WEB BASED SMART IOT-BASED SYSTEM FOR
OPTIMIZED JAPANESE MELON FARMING:
DATA-DRIVEN APPROACH TO ENHANCE
YIELD AND QUALITY

LIEW KE YING

UNIVERSITI TUNKU ABDUL RAHMAN

WEB BASED SMART IOT-BASED SYSTEM FOR OPTIMIZED
JAPANESE MELON FARMING: DATA-DRIVEN APPROACH TO
ENHANCE YIELD AND QUALITY

LIEW KE YING

A project report submitted in partial fulfilment of the
requirements for the award of Bachelor of Science Software Engineering

with Honours

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2025

DECLARATION

I hereby declare that this project report is based on my original work except
for citations and quotations which have been duly acknowledged. I also
declare that it has not been previously and concurrently submitted for any

other degree or award at UTAR or other institutions.

Name : Liew Ke Ying

ID No. . 2105456

Date : 18/09/2025

il

COPYRIGHT STATEMENT

© 2025, Liew Ke Ying. All right reserved.

This final year project report is submitted in partial fulfilment of the
requirements for the degree of Bachelor of Science (Honours) Software
Engineering at Universiti Tunku Abdul Rahman (UTAR). This final year
project report represents the work of the author, except where due
acknowledgement has been made in the text. No part of this final year project
report may be reproduced, stored, or transmitted in any form or by any means,
whether electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the author or UTAR, in accordance

with UTAR’s Intellectual Property Policy.

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my
supervisor, Ts. Dr. Sugumaran a/l Nallusamy, for his invaluable guidance,
continuous support, and patience throughout the development of this project.
His advice and encouragement have been instrumental in shaping the research

direction and ensuring the successful completion of this work.

I would also like to extend my appreciation to the Lee Kong Chian
Faculty of Engineering and Science (LKC FES), Universiti Tunku Abdul
Rahman (UTAR), for providing the facilities, resources, and a conducive
environment to carry out this project. My heartfelt thanks also go to UTAR for

the financial sponsorship which made this research possible.

Special thanks are due to Ts. Dr. Loo Joo Ling for moderating and
organizing the weekly meetings that ensured consistent progress at the melon
farm, and to Dr. Kwan Ban Hoe for sharing his expertise and invaluable
advice on the overall farming process. I am also deeply grateful to Tan Yi Jing
and Loi Zhen Yee, students from other courses, for their contributions in
handling the hardware and automation aspects, which played an essential role

in the practical implementation of this project.

Lastly, I would like to acknowledge the encouragement and support
from my family and friends, who have always stood by me throughout the
course of my study. Their motivation has been a source of strength that

contributed to the successful completion of this Final Year Project.

v

ABSTRACT

This project presents the design and implementation of a web-based smart loT
system for Japanese melon cultivation, addressing the critical need for real-
time monitoring, actionable analytics, and decision support in high-value crop
farming. The system integrates IoT sensors to capture environmental
parameters such as soil moisture, pH, electrical conductivity, temperature, and
light intensity, with data first ingested via ThingSpeak and subsequently
synchronized into a Supabase PostgreSQL database through an automated
Edge Function and Cron Job. The application layer, developed using Spring
Boot, manages business logic including threshold-based rule evaluation and
integrates with Firebase Cloud Messaging to deliver real-time alerts and
recommendations. Angular, Ng Zorro, TailwindCSS, and embedded Grafana
dashboards form the presentation layer, providing farmers with intuitive
visualizations such as time-series graphs, Soil Health Index computation, and
correlation heatmaps. System testing and evaluation demonstrated reliable data
integrity (99.81% completeness), accurate threshold-based suggestions, and
efficient performance with an average application start time of 1.55 seconds.
Functional and integration test cases confirmed robust user management,
sensor threshold configuration, and task scheduling features. The findings
highlight that the system effectively transforms raw loT data into interpretable
insights, enabling timely interventions that improve yield consistency and fruit
quality. While the study faced limitations in full-scale deployment and
hardware connectivity, the outcomes establish a scalable, cost-effective
foundation for precision agriculture. Future work is recommended to expand
deployment across full cultivation cycles, incorporate predictive analytics, and

integrate advanced automation for irrigation and ventilation control.

Keywords: smart farming; loT; Japanese melon; Supabase; Grafana; Firebase;

soil health index

Subject Area: T57.6-57.97

TABLE OF CONTENTS

CHAPTER 1 1
1 INTRODUCTION
1.1 General Introduction
1.2 Importance of Study
1.2.1 Technological & Academic Advancement
1.2.2 Practical Significance
1.2.3 Societal and Economic Significance
1.3 Problem Statement
1.3.1 Problem Statement 1: Lack of Real-Time
Monitoring and Decision Support
1.3.2 Problem Statement 2: Fragmented Data
Analytics and Limited Actionable Insights
1.3.3 Problem Statement 3: Inconsistent Yield

W W N NN =

Quality

1.4 Aim and Objectives
1.4.1 Project Aim
1.4.2 Project Objectives
1.5 Scope and Limitation of the Study
1.5.1 Scope of the Study
1.5.2 Limitations of the Study
1.6 Contribution of the Study
1.6.1 Academic Contributions
1.6.2 Practical Contributions
1.6.3 Societal and Policy Contributions
1.7 Outline of the Report
CHAPTER 2 13
2 LITERATURE REVIEW
2.1 Introduction
2.2 Smart Farming and Precision Agriculture

2.2.1 Definition and Concepts
2.2.2 Global Trends (2020-2025)

2.2.3 Benefits and Limitations

O 00 0 9 O O W W b

—_— =
o O

13
13
13
13
14
16

CHAPTER 3

3

23

24

2.5

2.2.4 Identified Gap

Data Management and Analytics in Smart

Farming

2.3.1 Importance of Data Management

2.3.2 Cloud Platforms in Agriculture

2.3.3 Data Analytics Techniques

2.3.4 Role of Data Analytics in Decision-Making

2.3.5 Identified Gap

Decision Support Systems in Agriculture

2.4.1 Concept and Frameworks

2.4.2 Benefits and limitations of DSS

2.4.3 Identified Gap

Comparative Analysis of Related Works

2.5.1 Overview of Existing Smart Farming
Systems

2.5.2 Comparative of recent smart farming
system

2.5.3 Strengths and Weaknesses of Prior Studies

2.5.4 Positioning of the Present Study

2.5.5 Research Gap

43

METHODOLOGY AND WORK PLAN

3.1
3.2

33
34
3.5

Introduction

System Development Methodology: Rapid
Application Development (RAD)
3.2.1 Requirements Planning Phases
3.2.2 User Design Phase

3.2.3 Construction Phase

3.2.4 Cutover Phase

Work Breakdown Structure (WBS)
Gantt Chart

Development Tools

3.5.1 Backend Development Tools
3.5.2 Frontend Development Tools

vi

19

19
19
21
26
30
31
32
32
33
33
34

34

35
39
39
41

43
43

43
44
45
46
47
47
51
55
55
56

3.5.3 Database and Cloud Tools
3.5.4 Data Analytics and Visualisation Tools
3.5.5 Notification and Messaging Tools

3.5.6 Project Management and Documentation

Tools
CHAPTER 4 58
4 PROJECT SPECIFICATION
4.1 Introduction
4.2 System Requirements
4.2.1 Functional Requirements
4.2.2 Non-Functional Requirements
4.3 Use Case Diagram
4.4 Use Case Description
4.5 Conceptual Prototype
CHAPTER 5 76
5 System Design
5.1 Introduction
5.2 System Architecture Design
5.3 Database Design
5.3.1 Entity Relationship Diagram (ERD)
5.3.2 Schema Design
CHAPTER 6 85
6 SYSTEM IMPLEMENTATION

6.1 Introduction
6.2 System Module
6.3 Functional Module Implementation
6.3.1 Supabase Authentication
6.3.2 Authorisation
6.3.3 Admin Sign Up
6.3.4 User Profile Management
6.3.5 Task Management
6.3.6 Sensor threshold value configuration
6.3.7 Sensor Data Table View

6.4 Business Logic Implementation

vii

56
57
57

57

58
58
58
58
60
61
61
70

76
76
77
79
79
79

85
85
85
86
86
90
91
92
93
96
97
99

6.4.1 Supabase Edge Function

6.4.2 Supabase Cron Job

6.4.3 Threshold-based rules suggestion logic
6.4.4 Firebase Notification

6.5 Data Analytics and Visualization
6.5.1 Time-Series Graphs for Individual
Parameters
6.5.2 Soil Health Index (SHI)
6.5.3 Correlation Analysis
CHAPTER 7 111
7 System Testing and Evaluation
7.1 Introduction
7.2 Functional Test Case
7.3 Integration Test Case
7.4 Data Handling and Accuracy
7.5 Visualization and Analytics
7.6 Threshold Evaluation and Suggestions
7.7 Performance Testing
7.7.1 App Start Time
CHAPTER 8 135
8 CONCLUSION AND RECOMMENDATIONS
8.1 Overview
8.2 Research Findings

8.2.1 Objectives 1: To develop a web-based IoT
system for real-time monitoring of
environmental parameters in Japanese
melon farming.

8.2.2 Objectives 2: To develop and integrate a
data-driven analytics pipeline with
visualization and analysis

8.2.3 Objectives 3: To enhance farming yield
and crop quality by implementing
automated alerts and suggestions based on

parameter thresholds.

viii

99
100
101
103
105

106
107
109

111
111
112
122
128
129
131
133
133

135
135
135

135

136

136

8.3

8.4

8.5

REFERENCES

Problem Encountered

8.3.1 Direct Integration from IoT Gateway to
Supabase Cloud Database

8.3.2 Communication and Coordination with
Hardware Team

8.3.3 Integration Challenges Across Multiple
Platforms

8.3.4 Limited Project Timeline and Testing
Scope

Limitations

8.4.1 Partial Deployment Across Cultivation
Cycle

8.4.2 Hardware and Connectivity Constraints

8.4.3 Dependence on Internet Connectivity

8.4.4 Usability Testing and User Adoption

Recommendations

8.5.1 Full-Scale Deployment Across Cultivation
Cycles

8.5.2 Improved IoT Hardware and Direct
Connectivity

8.5.3 Robustness to Connectivity Disruptions

X

137

137

137

138

138
138

138
139
139
139
139

139

140

140
141

Table 2.1:

Table 2.2:

Table 2.3:

Table 2.4:

Table 6.1:

Table 7.1:

Table 7.2:

Table 7.3:

Table 7.4:

Table 7.5:

Table 7.6:

Table 7.7:

Table 7.8:

Table 7.9:

Table 7.10:

Table 7.11:

Table 7.12:

Table 7.13:

Table 7.14:

Table 7.15:

LIST OF TABLES

Benefits and Limitations of [oT in Agriculture
Comparison of Cloud Platforms for Smart Farming

Comparison of Data Analytics Techniques in Smart
Farming

Feature comparison across recent smart-farming systems
Module Overview by User Role

User Sign In Test Case

Add New User Test Case

Configure Sensor Data Threshold Test Case

Task Management Test Case

View, Sort and Search Sensor Data Table Test Case
View and Filter by Date on Time-Series Graph Test Case

View and Filter by Date on Correlation Heatmap Test
Case

View and Filter by Date on Soil Health Index (SHI) Test
Case

View Latest Sensor Values Test Case
Admin Deactivate User Test Case

Admin Change User Role Test Case

Fetch and Insert New Data Test Case
Scheduled Data Fetch and Insert Test Case
Fetch Current Weather Data Test Case

Test Notifications Test Case

18

24

29

37

85

112

113

114

115

116

117

118

119

120

121

122

122

124

125

126

LIST OF FIGURES

Figure 2.1: Conceptual framework of smart farming technology (Raj
and Prahadeeswaran, 2025)

Figure 3.1: RAD methodology phases (Leonardo and Wiratama,

2023)

Figure 3.2: Gantt Chart overview
Figure 3.3: Gantt Chart detail view 1
Figure 3.4: Gantt Chart detail view 2
Figure 3.5: Gantt Chart detail view 3
Figure 3.6: Gantt Chart detail view 4
Figure 3.7: Gantt Chart detail view 5
Figure 3.8: Gantt Chart detail view 6
Figure 3.9: Gantt Chart detail view 7
Figure 3.10: Gantt Chart detail view 8
Figure 3.11: Gantt Chart detail view 9
Figure 3.12: Gantt Chart detail view 10
Figure 3.13: Gantt Chart detail view 11
Figure 3.14: Gantt Chart detail view 12
Figure 3.15: Gantt Chart detail view 13
Figure 3.16: Gantt Chart detail view 14
Figure 3.17: Gantt Chart detail view 15
Figure 3.18: Gantt Chart detail view 16
Figure 3.19: Gantt Chart detail view 17
Figure 4.1: Use Case Diagram

Figure 4.2: Prototype - User login interface

Figure 4.3:

Prototype - User profile page

43

51

52

52

52

52

52

53

53

53

53

53

54

54

54

54

55

55

55

61

70

71

Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:
Figure 4.9:
Figure 4.10:
Figure 5.1:
Figure 5.2:
Figure 6.1:

Figure 6.2:

Figure 6.3:
Figure 6.4:
Figure 6.5:
Figure 6.6:
Figure 6.7:
Figure 6.8:
Figure 6.9:
Figure 6.10:
Figure 6.11:
Figure 6.12:
Figure 6.13:
Figure 6.14:

Figure 6.15:

Prototype - Edit user credentials interface

Prototype (Admin view) - User management interface
Prototype (Admin) - Add new user interface
Prototype - Smart farming system home page
Prototype - Sensor dashboard overview

Prototype - Sensor data interface

Prototype - Manage farming event interface

System Architecture Design

Entity Relationship Diagram

Enable auth providers (email) in supabase

Code snippet for handling signs in, out and retrieve user’s

session

Sign in Page

Sign out function for user in profile page
Admin navigation view

Normal user navigation view

Add new user page

API call for add new user

User profile management page

Code snippet for FullCalendar implementation
Calendar monthly view with weather forecast
Calendar modal dialog for adding/editing a task
Threshold configuration page

Sensor data table

Supabase Edge function for fetch data from ThingSpeak

Xii

71

72

72

73

73

74

74

77

79

87

88

88

89

90

90

91

92

92

94

95

95

97

98

99

Figure 6.16:

Figure 6.17:
Figure 6.18:
Figure 6.19:
Figure 6.20:
Figure 6.21:
Figure 6.22:

Figure 6.23:

Figure 6.24:

Figure 6.25:
Figure 6.26:
Figure 6.27:
Figure 6.28:
Figure 6.29:
Figure 7.1:
Figure 7.2:
Figure 7.3:
Figure 7.4:
Figure 7.5:

Figure 7.6:

Supabase Edge function for store fetched data into
database

15-minute interval cron job

Sensor data table

Parameter threshold table

checkParam method

getSuggestions() method

Notifications received by user

Function to send notification to all registered device

Query that demonstrates how Grafana retrieves and
aggregates air temperature readings

Air temperature time series graph

SQL query to compute SHI

Soil Health Index Graph

SQL query using corr() function
Correlation analysis heatmap
Thingspeak’s sensor data

Supabase sensor data table

SQL to count completeness percentage
Angular dashboard displaying a suggestion
Test results

SQL to retrieve test results

xiii

100

100

101

101

102

102

104

105

106

106

108

109

110

110

128

128

129

131

131

132

X1V

LIST OF APPENDICES

Appendix 1: FYPI1 feedback 144

CHAPTER 1

INTRODUCTION

1.1 General Introduction

The global agricultural sector is undergoing a profound transformation driven
by the demand for higher productivity, sustainable practices, and improved
crop quality. Traditional farming methods, which often depend on manual
observation and experience-based decision-making, face growing limitations
in meeting these demands. Issues such as inconsistent monitoring, inefficient
resource allocation, and vulnerability to environmental fluctuations can lead to
reduced yield and compromised crop quality. With the rise of emerging
technologies, agriculture is shifting toward smart farming systems that
integrate Internet of Things (IoT), data analytics, and automation to optimize

operations and decision-making.

Japanese melon cultivation serves as an excellent case study for this
transformation. As a premium and high-value crop, Japanese melons require
precise environmental control covering parameters such as temperature,
humidity, soil health, and light intensity to ensure consistency in growth and
sweetness. Even slight deviations from the optimal range can result in
significant loss of quality and market value. This makes real-time monitoring

and intelligent data-driven decision-making critical for farmers.

In response to these challenges, this project presents the development
of a Web-Based Smart [oT System for Optimized Japanese Melon Farming.
The system integrates loT-enabled sensors, a cloud-based data pipeline, and a
web application to provide real-time monitoring, visual analytics, and
automated suggestions for corrective actions. By leveraging data-driven
approaches such as threshold-based recommendations, soil health indexing,
and correlation analysis, the system not only enhances productivity and
decision-making but also contributes to sustainable resource management.
Ultimately, this project demonstrates how the synergy of IoT and data

analytics can bridge the gap between traditional farming and modern precision

agriculture, empowering farmers to achieve higher yields, superior quality, and

long-term sustainability.

1.2 Importance of Study

The significance of this study lies in its ability to demonstrate how IoT, cloud
computing, and real-time data analytics can address pressing challenges in
modern agriculture, particularly for high-value crops such as Japanese melons.
Agriculture today faces resource constraints, labour shortages, and increasing
demands for sustainable practices, making technology-driven solutions
essential. By providing farmers with real-time environmental monitoring,
automated threshold-based alerts, and decision-support tools, this project
exemplifies the role of IoT in enhancing both productivity and sustainability

(Dhanaraju et al., 2022; Pathmudi et al., 2023).

1.2.1 Technological & Academic Advancement

This study contributes to academic discourse on precision agriculture by
presenting a practical loT-based framework that integrates sensor networks,
cloud databases, and visual analytics dashboards. Unlike generic smart
farming studies, this project focuses on a premium crop that demands strict
environmental control. Recent studies highlight that IoT-enabled monitoring
of soil and microclimate parameters significantly improves situational
awareness and supports real-time decision-making (Singh and Sharma, 2024;
Pathmudi et al., 2023). By implementing novel features such as a soil health
index and correlation heatmaps, this study strengthens research on agricultural

informatics and smart greenhouse management (Maraveas et al., 2022).

1.2.2 Practical Significance

For farmers, the system bridges the gap between measurement and timely
action. IoT-driven greenhouse technologies have been shown to reduce water
and fertiliser waste, stabilise microclimate conditions, and protect crop quality
(Singh et al., 2024; Huynh et al., 2023). In Japanese melon cultivation, where
even small deviations in soil moisture, pH, or temperature can lead to financial
losses, the system’s threshold-based alerts and push notifications provide

practical, actionable guidance. The integration of real-time dashboards and

correlation analytics further enables farmers to detect patterns that would
otherwise remain hidden, supporting better farm management (Maraveas et al.,

2022).

1.2.3 Societal and Economic Significance

At a broader level, this study contributes to sustainable agriculture and
national food security priorities. The Food and Agriculture Organization (FAO,
2021) emphasises that agrifood systems must become more resilient to shocks
while improving efficiency. In Malaysia, the National Agrofood Policy 2021—
2030 (NAP 2.0) highlights embracing modernisation and smart agriculture as a
strategic thrust for enhancing productivity and farmer income (Ministry of
Agriculture and Food Industries, 2021). By demonstrating a working IoT-
based monitoring and decision-support system for premium crop cultivation,

this project directly aligns with these international and national agendas.

1.3 Problem Statement

Agriculture 1s increasingly adopting digital and loT-based technologies to
improve productivity, sustainability, and crop quality. However, while
research on smart farming has expanded, most implementations remain limited
to generic crop monitoring and lack integrated decision-support features
(Pathmudi et al., 2023; Singh and Sharma, 2024). For high-value crops such as
Japanese melons, which require strict environmental control, these gaps
become critical as they directly affect yield consistency and market

competitiveness.

To address this issue, three main problems are identified: lack of real-
time monitoring and decision support, fragmented data analytics with limited
actionable insights, and inconsistent yield quality. These problems reflect gaps
in both research and practice, highlighting the need for a comprehensive, IoT-
based smart farming system that translates sensor data into reliable, actionable

guidance for farmers.

1.3.1 Problem Statement 1: Lack of Real-Time Monitoring and
Decision Support
Although IoT devices are increasingly applied in agriculture, many current
systems are limited to basic data logging and trend visualization, without
offering real-time decision support (Dhanaraju et al., 2022; Singh and Sharma,
2024). Farmers often detect issues such as nutrient imbalance or water stress
only after symptoms appear, resulting in reduced yield and crop quality. This
gap justifies the need for a system that integrates continuous monitoring with
immediate alerts and threshold-based recommendations tailored to the specific

requirements of Japanese melon farming.

1.3.2 Problem Statement 2: Fragmented Data Analytics and Limited
Actionable Insights
Existing IoT solutions frequently provide raw sensor readings without
contextual interpretation. Studies highlight that without advanced analytics,
the collected data is underutilized (Pathmudi et al., 2023; Maraveas et al.,
2022). Farmers therefore lack the ability to optimise irrigation, fertilisation,
and environmental adjustments effectively. This gap demonstrates the
importance of systems that transform data into actionable insights through

dashboards, automated suggestions, and visual analytics.

1.3.3 Problem Statement 3: Inconsistent Yield Quality

Japanese melons are highly sensitive to environmental fluctuations, and
inconsistent control often results in variable sweetness, texture, and
appearance. Research indicates that current IoT-enabled greenhouse systems
improve control but remain insufficiently precise for high-value crops
requiring premium-grade consistency (Huynh et al., 2023; Singh et al., 2024).
This inconsistency leads to significant financial losses for farmers. Therefore,
there is a need for an IoT-based solution that ensures stable environmental
management and supports consistent yield quality through real-time

monitoring and corrective interventions.

14 Aim and Objectives

1.4.1 Project Aim

The aim of this project is to design and develop a web-based smart [oT system
for optimized Japanese melon farming that integrates real-time monitoring,
data-driven analytics, and automated decision support. The system aspires to
enhance yield consistency and crop quality by providing farmers with timely
insights, visualised trends, and actionable recommendations derived from

environmental and soil data.

1.4.2 Project Objectives

The project objectives aim to define the scope and purpose of this endeavour,
guiding its direction and intended outcomes. These objectives serve as a
roadmap for achieving specific milestones, ensuring clarity, alignment, and
measurability throughout the project lifecycle. By outlining clear and
actionable objectives, resources can be allocated effectively, and success can

be evaluated against predetermined criteria. The objectives are as follows:

1.4.2.1 To develop a web-based IoT system for real-time monitoring of
environmental parameters in Japanese melon farming.
This objective focuses on establishing a sensor-driven web-based IoT system
capable of capturing real-time environmental and soil parameters critical to
Japanese melon cultivation, including air temperature, air humidity, soil
moisture, soil temperature, soil pH, soil conductivity, total dissolved solids
(TDS), and light intensity. The design will ensure seamless integration of
multiple sensors with an IoT gateway, while data transmission will be directed
to a secure cloud platform. Success will be measured by the system’s ability to
continuously capture accurate data under operational conditions within the

greenhouse environment.

1.4.2.2 To develop and integrate a data-driven analytics pipeline with
visualization and analysis

This objective aims to transform raw [oT sensor data into meaningful insights

through the implementation of cloud-based data storage and analytical models.

The pipeline will include features such as interactive dashboards, a soil health

index (SHI) to assess soil quality, and correlation heatmaps to reveal
relationships between environmental parameters. Visualization will be
provided via Grafana and embedded into the web application for user
accessibility. Success will be determined by the system’s ability to provide
real-time visualization, accurate soil health index (SHI) calculations, and
correlation heat map that support data-driven decision-making for melon

farming.

1.4.2.3 To enhance farming yield and crop quality by implementing

automated alerts and suggestions based on parameter thresholds.
This objective addresses the development of threshold-based rules that
evaluate sensor readings against optimal ranges for Japanese melon growth.
When deviations are detected, the system will generate context-specific
suggestions (e.g., irrigation adjustment, nutrient correction, or ventilation
changes) and deliver push notifications to farmers in real time. Success will be
measured by the timeliness, accuracy, and relevance of the alerts and
recommendations, as well as the system’s ability to support farmers in making

immediate corrective actions that minimise risks to yield and crop quality.

1.5 Scope and Limitation of the Study

1.5.1 Scope of the Study

The scope of this study is confined to the design and development of a web-
based smart IoT system for Japanese melon cultivation, with the objective of
enhancing yield consistency and crop quality through data-driven decision
support. The focus is placed on software development, system integration, and
data analytics rather than the construction of physical hardware. Specifically,

the scope encompasses the following aspects:

1. IoT Data Acquisition - Integration of environmental and soil
parameters, including air temperature, air humidity, soil moisture,
soil temperature, soil pH, soil conductivity, total dissolved solids
(TDS), and light intensity, into a centralised platform for

continuous monitoring.

ii. Cloud-Based Data Management and Analytics - Utilisation of a
cloud database (Supabase) to manage sensor data, coupled with
analytical features such as soil health indices and correlation
heatmaps to support data-driven insights.

1. Web-Based Dashboard - Development of an Angular-based web
application with embedded Grafana visualisations to display real-
time and historical sensor data in a user-friendly format.

v. Automated Alerts and Decision Support - Implementation of
threshold-based rules to generate actionable recommendations,
with real-time push notifications delivered to farmers via Firebase.

V. System Evaluation - Functional and non-functional testing of the
system, including metrics such as application responsiveness, data
latency, data completeness, and system reliability, to assess its

effectiveness in supporting smart farming practices.

The scope therefore highlights the development of a data-driven
smart farming platform tailored for Japanese melon cultivation, with hardware
contributions managed by collaborating students from related engineering

coursces.

