests:

N/A

Brief Description:

This use case describes the process of a user viewing historical data for a specific channel.

Trigger:

A user wants to view historical data for a specific channel to analyse past performance and

investigate issues that occurred in the past.

Relationships:

 Association : User

 Include : N/A

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The user navigates to the dashboard page.

2. The user taps on the desired channel from the list to view its data.

3. The system shows an option to select a time range for the past data.

4. The system retrieves the pass data from the database based on the selected time

range.

5. The system displays the past data in graphical format.

Sub-flows: N/A

Alternate/Exceptional Flows:

1. Users must have valid login to access the system.

c52

Use Case Name: View multiple channel data ID: FR006 Importance Level: High

Primary Actor: Users

Use Case Type: Detail, Essential

Stakeholders and Interests:

N/A

Brief Description:

This use case describes the process of a user viewing the live data for multiple available

channels on a single page for analysis purposes.

Trigger:

The user wants to view live data for multiple channels on one page to track overall channel

performance and identify any issues or trends.

Relationships:

 Association : Users

 Include : N/A

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The user navigates to the dashboard page.

2. The user clicks the “View Graphs” button on the top of the dashboard page.

3. The users select the channel according to their preferences through Filter option.

4. The system retrieves the most recent data for all selected channels.

5. The system processes and organizes the data for each channel.

6. The system displays the data for selected channels on one page.

7. The users can choose either view the selected graphs separately or combine

together.

Sub-flows: N/A

Alternate/Exceptional Flows:

1. Users must have valid login to access the system.

c53

Use Case Name: View active alarm

ID: FR007 Importance Level: High

Primary Actor: Users

Use Case Type: Detail, Essential

Stakeholders and Interests:

N/A

Brief Description:

This use case describes the process of a user viewing the active alarm record triggered by

available channels.

Trigger:

The user wants to view the active alarm that currently exceed or below the predefined

thresholds.

Relationships:

 Association : N/A

 Include : N/A

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The user navigates to the active alarm page through the “Alarm” icon on the

header.

2. The system retrieves the current active alarm records for all available channels

from the database.

3. The system displays the active alarm history in a list format with its alarm code,

alarm triggered time and description.

Sub-flows: N/A

Alternate/Exceptional Flows:

1. Users must have valid login to access the system.

c54

Use Case Name: Receive alarm notification

ID: FR008 Importance Level: High

Primary Actor: Users

Use Case Type: Detail, Essential

Stakeholders and Interests:

N/A

Brief Description:

This use case describes the process of a user receiving alarm notifications when a monitored

channel exceeds predefined threshold values.

Trigger:

A monitored channel detects a condition that exceeds the predefined threshold, triggering an

alarm.

Relationships:

 Association : Users

 Include : N/A

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The system continuously monitors all channel data in real-time.

2. A channel’s data exceeds the predefined threshold stored in the database.

3. The system generates an alarm event based on the configured rules.

4. The system immediately sends an alarm notification to the user via push

notification.

5. The user receives an alarm notification through the system.

Sub-flows: N/A

Alternate/Exceptional Flows:

1. Users must have valid login to access the system.

c55

Use Case Name: View alarm history

ID: FR009 Importance Level: High

Primary Actor: Users

Use Case Type: Detail, Essential

Stakeholders and Interests:

N/A

Brief Description:

This use case describes the process of a user viewing the historical alarm events triggered by

available channels.

Trigger:

The user wants to review previous alarm notifications and investigate past incidents.

Relationships:

 Association : Member

 Include : N/A

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The user selects the “Alarm” option from the bottom navigation.

2. The user can filter the alarm history based on criteria such as time range and date.

3. The system retrieves the alarm history from the database based on the filter

criteria.

4. The system displays the alarm history in a list format with its alarm code, alarm

triggered time, description and acknowledgement.

5. The user can acknowledge the particular alarm record by clicking the Ack button.

Once Ack button is pressed, it will turn into green colour.

Sub-flows: N/A

Alternate/Exceptional Flows:

1. Users must have valid login to access the system.

c56

4.3 Low-fidelity Prototypes

Low-fidelity prototypes with user interface (UI) representations were

developed for the mobile application of the palm oil mill monitoring system.

The prototype includes key interfaces such as login page, dashboard page,

channel data monitoring page, active alarm page, alarm history page, and

welcoming page. The purpose of creating this prototype was to provide ideas

for visualizing a palm oil monitoring system and illustrate how it would look

and work. It served as reference point for both design and functionality,

allowing the company supervisor to make any changes or improvements when

necessary. In addition, feedback will be collected after the low-fidelity

prototype is presented to the company supervisor, which will be used for

further refinement. The low-fidelity prototype is shown in Appendix A.

c57

CHAPTER 5

5 SOLUTION

5.1 Introduction

This chapter presents the solutions that implemented in the system to solve the

problems mentioned in Chapter 1. The system design has progressed from a

low-fidelity prototype to a high-fidelity interface, with the implementation on

usability and functionality. Each problem identified in the Chapter 1 is

resolved through the modules and features developed in this project. This

solution not only addresses the highlighted issues but also serves as the actual

implementation adopted by the company in their daily operations.

5.2 Problem-Solution Mapping

5.2.1 Limited Android Access and Discontinuation of iOS Subscription

The previous company application was constrained to limited Android access

and the discontinuation of the iOS subscription, where managers and operators

were unable to monitor the palm oil mill operation through the mobile app.

With the implementation of this proposed system, both Android and iOS

platforms are supported, allowing broader accessibility for all users.

 The application is developed using a cross-platform framework,

Flutter, which ensures the updates and new features are released

simultaneously for both Android and iOS. As a result, users are no longer

restricted by their device type. For example, manager using iPhones and

operators using Android phones can both access the same system without

compatibility issues. In addition, the app also supports iPads and Android

tablets, providing a larger screen option for monitoring operations. This is

useful since long time viewing of graphs on smaller phone screens can cause

eye strain. To verify this cross-platform accessibility, screenshots of the app

icons on real iOS and Android phones are provided as proof of successful

deployment as shown in Figure 5.1 and Figure 5.2. The compatibility on iPads

and Android tablets are shown in Figure 5.3 and Figure 5.4.

c58

Figure 5.2: SmartMill365

on iOS.

Figure 5.1: SmartMill365

on Android.

Figure 5.3: SmartMill365 on iPads.

c59

5.2.2 Limited Visual Representation of Real-Time Processes

The earlier application lack of intuitive graphical interface for monitoring, as

real-time processes were only represented in raw data form without a graphical

layout dashboard. Thus, this system introduces a high-fidelity SVG-based

dashboard as shown in Figure 5.5 and Figure 5.6 that dynamically displays

device information, including device name, live data from Influx DB, and its

unit from Firebase. Each device is represented by an icon with real-time status

indicators where green for online and red for offline. For disconnected devices,

it will show “Offline” text instead of device information. This visualization

improves situational awareness and makes monitoring more intuitive and

efficient.

Figure 5.5: Graphical Layout Dashboard

 on iOS.

Figure 5.6: Graphical Layout Dashboard

on Android.

Figure 5.4: SmartMill365 on Android Tablet.

c60

As this project is currently developed under Phase 1 for the company,

the current dashboard design serves as a temporary implementation to

validate system feasibility. A more refined and suitable design will be

considered for future improvement, as the final graphical layout has not yet

been finalized by the company. Additionally, users can click on the device

icon to view its corresponding live graph data, enabling deeper insights into

real-time performance.

5.2.3 Delayed Response to Critical Conditions

Previously, palm oil mills relied on operator physically checking devices on

site, which increased the risk of delayed responses to sudden critical

conditions that could cause production downtime or equipment damage.

Therefore, this system implements a comprehensive alarm notification system

consisting of two main components which are Active Alarm page and Alarm

History page. The Active Alarm page displays real-time records of devices

that currently exceed of fall below predefined thresholds, where the record

automatically cleared once values return to normal. Each subgroup has its own

active alarm records, presented in a table with key information including the

alarm code, trigger time, and a dynamically generated description as shown in

Figure 5.7 and Figure 5.8 below. The threshold values and alarm description

for each device are set by the Novaflow IT team based on client or user

specifications, with a detailed explanation in Chapter 6 later on.

c61

 The Alarm History page show past alarm records for the selected

subgroup, presented in a table form with four columns including alarm code,

alarm trigger time, description and an Acknowledge (Ack) button as shown in

Figure 5.9 and Figure 5.10. When a user acknowledges an alarm, the system

logs their email, ensuring the corrective action has been taken while also

providing a clear audit trail for future reference. Once an alarm is

acknowledged, the Ack button turns green and can only be clicked once per

record. To support usability in sites with many devices which might contain

large volumes of alarm records, the system also offers filtering options by

specific date or by days (1, 7, 30) as shown in Figure 5.11 to Figure 5.14.

Figure 5.8: Active Alarm Page

on iOS.

Figure 5.7: Active Alarm Page

on Android.

c62

Figure 5.10: Alarm History Page on iOS.

Figure 5.12: Alarm Record Filtered by Date

on iOS.

Figure 5.9: Alarm History Page on Android.

Figure 5.11: Alarm Record Filtered by Date

on Android.

c63

 Additionally, the system provides real-time pop-up notifications as

shown in Figure 5.15 and Figure 5.16 below whenever a new active alarm

record is triggered, ensuring managers or operators are immediately aware of

the critical conditions without needing to continuously monitor the Active

Alarm page. On the Dashboard page, there are also having a small active

alarm icon shown in Figure 5.17 and Figure 5.18 that indicates the status of

active alarms for that particular subgroup. A red alarm icon signifies that an

active alarm is present, while a grey alarm icon indicates currently no active

alarms. This feature is especially useful for company that managing multiple

subgroups, as it eliminates the need for managers or operators to manually

switch between each subgroup’s Active Alarm page to check for issues.

Figure 5.13: Alarm Record Filtered by Days

on iOS.

Figure 5.14: Alarm Record Filtered by Days

on Android.

c64

Figure 5.16: Pop-Up Notification on iOS.

Figure 5.18: Active Alarm Icon

on iOS.

Figure 5.15: Pop-Up Notification on Android.

Figure 5.17: Active Alarm Icon

on Android.

c65

5.2.4 Limited Usability and Interface Constraints

In previous monitoring system has some usability constraints where user can

only view one channel’s data at a time, which cause real-time monitoring and

analysis inefficient, especially in critical conditions. Furthermore, managers

that have multiple subgroups face difficulty in monitoring since they must log

in and out of different accounts to access each subgroup’s dashboards and

device data, which cause time-consuming and impractical.

