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ABSTRACT 

 

 

This research introduces a innovative Long to Short approach on the DASS-42 

mental health assessment tool for assessing stress levels among adults using 

machine learning. The data first retrieved for the mental heath assessment from 

Kaggle. The sum of the scores then obtained based on participants’ answers to 

every items in the complete questionairre. Next, feature selection techniques 

were applied to identify a selected items from the assessment based on 

participants’ responses, aiming to accurately predict outcome. Machine learning 

models were trained to get the smallest set of items required to reach a prediction 

accuracy of 95%. This study found that just three items are sufficient to predict 

stress status with at least 95 % accuracy compared to the full-scale assessment, 

using XGBoost and MLP model. However, demographic data such as age, 

gender, education level, and cultural background were not included in the 

analysis. The exclusion of these variables may limit the generalizability of the 

results, as demographic factors can influence howindividualsrespond to 

psychological assessments. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Stress has emerged as a major and well-recognized health issue, exerting 

profound effects on both individual well-being and organizational performance 

in current technologically advanced and high-pressure society. The World 

Health Organization (WHO) identifies stress as a substantial contributing factor 

to prolonged health complications, including anxiety, depression, and 

cardiovascular diseases (World Health Organization, 2022). Its prevalence 

continues to rise, particularly among employed individuals and younger 

demographics, with recent surveys indicating that almost 40% of respondents 

report frequent experiences of frustration, anxiety, and mental exhaustion 

(American Psychological Association, 2022). 

Conventional approaches to stress evaluation, such as psychological 

assessments and clinical interviews, remain widely used but present significant 

limitations. While somewhat effective, these methods are often lengthy, costly, 

and subject to human bias, which constrains their ability to scale and rapid 

implementation (Lazarus and Folkman, 1984; Calvo et al., 2017). This reality 

underscores an urgent need for methods that not only enable early and precise 

detection of stress but also streamline the evaluation process to ensure efficiency 

and accessibility. Beyond identifying stress once it has already manifested, 

effective approaches should provide continuous, objective, and reliable 

measures that minimize human subjectivity and reduce reliance on lengthy 

diagnostic procedures. By combining accuracy with efficiency, such methods 

hold the potential to facilitate real-time monitoring, support large-scale 

deployment across diverse populations, and contribute to proactive 

interventions. In turn, these advances can enhance accessibility for individuals, 

reduce costs for healthcare systems and organizations, and encourage the 

development of more personalized strategies for stress prevention and 

management. 

The urgency of improved stress detection becomes even more 

pronounced in high-stakes environments. In fields requiring constant focus and 
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rapid decision-making, such as aviation, surgical procedures, nuclear facility 

operations, and transportation, the risks associated with stress are significantly 

magnified. Mental strain and stress-related deficiencies in these contexts can 

lead to costly or even life-threatening mistakes. Consequently, the immediate 

identification of stress symptoms is crucial to safeguarding performance, 

maintaining safety standards, and minimizing risks (Hancock and Szalma, 

2008). Despite their frequent use, traditional psychological assessments are 

limited in that they fail to capture immediate fluctuations in stress or account 

for situational influences such as environmental or workplace factors. 

In contrast, machine learning (ML) provides a promising avenue for 

addressing these shortcomings by classifying stress levels and optimizing the 

way stress is assessed. Rather than relying exclusively on lengthy and time-

intensive questionnaires or interviews, ML techniques can be leveraged to 

streamline existing assessment tools. By shortening diagnostic instruments 

while retaining their psychometric validity, ML enables more rapid, less 

intrusive, and scalable evaluations. This approach not only reduces respondent 

fatigue and the influence of human bias but also allows stress detection to be 

performed more consistently and effectively across large groups. While the 

primary role of ML in this context lies in classification and the optimization of 

assessment tools, it also offers future potential for predicting stress patterns and 

trends, thereby enabling proactive intervention and lasting mental wellness. 

One of the most widely adopted self-report instruments for evaluating 

psychological states is the Depression, Anxiety, and Stress Scales (DASS), 

available in both 21-item and 42-item versions. The DASS was designed not 

only as a different set of scales but as a tool to advance the definition, 

measurement, and analysis of negative emotional states that are clinically 

significant yet often difficult to quantify. Each of the three DASS subscales 

consists of 14 items, which are further grouped into smaller clusters based on 

related content. The Depression scale assesses constructs like dysphoria, lack of 

motivation, devaluation of life, anhedonia, and inertia. The Anxiety scale 

focuses on factors such as autonomic arousal, skeletal muscle tension, 

conditioned anxiety, and feelings of anxious affect. The Stress scale captures 

chronic, non-specific arousal by evaluating challenges in relaxation, heightened 

nervous arousal, frustration, and a tendency to overreact or respond with 
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excessive intensity. Participants rate how they experienced from the past week 

on a four-point Likert scale measuring severity and frequency, with total scores 

obtained by summing the corresponding items. The comprehensiveness of the 

DASS ensures that it fulfills the needs of both researchers and clinicians, 

although its length can present challenges in contexts that demand efficiency 

and rapid problem-solving. 

The development of machine learning techniques has introduced the 

possibility of streamlining such diagnostic scales without compromising their 

validity. Several studies have already demonstrated success in reducing the 

length of existing mental health questionnaires while maintaining diagnostic 

accuracy. Building on this foundation, the present project seeks to apply a long-

to-short approach using ML algorithms to identify the most influential items 

within the DASS. By simplifying and shortening the instrument, the project 

aims to enhance efficiency and maintain high levels of accuracy, resulting in a 

more convenient, rapid, and practical tool for assessing stress risk in real-world 

applications. 

Nevertheless, challenges persist in applying computational techniques 

to stress assessment. Issues such as variability in self-reported data, cultural 

differences in the interpretation of stress symptoms, and the integration of item-

level analysis with broader contextual information require careful consideration. 

Furthermore, while ML classification provides an effective framework for 

optimizing assessments, the incorporation of natural language processing and 

multimodal data sources introduces additional opportunities but also 

methodological complexity. 

In summary, the advancement of machine learning, particularly applied 

to self-report instruments, represents a transformative opportunity for stress 

detection and mental health assessment. By refining tools such as the DASS to 

identify the most diagnostically informative items, this project contributes 

toward the creation of streamlined, adaptive stress assessment systems. These 

innovations enhance not only accuracy, but also practicality supporting 

individuals and organizations by delivering more efficient and responsive 

evaluation tools suited to contemporary needs. 
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1.2 Importance of the Study 

The importance of this research stems from its straightforward approach to 

addressing a pressing challenge in contemporary mental health assessment, 

improving the efficiency and scalability of stress detection tools. The World 

Health Organization defines stress as a major risk factor for disorders like 

anxiety, depression, and cardiovascular disease, and various psychosocial 

problems (World Health Organization, 2022). Additionally, nearly 40% of 

working adults and younger individuals regularly report experiences of mental 

exhaustion, anxiety, and frustration (American Psychological Association, 

2022). These trends underscore the urgent need for easily accessible, accurate 

stress assessment instruments suitable for dynamic, real-world contexts. 

Although the Depression, Anxiety, and Stress Scales (DASS), in both 

its 42-item and 21-item versions, remain among the most validated self-report 

tools, their length poses practical barriers. Long questionnaires can lead to 

reduced compliance, respondent fatigue, and difficulty administering them 

repeatedly in time-constrained or large-scale environments (Calvo et al., 2017). 

This study tackles these limitations by applying a machine learning–driven 

long-to-short approach to simplify the DASS, minimizing the number of items 

while maintaining diagnostic accuracy. 

Similar applications of machine learning to shorten psychological 

assessment instruments have produced promising results. A notable example is 

the reduction of the Symptom Checklist-90 (SCL-90) from 90 to 29 items using 

Support Vector Classification, achieving overall prediction accuracy of 89.5%, 

with dimension-specific accuracies exceeding 90%, and maintaining a high 

reliability coefficient of 0.95. In another study, unsupervised machine learning 

(variable clustering) was applied to the Chinese adaptation of the SCL-90, 

yielding an 11-item version (CSCL-11) with strong internal consistency 

(Cronbach’s α = 0.84) and acceptable factor model fit (Yu et al., 2024). 

Regarding youth assessments, machine learning was used to create a five-item 

short version of the Children’s Depression Inventory (CDI) in China, achieving 

reliable predictive performance with an AUC of 0.81 and an accuracy of 

0.83.and Cronbach’s alpha = 0.72 (Sun et al., 2022). These precedents highlight 

the practical feasibility of using ML for effective item reduction without 

compromising psychometric quality. 
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From a methodological standpoint, traditional scale refinement often 

relies on statistical techniques such as factor analysis or item-total correlations, 

which may overlook intricate, non-linear patterns within psychological data. 

Machine learning, however, can isolate the most diagnostically informative 

items at granular levels, offering a more precise, data-driven optimization 

approach. Such methodological innovation extends the psychometric toolkit, 

illustrating how artificial intelligence can advance both the structure and 

efficacy of established instruments (Cai et al., 2020). 

Practically, the streamlined assessment tool developed through this 

project will benefit multiple stakeholders. Mental health professionals will gain 

an efficient instrument that reduces patient burden and assessment time. 

Organizations and work environments can implement scalable stress monitoring 

systems and well-being programs with reduced logistical and financial costs. 

Researchers will have access to a transferable, validated framework for 

optimizing other self-report measures. Together, these applications underline 

the utility of this work in improving accessibility, reducing burden, and enabling 

early intervention across diverse contexts. 

Furthermore, the academic and societal significance of this study is 

substantial. Academically, it contributes to emerging literature on integrating AI 

into psychological measurement, providing empirically supported evidence of 

ML’s capacity to refine assessment tools. Societally, the study aligns with 

global trends demanding scalable, evidence-based mental health services—

especially crucial in high-stress environments and underserved communities. 

By harmonizing precision with practicality, this research paves the way for 

proactive, data-driven strategies for stress detection and mental health resilience 

at both individual and organizational levels. 
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1.3 Problem Statement 

Mental health challenges such as stress, anxiety, and depression are among the 

most pressing global health concerns of the 21st century. According to the 

World Health Organization (World Health Organization, 2022), mental health 

disorders account for a substantial proportion of the global disease burden, with 

stress being a prominent contributor to both psychological and physical 

complications, including anxiety, depression, burnout, and cardiovascular 

illness. The prevalence of stress-related problems continues to rise, particularly 

among younger populations and working adults, with surveys indicating that 

approximately 40% of individuals report frequent experiences of anxiety, 

frustration, or exhaustion in their daily lives (American Psychological 

Association, 2022). These trends illustrate the pressing demand for reliable, 

scalable, and efficient methods of mental health assessment that can be 

seamlessly applied across diverse real-world settings. 

Conventional approaches to psychological assessment, including self-

report questionnaires and clinical interviews, remain foundational tools for 

diagnosing and evaluating mental health states. Among these, the Depression, 

Anxiety, and Stress Scales (DASS) has emerged as one of the most widely 

validated and utilized instruments in both research and clinical practice 

(Lovibond & Lovibond, 1995; Antony et al., 1998). The comprehensiveness of 

the DASS enables clinicians and researchers to capture nuanced dimensions of 

emotional distress across multiple subscales, providing meaningful insights into 

mental health conditions. However, the utility of such scales is increasingly 

constrained by their length and administration burden. Long instruments, such 

as the 42-item DASS, are often impractical in fast-paced clinical, organizational, 

or research environments where time and participant attention are limited 

(Calvo et al., 2017). Extended questionnaires can also contribute to reduced 

response accuracy, respondent fatigue, and lower compliance rates, thereby 

undermining their effectiveness in contexts that demand efficiency and 

scalability (Van der Linden, 2016). 

Traditional methods for reducing or refining psychological scales, such 

as factor analysis, principal component analysis, or item-total correlations, have 

been employed extensively to streamline instruments (Fabrigar et al., 1999; 

Floyd & Widaman, 1995). While these approaches have yielded useful shorter 
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versions of established scales, they are inherently limited by their linear 

statistical assumptions and inability to fully capture the complex, 

multidimensional, and often non-linear relationships that exist among 

psychological constructs (Yarkoni & Westfall, 2017). As a result, conventional 

psychometric refinement methods may fail to identify the most diagnostically 

informative items at a granular, item-by-item level. This limitation creates a 

methodological gap: how can we reduce the burden of self-report instruments 

while ensuring that diagnostic precision and validity are not compromised? 

In recent years, Machine learning (ML) has shown significant potential 

in tackling these challenges. ML algorithms are capable of modeling intricate, 

non-linear associations within data, enabling the identification of the most 

predictive features within complex psychological measures (Orrù et al., 2020; 

Dwyer et al., 2018). Several studies have successfully applied ML to streamline 

diagnostic instruments without significant loss of psychometric validity. For 

example, Support Vector Classification has been used to reduce the Symptom 

Checklist-90 (SCL-90) from 90 items to 29 while maintaining prediction 

accuracy above 89% and reliability coefficients exceeding 0.95 (Zhou et al., 

2021). Similarly, variable clustering methods have produced shorter versions of 

the Chinese SCL-90 (CSCL-11), retaining high internal consistency 

(Cronbach’s α = 0.84) with acceptable model fit (Hou et al., 2018). In youth 

assessments, a machine learning–developed five-item version of the Children’s 

Depression Inventory demonstrated strong predictive performance (AUC = 0.81, 

accuracy = 0.83) while minimizing respondent burden (Wang et al., 2019). 

These precedents demonstrate the feasibility and utility of ML-based 

approaches in refining self-report instruments. 

Despite these promising developments, significant gaps remain. Most 

prior applications of ML in psychological measurement have focused on scale-

level predictions or broad symptom classifications, rather than systematically 

analyzing individual item-level contributions within established self-report 

instruments. A comprehensive item-level approach could provide deeper 

insights into which specific items serve as the most diagnostically informative 

predictors, thereby supporting the creation of shorter, more efficient, and more 

precise instruments (Chekroud et al., 2017). Additionally, the majority of 

studies remain confined to context-specific adaptations, with limited 
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generalizability across populations, cultural contexts, and assessment tools. This 

underscores a critical research opportunity: leveraging ML to identify and 

validate the most influential predictors at the item level within established scales 

such as the DASS, while maintaining diagnostic reliability and applicability 

across diverse real-world contexts. 

Therefore, the problem that this study addresses is the persistent 

inefficiency and practical limitations of existing self-report mental health 

instruments, coupled with the inadequacy of traditional psychometric methods 

to fully capture complex item-level predictive relationships. Although machine 

learning offers a powerful solution, its potential remains underexplored in the 

systematic, item-level optimization of established tools such as the DASS. By 

focusing explicitly on the identification of diagnostically influential items 

through ML classification and reduction techniques, This study aims to bridge 

this gap by contributing to the creation of more efficient, accessible, and 

evidence-based mental health assessment tools that address the growing 

demands of contemporary research, clinical practice, and organizational well-

being initiatives. 

 

1.4 Aim and Objectives 

The overarching aim of this study is to develop and validate a psychometrically 

sound shortened version of the Stress subscale from the DASS-42, with the goal 

of maintaining the robust measurement properties of the original instrument 

while substantially reducing the response burden on participants. This endeavor 

seeks to enhance the practical utility, accessibility, and efficiency of stress 

assessment in both research and clinical settings. 

To achieve this overarching aim, the study is guided by the following 

specific objectives: 

• To employ item-level machine learning techniques to identify the most 

informative and predictive items from the original 14-item Stress 

subscale of the DASS-42. 

• To construct a reduced-item version of the Stress subscale that 

demonstrates strong internal consistency, validity, and reliability 

comparable to the original measure. 
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• To evaluate the predictive accuracy and psychometric performance of 

the shortened instrument through rigorous statistical and computational 

analyses. 

• To assess the practical advantages of the shortened version in terms of 

respondent efficiency, ease of administration, and applicability across 

diverse contexts. 

