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ABSTRACT 

 

This project presents the design and implementation of a web-based smart IoT 

system for Japanese melon cultivation, addressing the critical need for real-

time monitoring, actionable analytics, and decision support in high-value crop 

farming. The system integrates IoT sensors to capture environmental 

parameters such as soil moisture, pH, electrical conductivity, temperature, and 

light intensity, with data first ingested via ThingSpeak and subsequently 

synchronized into a Supabase PostgreSQL database through an automated 

Edge Function and Cron Job. The application layer, developed using Spring 

Boot, manages business logic including threshold-based rule evaluation and 

integrates with Firebase Cloud Messaging to deliver real-time alerts and 

recommendations. Angular, Ng Zorro, TailwindCSS, and embedded Grafana 

dashboards form the presentation layer, providing farmers with intuitive 

visualizations such as time-series graphs, Soil Health Index computation, and 

correlation heatmaps. System testing and evaluation demonstrated reliable data 

integrity (99.81% completeness), accurate threshold-based suggestions, and 

efficient performance with an average application start time of 1.55 seconds. 

Functional and integration test cases confirmed robust user management, 

sensor threshold configuration, and task scheduling features. The findings 

highlight that the system effectively transforms raw IoT data into interpretable 

insights, enabling timely interventions that improve yield consistency and fruit 

quality. While the study faced limitations in full-scale deployment and 

hardware connectivity, the outcomes establish a scalable, cost-effective 

foundation for precision agriculture. Future work is recommended to expand 

deployment across full cultivation cycles, incorporate predictive analytics, and 

integrate advanced automation for irrigation and ventilation control. 

 

Keywords: smart farming; IoT; Japanese melon; Supabase; Grafana; Firebase; 

soil health index 

 

Subject Area: T57.6–57.97  
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

The global agricultural sector is undergoing a profound transformation driven 

by the demand for higher productivity, sustainable practices, and improved 

crop quality. Traditional farming methods, which often depend on manual 

observation and experience-based decision-making, face growing limitations 

in meeting these demands. Issues such as inconsistent monitoring, inefficient 

resource allocation, and vulnerability to environmental fluctuations can lead to 

reduced yield and compromised crop quality. With the rise of emerging 

technologies, agriculture is shifting toward smart farming systems that 

integrate Internet of Things (IoT), data analytics, and automation to optimize 

operations and decision-making. 

 

Japanese melon cultivation serves as an excellent case study for this 

transformation. As a premium and high-value crop, Japanese melons require 

precise environmental control covering parameters such as temperature, 

humidity, soil health, and light intensity to ensure consistency in growth and 

sweetness. Even slight deviations from the optimal range can result in 

significant loss of quality and market value. This makes real-time monitoring 

and intelligent data-driven decision-making critical for farmers. 

 

In response to these challenges, this project presents the development 

of a Web-Based Smart IoT System for Optimized Japanese Melon Farming. 

The system integrates IoT-enabled sensors, a cloud-based data pipeline, and a 

web application to provide real-time monitoring, visual analytics, and 

automated suggestions for corrective actions. By leveraging data-driven 

approaches such as threshold-based recommendations, soil health indexing, 

and correlation analysis, the system not only enhances productivity and 

decision-making but also contributes to sustainable resource management. 

Ultimately, this project demonstrates how the synergy of IoT and data 

analytics can bridge the gap between traditional farming and modern precision 
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agriculture, empowering farmers to achieve higher yields, superior quality, and 

long-term sustainability. 

 

1.2 Importance of Study 

The significance of this study lies in its ability to demonstrate how IoT, cloud 

computing, and real-time data analytics can address pressing challenges in 

modern agriculture, particularly for high-value crops such as Japanese melons. 

Agriculture today faces resource constraints, labour shortages, and increasing 

demands for sustainable practices, making technology-driven solutions 

essential. By providing farmers with real-time environmental monitoring, 

automated threshold-based alerts, and decision-support tools, this project 

exemplifies the role of IoT in enhancing both productivity and sustainability 

(Dhanaraju et al., 2022; Pathmudi et al., 2023). 

 

1.2.1 Technological & Academic Advancement 

This study contributes to academic discourse on precision agriculture by 

presenting a practical IoT-based framework that integrates sensor networks, 

cloud databases, and visual analytics dashboards. Unlike generic smart 

farming studies, this project focuses on a premium crop that demands strict 

environmental control. Recent studies highlight that IoT-enabled monitoring 

of soil and microclimate parameters significantly improves situational 

awareness and supports real-time decision-making (Singh and Sharma, 2024; 

Pathmudi et al., 2023). By implementing novel features such as a soil health 

index and correlation heatmaps, this study strengthens research on agricultural 

informatics and smart greenhouse management (Maraveas et al., 2022). 

 

1.2.2 Practical Significance 

For farmers, the system bridges the gap between measurement and timely 

action. IoT-driven greenhouse technologies have been shown to reduce water 

and fertiliser waste, stabilise microclimate conditions, and protect crop quality 

(Singh et al., 2024; Huynh et al., 2023). In Japanese melon cultivation, where 

even small deviations in soil moisture, pH, or temperature can lead to financial 

losses, the system’s threshold-based alerts and push notifications provide 

practical, actionable guidance. The integration of real-time dashboards and 
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correlation analytics further enables farmers to detect patterns that would 

otherwise remain hidden, supporting better farm management (Maraveas et al., 

2022). 

 

1.2.3 Societal and Economic Significance 

At a broader level, this study contributes to sustainable agriculture and 

national food security priorities. The Food and Agriculture Organization (FAO, 

2021) emphasises that agrifood systems must become more resilient to shocks 

while improving efficiency. In Malaysia, the National Agrofood Policy 2021–

2030 (NAP 2.0) highlights embracing modernisation and smart agriculture as a 

strategic thrust for enhancing productivity and farmer income (Ministry of 

Agriculture and Food Industries, 2021). By demonstrating a working IoT-

based monitoring and decision-support system for premium crop cultivation, 

this project directly aligns with these international and national agendas. 

 

1.3 Problem Statement 

Agriculture is increasingly adopting digital and IoT-based technologies to 

improve productivity, sustainability, and crop quality. However, while 

research on smart farming has expanded, most implementations remain limited 

to generic crop monitoring and lack integrated decision-support features 

(Pathmudi et al., 2023; Singh and Sharma, 2024). For high-value crops such as 

Japanese melons, which require strict environmental control, these gaps 

become critical as they directly affect yield consistency and market 

competitiveness. 

 

To address this issue, three main problems are identified: lack of real-

time monitoring and decision support, fragmented data analytics with limited 

actionable insights, and inconsistent yield quality. These problems reflect gaps 

in both research and practice, highlighting the need for a comprehensive, IoT-

based smart farming system that translates sensor data into reliable, actionable 

guidance for farmers. 
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1.3.1 Problem Statement 1: Lack of Real-Time Monitoring and 

Decision Support 

Although IoT devices are increasingly applied in agriculture, many current 

systems are limited to basic data logging and trend visualization, without 

offering real-time decision support (Dhanaraju et al., 2022; Singh and Sharma, 

2024). Farmers often detect issues such as nutrient imbalance or water stress 

only after symptoms appear, resulting in reduced yield and crop quality. This 

gap justifies the need for a system that integrates continuous monitoring with 

immediate alerts and threshold-based recommendations tailored to the specific 

requirements of Japanese melon farming. 

 

1.3.2 Problem Statement 2: Fragmented Data Analytics and Limited 

Actionable Insights 

Existing IoT solutions frequently provide raw sensor readings without 

contextual interpretation. Studies highlight that without advanced analytics, 

the collected data is underutilized (Pathmudi et al., 2023; Maraveas et al., 

2022). Farmers therefore lack the ability to optimise irrigation, fertilisation, 

and environmental adjustments effectively. This gap demonstrates the 

importance of systems that transform data into actionable insights through 

dashboards, automated suggestions, and visual analytics. 

 

1.3.3 Problem Statement 3: Inconsistent Yield Quality 

Japanese melons are highly sensitive to environmental fluctuations, and 

inconsistent control often results in variable sweetness, texture, and 

appearance. Research indicates that current IoT-enabled greenhouse systems 

improve control but remain insufficiently precise for high-value crops 

requiring premium-grade consistency (Huynh et al., 2023; Singh et al., 2024). 

This inconsistency leads to significant financial losses for farmers. Therefore, 

there is a need for an IoT-based solution that ensures stable environmental 

management and supports consistent yield quality through real-time 

monitoring and corrective interventions. 
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1.4 Aim and Objectives 

1.4.1 Project Aim 

The aim of this project is to design and develop a web-based smart IoT system 

for optimized Japanese melon farming that integrates real-time monitoring, 

data-driven analytics, and automated decision support. The system aspires to 

enhance yield consistency and crop quality by providing farmers with timely 

insights, visualised trends, and actionable recommendations derived from 

environmental and soil data. 

 

1.4.2 Project Objectives 

The project objectives aim to define the scope and purpose of this endeavour, 

guiding its direction and intended outcomes. These objectives serve as a 

roadmap for achieving specific milestones, ensuring clarity, alignment, and 

measurability throughout the project lifecycle. By outlining clear and 

actionable objectives, resources can be allocated effectively, and success can 

be evaluated against predetermined criteria. The objectives are as follows: 

 

1.4.2.1 To develop a web-based IoT system for real-time monitoring of 

environmental parameters in Japanese melon farming. 

This objective focuses on establishing a sensor-driven web-based IoT system 

capable of capturing real-time environmental and soil parameters critical to 

Japanese melon cultivation, including air temperature, air humidity, soil 

moisture, soil temperature, soil pH, soil conductivity, total dissolved solids 

(TDS), and light intensity. The design will ensure seamless integration of 

multiple sensors with an IoT gateway, while data transmission will be directed 

to a secure cloud platform. Success will be measured by the system’s ability to 

continuously capture accurate data under operational conditions within the 

greenhouse environment. 

 

1.4.2.2 To develop and integrate a data-driven analytics pipeline with 

visualization and analysis 

This objective aims to transform raw IoT sensor data into meaningful insights 

through the implementation of cloud-based data storage and analytical models. 

The pipeline will include features such as interactive dashboards, a soil health 
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index (SHI) to assess soil quality, and correlation heatmaps to reveal 

relationships between environmental parameters. Visualization will be 

provided via Grafana and embedded into the web application for user 

accessibility. Success will be determined by the system’s ability to provide 

real-time visualization, accurate soil health index (SHI) calculations, and 

correlation heat map that support data-driven decision-making for melon 

farming. 

 

1.4.2.3 To enhance farming yield and crop quality by implementing 

automated alerts and suggestions based on parameter thresholds. 

This objective addresses the development of threshold-based rules that 

evaluate sensor readings against optimal ranges for Japanese melon growth. 

When deviations are detected, the system will generate context-specific 

suggestions (e.g., irrigation adjustment, nutrient correction, or ventilation 

changes) and deliver push notifications to farmers in real time. Success will be 

measured by the timeliness, accuracy, and relevance of the alerts and 

recommendations, as well as the system’s ability to support farmers in making 

immediate corrective actions that minimise risks to yield and crop quality. 

 

1.5 Scope and Limitation of the Study 

1.5.1 Scope of the Study 

The scope of this study is confined to the design and development of a web-

based smart IoT system for Japanese melon cultivation, with the objective of 

enhancing yield consistency and crop quality through data-driven decision 

support. The focus is placed on software development, system integration, and 

data analytics rather than the construction of physical hardware. Specifically, 

the scope encompasses the following aspects: 

 

i. IoT Data Acquisition - Integration of environmental and soil 

parameters, including air temperature, air humidity, soil moisture, 

soil temperature, soil pH, soil conductivity, total dissolved solids 

(TDS), and light intensity, into a centralised platform for 

continuous monitoring. 
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ii. Cloud-Based Data Management and Analytics - Utilisation of a 

cloud database (Supabase) to manage sensor data, coupled with 

analytical features such as soil health indices and correlation 

heatmaps to support data-driven insights. 

iii. Web-Based Dashboard - Development of an Angular-based web 

application with embedded Grafana visualisations to display real-

time and historical sensor data in a user-friendly format. 

iv. Automated Alerts and Decision Support - Implementation of 

threshold-based rules to generate actionable recommendations, 

with real-time push notifications delivered to farmers via Firebase. 

v. System Evaluation - Functional and non-functional testing of the 

system, including metrics such as application responsiveness, data 

latency, data completeness, and system reliability, to assess its 

effectiveness in supporting smart farming practices. 

 

The scope therefore highlights the development of a data-driven 

smart farming platform tailored for Japanese melon cultivation, with hardware 

contributions managed by collaborating students from related engineering 

courses. 

 

1.5.2 Limitations of the Study 

Although the study demonstrates the feasibility of integrating IoT technologies, 

cloud analytics, and decision support in agriculture, several limitations must be 

acknowledged: 

 

i. Exclusion of Hardware Development - The physical setup of IoT 

sensors, microcontrollers, and gateways was undertaken by 

collaborating students from other engineering disciplines. This 

study is restricted to software, integration, and analytics 

components. 

ii. Limited Deployment Period - Due to time constraints inherent in 

the Final Year Project schedule, the system was not deployed 

across the full melon growth and harvesting cycle. As a result, 
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long-term evaluation over multiple planting seasons could not be 

conducted. 

iii. Absence of Automated Environmental Control - The system is 

designed to provide monitoring, analytics, and recommendations 

only. It does not incorporate automated actuation for irrigation, 

ventilation, or nutrient delivery, which remain manual processes. 

iv. No Artificial Intelligence or Machine Learning Integration - 

Predictive models were not implemented, as sufficient datasets 

were unavailable during the early stages of deployment. Decision 

support is instead based on predefined threshold rules. 

v. Crop-Specific Focus - The system is tailored to Japanese melon 

cultivation. Application to other crops would require 

reconfiguration of threshold parameters, modification of decision 

rules, and potential adjustments to the system architecture. 

 

1.6 Contribution of the Study 

This study contributes to both academic research and practical applications in 

the domain of smart farming. By focusing on Japanese melon cultivation, 

which demands precise environmental control for premium quality, the project 

demonstrates how an IoT-based, data-driven system can bridge the gap 

between traditional farming practices and modern digital agriculture. The 

contributions of the study are outlined as follows: 

 

1.6.1 Academic Contributions 

One of the major academic contributions of this study is the development of a 

framework for IoT-based smart farming systems. The project establishes a 

reference model that integrates real-time environmental monitoring, cloud-

based data management, and web-based visualization. This framework not 

only demonstrates the feasibility of combining these technologies but also 

provides a foundation for future research in agricultural informatics, where 

similar systems may be replicated or extended for different crops and contexts. 

 

Another significant contribution is the introduction of novel analytical 

features within the system. Unlike conventional monitoring platforms that only 
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display raw sensor data, this study incorporates a Soil Health Index (SHI) and 

correlation heatmaps to transform data into actionable insights. These features 

enrich the academic discourse by showing how IoT-generated data can be 

processed to support precision agriculture through decision-making tools, 

thereby advancing research in data-driven farming technologies. 

 

The study also contributes to academic knowledge by providing an empirical 

performance evaluation of the developed system. Key metrics such as 

application responsiveness, data latency, data completeness, and overall 

reliability were systematically tested and analyzed. These results offer 

benchmarks that can be used by future researchers to evaluate and compare 

similar smart farming systems, ensuring that this project adds measurable 

value to ongoing research in the field. 

 

1.6.2 Practical Contributions 

On a practical level, this study delivers a system that provides decision support 

for farmers through threshold-based recommendations and real-time push 

notifications using Firebase. This functionality enables farmers to receive 

timely alerts when environmental or soil parameters deviate from optimal 

ranges, helping them to take immediate corrective actions. Such decision-

support features reduce risks associated with poor crop management and 

directly contribute to maintaining yield and quality. 

 

The system also enhances farm management practices by 

consolidating multiple environmental and soil parameters into a single, user-

friendly platform. With visual dashboards displaying real-time and historical 

trends, farmers can monitor the overall condition of their crops more 

efficiently. This integration reduces the reliance on manual observation, 

supports more effective allocation of resources such as water and fertilizers, 

and simplifies day-to-day management of farming operations. 

 

Furthermore, the project contributes by offering a prototype tailored 

for high-value crop cultivation, specifically Japanese melons. These crops 

demand stricter quality control compared to many staple crops, and the system 
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demonstrates how IoT solutions can be customized to meet these requirements. 

This prototype can serve as a model for adapting IoT technologies to other 

premium horticultural crops, thereby extending its practical impact beyond the 

immediate study. 

 

1.6.3 Societal and Policy Contributions 

At the societal level, the system supports sustainable agriculture by promoting 

efficient monitoring and timely interventions. By reducing unnecessary use of 

water, fertilizers, and other inputs, the system encourages environmentally 

responsible practices. This contribution aligns with global sustainability goals, 

ensuring that agricultural productivity is balanced with resource conservation. 

 

The project also contributes to the national agenda through its 

alignment with Malaysia’s National Agrofood Policy 2021–2030 (NAP 2.0). 

The policy highlights the need to embrace smart agriculture technologies as 

part of a long-term strategy to modernize the agrifood sector, increase 

productivity, and enhance farmer income. This study’s outcomes demonstrate 

how digital technologies can directly support these strategic goals, thereby 

reinforcing their relevance to current policy directions. 

 

Finally, the study contributes to food security and quality assurance 

by addressing yield optimization and consistency in Japanese melon farming. 

By enabling more precise control of crop growth conditions, the system 

ensures a higher probability of producing premium-grade melons that meet 

market expectations. Indirectly, such systems also support broader societal 

efforts to secure reliable food production and meet consumer demand for high-

quality agricultural products. 

 

1.7 Outline of the Report 

This report is organized into eight chapters, each addressing a specific 

component of the research and development process for the web-based smart 

IoT system for Japanese melon farming. The structure is as follows: 
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i. Chapter 1: Introduction – Presents the background of the study, 

importance, problem statements, research aim and objectives, scope 

and limitations, and contributions. This chapter establishes the 

rationale and foundation of research. 

ii. Chapter 2: Literature Review – Reviews existing works on smart 

farming, precision agriculture, IoT applications, cloud platforms, 

data management, analytics techniques, and decision support 

systems. It highlights global trends, benefits, and limitations, while 

identifying research gaps and positioning the present study. 

iii. Chapter 3: Methodology and Work Plan – Describes the 

development methodology adopted, namely Rapid Application 

Development (RAD), and outlines the project phases. It further 

details the work breakdown structure, Gantt chart, and tools used to 

guide systematic system development. 

iv. Chapter 4: Project Specification – Defines the system 

requirements, both functional and non-functional, and provides use 

case diagrams and descriptions. It also introduces the conceptual 

prototype that serves as the blueprint for system design and 

development. 

v. Chapter 5: System Design – Explains the architectural design of 

the system, including its three-tier structure (presentation, 

application, and data layers). It also covers the database design, 

entity-relationship diagram, and schema specifications. 

vi. Chapter 6: System Implementation – Provides a detailed 

explanation of how the system was implemented, covering 

functional modules such as authentication, authorization, user 

management, task management, sensor threshold configuration, 

and data visualization. It also describes the implementation of 

business logic components (Edge Functions, Cron Jobs, suggestion 

logic, and notifications) and analytics modules (time-series graphs, 

Soil Health Index, and correlation analysis). 

vii. Chapter 7: System Testing and Evaluation – Presents the testing 

approach and results, including functional, integration, and 

performance testing. It also evaluates data handling accuracy, 
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visualization and analytics validity, threshold-based suggestions, 

and responsiveness of the system. 

viii. Chapter 8: Conclusion and Recommendations – Summarizes the 

study’s key findings in relation to its objectives, highlights 

encountered problems and limitations and provides 

recommendations for future improvements such as full-cycle 

deployment, advanced predictive analytics, and enhanced IoT 

integration. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

This chapter reviews the growing body of research on smart farming and 

precision agriculture, focusing on how IoT, cloud platforms, and data analytics 

are reshaping modern cultivation practices. For high-value crops such as 

Japanese musk melons, small fluctuations in soil pH, moisture, or temperature 

can determine fruit quality, making real-time monitoring and decision support 

critical. The review is structured around four themes: smart farming concepts 

and global trends, the role of data management and analytics, the use of 

decision support systems, and comparative studies of existing smart farming 

solutions. By examining both benefits and limitations reported in recent 

literature, the chapter identifies gaps in crop-specific tailoring, actionable 

insights, and real-time usability—gaps that this project addresses through the 

design of a web-based IoT system tailored to Japanese melon farming. 