 To overcome the issues mentioned above, the new system introduces

two major improvements on usability. First, the graph module allows users to

view channel data in two ways which are Separate Graphs and Combine

Graphs. Separate Graphs view shown in Figure 5.19 and Figure 5.20 allow

multiple graphs can be displayed simultaneously, enable users to analyse each

channel individually. Meanwhile, the Combine Graphs view shown in Figure

5.21 and Figure 5.22 allow selected channel data displayed in a single graph

for easy comparison and analysis. Additionally, users can filter the devices

they wish to monitor and adjust the time range (Last 3, 6, 12 hours) as shown

in Figure 5.23 to Figure 5.26 according to their objectives or preferences.

Figure 5.20: Separate Graphs View

on iOS.

Figure 5.19: Separate Graph View

on Android.

c66

Figure 5.21: Combine Graphs View

on iOS.

Figure 5.23: Graphs Filtered by Devices

on iOS.

Figure 5.22: Combine Graphs View

on Android.

Figure 5.24: Graphs Filtered by Devices

on Android.

c67

 Second, managers with multiple subgroups can now seamlessly

switch between subgroups dashboards without repeated logins as shown in

Figure 5.27 and Figure 5.28, as all subgroups are configured under a single

account. Once a subgroup is selected on the dashboard, all components

including device data, active alarms and alarm history update simultaneously,

ensuring smooth monitoring across multiple sites.

Figure 5.26: Graphs Filtered by Time Range

on iOS.

Figure 5.28: Switching between Subgroups

on Single Account for iOS.

Figure 5.25: Graphs Filtered by Time Range

on Android.

Figure 5.27: Switching between Subgroups

on Single Account for Android.

c68

 In addition to Separate Graphs and Combine Graphs view, the system

also provides Single Graph view as shown in Figure 5.29 and Figure 5.30,

which remain the previous implementation where line spot values (tooltip) are

displayed on each graph point when the user tap on it. The tooltip displays the

time of the selected point, device name and the corresponding value. Several

improvements have been introduced in this view. The device unit is now

clearly displayed on graph, making the data more informative and reducing

ambiguity. A time range selection (3, 6, or 12 hours) is implemented at the

top of the graph. These time ranges are specifically designed based on the

palm oil mill process, where one complete operational cycle typically take at

least 3 hours. This ensures that users can analyse the data in more meaningful

ways that algin with the mill’s workflow.

From UI perspective, the graph has been expanded to its maximum

size, giving users a larger and clearer visualization for a better monitoring

experience. Additionally, a blank space has been reserved beside the Y-axis

values. This is specially designed to accommodate devices with screen island

layouts, ensuring that the Y-axis values remain visible and not blocked by the

island. As many modern devices no matter Apple or Android now adopting

this design, the enhancements improve accessibility and delivers a seamless

monitoring experience across different screen types.

 As Single Graph view serves as the main monitoring tool, it also

allows to zoom in or out as shown in Figure 5.31 and Figure 5.32 for a closer

analysis of the data and pan across the timeline for better navigation. When a

different time range is selected, the graph resets to its normal size, maintaining

consistency in the viewing experience.

Figure 5.29: Single Graph View on iOS.

c69

Another critical usability feature is the implementation of theme selection as

shown in Figure 5.33 and Figure 5.34. Since managers or operators may

monitor the device performance for extended periods of time, reducing eye

strain is essential. To address this issue, the system allows users to choose

Figure 5.31: Zoom in Graph on iOS.

Figure 5.30: Single Graph View on Android.

Figure 5.32: Zoom in Graph on Android.

c70

between dark theme and light theme based on their preferences or situational

needs. Furthermore, users can set the application theme to automatically

follow their device settings, offering an additional option for user convenience.

This ensures a consistent visual experience across the system and other

applications on the device, whether in light or dark mode.

Lastly, the More page shown in Figure 5.35 and Figure 5.36 contains

several general app functionalities such as About Us, Frequently Asked

Questions (FAQ), Privacy Policy, and Settings. At the top of this page, the

current logged-in user’s account email is displayed for clear identification. In

addition, the page includes a Data Plotter feature as shown in Figure 5.37 and

Figure 5.38 requested by the company. It allows users to upload CSV files for

plotting graphs and export the generated graphs as PDF files. Users can also

log out through this page to securely end their session.

Figure 5.33: Theme Selection in Settings

on iOS.

Figure 5.34: Theme Selection in Settings

on Android.

c71

Figure 5.36: More Page on iOS.

Figure 5.37: Data Plotter on iOS.

Figure 5.35: More Page on Android.

Figure 5.38: Data Plotter on Android.

c72

The About Us, FAQ, Privacy Policy and Settings pages are shown

below. All information was provided by the company. These pages are

important because the About Us page helps users understand the company’s

background and mission, the FAQ page addresses common questions to

improve user experience and reduce support requests, and the Privacy Policy

page informs users about how their personal data is collected, used, and

protected, ensuring transparency and building trust.

Figure 5.40: About Us Page on iOS. Figure 5.39: About Us Page on Android.

c73

Figure 5.42: FAQ Page on iOS.

Figure 5.44: Privacy Policy Page on iOS.

Figure 5.41: FAQ Page on Android.

Figure 5.43: Privacy Policy Page on Android.

c74

5.3 Deployment of Solution

For the iOS version, the application was successfully deployed to the Apple

App Store as shown in Figure 5.47 below, which showing the completion of

the development and deployment cycle for the iOS platform. Prior to the

official release, TestFlight was used extensively for both internal testing by

the development team and external testing by selected testers and stakeholders

to identify and resolve the potential issues, ensuring that the application met

company requirements and Apple’s quality standards. This testing process

helped verify that all functionalities operated as intended under different

conditions before making the application publish to public.

Figure 5.46: Settings Page on iOS. Figure 5.45: Settings Page on Android.

c75

For the Android version, the company is in the process of preparing

the Google Play developer account. While the functionality is being finalized,

the application is temporarily distributed in APK format as shown in Figure

5.48 below, enabling direct installation on Android devices for testing and

usage. This approach ensures that testers and stakeholders can continue

evaluating the app’s performance, identifying improvements, and providing

feedback. The company will decide on the official deployment to the Google

Play Store once the developer account is fully active and any final refinements

are completed.

Figure 5.48: Android Version APK Download for Smart Mill 365.

Figure 5.47: Apple App Store Listing of Smart Mill 365.

c76

 All project folders and source code have been uploaded to a GitHub

repository shared by Novaflow. This ensures centralized version control and

easy collaboration among developers. By hosting the code on GitHub, the

project can be easily maintained and improved in the future. The repository

has also been formally handed over to the company, allowing Novaflow to

take full ownership and continue for further development or deployment in

future.

Figure 5.49: Project Upload to GitHub Repository.

c77

CHAPTER 6

6

6 SYSTEM IMPLEMENTATION

6.1 Introduction

This chapter presents the implementation of the SmartMill365 system, detail

out the setup of Firebase and MySQL cloud database, and the development of

its five main modules such as Login, Dashboard, Graph Monitoring, Alarm

Management, and User Profile & Settings. It explains how each component

was built and integrated to achieve real-time monitoring, alarm handling, and

user interaction.

6.2 Project Setup

6.2.1 Firebase Setup

This section describes the steps to set up Firebase for both Android and iOS

applications used in the Smart Mill 365 system:

1. A google account is needed to set up a Firebase project.

2. Once a Google account is ready, go to

https://console.firebase.google.com/ to create a new Firebase project

by clicking the “Create a Firebase project” button in the Firebase

console as shown in Figure 6.1 below:

3. Link the Firebase Project that created in previous step with the Flutter

App. Each app will generate its own SDK setup file as shown in

Figure 6.2 and Figure 6.5 respectively, which must be placed in the

corresponding project folder as shown in Figure 6.3 and Figure 6.6.

Figure 6.1 Firebase Website to Create Project.

https://console.firebase.google.com/

c78

 Android:

o Downloads the google-services.json file from Firebase.

o Place it in the android/app/ directory of the Flutter project.

o Then, add the Google-services Gradle plug-in as a dependency

in the project-level build.gradle.kts file to enable processing of

the google-services.json configuration, which is required for the

Firebase SDK to function properly.

Figure 6.2 Firebase Configuration File for Android Mobile Application.

Figure 6.3 Location to Place the google-services.json File.

Figure 6.4 Add Google-services Plug-In at build.gradle.kts File.

c79

 iOS:

o Downloads GoogleService-Info.plist file.

o Place it in the ios/Runner/ directory of the Flutter project.

o Then, add the Google-services Gradle plug-in as a dependency

in the project-level build.gradle.kts file to enable processing of

the google-services.json configuration, which is required for the

Firebase SDK to function properly.

Figure 6.5 Firebase Configuration File for iOS Mobile Application.

Figure 6.6 Location to Place the GoogleService-Info.plist File.

Figure 6.7 Add Google-services Plug-In at build.gradle.kts File.

c80

4. Navigate to Authentication in Firebase Console as shown in Figure

6.8 below to set up user account. Click the “Add user” button to create

a new account by entering their desired Login Email and Password as

shown in Figure 6.9. These credentials will be used later for logging

into the application.

Note: All user accounts for the Smart Mill 365 app are created by the

Novaflow IT team.

5. Navigate to the Firestore Database / Cloud Firestore in Firebase

Console. Create a new collection where the collection name must be

same as the user’s login email address as shown in Figure 6.10 below.

Figure 6.8: Firebase Authentication Page.

Figure 6.9: Create New Account.

c81

6. Next step is to create Document(s) inside the Collection as shown in

Figure 6.11. For users with multiple subgroups/sites need to create a

separate document for each subgroup/site, while for users with only 1

subgroup/site, only 1 document need to be created.

7. Then add all required fields in each document. Each document must

include the following fields in Table 6.1:

Figure 6.10 Create New User Collection.

Figure 6.11 Create New Document for Subgroup/Site.

c82

Table 6.1 Required Field in Each Document.

Field Name Type Description

availablefield Array List of available devices

(Boiler, BPV, Sterilizer 1)

id String Influx DB’s ID

(SAMYSK_PSTR_240006)

measurement String
Influx DB’s measurement

(PSTR, PSDG)

measurement_name String
Category name displayed on

dashboard (Sterilizers/Digestors)

name String
Site/subgroup name displayed on

dashboard (POM Genting Group)

device_channel Map
Mapping of device to channels

(BPV: ch1, Boiler: ch2)

device_unit Map
Mapping of devices to units

(BPV: bar, Boiler: psi)

device_event Map Mapping of devices to event

(0: Stop, 1: Run, 2: E-stop)

A sample output is shown in Figure 6.12 below:

Figure 6.12 Sample Fields inside Document.

c83

6.2.2 MySQL Cloud Database Setup

Note: Since the database operations and structure inside the phpMyAdmin can

only be created by Novaflow (as my side is blocked from performing CRUD

operations due to company’s concern that I might accidentally remove data or

amend table structures), I will not demonstrate the process step by step. I will

only identify and mention the steps that need to be taken.

