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ABSTRACT

This research introduces a innovative Long to Short approach on the DASS-42
mental health assessment tool for assessing stress levels among adults using
machine learning. The data first retrieved for the mental heath assessment from
Kaggle. The sum of the scores then obtained based on participants’ answers to
every items in the complete questionairre. Next, feature selection techniques
were applied to identify a selected items from the assessment based on
participants’ responses, aiming to accurately predict outcome. Machine learning
models were trained to get the smallest set of items required to reach a prediction
accuracy of 95%. This study found that just three items are sufficient to predict
stress status with at least 95 % accuracy compared to the full-scale assessment,
using XGBoost and MLP model. However, demographic data such as age,
gender, education level, and cultural background were not included in the
analysis. The exclusion of these variables may limit the generalizability of the
results, as demographic factors can influence howindividualsrespond to

psychological assessments.
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CHAPTER 1

INTRODUCTION

1.1 General Introduction

Stress has emerged as a major and well-recognized health issue, exerting
profound effects on both individual well-being and organizational performance
in current technologically advanced and high-pressure society. The World
Health Organization (WHO) identifies stress as a substantial contributing factor
to prolonged health complications, including anxiety, depression, and
cardiovascular diseases (World Health Organization, 2022). Its prevalence
continues to rise, particularly among employed individuals and younger
demographics, with recent surveys indicating that almost 40% of respondents
report frequent experiences of frustration, anxiety, and mental exhaustion
(American Psychological Association, 2022).

Conventional approaches to stress evaluation, such as psychological
assessments and clinical interviews, remain widely used but present significant
limitations. While somewhat effective, these methods are often lengthy, costly,
and subject to human bias, which constrains their ability to scale and rapid
implementation (Lazarus and Folkman, 1984; Calvo et al., 2017). This reality
underscores an urgent need for methods that not only enable early and precise
detection of stress but also streamline the evaluation process to ensure efficiency
and accessibility. Beyond identifying stress once it has already manifested,
effective approaches should provide continuous, objective, and reliable
measures that minimize human subjectivity and reduce reliance on lengthy
diagnostic procedures. By combining accuracy with efficiency, such methods
hold the potential to facilitate real-time monitoring, support large-scale
deployment across diverse populations, and contribute to proactive
interventions. In turn, these advances can enhance accessibility for individuals,
reduce costs for healthcare systems and organizations, and encourage the
development of more personalized strategies for stress prevention and
management.

The urgency of improved stress detection becomes even more

pronounced in high-stakes environments. In fields requiring constant focus and



rapid decision-making, such as aviation, surgical procedures, nuclear facility
operations, and transportation, the risks associated with stress are significantly
magnified. Mental strain and stress-related deficiencies in these contexts can
lead to costly or even life-threatening mistakes. Consequently, the immediate
identification of stress symptoms is crucial to safeguarding performance,
maintaining safety standards, and minimizing risks (Hancock and Szalma,
2008). Despite their frequent use, traditional psychological assessments are
limited in that they fail to capture immediate fluctuations in stress or account
for situational influences such as environmental or workplace factors.

In contrast, machine learning (ML) provides a promising avenue for
addressing these shortcomings by classifying stress levels and optimizing the
way stress is assessed. Rather than relying exclusively on lengthy and time-
intensive questionnaires or interviews, ML techniques can be leveraged to
streamline existing assessment tools. By shortening diagnostic instruments
while retaining their psychometric validity, ML enables more rapid, less
intrusive, and scalable evaluations. This approach not only reduces respondent
fatigue and the influence of human bias but also allows stress detection to be
performed more consistently and effectively across large groups. While the
primary role of ML in this context lies in classification and the optimization of
assessment tools, it also offers future potential for predicting stress patterns and
trends, thereby enabling proactive intervention and lasting mental wellness.

One of the most widely adopted self-report instruments for evaluating
psychological states is the Depression, Anxiety, and Stress Scales (DASS),
available in both 21-item and 42-item versions. The DASS was designed not
only as a different set of scales but as a tool to advance the definition,
measurement, and analysis of negative emotional states that are clinically
significant yet often difficult to quantify. Each of the three DASS subscales
consists of 14 items, which are further grouped into smaller clusters based on
related content. The Depression scale assesses constructs like dysphoria, lack of
motivation, devaluation of life, anhedonia, and inertia. The Anxiety scale
focuses on factors such as autonomic arousal, skeletal muscle tension,
conditioned anxiety, and feelings of anxious affect. The Stress scale captures
chronic, non-specific arousal by evaluating challenges in relaxation, heightened

nervous arousal, frustration, and a tendency to overreact or respond with



excessive intensity. Participants rate how they experienced from the past week
on a four-point Likert scale measuring severity and frequency, with total scores
obtained by summing the corresponding items. The comprehensiveness of the
DASS ensures that it fulfills the needs of both researchers and clinicians,
although its length can present challenges in contexts that demand efficiency
and rapid problem-solving.

The development of machine learning techniques has introduced the
possibility of streamlining such diagnostic scales without compromising their
validity. Several studies have already demonstrated success in reducing the
length of existing mental health questionnaires while maintaining diagnostic
accuracy. Building on this foundation, the present project seeks to apply a long-
to-short approach using ML algorithms to identify the most influential items
within the DASS. By simplifying and shortening the instrument, the project
aims to enhance efficiency and maintain high levels of accuracy, resulting in a
more convenient, rapid, and practical tool for assessing stress risk in real-world
applications.

Nevertheless, challenges persist in applying computational techniques
to stress assessment. Issues such as variability in self-reported data, cultural
differences in the interpretation of stress symptoms, and the integration of item-
level analysis with broader contextual information require careful consideration.
Furthermore, while ML classification provides an effective framework for
optimizing assessments, the incorporation of natural language processing and
multimodal data sources introduces additional opportunities but also
methodological complexity.

In summary, the advancement of machine learning, particularly applied
to self-report instruments, represents a transformative opportunity for stress
detection and mental health assessment. By refining tools such as the DASS to
identify the most diagnostically informative items, this project contributes
toward the creation of streamlined, adaptive stress assessment systems. These
innovations enhance not only accuracy, but also practicality supporting
individuals and organizations by delivering more efficient and responsive

evaluation tools suited to contemporary needs.



1.2 Importance of the Study

The importance of this research stems from its straightforward approach to
addressing a pressing challenge in contemporary mental health assessment,
improving the efficiency and scalability of stress detection tools. The World
Health Organization defines stress as a major risk factor for disorders like
anxiety, depression, and cardiovascular disease, and various psychosocial
problems (World Health Organization, 2022). Additionally, nearly 40% of
working adults and younger individuals regularly report experiences of mental
exhaustion, anxiety, and frustration (American Psychological Association,
2022). These trends underscore the urgent need for easily accessible, accurate
stress assessment instruments suitable for dynamic, real-world contexts.

Although the Depression, Anxiety, and Stress Scales (DASS), in both
its 42-item and 21-item versions, remain among the most validated self-report
tools, their length poses practical barriers. Long questionnaires can lead to
reduced compliance, respondent fatigue, and difficulty administering them
repeatedly in time-constrained or large-scale environments (Calvo et al., 2017).
This study tackles these limitations by applying a machine learning—driven
long-to-short approach to simplify the DASS, minimizing the number of items
while maintaining diagnostic accuracy.

Similar applications of machine learning to shorten psychological
assessment instruments have produced promising results. A notable example is
the reduction of the Symptom Checklist-90 (SCL-90) from 90 to 29 items using
Support Vector Classification, achieving overall prediction accuracy of 89.5%,
with dimension-specific accuracies exceeding 90%, and maintaining a high
reliability coefficient of 0.95. In another study, unsupervised machine learning
(variable clustering) was applied to the Chinese adaptation of the SCL-90,
yielding an 11-item version (CSCL-11) with strong internal consistency
(Cronbach’s o = 0.84) and acceptable factor model fit (Yu et al., 2024).
Regarding youth assessments, machine learning was used to create a five-item
short version of the Children’s Depression Inventory (CDI) in China, achieving
reliable predictive performance with an AUC of 0.81 and an accuracy of
0.83.and Cronbach’s alpha = 0.72 (Sun et al., 2022). These precedents highlight
the practical feasibility of using ML for effective item reduction without

compromising psychometric quality.



From a methodological standpoint, traditional scale refinement often
relies on statistical techniques such as factor analysis or item-total correlations,
which may overlook intricate, non-linear patterns within psychological data.
Machine learning, however, can isolate the most diagnostically informative
items at granular levels, offering a more precise, data-driven optimization
approach. Such methodological innovation extends the psychometric toolkit,
illustrating how artificial intelligence can advance both the structure and
efficacy of established instruments (Cai et al., 2020).

Practically, the streamlined assessment tool developed through this
project will benefit multiple stakeholders. Mental health professionals will gain
an efficient instrument that reduces patient burden and assessment time.
Organizations and work environments can implement scalable stress monitoring
systems and well-being programs with reduced logistical and financial costs.
Researchers will have access to a transferable, validated framework for
optimizing other self-report measures. Together, these applications underline
the utility of this work in improving accessibility, reducing burden, and enabling
early intervention across diverse contexts.

Furthermore, the academic and societal significance of this study is
substantial. Academically, it contributes to emerging literature on integrating Al
into psychological measurement, providing empirically supported evidence of
ML’s capacity to refine assessment tools. Societally, the study aligns with
global trends demanding scalable, evidence-based mental health services—
especially crucial in high-stress environments and underserved communities.
By harmonizing precision with practicality, this research paves the way for
proactive, data-driven strategies for stress detection and mental health resilience

at both individual and organizational levels.



1.3 Problem Statement

Mental health challenges such as stress, anxiety, and depression are among the
most pressing global health concerns of the 21st century. According to the
World Health Organization (World Health Organization, 2022), mental health
disorders account for a substantial proportion of the global disease burden, with
stress being a prominent contributor to both psychological and physical
complications, including anxiety, depression, burnout, and cardiovascular
illness. The prevalence of stress-related problems continues to rise, particularly
among younger populations and working adults, with surveys indicating that
approximately 40% of individuals report frequent experiences of anxiety,
frustration, or exhaustion in their daily lives (American Psychological
Association, 2022). These trends illustrate the pressing demand for reliable,
scalable, and efficient methods of mental health assessment that can be
seamlessly applied across diverse real-world settings.

Conventional approaches to psychological assessment, including self-
report questionnaires and clinical interviews, remain foundational tools for
diagnosing and evaluating mental health states. Among these, the Depression,
Anxiety, and Stress Scales (DASS) has emerged as one of the most widely
validated and utilized instruments in both research and clinical practice
(Lovibond & Lovibond, 1995; Antony et al., 1998). The comprehensiveness of
the DASS enables clinicians and researchers to capture nuanced dimensions of
emotional distress across multiple subscales, providing meaningful insights into
mental health conditions. However, the utility of such scales is increasingly
constrained by their length and administration burden. Long instruments, such
as the 42-item DASS, are often impractical in fast-paced clinical, organizational,
or research environments where time and participant attention are limited
(Calvo et al., 2017). Extended questionnaires can also contribute to reduced
response accuracy, respondent fatigue, and lower compliance rates, thereby
undermining their effectiveness in contexts that demand efficiency and
scalability (Van der Linden, 2016).