 

2.2 Smart Farming and Precision Agriculture 

2.2.1 Definition and Concepts 

Smart farming and precision agriculture are transformative approaches that 

employ modern technologies to enhance agricultural practices beyond what 

traditional farming achieves. Precision agriculture (PA) is typically defined as 

a data-driven farming management approach that observes, measures, and 

analyses the variability within fields in order to guide resource application 

such as water, fertilisers, or pesticides only where and when they are needed to 

maximize crop yield, quality, and input efficiency (Monteiro et al., 2021; 

Padhiary et al., 2025). Smart farming builds upon precision agriculture by 

integrating IoT sensors, cloud platforms, dashboards, and decision support 

mechanisms to enable more responsive, real-time control over farming 

operations (Mansoor et al., 2025; Roy, 2025). 
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Figure 2.1: Conceptual framework of smart farming technology (Raj and 

Prahadeeswaran, 2025) 

 

Traditional farming, in contrast, relies heavily on uniform inputs, 

manual observation, and fixed schedules without continuous feedback from 

the crop environment. This often leads to inefficiencies such as overuse or 

underuse of water, inconsistency in crop growth, and slower responsiveness to 

environmental changes (Monteiro et al., 2021). In the case of Japanese melon 

farming, these inefficiencies can manifest as variation in fruit sweetness, poor 

texture, or uneven maturity, because the crop is sensitive to microclimates and 

environmental fluctuations. 

 

In summary, this section establishes that precision agriculture is about 

variability management and efficient input use, while smart farming is its 

broader technological extension with real-time monitoring and actionable 

intelligence. This conceptual groundwork is critical to justify the development 

of a smart IoT system for Japanese melon cultivation—one that captures 

environmental data, analyses it, and supports decisions in a responsive manner. 

 

2.2.2 Global Trends (2020–2025) 

In the period 2020-2025, global trends in smart farming reflect increased 

adoption of IoT, sensor technologies, and integrated analytics tools, driven by 

pressures such as climate change, resource scarcity, and the rising demand for 
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high-quality produce. A review by Mansoor et al. (2025) found that smart 

sensors for soil moisture, pH, and plant stress have become significantly more 

common in precision agriculture frameworks, particularly in regions facing 

water stress. Such sensors now often feed into systems that provide not only 

raw data but also data visualization dashboards and advisory outputs to 

farmers, indicating a shift toward systems that enable actionable insight rather 

than mere monitoring. 

 

Another trend is the increasing use of hybrid connectivity models to 

ensure reliable IoT deployment in remote or rural farmland. A recent 

comparative study shows models combining LPWAN (e.g., LoRaWAN or 

NB-IoT) with 4G/5G cellular networks can improve network reliability and 

reduce costs in remote farm settings by up to 30% (Mohamed Rafi et al., 2025). 

This trend is important for scalability and robustness of IoT systems, 

particularly in regions with infrastructure limitations—factors highly relevant 

if systems are deployed outside urban centers or high-connectivity zones. 

 

There is also a stronger emphasis on sustainability and efficiency. 

Reviews have underscored that IoT technologies are being increasingly paired 

with precision farming practices to optimize input use (water, fertilizer, energy) 

and reduce environmental pollution (Duguma et al., 2024). Efficiency gains 

are not only in production (yield) but also in resource use, aligning with global 

climate and sustainability goals. Countries with progressive agricultural 

policies are supporting smart farming via subsidies, technical training, and 

open-data initiatives to reduce the barrier to entry for farmers (Revolutionizing 

Agriculture: A Review, Raj & Prahadeeswaran, 2025). 

 

Finally, there is a trend towards developing more integrated systems 

that combine real-time monitoring, analytics, and user engagement through 

dashboards and alerts. Systems are increasingly offering decision support, 

such as threshold-based alerts, predictive warnings, or advisory services, rather 

than simply collecting data. Although many of these systems still rely on 

machine learning or AI, there is growing recognition of the role that simpler, 

rules-based alerts (thresholds) can play, especially in early-stage or small-scale 
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deployments (Integration of Smart Sensors & IoT in Precision Agriculture, 

Mansoor et al., 2025). 

 

2.2.3 Benefits and Limitations 

The adoption of IoT technologies in agriculture offers a wide range of benefits 

that directly contribute to improved productivity, sustainability, and farm 

management. One of the most significant advantages is resource optimization, 

as IoT sensors enable precise monitoring of soil moisture, nutrient levels, and 

microclimatic conditions. This allows farmers to apply water and fertilizers 

only when required, reducing wastage and improving efficiency (Duguma et 

al., 2024). In addition, IoT-enabled systems support real-time monitoring, 

giving farmers continuous access to data that can enhance decision-making 

and improve responsiveness to sudden changes in the farm environment 

(Mansoor et al., 2025). This technology also contributes to labor reduction by 

automating data collection and reducing the need for manual field inspections 

(Raj & Prahadeeswaran, 2025). For high-value crops such as Japanese melons, 

these benefits are particularly important, as minor fluctuations in soil pH, 

humidity, or temperature can significantly affect fruit sweetness, texture, and 

market quality. 

 

Despite these advantages, several limitations hinder the widespread 

adoption of IoT in agriculture. A major barrier is the high initial cost of 

sensors, connectivity infrastructure, and cloud service subscriptions, which 

may be prohibitive for smallholder farmers (Mohamed Rafi et al., 2025). 

Furthermore, IoT deployment in rural or greenhouse settings often faces 

connectivity challenges, as reliable networks such as 4G/5G or LPWAN may 

not always be accessible (Mansoor et al., 2025). Another limitation lies in data 

interoperability and complexity; the integration of heterogeneous sensor data 

into a unified platform can be technically demanding and requires expertise 

that many farmers may lack (Raj & Prahadeeswaran, 2025). Additionally, 

security and privacy issues surrounding cloud-stored farm data remain 

unresolved, raising concerns about data misuse or unauthorized access 

(Duguma et al., 2024). 
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In summary, IoT technologies in agriculture present substantial 

opportunities for enhancing efficiency and crop quality but face challenges of 

cost, connectivity, and technical accessibility. These benefits and limitations 

underscore the need for research on cost-effective, user-friendly, and crop-

specific IoT solutions. The present study addresses this by focusing on a web-

based IoT system tailored for Japanese melon farming, designed to provide 

actionable insights, reduce inefficiencies, and support consistent yield quality 

without overcomplicating the user experience. 
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Table 2.1: Benefits and Limitations of IoT in Agriculture 

Aspect Benefits Limitations 

Resource Management Enables precise monitoring of soil moisture, nutrients, 

and microclimatic conditions, improving efficiency and 

reducing wastage (Duguma et al., 2024). 

High initial cost of sensors, IoT gateways, and cloud 

services can be prohibitive, especially for smallholder 

farmers (Mohamed Rafi et al., 2025). 

Decision-Making Real-time monitoring provides continuous data access, 

enhancing decision-making and responsiveness to 

environmental changes (Mansoor et al., 2025). 

Connectivity challenges in rural areas and 

greenhouses due to unreliable 4G/5G or LPWAN 

coverage (Mansoor et al., 2025). 

Labor Efficiency Automates data collection, reducing dependence on 

manual field inspections and lowering labor 

requirements (Raj & Prahadeeswaran, 2025). 

Integration of heterogeneous sensor data into a unified 

platform is technically demanding and requires 

expertise (Raj & Prahadeeswaran, 2025). 

Crop Status and Quality Particularly beneficial for high-value crops like 

Japanese melons, where stable environmental control 

enhances fruit sweetness, texture, and consistency 

(Duguma et al., 2024; Mansoor et al., 2025). 

Security and privacy concerns regarding storage of 

farm data on cloud platforms raise risks of misuse or 

unauthorized access (Duguma et al., 2024). 
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2.2.4 Identified Gap 

Although IoT technologies have advanced rapidly and are increasingly applied 

in agriculture, several key gaps remain evident in the literature: 

 

i. Lack of crop-specific tailoring - Most IoT applications are 

designed for general farming contexts and do not adequately 

address the unique environmental sensitivities of high-value crops 

such as Japanese melons, where small fluctuations in soil pH, 

humidity, and temperature critically affect yield and quality 

(Mansoor et al., 2025; Duguma et al., 2024). 

ii. Limited actionable insights - Existing systems often focus on raw 

data collection and visualization but fall short in transforming these 

into decision-support features such as tailored recommendations or 

threshold-based alerts for farmers (Raj & Prahadeeswaran, 2025; 

Padhiary et al., 2025). 

iii. Barriers to accessibility and adoption - High initial costs, 

unreliable connectivity, and technical challenges in integrating 

heterogeneous sensor data restrict the usability of IoT systems, 

particularly for smallholder farmers (Mohamed Rafi et al., 2025; 

Mansoor et al., 2025). 

 

These gaps demonstrate the need for a cost-effective, user-friendly, 

and crop-specific IoT system that provides actionable decision support 

precisely what the present study aims to deliver for Japanese melon farming. 

 

2.3 Data Management and Analytics in Smart Farming 

2.3.1 Importance of Data Management 

Effective data management is fundamental to the success of smart farming 

systems because IoT devices generate large volumes of heterogeneous data 

that must be properly structured, stored, and accessed to provide value. 

Without reliable data management, sensor reading may remain fragmented, 

inaccurate, or inaccessible, undermining the effectiveness of IoT adoption in 

agriculture. For high-value crops such as Japanese melons, which require 
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consistent monitoring of sensitive parameters like soil pH, moisture, and 

temperature, robust data management is particularly critical in ensuring that 

environmental variations are captured accurately and used for decision-making 

(Mansoor et al., 2025). 

 

i. Ensuring Data Accuracy and Reliability – The quality of IoT 

data directly affects the trustworthiness of smart farming decisions. 

Poor data management may result in missing values, duplications, 

or delays, which in turn reduce system reliability. Studies 

emphasize that reliable data pipelines and structured storage 

mechanisms are essential to minimize latency and errors in real-

time monitoring applications (Raj & Prahadeeswaran, 2025). This 

is especially important for greenhouse environments, where timely 

data access is needed for responsive actions such as irrigation 

adjustment or ventilation. 

ii. Supporting Scalability and Long-Term Use – IoT in agriculture 

requires continuous monitoring across multiple crop cycles. Cloud-

based data management ensures scalability, allowing systems to 

handle increasing amounts of sensor data while maintaining 

performance (Padhiary et al., 2025). Structured storage also enables 

longitudinal analysis, helping farmers and researchers to study 

correlations and seasonal patterns that are vital for long-term crop 

optimization. 

iii. Enabling Data-Driven Insights – Well-managed data not only 

ensures accessibility but also enables transformation into actionable 

insights through analytics and visualization. Without structured 

data, advanced techniques such as soil health indices or correlation 

heatmaps—both applied in this study—would not be feasible 

(Duguma et al., 2024). Data management therefore serves as the 

foundation for bridging raw sensor readings with meaningful 

decision support. 

iv. Integration and Interoperability – Smart farming often involves 

multiple sensors, platforms, and data formats. Robust data 

management frameworks enable integration of heterogeneous data 



21 

sources into a unified system, improving accessibility and usability 

(Mansoor et al., 2025). In Japanese melon farming, interoperability 

ensures that soil, environmental, and climate data are consolidated 

for holistic analysis, supporting yield and quality consistency. 

 

2.3.2 Cloud Platforms in Agriculture 

Cloud platforms form the backbone of smart farming systems by providing the 

infrastructure for sensor integration, real-time data ingestion, scalable storage, 

and advanced analytics. In this project, which focuses on Japanese melon 

cultivation, cloud platforms enable the seamless collection of environmental 

parameters such as soil moisture, pH, electrical conductivity, temperature, and 

light intensity. These platforms not only support remote monitoring through 

dashboards and mobile applications but also facilitate advanced analytics, 

including soil health indices and correlation heatmaps, that transform raw IoT 

data into actionable insights for optimized crop management. In the following 

section, several widely used cloud platforms for agricultural data management 

in the market will be discussed. 

 

ThingSpeak, developed by MathWorks, is a lightweight IoT analytics 

platform that has been widely adopted in agricultural research and prototyping. 

It supports sensor data ingestion through REST APIs, enabling farmers and 

researchers to capture key environmental parameters such as soil moisture, 

humidity, and temperature. ThingSpeak also provides real-time visualization 

and basic analytics, which make it particularly suitable for applications such as 

irrigation scheduling, soil monitoring, and crop condition tracking. Due to its 

simplicity and accessibility, ThingSpeak is often applied in small-scale or 

experimental farming projects where rapid deployment and ease of use are 

prioritized (MathWorks, n.d.; Kadarabad et al., 2025). 

 

Supabase is an emerging open-source Backend-as-a-Service platform 

that leverages PostgreSQL as its core database, offering structured relational 

storage, authentication, and real-time data streams. Although its adoption in 

agriculture remains limited compared to more established platforms like 

ThingSpeak and Firebase, its relational model makes it highly effective for 
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managing structured farm data. Examples include organizing sensor readings, 

maintaining detailed plot information, and storing farmer account profiles. 

This capacity for relational management provides greater flexibility for 

integrating diverse datasets, which can be especially beneficial in precision 

agriculture systems that rely on multi-parameter monitoring. 

 

Firebase, developed by Google, has become one of the most widely 

used Backend-as-a-Service solutions for developing mobile and web 

dashboards in agriculture. It offers a wide range of services, including 

Firestore, a real-time database, authentication modules, and push notifications. 

These features allow farmers to visualize live sensor data and receive timely 

alerts via mobile devices, thereby enhancing decision-making and operational 

efficiency. Despite its advantages in rapid development and real-time updates, 

Firebase employs a NoSQL data model, which may pose challenges when 

handling relational agricultural datasets that require complex queries and 

structured analysis (Agarwal, 2025). 

 

AWS IoT Core and its associated services provide enterprise-level 

scalability and advanced capabilities for agricultural applications. This 

platform enables secure device connectivity, real-time data streaming, and 

integration with other AWS services such as analytics and machine learning. 

Case studies have demonstrated AWS IoT being deployed in precision 

agriculture, particularly for greenhouse climate control, soil and crop sensor 

integration, and predictive analytics. The robustness and scalability of AWS 

make it a suitable choice for large-scale agricultural systems that demand both 

reliability and advanced data processing capabilities (AWS, 2018; AWS, n.d.). 

 

Google Cloud IoT has also been successfully applied in agricultural 

projects, particularly where advanced analytics and machine learning 

integration are required. A notable example is the SpaceFarm initiative, which 

employed Google Cloud IoT services combined with predictive analytics to 

optimize greenhouse environments. This case demonstrates the platform’s 

ability to handle real-time monitoring, large-scale data management, and 

predictive modeling for agricultural optimization. By leveraging Google’s 
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global cloud infrastructure, farms can integrate IoT data with advanced 

machine learning pipelines to enhance decision-making and resource 

management (Google Cloud, n.d.; Google, 2022). 

 

In summary, cloud platforms for agriculture vary in complexity, 

scalability, and suitability depending on farm size, objectives, and system 

design. ThingSpeak and Firebase are often preferred for small-scale 

deployments or prototypes due to their accessibility and real-time capabilities, 

while Supabase offers flexibility through its relational data management 

features. In contrast, AWS IoT and Google Cloud IoT are more suited for 

enterprise-level agricultural operations, where predictive analytics, automation, 

and advanced data integration are critical for achieving efficiency and 

scalability. 
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Table 2.2: Comparison of Cloud Platforms for Smart Farming 

Platform Key Features Strengths Limitations Suitability in Agriculture 

ThingSpeak 

(MathWorks) 

REST API-based data 

ingestion, real-time 

visualization, basic 

analytics 

Simple setup, widely used 

in research, suitable for 

rapid prototyping 

Limited scalability, basic 

analytics only 

Small-scale or 

experimental farms (e.g., 

irrigation scheduling, soil 

monitoring) 

Supabase Open-source BaaS, 

PostgreSQL relational 

storage, authentication, 

real-time streams 

Strong relational model, 

flexible for structured 

datasets, open-source 

ecosystem, high free tier 

limit 

Less adoption in 

agriculture, limited 

ecosystem maturity 

compared to Firebase or 

AWS 

Precision agriculture 

projects requiring 

structured, multi-parameter 

datasets (e.g., soil + crop 

records) 

Firebase (Google) Real-time DB, 

authentication, push 

notifications, mobile/web 

dashboard integration 

Fast deployment, strong 

mobile integration, real-

time updates 

NoSQL model complicates 

relational queries and 

structured analytics 

Small to medium-scale 

farms needing dashboards 

and instant notifications 

AWS IoT Core Secure device 

connectivity, real-time 

High scalability, robust 

ecosystem, advanced 

Complex setup, higher cost Enterprise-level smart 

farming (e.g., greenhouse 
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data streaming, integration 

with AWS analytics & ML 

services 

analytics & automation automation, predictive 

analytics) 

Google Cloud IoT Device connectivity, 

ML/AI integration, 

predictive modeling, large-

scale data pipelines 

Strong analytics & ML 

support, global cloud 

infrastructure 

More complex and costly 

than lightweight platforms 

Large-scale or research-

driven projects (e.g., 

greenhouse optimization, 

predictive farming) 
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2.3.3 Data Analytics Techniques 

The rapid adoption of IoT in agriculture has resulted in a growing demand for 

data analytics techniques that can convert large volumes of sensor readings 

into actionable insights. In the current market, analytics solutions for smart 

farming can be broadly categorized into data visualization dashboards, time-

series and trend analysis, composite indices and decision-support metrics, 

statistical and machine learning approaches, and predictive analytics 

frameworks. Each category offers unique advantages but also presents 

limitations depending on the scale of deployment, crop type, and local farming 

practices (Wolfert et al., 2017). 

 

Dashboards and visualization platforms are among the most widely 

used analytics techniques in agriculture. Commercial and open-source tools 

such as Grafana, Power BI, and Google Data Studio are commonly deployed 

to present environmental parameters in real time. These dashboards provide 

farmers with accessible summaries of temperature, soil moisture, humidity, 

and nutrient levels. They also allow the integration of multiple data streams 

from cloud platforms such as AWS IoT Core and Google Cloud IoT. Studies 

show that dashboards improve user engagement and decision-making by 

presenting complex sensor data in an interpretable format (Mekonnen et al., 

2021). However, dashboards are typically descriptive rather than predictive, 

and their value depends heavily on the underlying quality of data collected. 

