

WEB BASED SMART IOT-BASED SYSTEM FOR

OPTIMIZED JAPANESE MELON FARMING:

DATA-DRIVEN APPROACH TO ENHANCE

YIELD AND QUALITY

LIEW KE YING

UNIVERSITI TUNKU ABDUL RAHMAN

WEB BASED SMART IOT-BASED SYSTEM FOR OPTIMIZED

JAPANESE MELON FARMING: DATA-DRIVEN APPROACH TO

ENHANCE YIELD AND QUALITY

LIEW KE YING

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Science Software Engineering

with Honours

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2025

i

DECLARATION

I hereby declare that this project report is based on my original work except

for citations and quotations which have been duly acknowledged. I also

declare that it has not been previously and concurrently submitted for any

other degree or award at UTAR or other institutions.

Name : Liew Ke Ying

ID No. : 2105456

Date : 18/09/2025

ii

COPYRIGHT STATEMENT

© 2025, Liew Ke Ying. All right reserved.

This final year project report is submitted in partial fulfilment of the

requirements for the degree of Bachelor of Science (Honours) Software

Engineering at Universiti Tunku Abdul Rahman (UTAR). This final year

project report represents the work of the author, except where due

acknowledgement has been made in the text. No part of this final year project

report may be reproduced, stored, or transmitted in any form or by any means,

whether electronic, mechanical, photocopying, recording, or otherwise,

without the prior written permission of the author or UTAR, in accordance

with UTAR’s Intellectual Property Policy.

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my

supervisor, Ts. Dr. Sugumaran a/l Nallusamy, for his invaluable guidance,

continuous support, and patience throughout the development of this project.

His advice and encouragement have been instrumental in shaping the research

direction and ensuring the successful completion of this work.

I would also like to extend my appreciation to the Lee Kong Chian

Faculty of Engineering and Science (LKC FES), Universiti Tunku Abdul

Rahman (UTAR), for providing the facilities, resources, and a conducive

environment to carry out this project. My heartfelt thanks also go to UTAR for

the financial sponsorship which made this research possible.

Special thanks are due to Ts. Dr. Loo Joo Ling for moderating and

organizing the weekly meetings that ensured consistent progress at the melon

farm, and to Dr. Kwan Ban Hoe for sharing his expertise and invaluable

advice on the overall farming process. I am also deeply grateful to Tan Yi Jing

and Loi Zhen Yee, students from other courses, for their contributions in

handling the hardware and automation aspects, which played an essential role

in the practical implementation of this project.

Lastly, I would like to acknowledge the encouragement and support

from my family and friends, who have always stood by me throughout the

course of my study. Their motivation has been a source of strength that

contributed to the successful completion of this Final Year Project.

iv

ABSTRACT

This project presents the design and implementation of a web-based smart IoT

system for Japanese melon cultivation, addressing the critical need for real-

time monitoring, actionable analytics, and decision support in high-value crop

farming. The system integrates IoT sensors to capture environmental

parameters such as soil moisture, pH, electrical conductivity, temperature, and

light intensity, with data first ingested via ThingSpeak and subsequently

synchronized into a Supabase PostgreSQL database through an automated

Edge Function and Cron Job. The application layer, developed using Spring

Boot, manages business logic including threshold-based rule evaluation and

integrates with Firebase Cloud Messaging to deliver real-time alerts and

recommendations. Angular, Ng Zorro, TailwindCSS, and embedded Grafana

dashboards form the presentation layer, providing farmers with intuitive

visualizations such as time-series graphs, Soil Health Index computation, and

correlation heatmaps. System testing and evaluation demonstrated reliable data

integrity (99.81% completeness), accurate threshold-based suggestions, and

efficient performance with an average application start time of 1.55 seconds.

Functional and integration test cases confirmed robust user management,

sensor threshold configuration, and task scheduling features. The findings

highlight that the system effectively transforms raw IoT data into interpretable

insights, enabling timely interventions that improve yield consistency and fruit

quality. While the study faced limitations in full-scale deployment and

hardware connectivity, the outcomes establish a scalable, cost-effective

foundation for precision agriculture. Future work is recommended to expand

deployment across full cultivation cycles, incorporate predictive analytics, and

integrate advanced automation for irrigation and ventilation control.

Keywords: smart farming; IoT; Japanese melon; Supabase; Grafana; Firebase;

soil health index

Subject Area: T57.6–57.97

v

TABLE OF CONTENTS

CHAPTER 1 1

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of Study 2

1.2.1 Technological & Academic Advancement 2

1.2.2 Practical Significance 2

1.2.3 Societal and Economic Significance 3

1.3 Problem Statement 3

1.3.1 Problem Statement 1: Lack of Real-Time

Monitoring and Decision Support 4

1.3.2 Problem Statement 2: Fragmented Data

Analytics and Limited Actionable Insights 4

1.3.3 Problem Statement 3: Inconsistent Yield

Quality 4

1.4 Aim and Objectives 5

1.4.1 Project Aim 5

1.4.2 Project Objectives 5

1.5 Scope and Limitation of the Study 6

1.5.1 Scope of the Study 6

1.5.2 Limitations of the Study 7

1.6 Contribution of the Study 8

1.6.1 Academic Contributions 8

1.6.2 Practical Contributions 9

1.6.3 Societal and Policy Contributions 10

1.7 Outline of the Report 10

CHAPTER 2 13

2 LITERATURE REVIEW 13

2.1 Introduction 13

2.2 Smart Farming and Precision Agriculture 13

2.2.1 Definition and Concepts 13

2.2.2 Global Trends (2020–2025) 14

2.2.3 Benefits and Limitations 16

vi

2.2.4 Identified Gap 19

2.3 Data Management and Analytics in Smart

Farming 19

2.3.1 Importance of Data Management 19

2.3.2 Cloud Platforms in Agriculture 21

2.3.3 Data Analytics Techniques 26

2.3.4 Role of Data Analytics in Decision-Making 30

2.3.5 Identified Gap 31

2.4 Decision Support Systems in Agriculture 32

2.4.1 Concept and Frameworks 32

2.4.2 Benefits and limitations of DSS 33

2.4.3 Identified Gap 33

2.5 Comparative Analysis of Related Works 34

2.5.1 Overview of Existing Smart Farming

Systems 34

2.5.2 Comparative of recent smart farming

system 35

2.5.3 Strengths and Weaknesses of Prior Studies 39

2.5.4 Positioning of the Present Study 39

2.5.5 Research Gap 41

CHAPTER 3 43

3 METHODOLOGY AND WORK PLAN 43

3.1 Introduction 43

3.2 System Development Methodology: Rapid

Application Development (RAD) 43

3.2.1 Requirements Planning Phases 44

3.2.2 User Design Phase 45

3.2.3 Construction Phase 46

3.2.4 Cutover Phase 47

3.3 Work Breakdown Structure (WBS) 47

3.4 Gantt Chart 51

3.5 Development Tools 55

3.5.1 Backend Development Tools 55

3.5.2 Frontend Development Tools 56

vii

3.5.3 Database and Cloud Tools 56

3.5.4 Data Analytics and Visualisation Tools 57

3.5.5 Notification and Messaging Tools 57

3.5.6 Project Management and Documentation

Tools 57

CHAPTER 4 58

4 PROJECT SPECIFICATION 58

4.1 Introduction 58

4.2 System Requirements 58

4.2.1 Functional Requirements 58

4.2.2 Non-Functional Requirements 60

4.3 Use Case Diagram 61

4.4 Use Case Description 61

4.5 Conceptual Prototype 70

CHAPTER 5 76

5 System Design 76

5.1 Introduction 76

5.2 System Architecture Design 77

5.3 Database Design 79

5.3.1 Entity Relationship Diagram (ERD) 79

5.3.2 Schema Design 79

CHAPTER 6 85

6 SYSTEM IMPLEMENTATION 85

6.1 Introduction 85

6.2 System Module 85

6.3 Functional Module Implementation 86

6.3.1 Supabase Authentication 86

6.3.2 Authorisation 90

6.3.3 Admin Sign Up 91

6.3.4 User Profile Management 92

6.3.5 Task Management 93

6.3.6 Sensor threshold value configuration 96

6.3.7 Sensor Data Table View 97

6.4 Business Logic Implementation 99

viii

6.4.1 Supabase Edge Function 99

6.4.2 Supabase Cron Job 100

6.4.3 Threshold-based rules suggestion logic 101

6.4.4 Firebase Notification 103

6.5 Data Analytics and Visualization 105

6.5.1 Time-Series Graphs for Individual

Parameters 106

6.5.2 Soil Health Index (SHI) 107

6.5.3 Correlation Analysis 109

CHAPTER 7 111

7 System Testing and Evaluation 111

7.1 Introduction 111

7.2 Functional Test Case 112

7.3 Integration Test Case 122

7.4 Data Handling and Accuracy 128

7.5 Visualization and Analytics 129

7.6 Threshold Evaluation and Suggestions 131

7.7 Performance Testing 133

7.7.1 App Start Time 133

CHAPTER 8 135

8 CONCLUSION AND RECOMMENDATIONS 135

8.1 Overview 135

8.2 Research Findings 135

8.2.1 Objectives 1: To develop a web-based IoT

system for real-time monitoring of

environmental parameters in Japanese

melon farming. 135

8.2.2 Objectives 2: To develop and integrate a

data-driven analytics pipeline with

visualization and analysis 136

8.2.3 Objectives 3: To enhance farming yield

and crop quality by implementing

automated alerts and suggestions based on

parameter thresholds. 136

ix

8.3 Problem Encountered 137

8.3.1 Direct Integration from IoT Gateway to

Supabase Cloud Database 137

8.3.2 Communication and Coordination with

Hardware Team 137

8.3.3 Integration Challenges Across Multiple

Platforms 138

8.3.4 Limited Project Timeline and Testing

Scope 138

8.4 Limitations 138

8.4.1 Partial Deployment Across Cultivation

Cycle 138

8.4.2 Hardware and Connectivity Constraints 139

8.4.3 Dependence on Internet Connectivity 139

8.4.4 Usability Testing and User Adoption 139

8.5 Recommendations 139

8.5.1 Full-Scale Deployment Across Cultivation

Cycles 139

8.5.2 Improved IoT Hardware and Direct

Connectivity 140

8.5.3 Robustness to Connectivity Disruptions 140

REFERENCES 141

x

LIST OF TABLES

Table 2.1: Benefits and Limitations of IoT in Agriculture 18

Table 2.2: Comparison of Cloud Platforms for Smart Farming 24

Table 2.3: Comparison of Data Analytics Techniques in Smart

Farming 29

Table 2.4: Feature comparison across recent smart-farming systems 37

Table 6.1: Module Overview by User Role 85

Table 7.1: User Sign In Test Case 112

Table 7.2: Add New User Test Case 113

Table 7.3: Configure Sensor Data Threshold Test Case 114

Table 7.4: Task Management Test Case 115

Table 7.5: View, Sort and Search Sensor Data Table Test Case 116

Table 7.6: View and Filter by Date on Time-Series Graph Test Case 117

Table 7.7: View and Filter by Date on Correlation Heatmap Test

Case 118

Table 7.8: View and Filter by Date on Soil Health Index (SHI) Test

Case 119

Table 7.9: View Latest Sensor Values Test Case 120

Table 7.10: Admin Deactivate User Test Case 121

Table 7.11: Admin Change User Role Test Case 122

Table 7.12: Fetch and Insert New Data Test Case 122

Table 7.13: Scheduled Data Fetch and Insert Test Case 124

Table 7.14: Fetch Current Weather Data Test Case 125

Table 7.15: Test Notifications Test Case 126

xi

LIST OF FIGURES

Figure 2.1: Conceptual framework of smart farming technology (Raj

and Prahadeeswaran, 2025) 14

Figure 3.1: RAD methodology phases (Leonardo and Wiratama,

2023) 43

Figure 3.2: Gantt Chart overview 51

Figure 3.3: Gantt Chart detail view 1 52

Figure 3.4: Gantt Chart detail view 2 52

Figure 3.5: Gantt Chart detail view 3 52

Figure 3.6: Gantt Chart detail view 4 52

Figure 3.7: Gantt Chart detail view 5 52

Figure 3.8: Gantt Chart detail view 6 53

Figure 3.9: Gantt Chart detail view 7 53

Figure 3.10: Gantt Chart detail view 8 53

Figure 3.11: Gantt Chart detail view 9 53

Figure 3.12: Gantt Chart detail view 10 53

Figure 3.13: Gantt Chart detail view 11 54

Figure 3.14: Gantt Chart detail view 12 54

Figure 3.15: Gantt Chart detail view 13 54

Figure 3.16: Gantt Chart detail view 14 54

Figure 3.17: Gantt Chart detail view 15 55

Figure 3.18: Gantt Chart detail view 16 55

Figure 3.19: Gantt Chart detail view 17 55

Figure 4.1: Use Case Diagram 61

Figure 4.2: Prototype - User login interface 70

Figure 4.3: Prototype - User profile page 71

xii

Figure 4.4: Prototype - Edit user credentials interface 71

Figure 4.5: Prototype (Admin view) - User management interface 72

Figure 4.6: Prototype (Admin) - Add new user interface 72

Figure 4.7: Prototype - Smart farming system home page 73

Figure 4.8: Prototype - Sensor dashboard overview 73

Figure 4.9: Prototype - Sensor data interface 74

Figure 4.10: Prototype - Manage farming event interface 74

Figure 5.1: System Architecture Design 77

Figure 5.2: Entity Relationship Diagram 79

Figure 6.1: Enable auth providers (email) in supabase 87

Figure 6.2: Code snippet for handling signs in, out and retrieve user’s

session 88

Figure 6.3: Sign in Page 88

Figure 6.4: Sign out function for user in profile page 89

Figure 6.5: Admin navigation view 90

Figure 6.6: Normal user navigation view 90

Figure 6.7: Add new user page 91

Figure 6.8: API call for add new user 92

Figure 6.9: User profile management page 92

Figure 6.10: Code snippet for FullCalendar implementation 94

Figure 6.11: Calendar monthly view with weather forecast 95

Figure 6.12: Calendar modal dialog for adding/editing a task 95

Figure 6.13: Threshold configuration page 97

Figure 6.14: Sensor data table 98

Figure 6.15: Supabase Edge function for fetch data from ThingSpeak 99

xiii

Figure 6.16: Supabase Edge function for store fetched data into

database 100

Figure 6.17: 15-minute interval cron job 100

Figure 6.18: Sensor data table 101

Figure 6.19: Parameter threshold table 101

Figure 6.20: checkParam method 102

Figure 6.21: getSuggestions() method 102

Figure 6.22: Notifications received by user 104

Figure 6.23: Function to send notification to all registered device 105

Figure 6.24: Query that demonstrates how Grafana retrieves and

aggregates air temperature readings 106

Figure 6.25: Air temperature time series graph 106

Figure 6.26: SQL query to compute SHI 108

Figure 6.27: Soil Health Index Graph 109

Figure 6.28: SQL query using corr() function 110

Figure 6.29: Correlation analysis heatmap 110

Figure 7.1: Thingspeak’s sensor data 128

Figure 7.2: Supabase sensor data table 128

Figure 7.3: SQL to count completeness percentage 129

Figure 7.4: Angular dashboard displaying a suggestion 131

Figure 7.5: Test results 131

Figure 7.6: SQL to retrieve test results 132

xiv

LIST OF APPENDICES

Appendix 1: FYP1 feedback 144

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

The global agricultural sector is undergoing a profound transformation driven

by the demand for higher productivity, sustainable practices, and improved

crop quality. Traditional farming methods, which often depend on manual

observation and experience-based decision-making, face growing limitations

in meeting these demands. Issues such as inconsistent monitoring, inefficient

resource allocation, and vulnerability to environmental fluctuations can lead to

reduced yield and compromised crop quality. With the rise of emerging

technologies, agriculture is shifting toward smart farming systems that

integrate Internet of Things (IoT), data analytics, and automation to optimize

operations and decision-making.

Japanese melon cultivation serves as an excellent case study for this

transformation. As a premium and high-value crop, Japanese melons require

precise environmental control covering parameters such as temperature,

humidity, soil health, and light intensity to ensure consistency in growth and

sweetness. Even slight deviations from the optimal range can result in

significant loss of quality and market value. This makes real-time monitoring

and intelligent data-driven decision-making critical for farmers.

In response to these challenges, this project presents the development

of a Web-Based Smart IoT System for Optimized Japanese Melon Farming.

The system integrates IoT-enabled sensors, a cloud-based data pipeline, and a

web application to provide real-time monitoring, visual analytics, and

automated suggestions for corrective actions. By leveraging data-driven

approaches such as threshold-based recommendations, soil health indexing,

and correlation analysis, the system not only enhances productivity and

decision-making but also contributes to sustainable resource management.

Ultimately, this project demonstrates how the synergy of IoT and data

analytics can bridge the gap between traditional farming and modern precision

2

agriculture, empowering farmers to achieve higher yields, superior quality, and

long-term sustainability.

1.2 Importance of Study

The significance of this study lies in its ability to demonstrate how IoT, cloud

computing, and real-time data analytics can address pressing challenges in

modern agriculture, particularly for high-value crops such as Japanese melons.

Agriculture today faces resource constraints, labour shortages, and increasing

demands for sustainable practices, making technology-driven solutions

essential. By providing farmers with real-time environmental monitoring,

automated threshold-based alerts, and decision-support tools, this project

exemplifies the role of IoT in enhancing both productivity and sustainability

(Dhanaraju et al., 2022; Pathmudi et al., 2023).

1.2.1 Technological & Academic Advancement

This study contributes to academic discourse on precision agriculture by

presenting a practical IoT-based framework that integrates sensor networks,

cloud databases, and visual analytics dashboards. Unlike generic smart

farming studies, this project focuses on a premium crop that demands strict

environmental control. Recent studies highlight that IoT-enabled monitoring

of soil and microclimate parameters significantly improves situational

awareness and supports real-time decision-making (Singh and Sharma, 2024;

Pathmudi et al., 2023). By implementing novel features such as a soil health

index and correlation heatmaps, this study strengthens research on agricultural

informatics and smart greenhouse management (Maraveas et al., 2022).

1.2.2 Practical Significance

For farmers, the system bridges the gap between measurement and timely

action. IoT-driven greenhouse technologies have been shown to reduce water

and fertiliser waste, stabilise microclimate conditions, and protect crop quality

(Singh et al., 2024; Huynh et al., 2023). In Japanese melon cultivation, where

even small deviations in soil moisture, pH, or temperature can lead to financial

losses, the system’s threshold-based alerts and push notifications provide

practical, actionable guidance. The integration of real-time dashboards and

3

correlation analytics further enables farmers to detect patterns that would

otherwise remain hidden, supporting better farm management (Maraveas et al.,

2022).

1.2.3 Societal and Economic Significance

At a broader level, this study contributes to sustainable agriculture and

national food security priorities. The Food and Agriculture Organization (FAO,

2021) emphasises that agrifood systems must become more resilient to shocks

while improving efficiency. In Malaysia, the National Agrofood Policy 2021–

2030 (NAP 2.0) highlights embracing modernisation and smart agriculture as a

strategic thrust for enhancing productivity and farmer income (Ministry of

Agriculture and Food Industries, 2021). By demonstrating a working IoT-

based monitoring and decision-support system for premium crop cultivation,

this project directly aligns with these international and national agendas.

1.3 Problem Statement

Agriculture is increasingly adopting digital and IoT-based technologies to

improve productivity, sustainability, and crop quality. However, while

research on smart farming has expanded, most implementations remain limited

to generic crop monitoring and lack integrated decision-support features

(Pathmudi et al., 2023; Singh and Sharma, 2024). For high-value crops such as

Japanese melons, which require strict environmental control, these gaps

become critical as they directly affect yield consistency and market

competitiveness.

To address this issue, three main problems are identified: lack of real-

time monitoring and decision support, fragmented data analytics with limited

actionable insights, and inconsistent yield quality. These problems reflect gaps

in both research and practice, highlighting the need for a comprehensive, IoT-

based smart farming system that translates sensor data into reliable, actionable

guidance for farmers.

4

1.3.1 Problem Statement 1: Lack of Real-Time Monitoring and

Decision Support

Although IoT devices are increasingly applied in agriculture, many current

systems are limited to basic data logging and trend visualization, without

offering real-time decision support (Dhanaraju et al., 2022; Singh and Sharma,

2024). Farmers often detect issues such as nutrient imbalance or water stress

only after symptoms appear, resulting in reduced yield and crop quality. This

gap justifies the need for a system that integrates continuous monitoring with

immediate alerts and threshold-based recommendations tailored to the specific

requirements of Japanese melon farming.

1.3.2 Problem Statement 2: Fragmented Data Analytics and Limited

Actionable Insights

Existing IoT solutions frequently provide raw sensor readings without

contextual interpretation. Studies highlight that without advanced analytics,

the collected data is underutilized (Pathmudi et al., 2023; Maraveas et al.,

2022). Farmers therefore lack the ability to optimise irrigation, fertilisation,

and environmental adjustments effectively. This gap demonstrates the

importance of systems that transform data into actionable insights through

dashboards, automated suggestions, and visual analytics.