1.5.2 Limitations of the Study
Although the study demonstrates the feasibility of integrating [oT technologies,
cloud analytics, and decision support in agriculture, several limitations must be

acknowledged:

1. Exclusion of Hardware Development - The physical setup of loT
sensors, microcontrollers, and gateways was undertaken by
collaborating students from other engineering disciplines. This
study is restricted to software, integration, and analytics
components.

il. Limited Deployment Period - Due to time constraints inherent in
the Final Year Project schedule, the system was not deployed

across the full melon growth and harvesting cycle. As a result,

long-term evaluation over multiple planting seasons could not be
conducted.

1il. Absence of Automated Environmental Control - The system is
designed to provide monitoring, analytics, and recommendations
only. It does not incorporate automated actuation for irrigation,
ventilation, or nutrient delivery, which remain manual processes.

v. No Artificial Intelligence or Machine Learning Integration -
Predictive models were not implemented, as sufficient datasets
were unavailable during the early stages of deployment. Decision
support is instead based on predefined threshold rules.

v. Crop-Specific Focus - The system is tailored to Japanese melon
cultivation. Application to other crops would require
reconfiguration of threshold parameters, modification of decision

rules, and potential adjustments to the system architecture.

1.6 Contribution of the Study

This study contributes to both academic research and practical applications in
the domain of smart farming. By focusing on Japanese melon cultivation,
which demands precise environmental control for premium quality, the project
demonstrates how an IoT-based, data-driven system can bridge the gap
between traditional farming practices and modern digital agriculture. The

contributions of the study are outlined as follows:

1.6.1 Academic Contributions

One of the major academic contributions of this study is the development of a
framework for loT-based smart farming systems. The project establishes a
reference model that integrates real-time environmental monitoring, cloud-
based data management, and web-based visualization. This framework not
only demonstrates the feasibility of combining these technologies but also
provides a foundation for future research in agricultural informatics, where

similar systems may be replicated or extended for different crops and contexts.

Another significant contribution is the introduction of novel analytical

features within the system. Unlike conventional monitoring platforms that only

display raw sensor data, this study incorporates a Soil Health Index (SHI) and
correlation heatmaps to transform data into actionable insights. These features
enrich the academic discourse by showing how loT-generated data can be
processed to support precision agriculture through decision-making tools,

thereby advancing research in data-driven farming technologies.

The study also contributes to academic knowledge by providing an empirical
performance evaluation of the developed system. Key metrics such as
application responsiveness, data latency, data completeness, and overall
reliability were systematically tested and analyzed. These results offer
benchmarks that can be used by future researchers to evaluate and compare
similar smart farming systems, ensuring that this project adds measurable

value to ongoing research in the field.

1.6.2 Practical Contributions

On a practical level, this study delivers a system that provides decision support
for farmers through threshold-based recommendations and real-time push
notifications using Firebase. This functionality enables farmers to receive
timely alerts when environmental or soil parameters deviate from optimal
ranges, helping them to take immediate corrective actions. Such decision-
support features reduce risks associated with poor crop management and

directly contribute to maintaining yield and quality.

The system also enhances farm management practices by
consolidating multiple environmental and soil parameters into a single, user-
friendly platform. With visual dashboards displaying real-time and historical
trends, farmers can monitor the overall condition of their crops more
efficiently. This integration reduces the reliance on manual observation,
supports more effective allocation of resources such as water and fertilizers,

and simplifies day-to-day management of farming operations.

Furthermore, the project contributes by offering a prototype tailored
for high-value crop cultivation, specifically Japanese melons. These crops

demand stricter quality control compared to many staple crops, and the system

10

demonstrates how IoT solutions can be customized to meet these requirements.
This prototype can serve as a model for adapting IoT technologies to other
premium horticultural crops, thereby extending its practical impact beyond the

immediate study.

1.6.3 Societal and Policy Contributions

At the societal level, the system supports sustainable agriculture by promoting
efficient monitoring and timely interventions. By reducing unnecessary use of
water, fertilizers, and other inputs, the system encourages environmentally
responsible practices. This contribution aligns with global sustainability goals,

ensuring that agricultural productivity is balanced with resource conservation.

The project also contributes to the national agenda through its
alignment with Malaysia’s National Agrofood Policy 2021-2030 (NAP 2.0).
The policy highlights the need to embrace smart agriculture technologies as
part of a long-term strategy to modernize the agrifood sector, increase
productivity, and enhance farmer income. This study’s outcomes demonstrate
how digital technologies can directly support these strategic goals, thereby

reinforcing their relevance to current policy directions.

Finally, the study contributes to food security and quality assurance
by addressing yield optimization and consistency in Japanese melon farming.
By enabling more precise control of crop growth conditions, the system
ensures a higher probability of producing premium-grade melons that meet
market expectations. Indirectly, such systems also support broader societal
efforts to secure reliable food production and meet consumer demand for high-

quality agricultural products.

1.7 Outline of the Report
This report is organized into eight chapters, each addressing a specific
component of the research and development process for the web-based smart

IoT system for Japanese melon farming. The structure is as follows:

ii.

iii.

1v.

V.

Vii.

11

Chapter 1: Introduction — Presents the background of the study,
importance, problem statements, research aim and objectives, scope
and limitations, and contributions. This chapter establishes the
rationale and foundation of research.

Chapter 2: Literature Review — Reviews existing works on smart
farming, precision agriculture, IoT applications, cloud platforms,
data management, analytics techniques, and decision support
systems. It highlights global trends, benefits, and limitations, while
identifying research gaps and positioning the present study.
Chapter 3: Methodology and Work Plan — Describes the
development methodology adopted, namely Rapid Application
Development (RAD), and outlines the project phases. It further
details the work breakdown structure, Gantt chart, and tools used to
guide systematic system development.

Chapter 4: Project Specification — Defines the system
requirements, both functional and non-functional, and provides use
case diagrams and descriptions. It also introduces the conceptual
prototype that serves as the blueprint for system design and
development.

Chapter 5: System Design — Explains the architectural design of
the system, including its three-tier structure (presentation,
application, and data layers). It also covers the database design,
entity-relationship diagram, and schema specifications.

Chapter 6: System Implementation — Provides a detailed
explanation of how the system was implemented, covering
functional modules such as authentication, authorization, user
management, task management, sensor threshold configuration,
and data visualization. It also describes the implementation of
business logic components (Edge Functions, Cron Jobs, suggestion
logic, and notifications) and analytics modules (time-series graphs,
Soil Health Index, and correlation analysis).

Chapter 7: System Testing and Evaluation — Presents the testing
approach and results, including functional, integration, and

performance testing. It also evaluates data handling accuracy,

Viil.

12

visualization and analytics validity, threshold-based suggestions,
and responsiveness of the system.

Chapter 8: Conclusion and Recommendations — Summarizes the
study’s key findings in relation to its objectives, highlights
encountered problems and limitations and provides
recommendations for future improvements such as full-cycle
deployment, advanced predictive analytics, and enhanced IoT

integration.

13

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter reviews the growing body of research on smart farming and
precision agriculture, focusing on how IoT, cloud platforms, and data analytics
are reshaping modern cultivation practices. For high-value crops such as
Japanese musk melons, small fluctuations in soil pH, moisture, or temperature
can determine fruit quality, making real-time monitoring and decision support
critical. The review is structured around four themes: smart farming concepts
and global trends, the role of data management and analytics, the use of
decision support systems, and comparative studies of existing smart farming
solutions. By examining both benefits and limitations reported in recent
literature, the chapter identifies gaps in crop-specific tailoring, actionable
insights, and real-time usability—gaps that this project addresses through the

design of a web-based IoT system tailored to Japanese melon farming.

2.2 Smart Farming and Precision Agriculture

2.2.1 Definition and Concepts

Smart farming and precision agriculture are transformative approaches that
employ modern technologies to enhance agricultural practices beyond what
traditional farming achieves. Precision agriculture (PA) is typically defined as
a data-driven farming management approach that observes, measures, and
analyses the variability within fields in order to guide resource application
such as water, fertilisers, or pesticides only where and when they are needed to
maximize crop yield, quality, and input efficiency (Monteiro et al., 2021;
Padhiary et al., 2025). Smart farming builds upon precision agriculture by
integrating IoT sensors, cloud platforms, dashboards, and decision support
mechanisms to enable more responsive, real-time control over farming

operations (Mansoor et al., 2025; Roy, 2025).

14

MACHNINE

NEURAL LEARNING A
MODELS

UAYy | SMART FARM 1
' TECHNOLOGY ‘msons

PRECISION
AGRICULTURE I o =
T

Figure 2.1: Conceptual framework of smart farming technology (Raj and

Prahadeeswaran, 2025)

Traditional farming, in contrast, relies heavily on uniform inputs,
manual observation, and fixed schedules without continuous feedback from
the crop environment. This often leads to inefficiencies such as overuse or
underuse of water, inconsistency in crop growth, and slower responsiveness to
environmental changes (Monteiro et al., 2021). In the case of Japanese melon
farming, these inefficiencies can manifest as variation in fruit sweetness, poor
texture, or uneven maturity, because the crop is sensitive to microclimates and

environmental fluctuations.

In summary, this section establishes that precision agriculture is about
variability management and efficient input use, while smart farming is its
broader technological extension with real-time monitoring and actionable
intelligence. This conceptual groundwork is critical to justify the development
of a smart [oT system for Japanese melon cultivation—one that captures

environmental data, analyses it, and supports decisions in a responsive manner.

2.2.2 Global Trends (2020-2025)
In the period 2020-2025, global trends in smart farming reflect increased
adoption of IoT, sensor technologies, and integrated analytics tools, driven by

pressures such as climate change, resource scarcity, and the rising demand for

15

high-quality produce. A review by Mansoor et al. (2025) found that smart
sensors for soil moisture, pH, and plant stress have become significantly more
common in precision agriculture frameworks, particularly in regions facing
water stress. Such sensors now often feed into systems that provide not only
raw data but also data visualization dashboards and advisory outputs to
farmers, indicating a shift toward systems that enable actionable insight rather

than mere monitoring.

Another trend is the increasing use of hybrid connectivity models to
ensure reliable IoT deployment in remote or rural farmland. A recent
comparative study shows models combining LPWAN (e.g., LoRaWAN or
NB-IoT) with 4G/5G cellular networks can improve network reliability and
reduce costs in remote farm settings by up to 30% (Mohamed Rafi et al., 2025).
This trend is important for scalability and robustness of IoT systems,
particularly in regions with infrastructure limitations—factors highly relevant

if systems are deployed outside urban centers or high-connectivity zones.

There is also a stronger emphasis on sustainability and efficiency.
Reviews have underscored that IoT technologies are being increasingly paired
with precision farming practices to optimize input use (water, fertilizer, energy)
and reduce environmental pollution (Duguma et al., 2024). Efficiency gains
are not only in production (yield) but also in resource use, aligning with global
climate and sustainability goals. Countries with progressive agricultural
policies are supporting smart farming via subsidies, technical training, and
open-data initiatives to reduce the barrier to entry for farmers (Revolutionizing

Agriculture: A Review, Raj & Prahadeeswaran, 2025).

Finally, there is a trend towards developing more integrated systems
that combine real-time monitoring, analytics, and user engagement through
dashboards and alerts. Systems are increasingly offering decision support,
such as threshold-based alerts, predictive warnings, or advisory services, rather
than simply collecting data. Although many of these systems still rely on
machine learning or Al, there is growing recognition of the role that simpler,

rules-based alerts (thresholds) can play, especially in early-stage or small-scale

16

deployments (Integration of Smart Sensors & IoT in Precision Agriculture,

Mansoor et al., 2025).

2.2.3 Benefits and Limitations

The adoption of IoT technologies in agriculture offers a wide range of benefits
that directly contribute to improved productivity, sustainability, and farm
management. One of the most significant advantages is resource optimization,
as IoT sensors enable precise monitoring of soil moisture, nutrient levels, and
microclimatic conditions. This allows farmers to apply water and fertilizers
only when required, reducing wastage and improving efficiency (Duguma et
al., 2024). In addition, IoT-enabled systems support real-time monitoring,
giving farmers continuous access to data that can enhance decision-making
and improve responsiveness to sudden changes in the farm environment
(Mansoor et al., 2025). This technology also contributes to labor reduction by
automating data collection and reducing the need for manual field inspections
(Raj & Prahadeeswaran, 2025). For high-value crops such as Japanese melons,
these benefits are particularly important, as minor fluctuations in soil pH,
humidity, or temperature can significantly affect fruit sweetness, texture, and

market quality.

Despite these advantages, several limitations hinder the widespread
adoption of IoT in agriculture. A major barrier is the high initial cost of
sensors, connectivity infrastructure, and cloud service subscriptions, which
may be prohibitive for smallholder farmers (Mohamed Rafi et al., 2025).
Furthermore, IoT deployment in rural or greenhouse settings often faces
connectivity challenges, as reliable networks such as 4G/5G or LPWAN may
not always be accessible (Mansoor et al., 2025). Another limitation lies in data
interoperability and complexity; the integration of heterogeneous sensor data
into a unified platform can be technically demanding and requires expertise
that many farmers may lack (Raj & Prahadeeswaran, 2025). Additionally,
security and privacy issues surrounding cloud-stored farm data remain
unresolved, raising concerns about data misuse or unauthorized access

(Duguma et al., 2024).

17

In summary, IoT technologies in agriculture present substantial
opportunities for enhancing efficiency and crop quality but face challenges of
cost, connectivity, and technical accessibility. These benefits and limitations
underscore the need for research on cost-effective, user-friendly, and crop-
specific IoT solutions. The present study addresses this by focusing on a web-
based IoT system tailored for Japanese melon farming, designed to provide
actionable insights, reduce inefficiencies, and support consistent yield quality

without overcomplicating the user experience.

18

Table 2.1: Benefits and Limitations of IoT in Agriculture

Aspect

Benefits

Limitations

Resource Management

Enables precise monitoring of soil moisture, nutrients,
and microclimatic conditions, improving efficiency and

reducing wastage (Duguma et al., 2024).

High initial cost of sensors, loT gateways, and cloud
services can be prohibitive, especially for smallholder

farmers (Mohamed Rafi et al., 2025).

Decision-Making

Real-time monitoring provides continuous data access,
enhancing decision-making and responsiveness to

environmental changes (Mansoor et al., 2025).

Connectivity areas and

greenhouses due to unreliable 4G/5G or LPWAN

challenges in rural

coverage (Mansoor et al., 2025).

Labor Efficiency

Automates data collection, reducing dependence on

manual field inspections and lowering labor

requirements (Raj & Prahadeeswaran, 2025).

Integration of heterogeneous sensor data into a unified
platform 1is technically demanding and requires

expertise (Raj & Prahadeeswaran, 2025).

Crop Status and Quality

Particularly beneficial for high-value crops like
Japanese melons, where stable environmental control
enhances fruit sweetness, texture, and consistency

(Duguma et al., 2024; Mansoor et al., 2025).

Security and privacy concerns regarding storage of
farm data on cloud platforms raise risks of misuse or

unauthorized access (Duguma et al., 2024).

19

2.2.4 Identified Gap
Although IoT technologies have advanced rapidly and are increasingly applied

in agriculture, several key gaps remain evident in the literature:

1. Lack of crop-specific tailoring - Most IoT applications are
designed for general farming contexts and do not adequately
address the unique environmental sensitivities of high-value crops
such as Japanese melons, where small fluctuations in soil pH,
humidity, and temperature critically affect yield and quality
(Mansoor et al., 2025; Duguma et al., 2024).

il. Limited actionable insights - Existing systems often focus on raw
data collection and visualization but fall short in transforming these
into decision-support features such as tailored recommendations or
threshold-based alerts for farmers (Raj & Prahadeeswaran, 2025;
Padhiary et al., 2025).

11i. Barriers to accessibility and adoption - High initial costs,
unreliable connectivity, and technical challenges in integrating
heterogeneous sensor data restrict the usability of IoT systems,
particularly for smallholder farmers (Mohamed Rafi et al., 2025;
Mansoor et al., 2025).

These gaps demonstrate the need for a cost-effective, user-friendly,
and crop-specific IoT system that provides actionable decision support

precisely what the present study aims to deliver for Japanese melon farming.

2.3 Data Management and Analytics in Smart Farming

2.3.1 Importance of Data Management

Effective data management is fundamental to the success of smart farming
systems because IoT devices generate large volumes of heterogeneous data
that must be properly structured, stored, and accessed to provide value.
Without reliable data management, sensor reading may remain fragmented,
inaccurate, or inaccessible, undermining the effectiveness of IoT adoption in

agriculture. For high-value crops such as Japanese melons, which require

20

consistent monitoring of sensitive parameters like soil pH, moisture, and

temperature, robust data management is particularly critical in ensuring that

environmental variations are captured accurately and used for decision-making

(Mansoor et al., 2025).

il.

1il.

1v.

Ensuring Data Accuracy and Reliability — The quality of IoT
data directly affects the trustworthiness of smart farming decisions.
Poor data management may result in missing values, duplications,
or delays, which in turn reduce system reliability. Studies
emphasize that reliable data pipelines and structured storage
mechanisms are essential to minimize latency and errors in real-
time monitoring applications (Raj & Prahadeeswaran, 2025). This
is especially important for greenhouse environments, where timely
data access is needed for responsive actions such as irrigation
adjustment or ventilation.

Supporting Scalability and Long-Term Use — IoT in agriculture
requires continuous monitoring across multiple crop cycles. Cloud-
based data management ensures scalability, allowing systems to
handle increasing amounts of sensor data while maintaining
performance (Padhiary et al., 2025). Structured storage also enables
longitudinal analysis, helping farmers and researchers to study
correlations and seasonal patterns that are vital for long-term crop
optimization.

Enabling Data-Driven Insights — Well-managed data not only
ensures accessibility but also enables transformation into actionable
insights through analytics and visualization. Without structured
data, advanced techniques such as soil health indices or correlation
heatmaps—both applied in this study—would not be feasible
(Duguma et al., 2024). Data management therefore serves as the
foundation for bridging raw sensor readings with meaningful
decision support.

Integration and Interoperability — Smart farming often involves
multiple sensors, platforms, and data formats. Robust data

management frameworks enable integration of heterogeneous data

21

sources into a unified system, improving accessibility and usability
(Mansoor et al., 2025). In Japanese melon farming, interoperability
ensures that soil, environmental, and climate data are consolidated

for holistic analysis, supporting yield and quality consistency.

2.3.2 Cloud Platforms in Agriculture

Cloud platforms form the backbone of smart farming systems by providing the
infrastructure for sensor integration, real-time data ingestion, scalable storage,
and advanced analytics. In this project, which focuses on Japanese melon
cultivation, cloud platforms enable the seamless collection of environmental
parameters such as soil moisture, pH, electrical conductivity, temperature, and
light intensity. These platforms not only support remote monitoring through
dashboards and mobile applications but also facilitate advanced analytics,
including soil health indices and correlation heatmaps, that transform raw IoT
data into actionable insights for optimized crop management. In the following
section, several widely used cloud platforms for agricultural data management

in the market will be discussed.

ThingSpeak, developed by MathWorks, is a lightweight IoT analytics
platform that has been widely adopted in agricultural research and prototyping.
It supports sensor data ingestion through REST APIs, enabling farmers and
researchers to capture key environmental parameters such as soil moisture,
humidity, and temperature. ThingSpeak also provides real-time visualization
and basic analytics, which make it particularly suitable for applications such as
irrigation scheduling, soil monitoring, and crop condition tracking. Due to its
simplicity and accessibility, ThingSpeak is often applied in small-scale or
experimental farming projects where rapid deployment and ease of use are

prioritized (MathWorks, n.d.; Kadarabad et al., 2025).

Supabase is an emerging open-source Backend-as-a-Service platform
that leverages PostgreSQL as its core database, offering structured relational
storage, authentication, and real-time data streams. Although its adoption in
agriculture remains limited compared to more established platforms like

ThingSpeak and Firebase, its relational model makes it highly effective for

22

managing structured farm data. Examples include organizing sensor readings,
maintaining detailed plot information, and storing farmer account profiles.
This capacity for relational management provides greater flexibility for
integrating diverse datasets, which can be especially beneficial in precision

agriculture systems that rely on multi-parameter monitoring.

Firebase, developed by Google, has become one of the most widely
used Backend-as-a-Service solutions for developing mobile and web
dashboards in agriculture. It offers a wide range of services, including
Firestore, a real-time database, authentication modules, and push notifications.
These features allow farmers to visualize live sensor data and receive timely
alerts via mobile devices, thereby enhancing decision-making and operational
efficiency. Despite its advantages in rapid development and real-time updates,
Firebase employs a NoSQL data model, which may pose challenges when
handling relational agricultural datasets that require complex queries and

structured analysis (Agarwal, 2025).

AWS IoT Core and its associated services provide enterprise-level
scalability and advanced capabilities for agricultural applications. This
platform enables secure device connectivity, real-time data streaming, and
integration with other AWS services such as analytics and machine learning.
Case studies have demonstrated AWS IoT being deployed in precision
agriculture, particularly for greenhouse climate control, soil and crop sensor
integration, and predictive analytics. The robustness and scalability of AWS
make it a suitable choice for large-scale agricultural systems that demand both

reliability and advanced data processing capabilities (AWS, 2018; AWS, n.d.).

Google Cloud IoT has also been successfully applied in agricultural
projects, particularly where advanced analytics and machine learning
integration are required. A notable example is the SpaceFarm initiative, which
employed Google Cloud IoT services combined with predictive analytics to
optimize greenhouse environments. This case demonstrates the platform’s
ability to handle real-time monitoring, large-scale data management, and

predictive modeling for agricultural optimization. By leveraging Google’s

23

global cloud infrastructure, farms can integrate IoT data with advanced
machine learning pipelines to enhance decision-making and resource

management (Google Cloud, n.d.; Google, 2022).

In summary, cloud platforms for agriculture vary in complexity,
scalability, and suitability depending on farm size, objectives, and system
design. ThingSpeak and Firebase are often preferred for small-scale
deployments or prototypes due to their accessibility and real-time capabilities,
while Supabase offers flexibility through its relational data management
features. In contrast, AWS IoT and Google Cloud IoT are more suited for
enterprise-level agricultural operations, where predictive analytics, automation,
and advanced data integration are critical for achieving efficiency and

scalability.

Table 2.2: Comparison of Cloud Platforms for Smart Farming

24

Platform Key Features Strengths Limitations Suitability in Agriculture
ThingSpeak REST API-based data | Simple setup, widely used | Limited scalability, basic | Small-scale or
(MathWorks) ingestion, real-time | in research, suitable for | analytics only experimental farms (e.g.,

visualization, basic | rapid prototyping irrigation scheduling, soil
analytics monitoring)

Supabase Open-source BaaS, | Strong relational model, | Less adoption in | Precision agriculture
PostgreSQL relational | flexible for structured | agriculture, limited | projects requiring
storage, authentication, | datasets, open-source | ecosystem maturity | structured, multi-parameter
real-time streams ecosystem, high free tier | compared to Firebase or | datasets (e.g., soil + crop

limit AWS records)

Firebase (Google) Real-time DB, | Fast deployment, strong | NoSQL model complicates | Small to medium-scale
authentication, push | mobile integration, real- | relational queries and | farms needing dashboards
notifications, mobile/web | time updates structured analytics and instant notifications
dashboard integration

AWS IoT Core Secure device | High scalability, robust | Complex setup, higher cost | Enterprise-level smart
connectivity, real-time | ecosystem, advanced farming (e.g., greenhouse

25

data streaming, integration | analytics & automation automation, predictive
with AWS analytics & ML analytics)
services

Google Cloud IoT Device connectivity, | Strong analytics & ML | More complex and costly | Large-scale or research-
ML/AI integration, | support, global cloud | than lightweight platforms | driven projects (e.g.,
predictive modeling, large- | infrastructure greenhouse optimization,

scale data pipelines

predictive farming)

26

2.3.3 Data Analytics Techniques

The rapid adoption of IoT in agriculture has resulted in a growing demand for
data analytics techniques that can convert large volumes of sensor readings
into actionable insights. In the current market, analytics solutions for smart
farming can be broadly categorized into data visualization dashboards, time-
series and trend analysis, composite indices and decision-support metrics,
statistical and machine learning approaches, and predictive analytics
frameworks. Each category offers unique advantages but also presents
limitations depending on the scale of deployment, crop type, and local farming

practices (Wolfert et al., 2017).

Dashboards and visualization platforms are among the most widely
used analytics techniques in agriculture. Commercial and open-source tools
such as Grafana, Power BI, and Google Data Studio are commonly deployed
to present environmental parameters in real time. These dashboards provide
farmers with accessible summaries of temperature, soil moisture, humidity,
and nutrient levels. They also allow the integration of multiple data streams
from cloud platforms such as AWS IoT Core and Google Cloud IoT. Studies
show that dashboards improve user engagement and decision-making by
presenting complex sensor data in an interpretable format (Mekonnen et al.,
2021). However, dashboards are typically descriptive rather than predictive,

and their value depends heavily on the underlying quality of data collected.

Time-series analysis and anomaly detection techniques are also
extensively applied in the market. Vendors such as Microsoft Azure IoT and
IBM Watson IoT integrate time-series databases and anomaly detection
algorithms into their agricultural solutions, enabling farmers to detect
abnormal fluctuations in soil moisture, pH, or light intensity. Academic studies
have shown that time-series analysis supports irrigation management and
greenhouse optimization by identifying cyclical patterns and abnormal
readings (Singh et al., 2024). Despite these benefits, most applications still
rely on historical trend monitoring, with limited predictive capacity for future

conditions.