1. Prepare a MySQL cloud database account.

2. Create a Group named POM (Palm Oil Mill) so that POM-related

databases are categorized properly and won’t accidentally mix with

other groups.

3. Inside this group, create different databases for different users. For

example, POM_BorneoAgro and POM_Genting.

4. Inside each user database, create 3 structures/tables:

 ID_alarm_history

 ID_description_template

 ID_threshold_settings

The ID in the table name must match with the Firebase / Influx DB id,

otherwise the system will not be able to retrieve or store data. For

structures/table names example,

 SAMYJ_PSTR_250022_alarm_history

 SAMYJ_PSTR_250022_description_template

 SAMYJ_PSTR_250022_threshold_settings

A sample of Step 2 to Step 4 is shown in the Figure 6.13 below:

Figure 6.13 Sample MySQL Databases.

c84

5. Each table contains its own specific data structure. The data structures

of the ID_alarm_history, ID_description_template, and

ID_threshold_settings tables are described in the following sections:

Table 6.2 Data Structures of ID_alarm_history Table.

Field Name Data Type Description

id int Unique identifier for each alarm

record

channel_name varchar (255) Devices (BPV, Boiler, Sterilizer 1)

variable varchar (255) Devices unit (pressure, bar, amp)

start_time datetime Time when the alarm was triggered

end_time datetime Time when the alarm ended

description text
Alarm message (Sterilizer 1 is

below the limit of 20.0 psi)

last_value float Value recorded at the moment the

alarm was triggered

acknowledge enum ('Yes', 'No') Acknowledgment status, default is

"No"

ack_user varchar (255)
Email of the user who

acknowledged the alarm

(demo@novaflow.com.my)

The sample record of Alarm History Table is shown below:

Figure 6.14: Sample Data in ID_alarm_history Table.

c85

Table 6.3 Data Structures of ID_description_template.

Field Name Data Type Description

id int Unique identifier of the description

alarm_type enum ('below',

'exceed')

Indicates whether the alarm

condition is triggered by being

below or exceeding the limit

description text
Alarm description text (is below

the limit of / has exceeded the

limit of)

Table 6.4 Data Structures of ID_threshold_settings.

Field Name Data Type Description

id int Unique identifier for threshold

settings

site_id varchar (255) Influx DB’s ID

(SAMYSK_PSTR_250002)

channel_key varchar (255) Device channel (ch1, ch2)

channel_name varchar (255) Device name (Boiler, BPV)

variable varchar (255) Device variable (pressure)

unit varchar (255) Device unit (bar, psi)

bucket varchar (255) Bucket name (Mill)

measurement varchar (255) Measurement type (PSTR, PDIG)

alarm enum ('Yes', 'No') Alarm status (On/Off)

threshold_high float Upper threshold limit (50)

threshold_low float Lower threshold limit (20)

c86

6. After creating the tables based on the defined data structures, filled in

some predefined threshold values and device configurations into the

databases, except for the alarm history table. The sample data for

ID_description_template and ID_threshold_settings tables is shown

below:

Figure 6.15 Sample Data in ID_description_template Table.

Figure 6.16 Sample Data in ID_threshold_settings Table.

c87

6.3 System Modules

Modules

6.3.1 Log In

6.3.2 Dashboard

6.3.3 Graph Monitoring

6.3.4 Alarm Management

6.3.5 User Profile & Settings

6.3.1 Log In Module

The login module is used for authenticating users before granting access to the

application. This process is handled using Firebase Authentication, which

securely verifies the provided email and password against stored user

credentials as shown in Figure 6.17.

The modules included the following validation steps before authentication:

1. Empty input fields. If the email or password are left blank, the system

prevents login and display an error message shown in Figure 6.18.

2. Invalid email format. If the entered email does not match the standard

email format, the system prompts the user with an error message

shown in Figure 6.19.

3. Incorrect login credentials. If the email or password does not match

any registered account in Firebase, the system displays “Wrong email

or password” as shown in Figure 6.20.

Figure 6.17 Login Page

c88

If all the validation checks above pass, Firebase Authentication verifies the

credentials. Upon successful authentication, the user is redirected to the

dashboard (home page) to start using the application.

Figure 6.18: Login Page with Empty Input Field Error Message.

Figure 6.19: Login Page with Invalid Email Format Error Message.

Figure 6.20: Login Page with Incorrect Login Credentials Error Message.

c89

The implementation of input validation for login credentials is shown in

Figure 6.21 below.

To handle the user login session as implemented in Figure 6.22,

FirebaseAuth.instance.authStateChanges() continuously listens to the user’s

authentication state and automatically restores the session if the user has

logged in previously, where snapshot.hasData returns true and navigates to

the Home Page; otherwise, if the user has logged out, it returns false and

shows the Login Page. This check runs every time the app starts or when the

login state changes, and because Firebase Authentication use its own client

SDK with tokens (not sessions or cookies-based), the user remains logged in

across app restarts until explicitly call signOut() in More Page.

Figure 6.21: Implementation of Input Validation.

Figure 6.22: Implementation of Firebase Authentication State Management.

c90

6.3.2 Dashboard Module

The dashboard module serves as the central or home of the system, providing

users with a real-time overview of site conditions, device statuses, and alarm

notifications. It is considered as an overview that allows users to easily

monitor and analyse the palm oil mill operations and performance.

First, the header of the dashboard screen having an alarm button as

highlighted in Figure 6.23 which allow users to quickly navigate to the Active

Alarm page. By looking into Figure 6.24, the id (eg.,

SAMKYSK_PSTR_250022) is required to pass into the Active Alarm Page

for fetching the relevant active alarm record in Firebase, which later on

discussed in Section 6.3.4 Alarm Management Module. This provides a direct

access for users to review critical alerts without having complicated steps.

Figure 6.23: Dashboard Page.

Figure 6.24: Implementation of Active Alarm Button.

c91

On top of the dashboard page, there are a container having selection

with available subgroup name as shown in Figure 6.25 where user can select

from different subgroups or site to view its own dashboard. Once the particular

subgroup is selected, it will dynamically update the dashboard to display only

the available devices and measurements for the chosen subgroup.

The list of available subgroups is configured and stored in the

Firebase document section as shown in Figure 6.26 below, ensuring that

administrators can easily add, update, or remove subgroup configurations

without modifying the application code.

Figure 6.25: Subgroup / Site Selection for Switching Dashboard.

Figure 6.26: List of Available Subgroups in Firebase Document.

c92

When the app is running, the application retrieves these subgroups by

querying the Firebase collection associated with the current user’s login email

as shown in Figure 6.27 below. Each subgroup document contains its own

name, which then extracted and displayed in the dashboard’s selection menu.

This ensures that the dashboard dynamically reflects the latest subgroup

structure defined in Firebase without requiring manual update in source code.

Beside each subgroup selection, a small alarm status icon indicates

whether there are active alarms for the selected subgroup as shown in Figure

6.28. A red alarm icon indicates that active alarms are detected, while a grey

alarm icon indicates no active alarms. The system determines this by checking

against the active_alarms collection in Firebase. If the collection contains an

alarm record with the current subgroup’s ID, the icon will turn red

immediately without having to refresh the screen; otherwise, it remains grey.

This implementation allows users to respond more quickly to critical

conditions, especially for users that manage multiple subgroups or site

simultaneously.

Figure 6.27: Implementation of Fetching Available Subgroup.

c93

Figure 6.30: Implementation of Active Alarm Icon.

Figure 6.29: Implementation of Active Alarm Icon Logic.

Figure 6.28: Active Alarm Icon.

c94

Next, to make the dashboard more alive, a timestamp indicator (eg.,

Last Updated At: 22 Aug 2025, 14:22:35 as shown in Figure 6.31 below) is

implemented. The timestamp is synchronized with the batch data pull from

Influx DB, reflecting the most recent live data update. Since the site data from

Influx DB is updated in batch form and each site contains a channel ch1, the

timestamp will always take the ch1’s timestamp as the representative time as

shown in Figure 6.33. The timestamp format is then set using the

_formatInfluxTimestamp function in Figure 6.32 and displayed out. In most

cases, it shows the current time, but in some scenarios, it may display the last

recent update time instead. If the device is totally offline, the dashboard will

display “Offline” in the place of timestamp.

Figure 6.31: Timestamp, Measurement Name, and View Graphs button.

Figure 6.33: Implementation of Timestamp Logic.

Figure 6.32: Implementation of Timestamp Format.

c95

The Empty Fruits Bunch as shown in Figure 6.31 above, known as

measurement name is dynamically updated based on settings retrieved from

Firebase site configuration using the _fectchMeasurementName function in

Figure 6.34. This allows flexible in managing device measurement naming

without requiring hardcoded values. On the same row, a “View Graphs” text

button is provided as implemented in Figure 6.35. Users can click this button

to navigate to the Graph Monitoring Module (discussed in Section 6.3.3). This

feature enables users to view multiple devices’ graphs simultaneously, making

it easier to perform comparisons and analysis.

Figure 6.34: Implementation of Fetch Measurement Name.

Figure 6.35: Implementation of View Graphs Button.

c96

The implementation of the main body of the dashboard shown in

Figure 6.36 is discussed below.

When user open the application, the system will first initialize and

load all first subgroup’s device data such as device’s Influx DB ID and

measurement, measurement name and unit that configured in Firebase. During

this loading process, instead of showing an incomplete dashboard, the

application displays the company brand logo shown in Figure 6.38 with a

heartbeat-style animation as a loading indicator. This design ensures a smooth

user experience by maintaining branding consistency and preventing confusion.

Once all the relevant data has been fully retrieved and initialized, the

application proceeds to render and display the dashboard with the live device

data.

Figure 6.36: SVG-based Graphical Layout.

Figure 6.37: Implementation of Dashboard Initialization.

c97

When user switches the dashboard between different subgroups or

site, the current dashboard data will clear and set to null as implemented in

Figure 6.39. This implementation prevents any possibility of passing incorrect

data to the newly selected subgroup. During this transition, a loading indicator

shown in Figure 6.38 above is displayed to inform user about the system is

retrieving the new subgroup’s data. Once all the device data has been fully

fetched from Firebase and Influx DB, the dashboard for the new selected

subgroup will be rendered and displayed.