1.3.3 Problem Statement 3: Inconsistent Yield Quality

Japanese melons are highly sensitive to environmental fluctuations, and

inconsistent control often results in variable sweetness, texture, and

appearance. Research indicates that current IoT-enabled greenhouse systems

improve control but remain insufficiently precise for high-value crops

requiring premium-grade consistency (Huynh et al., 2023; Singh et al., 2024).

This inconsistency leads to significant financial losses for farmers. Therefore,

there is a need for an IoT-based solution that ensures stable environmental

management and supports consistent yield quality through real-time

monitoring and corrective interventions.

5

1.4 Aim and Objectives

1.4.1 Project Aim

The aim of this project is to design and develop a web-based smart IoT system

for optimized Japanese melon farming that integrates real-time monitoring,

data-driven analytics, and automated decision support. The system aspires to

enhance yield consistency and crop quality by providing farmers with timely

insights, visualised trends, and actionable recommendations derived from

environmental and soil data.

1.4.2 Project Objectives

The project objectives aim to define the scope and purpose of this endeavour,

guiding its direction and intended outcomes. These objectives serve as a

roadmap for achieving specific milestones, ensuring clarity, alignment, and

measurability throughout the project lifecycle. By outlining clear and

actionable objectives, resources can be allocated effectively, and success can

be evaluated against predetermined criteria. The objectives are as follows:

1.4.2.1 To develop a web-based IoT system for real-time monitoring of

environmental parameters in Japanese melon farming.

This objective focuses on establishing a sensor-driven web-based IoT system

capable of capturing real-time environmental and soil parameters critical to

Japanese melon cultivation, including air temperature, air humidity, soil

moisture, soil temperature, soil pH, soil conductivity, total dissolved solids

(TDS), and light intensity. The design will ensure seamless integration of

multiple sensors with an IoT gateway, while data transmission will be directed

to a secure cloud platform. Success will be measured by the system’s ability to

continuously capture accurate data under operational conditions within the

greenhouse environment.

1.4.2.2 To develop and integrate a data-driven analytics pipeline with

visualization and analysis

This objective aims to transform raw IoT sensor data into meaningful insights

through the implementation of cloud-based data storage and analytical models.

The pipeline will include features such as interactive dashboards, a soil health

6

index (SHI) to assess soil quality, and correlation heatmaps to reveal

relationships between environmental parameters. Visualization will be

provided via Grafana and embedded into the web application for user

accessibility. Success will be determined by the system’s ability to provide

real-time visualization, accurate soil health index (SHI) calculations, and

correlation heat map that support data-driven decision-making for melon

farming.

1.4.2.3 To enhance farming yield and crop quality by implementing

automated alerts and suggestions based on parameter thresholds.

This objective addresses the development of threshold-based rules that

evaluate sensor readings against optimal ranges for Japanese melon growth.

When deviations are detected, the system will generate context-specific

suggestions (e.g., irrigation adjustment, nutrient correction, or ventilation

changes) and deliver push notifications to farmers in real time. Success will be

measured by the timeliness, accuracy, and relevance of the alerts and

recommendations, as well as the system’s ability to support farmers in making

immediate corrective actions that minimise risks to yield and crop quality.

1.5 Scope and Limitation of the Study

1.5.1 Scope of the Study

The scope of this study is confined to the design and development of a web-

based smart IoT system for Japanese melon cultivation, with the objective of

enhancing yield consistency and crop quality through data-driven decision

support. The focus is placed on software development, system integration, and

data analytics rather than the construction of physical hardware. Specifically,

the scope encompasses the following aspects:

i. IoT Data Acquisition - Integration of environmental and soil

parameters, including air temperature, air humidity, soil moisture,

soil temperature, soil pH, soil conductivity, total dissolved solids

(TDS), and light intensity, into a centralised platform for

continuous monitoring.

7

ii. Cloud-Based Data Management and Analytics - Utilisation of a

cloud database (Supabase) to manage sensor data, coupled with

analytical features such as soil health indices and correlation

heatmaps to support data-driven insights.

iii. Web-Based Dashboard - Development of an Angular-based web

application with embedded Grafana visualisations to display real-

time and historical sensor data in a user-friendly format.

iv. Automated Alerts and Decision Support - Implementation of

threshold-based rules to generate actionable recommendations,

with real-time push notifications delivered to farmers via Firebase.

v. System Evaluation - Functional and non-functional testing of the

system, including metrics such as application responsiveness, data

latency, data completeness, and system reliability, to assess its

effectiveness in supporting smart farming practices.

The scope therefore highlights the development of a data-driven

smart farming platform tailored for Japanese melon cultivation, with hardware

contributions managed by collaborating students from related engineering

courses.

1.5.2 Limitations of the Study

Although the study demonstrates the feasibility of integrating IoT technologies,

cloud analytics, and decision support in agriculture, several limitations must be

acknowledged:

i. Exclusion of Hardware Development - The physical setup of IoT

sensors, microcontrollers, and gateways was undertaken by

collaborating students from other engineering disciplines. This

study is restricted to software, integration, and analytics

components.

ii. Limited Deployment Period - Due to time constraints inherent in

the Final Year Project schedule, the system was not deployed

across the full melon growth and harvesting cycle. As a result,

8

long-term evaluation over multiple planting seasons could not be

conducted.

iii. Absence of Automated Environmental Control - The system is

designed to provide monitoring, analytics, and recommendations

only. It does not incorporate automated actuation for irrigation,

ventilation, or nutrient delivery, which remain manual processes.

iv. No Artificial Intelligence or Machine Learning Integration -

Predictive models were not implemented, as sufficient datasets

were unavailable during the early stages of deployment. Decision

support is instead based on predefined threshold rules.

v. Crop-Specific Focus - The system is tailored to Japanese melon

cultivation. Application to other crops would require

reconfiguration of threshold parameters, modification of decision

rules, and potential adjustments to the system architecture.

1.6 Contribution of the Study

This study contributes to both academic research and practical applications in

the domain of smart farming. By focusing on Japanese melon cultivation,

which demands precise environmental control for premium quality, the project

demonstrates how an IoT-based, data-driven system can bridge the gap

between traditional farming practices and modern digital agriculture. The

contributions of the study are outlined as follows:

1.6.1 Academic Contributions

One of the major academic contributions of this study is the development of a

framework for IoT-based smart farming systems. The project establishes a

reference model that integrates real-time environmental monitoring, cloud-

based data management, and web-based visualization. This framework not

only demonstrates the feasibility of combining these technologies but also

provides a foundation for future research in agricultural informatics, where

similar systems may be replicated or extended for different crops and contexts.

Another significant contribution is the introduction of novel analytical

features within the system. Unlike conventional monitoring platforms that only

9

display raw sensor data, this study incorporates a Soil Health Index (SHI) and

correlation heatmaps to transform data into actionable insights. These features

enrich the academic discourse by showing how IoT-generated data can be

processed to support precision agriculture through decision-making tools,

thereby advancing research in data-driven farming technologies.

The study also contributes to academic knowledge by providing an empirical

performance evaluation of the developed system. Key metrics such as

application responsiveness, data latency, data completeness, and overall

reliability were systematically tested and analyzed. These results offer

benchmarks that can be used by future researchers to evaluate and compare

similar smart farming systems, ensuring that this project adds measurable

value to ongoing research in the field.

1.6.2 Practical Contributions

On a practical level, this study delivers a system that provides decision support

for farmers through threshold-based recommendations and real-time push

notifications using Firebase. This functionality enables farmers to receive

timely alerts when environmental or soil parameters deviate from optimal

ranges, helping them to take immediate corrective actions. Such decision-

support features reduce risks associated with poor crop management and

directly contribute to maintaining yield and quality.

The system also enhances farm management practices by

consolidating multiple environmental and soil parameters into a single, user-

friendly platform. With visual dashboards displaying real-time and historical

trends, farmers can monitor the overall condition of their crops more

efficiently. This integration reduces the reliance on manual observation,

supports more effective allocation of resources such as water and fertilizers,

and simplifies day-to-day management of farming operations.

Furthermore, the project contributes by offering a prototype tailored

for high-value crop cultivation, specifically Japanese melons. These crops

demand stricter quality control compared to many staple crops, and the system

10

demonstrates how IoT solutions can be customized to meet these requirements.

This prototype can serve as a model for adapting IoT technologies to other

premium horticultural crops, thereby extending its practical impact beyond the

immediate study.

1.6.3 Societal and Policy Contributions

At the societal level, the system supports sustainable agriculture by promoting

efficient monitoring and timely interventions. By reducing unnecessary use of

water, fertilizers, and other inputs, the system encourages environmentally

responsible practices. This contribution aligns with global sustainability goals,

ensuring that agricultural productivity is balanced with resource conservation.

The project also contributes to the national agenda through its

alignment with Malaysia’s National Agrofood Policy 2021–2030 (NAP 2.0).

The policy highlights the need to embrace smart agriculture technologies as

part of a long-term strategy to modernize the agrifood sector, increase

productivity, and enhance farmer income. This study’s outcomes demonstrate

how digital technologies can directly support these strategic goals, thereby

reinforcing their relevance to current policy directions.

Finally, the study contributes to food security and quality assurance

by addressing yield optimization and consistency in Japanese melon farming.

By enabling more precise control of crop growth conditions, the system

ensures a higher probability of producing premium-grade melons that meet

market expectations. Indirectly, such systems also support broader societal

efforts to secure reliable food production and meet consumer demand for high-

quality agricultural products.

1.7 Outline of the Report

This report is organized into eight chapters, each addressing a specific

component of the research and development process for the web-based smart

IoT system for Japanese melon farming. The structure is as follows:

11

i. Chapter 1: Introduction – Presents the background of the study,

importance, problem statements, research aim and objectives, scope

and limitations, and contributions. This chapter establishes the

rationale and foundation of research.

ii. Chapter 2: Literature Review – Reviews existing works on smart

farming, precision agriculture, IoT applications, cloud platforms,

data management, analytics techniques, and decision support

systems. It highlights global trends, benefits, and limitations, while

identifying research gaps and positioning the present study.

iii. Chapter 3: Methodology and Work Plan – Describes the

development methodology adopted, namely Rapid Application

Development (RAD), and outlines the project phases. It further

details the work breakdown structure, Gantt chart, and tools used to

guide systematic system development.

iv. Chapter 4: Project Specification – Defines the system

requirements, both functional and non-functional, and provides use

case diagrams and descriptions. It also introduces the conceptual

prototype that serves as the blueprint for system design and

development.

v. Chapter 5: System Design – Explains the architectural design of

the system, including its three-tier structure (presentation,

application, and data layers). It also covers the database design,

entity-relationship diagram, and schema specifications.

vi. Chapter 6: System Implementation – Provides a detailed

explanation of how the system was implemented, covering

functional modules such as authentication, authorization, user

management, task management, sensor threshold configuration,

and data visualization. It also describes the implementation of

business logic components (Edge Functions, Cron Jobs, suggestion

logic, and notifications) and analytics modules (time-series graphs,

Soil Health Index, and correlation analysis).

vii. Chapter 7: System Testing and Evaluation – Presents the testing

approach and results, including functional, integration, and

performance testing. It also evaluates data handling accuracy,

12

visualization and analytics validity, threshold-based suggestions,

and responsiveness of the system.

viii. Chapter 8: Conclusion and Recommendations – Summarizes the

study’s key findings in relation to its objectives, highlights

encountered problems and limitations and provides

recommendations for future improvements such as full-cycle

deployment, advanced predictive analytics, and enhanced IoT

integration.

13

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

This chapter reviews the growing body of research on smart farming and

precision agriculture, focusing on how IoT, cloud platforms, and data analytics

are reshaping modern cultivation practices. For high-value crops such as

Japanese musk melons, small fluctuations in soil pH, moisture, or temperature

can determine fruit quality, making real-time monitoring and decision support

critical. The review is structured around four themes: smart farming concepts

and global trends, the role of data management and analytics, the use of

decision support systems, and comparative studies of existing smart farming

solutions. By examining both benefits and limitations reported in recent

literature, the chapter identifies gaps in crop-specific tailoring, actionable

insights, and real-time usability—gaps that this project addresses through the

design of a web-based IoT system tailored to Japanese melon farming.

2.2 Smart Farming and Precision Agriculture

2.2.1 Definition and Concepts

Smart farming and precision agriculture are transformative approaches that

employ modern technologies to enhance agricultural practices beyond what

traditional farming achieves. Precision agriculture (PA) is typically defined as

a data-driven farming management approach that observes, measures, and

analyses the variability within fields in order to guide resource application

such as water, fertilisers, or pesticides only where and when they are needed to

maximize crop yield, quality, and input efficiency (Monteiro et al., 2021;

Padhiary et al., 2025). Smart farming builds upon precision agriculture by

integrating IoT sensors, cloud platforms, dashboards, and decision support

mechanisms to enable more responsive, real-time control over farming

operations (Mansoor et al., 2025; Roy, 2025).

14

Figure 2.1: Conceptual framework of smart farming technology (Raj and

Prahadeeswaran, 2025)

Traditional farming, in contrast, relies heavily on uniform inputs,

manual observation, and fixed schedules without continuous feedback from

the crop environment. This often leads to inefficiencies such as overuse or

underuse of water, inconsistency in crop growth, and slower responsiveness to

environmental changes (Monteiro et al., 2021). In the case of Japanese melon

farming, these inefficiencies can manifest as variation in fruit sweetness, poor

texture, or uneven maturity, because the crop is sensitive to microclimates and

environmental fluctuations.

In summary, this section establishes that precision agriculture is about

variability management and efficient input use, while smart farming is its

broader technological extension with real-time monitoring and actionable

intelligence. This conceptual groundwork is critical to justify the development

of a smart IoT system for Japanese melon cultivation—one that captures

environmental data, analyses it, and supports decisions in a responsive manner.

2.2.2 Global Trends (2020–2025)

In the period 2020-2025, global trends in smart farming reflect increased

adoption of IoT, sensor technologies, and integrated analytics tools, driven by

pressures such as climate change, resource scarcity, and the rising demand for

15

high-quality produce. A review by Mansoor et al. (2025) found that smart

sensors for soil moisture, pH, and plant stress have become significantly more

common in precision agriculture frameworks, particularly in regions facing

water stress. Such sensors now often feed into systems that provide not only

raw data but also data visualization dashboards and advisory outputs to

farmers, indicating a shift toward systems that enable actionable insight rather

than mere monitoring.

Another trend is the increasing use of hybrid connectivity models to

ensure reliable IoT deployment in remote or rural farmland. A recent

comparative study shows models combining LPWAN (e.g., LoRaWAN or

NB-IoT) with 4G/5G cellular networks can improve network reliability and

reduce costs in remote farm settings by up to 30% (Mohamed Rafi et al., 2025).

This trend is important for scalability and robustness of IoT systems,

particularly in regions with infrastructure limitations—factors highly relevant

if systems are deployed outside urban centers or high-connectivity zones.

There is also a stronger emphasis on sustainability and efficiency.

Reviews have underscored that IoT technologies are being increasingly paired

with precision farming practices to optimize input use (water, fertilizer, energy)

and reduce environmental pollution (Duguma et al., 2024). Efficiency gains

are not only in production (yield) but also in resource use, aligning with global

climate and sustainability goals. Countries with progressive agricultural

policies are supporting smart farming via subsidies, technical training, and

open-data initiatives to reduce the barrier to entry for farmers (Revolutionizing

Agriculture: A Review, Raj & Prahadeeswaran, 2025).

Finally, there is a trend towards developing more integrated systems

that combine real-time monitoring, analytics, and user engagement through

dashboards and alerts. Systems are increasingly offering decision support,

such as threshold-based alerts, predictive warnings, or advisory services, rather

than simply collecting data. Although many of these systems still rely on

machine learning or AI, there is growing recognition of the role that simpler,

rules-based alerts (thresholds) can play, especially in early-stage or small-scale

16

deployments (Integration of Smart Sensors & IoT in Precision Agriculture,

Mansoor et al., 2025).

2.2.3 Benefits and Limitations

The adoption of IoT technologies in agriculture offers a wide range of benefits

that directly contribute to improved productivity, sustainability, and farm

management. One of the most significant advantages is resource optimization,

as IoT sensors enable precise monitoring of soil moisture, nutrient levels, and

microclimatic conditions. This allows farmers to apply water and fertilizers

only when required, reducing wastage and improving efficiency (Duguma et

al., 2024). In addition, IoT-enabled systems support real-time monitoring,

giving farmers continuous access to data that can enhance decision-making

and improve responsiveness to sudden changes in the farm environment

(Mansoor et al., 2025). This technology also contributes to labor reduction by

automating data collection and reducing the need for manual field inspections

(Raj & Prahadeeswaran, 2025). For high-value crops such as Japanese melons,

these benefits are particularly important, as minor fluctuations in soil pH,

humidity, or temperature can significantly affect fruit sweetness, texture, and

market quality.

Despite these advantages, several limitations hinder the widespread

adoption of IoT in agriculture. A major barrier is the high initial cost of

sensors, connectivity infrastructure, and cloud service subscriptions, which

may be prohibitive for smallholder farmers (Mohamed Rafi et al., 2025).

Furthermore, IoT deployment in rural or greenhouse settings often faces

connectivity challenges, as reliable networks such as 4G/5G or LPWAN may

not always be accessible (Mansoor et al., 2025). Another limitation lies in data

interoperability and complexity; the integration of heterogeneous sensor data

into a unified platform can be technically demanding and requires expertise

that many farmers may lack (Raj & Prahadeeswaran, 2025). Additionally,

security and privacy issues surrounding cloud-stored farm data remain

unresolved, raising concerns about data misuse or unauthorized access

(Duguma et al., 2024).

17

In summary, IoT technologies in agriculture present substantial

opportunities for enhancing efficiency and crop quality but face challenges of

cost, connectivity, and technical accessibility. These benefits and limitations

underscore the need for research on cost-effective, user-friendly, and crop-

specific IoT solutions. The present study addresses this by focusing on a web-

based IoT system tailored for Japanese melon farming, designed to provide

actionable insights, reduce inefficiencies, and support consistent yield quality

without overcomplicating the user experience.

18

Table 2.1: Benefits and Limitations of IoT in Agriculture

Aspect Benefits Limitations

Resource Management Enables precise monitoring of soil moisture, nutrients,

and microclimatic conditions, improving efficiency and

reducing wastage (Duguma et al., 2024).

High initial cost of sensors, IoT gateways, and cloud

services can be prohibitive, especially for smallholder

farmers (Mohamed Rafi et al., 2025).

Decision-Making Real-time monitoring provides continuous data access,

enhancing decision-making and responsiveness to

environmental changes (Mansoor et al., 2025).

Connectivity challenges in rural areas and

greenhouses due to unreliable 4G/5G or LPWAN

coverage (Mansoor et al., 2025).

Labor Efficiency Automates data collection, reducing dependence on

manual field inspections and lowering labor

requirements (Raj & Prahadeeswaran, 2025).

Integration of heterogeneous sensor data into a unified

platform is technically demanding and requires

expertise (Raj & Prahadeeswaran, 2025).

Crop Status and Quality Particularly beneficial for high-value crops like

Japanese melons, where stable environmental control

enhances fruit sweetness, texture, and consistency

(Duguma et al., 2024; Mansoor et al., 2025).

Security and privacy concerns regarding storage of

farm data on cloud platforms raise risks of misuse or

unauthorized access (Duguma et al., 2024).

19

2.2.4 Identified Gap

Although IoT technologies have advanced rapidly and are increasingly applied

in agriculture, several key gaps remain evident in the literature:

i. Lack of crop-specific tailoring - Most IoT applications are

designed for general farming contexts and do not adequately

address the unique environmental sensitivities of high-value crops

such as Japanese melons, where small fluctuations in soil pH,

humidity, and temperature critically affect yield and quality

(Mansoor et al., 2025; Duguma et al., 2024).

ii. Limited actionable insights - Existing systems often focus on raw

data collection and visualization but fall short in transforming these

into decision-support features such as tailored recommendations or

threshold-based alerts for farmers (Raj & Prahadeeswaran, 2025;

Padhiary et al., 2025).

iii. Barriers to accessibility and adoption - High initial costs,

unreliable connectivity, and technical challenges in integrating

heterogeneous sensor data restrict the usability of IoT systems,

particularly for smallholder farmers (Mohamed Rafi et al., 2025;

Mansoor et al., 2025).

These gaps demonstrate the need for a cost-effective, user-friendly,

and crop-specific IoT system that provides actionable decision support

precisely what the present study aims to deliver for Japanese melon farming.

2.3 Data Management and Analytics in Smart Farming

2.3.1 Importance of Data Management

Effective data management is fundamental to the success of smart farming

systems because IoT devices generate large volumes of heterogeneous data

that must be properly structured, stored, and accessed to provide value.