27

Composite indices and decision-support metrics have been
increasingly promoted to simplify complex agricultural data. For example,
Soil Health Indices (SHI) and crop stress indices combine multiple soil and
environmental factors into a single score that reflects overall growing
conditions (Singh et al., 2024). Commercial solutions such as CropX and
Arable use similar composite indicators to provide farmers with holistic
assessments of soil health and water efficiency. While such indices reduce the
cognitive burden on farmers, they often lack universality and require localized
calibration to specific soil types and crops, which restricts scalability across

regions.

Statistical techniques and machine learning models represent another
major area of analytics. Correlation and regression analyses are frequently
used to identify relationships between environmental variables and crop
performance, guiding targeted interventions in fertilization or irrigation
(Khanna et al., 2020). At the commercial level, companies such as Prospera
and Taranis deploy machine learning models that analyze sensor data, weather
patterns, and satellite imagery to detect early signs of crop disease or predict
yield outcomes. These approaches provide deeper insights than descriptive
analytics, but they require high-quality datasets and computational

infrastructure, which may not be feasible for smallholder farmers.

Predictive and prescriptive analytics frameworks are gaining traction
as advanced solutions in the agricultural market. Predictive analytics leverages
historical datasets combined with weather forecasts and soil models to
anticipate future conditions such as drought stress, pest outbreaks, or nutrient
deficiencies. Prescriptive analytics goes a step further by recommending
specific interventions, such as adjusting irrigation frequency or applying
fertilizer. Several agritech firms, including IBM Watson Decision Platform for
Agriculture, have incorporated such capabilities into their solutions. However,
these systems often demand high upfront investment and technical expertise,

which can limit their adoption in developing regions.

28

As summarized in Table 2.3, dashboards, time-series visualization,
and composite indices remain accessible and effective techniques for small- to
medium-scale farms, while advanced predictive and prescriptive frameworks
are more resource-intensive. In this project, emphasis is placed on dashboards,
SHI, correlation analysis, and time-series visualization to balance feasibility

with analytical depth.

Table 2.3: Comparison of Data Analytics Techniques in Smart Farming

Technique

Purpose

Advantages

Limitations

Dashboards & Visualization

Present multi-sensor data in real

time through intuitive interfaces.

Easy to use, improve farmer

engagement, and integrates

multiple data streams.

Descriptive only; dependent on

data quality.

Time-Series Analysis & Anomaly

Detection

Identify temporal patterns, cycles,
and abnormal fluctuations in sensor

readings.

Supports irrigation scheduling,
greenhouse optimization;

enables anomaly detection.

Mostly retrospective; limited

predictive capacity.

Composite Indices & Decision- | Aggregate multiple parameters into | Provides holistic ~ soil/crop | Requires local calibration;
Support Metrics simplified indices for soil or crop | assessment; reduces | limited universality.

health. complexity for farmers.
Statistical & Machine Learning | Discover relationships or predict | Deeper insights; supports | High computation needs;
Models outcomes from complex datasets. targeted interventions. costly for smallholders.
Predictive & Prescriptive | Anticipate future conditions and | Proactive insights; supports | Require expertise, expensive,

Analytics

recommend corrective actions.

resource optimization.

less accessible in developing

regions.

29

30

2.3.4 Role of Data Analytics in Decision-Making

The integration of data analytics into agriculture has transformed how
decisions are made, enabling more efficient, timely, and evidence-based
practices. By analyzing loT-generated sensor data, farmers are able to
optimize the use of inputs, monitor crop growth environments, and respond
effectively to emerging challenges. Weraikat et al. (2024) demonstrated that
the use of electrical conductivity (EC) data correlated strongly with potassium
levels in melon cultivation in southern Croatia, thereby allowing farmers to
manage nutrient application more cost-effectively without relying solely on
laboratory testing. Such findings highlight how analytics can reduce

operational costs while maintaining crop quality.

In addition to nutrient management, data analytics supports broader
operational decision-making such as irrigation scheduling, pest control, and
greenhouse climate optimization. Thilakarathne et al. (2025) noted that the
combination of IoT monitoring, and data analytics allows farmers to detect
anomalies such as soil moisture deficits or pest infestations at an early stage,
enabling corrective interventions before yield quality is compromised. This
proactive approach improves resource efficiency and reduces the risk of crop

failure.

Furthermore, analytics can enhance planning and risk mitigation by
providing farmers with insights into alternative scenarios. Getahun et al. (2024)
highlighted that predictive and scenario-based data analytics enable the
evaluation of different irrigation or fertilization strategies, thus helping farmers
to anticipate outcomes and manage risks. While advanced predictive
techniques may extend beyond the scope of this project, their role in the wider
market illustrates how analytics increasingly underpins agricultural decision-

making.

For the purposes of this project, data analytics contributes directly to
decision support through dashboards, soil health indices, correlation analysis,

and threshold-based alerts. These techniques ensure that farmers can monitor

31

real-time conditions, understand soil health status, and receive actionable

recommendations, thereby enhancing decision-making in Japanese melon

cultivation.

235

Identified Gap

Although recent literature demonstrates the growing importance of data

analytics in agriculture, several limitations persist that justify the direction of

this project:

11.

1il.

Over-emphasis on advanced predictive models and machine
learning - Many studies have prioritized predictive frameworks for
yield forecasting, disease detection, and risk assessment (Getahun
et al.,, 2024; Thilakarathne et al., 2025). While effective, such
approaches demand large datasets, high computational resources,
and specialized expertise, making them less feasible for
smallholder farmers or resource-constrained environments.
Limited practical implementation of composite indices -
Although composite measures such as the Soil Health Index (SHI)
have been highlighted as valuable tools for simplifying multi-
parameter soil quality evaluation (Weraikat et al., 2024), their use
remains largely conceptual. Few studies demonstrate their
integration into real-time, field-ready decision-support systems
accessible to farmers.

Challenges in data latency, accessibility, and usability -
Connectivity limitations, delayed data transmission, and lack of
user-friendly interfaces are frequently reported as barriers to
adoption. Thilakarathne et al. (2025) emphasized that rural
connectivity gaps hinder IoT applications, while Weraikat et al.
(2024) noted that reliable, continuous data flow is critical for

supporting timely decision-making in agricultural contexts.

In light of these gaps, this project seeks to develop an affordable and

practical IoT-based system that integrates accessible analytics techniques—

namely dashboards, SHI, correlation analysis, and alert mechanisms—into a

32

web-based platform for Japanese melon farming. By prioritizing
interpretability, real-time wusability, and cost-effectiveness, the project
addresses the need for actionable insights without the complexity and resource

intensity of advanced predictive models.

24 Decision Support Systems in Agriculture

2.4.1 Concept and Frameworks

Decision Support Systems (DSS) in agriculture are computer-based tools
designed to aid farmers, agronomists, and stakeholders in making informed
management decisions by combining data input, rules or models, and decision

logic. Three main types/frameworks are common:

1. Rule-based / Threshold-based systems - These rely on
predetermined thresholds or rule sets. For instance, when soil
moisture drops below a certain level, trigger irrigation; or when a
pest risk index exceeds a threshold, recommend pesticide
application. Such systems are relatively simple to implement and
transparent but may lack adaptability to varying conditions.

ii. Advisory / Expert systems - These integrate expert agricultural
knowledge (often domain rules, crop models, historical data) to
offer recommendations beyond just thresholds. They may
incorporate soil and weather model simulations, or disease/pest risk
predictions, offering advice such as nutrient management,
scheduling, or crop protection strategies.

iii. Hybrid and Model-based frameworks - These combine
threshold/rule-based logic with statistical, mechanistic, or even
machine learning models to provide more sophisticated advice (e.g.
predictions, scenario planning). They often handle multiple
parameters (soil, weather, crop growth stage), allow what-if

simulations, adapt over time with updated data.

These frameworks differ in complexity, data requirements,
computational need, and usability. As more agriculture becomes connected

(IoT, remote sensing), there is an increasing shift toward hybrid DSS that can

33

process real-time sensor data and provide dynamic advice rather than static

guidelines.

2.4.2 Benefits and limitations of DSS

Decision Support Systems (DSS) provide several benefits in agriculture. They
enable timely interventions by detecting risks such as pests, diseases, or soil
stress early, allowing farmers to respond before serious damage occurs
(Tratwal, 2025). DSS also reduces risks by combining forecasts, thresholds,
and models to minimize uncertainty in farm management decisions (Tratwal,
2025). In addition, they improve resource efficiency, optimizing water,
fertiliser, and pesticide use, which enhances productivity while reducing

environmental impacts (Petraki et al., 2025).

However, DSS face notable limitations. Many lack real-time IoT
integration, relying on periodic or forecast data that reduce responsiveness
(Tratwal, 2025). Real-time alerts are also scarce; while some systems provide
warnings, few offer mobile push notifications, with recent prototypes such as
Jouini (2025) still limited in scope. Usability is another concern, as complex
interfaces and poor connectivity hinder adoption in smallholder contexts
(Petraki et al., 2025). Moreover, most DSS have a narrow focus, addressing
single issues such as irrigation or pest control rather than delivering

comprehensive, multi-parameter decision support.

In summary, DSS enhances agricultural decision-making through
timely, risk-aware, and efficient interventions, but their effectiveness is

constrained by gaps in real-time functionality, usability, and breadth of support.

2.43 Identified Gap
Based on recent literature (2020-2025), the gaps in Decision Support Systems

for agriculture that this project aims to address are:

1. Absence of systems combining real-time push notifications with
comprehensive advisory support - While warning systems and

alerts exist in some DSS (e.g. pest/disease risk alerts), integration

ii.

1il.

1v.

2.5
2.5.1

34

of mobile push notifications triggered by IoT sensor thresholds
across multiple parameters is rare.

Limited integration of full environmental and soil parameter
sets in one DSS - Many DSS focus on single or few parameters
(e.g. pest risk + weather or irrigation only), but do not include a
broad set like soil moisture, soil pH, conductivity, temperature
together with advisory logic.

Poor usability and accessibility for farmers with constrained
resources - There is a gap in systems designed for user-friendly
interaction, low infrastructure dependency, and operation under
limited connectivity, especially in greenhouse or small-farm
environment contexts.

Lack of systems validated under operational conditions for
specific crops such as Japanese melon - Few DSS studies are
applied and evaluated for specific cultivars and under real
greenhouse or controlled environments. Crop-specific validation is

sparse.

Comparative Analysis of Related Works

Overview of Existing Smart Farming Systems

Recent smart-farming solutions converge on an IoT — (edge/fog) — cloud

pipeline with web/mobile dashboards and varying levels of decision support.

Reviews and systems papers consistently report multi-sensor deployments

(soil moisture, EC, pH, temperature, humidity, light) streaming to cloud

databases and dashboards for greenhouse and field control (Bersani et al.,

2022; Maraveas, 2022; Soussi et al.,, 2024). Edge/fog architectures have

emerged to cut latency and dependency on wide-area links, improving

responsiveness for time-critical actions (Hong et al., 2024). At the DSS layer,

integrative platforms such as DAKIS combine heterogeneous data (in-situ

sensors, remote sensing, models) to support land-use and management choices

but are often strategic rather than crop-specific operational. For cucurbits,

greenhouse studies increasingly exploit data-driven methods; for example,

climate forecasting in greenhouses with netted melons (a Japanese-melon type)

35

shows how analytics can anticipate environmental dynamics, albeit with

research-grade ML rather than deployable farmer tools.

2.5.2 Comparative of recent smart farming system

i. Bersani et al. (2022) — IoT in smart greenhouses (state of the

art).

Bersani and colleagues survey IoT approaches for greenhouse monitoring and
control, synthesising common sensing stacks (soil moisture,
temperature/humidity, light, CO:), network protocols (MQTT/HTTP), and
typical cloud dashboards/actuation loops for irrigation and ventilation. The
review underlines tangible benefits (continuous observation, automation
potential) but also recurrent challenges, notably integration and
interoperability across heterogeneous devices and the tendency of deployments
to plateau at descriptive monitoring rather than mature, farmer-facing decision
support. This positions greenhouse IoT as technically robust yet often under-

leveraged analytically (Bersani et al., 2022).

ii. Maraveas & Bartzanas (2021) — IoT for optimised greenhouse
environments (review).

Maraveas and Bartzanas compile evidence on IoT-enabled optimisation of
microclimate and irrigation, emphasising low-cost sensor integration, remote
monitoring, and efficiency-oriented KPIs for greenhouse management. The
review discusses scheduling/optimisation themes and reports actuation (e.g.,
irrigation/ventilation), while flagging constraints in generalisability and
operational usability (connectivity, human factors). It concludes that, although
[IoT can improve energy and input efficiency, many systems need better
decision logic and farmer-friendly interfaces to translate sensing into day-to-

day actions (Maraveas & Bartzanas, 2021).

ii. Hong et al. (2024) — Fog-computing smart farm
(implementation study).

Hong et al. implement an IoT smart-farm architecture that moves computation

from cloud to fog/edge nodes. Through controlled experiments they compare

communication protocols and network traffic, showing fog reduces overheads

36

and latency, enabling quicker responses for time-sensitive farm events. While
the work evidence infrastructure-level gains and hints at faster operational
decisions, the decision logic remains system-specific and the study
foregrounds performance rather than farmer-facing advisory design (Hong et

al., 2024).

iv. Soussi et al. (2024) — Smart sensors & smart data for precision
agriculture (review).

Soussi and co-authors review sensing modalities and data pipelines in
precision agriculture, with attention to mobile-accessible, cloud-backed
visualisation. They highlight trends in data fusion and “smart data” practices
while pinpointing persistent issues around data quality, integration, and
standardisation that limit analytics depth. Although real-time monitoring is
well covered, the review indicates that alerts and comprehensive decision
support are less consistently embedded, especially for small and medium

growers (Soussi et al., 2024).

37

Table 2.4: Feature comparison across recent smart-farming systems
Study / IoT Integration Data Analytics Capability | Decision Support Real time Key limitations
System architecture Logic notifications
Bersani et al. | Surveys soil & Device— Mostly Threshold/guideline Mixed across Many cases stop
(2022) — climate sensing gateway — descriptive/diagnostic | logic referenced across | surveyed cases at monitoring;

review of [oT

in smart

(moisture, temp,

RH, light, CO»),

cloud patterns

dashboards across

surveyed works

cases

fragmented

decision logic.

consolidated
greenhouses | typical (Bersani, 2022).
MQTT/HTTP stacks
Maraveas & | Emphasises Cloud-centric | Descriptive KPIs; Scheduling/optimisation | Not a central Operational
Bartzanas microclimate & remote efficiency metrics for | themes discussed focus usability +
(2021) — IoT | irrigation sensing; monitoring climate/irrigation generalisability
for optimised | integration of low- challenges
greenhouse cost sensors flagged.
environments (Maraveas &
Bartzanas, 2021).
Hong et al. Standard sensors; Fog/edge Low-latency Faster operational Enables quicker | Strong latency
(2024) — fog | tests of nodes reduce | processing; some decisions feasible triggers (design results; decision

38

computing HTTP/MQTT/CoAP | round-trip CV/AI classification shows potential) | rules still system-
smart farm latency vs at edge specific. (Hong et
cloud al., 2024).
(MDPI)
Soussi et al. Broad sensing Cloud Real-time Operational insight Alerts not Highlights data
(2024) — landscape; phone- dashboards; visualisation; data emphasis primary emphasis | quality/integration
“Smart accessible mobile access | fusion trends hurdles for
Sensors & monitoring analytics depth.
Smart Data” (Soussi et al.,

2024). (MDPI)

253

Strengths:

ii.

39

Strengths and Weaknesses of Prior Studies

Robust sensing and pipelines - Multi-sensor [0oT stacks with cloud
dashboards are well-documented, giving reliable
environmental/soil monitoring at scale (Bersani et al., 2022;
Maraveas, 2022; Soussi et al., 2024).

Latency-aware architectures - Fog/edge deployments lower
round-trip times and increase resilience when uplinks are unreliable

(Hong et al., 2024).

Weaknesses / gaps:

11.

254

Operational DSS depth - Many deployments stop at descriptive
dashboards or generic alerts; composite soil indices and variable-
relationship views (e.g., correlation heatmaps) are rarely integrated
into day-to-day farmer workflows in peer-reviewed greenhouse
DSS (Bersani et al., 2022; Soussi et al., 2024).

Real-time mobile or web push notifications - While remote
monitoring via smartphones or web is reported, unified push
notifications tied to multi-parameter thresholds (soil + environment)

are not consistently evidenced across greenhouse systems literature.

Positioning of the Present Study

Synthesizing the related works retained in this review shows a mature baseline

for sensing and connectivity but uneven depth in farmer-facing decision

support. Reviews of greenhouse IoT commonly report strong multi-sensor

pipelines and cloud dashboards, yet many deployments plateau at descriptive

monitoring with fragmented rules and limited, user-oriented advisory logic

(Maraveas and Bartzanas, 2021; Bersani, Gennaro and Trobia, 2022).

Edge/fog designs demonstrate latency advantages at the infrastructure layer

(Hong et al.,, 2024), while broader “smart sensors/smart data” surveys

40

highlight persistent gaps in data quality, integration, and the embedding of

actionable alerts for growers (Soussi et al., 2024). Against this backdrop, the

present study is positioned as an operational, crop-focused DSS for Japanese

melon greenhouses that bridges the space between simple dashboards and

research-grade Al

11.

1il.

End-to-end, crop-specific IoT integration - The system
instruments the greenhouse with commodity sensors aligned to
melon agronomy (air temperature/humidity; soil moisture,
temperature, pH, EC/TDS; light intensity) and streams data
continuously to the cloud. This adheres to established device—
gateway—cloud practice while tailoring parameters to a concrete
cultivation context, addressing the generic monitoring” bias
noted by prior reviews (Maraveas and Bartzanas, 2021; Bersani,
Gennaro and Trobia, 2022).

Mid-tier analytics for actionable interpretation - Beyond time-
series charts, the system computes a Soil Health Index (SHI) and
correlation heatmaps that condense multi-variable soil—-
environment states into interpretable signals. This design
deliberately targets the “monitoring-only” limitation—providing
decision-ready summaries without the data/skill overhead of
machine learning—thereby operationalising the “smart data”
direction called for in recent surveys (Bersani, Gennaro and Trobia,
2022; Soussi et al., 2024).

Unified threshold-based advisory with real-time push
notifications - Calibrated multi-parameter thresholds (e.g.,
moisture/EC/pH bands and microclimate set-points at different
growth stages) drive mobile push alerts that map directly to
corrective actions (irrigation adjustment, fertigation checks,
ventilation changes). Whereas related literature frequently reports
remote viewing or simple warnings, comprehensive, push-style
guidance tied to continuous loT streams is inconsistent; the present

study addresses this usability and responsiveness gap (Soussi et al.,

41

2024), while remaining compatible with edge-side checks where
low latency is critical (Hong et al., 2024).

iv. Evaluation under operational constraints and farmer usability
- The study evaluates responsiveness (sensor—dashboard latency),
alert timeliness, data completeness and reliability, and dashboard
usability—metrics that map directly to the project’s objectives on
real-time monitoring, analytics-with-visualization, and decision
support. This emphasis on operational validity for a specific crop
complements the largely technology-centric evaluations in the

compared works (Maraveas and Bartzanas, 2021; Bersani, Gennaro

and Trobia, 2022; Hong et al., 2024).

Collectively, these choices position the system as a practical,
interpretable, and real-time DSS: it leverages the proven IoT/cloud backbone
in the literature, incorporates mid-tier analytics that farmers can act on, and
closes an identified gap in unified threshold-to-push decision support for
controlled-environment Japanese melon cultivation (Soussi et al., 2024; Hong
et al., 2024; Bersani, Gennaro and Trobia, 2022; Maraveas and Bartzanas,

2021).

2.5.5 Research Gap

The comparative review of recent smart-farming systems highlights clear
progress in loT-based sensing, cloud connectivity, and greenhouse monitoring
dashboards. Studies such as Bersani, Gennaro and Trobia (2022) and
Maraveas and Bartzanas (2021) confirm that multi-sensor deployments are
technically mature and capable of providing reliable environmental and soil
data streams. Fog and edge architecture has also been proposed to reduce
latency and enhance responsiveness in smart farms (Hong et al., 2024).
Furthermore, reviews of sensor and data practices show that mobile-accessible
dashboards and cloud integration are becoming increasingly common (Soussi

et al., 2024).

Despite these advances, several critical gaps remain:

42

1. Descriptive monitoring without deeper analytics - Most systems
focus on dashboards and raw time-series visualization, but few
integrate mid-tier analytics such as composite indices or
correlation-based insights that convert raw values into interpretable
indicators for day-to-day farm decisions (Soussi et al., 2024).

ii. Limited real-time, multi-parameter notifications - While some
systems provide threshold warnings, unified push notifications that
combine soil and environmental parameters in real time are largely
absent, limiting their usefulness for immediate farmer response
(Hong et al., 2024).

iil. Lack of crop-specific operationalization - Many solutions remain
generic, designed for broad greenhouse contexts, without
calibration for specific crops such as Japanese melon, whose
growth requires finely tuned environmental and soil parameters

(Maraveas and Bartzanas, 2021).

These gaps indicate the need for a smart-farming system that goes
beyond generic monitoring by integrating accessible, interpretable analytics
and real-time push-based decision support tailored to a specific crop.
Addressing this gap is essential to ensure that loT-enabled farming systems
provide actionable knowledge rather than raw data, and that they are practical

for adoption in resource-constrained greenhouse environments.

43

CHAPTER 3
METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter outlines the methodology and work plan adopted for the
development of the smart farming system for Japanese melons. It describes the
step-by-step approach taken to develop the system and covers discussion on
selected software development methodology, breakdown of each development
phases. Additionally, this chapter presents the work plan, detailing the project
timeline, tasks, and milestones to ensure systematic and timely project

execution.

3.2 System Development Methodology: Rapid Application
Development (RAD)

Rapid Application Development (RAD)

Prototype

I User Design Construction Cutover

Refine Test

Figure 3.1: RAD methodology phases (Leonardo and Wiratama, 2023)

Rapid Application Development (RAD) was first introduced by James Martin
in the 1980s while working at IBM (Rapid Application Development: RAD
Methodology Roadmap, 2024). It is a software development methodology that
emphasises rapid prototyping, iterative design, and continuous user
involvement to deliver functional systems within shorter timeframes. Unlike
traditional methodologies that rely on extensive upfront planning, RAD
prioritises the early construction of working prototypes, which are refined

through successive iterations based on stakeholder feedback (Information

44

Systems Development: Rapid Application Development | Saylor Academy, no
date). This iterative nature makes RAD particularly suitable for projects where

requirements may evolve or where flexibility is critical.

In the context of this smart farming system for Japanese melons, the adoption
of RAD offers several advantages:

1. Accelerated prototyping and testing of IoT components, including
sensors and user interfaces.

il. Active incorporation of stakeholder feedback, particularly from the
project supervisor to refine functionalities such as real-time data
visualisation and automated irrigation.

iil. Enhanced adaptability to changing requirements, ensuring that the
final system is not only technically sound but also aligned with

practical user needs.

3.2.1 Requirements Planning Phases

The first phase of the Rapid Application Development (RAD) methodology is
the Requirements Planning phase, which serves as the foundation for the smart
farming system designed for Japanese melon cultivation. During this phase,
the overall objectives, core functionalities, and project scope are
systematically identified through close collaboration with key stakeholders,
including supervisors and lecturers. A comprehensive literature review is
conducted to examine existing approaches, technologies, and solutions
available in the field of smart farming. This process provides critical insights
into best practices, highlights how similar challenges have been addressed in

prior research, and identifies opportunities for innovation in the present study.

Both functional and non-functional requirements are then elicited and
documented to ensure clarity in system expectations. Based on these
requirements, a Work Breakdown Structure (WBS) is developed to decompose
the project into manageable tasks, thereby clarifying deliverables and
organizing the overall project flow. Following this, use case diagrams are

created to model the interactions between users and the system, while

45

accompanying use case descriptions provide detailed explanations of each
interaction. To further operationalize the project plan, a Gantt Chart is
employed to schedule the tasks identified in the WBS, establish milestones,

allocate resources, and track progress.

To support requirement validation, conceptual mockups is developed
to help visualize the intended system flow. The outputs of this phase therefore
include a clearly defined system scope and objectives, validated functional and
non-functional requirements, use case models, WBS, and a Gantt Chart, all of
which establish a strong foundation for the rapid prototyping and iterative

development to follow.

3.2.2 User Design Phase

The User Design phase builds upon the requirements identified earlier and
focuses on the iterative development of software prototypes for the smart
farming systems. In this phase, functional mock-ups of the web application are
created and refined through multiple cycles of stakeholder feedback. The
emphasis is placed on ensuring usability, system responsiveness, and the

accuracy of data presentation.

Initial prototypes are developed for the frontend interface using
Angular and Tailwind CSS, providing visualization of core features such as
real-time sensor monitoring, threshold-based alerts, and task scheduling. To
support this, the backend services are prototyped using Spring Boot, enabling
the integration of Supabase for database management and authentication.
Additionally, static images of Grafana dashboards are embedded to present

analysis graph.

Throughout this phase, regular feedback is collected from the project
supervisor to evaluate usability, clarity of data visualization, and intuitiveness
of the overall interface. Identified issues such limited visual clarity in charts,

or overly complex navigation are addressed in subsequent iterations.

46

Prototyping continues until the system achieves a level of stability and

usability that aligns with both functional requirements and user expectations.

By adopting this iterative, user-centered approach, the User Design
phase ensures that potential challenges are identified and resolved early in the
development lifecycle. This reduces risks, strengthens the reliability of the
system, and provides a solid foundation for the subsequent Rapid Construction

phase.