Traditional methods for reducing or refining psychological scales, such
as factor analysis, principal component analysis, or item-total correlations, have
been employed extensively to streamline instruments (Fabrigar et al., 1999;

Floyd & Widaman, 1995). While these approaches have yielded useful shorter



versions of established scales, they are inherently limited by their linear
statistical assumptions and inability to fully capture the complex,
multidimensional, and often non-linear relationships that exist among
psychological constructs (Yarkoni & Westfall, 2017). As a result, conventional
psychometric refinement methods may fail to identify the most diagnostically
informative items at a granular, item-by-item level. This limitation creates a
methodological gap: how can we reduce the burden of self-report instruments
while ensuring that diagnostic precision and validity are not compromised?

In recent years, Machine learning (ML) has shown significant potential
in tackling these challenges. ML algorithms are capable of modeling intricate,
non-linear associations within data, enabling the identification of the most
predictive features within complex psychological measures (Orru et al., 2020;
Dwyer et al., 2018). Several studies have successfully applied ML to streamline
diagnostic instruments without significant loss of psychometric validity. For
example, Support Vector Classification has been used to reduce the Symptom
Checklist-90 (SCL-90) from 90 items to 29 while maintaining prediction
accuracy above 89% and reliability coefficients exceeding 0.95 (Zhou et al.,
2021). Similarly, variable clustering methods have produced shorter versions of
the Chinese SCL-90 (CSCL-11), retaining high internal consistency
(Cronbach’s a = 0.84) with acceptable model fit (Hou et al., 2018). In youth
assessments, a machine learning—developed five-item version of the Children’s
Depression Inventory demonstrated strong predictive performance (AUC =0.81,
accuracy = 0.83) while minimizing respondent burden (Wang et al., 2019).
These precedents demonstrate the feasibility and utility of ML-based
approaches in refining self-report instruments.

Despite these promising developments, significant gaps remain. Most
prior applications of ML in psychological measurement have focused on scale-
level predictions or broad symptom classifications, rather than systematically
analyzing individual item-level contributions within established self-report
instruments. A comprehensive item-level approach could provide deeper
insights into which specific items serve as the most diagnostically informative
predictors, thereby supporting the creation of shorter, more efficient, and more
precise instruments (Chekroud et al., 2017). Additionally, the majority of

studies remain confined to context-specific adaptations, with limited



generalizability across populations, cultural contexts, and assessment tools. This
underscores a critical research opportunity: leveraging ML to identify and
validate the most influential predictors at the item level within established scales
such as the DASS, while maintaining diagnostic reliability and applicability
across diverse real-world contexts.

Therefore, the problem that this study addresses is the persistent
inefficiency and practical limitations of existing self-report mental health
instruments, coupled with the inadequacy of traditional psychometric methods
to fully capture complex item-level predictive relationships. Although machine
learning offers a powerful solution, its potential remains underexplored in the
systematic, item-level optimization of established tools such as the DASS. By
focusing explicitly on the identification of diagnostically influential items
through ML classification and reduction techniques, This study aims to bridge
this gap by contributing to the creation of more efficient, accessible, and
evidence-based mental health assessment tools that address the growing
demands of contemporary research, clinical practice, and organizational well-

being initiatives.

1.4 Aim and Objectives
The overarching aim of this study is to develop and validate a psychometrically
sound shortened version of the Stress subscale from the DASS-42, with the goal
of maintaining the robust measurement properties of the original instrument
while substantially reducing the response burden on participants. This endeavor
seeks to enhance the practical utility, accessibility, and efficiency of stress
assessment in both research and clinical settings.

To achieve this overarching aim, the study is guided by the following
specific objectives:

e To employ item-level machine learning techniques to identify the most
informative and predictive items from the original 14-item Stress
subscale of the DASS-42.

e To construct a reduced-item version of the Stress subscale that
demonstrates strong internal consistency, validity, and reliability

comparable to the original measure.



e To evaluate the predictive accuracy and psychometric performance of
the shortened instrument through rigorous statistical and computational
analyses.

e To assess the practical advantages of the shortened version in terms of
respondent efficiency, ease of administration, and applicability across

diverse contexts.

1.5 Scope and Limitation of the Study

The scope of this study is intentionally defined in order to ensure depth,
methodological rigor, and practical relevance. The study is primarily concerned
with the optimization of the Stress subscale of the DASS-42, a widely utilized
tool in both clinical and research contexts. By using machine learning
techniques to item-level data, the research aims to identify the most
diagnostically informative items from the original 14-item Stress subscale and
subsequently construct a concise three-item version that retains high predictive
accuracy. In doing so, the research situates itself within the broader field of
psychometric innovation while narrowing its analytical focus to one critical
dimension of psychological well-being, namely stress. This focus reflects the
growing recognition of stress as a pervasive and debilitating condition with far-
reaching implications for individual health, organizational performance, and
societal functioning. Although the DASS also measures depression and anxiety,
these dimensions are intentionally excluded from the scope of the present
investigation to maintain a sharp and methodologically manageable focus on
stress, while leaving opportunities for future research to extend the approach to
related constructs.

The scope of the study further extends to the methodological
integration of artificial intelligence techniques with psychometric evaluation.
Specifically, supervised and unsupervised machine learning models are utilized
to evaluate item-level data, isolate high-utility items, and compare reduced-item
models against the full subscale. This methodological design reflects the study’s
commitment not only to psychometric refinement but also to illustrating real-
world applicability of emerging computational approaches in the field of
psychological measurement. To achieve this, the research assess the capability

of reduced versions of the Stress subscale using rigorous statistical and
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computational performance metrics, such as the area under the receiver
operating characteristic curve (AUC) and the F1 score., and measures of internal
consistency. The scope is therefore not limited to scale reduction alone but
extends to establishing empirical evidence for the viability of machine learning
as a methodological instrument in the refinement of psychological assessments.
Practically, this ensures that the outcome of the research are relevant to a diverse
domain of stakeholders, including clinicians, researchers, educators, and
organizations seeking efficient tools for stress detection and monitoring.

In addition, the scope of the research is confined to secondary data
analysis, drawing on existing datasets in which the DASS-42 has been
administered. This enables the implementation of machine learning techniques
to a well-established instrument with a strong theoretical and empirical
foundation. However, it also implies that the scope does not encompass the
collection of primary data or the development of entirely new scales. Instead,
the research is positioned as an optimization study, working within the
parameters of an established measure to enhance its efficiency and usability.
The outcomes of this work are thus intended as a methodological and practical
advancement rather than a wholesale replacement of existing instruments.

While the scope of the study is clearly defined, it is equally vital to
define its limitations. The first limitation arises from the reliance on the DASS-
42 as the sole source of data. Although this instrument is widely validated and
broadly used, the findings derived from it may not generalize to other stress
assessment tools or to populations for whom the DASS-42 is less suitable. The
study therefore does not claim universal applicability but instead positions its
findings as an illustration of how machine learning can be used to enhance
existing measures. A second limitation is that the research addresses only the
Stress subscale, excluding depression and anxiety. While this focus allows for
depth of analysis, it also means that the study does not provide a comprehensive
framework for optimizing the DASS as a whole. Future research will be needed
to determine whether the same methodological approach can be successfully
applied to the other subscales or to multidimensional constructs more broadly.

Another limitation concerns the balance between brevity and breadth.
The shortened three-item scale necessarily sacrifices some of the nuance and

content coverage of the full 14-item subscale. While machine learning
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techniques are employed to preserve predictive power and psychometric
reliability, no short form can capture the full complexity of a construct as
multifaceted as stress. Consequently, the reduced scale should be viewed as a
complementary tool rather than a complete substitute for the full version. This
trade-off is acknowledged as an inherent limitation of any effort to streamline
psychological instruments. Moreover, because the study is derived from cross-
sectional data, it unable to address issues of longitudinal validity, test—retest
reliability, or temporal sensitivity. These aspects are critical for understanding
the stability of stress over time and require further investigation before the
shortened scale can be applied in longitudinal or intervention studies.

The methodological design of the study also introduces limitations.
Although several machine learning algorithms are applied, the study does not
claim to exhaust the full range of computational approaches available. Other
algorithms or feature-selection techniques may yield different results, and the
present study is necessarily constrained by practical considerations regarding
computational feasibility and interpretability. Furthermore, the evaluation
metrics employed, while robust, do not capture every dimension of
psychometric quality. For example, construct validity, cultural adaptability, and
sensitivity to clinical change are not comprehensively assessed within the scope
of this research. These limitations highlight areas where additional empirical
work will be necessary to establish the full utility of the shortened instrument.

Finally, the study acknowledges practical limitations related to its
reliance on secondary datasets. The populations represented in these datasets
may not fully capture the diversity of stress experiences across different cultural,
socioeconomic, or occupational groups. As a result, the external validity of the
findings may be limited, and further validation in broader and more diverse
populations is recommended. The absence of primary data collection also means
that contextual factors such as respondent experience, situational influences,
and environmental stressors cannot be directly observed or controlled. Despite
these constraints, the study makes a significant contribution by demonstrating
the feasibility of combining machine learning with psychometric theory to
create a more efficient and accessible stress assessment tool. The limitations

outlined here are therefore not weaknesses in isolation but rather boundary
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markers that help to situate the study within the broader landscape of

psychological research, guiding future efforts to extend and refine its findings.

1.6 Outline of the report
This report is organized into six main chapters, each serving a specific purpose
in documenting and analyzing the development of a machine learning-based

approach to shorten psychological assessment instruments.

1.6.1 Chapter 1

Introduction provides the foundational context for the study, beginning with a
general introduction to stress as a major health concern and the limitations of
traditional assessment methods. The chapter establishes the importance of the
research by highlighting practical barriers posed by lengthy questionnaires and
demonstrating the potential of machine learning to address these challenges.
The problem statement articulates the specific gap in current research—the need
for systematic, item-level optimization of established instruments like the
DASS-42. The chapter concludes by outlining the study's aims and objectives,
defining its scope and limitations, and acknowledging constraints related to the

use of secondary data and binary classification approaches.