Without reliable data management, sensor reading may remain fragmented,

inaccurate, or inaccessible, undermining the effectiveness of IoT adoption in

agriculture. For high-value crops such as Japanese melons, which require

20

consistent monitoring of sensitive parameters like soil pH, moisture, and

temperature, robust data management is particularly critical in ensuring that

environmental variations are captured accurately and used for decision-making

(Mansoor et al., 2025).

i. Ensuring Data Accuracy and Reliability – The quality of IoT

data directly affects the trustworthiness of smart farming decisions.

Poor data management may result in missing values, duplications,

or delays, which in turn reduce system reliability. Studies

emphasize that reliable data pipelines and structured storage

mechanisms are essential to minimize latency and errors in real-

time monitoring applications (Raj & Prahadeeswaran, 2025). This

is especially important for greenhouse environments, where timely

data access is needed for responsive actions such as irrigation

adjustment or ventilation.

ii. Supporting Scalability and Long-Term Use – IoT in agriculture

requires continuous monitoring across multiple crop cycles. Cloud-

based data management ensures scalability, allowing systems to

handle increasing amounts of sensor data while maintaining

performance (Padhiary et al., 2025). Structured storage also enables

longitudinal analysis, helping farmers and researchers to study

correlations and seasonal patterns that are vital for long-term crop

optimization.

iii. Enabling Data-Driven Insights – Well-managed data not only

ensures accessibility but also enables transformation into actionable

insights through analytics and visualization. Without structured

data, advanced techniques such as soil health indices or correlation

heatmaps—both applied in this study—would not be feasible

(Duguma et al., 2024). Data management therefore serves as the

foundation for bridging raw sensor readings with meaningful

decision support.

iv. Integration and Interoperability – Smart farming often involves

multiple sensors, platforms, and data formats. Robust data

management frameworks enable integration of heterogeneous data

21

sources into a unified system, improving accessibility and usability

(Mansoor et al., 2025). In Japanese melon farming, interoperability

ensures that soil, environmental, and climate data are consolidated

for holistic analysis, supporting yield and quality consistency.

2.3.2 Cloud Platforms in Agriculture

Cloud platforms form the backbone of smart farming systems by providing the

infrastructure for sensor integration, real-time data ingestion, scalable storage,

and advanced analytics. In this project, which focuses on Japanese melon

cultivation, cloud platforms enable the seamless collection of environmental

parameters such as soil moisture, pH, electrical conductivity, temperature, and

light intensity. These platforms not only support remote monitoring through

dashboards and mobile applications but also facilitate advanced analytics,

including soil health indices and correlation heatmaps, that transform raw IoT

data into actionable insights for optimized crop management. In the following

section, several widely used cloud platforms for agricultural data management

in the market will be discussed.

ThingSpeak, developed by MathWorks, is a lightweight IoT analytics

platform that has been widely adopted in agricultural research and prototyping.

It supports sensor data ingestion through REST APIs, enabling farmers and

researchers to capture key environmental parameters such as soil moisture,

humidity, and temperature. ThingSpeak also provides real-time visualization

and basic analytics, which make it particularly suitable for applications such as

irrigation scheduling, soil monitoring, and crop condition tracking. Due to its

simplicity and accessibility, ThingSpeak is often applied in small-scale or

experimental farming projects where rapid deployment and ease of use are

prioritized (MathWorks, n.d.; Kadarabad et al., 2025).

Supabase is an emerging open-source Backend-as-a-Service platform

that leverages PostgreSQL as its core database, offering structured relational

storage, authentication, and real-time data streams. Although its adoption in

agriculture remains limited compared to more established platforms like

ThingSpeak and Firebase, its relational model makes it highly effective for

22

managing structured farm data. Examples include organizing sensor readings,

maintaining detailed plot information, and storing farmer account profiles.

This capacity for relational management provides greater flexibility for

integrating diverse datasets, which can be especially beneficial in precision

agriculture systems that rely on multi-parameter monitoring.

Firebase, developed by Google, has become one of the most widely

used Backend-as-a-Service solutions for developing mobile and web

dashboards in agriculture. It offers a wide range of services, including

Firestore, a real-time database, authentication modules, and push notifications.

These features allow farmers to visualize live sensor data and receive timely

alerts via mobile devices, thereby enhancing decision-making and operational

efficiency. Despite its advantages in rapid development and real-time updates,

Firebase employs a NoSQL data model, which may pose challenges when

handling relational agricultural datasets that require complex queries and

structured analysis (Agarwal, 2025).

AWS IoT Core and its associated services provide enterprise-level

scalability and advanced capabilities for agricultural applications. This

platform enables secure device connectivity, real-time data streaming, and

integration with other AWS services such as analytics and machine learning.

Case studies have demonstrated AWS IoT being deployed in precision

agriculture, particularly for greenhouse climate control, soil and crop sensor

integration, and predictive analytics. The robustness and scalability of AWS

make it a suitable choice for large-scale agricultural systems that demand both

reliability and advanced data processing capabilities (AWS, 2018; AWS, n.d.).

Google Cloud IoT has also been successfully applied in agricultural

projects, particularly where advanced analytics and machine learning

integration are required. A notable example is the SpaceFarm initiative, which

employed Google Cloud IoT services combined with predictive analytics to

optimize greenhouse environments. This case demonstrates the platform’s

ability to handle real-time monitoring, large-scale data management, and

predictive modeling for agricultural optimization. By leveraging Google’s

23

global cloud infrastructure, farms can integrate IoT data with advanced

machine learning pipelines to enhance decision-making and resource

management (Google Cloud, n.d.; Google, 2022).

In summary, cloud platforms for agriculture vary in complexity,

scalability, and suitability depending on farm size, objectives, and system

design. ThingSpeak and Firebase are often preferred for small-scale

deployments or prototypes due to their accessibility and real-time capabilities,

while Supabase offers flexibility through its relational data management

features. In contrast, AWS IoT and Google Cloud IoT are more suited for

enterprise-level agricultural operations, where predictive analytics, automation,

and advanced data integration are critical for achieving efficiency and

scalability.

24

Table 2.2: Comparison of Cloud Platforms for Smart Farming

Platform Key Features Strengths Limitations Suitability in Agriculture

ThingSpeak

(MathWorks)

REST API-based data

ingestion, real-time

visualization, basic

analytics

Simple setup, widely used

in research, suitable for

rapid prototyping

Limited scalability, basic

analytics only

Small-scale or

experimental farms (e.g.,

irrigation scheduling, soil

monitoring)

Supabase Open-source BaaS,

PostgreSQL relational

storage, authentication,

real-time streams

Strong relational model,

flexible for structured

datasets, open-source

ecosystem, high free tier

limit

Less adoption in

agriculture, limited

ecosystem maturity

compared to Firebase or

AWS

Precision agriculture

projects requiring

structured, multi-parameter

datasets (e.g., soil + crop

records)

Firebase (Google) Real-time DB,

authentication, push

notifications, mobile/web

dashboard integration

Fast deployment, strong

mobile integration, real-

time updates

NoSQL model complicates

relational queries and

structured analytics

Small to medium-scale

farms needing dashboards

and instant notifications

AWS IoT Core Secure device

connectivity, real-time

High scalability, robust

ecosystem, advanced

Complex setup, higher cost Enterprise-level smart

farming (e.g., greenhouse

25

data streaming, integration

with AWS analytics & ML

services

analytics & automation automation, predictive

analytics)

Google Cloud IoT Device connectivity,

ML/AI integration,

predictive modeling, large-

scale data pipelines

Strong analytics & ML

support, global cloud

infrastructure

More complex and costly

than lightweight platforms

Large-scale or research-

driven projects (e.g.,

greenhouse optimization,

predictive farming)

26

2.3.3 Data Analytics Techniques

The rapid adoption of IoT in agriculture has resulted in a growing demand for

data analytics techniques that can convert large volumes of sensor readings

into actionable insights. In the current market, analytics solutions for smart

farming can be broadly categorized into data visualization dashboards, time-

series and trend analysis, composite indices and decision-support metrics,

statistical and machine learning approaches, and predictive analytics

frameworks. Each category offers unique advantages but also presents

limitations depending on the scale of deployment, crop type, and local farming

practices (Wolfert et al., 2017).

Dashboards and visualization platforms are among the most widely

used analytics techniques in agriculture. Commercial and open-source tools

such as Grafana, Power BI, and Google Data Studio are commonly deployed

to present environmental parameters in real time. These dashboards provide

farmers with accessible summaries of temperature, soil moisture, humidity,

and nutrient levels. They also allow the integration of multiple data streams

from cloud platforms such as AWS IoT Core and Google Cloud IoT. Studies

show that dashboards improve user engagement and decision-making by

presenting complex sensor data in an interpretable format (Mekonnen et al.,

2021). However, dashboards are typically descriptive rather than predictive,

and their value depends heavily on the underlying quality of data collected.

Time-series analysis and anomaly detection techniques are also

extensively applied in the market. Vendors such as Microsoft Azure IoT and

IBM Watson IoT integrate time-series databases and anomaly detection

algorithms into their agricultural solutions, enabling farmers to detect

abnormal fluctuations in soil moisture, pH, or light intensity. Academic studies

have shown that time-series analysis supports irrigation management and

greenhouse optimization by identifying cyclical patterns and abnormal

readings (Singh et al., 2024). Despite these benefits, most applications still

rely on historical trend monitoring, with limited predictive capacity for future

conditions.

27

Composite indices and decision-support metrics have been

increasingly promoted to simplify complex agricultural data. For example,

Soil Health Indices (SHI) and crop stress indices combine multiple soil and

environmental factors into a single score that reflects overall growing

conditions (Singh et al., 2024). Commercial solutions such as CropX and

Arable use similar composite indicators to provide farmers with holistic

assessments of soil health and water efficiency. While such indices reduce the

cognitive burden on farmers, they often lack universality and require localized

calibration to specific soil types and crops, which restricts scalability across

regions.

Statistical techniques and machine learning models represent another

major area of analytics. Correlation and regression analyses are frequently

used to identify relationships between environmental variables and crop

performance, guiding targeted interventions in fertilization or irrigation

(Khanna et al., 2020). At the commercial level, companies such as Prospera

and Taranis deploy machine learning models that analyze sensor data, weather

patterns, and satellite imagery to detect early signs of crop disease or predict

yield outcomes. These approaches provide deeper insights than descriptive

analytics, but they require high-quality datasets and computational

infrastructure, which may not be feasible for smallholder farmers.

Predictive and prescriptive analytics frameworks are gaining traction

as advanced solutions in the agricultural market. Predictive analytics leverages

historical datasets combined with weather forecasts and soil models to

anticipate future conditions such as drought stress, pest outbreaks, or nutrient

deficiencies. Prescriptive analytics goes a step further by recommending

specific interventions, such as adjusting irrigation frequency or applying

fertilizer. Several agritech firms, including IBM Watson Decision Platform for

Agriculture, have incorporated such capabilities into their solutions. However,

these systems often demand high upfront investment and technical expertise,

which can limit their adoption in developing regions.

28

As summarized in Table 2.3, dashboards, time-series visualization,

and composite indices remain accessible and effective techniques for small- to

medium-scale farms, while advanced predictive and prescriptive frameworks

are more resource-intensive. In this project, emphasis is placed on dashboards,

SHI, correlation analysis, and time-series visualization to balance feasibility

with analytical depth.

29

Table 2.3: Comparison of Data Analytics Techniques in Smart Farming

Technique Purpose Advantages Limitations

Dashboards & Visualization
Present multi-sensor data in real

time through intuitive interfaces.

Easy to use, improve farmer

engagement, and integrates

multiple data streams.

Descriptive only; dependent on

data quality.

Time-Series Analysis & Anomaly

Detection

Identify temporal patterns, cycles,

and abnormal fluctuations in sensor

readings.

Supports irrigation scheduling,

greenhouse optimization;

enables anomaly detection.

Mostly retrospective; limited

predictive capacity.

Composite Indices & Decision-

Support Metrics

Aggregate multiple parameters into

simplified indices for soil or crop

health.

Provides holistic soil/crop

assessment; reduces

complexity for farmers.

Requires local calibration;

limited universality.

Statistical & Machine Learning

Models

Discover relationships or predict

outcomes from complex datasets.

Deeper insights; supports

targeted interventions.

High computation needs;

costly for smallholders.

Predictive & Prescriptive

Analytics

Anticipate future conditions and

recommend corrective actions.

Proactive insights; supports

resource optimization.

Require expertise, expensive,

less accessible in developing

regions.

30

2.3.4 Role of Data Analytics in Decision-Making

The integration of data analytics into agriculture has transformed how

decisions are made, enabling more efficient, timely, and evidence-based

practices. By analyzing IoT-generated sensor data, farmers are able to

optimize the use of inputs, monitor crop growth environments, and respond

effectively to emerging challenges. Weraikat et al. (2024) demonstrated that

the use of electrical conductivity (EC) data correlated strongly with potassium

levels in melon cultivation in southern Croatia, thereby allowing farmers to

manage nutrient application more cost-effectively without relying solely on

laboratory testing. Such findings highlight how analytics can reduce

operational costs while maintaining crop quality.

In addition to nutrient management, data analytics supports broader

operational decision-making such as irrigation scheduling, pest control, and

greenhouse climate optimization. Thilakarathne et al. (2025) noted that the

combination of IoT monitoring, and data analytics allows farmers to detect

anomalies such as soil moisture deficits or pest infestations at an early stage,

enabling corrective interventions before yield quality is compromised. This

proactive approach improves resource efficiency and reduces the risk of crop

failure.

Furthermore, analytics can enhance planning and risk mitigation by

providing farmers with insights into alternative scenarios. Getahun et al. (2024)

highlighted that predictive and scenario-based data analytics enable the

evaluation of different irrigation or fertilization strategies, thus helping farmers

to anticipate outcomes and manage risks. While advanced predictive

techniques may extend beyond the scope of this project, their role in the wider

market illustrates how analytics increasingly underpins agricultural decision-

making.

For the purposes of this project, data analytics contributes directly to

decision support through dashboards, soil health indices, correlation analysis,

and threshold-based alerts. These techniques ensure that farmers can monitor

31

real-time conditions, understand soil health status, and receive actionable

recommendations, thereby enhancing decision-making in Japanese melon

cultivation.

2.3.5 Identified Gap

Although recent literature demonstrates the growing importance of data

analytics in agriculture, several limitations persist that justify the direction of

this project:

i. Over-emphasis on advanced predictive models and machine

learning - Many studies have prioritized predictive frameworks for

yield forecasting, disease detection, and risk assessment (Getahun

et al., 2024; Thilakarathne et al., 2025). While effective, such

approaches demand large datasets, high computational resources,

and specialized expertise, making them less feasible for

smallholder farmers or resource-constrained environments.

ii. Limited practical implementation of composite indices -

Although composite measures such as the Soil Health Index (SHI)

have been highlighted as valuable tools for simplifying multi-

parameter soil quality evaluation (Weraikat et al., 2024), their use

remains largely conceptual. Few studies demonstrate their

integration into real-time, field-ready decision-support systems

accessible to farmers.

iii. Challenges in data latency, accessibility, and usability -

Connectivity limitations, delayed data transmission, and lack of

user-friendly interfaces are frequently reported as barriers to

adoption. Thilakarathne et al. (2025) emphasized that rural

connectivity gaps hinder IoT applications, while Weraikat et al.

(2024) noted that reliable, continuous data flow is critical for

supporting timely decision-making in agricultural contexts.

In light of these gaps, this project seeks to develop an affordable and

practical IoT-based system that integrates accessible analytics techniques—

namely dashboards, SHI, correlation analysis, and alert mechanisms—into a

32

web-based platform for Japanese melon farming. By prioritizing

interpretability, real-time usability, and cost-effectiveness, the project

addresses the need for actionable insights without the complexity and resource

intensity of advanced predictive models.

2.4 Decision Support Systems in Agriculture

2.4.1 Concept and Frameworks

Decision Support Systems (DSS) in agriculture are computer-based tools

designed to aid farmers, agronomists, and stakeholders in making informed

management decisions by combining data input, rules or models, and decision

logic. Three main types/frameworks are common:

i. Rule-based / Threshold-based systems - These rely on

predetermined thresholds or rule sets. For instance, when soil

moisture drops below a certain level, trigger irrigation; or when a

pest risk index exceeds a threshold, recommend pesticide

application. Such systems are relatively simple to implement and

transparent but may lack adaptability to varying conditions.

ii. Advisory / Expert systems - These integrate expert agricultural

knowledge (often domain rules, crop models, historical data) to

offer recommendations beyond just thresholds. They may

incorporate soil and weather model simulations, or disease/pest risk

predictions, offering advice such as nutrient management,

scheduling, or crop protection strategies.

iii. Hybrid and Model-based frameworks - These combine

threshold/rule-based logic with statistical, mechanistic, or even

machine learning models to provide more sophisticated advice (e.g.

predictions, scenario planning). They often handle multiple

parameters (soil, weather, crop growth stage), allow what-if

simulations, adapt over time with updated data.

These frameworks differ in complexity, data requirements,

computational need, and usability. As more agriculture becomes connected

(IoT, remote sensing), there is an increasing shift toward hybrid DSS that can

33

process real-time sensor data and provide dynamic advice rather than static

guidelines.

2.4.2 Benefits and limitations of DSS

Decision Support Systems (DSS) provide several benefits in agriculture. They

enable timely interventions by detecting risks such as pests, diseases, or soil

stress early, allowing farmers to respond before serious damage occurs

(Tratwal, 2025). DSS also reduces risks by combining forecasts, thresholds,

and models to minimize uncertainty in farm management decisions (Tratwal,

2025). In addition, they improve resource efficiency, optimizing water,

fertiliser, and pesticide use, which enhances productivity while reducing

environmental impacts (Petraki et al., 2025).

However, DSS face notable limitations. Many lack real-time IoT

integration, relying on periodic or forecast data that reduce responsiveness

(Tratwal, 2025). Real-time alerts are also scarce; while some systems provide

warnings, few offer mobile push notifications, with recent prototypes such as

Jouini (2025) still limited in scope. Usability is another concern, as complex

interfaces and poor connectivity hinder adoption in smallholder contexts

(Petraki et al., 2025). Moreover, most DSS have a narrow focus, addressing

single issues such as irrigation or pest control rather than delivering

comprehensive, multi-parameter decision support.

In summary, DSS enhances agricultural decision-making through

timely, risk-aware, and efficient interventions, but their effectiveness is

constrained by gaps in real-time functionality, usability, and breadth of support.

2.4.3 Identified Gap

Based on recent literature (2020-2025), the gaps in Decision Support Systems

for agriculture that this project aims to address are:

i. Absence of systems combining real-time push notifications with

comprehensive advisory support - While warning systems and

alerts exist in some DSS (e.g. pest/disease risk alerts), integration

34

of mobile push notifications triggered by IoT sensor thresholds

across multiple parameters is rare.

ii. Limited integration of full environmental and soil parameter

sets in one DSS - Many DSS focus on single or few parameters

(e.g. pest risk + weather or irrigation only), but do not include a

broad set like soil moisture, soil pH, conductivity, temperature

together with advisory logic.

iii. Poor usability and accessibility for farmers with constrained

resources - There is a gap in systems designed for user-friendly

interaction, low infrastructure dependency, and operation under

limited connectivity, especially in greenhouse or small-farm

environment contexts.

iv. Lack of systems validated under operational conditions for

specific crops such as Japanese melon - Few DSS studies are

applied and evaluated for specific cultivars and under real

greenhouse or controlled environments. Crop-specific validation is

sparse.

2.5 Comparative Analysis of Related Works

2.5.1 Overview of Existing Smart Farming Systems

Recent smart-farming solutions converge on an IoT→ (edge/fog) →cloud

pipeline with web/mobile dashboards and varying levels of decision support.

Reviews and systems papers consistently report multi-sensor deployments

(soil moisture, EC, pH, temperature, humidity, light) streaming to cloud

databases and dashboards for greenhouse and field control (Bersani et al.,

2022; Maraveas, 2022; Soussi et al., 2024). Edge/fog architectures have

emerged to cut latency and dependency on wide-area links, improving

responsiveness for time-critical actions (Hong et al., 2024). At the DSS layer,

integrative platforms such as DAKIS combine heterogeneous data (in-situ

sensors, remote sensing, models) to support land-use and management choices

but are often strategic rather than crop-specific operational. For cucurbits,

greenhouse studies increasingly exploit data-driven methods; for example,

climate forecasting in greenhouses with netted melons (a Japanese-melon type)

35

shows how analytics can anticipate environmental dynamics, albeit with

research-grade ML rather than deployable farmer tools.

2.5.2 Comparative of recent smart farming system

i. Bersani et al. (2022) — IoT in smart greenhouses (state of the

art).