 

Time-series analysis and anomaly detection techniques are also 

extensively applied in the market. Vendors such as Microsoft Azure IoT and 

IBM Watson IoT integrate time-series databases and anomaly detection 

algorithms into their agricultural solutions, enabling farmers to detect 

abnormal fluctuations in soil moisture, pH, or light intensity. Academic studies 

have shown that time-series analysis supports irrigation management and 

greenhouse optimization by identifying cyclical patterns and abnormal 

readings (Singh et al., 2024). Despite these benefits, most applications still 

rely on historical trend monitoring, with limited predictive capacity for future 

conditions. 
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Composite indices and decision-support metrics have been 

increasingly promoted to simplify complex agricultural data. For example, 

Soil Health Indices (SHI) and crop stress indices combine multiple soil and 

environmental factors into a single score that reflects overall growing 

conditions (Singh et al., 2024). Commercial solutions such as CropX and 

Arable use similar composite indicators to provide farmers with holistic 

assessments of soil health and water efficiency. While such indices reduce the 

cognitive burden on farmers, they often lack universality and require localized 

calibration to specific soil types and crops, which restricts scalability across 

regions. 

 

Statistical techniques and machine learning models represent another 

major area of analytics. Correlation and regression analyses are frequently 

used to identify relationships between environmental variables and crop 

performance, guiding targeted interventions in fertilization or irrigation 

(Khanna et al., 2020). At the commercial level, companies such as Prospera 

and Taranis deploy machine learning models that analyze sensor data, weather 

patterns, and satellite imagery to detect early signs of crop disease or predict 

yield outcomes. These approaches provide deeper insights than descriptive 

analytics, but they require high-quality datasets and computational 

infrastructure, which may not be feasible for smallholder farmers. 

 

Predictive and prescriptive analytics frameworks are gaining traction 

as advanced solutions in the agricultural market. Predictive analytics leverages 

historical datasets combined with weather forecasts and soil models to 

anticipate future conditions such as drought stress, pest outbreaks, or nutrient 

deficiencies. Prescriptive analytics goes a step further by recommending 

specific interventions, such as adjusting irrigation frequency or applying 

fertilizer. Several agritech firms, including IBM Watson Decision Platform for 

Agriculture, have incorporated such capabilities into their solutions. However, 

these systems often demand high upfront investment and technical expertise, 

which can limit their adoption in developing regions. 
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As summarized in Table 2.3, dashboards, time-series visualization, 

and composite indices remain accessible and effective techniques for small- to 

medium-scale farms, while advanced predictive and prescriptive frameworks 

are more resource-intensive. In this project, emphasis is placed on dashboards, 

SHI, correlation analysis, and time-series visualization to balance feasibility 

with analytical depth. 
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Table 2.3: Comparison of Data Analytics Techniques in Smart Farming 

Technique Purpose Advantages Limitations 

Dashboards & Visualization 
Present multi-sensor data in real 

time through intuitive interfaces. 

Easy to use, improve farmer 

engagement, and integrates 

multiple data streams. 

Descriptive only; dependent on 

data quality. 

Time-Series Analysis & Anomaly 

Detection 

Identify temporal patterns, cycles, 

and abnormal fluctuations in sensor 

readings. 

Supports irrigation scheduling, 

greenhouse optimization; 

enables anomaly detection. 

Mostly retrospective; limited 

predictive capacity. 

Composite Indices & Decision-

Support Metrics 

Aggregate multiple parameters into 

simplified indices for soil or crop 

health. 

Provides holistic soil/crop 

assessment; reduces 

complexity for farmers. 

Requires local calibration; 

limited universality. 

Statistical & Machine Learning 

Models 

Discover relationships or predict 

outcomes from complex datasets. 

Deeper insights; supports 

targeted interventions. 

High computation needs; 

costly for smallholders. 

Predictive & Prescriptive 

Analytics 

Anticipate future conditions and 

recommend corrective actions. 

Proactive insights; supports 

resource optimization. 

Require expertise, expensive, 

less accessible in developing 

regions. 

 



30 

 

2.3.4 Role of Data Analytics in Decision-Making 

The integration of data analytics into agriculture has transformed how 

decisions are made, enabling more efficient, timely, and evidence-based 

practices. By analyzing IoT-generated sensor data, farmers are able to 

optimize the use of inputs, monitor crop growth environments, and respond 

effectively to emerging challenges. Weraikat et al. (2024) demonstrated that 

the use of electrical conductivity (EC) data correlated strongly with potassium 

levels in melon cultivation in southern Croatia, thereby allowing farmers to 

manage nutrient application more cost-effectively without relying solely on 

laboratory testing. Such findings highlight how analytics can reduce 

operational costs while maintaining crop quality. 

 

In addition to nutrient management, data analytics supports broader 

operational decision-making such as irrigation scheduling, pest control, and 

greenhouse climate optimization. Thilakarathne et al. (2025) noted that the 

combination of IoT monitoring, and data analytics allows farmers to detect 

anomalies such as soil moisture deficits or pest infestations at an early stage, 

enabling corrective interventions before yield quality is compromised. This 

proactive approach improves resource efficiency and reduces the risk of crop 

failure. 

 

Furthermore, analytics can enhance planning and risk mitigation by 

providing farmers with insights into alternative scenarios. Getahun et al. (2024) 

highlighted that predictive and scenario-based data analytics enable the 

evaluation of different irrigation or fertilization strategies, thus helping farmers 

to anticipate outcomes and manage risks. While advanced predictive 

techniques may extend beyond the scope of this project, their role in the wider 

market illustrates how analytics increasingly underpins agricultural decision-

making. 

 

For the purposes of this project, data analytics contributes directly to 

decision support through dashboards, soil health indices, correlation analysis, 

and threshold-based alerts. These techniques ensure that farmers can monitor 
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real-time conditions, understand soil health status, and receive actionable 

recommendations, thereby enhancing decision-making in Japanese melon 

cultivation. 

 

2.3.5 Identified Gap 

Although recent literature demonstrates the growing importance of data 

analytics in agriculture, several limitations persist that justify the direction of 

this project: 

 

i. Over-emphasis on advanced predictive models and machine 

learning - Many studies have prioritized predictive frameworks for 

yield forecasting, disease detection, and risk assessment (Getahun 

et al., 2024; Thilakarathne et al., 2025). While effective, such 

approaches demand large datasets, high computational resources, 

and specialized expertise, making them less feasible for 

smallholder farmers or resource-constrained environments. 

ii. Limited practical implementation of composite indices - 

Although composite measures such as the Soil Health Index (SHI) 

have been highlighted as valuable tools for simplifying multi-

parameter soil quality evaluation (Weraikat et al., 2024), their use 

remains largely conceptual. Few studies demonstrate their 

integration into real-time, field-ready decision-support systems 

accessible to farmers. 

iii. Challenges in data latency, accessibility, and usability - 

Connectivity limitations, delayed data transmission, and lack of 

user-friendly interfaces are frequently reported as barriers to 

adoption. Thilakarathne et al. (2025) emphasized that rural 

connectivity gaps hinder IoT applications, while Weraikat et al. 

(2024) noted that reliable, continuous data flow is critical for 

supporting timely decision-making in agricultural contexts. 

 

In light of these gaps, this project seeks to develop an affordable and 

practical IoT-based system that integrates accessible analytics techniques—

namely dashboards, SHI, correlation analysis, and alert mechanisms—into a 
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web-based platform for Japanese melon farming. By prioritizing 

interpretability, real-time usability, and cost-effectiveness, the project 

addresses the need for actionable insights without the complexity and resource 

intensity of advanced predictive models. 

 

2.4 Decision Support Systems in Agriculture 

2.4.1 Concept and Frameworks 

Decision Support Systems (DSS) in agriculture are computer-based tools 

designed to aid farmers, agronomists, and stakeholders in making informed 

management decisions by combining data input, rules or models, and decision 

logic. Three main types/frameworks are common: 

 

i. Rule-based / Threshold-based systems - These rely on 

predetermined thresholds or rule sets. For instance, when soil 

moisture drops below a certain level, trigger irrigation; or when a 

pest risk index exceeds a threshold, recommend pesticide 

application. Such systems are relatively simple to implement and 

transparent but may lack adaptability to varying conditions. 

ii. Advisory / Expert systems - These integrate expert agricultural 

knowledge (often domain rules, crop models, historical data) to 

offer recommendations beyond just thresholds. They may 

incorporate soil and weather model simulations, or disease/pest risk 

predictions, offering advice such as nutrient management, 

scheduling, or crop protection strategies. 

iii. Hybrid and Model-based frameworks - These combine 

threshold/rule-based logic with statistical, mechanistic, or even 

machine learning models to provide more sophisticated advice (e.g. 

predictions, scenario planning). They often handle multiple 

parameters (soil, weather, crop growth stage), allow what-if 

simulations, adapt over time with updated data. 

 

These frameworks differ in complexity, data requirements, 

computational need, and usability. As more agriculture becomes connected 

(IoT, remote sensing), there is an increasing shift toward hybrid DSS that can 
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process real-time sensor data and provide dynamic advice rather than static 

guidelines. 

 

2.4.2 Benefits and limitations of DSS 

Decision Support Systems (DSS) provide several benefits in agriculture. They 

enable timely interventions by detecting risks such as pests, diseases, or soil 

stress early, allowing farmers to respond before serious damage occurs 

(Tratwal, 2025). DSS also reduces risks by combining forecasts, thresholds, 

and models to minimize uncertainty in farm management decisions (Tratwal, 

2025). In addition, they improve resource efficiency, optimizing water, 

fertiliser, and pesticide use, which enhances productivity while reducing 

environmental impacts (Petraki et al., 2025). 

 

However, DSS face notable limitations. Many lack real-time IoT 

integration, relying on periodic or forecast data that reduce responsiveness 

(Tratwal, 2025). Real-time alerts are also scarce; while some systems provide 

warnings, few offer mobile push notifications, with recent prototypes such as 

Jouini (2025) still limited in scope. Usability is another concern, as complex 

interfaces and poor connectivity hinder adoption in smallholder contexts 

(Petraki et al., 2025). Moreover, most DSS have a narrow focus, addressing 

single issues such as irrigation or pest control rather than delivering 

comprehensive, multi-parameter decision support. 

 

In summary, DSS enhances agricultural decision-making through 

timely, risk-aware, and efficient interventions, but their effectiveness is 

constrained by gaps in real-time functionality, usability, and breadth of support. 

 

2.4.3 Identified Gap 

Based on recent literature (2020-2025), the gaps in Decision Support Systems 

for agriculture that this project aims to address are: 

 

i. Absence of systems combining real-time push notifications with 

comprehensive advisory support - While warning systems and 

alerts exist in some DSS (e.g. pest/disease risk alerts), integration 
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of mobile push notifications triggered by IoT sensor thresholds 

across multiple parameters is rare. 

ii. Limited integration of full environmental and soil parameter 

sets in one DSS - Many DSS focus on single or few parameters 

(e.g. pest risk + weather or irrigation only), but do not include a 

broad set like soil moisture, soil pH, conductivity, temperature 

together with advisory logic. 

iii. Poor usability and accessibility for farmers with constrained 

resources - There is a gap in systems designed for user-friendly 

interaction, low infrastructure dependency, and operation under 

limited connectivity, especially in greenhouse or small-farm 

environment contexts. 

iv. Lack of systems validated under operational conditions for 

specific crops such as Japanese melon - Few DSS studies are 

applied and evaluated for specific cultivars and under real 

greenhouse or controlled environments. Crop-specific validation is 

sparse. 

 

2.5 Comparative Analysis of Related Works 

2.5.1 Overview of Existing Smart Farming Systems 

Recent smart-farming solutions converge on an IoT→ (edge/fog) →cloud 

pipeline with web/mobile dashboards and varying levels of decision support. 

Reviews and systems papers consistently report multi-sensor deployments 

(soil moisture, EC, pH, temperature, humidity, light) streaming to cloud 

databases and dashboards for greenhouse and field control (Bersani et al., 

2022; Maraveas, 2022; Soussi et al., 2024). Edge/fog architectures have 

emerged to cut latency and dependency on wide-area links, improving 

responsiveness for time-critical actions (Hong et al., 2024). At the DSS layer, 

integrative platforms such as DAKIS combine heterogeneous data (in-situ 

sensors, remote sensing, models) to support land-use and management choices 

but are often strategic rather than crop-specific operational. For cucurbits, 

greenhouse studies increasingly exploit data-driven methods; for example, 

climate forecasting in greenhouses with netted melons (a Japanese-melon type) 
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shows how analytics can anticipate environmental dynamics, albeit with 

research-grade ML rather than deployable farmer tools. 

 

2.5.2 Comparative of recent smart farming system 

i. Bersani et al. (2022) — IoT in smart greenhouses (state of the 

art). 

Bersani and colleagues survey IoT approaches for greenhouse monitoring and 

control, synthesising common sensing stacks (soil moisture, 

temperature/humidity, light, CO₂), network protocols (MQTT/HTTP), and 

typical cloud dashboards/actuation loops for irrigation and ventilation. The 

review underlines tangible benefits (continuous observation, automation 

potential) but also recurrent challenges, notably integration and 

interoperability across heterogeneous devices and the tendency of deployments 

to plateau at descriptive monitoring rather than mature, farmer-facing decision 

support. This positions greenhouse IoT as technically robust yet often under-

leveraged analytically (Bersani et al., 2022).  

 

ii. Maraveas & Bartzanas (2021) — IoT for optimised greenhouse 

environments (review). 

Maraveas and Bartzanas compile evidence on IoT-enabled optimisation of 

microclimate and irrigation, emphasising low-cost sensor integration, remote 

monitoring, and efficiency-oriented KPIs for greenhouse management. The 

review discusses scheduling/optimisation themes and reports actuation (e.g., 

irrigation/ventilation), while flagging constraints in generalisability and 

operational usability (connectivity, human factors). It concludes that, although 

IoT can improve energy and input efficiency, many systems need better 

decision logic and farmer-friendly interfaces to translate sensing into day-to-

day actions (Maraveas & Bartzanas, 2021).  

 

iii. Hong et al. (2024) — Fog-computing smart farm 

(implementation study). 

Hong et al. implement an IoT smart-farm architecture that moves computation 

from cloud to fog/edge nodes. Through controlled experiments they compare 

communication protocols and network traffic, showing fog reduces overheads 
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and latency, enabling quicker responses for time-sensitive farm events. While 

the work evidence infrastructure-level gains and hints at faster operational 

decisions, the decision logic remains system-specific and the study 

foregrounds performance rather than farmer-facing advisory design (Hong et 

al., 2024).  

 

iv. Soussi et al. (2024) — Smart sensors & smart data for precision 

agriculture (review). 

Soussi and co-authors review sensing modalities and data pipelines in 

precision agriculture, with attention to mobile-accessible, cloud-backed 

visualisation. They highlight trends in data fusion and “smart data” practices 

while pinpointing persistent issues around data quality, integration, and 

standardisation that limit analytics depth. Although real-time monitoring is 

well covered, the review indicates that alerts and comprehensive decision 

support are less consistently embedded, especially for small and medium 

growers (Soussi et al., 2024).  
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Table 2.4:  Feature comparison across recent smart-farming systems 

Study / 

System 

IoT Integration Data 

architecture 

Analytics Capability Decision Support 

Logic 

Real time 

notifications 

Key limitations 

Bersani et al. 

(2022) — 

review of IoT 

in smart 

greenhouses 

Surveys soil & 

climate sensing 

(moisture, temp, 

RH, light, CO₂), 

typical 

MQTT/HTTP stacks 

Device→

gateway→

cloud patterns 

consolidated 

Mostly 

descriptive/diagnostic 

dashboards across 

surveyed works 

Threshold/guideline 

logic referenced across 

cases 

Mixed across 

surveyed cases 

Many cases stop 

at monitoring; 

fragmented 

decision logic. 

(Bersani, 2022). 

Maraveas & 

Bartzanas 

(2021) — IoT 

for optimised 

greenhouse 

environments 

Emphasises 

microclimate & 

irrigation sensing; 

integration of low-

cost sensors 

Cloud-centric 

remote 

monitoring 

Descriptive KPIs; 

efficiency metrics for 

climate/irrigation 

Scheduling/optimisation 

themes discussed 

Not a central 

focus 

Operational 

usability + 

generalisability 

challenges 

flagged. 

(Maraveas & 

Bartzanas, 2021). 

Hong et al. 

(2024) — fog 

Standard sensors; 

tests of 

Fog/edge 

nodes reduce 

Low-latency 

processing; some 

Faster operational 

decisions feasible 

Enables quicker 

triggers (design 

Strong latency 

results; decision 
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computing 

smart farm 

HTTP/MQTT/CoAP round-trip 

latency vs 

cloud 

CV/AI classification 

at edge 

shows potential) rules still system-

specific. (Hong et 

al., 2024). 

(MDPI) 

Soussi et al. 

(2024) — 

“Smart 

Sensors & 

Smart Data” 

Broad sensing 

landscape; phone-

accessible 

monitoring 

Cloud 

dashboards; 

mobile access 

Real-time 

visualisation; data 

fusion trends 

Operational insight 

emphasis 

Alerts not 

primary emphasis 

Highlights data 

quality/integration 

hurdles for 

analytics depth. 

(Soussi et al., 

2024). (MDPI) 
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2.5.3 Strengths and Weaknesses of Prior Studies 

Strengths: 

 

i. Robust sensing and pipelines - Multi-sensor IoT stacks with cloud 

dashboards are well-documented, giving reliable 

environmental/soil monitoring at scale (Bersani et al., 2022; 

Maraveas, 2022; Soussi et al., 2024).  

ii. Latency-aware architectures - Fog/edge deployments lower 

round-trip times and increase resilience when uplinks are unreliable 

(Hong et al., 2024).  

 

Weaknesses / gaps: 

 

i. Operational DSS depth - Many deployments stop at descriptive 

dashboards or generic alerts; composite soil indices and variable-

relationship views (e.g., correlation heatmaps) are rarely integrated 

into day-to-day farmer workflows in peer-reviewed greenhouse 

DSS (Bersani et al., 2022; Soussi et al., 2024).  

ii. Real-time mobile or web push notifications - While remote 

monitoring via smartphones or web is reported, unified push 

notifications tied to multi-parameter thresholds (soil + environment) 

are not consistently evidenced across greenhouse systems literature.  

 

2.5.4 Positioning of the Present Study 

Synthesizing the related works retained in this review shows a mature baseline 

for sensing and connectivity but uneven depth in farmer-facing decision 

support. Reviews of greenhouse IoT commonly report strong multi-sensor 

pipelines and cloud dashboards, yet many deployments plateau at descriptive 

monitoring with fragmented rules and limited, user-oriented advisory logic 

(Maraveas and Bartzanas, 2021; Bersani, Gennaro and Trobia, 2022). 

Edge/fog designs demonstrate latency advantages at the infrastructure layer 

(Hong et al., 2024), while broader “smart sensors/smart data” surveys 
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highlight persistent gaps in data quality, integration, and the embedding of 

actionable alerts for growers (Soussi et al., 2024). Against this backdrop, the 

present study is positioned as an operational, crop-focused DSS for Japanese 

melon greenhouses that bridges the space between simple dashboards and 

research-grade AI. 