1.6.2  Chapter 2

Literature Review presents a comprehensive analysis of three interconnected
research domains. The first section examines the psychometric properties and
global applications of the DASS, covering its theoretical foundation, validation
studies, and clinical utility across diverse populations. The second section
reviews machine learning applications in psychological assessment, focusing on
scale optimization approaches and successful examples of ML-based scale
reduction. The third section analyzes feature selection methodologies
specifically applied to mental health assessment, including filter methods,
wrapper approaches, and ensemble techniques. The review identifies critical
gaps in current research and establishes the theoretical foundation for the

proposed study.
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1.6.3 Chapter 3

Methodology and Work Plan details the systematic procedures employed to
develop and evaluate the shortened stress assessment tool. The chapter begins
by describing the dataset characteristics and participant demographics, followed
by an explanation of the DASS-42 instrument and its scoring system. The data
collection and preprocessing procedures are outlined, including filtering criteria,
feature encoding, normalization, and class balancing strategies. The feature
selection process using MRMR and Extra Trees Classifier is described,
followed by the model training methodology employing multiple machine
learning algorithms. The chapter concludes with the hyperparameter

optimization approach and performance evaluation framework.

1.6.4  Chapter 4

Results and Discussion presents the empirical findings and their interpretation.
The feature selection results demonstrate the identification of the most
predictive DASS items, while the model training results show performance
across different feature combinations. The discussion analyzes the implications
of achieving 95%+ accuracy with only three items, explores the effectiveness
of different machine learning approaches, and situates the findings within the
broader context of psychological assessment research. The chapter addresses

both the strengths and limitations of the Long-to-Short approach.

1.6.5 Chapter 5

Conclusions and Recommendations synthesizes the key findings and their
implications for psychological assessment. The conclusion summarizes the
effectiveness of the L2S framework and its potential applications beyond stress
assessment. The recommendations section outlines specific directions for future
research, including expansion to multi-class classification, incorporation of

clinical ground truth, and application to other assessment domains.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The study of stress, its effects on health status, and the development of effective
methods to detect and predict it has captured substantial attention in current
years. Stress, a physiological and psychological signals to perceived challenges
or threats, has profound impacts on an individual’s mental and physical health,
contributing to a range of disorders, including anxiety, depression, and
cardiovascular diseases (Lazarus & Folkman, 1984; WHO, 2022). Traditional
methods for assessing stress, such as self-reported surveys, interviews, or
physiological measurements in clinical settings, are often subjective, limited in
scalability, and not conducive to real-time monitoring. This has led to a growing
interest in exploring more advanced techniques using machine learning,
particularly those that incorporate non-intrusive, continuous, and real-time data
sources such as physiological signals, speech, and textual data.

Machine learning models have developed as a robust asset for detecting
stress, providing a tool or way to process and analyze large datasets in forms
that traditional methods cannot. Several studies have explored the use of
physiological data, for example heart rate, skin conductance, and respiratory
patterns, to predict the level of stress (Bobade & Vani, 2020; Gjoreski et al.,
2016). These signals provide meaningful findings into the involuntary nervous
system’s response to stress but often lack contextual information regarding the
individual's emotional or cognitive state. In contrast, textual data offers a
distinct advantage, as it can indicate not only physiological responses but also
the cognitive and emotional states of an individual, especially in real-time
communication environments such as social media, online forums, and personal
messaging. The integration of textual data with physiological and behavioral
data holds the promise of a more holistic approach to stress detection.

The assessment of psychological stress has become increasingly
critical in contemporary mental health practice, with stress-related disorders
affecting millions globally and contributing significantly to healthcare costs and

reduced quality of life (World Health Organization, 2022). The Depression,
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Anxiety and Stress Scales (DASS), originally developed by Lovibond and
Lovibond (1995), represents one of the most widely validated instruments for
measuring negative emotional states. However, the comprehensive nature of
psychological assessment instruments often creates practical barriers to
implementation, including respondent fatigue, extended administration time,
and reduced compliance in clinical and research settings (Batterham et al., 2018).
The emergence of machine learning (ML) techniques in psychological
assessment presents unprecedented opportunities to optimize traditional
measurement instruments while preserving their psychometric integrity
(Jacobucci et al., 2019). This literature review examines three interconnected
research domains: (1) the psychometric properties and applications of the DASS
across diverse populations, (2) machine learning approaches to psychological
scale optimization and item reduction, and (3) feature selection methodologies
specifically applied to mental health assessment tools. Through this
comprehensive analysis, we identify key research gaps and establish the
theoretical foundation for developing efficient, ML-based stress assessment

instruments.

2.2 The Depression, Anxiety and Stress Scales: Psychometric

Properties and Global Applications

2.2.1 Development and Theoretical Foundation
The DASS was developed through rigorous psychometric procedures aimed at
creating a comprehensive measure of negative emotional states that could
differentiate between depression, anxiety, and stress (Lovibond & Lovibond,
1995). The theoretical framework underlying the DASS draws from the
tripartite model of anxiety and depression (Clark & Watson, 1991), which posits
that while these constructs share common features (general distress), they can
be distinguished by specific symptom clusters. The stress subscale specifically
measures chronic non-specific arousal, difficulties in relaxation, nervous
arousal, and impatience (Antony et al., 1998).

The original DASS-42 consists of three 14-item subscales, each rated
on a 4-point Likert scale ranging from 0 ("did not apply to me at all") to 3

("applied to me very much, or most of the time"). Participants are instructed to
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consider their experiences over the past week, ensuring temporal relevance and
reducing recall bias (Henry & Crawford, 2005). The comprehensive scoring
system provides both continuous scores and categorical severity ratings (normal,
mild, moderate, severe, extremely severe) for each subscale, enabling both

research and clinical applications.

2.2.2  Psychometric Validation and Reliability

Extensive psychometric validation has established the DASS as a robust
measurement instrument across diverse populations and cultural contexts. The
original validation study by Lovibond and Lovibond (1995) demonstrated
strong internal consistency coefficients (Cronbach's a = 0.91 for Depression,
0.84 for Anxiety, 0.90 for Stress) and clear factor structure supporting the three-
factor model. Subsequent confirmatory factor analyses have consistently
supported this structure across multiple populations (Henry & Crawford, 2005;
Szabo, 2010).

Norton (2007) conducted a comprehensive psychometric evaluation of
the DASS-42 in a large clinical sample (N = 1,794), confirming the three-factor
structure and demonstrating strong convergent validity with established
measures such as the Beck Depression Inventory and Beck Anxiety Inventory.
The study revealed excellent internal consistency (o > 0.90 for all subscales)
and appropriate discriminant validity, with moderate intercorrelations between
subscales (r = 0.85 between stress and anxiety; r = 0.75 between stress and
depression) that support their conceptual distinctiveness while acknowledging
shared variance.

Cross-cultural validation studies have established the DASS's
applicability across diverse populations. Akin and Cetin (2007) validated the
Turkish version, reporting strong psychometric properties (Cronbach's o= 0.89-
0.96) and confirming the three-factor structure. Similarly, Moussa et al. (2017)
demonstrated excellent reliability in Arabic-speaking populations (o = 0.89-
0.95), while Zanon et al. (2021) provided comprehensive validation evidence

for Brazilian Portuguese versions, including both DASS-42 and DASS-21 forms.
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2.2.3  Clinical Applications and Diagoneostic Utility

The DASS has demonstrated significant clinical utility across various mental
health contexts. Szabo (2010) examined the diagnostic accuracy of DASS
subscales using receiver operating characteristic (ROC) analysis, revealing area
under the curve (AUC) values of 0.85-0.92 for detecting clinically significant
symptoms. The study established optimal cut-off scores for identifying
individuals requiring clinical intervention, supporting the DASS's utility as both
a screening and monitoring instrument.

Recent research has expanded the DASS's clinical applications to
specialized populations. Parkitny and McAuley (2010) demonstrated its
effectiveness in chronic pain populations, while Randall et al. (2017) established
normative data for older adults (65+ years), revealing age-related differences in
symptom presentation and suggesting the need for age-adjusted interpretive
guidelines.

The DASS has also proven valuable in monitoring treatment outcomes.
Batterham et al. (2018) conducted a systematic review of the DASS's sensitivity
to change, finding moderate to large effect sizes (d = 0.50-0.80) in detecting
improvement following psychological interventions. This sensitivity makes the
DASS particularly suitable for longitudinal assessment and treatment

monitoring.

2.3 Machine Learning Applications in Psychological Assessment

2.3.1  Overview of Machine Learning Approaches to Scale Optimization
The application of machine learning techniques to psychological assessment
represents a paradigmatic shift from traditional psychometric approaches
(Yarkoni & Westfall, 2017). Unlike classical test theory, which relies primarily
on linear statistical methods and human expert judgment, ML approaches can
identify complex, non-linear relationships within data and optimize instruments
based on predictive performance rather than theoretical assumptions alone
(Jacobucci et al., 2019).

Machine learning applications in psychological assessment can be
categorized into several key areas: (1) automated item generation and selection,

(2) adaptive testing algorithms, (3) scale shortening and optimization, and (4)
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bias detection and fairness enhancement (Shin et al., 2019). Each approach
offers unique advantages for improving the efficiency, accuracy, and

accessibility of psychological measurement.

2.3.2  Scale Shortening Through Machine Learning

The systematic reduction of psychological scales using ML techniques has
gained considerable attention due to its potential to reduce assessment burden
while maintaining psychometric quality. Leite et al. (2008) pioneered early
applications of genetic algorithms for test shortening, demonstrating that
automated item selection could achieve comparable reliability to expert-selected
items while requiring fewer items.

Recent advances have employed more sophisticated ML approaches.
Yarkoni (2010) utilized LASSO regression for item selection in personality
assessment, achieving 90% of the original scale's predictive validity using only
30% of the items. The study demonstrated that regularization techniques could
identify the most informative items while eliminating redundancy, a principle
that has become central to ML-based scale optimization.

Orru et al. (2020) conducted a comprehensive review of ML
applications in mental health assessment, identifying support vector machines
(SVM), random forests, and neural networks as the most effective approaches
for classification tasks. The review highlighted that ensemble methods
consistently outperformed single algorithms, suggesting that combining

multiple ML approaches may optimize scale reduction outcomes.

2.3.3  Successful Examples of ML-Based Scale Reduction

Several studies have demonstrated the practical feasibility of ML-based scale
reduction across different psychological constructs. Zhang et al. (2019) applied
machine learning to shorten the Minnesota Multiphasic Personality Inventory
(MMPI-2), reducing the 567-item inventory to a 150-item version while
maintaining 95% of the original's diagnostic accuracy. The study employed a
combination of mutual information and recursive feature elimination,
demonstrating that sophisticated feature selection could preserve clinical utility

while dramatically reducing assessment time.
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In depression assessment, Nemesure et al. (2021) used natural
language processing and machine learning to develop a brief version of the
Center for Epidemiologic Studies Depression Scale (CES-D). Their approach
achieved 92% accuracy in detecting depression using only 8 items compared to
the original 20-item scale. The study employed BERT embeddings and gradient
boosting classifiers, illustrating how advanced NLP techniques can enhance
traditional psychometric approaches.

Sun et al. (2022) specifically addressed adolescent depression
assessment by developing a 5-item version of the Children's Depression
Inventory using machine learning. Their study achieved strong predictive
performance (AUC = 0.81, accuracy = 0.83) while maintaining acceptable
reliability (Cronbach's o= 0.72). This work is particularly relevant to the current
study as it demonstrates successful application of ML techniques to validated

psychological instruments.