Bersani and colleagues survey IoT approaches for greenhouse monitoring and

control, synthesising common sensing stacks (soil moisture,

temperature/humidity, light, CO₂), network protocols (MQTT/HTTP), and

typical cloud dashboards/actuation loops for irrigation and ventilation. The

review underlines tangible benefits (continuous observation, automation

potential) but also recurrent challenges, notably integration and

interoperability across heterogeneous devices and the tendency of deployments

to plateau at descriptive monitoring rather than mature, farmer-facing decision

support. This positions greenhouse IoT as technically robust yet often under-

leveraged analytically (Bersani et al., 2022).

ii. Maraveas & Bartzanas (2021) — IoT for optimised greenhouse

environments (review).

Maraveas and Bartzanas compile evidence on IoT-enabled optimisation of

microclimate and irrigation, emphasising low-cost sensor integration, remote

monitoring, and efficiency-oriented KPIs for greenhouse management. The

review discusses scheduling/optimisation themes and reports actuation (e.g.,

irrigation/ventilation), while flagging constraints in generalisability and

operational usability (connectivity, human factors). It concludes that, although

IoT can improve energy and input efficiency, many systems need better

decision logic and farmer-friendly interfaces to translate sensing into day-to-

day actions (Maraveas & Bartzanas, 2021).

iii. Hong et al. (2024) — Fog-computing smart farm

(implementation study).

Hong et al. implement an IoT smart-farm architecture that moves computation

from cloud to fog/edge nodes. Through controlled experiments they compare

communication protocols and network traffic, showing fog reduces overheads

36

and latency, enabling quicker responses for time-sensitive farm events. While

the work evidence infrastructure-level gains and hints at faster operational

decisions, the decision logic remains system-specific and the study

foregrounds performance rather than farmer-facing advisory design (Hong et

al., 2024).

iv. Soussi et al. (2024) — Smart sensors & smart data for precision

agriculture (review).

Soussi and co-authors review sensing modalities and data pipelines in

precision agriculture, with attention to mobile-accessible, cloud-backed

visualisation. They highlight trends in data fusion and “smart data” practices

while pinpointing persistent issues around data quality, integration, and

standardisation that limit analytics depth. Although real-time monitoring is

well covered, the review indicates that alerts and comprehensive decision

support are less consistently embedded, especially for small and medium

growers (Soussi et al., 2024).

37

Table 2.4: Feature comparison across recent smart-farming systems

Study /

System

IoT Integration Data

architecture

Analytics Capability Decision Support

Logic

Real time

notifications

Key limitations

Bersani et al.

(2022) —

review of IoT

in smart

greenhouses

Surveys soil &

climate sensing

(moisture, temp,

RH, light, CO₂),

typical

MQTT/HTTP stacks

Device→

gateway→

cloud patterns

consolidated

Mostly

descriptive/diagnostic

dashboards across

surveyed works

Threshold/guideline

logic referenced across

cases

Mixed across

surveyed cases

Many cases stop

at monitoring;

fragmented

decision logic.

(Bersani, 2022).

Maraveas &

Bartzanas

(2021) — IoT

for optimised

greenhouse

environments

Emphasises

microclimate &

irrigation sensing;

integration of low-

cost sensors

Cloud-centric

remote

monitoring

Descriptive KPIs;

efficiency metrics for

climate/irrigation

Scheduling/optimisation

themes discussed

Not a central

focus

Operational

usability +

generalisability

challenges

flagged.

(Maraveas &

Bartzanas, 2021).

Hong et al.

(2024) — fog

Standard sensors;

tests of

Fog/edge

nodes reduce

Low-latency

processing; some

Faster operational

decisions feasible

Enables quicker

triggers (design

Strong latency

results; decision

38

computing

smart farm

HTTP/MQTT/CoAP round-trip

latency vs

cloud

CV/AI classification

at edge

shows potential) rules still system-

specific. (Hong et

al., 2024).

(MDPI)

Soussi et al.

(2024) —

“Smart

Sensors &

Smart Data”

Broad sensing

landscape; phone-

accessible

monitoring

Cloud

dashboards;

mobile access

Real-time

visualisation; data

fusion trends

Operational insight

emphasis

Alerts not

primary emphasis

Highlights data

quality/integration

hurdles for

analytics depth.

(Soussi et al.,

2024). (MDPI)

39

2.5.3 Strengths and Weaknesses of Prior Studies

Strengths:

i. Robust sensing and pipelines - Multi-sensor IoT stacks with cloud

dashboards are well-documented, giving reliable

environmental/soil monitoring at scale (Bersani et al., 2022;

Maraveas, 2022; Soussi et al., 2024).

ii. Latency-aware architectures - Fog/edge deployments lower

round-trip times and increase resilience when uplinks are unreliable

(Hong et al., 2024).

Weaknesses / gaps:

i. Operational DSS depth - Many deployments stop at descriptive

dashboards or generic alerts; composite soil indices and variable-

relationship views (e.g., correlation heatmaps) are rarely integrated

into day-to-day farmer workflows in peer-reviewed greenhouse

DSS (Bersani et al., 2022; Soussi et al., 2024).

ii. Real-time mobile or web push notifications - While remote

monitoring via smartphones or web is reported, unified push

notifications tied to multi-parameter thresholds (soil + environment)

are not consistently evidenced across greenhouse systems literature.

2.5.4 Positioning of the Present Study

Synthesizing the related works retained in this review shows a mature baseline

for sensing and connectivity but uneven depth in farmer-facing decision

support. Reviews of greenhouse IoT commonly report strong multi-sensor

pipelines and cloud dashboards, yet many deployments plateau at descriptive

monitoring with fragmented rules and limited, user-oriented advisory logic

(Maraveas and Bartzanas, 2021; Bersani, Gennaro and Trobia, 2022).

Edge/fog designs demonstrate latency advantages at the infrastructure layer

(Hong et al., 2024), while broader “smart sensors/smart data” surveys

40

highlight persistent gaps in data quality, integration, and the embedding of

actionable alerts for growers (Soussi et al., 2024). Against this backdrop, the

present study is positioned as an operational, crop-focused DSS for Japanese

melon greenhouses that bridges the space between simple dashboards and

research-grade AI.

i. End-to-end, crop-specific IoT integration - The system

instruments the greenhouse with commodity sensors aligned to

melon agronomy (air temperature/humidity; soil moisture,

temperature, pH, EC/TDS; light intensity) and streams data

continuously to the cloud. This adheres to established device→

gateway→cloud practice while tailoring parameters to a concrete

cultivation context, addressing the “generic monitoring” bias

noted by prior reviews (Maraveas and Bartzanas, 2021; Bersani,

Gennaro and Trobia, 2022).

ii. Mid-tier analytics for actionable interpretation - Beyond time-

series charts, the system computes a Soil Health Index (SHI) and

correlation heatmaps that condense multi-variable soil–

environment states into interpretable signals. This design

deliberately targets the “monitoring-only” limitation—providing

decision-ready summaries without the data/skill overhead of

machine learning—thereby operationalising the “smart data”

direction called for in recent surveys (Bersani, Gennaro and Trobia,

2022; Soussi et al., 2024).

iii. Unified threshold-based advisory with real-time push

notifications - Calibrated multi-parameter thresholds (e.g.,

moisture/EC/pH bands and microclimate set-points at different

growth stages) drive mobile push alerts that map directly to

corrective actions (irrigation adjustment, fertigation checks,

ventilation changes). Whereas related literature frequently reports

remote viewing or simple warnings, comprehensive, push-style

guidance tied to continuous IoT streams is inconsistent; the present

study addresses this usability and responsiveness gap (Soussi et al.,

41

2024), while remaining compatible with edge-side checks where

low latency is critical (Hong et al., 2024).

iv. Evaluation under operational constraints and farmer usability

- The study evaluates responsiveness (sensor→dashboard latency),

alert timeliness, data completeness and reliability, and dashboard

usability—metrics that map directly to the project’s objectives on

real-time monitoring, analytics-with-visualization, and decision

support. This emphasis on operational validity for a specific crop

complements the largely technology-centric evaluations in the

compared works (Maraveas and Bartzanas, 2021; Bersani, Gennaro

and Trobia, 2022; Hong et al., 2024).

Collectively, these choices position the system as a practical,

interpretable, and real-time DSS: it leverages the proven IoT/cloud backbone

in the literature, incorporates mid-tier analytics that farmers can act on, and

closes an identified gap in unified threshold-to-push decision support for

controlled-environment Japanese melon cultivation (Soussi et al., 2024; Hong

et al., 2024; Bersani, Gennaro and Trobia, 2022; Maraveas and Bartzanas,

2021).

2.5.5 Research Gap

The comparative review of recent smart-farming systems highlights clear

progress in IoT-based sensing, cloud connectivity, and greenhouse monitoring

dashboards. Studies such as Bersani, Gennaro and Trobia (2022) and

Maraveas and Bartzanas (2021) confirm that multi-sensor deployments are

technically mature and capable of providing reliable environmental and soil

data streams. Fog and edge architecture has also been proposed to reduce

latency and enhance responsiveness in smart farms (Hong et al., 2024).

Furthermore, reviews of sensor and data practices show that mobile-accessible

dashboards and cloud integration are becoming increasingly common (Soussi

et al., 2024).

Despite these advances, several critical gaps remain:

42

i. Descriptive monitoring without deeper analytics - Most systems

focus on dashboards and raw time-series visualization, but few

integrate mid-tier analytics such as composite indices or

correlation-based insights that convert raw values into interpretable

indicators for day-to-day farm decisions (Soussi et al., 2024).

ii. Limited real-time, multi-parameter notifications - While some

systems provide threshold warnings, unified push notifications that

combine soil and environmental parameters in real time are largely

absent, limiting their usefulness for immediate farmer response

(Hong et al., 2024).

iii. Lack of crop-specific operationalization - Many solutions remain

generic, designed for broad greenhouse contexts, without

calibration for specific crops such as Japanese melon, whose

growth requires finely tuned environmental and soil parameters

(Maraveas and Bartzanas, 2021).

These gaps indicate the need for a smart-farming system that goes

beyond generic monitoring by integrating accessible, interpretable analytics

and real-time push-based decision support tailored to a specific crop.

Addressing this gap is essential to ensure that IoT-enabled farming systems

provide actionable knowledge rather than raw data, and that they are practical

for adoption in resource-constrained greenhouse environments.

43

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter outlines the methodology and work plan adopted for the

development of the smart farming system for Japanese melons. It describes the

step-by-step approach taken to develop the system and covers discussion on

selected software development methodology, breakdown of each development

phases. Additionally, this chapter presents the work plan, detailing the project

timeline, tasks, and milestones to ensure systematic and timely project

execution.

3.2 System Development Methodology: Rapid Application

Development (RAD)

Figure 3.1: RAD methodology phases (Leonardo and Wiratama, 2023)

Rapid Application Development (RAD) was first introduced by James Martin

in the 1980s while working at IBM (Rapid Application Development: RAD

Methodology Roadmap, 2024). It is a software development methodology that

emphasises rapid prototyping, iterative design, and continuous user

involvement to deliver functional systems within shorter timeframes. Unlike

traditional methodologies that rely on extensive upfront planning, RAD

prioritises the early construction of working prototypes, which are refined

through successive iterations based on stakeholder feedback (Information

44

Systems Development: Rapid Application Development | Saylor Academy, no

date). This iterative nature makes RAD particularly suitable for projects where

requirements may evolve or where flexibility is critical.

In the context of this smart farming system for Japanese melons, the adoption

of RAD offers several advantages:

i. Accelerated prototyping and testing of IoT components, including

sensors and user interfaces.

ii. Active incorporation of stakeholder feedback, particularly from the

project supervisor to refine functionalities such as real-time data

visualisation and automated irrigation.

iii. Enhanced adaptability to changing requirements, ensuring that the

final system is not only technically sound but also aligned with

practical user needs.

3.2.1 Requirements Planning Phases

The first phase of the Rapid Application Development (RAD) methodology is

the Requirements Planning phase, which serves as the foundation for the smart

farming system designed for Japanese melon cultivation. During this phase,

the overall objectives, core functionalities, and project scope are

systematically identified through close collaboration with key stakeholders,

including supervisors and lecturers. A comprehensive literature review is

conducted to examine existing approaches, technologies, and solutions

available in the field of smart farming. This process provides critical insights

into best practices, highlights how similar challenges have been addressed in

prior research, and identifies opportunities for innovation in the present study.

Both functional and non-functional requirements are then elicited and

documented to ensure clarity in system expectations. Based on these

requirements, a Work Breakdown Structure (WBS) is developed to decompose

the project into manageable tasks, thereby clarifying deliverables and

organizing the overall project flow. Following this, use case diagrams are

created to model the interactions between users and the system, while

45

accompanying use case descriptions provide detailed explanations of each

interaction. To further operationalize the project plan, a Gantt Chart is

employed to schedule the tasks identified in the WBS, establish milestones,

allocate resources, and track progress.

To support requirement validation, conceptual mockups is developed

to help visualize the intended system flow. The outputs of this phase therefore

include a clearly defined system scope and objectives, validated functional and

non-functional requirements, use case models, WBS, and a Gantt Chart, all of

which establish a strong foundation for the rapid prototyping and iterative

development to follow.

3.2.2 User Design Phase

The User Design phase builds upon the requirements identified earlier and

focuses on the iterative development of software prototypes for the smart

farming systems. In this phase, functional mock-ups of the web application are

created and refined through multiple cycles of stakeholder feedback. The

emphasis is placed on ensuring usability, system responsiveness, and the

accuracy of data presentation.

Initial prototypes are developed for the frontend interface using

Angular and Tailwind CSS, providing visualization of core features such as

real-time sensor monitoring, threshold-based alerts, and task scheduling. To

support this, the backend services are prototyped using Spring Boot, enabling

the integration of Supabase for database management and authentication.

Additionally, static images of Grafana dashboards are embedded to present

analysis graph.

Throughout this phase, regular feedback is collected from the project

supervisor to evaluate usability, clarity of data visualization, and intuitiveness

of the overall interface. Identified issues such limited visual clarity in charts,

or overly complex navigation are addressed in subsequent iterations.

46

Prototyping continues until the system achieves a level of stability and

usability that aligns with both functional requirements and user expectations.

By adopting this iterative, user-centered approach, the User Design

phase ensures that potential challenges are identified and resolved early in the

development lifecycle. This reduces risks, strengthens the reliability of the

system, and provides a solid foundation for the subsequent Rapid Construction

phase.

3.2.3 Construction Phase

The Rapid Construction phase is the stage where the actual development of the

smart farming system is undertaken. Building upon the validated prototypes

from the User Design phase, this stage emphasizes the iterative coding,

integration, and refinement of the software components. Development

activities are carried out in short cycles, enabling quick incorporation of

feedback and timely resolution of issues.

Key activities in this phase include the implementation of the system

architecture, integration of the database and services, and the development of

user interfaces into a cohesive application. Each software module is developed

and tested incrementally to ensure that it functions correctly in isolation before

being combined with other modules. Testing activities are embedded

throughout the phase, comprising unit testing, integration testing and system

testing. These activities collectively validate the accuracy, stability, and

performance of the system.

A defining feature of this phase is its iterative nature. Any

shortcomings identified during testing or stakeholder feedback sessions are

promptly addressed in subsequent development cycles. This ensures that the

system progressively evolves towards its intended quality, functionality, and

usability. Continuous consultation with the supervisor further ensures that the

development process remains aligned with project objectives and technical

requirements.

47

3.2.4 Cutover Phase

The Cutover phase is the final stage of the RAD methodology and focuses on

transitioning the developed system into an operational environment. This

phase includes final testing, documentation, and presentation. Development

work carried out in earlier phases is consolidated into a fully functional

application that is ready for use and assessment.

Key activities in this phase include the deployment of the backend

services onto a cloud platform and the hosting of the Angular-based frontend

for seamless access across devices. Comprehensive integration and acceptance

testing are conducted to verify that data flows smoothly through the system,

ensuring reliability, stability, and usability. A demonstration session is also

organized with the project supervisor to present the system’s capabilities and

gather final feedback. Any residual issues, such as usability concerns or minor

bugs, are promptly addressed prior to submission.

In parallel, thorough documentation is prepared to support both

academic evaluation and potential future system adoption. This includes the

final FYP report, a user manual, updated architecture diagrams, and a

reflection report outlining challenges encountered, lessons learned, and

recommendations for future improvement.

3.3 Work Breakdown Structure (WBS)

1. Rapid Planning and requirement gathering

1.1 Problem identification

1.1.1 Identify current challenges

1.1.2 Analyse limitations of existing solutions

1.1.3 Define the real-world need for a smart farming system

1.2 Define objectives and scope

1.2.1 Determine expected project outcomes

1.3 Literature Review

1.3.1 Study existing musk melon planting techniques

1.3.2 Study data collection, storage and visualisation techniques

48

1.3.3 Study existing smart faming websites and system

1.4 Define methodology

1.4.1 Survey and compare existing software development

methodology

1.4.2 Choose software development methodology

1.4.2.1 Define RAD prototype iteration and goals

1.5 Work planning

1.5.1 Create project timeline with Gantt chart

1.5.2 Define key deliverables and milestones

1.5.3 Assign tentative deadlines for each task

1.6 Project specification

1.6.1 Define system requirements

1.6.2 Specify software tech stack

1.7 Initial proposal document

1.7.1 Prepare and submit proposal document

1.7.2 Prepare proposal presentation slides

1.7.3 Conduct initial presentation

2. Prototype 1: Sensor Integration & Data Acquisition

2.1 Select sensors and microcontroller

2.1.1 Choose sensors

2.1.2 Select suitable microcontroller

2.2 Define wiring and connection layout

2.3 Develop data acquisition script

2.3.1 Write microcontroller script for data reading

2.4 Integrate sensors and microcontroller

2.5 Set up IoT gateway for data transfer

2.5.1 Configure Wi-Fi module

2.5.2 Send data to temporary cloud endpoint

2.6 User review and feedback

2.6.1 Demonstrate sensor system to users or supervisors

2.6.2 Collect improvement suggestions

2.7 Refine based on feedback

2.7.1 Adjust scripts or hardware if needed

49

2.7.2 Finalize prototype 1 design

3. Prototype 2: Dashboard & Data Visualization

3.1 Design simple website for dashboard

3.2 Set up frontend and backend projects

3.2.1 Initialize Angular project with Tailwind and Ng Zorro

3.2.2 Set up Spring Boot backend

3.3 Implement RESTful APIs and database connection

3.3.1 Create CRUD endpoints for sensor data

3.3.2 Integrate PostgreSQL database

3.4 Build dashboard for environmental data

3.5 Conduct usability testing with users

3.6 Gather feedback and iterate improvements

3.6.1 Modify UI elements based on feedback

4. Prototype 3: Notification & Report System

4.1 Define report generation structure

4.1.1 Determine daily, weekly, and monthly summaries

4.2 Implement notification feature

4.2.1 Define thresholds for each parameter

4.2.2 Set up notification alert mechanisms

4.3 Design report UI and export options

4.4 User testing and feedback collection

4.5 Refine and finalize modules

5. Continuous Cloud Integration & Deployment

5.1 Select cloud provider

5.1.1 Compare AWS, Firebase, and Azure

5.1.2 Choose provider based on needs and free tier

5.2 Set up cloud database and hosting

5.2.1 Deploy database instance

5.2.2 Create hosting environment for backend

5.3 Containerize and deploy backend

5.3.1 Push to cloud and test API endpoints

5.4 Deploy frontend to cloud

5.4.1 Upload Angular build to cloud storage/CDN

50

5.4.2 Configure DNS or Firebase Hosting

5.5 Implement secure API access

6. Iterative Testing & Feedback

6.1 Unit testing

6.2 Integration testing

6.3 System testing

6.4 Usability testing

6.5 User acceptance testing (UAT)

7. Documentation & Final Report

7.1 Prepare poster and final presentation slides

7.2 Set up demo environment

8. Project Closure & Reflection

8.1 Final deployment

8.2 Supervisor review and feedback

8.3 Reflection and lessons learned

8.3.1 Summarize challenges and resolutions

51

3.4 Gantt Chart

Figure 3.2: Gantt Chart overview

52

Figure 3.3: Gantt Chart detail view 1

Figure 3.4: Gantt Chart detail view 2

Figure 3.5: Gantt Chart detail view 3

Figure 3.6: Gantt Chart detail view 4

Figure 3.7: Gantt Chart detail view 5

53

Figure 3.8: Gantt Chart detail view 6

Figure 3.9: Gantt Chart detail view 7

Figure 3.10: Gantt Chart detail view 8

Figure 3.11: Gantt Chart detail view 9

Figure 3.12: Gantt Chart detail view 10

54

Figure 3.13: Gantt Chart detail view 11

Figure 3.14: Gantt Chart detail view 12

Figure 3.15: Gantt Chart detail view 13

Figure 3.16: Gantt Chart detail view 14

55

Figure 3.17: Gantt Chart detail view 15

Figure 3.18: Gantt Chart detail view 16

Figure 3.19: Gantt Chart detail view 17

3.5 Development Tools

The development of the smart farming system for Japanese melon cultivation

was supported by a range of software frameworks, cloud platforms, and

auxiliary tools. Each tool was selected to address specific requirements of the

system, including backend integration, frontend design, database management,

analytics visualisation, and notification delivery. The following subsections

describe the major tools employed and their roles in the project.