 

i. End-to-end, crop-specific IoT integration - The system 

instruments the greenhouse with commodity sensors aligned to 

melon agronomy (air temperature/humidity; soil moisture, 

temperature, pH, EC/TDS; light intensity) and streams data 

continuously to the cloud. This adheres to established device→

gateway→cloud practice while tailoring parameters to a concrete 

cultivation context, addressing the “generic monitoring”  bias 

noted by prior reviews (Maraveas and Bartzanas, 2021; Bersani, 

Gennaro and Trobia, 2022). 

ii. Mid-tier analytics for actionable interpretation - Beyond time-

series charts, the system computes a Soil Health Index (SHI) and 

correlation heatmaps that condense multi-variable soil–

environment states into interpretable signals. This design 

deliberately targets the “monitoring-only” limitation—providing 

decision-ready summaries without the data/skill overhead of 

machine learning—thereby operationalising the “smart data” 

direction called for in recent surveys (Bersani, Gennaro and Trobia, 

2022; Soussi et al., 2024). 

iii. Unified threshold-based advisory with real-time push 

notifications - Calibrated multi-parameter thresholds (e.g., 

moisture/EC/pH bands and microclimate set-points at different 

growth stages) drive mobile push alerts that map directly to 

corrective actions (irrigation adjustment, fertigation checks, 

ventilation changes). Whereas related literature frequently reports 

remote viewing or simple warnings, comprehensive, push-style 

guidance tied to continuous IoT streams is inconsistent; the present 

study addresses this usability and responsiveness gap (Soussi et al., 
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2024), while remaining compatible with edge-side checks where 

low latency is critical (Hong et al., 2024). 

iv. Evaluation under operational constraints and farmer usability 

- The study evaluates responsiveness (sensor→dashboard latency), 

alert timeliness, data completeness and reliability, and dashboard 

usability—metrics that map directly to the project’s objectives on 

real-time monitoring, analytics-with-visualization, and decision 

support. This emphasis on operational validity for a specific crop 

complements the largely technology-centric evaluations in the 

compared works (Maraveas and Bartzanas, 2021; Bersani, Gennaro 

and Trobia, 2022; Hong et al., 2024). 

 

Collectively, these choices position the system as a practical, 

interpretable, and real-time DSS: it leverages the proven IoT/cloud backbone 

in the literature, incorporates mid-tier analytics that farmers can act on, and 

closes an identified gap in unified threshold-to-push decision support for 

controlled-environment Japanese melon cultivation (Soussi et al., 2024; Hong 

et al., 2024; Bersani, Gennaro and Trobia, 2022; Maraveas and Bartzanas, 

2021). 

 

2.5.5 Research Gap 

The comparative review of recent smart-farming systems highlights clear 

progress in IoT-based sensing, cloud connectivity, and greenhouse monitoring 

dashboards. Studies such as Bersani, Gennaro and Trobia (2022) and 

Maraveas and Bartzanas (2021) confirm that multi-sensor deployments are 

technically mature and capable of providing reliable environmental and soil 

data streams. Fog and edge architecture has also been proposed to reduce 

latency and enhance responsiveness in smart farms (Hong et al., 2024). 

Furthermore, reviews of sensor and data practices show that mobile-accessible 

dashboards and cloud integration are becoming increasingly common (Soussi 

et al., 2024). 

 

Despite these advances, several critical gaps remain: 
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i. Descriptive monitoring without deeper analytics - Most systems 

focus on dashboards and raw time-series visualization, but few 

integrate mid-tier analytics such as composite indices or 

correlation-based insights that convert raw values into interpretable 

indicators for day-to-day farm decisions (Soussi et al., 2024). 

ii. Limited real-time, multi-parameter notifications - While some 

systems provide threshold warnings, unified push notifications that 

combine soil and environmental parameters in real time are largely 

absent, limiting their usefulness for immediate farmer response 

(Hong et al., 2024). 

iii. Lack of crop-specific operationalization - Many solutions remain 

generic, designed for broad greenhouse contexts, without 

calibration for specific crops such as Japanese melon, whose 

growth requires finely tuned environmental and soil parameters 

(Maraveas and Bartzanas, 2021). 

 

These gaps indicate the need for a smart-farming system that goes 

beyond generic monitoring by integrating accessible, interpretable analytics 

and real-time push-based decision support tailored to a specific crop. 

Addressing this gap is essential to ensure that IoT-enabled farming systems 

provide actionable knowledge rather than raw data, and that they are practical 

for adoption in resource-constrained greenhouse environments. 
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CHAPTER 3 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

This chapter outlines the methodology and work plan adopted for the 

development of the smart farming system for Japanese melons. It describes the 

step-by-step approach taken to develop the system and covers discussion on 

selected software development methodology, breakdown of each development 

phases. Additionally, this chapter presents the work plan, detailing the project 

timeline, tasks, and milestones to ensure systematic and timely project 

execution. 

 

3.2 System Development Methodology: Rapid Application 

Development (RAD) 

 

Figure 3.1: RAD methodology phases (Leonardo and Wiratama, 2023) 

 

Rapid Application Development (RAD) was first introduced by James Martin 

in the 1980s while working at IBM (Rapid Application Development: RAD 

Methodology Roadmap, 2024). It is a software development methodology that 

emphasises rapid prototyping, iterative design, and continuous user 

involvement to deliver functional systems within shorter timeframes. Unlike 

traditional methodologies that rely on extensive upfront planning, RAD 

prioritises the early construction of working prototypes, which are refined 

through successive iterations based on stakeholder feedback (Information 



44 

 

Systems Development: Rapid Application Development | Saylor Academy, no 

date). This iterative nature makes RAD particularly suitable for projects where 

requirements may evolve or where flexibility is critical. 

 

In the context of this smart farming system for Japanese melons, the adoption 

of RAD offers several advantages: 

i. Accelerated prototyping and testing of IoT components, including 

sensors and user interfaces. 

ii. Active incorporation of stakeholder feedback, particularly from the 

project supervisor to refine functionalities such as real-time data 

visualisation and automated irrigation. 

iii. Enhanced adaptability to changing requirements, ensuring that the 

final system is not only technically sound but also aligned with 

practical user needs. 

 

3.2.1 Requirements Planning Phases 

The first phase of the Rapid Application Development (RAD) methodology is 

the Requirements Planning phase, which serves as the foundation for the smart 

farming system designed for Japanese melon cultivation. During this phase, 

the overall objectives, core functionalities, and project scope are 

systematically identified through close collaboration with key stakeholders, 

including supervisors and lecturers. A comprehensive literature review is 

conducted to examine existing approaches, technologies, and solutions 

available in the field of smart farming. This process provides critical insights 

into best practices, highlights how similar challenges have been addressed in 

prior research, and identifies opportunities for innovation in the present study. 

 

Both functional and non-functional requirements are then elicited and 

documented to ensure clarity in system expectations. Based on these 

requirements, a Work Breakdown Structure (WBS) is developed to decompose 

the project into manageable tasks, thereby clarifying deliverables and 

organizing the overall project flow. Following this, use case diagrams are 

created to model the interactions between users and the system, while 
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accompanying use case descriptions provide detailed explanations of each 

interaction. To further operationalize the project plan, a Gantt Chart is 

employed to schedule the tasks identified in the WBS, establish milestones, 

allocate resources, and track progress. 

 

To support requirement validation, conceptual mockups is developed 

to help visualize the intended system flow. The outputs of this phase therefore 

include a clearly defined system scope and objectives, validated functional and 

non-functional requirements, use case models, WBS, and a Gantt Chart, all of 

which establish a strong foundation for the rapid prototyping and iterative 

development to follow. 

 

3.2.2 User Design Phase 

The User Design phase builds upon the requirements identified earlier and 

focuses on the iterative development of software prototypes for the smart 

farming systems. In this phase, functional mock-ups of the web application are 

created and refined through multiple cycles of stakeholder feedback. The 

emphasis is placed on ensuring usability, system responsiveness, and the 

accuracy of data presentation. 

 

Initial prototypes are developed for the frontend interface using 

Angular and Tailwind CSS, providing visualization of core features such as 

real-time sensor monitoring, threshold-based alerts, and task scheduling. To 

support this, the backend services are prototyped using Spring Boot, enabling 

the integration of Supabase for database management and authentication. 

Additionally, static images of Grafana dashboards are embedded to present 

analysis graph.  

 

Throughout this phase, regular feedback is collected from the project 

supervisor to evaluate usability, clarity of data visualization, and intuitiveness 

of the overall interface. Identified issues such limited visual clarity in charts, 

or overly complex navigation are addressed in subsequent iterations. 
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Prototyping continues until the system achieves a level of stability and 

usability that aligns with both functional requirements and user expectations. 

 

By adopting this iterative, user-centered approach, the User Design 

phase ensures that potential challenges are identified and resolved early in the 

development lifecycle. This reduces risks, strengthens the reliability of the 

system, and provides a solid foundation for the subsequent Rapid Construction 

phase. 

 

3.2.3 Construction Phase 

The Rapid Construction phase is the stage where the actual development of the 

smart farming system is undertaken. Building upon the validated prototypes 

from the User Design phase, this stage emphasizes the iterative coding, 

integration, and refinement of the software components. Development 

activities are carried out in short cycles, enabling quick incorporation of 

feedback and timely resolution of issues. 

 

Key activities in this phase include the implementation of the system 

architecture, integration of the database and services, and the development of 

user interfaces into a cohesive application. Each software module is developed 

and tested incrementally to ensure that it functions correctly in isolation before 

being combined with other modules. Testing activities are embedded 

throughout the phase, comprising unit testing, integration testing and system 

testing. These activities collectively validate the accuracy, stability, and 

performance of the system. 

 

A defining feature of this phase is its iterative nature. Any 

shortcomings identified during testing or stakeholder feedback sessions are 

promptly addressed in subsequent development cycles. This ensures that the 

system progressively evolves towards its intended quality, functionality, and 

usability. Continuous consultation with the supervisor further ensures that the 

development process remains aligned with project objectives and technical 

requirements. 
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3.2.4 Cutover Phase 

The Cutover phase is the final stage of the RAD methodology and focuses on 

transitioning the developed system into an operational environment. This 

phase includes final testing, documentation, and presentation. Development 

work carried out in earlier phases is consolidated into a fully functional 

application that is ready for use and assessment. 

 

Key activities in this phase include the deployment of the backend 

services onto a cloud platform and the hosting of the Angular-based frontend 

for seamless access across devices. Comprehensive integration and acceptance 

testing are conducted to verify that data flows smoothly through the system, 

ensuring reliability, stability, and usability. A demonstration session is also 

organized with the project supervisor to present the system’s capabilities and 

gather final feedback. Any residual issues, such as usability concerns or minor 

bugs, are promptly addressed prior to submission. 

 

In parallel, thorough documentation is prepared to support both 

academic evaluation and potential future system adoption. This includes the 

final FYP report, a user manual, updated architecture diagrams, and a 

reflection report outlining challenges encountered, lessons learned, and 

recommendations for future improvement. 

 

3.3 Work Breakdown Structure (WBS) 

1. Rapid Planning and requirement gathering 

1.1 Problem identification 

1.1.1 Identify current challenges 

1.1.2 Analyse limitations of existing solutions 

1.1.3 Define the real-world need for a smart farming system 

1.2 Define objectives and scope 

1.2.1 Determine expected project outcomes  

1.3 Literature Review 

1.3.1 Study existing musk melon planting techniques 

1.3.2 Study data collection, storage and visualisation techniques 
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1.3.3 Study existing smart faming websites and system 

1.4 Define methodology 

1.4.1 Survey and compare existing software development 

methodology  

1.4.2 Choose software development methodology  

1.4.2.1 Define RAD prototype iteration and goals 

1.5 Work planning 

1.5.1 Create project timeline with Gantt chart  

1.5.2 Define key deliverables and milestones 

1.5.3 Assign tentative deadlines for each task 

1.6 Project specification 

1.6.1 Define system requirements 

1.6.2 Specify software tech stack 

1.7 Initial proposal document 

1.7.1 Prepare and submit proposal document 

1.7.2 Prepare proposal presentation slides 

1.7.3 Conduct initial presentation 

2. Prototype 1: Sensor Integration & Data Acquisition 

2.1 Select sensors and microcontroller 

2.1.1 Choose sensors 

2.1.2 Select suitable microcontroller 

2.2 Define wiring and connection layout 

2.3 Develop data acquisition script 

2.3.1 Write microcontroller script for data reading 

2.4 Integrate sensors and microcontroller 

2.5 Set up IoT gateway for data transfer 

2.5.1 Configure Wi-Fi module 

2.5.2 Send data to temporary cloud endpoint 

2.6 User review and feedback 

2.6.1 Demonstrate sensor system to users or supervisors 

2.6.2 Collect improvement suggestions 

2.7 Refine based on feedback 

2.7.1 Adjust scripts or hardware if needed 
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2.7.2 Finalize prototype 1 design 

3. Prototype 2: Dashboard & Data Visualization 

3.1 Design simple website for dashboard 

3.2  Set up frontend and backend projects 

3.2.1 Initialize Angular project with Tailwind and Ng Zorro 

3.2.2 Set up Spring Boot backend 

3.3 Implement RESTful APIs and database connection 

3.3.1 Create CRUD endpoints for sensor data 

3.3.2 Integrate PostgreSQL database 

3.4 Build dashboard for environmental data 

3.5 Conduct usability testing with users 

3.6 Gather feedback and iterate improvements 

3.6.1 Modify UI elements based on feedback 

4. Prototype 3: Notification & Report System 

4.1 Define report generation structure 

4.1.1 Determine daily, weekly, and monthly summaries 

4.2 Implement notification feature 

4.2.1 Define thresholds for each parameter 

4.2.2 Set up notification alert mechanisms 

4.3 Design report UI and export options 

4.4 User testing and feedback collection 

4.5 Refine and finalize modules 

5. Continuous Cloud Integration & Deployment 

5.1 Select cloud provider 

5.1.1 Compare AWS, Firebase, and Azure 

5.1.2 Choose provider based on needs and free tier 

5.2 Set up cloud database and hosting 

5.2.1 Deploy database instance 

5.2.2 Create hosting environment for backend 

5.3 Containerize and deploy backend 

5.3.1 Push to cloud and test API endpoints 

5.4 Deploy frontend to cloud 

5.4.1 Upload Angular build to cloud storage/CDN 
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5.4.2 Configure DNS or Firebase Hosting 

5.5 Implement secure API access 

6. Iterative Testing & Feedback 

6.1 Unit testing 

6.2 Integration testing 

6.3 System testing 

6.4 Usability testing 

6.5 User acceptance testing (UAT) 

7. Documentation & Final Report 

7.1 Prepare poster and final presentation slides 

7.2 Set up demo environment 

8. Project Closure & Reflection 

8.1 Final deployment 

8.2 Supervisor review and feedback 

8.3 Reflection and lessons learned 

8.3.1 Summarize challenges and resolutions 
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3.4 Gantt Chart 

 

Figure 3.2:  Gantt Chart overview 
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Figure 3.3: Gantt Chart detail view 1 

 

Figure 3.4: Gantt Chart detail view 2 

 

Figure 3.5: Gantt Chart detail view 3 

 

Figure 3.6: Gantt Chart detail view 4 

 

Figure 3.7:  Gantt Chart detail view 5 
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Figure 3.8: Gantt Chart detail view 6 

 

Figure 3.9: Gantt Chart detail view 7 

 

Figure 3.10: Gantt Chart detail view 8 

 

Figure 3.11: Gantt Chart detail view 9 

 

 

Figure 3.12: Gantt Chart detail view 10 
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Figure 3.13: Gantt Chart detail view 11 

 

 

Figure 3.14: Gantt Chart detail view 12 

 

 

Figure 3.15: Gantt Chart detail view 13 

 

 

Figure 3.16: Gantt Chart detail view 14 
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Figure 3.17: Gantt Chart detail view 15 

 

 

Figure 3.18: Gantt Chart detail view 16 

 

 

Figure 3.19: Gantt Chart detail view 17 

 

3.5 Development Tools 

The development of the smart farming system for Japanese melon cultivation 

was supported by a range of software frameworks, cloud platforms, and 

auxiliary tools. Each tool was selected to address specific requirements of the 

system, including backend integration, frontend design, database management, 

analytics visualisation, and notification delivery. The following subsections 

describe the major tools employed and their roles in the project. 

 

3.5.1 Backend Development Tools 

The backend of the system was implemented using Spring Boot, a Java-based 

framework that simplifies the development of scalable and modular 
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applications. Spring Boot provided the foundation for building RESTful API 

endpoints, which handle the retrieval, storage, and processing of IoT sensor 

data. It also facilitated the implementation of the threshold evaluation and 

suggestion mechanism, ensuring that incoming data could be validated against 

predefined parameters. To streamline the build and deployment process, 

Gradle was used as the primary build automation tool. Gradle managed 

dependencies, compiled the project, and automated testing, which collectively 

improved the efficiency and consistency of backend development. 

 

3.5.2 Frontend Development Tools 

The frontend was developed using the Angular framework, chosen for its 

ability to support responsive, dynamic, and component-driven user interfaces. 

Angular enabled the creation of an interactive dashboard through which users 

could monitor real-time sensor data, view graphical trends, and access 

decision-support features. To enhance the visual design of the application, 

Tailwind CSS was integrated, allowing the implementation of a clean and 

consistent interface while maintaining flexibility in styling. In addition, Ng 

Zorro Ant Design was adopted as a UI component library, which accelerated 

development by providing ready-made, professional-grade interface 

components, ensuring both functionality and consistency in user interaction. 

 

3.5.3 Database and Cloud Tools 

Data storage and management were achieved through Supabase, an open-

source platform built on PostgreSQL. Supabase served as the primary database 

for storing sensor readings, user profiles, and system configurations. It also 

provided built-in authentication services, simplifying the management of user 

access. To accommodate the limitations of the IoT hardware in transmitting 

secure HTTPS requests, ThingSpeak was introduced as an intermediary IoT 

gateway. Sensor data were first uploaded to ThingSpeak using HTTP 

protocols and later synchronised into Supabase through an Extract, Transform, 

Load (ETL) process. This integration ensured reliable and secure storage of 

real-time data within the central database. 
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3.5.4 Data Analytics and Visualisation Tools 

For advanced data analytics and visualisation, Grafana was integrated into the 

system. Grafana provided interactive dashboards for time-series visualisation 

of environmental parameters, correlation heatmaps to identify relationships 

between variables, and a Soil Health Index (SHI) to present composite metrics. 

By embedding Grafana dashboards into the Angular application, the system 

offered both real-time monitoring and historical trend analysis, thereby 

supporting informed decision-making for melon cultivation. 

 

3.5.5 Notification and Messaging Tools 

To support real-time communication with users, Firebase Cloud Messaging 

(FCM) was employed as the push notification service. FCM enabled the 

system to send alerts whenever sensor readings exceeded the warning or 

critical thresholds defined in the parameter configuration. This ensured that 

users received timely updates, even when not actively logged into the system, 

thereby enhancing the reliability of the decision-support mechanism. 