3.2.3 Construction Phase

The Rapid Construction phase is the stage where the actual development of the
smart farming system is undertaken. Building upon the validated prototypes
from the User Design phase, this stage emphasizes the iterative coding,
integration, and refinement of the software components. Development
activities are carried out in short cycles, enabling quick incorporation of

feedback and timely resolution of issues.

Key activities in this phase include the implementation of the system
architecture, integration of the database and services, and the development of
user interfaces into a cohesive application. Each software module is developed
and tested incrementally to ensure that it functions correctly in isolation before
being combined with other modules. Testing activities are embedded
throughout the phase, comprising unit testing, integration testing and system
testing. These activities collectively validate the accuracy, stability, and

performance of the system.

A defining feature of this phase is its iterative nature. Any
shortcomings identified during testing or stakeholder feedback sessions are
promptly addressed in subsequent development cycles. This ensures that the
system progressively evolves towards its intended quality, functionality, and
usability. Continuous consultation with the supervisor further ensures that the
development process remains aligned with project objectives and technical

requirements.

47

3.2.4 Cutover Phase

The Cutover phase is the final stage of the RAD methodology and focuses on
transitioning the developed system into an operational environment. This
phase includes final testing, documentation, and presentation. Development
work carried out in earlier phases is consolidated into a fully functional

application that is ready for use and assessment.

Key activities in this phase include the deployment of the backend
services onto a cloud platform and the hosting of the Angular-based frontend
for seamless access across devices. Comprehensive integration and acceptance
testing are conducted to verify that data flows smoothly through the system,
ensuring reliability, stability, and usability. A demonstration session is also
organized with the project supervisor to present the system’s capabilities and
gather final feedback. Any residual issues, such as usability concerns or minor

bugs, are promptly addressed prior to submission.

In parallel, thorough documentation is prepared to support both
academic evaluation and potential future system adoption. This includes the
final FYP report, a user manual, updated architecture diagrams, and a
reflection report outlining challenges encountered, lessons learned, and

recommendations for future improvement.

33 Work Breakdown Structure (WBS)
1. Rapid Planning and requirement gathering

1.1 Problem identification
1.1.1 Identify current challenges
1.1.2 Analyse limitations of existing solutions
1.1.3 Define the real-world need for a smart farming system

1.2 Define objectives and scope
1.2.1 Determine expected project outcomes

1.3 Literature Review
1.3.1 Study existing musk melon planting techniques

1.3.2 Study data collection, storage and visualisation techniques

48

1.3.3 Study existing smart faming websites and system
1.4 Define methodology
1.4.1 Survey and compare existing software development
methodology
1.4.2 Choose software development methodology
1.4.2.1 Define RAD prototype iteration and goals
1.5 Work planning
1.5.1 Create project timeline with Gantt chart
1.5.2 Define key deliverables and milestones
1.5.3 Assign tentative deadlines for each task
1.6 Project specification
1.6.1 Define system requirements
1.6.2 Specify software tech stack
1.7 Initial proposal document
1.7.1 Prepare and submit proposal document
1.7.2 Prepare proposal presentation slides
1.7.3 Conduct initial presentation
. Prototype 1: Sensor Integration & Data Acquisition
2.1 Select sensors and microcontroller
2.1.1 Choose sensors
2.1.2 Select suitable microcontroller
2.2 Define wiring and connection layout
2.3 Develop data acquisition script
2.3.1 Write microcontroller script for data reading
2.4 Integrate sensors and microcontroller
2.5 Set up IoT gateway for data transfer
2.5.1 Configure Wi-Fi module
2.5.2 Send data to temporary cloud endpoint
2.6 User review and feedback
2.6.1 Demonstrate sensor system to users or supervisors
2.6.2 Collect improvement suggestions
2.7 Refine based on feedback
2.7.1 Adjust scripts or hardware if needed

49

2.7.2 Finalize prototype 1 design
3. Prototype 2: Dashboard & Data Visualization
3.1 Design simple website for dashboard
3.2 Set up frontend and backend projects
3.2.1 Initialize Angular project with Tailwind and Ng Zorro
3.2.2 Setup Spring Boot backend
3.3 Implement RESTful APIs and database connection
3.3.1 Create CRUD endpoints for sensor data
3.3.2 Integrate PostgreSQL database
3.4 Build dashboard for environmental data
3.5 Conduct usability testing with users
3.6 Gather feedback and iterate improvements
3.6.1 Modify Ul elements based on feedback
4. Prototype 3: Notification & Report System
4.1 Define report generation structure
4.1.1 Determine daily, weekly, and monthly summaries
4.2 Implement notification feature
4.2.1 Define thresholds for each parameter
4.2.2 Set up notification alert mechanisms
4.3 Design report Ul and export options
4.4 User testing and feedback collection
4.5 Refine and finalize modules
5. Continuous Cloud Integration & Deployment
5.1 Select cloud provider
5.1.1 Compare AWS, Firebase, and Azure
5.1.2 Choose provider based on needs and free tier
5.2 Set up cloud database and hosting
5.2.1 Deploy database instance
5.2.2 Create hosting environment for backend
5.3 Containerize and deploy backend
5.3.1 Push to cloud and test API endpoints
5.4 Deploy frontend to cloud
5.4.1 Upload Angular build to cloud storage/CDN

6.

7.

8.

50

5.4.2 Configure DNS or Firebase Hosting
5.5 Implement secure API access
Iterative Testing & Feedback
6.1 Unit testing
6.2 Integration testing
6.3 System testing
6.4 Usability testing
6.5 User acceptance testing (UAT)
Documentation & Final Report
7.1 Prepare poster and final presentation slides
7.2 Set up demo environment
Project Closure & Reflection
8.1 Final deployment
8.2 Supervisor review and feedback
8.3 Reflection and lessons learned

8.3.1 Summarize challenges and resolutions

3.4

[

N e s oW

10

12

13

14

16

17

18

19

60
&1

62

64

65

66

67

&8

69

N

Gantt Chart

2024

~ 1 Rapid Planning and requirement gathering

- 1.1 Problem identification
1.1.1 identify current challenges
1.1.2 Analyse limitations of existing solutions.
1.1.3 Define the real-world need for a smar..

= 1.2 Define objectives and scope

121 expected proje

- 1.3 Lierture Review
1.3.1 Study existing musk melon planting U
1.5.2 Study data coilection, siorage and vis
1.3.3 Study existing smart faming websites

~ 1.4 Define methodalogy
1.4.1 Survey ana compare existing softwar

- 1.4.2 Chaese software development metha.
1.4.2 1 Define RAD prototype iteration an

- 1.5 werk planning
1.5.1 Greate project timeline with Ganii chart
1.5.2 Define key aeliverables and milestones
1.5.3 Assign teniative deadlines for each task

~ 1.6 Project specincation
1.6.1 Define system requirements.
1.6.2 Specify software tech stack

- 1.7 Initial proposal document
1.7.1 Prepare and submit proposal document
1.7.2 Prepare proposal presentation siides
1.7.3 Conduct initial presentation

2 Prototype 1: Sensor Integration & Data Acq

- 2.1 Select sensors and micracentrolier
2.1.1 Choose sensars
2.1.2 Select suitable micrecontrolier

2 2 Define wiring and connection layout
~ 2.3 Develop gata acquisition script

2.3.1 Write micrecontrol

r seript for data re...

2 4 Integrate sensors ana microcontrol
- 2.5Sel up loT gateway for data transte

251 Conmgure Wi-FI moduie

2.5.2 Sena data 1o temporary cloud endpoint
~ 2.6 User review and feedback

2.6.1 Demonstrate sensor system to users

2 6.2 Collect Improvement suggestions

~ 2.7 Refine basea on tecaback

2.7.1 Adjust scripts or hardware If need;

2.7.2 Finaiize prototype 1 design

o & Data
3.1 Design simple websiie for dashboard
~ 3.2 Set up montena and backend projects
3.2.1 Intalize Angular project with Tailwind ..
222 Set up Spring Beot backena
- 3.3 Implement RESTIUIAPIS and database ¢
331 Greate GRUD endpoints for sensor o
3.3.2 Integrate PostgreSQL aatabase
5.4 Build dashboard for environmental data
3.5 Conduct usability testing with users

~ 3.5 Gather fe

>dback and lterate Improvements

8.6.1 Modity Ul elements based on fesdback

4. Prototype 3. Nolification & Report System

~ 4.1 Der

& report generation struciure
2.1.1 Determine daily, weekly. and montniy
~ 4.2 Implement notiNcation feature
4.2.1 Define thresnolas for each parameter

4.2.2 Set up natiication alert mechanisms

4.3 Design repon UL and export options
4.4 User lesting and feedback collection
4.5 Refine and finalize modules

5. © cloua & D

~ 51 Select cloud provider
5.1.1 Compare AWS, Firebase, and Azure
5.1.2 Chaese provider based on needs an.
~ &2 Set up cloud aatabase and hosting
5.2.1 Deploy gatabase instance
5.2.2 Greate hosiing environment for back
~ 5.3 Containenize and geploy backend
531 Push to cloud and test API endpoinis
~ 5.4 Deploy frontend 1o cloua
5.4.1 Upload Angular bulld to cloud storage.
5.4.2 Conngure DNS or Firebase Hosting
5.5 Implement secure API access
& ierative Testing & Feedback
6.1 Unit testing
&2 Integration testing
6.2 System testng
&.4 Usabilily testing
6.5 User acceptance testing (UAT)
7. Documentation & Final Repert
7.1 Prepare posier and final presentation sii
7.2 Set up geme environment
& Project Closure & Reflection
81 Fina acpioyment
8.2 Superviser review and fesdback

~ 8.3 Reflection and lessons leamed

Figure 3.2:

2025
at az as

Gantt Chart overview

51

52

B) | 25 Mar, 25 Apr, 25 May, 25
Name i Start Date i End Date i
09 16 23 02 09 16 23 30 06 13 20 27 04 11 18 25
.|
1. Rapid Planning and requirement gathering Feb 11, 2025 May 26, 2025
* 1.1 Problem identification Feb 11, 2025 Feb 26, 2025
1.1.1 Identify current challenges Feb 11, 2025 Feb 19, 2025 E -.
1.1.2 Analyse limitations of existing sclutions Feb 18, 2025 Feb 24, 2025 .
1.1.3 Define the real-world need for a smar... Feb 21, 2025 Feb 26, 2025 ‘
~ 1.2 Define objectives and scope Feb 26, 2025 Feb 26, 2025

\
Figure 3.3: Gantt Chart detail view 1

. X ! 25 Mar, 25 Apr, 25 May, 25
Name i Start Date i End Date H
09 16 23 02 09 16 23 30 06 13 20 27 04 11 18 25
1.2.1 Determine expected project outcomes Feb 26, 2025 Feb 26, 2025 l
O

* 1.3 Literature Review Mar 04, 2025 Mar 24, 2025 '

1.3.1 Study existing musk melon planting t... Mar 04, 2025 Mar 07, 2025 H .

1.3.2 Study data collection, storage and vis... Mar 06, 2025 Mar 11, 2025 -

1.3.3 Study existing smart faming websites... Mar 10, 2025 Mar 24, 2025 -
* 1.4 Define methodology Mar 24, 2025 Apr01, 2025 .

1.4.1 Survey and compare existing softwar .- Mar 24, 2025 Mar 27, 2025 —

Figure 3.4: Gantt Chart detail view 2

)) .25 Mar, 25 Apr, 25 May, 25
Name i Start Date ¢ End Date
09 16 23 02 09 16 23 30 06 13 20 27 04 11 18 25
1.4.1 Survey and compare existing softwar... Mar 24, 2025 Mar 27, 2025 ..
+ 1.4.2 Choose software development metho... Mar 27, 2025 Apr 01, 2025 .
1.4.2.1 Define RAD prototype iteration an... Mar 27, 2025 Apr 01, 2025
—
* 1.5 Work planning Apr 01, 2025 Apr 21, 2025 -
1.5.1 Create project timeline with Gantt chart ~ Apr 01, 2025 Apr 09, 2025 -
1.5.2 Define key deliverables and milestones Apr 08, 2025 Apr 17, 2025 -

Figure 3.5: Gantt Chart detail view 3

. . L 25 Mar, 25 Apr, 25 May, 25
Name { Start Date i EndDate i
09 16 23 02 09 16 23 30 06 13 20 27 04 11 18 25
1.5.3 Assign tentative deadlines for each task Apr 15, 2025 Apr 21, 2025 -
* 1.6 Project specification Apr 21, 2025 Apr 29, 2025 .
1.6.1 Define system requirements Apr 21, 2025 Apr 23, 2025 E .
1.6.2 Specify software tech stack Apr 23, 2025 Apr 29, 2025
[
+ 1.7 Initial proposal document Apr 28, 2025 May 286, 2025
G
1.7.1 Prepare and submit proposal document Apr 28, 2025 May 20, 2025 I
1.7 2 Prepare proposal presentation slides May 19, 2025 May 19, 2025 B

Figure 3.6: Gantt Chart detail view 4

Jun, 2025 Jul, 2025
Name i Start Date i EndDate H
18May 25May O01Jun 08Jun 15Jun 22Jun 29Jun 06 Jul
%
1.7.3 Conduct initial presentation May 26, 2025 May 26, 2025 _
« 2. Prototype 1: Sensor Integration & Data Acq--- May 26, 2025 Jul 03, 2025
w 2.1 Select sensors and microcontroller May 26, 2025 Jun 03, 2025 H -
2.1.1 Choose sensors. May 26, 2025 Jun 03, 2025 I
2.1.2 Select suitable microcontroller Jun 03, 2025 Jun 03, 2025 I
2.2 Define wiring and connection layout Jun 04, 2025 Jun 04, 2025

]
Figure 3.7: Gantt Chart detail view 5

Name H

w 2.3 Develop data acquisition script
2.3.1 Write microcontroller script for data re...
2.4 Integrate sensors and microcontroller
w 2.5 Set up loT gateway for data transfer
2.5.1 Configure Wi-Fi module
2.5.2 Send data to temporary cloud endpoint

¥ 2.6 User review and feedback

Start Date

Jun 08, 2025
Jun 06, 2025
Jun 10, 2025
Jun 25, 2025
Jun 25, 2025
Jun 26, 2025

Jun 30. 2025

End Date

Jun 12, 2025
Jun 12, 2025
Jun 25, 2025 ¢
Jun 26, 2025
Jun 25, 2025
Jun 26, 2025

Jul01. 2025

Figure 3.8: Gantt Chart detail view 6

Name

2.5.2 Send data to temporary cloud endpoint
= 2.6 User review and feedback
2.6.1 Demonstrate sensor system to users ...
2.6.2 Collect improvement suggestions
+ 27 Refine based on feedback

2.7.1 Adjust scripts or hardware if needed

Start Date

Jun 26, 2025
Jun 30, 2025
Jun 30, 2025
Jul 01, 2025
Jul 02, 2025

Jul 02, 2025

End Date

Jun 26, 2025
Jul 01, 2025
Jun 30, 2025
Jul 01, 2025
Jul 03, 2025

Jul 02, 2025

Figure 3.9: Gantt Chart detail view 7

Name H

2.7.1 Adjust scripts or hardware if needed
2.7.2 Finalize prototype 1 design
w 3. Prototype 2: Dashboard & Data Visualization
3.1 Design simple website for dashboard
w 3.2 Set up frontend and backend projects

3.2.1 Initialize Angular project with Tailwind...

Start Date

Jul 02, 2025
Jul 03, 2025
Jul 08, 2025
Jul 08, 2025
Jul 16, 2025

Jul 16, 2025

End Date

Jul 02, 2025
Jul 03, 2025
Aug 11, 2025
Jul 08, 2025
Jul 22, 2025

Jul 16, 2025

Figure 3.10: Gantt Chart detail view 8

3.2.2 Set up Spring Boot backend
w 3.3 Implement RESTful APls and database c...
3.3.1 Create CRUD endpoints for sensor d...
3.3.2 Integrate PostgreSQL database
3.4 Build dashboard for environmental data

3.5 Conduct usability testing with users

Start Date

Jul 22, 2025
Jul 28, 2025
Jul 28, 2025
Aug 01, 2025
Aug 04, 2025

Aug 06, 2025

End Date

Jul 29, 2025

Aug 04, 2025

Aug 01, 2025
Aug 04, 2025
Aug 08, 2025

Aug 11, 2025

Figure 3.11: Gantt Chart detail view 9

Name :

3.2.2 Set up Spring Boot backend
w 3.3 Implement RESTful APIs and database c...
3.3.1 Create CRUD endpoints for sensord...
3.3.2 Integrate PostgreSQL database
3.4 Build dashboard for environmental data

3.5 Conduct usability testing with users

Start Date

Jul 22, 2025
Jul 28, 2025
Jul 28, 2025
Aug 01, 2025
Aug 04, 2025

Aug 08, 2025

End Date

Jul 22, 2025

Aug 04, 2025
Aug 01, 2025
Aug 04, 2025
Aug 08, 2025

Aug 11, 2025

53

Jun, 2025 Jul, 2025
01 Jun 08 Jun 15 Jun 22 Jun 29 Jun 06 Ju
Jul, 2025 Aug, 2025
: 2Jun 29Jun 06 Jul 13 Jul 20 Jul 27Jul 03Aug 10Aug 1
Jul, 2025 Aug, 2025
’ 2Jun 29Jun 06 Jul 13Jul 20 Jul 27Jul 03Aug 10Aug 17
Aug, 2025
20 Jul 27 Jul 03 Aug 10 Aug 17 Aug 24 Au
Aug, 2025
20 Jul 27 Jul 03 Aug 10 Aug 17 Aug 2

Figure 3.12: Gantt Chart detail view 10

R R . 2025 Sep, 2025
Name t Start Date i End Date i
03 Aug 10 Aug 17 Aug 24 Aug 31 Aug o7
3.5 Conduct usability testing with users Aug 06, 2025 Aug 11, 2025 -
* 3.6 Gather feedback and iterate improvements Aug 11, 2025 Aug 15, 2025
3.6.1 Modify Ul elements based on feedback Aug 11, 2025 Aug 15, 2025 H
|
~ 4. Prototype 3: Nolification & Report System Aug 14, 2025 Sep 08, 2025
I
« 4.1 Define report generation structure Aug 14, 2025 Aug 26, 2025
]
4.1.1 Determine daily, weekly, and monthly... Aug 14, 2025 Aug 26, 2025 -
w 4.2 Implement notification feature Aug 25, 2025 Aug 28, 2025 .

Figure 3.13: Gantt Chart detail view 11

) . R Sep, 2025
Name i Start Date i EndDate H
24 Aug 31 Aug 07 Sep 14 Sep 21 Sep
4.2.1 Define thresholds for each parameter Aug 25, 2025 Aug 25, 2025 l-
4.2.2 Set up notification alert mechanisms Aug 25, 2025 Aug 28, 2025 -
4.3 Design report Ul and export options Aug 27, 2025 Sep01,2025 i ™
4.4 User testing and feedback collection Sep 01, 2025 Sep 02, 2025
—
4.5 Refine and finalize modules Sep 02, 2025 Sep 08, 2025
O
= 5. Continuous Cloud Integration & Deployment Sep 08, 2025 Sep 22, 2025

Figure 3.14: Gantt Chart detail view 12

. . . Sep, 2025 Oct, 2025
Name { Start Date i EndDate i
31 Aug 07 Sep 14 Sep 21 Sep 28 Sep
]
w 5. Continuous Cloud Integration & Deployment Sep 08, 2025 Sep 22, 2025 .
w 5.1 Select cloud provider Sep 08, 2025 Sep 09, 2025 l
5.1.1 Compare AWS, Firebase, and Azure Sep 08, 2025 Sep 08, 2025 H l
5.1.2 Choose provider based on needs an- Sep 09, 2025 Sep 09, 2025 -
w 5.2 Set up cloud database and hosting Sep 10, 2025 Sep 12, 2025 -
5.2.1 Deploy database instance Sep 10, 2025 Sep 12, 2025 l

Figure 3.15: Gantt Chart detail view 13

" 5 % Sep, 2025 Oct, 20:
Name i Start Date i End Date H
31Aug 07 Sep 14 Sep 21 Sep 28 Sep
5.2.1 Deploy database instance Sep 10, 2025 Sep 12, 2025 -I
5.2.2 Create hosting environment for back... Sep 12, 2025 Sep 12, 2025 -
w 5.3 Containerize and deploy backend Sep 12, 2025 Sep 15, 2025 -
5.3.1 Push to cloud and test API endpoints Sep 12, 2025 Sep 15, 2025 -
¥ 5.4 Deploy frontend to cloud Sep 15, 2025 Sep 18, 2025 -
5.4.1 Upload Angular build to cloud storage... ~ Sep 15, 2025 Sep 18, 2025 l
5.4.2 Configure DNS or Firebase Hosting Sep 18, 2025 Sep 18, 2025

Figure 3.16: Gantt Chart detail view 14

Name

5.5 Implement secure API access
w 6. Iterative Testing & Feedback

6.1 Unit testing

6.2 Integration testing

6.3 System testing

6.4 Usability testing

Start Date

Sep 17, 2025
Sep 22, 2025
Sep 22, 2025
Sep 22, 2025
Sep 23, 2025

Sep 25, 2025

End Date

Sep 22, 2025
Qct 02, 2025
Sep 25, 2025
Sep 24, 2025
Sep 25, 2025

Sep 30, 2025

Oct, 2025

14 Sep 21 Sep 28 Sep 05 Oct 12 Oct

Figure 3.17: Gantt Chart detail view 15

Name

w 7. Documentation & Final Report
7.1 Prepare poster and final presentation sli..
7.2 Set up demo environment

« 8. Project Closure & Reflection
8.1 Final deployment

8.2 Supervisor review and feedback

Name

7.1 Prepare poster and final presentation sli...
7.2 Set up demo environment
w 8. Project Closure & Reflection
8.1 Final deployment
8.2 Supervisor review and feedback
v 8.3 Reflection and lessons learned

8.3.1 Summarize challenges and resolutions

Start Date

Oct 02, 2025
Oct 02, 2025
Oct 03, 2025
Oct 06, 2025
Oct 08, 2025

Oct 08, 2025

Start Date

Oct 02, 2025
Oct 03, 2025
Oct 06, 2025
Oct 06, 2025
Oct 08, 2025
Oct 08, 2025

Oct 08, 2025

End Date

Oct 06, 2025

Oct 03, 2025

Oct 08, 2025 }

Oct 09, 2025
Oct 09, 2025

Oct 08, 2025

End Date

Oct 05, 2025

~
w
&
o
@
~
I .
©

2

Figure 3.18: Gantt Chart detail view 16

Oct 05, 2025

3 4] 6 7 8 9

Oct 06, 2025

Oct 09, 2025 ;

Oct 09, 2025

Oct 08, 2025

Oct 09, 2025

Oct 09, 2025

Figure 3.19: Gantt Chart detail view 17

3.5 Development Tools

The development of the smart farming system for Japanese melon cultivation

was supported by a range of software frameworks, cloud platforms, and

auxiliary tools. Each tool was selected to address specific requirements of the

system, including backend integration, frontend design, database management,

analytics visualisation, and notification delivery. The following subsections

describe the major tools employed and their roles in the project.

3.5.1 Backend Development Tools

The backend of the system was implemented using Spring Boot, a Java-based

framework that simplifies the development of scalable and modular

56

applications. Spring Boot provided the foundation for building RESTful API
endpoints, which handle the retrieval, storage, and processing of IoT sensor
data. It also facilitated the implementation of the threshold evaluation and
suggestion mechanism, ensuring that incoming data could be validated against
predefined parameters. To streamline the build and deployment process,
Gradle was used as the primary build automation tool. Gradle managed
dependencies, compiled the project, and automated testing, which collectively

improved the efficiency and consistency of backend development.

3.5.2 Frontend Development Tools

The frontend was developed using the Angular framework, chosen for its
ability to support responsive, dynamic, and component-driven user interfaces.
Angular enabled the creation of an interactive dashboard through which users
could monitor real-time sensor data, view graphical trends, and access
decision-support features. To enhance the visual design of the application,
Tailwind CSS was integrated, allowing the implementation of a clean and
consistent interface while maintaining flexibility in styling. In addition, Ng
Zorro Ant Design was adopted as a Ul component library, which accelerated
development by providing ready-made, professional-grade interface

components, ensuring both functionality and consistency in user interaction.

3.5.3 Database and Cloud Tools

Data storage and management were achieved through Supabase, an open-
source platform built on PostgreSQL. Supabase served as the primary database
for storing sensor readings, user profiles, and system configurations. It also
provided built-in authentication services, simplifying the management of user
access. To accommodate the limitations of the IoT hardware in transmitting
secure HTTPS requests, ThingSpeak was introduced as an intermediary IoT
gateway. Sensor data were first uploaded to ThingSpeak using HTTP
protocols and later synchronised into Supabase through an Extract, Transform,
Load (ETL) process. This integration ensured reliable and secure storage of

real-time data within the central database.

57

3.5.4 Data Analytics and Visualisation Tools

For advanced data analytics and visualisation, Grafana was integrated into the
system. Grafana provided interactive dashboards for time-series visualisation
of environmental parameters, correlation heatmaps to identify relationships
between variables, and a Soil Health Index (SHI) to present composite metrics.
By embedding Grafana dashboards into the Angular application, the system
offered both real-time monitoring and historical trend analysis, thereby

supporting informed decision-making for melon cultivation.

3.5.,5 Notification and Messaging Tools

To support real-time communication with users, Firebase Cloud Messaging
(FCM) was employed as the push notification service. FCM enabled the
system to send alerts whenever sensor readings exceeded the warning or
critical thresholds defined in the parameter configuration. This ensured that
users received timely updates, even when not actively logged into the system,

thereby enhancing the reliability of the decision-support mechanism.