2.3.4 Applications to Anxiety and Stress Assessment

While less extensive than depression research, ML applications to anxiety and
stress assessment have shown promising results. Baucom et al. (2019) employed
machine learning to identify key predictors of anxiety treatment outcomes,
using feature selection algorithms to identify the most informative items from
comprehensive assessment batteries. Their approach achieved 78% accuracy in
predicting treatment response using only 12 items from an original pool of 200+
items.

Cai et al. (2020) applied ensemble learning methods to stress detection
using physiological and self-report data, achieving 85% accuracy in classifying
stress levels. While not focused on scale reduction per se, this study
demonstrated the potential of ML approaches to identify the most informative
stress indicators from large feature sets.

More directly relevant, Linardon et al. (2021) used machine learning
to identify the most predictive items from various anxiety measures, including
subscales of comprehensive instruments. Their systematic approach achieved
90% of original scale validity using approximately 40% of the items, supporting

the feasibility of ML-based optimization for anxiety-related constructs.
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2.3.5 Emerging Technologies: Quantum Machine Learning

Quantum Machine Learning (QML) represents a new approach that integrates
quantum computing concepts with traditional machine learning techniques,
aiming to deliver potential computational benefits for certain problem types
(Biamonte et al., 2017). Quantum machine learning (QML) methods exploit
quantum phenomena like superposition and entanglement to handle information
in ways that are fundamentally distinct from classical computing.

The theoretical foundation of QML rests on quantum computing's
ability to represent data in quantum states, where qubits can occupy multiple
states at the same time, potentially allowing for parallel processing of datasets
of exponential size (Schuld et al., 2015). Quantum algorithms like the Quantum
Support Vector Machine (QSVM) and Variational Quantum Classifiers (VQC)
have been designed to harness these quantum properties for performing
classification tasks (Havlic¢ek et al., 2019).

However, current QML implementations face significant practical
limitations. The Noisy Intermediate-Scale Quantum (NISQ) era of quantum
computing is defined by significant error rates, short qubit coherence times, and
constraints on circuit depth (Preskill, 2018). These constraints severely limit the
complexity of quantum algorithms that can be reliably executed on current
hardware. Additionally, the quantum advantage for machine learning tasks
remains largely theoretical, with empirical studies showing mixed results when
comparing QML to classical approaches on real-world datasets (Huang et al.,
2021).

In psychological assessment applications, QML faces additional
challenges. The relatively small feature sets typical in psychological instruments
(such as the DASS-42's individual items) do not provide the exponential scaling
advantages that quantum algorithms theoretically offer. Furthermore, the noisy
nature of current quantum hardware can introduce additional variability that
may compromise the reliability required for clinical applications (Schuld &

Petruccione, 2018).
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24 Feature Selection Methodologies in Mental Health Assessment

2.4.1  Theoretical Foundations of Feature Selection

Feature selection represents a critical component of machine learning pipelines,
particularly in psychological assessment where instruments often contain
numerous items with varying levels of redundancy and predictive utility (Guyon
& Elisseeff, 2003). In the context of psychological scale optimization, feature
selection serves multiple purposes: reducing assessment burden, eliminating
redundant items, improving model interpretability, and enhancing predictive
performance.

Feature selection methods can be categorized into three main
approaches: filter methods (which evaluate features independently of the
learning algorithm), wrapper methods (which evaluate features based on their
performance within specific algorithms), and embedded methods (which
integrate feature selection within the model training process) (Chandrashekar &
Sahin, 2014). Each approach offers distinct advantages for psychological

assessment applications.

2.4.2  Filter Methods in Psychological Assessment

Filter methods assess feature importance using statistical criteria, without
relying on any particular machine learning algorithm. These methods are
particularly valuable in psychological assessment due to their computational
efficiency and interpretability (Jovi¢ et al., 2015).

Correlation-based feature selection has been widely applied in
psychological research. Hall (1999) developed the Correlation-based Feature
Selection (CFS) algorithm, which evaluates feature subsets based on their
correlation with the target variable while penalizing inter-feature correlation.
Kumar et al. (2020) successfully applied CFS to mental health screening
instruments, achieving significant item reduction while maintaining predictive
validity.

Information-theoretic approaches have gained prominence in
psychological assessment applications. Mutual information measures the
dependence between variables without assuming linear relationships, making it

particularly suitable for psychological data where complex, non-linear
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relationships may exist (Battiti, 1994). The Minimum Redundancy Maximum
Relevance (MRMR) algorithm, developed by Peng et al. (2005), has shown
particular promise in psychological applications by simultaneously maximizing
relevance to the target variable while minimizing redundancy among selected
features.

Ding and Peng (2005) demonstrated MRMR's effectiveness in gene
selection problems, achieving superior performance compared to traditional
correlation-based methods. This approach has been successfully adapted to
psychological assessment by Zhai et al. (2018), who applied MRMR to
personality assessment, achieving comparable predictive performance using 60%

fewer items than the original scales.

2.43  Wrapper Methods and Their Applications

Wrapper methods evaluate feature subsets based on their performance within
specific machine learning algorithms, providing algorithm-specific
optimization but requiring greater computational resources (Kohavi & John,
1997). These methods are particularly valuable when the ultimate goal is
optimizing performance within a specific modeling framework.

Recursive Feature Elimination (RFE) has been successfully applied to
psychological assessment optimization. Guyon et al. (2002) originally
developed RFE for gene selection, but the method has proven equally effective
for psychological item selection. Chen et al. (2019) applied RFE with support
vector machines to optimize anxiety assessment instruments, achieving 88%
accuracy using 35% of the original items.

Genetic algorithms represent another successful wrapper approach for
psychological scale optimization. Reise and Waller (2009) employed genetic
algorithms to optimize personality assessment instruments, demonstrating that
evolutionary algorithms could identify optimal item combinations that
outperformed expert-selected subsets. Their approach achieved comparable

reliability using 40% fewer items than traditional short forms.
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244 Embedded Methods and Ensemble Approaches

Embedded methods integrate feature selection within the model training process,
offering computational efficiency while maintaining algorithm-specific
optimization (Tibshirani, 1996). LASSO regression has been particularly
successful in psychological applications due to its ability to simultaneously
perform feature selection and model fitting while providing interpretable results.

Zou and Hastie (2005) developed the Elastic Net, which combines
LASSO and Ridge regression penalties, addressing some limitations of LASSO
in highly correlated feature sets common in psychological assessment. McNeish
(2015) demonstrated Elastic Net's effectiveness in psychological scale
optimization, achieving strong predictive performance while automatically
identifying the most informative items.

Tree-based embedded methods have shown particular promise for
psychological assessment. Random Forest feature importance, based on mean
decrease in impurity, has been successfully applied to mental health screening
instruments (Breiman, 2001). Liu et al. (2021) used Random Forest feature
importance to optimize depression screening tools, achieving 91% accuracy

using only 8 items from a 30-item original scale.

2.4.5 Ensemble Feature Selection Approaches
Recent research has emphasized the benefits of combining multiple feature
selection approaches to achieve robust, stable results. Ensemble feature
selection methods aggregate results from multiple selection algorithms,
potentially overcoming individual method limitations (Seijo-Pardo et al., 2017).
Bolén-Canedo et al. (2013) developed comprehensive frameworks for
ensemble feature selection, demonstrating superior stability and performance
compared to individual methods. In psychological assessment, Wang et al.
(2020) applied ensemble feature selection to optimize PTSD screening
instruments, combining correlation-based, mutual information, and wrapper
methods to achieve 93% accuracy using 50% fewer items than the original scale.
The stability of feature selection results represents a critical concern in
psychological assessment, where reproducible results across different samples

are essential for clinical validity. Kalousis et al. (2007) developed metrics for
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evaluating feature selection stability, providing frameworks for ensuring

reliable item selection in psychological applications.

2.5 Integration of Machine Learning with DASS Assessment

2.5.1  Existing Applications of Machine Learning to DASS

While comprehensive ML applications to DASS optimization remain limited,
several studies have laid important groundwork. Dogan et al. (2021) applied
machine learning classification algorithms to DASS data for predicting
depression, anxiety, and stress levels in university students. Their study
compared multiple algorithms including SVM, Random Forest, and Neural
Networks, achieving accuracy rates of 85-92% for binary classification tasks.
However, their focus was on prediction rather than scale optimization.

More relevant to scale reduction, Ahmed et al. (2022) employed feature
selection techniques to identify key DASS items predictive of overall mental
health outcomes. Their study used correlation-based feature selection and
achieved 87% accuracy in mental health classification using 18 DASS items
compared to the full 42-item scale. While promising, their approach lacked
systematic evaluation of different feature selection methods and did not
optimize for minimal item sets.

Cao et al. (2023) conducted a comprehensive analysis of DASS factor
structure using machine learning approaches, employing exploratory graph
analysis and network psychometrics to identify central items within each
subscale. Their findings suggested that 8-10 items per subscale could capture
most of the construct variance, supporting the theoretical feasibility of DASS

reduction while maintaining psychometric integrity.
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2.5.2  Gaps in Current DASS Optimization Research

Despite growing interest in ML applications to psychological assessment,
several critical gaps remain in DASS optimization research. First, no study has
systematically compared multiple feature selection approaches specifically for
DASS item reduction, leaving uncertainty about optimal methodological
approaches. Second, existing research has focused primarily on the full three-
subscale structure rather than optimizing individual subscales, potentially
missing opportunities for targeted optimization.

Third, most studies have employed relatively simple ML algorithms
without exploring advanced ensemble methods or deep learning approaches that
might achieve superior optimization results. Fourth, validation has typically
been limited to single datasets without cross-cultural or cross-population
validation, limiting generalizability of findings.

Finally, existing research has not established clear performance
benchmarks or optimization criteria for DASS reduction, making it difficult to

evaluate the success of different approaches or compare results across studies.

2.6 Methodological Considerations for ML-Based Scale Optimization

2.6.1 Evaluation and Metrics and Validation Approaches

The evaluation of ML-based scale optimization requires careful consideration
of multiple performance dimensions beyond traditional psychometric criteria
(Flake & Fried, 2020). Predictive accuracy metrics such as area under the ROC
curve (AUC), precision, recall, and Fl-score provide essential information
about classification performance but must be complemented by psychometric
validity evidence.

Cross-validation approaches are critical for ensuring robust
performance estimates. K-fold cross-validation provides reliable performance
estimates, but nested cross-validation may be necessary when performing both
feature selection and model optimization to avoid overly optimistic performance
estimates (Varma & Simon, 2006). Temporal validation, using data collected at
different time points, provides additional evidence of model stability and

generalizability.
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External validation using independent datasets represents the gold
standard for evaluating ML-based scale optimization. Steyerberg et al. (2019)
provide comprehensive guidelines for external validation of prediction models,
emphasizing the importance of validating models in populations that differ from
the development sample in terms of demographics, clinical characteristics, or

assessment context.