 

3.5.6 Project Management and Documentation Tools 

Several additional tools were employed to facilitate project management and 

documentation. Git, together with GitHub, was used for version control, 

enabling systematic tracking of source code changes and collaborative 

development. For technical documentation and reporting, Microsoft Word was 

used to prepare the Final Year Project report, while Draw.io was employed to 

design system architecture diagrams, entity-relationship diagrams (ERD), and 

data flow diagrams (DFD). These tools supported the systematic organisation 

of development activities and ensured the production of professional 

documentation to accompany the implemented system. 
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CHAPTER 4 

4 PROJECT SPECIFICATION 

4.1 Introduction 

This chapter presents the detailed specifications of the smart farming system 

developed for Japanese melon cultivation, serving as the foundation for the 

subsequent design and implementation. It begins by outlining the functional 

and non-functional requirements, which define the system’s expected 

capabilities and quality attributes. To further specify the system’s behaviour, 

use case models are introduced, consisting of a use case diagram that 

illustrates user interactions with the system and accompanying descriptions 

that elaborate on the roles, actions, and flows involved. In addition, conceptual 

prototypes are provided to visualise the initial interface design and 

demonstrate key functionalities, allowing early validation of system 

requirements. Collectively, these specifications establish a comprehensive 

blueprint that ensures the objectives, requirements, and user interactions of the 

smart farming system are well-defined prior to detailed design and 

development. 

 

4.2 System Requirements 

4.2.1 Functional Requirements 

The smart farming system is designed to support various essential 

functionalities that contribute to efficient farm management, particularly for 

melon cultivation. Each function plays a critical role in ensuring data-driven 

decision-making, resource optimization, and task tracking. The following 

sections outline and elaborate on the core functional requirements of the 

system: 

 

i. User authentication module 

The system shall provide secure authentication to manage user access. It shall 

allow users to log in using their registered credentials, specifically an email 

address and password, which must be validated during authentication. The 

system shall also support password reset functionality in cases where users 
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forget their credentials. To maintain security, only administrators shall be 

permitted to register new users by using the user’s email.  

 

ii. User Profile Management Module 

The system shall provide functionality for users to manage their personal 

profiles. Users shall be able to view and update basic information, including 

name, email, and contact details. Administrators shall have the ability to 

manage user roles to ensure that appropriate access levels are maintained. The 

system shall also allow the storage of device tokens linked to user accounts, 

enabling personalised push notifications through the notification service. 

 

iii. Farming Activity Management Module 

The system shall provide functionality to manage farming activities such as 

irrigation, fertilisation, and weed removal. Users shall be able to schedule 

activities for tracking and analysis. Integration with external weather APIs 

should be included to display forecasts, such as rain or extreme heat. Users 

shall be able to view, add, update, and delete farming activities. 

 

iv. Sensor Data Collection, Storage, and Visualisation Module 

The system shall collect environmental readings, including air temperature, 

humidity, soil moisture, soil pH, soil conductivity, soil temperature, soil TDS, 

and light intensity, from IoT sources. All data shall be securely stored in a 

cloud-based database and visualised through interactive charts and graphs to 

support monitoring. Alerts shall be triggered when sensor readings exceed 

defined thresholds, and these alerts shall be delivered via notifications. 

 

v. Sensor Threshold Configuration Module 

The system shall provide users with the ability to configure threshold values 

for each monitored parameter, including minimum, maximum, and warning 

levels. Users shall be able to view these thresholds to understand optimal 

ranges for cultivation. The system shall use the configured thresholds to 

generate automated alerts and decision-support suggestions whenever 

parameter values fall outside the acceptable limits. The configuration records 
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shall be stored in the database and updateable by authorised users, ensuring 

flexibility in adapting the system to changing farming conditions. 

 

4.2.2 Non-Functional Requirements 

The non-functional requirements define the quality attributes and operational 

constraints of the smart farming system. These requirements ensure that the 

system not only fulfils its intended functionalities but also delivers 

performance, reliability, and usability standards expected for real-world 

application. 

 

i. Performance Requirements 

The system shall process and update environmental sensor data with minimal 

delay to support near real-time monitoring. The dashboard shall load within 

acceptable time limits, with the Largest Contentful Paint (LCP) metric targeted 

at less than two seconds to provide a smooth user experience. 

 

ii. Reliability Requirements 

The system shall achieve a minimum of 95% data transmission success rate 

from the IoT gateway to the cloud database to ensure data completeness. In 

case of temporary network disruptions, mechanisms shall ensure that sensor 

data are synchronised once connectivity is restored. Critical functionalities 

such as threshold monitoring and notification delivery shall remain 

consistently available to guarantee continuous system reliability. 

 

iii. Usability Requirements 

The system shall provide a user-friendly and intuitive interface. Dashboards 

and charts shall employ clear visualisation techniques with appropriate 

labelling to assist interpretation. User interactions, such as scheduling tasks 

and configuring thresholds, shall be designed to require minimal training, 

thereby supporting adoption by non-technical users such as farmers. 

 

iv. Security Requirements 
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The system shall enforce secure authentication through user credentials, with 

role-based access control to differentiate privileges between administrators and 

standard users. Sensitive data such as sensor readings, user details, and 

configuration records shall be stored securely in the cloud database.  

 

4.3 Use Case Diagram 

 

Figure 4.1: Use Case Diagram 

 

 

4.4 Use Case Description 

Use Case Name: User 

login 

ID: UC001 Significance Level: 

High 

Primary Actor: User Use Case Type: Detail, Essential 

Stakeholders and Interests: 

User: Needs to access their personal account on the smart farming system by 
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logging in. 

Brief Description: 

This use case outlines the process of a registered user signing into the smart 

farming platform. 

Trigger: User navigates to the smart farming website. 

Relationships: 

Association: User  

Include: N/A  

Extend: Password Recovery 

Generalization: N/A 

Normal Flow of Events: 

1. The user visits the smart farming website. 

2. The website presents a login form. 

3. The user enters valid email and password. If they cannot remember 

their password, the S-1 Password Recovery sub-flow is initiated. 

4. The user pressed login button.  

5. The system validates the provided credentials. If they are not correct, 

proceed to Exception Flow 6.1. 

Sub-flows: 

S-1 Recover account  

1. The user selects the “Forgot Password” option on the login page. 

2. The system shows the password reset interface. 

3. The user provides their registered email address and submits the 

request. 

4. The application generates a password reset link and sends to user’s  

email address.  

5. The user accesses the reset link and sets a new password. 

6. Return to step 2 of the main flow. 

Alternate/Exceptional Flows: 

6.1 Invalid Credentials  

1. The system displays an error notification indicating incorrect login 

information. 

2. The user is prompted to reattempt the login process. 
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Use Case Name:  

Account Registration 

ID: UC002 Significance Level: High 

Primary Actor: Admin Use Case Type: Detail, Essential 

Stakeholders and Interests: 

Admin: Responsible for creating accounts so that new users can gain access to 

the smart farming system. 

Brief Description: 

The use case describes how the admin can register a new account for a new 

user. 

Trigger: Admin wants to add new user to the smart farming system.  

Relationships: 

Association: Admin  

Include: N/A  

Extend: N/A  

Generalization: N/A 

Normal Flow of Events: 

1. The administrator navigates to the “Add New User” page from the side 

menu. 

2. The administrator provides the new user’s email address on the 

registration form. 

3. The administrator submits the registration details. 

4. The system checks the validity of the input. If the email is incorrectly 

formatted or already exists in the database, continue to Exception Flow 

4.1. 

5. When the data is valid, the system displays a success message and sends 

a registration link to the new user’s email. 

Sub-flows: 

- 

Alternate/Exceptional Flows: 

4.1 Invalid or Duplicate Email Entry 

1. The system shows an error indicating the email format is invalid or the 

address is already registered. 
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2.   The administrator is asked to repeat the registration process with correct 

information. 

 

Use Case Name:  

Edit user profile 

ID: UC003 Significance Level: High 

Primary Actor: User Use Case Type: Detail, Essential 

Stakeholders and Interests: 

Admin and user: Require the ability to modify and maintain accurate profile 

information. 

Brief Description: 

This use case explains how a registered user can update their profile details 

such as username, email address, and password. 

Trigger: The process starts when the user decides to change their profile 

information. 

Relationships: 

Association: User 

Include: N/A  

Extend: N/A  

Generalization: N/A 

Normal Flow of Events: 

1. The user opens the profile page and selects the “Edit” option. 

2. The user enters the updated information (username, email, or password). 

3. The user confirms and submits the changes. If the input is in an invalid 

format or already in use, proceed to Exception Flow 3.1. 

4. Once validated, the system shows a success notification and displays the 

revised profile information. 

Sub-flows: 

 

Alternate/Exceptional Flows: 

3.1 Duplicated or Invalid Profile Information  

1. The system notifies the user with an error message indicating invalid or 

already existing credentials.  

2. The system prompts user to enter their credentials again. 
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Use Case Name: 

Real-Time 

Environmental 

Monitoring 

ID: UC004 Significance Level: High 

Primary Actor: User Use Case Type: Detail, Essential 

Stakeholders and Interests: 

User: Requires continuous access to live environmental data from the melon 

farm. 

Brief Description: 

This use case outlines how a user can track environmental parameters of the 

farm in real time. 

Trigger: The process begins when the user chooses to monitor the farm’s 

environmental conditions. 

Relationships: 

Association: User 

Include: N/A  

Extend: Receive push notifications. 

Generalization: N/A 

Normal Flow of Events: 

1. The user navigates to monitor sensor data page. 

2. The system presents live readings of environmental factors, including 

air temperature, air humidity, soil temperature, soil moisture, soil pH, 

soil TDS, soil conductivity, and light intensity. If any parameter exceeds 

its defined threshold, Sub-flow S-1 is triggered. If no sensor readings 

are available or a database error occurs, Exception Flow 2.1 is executed. 

Sub-flows: 

S-1 Receive push notifications 

1. The user is notified through push notifications when sensor data 

values surpass the defined threshold. 

Alternate/Exceptional Flows: 

2.1 Missing Data or Database Failure 

1. The system displays a message to the user stating “No data 
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available.” 

 

 

Use Case Name: 

View sensor’s data 

dashboard 

ID: UC005 Significance Level: High 

Primary Actor: User Use Case Type: Detail, Essential 

Stakeholders and Interests: 

User: View sensor’s data dashboard. 

Brief Description: 

The user accesses the dashboard page to view real-time and historical sensor 

data including environment and sensor’s health data, which is presented in 

graphical format. 

Trigger: Users want to view sensor’s data in graphical format. 

Relationships: 

Association: User 

Include: N/A  

Extend: N/A  

Generalization: N/A 

Normal Flow of Events: 

1. User navigates to the Dashboard page. 

2. System retrieves the latest sensor data. If the sensor’s data is 

unavailable, perform exceptional flow 2.1 

3. User can view the real-time, historical data in graphs and analysed data, 

gauge or charts on the dashboard. 

Sub-flows: 

N/A 

Alternate/Exceptional Flows: 

Exceptional Flow 2.1: Data unavailable 

1. If sensor data cannot be retrieved, the system displays an error message 

indicating no data is available. 

 

Use Case Name: ID: UC006 Significance Level: High 
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Manage farming 

activities  

Primary Actor: User Use Case Type: Detail, Essential 

Stakeholders and Interests: 

User: Manage melon farm’s farming activities. 

Brief Description: 

This use case description describes how user manages farming activities. 

Trigger: Users want to manage farming activities. 

Relationships: 

Association: User 

Include: N/A  

Extend: N/A  

Generalization: N/A 

Normal Flow of Events: 

1. User navigates to the farming activities page. 

2. The system displays all scheduled activities in calendar view. 

3. If users select to create or edit an activity, sub-flows S-1 will be 

performed.    

4. If users want to delete an activity, sub-flows S-2 will be performed. 

5. System saves or updates the activity in the database. If input information 

is invalid, exceptional flow 5.1 will be performed. 

6. System displays the updated list of activities to the user.  

Sub-flows: 

S-1 Creating and Editing Farming Activity 

1. User fills in or modifies necessary fields including activity title, 

description, date, time and assigned personnel. 

2. Users click "Save" button to save the new or modified activity. 

3. Back to main flow step 5. 

S-2 Delete Farming Activity 

1. System pops up a confirmation window with "Confirm" and "Cancel" 

options. 
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2. If user confirms the deletion, the system removes the selected activity 

from the database. 

3. If user cancels, the system closes the confirmation window without 

making changes. 

4. Back to main flow step 5. 

Alternate/Exceptional Flows: 

5.1 Invalid Input Information 

1. System displays an "Invalid input" message if there is missing required 

fields or incorrect date format. 

 

 

Use Case Name: 

Register new user 

ID: UC007 Significance Level: High 

Primary Actor: Admin Use Case Type: Detail, Essential 

Stakeholders and Interests: 

Admin: Add new user to the smart farming system. 

Brief Description: 

This use case description describes how admin add new user to the system. 

Trigger: Admin wants to add new user to the system. 

Relationships: 

Association: Admin 

Include: N/A  

Extend: N/A  

Generalization: N/A 

Normal Flow of Events: 

1. Admins navigate to add new user page. 

2. Admins enter the new user ‘s email and press confirm button, if 

user’s email are invalid, Exceptional Flow 2.1 will be performed. 

3. User will receive an email link to register the smart farming system. 

Sub-flows: 

N/A 
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Alternate/Exceptional Flows: 

1.1 Invalid email entry 

1. The system displays an error message stating “Invalid user credentials.” 

2. The administrator is prompted to re-enter correct details and attempt the 

process again. 

 

Use Case Name: 

Manage Sensor Data 

Thresholds 

ID: UC008 Significance Level: High 

Primary Actor: User Use Case Type: Detail, Essential 

Stakeholders and Interests: 

Needs to configure threshold values and corresponding suggestions for each 

sensor parameter to ensure accurate system monitoring and recommendations. 

Brief Description: 

This use case describes how an user manages sensor data thresholds by adding 

or updating values such as optimal ranges, warning limits, and recommendation 

messages. 

Trigger: The user needs to configure or adjust threshold values for one or more 

sensor parameters. 

Relationships: 

Association: User 

Include: N/A  

Extend: N/A  

Generalization: N/A 

Normal Flow of Events: 

1. The user navigates to the threshold management page. 

2. The user selects a parameter. 

3. The user enters or updates values for optimal minimum, optimal 

maximum, warning minimum, and warning maximum, along with 

corresponding suggestion messages. If input are invalid, Exceptional 

Flow 3.1 will be performed. 

4. The user confirms the update. 

5. A confirmation message is displayed, and the updated thresholds are 
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applied to subsequent evaluations. 

Sub-flows: 

N/A 

Alternate/Exceptional Flows: 

3.1 Invalid user’s credentials 

The system displays an error message prompting the administrator 

to re-enter valid thresholds. 

 

4.5 Conceptual Prototype 

This section focuses on the prototype of the smart farming website. The 

prototype demonstrates the core functionalities of the web system and serves 

as an early version for testing and further refinement based on user feedback. 

 

 

Figure 4.2: Prototype - User login interface 
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Figure 4.3: Prototype - User profile page  

 

 

Figure 4.4: Prototype - Edit user credentials interface 
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Figure 4.5: Prototype (Admin view) - User management interface  

 

 

Figure 4.6: Prototype (Admin) - Add new user interface 
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Figure 4.7: Prototype - Smart farming system home page 

 

 

Figure 4.8: Prototype - Sensor dashboard overview  
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Figure 4.9: Prototype - Sensor data interface 

 

 

Figure 4.10: Prototype - Manage farming event interface 
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CHAPTER 5 

 

5 System Design 

 

5.1 Introduction 

The system design defines the blueprint of the smart farming system, detailing 

how its components interact to achieve the objectives of real-time monitoring, 

automated decision support, and improved crop yield and quality. This chapter 

presents the design from three perspectives: the overall system architecture, 

the database design, and the functional modules. The architecture establishes 

the layered structure that governs communication between the presentation, 

application, and data layers, while the database design specifies entity 

relationships, schemas, and data dictionaries to ensure consistency and 

integrity of stored information such as sensor readings, thresholds, user 

accounts, and tasks. The functional modules, including sensor monitoring, 

threshold configuration, task management, and notification services, are 

described to illustrate how each supports the system’s objectives. Collectively, 

these design decisions provide a scalable, maintainable, and cost-effective 

foundation for the subsequent implementation and evaluation of the smart 

farming solution. 
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5.2 System Architecture Design 

 

Figure 5.1: System Architecture Design 

 

The smart farming system for Japanese musk melon cultivation was designed 

using a three-tier architecture, consisting of the Presentation Layer, the 

Application Layer, and the Data Layer. This layered approach was selected 

because it provides scalability, maintainability, and a clear separation of 

concerns, all of which are critical for systems that are expected to evolve 

alongside future farming requirements. The architecture supports both real-

time insights and advanced analytics, thereby enhancing decision-making and 

crop quality. Figure 5.x illustrates the overall system architecture. 

 

The Presentation Layer was implemented using Angular as the 

primary frontend framework. Angular was selected due to its modular design, 

strong ecosystem, and two-way data binding, which collectively supports the 

development of dynamic dashboards that update in real time. To complement 

this, Ng Zorro was adopted as a UI component library, providing professional-

grade components that accelerate development and ensure design consistency. 

TailwindCSS was integrated to deliver a utility-first styling approach, resulting 

in a responsive and highly customizable dashboard accessible across devices. 
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In addition, Grafana was embedded within the presentation layer to 

provide advanced visualization capabilities. Grafana was selected because it 

offers powerful time-series analytics and reduces the need to develop complex 

charting modules manually. This enabled the system to deliver meaningful 

insights such as time-series graphs, Soil Health Index values, and correlation 

heatmaps directly within the Angular interface. The result is a user interface 

that not only displays data but also supports informed decision-making. 

 

The Application Layer was developed using Spring Boot, chosen for 

its lightweight framework, modularity, and suitability for RESTful API 

development. This layer acts as middleware, ensuring standardized and loosely 

coupled communication between the frontend and the backend database. Such 

separation allows both the Angular frontend and the Supabase database to 

evolve independently without disrupting system stability. Spring Boot was 

also integrated with Firebase to enable real-time push notifications, ensuring 

that external services are managed at the middleware level rather than tied 

directly to the frontend. This approach increases robustness, maintainability, 

and long-term adaptability. 

 

The Data Layer forms the foundation of the system and was designed 

with both technical and budget constraints in mind. Direct IoT-to-database 

integration was not feasible because the SIM-based IoT devices lacked support 

for secure HTTPS communication with a cloud-hosted PostgreSQL database. 

To address this constraint, ThingSpeak was selected as an intermediary 

platform for IoT data ingestion. ThingSpeak provides a reliable and cost-

effective gateway that supports HTTP transmission, enabling the system to 

operate without requiring costly hardware upgrades. 

 

From ThingSpeak, sensor data is synchronized into Supabase, which 

was chosen as the central cloud database due to its PostgreSQL foundation, 

schema management capabilities, and scalability. This two-step pipeline, 

ThingSpeak for ingestion and Supabase for structured storage ensures reliable 

data handling while remaining cost-effective. Grafana connects directly to 
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Supabase to deliver analytics, enabling both real-time monitoring and long-

term trend analysis through tools such as correlation heatmaps and Soil Health 

Index visualizations. 

 

In summary, the architecture combines Angular, Ng Zorro, and 

TailwindCSS for the presentation layer; Spring Boot and Firebase for the 

application layer; and ThingSpeak, Supabase, and Grafana for the data layer. 

Each technology was selected to balance feasibility under budget constraints 

with the need for scalability, usability, and analytical capability. Collectively, 

these choices enable the system to deliver a robust, data-driven solution that 

enhances melon yield and quality through cost-effective and sustainable smart 

farming practices. 

 

5.3 Database Design 

5.3.1 Entity Relationship Diagram (ERD) 

 

Figure 5.2: Entity Relationship Diagram 

 

5.3.2 Schema Design 

Users Entity Data Schema 

Column Name Definition Data Type Sample Value 
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user_id Unique 

identifier for 

each user. 