Figure 6.38: Brand Logo Loading Indicator.

Figure 6.39: Implementation of Switching Subgroup Logic.

c98

When the account only created in Firebase Authentication, but no

corresponding Firebase collection exists for that account, the system will

display the message in Figure 6.40. For accounts that already have their own

Firebase collection, but no device settings are configured (no available fields

found), the system will return the message as shown in Figure 6.41.

Figure 6.40: Dashboard Page with No Account Configuration.

Figure 6.41: Dashboard Page with No Device Configuration.

c99

At the bottom of the dashboard, navigation options are provided for

Alarm History and More pages as shown in Figure 6.43 below. These give

user a quick access to past alarm records and additional system features. The

design implemented for the navigation is a curved navigation bar as this is

the one of the company’s design requirements, providing a modern look and

smooth user interaction.

Figure 6.42: Implementation of Configuration Check Logic on Dashboard.

Figure 6.43: Dashboard Page Bottom Navigation.

Figure 6.44: Implementation of Bottom Navigation.

c100

6.3.3 Graph Monitoring Module

The Graph Monitoring Module is one of the core components of the palm oil

mill monitoring system, where the Single Graph View serves as the main

monitoring tool. This view provides a clear and interactive visualization of

device’s channel data, enabling users to analyse performance efficiently.

 Each device graph is generated using a single reusable codebase

(genericscreen.dart). This design ensures consistency across devices and

eliminates the need to manually create and modify separate codebase for

different devices. Any changes made to the code are automatically reflected in

all single graph views, significantly improving maintainability and scalability.

 When navigating to the single graph view screen, the screen

automatically rotates to horizontal orientation for a better graph viewing

experience. During initialization, the app also enables full-screen mode and

sets up the zoom and pan behaviours for the graph. After that, it retrieves the

device’s data through fetchPressureData() and loads its corresponding unit

using _fetchUnitForDevice().

Figure 6.45: Implementation of initState.

c101

The device channel data is fetched from Influx DB, using the given

authorization token and URL, with correct passing of the Influx DB

measurement, id, and field for the selected channel that configured in Firebase.

Meanwhile, the unit is also directly retrieved from Firebase.

 To optimize the screen space, the graph does not display values on

the graph header. Instead, it uses an interactive tooltip as show in Figure 6.48

that appears only when the user taps on a data point. The tooltip is

implemented using TrackballBehavior.builder as shown in Figure 6.49. It

shows the time of the selected point, device name, value and unit as

implemented in Figure 6.50, ensuring that the data remains informative while

maximizing the visible graph area.

Figure 6.46: Fetching Channel Data from Firebase.

Figure 6.47: Fetching Device Unit from Firebase.

c102

 Besides that, users can choose to view the graph within specific time

ranges (3h, 6h, and 12h). The selection buttons are placed in the header section

for quick access. These buttons are implemented through the

_buildTimeRangeButton function, where each button dynamically updates

Figure 6.48: Tooltip.

Figure 6.50: Implementation of Tooltip Display Format.

Figure 6.49: Implementation of Tooltip.

c103

its colour to indicate the active selection and triggers fetchPressureData() to

reload the graph according to the chosen range.

The graph also supports interactive zooming and panning,

implemented through the ZoomPanBehavior function. Whenever a different

time range is selected, the graph automatically resets to its normal size as

implemented in Figure 6.53, ensuring consistency and preventing distorted

views across different ranges.

Figure 6.51: Time Range Selection.

Figure 6.52: Implementation of Time Range Selection Button Logic.

c104

 For Separate Graph View and Combine Graph View, the

implementation of fetching device channel data is almost same as the logic

implemented in Single Graph View screen by using the fetchFieldData()

function.

 The raw data fetched from Influx DB is first processed through the

convertToChartData() function before being displayed on the graph. This

function maps each data entry in a PressureData object by parsing the pressure

values and converting timestamps. The convertUTCToLocal() function help

convert UTC timestamps into local time format, ensuring that the displayed

data aligns with the user’s local time zone.

Figure 6.53: Graph Reset to Normal Size.

Figure 6.54: Data Fetching from Influx DB.

c105

From the UI implementation, the Combined Graph View shown in Figure

6.56 displays all selected graphs in a single chart with a share timeline. Each

graph line is assigned a unique colour using HSV colour space for clear

differentiation as shown in Figure 6.58. Additionally, users can temporarily

hide the corresponding line by just clicking on the device name that shown

inside the graph section.

Figure 6.55: Convert to Chart and Local Time Zone.

Figure 6.56: Combine Graph View.

c106

The Separate Graph View show each selected graph in a separate card shown

in Figure 6.59 with a vertically rotated label as implemented in Figure 6.60.

This view is useful for detailed analysis of specific device channels.

Figure 6.57: Implementation of Combine Graph.

Figure 6.58: UI for Combine Graph.

c107

 When users click the Filter button, an AlertDialog is shown,

displaying a list of available channels with checkboxes. Users can select or

deselect the checkboxes to choose which graphs they want to display. The

dialog uses a StatefulBuilder to manage the temporary selection

(tempSelected) independently, so changes inside the dialog do not

Figure 6.60: Implementation of Separate Graph.

Figure 6.59: Separate Graph View.

c108

immediately affect the main state. When Confirm is clicked, it will update the

selected graphs with the temporary selection, closes the dialog, and refreshes

the chart dart via fetchPressureData(). If users clicked Cancel button, it will

close the dialog without saving any changes.

Figure 6.62: Implementation of Dialog.

Figure 6.61: Dialog for Select Graphs.

c109

 After selecting the desired graphs, users can filter the data by

choosing a time range from the dropdown menu (Last 3,6,12 Hours) as shown

in Figure 6.63. This allows them to view and analyse graph data within the

selected period.

Figure 6.63: Tim Range Selection.

Figure 6.64: Implementation of Time Range Selection.

c110

On top of the selected graphs, there is a data summary panel that

shows the latest readings from all the device channel the user selected. First, it

displays the timestamp (commonTime) to indicate when the data was last

updated. Below the time, it lists each selected device (from selectedGraphs)

along with its latest value and corresponding unit (retrieved from fieldUnits).

If a device has no recent data, it shows “Offline” instead.

Figure 6.65: Data Summary Panel.

Figure 6.66: Implementation of Data Summary Panel.

c111

6.3.4 Alarm Management Module

As discussed in section 6.2.2 MySQL Cloud Database Setup, all device

threshold settings are configured in the MySQL database through

phpMyAdmin. The monitoring script is written in Python and is responsible

for continuously reading each channel data received from the Influx DB. The

script is deployed as a systemd service, ensuring that it runs 24/7 in the

background without manual intervention.

 Once channel data is collected, the script performs a comparison

between the real-time values from Influx DB and the threshold limits stored in

MySQL. If any parameter crosses its configured boundary, the alarm logic is

triggered. The triggered alarm is then logged back into the database with

essential details such as alarm code, alarm triggered time, alarm triggered

value and its description.

 Firstly, the Python script will dynamically retrieve all active threshold

rules (alarm= ‘yes’) for each device from tables ending with

_threshold_settings.

For each threshold, the script queries the most recent data within last

5 minutes.

Figure 6.67: Check alarm = ‘yes’.

Figure 6.68: Query Data from Influx DB.

c112

The real-time value is compared with the low and high limits that

configured in MySQL.

 If an alarm is triggered and no active alarm exists for the channel, a

new record is inserted into the corresponding _alarm_history table with

details such as channel name, variable, timestamps, description, and last value.

The active alarms are temporary inserted into the active_alarms

collection in Firebase, ensuring that the active alarms are immediately visible

in the mobile application.

Figure 6.69: Check Low and High Thresholds.

Figure 6.70: Insert Alarm Record into Database.

Figure 6.71: Adding Active Alarm to Firebase.

c113

If the value returns to the normal range and an active alarm exists, the

system updates the alarm record with an end_time in MySQL and removes the

corresponding entry from Firebase.

This loop run continuously, ensuring that alarms are check every

seconds. By deploying the script as a systemd service, as shown in Figure

6.74 below, the process operates in the background 24/7 without the need for

manual intervention and automatically restarts if it crashes.

Figure 6.72: Remove Active Alarm Record from Firebase.

Figure 6.73: Monitoring Loop.

Figure 6.74: Comparing Thresholds Python running on Systemd.

c114

For the frontend part, the active alarm record that displays on the Active

Alarm page is implemented through the fetchActiveAlarms function. This

function is used to load and display the latest active alarms for a specific site.

When called, it queries the Firebase collection active_alarms, filtering records

by the current site’s ID (site_id) and only retrieving alarms with a status of

active. If alarms are found, each documents’ data is processed to extract the

MySQL alarm code (mysql_id), start time, and description. The start time

is parsed into a DateTime object, formatted into a readable string (yyyy-MM-

dd HH:mm:ss). The alarms are sorted in descending order by their start time so

that the latest alarm appears on top first. If no active alarms are found, a

short message “No active alarm found” is returned as shown in Figure 6.76.

Figure 6.75: Active Alarm Page.

c115

 In Alarm History page, the fetchAlarms() function is implemented to

retrieve alarm history data from the backend API (/api/alarms/{site_id}).

Once the JSON responses are received, it validates the format by parses each

alarm’s start_time into local time, and prepares a clean record with alarm

code, formatted timestamps known as alarm triggered time, description

Figure 6.77: Implementation of Fetching Active Alarm.

Figure 6.76: No Active Alarm Record.

c116

message, and acknowledgement status. The alarms are then sorted in

descending order by time (latest first) and passed to _applyFilter() for

filtering before updating the UI.

Figure 6.78: Alarm History Page.

Figure 6.79: Implementation of Fetching Alarm History.

c117

 Users can filter the loaded alarms based on their preferences through

the _applyFilter() function. If the user has picked a specific date, only alarms

from the exact date are shown. Otherwise, it applies a time-range filter such as

“Last 1,7, or 30 Days”.

Figure 6.80: Alarm Record Filter by Date.

Figure 6.81: Alarm Record Filter by Time Range.

c118

The _clearDateFilter() function resets the alarm history filter back to

its default state by clearing any previously chosen date (pickedDate = null)

and reselecting the default time range which is Last 1 Day.

 The Ack function located in the fourth column of alarm history table

is implemented through _acknowledgeAlarm function. This function is

responsible for marking a specific alarm as acknowledged in both the MySQL

database and in the mobile application. It retrieves the alarm’ ID, the logged-in

user’s email, and the site ID from the alarms list, then send this information as

a JSON format in an HTTP POST request to the backend API endpoint

(/ack_alarm/{alarmId}). If the API responds with a 200 status code, the

function updates the alarm’s state in the app via setState() by setting its

Figure 6.82: Implementation of Filtering Alarm History.