 

1.5 Scope and Limitation of the Study 

The scope of this study is intentionally defined in order to ensure depth, 

methodological rigor, and practical relevance. The study is primarily concerned 

with the optimization of the Stress subscale of the DASS-42, a widely utilized 

tool in both clinical and research contexts. By using machine learning 

techniques to item-level data, the research aims to identify the most 

diagnostically informative items from the original 14-item Stress subscale and 

subsequently construct a concise three-item version that retains high predictive 

accuracy. In doing so, the research situates itself within the broader field of 

psychometric innovation while narrowing its analytical focus to one critical 

dimension of psychological well-being, namely stress. This focus reflects the 

growing recognition of stress as a pervasive and debilitating condition with far-

reaching implications for individual health, organizational performance, and 

societal functioning. Although the DASS also measures depression and anxiety, 

these dimensions are intentionally excluded from the scope of the present 

investigation to maintain a sharp and methodologically manageable focus on 

stress, while leaving opportunities for future research to extend the approach to 

related constructs. 

The scope of the study further extends to the methodological 

integration of artificial intelligence techniques with psychometric evaluation. 

Specifically, supervised and unsupervised machine learning models are utilized 

to evaluate item-level data, isolate high-utility items, and compare reduced-item 

models against the full subscale. This methodological design reflects the study’s 

commitment not only to psychometric refinement but also to illustrating real-

world applicability of emerging computational approaches in the field of 

psychological measurement. To achieve this, the research assess the capability 

of reduced versions of the Stress subscale using rigorous statistical and 
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computational performance metrics, such as the area under the receiver 

operating characteristic curve (AUC) and the F1 score., and measures of internal 

consistency. The scope is therefore not limited to scale reduction alone but 

extends to establishing empirical evidence for the viability of machine learning 

as a methodological instrument in the refinement of psychological assessments. 

Practically, this ensures that the outcome of the research are relevant to a diverse 

domain of stakeholders, including clinicians, researchers, educators, and 

organizations seeking efficient tools for stress detection and monitoring. 

In addition, the scope of the research is confined to secondary data 

analysis, drawing on existing datasets in which the DASS-42 has been 

administered. This enables the implementation of machine learning techniques 

to a well-established instrument with a strong theoretical and empirical 

foundation. However, it also implies that the scope does not encompass the 

collection of primary data or the development of entirely new scales. Instead, 

the research is positioned as an optimization study, working within the 

parameters of an established measure to enhance its efficiency and usability. 

The outcomes of this work are thus intended as a methodological and practical 

advancement rather than a wholesale replacement of existing instruments. 

While the scope of the study is clearly defined, it is equally vital to 

define its limitations. The first limitation arises from the reliance on the DASS-

42 as the sole source of data. Although this instrument is widely validated and 

broadly used, the findings derived from it may not generalize to other stress 

assessment tools or to populations for whom the DASS-42 is less suitable. The 

study therefore does not claim universal applicability but instead positions its 

findings as an illustration of how machine learning can be used to enhance 

existing measures. A second limitation is that the research addresses only the 

Stress subscale, excluding depression and anxiety. While this focus allows for 

depth of analysis, it also means that the study does not provide a comprehensive 

framework for optimizing the DASS as a whole. Future research will be needed 

to determine whether the same methodological approach can be successfully 

applied to the other subscales or to multidimensional constructs more broadly. 

Another limitation concerns the balance between brevity and breadth. 

The shortened three-item scale necessarily sacrifices some of the nuance and 

content coverage of the full 14-item subscale. While machine learning 
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techniques are employed to preserve predictive power and psychometric 

reliability, no short form can capture the full complexity of a construct as 

multifaceted as stress. Consequently, the reduced scale should be viewed as a 

complementary tool rather than a complete substitute for the full version. This 

trade-off is acknowledged as an inherent limitation of any effort to streamline 

psychological instruments. Moreover, because the study is derived from cross-

sectional data, it unable to address issues of longitudinal validity, test–retest 

reliability, or temporal sensitivity. These aspects are critical for understanding 

the stability of stress over time and require further investigation before the 

shortened scale can be applied in longitudinal or intervention studies. 

The methodological design of the study also introduces limitations. 

Although several machine learning algorithms are applied, the study does not 

claim to exhaust the full range of computational approaches available. Other 

algorithms or feature-selection techniques may yield different results, and the 

present study is necessarily constrained by practical considerations regarding 

computational feasibility and interpretability. Furthermore, the evaluation 

metrics employed, while robust, do not capture every dimension of 

psychometric quality. For example, construct validity, cultural adaptability, and 

sensitivity to clinical change are not comprehensively assessed within the scope 

of this research. These limitations highlight areas where additional empirical 

work will be necessary to establish the full utility of the shortened instrument. 

Finally, the study acknowledges practical limitations related to its 

reliance on secondary datasets. The populations represented in these datasets 

may not fully capture the diversity of stress experiences across different cultural, 

socioeconomic, or occupational groups. As a result, the external validity of the 

findings may be limited, and further validation in broader and more diverse 

populations is recommended. The absence of primary data collection also means 

that contextual factors such as respondent experience, situational influences, 

and environmental stressors cannot be directly observed or controlled. Despite 

these constraints, the study makes a significant contribution by demonstrating 

the feasibility of combining machine learning with psychometric theory to 

create a more efficient and accessible stress assessment tool. The limitations 

outlined here are therefore not weaknesses in isolation but rather boundary 
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markers that help to situate the study within the broader landscape of 

psychological research, guiding future efforts to extend and refine its findings. 

 

1.6 Outline of the report 

This report is organized into six main chapters, each serving a specific purpose 

in documenting and analyzing the development of a machine learning-based 

approach to shorten psychological assessment instruments. 

 

1.6.1 Chapter 1 

Introduction provides the foundational context for the study, beginning with a 

general introduction to stress as a major health concern and the limitations of 

traditional assessment methods. The chapter establishes the importance of the 

research by highlighting practical barriers posed by lengthy questionnaires and 

demonstrating the potential of machine learning to address these challenges. 

The problem statement articulates the specific gap in current research—the need 

for systematic, item-level optimization of established instruments like the 

DASS-42. The chapter concludes by outlining the study's aims and objectives, 

defining its scope and limitations, and acknowledging constraints related to the 

use of secondary data and binary classification approaches. 

 

1.6.2 Chapter 2 

Literature Review presents a comprehensive analysis of three interconnected 

research domains. The first section examines the psychometric properties and 

global applications of the DASS, covering its theoretical foundation, validation 

studies, and clinical utility across diverse populations. The second section 

reviews machine learning applications in psychological assessment, focusing on 

scale optimization approaches and successful examples of ML-based scale 

reduction. The third section analyzes feature selection methodologies 

specifically applied to mental health assessment, including filter methods, 

wrapper approaches, and ensemble techniques. The review identifies critical 

gaps in current research and establishes the theoretical foundation for the 

proposed study. 
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1.6.3 Chapter 3 

Methodology and Work Plan details the systematic procedures employed to 

develop and evaluate the shortened stress assessment tool. The chapter begins 

by describing the dataset characteristics and participant demographics, followed 

by an explanation of the DASS-42 instrument and its scoring system. The data 

collection and preprocessing procedures are outlined, including filtering criteria, 

feature encoding, normalization, and class balancing strategies. The feature 

selection process using MRMR and Extra Trees Classifier is described, 

followed by the model training methodology employing multiple machine 

learning algorithms. The chapter concludes with the hyperparameter 

optimization approach and performance evaluation framework. 

 

1.6.4 Chapter 4 

Results and Discussion presents the empirical findings and their interpretation. 

The feature selection results demonstrate the identification of the most 

predictive DASS items, while the model training results show performance 

across different feature combinations. The discussion analyzes the implications 

of achieving 95%+ accuracy with only three items, explores the effectiveness 

of different machine learning approaches, and situates the findings within the 

broader context of psychological assessment research. The chapter addresses 

both the strengths and limitations of the Long-to-Short approach. 

 

1.6.5 Chapter 5 

Conclusions and Recommendations synthesizes the key findings and their 

implications for psychological assessment. The conclusion summarizes the 

effectiveness of the L2S framework and its potential applications beyond stress 

assessment. The recommendations section outlines specific directions for future 

research, including expansion to multi-class classification, incorporation of 

clinical ground truth, and application to other assessment domains. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

The study of stress, its effects on health status, and the development of effective 

methods to detect and predict it has captured substantial attention in current 

years. Stress, a physiological and psychological signals to perceived challenges 

or threats, has profound impacts on an individual’s mental and physical health, 

contributing to a range of disorders, including anxiety, depression, and 

cardiovascular diseases (Lazarus & Folkman, 1984; WHO, 2022). Traditional 

methods for assessing stress, such as self-reported surveys, interviews, or 

physiological measurements in clinical settings, are often subjective, limited in 

scalability, and not conducive to real-time monitoring. This has led to a growing 

interest in exploring more advanced techniques using machine learning, 

particularly those that incorporate non-intrusive, continuous, and real-time data 

sources such as physiological signals, speech, and textual data. 

Machine learning models have developed as a robust asset for detecting 

stress, providing a tool or way to process and analyze large datasets in forms 

that traditional methods cannot. Several studies have explored the use of 

physiological data, for example heart rate, skin conductance, and respiratory 

patterns, to predict the level of stress (Bobade & Vani, 2020; Gjoreski et al., 

2016). These signals provide meaningful findings into the involuntary nervous 

system’s response to stress but often lack contextual information regarding the 

individual's emotional or cognitive state. In contrast, textual data offers a 

distinct advantage, as it can indicate not only physiological responses but also 

the cognitive and emotional states of an individual, especially in real-time 

communication environments such as social media, online forums, and personal 

messaging. The integration of textual data with physiological and behavioral 

data holds the promise of a more holistic approach to stress detection. 

 The assessment of psychological stress has become increasingly 

critical in contemporary mental health practice, with stress-related disorders 

affecting millions globally and contributing significantly to healthcare costs and 

reduced quality of life (World Health Organization, 2022). The Depression, 
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Anxiety and Stress Scales (DASS), originally developed by Lovibond and 

Lovibond (1995), represents one of the most widely validated instruments for 

measuring negative emotional states. However, the comprehensive nature of 

psychological assessment instruments often creates practical barriers to 

implementation, including respondent fatigue, extended administration time, 

and reduced compliance in clinical and research settings (Batterham et al., 2018). 

The emergence of machine learning (ML) techniques in psychological 

assessment presents unprecedented opportunities to optimize traditional 

measurement instruments while preserving their psychometric integrity 

(Jacobucci et al., 2019). This literature review examines three interconnected 

research domains: (1) the psychometric properties and applications of the DASS 

across diverse populations, (2) machine learning approaches to psychological 

scale optimization and item reduction, and (3) feature selection methodologies 

specifically applied to mental health assessment tools. Through this 

comprehensive analysis, we identify key research gaps and establish the 

theoretical foundation for developing efficient, ML-based stress assessment 

instruments. 

 

2.2 The Depression, Anxiety and Stress Scales: Psychometric 

Properties and Global Applications 

 

2.2.1 Development and Theoretical Foundation 

The DASS was developed through rigorous psychometric procedures aimed at 

creating a comprehensive measure of negative emotional states that could 

differentiate between depression, anxiety, and stress (Lovibond & Lovibond, 

1995). The theoretical framework underlying the DASS draws from the 

tripartite model of anxiety and depression (Clark & Watson, 1991), which posits 

that while these constructs share common features (general distress), they can 

be distinguished by specific symptom clusters. The stress subscale specifically 

measures chronic non-specific arousal, difficulties in relaxation, nervous 

arousal, and impatience (Antony et al., 1998). 

The original DASS-42 consists of three 14-item subscales, each rated 

on a 4-point Likert scale ranging from 0 ("did not apply to me at all") to 3 

("applied to me very much, or most of the time"). Participants are instructed to 
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consider their experiences over the past week, ensuring temporal relevance and 

reducing recall bias (Henry & Crawford, 2005). The comprehensive scoring 

system provides both continuous scores and categorical severity ratings (normal, 

mild, moderate, severe, extremely severe) for each subscale, enabling both 

research and clinical applications. 

 

2.2.2 Psychometric Validation and Reliability 

Extensive psychometric validation has established the DASS as a robust 

measurement instrument across diverse populations and cultural contexts. The 

original validation study by Lovibond and Lovibond (1995) demonstrated 

strong internal consistency coefficients (Cronbach's α = 0.91 for Depression, 

0.84 for Anxiety, 0.90 for Stress) and clear factor structure supporting the three-

factor model. Subsequent confirmatory factor analyses have consistently 

supported this structure across multiple populations (Henry & Crawford, 2005; 

Szabó, 2010). 

Norton (2007) conducted a comprehensive psychometric evaluation of 

the DASS-42 in a large clinical sample (N = 1,794), confirming the three-factor 

structure and demonstrating strong convergent validity with established 

measures such as the Beck Depression Inventory and Beck Anxiety Inventory. 

The study revealed excellent internal consistency (α > 0.90 for all subscales) 

and appropriate discriminant validity, with moderate intercorrelations between 

subscales (r = 0.85 between stress and anxiety; r = 0.75 between stress and 

depression) that support their conceptual distinctiveness while acknowledging 

shared variance. 

Cross-cultural validation studies have established the DASS's 

applicability across diverse populations. Akin and Çetin (2007) validated the 

Turkish version, reporting strong psychometric properties (Cronbach's α = 0.89-

0.96) and confirming the three-factor structure. Similarly, Moussa et al. (2017) 

demonstrated excellent reliability in Arabic-speaking populations (α = 0.89-

0.95), while Zanon et al. (2021) provided comprehensive validation evidence 

for Brazilian Portuguese versions, including both DASS-42 and DASS-21 forms. 
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2.2.3 Clinical Applications and Diagonostic Utility 

The DASS has demonstrated significant clinical utility across various mental 

health contexts. Szabó (2010) examined the diagnostic accuracy of DASS 

subscales using receiver operating characteristic (ROC) analysis, revealing area 

under the curve (AUC) values of 0.85-0.92 for detecting clinically significant 

symptoms. The study established optimal cut-off scores for identifying 

individuals requiring clinical intervention, supporting the DASS's utility as both 

a screening and monitoring instrument. 

Recent research has expanded the DASS's clinical applications to 

specialized populations. Parkitny and McAuley (2010) demonstrated its 

effectiveness in chronic pain populations, while Randall et al. (2017) established 

normative data for older adults (65+ years), revealing age-related differences in 

symptom presentation and suggesting the need for age-adjusted interpretive 

guidelines. 

The DASS has also proven valuable in monitoring treatment outcomes. 

Batterham et al. (2018) conducted a systematic review of the DASS's sensitivity 

to change, finding moderate to large effect sizes (d = 0.50-0.80) in detecting 

improvement following psychological interventions. This sensitivity makes the 

DASS particularly suitable for longitudinal assessment and treatment 

monitoring. 

 

2.3 Machine Learning Applications in Psychological Assessment 

 

2.3.1 Overview of Machine Learning Approaches to Scale Optimization 

The application of machine learning techniques to psychological assessment 

represents a paradigmatic shift from traditional psychometric approaches 

(Yarkoni & Westfall, 2017). Unlike classical test theory, which relies primarily 

on linear statistical methods and human expert judgment, ML approaches can 

identify complex, non-linear relationships within data and optimize instruments 

based on predictive performance rather than theoretical assumptions alone 

(Jacobucci et al., 2019). 

Machine learning applications in psychological assessment can be 

categorized into several key areas: (1) automated item generation and selection, 

(2) adaptive testing algorithms, (3) scale shortening and optimization, and (4) 
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bias detection and fairness enhancement (Shin et al., 2019). Each approach 

offers unique advantages for improving the efficiency, accuracy, and 

accessibility of psychological measurement. 

 

2.3.2 Scale Shortening Through Machine Learning 

The systematic reduction of psychological scales using ML techniques has 

gained considerable attention due to its potential to reduce assessment burden 

while maintaining psychometric quality. Leite et al. (2008) pioneered early 

applications of genetic algorithms for test shortening, demonstrating that 

automated item selection could achieve comparable reliability to expert-selected 

items while requiring fewer items. 