3.5.1 Backend Development Tools

The backend of the system was implemented using Spring Boot, a Java-based

framework that simplifies the development of scalable and modular

56

applications. Spring Boot provided the foundation for building RESTful API

endpoints, which handle the retrieval, storage, and processing of IoT sensor

data. It also facilitated the implementation of the threshold evaluation and

suggestion mechanism, ensuring that incoming data could be validated against

predefined parameters. To streamline the build and deployment process,

Gradle was used as the primary build automation tool. Gradle managed

dependencies, compiled the project, and automated testing, which collectively

improved the efficiency and consistency of backend development.

3.5.2 Frontend Development Tools

The frontend was developed using the Angular framework, chosen for its

ability to support responsive, dynamic, and component-driven user interfaces.

Angular enabled the creation of an interactive dashboard through which users

could monitor real-time sensor data, view graphical trends, and access

decision-support features. To enhance the visual design of the application,

Tailwind CSS was integrated, allowing the implementation of a clean and

consistent interface while maintaining flexibility in styling. In addition, Ng

Zorro Ant Design was adopted as a UI component library, which accelerated

development by providing ready-made, professional-grade interface

components, ensuring both functionality and consistency in user interaction.

3.5.3 Database and Cloud Tools

Data storage and management were achieved through Supabase, an open-

source platform built on PostgreSQL. Supabase served as the primary database

for storing sensor readings, user profiles, and system configurations. It also

provided built-in authentication services, simplifying the management of user

access. To accommodate the limitations of the IoT hardware in transmitting

secure HTTPS requests, ThingSpeak was introduced as an intermediary IoT

gateway. Sensor data were first uploaded to ThingSpeak using HTTP

protocols and later synchronised into Supabase through an Extract, Transform,

Load (ETL) process. This integration ensured reliable and secure storage of

real-time data within the central database.

57

3.5.4 Data Analytics and Visualisation Tools

For advanced data analytics and visualisation, Grafana was integrated into the

system. Grafana provided interactive dashboards for time-series visualisation

of environmental parameters, correlation heatmaps to identify relationships

between variables, and a Soil Health Index (SHI) to present composite metrics.

By embedding Grafana dashboards into the Angular application, the system

offered both real-time monitoring and historical trend analysis, thereby

supporting informed decision-making for melon cultivation.

3.5.5 Notification and Messaging Tools

To support real-time communication with users, Firebase Cloud Messaging

(FCM) was employed as the push notification service. FCM enabled the

system to send alerts whenever sensor readings exceeded the warning or

critical thresholds defined in the parameter configuration. This ensured that

users received timely updates, even when not actively logged into the system,

thereby enhancing the reliability of the decision-support mechanism.

3.5.6 Project Management and Documentation Tools

Several additional tools were employed to facilitate project management and

documentation. Git, together with GitHub, was used for version control,

enabling systematic tracking of source code changes and collaborative

development. For technical documentation and reporting, Microsoft Word was

used to prepare the Final Year Project report, while Draw.io was employed to

design system architecture diagrams, entity-relationship diagrams (ERD), and

data flow diagrams (DFD). These tools supported the systematic organisation

of development activities and ensured the production of professional

documentation to accompany the implemented system.

58

CHAPTER 4

4 PROJECT SPECIFICATION

4.1 Introduction

This chapter presents the detailed specifications of the smart farming system

developed for Japanese melon cultivation, serving as the foundation for the

subsequent design and implementation. It begins by outlining the functional

and non-functional requirements, which define the system’s expected

capabilities and quality attributes. To further specify the system’s behaviour,

use case models are introduced, consisting of a use case diagram that

illustrates user interactions with the system and accompanying descriptions

that elaborate on the roles, actions, and flows involved. In addition, conceptual

prototypes are provided to visualise the initial interface design and

demonstrate key functionalities, allowing early validation of system

requirements. Collectively, these specifications establish a comprehensive

blueprint that ensures the objectives, requirements, and user interactions of the

smart farming system are well-defined prior to detailed design and

development.

4.2 System Requirements

4.2.1 Functional Requirements

The smart farming system is designed to support various essential

functionalities that contribute to efficient farm management, particularly for

melon cultivation. Each function plays a critical role in ensuring data-driven

decision-making, resource optimization, and task tracking. The following

sections outline and elaborate on the core functional requirements of the

system:

i. User authentication module

The system shall provide secure authentication to manage user access. It shall

allow users to log in using their registered credentials, specifically an email

address and password, which must be validated during authentication. The

system shall also support password reset functionality in cases where users

59

forget their credentials. To maintain security, only administrators shall be

permitted to register new users by using the user’s email.

ii. User Profile Management Module

The system shall provide functionality for users to manage their personal

profiles. Users shall be able to view and update basic information, including

name, email, and contact details. Administrators shall have the ability to

manage user roles to ensure that appropriate access levels are maintained. The

system shall also allow the storage of device tokens linked to user accounts,

enabling personalised push notifications through the notification service.

iii. Farming Activity Management Module

The system shall provide functionality to manage farming activities such as

irrigation, fertilisation, and weed removal. Users shall be able to schedule

activities for tracking and analysis. Integration with external weather APIs

should be included to display forecasts, such as rain or extreme heat. Users

shall be able to view, add, update, and delete farming activities.

iv. Sensor Data Collection, Storage, and Visualisation Module

The system shall collect environmental readings, including air temperature,

humidity, soil moisture, soil pH, soil conductivity, soil temperature, soil TDS,

and light intensity, from IoT sources. All data shall be securely stored in a

cloud-based database and visualised through interactive charts and graphs to

support monitoring. Alerts shall be triggered when sensor readings exceed

defined thresholds, and these alerts shall be delivered via notifications.

v. Sensor Threshold Configuration Module

The system shall provide users with the ability to configure threshold values

for each monitored parameter, including minimum, maximum, and warning

levels. Users shall be able to view these thresholds to understand optimal

ranges for cultivation. The system shall use the configured thresholds to

generate automated alerts and decision-support suggestions whenever

parameter values fall outside the acceptable limits. The configuration records

60

shall be stored in the database and updateable by authorised users, ensuring

flexibility in adapting the system to changing farming conditions.

4.2.2 Non-Functional Requirements

The non-functional requirements define the quality attributes and operational

constraints of the smart farming system. These requirements ensure that the

system not only fulfils its intended functionalities but also delivers

performance, reliability, and usability standards expected for real-world

application.

i. Performance Requirements

The system shall process and update environmental sensor data with minimal

delay to support near real-time monitoring. The dashboard shall load within

acceptable time limits, with the Largest Contentful Paint (LCP) metric targeted

at less than two seconds to provide a smooth user experience.

ii. Reliability Requirements

The system shall achieve a minimum of 95% data transmission success rate

from the IoT gateway to the cloud database to ensure data completeness. In

case of temporary network disruptions, mechanisms shall ensure that sensor

data are synchronised once connectivity is restored. Critical functionalities

such as threshold monitoring and notification delivery shall remain

consistently available to guarantee continuous system reliability.

iii. Usability Requirements

The system shall provide a user-friendly and intuitive interface. Dashboards

and charts shall employ clear visualisation techniques with appropriate

labelling to assist interpretation. User interactions, such as scheduling tasks

and configuring thresholds, shall be designed to require minimal training,

thereby supporting adoption by non-technical users such as farmers.

iv. Security Requirements

61

The system shall enforce secure authentication through user credentials, with

role-based access control to differentiate privileges between administrators and

standard users. Sensitive data such as sensor readings, user details, and

configuration records shall be stored securely in the cloud database.

4.3 Use Case Diagram

Figure 4.1: Use Case Diagram

4.4 Use Case Description

Use Case Name: User

login

ID: UC001 Significance Level:

High

Primary Actor: User Use Case Type: Detail, Essential

Stakeholders and Interests:

User: Needs to access their personal account on the smart farming system by

62

logging in.

Brief Description:

This use case outlines the process of a registered user signing into the smart

farming platform.

Trigger: User navigates to the smart farming website.

Relationships:

Association: User

Include: N/A

Extend: Password Recovery

Generalization: N/A

Normal Flow of Events:

1. The user visits the smart farming website.

2. The website presents a login form.

3. The user enters valid email and password. If they cannot remember

their password, the S-1 Password Recovery sub-flow is initiated.

4. The user pressed login button.

5. The system validates the provided credentials. If they are not correct,

proceed to Exception Flow 6.1.

Sub-flows:

S-1 Recover account

1. The user selects the “Forgot Password” option on the login page.

2. The system shows the password reset interface.

3. The user provides their registered email address and submits the

request.

4. The application generates a password reset link and sends to user’s

email address.

5. The user accesses the reset link and sets a new password.

6. Return to step 2 of the main flow.

Alternate/Exceptional Flows:

6.1 Invalid Credentials

1. The system displays an error notification indicating incorrect login

information.

2. The user is prompted to reattempt the login process.

63

Use Case Name:

Account Registration

ID: UC002 Significance Level: High

Primary Actor: Admin Use Case Type: Detail, Essential

Stakeholders and Interests:

Admin: Responsible for creating accounts so that new users can gain access to

the smart farming system.

Brief Description:

The use case describes how the admin can register a new account for a new

user.

Trigger: Admin wants to add new user to the smart farming system.

Relationships:

Association: Admin

Include: N/A

Extend: N/A

Generalization: N/A

Normal Flow of Events:

1. The administrator navigates to the “Add New User” page from the side

menu.

2. The administrator provides the new user’s email address on the

registration form.

3. The administrator submits the registration details.

4. The system checks the validity of the input. If the email is incorrectly

formatted or already exists in the database, continue to Exception Flow

4.1.

5. When the data is valid, the system displays a success message and sends

a registration link to the new user’s email.

Sub-flows:

-

Alternate/Exceptional Flows:

4.1 Invalid or Duplicate Email Entry

1. The system shows an error indicating the email format is invalid or the

address is already registered.

64

2. The administrator is asked to repeat the registration process with correct

information.

Use Case Name:

Edit user profile

ID: UC003 Significance Level: High

Primary Actor: User Use Case Type: Detail, Essential

Stakeholders and Interests:

Admin and user: Require the ability to modify and maintain accurate profile

information.

Brief Description:

This use case explains how a registered user can update their profile details

such as username, email address, and password.

Trigger: The process starts when the user decides to change their profile

information.

Relationships:

Association: User

Include: N/A

Extend: N/A

Generalization: N/A

Normal Flow of Events:

1. The user opens the profile page and selects the “Edit” option.

2. The user enters the updated information (username, email, or password).

3. The user confirms and submits the changes. If the input is in an invalid

format or already in use, proceed to Exception Flow 3.1.

4. Once validated, the system shows a success notification and displays the

revised profile information.

Sub-flows:

Alternate/Exceptional Flows:

3.1 Duplicated or Invalid Profile Information

1. The system notifies the user with an error message indicating invalid or

already existing credentials.

2. The system prompts user to enter their credentials again.

65

Use Case Name:

Real-Time

Environmental

Monitoring

ID: UC004 Significance Level: High

Primary Actor: User Use Case Type: Detail, Essential

Stakeholders and Interests:

User: Requires continuous access to live environmental data from the melon

farm.

Brief Description:

This use case outlines how a user can track environmental parameters of the

farm in real time.

Trigger: The process begins when the user chooses to monitor the farm’s

environmental conditions.

Relationships:

Association: User

Include: N/A

Extend: Receive push notifications.

Generalization: N/A

Normal Flow of Events:

1. The user navigates to monitor sensor data page.

2. The system presents live readings of environmental factors, including

air temperature, air humidity, soil temperature, soil moisture, soil pH,

soil TDS, soil conductivity, and light intensity. If any parameter exceeds

its defined threshold, Sub-flow S-1 is triggered. If no sensor readings

are available or a database error occurs, Exception Flow 2.1 is executed.

Sub-flows:

S-1 Receive push notifications

1. The user is notified through push notifications when sensor data

values surpass the defined threshold.

Alternate/Exceptional Flows:

2.1 Missing Data or Database Failure

1. The system displays a message to the user stating “No data

66

available.”

Use Case Name:

View sensor’s data

dashboard

ID: UC005 Significance Level: High

Primary Actor: User Use Case Type: Detail, Essential

Stakeholders and Interests:

User: View sensor’s data dashboard.

Brief Description:

The user accesses the dashboard page to view real-time and historical sensor

data including environment and sensor’s health data, which is presented in

graphical format.

Trigger: Users want to view sensor’s data in graphical format.

Relationships:

Association: User

Include: N/A

Extend: N/A

Generalization: N/A

Normal Flow of Events:

1. User navigates to the Dashboard page.

2. System retrieves the latest sensor data. If the sensor’s data is

unavailable, perform exceptional flow 2.1

3. User can view the real-time, historical data in graphs and analysed data,

gauge or charts on the dashboard.

Sub-flows:

N/A

Alternate/Exceptional Flows:

Exceptional Flow 2.1: Data unavailable

1. If sensor data cannot be retrieved, the system displays an error message

indicating no data is available.

Use Case Name: ID: UC006 Significance Level: High

67

Manage farming

activities

Primary Actor: User Use Case Type: Detail, Essential

Stakeholders and Interests:

User: Manage melon farm’s farming activities.

Brief Description:

This use case description describes how user manages farming activities.

Trigger: Users want to manage farming activities.

Relationships:

Association: User

Include: N/A

Extend: N/A

Generalization: N/A

Normal Flow of Events:

1. User navigates to the farming activities page.

2. The system displays all scheduled activities in calendar view.

3. If users select to create or edit an activity, sub-flows S-1 will be

performed.

4. If users want to delete an activity, sub-flows S-2 will be performed.

5. System saves or updates the activity in the database. If input information

is invalid, exceptional flow 5.1 will be performed.

6. System displays the updated list of activities to the user.

Sub-flows:

S-1 Creating and Editing Farming Activity

1. User fills in or modifies necessary fields including activity title,

description, date, time and assigned personnel.

2. Users click "Save" button to save the new or modified activity.

3. Back to main flow step 5.

S-2 Delete Farming Activity

1. System pops up a confirmation window with "Confirm" and "Cancel"

options.

68

2. If user confirms the deletion, the system removes the selected activity

from the database.

3. If user cancels, the system closes the confirmation window without

making changes.

4. Back to main flow step 5.

Alternate/Exceptional Flows:

5.1 Invalid Input Information

1. System displays an "Invalid input" message if there is missing required

fields or incorrect date format.

Use Case Name:

Register new user

ID: UC007 Significance Level: High

Primary Actor: Admin Use Case Type: Detail, Essential

Stakeholders and Interests:

Admin: Add new user to the smart farming system.

Brief Description:

This use case description describes how admin add new user to the system.

Trigger: Admin wants to add new user to the system.

Relationships:

Association: Admin

Include: N/A

Extend: N/A

Generalization: N/A

Normal Flow of Events:

1. Admins navigate to add new user page.

2. Admins enter the new user ‘s email and press confirm button, if

user’s email are invalid, Exceptional Flow 2.1 will be performed.

3. User will receive an email link to register the smart farming system.

Sub-flows:

N/A

69

Alternate/Exceptional Flows:

1.1 Invalid email entry

1. The system displays an error message stating “Invalid user credentials.”

2. The administrator is prompted to re-enter correct details and attempt the

process again.

Use Case Name:

Manage Sensor Data

Thresholds

ID: UC008 Significance Level: High

Primary Actor: User Use Case Type: Detail, Essential

Stakeholders and Interests:

Needs to configure threshold values and corresponding suggestions for each

sensor parameter to ensure accurate system monitoring and recommendations.

Brief Description:

This use case describes how an user manages sensor data thresholds by adding

or updating values such as optimal ranges, warning limits, and recommendation

messages.

Trigger: The user needs to configure or adjust threshold values for one or more

sensor parameters.

Relationships:

Association: User

Include: N/A

Extend: N/A

Generalization: N/A

Normal Flow of Events:

1. The user navigates to the threshold management page.

2. The user selects a parameter.

3. The user enters or updates values for optimal minimum, optimal

maximum, warning minimum, and warning maximum, along with

corresponding suggestion messages. If input are invalid, Exceptional

Flow 3.1 will be performed.

4. The user confirms the update.

5. A confirmation message is displayed, and the updated thresholds are

70

applied to subsequent evaluations.

Sub-flows:

N/A

Alternate/Exceptional Flows:

3.1 Invalid user’s credentials

The system displays an error message prompting the administrator

to re-enter valid thresholds.

4.5 Conceptual Prototype

This section focuses on the prototype of the smart farming website. The

prototype demonstrates the core functionalities of the web system and serves

as an early version for testing and further refinement based on user feedback.

Figure 4.2: Prototype - User login interface

71

Figure 4.3: Prototype - User profile page

Figure 4.4: Prototype - Edit user credentials interface

72

Figure 4.5: Prototype (Admin view) - User management interface

Figure 4.6: Prototype (Admin) - Add new user interface

73

Figure 4.7: Prototype - Smart farming system home page

Figure 4.8: Prototype - Sensor dashboard overview

74

Figure 4.9: Prototype - Sensor data interface

Figure 4.10: Prototype - Manage farming event interface

75

76

CHAPTER 5

5 System Design

5.1 Introduction

The system design defines the blueprint of the smart farming system, detailing

how its components interact to achieve the objectives of real-time monitoring,

automated decision support, and improved crop yield and quality. This chapter

presents the design from three perspectives: the overall system architecture,

the database design, and the functional modules. The architecture establishes

the layered structure that governs communication between the presentation,

application, and data layers, while the database design specifies entity

relationships, schemas, and data dictionaries to ensure consistency and

integrity of stored information such as sensor readings, thresholds, user

accounts, and tasks. The functional modules, including sensor monitoring,

threshold configuration, task management, and notification services, are

described to illustrate how each supports the system’s objectives. Collectively,

these design decisions provide a scalable, maintainable, and cost-effective

foundation for the subsequent implementation and evaluation of the smart

farming solution.

77

5.2 System Architecture Design

Figure 5.1: System Architecture Design

The smart farming system for Japanese musk melon cultivation was designed

using a three-tier architecture, consisting of the Presentation Layer, the

Application Layer, and the Data Layer. This layered approach was selected

because it provides scalability, maintainability, and a clear separation of

concerns, all of which are critical for systems that are expected to evolve

alongside future farming requirements. The architecture supports both real-

time insights and advanced analytics, thereby enhancing decision-making and

crop quality. Figure 5.x illustrates the overall system architecture.

The Presentation Layer was implemented using Angular as the

primary frontend framework. Angular was selected due to its modular design,

strong ecosystem, and two-way data binding, which collectively supports the

development of dynamic dashboards that update in real time. To complement

this, Ng Zorro was adopted as a UI component library, providing professional-

grade components that accelerate development and ensure design consistency.

TailwindCSS was integrated to deliver a utility-first styling approach, resulting

in a responsive and highly customizable dashboard accessible across devices.

78

In addition, Grafana was embedded within the presentation layer to

provide advanced visualization capabilities. Grafana was selected because it

offers powerful time-series analytics and reduces the need to develop complex

charting modules manually. This enabled the system to deliver meaningful

insights such as time-series graphs, Soil Health Index values, and correlation

heatmaps directly within the Angular interface. The result is a user interface

that not only displays data but also supports informed decision-making.

The Application Layer was developed using Spring Boot, chosen for

its lightweight framework, modularity, and suitability for RESTful API

development. This layer acts as middleware, ensuring standardized and loosely

coupled communication between the frontend and the backend database. Such

separation allows both the Angular frontend and the Supabase database to

evolve independently without disrupting system stability. Spring Boot was

also integrated with Firebase to enable real-time push notifications, ensuring

that external services are managed at the middleware level rather than tied

directly to the frontend. This approach increases robustness, maintainability,

and long-term adaptability.

The Data Layer forms the foundation of the system and was designed

with both technical and budget constraints in mind. Direct IoT-to-database

integration was not feasible because the SIM-based IoT devices lacked support

for secure HTTPS communication with a cloud-hosted PostgreSQL database.

To address this constraint, ThingSpeak was selected as an intermediary

platform for IoT data ingestion. ThingSpeak provides a reliable and cost-

effective gateway that supports HTTP transmission, enabling the system to

operate without requiring costly hardware upgrades.

From ThingSpeak, sensor data is synchronized into Supabase, which

was chosen as the central cloud database due to its PostgreSQL foundation,

schema management capabilities, and scalability. This two-step pipeline,

ThingSpeak for ingestion and Supabase for structured storage ensures reliable

data handling while remaining cost-effective. Grafana connects directly to

79

Supabase to deliver analytics, enabling both real-time monitoring and long-

term trend analysis through tools such as correlation heatmaps and Soil Health

Index visualizations.

In summary, the architecture combines Angular, Ng Zorro, and

TailwindCSS for the presentation layer; Spring Boot and Firebase for the

application layer; and ThingSpeak, Supabase, and Grafana for the data layer.