Figure 6.83: Implementation of Clearing Filter.

c119

acknowledged field to true. As a result, the Ack button turn green, indicating

that the alarm has been acknowledged by the user. At the same time, the

ack_user column in MySQL database is updated with the email of user who

performed the acknowledgement, ensuring that the action is recorded for

reference in future.

Since Flutter cannot directly connect to a MySQL database,

Python with Flask is used as the backend layer to handle data retrieval and

updates. Both backend APIs for the Alarm History (/api/alarms/{site_id})

and the Acknowledgement (/ack_alarm/{alarmId}) are implemented. The

implementation of Alarm History API shown in Figure 6.85 queries the

MySQL databases to locate the corresponding {site_id} _alarm_history table,

retrieved all alarms sorted by start time, and returns them as JSON to the

mobile app.

 The implementation Acknowledgement API shown in Figure 6.86 is

triggered when a user acknowledges an alarm in the app by clicking the Ack

button, it locates the alarm record in the MySQL table, then updates it

acknowledge column to ‘Yes’ and saves the acknowledging user’s email in the

Figure 6.84: Implementation of Ack Function.

c120

ack_user column. Both API are deployed as systemd services as shown in

Figure 6.87.

Figure 6.85: Alarm History API.

c121

Figure 6.86: Acknowledgment API.

Figure 6.87: APIs Python Running on Systemd.

c122

The pop-up notification shown in Figure 6.88 is triggered when a new

alarm with matching site_id is added into the Firestore active_alarms

collection. This function prevents duplicate notifications by checking against a

global list of already-notified alarms (globalNotifiedAlarmIds). When a new

alarm with a matching site_id is detected, it triggers showAlarmNotification

with the alarm’s description, ensuring users are alerted in real time about

critical events.

Figure 6.89: Implementation of Pop-Up Notification.

Figure 6.88: Pop Up Notification.

c123

6.3.5 User Profile & Settings Module

Users can navigate to “More” Page to perform additional system settings. This

page serves as a general menu hub in the app, showing the currently logged-in

users’ email at the top. It provides navigation options to different sections like

About Us, FAQ, Data Plotter, Privacy Policy, Settings, and a Logout

button, each implemented using buildMenuOption to wrap icons, labels, and

navigation logic. Most options navigate to internal pages using

Navigator.push, while the Data Plotter options open an external URL in a

browser via launchURL. The About Us, FAQ, and Privacy Policy pages are

implemented by hardcoding the information provided by the company directly

into the pages.

Figure 6.90: More Page.

c124

Figure 6.91: Implementation of Current Login Email.

Figure 6.92: Implementation of Navigation to Different Sections.

c125

Figure 6.93: About Us Page.

Figure 6.94: FAQ Page.

c126

In the settings page, there is a Dark Mode section. This section creates three

radio buttons such as Dark, Light, and System, allowing users to select the

app’s theme. Each option uses value to identify the theme, groupValue to

show the currently selected option, and onChanged:

themeProvider.setThemeMode to update the app’s theme in real time when a

selection is made, with the System option following the device’s theme

settings. The reason of placing Dark Mode in the Settings tab instead of

directly on the More page is to keep the More page clean and organized, while

also allowing flexibility for adding more settings in the future without

cluttering the main menu.

Figure 6.95: Privacy Policy Page.

c127

Figure 6.96: Dark Mode Setting Page.

Figure 6.97: Implementation of Dark Mode Setting.

c128

The Data Plotter option in the More page provides an additional

function that navigates to an external URL using launchURL

('https://novaflow-dataplotter-a495e.web.app/') as shown in Figure 6.99.

Lastly is the Logout function. Users can logout the system by pressing the

Logout button at the More page. The implemented function provides a secure

and user-friendly way for users to sign out of the app. It first shows a

confirmation dialog as shown in Figure 6.100 to prevent accidentally logouts,

and if user confirms (Yes), it signs them out from Firebase Authentication

and redirects them to the Login page.

Figure 6.99: Data Plotter.

Figure 6.99: Implementation of Data Plotter.

c129

6.4 Conclusion

In conclusion, this chapter detailed the implementation of the SmartMill365

system, from Firebase and MySQL setup to the development of five modules

such as Login, Dashboard, Graph Monitoring, Alarm Management, and User

Profile & Settings. The system is now fully functional, supporting real-time

monitoring and alarm notifications. The following chapter will focus on

system testing.

Figure 6.100: Confirmation Dialog for Logout.

Figure 6.101: Implementation of Logout.

c130

CHAPTER 7

7 SYSTEM TESTING

7.1 Introduction

In this chapter, system testing is carried out to ensure that both functional and

non-functional requirements of the system are fulfilled. The testing process

includes unit testing, which verifies the correctness of individual modules, and

usability testing used to evaluate overall user experience and ease of use of the

system. In addition to unit and usability testing, alpha testing was conducted

with internal teams, while beta testing was carried out with external users on

deployed builds for both Android and iOS platforms.

The unit testing process described in section 7.2 is conducted module

by module. An overview of the test cases for each module and their

corresponding results are shown below.

c131

7.2 Unit Testing

Table 7.1: Unit Testing of Login Module.

Test Module Log In Module Test Title Log in to the user account

Test Case ID Test Case Description Execution Steps Test Data Expect Result Status

UNT-001 Log in with valid

credentials

1. Enter the registered

email and password

2. Click Sign In button

i. Registered email

ii. Valid password

Redirected to the dashboard page Pass

UNT-002 Log in with invalid

email

1. Enter the wrong

email format and

password

2. Click Sign In button

i. Invalid email

ii. Password

Display re-enter valid email address Pass

UNT-003 Log in with valid email

and invalid password

1. Enter the registered

email but invalid

password

2. Click Sign In button

i. Registered email

ii. Invalid password

Display incorrect email or password Pass

UNT-004 Log in with empty 1. Click Sign In button No test data Display email and password cannot be Pass

c132

Table 7.2: Unit Testing of the Dashboard Module.

email and password empty

Test Module Dashboard Module Test Title Displaying relevant device channel data on the

dashboard

Test Case ID Test Case

Description

Execution Steps Test Data Expect Result Status

UNT-005 Registered email with

Firebase collection

and device settings

configuration

1. Navigate to the

dashboard page

Account with correct

device settings

All the available device channel data

are displayed accordingly in the

dashboard page

Pass

UNT-006 Registered email

without Firebase

collection

1. Navigate to the

dashboard page

No test data Display no configuration found for

this account

Pass

UNT-007 Registered email with

Firebase collection

1. Navigate to the

dashboard page

No test data Display no device settings configured Pass

c133

but no device settings

configuration

UNT-008 Switch subgroup and

verify correct

dashboard

1. Navigate to the

dashboard page

2. Click on the subgroup

dropdown selector

3. Select different

subgroup from the list

A manager account

with few subgroups

The dashboard updates the device

channel data relevant to the newly

selected subgroup

Pass

UNT-009 Channel data live

update (most recent

data)

1. Navigate to the

dashboard page

2. Observe all value

display on each

device

Account with active

device

The value on each device updates and

display the most recent value (without

manual page refresh) with green

colour dot indicator

Pass

UNT-010 Inactive device shows

“Offline” status

1. Navigate to the

dashboard page

2. Observe inactive

device

Account with inactive

device

The device’s status indicator is shown

as “Offline” with red colour dot

indicator

Pass

UNT-011 Subgroup alarm icon 1. Navigate to the 1. A subgroup with at 1. For subgroup with at least one Pass

c134

indicates active alarm

status

dashboard page

2. Observe the alarm

icon next to each

subgroup name in the

selection list

least one active

alarm

2. A subgroup with

no active alarm

active alarm, the alarm icon is red

2. For subgroup with no active alarm,

the alarm icon is grey

UNT-012 Correct quantity and

name of subgroup is

shown

1. Navigate to the

dashboard page

2. Observe the list of

subgroups in the

dropdown menu

A manager account

with few subgroups

The dropdown list displays the exact

quantity of subgroups that configured

in Firebase. Each subgroup’s name is

displayed correctly and matches the

configured data.

Pass

UNT-013 "Last Updated At"

timestamp shows

most recent data

update time

1. Navigate to the

dashboard page

2. Observe the “Last

Update At” timestamp

Account with active

device

The "Last Updated At" timestamp

updates follow the time of the most

recent device channel data

Pass

c135

Table 7.3: Unit Testing of the Graph Monitoring Module.

Test Module Graph Monitoring Module Test Title Displaying device channel data in graph view

Test Case ID Test Case Description Execution Steps Test Data Expect Result Status

UNT-014 Display graph with

correct device channel

data

1. Navigate to the

dashboard page

2. Select a device

channel from the

dashboard

Device with valid

channel data in

Firebase

Graph displays the correct data points

according to the selected channel

Pass

UNT-015 Data range filter shows

correct graph data

1. Navigate to the

dashboard page

2. Select a device

channel from the

dashboard

3. Apply time range

filter

Device with historical

data

Graph updates and only shows data

within the selected time range

Pass

UNT-016 Graph zoom and pan

function works correctly

1. Navigate to the

dashboard page

Active device channel

with data

Graph zooms and pans as expected.

When time range is changed, graph

Pass

c136

2. Select a device

channel from the

dashboard

3. Zoom into a

section of the

graph

4. Pan the graph left

or right

5. Change the time

range filter

resets back to normal view

UNT-017 Tooltip displays correct

info when clicking on

data point

1. Navigate to the

dashboard page

2. Select a device

channel from the

dashboard

3. Click on any data

point in the graph

Active device channel

with data

Tooltip appears showing correct

timestamp, device name, value and

unit

Pass

UNT-017 Correct device name and 1. Navigate to the Device settings Graph title, axis and tooltip show the Pass

c137

unit shown from

Firebase configuration

dashboard page

2. Select a device

channel from the

dashboard

3. Observe device

name and unit on

graph labels

configured in Firebase correct device name and unit

UNT-018 Multi-channel selection

(combine graph view)

1. Navigate to View

Graphs page

2. Select 2 or more

channels

Multiple active device

channels

Graph displays multiple lines correctly

distinguished by legend

Pass

UNT-019 Multi-channel selection

(separate graph view)

1. Navigate to View

Graphs page

2. Select 2 or more

channels

Multiple active device

channels

Each selected channel is displayed in

its own graph panel, with correct title

and axis

Pass

UNT-020 Data summary panel

displays timestamps and

latest values for each

1. Navigate to View

Graphs page

2. Select 2 or more

Multiple active device

channels

Data summary panel shows the most

recent timestamp and each selected

channel’s latest value with correct unit

Pass

c138

selected channel

correctly

channels

3. Observe the data

summary panel

above the graph

UNT-020 Data summary panel

shows “Offline” for

selected channel of an

offline device

1. Navigate to View

Graphs page

2. Select 2 or more

channels

3. Observe the data

summary panel

above the graph

Device configured in

Firebase but currently

inactive/offline

Data summary panel displays the

device name with status shown as

“Offline” instead of value

Pass

UNT-021 Selected device channel

is removed from graph

after unchecking

checkbox in filter option

(combine and separate

graph view)

1. Navigate to View

Graphs page

2. Select 2 or more

channels

3. Uncheck 1 of the

previously selected

channels

Multiple device

channels

The unchecked channel is removed

from both the graph and the data

summary panel immediately, while

other selected channels remain visible

Pass

c139

Table 7.4: Unit Testing of the Alarm Management Module.