UUID 6aab053c-bdf4-4bcf-

b71e-6aca36854b7d 

email Email address 

of the user. 

Text farmer01@example.com 

role Defines the 

user’s role 

(e.g., admin, 

farmer). 

Text Farmer 

username Display name 

of the user. 

Text MelonMaster 

is_active Indicates 

whether the 

user account is 

active 

Boolean True 

last_login Records the 

last time the 

user logged 

into system. 

Timetamp 2025-08-15 14:32:00 

created_time The time when 

the user 

account was 

created. 

Timestamp 2025-03-15 14:32:00 

 

Sensor_data Entity Data Schema 

Column Name Definition Data Type Sample Value 

entry_id Unique 

incremental ID of 

the reading, same 

as ThingSpeak 

entry ID. 

Integer 1056 

air_humidity Measured 

humidity in the 

Numeric 72.4 
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air (%). 

air_temperature Measured 

temperature in 

the air (°C). 

Numeric 28.6 

light_intensity Measured 

sunlight/light 

intensity (lux). 

Numeric 1350.0 

soil_conductivity Electrical 

conductivity of 

the soil (µS/cm). 

Numeric 220.5 

soil_moisture Moisture content 

in the soil (%). 

Numeric 44.3 

soil_ph pH level of the 

soil. 

Numeric 6.8 

soil_tds Total dissolved 

solids in soil 

(ppm). 

Numeric 550.0 

soil_temperature Temperature of 

the soil (°C). 

Numeric 26.2 

created_at Original 

timestamp when 

data was recorded 

in ThingSpeak. 

Timestamp 2025-08-15 

00:10:57 

insert_date_time Timestamp when 

the data was 

inserted into the 

backend 

database. 

Timestamp 2025-08-15 

00:15:00 

 

Task Entity Data Schema 

Column Name Definition Data Type Sample Value 

id Unique identifier 

for each task 

Integer  1 
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(primary key) 

title Short title or 

name of the task 

Varchar Irrigation Check 

description Detailed 

explanation of the 

task 

Text Inspect and adjust 

drip irrigation 

system for melon 

beds 

assign_user The user assigned 

to carry out the 

task 

varchar Ali 

created_by User ID of the 

person who 

created the task 

UUID 6aab053c-bdf4-

4bcf-b71e-

6aca36854b7d 

updated_by User ID of the 

person who last 

updated the task 

UUID 6aab053c-bdf4-

4bcf-b71e-

6aca36854b7d 

start_time Scheduled start 

date and time of 

the task 

Timestamp 2025-08-15 

14:49:00 

end_time Scheduled end 

date and time of 

the task 

Timestamp 2025-08-15 

19:49:00 

created_at Timestamp when 

the task record 

was created 

Timestamp 2025-08-12 

02:44:40.2 

updated_at Timestamp when 

the task record 

was last modified 

Timestamp 2025-08-15 

02:44:40.2 

 

Device Tokens Data Schema 

Column 

Name 

Definition Data 

Type 

Sample Value 

id Unique identifier for each device Int 1 
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token   

user_id  Unique identifier of the user 

associated with the device 

UUID 6aab053c-bdf4-

4bcf-b71e-

6aca36854b7d 

token Push notification token generated 

by Firebase or similar 

Varchar dS7k-

C0Wd9wvZo2X

LJRl-

p_80gEN3J7C9s

4JvrjTWfYQlO

UtkWDEZLXu

my_fPm1e4Opo 

active Status flag indicating if the token 

is currently active 

Boolean True 

created_

at 

Timestamp when the token record 

was first created 

Timesta

mp 

2025-09-09 

15:50:22.31835

+00 

updated_

at 

Timestamp when the token record 

was last updated 

Timesta

mp 

2025-09-09 

15:50:22.31835

+00 

 

Parameter Thresholds Data Schema 

Column 

Name 

Definition Data Type Sample Value 

id Unique identifier for each 

threshold record (primary 

key) 

Int 1 

Parameter Name of the monitored 

parameter 

Varchar air_temperature 

Optimal_min Minimum value of the 

optimal range 

Float 24 

Optimal_max Maximum value of the 

optimal range 

Float 32 

Warn_min Minimum value for the Float 22 
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warning range (before 

becoming critical) 

Warn_max Maximum value for the 

warning range (before 

becoming critical) 

Float 35 

Low_suggesti

on 

Suggested corrective action 

when parameter falls below 

minimum 

Varchar Close vents or 

use heaters to 

raise 

temperature. 

High_suggest

ion 

Suggested corrective action 

when parameter exceeds 

maximum 

Varchar Improve 

greenhouse 

ventilation or 

install shading 

net. 

Warn_low_s

uggestion 

Suggested action when 

parameter approaches lower 

warning level 

Varchar Monitor, 

consider partial 

vent closing. 

Warn_high_s

uggestion 

Suggested action when 

parameter approaches 

higher warning level 

Varchar Keep ventilation 

running and 

monitor closely. 

Updated_by User ID who last updated 

the threshold entry 

UUID 6aab053c-bdf4-

4bcf-b71e-

6aca36854b7d 
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CHAPTER 6 

 

6 SYSTEM IMPLEMENTATION 

 

6.1 Introduction 

This chapter describes the software implementation of the Smart Farming 

System for musk melon cultivation, focusing on the transformation of the 

proposed system design into a functional application. The system is designed 

to enhance farming efficiency through IoT-based monitoring, where 

environmental sensor data are collected and transmitted to a ThingSpeak 

channel for subsequent processing and analysis. The implementation involves 

developing a software platform that retrieves data from ThingSpeak, processes 

it through cloud-based services, and presents it to users via an interactive and 

responsive interface. In addition to real-time data visualisation, the system 

supports environmental condition tracking and decision support features to 

maintain optimal growing conditions for musk melons. This chapter presents 

the implementation of the major software modules, the configuration of 

ThingSpeak integration, and the establishment of reliable communication 

between the cloud platform and the user interface. 

 

6.2 System Module 

The end-users for this system are categorized into two groups, that will be the 

administrative side and the non-administrative side. Since some functions are 

related to managerial tasks, a few submodules could be only accessed by 

administrative users. 

Table 6.1:  Module Overview by User Role 

End-users Module Name Objective of Module 

Admin User and role 

management 

Manage user roles, and system 

access. 

Add new user Add new user to the smart farming 

system. 

All user Authentication Secure login and access control for 
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the system. 

Profile management View and update personal details 

such as username, email, and 

password. 

Real-time sensor 

Monitoring 

View live environmental data and 

historical trends. 

View suggestion  View rule-based suggestions for 

corrective actions. 

Task management Manage farming task, keep track of 

pass and future farming activities. 

View analysed data 

dashboard 

Explore graphical dashboards, soil 

health index, and correlation 

analytics for insights. 

Receive alert 

notifications 

Get real-time alerts and notifications 

for abnormal conditions or threshold 

breaches. 

Manage sensor 

threshold 

Configure, update, and maintain 

threshold values and respective 

suggestion for different 

environmental parameters. 

 

6.3 Functional Module Implementation 

6.3.1 Supabase Authentication 

In order to provide secure access and enable personalized features within the 

Smart Farming System, Supabase Authentication (Auth) was implemented as 

the core user management module. Supabase Auth supports user registration, 

login, and session handling while integrating directly with the PostgreSQL 

backend, ensuring that only authorized users can access the farming dashboard 

and sensor data retrieved from the ThingSpeak channel. This implementation 

strengthens system security by restricting access to authenticated users and 

enabling role-based control of administrative functions. 
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The Supabase project was first created and configured through the 

Supabase dashboard. Within the authentication settings, the email and 

password option were enabled to support sign-up and login processes for 

farmers and administrators. Supabase automatically manages user credentials 

within its PostgreSQL database, reducing the need for additional custom 

authentication logic. During configuration, the system generated an API URL 

and an anonymous public key, which were subsequently integrated into the 

client application to establish secure communication with the Supabase 

backend. 

 

Figure 6.1: Enable auth providers (email) in supabase 

 

The application integrates with Supabase Authentication through the 

@supabase/supabase-js client library, which provides a simple and secure 

interface for managing user sessions. The authentication flow consists of two 

primary functions:  

i. Sign Up process - allows administrators to invite and register new 

users 

ii. Sign In process - authenticates existing users and generates a valid 

session token. 
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Figure 6.2: Code snippet for handling signs in, out and retrieve user’s session 

 

 

Figure 6.3: Sign in Page 

 

During the sign-in process, users enter their email and password into 

the login form, and these credentials are transmitted securely to the Supabase 

Authentication API using the signInWithPassword() method. Supabase 

verifies the credentials against the user records stored in the PostgreSQL 

database. Upon successful authentication, Supabase generates a session object 

containing a JSON Web Token (JWT), which serves as proof of the user’s 

identity. This token is stored locally by the application and is required for all 

subsequent requests to protected resources. In the event of invalid credentials, 
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Supabase returns an error response, preventing unauthorised access to the 

system. 

 

To enhance usability, the login interface also includes a password 

recovery mechanism, whereby users can request a reset link sent to their 

registered email address. This ensures that forgotten credentials can be 

securely managed without compromising the integrity of the authentication 

system. 

 

The sign-out process invalidates the active session and removes the 

locally stored token, ensuring that the user is fully logged out of the system. 

Together, these mechanisms provide a robust authentication framework that 

balances security, usability, and maintainability within the smart farming 

system. 

 

Figure 6.4: Sign out function for user in profile page 
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6.3.2 Authorisation 

 

Figure 6.5: Admin navigation view 

 

 

Figure 6.6: Normal user navigation 

view 

 

Authorisation within the Smart Farming System is implemented through role-

based access control, ensuring that users only have access to functions 

appropriate to their roles. Two main roles are defined in the system: 

administrator and normal user. Administrators are granted extended privileges 

which is the ability to register new users while normal users are restricted to 

essential functionalities. This role-based design not only strengthens system 

security by preventing unauthorised access to administrative functions but also 

enhances usability by presenting each user with a tailored interface aligned to 

their responsibilities. 
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6.3.3 Admin Sign Up 

 

Figure 6.7: Add new user page 

 

The sign-up process in the Smart Farming System is initiated by an 

administrator, who registers a new user by specifying the individual’s email 

address and assigning an appropriate role, such as farmer or administrator. The 

application transmits these details securely to Supabase using the Admin 

Service Key, which authorises privileged operations restricted to 

administrative users. Supabase then generates a unique registration link and 

automatically dispatches it to the specified email address. 

 

When the invited user accesses the link, they are redirected to the 

sign-up page, where they provide a password and complete the registration 

form. Once submitted, Supabase creates a new user record in the underlying 

PostgreSQL database, embedding the role assigned during registration. The 

system then issues a confirmation message to the user, indicating successful 

account creation. From this point, the user can proceed directly to the sign-in 

process to access the system’s features. 

 

Error-handling mechanisms are incorporated to ensure robustness 

during onboarding. If an invalid email address is provided or if the registration 
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link has expired, Supabase returns an error response. In such cases, the 

administrator is prompted to resend the invitation, thereby ensuring a smooth 

and reliable registration process. 

 

The API for adding a new user leverages Supabase’s administration 

endpoints and is secured through the Admin Service Key, ensuring that only 

authorised personnel can register new accounts. A code snippet illustrating this 

API call is provided in Figure 6.7 as supporting evidence of the 

implementation. 

 

Figure 6.8: API call for add new user 

 

6.3.4 User Profile Management 

 

Figure 6.9: User profile management page 
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As shown in Figure 6.8, the User Profile Management page was implemented 

to enable authenticated users to view and update their personal information 

within the system. This feature enhances usability by allowing users to verify 

their registered details and make modifications, such as updating their 

username, when necessary. The module is integrated with Supabase 

Authentication and the corresponding user profile table in the PostgreSQL 

database, ensuring that any updates remain consistent across authentication 

records and application data. To maintain security, update requests are 

validated so that users are only permitted to modify their own profiles. Once 

approved, the revised details are committed to the database and reflected 

immediately in the interface, providing a seamless and secure profile 

management experience. 

 

6.3.5 Task Management 

The Task Management Module was developed to assist farmers and 

administrators in organizing and monitoring farm-related activities within the 

smart farming system. It enables the creation, updating, and deletion of 

farming tasks, while also supporting visualization of schedules in a calendar 

format. This feature is essential for ensuring that agricultural activities such as 

irrigation, fertilization, or equipment inspections are executed in a timely 

manner, thereby reducing the risk of overlooked or delayed operations. 
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Figure 6.10: Code snippet for FullCalendar implementation 

 

The module was implemented using the FullCalendar library 

integrated into Angular, which provides interactive and customizable 

scheduling capabilities. Farmers are able to view tasks in multiple modes 

including monthly, weekly, and daily perspectives. Each task entry consists of 

essential attributes such as title, description, start time, end time and assign 

user. Through the interface, users can click on a calendar date to add a new 

task or select an existing event to update or delete it. Modal dialogs powered 

by Ng-Zorro components provide a structured form for task entry and editing, 

ensuring consistent user experience. 
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Figure 6.11: Calendar monthly view with weather forecast 

 

Internally, the Task Service handles communication with the backend, 

where task information persisted in the Supabase database. The component 

retrieves tasks via the service and transforms them into calendar events for 

rendering. CRUD operations are supported, where updates to task data are 

reflected in real time on the calendar interface. The module also integrates 

weather forecast data, displayed alongside tasks as background and foreground 

events, thereby assisting farmers in planning activities according to 

environmental conditions. 

 

Figure 6.12: Calendar modal dialog for adding/editing a task 
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By combining calendar-based visualization with backend task 

management, the module enhances farm operation planning and contributes to 

resource efficiency. It provides farmers with a centralized interface to track 

past and upcoming activities, while also aligning with the system’s overall 

objective of supporting decision-making through timely and actionable 

information. 

 

6.3.6 Sensor threshold value configuration 

The Sensor Threshold Value Configuration module was developed to allow 

users to manage the operating ranges of key environmental parameters within 

the smart farming system. Each sensor parameter is associated with predefined 

threshold ranges that determine its optimal, warning, and critical levels. These 

thresholds form the basis for the system’s Suggestion Service, which generates 

corrective recommendations whenever sensor readings deviate from expected 

conditions. 

 

The module provides a tabular interface, built using Angular and Ng-

Zorro UI components, through which administrators can view, update, and 

configure threshold values. Each row corresponds to a specific parameter, 

displaying its associated threshold settings along with editable fields. In 

addition to numeric ranges (warning minimum, optimal minimum, optimal 

maximum, and warning maximum), the module also enables administrators to 

configure customized suggestion messages for each parameter and range. For 

example, users may specify corrective actions such as “Increase irrigation to 

restore soil moisture” or “Adjust ventilation to reduce air temperature.” This 

design ensures flexibility, as messages can be modified directly through the 

front end without requiring backend code changes. 
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Figure 6.13: Threshold configuration page 

 

All changes persisted in the parameter_thresholds table of the 

Supabase database. Once updated, these values are immediately utilized by the 

Suggestion Service in real time, ensuring that new recommendations and alerts 

are aligned with the latest configuration. This approach empowers 

administrators to adapt the system dynamically to varying cultivation 

requirements or seasonal conditions, thereby enhancing its practical utility. 

 

6.3.7 Sensor Data Table View 

The Sensor Data Table module was developed to provide administrators and 

farmers with an organized and interactive interface for viewing raw sensor 

readings collected from the greenhouse. This component displays 

environmental data including air temperature, humidity, soil moisture, soil 

temperature, soil pH, soil conductivity, total dissolved solids (TDS), and light 

intensity. Each entry in the table is linked to a unique identifier (entry_id) and 

timestamp (created_at), allowing users to trace the exact moment a reading 

was captured. 
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Figure 6.14: Sensor data table 

 

The module was implemented in Angular, utilizing a custom 

TableComponent together with Ng-Zorro UI elements to provide advanced 

data handling capabilities. Users can sort, and search through the dataset to 

locate specific records or trends. For example, the sorting function allows the 

data to be ordered by attributes such as time of creation or sensor values. A 

search bar is also provided to refine results based on user queries, improving 

accessibility when dealing with large datasets. 

 

All sensor data is retrieved dynamically from the Supabase backend 

through the SensorReadingService, which communicates with the database via 

API calls. Once retrieved, the readings are mapped into table rows, ensuring 

real-time synchronization between the underlying database and the frontend 

interface. This design ensures that farmers and administrators are always 

working with the most recent sensor readings, reducing the risk of outdated or 

inaccurate information. 

 

By combining raw sensor visualization with interactive filtering and 

search functions, the Sensor Data Table module enhances the system’s 

transparency and usability. Farmers can directly inspect the captured 

environmental data, while administrators can cross-verify whether parameter 

thresholds and generated suggestions align with actual sensor conditions. This 
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component thus serves as the foundational layer for higher-level analytics and 

decision-support features within the smart farming system. 

 

6.4 Business Logic Implementation 

6.4.1 Supabase Edge Function 

A Supabase Edge Function was deployed to transfer IoT sensor data from 

ThingSpeak into the sensor_data table in Supabase. Running in a serverless 

environment, the function eliminates the need for a dedicated backend server 

while ensuring efficient and secure data synchronization. 

 

The function queries the most recent entry_id stored in the database, 

fetches new entries from the ThingSpeak API using Axios, and applies a retry 

mechanism to handle transient errors. Retrieved data are transformed into the 

schema format, validated, and timestamped before being inserted into 

Supabase in bulk. Logging is included to track operations such as fetch 

attempts, inserted rows, and potential errors. 

 

This design provides a lightweight ETL pipeline that reduces latency 

between data acquisition and storage, enabling near real-time updates on the 

dashboard. It demonstrates the effectiveness of serverless functions in bridging 

external IoT platforms with cloud databases, while supporting scalability and 

reliability in smart farming applications. 

 

Figure 6.15: Supabase Edge function for fetch data from ThingSpeak 
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Figure 6.16: Supabase Edge function for store fetched data into database 

 

6.4.2 Supabase Cron Job 

 

Figure 6.17: 15-minute interval cron job 

 

To ensure the Supabase Edge Function operates continuously without manual 

intervention, a Supabase Cron Job was configured. The Cron Job 

automatically triggers the deployed Edge Function every 15 minutes, enabling 
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consistent retrieval of sensor readings from ThingSpeak and insertion into the 

sensor_data table. 

 

This scheduling frequency was selected to provide timely updates for 

near real-time monitoring while avoiding excessive API calls that could lead 

to redundant data collection or unnecessary resource usage. By combining 

serverless functions with scheduled execution, the system establishes a reliable 

and efficient data ingestion pipeline that supports the monitoring and analytics 

modules of the smart farming system. 

 

6.4.3 Threshold-based rules suggestion logic 

The Suggestion Service is a critical component of the smart farming backend, 

designed to analyze sensor readings and provide data-driven recommendations 

to farmers. Its primary objective is to evaluate recent environmental conditions 

against predefined threshold rules and generate suggestions that support the 

maintenance of optimal farming conditions. In this way, the service transforms 

raw sensor values into actionable insights that directly contribute to informed 

decision-making in the field. 

 

Figure 6.18: Sensor data table 

 

 

Figure 6.19: Parameter threshold table 

 

The service integrates two main data sources. First, it retrieves real-

time sensor readings from the sensor_data table, which represents the actual 

conditions recorded by IoT devices within the greenhouse. Second, it 

references predefined threshold values stored in the parameter_thresholds table. 
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Each parameter is defined by four boundary values: minimum, optimal 

minimum, optimal maximum, and warning maximum, together with 

corresponding recommendation messages. This database-driven approach 

enhances flexibility, as administrators can modify thresholds and 

recommendations through the frontend interface without altering system code. 