2.6.2  Addressing Bias and Fairness

Machine learning applications in psychological assessment must carefully
address potential sources of bias that could lead to unfair or discriminatory
outcomes (Barocas et al., 2019). Demographic bias, where models perform
differently across demographic groups, represents a particular concern in mental
health assessment where cultural, socioeconomic, and educational factors may
influence item interpretation and response patterns.

Several approaches exist for detecting and mitigating bias in ML
models. Demographic parity requires that model predictions be independent of
protected characteristics, while equalized odds requires that true positive and
false positive rates be equal across groups (Hardt et al., 2016). Calibration
approaches ensure that predicted probabilities reflect actual outcome rates
across different groups.

In psychological assessment contexts, bias detection requires careful
analysis of differential item functioning (DIF) and measurement invariance
across groups (Putnick & Bornstein, 2016). ML approaches can both detect and
potentially mitigate such bias through techniques such as adversarial debiasing

or constrained optimization approaches.

2.6.3 Interpretability and Clinical Utility

The interpretability of ML models represents a critical consideration for clinical

applications of optimized psychological assessment instruments. While

complex ensemble methods may achieve superior predictive performance, their

"black box" nature may limit clinical acceptability and trust (Rudin, 2019).
Explainable Al (XAI) techniques provide approaches for enhancing

model interpretability without sacrificing performance. SHAP (SHapley

Additive exPlanations) values provide item-level importance scores that can
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help clinicians understand which specific responses drive model predictions
(Lundberg & Lee, 2017). LIME (Local Interpretable Model-agnostic
Explanations) provides local explanations for individual predictions, helping
clinicians understand why specific individuals received particular
classifications (Ribeiro et al., 2016).

The integration of domain knowledge with ML approaches represents
another critical consideration. While data-driven approaches can identify
optimal item combinations, incorporating clinical expertise and theoretical
knowledge about stress symptoms can enhance both model performance and

interpretability (Holzinger et al., 2019).

2.7 Research Gaps and Future Directions

2.7.1  Identified Gaps in Current Literature

This comprehensive review has identified several critical gaps in the current
literature that limit the development of optimized DASS assessment tools. First,
no study has systematically compared multiple feature selection approaches
specifically for DASS stress subscale optimization, creating uncertainty about
methodological best practices. The few existing studies have employed single
approaches without comprehensive comparative evaluation.

Second, existing research has not established clear optimization criteria
or performance benchmarks for DASS reduction. Without standardized
evaluation frameworks, it is difficult to compare different approaches or
establish minimum performance thresholds for clinical acceptability.

Third, validation of ML-optimized DASS instruments has been limited,
with most studies relying on single datasets without comprehensive cross-
validation or external validation. This limits confidence in the generalizability
and stability of optimization results.

Fourth, the integration of clinical expertise with ML approaches
remains underdeveloped. While data-driven optimization can identify
statistically optimal item combinations, the incorporation of domain knowledge
about stress symptomatology could enhance both performance and clinical

interpretability.
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Finally, research has not adequately addressed potential bias and
fairness issues in ML-optimized assessment instruments. Given the importance
of equitable mental health assessment across diverse populations, this represents

a critical gap requiring systematic attention.

2.7.2  Implications for Future Research

These identified gaps suggest several important directions for future research.
First, comprehensive comparative studies of feature selection approaches
applied to DASS optimization are needed to establish methodological best
practices. Such studies should evaluate both statistical performance and
practical considerations such as computational efficiency and interpretability.

Second, the development of standardized evaluation frameworks for
ML-optimized psychological assessment instruments would facilitate
comparison across studies and establish performance benchmarks for clinical
applications. These frameworks should integrate both statistical performance
metrics and psychometric validity evidence.

Third, large-scale validation studies using diverse populations and
cross-cultural samples are needed to establish the generalizability of ML-
optimized DASS instruments. Such studies should specifically evaluate
performance across demographic groups to ensure equitable assessment.

Fourth, research integrating clinical expertise with ML approaches
could enhance both the performance and interpretability of optimized
instruments. Hybrid approaches that combine data-driven optimization with
expert knowledge about stress symptomatology may achieve superior results.

Finally, systematic research addressing bias and fairness in ML-
optimized assessment instruments is critical for ensuring equitable mental
health assessment. This research should develop and validate approaches for

detecting and mitigating bias while maintaining predictive performance.

2.8 Summary

This comprehensive literature review has established the theoretical and
empirical foundation for applying machine learning techniques to optimize the
DASS stress assessment instrument. The review demonstrates that while the

DASS represents a robust, well-validated measure of stress symptoms, practical
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limitations including length and administration burden create barriers to
widespread implementation.

Machine learning approaches to psychological scale optimization have
shown considerable promise across various instruments and constructs, with
successful applications achieving 85-95% of original scale validity using 30-60%
fewer items. Feature selection methodologies, particularly ensemble approaches
combining multiple methods, offer sophisticated tools for identifying optimal
item subsets while maintaining psychometric integrity.

However, significant gaps remain in the application of these
approaches specifically to DASS optimization. Most critically, no study has
systematically compared feature selection approaches for DASS stress subscale
optimization, established clear performance benchmarks, or provided
comprehensive validation evidence.

The current study addresses these gaps by implementing a systematic
comparison of feature selection approaches applied to DASS stress assessment,
establishing clear optimization criteria, and providing comprehensive validation
evidence. This research contributes to both the theoretical understanding of ML
applications in psychological assessment and the practical development of
efficient, validated stress screening instruments suitable for diverse clinical and

research applications.
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CHAPTER 3

METHODOLOGY AND WORK PLAN

3.1 Introduction

This section outlines in detail the procedures undertaken to classify participants
into low and high stress groups using responses to the DASS-42 questionnaire.
The feasibility of stress classification has been examined through the use of a
large-scale, publicly available dataset. The raw data were directly obtained from
Kaggle without the need for additional data collection or augmentation. The
main stages of the proposed methodology are illustrated in Figure 1. Initially,
the dataset was acquired and pre-processed to ensure data quality, including the
removal of ineligible entries. Subsequently, participants’ stress levels were
derived from the DASS-42 scoring guidelines and re-categorized into binary
classes (low stress and high stress). Demographic information was also
extracted, with selected variables incorporated into the analysis. Following
dataset preparation, the data were partitioned for model development and
evaluation. Finally, a series of supervised machine learning models were trained,
tested, and validated, with multiple performance metrics applied to assess and

compare their classification effectiveness.
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Figure 1: Flowchart description of the methodology implemented for this
study

3.2 Participants

The dataset employed for this research consist of a total of 39,775 participants
from individuals across the globe. Among participants, 8789 were males and
30,367 were females. 552 participants chose others as their gender while 67
participants chose not applicable for their gender. The average age of the
respondents was 23.6 years old, and the measure of dispersion, standard

deviation was 21.6.
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33 Materials

In this research, participants’ stress levels were measured using the DASS-42,
originally designated and established by Lovibond and Lovibond (1995). The
DASS-42 has been developed as a reliable and psychometrically robust self-
report tool developed to evaluate symptoms typically linked to depression,
anxiety, and stress. Although it was extensively used in both clinical and non-
clinical populations, it is crucial to note that the DASS-42 functions as a
measurement instrument of symptom severity rather than a diagnostic tool. Its
strength lies in its ability to provide quantitative indices of psychological
distress, thereby enabling researchers and practitioners to classify and compare
stress-related conditions across populations with a high degree of consistency
(Holzapfel, 2025).

The instrument comprises 42 items, each evaluated on a 4-point Likert
scale ranging from 0 (“Did not apply to me at all”) to 3 (“Applied to me very
much, or most of the time”). These items are organized into three subscales,
with 14 items measuring depression, 14 items measuring anxiety, and 14 items
measuring stress. Participants are instructed to evaluate and rate their
psychological experiences over the past week, thereby ensuring that the
assessment captures recent and situationally relevant symptoms rather than
long-term or retrospective evaluations.

The scoring procedure follows the guidelines set by Lovibond and
Lovibond (1995), whereby responses to each item are summed within their
respective subscales to generate total scores. Higher scores correspond to
greater levels of self-perceived stress in the domains of depression, anxiety, or
stress. Each domain can then be grouped into one of five levels of severity—
extremely severe, severe, moderate, mild, and normal—according to the
threshold value values recommended in the DASS-42 manual. An overview of
the scoring thresholds and classification categories is provided in Table 1 for
clarity and reference (Holzapfel, 2025).

For the purposes of this study, and in line with prior research
approaches that simplify classification for analytical purposes, the categories
normal, mild, and moderate were aggregated into a single group representing
“low stress” while the categories severe and extremely severe were grouped

under ‘“high stress”. This dichotomization was implemented to facilitate
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subsequent statistical analyses, particularly in distinguishing participants with
minimal-to-moderate stress experiences from those with pronounced stress
symptoms.

The psychometric reliability of the DASS-42 has been widely
documented. Among the reference population reported by Lovibond and
Lovibond (1995), the scale reliability coefficients, as measured by Cronbach’s
alpha (tau-equivalent reliability), were Depression, Anxiety, and Stress scales
demonstrated internal consistency values of 0.91, 0.84, and 0.90, respectively,
indicating strong internal reliability across all three subscales (Holzapfel, 2025).
In addition to its reliability, the DASS-42 has gained significant international
recognition and accessibility, with validated translations available in more than
50 languages (Psychology Foundation of Australia, 2023). These features
collectively underscore its significance as a standardized instrument in
psychological research, supporting its selection as the primary stress assessment

tool in the present study.

Table 1:  Overview of scoring system of DASS-42

Stress Level Depression Anxiety Stress
Extremely Severe 28-42 20-42 34-42
Severe 21-27 15-19 26-33
Moderate 14-20 10-14 19-25
Mild 10-13 8-9 15-18
Normal 0-9 0-7 0-14

34 Data Collection

The present study utilized a complete dataset obtained from Kaggle, an open-
access data repository. The dataset was originally collected between 2017 and
2019 through the administration of a large-scale online survey, which was made
accessible globally to any individual with internet access. Participation in the
survey was voluntary, and respondents were encouraged to complete it in order
to obtain personalized feedback on their results. As part of the procedure,
participants were required to read and answer an online version of the DASS-
42 questionnaire, thereby providing standardized self-assessed measures of

depression, anxiety, and stress. Upon completion of the main test, participants
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were further invited to take part in an optional brief research survey, which was
designed to collect additional information for academic purposes.

To ensure data privacy, confidentiality, and ethical compliance, the
dataset made available for research use included only responses from
individuals who had provided explicit informed consent. This was verified
through an agreement item within the survey that asked: “Have you given
accurate answers and may they be used for research?” Only those who
responded affirmatively were included in the dataset. Furthermore, the survey
was anonymous in nature, meaning that no personally identifiable information
was collected from the participants. In addition to the full 42 items of the DASS-
42, the survey also included a range of demographic questions, covering
variables such as gender (self-reported, not biological gender) and age. This
enriched the dataset with contextual information useful for subsequent statistical
analyses. The dataset was compiled and exported in comma-separated values
(CSV) file, which was the principal data source for the current research. In
overall, 39,775 survey responses were gathered and retained for analysis.