Each technology was selected to balance feasibility under budget constraints

with the need for scalability, usability, and analytical capability. Collectively,

these choices enable the system to deliver a robust, data-driven solution that

enhances melon yield and quality through cost-effective and sustainable smart

farming practices.

5.3 Database Design

5.3.1 Entity Relationship Diagram (ERD)

Figure 5.2: Entity Relationship Diagram

5.3.2 Schema Design

Users Entity Data Schema

Column Name Definition Data Type Sample Value

80

user_id Unique

identifier for

each user.

UUID 6aab053c-bdf4-4bcf-

b71e-6aca36854b7d

email Email address

of the user.

Text farmer01@example.com

role Defines the

user’s role

(e.g., admin,

farmer).

Text Farmer

username Display name

of the user.

Text MelonMaster

is_active Indicates

whether the

user account is

active

Boolean True

last_login Records the

last time the

user logged

into system.

Timetamp 2025-08-15 14:32:00

created_time The time when

the user

account was

created.

Timestamp 2025-03-15 14:32:00

Sensor_data Entity Data Schema

Column Name Definition Data Type Sample Value

entry_id Unique

incremental ID of

the reading, same

as ThingSpeak

entry ID.

Integer 1056

air_humidity Measured

humidity in the

Numeric 72.4

81

air (%).

air_temperature Measured

temperature in

the air (°C).

Numeric 28.6

light_intensity Measured

sunlight/light

intensity (lux).

Numeric 1350.0

soil_conductivity Electrical

conductivity of

the soil (µS/cm).

Numeric 220.5

soil_moisture Moisture content

in the soil (%).

Numeric 44.3

soil_ph pH level of the

soil.

Numeric 6.8

soil_tds Total dissolved

solids in soil

(ppm).

Numeric 550.0

soil_temperature Temperature of

the soil (°C).

Numeric 26.2

created_at Original

timestamp when

data was recorded

in ThingSpeak.

Timestamp 2025-08-15

00:10:57

insert_date_time Timestamp when

the data was

inserted into the

backend

database.

Timestamp 2025-08-15

00:15:00

Task Entity Data Schema

Column Name Definition Data Type Sample Value

id Unique identifier

for each task

Integer 1

82

(primary key)

title Short title or

name of the task

Varchar Irrigation Check

description Detailed

explanation of the

task

Text Inspect and adjust

drip irrigation

system for melon

beds

assign_user The user assigned

to carry out the

task

varchar Ali

created_by User ID of the

person who

created the task

UUID 6aab053c-bdf4-

4bcf-b71e-

6aca36854b7d

updated_by User ID of the

person who last

updated the task

UUID 6aab053c-bdf4-

4bcf-b71e-

6aca36854b7d

start_time Scheduled start

date and time of

the task

Timestamp 2025-08-15

14:49:00

end_time Scheduled end

date and time of

the task

Timestamp 2025-08-15

19:49:00

created_at Timestamp when

the task record

was created

Timestamp 2025-08-12

02:44:40.2

updated_at Timestamp when

the task record

was last modified

Timestamp 2025-08-15

02:44:40.2

Device Tokens Data Schema

Column

Name

Definition Data

Type

Sample Value

id Unique identifier for each device Int 1

83

token

user_id Unique identifier of the user

associated with the device

UUID 6aab053c-bdf4-

4bcf-b71e-

6aca36854b7d

token Push notification token generated

by Firebase or similar

Varchar dS7k-

C0Wd9wvZo2X

LJRl-

p_80gEN3J7C9s

4JvrjTWfYQlO

UtkWDEZLXu

my_fPm1e4Opo

active Status flag indicating if the token

is currently active

Boolean True

created_

at

Timestamp when the token record

was first created

Timesta

mp

2025-09-09

15:50:22.31835

+00

updated_

at

Timestamp when the token record

was last updated

Timesta

mp

2025-09-09

15:50:22.31835

+00

Parameter Thresholds Data Schema

Column

Name

Definition Data Type Sample Value

id Unique identifier for each

threshold record (primary

key)

Int 1

Parameter Name of the monitored

parameter

Varchar air_temperature

Optimal_min Minimum value of the

optimal range

Float 24

Optimal_max Maximum value of the

optimal range

Float 32

Warn_min Minimum value for the Float 22

84

warning range (before

becoming critical)

Warn_max Maximum value for the

warning range (before

becoming critical)

Float 35

Low_suggesti

on

Suggested corrective action

when parameter falls below

minimum

Varchar Close vents or

use heaters to

raise

temperature.

High_suggest

ion

Suggested corrective action

when parameter exceeds

maximum

Varchar Improve

greenhouse

ventilation or

install shading

net.

Warn_low_s

uggestion

Suggested action when

parameter approaches lower

warning level

Varchar Monitor,

consider partial

vent closing.

Warn_high_s

uggestion

Suggested action when

parameter approaches

higher warning level

Varchar Keep ventilation

running and

monitor closely.

Updated_by User ID who last updated

the threshold entry

UUID 6aab053c-bdf4-

4bcf-b71e-

6aca36854b7d

85

CHAPTER 6

6 SYSTEM IMPLEMENTATION

6.1 Introduction

This chapter describes the software implementation of the Smart Farming

System for musk melon cultivation, focusing on the transformation of the

proposed system design into a functional application. The system is designed

to enhance farming efficiency through IoT-based monitoring, where

environmental sensor data are collected and transmitted to a ThingSpeak

channel for subsequent processing and analysis. The implementation involves

developing a software platform that retrieves data from ThingSpeak, processes

it through cloud-based services, and presents it to users via an interactive and

responsive interface. In addition to real-time data visualisation, the system

supports environmental condition tracking and decision support features to

maintain optimal growing conditions for musk melons. This chapter presents

the implementation of the major software modules, the configuration of

ThingSpeak integration, and the establishment of reliable communication

between the cloud platform and the user interface.

6.2 System Module

The end-users for this system are categorized into two groups, that will be the

administrative side and the non-administrative side. Since some functions are

related to managerial tasks, a few submodules could be only accessed by

administrative users.

Table 6.1: Module Overview by User Role

End-users Module Name Objective of Module

Admin User and role

management

Manage user roles, and system

access.

Add new user Add new user to the smart farming

system.

All user Authentication Secure login and access control for

86

the system.

Profile management View and update personal details

such as username, email, and

password.

Real-time sensor

Monitoring

View live environmental data and

historical trends.

View suggestion View rule-based suggestions for

corrective actions.

Task management Manage farming task, keep track of

pass and future farming activities.

View analysed data

dashboard

Explore graphical dashboards, soil

health index, and correlation

analytics for insights.

Receive alert

notifications

Get real-time alerts and notifications

for abnormal conditions or threshold

breaches.

Manage sensor

threshold

Configure, update, and maintain

threshold values and respective

suggestion for different

environmental parameters.

6.3 Functional Module Implementation

6.3.1 Supabase Authentication

In order to provide secure access and enable personalized features within the

Smart Farming System, Supabase Authentication (Auth) was implemented as

the core user management module. Supabase Auth supports user registration,

login, and session handling while integrating directly with the PostgreSQL

backend, ensuring that only authorized users can access the farming dashboard

and sensor data retrieved from the ThingSpeak channel. This implementation

strengthens system security by restricting access to authenticated users and

enabling role-based control of administrative functions.

87

The Supabase project was first created and configured through the

Supabase dashboard. Within the authentication settings, the email and

password option were enabled to support sign-up and login processes for

farmers and administrators. Supabase automatically manages user credentials

within its PostgreSQL database, reducing the need for additional custom

authentication logic. During configuration, the system generated an API URL

and an anonymous public key, which were subsequently integrated into the

client application to establish secure communication with the Supabase

backend.

Figure 6.1: Enable auth providers (email) in supabase

The application integrates with Supabase Authentication through the

@supabase/supabase-js client library, which provides a simple and secure

interface for managing user sessions. The authentication flow consists of two

primary functions:

i. Sign Up process - allows administrators to invite and register new

users

ii. Sign In process - authenticates existing users and generates a valid

session token.

88

Figure 6.2: Code snippet for handling signs in, out and retrieve user’s session

Figure 6.3: Sign in Page

During the sign-in process, users enter their email and password into

the login form, and these credentials are transmitted securely to the Supabase

Authentication API using the signInWithPassword() method. Supabase

verifies the credentials against the user records stored in the PostgreSQL

database. Upon successful authentication, Supabase generates a session object

containing a JSON Web Token (JWT), which serves as proof of the user’s

identity. This token is stored locally by the application and is required for all

subsequent requests to protected resources. In the event of invalid credentials,

89

Supabase returns an error response, preventing unauthorised access to the

system.

To enhance usability, the login interface also includes a password

recovery mechanism, whereby users can request a reset link sent to their

registered email address. This ensures that forgotten credentials can be

securely managed without compromising the integrity of the authentication

system.

The sign-out process invalidates the active session and removes the

locally stored token, ensuring that the user is fully logged out of the system.

Together, these mechanisms provide a robust authentication framework that

balances security, usability, and maintainability within the smart farming

system.

Figure 6.4: Sign out function for user in profile page

90

6.3.2 Authorisation

Figure 6.5: Admin navigation view

Figure 6.6: Normal user navigation

view

Authorisation within the Smart Farming System is implemented through role-

based access control, ensuring that users only have access to functions

appropriate to their roles. Two main roles are defined in the system:

administrator and normal user. Administrators are granted extended privileges

which is the ability to register new users while normal users are restricted to

essential functionalities. This role-based design not only strengthens system

security by preventing unauthorised access to administrative functions but also

enhances usability by presenting each user with a tailored interface aligned to

their responsibilities.

91

6.3.3 Admin Sign Up

Figure 6.7: Add new user page

The sign-up process in the Smart Farming System is initiated by an

administrator, who registers a new user by specifying the individual’s email

address and assigning an appropriate role, such as farmer or administrator. The

application transmits these details securely to Supabase using the Admin

Service Key, which authorises privileged operations restricted to

administrative users. Supabase then generates a unique registration link and

automatically dispatches it to the specified email address.

When the invited user accesses the link, they are redirected to the

sign-up page, where they provide a password and complete the registration

form. Once submitted, Supabase creates a new user record in the underlying

PostgreSQL database, embedding the role assigned during registration. The

system then issues a confirmation message to the user, indicating successful

account creation. From this point, the user can proceed directly to the sign-in

process to access the system’s features.

Error-handling mechanisms are incorporated to ensure robustness

during onboarding. If an invalid email address is provided or if the registration

92

link has expired, Supabase returns an error response. In such cases, the

administrator is prompted to resend the invitation, thereby ensuring a smooth

and reliable registration process.

The API for adding a new user leverages Supabase’s administration

endpoints and is secured through the Admin Service Key, ensuring that only

authorised personnel can register new accounts. A code snippet illustrating this

API call is provided in Figure 6.7 as supporting evidence of the

implementation.

Figure 6.8: API call for add new user

6.3.4 User Profile Management

Figure 6.9: User profile management page

93

As shown in Figure 6.8, the User Profile Management page was implemented

to enable authenticated users to view and update their personal information

within the system. This feature enhances usability by allowing users to verify

their registered details and make modifications, such as updating their

username, when necessary. The module is integrated with Supabase

Authentication and the corresponding user profile table in the PostgreSQL

database, ensuring that any updates remain consistent across authentication

records and application data. To maintain security, update requests are

validated so that users are only permitted to modify their own profiles. Once

approved, the revised details are committed to the database and reflected

immediately in the interface, providing a seamless and secure profile

management experience.

6.3.5 Task Management

The Task Management Module was developed to assist farmers and

administrators in organizing and monitoring farm-related activities within the

smart farming system. It enables the creation, updating, and deletion of

farming tasks, while also supporting visualization of schedules in a calendar

format. This feature is essential for ensuring that agricultural activities such as

irrigation, fertilization, or equipment inspections are executed in a timely

manner, thereby reducing the risk of overlooked or delayed operations.

94

Figure 6.10: Code snippet for FullCalendar implementation

The module was implemented using the FullCalendar library

integrated into Angular, which provides interactive and customizable

scheduling capabilities. Farmers are able to view tasks in multiple modes

including monthly, weekly, and daily perspectives. Each task entry consists of

essential attributes such as title, description, start time, end time and assign

user. Through the interface, users can click on a calendar date to add a new

task or select an existing event to update or delete it. Modal dialogs powered

by Ng-Zorro components provide a structured form for task entry and editing,

ensuring consistent user experience.

95

Figure 6.11: Calendar monthly view with weather forecast

Internally, the Task Service handles communication with the backend,

where task information persisted in the Supabase database. The component

retrieves tasks via the service and transforms them into calendar events for

rendering. CRUD operations are supported, where updates to task data are

reflected in real time on the calendar interface. The module also integrates

weather forecast data, displayed alongside tasks as background and foreground

events, thereby assisting farmers in planning activities according to

environmental conditions.

Figure 6.12: Calendar modal dialog for adding/editing a task

96

By combining calendar-based visualization with backend task

management, the module enhances farm operation planning and contributes to

resource efficiency. It provides farmers with a centralized interface to track

past and upcoming activities, while also aligning with the system’s overall

objective of supporting decision-making through timely and actionable

information.

6.3.6 Sensor threshold value configuration

The Sensor Threshold Value Configuration module was developed to allow

users to manage the operating ranges of key environmental parameters within

the smart farming system. Each sensor parameter is associated with predefined

threshold ranges that determine its optimal, warning, and critical levels. These

thresholds form the basis for the system’s Suggestion Service, which generates

corrective recommendations whenever sensor readings deviate from expected

conditions.

The module provides a tabular interface, built using Angular and Ng-

Zorro UI components, through which administrators can view, update, and

configure threshold values. Each row corresponds to a specific parameter,

displaying its associated threshold settings along with editable fields. In

addition to numeric ranges (warning minimum, optimal minimum, optimal

maximum, and warning maximum), the module also enables administrators to

configure customized suggestion messages for each parameter and range. For

example, users may specify corrective actions such as “Increase irrigation to

restore soil moisture” or “Adjust ventilation to reduce air temperature.” This

design ensures flexibility, as messages can be modified directly through the

front end without requiring backend code changes.

97

Figure 6.13: Threshold configuration page

All changes persisted in the parameter_thresholds table of the

Supabase database. Once updated, these values are immediately utilized by the

Suggestion Service in real time, ensuring that new recommendations and alerts

are aligned with the latest configuration. This approach empowers

administrators to adapt the system dynamically to varying cultivation

requirements or seasonal conditions, thereby enhancing its practical utility.

6.3.7 Sensor Data Table View

The Sensor Data Table module was developed to provide administrators and

farmers with an organized and interactive interface for viewing raw sensor

readings collected from the greenhouse. This component displays

environmental data including air temperature, humidity, soil moisture, soil

temperature, soil pH, soil conductivity, total dissolved solids (TDS), and light

intensity. Each entry in the table is linked to a unique identifier (entry_id) and

timestamp (created_at), allowing users to trace the exact moment a reading

was captured.

98

Figure 6.14: Sensor data table

The module was implemented in Angular, utilizing a custom

TableComponent together with Ng-Zorro UI elements to provide advanced

data handling capabilities. Users can sort, and search through the dataset to

locate specific records or trends. For example, the sorting function allows the

data to be ordered by attributes such as time of creation or sensor values. A

search bar is also provided to refine results based on user queries, improving

accessibility when dealing with large datasets.

All sensor data is retrieved dynamically from the Supabase backend

through the SensorReadingService, which communicates with the database via

API calls. Once retrieved, the readings are mapped into table rows, ensuring

real-time synchronization between the underlying database and the frontend

interface. This design ensures that farmers and administrators are always

working with the most recent sensor readings, reducing the risk of outdated or

inaccurate information.

By combining raw sensor visualization with interactive filtering and

search functions, the Sensor Data Table module enhances the system’s

transparency and usability. Farmers can directly inspect the captured

environmental data, while administrators can cross-verify whether parameter

thresholds and generated suggestions align with actual sensor conditions. This

99

component thus serves as the foundational layer for higher-level analytics and

decision-support features within the smart farming system.

6.4 Business Logic Implementation

6.4.1 Supabase Edge Function

A Supabase Edge Function was deployed to transfer IoT sensor data from

ThingSpeak into the sensor_data table in Supabase. Running in a serverless

environment, the function eliminates the need for a dedicated backend server

while ensuring efficient and secure data synchronization.

The function queries the most recent entry_id stored in the database,

fetches new entries from the ThingSpeak API using Axios, and applies a retry

mechanism to handle transient errors. Retrieved data are transformed into the

schema format, validated, and timestamped before being inserted into

Supabase in bulk. Logging is included to track operations such as fetch

attempts, inserted rows, and potential errors.

This design provides a lightweight ETL pipeline that reduces latency

between data acquisition and storage, enabling near real-time updates on the

dashboard. It demonstrates the effectiveness of serverless functions in bridging

external IoT platforms with cloud databases, while supporting scalability and

reliability in smart farming applications.

Figure 6.15: Supabase Edge function for fetch data from ThingSpeak

100

Figure 6.16: Supabase Edge function for store fetched data into database

6.4.2 Supabase Cron Job

Figure 6.17: 15-minute interval cron job

To ensure the Supabase Edge Function operates continuously without manual

intervention, a Supabase Cron Job was configured. The Cron Job

automatically triggers the deployed Edge Function every 15 minutes, enabling

101

consistent retrieval of sensor readings from ThingSpeak and insertion into the

sensor_data table.

This scheduling frequency was selected to provide timely updates for

near real-time monitoring while avoiding excessive API calls that could lead

to redundant data collection or unnecessary resource usage. By combining

serverless functions with scheduled execution, the system establishes a reliable

and efficient data ingestion pipeline that supports the monitoring and analytics

modules of the smart farming system.

6.4.3 Threshold-based rules suggestion logic

The Suggestion Service is a critical component of the smart farming backend,

designed to analyze sensor readings and provide data-driven recommendations

to farmers. Its primary objective is to evaluate recent environmental conditions

against predefined threshold rules and generate suggestions that support the

maintenance of optimal farming conditions. In this way, the service transforms

raw sensor values into actionable insights that directly contribute to informed

decision-making in the field.

Figure 6.18: Sensor data table

Figure 6.19: Parameter threshold table

The service integrates two main data sources. First, it retrieves real-

time sensor readings from the sensor_data table, which represents the actual

conditions recorded by IoT devices within the greenhouse. Second, it

references predefined threshold values stored in the parameter_thresholds table.

102

Each parameter is defined by four boundary values: minimum, optimal

minimum, optimal maximum, and warning maximum, together with

corresponding recommendation messages. This database-driven approach

enhances flexibility, as administrators can modify thresholds and

recommendations through the frontend interface without altering system code.

Figure 6.20: checkParam method

Figure 6.21: getSuggestions() method

The service is structured around two core methods: getSuggestions()

and checkParam(). The getSuggestions() method retrieves the latest sensor

record and evaluates each parameter using the checkParam() function.

Parameters without associated thresholds return a default message indicating

that no rules are defined. The method compiles the evaluation results into a list

103

of suggestions; if all parameters fall within their optimal ranges, the service

outputs a default message such as “All conditions optimal.”

The checkParam() method performs the core evaluation process. It

verifies the availability of sensor readings, compares values against the stored

thresholds, and appends appropriate recommendation messages to the results

list. This design ensures that deviations are automatically translated into

specific, actionable suggestions for the farmer.

6.4.4 Firebase Notification

The Notification Service, implemented using Firebase Cloud Messaging

(FCM), is responsible for delivering real-time alerts to farmers whenever

environmental parameters deviate from their defined optimal thresholds.

While the Suggestion Service performs the evaluation of sensor data and

generates context-specific recommendations, the Notification Service ensures

that these critical insights are communicated promptly to end users through

push notifications. This integration enhances the responsiveness of the smart

farming system by enabling immediate corrective action when anomalies are

detected.

104

Figure 6.22: Notifications received by user

The service operates in close coordination with the Suggestion

Service. Whenever a parameter value falls outside its designated range, a call

is triggered to the Notification Service. Each notification contains two primary

components: a title (e.g., “Alert: Soil Moisture”) and a message (e.g., “Critical

low soil moisture detected. Immediate irrigation is required. Current value =

8%.”). These messages are dynamically generated based on real-time sensor

readings and the corresponding threshold rules, ensuring that alerts remain

both context-specific and actionable.

105

Figure 6.23: Function to send notification to all registered device

Technically, the Notification Service retrieves all registered device

tokens stored in the database and forwards the notification payload to Firebase.

FCM then distributes the alerts to all subscribed devices, independent of

whether the mobile application is active in the foreground or running in the

background. For instance, when greenhouse temperature surpasses the warning

maximum, an immediate push notification is dispatched to the farmer’s device,

thereby supporting timely interventions to maintain crop health.