Test Module Alarm Management Module Test Title Displaying, updating and managing device alarms

Test Case ID Test Case Description Execution Steps Test Data Expect Result Status

UNT-022 Display list of active

alarms

1. Navigate to Active

Alarm page

2. Observe alarm list

Device that exceeds or

below predefined

thresholds

Alarm list displays all currently active

alarms with correct alarm code,

timestamp, and description

Pass

UNT-023 Display “No active

alarm found” when no

alarms exist

1. Navigate to Active

Alarm page

Device without active

alarms (normal

condition)

Active Alarm page shows “No active

alarm found” instead of empty list

Pass

UNT-024 Alarm status changes to

active when threshold

exceeded

1. Configure a

threshold

2. Simulate channel

Device with threshold

configured

Alarm appears in active list with

correct details (alarm code, time,

description)

Pass

c140

data exceed

threshold

3. Refresh Active

Alarm page

UNT-025 Alarm status changes to

cleared when condition

returns to normal

1. Trigger an alarm

2. Simulate channel

data returning to

normal

Device with threshold

configured

Alarm is removed from active list and

only show in history page

Pass

UNT-026 Alarm history log

displays cleared

information

1. Navigate to Alarm

History Page

2. Review past

alarms

Device with

previously cleared

alarms

History page lists all relevant past

alarms with correct alarm code,

timestamp, description and

acknowledge status

Pass

UNT-027 Alarm acknowledgement

works correctly

1. Navigate to Alarm

History Page

2. Select an alarm

record and click

the Ack button

Record in alarm

history list

Ack button immediately turns into

green colour

Pass

UNT-028 Alarm filtering works 1. Navigate to Alarm Record in alarm Only alarms on the selected date are Pass

c141

correctly (Filter by Date) History Page

2. Apply filter by

date

history list displayed

UNT-029 Alarm filtering works

correctly (Filter by Time

Range)

1. Navigate to Alarm

History Page

2. Apply filter by

time range

Record in alarm

history list

Only alarms on the selected time

ranges are displayed

Pass

UNT-030 No alarm history for

selected time range / date

1. Navigate to Alarm

History Page

2. Apply filter by

time range / date

3. Ensure no alarm

exits on the

selected time range

/ date

4. Observe history

list

No test data Alarm history page displays “No

alarm history found” for the selected

time range / date

Pass

c142

Table 7.5: Unit Testing of the User Profile & Settings Module.

Test Module User Profile & Settings Module Test Title Displaying user profile and settings

Test Case ID Test Case Description Execution Steps Test Data Expect Result Status

UNT-031 Display user email

correctly

1. Navigate to More

page

2. Observe the current

log in email

Registered user with

email

Profile page shows correct email Pass

UNT-032 Able to navigate to

About Us page

1. Navigate to More

page

2. Select About Us

No test data System redirects to About Us page

successfully

Pass

UNT-033 Able to navigate to FAQ

page

1. Navigate to More

page

2. Select FAQ

No test data System redirects to FAQ page

successfully

Pass

UNT-034 Able to navigate to

Privacy Policy page

1. Navigate to More

page

2. Select Privacy

Policy

No test data System redirects to Privacy Policy

page successfully

Pass

c143

UNT-035 Able to change theme

mode

1. Navigate to More

page and select

Settings

2. Select Dark Mode

and choose either

on/off or follow

system theme

No test data System update theme mode according

to user selection

Pass

UNT-036 Able to remember theme

mode

1. Set theme to Dark

mode

2. Quit the app and

open again

3. Observe the

current theme

No test data Dark mode remains applied after close

the app

Pass

UNT-037 Able to navigate to

external URL (Data

Plotter)

1. Navigate to More

page

2. Select Data Plotter

No test data Browser successfully open external

Data Plotter URL

Pass

UNT-038 Able to logout

successfully

1. Navigate to More

page

No test data User is logged out and redirect to

Login page

Pass

c144

2. Click Logout

button

3. Confirm action

c145

7.3 System Usability Testing

In this project, System Usability Scale (SUS) is chosen to evaluate the

usability of the palm oil mill system. SUS is a widely used method that

provides a quick and reliable measure of system usability through a

standardized 10 questionnaire. This help to capture users’ perceptions of the

system in terms of effectiveness, efficiency and satisfaction. The SUS

evaluation in this project was conducted with selected respondents by Nova

flow to assess how intuitive and user-friendly the implemented system so that

the 4th objective in this project is achieved.

Table 7.6: Template of System Usability Scale (SUS) Survey.

Participant No:

Name:

Question Strongly

Disagree

(1)

(2) Neutral

(3)

(4) Strongly

Agree

(5)

1. I think that I

would like to

use this app

frequently.

2. I found the app

unnecessarily

complex.

3. I thought the app

was easy to use.

4. I think that I

would need the

support of a

technical person

to use this app.

5. I found the

various

functions in this

c146

app were well

integrated.

6. I thought there

was too much

inconsistency in

this app.

7. I would imagine

that most people

would learn to

use this app very

quickly.

8. I found the app

very

cumbersome to

use.

9. I felt very

confident using

the app.

10. I needed to learn

a lot of things

before I could

get going with

this app.

1. What do you like most about the system?

2. What do you like least about the system?

3. Do you have any suggestions for improving the current system?

c147

7.3.1 Test Scenario of Usability Testing

Table 7.7: Usability Testing Scenario for Operator or Manager.

Test Scenarios to act as an operator or manager

Scenario 1 – Login to an account created by the admin to access the system

Imagine you are an operator or a manager and you have been provided with

login credentials to access the palm oil mill monitoring system’s mobile

application. Your task is to log in to the application using the provided email

and password. What would you do to access the system?

Email: demo@novaflow.com.my

Password: Password@123

Scenario 2 – View the dashboard

Imagine you are using the system to monitor devices and alarms. Your task is

to access the dashboard and review the information displayed, such as device

status and channel values. How would you check whether the information

shown matches your expectations?

Scenario 3 – View graph of a device data

Imagine you are tasked to analyse a device’s historical performance. Your task

is to open the dashboard page, select a device channel, and observe the graph

such as zoom in, pan, or view tooltips. How would you interact with the graph

to get the required insights?

Scenario 4 – View multiple graphs for analysis

Imagine you needs to analyse device performance across multiple channels.

Your task is to open the view graphs page, select multiple device channels,

and view the results in both combined graph view and separate graph view.

How would you interact with the system to switch between these views and

use them for analysis purposes?

Scenario 5 – Check active alarms

Imagine you are responsible for monitoring alarms. Your task is to navigate to

the active alarm page and review the current activate alarms for particular

subgroup. Identify whether there are any active alarms, and if so, view the

details such as device name, timestamp, and description. How would you

access and confirm this information in the mobile application?

c148

Scenario 6 – Check alarm history

Imagine you are responsible for monitoring alarms. Your task is to access the

alarm history page, review the alarm list for particular subgroup, and filter by

a time range or date. How would you identify whether there are alarms and

view their details?

Scenario 7 – Acknowledge an alarm record

Imagine you are monitoring device alarms. Your task is to review the list of

alarm records and acknowledge one of them so that other users know it has

been handled. How would you perform the acknowledge action, and how

would you verify that the alarm status is updated in the mobile application?

Scenario 8 – Update theme settings

Imagine you want to customize your app experience. Your task is to navigate

to the settings page, change the theme mode, and confirm that the system

remembers your selection after re-login or re-open the app. How would you

verify that your settings are applied correctly?

Scenario 9 – Switch between subgroups

Imagine you are responsible for monitoring multiple subgroups’ devices. Your

task is to navigate to the dashboard page, use the subgroup dropdown selector,

and switch to a different subgroup. How would you confirm that the dashboard

updates to display the correct device channel data (dashboard) for the newly

selected subgroup in the mobile application?

Scenario 10 – Logout from the system

Imagine you has completed monitoring tasks or want to login using another

account. Your task is to logout of the application securely. How would you

perform the logout action, and how would you confirm that you are redirected

back to the login page in the mobile application?

c149

7.3.2 Results of Usability Testing

Five respondents were selected to provide feedback on the 10 scenarios during

the usability testing process as shown in section 7.3.1. The responses from

each tester are placed in Appendix B.

 The respondents’ answers are analysed to calculate the SUS score by

assigning a corresponding number score to each response. The SUS score is

calculated using the following framework:

1. Scoring Positive Items for odd-number questions (1,3,5,7,9): Subtract

1 from the user’s response. For example, if the user selected 4, the

adjusted score is 3 (4-1).

2. Scoring Negative Items for even-number questions (2,4,6,8,10):

Subtract the user’s response from 5. For example, if the user selected 2,

the adjusted score is 3 (5-2).

3. Add all adjusted scores together to obtain the raw SUS score for each

respondent and multiplied by 2.5 to convert it to a usability score out of

100.

4. Summed up all the percentage scores for each respondent and divided

by the total number of respondents. In this case, the total percentage is

divided by 5.

The SUS score for each respondent can be determined by the method shown

above. The average SUS score for a project is 68 as shown in Table 7.8 below,

which means that a score of 68 represents the 50th percentile, indicating

average usability when compared to other systems. Scores above 68 suggest

that the system has better than average usability, while score below 68 reflect

poorer usability performance.

Table 7.8: General Guideline on the Interpretation of SUS Score.

SUS Score Grade Adjective Rating

>80.3 A Excellent

68 – 80.3 B Good

68 C Okay

c150

51 - 68 D Poor

<51 F Awful

 Based on the results obtained from SUS as shown in Table 7.9 below,

the system received an average system usability score of 94.5, representing

Grade A rating. This indicates that the mobile application is highly usable and

user-friendly.