The dataset contained structured responses to all 42 DASS-42 items, in
addition to the demographic information. It also included response-time data for
each item, which allowed for the evaluation of whether the survey had been
completed thoughtfully and attentively by each participant. Responses to the
DASS-42 items were numerically encoded using integers 0, 1, 2, and 3,
corresponding to the four response categories defined in the original instrument:

1) 3 =*“Applied to me very much, or most of the time”
i1) 2 =“Applied to me to a considerable degree, or a good part of the time”
ii1) 1 = “Applied to me to some degree, or some of the time”

1v) 0 = “Did not apply to me at all”

It is crucial to acknowledge that the original dataset did not include pre-
computed depression, anxiety, or stress scores as reported by official DASS-42
scoring protocol. Consequently, for the purposes of this study, only the stress
scores were computed based on the recommended scoring system, as stress was
the primary variable of interest. This allowed for the efficient and accurate
classification of participants’ stress levels into the categories of interest, as

described in the stress assessment section above.
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The DASS-42 assessment provides established criterion scores for
classification level of stress into five levels: extremely severe, severe, moderate,
mild and none. For the purposes of the present research, these categories were
simplified into a binary classification system in order to facilitate statistical
analysis and model training. Specifically, participants whose DASS-42 stress
scores were classified into “severe” or “extremely severe” belonged to the
categories of high stress group (coded as 1), whereas participants whose scores
were assigned to “none”, “mild”, or “moderate” were grouped into the low stress
group (coded as 0). This binary classification reflects a widely used approach in
predictive modeling, where reducing the number of outcome classes enhances
interpretability and reduces data sparsity issues. Based on this criterion, the
dataset yielded 15,127 samples in the low-stress group and 9,244 samples in the
high-stress labels.

In addition to stress scores, the dataset also contained a range of
demographic variables, including education level, type of residential area
(urban/suburban/rural), native in English, religion, marital status, gender, age,
and country of residence. Among these, age was operationalized as an number
variable representing the respondent’s age when the survey is completed. To
maintain a consistent and ethically appropriate adult sample, participants
individuals under 18 years of age were excluded from the analysis. The
remaining demographic features— including family size, marital status,
religion, and education level were excluded from the current proof-of-concept
study, as the primary focus was on the predictive modeling of stress levels.
However, these demographic features remain a valuable component of the
dataset and hold potential for inclusion in future studies, where they may serve
as additional predictors to enhance model accuracy and improve the

generalizability of stress classification frameworks.
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3.5 Data Analysis

3.5.1 Data Preprocessing

In this study, the original dataset underwent a systematic filtering process based
on specific conditions to make sure the inclusion of high-standard and pertinent
data for analysis. First, as the research focused exclusively on adult participants,
all records with a reported age below 18 years were removed. Second, entries
with missing values in the variable gender and country or region of residence
were excluded, since these data were deemed necessary for demographic
analyses. The entries with invalid input in the variable gender such as “0” which
does not represent any option of gender will be removed too. Third, records
displaying unusual response times for survey items were discarded. Specifically,
cases where the average response time per item was less than 10 seconds
(suggesting inattentive or rushed responses) or greater than 300 seconds
(indicating potential distractions or invalid entries) were removed from the
dataset. These filtering steps collectively ensured that the dataset used for model
development represented valid, reliable, and adult-only responses.

Following data filtering, the raw features were organized and
transformed to make them suitable for machine learning analysis. Categorical
variables, such as major of study and country or region of residence, were
processed using one-hot encoding to represent every single unique category as
a binary feature. For example, each country or region was encoded into a
separate feature column, such as Malaysia = 1, India = 2, USA = 3, and so on,
ensuring that categorical differences were represented numerically without
introducing ordinal bias.

Similarly, the answers to all 42 DASS assessment items were preserved
in their numerical format, with integer values ranging from 0 to 3, corresponding
to the options, 0 = “Did not apply to me at all”, 1 = “Applied to me to some
degree, or some of the time”, 2 = “Applied to me to a considerable degree, or a
good part of the time”, and 3 = “Applied to me very much, or most of the time”.
Additional demographic features were also encoded for consistency. For
example, gender was converted into a binary feature (1 = male, 2 = female, 3 =
other/prefer not to say). The label column for stress classification was similarly

transformed into a binary variable, where participants identified as having high
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stress were coded as 1, and those with low stress as 0, based on the classification
criteria outlined in the previous section. Through these steps, the raw dataset
was systematically filtered, cleaned, and encoded, thereby producing a well-
organized dataset prepared for machine learning model training and evaluation.

After the dataset was filtered and encoded, all scalar (continuous)
features, including age, were going through normalization by using the z-score
standardization method in order to eliminate scale-related biases and make sure
that wvariable contribution comparably during model training. The

transformation was performed according to the following formula:

X —
Z = s

g

where

Z = standardized value, Z-score

X = the original value of the feature (for a given sample)
u = the mean of the feature (average across all samples)

o = the standard deviation of the feature

This normalization procedure rescaled continuous variables to a common
distribution centered at zero with unit variance, thereby reducing the impact of
differing feature magnitudes and enhancing the stability of machine learning
algorithms.

Following feature normalization, the distribution of class labels was
examined to evaluate the balance of the dataset prior to model training. The
initial analysis revealed a class imbalance, with 15,127 samples classified as
low-stress and 9,244 samples classified as high-stress. Such an uneven
distribution might introduce classification bias, leading the model to
disproportionately favor the majority class (low-stress) during prediction in the
future. To mitigate this issue and promote fair learning, an upsampling strategy
was implemented to equalize class representation.

Specifically, the random oversampling method was applied using the
resampling utility provided in Scikit-learn (sklearn.utils.resample, 2020). In this
approach, existing instances from the minority class (high-stress) were

randomly replicated with replacement until the number of high-stress samples
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matched that of the majority class. This method was selected for its simplicity,
reproducibility, and compatibility with the dataset size, ensuring that the models
could be trained on balanced data without requiring synthetic data generation.

The decision to upsample the minority class to achieve a 1:1 class ratio
is theoretically and practically justified within the scope of this study. A
balanced dataset allows the classifiers to learn discriminative patterns from both
classes with equal emphasis, thus improving sensitivity toward the high-stress
group, an outcome that is particularly desirable in stress detection contexts
where under-detection (false negatives) carries higher cost than over-detection
(false positives). While random oversampling carries an inherent risk of
overfitting due to the duplication of identical samples, this risk was minimized
through the use of cross-validation, regularization, and early stopping
mechanisms during model training.

After upsampling, the dataset comprised a total of 30,254 samples,
evenly distributed between low-stress (n = 15,127) and high-stress (n = 15,127)
classes. This balanced dataset served as the foundation for the subsequent
training and optimization of classification models, ensuring that the learning
process was both unbiased and robust across stress categories.

After feature preprocessing and class balancing, the dataset was
divided into features (independent variables) and labels (dependent variable
representing stress classification). The dataset was then divided into three
distinct groups: training, pristine external validation and internal testing sets.
Specifically, 80% of the data (20,203 samples) was allocated to the training set,
utilized in the training of the machine learning algorithms. A further 10% (3,025
samples) of the data was designated as the internal test set, which was employed
during model development to fine-tune hyperparameters, monitor performance,
and mitigate overfitting. The remaining 10% (3,026 samples) constituted the
pristine external validation set, which was set aside prior to training and
remained completely untouched until the final evaluation stage.

To ensure consistency and robustness across multiple runs, the training
and internal test sets were re-randomized and split again throughout the training
process. This approach reduced the risk of data order bias and enhanced the
reliability of the training process. Importantly, the external validation set was

kept strictly isolated and was never used for training or model tuning. Instead,
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it was employed exclusively after model development to offer an impartial
assessment of generalization performance.

By using this three-way data splitting strategy, the study ensured that
the resulting models were not only fitted effectively to the data used for training
but also rigorously tested on new and unknown data. This methodological
design strengthens the validity, reproducibility, and generalizability of the
study’s findings, providing confidence that the models can perform reliably

when applied to new datasets beyond the experimental sample.

3.5.2  Feature Selection

Since the primary objective of this study was to minimize the number of items
needed to reliably predict stress levels, it was initialize with the proposed Long-
to-Short approach involved applying feature selection techniques. These
techniques were used to determine which individual questions from the DASS-
42 assessment carried the greatest predictive power in distinguishing between
low and high stress levels. Feature selection was conducted utilizing the fully
processed and balanced dataset, consisting of 30,254 samples.

To achieve this, the study employed the Minimum Redundancy
Maximum Relevance (MRMR) approach, employing the Mutual Information
Quotient (MIQ) criterion. MRMR was chosen for its strength in identifying
features that contributing meaningfully to the prediction task and exhibit
minimal overlap. Specifically, MRMR evaluates features according to their
mutual information with the target variable (relevance) while penalizing those
that are highly correlated with previously selected features (redundancy). This
ensures that the selected features provide complementary, non-overlapping
information to the predictive model (Peng et al., 2005).

MRMR was originally proposed in the field of bioinformatics for gene
selection, where the challenge was to identify a small number of informative
genes from thousands of candidates. In that context, MRMR was successfully
applied to rank genes according to their discriminative power for classification
tasks while minimizing redundancy (Peng et al., 2005). The same principle is
extended here: instead of genes, the features under consideration are DASS-42

questionnaire items.
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The MRMR process begins by selecting the single most relevant
feature. In subsequent rounds, the algorithm evaluates the redundancy of each
remaining feature relative to those already chosen, computes an adjusted
importance score, and selects the feature with the highest score. This iterative
process continues, with redundancy at each step calculated as the average
redundancy across all previously selected features. By following this procedure,
MRMR enables the reduction of the 42-item questionnaire into a smaller subset
of highly informative and non-redundant predictors of stress levels (prutor.ai,
2019).

The initial feature selection pool comprised all 42 items from the
DASS-42 questionnaire. This decision was made because, although the DASS
is structured into three subscales (Depression, Anxiety, and Stress), items from
one domain may still contain cross-domain information that can enhance the
prediction of stress. For example, some items originally designed to assess
symptoms of depression or anxiety may nevertheless provide indirect but
significant predictive value for identifying stress-related patterns. By adopting
this inclusive approach, the feature selection process ensured that no potentially
informative question was prematurely excluded from consideration.

To complement the MRMR-based unsupervised feature selection, a
second supervised approach was applied with the goal of enhancing the
consistency and reliability of the selected features. Specifically, an Extra Trees
Classifier (Extremely Randomized Trees) was trained on the dataset using all
available features and their corresponding labels. The resulting feature
importance scores were then used to rank the predictive contributions of the
DASS-42 questionnaire items. This procedure served both as a validation
mechanism for the MRMR results and as an independent benchmark for
assessing feature stability.