6.5 Data Analytics and Visualization

Grafana is employed in this project as the primary platform for real-time

visualization of IoT sensor data. The system continuously collects and stores

environmental parameters including air temperature, air humidity, soil

moisture, soil pH, soil temperature, soil electrical conductivity (EC), pH value

and light intensity. To transform this raw data into actionable insights, Grafana

dashboards are organized into three main visualization components:

i. Time-series graphs

ii. Soil health index (SHI)

iii. Correlation heat maps

106

6.5.1 Time-Series Graphs for Individual Parameters

The first visualization component presents each environmental parameter in

the form of a time-series graph. These graphs plot parameter values against a

temporal axis, allowing farmers to observe fluctuations, identify recurring

patterns, and compare variations across different time periods. Such

visualizations are essential for detecting anomalies and understanding how

specific conditions evolve throughout the cultivation process.

Figure 6.24: Query that demonstrates how Grafana retrieves and aggregates air

temperature readings

For example, figure above showed air temperature readings are

retrieved and aggregated through a query executed in Grafana, which produces

a continuous line graph illustrating temperature changes over time. Similar

queries are applied to other key parameters including humidity, soil moisture,

pH, and conductivity, thereby providing farmers with a comprehensive and

easily interpretable overview of environmental dynamics within the

greenhouse.

Figure 6.25: Air temperature time series graph

107

By transforming raw data into intuitive visual representations, the

time-series graphs enhance situational awareness and support proactive

decision-making, ensuring that deviations can be identified and addressed

before they negatively impact crop growth.

6.5.2 Soil Health Index (SHI)

To complement the visualization of individual parameters, the system

implements a Soil Health Index (SHI) as a composite metric that consolidates

multiple soil-related parameters into a single score. The SHI provides a

holistic measure of soil condition by incorporating soil moisture, soil

conductivity, soil temperature, soil tds, air temperature, light intensity, pH and

air humidity. Each parameter is normalized against its respective threshold

values, assigned a weighted sub-score, and aggregated to form the final index.

Parameters with greater impact on melon growth, such as soil moisture and pH,

are assigned higher weights to ensure their influence is reflected in the overall

score.

108

Figure 6.26: SQL query to compute SHI

The SHI is visualized in Grafana as a time-series graph, where the

index is plotted against time. This approach enables farmers to monitor not

only the current soil health but also its progression over different cultivation

phases. By observing trends, farmers can identify gradual deterioration in soil

conditions and take preventive measures before they affect crop growth. For

example, a steadily declining SHI curve may indicate progressive nutrient

depletion or moisture imbalance that requires corrective intervention.

109

Figure 6.27: Soil Health Index Graph

Compared to analysing individual parameters in isolation, the SHI

time-series graph simplifies decision-making by presenting a consolidated

indicator of soil quality. This visualization provides farmers with an intuitive

tool to assess the overall effectiveness of their soil management practices and

supports proactive actions to sustain crop yield and quality.

6.5.3 Correlation Analysis

Correlation analysis was conducted to identify relationships among

environmental parameters, enabling farmers to understand how variables

interact and influence crop conditions. The computation was performed

directly in PostgreSQL using the corr() function, which calculates Pearson

correlation coefficients between pairs of parameters stored in the sensor_data

table. The SQL query produced a correlation matrix, where each cell

represents the degree of association between two variables (e.g., air

temperature and humidity, soil moisture and conductivity). This matrix

provides a structured dataset that quantifies the strength and direction of

parameter relationships.

110

Figure 6.28: SQL query using corr() function

The results of the correlation query were visualized as a correlation

heatmap as shown in figure below, where coefficients are represented using a

diverging color scale from strong negative (dark red) to strong positive (dark

green), with weaker correlations shown in lighter shades of yellow and orange.

As shown, air temperature and air humidity display a strong negative

correlation (–0.957), reflecting their inverse relationship, while air temperature

and soil temperature exhibit a strong positive correlation (0.730). Soil moisture

and soil TDS also demonstrate a moderate positive correlation (0.673),

suggesting that increased irrigation may elevate nutrient concentration levels

in the soil. By consolidating all pairwise relationships into a single heatmap,

the system provides farmers with an intuitive overview of environmental

interactions, enabling more informed and data-driven greenhouse management

decisions.

Figure 6.29: Correlation analysis heatmap

111

CHAPTER 7

7 System Testing and Evaluation

7.1 Introduction

System testing and evaluation were conducted to ensure that the smart farming

system for Japanese melon cultivation operates reliably, meets its functional

requirements, and delivers accurate and timely decision support to farmers.

The testing phase focused on validating the system’s core functionalities,

integration of components, data handling, threshold evaluation, visualization,

and overall performance. A combination of functional testing, integration

testing, and performance testing methods were employed. Functional testing

was used to verify individual features such as user authentication, task

management, sensor data visualization, and threshold configuration—worked

according to specifications. Integration testing ensured that data pipelines

between IoT devices, ThingSpeak, Supabase, and the web application

functioned seamlessly, with no duplication, loss, or corruption of records.

Performance testing was carried out to evaluate responsiveness and efficiency,

particularly the system’s ability to deliver real-time updates, trigger

notifications, and render dashboards within acceptable time limits.

These testing methods were chosen because they collectively provide

a comprehensive evaluation of the system’s reliability and usability.

Functional and integration testing validated correctness and robustness, while

performance testing addressed timeliness, which is critical in greenhouse

environments where rapid responses to anomalies directly influence crop yield

and quality. Together, these methods ensure that the developed system not

only functions as intended but also provides a practical, efficient, and farmer-

friendly tool for precision agriculture.

112

7.2 Functional Test Case

Table 7.1: User Sign In Test Case

Test Case# 1 Test Case Name User Sign In

Test Case

Summary

To test if registered users can successfully sign in and access the system.

Pre-Conditions User account exists in the database.

Prepared &

Executed By

Liew Ke Ying

Scenario Test Procedure Input Data Expected

Outcome

Observed

Outcome

Evaluation

(Fail/Pass)

Valid login

credentials

1.Navigate to login page.

2. Enter registered email and correct

password.

3. Click “Login”.

Email:

farmer01@example.com

Password: correct123

System

authenticates user

and redirects to

dashboard.

User

successfully

logged in and

redirected.

Pass

Invalid login

credentials

1. Navigate to login page.

2. Enter registered email with incorrect

password.

Email:

farmer01@example.com

Password: wrong

System rejects

login attempt and

displays error

Error message

shown: “Invalid

credentials.”

Pass

113

3. Click “Login”. message.

Empty fields 1. Leave email and/or password field empty.

2. Click “Login”

Email: -

Password: -

System prompts

user to fill required

fields.

Validation

message

displayed.

Pass

Table 7.2: Add New User Test Case

Test Case# 2 Test Case Name Add new user

Test Case

Summary

To test if admin can add a new user to the system.

Pre-Conditions Admin is logged in with role-based access.

Prepared &

Executed By

Liew Ke Ying

Scenario Test Procedure Input Data Expected

Outcome

Observed

Outcome

Evaluation

(Fail/Pass)

Add valid user 1. Admin press to ‘Add User’ button.

2. Enter user’s email and role.

3. Press confirm button.

Email:

farmer01@gmail.com

Role: Farmer

User created

successfully, invite

email sent.

User added and

email invite

received.

Pass

114

Add with

invalid email

1. Enter invalid email format.

2. . Click “Create new user” button.

Email:

farmer01@wrong

Role: Farmer

System rejects

displays error

message.

Error message

shown: “Invalid

email format.”

Pass

Duplicate email 1. Enter email that already exists.

2. Confirm

Email:

farmer01@gmail.com

Role: Farmer

System prevents

duplicate creation.

Error message

“User already

exists” will be

displayed.

Pass

Table 7.3: Configure Sensor Data Threshold Test Case

Test Case# 3 Test Case Name Configure Sensor Data Threshold

Test Case

Summary

To test if admin can add/update threshold values and suggestion messages.

Pre-Conditions Admin logged in; parameter_thresholds table available.

Prepared &

Executed By

Liew Ke Ying

Scenario Test Procedure Input Data Expected

Outcome

Observed

Outcome

Evaluation

(Fail/Pass)

Update 1. Select parameter “Air Temperature”. Optimal Max = 32°C -> New threshold will New threshold Pass

115

threshold 2. Update values.

3. Save.

35°C be displayed. value is updated

and displayed.

Invalid input 1. Enter empty values.

2. Save

Soil pH = - System rejects and

prompts error.

Error message

“ Invalid input”

displayed

Pass

Table 7.4: Task Management Test Case

Test Case# 4 Test Case Name Task Management

Test Case

Summary

To test create, update, and delete tasks in the calendar.

Pre-Conditions User logged in; Calendar module active.

Prepared &

Executed By

Liew Ke Ying

Scenario Test Procedure Input Data Expected

Outcome

Observed

Outcome

Evaluation

(Fail/Pass)

Create new task 1. Open model.

2. Input task details.

3. Save

Title: “Irrigation Check”

Time: 10:00-11:00

Task saved and

shown in calendar.

Task created

successfully.

Pass

116

Update task 1. Select existing task.

2. Change time.

3. Save.

Update to 09:00-10:00 Task updated in

DB and calendar

refreshed.

Updated

successfully.

Pass

Delete task 1. Select task

2. Press Delete Button

“Irrigation Check” Task removed

from DB and

calendar.

Task deleted

successfully.

Pass

Table 7.5: View, Sort and Search Sensor Data Table Test Case

Test Case# 5 Test Case Name View, sort and search sensor data table

Test Case

Summary

To test whether sensor readings are displayed and can be filtered.

Pre-Conditions Sensor data available in DB

Prepared &

Executed By

Liew Ke Ying

Scenario Test Procedure Input Data Expected

Outcome

Observed

Outcome

Evaluation

(Fail/Pass)

Load sensor

readings

1. Users click the sensor data navigation

page.

Existing sensor data

entries.

Data displayed in

table format.

Displayed

correctly.

Pass

117

Sort entries 1. Users press up sort button on entry id

column.

2. Users then press down sort button on

entry id column.

N/A Column entry id is

sorted in ascending

then descending.

Sorted correctly. Pass

Filter entries. 1. Users type an entry id in the search

bar.

1034 Sensor data with

entry id “1034”

will be displayed.

Sensor data row

retrieves and

display

correctly.

Pass

Table 7.6: View and Filter by Date on Time-Series Graph Test Case

Test Case# 6 Test Case Name View and Filter by Date on Time-Series Graph

Test Case

Summary

To test whether the time-series graph displays parameter trends and supports filtering by date range.

Pre-Conditions Sensor data available in sensor_data table.

Prepared &

Executed By

Liew Ke Ying

Scenario Test Procedure Input Data Expected

Outcome

Observed

Outcome

Evaluation

(Fail/Pass)

118

Load full graph 1. Navigate to dashboard.

2. Select time-series graph for “Air

Temperature”.

Sensor data over 1 week

(by default)

Graph plotted with

data points over

full period.

Displayed

correctly.

Pass

Apply date filter 1. Select date filter range.

2. Apply filter.

Start=2025-09-01,

End=2025-09-07.

Graph updates to

show data only in

selected range.

Graph filtered

successfully.

Pass

Table 7.7: View and Filter by Date on Correlation Heatmap Test Case

Test Case# 7 Test Case Name View and Filter by Date on Correlation Heatmap

Test Case

Summary

To test whether the correlation heatmap updates correctly when filtered by date range.

Pre-Conditions Historical sensor data available.

Prepared &

Executed By

Liew Ke Ying

Scenario Test Procedure Input Data Expected

Outcome

Observed

Outcome

Evaluation

(Fail/Pass)

Default heatmap 1. Open correlation heatmap view. Default time range Heatmap generated

with correct

Displayed

correctly.

Pass

119

correlation values.

Apply date filter 1. Select custom range.

2. Apply filter.

3. Click confirm button.

Start=2025-09-01,

End=2025-09-07.

Heatmap

recalculated for

selected range.

Updated

correctly.

Pass

Table 7.8: View and Filter by Date on Soil Health Index (SHI) Test Case

Test Case# 8 Test Case Name View and Filter by Date on Soil Health Index

(SHI)

Test Case

Summary

To test whether SHI time-series graph updates correctly with date filters.

Pre-Conditions SHI calculation configured in Grafana.

Prepared &

Executed By

Liew Ke Ying

Scenario Test Procedure Input Data Expected

Outcome

Observed

Outcome

Evaluation

(Fail/Pass)

Load SHI graph 1. Users navigate to dashboard page. Default time range SHI graph

generated with

composite index.

Displayed

correctly.

Pass

120

Filter SHI by

date

1. Select custom range.

2. Apply filter.

3. Click confirm button.

Data from last 3 days. Graph updates with

SHI values in

selected period.

Updated

correctly.

Pass

Table 7.9: View Latest Sensor Values Test Case

Test Case# 9 Test Case Name View latest sensor values

Test Case

Summary

To test whether the dashboard displays the most recent sensor readings.

Pre-Conditions New sensor entry inserted into sensor_data.

Prepared &

Executed By

Liew Ke Ying

Scenario Test Procedure Input Data Expected

Outcome

Observed

Outcome

Evaluation

(Fail/Pass)

Display latest

data

1. Users navigate to dashboard page. N/A Latest values of

sensor parameter

displayed in gauge

form.

Displayed

correctly.

Pass

Auto refresh 1. Wait until new entry inserted. Entry updated in Dashboard Refreshed Pass

121

latest value 2. Observe dashboard refresh. ThingSpeak. refreshed with

newest reading.

correctly.

Table 7.10: Admin Deactivate User Test Case

Test Case# 10 Test Case Name Admins deactivate user

Test Case

Summary

To test whether admin can deactivate a user account.

Pre-Conditions User exists in system; admin logged in.

Prepared &

Executed By

Liew Ke Ying

Scenario Test Procedure Input Data Expected Outcome Observed

Outcome

Evaluation

(Fail/Pass)

Deactivate user 1. Navigate to User Management.

2. Select user.

3. Set user status to false.

User:

Farmer02@gmail.com

User marked inactive

in database

User

successfully

deactivated.

Pass

Login after

deactivation

1. User attempt login with deactivated

account.

User:

Farmer02@gmail.com

System rejects login

and shows error.

Login blocked

successfully.

Pass

122

Table 7.11: Admin Change User Role Test Case

Test Case# 11 Test Case Name Admins change user role

Test Case

Summary

To test whether admin can update an existing user’s role.

Pre-Conditions User exists in system; admin logged in.

Prepared &

Executed By

Liew Ke Ying

Scenario Test Procedure Input Data Expected

Outcome

Observed

Outcome

Evaluation

(Fail/Pass)

Change user

role

1. User navigate to user management.

2. Select user to change roles.

3. Change user role to admin.

4. Click ‘Confirm’ button.

User:

Farmer02@gmail.com

New role: Admin

User role updated

in database and

reflected in user

management page.

Updated

successfully.

Pass

7.3 Integration Test Case

Table 7.12: Fetch and Insert New Data Test Case

Test Case# 1 Test Case Name Fetch and Insert New Data

Test Case To test if the Edge Function fetches new ThingSpeak data and inserts into Supabase.

mailto:Farmer02@gmail.com

123

Summary

Pre-Conditions Supabase sensor_data table is created.

Prepared &

Executed By

Liew Ke Ying

Scenario Test Procedure Input Data Expected Outcome Observed

Outcome

Evaluation

(Fail/Pass)

When Supabase

sensor_data table

is empty.

1. Trigger the Edge Function using supabase

dashboard.

2. Verified if the new data is inserted into the

sensor_data table.

ThingSpeak

Channel with new

entry_id values

New entries

inserted into

Supabase

sensor_data table

New entries

inserted into

Supabase

sensor_data table

Pass

When Supabase

sensor_data table

already contains

previous entries.

1. Trigger the Edge Function again after some

rows already exist.

2. Verify if only new entries (greater entry_id) are

appended, without duplicates.

Only new rows are

inserted; no

duplication of

existing entries

Only new rows

inserted

successfully

without duplicates

Only new rows

inserted

successfully

without

duplicates

Pass

When

ThingSpeak

channel has no

1. Trigger the Edge Function when ThingSpeak

data is unchanged.

2. Check if no additional rows are added in

ThingSpeak

channel without

new data

No new rows are

inserted; table

remains unchange

No new rows

were inserted

Pass

124

new entries since

the last fetch.

Supabase.

When

ThingSpeak

channel data has

missing fields

(e.g., null values

in some sensors).

1. Trigger the Edge Function with entries having

null fields.

2. Verify how Supabase stores incomplete

records.

ThingSpeak

channel entry with

missing field

values

Data inserted with

null values

preserved in

corresponding

columns

Data inserted

with null values

stored as

expected

Pass

Table 7.13: Scheduled Data Fetch and Insert Test Case

Test Case# 2 Test Case Name Scheduled Data Fetch and Insert

Test Case

Summary

To test if the Cron Job automatically triggers the Edge Function to fetch and insert new sensor data every 15 minutes.

Pre-Conditions Cron Job is configured in Supabase to run at every 15 minutes.

Prepared &

Executed By

Liew Ke Ying

Scenario Test Procedure Input Data Expected Outcome Observed

Outcome

Evaluation

(Fail/Pass)

125

Scheduled Cron

Job execution

inserts new

ThingSpeak data

into Supabase

1. Wait for the Cron Job to trigger at the 15-

minute schedule.

2. Verify if new data from ThingSpeak is inserted

into the sensor_data table in Supabase.

ThingSpeak

Channel with new

entry_id values

added between the

last job and the

current run

Cron Job triggers

Edge Function, and

new entries are

automatically

inserted into

sensor_data table

without manual

intervention.

New entries

successfully

inserted into

sensor_data table

after 15 minutes.

Pass

Table 7.14: Fetch Current Weather Data Test Case

Test Case# 3 Test Case Name Fetch Current Weather Data from OpenWeather

API

Test Case

Summary

To test if the frontend successfully fetches live weather data from the OpenWeather API and displays it correctly.

Pre-Conditions A valid OpenWeather API key is configured in the frontend. Internet connection is available

Prepared &

Executed By

Liew Ke Ying

Scenario Test Procedure Input Data Expected Outcome Observed Evaluation

126

Outcome (Fail/Pass)

Weather API

fetch and display

validation

1. Open the frontend page with weather display.

2. Trigger the fetch request to OpenWeather API.

3. Observe whether weather data is displayed.

City = Sungai

Long,

Valid API

Key

Weather data is

successfully fetched

from OpenWeather API

and displayed correctly

in frontend.

Weather data is

fetched and

displayed

correctly in

frontend UI.

Pass

Table 7.15: Test Notifications Test Case

Test Case# 4 Test Case Name Test Notifications

Test Case

Summary

To test if the notifications able to receive successfully.

Pre-Conditions (i) Supabase device_tokens table is populated with valid device tokens.

(ii) Firebase Cloud Messaging (FCM) service is configured correctly in backend.

(iii) Application client is installed on a device, and notifications are enabled.

Prepared &

Executed By

Liew Ke Ying

Scenario Test Procedure Input Data Expected

Outcome

Observed Outcome Evaluation

(Fail/Pass)

127

When a

parameter value

exceeds the

warn_max

threshold.

1. Insert a test sensor reading into sensor_data

that exceeds threshold.

2. Verify if a notification is sent to registered

device(s).

Sensor reading:

air_temperature =

45°C (threshold

max = 35°C)

Push notification is

sent: “Alert: Air

Temperature too

high. Please

ventilate.”

Notification received

successfully on client

device

Pass

When a

parameter value

drops below the

warn_min

threshold.

1. Insert a test reading below threshold.

2. Verify notification.

Sensor reading:

soil_moisture =

5% (threshold min

= 15%)

Push notification is

sent: “Alert: Soil

moisture too low.

Consider

irrigation.”

Notification received

successfully

Pass

When parameter

is within the

optimal range.

1. Insert a normal reading.

2. Check if no unnecessary notification is

triggered.

Sensor reading:

soil_pH = 6.8

(within 6.5–7.0)

No notification

should be sent.

No notification

triggered

Pass

128

7.4 Data Handling and Accuracy

A key aspect of system testing was to ensure that sensor data transmitted from

the IoT devices and first ingested into ThingSpeak was correctly synchronized

into the Supabase database without loss, duplication, or corruption. Since

Supabase serves as the primary data repository for analysis and visualization,

maintaining accurate and reliable data transfer from ThingSpeak was essential

for system functionality.

Figure 7.1: Thingspeak’s sensor data

Figure 7.2: Supabase sensor data table

The test focused on three main areas: data integrity and completeness.

Data integrity was evaluated by comparing random samples of sensor readings

recorded in ThingSpeak with those retrieved from the Supabase sensor_data

table. Figure 7.5.1 illustrates an example of sensor readings as displayed in the

129

ThingSpeak channel, while Figure 7.5.2 shows the corresponding entries

stored in Supabase after synchronization. The comparison revealed that all

sampled values matched exactly across both platforms, resulting in an

accuracy rate of 100%. This confirms that the synchronization process

preserved the integrity of the sensor data without any corruption or

modification during transfer.