3.5.6 Project Management and Documentation Tools

Several additional tools were employed to facilitate project management and
documentation. Git, together with GitHub, was used for version control,
enabling systematic tracking of source code changes and collaborative
development. For technical documentation and reporting, Microsoft Word was
used to prepare the Final Year Project report, while Draw.io was employed to
design system architecture diagrams, entity-relationship diagrams (ERD), and
data flow diagrams (DFD). These tools supported the systematic organisation
of development activities and ensured the production of professional

documentation to accompany the implemented system.

58

CHAPTER 4
PROJECT SPECIFICATION

4.1 Introduction

This chapter presents the detailed specifications of the smart farming system
developed for Japanese melon cultivation, serving as the foundation for the
subsequent design and implementation. It begins by outlining the functional
and non-functional requirements, which define the system’s expected
capabilities and quality attributes. To further specify the system’s behaviour,
use case models are introduced, consisting of a use case diagram that
illustrates user interactions with the system and accompanying descriptions
that elaborate on the roles, actions, and flows involved. In addition, conceptual
prototypes are provided to visualise the initial interface design and
demonstrate key functionalities, allowing early validation of system
requirements. Collectively, these specifications establish a comprehensive
blueprint that ensures the objectives, requirements, and user interactions of the
smart farming system are well-defined prior to detailed design and

development.

4.2 System Requirements

4.2.1 Functional Requirements

The smart farming system 1is designed to support various essential
functionalities that contribute to efficient farm management, particularly for
melon cultivation. Each function plays a critical role in ensuring data-driven
decision-making, resource optimization, and task tracking. The following
sections outline and elaborate on the core functional requirements of the

system:

i. User authentication module
The system shall provide secure authentication to manage user access. It shall
allow users to log in using their registered credentials, specifically an email
address and password, which must be validated during authentication. The

system shall also support password reset functionality in cases where users

59

forget their credentials. To maintain security, only administrators shall be

permitted to register new users by using the user’s email.

ii. User Profile Management Module
The system shall provide functionality for users to manage their personal
profiles. Users shall be able to view and update basic information, including
name, email, and contact details. Administrators shall have the ability to
manage user roles to ensure that appropriate access levels are maintained. The
system shall also allow the storage of device tokens linked to user accounts,

enabling personalised push notifications through the notification service.

iii. Farming Activity Management Module
The system shall provide functionality to manage farming activities such as
irrigation, fertilisation, and weed removal. Users shall be able to schedule
activities for tracking and analysis. Integration with external weather APIs
should be included to display forecasts, such as rain or extreme heat. Users

shall be able to view, add, update, and delete farming activities.

iv. Sensor Data Collection, Storage, and Visualisation Module
The system shall collect environmental readings, including air temperature,
humidity, soil moisture, soil pH, soil conductivity, soil temperature, soil TDS,
and light intensity, from IoT sources. All data shall be securely stored in a
cloud-based database and visualised through interactive charts and graphs to
support monitoring. Alerts shall be triggered when sensor readings exceed

defined thresholds, and these alerts shall be delivered via notifications.

V. Sensor Threshold Configuration Module
The system shall provide users with the ability to configure threshold values
for each monitored parameter, including minimum, maximum, and warning
levels. Users shall be able to view these thresholds to understand optimal
ranges for cultivation. The system shall use the configured thresholds to
generate automated alerts and decision-support suggestions whenever

parameter values fall outside the acceptable limits. The configuration records

60

shall be stored in the database and updateable by authorised users, ensuring

flexibility in adapting the system to changing farming conditions.

4.2.2 Non-Functional Requirements

The non-functional requirements define the quality attributes and operational
constraints of the smart farming system. These requirements ensure that the
system not only fulfils its intended functionalities but also delivers
performance, reliability, and usability standards expected for real-world

application.

i. Performance Requirements
The system shall process and update environmental sensor data with minimal
delay to support near real-time monitoring. The dashboard shall load within
acceptable time limits, with the Largest Contentful Paint (LCP) metric targeted

at less than two seconds to provide a smooth user experience.

il Reliability Requirements
The system shall achieve a minimum of 95% data transmission success rate
from the IoT gateway to the cloud database to ensure data completeness. In
case of temporary network disruptions, mechanisms shall ensure that sensor
data are synchronised once connectivity is restored. Critical functionalities
such as threshold monitoring and notification delivery shall remain

consistently available to guarantee continuous system reliability.

iil. Usability Requirements
The system shall provide a user-friendly and intuitive interface. Dashboards
and charts shall employ clear visualisation techniques with appropriate
labelling to assist interpretation. User interactions, such as scheduling tasks
and configuring thresholds, shall be designed to require minimal training,

thereby supporting adoption by non-technical users such as farmers.

iv. Security Requirements

61

The system shall enforce secure authentication through user credentials, with
role-based access control to differentiate privileges between administrators and
standard users. Sensitive data such as sensor readings, user details, and

configuration records shall be stored securely in the cloud database.

4.3 Use Case Diagram

uc Structured Use Cases
Smart Farming System
Receive system
notification ——

TT=— Monitor real-time

wextends ~ et
Sentor-detectad
abnormal value

Manage farming
activities
User \

extension points
wser forgot passyye

Edit user profile v

L

Reset password

Farmer Admin

View sensor's data
dashboard

Manage sensor data
5 threshold
Register new user

Figure 4.1: Use Case Diagram

4.4 Use Case Description

Use Case Name: User | ID: UC001 Significance Level:
login High
Primary Actor: User Use Case Type: Detail, Essential

Stakeholders and Interests:

User: Needs to access their personal account on the smart farming system by

62

logging in.

Brief Description:
This use case outlines the process of a registered user signing into the smart

farming platform.

Trigger: User navigates to the smart farming website.

Relationships:

Association: User

Include: N/A

Extend: Password Recovery

Generalization: N/A

Normal Flow of Events:
1. The user visits the smart farming website.
2. The website presents a login form.
3. The user enters valid email and password. If they cannot remember
their password, the S-1 Password Recovery sub-flow is initiated.
4. The user pressed login button.
5. The system validates the provided credentials. If they are not correct,

proceed to Exception Flow 6.1.

Sub-flows:
S-1 Recover account
1. The user selects the “Forgot Password” option on the login page.
2. The system shows the password reset interface.
3. The user provides their registered email address and submits the
request.
4. The application generates a password reset link and sends to user’s
email address.
5. The user accesses the reset link and sets a new password.

6. Return to step 2 of the main flow.

Alternate/Exceptional Flows:
6.1 Invalid Credentials
1. The system displays an error notification indicating incorrect login
information.

2. The user is prompted to reattempt the login process.

63

Use Case Name: ID: UC002 Significance Level: High

Account Registration

Primary Actor: Admin Use Case Type: Detail, Essential

Stakeholders and Interests:
Admin: Responsible for creating accounts so that new users can gain access to

the smart farming system.

Brief Description:
The use case describes how the admin can register a new account for a new

user.

Trigger: Admin wants to add new user to the smart farming system.

Relationships:
Association: Admin
Include: N/A
Extend: N/A

Generalization: N/A

Normal Flow of Events:
1. The administrator navigates to the “Add New User” page from the side
menu.
2. The administrator provides the new user’s email address on the
registration form.
3. The administrator submits the registration details.

4. The system checks the validity of the input. If the email is incorrectly

formatted or already exists in the database, continue to Exception Flow

4.1.

5. When the data is valid, the system displays a success message and sends

a registration link to the new user’s email.

Sub-flows:

Alternate/Exceptional Flows:
4.1 Invalid or Duplicate Email Entry
1. The system shows an error indicating the email format is invalid or the

address is already registered.

64

2. The administrator is asked to repeat the registration process with correct

information.

Use Case Name: ID: UC003 Significance Level: High
Edit user profile

Primary Actor: User Use Case Type: Detail, Essential

Stakeholders and Interests:
Admin and user: Require the ability to modify and maintain accurate profile

information.

Brief Description:
This use case explains how a registered user can update their profile details

such as username, email address, and password.

Trigger: The process starts when the user decides to change their profile

information.

Relationships:
Association: User
Include: N/A
Extend: N/A

Generalization: N/A

Normal Flow of Events:
1. The user opens the profile page and selects the “Edit” option.
2. The user enters the updated information (username, email, or password).

3. The user confirms and submits the changes. If the input is in an invalid

format or already in use, proceed to Exception Flow 3.1.

4. Once validated, the system shows a success notification and displays the

revised profile information.

Sub-flows:

Alternate/Exceptional Flows:

3.1 Duplicated or Invalid Profile Information

1. The system notifies the user with an error message indicating invalid or
already existing credentials.

2. The system prompts user to enter their credentials again.

65

Use Case Name: ID: UC004 Significance Level: High
Real-Time

Environmental

Monitoring

Primary Actor: User Use Case Type: Detail, Essential

Stakeholders and Interests:
User: Requires continuous access to live environmental data from the melon

farm.

Brief Description:
This use case outlines how a user can track environmental parameters of the

farm in real time.

Trigger: The process begins when the user chooses to monitor the farm’s

environmental conditions.

Relationships:

Association: User

Include: N/A

Extend: Receive push notifications.

Generalization: N/A

Normal Flow of Events:
1. The user navigates to monitor sensor data page.
2. The system presents live readings of environmental factors, including
air temperature, air humidity, soil temperature, soil moisture, soil pH,
soil TDS, soil conductivity, and light intensity. If any parameter exceeds

its defined threshold, Sub-flow S-1 is triggered. If no sensor readings

are available or a database error occurs, Exception Flow 2.1 is executed.

Sub-flows:
S-1 Receive push notifications
1. The user is notified through push notifications when sensor data

values surpass the defined threshold.

Alternate/Exceptional Flows:
2.1 Missing Data or Database Failure

1. The system displays a message to the user stating ‘“No data

66

available.”
Use Case Name: ID: UCO005 Significance Level: High
View sensor’s data
dashboard
Primary Actor: User Use Case Type: Detail, Essential

Stakeholders and Interests:

User: View sensor’s data dashboard.

Brief Description:
The user accesses the dashboard page to view real-time and historical sensor
data including environment and sensor’s health data, which is presented in

graphical format.

Trigger: Users want to view sensor’s data in graphical format.

Relationships:
Association: User
Include: N/A
Extend: N/A

Generalization: N/A

Normal Flow of Events:
1. User navigates to the Dashboard page.

2. System retrieves the latest sensor data. If the sensor’s data is

unavailable, perform exceptional flow 2.1

3. User can view the real-time, historical data in graphs and analysed data,

gauge or charts on the dashboard.

Sub-flows:
N/A

Alternate/Exceptional Flows:
Exceptional Flow 2.1: Data unavailable
1. If sensor data cannot be retrieved, the system displays an error message

indicating no data is available.

Use Case Name: ID: UC006 Significance Level: High

67

Manage farming
activities
Primary Actor: User Use Case Type: Detail, Essential

Stakeholders and Interests:

User: Manage melon farm’s farming activities.

Brief Description:

This use case description describes how user manages farming activities.

Trigger: Users want to manage farming activities.

Relationships:
Association: User
Include: N/A
Extend: N/A

Generalization: N/A

Normal Flow of Events:
1. User navigates to the farming activities page.
2. The system displays all scheduled activities in calendar view.
3. If users select to create or edit an activity, sub-flows S-1 will be
performed.
4. If users want to delete an activity, sub-flows S-2 will be performed.

5. System saves or updates the activity in the database. If input information

is invalid, exceptional flow 5.1 will be performed.

6. System displays the updated list of activities to the user.

Sub-flows:
S-1 Creating and Editing Farming Activity
1. User fills in or modifies necessary fields including activity title,
description, date, time and assigned personnel.
2. Users click "Save" button to save the new or modified activity.

3. Back to main flow step 5.

S-2 Delete Farming Activity

1. System pops up a confirmation window with "Confirm" and "Cancel"

options.

68

2. If user confirms the deletion, the system removes the selected activity
from the database.

3. If user cancels, the system closes the confirmation window without
making changes.

4. Back to main flow step 5.

Alternate/Exceptional Flows:

5.1 Invalid Input Information
1. System displays an "Invalid input" message if there is missing required

fields or incorrect date format.

Use Case Name: ID: UC007 Significance Level: High

Register new user

Primary Actor: Admin Use Case Type: Detail, Essential

Stakeholders and Interests:

Admin: Add new user to the smart farming system.

Brief Description:

This use case description describes how admin add new user to the system.

Trigger: Admin wants to add new user to the system.

Relationships:
Association: Admin
Include: N/A
Extend: N/A

Generalization: N/A

Normal Flow of Events:
1. Admins navigate to add new user page.
2. Admins enter the new user ‘s email and press confirm button, if

user’s email are invalid, Exceptional Flow 2.1 will be performed.

3. User will receive an email link to register the smart farming system.

Sub-flows:
N/A

69

Alternate/Exceptional Flows:
1.1 Invalid email entry
1. The system displays an error message stating “Invalid user credentials.”
2. The administrator is prompted to re-enter correct details and attempt the

process again.

Use Case Name: ID: UC008 Significance Level: High
Manage Sensor Data

Thresholds

Primary Actor: User Use Case Type: Detail, Essential

Stakeholders and Interests:
Needs to configure threshold values and corresponding suggestions for each

sensor parameter to ensure accurate system monitoring and recommendations.

Brief Description:
This use case describes how an user manages sensor data thresholds by adding
or updating values such as optimal ranges, warning limits, and recommendation

messages.

Trigger: The user needs to configure or adjust threshold values for one or more

sensor parameters.

Relationships:
Association: User
Include: N/A
Extend: N/A

Generalization: N/A

Normal Flow of Events:
1. The user navigates to the threshold management page.
2. The user selects a parameter.
3. The user enters or updates values for optimal minimum, optimal

maximum, warning minimum, and warning maximum, along with

corresponding suggestion messages. If input are invalid, Exceptional

Flow 3.1 will be performed.

4. The user confirms the update.

5. A confirmation message is displayed, and the updated thresholds are

70

applied to subsequent evaluations.

Sub-flows:
N/A

Alternate/Exceptional Flows:
3.1 Invalid user’s credentials
The system displays an error message prompting the administrator

to re-enter valid thresholds.

4.5 Conceptual Prototype
This section focuses on the prototype of the smart farming website. The
prototype demonstrates the core functionalities of the web system and serves

as an early version for testing and further refinement based on user feedback.

+ Login
Sign in to access your smart farming dashboard

Username

Password

Figure 4.2: Prototype - User login interface

=) johndoe
johndoe@example.com

Admin
Username Email
johndoe johndoe@example.com
Role Account Created
Admin Feb 1, 2024

Edit Profile

Figure 4.3: Prototype - User profile page

@ johndoe
johndoe@example.com

Admin

Username

johndoe

Email
johndoe@example.com

Password

Confirmed Password

Save Changes

Figure 4.4: Prototype - Edit user credentials interface

Cancel

71

User Management

Manage and monitor user roles.

Search

User ID

u1001

U1002

u1003

uU1004

uU1005

Username

johndoe

janedoe

adminuser

farmerjohn

adminalex

Role

Admin

Farmer

Admin

Farmer

Admin

Last Login

2025-04-29 10:30:15

2025-04-30 09:00:25

2025-03-15 14:20:50

2025-04-28 17:25:34

2025-04-30 12:12:00

Created Time

2024-01-01 08:00:00

2024-03-15 10:05:12

2023-08-05 14:50:00

2023-11-11 16:00:00

2023-02-20 08:45:00

72

+ Add New User

Actions

Edit

Edit

Edit

Figure 4.5: Prototype (Admin view) - User management interface

Add New User

Name:

* Email:

* Password:

* Role:

* Status:

Active

Figure 4.6: Prototype (Admin) - Add new user interface

73

)

Smart Farming

12 45% Rainy, 22°C

Temperature Trend Humidity Trend

Recent Alerts

Figure 4.7: Prototype - Smart farming system home page

Smart Farming Dashboard Overview

Soil Moisture

A [«M. TV Wy L USSPV s
|

sda6é

Visual Gauge Representation for Environmental Metrics

Real-time Soil Moisture Levels from Smart Sensors

Gradient mode

Outhouse

Basement

Garage

Figure 4.8: Prototype - Sensor dashboard overview

Sensor Data

Monitor real-time environmental conditions from your greenhouse.

Search...

Entry ID - Temperature < Humidity s
1000 26.5°C 65%

1001 24.1°C 70%

1003 27.3°C 60%

1004 25.7°C 68%

1005 23.9°C 2%

Soil Moisture =

45%

50%

40%

47%

53%

Light Intensity

12000 lux

9800 lux

13400 lux

11000 lux

9500 lux

Figure 4.9: Prototype - Sensor data interface

Add Event

* Title:

Description:

74

Created Time =
2025-04-26 08:15:00
2025-04-26 08:20:00
2025-04-26 08:25:00
2025-04-26 08:30:00

2025-04-26 08:35:00

>

Figure 4.10: Prototype - Manage farming event interface

75

76

CHAPTER 5

System Design

5.1 Introduction

The system design defines the blueprint of the smart farming system, detailing
how its components interact to achieve the objectives of real-time monitoring,
automated decision support, and improved crop yield and quality. This chapter
presents the design from three perspectives: the overall system architecture,
the database design, and the functional modules. The architecture establishes
the layered structure that governs communication between the presentation,
application, and data layers, while the database design specifies entity
relationships, schemas, and data dictionaries to ensure consistency and
integrity of stored information such as sensor readings, thresholds, user
accounts, and tasks. The functional modules, including sensor monitoring,
threshold configuration, task management, and notification services, are
described to illustrate how each supports the system’s objectives. Collectively,
these design decisions provide a scalable, maintainable, and cost-effective
foundation for the subsequent implementation and evaluation of the smart

farming solution.

71

5.2 System Architecture Design
1

£
“

Japanese Meion Farm lo¥ dowices 10T Gateway

*’@7’ C?J}j% CJThingSpeak

.
. n - Query
Website i e
T (Al Arg_“a‘ Boot 4, supabase
= .,‘: V:" b Query
- results
wrTe
Us
‘Authentication Authentication ter e[l request
request responise
eh - 0 Data Layer
response o HTTP nAe's;i)
response
No-Z0RRO

- ” Firebase
« tailwindcss

Application Layer

— o) GI’CIfOnO : sensor data
)

Presentation Layer

Figure 5.1: System Architecture Design

The smart farming system for Japanese musk melon cultivation was designed
using a three-tier architecture, consisting of the Presentation Layer, the
Application Layer, and the Data Layer. This layered approach was selected
because it provides scalability, maintainability, and a clear separation of
concerns, all of which are critical for systems that are expected to evolve
alongside future farming requirements. The architecture supports both real-
time insights and advanced analytics, thereby enhancing decision-making and

crop quality. Figure 5.x illustrates the overall system architecture.

The Presentation Layer was implemented using Angular as the
primary frontend framework. Angular was selected due to its modular design,
strong ecosystem, and two-way data binding, which collectively supports the
development of dynamic dashboards that update in real time. To complement
this, Ng Zorro was adopted as a UI component library, providing professional-
grade components that accelerate development and ensure design consistency.
TailwindCSS was integrated to deliver a utility-first styling approach, resulting

in a responsive and highly customizable dashboard accessible across devices.

78

In addition, Grafana was embedded within the presentation layer to
provide advanced visualization capabilities. Grafana was selected because it
offers powerful time-series analytics and reduces the need to develop complex
charting modules manually. This enabled the system to deliver meaningful
insights such as time-series graphs, Soil Health Index values, and correlation
heatmaps directly within the Angular interface. The result is a user interface

that not only displays data but also supports informed decision-making.

The Application Layer was developed using Spring Boot, chosen for
its lightweight framework, modularity, and suitability for RESTful API
development. This layer acts as middleware, ensuring standardized and loosely
coupled communication between the frontend and the backend database. Such
separation allows both the Angular frontend and the Supabase database to
evolve independently without disrupting system stability. Spring Boot was
also integrated with Firebase to enable real-time push notifications, ensuring
that external services are managed at the middleware level rather than tied
directly to the frontend. This approach increases robustness, maintainability,

and long-term adaptability.

The Data Layer forms the foundation of the system and was designed
with both technical and budget constraints in mind. Direct loT-to-database
integration was not feasible because the SIM-based IoT devices lacked support
for secure HTTPS communication with a cloud-hosted PostgreSQL database.
To address this constraint, ThingSpeak was selected as an intermediary
platform for IoT data ingestion. ThingSpeak provides a reliable and cost-
effective gateway that supports HTTP transmission, enabling the system to

operate without requiring costly hardware upgrades.

From ThingSpeak, sensor data is synchronized into Supabase, which
was chosen as the central cloud database due to its PostgreSQL foundation,
schema management capabilities, and scalability. This two-step pipeline,
ThingSpeak for ingestion and Supabase for structured storage ensures reliable

data handling while remaining cost-effective. Grafana connects directly to

79

Supabase to deliver analytics, enabling both real-time monitoring and long-
term trend analysis through tools such as correlation heatmaps and Soil Health

Index visualizations.

In summary, the architecture combines Angular, Ng Zorro, and
TailwindCSS for the presentation layer; Spring Boot and Firebase for the
application layer; and ThingSpeak, Supabase, and Grafana for the data layer.
Each technology was selected to balance feasibility under budget constraints
with the need for scalability, usability, and analytical capability. Collectively,
these choices enable the system to deliver a robust, data-driven solution that
enhances melon yield and quality through cost-effective and sustainable smart

farming practices.

5.3
5.3.1

Database Design
Entity Relationship Diagram (ERD)

sensor_data |i..e..i.... parameter_thresholds
PK PK | idint NOTNULL
created_at timestamp NOT NULL parameter varchar NOT NULL
air_temperature numeric NOT NULL optimal_min float NOT NULL
air_humidity numeric NOT NULL optimal_max float NOT NULL
soil_tds numeric NOT NULL warn_min float NOT NULL
light_intensity numeric NOT NULL warn_max float NOT NULL
soil_moisture numeric NOT NULL lowi_suggestion varchar NOT NULL
soil_temperature numeric NOT NULL high_suggestion varchar NOT NULL
soil_conductivity numeric NOT NULL warn_low_suggestion varchar NOT NULL
soil_ph numeric NOT NULL warn_high_suggestion varchar NOT NULL
insert_date_time timestamp NOT NULL 1 FK | updated_by uuid NOT NULL
tasks
PK | idint NOT NULL
fitle varchar NOT NULL device_tokens:
description text NOT NULL users PK | idint NOT NUI
FK | created_by uuid NOT NULL 0 LS id uuid NOT NULL L L user_id UUID NOT NULL
FK | updated_by uuid NOT NULL email varchar NOT NULL token varchar NOT NULL
start_time timestamp NOT NULL username varchar NOT NULL 11 active boolean NOT NULL
end_time timestamp NOT NULL role varchar NOT NULL created_at timestamp NOT NULL
assign_user varchar NOT NULL is_active boolean NOT NULL updated_at timestamp NOT NULL

created_at timestamp NOT NULL last_login timestamp NOT NULL

updated_at timestamp NOT NULL created_time fimestamp NOT NULL

Figure 5.2: Entity Relationship Diagram

5.3.2
Users Entity Data Schema

Schema Design

Column Name | Definition Data Type Sample Value

80

user_id

Unique
identifier for

each user.

UUID

6aab053c-bdf4-4bct-
b71e-6aca36854b7d

email

Email address

of the user.

Text

farmer(1@example.com

role

Defines the

user’s role
(e.g., admin,

farmer).

Text

Farmer

username

Display name

of the user.

Text

MelonMaster

is_active

Indicates
whether the
user account 1is

active

Boolean

True

last_login

Records the

last time the
user logged

into system.

Timetamp

2025-08-15 14:32:00

created_time

The time when
the user
account was

created.

Timestamp

2025-03-15 14:32:00

Sensor_data Entity Data Schema

Column Name

Definition

Data Type

Sample Value

entry_id

Unique

entry ID.

incremental ID of
the reading, same

as ThingSpeak

Integer

1056

air_humidity

Measured

humidity in the

Numeric

72.4

81

air (%).

air_temperature

Measured
temperature in

the air (°C).

Numeric

28.6

light_intensity

Measured
sunlight/light

intensity (lux).

Numeric

1350.0

soil_conductivity

Flectrical
conductivity of

the soil (uS/cm).

Numeric

220.5

soil_moisture

Moisture content

in the soil (%).

Numeric

443

soil_ph

pH level of the

soil.

Numeric

6.8

soil_tds

Total dissolved
solids 1n soil

(ppm).

Numeric

550.0

soil_temperature

Temperature of

the soil (°C).

Numeric

26.2

created_at

Original
timestamp when
data was recorded

in ThingSpeak.

Timestamp

2025-08-15
00:10:57

insert_date time

Timestamp when
the data was
inserted into the
backend

database.