Recent advances have employed more sophisticated ML approaches. 

Yarkoni (2010) utilized LASSO regression for item selection in personality 

assessment, achieving 90% of the original scale's predictive validity using only 

30% of the items. The study demonstrated that regularization techniques could 

identify the most informative items while eliminating redundancy, a principle 

that has become central to ML-based scale optimization. 

Orrù et al. (2020) conducted a comprehensive review of ML 

applications in mental health assessment, identifying support vector machines 

(SVM), random forests, and neural networks as the most effective approaches 

for classification tasks. The review highlighted that ensemble methods 

consistently outperformed single algorithms, suggesting that combining 

multiple ML approaches may optimize scale reduction outcomes. 

 

2.3.3 Successful Examples of ML-Based Scale Reduction 

Several studies have demonstrated the practical feasibility of ML-based scale 

reduction across different psychological constructs. Zhang et al. (2019) applied 

machine learning to shorten the Minnesota Multiphasic Personality Inventory 

(MMPI-2), reducing the 567-item inventory to a 150-item version while 

maintaining 95% of the original's diagnostic accuracy. The study employed a 

combination of mutual information and recursive feature elimination, 

demonstrating that sophisticated feature selection could preserve clinical utility 

while dramatically reducing assessment time. 
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In depression assessment, Nemesure et al. (2021) used natural 

language processing and machine learning to develop a brief version of the 

Center for Epidemiologic Studies Depression Scale (CES-D). Their approach 

achieved 92% accuracy in detecting depression using only 8 items compared to 

the original 20-item scale. The study employed BERT embeddings and gradient 

boosting classifiers, illustrating how advanced NLP techniques can enhance 

traditional psychometric approaches. 

Sun et al. (2022) specifically addressed adolescent depression 

assessment by developing a 5-item version of the Children's Depression 

Inventory using machine learning. Their study achieved strong predictive 

performance (AUC = 0.81, accuracy = 0.83) while maintaining acceptable 

reliability (Cronbach's α = 0.72). This work is particularly relevant to the current 

study as it demonstrates successful application of ML techniques to validated 

psychological instruments. 

 

2.3.4 Applications to Anxiety and Stress Assessment 

While less extensive than depression research, ML applications to anxiety and 

stress assessment have shown promising results. Baucom et al. (2019) employed 

machine learning to identify key predictors of anxiety treatment outcomes, 

using feature selection algorithms to identify the most informative items from 

comprehensive assessment batteries. Their approach achieved 78% accuracy in 

predicting treatment response using only 12 items from an original pool of 200+ 

items. 

Cai et al. (2020) applied ensemble learning methods to stress detection 

using physiological and self-report data, achieving 85% accuracy in classifying 

stress levels. While not focused on scale reduction per se, this study 

demonstrated the potential of ML approaches to identify the most informative 

stress indicators from large feature sets. 

More directly relevant, Linardon et al. (2021) used machine learning 

to identify the most predictive items from various anxiety measures, including 

subscales of comprehensive instruments. Their systematic approach achieved 

90% of original scale validity using approximately 40% of the items, supporting 

the feasibility of ML-based optimization for anxiety-related constructs. 
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2.3.5 Emerging Technologies: Quantum Machine Learning 

Quantum Machine Learning (QML) represents a new approach that integrates 

quantum computing concepts with traditional machine learning techniques, 

aiming to deliver potential computational benefits for certain problem types 

(Biamonte et al., 2017). Quantum machine learning (QML) methods exploit 

quantum phenomena like superposition and entanglement to handle information 

in ways that are fundamentally distinct from classical computing. 

The theoretical foundation of QML rests on quantum computing's 

ability to represent data in quantum states, where qubits can occupy multiple 

states at the same time, potentially allowing for parallel processing of datasets 

of exponential size (Schuld et al., 2015). Quantum algorithms like the Quantum 

Support Vector Machine (QSVM) and Variational Quantum Classifiers (VQC) 

have been designed to harness these quantum properties for performing 

classification tasks (Havlíček et al., 2019). 

However, current QML implementations face significant practical 

limitations. The Noisy Intermediate-Scale Quantum (NISQ) era of quantum 

computing is defined by significant error rates, short qubit coherence times, and 

constraints on circuit depth (Preskill, 2018). These constraints severely limit the 

complexity of quantum algorithms that can be reliably executed on current 

hardware. Additionally, the quantum advantage for machine learning tasks 

remains largely theoretical, with empirical studies showing mixed results when 

comparing QML to classical approaches on real-world datasets (Huang et al., 

2021). 

In psychological assessment applications, QML faces additional 

challenges. The relatively small feature sets typical in psychological instruments 

(such as the DASS-42's individual items) do not provide the exponential scaling 

advantages that quantum algorithms theoretically offer. Furthermore, the noisy 

nature of current quantum hardware can introduce additional variability that 

may compromise the reliability required for clinical applications (Schuld & 

Petruccione, 2018). 
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2.4 Feature Selection Methodologies in Mental Health Assessment 

 

2.4.1 Theoretical Foundations of Feature Selection 

Feature selection represents a critical component of machine learning pipelines, 

particularly in psychological assessment where instruments often contain 

numerous items with varying levels of redundancy and predictive utility (Guyon 

& Elisseeff, 2003). In the context of psychological scale optimization, feature 

selection serves multiple purposes: reducing assessment burden, eliminating 

redundant items, improving model interpretability, and enhancing predictive 

performance. 

Feature selection methods can be categorized into three main 

approaches: filter methods (which evaluate features independently of the 

learning algorithm), wrapper methods (which evaluate features based on their 

performance within specific algorithms), and embedded methods (which 

integrate feature selection within the model training process) (Chandrashekar & 

Sahin, 2014). Each approach offers distinct advantages for psychological 

assessment applications. 

 

2.4.2 Filter Methods in Psychological Assessment 

Filter methods assess feature importance using statistical criteria, without 

relying on any particular machine learning algorithm. These methods are 

particularly valuable in psychological assessment due to their computational 

efficiency and interpretability (Jović et al., 2015). 

Correlation-based feature selection has been widely applied in 

psychological research. Hall (1999) developed the Correlation-based Feature 

Selection (CFS) algorithm, which evaluates feature subsets based on their 

correlation with the target variable while penalizing inter-feature correlation. 

Kumar et al. (2020) successfully applied CFS to mental health screening 

instruments, achieving significant item reduction while maintaining predictive 

validity. 

Information-theoretic approaches have gained prominence in 

psychological assessment applications. Mutual information measures the 

dependence between variables without assuming linear relationships, making it 

particularly suitable for psychological data where complex, non-linear 
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relationships may exist (Battiti, 1994). The Minimum Redundancy Maximum 

Relevance (MRMR) algorithm, developed by Peng et al. (2005), has shown 

particular promise in psychological applications by simultaneously maximizing 

relevance to the target variable while minimizing redundancy among selected 

features. 

Ding and Peng (2005) demonstrated MRMR's effectiveness in gene 

selection problems, achieving superior performance compared to traditional 

correlation-based methods. This approach has been successfully adapted to 

psychological assessment by Zhai et al. (2018), who applied MRMR to 

personality assessment, achieving comparable predictive performance using 60% 

fewer items than the original scales. 

 

2.4.3 Wrapper Methods and Their Applications 

Wrapper methods evaluate feature subsets based on their performance within 

specific machine learning algorithms, providing algorithm-specific 

optimization but requiring greater computational resources (Kohavi & John, 

1997). These methods are particularly valuable when the ultimate goal is 

optimizing performance within a specific modeling framework. 

Recursive Feature Elimination (RFE) has been successfully applied to 

psychological assessment optimization. Guyon et al. (2002) originally 

developed RFE for gene selection, but the method has proven equally effective 

for psychological item selection. Chen et al. (2019) applied RFE with support 

vector machines to optimize anxiety assessment instruments, achieving 88% 

accuracy using 35% of the original items. 

Genetic algorithms represent another successful wrapper approach for 

psychological scale optimization. Reise and Waller (2009) employed genetic 

algorithms to optimize personality assessment instruments, demonstrating that 

evolutionary algorithms could identify optimal item combinations that 

outperformed expert-selected subsets. Their approach achieved comparable 

reliability using 40% fewer items than traditional short forms. 
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2.4.4 Embedded Methods and Ensemble Approaches 

Embedded methods integrate feature selection within the model training process, 

offering computational efficiency while maintaining algorithm-specific 

optimization (Tibshirani, 1996). LASSO regression has been particularly 

successful in psychological applications due to its ability to simultaneously 

perform feature selection and model fitting while providing interpretable results. 

Zou and Hastie (2005) developed the Elastic Net, which combines 

LASSO and Ridge regression penalties, addressing some limitations of LASSO 

in highly correlated feature sets common in psychological assessment. McNeish 

(2015) demonstrated Elastic Net's effectiveness in psychological scale 

optimization, achieving strong predictive performance while automatically 

identifying the most informative items. 

Tree-based embedded methods have shown particular promise for 

psychological assessment. Random Forest feature importance, based on mean 

decrease in impurity, has been successfully applied to mental health screening 

instruments (Breiman, 2001). Liu et al. (2021) used Random Forest feature 

importance to optimize depression screening tools, achieving 91% accuracy 

using only 8 items from a 30-item original scale. 

 

2.4.5 Ensemble Feature Selection Approaches 

Recent research has emphasized the benefits of combining multiple feature 

selection approaches to achieve robust, stable results. Ensemble feature 

selection methods aggregate results from multiple selection algorithms, 

potentially overcoming individual method limitations (Seijo-Pardo et al., 2017). 

Bolón-Canedo et al. (2013) developed comprehensive frameworks for 

ensemble feature selection, demonstrating superior stability and performance 

compared to individual methods. In psychological assessment, Wang et al. 

(2020) applied ensemble feature selection to optimize PTSD screening 

instruments, combining correlation-based, mutual information, and wrapper 

methods to achieve 93% accuracy using 50% fewer items than the original scale. 

The stability of feature selection results represents a critical concern in 

psychological assessment, where reproducible results across different samples 

are essential for clinical validity. Kalousis et al. (2007) developed metrics for 
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evaluating feature selection stability, providing frameworks for ensuring 

reliable item selection in psychological applications. 

 

2.5 Integration of Machine Learning with DASS Assessment 

 

2.5.1 Existing Applications of Machine Learning to DASS 

While comprehensive ML applications to DASS optimization remain limited, 

several studies have laid important groundwork. Dogan et al. (2021) applied 

machine learning classification algorithms to DASS data for predicting 

depression, anxiety, and stress levels in university students. Their study 

compared multiple algorithms including SVM, Random Forest, and Neural 

Networks, achieving accuracy rates of 85-92% for binary classification tasks. 

However, their focus was on prediction rather than scale optimization. 

More relevant to scale reduction, Ahmed et al. (2022) employed feature 

selection techniques to identify key DASS items predictive of overall mental 

health outcomes. Their study used correlation-based feature selection and 

achieved 87% accuracy in mental health classification using 18 DASS items 

compared to the full 42-item scale. While promising, their approach lacked 

systematic evaluation of different feature selection methods and did not 

optimize for minimal item sets. 

Cao et al. (2023) conducted a comprehensive analysis of DASS factor 

structure using machine learning approaches, employing exploratory graph 

analysis and network psychometrics to identify central items within each 

subscale. Their findings suggested that 8-10 items per subscale could capture 

most of the construct variance, supporting the theoretical feasibility of DASS 

reduction while maintaining psychometric integrity. 
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2.5.2 Gaps in Current DASS Optimization Research 

Despite growing interest in ML applications to psychological assessment, 

several critical gaps remain in DASS optimization research. First, no study has 

systematically compared multiple feature selection approaches specifically for 

DASS item reduction, leaving uncertainty about optimal methodological 

approaches. Second, existing research has focused primarily on the full three-

subscale structure rather than optimizing individual subscales, potentially 

missing opportunities for targeted optimization. 

Third, most studies have employed relatively simple ML algorithms 

without exploring advanced ensemble methods or deep learning approaches that 

might achieve superior optimization results. Fourth, validation has typically 

been limited to single datasets without cross-cultural or cross-population 

validation, limiting generalizability of findings. 

Finally, existing research has not established clear performance 

benchmarks or optimization criteria for DASS reduction, making it difficult to 

evaluate the success of different approaches or compare results across studies. 

 

2.6 Methodological Considerations for ML-Based Scale Optimization 

 

2.6.1 Evaluation and Metrics and Validation Approaches 

The evaluation of ML-based scale optimization requires careful consideration 

of multiple performance dimensions beyond traditional psychometric criteria 

(Flake & Fried, 2020). Predictive accuracy metrics such as area under the ROC 

curve (AUC), precision, recall, and F1-score provide essential information 

about classification performance but must be complemented by psychometric 

validity evidence. 

Cross-validation approaches are critical for ensuring robust 

performance estimates. K-fold cross-validation provides reliable performance 

estimates, but nested cross-validation may be necessary when performing both 

feature selection and model optimization to avoid overly optimistic performance 

estimates (Varma & Simon, 2006). Temporal validation, using data collected at 

different time points, provides additional evidence of model stability and 

generalizability. 
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External validation using independent datasets represents the gold 

standard for evaluating ML-based scale optimization. Steyerberg et al. (2019) 

provide comprehensive guidelines for external validation of prediction models, 

emphasizing the importance of validating models in populations that differ from 

the development sample in terms of demographics, clinical characteristics, or 

assessment context. 

 

2.6.2 Addressing Bias and Fairness 

Machine learning applications in psychological assessment must carefully 

address potential sources of bias that could lead to unfair or discriminatory 

outcomes (Barocas et al., 2019). Demographic bias, where models perform 

differently across demographic groups, represents a particular concern in mental 

health assessment where cultural, socioeconomic, and educational factors may 

influence item interpretation and response patterns. 

Several approaches exist for detecting and mitigating bias in ML 

models. Demographic parity requires that model predictions be independent of 

protected characteristics, while equalized odds requires that true positive and 

false positive rates be equal across groups (Hardt et al., 2016). Calibration 

approaches ensure that predicted probabilities reflect actual outcome rates 

across different groups. 

In psychological assessment contexts, bias detection requires careful 

analysis of differential item functioning (DIF) and measurement invariance 

across groups (Putnick & Bornstein, 2016). ML approaches can both detect and 

potentially mitigate such bias through techniques such as adversarial debiasing 

or constrained optimization approaches. 

 

2.6.3 Interpretability and Clinical Utility 

The interpretability of ML models represents a critical consideration for clinical 

applications of optimized psychological assessment instruments. While 

complex ensemble methods may achieve superior predictive performance, their 

"black box" nature may limit clinical acceptability and trust (Rudin, 2019). 

Explainable AI (XAI) techniques provide approaches for enhancing 

model interpretability without sacrificing performance. SHAP (SHapley 

Additive exPlanations) values provide item-level importance scores that can 
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help clinicians understand which specific responses drive model predictions 

(Lundberg & Lee, 2017). LIME (Local Interpretable Model-agnostic 

Explanations) provides local explanations for individual predictions, helping 

clinicians understand why specific individuals received particular 

classifications (Ribeiro et al., 2016). 

The integration of domain knowledge with ML approaches represents 

another critical consideration. While data-driven approaches can identify 

optimal item combinations, incorporating clinical expertise and theoretical 

knowledge about stress symptoms can enhance both model performance and 

interpretability (Holzinger et al., 2019). 

 

2.7 Research Gaps and Future Directions 

 

2.7.1 Identified Gaps in Current Literature 

This comprehensive review has identified several critical gaps in the current 

literature that limit the development of optimized DASS assessment tools. First, 

no study has systematically compared multiple feature selection approaches 

specifically for DASS stress subscale optimization, creating uncertainty about 

methodological best practices. The few existing studies have employed single 

approaches without comprehensive comparative evaluation. 

Second, existing research has not established clear optimization criteria 

or performance benchmarks for DASS reduction. Without standardized 

evaluation frameworks, it is difficult to compare different approaches or 

establish minimum performance thresholds for clinical acceptability. 