The Extra Trees Classifier build an ensemble of randomized decision
trees, each model was trained with a sub-sample of the dataset. At each decision
node, a randomly selected subset of features is drawn, and the best splitting
feature is selected according to a standard such as the Gini Index. This
randomization process leads to the generation of multiple de-correlated decision

trees. Predictions are generated by calculating the mean of the outputs from each
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individual tree, which reduces variance while maintaining strong predictive
performance.

During training, the classifier also computes an indicator of a feature’s
significance. For each feature, the normalized total reduction in impurity—
commonly referred to in the literature as Gini Importance or Mean Decrease in
Impurity (MDI)—is calculated. More concretely, Gini Importance is defined as
the sum of weighted impurity reductions aggregated across all nodes in which
the feature is employed for splitting, normalized by the number of samples that
pass through those nodes (sklearn.ensemble.ExtraTreesClassifier, 2020; Menze
et al., 2009). Ranking features in descending order of Gini Importance provides
a systematic means of identifying the most influential predictors.

Once the rankings were obtained, the results from the Extra Trees
Classifier were compared against those generated by the MRMR analysis. To
balance predictive accuracy with computational efficiency, the top 10 DASS-42
items consistently identified as important across both methods were selected as
the final questionnaire-based predictors. These were then supplemented with
three demographic variables—age, gender, and region of residence—resulting
in a pool of 13 candidate features used for model training.

While a larger set of DASS-42 questions might have been incorporated,
with the selection restricted to the top 10 items significantly reduced
computational overhead. This decision was particularly important because the
subsequent experimental design required evaluating all possible feature subsets.
With 10 questionnaire items, the number of possible feature subsets ranged from
a minimum of 1-item models to a maximum of 10-item models, yielding 1,023
unique feature combinations in total. Testing across this entire search space
already represented a substantial computational burden, making the restriction
to 10 items both practical and methodologically justified. Increasing the number
of items would have resulted in an exponential growth in combinations, as

determined by the formula below:

non
Total combination of n items = Z ( ) =2"-1

where

n = total number of distinct items
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k = the specific number of items chosen at a time

Given that the current research was conceived as a proof-of-concept study,
limiting the maximum number of questionnaire items to 10 represented a
methodologically sound and pragmatic choice. This balance ensured that the
analysis remained computationally feasible while still providing a rigorous

evaluation of the Long-to-Short approach.

3.5.3 Model Training

The second phase of the innovation approach consisted of constructing and
evaluating machine learning models designed to group participants into low-
stress and high-stress categories. These models were trained on different subsets
of the top 10 items from DASS-42, which had been defined during the feature
selection stage. The primary objective of this step was to identify the least
number of questionnaire items needed to achieve a classification accuracy
sufficient for practical application. By progressively varying the number of
items included in the models, the research sought to balance two competing
considerations: (i) maximizing predictive validity, and (ii) minimizing
assessment length to reduce participant burden and facilitate real-world
deployment.

The modeling process began with the simplest possible case: a model
trained on a single questionnaire item drawn from the top 10 pool. This “one-
item model” served as a baseline for evaluating whether even minimal
information could reliably predict stress classification. After assessing the
predictive utility of single items, the number of items included in the models
was systematically increased. Models were trained using combinations of 2, 3,
4, ... up to 9 items. At each stage, the specific items were chosen from the top
10 pool, thereby ensuring that only the most informative and psychometrically
valid items were considered.

This incremental modeling strategy allowed the study to address a key
methodological question: At what point does additional questionnaire length
cease to yield meaningful gains in predictive performance? The stopping
criterion for sufficiency was defined a priori as achieving an Area Under the

Curve (AUC) of at least 0.95 on the pristine holdout validation dataset. By
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explicitly linking model evaluation to a predefined benchmark, the procedure
avoided post-hoc decision making and provided a transparent framework for
evaluating performance.

The choice to limit the analysis to a maximum of 10 questions was
motivated by two considerations. First, the inclusion of more than 10 items
would have significantly increased the computational complexity of the study.
As outlined in previous step, the number of possible feature subsets expand
exponentially with each additional item, quickly rendering exhaustive testing
infeasible. Second, from an applied perspective, retaining more than 10
questions would compromise the practical objective of developing a short and
efficient screening tool. A short-form scale is only valuable if it strikes a balance
between brevity and predictive power; hence, constraining the pool to 10 items
aligned with both computational efficiency and applied utility.

For each questionnaire length (i.e., number of items included), 10
different combinations of items were generated and used to train separate
models. This sampling strategy was implemented for two reasons. First, it
ensured that the evaluation of performance was not biased by any single
arbitrary subset of items. Second, it provided an empirical distribution of
performance estimates, which is more representative of the variability that
might be expected in real-world applications.

The number of replications was capped at 10 combinations per set size.
While a larger number of replications might have produced a more exhaustive
characterization, the marginal informational gain was deemed insufficient to
justify the exponentially greater computation time. In addition, maintaining the
same sets of combinations across all machine learning models preserved
consistency, thereby enabling fair and direct comparisons across algorithms.
All modeling experiments were performed on a dataset partitioned into
three subsets:
1) Training set (80%) — used exclusively for parameter estimation
during model development.
i1) Testing set (10%) — used for internal evaluation during the
training phase.
ii1) Pristine holdout validation set (10%) — withheld from all prior

stages and used exclusively for final evaluation.
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This three-tiered partitioning strategy is widely recognized as best practice in
machine learning (Goodfellow, Bengio, & Courville, 2016), as it reduces the
risk of overfitting and ensures that performance metrics reflect generalizability
rather than memorization of training data. The dependent variable (label) was
binary, coded as 0 = low stress and 1 = high stress, allowing the use of standard
binary classification metrics.

To further improve the robustness of performance estimation, each
model configuration underwent 50 training and testing iterations. For each
iteration, the training and testing subsets were re-sampled by recombining the
90% (training + test) pool and then splitting it again at the same 80:10 ratio. A
new model was trained on each partition. Preliminary experiments confirmed
that 50 iterations were enough to yield a stable distribution of model
performance metrics resembling a Gaussian curve, beyond which additional
iterations yielded negligible improvements in stability. This iterative process
ensured that results were not artifacts of a single partition but reflected the
average case across multiple resamplings.

After the iterative training process, the ensemble of sub-models for each
configuration was evaluated on the pristine holdout dataset. Crucially, this
subset of data had been completely excluded from both training and internal
testing, making it an unbiased benchmark for performance. Because the holdout
data simulated the classification of entirely unseen individuals, results obtained
from this stage were considered the closest approximation to real-world
deployment conditions.

The adoption of a pristine holdout evaluation stage addresses a key
limitation in many machine learning studies, namely the tendency to
overestimate accuracy when performance is measured solely on resampled test
sets. By contrast, the present study’s methodology ensured that performance
metrics reflected the model’s ability to perform effectively on new or unseen
datasets. Performance evaluation was based on a set of standard binary
classification metrics, each capturing a distinct aspect of model behavior:

1) Area Under the Curve (AUC) of the Receiver Operating Characteristic

(ROC): The ROC curve illustrates the relationship between the True

Positive Rate (TPR) and False Positive Rate (FPR) across multiple
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classification thresholds. The AUC quantifies the model’s overall
discriminative ability, with values closer to 1.0 indicating greater
separability between stress classes (Bradley, 1997).

i1) Precision: Precision quantifies the model’s performance in minimizing
incorrect positive predictions, which is particularly important in clinical
screening contexts where over-identification of high stress could

undermine efficiency.

TP

p .. —
recision —TP TFP

where
TP = true positive

FP = false positive

ii1) Recall (Sensitivity): Recall captures the model’s effectiveness in
detecting true cases of high stress, thereby reducing the risk of false
negatives, which are especially undesirable in health-related

applications (Precision-Recall, 2020).

TP

Recall = TP-F—FN

where

FN = false negative
iv) F1 Score: The F1 score balances the trade-off between Precision and
Recall, offering a more holistic view of classification performance than

either metric alone.

Precision X Recall TP

F1= 12X — = 1
Precision + Recall Tp 4+ = (FP + FN)
2

By employing multiple evaluation metrics, the present study ensured that

performance assessment was not limited to a single dimension of model
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behavior. Instead, the chosen metrics provided a multi-faceted evaluation
framework, aligning with best practices in both psychometrics and machine
learning.

The machine learning algorithms employed in this study represent
diverse computational paradigms, each offering distinct advantages for binary
classification tasks in psychological assessment. These algorithms can be
broadly categorized into several methodological approaches based on their
underlying mathematical foundations and learning strategies. Linear
discriminative models, exemplified by Support Vector Machines (SVM),
operate by identifying the optimal decision boundaries that separate classes in
the feature space while enlarging the margin between distinct groups. These
methods are particularly particularly useful when the relationship between
features and outcomes follows approximately linear patterns, making them
suitable for structured psychological data where item responses may have direct
relationships with stress levels.

Tree-based ensemble methods constitute another major category,
including Random Forest, XGBoost, LightGBM, Gradient Boosting, and
AdaBoost algorithms. These methods construct multiple decision trees and
aggregate their predictions to deliver better performance than single models.
Random Forest employs bootstrap aggregating (bagging) to create diverse trees
trained on varying subsets of data and features, reducing overfitting through
variance reduction. In contrast, boosting methods like XGBoost and Gradient
Boosting use a sequential learning approach in which each new model aims to
correct the mistakes of its predecessors, focusing on difficult-to-classify cases.
XGBoost and LightGBM represent optimized implementations of gradient
boosting with advanced regularization techniques and computational efficiency
improvements. AdaBoost adapts by reweighting misclassified examples,
forcing subsequent models to focus on previously problematic cases. These
ensemble approaches are particularly valuable for psychological assessment
data because they can capture complex, non-linear interactions between
questionnaire items while providing built-in feature importance rankings.

Neural network approaches, represented by the Multilayer Perceptron
(MLP), offer a fundamentally different paradigm based on interconnected nodes

that mimic biological neural processing. MLPs use multiple layers of
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perceptrons with non-linear activation functions, enabling them to approximate
complex mathematical functions and capture intricate patterns in data. The
backpropagation algorithm allows these networks to learn optimal weights
through iterative optimization, making them powerful tools for pattern
recognition in psychological data where relationships between items and stress
outcomes may be highly non-linear. Instance-based learning methods,
exemplified by K-Nearest Neighbors (KNN), represent a non-parametric
approach that classifies new data points based on the similarity to stored training
examples. KNN does not assume any specific data distribution and can adjust
to local patterns in the feature space, making it especially effective when
psychological constructs show varied relationships across different population
subgroups.