Timestamp

2025-08-15
00:15:00

Task Entity Data Schema

Column Name

Definition

Data Type

Sample Value

id

Unique identifier

for each task

Integer

1

82

(primary key)
title Short title or | Varchar Irrigation Check
name of the task
description Detailed Text Inspect and adjust
explanation of the drip irrigation
task system for melon
beds
assign_user The user assigned | varchar Ali
to carry out the
task
created_by User ID of the | UUID 6aab053c-bdf4-
person who 4bct-b71e-
created the task 6aca36854b7d
updated_by User ID of the | UUID 6aab053c-bdf4-
person who last 4bct-b71e-
updated the task 6aca36854b7d
start_time Scheduled start | Timestamp 2025-08-15
date and time of 14:49:00
the task
end_time Scheduled end | Timestamp 2025-08-15
date and time of 19:49:00
the task
created_at Timestamp when | Timestamp 2025-08-12
the task record 02:44:40.2
was created
updated_at Timestamp when | Timestamp 2025-08-15
the task record 02:44:40.2
was last modified
Device Tokens Data Schema
Column | Definition Data Sample Value
Name Type
id Unique identifier for each device | Int 1

83

token
user_id | Unique identifier of the wuser | UUID 6aab053c-bdf4-
associated with the device 4bct-b71e-
6aca36854b7d
token Push notification token generated | Varchar | dS7k-
by Firebase or similar COWd9wvZo2X
LJRI-
p_80gEN3J7C9s
4JvryTWEY QIO
UtkWDEZLXu
my fPmle4Opo
active Status flag indicating if the token | Boolean | True
is currently active
created_ | Timestamp when the token record | Timesta | 2025-09-09
at was first created mp 15:50:22.31835
+00
updated_ | Timestamp when the token record | Timesta | 2025-09-09
at was last updated mp 15:50:22.31835
+00
Parameter Thresholds Data Schema
Column Definition Data Type | Sample Value
Name
id Unique identifier for each | Int 1
threshold record (primary
key)
Parameter Name of the monitored | Varchar air_temperature
parameter
Optimal min | Minimum value of the | Float 24
optimal range
Optimal _max | Maximum value of the | Float 32
optimal range
Warn_min Minimum value for the | Float 22

84

warning range (before

becoming critical)

Warn_max Maximum value for the | Float 35
warning range (before
becoming critical)
Low_suggesti | Suggested corrective action | Varchar Close vents or
on when parameter falls below use heaters to
minimum raise
temperature.
High_suggest | Suggested corrective action | Varchar Improve
ion when parameter exceeds greenhouse
maximum ventilation or
install ~ shading
net.
Warn_low_s | Suggested action when | Varchar Monitor,
uggestion parameter approaches lower consider partial
warning level vent closing.
Warn_high_s | Suggested action when | Varchar Keep ventilation
uggestion parameter approaches running and
higher warning level monitor closely.
Updated_by | User ID who last updated | UUID 6aab053c-bdf4-

the threshold entry

4bcf-b71e-
6aca36854b7d

85

CHAPTER 6

SYSTEM IMPLEMENTATION

6.1 Introduction

This chapter describes the software implementation of the Smart Farming
System for musk melon cultivation, focusing on the transformation of the
proposed system design into a functional application. The system is designed
to enhance farming efficiency through IoT-based monitoring, where
environmental sensor data are collected and transmitted to a ThingSpeak
channel for subsequent processing and analysis. The implementation involves
developing a software platform that retrieves data from ThingSpeak, processes
it through cloud-based services, and presents it to users via an interactive and
responsive interface. In addition to real-time data visualisation, the system
supports environmental condition tracking and decision support features to
maintain optimal growing conditions for musk melons. This chapter presents
the implementation of the major software modules, the configuration of
ThingSpeak integration, and the establishment of reliable communication

between the cloud platform and the user interface.

6.2 System Module

The end-users for this system are categorized into two groups, that will be the
administrative side and the non-administrative side. Since some functions are
related to managerial tasks, a few submodules could be only accessed by

administrative users.

Table 6.1: Module Overview by User Role

End-users | Module Name Objective of Module
Admin User and role | Manage wuser roles, and system
management access.
Add new user Add new user to the smart farming
system.
All user Authentication Secure login and access control for

86

the system.

Profile management

View and update personal details

such as wusername, email, and

password.

Real-time sensor

Monitoring

View live environmental data and

historical trends.

View suggestion

View rule-based suggestions for

corrective actions.

Task management

Manage farming task, keep track of

pass and future farming activities.

View analysed data

Explore graphical dashboards, soil

dashboard health index, and correlation
analytics for insights.

Receive alert | Get real-time alerts and notifications

notifications for abnormal conditions or threshold
breaches.

Manage sensor | Configure, update, and maintain

threshold threshold values and respective
suggestion for different

environmental parameters.

6.3

6.3.1 Supabase Authentication

Functional Module Implementation

In order to provide secure access and enable personalized features within the

Smart Farming System, Supabase Authentication (Auth) was implemented as

the core user management module. Supabase Auth supports user registration,

login, and session handling while integrating directly with the PostgreSQL

backend, ensuring that only authorized users can access the farming dashboard

and sensor data retrieved from the ThingSpeak channel. This implementation

strengthens system security by restricting access to authenticated users and

enabling role-based control of administrative functions.

87

The Supabase project was first created and configured through the
Supabase dashboard. Within the authentication settings, the email and
password option were enabled to support sign-up and login processes for
farmers and administrators. Supabase automatically manages user credentials
within its PostgreSQL database, reducing the need for additional custom
authentication logic. During configuration, the system generated an API URL
and an anonymous public key, which were subsequently integrated into the
client application to establish secure communication with the Supabase

backend.

Sign In / Providers

Configure authentication providers and login methods for your users

Supabase Auth

User Signups

Allow new users to sign up

Allow manual linking
manual linking APls

Allow anonymous sign-ins
anonymous sign-ins

Confirm email

Auth Providers

Authenticate your users through a suite of providers and login methods

Email

Figure 6.1: Enable auth providers (email) in supabase

The application integrates with Supabase Authentication through the
@supabase/supabase-js client library, which provides a simple and secure
interface for managing user sessions. The authentication flow consists of two

primary functions:

1. Sign Up process - allows administrators to invite and register new
users
ii. Sign In process - authenticates existing users and generates a valid

session token.

88

ignIn(email: string, password: string)

return this.supabase.auth.signInWithPassword({ email, password });

r
g

is.supabase.auth.signout();

Figure 6.2: Code snippet for handling signs in, out and retrieve user’s session

3

Welcome Back

Login to your Smart Farming account

Email

keyingliew@gmail.com

Password

Forgot password?

Figure 6.3: Sign in Page

During the sign-in process, users enter their email and password into
the login form, and these credentials are transmitted securely to the Supabase
Authentication API using the signInWithPassword() method. Supabase
verifies the credentials against the user records stored in the PostgreSQL
database. Upon successful authentication, Supabase generates a session object
containing a JSON Web Token (JWT), which serves as proof of the user’s
identity. This token is stored locally by the application and is required for all

subsequent requests to protected resources. In the event of invalid credentials,

89

Supabase returns an error response, preventing unauthorised access to the

system.

To enhance usability, the login interface also includes a password
recovery mechanism, whereby users can request a reset link sent to their
registered email address. This ensures that forgotten credentials can be
securely managed without compromising the integrity of the authentication

system.

The sign-out process invalidates the active session and removes the
locally stored token, ensuring that the user is fully logged out of the system.
Together, these mechanisms provide a robust authentication framework that
balances security, usability, and maintainability within the smart farming

system.

Email Username

Role Created On
Thu Sep 18 2025 21:15:06 GMT+0800 (Malaysia Time)

Edit Profile Logout

Figure 6.4: Sign out function for user in profile page

90

6.3.2 Authorisation

[~) sSmart Farming

Smart Farming

Dashboard © Dashboard

Home Home

Dashboard Dashboard

Sensor data _
Sensor data

Sensor Config

Sensor Config

Task Management
Task Management

User
User

User Profile
User Profile

User Managemgnt

Figure 6.5: Admin navigation view | Figure 6.6: Normal user navigation

view

Authorisation within the Smart Farming System is implemented through role-
based access control, ensuring that users only have access to functions
appropriate to their roles. Two main roles are defined in the system:
administrator and normal user. Administrators are granted extended privileges
which is the ability to register new users while normal users are restricted to
essential functionalities. This role-based design not only strengthens system
security by preventing unauthorised access to administrative functions but also
enhances usability by presenting each user with a tailored interface aligned to

their responsibilities.

91

6.3.3 Admin Sign Up

AgriTech Hub

User Management System

Add New User

Create a new user account for the AgriTech platform

£ Email Address

2 User Role

Figure 6.7: Add new user page

The sign-up process in the Smart Farming System is initiated by an
administrator, who registers a new user by specifying the individual’s email
address and assigning an appropriate role, such as farmer or administrator. The
application transmits these details securely to Supabase using the Admin
Service Key, which authorises privileged operations restricted to
administrative users. Supabase then generates a unique registration link and

automatically dispatches it to the specified email address.

When the invited user accesses the link, they are redirected to the
sign-up page, where they provide a password and complete the registration
form. Once submitted, Supabase creates a new user record in the underlying
PostgreSQL database, embedding the role assigned during registration. The
system then issues a confirmation message to the user, indicating successful
account creation. From this point, the user can proceed directly to the sign-in

process to access the system’s features.

Error-handling mechanisms are incorporated to ensure robustness

during onboarding. If an invalid email address is provided or if the registration

92

link has expired, Supabase returns an error response. In such cases, the
administrator is prompted to resend the invitation, thereby ensuring a smooth

and reliable registration process.

The API for adding a new user leverages Supabase’s administration
endpoints and is secured through the Admin Service Key, ensuring that only
authorised personnel can register new accounts. A code snippet illustrating this
API call is provided in Figure 6.7 as supporting evidence of the

implementation.

AddUserService {

naselrl

constructor(private http: HttpClient) {}

inviteUser(email: stri
return this.http. this L email, role });

Figure 6.8: API call for add new user

6.3.4 User Profile Management

keying
Admin
Email Username
keyingliew@gmail.com keying
Role Created On
Admin Tue Aug 26 2025 17:27:43 GMT+0800 (Malaysia Time)
Edit Profile Logout

Figure 6.9: User profile management page

93

As shown in Figure 6.8, the User Profile Management page was implemented
to enable authenticated users to view and update their personal information
within the system. This feature enhances usability by allowing users to verify
their registered details and make modifications, such as updating their
username, when necessary. The module is integrated with Supabase
Authentication and the corresponding user profile table in the PostgreSQL
database, ensuring that any updates remain consistent across authentication
records and application data. To maintain security, update requests are
validated so that users are only permitted to modify their own profiles. Once
approved, the revised details are committed to the database and reflected
immediately in the interface, providing a seamless and secure profile

management experience.

6.3.5 Task Management

The Task Management Module was developed to assist farmers and
administrators in organizing and monitoring farm-related activities within the
smart farming system. It enables the creation, updating, and deletion of
farming tasks, while also supporting visualization of schedules in a calendar
format. This feature is essential for ensuring that agricultural activities such as
irrigation, fertilization, or equipment inspections are executed in a timely

manner, thereby reducing the risk of overlooked or delayed operations.

94

editable: true

: true

successCallback,

successCallback(this

.bind(this),
.bind(this),
ck.bind(this)

Figure 6.10: Code snippet for FullCalendar implementation

The module was implemented using the FullCalendar library
integrated into Angular, which provides interactive and customizable
scheduling capabilities. Farmers are able to view tasks in multiple modes
including monthly, weekly, and daily perspectives. Each task entry consists of
essential attributes such as title, description, start time, end time and assign
user. Through the interface, users can click on a calendar date to add a new
task or select an existing event to update or delete it. Modal dialogs powered
by Ng-Zorro components provide a structured form for task entry and editing,

ensuring consistent user experience.

95

September 2025

T 8) 10 " 12 13
14 15 16 17 | 28°C, Rain 18 | 23°C, Rair 19 24°C, Rain 20
28°C, Rain # 23°C, Rain # 24°C, Rain
28°C, Rain @ 23°C, Rain @ 24°C Rain
#°C. Rain 21 24°C, Rain 22 23 24 25 26 27
24°C, Rain @ 24°C, Rain
@ 24°C, Rain @ 24°C, Rain

Figure 6.11: Calendar monthly view with weather forecast

Internally, the Task Service handles communication with the backend,
where task information persisted in the Supabase database. The component
retrieves tasks via the service and transforms them into calendar events for
rendering. CRUD operations are supported, where updates to task data are
reflected in real time on the calendar interface. The module also integrates
weather forecast data, displayed alongside tasks as background and foreground
events, thereby assisting farmers in planning activities according to

environmental conditions.

Edit Event

Event Name

apply pesticide

Description

Start Time

04:31 PM

End Time

06:31 PM

Description

7

Figure 6.12: Calendar modal dialog for adding/editing a task

96

By combining calendar-based visualization with backend task
management, the module enhances farm operation planning and contributes to
resource efficiency. It provides farmers with a centralized interface to track
past and upcoming activities, while also aligning with the system’s overall
objective of supporting decision-making through timely and actionable

information.

6.3.6 Sensor threshold value configuration

The Sensor Threshold Value Configuration module was developed to allow
users to manage the operating ranges of key environmental parameters within
the smart farming system. Each sensor parameter is associated with predefined
threshold ranges that determine its optimal, warning, and critical levels. These
thresholds form the basis for the system’s Suggestion Service, which generates
corrective recommendations whenever sensor readings deviate from expected

conditions.

The module provides a tabular interface, built using Angular and Ng-
Zorro UI components, through which administrators can view, update, and
configure threshold values. Each row corresponds to a specific parameter,
displaying its associated threshold settings along with editable fields. In
addition to numeric ranges (warning minimum, optimal minimum, optimal
maximum, and warning maximum), the module also enables administrators to
configure customized suggestion messages for each parameter and range. For
example, users may specify corrective actions such as “Increase irrigation to
restore soil moisture” or “Adjust ventilation to reduce air temperature.” This
design ensures flexibility, as messages can be modified directly through the

front end without requiring backend code changes.

\ Air Temperature

Optimal 24-32

Warning 22-35

#* Configure

£ .
453 Soil pH ®
Optimal 58-6.8
Warning 55-7.2

Configure

(. Air Humidity []

Optimal 65 -80

Warning 55-85

#* Configure

\ Soil Temperature []

Optimal 24-28

Warning 22-32

#* Configure

o Soil Moisture ®
Optimal 25-35
‘Warning 20-40

#* Configure

Soil TDS []
Optimal 1000 - 1600
‘Warning 800 - 2000

% Configure

97

Figure 6.13: Threshold configuration page

All changes persisted in the parameter thresholds table of the
Supabase database. Once updated, these values are immediately utilized by the
Suggestion Service in real time, ensuring that new recommendations and alerts
are aligned with the latest configuration. This approach empowers
administrators to adapt the system dynamically to varying -cultivation
requirements or seasonal conditions, thereby enhancing its practical utility.
6.3.7 Sensor Data Table View
The Sensor Data Table module was developed to provide administrators and
farmers with an organized and interactive interface for viewing raw sensor
readings collected from the greenhouse. This component displays
environmental data including air temperature, humidity, soil moisture, soil
temperature, soil pH, soil conductivity, total dissolved solids (TDS), and light
intensity. Each entry in the table is linked to a unique identifier (entry id) and
timestamp (created at), allowing users to trace the exact moment a reading

was captured.

98

Sensor Data

Monitor real-time environmental conditions from your greenhouse.

Air Air N Light Soil Soil Soil N Created
Entry ID o Soil TDS . . L. Soil pH)
Temperature Humidity Intensity Moisture Temperature Conductivity Time
2025-07-
1548 391 65.3 472 4692.8 829 312 944 55 08T06:52:13.0
00+00:00
2025-07-
1549 391 64.6 474 14069.9 822 314 948 55 08T07:07:44.0
00+00:00
2025-07-
1550 43.9 58.2 600.5 19779.5 91.5 31.8 1201 54 08T07:23:27.0
00+00:00
2025-07-
1551 499 51.7 558 9733.4 89.6 319 1116 55 08T07:38:56.0

00+00:00

Figure 6.14: Sensor data table

The module was implemented in Angular, utilizing a custom
TableComponent together with Ng-Zorro Ul elements to provide advanced
data handling capabilities. Users can sort, and search through the dataset to
locate specific records or trends. For example, the sorting function allows the
data to be ordered by attributes such as time of creation or sensor values. A
search bar is also provided to refine results based on user queries, improving

accessibility when dealing with large datasets.

All sensor data is retrieved dynamically from the Supabase backend
through the SensorReadingService, which communicates with the database via
API calls. Once retrieved, the readings are mapped into table rows, ensuring
real-time synchronization between the underlying database and the frontend
interface. This design ensures that farmers and administrators are always
working with the most recent sensor readings, reducing the risk of outdated or

inaccurate information.

By combining raw sensor visualization with interactive filtering and
search functions, the Sensor Data Table module enhances the system’s
transparency and usability. Farmers can directly inspect the captured
environmental data, while administrators can cross-verify whether parameter

thresholds and generated suggestions align with actual sensor conditions. This

99

component thus serves as the foundational layer for higher-level analytics and

decision-support features within the smart farming system.

6.4 Business Logic Implementation

6.4.1 Supabase Edge Function

A Supabase Edge Function was deployed to transfer IoT sensor data from
ThingSpeak into the sensor data table in Supabase. Running in a serverless
environment, the function eliminates the need for a dedicated backend server

while ensuring efficient and secure data synchronization.

The function queries the most recent entry id stored in the database,
fetches new entries from the ThingSpeak API using Axios, and applies a retry
mechanism to handle transient errors. Retrieved data are transformed into the
schema format, validated, and timestamped before being inserted into
Supabase in bulk. Logging is included to track operations such as fetch

attempts, inserted rows, and potential errors.

This design provides a lightweight ETL pipeline that reduces latency
between data acquisition and storage, enabling near real-time updates on the
dashboard. It demonstrates the effectiveness of serverless functions in bridging
external IoT platforms with cloud databases, while supporting scalability and

reliability in smart farming applications.

fetchAndStoreThingSpeakData = O=>{
console.log(' [Function fetchAndStoreThingSpeakData] Invoked');
try {
console.log(' [Fetching Last Entry ID from Supabase]');
data: lastRow, error: fetchError = await supabase.from('sensor_data').select(entry_id').order('entry_id', {
ascending:
})-1imit(1).single();
if (fetchError && fetchError.code !== *PGRST116’
console.error('[Fetch Last Entry ID] Error:', fetchError);
return;

attempt = 0;
while(attempt < retries){

return await fn();
} cateh (err) {
attempt++;
if (attempt >= retries) throw err;
console.warn(” [Retry ${attempt}/${retries}] Retrying due to: , err.message);

Figure 6.15: Supabase Edge function for fetch data from ThingSpeak

100

response = await retry(()=>axios.get(https://api.thingspeak.com/channels/${THINGSPEAK_CHANNEL_ID}/feeds.json’, {
params:
results: RESULTS_LIMIT

feeds = response.data.feeds;
console.log([Fetched ${feeds.length} entries from ThingSpeak]);
newFeeds = feeds.filter((feed)=>feed.entry_id > lastEntryId).map((feed)=>{
temp = parseFloat(feed.fieldl);
return {

entry_id: feed.entry_id,
created_at: Date(feed.created_at).toISOString(),
insert_date_time: Date().toISOString(),

air_temperature: isNaN(temp) ? : temp,
air_humidity: parseFloat(feed.field2) ||
soil_tds: parseFloat(feed.field3) || ,
light_intensity: parseFloat(feed.field4) ||
soil_moisture: parseFloat(feed.fields) || B
soil_temperature: parseFloat(feed.fields) ||
soil_conductivity: parseFloat(feed.field7) ||
soil_ph: parseFloat(feed.fields) ||

|5

5

if (newFeeds.length === @
console.log('[No new data to insert]');
return;

Figure 6.16: Supabase Edge function for store fetched data into database

6.4.2 Supabase Cron Job

Edit fetch-thingspeak-data

Schedule

*/15 * &k i1
Use natural language

Every 30 seconds Every minute Every 5 minutes
Every first of the month, at 00:00 Every night at midnight

Every Monday at 2 AM

View syntax chart

Schedule (GMT)

k/lS * % x *

The cron will run every 15 minutes.

Cancel Save cron job

Figure 6.17: 15-minute interval cron job

To ensure the Supabase Edge Function operates continuously without manual
intervention, a Supabase Cron Job was configured. The Cron Job

automatically triggers the deployed Edge Function every 15 minutes, enabling

101

consistent retrieval of sensor readings from ThingSpeak and insertion into the

sensor data table.

This scheduling frequency was selected to provide timely updates for
near real-time monitoring while avoiding excessive API calls that could lead
to redundant data collection or unnecessary resource usage. By combining
serverless functions with scheduled execution, the system establishes a reliable
and efficient data ingestion pipeline that supports the monitoring and analytics

modules of the smart farming system.

6.4.3 Threshold-based rules suggestion logic

The Suggestion Service is a critical component of the smart farming backend,
designed to analyze sensor readings and provide data-driven recommendations
to farmers. Its primary objective is to evaluate recent environmental conditions
against predefined threshold rules and generate suggestions that support the
maintenance of optimal farming conditions. In this way, the service transforms

raw sensor values into actionable insights that directly contribute to informed

decision-making in the field.

Figure 6.18: Sensor data table

Figure 6.19: Parameter threshold table

The service integrates two main data sources. First, it retrieves real-
time sensor readings from the sensor data table, which represents the actual
conditions recorded by IoT devices within the greenhouse. Second, it

references predefined threshold values stored in the parameter thresholds table.

102

Each parameter is defined by four boundary values: minimum, optimal
minimum, optimal maximum, and warning maximum, together with
corresponding recommendation messages. This database-driven approach
enhances flexibility, as administrators can modify thresholds and

recommendations through the frontend interface without altering system code.

private void checkParam(String paramName, Number value, List<SuggestionModel> suggestions) {

if (value == null) return;

Optional<ParameterThreshold> ruleOpt = parameterThresholdDao.findByParameter(paramName);

if (ruleopt.isEmpty()) {
suggestions.add(new SuggestionModel(paramName, ot shoTl i 0 + paramName));
return;

ParameterThreshold rule = ruleOpt.get();

double v = value.doublevalue();

Figure 6.20: checkParam method

if (v < rule.getWarnMin()) {
String msg = rule.getLowSuggestion();
suggestions.add(new SuggestionModel(paramName, .getLowSuggestion()));
sendNotificationToAl1l(A 128 + paramName,

else if (v > rule.getWarnMax()) {
String msg = rule.getHighSuggestion();
suggestions.add(new SuggestionModel(paramName, .getHighSuggestion()));
notifications sendNotificationToAl1l(Alert + paramName,

} else if (v < rule.getOptimawmin()) {

String msg = rule.getWarnLowSuggestion();

suggestions.add(new SuggestionModel(paramName, .getWarnLowSuggestion()));
notificationServi sendNotificationToAl1l(arning + paramName, msg +

e if (v > rule.getOptimalMax()) {
String msg = rule.getWarnHighSuggestion();

suggestions.add(new SuggestionModel(paramName, .getWarnHighSuggestion()));
notificationSer sendNotificationToATl1l(arning + paramName, msg +

Figure 6.21: getSuggestions() method

The service is structured around two core methods: getSuggestions()
and checkParam(). The getSuggestions() method retrieves the latest sensor
record and evaluates each parameter using the checkParam() function.
Parameters without associated thresholds return a default message indicating

that no rules are defined. The method compiles the evaluation results into a list

103

of suggestions; if all parameters fall within their optimal ranges, the service

outputs a default message such as “All conditions optimal.”

The checkParam() method performs the core evaluation process. It
verifies the availability of sensor readings, compares values against the stored
thresholds, and appends appropriate recommendation messages to the results
list. This design ensures that deviations are automatically translated into

specific, actionable suggestions for the farmer.

6.4.4 Firebase Notification

The Notification Service, implemented using Firebase Cloud Messaging
(FCM), is responsible for delivering real-time alerts to farmers whenever
environmental parameters deviate from their defined optimal thresholds.
While the Suggestion Service performs the evaluation of sensor data and
generates context-specific recommendations, the Notification Service ensures
that these critical insights are communicated promptly to end users through
push notifications. This integration enhances the responsiveness of the smart
farming system by enabling immediate corrective action when anomalies are

detected.

104

Notifications # Clear all

Alert: soil_conductivity
Leach soil with clean water to reduce salt
buildup. (value=22.0)

via Microsoft Edge

11:55 PM v/
Alert: soil_conductivity

Leach soil with rlean water to reduce salt
via Micrc Expand

1M1:55PM v

Alert: soil_tds
Increase fertilizer concentration in next

via Microsoft Edge

1M:55 PM

Alert: light_intensity
Open greenhouse roof panels or switch on grow

via Mirrnsnft Fdne

Figure 6.22: Notifications received by user

The service operates in close coordination with the Suggestion
Service. Whenever a parameter value falls outside its designated range, a call
is triggered to the Notification Service. Each notification contains two primary
components: a title (e.g., “Alert: Soil Moisture”) and a message (e.g., “Critical
low soil moisture detected. Immediate irrigation is required. Current value =
8%.”). These messages are dynamically generated based on real-time sensor
readings and the corresponding threshold rules, ensuring that alerts remain

both context-specific and actionable.

105

public void sendNotificationToAll(String title, String body) {
List<DeviceToken> tokens = getActiveTokens();

tokens.forEach(t -> {
try {

Message message = Message.builder()
.setToken(t.getToken())
.setNotification(Notification.builder()

.setTitle

.setBody(body

.build())
.build(Q);

String response = FirebaseMessaging.getInstance().send(message);
System.out.printf("Sent push to token=%s
t.getToken(), response);

} catch (Exception e) {
System.err.printf("Failed to sen

t.getToken(), e.getMessage());

Figure 6.23: Function to send notification to all registered device

Technically, the Notification Service retrieves all registered device
tokens stored in the database and forwards the notification payload to Firebase.
FCM then distributes the alerts to all subscribed devices, independent of
whether the mobile application is active in the foreground or running in the
background. For instance, when greenhouse temperature surpasses the warning
maximum, an immediate push notification is dispatched to the farmer’s device,

thereby supporting timely interventions to maintain crop health.