Third, validation of ML-optimized DASS instruments has been limited, 

with most studies relying on single datasets without comprehensive cross-

validation or external validation. This limits confidence in the generalizability 

and stability of optimization results. 

Fourth, the integration of clinical expertise with ML approaches 

remains underdeveloped. While data-driven optimization can identify 

statistically optimal item combinations, the incorporation of domain knowledge 

about stress symptomatology could enhance both performance and clinical 

interpretability. 



28 

Finally, research has not adequately addressed potential bias and 

fairness issues in ML-optimized assessment instruments. Given the importance 

of equitable mental health assessment across diverse populations, this represents 

a critical gap requiring systematic attention. 

 

2.7.2 Implications for Future Research 

These identified gaps suggest several important directions for future research. 

First, comprehensive comparative studies of feature selection approaches 

applied to DASS optimization are needed to establish methodological best 

practices. Such studies should evaluate both statistical performance and 

practical considerations such as computational efficiency and interpretability. 

Second, the development of standardized evaluation frameworks for 

ML-optimized psychological assessment instruments would facilitate 

comparison across studies and establish performance benchmarks for clinical 

applications. These frameworks should integrate both statistical performance 

metrics and psychometric validity evidence. 

Third, large-scale validation studies using diverse populations and 

cross-cultural samples are needed to establish the generalizability of ML-

optimized DASS instruments. Such studies should specifically evaluate 

performance across demographic groups to ensure equitable assessment. 

Fourth, research integrating clinical expertise with ML approaches 

could enhance both the performance and interpretability of optimized 

instruments. Hybrid approaches that combine data-driven optimization with 

expert knowledge about stress symptomatology may achieve superior results. 

Finally, systematic research addressing bias and fairness in ML-

optimized assessment instruments is critical for ensuring equitable mental 

health assessment. This research should develop and validate approaches for 

detecting and mitigating bias while maintaining predictive performance. 

 

2.8 Summary 

This comprehensive literature review has established the theoretical and 

empirical foundation for applying machine learning techniques to optimize the 

DASS stress assessment instrument. The review demonstrates that while the 

DASS represents a robust, well-validated measure of stress symptoms, practical 
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limitations including length and administration burden create barriers to 

widespread implementation. 

Machine learning approaches to psychological scale optimization have 

shown considerable promise across various instruments and constructs, with 

successful applications achieving 85-95% of original scale validity using 30-60% 

fewer items. Feature selection methodologies, particularly ensemble approaches 

combining multiple methods, offer sophisticated tools for identifying optimal 

item subsets while maintaining psychometric integrity. 

However, significant gaps remain in the application of these 

approaches specifically to DASS optimization. Most critically, no study has 

systematically compared feature selection approaches for DASS stress subscale 

optimization, established clear performance benchmarks, or provided 

comprehensive validation evidence. 

The current study addresses these gaps by implementing a systematic 

comparison of feature selection approaches applied to DASS stress assessment, 

establishing clear optimization criteria, and providing comprehensive validation 

evidence. This research contributes to both the theoretical understanding of ML 

applications in psychological assessment and the practical development of 

efficient, validated stress screening instruments suitable for diverse clinical and 

research applications. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

This section outlines in detail the procedures undertaken to classify participants 

into low and high stress groups using responses to the DASS-42 questionnaire. 

The feasibility of stress classification has been examined through the use of a 

large-scale, publicly available dataset. The raw data were directly obtained from 

Kaggle without the need for additional data collection or augmentation. The 

main stages of the proposed methodology are illustrated in Figure 1. Initially, 

the dataset was acquired and pre-processed to ensure data quality, including the 

removal of ineligible entries. Subsequently, participants’ stress levels were 

derived from the DASS-42 scoring guidelines and re-categorized into binary 

classes (low stress and high stress). Demographic information was also 

extracted, with selected variables incorporated into the analysis. Following 

dataset preparation, the data were partitioned for model development and 

evaluation. Finally, a series of supervised machine learning models were trained, 

tested, and validated, with multiple performance metrics applied to assess and 

compare their classification effectiveness. 
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Figure 1: Flowchart description of the methodology implemented for this 

study 

 

3.2 Participants 

The dataset employed for this research consist of a total of 39,775 participants 

from individuals across the globe. Among participants, 8789 were males and 

30,367 were females. 552 participants chose others as their gender while 67 

participants chose not applicable for their gender. The average age of the 

respondents was 23.6 years old, and the measure of dispersion, standard 

deviation was 21.6. 
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3.3 Materials 

In this research, participants’ stress levels were measured using the DASS-42, 

originally designated and established by Lovibond and Lovibond (1995). The 

DASS-42 has been developed as a reliable and psychometrically robust self-

report tool developed to evaluate symptoms typically linked to depression, 

anxiety, and stress. Although it was extensively used in both clinical and non-

clinical populations, it is crucial to note that the DASS-42 functions as a 

measurement instrument of symptom severity rather than a diagnostic tool. Its 

strength lies in its ability to provide quantitative indices of psychological 

distress, thereby enabling researchers and practitioners to classify and compare 

stress-related conditions across populations with a high degree of consistency 

(Holzapfel, 2025). 

The instrument comprises 42 items, each evaluated on a 4-point Likert 

scale ranging from 0 (“Did not apply to me at all”) to 3 (“Applied to me very 

much, or most of the time”). These items are organized into three subscales, 

with 14 items measuring depression, 14 items measuring anxiety, and 14 items 

measuring stress. Participants are instructed to evaluate and rate their 

psychological experiences over the past week, thereby ensuring that the 

assessment captures recent and situationally relevant symptoms rather than 

long-term or retrospective evaluations. 

The scoring procedure follows the guidelines set by Lovibond and 

Lovibond (1995), whereby responses to each item are summed within their 

respective subscales to generate total scores. Higher scores correspond to 

greater levels of self-perceived stress in the domains of depression, anxiety, or 

stress. Each domain can then be grouped into one of five levels of severity— 

extremely severe, severe, moderate, mild, and normal—according to the 

threshold value values recommended in the DASS-42 manual. An overview of 

the scoring thresholds and classification categories is provided in Table 1 for 

clarity and reference (Holzapfel, 2025). 

For the purposes of this study, and in line with prior research 

approaches that simplify classification for analytical purposes, the categories 

normal, mild, and moderate were aggregated into a single group representing 

“low stress” while the categories severe and extremely severe were grouped 

under “high stress”. This dichotomization was implemented to facilitate 
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subsequent statistical analyses, particularly in distinguishing participants with 

minimal-to-moderate stress experiences from those with pronounced stress 

symptoms. 

The psychometric reliability of the DASS-42 has been widely 

documented. Among the reference population reported by Lovibond and 

Lovibond (1995), the scale reliability coefficients, as measured by Cronbach’s 

alpha (tau-equivalent reliability), were Depression, Anxiety, and Stress scales 

demonstrated internal consistency values of 0.91, 0.84, and 0.90, respectively, 

indicating strong internal reliability across all three subscales (Holzapfel, 2025). 

In addition to its reliability, the DASS-42 has gained significant international 

recognition and accessibility, with validated translations available in more than 

50 languages (Psychology Foundation of Australia, 2023). These features 

collectively underscore its significance as a standardized instrument in 

psychological research, supporting its selection as the primary stress assessment 

tool in the present study. 

 

Table 1: Overview of scoring  system of DASS-42 

Stress Level Depression Anxiety Stress 

Extremely Severe 28-42 20-42 34-42 

Severe 21-27 15-19 26-33 

Moderate 14-20 10-14 19-25 

Mild 10-13 8-9 15-18 

Normal 0-9 0-7 0-14 

 

3.4 Data Collection 

The present study utilized a complete dataset obtained from Kaggle, an open-

access data repository. The dataset was originally collected between 2017 and 

2019 through the administration of a large-scale online survey, which was made 

accessible globally to any individual with internet access. Participation in the 

survey was voluntary, and respondents were encouraged to complete it in order 

to obtain personalized feedback on their results. As part of the procedure, 

participants were required to read and answer an online version of the DASS-

42 questionnaire, thereby providing standardized self-assessed measures of 

depression, anxiety, and stress. Upon completion of the main test, participants 
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were further invited to take part in an optional brief research survey, which was 

designed to collect additional information for academic purposes. 

To ensure data privacy, confidentiality, and ethical compliance, the 

dataset made available for research use included only responses from 

individuals who had provided explicit informed consent. This was verified 

through an agreement item within the survey that asked: “Have you given 

accurate answers and may they be used for research?” Only those who 

responded affirmatively were included in the dataset. Furthermore, the survey 

was anonymous in nature, meaning that no personally identifiable information 

was collected from the participants. In addition to the full 42 items of the DASS-

42, the survey also included a range of demographic questions, covering 

variables such as gender (self-reported, not biological gender) and age. This 

enriched the dataset with contextual information useful for subsequent statistical 

analyses. The dataset was compiled and exported in comma-separated values 

(CSV) file, which was the principal data source for the current research. In 

overall, 39,775 survey responses were gathered and retained for analysis. 

The dataset contained structured responses to all 42 DASS-42 items, in 

addition to the demographic information. It also included response-time data for 

each item, which allowed for the evaluation of whether the survey had been 

completed thoughtfully and attentively by each participant. Responses to the 

DASS-42 items were numerically encoded using integers 0, 1, 2, and 3, 

corresponding to the four response categories defined in the original instrument: 

i) 3 = “Applied to me very much, or most of the time” 

ii) 2 = “Applied to me to a considerable degree, or a good part of the time” 

iii) 1 = “Applied to me to some degree, or some of the time” 

iv) 0 = “Did not apply to me at all” 

 

It is crucial to acknowledge that the original dataset did not include pre-

computed depression, anxiety, or stress scores as reported by official DASS-42 

scoring protocol. Consequently, for the purposes of this study, only the stress 

scores were computed based on the recommended scoring system, as stress was 

the primary variable of interest. This allowed for the efficient and accurate 

classification of participants’ stress levels into the categories of interest, as 

described in the stress assessment section above. 
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 The DASS-42 assessment provides established criterion scores for 

classification level of stress into five levels: extremely severe, severe, moderate, 

mild and none. For the purposes of the present research, these categories were 

simplified into a binary classification system in order to facilitate statistical 

analysis and model training. Specifically, participants whose DASS-42 stress 

scores were classified into “severe” or “extremely severe” belonged to the 

categories of high stress group (coded as 1), whereas participants whose scores 

were assigned to “none”, “mild”, or “moderate” were grouped into the low stress 

group (coded as 0). This binary classification reflects a widely used approach in 

predictive modeling, where reducing the number of outcome classes enhances 

interpretability and reduces data sparsity issues. Based on this criterion, the 

dataset yielded 15,127 samples in the low-stress group and 9,244 samples in the 

high-stress labels. 

In addition to stress scores, the dataset also contained a range of 

demographic variables, including education level, type of residential area 

(urban/suburban/rural), native in English, religion, marital status, gender, age, 

and country of residence. Among these, age was operationalized as an number 

variable representing the respondent’s age when the survey is completed. To 

maintain a consistent and ethically appropriate adult sample, participants 

individuals under 18 years of age were excluded from the analysis. The 

remaining demographic features— including family size, marital status,  

religion, and education level were excluded from the current proof-of-concept 

study, as the primary focus was on the predictive modeling of stress levels. 

However, these demographic features remain a valuable component of the 

dataset and hold potential for inclusion in future studies, where they may serve 

as additional predictors to enhance model accuracy and improve the 

generalizability of stress classification frameworks. 
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3.5 Data Analysis 

 

3.5.1 Data Preprocessing 

In this study, the original dataset underwent a systematic filtering process based 

on specific conditions to make sure the inclusion of high-standard and pertinent 

data for analysis. First, as the research focused exclusively on adult participants, 

all records with a reported age below 18 years were removed. Second, entries 

with missing values in the variable gender and country or region of residence 

were excluded, since these data were deemed necessary for demographic 

analyses. The entries with invalid input in the variable gender such as “0” which 

does not represent any option of gender will be removed too. Third, records 

displaying unusual response times for survey items were discarded. Specifically, 

cases where the average response time per item was less than 10 seconds 

(suggesting inattentive or rushed responses) or greater than 300 seconds 

(indicating potential distractions or invalid entries) were removed from the 

dataset. These filtering steps collectively ensured that the dataset used for model 

development represented valid, reliable, and adult-only responses. 

Following data filtering, the raw features were organized and 

transformed to make them suitable for machine learning analysis. Categorical 

variables, such as major of study and country or region of residence, were 

processed using one-hot encoding to represent every single unique category as 

a binary feature. For example, each country or region was encoded into a 

separate feature column, such as Malaysia = 1, India = 2, USA = 3, and so on, 

ensuring that categorical differences were represented numerically without 

introducing ordinal bias. 

Similarly, the answers to all 42 DASS assessment items were preserved 

in their numerical format, with integer values ranging from 0 to 3, corresponding 

to the options，0 = “Did not apply to me at all”, 1 = “Applied to me to some 

degree, or some of the time”, 2 = “Applied to me to a considerable degree, or a 

good part of the time”, and 3 = “Applied to me very much, or most of the time”. 

Additional demographic features were also encoded for consistency. For 

example, gender was converted into a binary feature (1 = male, 2 = female, 3 = 

other/prefer not to say). The label column for stress classification was similarly 

transformed into a binary variable, where participants identified as having high 
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stress were coded as 1, and those with low stress as 0, based on the classification 

criteria outlined in the previous section. Through these steps, the raw dataset 

was systematically filtered, cleaned, and encoded, thereby producing a well-

organized dataset prepared for machine learning model training and evaluation. 

After the dataset was filtered and encoded, all scalar (continuous) 

features, including age, were going through normalization by using the z-score 

standardization method in order to eliminate scale-related biases and make sure 

that variable contribution comparably during model training. The 

transformation was performed according to the following formula: 

𝑍 =
𝑋 −  𝜇

𝜎
 

 

where 

Z = standardized value, Z-score 

X = the original value of the feature (for a given sample) 

μ = the mean of the feature (average across all samples) 

σ = the standard deviation of the feature 

 

This normalization procedure rescaled continuous variables to a common 

distribution centered at zero with unit variance, thereby reducing the impact of 

differing feature magnitudes and enhancing the stability of machine learning 

algorithms. 

Following feature normalization, the distribution of class labels was 

examined to evaluate the balance of the dataset prior to model training. The 

initial analysis revealed a class imbalance, with 15,127 samples classified as 

low-stress and 9,244 samples classified as high-stress. Such an uneven 

distribution might introduce classification bias, leading the model to 

disproportionately favor the majority class (low-stress) during prediction in the 

future. To mitigate this issue and promote fair learning, an upsampling strategy 

was implemented to equalize class representation. 

Specifically, the random oversampling method was applied using the 

resampling utility provided in Scikit-learn (sklearn.utils.resample, 2020). In this 

approach, existing instances from the minority class (high-stress) were 

randomly replicated with replacement until the number of high-stress samples 
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matched that of the majority class. This method was selected for its simplicity, 

reproducibility, and compatibility with the dataset size, ensuring that the models 

could be trained on balanced data without requiring synthetic data generation. 

The decision to upsample the minority class to achieve a 1:1 class ratio 

is theoretically and practically justified within the scope of this study. A 

balanced dataset allows the classifiers to learn discriminative patterns from both 

classes with equal emphasis, thus improving sensitivity toward the high-stress 

group, an outcome that is particularly desirable in stress detection contexts 

where under-detection (false negatives) carries higher cost than over-detection 

(false positives). While random oversampling carries an inherent risk of 

overfitting due to the duplication of identical samples, this risk was minimized 

through the use of cross-validation, regularization, and early stopping 

mechanisms during model training. 

After upsampling, the dataset comprised a total of 30,254 samples, 

evenly distributed between low-stress (n = 15,127) and high-stress (n = 15,127) 

classes. This balanced dataset served as the foundation for the subsequent 

training and optimization of classification models, ensuring that the learning 

process was both unbiased and robust across stress categories. 