Table 7.9: Summary of SUS Survey Results.

Participants

Name

Usability score for each question Total Percentage

(%) 1 2 3 4 5 6 7 8 9 10

Loi Teck

Cheu

4 4 4 4 4 4 4 4 4 4 40 100

⁠Kenny Lai 4 4 3 3 4 4 3 3 4 4 36 90

Lim Heng

Lai

4 3 4 4 4 3 4 4 3 4 37 92.5

⁠Pan Sieng

Hua

3 4 4 4 3 4 3 4 4 3 36 90

⁠Ting Yuen

Kiong

4 4 4 4 4 4 4 4 4 4 40 100

Average SUS Score 94.5

Grade A

 In addition to the System Usability Scale (SUS), a set of open-ended

questions was also prepared to allow respondents provide brief comments on

the palm oil mill monitoring system. This approach helped capture some

valuable feedback from the users’ thoughts and feelings towards the

implemented system. The open-ended questions are shown below:

1. What do you like most about the system?

2. What do you like least about the system?

3. Do you have any suggestions for improving the current system?

c151

The Table 7.10 below show the summary of the most like features

based on the participant feedback. However, no least-liked features or

functionality were identified by the participant during the usability testing.

Table 7.10: Summary of Participants’ Most Liked Features of the System.

Summary of Participants’ Most Liked Features of the System

The dashboard is very clean and easy to understand. I can see the real-time

device updates clearly.

The graph monitoring function is very useful, especially the zoom and tooltip

feature.

The alarm notification is clear and accurate.

The system is able to change the theme mode.

The system is very stable and responsive. I felt confident using it without any

training.

Despite no least-liked feedback from the participants, there are some

suggestions from participants for improving the system as shown in Table 7.11

below. These recommendations are valuable and useful for future

improvement on phase 2 later on to enhance the overall system usability.

Table 7.11: Summary of Suggestions for Improving the system from

Participants.

Summary for Improving the System Recommended by Participants

Allow alarm threshold settings able to configure in the mobile app.

Have auto analysis in the system based on the alarm monitoring system.

Provide more detailed documentation or video guides inside the system for

new users.

Able to change password in the system.

Include a search function in the FAQ to quickly find solutions.

c152

7.4 Alpha Testing

In addition to unit testing and usability testing described in previous sections,

alpha testing was also conducted on the deployed mobile application for both

Android and iOS platforms to internal team. This testing ensured that all

released features worked as expected across platforms and met company

requirements.

 To ensure traceability of changes made, version control was

recorded and maintained throughout the development cycle. Each release

version was tested for functionality, usability and performance by the internal

team. The alpha version history is shown in Table 7.12 below:

Table 7.12: Alpha Version Control History.

Version Release Date Changes / Notes

SM365_V2.0.1 Alpha 28/04/2025 - Initial release

- Graph monitoring function

SM365_V2.1.0 Alpha 14/06/2025 - Implemented alarm

notification system

SM365_V2.1.1 Alpha 24/06/2025 - Updated Ack function for

newer Python version

- App name changed to Smart

Mill 365

- Updated app icon

SM365_V2.1.2 Alpha 25/06/2025 - Updated new influx DB

URL and token

- Updated new login page

design

SM365_V2.1.3 Alpha 27/06/2025 - Adjusted light and dark

mode colour

- Updated UI for chart screen

- Unique device unit retrieve

from Firebase

- Created a generic screen for

all devices

c153

SM365_V2.1.4 Alpha 29/06/2025 - Created theme settings in

app

SM365_V2.1.5 Alpha 30/06/2025 - Updated app info in About

Us, FAQ and Privacy

Policy.

- Updated Logout button UI.

SM365_V2.1.6 Alpha 3/07/2025 - Updated new influx DB

URL

SM365_V2.1.7 Alpha 10/07/2025 - Updated applicationId

 Figure 7.1 below shows the latest build history of the mobile

application in TestFlight for internal testing purposes. These records provide

a trace of deployed versions that were verified by the internal team to ensure

that all features met company requirements before proceeding to external beta

testing.

Figure 7.1: Build History for TestFlight in App Store Connect.

c154

7.5 Beta Testing

After the completion of internal alpha testing, beta testing was conducted to

evaluate the application under real-world conditions. Unlike alpha testing,

which is limited to internal teams, beta testing involves selected external

users who provide valuable feedback on usability, performance, and overall

user experience. This stage is crucial before deployment as it helps identify

issues that may not be found during alpha testing.

Figure 7.2 below shows the list of external users in TestFlight on

App Store Connect. Each build version was distributed to selected external

users (Novaflow clients) through TestFlight for beta testing before the official

release on the App Store. Feedback gathered from these external testers help

validate functionality, usability, and performance in real-world conditions.

This serves as evidence of structured beta testing carried out before the

deployment process. The beta version history is outlined in Table 7.13 below:

Table 7.13: Beta Version Control History.

Version Release Date Changes / Notes

SM365_V2.2.0 Beta 1/08/2025 - Graph update from every 5

seconds to 1 minute to avoid

lagging in Android

- Last Updated As: change

from current timestamps to

follow influx DB’s last

Figure 7.2: List of External Users for Beta Testing.

c155

timestamps

- Show loading indicator

before selected subgroup’s

data fully retrieve

- Fixed screens rotate issue

SM365_V2.2.1 Beta 5/08/2025 - Click graph can show line

spot value

- Graph able to zoom in and

out

- Removed live graph to avoid

lagging

SM365_V2.2.2 Beta 7/08/2025 - Updated graph screen UI

SM365_V2.2.3 Beta 7/08/2025 - Initial subgroup loading

state performance

SM365_V2.2.4 Beta 20/08/2025 - UI for loading indicator

(Novaflow logo)

- Run/Stop label for

xxx_event in Firebase

- UI for Confirm button

SM365_V2.2.5 Beta 20/08/2025 - UI for bottom navigation

- Update timestamps and

run/stop in view graphs page

SM365_V2.2.6 Beta 22/08/2025 - Fix blank screen issue

SM365_V2.2.7 Beta 10/09/2025 - Update UI for active alarm

icon

- Update version number in

app

- Update error message

- Added hide/unhide

password function

- Add Remember Me function

during login

c156

CHAPTER 8

8 CONCLUSION AND RECOMMENDATION

8.1 Conclusion

This last chapter is to provide a conclusion and recommendation for future

improvement on this project. All objectives stated in Chapter 1 were

successfully achieved including:

1. To develop a cross-platform mobile application using Flutter that can

replace the existing company’s iOS app and ensures accessibility for

both Android and iOS users in monitoring POM processes.

2. To integrate SVG graphics for displaying process layouts along with

real-time data display.

3. To implement an alarm notification system to alert users about critical

process conditions.

4. To enhance system usability and interface for more efficient real-time

monitoring and analysis.

Since the project was successful achieving all stated objectives, this

resulting a fully functional cross-platform mobile application for monitoring

palm oil mill processes. The system developed not only replaced the

company’s existing iOS app but also improved its accessibility, real-time data

visualization and overall usability. Through systematic testing, deployment

and feedback from company, the application has been validated as a reliable

and practical solution. The application now is fully launched and actively used

by company’s clients.

The official evaluation letter from Novaflow Technology Sdn. Bhd.

is shown in Appendix C, which acknowledges the successful completion and

handover of the project, as well as my contributions and performance during

the development.

c157

8.2 Limitations and Recommendations for Future Works

During the development and testing phases of the system, some limitations

were identified by the company, the participants that involved in the usability

testing and myself. These limitations along with their recommendations are

summarized in Table 8.1 below serve as guidance for future improvement in

Phase 2 of the project by the company.

Table 8.1: Limitations and its Recommendations of the System.

Limitations Recommendation

Lack of device performance analysis

in the system.

Implement advanced performance

analytics features to provide deeper

insights for operators and managers.

Dashboard UI basic and not fully

suited for complex palm oil mill

processes.

Enhance the dashboard with

customizable widgets and process-

specific visualizations to better

support operational needs.

Device and alarm settings cannot be

configured directly from the mobile

app.

Enable in-app configuration of device

and alarm settings to reduce

dependency on Firebase and reliance

on Novaflow IT team.

Change and reset password function

is not available in the mobile app.

Integrate change and reset password

feature to improve user account

management and security.

Limited documentation and learning

support for new users.

Provide more detailed documentation

or video guides in the system to help

new users learned quickly.

FAQ section is basic and not

searchable.

Include a search function in the FAQ

module to allow users to quickly find

solutions to common issues.

158

REFERENCES

Foong, S.Z., Lam, Y.L., Andiappan, V., Foo, D.C. and Ng, D.K., 2018. A systematic

approach for the synthesis and optimization of palm oil milling

processes. Industrial & Engineering Chemistry Research, 57(8), pp.2945-2955.

Camburn, B., Viswanathan, V., Linsey, J., Anderson, D., Jensen, D., Crawford, R.,

Otto, K. and Wood, K., 2017. Design prototyping methods: state of the art in

strategies, techniques, and guidelines. Design Science, 3, p.e13.

United Nations (2025). The 17 Sustainable Development Goals. [online] United

Nations. Available at: https://sdgs.un.org/goals.

Kishore, K., Khare, S., Uniyal, V. and Verma, S., 2022, October. Performance and

stability comparison of react and flutter: Cross-platform application

development. In 2022 International Conference on Cyber Resilience

(ICCR) (pp. 1-4). IEEE.

Stack Overflow. (2019). Stack Overflow Developer Survey 2019. [online] Available at:

https://survey.stackoverflow.co/2019.

Tashildar, A., Shah, N., Gala, R., Giri, T. and Chavhan, P., 2020. Application

development using flutter. International Research Journal of Modernization in

Engineering Technology and Science, 2(8), pp.1262-1266.

Palumbo, D., 2021. The Flutter framework: Analysis in a mobile enterprise

environment (Doctoral dissertation, Politecnico di Torino).

Vishal, K. and Kushwaha, A.S., 2018, August. Mobile application development

research based on xamarin platform. In 2018 4th International Conference on

Computing Sciences (ICCS) (pp. 115-118). IEEE.

Sattar, A.M., Soni, P., Ranjan, M.K., Kumar, A., Sahu, C., Saxena, S. and Chaudhari,

P., 2023. Accelerating Cross-platform Development with Flutter Framework.

Penta, H., 2004. A COMPREHENSIVE TESTING APPROACH USING JEST FOR

REACT NATIVE MOBILE APPLICATIONS (Doctoral dissertation,

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE).