 

Figure 6.20: checkParam method 

 

 

Figure 6.21: getSuggestions() method 

 

The service is structured around two core methods: getSuggestions() 

and checkParam(). The getSuggestions() method retrieves the latest sensor 

record and evaluates each parameter using the checkParam() function. 

Parameters without associated thresholds return a default message indicating 

that no rules are defined. The method compiles the evaluation results into a list 
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of suggestions; if all parameters fall within their optimal ranges, the service 

outputs a default message such as “All conditions optimal.” 

 

The checkParam() method performs the core evaluation process. It 

verifies the availability of sensor readings, compares values against the stored 

thresholds, and appends appropriate recommendation messages to the results 

list. This design ensures that deviations are automatically translated into 

specific, actionable suggestions for the farmer. 

 

6.4.4 Firebase Notification 

The Notification Service, implemented using Firebase Cloud Messaging 

(FCM), is responsible for delivering real-time alerts to farmers whenever 

environmental parameters deviate from their defined optimal thresholds. 

While the Suggestion Service performs the evaluation of sensor data and 

generates context-specific recommendations, the Notification Service ensures 

that these critical insights are communicated promptly to end users through 

push notifications. This integration enhances the responsiveness of the smart 

farming system by enabling immediate corrective action when anomalies are 

detected. 



104 

 

 

Figure 6.22: Notifications received by user 

 

The service operates in close coordination with the Suggestion 

Service. Whenever a parameter value falls outside its designated range, a call 

is triggered to the Notification Service. Each notification contains two primary 

components: a title (e.g., “Alert: Soil Moisture”) and a message (e.g., “Critical 

low soil moisture detected. Immediate irrigation is required. Current value = 

8%.”). These messages are dynamically generated based on real-time sensor 

readings and the corresponding threshold rules, ensuring that alerts remain 

both context-specific and actionable. 
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Figure 6.23: Function to send notification to all registered device 

 

Technically, the Notification Service retrieves all registered device 

tokens stored in the database and forwards the notification payload to Firebase. 

FCM then distributes the alerts to all subscribed devices, independent of 

whether the mobile application is active in the foreground or running in the 

background. For instance, when greenhouse temperature surpasses the warning 

maximum, an immediate push notification is dispatched to the farmer’s device, 

thereby supporting timely interventions to maintain crop health. 

 

6.5 Data Analytics and Visualization 

Grafana is employed in this project as the primary platform for real-time 

visualization of IoT sensor data. The system continuously collects and stores 

environmental parameters including air temperature, air humidity, soil 

moisture, soil pH, soil temperature, soil electrical conductivity (EC), pH value 

and light intensity. To transform this raw data into actionable insights, Grafana 

dashboards are organized into three main visualization components:  

i. Time-series graphs 

ii. Soil health index (SHI) 

iii. Correlation heat maps 
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6.5.1 Time-Series Graphs for Individual Parameters 

The first visualization component presents each environmental parameter in 

the form of a time-series graph. These graphs plot parameter values against a 

temporal axis, allowing farmers to observe fluctuations, identify recurring 

patterns, and compare variations across different time periods. Such 

visualizations are essential for detecting anomalies and understanding how 

specific conditions evolve throughout the cultivation process. 

 

Figure 6.24: Query that demonstrates how Grafana retrieves and aggregates air   

temperature readings 

 

For example, figure above showed air temperature readings are 

retrieved and aggregated through a query executed in Grafana, which produces 

a continuous line graph illustrating temperature changes over time. Similar 

queries are applied to other key parameters including humidity, soil moisture, 

pH, and conductivity, thereby providing farmers with a comprehensive and 

easily interpretable overview of environmental dynamics within the 

greenhouse. 

 

Figure 6.25: Air temperature time series graph 
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By transforming raw data into intuitive visual representations, the 

time-series graphs enhance situational awareness and support proactive 

decision-making, ensuring that deviations can be identified and addressed 

before they negatively impact crop growth. 

 

6.5.2 Soil Health Index (SHI) 

To complement the visualization of individual parameters, the system 

implements a Soil Health Index (SHI) as a composite metric that consolidates 

multiple soil-related parameters into a single score. The SHI provides a 

holistic measure of soil condition by incorporating soil moisture, soil 

conductivity, soil temperature, soil tds, air temperature, light intensity, pH and 

air humidity. Each parameter is normalized against its respective threshold 

values, assigned a weighted sub-score, and aggregated to form the final index. 

Parameters with greater impact on melon growth, such as soil moisture and pH, 

are assigned higher weights to ensure their influence is reflected in the overall 

score. 
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Figure 6.26: SQL query to compute SHI 

 

The SHI is visualized in Grafana as a time-series graph, where the 

index is plotted against time. This approach enables farmers to monitor not 

only the current soil health but also its progression over different cultivation 

phases. By observing trends, farmers can identify gradual deterioration in soil 

conditions and take preventive measures before they affect crop growth. For 

example, a steadily declining SHI curve may indicate progressive nutrient 

depletion or moisture imbalance that requires corrective intervention. 
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Figure 6.27: Soil Health Index Graph 

 

Compared to analysing individual parameters in isolation, the SHI 

time-series graph simplifies decision-making by presenting a consolidated 

indicator of soil quality. This visualization provides farmers with an intuitive 

tool to assess the overall effectiveness of their soil management practices and 

supports proactive actions to sustain crop yield and quality. 

 

6.5.3 Correlation Analysis 

Correlation analysis was conducted to identify relationships among 

environmental parameters, enabling farmers to understand how variables 

interact and influence crop conditions. The computation was performed 

directly in PostgreSQL using the corr() function, which calculates Pearson 

correlation coefficients between pairs of parameters stored in the sensor_data 

table. The SQL query produced a correlation matrix, where each cell 

represents the degree of association between two variables (e.g., air 

temperature and humidity, soil moisture and conductivity). This matrix 

provides a structured dataset that quantifies the strength and direction of 

parameter relationships. 
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Figure 6.28: SQL query using corr() function 

 

The results of the correlation query were visualized as a correlation 

heatmap as shown in figure below, where coefficients are represented using a 

diverging color scale from strong negative (dark red) to strong positive (dark 

green), with weaker correlations shown in lighter shades of yellow and orange. 

As shown, air temperature and air humidity display a strong negative 

correlation (–0.957), reflecting their inverse relationship, while air temperature 

and soil temperature exhibit a strong positive correlation (0.730). Soil moisture 

and soil TDS also demonstrate a moderate positive correlation (0.673), 

suggesting that increased irrigation may elevate nutrient concentration levels 

in the soil. By consolidating all pairwise relationships into a single heatmap, 

the system provides farmers with an intuitive overview of environmental 

interactions, enabling more informed and data-driven greenhouse management 

decisions. 

 

Figure 6.29: Correlation analysis heatmap 
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CHAPTER 7 

 

7 System Testing and Evaluation 

7.1 Introduction 

System testing and evaluation were conducted to ensure that the smart farming 

system for Japanese melon cultivation operates reliably, meets its functional 

requirements, and delivers accurate and timely decision support to farmers. 

The testing phase focused on validating the system’s core functionalities, 

integration of components, data handling, threshold evaluation, visualization, 

and overall performance. A combination of functional testing, integration 

testing, and performance testing methods were employed. Functional testing 

was used to verify individual features such as user authentication, task 

management, sensor data visualization, and threshold configuration—worked 

according to specifications. Integration testing ensured that data pipelines 

between IoT devices, ThingSpeak, Supabase, and the web application 

functioned seamlessly, with no duplication, loss, or corruption of records. 

Performance testing was carried out to evaluate responsiveness and efficiency, 

particularly the system’s ability to deliver real-time updates, trigger 

notifications, and render dashboards within acceptable time limits. 

 

These testing methods were chosen because they collectively provide 

a comprehensive evaluation of the system’s reliability and usability. 

Functional and integration testing validated correctness and robustness, while 

performance testing addressed timeliness, which is critical in greenhouse 

environments where rapid responses to anomalies directly influence crop yield 

and quality. Together, these methods ensure that the developed system not 

only functions as intended but also provides a practical, efficient, and farmer-

friendly tool for precision agriculture. 
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7.2 Functional Test Case 

Table 7.1: User Sign In Test Case 

Test Case# 1 Test Case Name User Sign In 

Test Case 

Summary 

To test if registered users can successfully sign in and access the system. 

Pre-Conditions User account exists in the database. 

Prepared & 

Executed By 

Liew Ke Ying 

Scenario Test Procedure Input Data Expected 

Outcome 

Observed 

Outcome 

Evaluation 

(Fail/Pass) 

Valid login 

credentials 

1.Navigate to login page.  

2. Enter registered email and correct 

password.  

3. Click “Login”. 

 

Email: 

farmer01@example.com 

Password: correct123 

System 

authenticates user 

and redirects to 

dashboard. 

User 

successfully 

logged in and 

redirected. 

Pass 

Invalid login 

credentials 

1. Navigate to login page. 

2. Enter registered email with incorrect 

password. 

Email: 

farmer01@example.com 

Password: wrong 

System rejects 

login attempt and 

displays error 

Error message 

shown: “Invalid 

credentials.”  

Pass 
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3. Click “Login”. message. 

Empty fields 1. Leave email and/or password field empty. 

2. Click “Login” 

 

Email: - 

Password: - 

System prompts 

user to fill required 

fields. 

Validation  

message 

displayed. 

Pass 

 

Table 7.2: Add New User Test Case 

Test Case# 2 Test Case Name Add new user 

Test Case 

Summary 

To test if admin can add a new user to the system. 

Pre-Conditions Admin is logged in with role-based access. 

Prepared & 

Executed By 

Liew Ke Ying 

Scenario Test Procedure Input Data Expected 

Outcome 

Observed 

Outcome 

Evaluation 

(Fail/Pass) 

Add valid user 1. Admin press to ‘Add User’ button. 

2. Enter user’s email and role. 

3. Press confirm button. 

 

Email: 

farmer01@gmail.com 

Role: Farmer 

User created 

successfully, invite 

email sent. 

User added and 

email invite 

received. 

Pass 
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Add with 

invalid email 

1. Enter invalid email format. 

2. . Click “Create new user” button. 

Email: 

farmer01@wrong 

Role: Farmer 

System rejects 

displays error 

message. 

Error message 

shown: “Invalid 

email format.”  

Pass 

Duplicate email 1. Enter email that already exists. 

2. Confirm 

 

Email: 

farmer01@gmail.com 

Role: Farmer 

System prevents 

duplicate creation. 

Error message 

“User already 

exists” will be 

displayed. 

Pass 

 

Table 7.3: Configure Sensor Data Threshold Test Case 

Test Case# 3 Test Case Name Configure Sensor Data Threshold 

Test Case 

Summary 

To test if admin can add/update threshold values and suggestion messages. 

Pre-Conditions Admin logged in; parameter_thresholds table available. 

Prepared & 

Executed By 

Liew Ke Ying 

Scenario Test Procedure Input Data Expected 

Outcome 

Observed 

Outcome 

Evaluation 

(Fail/Pass) 

Update 1. Select parameter “Air Temperature”. Optimal Max = 32°C -> New threshold will New threshold Pass 
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threshold 2. Update values.  

3. Save. 

35°C be displayed. value is updated 

and displayed. 

Invalid input 1. Enter empty values. 

2. Save 

Soil pH = - System rejects and 

prompts error. 

Error message 

“ Invalid input” 

displayed 

Pass 

 

Table 7.4: Task Management Test Case 

Test Case# 4 Test Case Name Task Management 

Test Case 

Summary 

To test create, update, and delete tasks in the calendar. 

Pre-Conditions User logged in; Calendar module active. 

Prepared & 

Executed By 

Liew Ke Ying 

Scenario Test Procedure Input Data Expected 

Outcome 

Observed 

Outcome 

Evaluation 

(Fail/Pass) 

Create new task 1. Open model. 

2. Input task details. 

3. Save 

Title: “Irrigation Check” 

Time: 10:00-11:00 

Task saved and 

shown in calendar. 

Task created 

successfully. 

Pass 
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Update task 1. Select existing task.  

2. Change time.  

3. Save. 

Update to 09:00-10:00 Task updated in 

DB and calendar 

refreshed. 

Updated 

successfully. 

Pass 

Delete task 1. Select task 

2. Press Delete Button 

“Irrigation Check” Task removed 

from DB and 

calendar. 

Task deleted 

successfully. 

Pass 

 

Table 7.5: View, Sort and Search Sensor Data Table Test Case 

Test Case# 5 Test Case Name View, sort and search sensor data table 

Test Case 

Summary 

To test whether sensor readings are displayed and can be filtered. 

Pre-Conditions Sensor data available in DB 

Prepared & 

Executed By 

Liew Ke Ying 

Scenario Test Procedure Input Data Expected 

Outcome 

Observed 

Outcome 

Evaluation 

(Fail/Pass) 

Load sensor 

readings 

1. Users click the sensor data navigation 

page. 

Existing sensor data 

entries. 

Data displayed in 

table format. 

Displayed 

correctly. 

Pass 
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Sort entries 1. Users press up sort button on entry id 

column. 

2. Users then press down sort button on 

entry id column. 

N/A Column entry id is 

sorted in ascending 

then descending. 

Sorted correctly. Pass 

Filter entries. 1. Users type an entry id in the search 

bar. 

1034 Sensor data with 

entry id “1034” 

will be displayed. 

Sensor data row 

retrieves and 

display 

correctly. 

Pass 

 

Table 7.6: View and Filter by Date on Time-Series Graph Test Case 

Test Case# 6 Test Case Name View and Filter by Date on Time-Series Graph 

Test Case 

Summary 

To test whether the time-series graph displays parameter trends and supports filtering by date range. 

Pre-Conditions Sensor data available in sensor_data table. 

Prepared & 

Executed By 

Liew Ke Ying 

Scenario Test Procedure Input Data Expected 

Outcome 

Observed 

Outcome 

Evaluation 

(Fail/Pass) 
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Load full graph 1. Navigate to dashboard.  

2. Select time-series graph for “Air 

Temperature”. 

Sensor data over 1 week 

(by default) 

Graph plotted with 

data points over 

full period. 

Displayed 

correctly. 

Pass 

Apply date filter 1. Select date filter range. 

2. Apply filter. 

Start=2025-09-01, 

End=2025-09-07. 

Graph updates to 

show data only in 

selected range. 

Graph filtered 

successfully. 

Pass 

 

Table 7.7: View and Filter by Date on Correlation Heatmap Test Case 

Test Case# 7 Test Case Name View and Filter by Date on Correlation Heatmap 

Test Case 

Summary 

To test whether the correlation heatmap updates correctly when filtered by date range. 

Pre-Conditions Historical sensor data available. 

Prepared & 

Executed By 

Liew Ke Ying 

Scenario Test Procedure Input Data Expected 

Outcome 

Observed 

Outcome 

Evaluation 

(Fail/Pass) 

Default heatmap 1. Open correlation heatmap view. Default time range Heatmap generated 

with correct 

Displayed 

correctly. 

Pass 
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correlation values. 

Apply date filter 1. Select custom range. 

2. Apply filter. 

3. Click confirm button. 

Start=2025-09-01, 

End=2025-09-07. 

Heatmap 

recalculated for 

selected range. 

Updated 

correctly. 

Pass 

 

Table 7.8: View and Filter by Date on Soil Health Index (SHI) Test Case 

Test Case# 8 Test Case Name View and Filter by Date on Soil Health Index 

(SHI) 

Test Case 

Summary 

To test whether SHI time-series graph updates correctly with date filters. 

Pre-Conditions SHI calculation configured in Grafana. 

Prepared & 

Executed By 

Liew Ke Ying 

Scenario Test Procedure Input Data Expected 

Outcome 

Observed 

Outcome 

Evaluation 

(Fail/Pass) 

Load SHI graph 1. Users navigate to dashboard page. Default time range SHI graph 

generated with 

composite index. 

Displayed 

correctly. 

Pass 
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Filter SHI by 

date 

1. Select custom range. 

2. Apply filter. 

3. Click confirm button. 

Data from last 3 days. Graph updates with 

SHI values in 

selected period. 

Updated 

correctly. 

Pass 

 

Table 7.9: View Latest Sensor Values Test Case 

Test Case# 9 Test Case Name View latest sensor values 

Test Case 

Summary 

To test whether the dashboard displays the most recent sensor readings. 

Pre-Conditions New sensor entry inserted into sensor_data. 

Prepared & 

Executed By 

Liew Ke Ying 

Scenario Test Procedure Input Data Expected 

Outcome 

Observed 

Outcome 

Evaluation 

(Fail/Pass) 

Display latest 

data 

1. Users navigate to dashboard page. N/A Latest values of 

sensor parameter 

displayed in gauge 

form. 

Displayed 

correctly. 

Pass 

Auto refresh 1. Wait until new entry inserted. Entry updated in Dashboard Refreshed Pass 
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latest value 2. Observe dashboard refresh. ThingSpeak. refreshed with 

newest reading. 

correctly. 

 

Table 7.10:  Admin Deactivate User Test Case 

Test Case# 10 Test Case Name Admins deactivate user 

Test Case 

Summary 

To test whether admin can deactivate a user account. 

Pre-Conditions User exists in system; admin logged in. 

Prepared & 

Executed By 

Liew Ke Ying 

Scenario Test Procedure Input Data Expected Outcome Observed 

Outcome 

Evaluation 

(Fail/Pass) 

Deactivate user 1. Navigate to User Management. 

2. Select user. 

3. Set user status to false. 

User: 

Farmer02@gmail.com 

User marked inactive 

in database 

User 

successfully 

deactivated. 

Pass 

Login after 

deactivation 

1. User attempt login with deactivated 

account. 

User: 

Farmer02@gmail.com 

System rejects login 

and shows error. 

Login blocked 

successfully. 

Pass 
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Table 7.11:  Admin Change User Role Test Case 

Test Case# 11 Test Case Name Admins change user role 

Test Case 

Summary 

To test whether admin can update an existing user’s role. 

Pre-Conditions User exists in system; admin logged in. 

Prepared & 

Executed By 

Liew Ke Ying 

Scenario Test Procedure Input Data Expected 

Outcome 

Observed 

Outcome 

Evaluation 

(Fail/Pass) 

Change user 

role 

1. User navigate to user management. 

2. Select user to change roles. 

3. Change user role to admin. 

4. Click ‘Confirm’ button. 

User: 

Farmer02@gmail.com 

New role: Admin 

User role updated 

in database and 

reflected in user 

management page. 

Updated 

successfully. 

Pass 

 

7.3 Integration Test Case 

Table 7.12:  Fetch and Insert New Data Test Case 

Test Case# 1 Test Case Name Fetch and Insert New Data 

Test Case To test if the Edge Function fetches new ThingSpeak data and inserts into Supabase. 

mailto:Farmer02@gmail.com
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Summary 

Pre-Conditions Supabase sensor_data table is created. 

Prepared & 

Executed By 

Liew Ke Ying 

Scenario Test Procedure Input Data Expected Outcome Observed 

Outcome 

Evaluation 

(Fail/Pass) 

When Supabase 

sensor_data table 

is empty. 

1. Trigger the Edge Function using supabase 

dashboard. 

2. Verified if the new data is inserted into the 

sensor_data table. 