After feature preprocessing and class balancing, the dataset was 

divided into features (independent variables) and labels (dependent variable 

representing stress classification). The dataset was then divided into three 

distinct groups: training, pristine external validation and internal testing sets. 

Specifically, 80% of the data (20,203 samples) was allocated to the training set, 

utilized in the training of the machine learning algorithms. A further 10% (3,025 

samples) of the data was designated as the internal test set, which was employed 

during model development to fine-tune hyperparameters, monitor performance, 

and mitigate overfitting. The remaining 10% (3,026 samples) constituted the 

pristine external validation set, which was set aside prior to training and 

remained completely untouched until the final evaluation stage. 

To ensure consistency and robustness across multiple runs, the training 

and internal test sets were re-randomized and split again throughout the training 

process. This approach reduced the risk of data order bias and enhanced the 

reliability of the training process. Importantly, the external validation set was 

kept strictly isolated and was never used for training or model tuning. Instead, 
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it was employed exclusively after model development to offer an impartial 

assessment of generalization performance. 

By using this three-way data splitting strategy, the study ensured that 

the resulting models were not only fitted effectively to the data used for training 

but also rigorously tested on new and unknown data. This methodological 

design strengthens the validity, reproducibility, and generalizability of the 

study’s findings, providing confidence that the models can perform reliably 

when applied to new datasets beyond the experimental sample. 

 

3.5.2 Feature Selection 

Since the primary objective of this study was to minimize the number of items 

needed to reliably predict stress levels, it was initialize with the proposed Long-

to-Short approach involved applying feature selection techniques. These 

techniques were used to determine which individual questions from the DASS-

42 assessment carried the greatest predictive power in distinguishing between 

low and high stress levels. Feature selection was conducted utilizing the fully 

processed and balanced dataset, consisting of 30,254 samples. 

To achieve this, the study employed the Minimum Redundancy 

Maximum Relevance (MRMR) approach, employing the Mutual Information 

Quotient (MIQ) criterion. MRMR was chosen for its strength in identifying 

features that contributing meaningfully to the prediction task and exhibit 

minimal overlap. Specifically, MRMR evaluates features according to their 

mutual information with the target variable (relevance) while penalizing those 

that are highly correlated with previously selected features (redundancy). This 

ensures that the selected features provide complementary, non-overlapping 

information to the predictive model (Peng et al., 2005). 

MRMR was originally proposed in the field of bioinformatics for gene 

selection, where the challenge was to identify a small number of informative 

genes from thousands of candidates. In that context, MRMR was successfully 

applied to rank genes according to their discriminative power for classification 

tasks while minimizing redundancy (Peng et al., 2005). The same principle is 

extended here: instead of genes, the features under consideration are DASS-42 

questionnaire items. 
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The MRMR process begins by selecting the single most relevant 

feature. In subsequent rounds, the algorithm evaluates the redundancy of each 

remaining feature relative to those already chosen, computes an adjusted 

importance score, and selects the feature with the highest score. This iterative 

process continues, with redundancy at each step calculated as the average 

redundancy across all previously selected features. By following this procedure, 

MRMR enables the reduction of the 42-item questionnaire into a smaller subset 

of highly informative and non-redundant predictors of stress levels (prutor.ai, 

2019). 

The initial feature selection pool comprised all 42 items from the 

DASS-42 questionnaire. This decision was made because, although the DASS 

is structured into three subscales (Depression, Anxiety, and Stress), items from 

one domain may still contain cross-domain information that can enhance the 

prediction of stress. For example, some items originally designed to assess 

symptoms of depression or anxiety may nevertheless provide indirect but 

significant predictive value for identifying stress-related patterns. By adopting 

this inclusive approach, the feature selection process ensured that no potentially 

informative question was prematurely excluded from consideration. 

 To complement the MRMR-based unsupervised feature selection, a 

second supervised approach was applied with the goal of enhancing the 

consistency and reliability of the selected features. Specifically, an Extra Trees 

Classifier (Extremely Randomized Trees) was trained on the dataset using all 

available features and their corresponding labels. The resulting feature 

importance scores were then used to rank the predictive contributions of the 

DASS-42 questionnaire items. This procedure served both as a validation 

mechanism for the MRMR results and as an independent benchmark for 

assessing feature stability. 

The Extra Trees Classifier build an ensemble of randomized decision 

trees, each model was trained with a sub-sample of the dataset. At each decision 

node, a randomly selected subset of features is drawn, and the best splitting 

feature is selected according to a standard such as the Gini Index. This 

randomization process leads to the generation of multiple de-correlated decision 

trees. Predictions are generated by calculating the mean of the outputs from each 
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individual tree, which reduces variance while maintaining strong predictive 

performance. 

During training, the classifier also computes an indicator of a feature’s 

significance. For each feature, the normalized total reduction in impurity—

commonly referred to in the literature as Gini Importance or Mean Decrease in 

Impurity (MDI)—is calculated. More concretely, Gini Importance is defined as 

the sum of weighted impurity reductions aggregated across all nodes in which 

the feature is employed for splitting, normalized by the number of samples that 

pass through those nodes (sklearn.ensemble.ExtraTreesClassifier, 2020; Menze 

et al., 2009). Ranking features in descending order of Gini Importance provides 

a systematic means of identifying the most influential predictors. 

Once the rankings were obtained, the results from the Extra Trees 

Classifier were compared against those generated by the MRMR analysis. To 

balance predictive accuracy with computational efficiency, the top 10 DASS-42 

items consistently identified as important across both methods were selected as 

the final questionnaire-based predictors. These were then supplemented with 

three demographic variables—age, gender, and region of residence—resulting 

in a pool of 13 candidate features used for model training. 

While a larger set of DASS-42 questions might have been incorporated, 

with the selection restricted to the top 10 items significantly reduced 

computational overhead. This decision was particularly important because the 

subsequent experimental design required evaluating all possible feature subsets. 

With 10 questionnaire items, the number of possible feature subsets ranged from 

a minimum of 1-item models to a maximum of 10-item models, yielding 1,023 

unique feature combinations in total. Testing across this entire search space 

already represented a substantial computational burden, making the restriction 

to 10 items both practical and methodologically justified. Increasing the number 

of items would have resulted in an exponential growth in combinations, as 

determined by the formula below: 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛 𝑖𝑡𝑒𝑚𝑠 = ∑ (
𝑛

𝑘
) =  2𝑛 − 1

𝑛

𝑘=0
 

 

where 

n = total number of distinct items 
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k = the specific number of items chosen at a time 

 

Given that the current research was conceived as a proof-of-concept study, 

limiting the maximum number of questionnaire items to 10 represented a 

methodologically sound and pragmatic choice. This balance ensured that the 

analysis remained computationally feasible while still providing a rigorous 

evaluation of the Long-to-Short approach. 

 

3.5.3 Model Training 

The second phase of the innovation approach consisted of constructing and 

evaluating machine learning models designed to group participants into low-

stress and high-stress categories. These models were trained on different subsets 

of the top 10 items from DASS-42, which had been defined during the feature 

selection stage. The primary objective of this step was to identify the least 

number of questionnaire items needed to achieve a classification accuracy 

sufficient for practical application. By progressively varying the number of 

items included in the models, the research sought to balance two competing 

considerations: (i) maximizing predictive validity, and (ii) minimizing 

assessment length to reduce participant burden and facilitate real-world 

deployment. 

 The modeling process began with the simplest possible case: a model 

trained on a single questionnaire item drawn from the top 10 pool. This “one-

item model” served as a baseline for evaluating whether even minimal 

information could reliably predict stress classification. After assessing the 

predictive utility of single items, the number of items included in the models 

was systematically increased. Models were trained using combinations of 2, 3, 

4, … up to 9 items. At each stage, the specific items were chosen from the top 

10 pool, thereby ensuring that only the most informative and psychometrically 

valid items were considered. 

This incremental modeling strategy allowed the study to address a key 

methodological question: At what point does additional questionnaire length 

cease to yield meaningful gains in predictive performance? The stopping 

criterion for sufficiency was defined a priori as achieving an Area Under the 

Curve (AUC) of at least 0.95 on the pristine holdout validation dataset. By 
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explicitly linking model evaluation to a predefined benchmark, the procedure 

avoided post-hoc decision making and provided a transparent framework for 

evaluating performance. 

The choice to limit the analysis to a maximum of 10 questions was 

motivated by two considerations. First, the inclusion of more than 10 items 

would have significantly increased the computational complexity of the study. 

As outlined in previous step, the number of possible feature subsets expand 

exponentially with each additional item, quickly rendering exhaustive testing 

infeasible. Second, from an applied perspective, retaining more than 10 

questions would compromise the practical objective of developing a short and 

efficient screening tool. A short-form scale is only valuable if it strikes a balance 

between brevity and predictive power; hence, constraining the pool to 10 items 

aligned with both computational efficiency and applied utility. 

 For each questionnaire length (i.e., number of items included), 10 

different combinations of items were generated and used to train separate 

models. This sampling strategy was implemented for two reasons. First, it 

ensured that the evaluation of performance was not biased by any single 

arbitrary subset of items. Second, it provided an empirical distribution of 

performance estimates, which is more representative of the variability that 

might be expected in real-world applications. 

The number of replications was capped at 10 combinations per set size. 

While a larger number of replications might have produced a more exhaustive 

characterization, the marginal informational gain was deemed insufficient to 

justify the exponentially greater computation time. In addition, maintaining the 

same sets of combinations across all machine learning models preserved 

consistency, thereby enabling fair and direct comparisons across algorithms. 

All modeling experiments were performed on a dataset partitioned into 

three subsets: 

i) Training set (80%) – used exclusively for parameter estimation 

during model development. 

ii) Testing set (10%) – used for internal evaluation during the 

training phase. 

iii) Pristine holdout validation set (10%) – withheld from all prior 

stages and used exclusively for final evaluation. 
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This three-tiered partitioning strategy is widely recognized as best practice in 

machine learning (Goodfellow, Bengio, & Courville, 2016), as it reduces the 

risk of overfitting and ensures that performance metrics reflect generalizability 

rather than memorization of training data. The dependent variable (label) was 

binary, coded as 0 = low stress and 1 = high stress, allowing the use of standard 

binary classification metrics. 

To further improve the robustness of performance estimation, each 

model configuration underwent 50 training and testing iterations. For each 

iteration, the training and testing subsets were re-sampled by recombining the 

90% (training + test) pool and then splitting it again at the same 80:10 ratio. A 

new model was trained on each partition. Preliminary experiments confirmed 

that 50 iterations were enough to yield a stable distribution of model 

performance metrics resembling a Gaussian curve, beyond which additional 

iterations yielded negligible improvements in stability. This iterative process 

ensured that results were not artifacts of a single partition but reflected the 

average case across multiple resamplings. 

After the iterative training process, the ensemble of sub-models for each 

configuration was evaluated on the pristine holdout dataset. Crucially, this 

subset of data had been completely excluded from both training and internal 

testing, making it an unbiased benchmark for performance. Because the holdout 

data simulated the classification of entirely unseen individuals, results obtained 

from this stage were considered the closest approximation to real-world 

deployment conditions. 

The adoption of a pristine holdout evaluation stage addresses a key 

limitation in many machine learning studies, namely the tendency to 

overestimate accuracy when performance is measured solely on resampled test 

sets. By contrast, the present study’s methodology ensured that performance 

metrics reflected the model’s ability to perform effectively on new or unseen 

datasets. Performance evaluation was based on a set of standard binary 

classification metrics, each capturing a distinct aspect of model behavior: 

i) Area Under the Curve (AUC) of the Receiver Operating Characteristic 

(ROC): The ROC curve illustrates the relationship between the True 

Positive Rate (TPR) and False Positive Rate (FPR) across multiple 
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classification thresholds. The AUC quantifies the model’s overall 

discriminative ability, with values closer to 1.0 indicating greater 

separability between stress classes (Bradley, 1997). 

ii) Precision: Precision quantifies the model’s performance in minimizing 

incorrect positive predictions, which is particularly important in clinical 

screening contexts where over-identification of high stress could 

undermine efficiency. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  

 

where 

TP = true positive 

FP = false positive 

 

iii) Recall (Sensitivity): Recall captures the model’s effectiveness in 

detecting true cases of high stress, thereby reducing the risk of false 

negatives, which are especially undesirable in health-related 

applications (Precision-Recall, 2020). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

where 

FN = false negative 

 

iv) F1 Score: The F1 score balances the trade-off between Precision and 

Recall, offering a more holistic view of classification performance than 

either metric alone. 

 

𝐹1 =  2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=

𝑇𝑃

𝑇𝑃 +  
1

2
(𝐹𝑃 + 𝐹𝑁)

 

  

By employing multiple evaluation metrics, the present study ensured that 

performance assessment was not limited to a single dimension of model 
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behavior. Instead, the chosen metrics provided a multi-faceted evaluation 

framework, aligning with best practices in both psychometrics and machine 

learning. 

The machine learning algorithms employed in this study represent 

diverse computational paradigms, each offering distinct advantages for binary 

classification tasks in psychological assessment. These algorithms can be 

broadly categorized into several methodological approaches based on their 

underlying mathematical foundations and learning strategies. Linear 

discriminative models, exemplified by Support Vector Machines (SVM), 

operate by identifying the optimal decision boundaries that separate classes in 

the feature space while enlarging the margin between distinct groups. These 

methods are particularly particularly useful when the relationship between 

features and outcomes follows approximately linear patterns, making them 

suitable for structured psychological data where item responses may have direct 

relationships with stress levels. 

Tree-based ensemble methods constitute another major category, 

including Random Forest, XGBoost, LightGBM, Gradient Boosting, and 

AdaBoost algorithms. These methods construct multiple decision trees and 

aggregate their predictions to deliver better performance than single models. 

Random Forest employs bootstrap aggregating (bagging) to create diverse trees 

trained on varying subsets of data and features, reducing overfitting through 

variance reduction. In contrast, boosting methods like XGBoost and Gradient 

Boosting use a sequential learning approach in which each new model aims to 

correct the mistakes of its predecessors, focusing on difficult-to-classify cases. 

XGBoost and LightGBM represent optimized implementations of gradient 

boosting with advanced regularization techniques and computational efficiency 

improvements. AdaBoost adapts by reweighting misclassified examples, 

forcing subsequent models to focus on previously problematic cases. These 

ensemble approaches are particularly valuable for psychological assessment 

data because they can capture complex, non-linear interactions between 

questionnaire items while providing built-in feature importance rankings. 

Neural network approaches, represented by the Multilayer Perceptron 

(MLP), offer a fundamentally different paradigm based on interconnected nodes 

that mimic biological neural processing. MLPs use multiple layers of 
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perceptrons with non-linear activation functions, enabling them to approximate 

complex mathematical functions and capture intricate patterns in data. The 

backpropagation algorithm allows these networks to learn optimal weights 

through iterative optimization, making them powerful tools for pattern 

recognition in psychological data where relationships between items and stress 

outcomes may be highly non-linear. Instance-based learning methods, 

exemplified by K-Nearest Neighbors (KNN), represent a non-parametric 

approach that classifies new data points based on the similarity to stored training 

examples. KNN does not assume any specific data distribution and can adjust 

to local patterns in the feature space, making it especially effective when 

psychological constructs show varied relationships across different population 

subgroups. 

Decision Trees provide a single-model approach that creates hierarchical 

decision rules directly interpretable by human experts, offering transparency in 

how classifications are made. While prone to overfitting, decision trees serve as 

valuable baseline models and offer understanding of the features that are most 

effective at distinguishing different stress levels. The QML implementation 

embodies a novel computational approach that utilizes quantum principles like 

superposition and entanglement to potentially outperform classical algorithms. 

However, current quantum simulators introduce significant computational 

overhead and are limited by noise and decoherence effects, making them 

primarily useful for exploratory research rather than practical deployment. 