6.5 Data Analytics and Visualization
Grafana is employed in this project as the primary platform for real-time
visualization of 10T sensor data. The system continuously collects and stores
environmental parameters including air temperature, air humidity, soil
moisture, soil pH, soil temperature, soil electrical conductivity (EC), pH value
and light intensity. To transform this raw data into actionable insights, Grafana
dashboards are organized into three main visualization components:

1. Time-series graphs

il. Soil health index (SHI)

iil. Correlation heat maps

106

6.5.1 Time-Series Graphs for Individual Parameters

The first visualization component presents each environmental parameter in
the form of a time-series graph. These graphs plot parameter values against a
temporal axis, allowing farmers to observe fluctuations, identify recurring
patterns, and compare variations across different time periods. Such
visualizations are essential for detecting anomalies and understanding how

specific conditions evolve throughout the cultivation process.

]ect

__timeGroup(created_at, $__interval) as time,

(air_temperature) as "Air Temperature (°C)"
public.sensor_data

$__timeFilter(created_at)
by 1
by 1;

Figure 6.24: Query that demonstrates how Grafana retrieves and aggregates air

temperature readings

For example, figure above showed air temperature readings are
retrieved and aggregated through a query executed in Grafana, which produces
a continuous line graph illustrating temperature changes over time. Similar
queries are applied to other key parameters including humidity, soil moisture,
pH, and conductivity, thereby providing farmers with a comprehensive and
easily interpretable overview of environmental dynamics within the

greenhouse.

Air Temperature

08/20 08/22 08/24 08/26 08/30 09/01 09/03 09/05 09/07

== Air Temperature (°C)

Figure 6.25: Air temperature time series graph

107

By transforming raw data into intuitive visual representations, the
time-series graphs enhance situational awareness and support proactive
decision-making, ensuring that deviations can be identified and addressed

before they negatively impact crop growth.

6.5.2 Soil Health Index (SHI)

To complement the visualization of individual parameters, the system
implements a Soil Health Index (SHI) as a composite metric that consolidates
multiple soil-related parameters into a single score. The SHI provides a
holistic measure of soil condition by incorporating soil moisture, soil
conductivity, soil temperature, soil tds, air temperature, light intensity, pH and
air humidity. Each parameter is normalized against its respective threshold
values, assigned a weighted sub-score, and aggregated to form the final index.
Parameters with greater impact on melon growth, such as soil moisture and pH,
are assigned higher weights to ensure their influence is reflected in the overall

Score.

108

SELECT
date_trunc('hour', created at) AS bucket,
AVG(air_temperature) AS air_temp,

AVG(air_humidity) AS air_humidity,
AVG(soil_tds) AS soil_tds,
AVG(light_intensity) AS light,
AVG(soil_moisture) AS s0il _moisture,

AVG(soil_temperature) AS soil temp,
AVG(soil_conductivity) AS soil cond,
AVG(soil_ph) AS soil _ph
FROM sensor_data
GROUP BY bucket
)
SELECT
bucket AS “time",
(
GREATEST(@, (1@0 - (ABS(air_temp - 28) / 15.0 * 1@@))) * 0.2 +
LEAST(air_humidity, 1@0) * 0.1 +
LEAST(s0il_moisture, 10@) * 0.25 +
GREATEST(@, (180 - (ABS(soil ph - 6.5) / 3.@ * 18@))) * 8.25 +
GREATEST(@, (180 - (ABS(soil_temp - 25) / 15.0 * 180))) * 0.1 +
GREATEST(@, (180 - (soil_tds / 2000.0 * 100))) * @.05 +
GREATEST(@, (108 - (soil _cond / 5.0 * 188))) * 0.025 +
LEAST(light / 1800.8, 108) * 8.825
) AS soil health_index
FROM data
ORDER BY bucket;

Figure 6.26: SQL query to compute SHI

The SHI is visualized in Grafana as a time-series graph, where the
index is plotted against time. This approach enables farmers to monitor not
only the current soil health but also its progression over different cultivation
phases. By observing trends, farmers can identify gradual deterioration in soil
conditions and take preventive measures before they affect crop growth. For
example, a steadily declining SHI curve may indicate progressive nutrient

depletion or moisture imbalance that requires corrective intervention.

109

Soil Health Index (SHI)

70

09/10 00:00 09/10 06:00 09/1012:00 09/1018:00 09/11 00:00 09/11 06:00 09/11 12:00

== soil_health_index

Figure 6.27: Soil Health Index Graph

Compared to analysing individual parameters in isolation, the SHI
time-series graph simplifies decision-making by presenting a consolidated
indicator of soil quality. This visualization provides farmers with an intuitive
tool to assess the overall effectiveness of their soil management practices and

supports proactive actions to sustain crop yield and quality.

6.5.3 Correlation Analysis

Correlation analysis was conducted to identify relationships among
environmental parameters, enabling farmers to understand how variables
interact and influence crop conditions. The computation was performed
directly in PostgreSQL using the corr() function, which calculates Pearson
correlation coefficients between pairs of parameters stored in the sensor data
table. The SQL query produced a correlation matrix, where each cell
represents the degree of association between two variables (e.g., air
temperature and humidity, soil moisture and conductivity). This matrix
provides a structured dataset that quantifies the strength and direction of

parameter relationships.

110

variable,
air_temperature,
(air_temperature, air_humidity) air_humidity,
(air_temperature, soil_tds) AS soil_tds,
(air_temperature, light_intensity) light_intensity,
soil_moisture) AS soil_moisture,
soil_temperature) soil_temperature,
soil_conductivity) AS soil_conductivity,

(air_temperature,

(air_temperature,

(air_temperature,

(air_temperature,
)M sensor_data

ALL

Figure 6.28: SQL query using corr() function

The results of the correlation query were visualized as a correlation
heatmap as shown in figure below, where coefficients are represented using a
diverging color scale from strong negative (dark red) to strong positive (dark
green), with weaker correlations shown in lighter shades of yellow and orange.
As shown, air temperature and air humidity display a strong negative
correlation (—0.957), reflecting their inverse relationship, while air temperature
and soil temperature exhibit a strong positive correlation (0.730). Soil moisture
and soil TDS also demonstrate a moderate positive correlation (0.673),
suggesting that increased irrigation may elevate nutrient concentration levels
in the soil. By consolidating all pairwise relationships into a single heatmap,
the system provides farmers with an intuitive overview of environmental

interactions, enabling more informed and data-driven greenhouse management

decisions.

Correlation Heatmap

variable air_temperature air_humidity light_intensity soil_moisture

soil_temperature soil_conductivity soil_ph

air_temperature 1 -0.857 0.00318 0.00318

air_humidity 1 0.00551 0.00551 -0.0141

soil_tds

0.00318

0.00551

light_intensity
soll_moisture

soil_temperature

0.821

-0.0964

soil_conductivity

sail_ph

0.00318

0.0366

0.00551

-0.0141

Figure 6.29: Correlation analysis heatmap

0.174

111

CHAPTER 7

System Testing and Evaluation

7.1 Introduction

System testing and evaluation were conducted to ensure that the smart farming
system for Japanese melon cultivation operates reliably, meets its functional
requirements, and delivers accurate and timely decision support to farmers.
The testing phase focused on validating the system’s core functionalities,
integration of components, data handling, threshold evaluation, visualization,
and overall performance. A combination of functional testing, integration
testing, and performance testing methods were employed. Functional testing
was used to verify individual features such as user authentication, task
management, sensor data visualization, and threshold configuration—worked
according to specifications. Integration testing ensured that data pipelines
between IoT devices, ThingSpeak, Supabase, and the web application
functioned seamlessly, with no duplication, loss, or corruption of records.
Performance testing was carried out to evaluate responsiveness and efficiency,
particularly the system’s ability to deliver real-time updates, trigger

notifications, and render dashboards within acceptable time limits.

These testing methods were chosen because they collectively provide
a comprehensive evaluation of the system’s reliability and usability.
Functional and integration testing validated correctness and robustness, while
performance testing addressed timeliness, which is critical in greenhouse
environments where rapid responses to anomalies directly influence crop yield
and quality. Together, these methods ensure that the developed system not
only functions as intended but also provides a practical, efficient, and farmer-

friendly tool for precision agriculture.

7.2 Functional Test Case

Table 7.1: User Sign In Test Case

112

Test Case# 1 Test Case Name User Sign In
Test Case | To test if registered users can successfully sign in and access the system.
Summary
Pre-Conditions | User account exists in the database.
Prepared & | Liew Ke Ying
Executed By
Scenario Test Procedure Input Data Expected Observed Evaluation
Outcome Outcome (Fail/Pass)
Valid login | 1.Navigate to login page. | Email: System User Pass
credentials 2. Enter registered email and correct | farmer0l@example.com | authenticates user | successfully
password. Password: correct123 and redirects to | logged in and
3. Click “Login”. dashboard. redirected.
Invalid login | 1. Navigate to login page. Email: System rejects | Error message | Pass
credentials 2. Enter registered email with incorrect | farmer01@example.com | login attempt and | shown: “Invalid
password. Password: wrong displays error | credentials.”

113

3. Click “Login”. message.
Empty fields 1. Leave email and/or password field empty. | Email: - System prompts | Validation Pass
2. Click “Login” Password: - user to fill required | message
fields. displayed.
Table 7.2: Add New User Test Case
Test Case# 2 Test Case Name Add new user
Test Case | To test if admin can add a new user to the system.
Summary
Pre-Conditions | Admin is logged in with role-based access.
Prepared & | Liew Ke Ying
Executed By
Scenario Test Procedure Input Data Expected Observed Evaluation
Outcome Outcome (Fail/Pass)
Add valid user 1. Admin press to ‘Add User’ button. Email: User created | User added and | Pass
2. Enter user’s email and role. farmer(1@gmail.com successfully, invite | email invite
3. Press confirm button. Role: Farmer email sent. received.

114

Add with 1. Enter invalid email format. Email: System rejects | Error message | Pass
invalid email 2. . Click “Create new user” button. farmer01@wrong displays error | shown: “Invalid
Role: Farmer message. email format.”
Duplicate email 1. Enter email that already exists. Email: System prevents | Error message | Pass
2. Confirm farmer01@gmail.com duplicate creation. | “User already
Role: Farmer exists” will be
displayed.
Table 7.3: Configure Sensor Data Threshold Test Case
Test Case# 3 Test Case Name Configure Sensor Data Threshold
Test Case | To test if admin can add/update threshold values and suggestion messages.
Summary
Pre-Conditions | Admin logged in; parameter_thresholds table available.
Prepared & | Liew Ke Ying
Executed By
Scenario Test Procedure Input Data Expected Observed Evaluation
Outcome Outcome (Fail/Pass)
Update 1. Select parameter “Air Temperature”. Optimal Max = 32°C -> | New threshold will | New threshold | Pass

115

threshold 2. Update values. 35°C be displayed. value is updated

3. Save. and displayed.
Invalid input 1. Enter empty values. Soil pH = - System rejects and | Error message | Pass

2. Save prompts error. “ Invalid input”

displayed
Table 7.4: Task Management Test Case
Test Case# 4 Test Case Name Task Management
Test Case | To test create, update, and delete tasks in the calendar.
Summary
Pre-Conditions | User logged in; Calendar module active.
Prepared & | Liew Ke Ying
Executed By
Scenario Test Procedure Input Data Expected Observed Evaluation
Outcome Outcome (Fail/Pass)

Create new task 1. Open model. Title: “Irrigation Check” | Task saved and | Task created | Pass

2. Input task details.

3. Save

Time: 10:00-11:00

shown in calendar.

successfully.

116

Update task 1. Select existing task. Update to 09:00-10:00 Task updated in | Updated Pass
2. Change time. DB and calendar | successfully.
3. Save. refreshed.
Delete task 1. Select task “Irrigation Check” Task removed | Task deleted | Pass
2. Press Delete Button from DB and | successfully.
calendar.
Table 7.5: View, Sort and Search Sensor Data Table Test Case
Test Case# 5 Test Case Name View, sort and search sensor data table
Test Case | To test whether sensor readings are displayed and can be filtered.
Summary

Pre-Conditions

Sensor data available in DB

Prepared & | Liew Ke Ying

Executed By

Scenario Test Procedure Input Data Expected Observed Evaluation
Outcome Outcome (Fail/Pass)

Load sensor 1. Users click the sensor data navigation | Existing sensor data | Data displayed in | Displayed Pass

readings page. entries. table format. correctly.

117

Sort entries . Users press up sort button on entry id | N/A Column entry id is | Sorted correctly. | Pass

column. sorted in ascending

. Users then press down sort button on then descending.

entry id column.
Filter entries. . Users type an entry id in the search | 1034 Sensor data with | Sensor data row | Pass

bar. entry id “1034” | retrieves and

will be displayed. | display
correctly.

Table 7.6: View and Filter by Date on Time-Series Graph Test Case

Test Case# 6 Test Case Name View and Filter by Date on Time-Series Graph
Test Case | To test whether the time-series graph displays parameter trends and supports filtering by date range.
Summary

Pre-Conditions

Sensor data available in sensor data table.

Prepared & | Liew Ke Ying

Executed By

Scenario Test Procedure Input Data Expected Observed Evaluation
Outcome Outcome (Fail/Pass)

118

Load full graph 1. Navigate to dashboard. Sensor data over 1 week | Graph plotted with | Displayed Pass

2. Select time-series graph for “Air | (by default) data points over | correctly.

Temperature”. full period.

Apply date filter 1. Select date filter range. Start=2025-09-01, Graph updates to | Graph filtered | Pass

2. Apply filter. End=2025-09-07. show data only in | successfully.

selected range.
Table 7.7: View and Filter by Date on Correlation Heatmap Test Case

Test Case# 7 Test Case Name View and Filter by Date on Correlation Heatmap
Test Case | To test whether the correlation heatmap updates correctly when filtered by date range.
Summary

Pre-Conditions

Historical sensor data available.

Prepared & | Liew Ke Ying

Executed By

Scenario Test Procedure Input Data Expected Observed Evaluation
Outcome Outcome (Fail/Pass)

Default heatmap 1. Open correlation heatmap view. Default time range Heatmap generated | Displayed Pass

with correct

correctly.

119

correlation values.

Apply date filter 1. Select custom range. Start=2025-09-01, Heatmap Updated Pass
2. Apply filter. End=2025-09-07. recalculated for | correctly.
3. Click confirm button. selected range.
Table 7.8: View and Filter by Date on Soil Health Index (SHI) Test Case
Test Case# 8 Test Case Name View and Filter by Date on Soil Health Index
(SHI)
Test Case | To test whether SHI time-series graph updates correctly with date filters.
Summary
Pre-Conditions | SHI calculation configured in Grafana.
Prepared & | Liew Ke Ying
Executed By
Scenario Test Procedure Input Data Expected Observed Evaluation
Outcome Outcome (Fail/Pass)
Load SHI graph 1. Users navigate to dashboard page. Default time range SHI graph | Displayed Pass
generated with | correctly.

composite index.

120

Filter SHI by 1. Select custom range. Data from last 3 days. Graph updates with | Updated Pass
date 2. Apply filter. SHI values in | correctly.
3. Click confirm button. selected period.
Table 7.9: View Latest Sensor Values Test Case
Test Case# 9 Test Case Name View latest sensor values
Test Case | To test whether the dashboard displays the most recent sensor readings.
Summary
Pre-Conditions | New sensor entry inserted into sensor data.
Prepared & | Liew Ke Ying
Executed By
Scenario Test Procedure Input Data Expected Observed Evaluation
Outcome Outcome (Fail/Pass)
Display latest 1. Users navigate to dashboard page. N/A Latest values of | Displayed Pass
data sensor parameter | correctly.
displayed in gauge
form.
Auto refresh 1. Wait until new entry inserted. Entry updated in | Dashboard Refreshed Pass

121

latest value

2.

Observe dashboard refresh.

ThingSpeak.

refreshed with

newest reading.

correctly.

Table 7.10: Admin Deactivate User Test Case
Test Case# 10 Test Case Name Admins deactivate user
Test Case | To test whether admin can deactivate a user account.
Summary

Pre-Conditions

User exists in system; admin logged in.

Prepared & | Liew Ke Ying
Executed By
Scenario Test Procedure Input Data Expected Outcome Observed Evaluation
Outcome (Fail/Pass)

Deactivate user 1. Navigate to User Management. User: User marked inactive | User Pass

2. Select user. Farmer02@gmail.com | in database successfully

3. Set user status to false. deactivated.
Login after 1. User attempt login with deactivated | User: System rejects login | Login blocked | Pass
deactivation account. Farmer02@gmail.com | and shows error. successfully.

Table 7.11: Admin Change User Role Test Case

122

Test Case# 11 Test Case Name Admins change user role
Test Case | To test whether admin can update an existing user’s role.
Summary

Pre-Conditions

User exists in system; admin logged in.

Prepared & | Liew Ke Ying

Executed By

Scenario Test Procedure Input Data Expected Observed Evaluation
Outcome Outcome (Fail/Pass)

Change user 1. User navigate to user management. User: User role updated | Updated Pass

role Select user to change roles. Farmer02@gmail.com in database and | successfully.

Change user role to admin.

> b

Click ‘Confirm’ button.

New role: Admin

reflected 1in user

management page.

7.3 Integration Test Case

Table 7.12: Fetch and Insert New Data Test Case
Test Case# 1 Test Case Name Fetch and Insert New Data
Test Case | To test if the Edge Function fetches new ThingSpeak data and inserts into Supabase.

mailto:Farmer02@gmail.com

123

Summary

Pre-Conditions

Supabase sensor_data table is created.

Prepared & | Liew Ke Ying
Executed By
Scenario Test Procedure Input Data Expected Outcome | Observed Evaluation
Outcome (Fail/Pass)
When Supabase | 1. Trigger the Edge Function using supabase | ThingSpeak New entries | New entries | Pass
sensor_data table | dashboard. Channel with new | inserted into | inserted into
is empty. 2. Verified if the new data is inserted into the | entry id values Supabase Supabase
sensor_data table. sensor_data table sensor_data table
When Supabase | 1. Trigger the Edge Function again after some | Only new rows are | Only new rows | Only new rows | Pass
sensor_data table | rows already exist. inserted; no | inserted inserted
already contains | 2. Verify if only new entries (greater entry id) are | duplication of | successfully successfully
previous entries. | appended, without duplicates. existing entries without duplicates | without
duplicates
When 1. Trigger the Edge Function when ThingSpeak | ThingSpeak No new rows are | No new rows | Pass
ThingSpeak data is unchanged. channel without | inserted; table | were inserted
channel has no | 2. Check if no additional rows are added in | new data remains unchange

124

new entries since | Supabase.
the last fetch.
When 1. Trigger the Edge Function with entries having | ThingSpeak Data inserted with | Data inserted | Pass
ThingSpeak null fields. channel entry with | null values | with null values
channel data has | 2. Verify how Supabase stores incomplete | missing field | preserved in | stored as
missing fields | records. values corresponding expected
(e.g., null values columns
in some sensors).

Table 7.13: Scheduled Data Fetch and Insert Test Case
Test Case# 2 Test Case Name Scheduled Data Fetch and Insert
Test Case | To test if the Cron Job automatically triggers the Edge Function to fetch and insert new sensor data every 15 minutes.
Summary

Pre-Conditions

Cron Job is configured in Supabase to run at every 15 minutes.

Prepared & | Liew Ke Ying

Executed By

Scenario Test Procedure Input Data Expected Outcome | Observed Evaluation
Outcome (Fail/Pass)

125

Scheduled Cron
Job execution
inserts new
ThingSpeak data

into Supabase

1. Wait for the Cron Job to trigger at the 15-
minute schedule.
2. Verify if new data from ThingSpeak is inserted

into the sensor_data table in Supabase.

ThingSpeak

Channel with new
entry id values
added between the
last job and the

current run

Cron Job triggers
Edge Function, and

new entries are
automatically
inserted into
sensor _data table
without manual
intervention.

New entries
successfully
inserted into

sensor_data table

after 15 minutes.

Pass

Table 7.14: Fetch Current Weather Data Test Case
Test Case# 3 Test Case Name Fetch Current Weather Data from OpenWeather
API
Test Case | To test if the frontend successfully fetches live weather data from the OpenWeather API and displays it correctly.
Summary

Pre-Conditions

A valid OpenWeather API key is configured in the frontend. Internet connection is available

Prepared & | Liew Ke Ying
Executed By
Scenario Test Procedure Input Data Expected Outcome Observed Evaluation

126

Outcome (Fail/Pass)

Weather API | 1. Open the frontend page with weather display. City = Sungai | Weather data is | Weather data is | Pass
fetch and display | 2. Trigger the fetch request to OpenWeather API. | Long, successfully fetched | fetched and
validation 3. Observe whether weather data is displayed. Valid API | from OpenWeather API | displayed

Key and displayed correctly | correctly in

in frontend. frontend UL
Table 7.15: Test Notifications Test Case

Test Case# 4 Test Case Name Test Notifications
Test Case | To test if the notifications able to receive successfully.
Summary

Pre-Conditions

(1) Supabase device tokens table is populated with valid device tokens.

(11) Firebase Cloud Messaging (FCM) service i1s configured correctly in backend.

(111) Application client is installed on a device, and notifications are enabled.

Prepared & | Liew Ke Ying

Executed By

Scenario Test Procedure Input Data Expected Observed Outcome | Evaluation
Outcome (Fail/Pass)

127

When a | 1. Insert a test sensor reading into sensor data | Sensor reading: | Push notification is | Notification received | Pass
parameter value | that exceeds threshold. air_temperature = | sent: “Alert: Air | successfully on client
exceeds the | 2. Verify if a notification is sent to registered | 45°C (threshold | Temperature too | device

warn_max device(s). max = 35°C) high. Please

threshold. ventilate.”

When a | 1. Insert a test reading below threshold. Sensor reading: | Push notification is | Notification received | Pass
parameter value | 2. Verify notification. soil moisture = | sent: “Alert: Soil | successfully

drops below the 5% (threshold min | moisture too low.

warn_min =15%) Consider

threshold. irrigation.”

When parameter | 1. Insert a normal reading. Sensor reading: | No notification | No notification | Pass
is within the | 2. Check if no unnecessary notification is | soil pH = 6.8 | should be sent. triggered

optimal range.

triggered.

(within 6.5-7.0)

128

7.4 Data Handling and Accuracy

A key aspect of system testing was to ensure that sensor data transmitted from
the IoT devices and first ingested into ThingSpeak was correctly synchronized
into the Supabase database without loss, duplication, or corruption. Since
Supabase serves as the primary data repository for analysis and visualization,

maintaining accurate and reliable data transfer from ThingSpeak was essential

for system functionality.

[0 2025-09-10 13:59:37 UTC 3474 27.3 94.7 37 0.6 29.3 27.1 74 5.7
4l 2025-09-10 14:16:06 UTC 3475 27.3 94.7 37 0.6 29.2 27 74 5.7
4 2025-09-10 14:50:10 UTC 3476 27.3 95.4 36 0.6 29 26.8 72 5.8
:EN 2025-09-10 15:06:36 UTC 3477 27.3 95.4 36 0.6 28.9 26.8 72 5.8
53 2025-09-10 15:23:07 UTC 3478 27.3 95.4 35.5 0.6 28.9 26.7 71 5.8
Bl 2025-09-10 15:39:34 UTC 3479 27.3 95.4 35.5 0.6 28.8 26.6 71 5.7
[2025-09-10 15:56:08 UTC 3480 26.9 95.4 35 0.6 28.6 26.6 70 5.7
Yl 2025-09-10 16:12:36 UTC 3481 27.3 95.4 35 0.6 28.6 26.5 70 5.7
1) 2025-09-10 16:29:03 UTC 3482 27.3 95.4 34.5 0.6 28.6 26.5 69 5.7
1l 2025-09-10 16:45:32 UTC 3483 27.3 95.4 34.5 0.6 28.5 26.4 69 5.7
[0 2025-09-14 05:39:29 UTC 3484 29.5 91.8 0 8243.3 25.3 29.6 0 3.6
AN 2025-09-14 05:52:36 UTC 3485 36.6 69.6 249.5 1974.8 93.5 27.5 499 4.9
PR 2025-09-14 06:09:04 UTC 3486 34.1 69.6 158.5 4370.3 73.8 28.4 317 5.2
FEN 2025-09-14 06:25:33 UTC 3487 35.1 71.8 145.5 7355.3 69.9 28.6 291 5.4
LY 2025-09-14 06:42:09 UTC 3488 40.3 62.5 137.5 7288.1 68.2 28.9 275 5.5
EEN 2025-09-14 06:58:34 UTC 3489 45.8 55.3 134 34275 67 29.3 268 5.5
[2025-09-1407:14:58 UTC 3490 40.2 61.8 131 1450 66 29.6 262 5.5
EYf 2025-09-1407:31:24 UTC 3491 35.6 69.6 130 1159.8 65.3 29.8 260 5.5

LR 2025-09-14 07:47:51 UTC 3492 34.6 73.9 129 1220.3 64.9 29.8 258 5.5

Figure 7.1: Thingspeak’s sensor data

Figure 7.2: Supabase sensor data table

The test focused on three main areas: data integrity and completeness.
Data integrity was evaluated by comparing random samples of sensor readings
recorded in ThingSpeak with those retrieved from the Supabase sensor data

table. Figure 7.5.1 illustrates an example of sensor readings as displayed in the

129

ThingSpeak channel, while Figure 7.5.2 shows the corresponding entries
stored in Supabase after synchronization. The comparison revealed that all
sampled values matched exactly across both platforms, resulting in an
accuracy rate of 100%. This confirms that the synchronization process
preserved the integrity of the sensor data without any corruption or

modification during transfer.