ThingSpeak 

Channel with new 

entry_id values 

New entries 

inserted into 

Supabase 

sensor_data table 

New entries 

inserted into 

Supabase 

sensor_data table 

Pass 

When Supabase 

sensor_data table 

already contains 

previous entries. 

1. Trigger the Edge Function again after some 

rows already exist. 

2. Verify if only new entries (greater entry_id) are 

appended, without duplicates. 

Only new rows are 

inserted; no 

duplication of 

existing entries 

Only new rows 

inserted 

successfully 

without duplicates 

Only new rows 

inserted 

successfully 

without 

duplicates 

Pass 

When 

ThingSpeak 

channel has no 

1. Trigger the Edge Function when ThingSpeak 

data is unchanged. 

2. Check if no additional rows are added in 

ThingSpeak 

channel without 

new data 

No new rows are 

inserted; table 

remains unchange 

No new rows 

were inserted 

Pass 
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new entries since 

the last fetch. 

Supabase. 

When 

ThingSpeak 

channel data has 

missing fields 

(e.g., null values 

in some sensors). 

1. Trigger the Edge Function with entries having 

null fields. 

2. Verify how Supabase stores incomplete 

records. 

ThingSpeak 

channel entry with 

missing field 

values 

Data inserted with 

null values 

preserved in 

corresponding 

columns 

Data inserted 

with null values 

stored as 

expected 

Pass 

 

Table 7.13:  Scheduled Data Fetch and Insert Test Case 

Test Case# 2 Test Case Name Scheduled Data Fetch and Insert 

Test Case 

Summary 

To test if the Cron Job automatically triggers the Edge Function to fetch and insert new sensor data every 15 minutes. 

Pre-Conditions Cron Job is configured in Supabase to run at every 15 minutes. 

Prepared & 

Executed By 

Liew Ke Ying 

Scenario Test Procedure Input Data Expected Outcome Observed 

Outcome 

Evaluation 

(Fail/Pass) 
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Scheduled Cron 

Job execution 

inserts new 

ThingSpeak data 

into Supabase 

1. Wait for the Cron Job to trigger at the 15-

minute schedule. 

2. Verify if new data from ThingSpeak is inserted 

into the sensor_data table in Supabase. 

ThingSpeak 

Channel with new 

entry_id values 

added between the 

last job and the 

current run 

Cron Job triggers 

Edge Function, and 

new entries are 

automatically 

inserted into 

sensor_data table 

without manual 

intervention. 

New entries 

successfully 

inserted into 

sensor_data table 

after 15 minutes. 

Pass 

 

Table 7.14:  Fetch Current Weather Data Test Case 

Test Case# 3 Test Case Name Fetch Current Weather Data from OpenWeather 

API 

Test Case 

Summary 

To test if the frontend successfully fetches live weather data from the OpenWeather API and displays it correctly. 

Pre-Conditions A valid OpenWeather API key is configured in the frontend. Internet connection is available 

Prepared & 

Executed By 

Liew Ke Ying 

Scenario Test Procedure Input Data Expected Outcome Observed Evaluation 
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Outcome (Fail/Pass) 

Weather API 

fetch and display 

validation 

1. Open the frontend page with weather display. 

2. Trigger the fetch request to OpenWeather API. 

3. Observe whether weather data is displayed. 

City = Sungai 

Long,  

Valid API 

Key 

Weather data is 

successfully fetched 

from OpenWeather API 

and displayed correctly 

in frontend. 

Weather data is 

fetched and 

displayed 

correctly in 

frontend UI. 

Pass 

 

Table 7.15:  Test Notifications Test Case 

Test Case# 4 Test Case Name Test Notifications 

Test Case 

Summary 

To test if the notifications able to receive successfully. 

Pre-Conditions (i) Supabase device_tokens table is populated with valid device tokens. 

(ii) Firebase Cloud Messaging (FCM) service is configured correctly in backend. 

(iii) Application client is installed on a device, and notifications are enabled. 

Prepared & 

Executed By 

Liew Ke Ying 

Scenario Test Procedure Input Data Expected 

Outcome 

Observed Outcome Evaluation 

(Fail/Pass) 
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When a 

parameter value 

exceeds the 

warn_max 

threshold. 

1. Insert a test sensor reading into sensor_data 

that exceeds threshold. 

2. Verify if a notification is sent to registered 

device(s). 

 

Sensor reading: 

air_temperature = 

45°C (threshold 

max = 35°C) 

Push notification is 

sent: “Alert: Air 

Temperature too 

high. Please 

ventilate.” 

Notification received 

successfully on client 

device 

Pass 

When a 

parameter value 

drops below the 

warn_min 

threshold. 

1. Insert a test reading below threshold. 

2. Verify notification. 

Sensor reading: 

soil_moisture = 

5% (threshold min 

= 15%) 

Push notification is 

sent: “Alert: Soil 

moisture too low. 

Consider 

irrigation.” 

Notification received 

successfully 

Pass 

When parameter 

is within the 

optimal range. 

1. Insert a normal reading. 

2. Check if no unnecessary notification is 

triggered. 

Sensor reading: 

soil_pH = 6.8 

(within 6.5–7.0) 

No notification 

should be sent. 

No notification 

triggered 

Pass 
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7.4 Data Handling and Accuracy 

A key aspect of system testing was to ensure that sensor data transmitted from 

the IoT devices and first ingested into ThingSpeak was correctly synchronized 

into the Supabase database without loss, duplication, or corruption. Since 

Supabase serves as the primary data repository for analysis and visualization, 

maintaining accurate and reliable data transfer from ThingSpeak was essential 

for system functionality. 

 

 

Figure 7.1: Thingspeak’s sensor data 

 

 

Figure 7.2: Supabase sensor data table 

 

The test focused on three main areas: data integrity and completeness. 

Data integrity was evaluated by comparing random samples of sensor readings 

recorded in ThingSpeak with those retrieved from the Supabase sensor_data 

table. Figure 7.5.1 illustrates an example of sensor readings as displayed in the 
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ThingSpeak channel, while Figure 7.5.2 shows the corresponding entries 

stored in Supabase after synchronization. The comparison revealed that all 

sampled values matched exactly across both platforms, resulting in an 

accuracy rate of 100%. This confirms that the synchronization process 

preserved the integrity of the sensor data without any corruption or 

modification during transfer. 

 

Figure 7.3: SQL to count completeness percentage 

 

Completeness was verified by checking the sequence of entry_id 

values in the sensor_data table. Since ThingSpeak generates entries 

sequentially, any missing IDs would indicate a skipped or lost record. Out of a 

total of 1,603 rows, only 3 IDs were missing, representing a data loss rate of 

approximately 0.19% as shown in figure above. The results confirm that the 

data synchronization process between ThingSpeak and Supabase was highly 

reliable. The small discrepancy is likely due to temporary network or 

synchronization delays and is acceptable within the scope of this project.  

 

7.5 Visualization and Analytics 

The purpose of this test was to verify that the visualization and analytical 

components of the system accurately represented the data stored in Supabase 

and provided meaningful insights for farm management. Testing was carried 

out in three areas: time-series graphs in Grafana, Soil Health Index 

computation, and correlation analysis using heat maps.  
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For the Grafana dashboards, selected parameters such as air 

temperature and soil moisture were compared between raw database queries 

and their corresponding visualizations. The results confirmed that the plotted 

values aligned with the underlying data, ensuring that farmers could reliably 

observe environmental trends over time.  

 

The Soil Health Index was tested by inserting controlled sample 

values into the database and verifying that the calculated index corresponded 

with expected soil conditions (e.g., optimal when all parameters were within 

defined thresholds, low when moisture and pH dropped below the minimum 

range).  

 

Similarly, the correlation heat map was evaluated by analysing pairs 

of parameters with known relationships; for instance, soil moisture and 

conductivity were positively correlated, while air temperature and humidity 

displayed an inverse relationship.  
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7.6 Threshold Evaluation and Suggestions 

 

Figure 7.4: Angular dashboard displaying a suggestion 

 

 

Figure 7.5: Test results 
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Figure 7.6: SQL to retrieve test results 

 

This test was conducted to verify that the system correctly evaluated 

sensor readings against the predefined threshold values stored in the 

parameter_thresholds table and generated the appropriate suggestions. The 

latest sensor values from the sensor_data table were retrieved and compared 

with the optimal and warning ranges for each parameter. The SQL query 

above was executed to join the most recent sensor readings with their 

corresponding threshold definitions, automatically determining the expected 

suggestion for each case. For example, when the latest soil moisture reading 

fell below the warn_min value, the system correctly generated the suggestion 

to increase irrigation, while higher-than-expected air temperature values 

triggered recommendations to improve greenhouse ventilation. Above table in 

the figure summarizes the results of this test, showing the latest sensor values, 

the relevant threshold ranges, and the expected suggestions. The confirmed 

that the threshold evaluation logic functioned consistently across all 

parameters, with the generated suggestions matching the corrective actions 

defined in the database. This demonstrates that the system provides farmers 

with timely and context-specific guidance, enabling proactive interventions to 

optimize melon cultivation conditions.  
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7.7 Performance Testing 

Performance testing was conducted to evaluate the responsiveness and 

efficiency of the Smart Farming System. The goal was to measure how 

quickly the system reacts to sensor updates, processes notifications, and 

retrieves data for users. Since the system involves real-time monitoring, timely 

updates and alerts are critical to ensure farmers can respond promptly to 

abnormal farming conditions. 

 

7.7.1 App Start Time 

App Start Time testing was conducted to evaluate how quickly the web 

application loads and displays the dashboard after being launched. This test is 

important because loading speed directly affects user experience and system 

usability. In farming operations, where users often need to access the 

dashboard quickly to view real-time sensor readings, a delay in loading may 

hinder timely decision-making. To ensure reliability, the Largest Contentful 

Paint (LCP) metric was selected as the primary performance indicator. LCP, 

provided by Microsoft Edge DevTools, measures the time when the main 

content of a page becomes visible to the user. Since the dashboard is the 

central interface for monitoring greenhouse conditions, using LCP makes it a 

reliable representation of perceived load time and overall responsiveness of the 

application. 

 

The testing process followed a systematic methodology. The web 

application was first opened in InPrivate (Incognito) mode to prevent cached 

data from influencing the measurement. The Microsoft Edge DevTools were 

then launched, and under the Performance tab, the Web Vitals feature was 

used to capture the LCP value. After refreshing the dashboard, the LCP time 

was recorded for each run. To increase the accuracy and consistency of the 

measurement, the process was repeated five times under the same conditions. 

Finally, the average App Start Time was calculated by dividing the sum of all 

LCP values by the number of runs. This approach ensured that the reported 

result reflected a consistent and reliable measure of system performance. 

 



134 

 

Test 1 Test 2 Test 3 Test 4 Test 5 

     

 

Formula used:  

 

Average App Start Time = 
𝑆𝑢𝑚 𝑜𝑓 𝐿𝐶𝑃 𝑣𝑎𝑙𝑢𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑛𝑠
 

                                                  = 
1.53+1.88+1.08+2.32+1.24

5
 

                                       = 1.554 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

 

The results show that the application consistently loads within 1.554 

seconds, which is well below the target threshold of 5 seconds for acceptable 

user experience. This indicates that the system is optimized and efficient in 

rendering the dashboard interface. 
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CHAPTER 8 

 

8 CONCLUSION AND RECOMMENDATIONS 

 

8.1 Overview 

This chapter concludes the study by revisiting the objectives and outcomes of 

the web-based smart IoT system for Japanese melon farming, which was 

designed to improve efficiency, consistency, and crop quality through real-

time monitoring and data-driven insights. The chapter first presents the 

research findings, evaluating how the system achieved its objectives. It then 

discusses the problems encountered during development and testing, 

highlighting both technical and coordination challenges faced along the way. 

This is followed by a review of the limitations of the project. Finally, the 

chapter outlines recommendations for future improvements and enhancements 

to ensure scalability, usability, and long-term effectiveness, reaffirming the 

system’s potential to contribute to smart and sustainable melon farming 

practices. 

 

8.2 Research Findings 

This section reviews how the project’s objectives were achieved by evaluating 

the outcomes of the developed system. It highlights how the IoT platform, data 

visualization tools, and automated alerts addressed the key challenges of 

Japanese melon farming, demonstrating the system’s effectiveness and 

potential to improve efficiency, resource management, and crop quality. 

 

8.2.1 Objectives 1: To develop a web-based IoT system for real-time 

monitoring of environmental parameters in Japanese melon 

farming. 

The project successfully achieved this objective by designing and 

implementing a web-based platform that integrates IoT devices with cloud 

storage and visualization tools. Environmental parameters were collected and 

displayed real time in Grafana dashboard. This testing results also 
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demonstrates that the system is capable of providing reliable and continuous 

monitoring of environmental conditions in Japanese melon cultivation. 

 

8.2.2 Objectives 2: To develop and integrate a data-driven analytics 

pipeline with visualization and analysis 

This objective was met through the integration of Grafana into the system, 

enabling powerful data visualization and analytics. Time-series graphs were 

employed to illustrate fluctuations in key parameters, helping farmers identify 

environmental patterns over time. A Soil Health Index was developed by 

combining soil-related parameters into a single metric, providing farmers with 

a simplified yet comprehensive view of soil conditions. In addition, correlation 

heat maps were generated to highlight relationships between parameters.  

 

8.2.3 Objectives 3: To enhance farming yield and crop quality by 

implementing automated alerts and suggestions based on 

parameter thresholds. 

The system effectively addressed this objective by embedding a parameter 

threshold mechanism in the backend. Threshold values for each parameter 

were stored in the database and evaluated in real time by the Spring Boot 

application. When readings fell outside of the defined optimal ranges, the 

system automatically generated corrective suggestions. In addition, Firebase 

Cloud Messaging (FCM) was integrated to deliver instant push notifications to 

users, ensuring that farmers were alerted to anomalies without needing to 

constantly monitor the dashboard. 

 

Although the system was not deployed continuously throughout a full 

cultivation cycle, it was tested under real greenhouse conditions and 

demonstrated functional reliability. During the evaluation period, sensor 

anomalies were detected correctly, and corresponding alerts and suggestions 

were generated as expected. Preliminary trials also resulted in the successful 

cultivation of four Japanese melons, indicating that the threshold-based 

mechanism and alert system can support farmers in maintaining stable growth 

conditions. While the short testing window limited the ability to conclusively 
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validate long-term yield improvements, the results provide credible evidence 

that the proposed system can enhance farming practices and contribute to more 

consistent crop quality when applied across multiple growth cycles. 

 

8.3 Problem Encountered 

During the development and testing of the smart farming system, several 

problems were encountered that affected both the technical implementation 

and project coordination. These challenges and their resolutions are discussed 

below. 

 

8.3.1 Direct Integration from IoT Gateway to Supabase Cloud 

Database 

The initial plan was for sensor readings to be transmitted straight from the 

gateway to Supabase; however, due to SIM card incompatibility and 

connectivity errors, this approach failed to establish a stable communication 

channel. As a solution, ThingSpeak was introduced as an intermediary 

platform for data ingestion. This allowed the IoT devices to successfully 

transmit data, which could then be synchronized with Supabase for structured 

storage and analysis. 

 

8.3.2 Communication and Coordination with Hardware Team 

Another problem encountered was related to communication and coordination 

with the hardware team members, who were responsible for sensor setup and 

calibration. Since the project involved multiple team members working on 

different components, occasional misalignment in timelines and unclear 

reporting of sensor performance created delays in backend and frontend 

integration. To address this, regular coordination meetings were established 

and shared documentation was introduced to streamline communication. This 

ensured that the hardware data formats, and collection processes were clearly 

defined, allowing smoother integration with the software components. 
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8.3.3 Integration Challenges Across Multiple Platforms 

Integration challenges were also experienced across the multiple platforms 

used in the system, namely ThingSpeak, Supabase, Spring Boot, Angular, 

Firebase, and Grafana. Ensuring compatibility between APIs, authentication 

mechanisms, and data formats was complex and caused delays during 

development. Specific issues included CORS errors when connecting Spring 

Boot to Supabase and Firebase service worker registration failures when 

enabling push notifications. These problems were resolved through iterative 

debugging and careful configuration. For example, Spring Boot was updated 

with appropriate CORS headers to allow secure cross-origin requests, while 

Firebase documentation was consulted to correct service worker timing errors. 

 

8.3.4 Limited Project Timeline and Testing Scope 

The limited project timeline posed another challenge. Due to the constraints of 

the FYP schedule, the system could not be deployed throughout the entire 

Japanese melon cultivation cycle. This limited the scope of testing, meaning 

that while the system demonstrated feasibility and supported one successful 

melon harvest, its long-term impact on yield and fruit quality could not be 

conclusively validated. The short timeline, therefore, restricted comprehensive 

evaluation, and extended deployment across multiple cycles was identified as 

an important step for future research and system validation. 

 

8.4 Limitations 

Although the smart farming system achieved its objectives and demonstrated 

promising results, several limitations were encountered during development 

and testing. These limitations provide context for the findings and highlight 

opportunities for future work. 

 

8.4.1 Partial Deployment Across Cultivation Cycle 

Although the smart farming system achieved its objectives and demonstrated 

promising results, several limitations were encountered during development 

and testing. These limitations provide context for the findings and highlight 

opportunities for future work. 
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8.4.2 Hardware and Connectivity Constraints 

Budget limitations restricted the use of more advanced IoT hardware and SIM 

cards capable of direct integration with cloud databases. As a workaround, 

ThingSpeak was used as an intermediary data ingestion platform before 

synchronizing with Supabase. While effective, this introduced additional steps 

that could affect real-time performance. 

 

8.4.3 Dependence on Internet Connectivity 

The system relies heavily on stable internet connectivity for transmitting 

sensor data, updating dashboards, and sending notifications. In rural or 

greenhouse environments with unstable networks, system performance and 

responsiveness may be reduced. 

 

8.4.4 Usability Testing and User Adoption 

The system’s features were evaluated by the project team but not through 

extensive farmer-based usability testing. As such, the interface and workflow 

may need refinement to better align with actual farming practices and user 

expectations. 

 

8.5 Recommendations 

Based on the findings and limitations of this study, the following 

recommendations are proposed to improve the system and strengthen its 

impact in future implementations. 

 

8.5.1 Full-Scale Deployment Across Cultivation Cycles 

To validate improvements in yield and quality more conclusively, future work 

should deploy the system over multiple full cultivation cycles. Longitudinal 

data will allow for statistical evaluation of crop outcomes and help verify 

whether features such as threshold alerts and the soil health index consistently 

produce benefits over time. 
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8.5.2 Improved IoT Hardware and Direct Connectivity 

Upgrading to IoT devices and SIM modules capable of direct integration with 

cloud databases (bypassing intermediate platforms like ThingSpeak) will 

reduce latency and simplify data flow. Studies have shown that precise data 

collection and optimized resource use are central to enhancing agricultural 

efficiency, particularly when connectivity and hardware are reliable. (AL 

Duguma et al., 2024) 

 

8.5.3 Robustness to Connectivity Disruptions 

The system should include mechanisms for offline data caching or local 

buffering to mitigate the effect of unstable or intermittent internet connection 

which is a common in rural or farm settings. Ensuring that data is not lost 

during outages improves reliability and trust in smart farming systems. 

Research into precision agriculture notes connectivity reliability as a frequent 

challenge and recommends architectural designs that include redundancy or 

hybrid connectivity models. (Mohamed Rafi et al., 2025) 
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