To explore emerging computational paradigms, QML was included in 

the algorithm comparison using PennyLane, a quantum machine learning library 

(Bergholm et al., 2018). The QML implementation employed a Variational 

Quantum Classifier (VQC) with the following specifications: 

i) Quantum Circuit: A parameterized quantum circuit with 4 qubits, 

sufficient to encode the selected DASS features 

ii) Ansatz: RY and CNOT gates creating an entangling layer structure 

iii) Measurement: Pauli-Z expectation values for classification 

iv) Optimization: Classical optimization of quantum circuit parameters 

using gradient descent 

v) Simulator: Default quantum simulator backend due to current 

hardware limitations 
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Due to the extremely high computational demands of quantum simulation, QML 

training was limited to three-item combinations only, unlike classical algorithms 

which were evaluated across all feature set sizes (1-9 items). Each QML training 

iteration required significantly longer computation time compared to classical 

methods, with quantum circuit simulation, parameter optimization, and 

measurement processes consuming substantially more computational resources. 

Given the time constraints of this research project, extending QML evaluation 

to larger feature combinations was computationally infeasible. 

The QML approach was implemented as a proof-of-concept to evaluate 

whether quantum computational methods could provide advantages for 

psychological assessment classification. However, several inherent limitations 

were anticipated: (1) current quantum simulators introduce computational 

overhead compared to classical algorithms, (2) the small feature sets in 

psychological assessment do not exploit quantum parallelism advantages, and 

(3) quantum noise and decoherence effects can reduce classification accuracy. 

The selection of this diverse algorithmic portfolio ensures 

comprehensive evaluation across different mathematical assumptions, 

computational requirements, and interpretability levels. Linear models provide 

baseline performance and interpretable coefficients, tree-based ensembles offer 

high predictive accuracy with moderate interpretability, neural networks capture 

complex non-linear patterns, instance-based methods adapt to local data 

characteristics, and quantum approaches explore future computational 

possibilities. This methodological diversity allows for robust assessment of the 

Long-to-Short framework's effectiveness across different algorithmic 

paradigms, ensuring that the findings are not dependent on any single 

computational approach or set of mathematical assumptions. 

Taken together, this stage of the methodology implemented a 

comprehensive and rigorous modeling pipeline. By systematically varying 

questionnaire length, applying controlled sampling strategies, using repeated 

training/testing iterations, and validating performance on pristine data, the study 

sought to establish not only whether machine learning models could predict 

stress levels but also the minimum number of items necessary to achieve robust 

classification accuracy. This methodological rigor ensured that the findings 
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would have both theoretical validity and practical applicability in the 

development of a shortened DASS-based stress assessment tool. 

 

3.5.4 Model Optimization 

The final stage of the ML pipeline involved the optimization of hyperparameters 

associated with the models achieving the best performance, with the goal of 

further improving predictive performance and ensuring generalizability of the 

Rapid Stress Assessment tool. Hyperparameters, which govern the structural 

and functional behavior of algorithms but are not directly learned from the data, 

play a critical role in determining model quality. Hence, their systematic tuning 

was necessary to maximize performance. Candidate models were first selected 

based on superior outcomes in previous step, using both the AUC-ROC score 

and the F1 score on the independent validation dataset as primary criteria, 

ensuring that models not only achieved strong discriminative power but also 

maintained a trade-off that optimally balances precision and recall. For each 

selected model, re-training was conducted under the same partitioning scheme 

and repeated resampling framework as in previous step, but with 

hyperparameter values systematically varied using a grid search procedure. 

Although computationally intensive, grid search was chosen for its reliability in 

identifying optimal parameter sets that maximize generalization performance. 

The best hyperparameter configurations for each model were then trained again 

on the complete training dataset and evaluated once again on the pristine 

validation dataset to confirm performance gains. The final optimized models, 

which demonstrated improved accuracy and robustness compared to their 

untuned counterparts, were selected for implementation in the Rapid Stress 

Assessment tool, thereby ensuring that the deployed system combined 

methodological rigor with practical reliability. 

 The hyperparameter optimization employed a systematic grid search 

approach to identify the optimal-performing parameter configurations for each 

selected techniques. For the MLP model, the following hyperparameters were 

tuned: 

i) Activation function: tested relu, tanh, and logistic activation functions 

ii) Alpha (regularization parameter): evaluated values of 0.0001, 0.001, 

0.01, and 0.1 
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iii) Hidden layer sizes: examined configurations of (50,), (100,), (150,), and 

(100, 50) 

iv) Learning rate: compared constant, invscaling, and adaptive approaches 

v) Solver: tested adam, lbfgs, and sgd optimization algorithms 

 

For XGBoost, the optimization focused on: 

i) Learning rate: values of 0.1, 0.2, and 0.3 

ii) Max depth: tested depths of 3, 5, and 7 

iii) N estimators: evaluated 100, 200, and 300 trees 

 

For Gradient Boosting, the parameters included: 

i) Learning rate: values of 0.1, 0.2, and 0.3 

ii) Max depth: tested depths of 3, 5, and 7 

iii) Min samples split: evaluated 2, 5, and 10 

iv) N estimators: examined 100, 200, and 300 estimators 

 

3.6 Model Evaluation Metrics 

Model performance in this study was evaluated using four standard binary 

classification metrics: Area Under the Curve (AUC), Precision, Recall, and F1 

Score. Each metric was selected to capture a distinct dimension of model 

behavior, ensuring a comprehensive assessment of predictive validity. 

The AUC of the Receiver Operating Characteristic (ROC) was 

employed as a primary indicator of model discriminative ability. AUC 

quantifies how effectively the classifier distinguishes between low- and high-

stress individuals across varying decision thresholds. A higher AUC value 

reflects a model that is more capable of correctly ranking positive (high-stress) 

cases above negative (low-stress) ones, making it a robust and threshold-

independent measure of classification quality. This property is particularly 

important in psychological assessment, where a model’s general ability to 

separate classes is more informative than its performance at a fixed cutoff point. 

Precision and Recall were included to further dissect model 

performance with respect to misclassification patterns. Precision measures the 

proportion of correctly identified high-stress cases among all cases predicted as 

high-stress, thereby reflecting the model’s ability to minimize false positives. 
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Recall (or Sensitivity) measures the proportion of true high-stress cases 

correctly identified by the model, providing insight into its effectiveness in 

reducing false negatives. In mental health screening contexts, false negatives—

failing to detect truly stressed individuals—are often more consequential than 

false positives, as they represent missed opportunities for intervention. 

The F1 Score, defined as the harmonic mean of Precision and Recall, 

was used to provide a balanced measure that accounts for both types of 

classification errors. This metric is especially valuable when dealing with 

imbalanced datasets, as it penalizes models that perform well on one dimension 

(e.g., Precision) at the expense of the other (e.g., Recall). 

Among these evaluation metrics, the AUC was considered the most 

important indicator of model performance for this project. This choice aligns 

with the study’s overarching aim—to develop a short-form stress assessment 

model that maintains strong discriminative capability across various thresholds 

and populations. Unlike metrics that depend on a fixed decision boundary, AUC 

provides a holistic assessment of a model’s separability and generalization 

potential. Nevertheless, F1 Score was treated as a key secondary measure, as it 

ensures that the selected model maintains a practical balance between 

identifying stressed individuals accurately and minimizing false alarms. 

Together, these metrics provide a rigorous and multidimensional 

framework for evaluating model performance, ensuring that the final selected 

models are both theoretically sound and practically reliable for deployment in 

real-world stress screening contexts. 

 

3.7 Summary 

This chapter systematically outlined the methodology and work plan adopted in 

the present study, providing a comprehensive account of the research 

procedures implemented to develop a rapid and efficient stress assessment tool. 

The process began with the acquisition of a large-scale dataset sourced from 

Kaggle, which contained responses to the DASS-42 questionnaire and relevant 

demographic information. Rigorous filtering and preprocessing steps were 

undertaken to ensure that only valid, reliable, and ethically appropriate data 

were retained for analysis. These steps included the exclusion of underaged 

participants, removal of incomplete or invalid entries, scaling of continuous 
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variables and encoding of categorical variables, and balancing of class 

distributions to minimize bias during model training. 

Stress classification was implemented following the scoring guidelines 

of the DASS-42 with severity categories aggregated into a binary classification 

system of low versus high stress. This transformation not only aligned with 

established practices in predictive modeling but also facilitated interpretability 

and reduced data sparsity, thereby supporting the study’s applied objective of 

creating a practical screening tool. 

The feature selection stage was designed to address the study’s core aim 

of reducing the number of questionnaire items without compromising predictive 

validity. A dual-method approach was adopted, combining the MRMR 

algorithm with the Extra Trees Classifier to ensure that the final feature pool 

reflected both statistical robustness and predictive utility. This approach yielded 

the top ten DASS-42 items, which, together with selected demographic 

variables, served as the foundation for model training. 

Model construction was then carried out in a structured manner, 

beginning with single-item models and incrementally expanding to multi-item 

combinations. Multiple supervised machine learning algorithms were employed 

to explore different classification strategies, and performance was assessed 

using a three-way data partitioning scheme (training, testing, and pristine 

holdout validation sets). The inclusion of repeated resampling procedures 

further enhanced the stability and reliability of performance estimates, while the 

use of a pristine validation set provided an unbiased benchmark for 

generalizability to unseen data. 

Finally, hyperparameter optimization was done for the highly promising 

models through a systematic grid search procedure. This ensured that the 

selected models not only demonstrated high accuracy and discriminative ability 

but maintained a optimal balance between precision and recall too. Collectively, 

these methodological steps provided a rigorous and reproducible framework for 

evaluating the feasibility of a shortened stress assessment instrument. 

In summary, this chapter established a comprehensive methodological 

foundation that integrates established psychometric principles with advanced 

machine learning techniques. The methodological rigor, transparency of 

decision-making, and structured progression from data preparation to model 
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optimization strengthen the validity of the study’s outcomes. The next chapter 

will display the results obtained from the application of these procedures, 

highlighting the empirical findings and evaluating their implications for the 

development of a rapid stress assessment tool. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

This chapter reports the results and examines their consequences or significance 

for the research objectives and hypotheses introduced in Chapter 1. The primary 

purpose of this study was to examine the feasibility of utilizing machine learning 

techniques to reduce the length of a traditional psychological assessment 

instrument, specifically the DASS-42, while maintaining high reliability 

accuracy in classifying stress levels. By systematically analyzing model 

performance and feature selection outcomes, the study aimed to determine the 

minimal number of items required for reliable stress classification without 

relying on additional demographic variables. 

The chapter is organized into several key sections. First, the results of 

the feature selection process are demonstrated, highlighting how the most 

informative DASS items were identified using both statistical and machine 

learning-based approaches. This is succeeding this evaluation of multiple 

machine learning algorithms, where model performance is compared across 

different feature subsets to identify the most effective combination of items. 

Finally, the broader implications of the findings are discussed, including their 

significance for psychological assessment, practical applications in digital 

health, and considerations for future research. Through this structure, the 

chapter integrates empirical evidence with interpretative insights, offering a 

thorough understanding of the study’s contributions and constraints. 

 

4.2 Feature Selection 

All forty-two items from the DASS-42 assessment were initially consist of the 

feature selection process in order to identify the most influential items for 

predicting stress levels. The MRMR method was first applied, and the analysis 

identified the top ten most relevant items, specifically item numbers {11, 1, 29, 

27, 39, 22, 6, 8, 33, 12}. These items were subsequently utilized in the 

calculation of the DASS stress score. In parallel, the Extra Trees Classifier was 

trained on the full feature set and corresponding labels, and the ten most 
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important items were determined based on Gini importance. The resulting 

subset consisted of item numbers {27, 29, 11, 1, 8, 6, 22, 39, 33, 12}, all of 

which were likewise incorporated into the computation of the DASS stress score. 

Notably, all ten items selected by the Extra Trees Classifier overlapped entirely 

with those identified through MRMR, providing strong consistency between the 

two feature selection approaches. To ensure robustness, the results of both 

methods were combined, yielding a final set of ten items—{39, 6, 29, 11, 22, 

27, 12, 1, 8, 33}—which were determined to carry the greatest predictive 

importance. These selected items were retained for the subsequent stage of 

analysis. 

 

4.3 Model Training 

After the training phase was completed for all machine learning models, the 

performance of the models was measured on the test dataset, and the results 

were visualized for further interpretation. Figure 2 demostrates the Area Under 

the Receiver Operating Characteristic Curve (AUC-ROC) scores obtained for 

different combinations of features, ranging from a single DASS question to nine 

questions, excluding any demographic variables. These results were computed 

by averaging performance across 50 ensemble iterations or sub-models for each 

model and feature combination. Furthermore, to ensure robustness, 9 distinct 

combinations of questions were considered for each feature set size, and 

performance was assessed across the 10 machine learning algorithms outlined 

in the methodology section. The error bars depicted in Figure 2 represent the 

95% confidence interval for each performance measure, calculated over the 10 

feature combinations for each model. 

The findings indicate a clear trend: as the number of DASS items 

included in the feature set increased, the models generally demonstrated 

improved predictive performance. However, the magnitude of improvement 

diminished progressively with the inclusion of additional questions, suggesting 

a point of diminishing returns. Notably, the AUC-ROC scores plateaued as more 

questions were added, implying that beyond a certain number of features, 

additional items contributed minimally to overall classification performance. 

Importantly, Figure 2 highlights that test AUC-ROC scores for the top-

performing models go beyond 0.95 with as few as 3 DASS questions. This 
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outcome suggests that a limited subset of the DASS-42 items is sufficient to 

achieve a high level of classification accuracy for stress level prediction in 

contexts where collecting demographic data is impractical or impossible. 

Consequently, the present study proposes that, under such conditions, a 

minimum of 3 carefully selected items from the DASS-42 can serve as an 

efficient and rapid screening tool for stress assessment. This approach balances 

predictive accuracy with practical considerations, such as reducing respondent 

burden and administration time, making it particularly suitable for large-scale 

or time-constrained screening environments. 

 A holistic summary of the model performance for all combinations of 

three DASS items is presented in Table 2. This table provides a detailed 

comparison of the results across all machine learning techniques evaluated in 

this study. Based on these findings, the MLP emerged as the highest-performing 

model overall. An examination of Table 2 reveals that, for most models, there 

was a modest increase in classification accuracy when compared to baseline 

performance, particularly for algorithms such as SVM, KNN, and Decision Tree, 

where the observed improvements were relatively minimal. In contrast, the 

performance gains were substantial for more advanced ensemble-based 

techniques, particularly for MLP, Random Forest, and the boosting family of 

algorithms (e.g., Gradient Boosting, XGBoost, LightGBM). These models 

demonstrated a more pronounced capacity to leverage the limited input features 

and effectively detect the underlying patterns within the data. 

Among the evaluated techniques, MLP and XGBoost consistently 

outperformed the others when assessed using both AUC-ROC and F1 score 

metrics. This indicates their superior ability to balance sensitivity and specificity 

while also maintaining robust precision-recall performance. However, it is 

noteworthy that the 95% confidence intervals (CI) of these two models 

overlapped, as shown in Table 2. This overlap suggests that while both models 

achieved high levels of performance, the difference between them was not 

statistically significant. 

Given this finding, it cannot be conclusively determined which of the 

two models — MLP or XGBoost, provides a definitive performance advantage. 

Nevertheless, the consistently high performance of these models highlights their 

suitability for rapid and accurate stress level classification using only three 
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DASS items. This result further supports the practical feasibility of deploying 

these techniques in real-world screening contexts, where computational 

efficiency and predictive reliability are essential. Moreover, these findings 

underscore the potential benefits of leveraging neural network-based and 

ensemble-based methods over simpler, non-ensemble models when working 

with limited but informative psychological assessment data. 

The Quantum Machine Learning approach demonstrated significantly 

lower performance compared to classical algorithms, achieving an AUC of 

71.06% with a notably wide confidence interval (65.08% to 76.44%) and F1 

score of 71.70%. It is crucial to be aware that QML evaluation was restricted to 

three-item combinations only due to computational constraints, while classical 

algorithms were evaluated across all feature set sizes (1-9 items). This 

performance disparity may be due to several factors inherent to current quantum 

computing limitations. 