WITH missing AS (
SELECT sl.entry_id + 1 AS missing id
FROM sensor_data sl
sensor_data s2
ON sl.entry_id + 1 = s2.entry_id
ERE s2.entry_id

20M sensor_data) AS total_rows,
missing) AS missing_rows,
COUNT(*) FROM sensor_data)::numeric

) FROM sensor_data) SELECT COUNT(*) FROM missing))), 2) AS completeness_percent

78

Results Export

total_rows missing_rows completeness_percent

1603 3 99.81

Figure 7.3: SQL to count completeness percentage

Completeness was verified by checking the sequence of entry id
values in the sensor data table. Since ThingSpeak generates entries
sequentially, any missing IDs would indicate a skipped or lost record. Out of a
total of 1,603 rows, only 3 IDs were missing, representing a data loss rate of
approximately 0.19% as shown in figure above. The results confirm that the
data synchronization process between ThingSpeak and Supabase was highly
reliable. The small discrepancy is likely due to temporary network or

synchronization delays and is acceptable within the scope of this project.

7.5 Visualization and Analytics

The purpose of this test was to verify that the visualization and analytical
components of the system accurately represented the data stored in Supabase
and provided meaningful insights for farm management. Testing was carried
out in three areas: time-series graphs in Grafana, Soil Health Index

computation, and correlation analysis using heat maps.

130

For the Grafana dashboards, selected parameters such as air
temperature and soil moisture were compared between raw database queries
and their corresponding visualizations. The results confirmed that the plotted
values aligned with the underlying data, ensuring that farmers could reliably

observe environmental trends over time.

The Soil Health Index was tested by inserting controlled sample
values into the database and verifying that the calculated index corresponded
with expected soil conditions (e.g., optimal when all parameters were within
defined thresholds, low when moisture and pH dropped below the minimum

range).

Similarly, the correlation heat map was evaluated by analysing pairs
of parameters with known relationships; for instance, soil moisture and
conductivity were positively correlated, while air temperature and humidity

displayed an inverse relationship.

7.6

Air Temperature

Suggestion:
Keep ventilation running and monitor closely.

Light Intensity

’1,166.4

Min: 0 ux Max: 10000 lux

Optimal:

Suggestion:

Open greenhouse roof panels or switch on grow lights.

Soil Conductivity

'235 -

Mire O pS/cm Max: 5000 pS/em

Optimal: 1000

Suggestion:
Leach soil with clean water to reduce salt buildup.

Threshold Evaluation and Suggestions

Air Humidity

76.82

Min: 0 % Max: 100 %5

Optimal: 60-80 %

Soil Moisture

Min: 0 %

Optimal:

Suggestion:

Skip next irrigation of improve drainage.

Soil pH

5.5pn

Mir: 0 pH Masc 14 pH
Optimal: 6-6.8 pH
Suggestion:
Appfy small dose of lime.

Soil TDS
1175
Min: 0 ppm Max: 3000 ppm
Optimal: ppm
Suggestion:

Increase fertilizer concentration in next imigation.

Soil Temperature

Min: 0 °C

Suggestion:
rrigate lightly to reduce soil heat.

Figure 7.4: Angular dashboard displaying a suggestion

Results Export
parameter latest_value optimal_min
air_temperature
air_humidity 76.80
soil_tds 117.50
light_intensity 1166.46
soil_moisture 62.40
soil_temperature

soil_conductivi

soil_ph

optimal_max

32

warn_max

expected_suggestion

s Keep ventilation runming and monitor closely.

85 Within optimal range

Increase fertilizer concentration in next irrigation.

Open greenhouse roof panels or switch on grow lights.

skip next irrigation or improve drainage.

Irrigate lightly to reduce soil heat.

Leach soil with clean water to reduce salt buildup.

Apply small dose of lime.

Figure 7.5: Test results

131

132

latest_readings (

air_temperature, air_humidity, soil_tds, light_intensity,
il moisture, soil temperature, soil_conductivity, soil_ph,

parameter,
1l.air_temperature latest_wvalue,
t.optimal min, t.optimal max, t.warn_min, t.warn_max,

.air_temperature < t.warn_min -lo gestion

.air_temperature t.warn_max 5 £ estion
.air_temperature t.warn_min t.optimal_min t.warn_low
.air_temperature t.optimal_max t.warn_max t.warn_high_

ted suggestion
ings 1
er_thresholds t t.parameter

Figure 7.6: SQL to retrieve test results

This test was conducted to verify that the system correctly evaluated
sensor readings against the predefined threshold values stored in the
parameter thresholds table and generated the appropriate suggestions. The
latest sensor values from the sensor data table were retrieved and compared
with the optimal and warning ranges for each parameter. The SQL query
above was executed to join the most recent sensor readings with their
corresponding threshold definitions, automatically determining the expected
suggestion for each case. For example, when the latest soil moisture reading
fell below the warn_min value, the system correctly generated the suggestion
to increase irrigation, while higher-than-expected air temperature values
triggered recommendations to improve greenhouse ventilation. Above table in
the figure summarizes the results of this test, showing the latest sensor values,
the relevant threshold ranges, and the expected suggestions. The confirmed
that the threshold evaluation logic functioned consistently across all
parameters, with the generated suggestions matching the corrective actions
defined in the database. This demonstrates that the system provides farmers
with timely and context-specific guidance, enabling proactive interventions to

optimize melon cultivation conditions.

133

7.7 Performance Testing

Performance testing was conducted to evaluate the responsiveness and
efficiency of the Smart Farming System. The goal was to measure how
quickly the system reacts to sensor updates, processes notifications, and
retrieves data for users. Since the system involves real-time monitoring, timely
updates and alerts are critical to ensure farmers can respond promptly to

abnormal farming conditions.

7.7.1 App Start Time

App Start Time testing was conducted to evaluate how quickly the web
application loads and displays the dashboard after being launched. This test is
important because loading speed directly affects user experience and system
usability. In farming operations, where users often need to access the
dashboard quickly to view real-time sensor readings, a delay in loading may
hinder timely decision-making. To ensure reliability, the Largest Contentful
Paint (LCP) metric was selected as the primary performance indicator. LCP,
provided by Microsoft Edge DevTools, measures the time when the main
content of a page becomes visible to the user. Since the dashboard is the
central interface for monitoring greenhouse conditions, using LCP makes it a
reliable representation of perceived load time and overall responsiveness of the

application.

The testing process followed a systematic methodology. The web
application was first opened in InPrivate (Incognito) mode to prevent cached
data from influencing the measurement. The Microsoft Edge DevTools were
then launched, and under the Performance tab, the Web Vitals feature was
used to capture the LCP value. After refreshing the dashboard, the LCP time
was recorded for each run. To increase the accuracy and consistency of the
measurement, the process was repeated five times under the same conditions.
Finally, the average App Start Time was calculated by dividing the sum of all
LCP values by the number of runs. This approach ensured that the reported

result reflected a consistent and reliable measure of system performance.

134

Test 1 Test 2 Test 3 Test 4 Test 5

Formula used:

Sum of LCP values
Number of runs

Average App Start Time =

_1.53+1.88+1.08+2.32+1.24
5

=1.554 seconds

The results show that the application consistently loads within 1.554
seconds, which is well below the target threshold of 5 seconds for acceptable
user experience. This indicates that the system is optimized and efficient in

rendering the dashboard interface.

135

CHAPTER 8

CONCLUSION AND RECOMMENDATIONS

8.1 Overview

This chapter concludes the study by revisiting the objectives and outcomes of
the web-based smart [oT system for Japanese melon farming, which was
designed to improve efficiency, consistency, and crop quality through real-
time monitoring and data-driven insights. The chapter first presents the
research findings, evaluating how the system achieved its objectives. It then
discusses the problems encountered during development and testing,
highlighting both technical and coordination challenges faced along the way.
This is followed by a review of the limitations of the project. Finally, the
chapter outlines recommendations for future improvements and enhancements
to ensure scalability, usability, and long-term effectiveness, reaffirming the
system’s potential to contribute to smart and sustainable melon farming

practices.

8.2 Research Findings

This section reviews how the project’s objectives were achieved by evaluating
the outcomes of the developed system. It highlights how the IoT platform, data
visualization tools, and automated alerts addressed the key challenges of
Japanese melon farming, demonstrating the system’s effectiveness and

potential to improve efficiency, resource management, and crop quality.

8.2.1 Objectives 1: To develop a web-based IoT system for real-time
monitoring of environmental parameters in Japanese melon
farming.

The project successfully achieved this objective by designing and

implementing a web-based platform that integrates IoT devices with cloud

storage and visualization tools. Environmental parameters were collected and

displayed real time in Grafana dashboard. This testing results also

136

demonstrates that the system is capable of providing reliable and continuous

monitoring of environmental conditions in Japanese melon cultivation.

8.2.2 Objectives 2: To develop and integrate a data-driven analytics
pipeline with visualization and analysis
This objective was met through the integration of Grafana into the system,
enabling powerful data visualization and analytics. Time-series graphs were
employed to illustrate fluctuations in key parameters, helping farmers identify
environmental patterns over time. A Soil Health Index was developed by
combining soil-related parameters into a single metric, providing farmers with
a simplified yet comprehensive view of soil conditions. In addition, correlation

heat maps were generated to highlight relationships between parameters.

8.2.3 Objectives 3: To enhance farming yield and crop quality by
implementing automated alerts and suggestions based on
parameter thresholds.

The system effectively addressed this objective by embedding a parameter

threshold mechanism in the backend. Threshold values for each parameter

were stored in the database and evaluated in real time by the Spring Boot
application. When readings fell outside of the defined optimal ranges, the
system automatically generated corrective suggestions. In addition, Firebase

Cloud Messaging (FCM) was integrated to deliver instant push notifications to

users, ensuring that farmers were alerted to anomalies without needing to

constantly monitor the dashboard.

Although the system was not deployed continuously throughout a full
cultivation cycle, it was tested under real greenhouse conditions and
demonstrated functional reliability. During the evaluation period, sensor
anomalies were detected correctly, and corresponding alerts and suggestions
were generated as expected. Preliminary trials also resulted in the successful
cultivation of four Japanese melons, indicating that the threshold-based
mechanism and alert system can support farmers in maintaining stable growth

conditions. While the short testing window limited the ability to conclusively

137

validate long-term yield improvements, the results provide credible evidence
that the proposed system can enhance farming practices and contribute to more

consistent crop quality when applied across multiple growth cycles.

8.3 Problem Encountered

During the development and testing of the smart farming system, several
problems were encountered that affected both the technical implementation
and project coordination. These challenges and their resolutions are discussed

below.

8.3.1 Direct Integration from IoT Gateway to Supabase Cloud
Database
The initial plan was for sensor readings to be transmitted straight from the
gateway to Supabase; however, due to SIM card incompatibility and
connectivity errors, this approach failed to establish a stable communication
channel. As a solution, ThingSpeak was introduced as an intermediary
platform for data ingestion. This allowed the IoT devices to successfully
transmit data, which could then be synchronized with Supabase for structured

storage and analysis.

8.3.2 Communication and Coordination with Hardware Team

Another problem encountered was related to communication and coordination
with the hardware team members, who were responsible for sensor setup and
calibration. Since the project involved multiple team members working on
different components, occasional misalignment in timelines and unclear
reporting of sensor performance created delays in backend and frontend
integration. To address this, regular coordination meetings were established
and shared documentation was introduced to streamline communication. This
ensured that the hardware data formats, and collection processes were clearly

defined, allowing smoother integration with the software components.

138

8.3.3 Integration Challenges Across Multiple Platforms

Integration challenges were also experienced across the multiple platforms
used in the system, namely ThingSpeak, Supabase, Spring Boot, Angular,
Firebase, and Grafana. Ensuring compatibility between APIs, authentication
mechanisms, and data formats was complex and caused delays during
development. Specific issues included CORS errors when connecting Spring
Boot to Supabase and Firebase service worker registration failures when
enabling push notifications. These problems were resolved through iterative
debugging and careful configuration. For example, Spring Boot was updated
with appropriate CORS headers to allow secure cross-origin requests, while

Firebase documentation was consulted to correct service worker timing errors.

8.3.4 Limited Project Timeline and Testing Scope

The limited project timeline posed another challenge. Due to the constraints of
the FYP schedule, the system could not be deployed throughout the entire
Japanese melon cultivation cycle. This limited the scope of testing, meaning
that while the system demonstrated feasibility and supported one successful
melon harvest, its long-term impact on yield and fruit quality could not be
conclusively validated. The short timeline, therefore, restricted comprehensive
evaluation, and extended deployment across multiple cycles was identified as

an important step for future research and system validation.

8.4 Limitations

Although the smart farming system achieved its objectives and demonstrated
promising results, several limitations were encountered during development
and testing. These limitations provide context for the findings and highlight

opportunities for future work.

8.4.1 Partial Deployment Across Cultivation Cycle

Although the smart farming system achieved its objectives and demonstrated
promising results, several limitations were encountered during development
and testing. These limitations provide context for the findings and highlight

opportunities for future work.

139

8.4.2 Hardware and Connectivity Constraints

Budget limitations restricted the use of more advanced IoT hardware and SIM
cards capable of direct integration with cloud databases. As a workaround,
ThingSpeak was used as an intermediary data ingestion platform before
synchronizing with Supabase. While effective, this introduced additional steps

that could affect real-time performance.

8.4.3 Dependence on Internet Connectivity

The system relies heavily on stable internet connectivity for transmitting
sensor data, updating dashboards, and sending notifications. In rural or
greenhouse environments with unstable networks, system performance and

responsiveness may be reduced.

8.4.4 Usability Testing and User Adoption

The system’s features were evaluated by the project team but not through
extensive farmer-based usability testing. As such, the interface and workflow
may need refinement to better align with actual farming practices and user

expectations.

8.5 Recommendations
Based on the findings and limitations of this study, the following
recommendations are proposed to improve the system and strengthen its

impact in future implementations.

8.5.1 Full-Scale Deployment Across Cultivation Cycles

To validate improvements in yield and quality more conclusively, future work
should deploy the system over multiple full cultivation cycles. Longitudinal
data will allow for statistical evaluation of crop outcomes and help verify
whether features such as threshold alerts and the soil health index consistently

produce benefits over time.

140

8.5.2 Improved IoT Hardware and Direct Connectivity

Upgrading to IoT devices and SIM modules capable of direct integration with
cloud databases (bypassing intermediate platforms like ThingSpeak) will
reduce latency and simplify data flow. Studies have shown that precise data
collection and optimized resource use are central to enhancing agricultural
efficiency, particularly when connectivity and hardware are reliable. (AL

Duguma et al., 2024)

8.5.3 Robustness to Connectivity Disruptions

The system should include mechanisms for offline data caching or local
buffering to mitigate the effect of unstable or intermittent internet connection
which is a common in rural or farm settings. Ensuring that data is not lost
during outages improves reliability and trust in smart farming systems.
Research into precision agriculture notes connectivity reliability as a frequent
challenge and recommends architectural designs that include redundancy or

hybrid connectivity models. (Mohamed Rafi et al., 2025)

141

REFERENCES

Agarwal, N. (2025) Firebase vs Supabase: Which Backend Solution Wins?
https://www.wildnetedge.com/blogs/firebase-vs-supabase-which-
backend-solution-wins.

AWS loT-Driven Precision Agriculture | Amazon Web Services (2020).

https://aws.amazon.com/blogs/iot/aws-iot-driven-precision-agriculture/.

Bersani, C. ef al. (2022) 'Internet of Things Approaches for monitoring and
control of smart greenhouses in Industry 4.0, Energies, 15(10), p.
3834. https://doi.org/10.3390/en15103834.

Dhanaraju, M. et al. (2022) 'Smart Farming: Internet of Things (IoT)-Based
Sustainable agriculture,! Agriculture, 12(10), p. 1745.
https://doi.org/10.3390/agriculture12101745.

Duguma, A.L. and Bai, X. (2024) 'How the internet of things technology
improves agricultural efficiency,' Artificial Intelligence Review, 58(2).
https://doi.org/10.1007/s10462-024-11046-0.

Food and Agriculture Organization of the United Nations (2021) THE STATE
OF FOOD AND FOOD AND AGRICULTURE MAKING AGRI-FOOD
SYSTEMS MORE RESILIENT TO SHOCKS AND STRESSES,
Interacademies.
https://www.interacademies.org/sites/default/files/2021-
11/The%20State%200f%20Fo0d%20and%20Agriculture%202021 sm
all.pdf (Accessed: September 17, 2025).

Getahun, S., Kefale, H. and Gelaye, Y. (2024) 'Application of Precision
Agriculture Technologies for Sustainable Crop Production and
Environmental Sustainability: A Systematic Review,' The Scientific
World JOURNAL, 2024(1). https://doi.org/10.1155/2024/2126734.

Guidance for Building an Agricultural Sensor Network using loT and Amazon
DocumentDB (no date).
https://aws.amazon.com/solutions/guidance/building-an-agricultural-
sensor-network-using-iot-and-amazon-documentdb/.

Hong, S. et al. (2024) 'Implementation of smart farm systems based on Fog
computing in artificial intelligence of things environments,' Sensors,
24(20), p. 6689. https://doi.org/10.3390/s24206689.

Huynh, H.X., Tran, L.N. and Duong-Trung, N. (2023) 'Smart greenhouse
construction and irrigation control system for optimal Brassica Juncea
development,' PLoS ONE, 18(10), p. e0292971.
https://doi.org/10.1371/journal.pone.0292971.

Kadarabad, M.V., Vakacharla, D.H. and Palani, R.R. (2025) 'Real-Time Soil
Health Monitoring with IoT and ThingSpeak Integration,' in Atlantis
highlights in engineering/Atlantis Highlights in Engineering, pp. 401—
408. https://doi.org/10.2991/978-94-6463-754-0 35.

Khanna, A. and Kaur, S. (2020) 'Internet of Things (IoT), Applications and
Challenges: A Comprehensive review,' Wireless Personal
Communications, 114(2), pp- 1687-1762.
https://doi.org/10.1007/s11277-020-07446-4.

142

'Low-cost loT-Based Smart Notification System for Rural Agriculture' (2022)
ResearchGate [Preprint].
https://www.researchgate.net/publication/372304589 Low-cost IoT-
Based Smart Notification System for Rural Agriculture.

Mansoor, S. et al. (2025) 'Integration of smart sensors and IOT in precision
agriculture: trends, challenges and future prospectives,’ Frontiers in
Plant Science, 16. https://doi.org/10.3389/fpls.2025.1587869.

Maraveas, C. et al. (2022) 'Applications of IoT for optimized greenhouse
environment and resources management,’” Computers and Electronics
in Agriculture, 198, p. 106993.
https://doi.org/10.1016/j.compag.2022.106993.

Maraveas, C. and Bartzanas, T. (2021) 'Application of internet of things (IoT)
for optimized greenhouse environments,' AgriEngineering, 3(4), pp.
954-970. https://doi.org/10.3390/agriengineering3040060.

Mekonnen, Y. et al. (2019) 'Review—Machine Learning Techniques in
Wireless Sensor Network Based Precision Agriculture,’ Journal of the
Electrochemical Society, 167(3), p. 037522.
https://doi.org/10.1149/2.0222003jes.

Monteiro, A., Santos, S. and Gongalves, P. (2021) 'Precision Agriculture for
Crop and Livestock Farming—Brief review,' Animals, 11(8), p. 2345.
https://doi.org/10.3390/ani11082345.

Mouratiadou, 1. et al. (2023) 'The Digital Agricultural Knowledge and
Information System (DAKIS): Employing digitalisation to encourage
diversified and multifunctional agricultural systems,' Environmental
Science and Ecotechnology, 16, p. 100274.
https://doi.org/10.1016/j.ese.2023.100274.

Padhiary, M., Kumar, A. and Sethi, L.N. (2025) 'Emerging technologies for
smart and sustainable precision agriculture,! SPRINGER NATURE,
1(1). https://doi.org/10.1007/s44430-025-00006-0.

Pathmudi, V.R. et al. (2023) 'A systematic review of IoT technologies and
their constituents for smart and sustainable agriculture applications,’
Scientific African, 19, p. e01577.
https://doi.org/10.1016/j.sciaf.2023.e01577.

Petraki, D. et al. (2025) 'Digital tools and decision support systems in
Agroecology: Benefits, challenges, and practical implementations,'
Agronomy, 15(1), p. 236. https://doi.org/10.3390/agronomy15010236.

Prathibha, S.R., Hongal, A. and Jyothi, M.P. (2017) 'IOT Based Monitoring
System in Smart Agriculture, [EEE Xplore, pp. 81-84.
https://doi.org/10.1109/icraect.2017.52.

Rafi, M.S.M., Behjati, M. and Rafsanjani, A.S. (2025) Reliable and Cost-
Efficient IoT Connectivity for Smart agriculture: A Comparative Study
of LPWAN, 5G, and Hybrid Connectivity =~ models.
https://arxiv.org/abs/2503.11162.

Raj, M. and Prahadeeswaran, M. (2025) 'Revolutionizing agriculture: a review
of smart farming technologies for a sustainable future,' Deleted
Journal, 7(9). https://doi.org/10.1007/s42452-025-07561-6.

Singh, G. and Sharma, S. (2024) 'A comprehensive review on the Internet of
Things in precision agriculture,’ Multimedia Tools and Applications
[Preprint]. https://doi.org/10.1007/s11042-024-19656-0.

143

Singh, N. et al. (2024) 'loT-based greenhouse technologies for enhanced crop
production: a comprehensive study of monitoring, control, and
communication techniques,' Systems Science & Control Engineering,
12(1). https://doi.org/10.1080/21642583.2024.2306825.

Soussi, A. et al. (2024) 'Smart Sensors and Smart Data for Precision
Agriculture: A review,’ Sensors, 24(8), p. 2647.
https://doi.org/10.3390/524082647.

Talbott, C. (2022) 'Helping farmers with cloud technology, up close and
global,’ Google, 3 June. https://blog.google/products/google-
cloud/helping-farmers-with-cloud-technology-up-close-and-global.

TeamSpace Farm Case Study | Google Cloud (no date).
https://cloud.google.com/customers/spacefarm.

THE MINISTER OF AGRICULTURE AND FOOD INDUSTRIES (2021)
NATIONAL AGROFOOD POLICY 2021-2030 (NAP 2.0) Agrofood
Modernisation: Safeguarding the future of National Food Security,
www.kpkm.gov.my. My Gogoprint Sdn. Bhd.
https://www.kpkm.gov.my/images/04-dasar-
agromakanan/national _agrofood policy 2021-2030 nap%202.0.pdf
(Accessed: September 17, 2025).

Thilakarathne, N.N. ef al. (2025) 'Internet of Things enabled smart agriculture:
current status, latest advancements, challenges and countermeasures,'

Heliyon, 11(3), p. e42136.
https://doi.org/10.1016/j.heliyon.2025.e42136.
ThingSpeak for Smart Farming - ThingSpeak IoT (no date).

https://thingspeak.mathworks.com/pages/smart_farming.

Tratwal, A., Jakubowska, M. and Pietrusinska-Radzio, A. (2025) 'Decision
support systems in Integrated pest and Disease Management:
Innovative elements in sustainable agriculture,' Sustainability, 17(18),
p. 8111. https://doi.org/10.3390/sul 7188111.

Weraikat, D. et al. (2024) 'Data Analytics in Agriculture: Enhancing Decision-
Making for crop yield optimization and sustainable practices,’
Sustainability, 16(17), p. 733 1. https://doi.org/10.3390/sul6177331

144

Projecttitle: Mobile Based Smart loT-Based System for Optimized Japanese Melon Farming: A Data-Driven Approach to Enhance Yield and Quality
[student Name: LEW KE YING
Supervisor Name: sugumaran a/| Nallusamy
Examiner Name: Lee Chen Kang.
Key Assessment for Project Proposal Supervisor Comments/Remarks Examiner Comments/Remarks
il The problem statements are clearly defined. More elaborations should be

Project Description

- 15 the problem or need to be addressed dearly presented?
- Is the proposed approach or solution clearly presented and
ljustified?

provided if possible. The propase solutions are OK

Project Scope and Objectives

- 15 the scope of the project clearly defined?

- Are the objectives of the project clearly specified?

- Are the project scope and objectives appropriate for a final
year project?

Refine the objective

to focus on only 3 objectives rather than
The project scope s sufficent

Literature Review / Fact Finding for Benchmarking /
Verification of Project

- Are sources for literature review / fact finding appropriste?

- 1s information from literature review / fact finding relevant and
adequate?

- 1s information from literature review / fact finding dearly
presented and discussed?

il

The sources for literature reviews needs to be properly cited
The literature review contains very few in-text citations, and this section
requires significant improvement to meet academic standards.

and Tools
- 15 the methodology for the project clearly described and
discussed?

- Are the required development tools clearly described and
discussed?

- Are the stated methodology and development tools
lappropriate?

il

The development methodology is clearly desaibed. The ER diagrams and
acitvity diagrams are missing. Do put the diagrams inside as part of the
design specification.

Project Plan

- Are the phases and tasks of the project properly defined and
planned?

- Are the phases and tasks consistent with the methodology of
the project?

The phases and tasks of the project is properly defined and planned

Initial Deliverables
- Are deliverables (e g use case diagrams and descriptions) of
initial phases of the project plan included in the report?

Report Structure and References
- 15 the report organised in 3 logical structure?
- Are references listed in accordance to Harvard format?

Language and Clarity of Writing
- Are the sentences concise and understandable?
- Are there spelling and grammar issues?

The initial deliverables are approriate and sufficient

Appendix 1: FYP1 feedback