Figure 7.3: SQL to count completeness percentage

Completeness was verified by checking the sequence of entry_id

values in the sensor_data table. Since ThingSpeak generates entries

sequentially, any missing IDs would indicate a skipped or lost record. Out of a

total of 1,603 rows, only 3 IDs were missing, representing a data loss rate of

approximately 0.19% as shown in figure above. The results confirm that the

data synchronization process between ThingSpeak and Supabase was highly

reliable. The small discrepancy is likely due to temporary network or

synchronization delays and is acceptable within the scope of this project.

7.5 Visualization and Analytics

The purpose of this test was to verify that the visualization and analytical

components of the system accurately represented the data stored in Supabase

and provided meaningful insights for farm management. Testing was carried

out in three areas: time-series graphs in Grafana, Soil Health Index

computation, and correlation analysis using heat maps.

130

For the Grafana dashboards, selected parameters such as air

temperature and soil moisture were compared between raw database queries

and their corresponding visualizations. The results confirmed that the plotted

values aligned with the underlying data, ensuring that farmers could reliably

observe environmental trends over time.

The Soil Health Index was tested by inserting controlled sample

values into the database and verifying that the calculated index corresponded

with expected soil conditions (e.g., optimal when all parameters were within

defined thresholds, low when moisture and pH dropped below the minimum

range).

Similarly, the correlation heat map was evaluated by analysing pairs

of parameters with known relationships; for instance, soil moisture and

conductivity were positively correlated, while air temperature and humidity

displayed an inverse relationship.

131

7.6 Threshold Evaluation and Suggestions

Figure 7.4: Angular dashboard displaying a suggestion

Figure 7.5: Test results

132

Figure 7.6: SQL to retrieve test results

This test was conducted to verify that the system correctly evaluated

sensor readings against the predefined threshold values stored in the

parameter_thresholds table and generated the appropriate suggestions. The

latest sensor values from the sensor_data table were retrieved and compared

with the optimal and warning ranges for each parameter. The SQL query

above was executed to join the most recent sensor readings with their

corresponding threshold definitions, automatically determining the expected

suggestion for each case. For example, when the latest soil moisture reading

fell below the warn_min value, the system correctly generated the suggestion

to increase irrigation, while higher-than-expected air temperature values

triggered recommendations to improve greenhouse ventilation. Above table in

the figure summarizes the results of this test, showing the latest sensor values,

the relevant threshold ranges, and the expected suggestions. The confirmed

that the threshold evaluation logic functioned consistently across all

parameters, with the generated suggestions matching the corrective actions

defined in the database. This demonstrates that the system provides farmers

with timely and context-specific guidance, enabling proactive interventions to

optimize melon cultivation conditions.

133

7.7 Performance Testing

Performance testing was conducted to evaluate the responsiveness and

efficiency of the Smart Farming System. The goal was to measure how

quickly the system reacts to sensor updates, processes notifications, and

retrieves data for users. Since the system involves real-time monitoring, timely

updates and alerts are critical to ensure farmers can respond promptly to

abnormal farming conditions.

7.7.1 App Start Time

App Start Time testing was conducted to evaluate how quickly the web

application loads and displays the dashboard after being launched. This test is

important because loading speed directly affects user experience and system

usability. In farming operations, where users often need to access the

dashboard quickly to view real-time sensor readings, a delay in loading may

hinder timely decision-making. To ensure reliability, the Largest Contentful

Paint (LCP) metric was selected as the primary performance indicator. LCP,

provided by Microsoft Edge DevTools, measures the time when the main

content of a page becomes visible to the user. Since the dashboard is the

central interface for monitoring greenhouse conditions, using LCP makes it a

reliable representation of perceived load time and overall responsiveness of the

application.

The testing process followed a systematic methodology. The web

application was first opened in InPrivate (Incognito) mode to prevent cached

data from influencing the measurement. The Microsoft Edge DevTools were

then launched, and under the Performance tab, the Web Vitals feature was

used to capture the LCP value. After refreshing the dashboard, the LCP time

was recorded for each run. To increase the accuracy and consistency of the

measurement, the process was repeated five times under the same conditions.

Finally, the average App Start Time was calculated by dividing the sum of all

LCP values by the number of runs. This approach ensured that the reported

result reflected a consistent and reliable measure of system performance.

134

Test 1 Test 2 Test 3 Test 4 Test 5

Formula used:

Average App Start Time =
𝑆𝑢𝑚 𝑜𝑓 𝐿𝐶𝑃 𝑣𝑎𝑙𝑢𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑛𝑠

 =
1.53+1.88+1.08+2.32+1.24

5

 = 1.554 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

The results show that the application consistently loads within 1.554

seconds, which is well below the target threshold of 5 seconds for acceptable

user experience. This indicates that the system is optimized and efficient in

rendering the dashboard interface.

135

CHAPTER 8

8 CONCLUSION AND RECOMMENDATIONS

8.1 Overview

This chapter concludes the study by revisiting the objectives and outcomes of

the web-based smart IoT system for Japanese melon farming, which was

designed to improve efficiency, consistency, and crop quality through real-

time monitoring and data-driven insights. The chapter first presents the

research findings, evaluating how the system achieved its objectives. It then

discusses the problems encountered during development and testing,

highlighting both technical and coordination challenges faced along the way.

This is followed by a review of the limitations of the project. Finally, the

chapter outlines recommendations for future improvements and enhancements

to ensure scalability, usability, and long-term effectiveness, reaffirming the

system’s potential to contribute to smart and sustainable melon farming

practices.

8.2 Research Findings

This section reviews how the project’s objectives were achieved by evaluating

the outcomes of the developed system. It highlights how the IoT platform, data

visualization tools, and automated alerts addressed the key challenges of

Japanese melon farming, demonstrating the system’s effectiveness and

potential to improve efficiency, resource management, and crop quality.

8.2.1 Objectives 1: To develop a web-based IoT system for real-time

monitoring of environmental parameters in Japanese melon

farming.

The project successfully achieved this objective by designing and

implementing a web-based platform that integrates IoT devices with cloud

storage and visualization tools. Environmental parameters were collected and

displayed real time in Grafana dashboard. This testing results also

136

demonstrates that the system is capable of providing reliable and continuous

monitoring of environmental conditions in Japanese melon cultivation.

8.2.2 Objectives 2: To develop and integrate a data-driven analytics

pipeline with visualization and analysis

This objective was met through the integration of Grafana into the system,

enabling powerful data visualization and analytics. Time-series graphs were

employed to illustrate fluctuations in key parameters, helping farmers identify

environmental patterns over time. A Soil Health Index was developed by

combining soil-related parameters into a single metric, providing farmers with

a simplified yet comprehensive view of soil conditions. In addition, correlation

heat maps were generated to highlight relationships between parameters.

8.2.3 Objectives 3: To enhance farming yield and crop quality by

implementing automated alerts and suggestions based on

parameter thresholds.

The system effectively addressed this objective by embedding a parameter

threshold mechanism in the backend. Threshold values for each parameter

were stored in the database and evaluated in real time by the Spring Boot

application. When readings fell outside of the defined optimal ranges, the

system automatically generated corrective suggestions. In addition, Firebase

Cloud Messaging (FCM) was integrated to deliver instant push notifications to

users, ensuring that farmers were alerted to anomalies without needing to

constantly monitor the dashboard.

Although the system was not deployed continuously throughout a full

cultivation cycle, it was tested under real greenhouse conditions and

demonstrated functional reliability. During the evaluation period, sensor

anomalies were detected correctly, and corresponding alerts and suggestions

were generated as expected. Preliminary trials also resulted in the successful

cultivation of four Japanese melons, indicating that the threshold-based

mechanism and alert system can support farmers in maintaining stable growth

conditions. While the short testing window limited the ability to conclusively

137

validate long-term yield improvements, the results provide credible evidence

that the proposed system can enhance farming practices and contribute to more

consistent crop quality when applied across multiple growth cycles.

8.3 Problem Encountered

During the development and testing of the smart farming system, several

problems were encountered that affected both the technical implementation

and project coordination. These challenges and their resolutions are discussed

below.

8.3.1 Direct Integration from IoT Gateway to Supabase Cloud

Database

The initial plan was for sensor readings to be transmitted straight from the

gateway to Supabase; however, due to SIM card incompatibility and

connectivity errors, this approach failed to establish a stable communication

channel. As a solution, ThingSpeak was introduced as an intermediary

platform for data ingestion. This allowed the IoT devices to successfully

transmit data, which could then be synchronized with Supabase for structured

storage and analysis.

8.3.2 Communication and Coordination with Hardware Team

Another problem encountered was related to communication and coordination

with the hardware team members, who were responsible for sensor setup and

calibration. Since the project involved multiple team members working on

different components, occasional misalignment in timelines and unclear

reporting of sensor performance created delays in backend and frontend

integration. To address this, regular coordination meetings were established

and shared documentation was introduced to streamline communication. This

ensured that the hardware data formats, and collection processes were clearly

defined, allowing smoother integration with the software components.

138

8.3.3 Integration Challenges Across Multiple Platforms

Integration challenges were also experienced across the multiple platforms

used in the system, namely ThingSpeak, Supabase, Spring Boot, Angular,

Firebase, and Grafana. Ensuring compatibility between APIs, authentication

mechanisms, and data formats was complex and caused delays during

development. Specific issues included CORS errors when connecting Spring

Boot to Supabase and Firebase service worker registration failures when

enabling push notifications. These problems were resolved through iterative

debugging and careful configuration. For example, Spring Boot was updated

with appropriate CORS headers to allow secure cross-origin requests, while

Firebase documentation was consulted to correct service worker timing errors.

8.3.4 Limited Project Timeline and Testing Scope

The limited project timeline posed another challenge. Due to the constraints of

the FYP schedule, the system could not be deployed throughout the entire

Japanese melon cultivation cycle. This limited the scope of testing, meaning

that while the system demonstrated feasibility and supported one successful

melon harvest, its long-term impact on yield and fruit quality could not be

conclusively validated. The short timeline, therefore, restricted comprehensive

evaluation, and extended deployment across multiple cycles was identified as

an important step for future research and system validation.

8.4 Limitations

Although the smart farming system achieved its objectives and demonstrated

promising results, several limitations were encountered during development

and testing. These limitations provide context for the findings and highlight

opportunities for future work.

8.4.1 Partial Deployment Across Cultivation Cycle

Although the smart farming system achieved its objectives and demonstrated

promising results, several limitations were encountered during development

and testing. These limitations provide context for the findings and highlight

opportunities for future work.

139

8.4.2 Hardware and Connectivity Constraints

Budget limitations restricted the use of more advanced IoT hardware and SIM

cards capable of direct integration with cloud databases. As a workaround,

ThingSpeak was used as an intermediary data ingestion platform before

synchronizing with Supabase. While effective, this introduced additional steps

that could affect real-time performance.

8.4.3 Dependence on Internet Connectivity

The system relies heavily on stable internet connectivity for transmitting

sensor data, updating dashboards, and sending notifications. In rural or

greenhouse environments with unstable networks, system performance and

responsiveness may be reduced.

8.4.4 Usability Testing and User Adoption

The system’s features were evaluated by the project team but not through

extensive farmer-based usability testing. As such, the interface and workflow

may need refinement to better align with actual farming practices and user

expectations.

8.5 Recommendations

Based on the findings and limitations of this study, the following

recommendations are proposed to improve the system and strengthen its

impact in future implementations.

8.5.1 Full-Scale Deployment Across Cultivation Cycles

To validate improvements in yield and quality more conclusively, future work

should deploy the system over multiple full cultivation cycles. Longitudinal

data will allow for statistical evaluation of crop outcomes and help verify

whether features such as threshold alerts and the soil health index consistently

produce benefits over time.

140

8.5.2 Improved IoT Hardware and Direct Connectivity

Upgrading to IoT devices and SIM modules capable of direct integration with

cloud databases (bypassing intermediate platforms like ThingSpeak) will

reduce latency and simplify data flow. Studies have shown that precise data

collection and optimized resource use are central to enhancing agricultural

efficiency, particularly when connectivity and hardware are reliable. (AL

Duguma et al., 2024)

8.5.3 Robustness to Connectivity Disruptions

The system should include mechanisms for offline data caching or local

buffering to mitigate the effect of unstable or intermittent internet connection

which is a common in rural or farm settings. Ensuring that data is not lost

during outages improves reliability and trust in smart farming systems.

Research into precision agriculture notes connectivity reliability as a frequent

challenge and recommends architectural designs that include redundancy or

hybrid connectivity models. (Mohamed Rafi et al., 2025)

141

REFERENCES

Agarwal, N. (2025) Firebase vs Supabase: Which Backend Solution Wins?

https://www.wildnetedge.com/blogs/firebase-vs-supabase-which-

backend-solution-wins.

AWS IoT-Driven Precision Agriculture | Amazon Web Services (2020).

https://aws.amazon.com/blogs/iot/aws-iot-driven-precision-agriculture/.

Bersani, C. et al. (2022) 'Internet of Things Approaches for monitoring and

control of smart greenhouses in Industry 4.0,' Energies, 15(10), p.

3834. https://doi.org/10.3390/en15103834.

Dhanaraju, M. et al. (2022) 'Smart Farming: Internet of Things (IoT)-Based

Sustainable agriculture,' Agriculture, 12(10), p. 1745.

https://doi.org/10.3390/agriculture12101745.

Duguma, A.L. and Bai, X. (2024) 'How the internet of things technology

improves agricultural efficiency,' Artificial Intelligence Review, 58(2).

https://doi.org/10.1007/s10462-024-11046-0.

Food and Agriculture Organization of the United Nations (2021) THE STATE

OF FOOD AND FOOD AND AGRICULTURE MAKING AGRI-FOOD

SYSTEMS MORE RESILIENT TO SHOCKS AND STRESSES,

Interacademies.

https://www.interacademies.org/sites/default/files/2021-

11/The%20State%20of%20Food%20and%20Agriculture%202021_sm

all.pdf (Accessed: September 17, 2025).

Getahun, S., Kefale, H. and Gelaye, Y. (2024) 'Application of Precision

Agriculture Technologies for Sustainable Crop Production and

Environmental Sustainability: A Systematic Review,' The Scientific

World JOURNAL, 2024(1). https://doi.org/10.1155/2024/2126734.

Guidance for Building an Agricultural Sensor Network using IoT and Amazon

DocumentDB (no date).

https://aws.amazon.com/solutions/guidance/building-an-agricultural-

sensor-network-using-iot-and-amazon-documentdb/.

Hong, S. et al. (2024) 'Implementation of smart farm systems based on Fog

computing in artificial intelligence of things environments,' Sensors,

24(20), p. 6689. https://doi.org/10.3390/s24206689.

Huynh, H.X., Tran, L.N. and Duong-Trung, N. (2023) 'Smart greenhouse

construction and irrigation control system for optimal Brassica Juncea

development,' PLoS ONE, 18(10), p. e0292971.

https://doi.org/10.1371/journal.pone.0292971.

Kadarabad, M.V., Vakacharla, D.H. and Palani, R.R. (2025) 'Real-Time Soil

Health Monitoring with IoT and ThingSpeak Integration,' in Atlantis

highlights in engineering/Atlantis Highlights in Engineering, pp. 401–

408. https://doi.org/10.2991/978-94-6463-754-0_35.

Khanna, A. and Kaur, S. (2020) 'Internet of Things (IoT), Applications and

Challenges: A Comprehensive review,' Wireless Personal

Communications, 114(2), pp. 1687–1762.

https://doi.org/10.1007/s11277-020-07446-4.

142

'Low-cost IoT-Based Smart Notification System for Rural Agriculture' (2022)

ResearchGate [Preprint].

https://www.researchgate.net/publication/372304589_Low-cost_IoT-

Based_Smart_Notification_System_for_Rural_Agriculture.

Mansoor, S. et al. (2025) 'Integration of smart sensors and IOT in precision

agriculture: trends, challenges and future prospectives,' Frontiers in

Plant Science, 16. https://doi.org/10.3389/fpls.2025.1587869.

Maraveas, C. et al. (2022) 'Applications of IoT for optimized greenhouse

environment and resources management,' Computers and Electronics

in Agriculture, 198, p. 106993.

https://doi.org/10.1016/j.compag.2022.106993.

Maraveas, C. and Bartzanas, T. (2021) 'Application of internet of things (IoT)

for optimized greenhouse environments,' AgriEngineering, 3(4), pp.

954–970. https://doi.org/10.3390/agriengineering3040060.

Mekonnen, Y. et al. (2019) 'Review—Machine Learning Techniques in

Wireless Sensor Network Based Precision Agriculture,' Journal of the

Electrochemical Society, 167(3), p. 037522.

https://doi.org/10.1149/2.0222003jes.

Monteiro, A., Santos, S. and Gonçalves, P. (2021) 'Precision Agriculture for

Crop and Livestock Farming—Brief review,' Animals, 11(8), p. 2345.

https://doi.org/10.3390/ani11082345.

Mouratiadou, I. et al. (2023) 'The Digital Agricultural Knowledge and

Information System (DAKIS): Employing digitalisation to encourage

diversified and multifunctional agricultural systems,' Environmental

Science and Ecotechnology, 16, p. 100274.

https://doi.org/10.1016/j.ese.2023.100274.

Padhiary, M., Kumar, A. and Sethi, L.N. (2025) 'Emerging technologies for

smart and sustainable precision agriculture,' SPRINGER NATURE,

1(1). https://doi.org/10.1007/s44430-025-00006-0.

Pathmudi, V.R. et al. (2023) 'A systematic review of IoT technologies and

their constituents for smart and sustainable agriculture applications,'

Scientific African, 19, p. e01577.

https://doi.org/10.1016/j.sciaf.2023.e01577.

Petraki, D. et al. (2025) 'Digital tools and decision support systems in

Agroecology: Benefits, challenges, and practical implementations,'

Agronomy, 15(1), p. 236. https://doi.org/10.3390/agronomy15010236.

Prathibha, S.R., Hongal, A. and Jyothi, M.P. (2017) 'IOT Based Monitoring

System in Smart Agriculture,' IEEE Xplore, pp. 81–84.

https://doi.org/10.1109/icraect.2017.52.

Rafi, M.S.M., Behjati, M. and Rafsanjani, A.S. (2025) Reliable and Cost-

Efficient IoT Connectivity for Smart agriculture: A Comparative Study

of LPWAN, 5G, and Hybrid Connectivity models.

https://arxiv.org/abs/2503.11162.

Raj, M. and Prahadeeswaran, M. (2025) 'Revolutionizing agriculture: a review

of smart farming technologies for a sustainable future,' Deleted

Journal, 7(9). https://doi.org/10.1007/s42452-025-07561-6.

Singh, G. and Sharma, S. (2024) 'A comprehensive review on the Internet of

Things in precision agriculture,' Multimedia Tools and Applications

[Preprint]. https://doi.org/10.1007/s11042-024-19656-0.

143

Singh, N. et al. (2024) 'IoT-based greenhouse technologies for enhanced crop

production: a comprehensive study of monitoring, control, and

communication techniques,' Systems Science & Control Engineering,

12(1). https://doi.org/10.1080/21642583.2024.2306825.

Soussi, A. et al. (2024) 'Smart Sensors and Smart Data for Precision

Agriculture: A review,' Sensors, 24(8), p. 2647.

https://doi.org/10.3390/s24082647.

Talbott, C. (2022) 'Helping farmers with cloud technology, up close and

global,' Google, 3 June. https://blog.google/products/google-

cloud/helping-farmers-with-cloud-technology-up-close-and-global.

TeamSpace Farm Case Study | Google Cloud (no date).

https://cloud.google.com/customers/spacefarm.

THE MINISTER OF AGRICULTURE AND FOOD INDUSTRIES (2021)

NATIONAL AGROFOOD POLICY 2021-2030 (NAP 2.0) Agrofood

Modernisation: Safeguarding the future of National Food Security,

www.kpkm.gov.my. My Gogoprint Sdn. Bhd.

https://www.kpkm.gov.my/images/04-dasar-

agromakanan/national_agrofood_policy_2021-2030_nap%202.0.pdf

(Accessed: September 17, 2025).

Thilakarathne, N.N. et al. (2025) 'Internet of Things enabled smart agriculture:

current status, latest advancements, challenges and countermeasures,'

Heliyon, 11(3), p. e42136.

https://doi.org/10.1016/j.heliyon.2025.e42136.

ThingSpeak for Smart Farming - ThingSpeak IoT (no date).

https://thingspeak.mathworks.com/pages/smart_farming.

Tratwal, A., Jakubowska, M. and Pietrusińska-Radzio, A. (2025) 'Decision

support systems in Integrated pest and Disease Management:

Innovative elements in sustainable agriculture,' Sustainability, 17(18),

p. 8111. https://doi.org/10.3390/su17188111.

Weraikat, D. et al. (2024) 'Data Analytics in Agriculture: Enhancing Decision-

Making for crop yield optimization and sustainable practices,'

Sustainability, 16(17), p. 7331. https://doi.org/10.3390/su16177331

144

Appendix 1: FYP1 feedback