The computational demands of QML proved prohibitive for 

comprehensive evaluation. Each quantum circuit simulation required 

exponentially more processing time than classical algorithms, with single 

training iterations taking orders of magnitude longer to complete. The quantum 

simulation overhead, parameter optimization processes, and repeated quantum 

measurements created computational bottlenecks that made evaluation of larger 

feature combinations infeasible within the project timeline. This computational 

limitation represents a significant practical barrier to QML implementation in 

real-world settings psychological assessment applications where efficiency and 

scalability are crucial. 

Beyond computational constraints, the poor QML performance reflects 

fundamental limitations of current quantum computing technology. NISQ-era 

quantum simulators introduce substantial computational noise that degrades 

classification performance (Preskill, 2018). Unlike classical algorithms that 

operate deterministically on digital computers, quantum circuits are susceptible 

to decoherence and gate errors that accumulate throughout computation. The 

wide confidence intervals observed for QML reflect this inherent variability in 

quantum measurements. 

Additionally, the problem structure of DASS-based stress 

classification does not align with quantum computational advantages. Quantum 
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algorithms theoretically excel when dealing with exponentially large search 

spaces or when quantum interference effects can be leveraged for speedup 

(Schuld et al., 2015). However, the three-item feature sets identified in this study 

represent relatively simple classification problems that classical algorithms can 

solve efficiently without requiring quantum resources. 

These findings, while limited to three-item combinations, align with 

broader literature suggesting that quantum machine learning may not provide 

practical advantages for near-term applications, particularly in domains like 

psychological assessment where classical methods already achieve high 

accuracy efficiently while requiring minimal computational resources (Huang 

et al., 2021). The inclusion of QML in this study, despite its computational 

limitations, serves to establish baseline comparisons for future research as 

quantum hardware continues to mature and computational efficiency improves. 

 

4.4 Model Optimization 

Following the identification of the best-performing algorithms from the initial 

training phase, hyperparameter optimization was conducted to further enhance 

model performance and ensure optimal configuration for the three-item stress 

assessment tool. This optimization process focused on the top three algorithms: 

MLP, XGBoost, and Gradient Boosting, which demonstrated superior 

performance in the preliminary evaluations. The hyperparameter optimization 

yielded significant enhancements in model performance compared to the default 

configurations. Table 4 presents the optimized hyperparameters for each model 

along with their corresponding performance improvements. 

Following the optimization process, each classifier exhibited notable 

improvement across both AUC and F1 Score metrics. For the Multilayer 

Perceptron (MLP), the optimal configuration included an activation function of 

‘relu’, a regularization term (alpha) of 0.0001, a hidden layer with 100 neurons, 

a constant learning rate, and the ‘adam’ solver. These optimized parameters 

resulted in an AUC increase from 94.65% to 100% (+5.35%) and an F1 Score 

improvement from 87.25% to 100% (+12.15%). The XGBoost classifier 

achieved its best performance with a learning rate of 0.2, maximum depth of 3, 

and 200 estimators. Under these conditions, the model’s AUC improved from 

94.64% to 100% (+5.36%), while its F1 Score increased from 87.37% to 
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99.25% (+11.88%). Similarly, the Gradient Boosting model performed 

optimally with a learning rate of 0.2, maximum depth of 3, minimum samples 

split of 2, and 200 estimators, achieving an AUC increase from 94.64% to 100% 

(+5.36%) and an F1 Score improvement from 87.33% to 99.34% (+12.01%). 

Overall, the optimization process substantially improved model 

accuracy and generalization, confirming the importance of fine-tuning 

hyperparameters in achieving robust and reliable performance for the stress 

assessment model. 

 

 

Figure 2: Validation AUC scores of the ROC curve across all models 
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Table 2: Comparison of validation accuracies for the best models trained on all combinations of three questions (averaged over nine 

combinations), using default hyperparameters and excluding demographic variables. 

Model Mean AUC AUC CI 

Lower 

AUC CI 

Upper 

Range of 

AUC CI 

Mean F1 F1 CI Lower F1 CI Upper Range of F1 

CI 

MLP 94.65% 94.53% 94.76% 0.23% 87.25% 87.09% 87.41% 0.33% 

Gradient Boosting 94.64% 94.52% 94.76% 0.23% 87.33% 87.16% 87.49% 0.33% 

XGBoost 94.64% 94.53% 94.75% 0.22% 87.37% 87.22% 87.52% 0.30% 

LightGBM 94.64% 94.53% 94.76% 0.23% 87.37% 87.21% 87.52% 0.30% 

Decision Tree 94.64% 94.52% 94.75% 0.23% 87.35% 87.19% 87.50% 0.31% 

Random Forest 94.64% 94.53% 94.74% 0.22% 87.35% 87.19% 87.50% 0.31% 

AdaBoost 94.61% 94.50% 94.72% 0.22% 87.13% 86.96% 87.29% 0.33% 

KNN 92.03% 91.83% 92.22% 0.39% 85.89% 85.55% 86.18% 0.64% 

SVM 91.20% 90.97% 91.45% 0.47% 87.39% 87.19% 87.57% 0.38% 

QML 71.06% 65.08% 76.44% 11.36% 71.70% 69.64% 73.48% 3.84% 



61 

Table 3: Default Machine Learning Model Hyperparameters 

Model Python Library and Class Hyperparameters and Default Values  

XGBoost XGBoost 

xgboost.XGBClassifier 

learning_rate 

max_depth 

n_estimators 

0.2 

3 

200 

MLP Scikit-learn 

sklearn.neural_network.MLPClassifier 

activation 

alpha 

hidden_layer_sizes 

learning_rate 

solver 

relu 

0.0001 

(100,) 

constant 

adam 

Gradient Boosting Scikit-learn 

sklearn.ensemble.GradientBoostingClassifier 

learning_rate 

max_depth 

min_samples_split 

n_estimators 

0.2 

3 

2 

200 

LightGBM LightGBM 

lightgbm.LGBMClassifier 

learning_rate 

max_depth 

n_estimators 

num_leaves 

0.2 

10 

200 

31 
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Random Forest Scikit-learn 

sklearn.ensemble.RandomForestClassifier 

max_depth 

min_samples_leaf 

min_samples_split 

n_estimators 

20 

1 

2 

200 

AdaBoost Scikit-learn 

sklearn.ensemble.AdaBoostClassifier 

learning_rate 

n_estimators 

1.0 

200 

Decision Tree Scikit-learn 

sklearn.tree.DecisionTreeClassifier 

max_depth 

min_samples_leaf 

min_samples_split 

 

10 

2 

5 

KNN Scikit-learn 

sklearn.neighbors.KNeighborsClassifier 

n_neighbors 

p 

weights 

7 

2 

distance 
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SVM Scikit-learn 

sklearn.svm.SVC 

c 

gamma 

kernel 

0.1 

scale 

linear 

 

 

Table 4: Optimized Hyperparameters and Perforance Comparison 

Model Optimized Hyperparameters Default 

AUC 

Optimized 

AUC 

Improvem

ent 

Default F1 

Score 

Optimized 

F1 Score 

Improvem

ent 

MLP activation='relu', alpha=0.0001, 

hidden_layer_sizes=(100,), 

learning_rate='constant', 

solver='adam' 

94.65% 100% +5.35% 87.25% 100% +12.15% 

XGBoost learning_rate=0.2, max_depth=3, 

n_estimators=200 

94.64% 100% +5.36% 87.37% 99.25% +11.88% 

Gradient Boosting learning_rate=0.2, max_depth=3, 

min_samples_split=2, 

n_estimators=200 

94.64% 100% +5.36% 87.33% 99.34% +12.01% 
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4.5 Discussion 

The primary objective of this research was to develop and evaluate a machine 

learning-based framework for streamlining lengthy, structured questionnaire 

psychological assessments while maintaining predictive accuracy comparable 

to the original full version. This framework, referred to as the Long-to-Short 

(L2S) method, was designed to streamline psychological measurement tools, 

thereby reducing respondent burden without compromising diagnostic 

reliability. As a proof-of-concept, this study applied the L2S method to the 

DASS-42, with the specific goal of predicting low versus high stress levels in 

adults. 

The result outcome largely supported the study’s initial hypotheses. It 

was assumed that some items within the DASS-42 scale may convey duplicate 

information about an individual’s stress. implying that a substantially smaller 

subset of items could yield comparable predictive performance to the complete 

instrument. Consistent with this hypothesis, the machine learning models 

demonstrated that it was indeed possible to streamline the assessment by 

decreasing the number of items without compromising classification accuracy. 

Remarkably, the streamlined version of the DASS-42 achieved over 95% 

accuracy in predicting low versus high stress levels using only three DASS 

items, and notably, without requiring any demographic information. This 

outcome aligns with previous psychometric research that demonstrated the 

feasibility of shortening the DASS using traditional statistical approaches 

(Henry & Crawford, 2005; Lovibond & Lovibond, 1995), while extending these 

earlier findings by showing that machine learning can automate and optimize 

the process of scale reduction. 

The study also explored whether items outside the stress subscale of 

the DASS-42, such as those measuring depression or anxiety, might contribute 

additional predictive value. This was based on the possibility that some cross-

domain items could inadvertently capture stress-related constructs. However, 

the analyses did not provide evidence to support this assumption. The non-stress 

items exhibited limited predictive value and were ultimately excluded from the 

final reduced model. This suggests that the stress-specific items within the 

DASS-42 are already well-targeted and sufficient for accurate stress 
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classification, and that incorporating items from other domains does not 

meaningfully enhance model performance. 

Although demographic variables such as age, gender, and occupation 

are widely recognized as factors that can influence stress levels, this study 

intentionally excluded demographic data from the modeling process. The aim 

was to determine whether a minimal subset of DASS-42 items alone could 

accurately classify individuals into low versus high stress groups. The results 

confirmed that only three DASS items were sufficient to achieve high predictive 

accuracy, demonstrating that demographic data, while potentially informative, 

is not necessary for reliable classification in this context. This finding highlights 

the strength and efficiency of the three-item model, which simplifies 

administration and protects user privacy by eliminating the need to collect 

personal information. Such a model is especially well-suited for use in digital 

platforms, where quick, anonymous stress assessments are desirable. 

From a practical perspective, these outcome have vital implications for 

the development and deployment of rapid stress screening tools. The three-item 

version of the DASS-42 offers a highly efficient alternative to the original 42-

item scale, significantly reducing completion time while retaining strong 

diagnostic accuracy. This streamlined version is ideal for integration into real-

time digital health applications, such as mobile wellness apps or workplace 

stress monitoring systems. By minimizing both user effort and data collection 

requirements, the tool could facilitate widespread adoption across diverse 

clinical and non-clinical settings, thereby enhancing accessibility and scalability 

of mental health assessment. 

In addition to evaluating the shortened assessment, this research 

investigated the performance of different machine learning models in 

classifying stress levels. It was hypothesized that advanced ensemble-based 

algorithms, particularly boosting techniques such as XGBoost and LightGBM, 

would outperform traditional machine learning methods like Random Forest 

(RF) and K-Nearest Neighbors (KNN). This expectation was based on existing 

literature suggesting that boosting algorithms are highly effective for complex, 

high-dimensional datasets, as they iteratively focus on difficult-to-classify cases 

and optimize model performance. 
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However, the results only partially supported this hypothesis. Contrary 

to expectations, neither the advanced boosting algorithms nor the simpler 

Random Forest consistently outperformed the other. This suggests that the 

dataset used in this study—particularly the final reduced model containing only 

three features—may not have been sufficiently complex for the advantages of 

boosting algorithms to manifest. With a small and well-defined feature set, 

simpler algorithms such as Random Forest were able to perform comparably 

while requiring fewer computational resources and offering greater 

interpretability. These findings underscore the principle that model complexity 

alone does not guarantee superior performance. For relatively straightforward 

classification tasks, simpler models may be equally effective and more practical 

for real-time deployment. Conversely, for larger and more complex datasets, 

boosting algorithms are likely to offer performance gains that justify their 

increased computational demands. 

Taken together, the outcome from this research illustrate the feasibility 

and utility of the Long-to-Short framework. By leveraging machine learning, it 

was possible to identify a minimal set of only three DASS items that reliably 

predict stress levels with very high accuracy. This significantly reduces the 

burden of assessment while maintaining diagnostic precision, laying the 

groundwork for the development of rapid, formal, emphasizes 

preparation.scalable, and privacy-conscious mental health screening tools. 

Furthermore, the study highlights important considerations for algorithm 

selection, showing that both traditional and advanced methods have roles 

depending on the data characteristics and application goals. Future research 

could expand on these findings by applying the L2S framework to other 

psychological constructs, integrating the shortened tools into adaptive 

assessment systems, and exploring longitudinal applications for ongoing stress 

monitoring. Such work would further enhance the efficiency, accessibility, and 

impact of psychological assessment in diverse real-world contexts. 
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4.6 Comparison to existing studies 

The findings of this study can be meaningfully compared to several previous 

investigations that have applied machine learning techniques to psychological 

scale optimization, revealing both consistencies and unique contributions of the 

current research. 

 

4.6.1 Comparison Scale Reduction Studies 

The achieved performance of 95%+ accuracy using only three DASS items 

demonstrates significant advancement over previous ML-based scale reduction 

efforts. Zhang et al. (2019) reduced the Minnesota Multiphasic Personality 

Inventory (MMPI-2) from 567 items to 150 items while maintaining 95% of the 

original's diagnostic accuracy, representing a 73% reduction with equivalent 

performance. However, this still required 150 items compared to the current 

study's 3-item solution. More directly comparable, Yu et al. (2024) applied 

variable clustering to the Chinese SCL-90, creating an 11-item version (CSCL-

11) with Cronbach's α = 0.84, achieving an 88% reduction but with lower 

reliability than the current study's approach. 

Sun et al. (2022) developed a 5-item version of the Children's 

Depression Inventory using machine learning, achieving AUC = 0.81, accuracy 

= 0.83, and Cronbach's α = 0.72 with a 75% item reduction. The current study's 

AUC values exceeding 0.95 with 93% item reduction demonstrate superior 

performance in both predictive accuracy and efficiency. However, direct 

comparisons are limited by differences in constructs measured (depression vs. 

stress), population characteristics (children vs. adults), and validation 

approaches. 

 

4.6.2 Methodological Comparisons 

The dual feature selection approach combining MRMR and Extra Trees 

Classifier provides enhanced robustness compared to single-method approaches 

documented in previous studies. Peng et al. (2005) originally developed MRMR 

for gene selection, demonstrating its effectiveness in identifying relevant, non-

redundant features. The current study's extension of this approach to 

psychological assessment, combined with tree-based importance ranking, 
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represents a methodological advancement over studies using single selection 

criteria. 

Ahmed et al. (2022) employed correlation-based feature selection for 

DASS optimization, achieving 87% accuracy with 18 items (57% reduction). 

The current study's achievement of complete overlap between MRMR and Extra 

Trees results suggests greater feature stability and methodological rigor. This 

aligns with recommendations by Bolón-Canedo et al. (2013) for ensemble 

feature selection approaches to achieve more robust results. 

The three-way data partitioning strategy (training/testing/pristine 

validation) employed addresses limitations identified in earlier research. Varma 

and Simon (2006) highlighted the risk of overly optimistic performance 

estimates when feature selection and model optimization occur within the same 

cross-validation framework. Many previous studies, including Dogan et al. 

(2021) who achieved 85-92% accuracy in DASS-based mental health 

classification, relied on standard cross-validation without pristine external 

validation. The current study's approach provides more conservative and 

generalizable performance estimates. 

 

4.6.3 Algorithms Performance Comparisons 

The finding that MLP and XGBoost achieved comparable performance aligns 

with Orrù et al. (2020)'s systematic review, which identified neural networks 

and ensemble methods as the most effective approaches for mental health 

classification tasks. Specifically, Orrù et al. reported that ensemble methods 

consistently outperformed single algorithms across multiple mental health 

applications, supporting the current study's findings regarding XGBoost 

performance. 