Ramadoss, G., 2023. Choosing Xamarin Platform for App Development. North

American Journal of Engineering Research, 4(3).

Wu, W., 2018. React Native vs Flutter, Cross-platforms mobile application frameworks.

159

Lodhi, M.K., 2024. Comparison and Evaluation of Cross-Platform

Frameworks (Doctoral dissertation, Hochschule für Angewandte

Wissenschaften Hamburg).

Kandiah, S., Basiron, Y., Suki, A., Taha, R.M., Tan, Y.H. and Sulong, M., 2006.

Continuous sterilization: The new paradigm for modernizing palm oil

milling. J. Oil Palm Res, pp.144-152.

Peng, C., 2000. Scalable vector graphics (svg). In Research Seminar on Interactive

Digital Media.

Zhu, X., Nie, X. and Liu, J., 2023, September. Time Series Database Optimization

Based on InfluxDB. In 2023 International Conference on Power, Electrical

Engineering, Electronics and Control (PEEEC) (pp. 879-885). IEEE.

Naqvi, S.N.Z., Yfantidou, S. and Zimányi, E., 2017. Time series databases and

influxdb. Studienarbeit, Université Libre de Bruxelles, 12, pp.1-44.

Tahmassebpour, M., 2017. A new method for time-series big data effective

storage. Ieee Access, 5, pp.10694-10699.

Khawas, C. and Shah, P., 2018. Application of firebase in android app development-a

study. International Journal of Computer Applications, 179(46), pp.49-53.

Grier, R.A., Bangor, A., Kortum, P. and Peres, S.C., 2013, September. The system

usability scale: Beyond standard usability testing. In Proceedings of the human

factors and ergonomics society annual meeting (Vol. 57, No. 1, pp. 187-191).

Sage CA: Los Angeles, CA: SAGE Publications.

Azami, H.H.R. and Ibrahim, R., 2019. Development and evaluation of massive open

online course (MOOC) as a supplementary learning tool: An initial

study. International Journal of Advanced Computer Science and

Applications, 10(7).

160

APPENDICES

Appendix A: Low-fidelity prototype for SmartMill365 Mobile Application.

Login Page

Dashboard Page

161

Single Live Channel Data Monitoring Page

Full Screen Live Channel Data Monitoring Page

162

All / Filtered Live Channel Data Monitoring Page

Active Alarm Page

163

Alarm History Page

More Page

164

Welcoming Page

165

Appendix B: SUS Usability Test Responses.

Participant No: 1

Name: Loi Teck Cheu

Question Strongly

Disagree

(1)

(2) Neutral

(3)

(4) Strongly

Agree

(5)

1. I think that I

would like to

use this app

frequently.

 ✓

2. I found the app

unnecessarily

complex.

✓

3. I thought the app

was easy to use.

 ✓

4. I think that I

would need the

support of a

technical person

to use this app.

✓

5. I found the

various

functions in this

app were well

integrated.

 ✓

6. I thought there

was too much

inconsistency in

this app.

✓

7. I would imagine

that most people

would learn to

use this app very

 ✓

166

quickly.

8. I found the app

very

cumbersome to

use.

✓

9. I felt very

confident using

the app.

 ✓

10. I needed to learn

a lot of things

before I could

get going with

this app.

✓

1. What do you like most about the system?

The dashboard is very clean and easy to understand. I can see the real-

time device updates clearly.

2. What do you like least about the system?

-

3. Do you have any suggestions for improving the current system?

Allow alarm threshold settings able to configure in the mobile app.

Participant No: 2

Name: Kenny Lai

Question Strongly

Disagree

(1)

(2) Neutral

(3)

(4) Strongly

Agree

(5)

1. I think that I

would like to

 ✓

167

use this app

frequently.

2. I found the app

unnecessarily

complex.

✓

3. I thought the app

was easy to use.

 ✓

4. I think that I

would need the

support of a

technical person

to use this app.

 ✓

5. I found the

various

functions in this

app were well

integrated.

 ✓

6. I thought there

was too much

inconsistency in

this app.

✓

7. I would imagine

that most people

would learn to

use this app very

quickly.

 ✓

8. I found the app

very

cumbersome to

use.

 ✓

9. I felt very

confident using

the app.

 ✓

168

10. I needed to learn

a lot of things

before I could

get going with

this app.

✓

1. What do you like most about the system?

The graph monitoring function is very useful, especially the zoom and

tooltip feature.

2. What do you like least about the system?

-

3. Do you have any suggestions for improving the current system?

Have auto analysis in the system based on the alarm monitoring system.

Participant No: 3

Name: Lim Heng Lai

Question Strongly

Disagree

(1)

(2) Neutral

(3)

(4) Strongly

Agree

(5)

1. I think that I

would like to

use this app

frequently.

 ✓

2. I found the app

unnecessarily

complex.

 ✓

3. I thought the app

was easy to use.

 ✓

4. I think that I

would need the

✓

169

support of a

technical person

to use this app.

5. I found the

various

functions in this

app were well

integrated.

 ✓

6. I thought there

was too much

inconsistency in

this app.

 ✓

7. I would imagine

that most people

would learn to

use this app very

quickly.

 ✓

8. I found the app

very

cumbersome to

use.

✓

9. I felt very

confident using

the app.

 ✓

10. I needed to learn

a lot of things

before I could

get going with

this app.

✓

170

1. What do you like most about the system?

The alarm notification is clear and accurate.

2. What do you like least about the system?

-

3. Do you have any suggestions for improving the current system?

Provide more detailed documentation or video guides inside the system

for new users.

Participant No: 4

Name: Pan Sieng Hua

Question Strongly

Disagree

(1)

(2) Neutral

(3)

(4) Strongly

Agree

(5)

1. I think that I

would like to

use this app

frequently.

 ✓

2. I found the app

unnecessarily

complex.

✓

3. I thought the app

was easy to use.

 ✓

4. I think that I

would need the

support of a

technical person

to use this app.

✓

5. I found the

various

functions in this

app were well

 ✓

171

integrated.

6. I thought there

was too much

inconsistency in

this app.

✓

7. I would imagine

that most people

would learn to

use this app very

quickly.

 ✓

8. I found the app

very

cumbersome to

use.

✓

9. I felt very

confident using

the app.

 ✓

10. I needed to

learn a lot of

things before I

could get

going with

this app.

 ✓

1. What do you like most about the system?

The system able to change the theme mode.

2. What do you like least about the system?

-

3. Do you have any suggestions for improving the current system?

Able to change password in the system.

172

Participant No: 5

Name: Ting Yuen Kiong

Question Strongly

Disagree

(1)

(2) Neutral

(3)

(4) Strongly

Agree

(5)

1. I think that I

would like to

use this app

frequently.

 ✓

2. I found the app

unnecessarily

complex.

✓

3. I thought the app

was easy to use.

 ✓

4. I think that I

would need the

support of a

technical person

to use this app.

✓

5. I found the

various

functions in this

app were well

integrated.

 ✓

6. I thought there

was too much

inconsistency in

this app.

✓

7. I would imagine

that most people

would learn to

use this app very

quickly.

 ✓

173

8. I found the app

very

cumbersome to

use.

✓

9. I felt very

confident using

the app.

 ✓

10. I needed to learn

a lot of things

before I could

get going with

this app.

✓

1. What do you like most about the system?

The system is very stable and responsive. I felt confident using it

without any training.

2. What do you like least about the system?

-

3. Do you have any suggestions for improving the current system?

Include a search function in the FAQ to quickly find solutions.

174

Appendix C: Official Evaluation Letter from Novaflow.

175

	DECLARATION
	COPYRIGHT STATEMENT
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS / ABBREVIATIONS
	LIST OF APPENDICES
	CHAPTER 1
	1 INTRODUCTION
	1.1 General Introduction
	1.2 Importance of the Study
	1.3 Problem Statement
	1.4 Aim and Objectives
	1.5 Proposed Solution
	1.6 Proposed Approach
	1.7 Project Scope
	1.8 Contribution of the Study

	CHAPTER 2
	2 LITERATURE REVIEW
	2.1 Introduction
	2.2 Palm Oil Mill Process
	2.3 Cross-Platform POM Mobile Application
	2.4 Cross-Platform Framework Flutter
	2.5 SVG Graphics
	2.6 Alarm Notification System
	2.7 System Usability
	2.8 Database
	2.9 Summary

	CHAPTER 3
	3 METHODOLOGY AND WORK PLAN
	3.1 Introduction
	3.2 Software Development Methodology
	3.2.1 Evolutionary Prototyping Model

	3.3 Project Plan
	3.3.1 Work Breakdown Structure (WBS)
	3.3.2 Gantt Chart

	3.4 Development and Deployment Tools
	3.4.1 Flutter
	3.4.2 Android Studio
	3.4.3 Xcode
	3.4.4 Firebase
	3.4.5 Influx DB
	3.4.6 MySQL
	3.4.7 Python
	3.4.8 TestFlight
	3.4.9 App Store Connect

	CHAPTER 4
	4 PROJECT SPECIFICATION
	4.1 Introduction
	4.2 Requirement Specification
	4.2.1 Functional Requirements
	4.2.2 Non-Functional Requirements
	4.2.3 Use Case Diagram
	4.2.4 Use Case Description

	4.3 Low-fidelity Prototypes

	CHAPTER 5
	5 SOLUTION
	5.1 Introduction
	5.2 Problem-Solution Mapping
	5.2.1 Limited Android Access and Discontinuation of iOS Subscription
	5.2.2 Limited Visual Representation of Real-Time Processes
	5.2.3 Delayed Response to Critical Conditions
	5.2.4 Limited Usability and Interface Constraints

	5.3 Deployment of Solution

	CHAPTER 6
	6
	6 SYSTEM IMPLEMENTATION
	6.1 Introduction
	6.2 Project Setup
	6.2.1 Firebase Setup
	6.2.2 MySQL Cloud Database Setup

	6.3 System Modules
	6.3.1 Log In Module
	6.3.2 Dashboard Module
	6.3.3 Graph Monitoring Module
	6.3.4 Alarm Management Module
	6.3.5 User Profile & Settings Module

	6.4 Conclusion

	CHAPTER 7
	7 SYSTEM TESTING
	7.1 Introduction
	7.2 Unit Testing
	7.3 System Usability Testing
	7.3.1 Test Scenario of Usability Testing
	7.3.2 Results of Usability Testing

	7.4 Alpha Testing
	7.5 Beta Testing

	CHAPTER 8
	8 CONCLUSION AND RECOMMENDATION
	8.1 Conclusion
	8.2 Limitations and Recommendations for Future Works

	REFERENCES
	APPENDICES