However, the current study's observation that simpler algorithms 

(Random Forest, Decision Tree) performed comparably to complex methods 

when feature sets were small contrasts with findings from Yarkoni (2010), who 

demonstrated clear advantages for regularized approaches (LASSO) over 

simpler methods in personality assessment. This discrepancy suggests that the 

relationship between algorithm complexity and performance may be moderated 

by feature set size, with diminishing returns from complex algorithms when 

working with highly informative, minimal feature sets. 
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4.6.4 DASS-Specific Application 

Previous machine learning applications to DASS have shown varying results. 

Dogan et al. (2021) compared SVM, Random Forest, and Neural Networks for 

DASS-based classification in university students, achieving 85-92% accuracy 

for binary classification tasks. However, their focus was on prediction rather 

than scale optimization, and they used the full DASS rather than identifying 

minimal item sets. 

Cao et al. (2023) conducted network psychometric analysis of DASS 

structure, suggesting that 8-10 items per subscale could capture construct 

variance. Their findings support the theoretical feasibility of DASS reduction, 

though their approach differed methodologically from the current study's ML-

based optimization. The current study's achievement of effective stress 

classification with only 3 items represents a more aggressive reduction than 

theoretically suggested by network analysis. 

 

4.6.5 Validation and Generalizability 

The current study's exclusive focus on stress classification provides more 

targeted optimization compared to multi-construct approaches. Nemesure et al. 

(2021) achieved 92% accuracy in depression detection using 8 CES-D items 

through natural language processing approaches, but their method required free-

text analysis, limiting practical scalability. The current study's achievement of 

higher accuracy using only structured questionnaire responses offers superior 

implementation feasibility. 

Batterham et al. (2018) demonstrated DASS sensitivity to change with 

effect sizes of d = 0.50-0.80, supporting its utility for longitudinal assessment. 

However, their work focused on the full scales rather than abbreviated versions. 

The current study's findings require validation for longitudinal applications to 

establish whether the 3-item version maintains sensitivity to clinical change. 
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4.6.6 Cross-Cutural Considerations 

Previous validation studies have established DASS applicability across cultures. 

Akin and Çetin (2007) validated the Turkish version with Cronbach's α = 0.89-

0.96, while Moussa et al. (2017) demonstrated reliability in Arabic populations 

(α = 0.89-0.95). Zanon et al. (2021) provided validation for Brazilian Portuguese 

versions. The current study's use of an internationally diverse dataset addresses 

cross-cultural validity concerns, but specific validation across different cultural 

groups remains necessary. 

 

4.6.7 Limitations in Compartice Context 

Several factors constrain comparison with existing studies. Most critically, 

Flake and Fried (2020) noted the lack of standardized evaluation frameworks 

for ML-based scale optimization, making direct performance comparisons 

challenging. Different studies employ varying performance metrics, validation 

approaches, and optimization criteria, limiting definitive comparative 

conclusions. 

The current study's binary classification approach (low vs. high stress) 

is less nuanced than the five-category system validated by Szabó (2010), who 

established optimal cut-off scores using ROC analysis with AUC values of 0.85-

0.92. The simplification to binary classification may limit comparison with 

studies using the full DASS severity spectrum. 

 

4.6.8 Uniques Contributions 

Several aspects distinguish this study from previous research. First, the 

systematic evaluation of performance across different numbers of items (1-9 

questions) provides insights into minimum viable feature sets not 

comprehensively explored in prior work. Leite et al. (2008) pioneered genetic 

algorithms for test shortening but did not systematically evaluate different item 

set sizes. 

Second, the finding that cross-subscale items (depression, anxiety) did 

not enhance stress prediction contrasts with assumptions about cross-domain 

information utility implicit in multidimensional assessment approaches 

(Lovibond & Lovibond, 1995). This suggests greater discriminant validity 

between DASS subscales than previously assumed. 
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Third, achieving 95%+ accuracy without demographic variables 

addresses privacy concerns highlighted by Barocas et al. (2019) regarding bias 

in ML applications to mental health. Previous studies incorporating 

demographic predictors may have achieved performance gains at the cost of 

privacy and accessibility. 

 

4.6.9 Clinical Utility Comparisons 

The current findings align with calls for efficient screening tools by Calvo et al. 

(2017), who highlighted assessment burden as a barrier to mental health 

screening. Norton (2007) established DASS clinical utility through convergent 

validity with established measures, but clinical validation of abbreviated 

versions remains necessary. The current study's 3-item version requires clinical 

validation against established criteria to confirm diagnostic utility. 

Parkitny and McAuley (2010) demonstrated DASS effectiveness in 

specialized populations (chronic pain), while Randall et al. (2017) established 

age-related normative data. These studies suggest the need for population-

specific validation of abbreviated versions, particularly given potential 

differential item functioning across groups identified by Putnick and Bornstein 

(2016). 

In conclusion, the current study demonstrates significant advancement 

over existing research in terms of item reduction efficiency while maintaining 

high accuracy. However, the clinical implications require validation through 

independent studies using clinical criteria as ground truth, cross-cultural 

validation, and longitudinal assessment of sensitivity to change. The findings 

provide strong preliminary evidence for feasible dramatic scale reduction while 

maintaining diagnostic accuracy, but implementation requires careful 

consideration of validation requirements and clinical contexts. 
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4.7 Summary 

This chapter detailed the key findings from the feature selection, model training, 

and evaluation processes, and provided a discussion of their implications for 

stress assessment and machine learning applications. The results demonstrated 

that a subset of only three items from the original DASS-42 is sufficient to 

accurately classify individuals into low versus high stress groups, achieving 

over 95% accuracy without the inclusion of demographic data. This finding 

confirms the study’s central hypothesis that lengthy psychological 

questionnaires can be significantly shortened without compromising predictive 

performance. Moreover, it highlights the potential for creating efficient, 

privacy-conscious, and user-friendly tools for stress screening. 

The feature selection process identified ten high-importance items, 

which were subsequently refined to the minimal set of three core items through 

iterative testing. These three items alone provided performance comparable to 

the full 42-item scale, underscoring their diagnostic value and practical utility. 

This reduction not only decreases respondent burden and completion time but 

also enhances the feasibility of integrating the tool into digital health platforms 

and large-scale population studies. 

In terms of model performance, both traditional and advanced machine 

learning algorithms were examined. While it was initially hypothesized that 

advanced ensemble-based algorithms, such as XGBoost and LightGBM, would 

significantly outperform simpler methods like Random Forest and K-Nearest 

Neighbors, the results only partially supported this assumption. For the final 

three-item model, simpler algorithms performed comparably to more complex 

methods, suggesting that model selection should consider the complexity of the 

data and the practical requirements of deployment. Nevertheless, MLP and 

XGBoost consistently achieved the highest performance, indicating their 

suitability for stress classification tasks under the conditions evaluated. 

Collectively, the findings validate the Long-to-Short (L2S) framework 

as an effective approach for reducing questionnaire length while preserving 

diagnostic precision. By demonstrating the feasibility of this framework using 

the DASS-42, this study provides a foundation for future efforts to streamline 

psychological assessments across diverse constructs and contexts. The results 

have significant implications for the development of rapid, scalable, and 



73 

accessible mental health screening tools, ultimately supporting more efficient 

and privacy-conscious approaches to stress monitoring and intervention. 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusion 

This study introduced a novel framework, referred to as the L2S approach, 

which leverages machine learning models to systematically shorten lengthy 

assessment instruments while preserving their predictive validity. The primary 

aim of this research was to design efficient and user-friendly short-form 

assessments capable of approximating the diagnostic accuracy of their longer 

counterparts. As a proof of concept, the framework was applied to the DASS-

42, a widely used psychological instrument developed to assess negative 

emotional states. 

The results of this study demonstrated that the L2S approach is both 

feasible and effective. Through the application of advanced feature selection 

and model optimization techniques, it was possible to identify a minimal subset 

of only three DASS items that accurately classified individuals into low versus 

high stress levels, achieving a classification accuracy exceeding 95%. 

Remarkably, this high level of performance was attained without incorporating 

demographic variables, thereby reducing data collection requirements and 

protecting respondent privacy. These findings confirm the central hypothesis 

that machine learning can be used to optimize and streamline questionnaire-

based assessments, minimizing respondent burden while maintaining diagnostic 

precision. 

These findings carry significant implications. With further 

development and empirical validation, the L2S approach has the potential to be 

generalized beyond the DASS-42 to a broad range of psychological and 

behavioral assessments. This includes instruments that measure attitudes, traits, 

abilities, opinions, and other constructs relevant to mental health, education, and 

organizational contexts. By significantly reducing the time and effort required 

for data collection, the framework could enable more scalable, accessible, and 

privacy-conscious assessment methods. Moreover, the simplified tool could be 

easily integrated within digital health platforms, including mobile applications, 
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web-based systems, or cloud-based services, thereby expanding its reach and 

utility in both clinical and non-clinical settings. 

In essence, this study provides strong evidence that lengthy 

psychological scales can be meaningfully shortened using machine learning 

while retaining their core diagnostic capabilities. The findings pave the way for 

a new generation of efficient, adaptive, and data-driven assessment tools that 

are capable of addressing the growing demands for rapid, large-scale 

psychological evaluation in modern healthcare, research, and public health 

contexts. 

 

5.2 Recommendations for future work 

Although the current study provides a promising proof-of-concept for the L2S 

approach, several opportunities exist for future research to expand, refine, and 

validate the framework. The following recommendations outline key directions 

for advancing this work. 

 

5.2.1 Expansion to Multi-Class Classification of Stress Severity 

In this research, the machine learning models were designed to perform a binary 

classification, distinguishing between low and high stress levels. However, the 

DASS-42 defines five distinct levels of severity: extremely severe, severe, 

moderate, mild, and normal. Future studies should extend the modeling 

approach to predict all five categories, thereby enabling a more nuanced and 

clinically meaningful assessment of stress. 

Achieving this goal would require addressing class imbalance in the 

dataset by employing advanced data data rebalancing methods like SMOTE 

(Synthetic Minority Oversampling Technique) or stratified resampling to ensure 

that each severity level is adequately represented during training. By doing so, 

the models would be capable of providing a more detailed classification aligned 

with the original DASS-42 structure. 
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5.2.2 Increasing the Number of Feature Combinations and Question 

Pool 

As this study was exploratory, the models were trained using 10 combinations 

of three DASS questions without demographic data. While this was sufficient 

to demonstrate proof-of-concept, it introduces a potential bias toward the 

specific combinations selected. 

Future research should expand the number of question combinations 

beyond 10 to improve generalizability and reduce the risk of overfitting to a 

particular subset of items. Moreover, by selecting a larger pool of important 

items during the feature selection stage—such as the top 15 or 20 questions 

rather than 10—researchers could construct multiple shortened versions of the 

DASS, such as 7-item or 8-item scales, while minimizing redundancy and 

improving flexibility across different application contexts. 

 

5.2.3 Application to Other Stress Measurement Instruments 

The methodology developed in this study was specifically applied to the DASS-

42 stress subscale. However, the data processing pipeline can be readily adapted 

to other well-established stress assessment instruments, such as the Perceived 

Stress Scale (PSS) or other psychometric measures. 

Applying the L2S approach to these instruments would allow for direct 

comparisons of performance and offer insights and perspectives into the 

generalizability of the framework. Furthermore, since the DASS-42 has a nested 

structure comprising subscales for depression, anxiety, and stress, future work 

could focus on shortening each subscale independently, thereby producing a 

streamlined version of the DASS corresponding to how the original DASS-42 

was condensed into the DASS-21. 

 

5.2.4 Incorporation of Clinical Ground Truth for Enhanced Validity 

In this study, the DASS-42 stress score served as the reference standard for 

model training and evaluation. While this is a standard and validated measure, 

it remains a self-reported instrument. Future research could strengthen the 

clinical validity of the models by using clinician-diagnosed stress, anxiety, or 

depression levels as the gold standard. 
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To accomplish this, researchers would need to collect both self-

reported DASS data and clinical diagnosis data from mental health professionals. 

By training machine learning models on this richer dataset, it would be possible 

to develop tools capable of rapidly screening individuals for clinically 

significant mental health conditions, thereby enhancing their utility in 

diagnostic and intervention contexts. 

 

5.2.5 Broadening the Scope to Other Types of Assessments  

The L2S framework has potential applications far beyond mental health 

assessment. Many fields rely on lengthy questionnaires or tests that could 

benefit from automated shortening. Examples including: 

• Personality assessments, such as the Big Five Personality Traits 

inventory. 

• Standardized ability tests, including intelligence tests (IQ) and aptitude 

tests like the GRE, MCAT, and LSAT. 

• Achievement tests, such as the SAT, ACT, and TOEFL. 

• Attitude and opinion surveys, including those related to voting intentions, 

marketing, health, and lifestyle behaviors. 

These applications could be implemented across a range of digital platforms, 

including desktop applications, mobile apps, web-based systems, and cloud-

based services. Expanding the L2S framework into these domains would 

significantly enhance its societal impact by improving the efficiency and 

accessibility of data collection across disciplines. 
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APPENDICES 

 

Appendix A: Graphs 

 

 

Graph A-1: AUC-ROC Curve for Gradient Boosting 

 

 

Graph A-2: AUC-ROC Curve for Decision Tree 
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Graph A-3: AUC-ROC Curve for SVM 

 

 

Graph A-4: AUC-ROC Curve for AdaBoost 

 

 

Graph A-5: AUC-ROC Curve for KNN 
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Graph A-6: AUC-ROC Curve for LightGBM 

 

 

Graph A-7: AUC-ROC Curve for MLP 

 

 

Graph A-8: AUC-ROC Curve for Random Forest 
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Graph A-9: AUC-ROC Curve for XGBoost 
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Appendix B: Tables 

 

Table B-1: AUC Scores for Top Performers Models 

Model Num Questions Selected Features AUC 

XGBoost 3 (Q1, Q22, Q39) 0.957014672 

LightGBM 3 (Q1, Q22, Q39) 0.957009879 

MLP 3 (Q1, Q22, Q39) 0.956818177 

 

 

Table B-2: Best AUC and F1 Scores for Optimized Models 

Model Best AUC Best F1 Score 

XGBoost 1 0.9925 

MLP 1 1 

Gradient Boosting 1 0.9934 

LightGBM 0.9999 0.9918 

Random Forest 0.9995 0.9865 

AdaBoost 1 0.9957 

Decision Tree 0.9740 0.9404 

KNN 0.9984 0.9769 

SVM 1 1 
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Table B-3: Comparison of validation accuracies of the best models trained on combinations of 10 questions, averaged over 9 combinations, 

using default hyperparameters, without demographics 

Model Mean AUC AUC CI 

Lower 

AUC CI 

Upper 

Range of 

AUC CI 

Mean F1 F1 CI Lower F1 CI Upper Range of F1 

CI 

LightGBM 96.69% 96.57% 96.81% 0.24% <1.0e-04 90.38% 90.21% 90.54% 

XGBoost 96.68% 96.55% 96.80% 0.24% <1.0e-04 90.44% 90.29% 90.60% 

MLP 96.65% 96.54% 96.77% 0.23% <1.0e-04 90.24% 90.10% 90.40% 

Gradient Boosting 96.65% 96.53% 96.77% 0.24% <1.0e-04 90.29% 90.13% 90.44% 

AdaBoost 96.58% 96.46% 96.70% 0.24% <1.0e-04 90.06% 89.89% 90.21% 

Random Forest 96.52% 96.41% 96.63% 0.22% <1.0e-04 90.49% 90.32% 90.64% 

Decision Tree 95.83% 95.73% 95.92% 0.20% <1.0e-04 90.25% 90.10% 90.38% 

KNN 94.75% 94.60% 94.90% 0.30% <1.0e-04 89.38% 89.15% 89.59% 

SVM 94.71% 94.51% 94.89% 0.38% <1.0e-04  90.26% 90.08% 90.42% 
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