Decision Trees provide a single-model approach that creates hierarchical
decision rules directly interpretable by human experts, offering transparency in
how classifications are made. While prone to overfitting, decision trees serve as
valuable baseline models and offer understanding of the features that are most
effective at distinguishing different stress levels. The QML implementation
embodies a novel computational approach that utilizes quantum principles like
superposition and entanglement to potentially outperform classical algorithms.
However, current quantum simulators introduce significant computational
overhead and are limited by noise and decoherence effects, making them
primarily useful for exploratory research rather than practical deployment.

To explore emerging computational paradigms, QML was included in
the algorithm comparison using PennyLane, a quantum machine learning library
(Bergholm et al., 2018). The QML implementation employed a Variational
Quantum Classifier (VQC) with the following specifications:

i) Quantum Circuit: A parameterized quantum circuit with 4 qubits,

sufficient to encode the selected DASS features

ii) Ansatz: RY and CNOT gates creating an entangling layer structure

iii) Measurement: Pauli-Z expectation values for classification

iv) Optimization: Classical optimization of quantum circuit parameters

using gradient descent

v) Simulator: Default quantum simulator backend due to current

hardware limitations
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Due to the extremely high computational demands of quantum simulation, QML
training was limited to three-item combinations only, unlike classical algorithms
which were evaluated across all feature set sizes (1-9 items). Each QML training
iteration required significantly longer computation time compared to classical
methods, with quantum circuit simulation, parameter optimization, and
measurement processes consuming substantially more computational resources.
Given the time constraints of this research project, extending QML evaluation
to larger feature combinations was computationally infeasible.

The QML approach was implemented as a proof-of-concept to evaluate
whether quantum computational methods could provide advantages for
psychological assessment classification. However, several inherent limitations
were anticipated: (1) current quantum simulators introduce computational
overhead compared to classical algorithms, (2) the small feature sets in
psychological assessment do not exploit quantum parallelism advantages, and
(3) quantum noise and decoherence effects can reduce classification accuracy.

The selection of this diverse algorithmic portfolio ensures
comprehensive evaluation across different mathematical assumptions,
computational requirements, and interpretability levels. Linear models provide
baseline performance and interpretable coefficients, tree-based ensembles offer
high predictive accuracy with moderate interpretability, neural networks capture
complex non-linear patterns, instance-based methods adapt to local data
characteristics, and quantum approaches explore future computational
possibilities. This methodological diversity allows for robust assessment of the
Long-to-Short framework's effectiveness across different algorithmic
paradigms, ensuring that the findings are not dependent on any single
computational approach or set of mathematical assumptions.

Taken together, this stage of the methodology implemented a
comprehensive and rigorous modeling pipeline. By systematically varying
questionnaire length, applying controlled sampling strategies, using repeated
training/testing iterations, and validating performance on pristine data, the study
sought to establish not only whether machine learning models could predict
stress levels but also the minimum number of items necessary to achieve robust

classification accuracy. This methodological rigor ensured that the findings
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would have both theoretical validity and practical applicability in the

development of a shortened DASS-based stress assessment tool.

3.5.4 Model Optimization

The final stage of the ML pipeline involved the optimization of hyperparameters
associated with the models achieving the best performance, with the goal of
further improving predictive performance and ensuring generalizability of the
Rapid Stress Assessment tool. Hyperparameters, which govern the structural
and functional behavior of algorithms but are not directly learned from the data,
play a critical role in determining model quality. Hence, their systematic tuning
was necessary to maximize performance. Candidate models were first selected
based on superior outcomes in previous step, using both the AUC-ROC score
and the F1 score on the independent validation dataset as primary criteria,
ensuring that models not only achieved strong discriminative power but also
maintained a trade-off that optimally balances precision and recall. For each
selected model, re-training was conducted under the same partitioning scheme
and repeated resampling framework as in previous step, but with
hyperparameter values systematically varied using a grid search procedure.
Although computationally intensive, grid search was chosen for its reliability in
identifying optimal parameter sets that maximize generalization performance.
The best hyperparameter configurations for each model were then trained again
on the complete training dataset and evaluated once again on the pristine
validation dataset to confirm performance gains. The final optimized models,
which demonstrated improved accuracy and robustness compared to their
untuned counterparts, were selected for implementation in the Rapid Stress
Assessment tool, thereby ensuring that the deployed system combined
methodological rigor with practical reliability.

The hyperparameter optimization employed a systematic grid search
approach to identify the optimal-performing parameter configurations for each
selected techniques. For the MLP model, the following hyperparameters were
tuned:

i) Activation function: tested relu, tanh, and logistic activation functions
ii) Alpha (regularization parameter): evaluated values of 0.0001, 0.001,
0.01, and 0.1
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iii) Hidden layer sizes: examined configurations of (50,), (100,), (150,), and
(100, 50)
iv) Learning rate: compared constant, invscaling, and adaptive approaches

v) Solver: tested adam, Ibfgs, and sgd optimization algorithms

For XGBoost, the optimization focused on:
i) Learning rate: values of 0.1, 0.2, and 0.3
iiy Max depth: tested depths of 3, 5, and 7
iii) N estimators: evaluated 100, 200, and 300 trees

For Gradient Boosting, the parameters included:
i) Learning rate: values of 0.1, 0.2, and 0.3
ii)y Max depth: tested depths of 3, 5, and 7
iii) Min samples split: evaluated 2, 5, and 10

iv) N estimators: examined 100, 200, and 300 estimators

3.6 Model Evaluation Metrics

Model performance in this study was evaluated using four standard binary
classification metrics: Area Under the Curve (AUC), Precision, Recall, and F1
Score. Each metric was selected to capture a distinct dimension of model
behavior, ensuring a comprehensive assessment of predictive validity.

The AUC of the Receiver Operating Characteristic (ROC) was
employed as a primary indicator of model discriminative ability. AUC
quantifies how effectively the classifier distinguishes between low- and high-
stress individuals across varying decision thresholds. A higher AUC value
reflects a model that is more capable of correctly ranking positive (high-stress)
cases above negative (low-stress) ones, making it a robust and threshold-
independent measure of classification quality. This property is particularly
important in psychological assessment, where a model’s general ability to
separate classes is more informative than its performance at a fixed cutoff point.

Precision and Recall were included to further dissect model
performance with respect to misclassification patterns. Precision measures the
proportion of correctly identified high-stress cases among all cases predicted as

high-stress, thereby reflecting the model’s ability to minimize false positives.
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Recall (or Sensitivity) measures the proportion of true high-stress cases
correctly identified by the model, providing insight into its effectiveness in
reducing false negatives. In mental health screening contexts, false negatives—
failing to detect truly stressed individuals—are often more consequential than
false positives, as they represent missed opportunities for intervention.

The F1 Score, defined as the harmonic mean of Precision and Recall,
was used to provide a balanced measure that accounts for both types of
classification errors. This metric is especially valuable when dealing with
imbalanced datasets, as it penalizes models that perform well on one dimension
(e.g., Precision) at the expense of the other (e.g., Recall).

Among these evaluation metrics, the AUC was considered the most
important indicator of model performance for this project. This choice aligns
with the study’s overarching aim—to develop a short-form stress assessment
model that maintains strong discriminative capability across various thresholds
and populations. Unlike metrics that depend on a fixed decision boundary, AUC
provides a holistic assessment of a model’s separability and generalization
potential. Nevertheless, F1 Score was treated as a key secondary measure, as it
ensures that the selected model maintains a practical balance between
identifying stressed individuals accurately and minimizing false alarms.

Together, these metrics provide a rigorous and multidimensional
framework for evaluating model performance, ensuring that the final selected
models are both theoretically sound and practically reliable for deployment in

real-world stress screening contexts.

3.7 Summary

This chapter systematically outlined the methodology and work plan adopted in
the present study, providing a comprehensive account of the research
procedures implemented to develop a rapid and efficient stress assessment tool.
The process began with the acquisition of a large-scale dataset sourced from
Kaggle, which contained responses to the DASS-42 questionnaire and relevant
demographic information. Rigorous filtering and preprocessing steps were
undertaken to ensure that only valid, reliable, and ethically appropriate data
were retained for analysis. These steps included the exclusion of underaged

participants, removal of incomplete or invalid entries, scaling of continuous
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variables and encoding of categorical variables, and balancing of class
distributions to minimize bias during model training.

Stress classification was implemented following the scoring guidelines
of the DASS-42 with severity categories aggregated into a binary classification
system of low versus high stress. This transformation not only aligned with
established practices in predictive modeling but also facilitated interpretability
and reduced data sparsity, thereby supporting the study’s applied objective of
creating a practical screening tool.

The feature selection stage was designed to address the study’s core aim
of reducing the number of questionnaire items without compromising predictive
validity. A dual-method approach was adopted, combining the MRMR
algorithm with the Extra Trees Classifier to ensure that the final feature pool
reflected both statistical robustness and predictive utility. This approach yielded
the top ten DASS-42 items, which, together with selected demographic
variables, served as the foundation for model training.

Model construction was then carried out in a structured manner,
beginning with single-item models and incrementally expanding to multi-item
combinations. Multiple supervised machine learning algorithms were employed
to explore different classification strategies, and performance was assessed
using a three-way data partitioning scheme (training, testing, and pristine
holdout validation sets). The inclusion of repeated resampling procedures
further enhanced the stability and reliability of performance estimates, while the
use of a pristine validation set provided an unbiased benchmark for
generalizability to unseen data.

Finally, hyperparameter optimization was done for the highly promising
models through a systematic grid search procedure. This ensured that the
selected models not only demonstrated high accuracy and discriminative ability
but maintained a optimal balance between precision and recall too. Collectively,
these methodological steps provided a rigorous and reproducible framework for
evaluating the feasibility of a shortened stress assessment instrument.

In summary, this chapter established a comprehensive methodological
foundation that integrates established psychometric principles with advanced
machine learning techniques. The methodological rigor, transparency of

decision-making, and structured progression from data preparation to model
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optimization strengthen the validity of the study’s outcomes. The next chapter
will display the results obtained from the application of these procedures,
highlighting the empirical findings and evaluating their implications for the

development of a rapid stress assessment tool.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

This chapter reports the results and examines their consequences or significance
for the research objectives and hypotheses introduced in Chapter 1. The primary
purpose of this study was to examine the feasibility of utilizing machine learning
techniques to reduce the length of a traditional psychological assessment
instrument, specifically the DASS-42, while maintaining high reliability
accuracy in classifying stress levels. By systematically analyzing model
performance and feature selection outcomes, the study aimed to determine the
minimal number of items required for reliable stress classification without
relying on additional demographic variables.

The chapter is organized into several key sections. First, the results of
the feature selection process are demonstrated, highlighting how the most
informative DASS items were identified using both statistical and machine
learning-based approaches. This is succeeding this evaluation of multiple
machine learning algorithms, where model performance is compared across
different feature subsets to identify the most effective combination of items.
Finally, the broader implications of the findings are discussed, including their
significance for psychological assessment, practical applications in digital
health, and considerations for future research. Through this structure, the
chapter integrates empirical evidence with interpretative insights, offering a

thorough understanding of the study’s contributions and constraints.

4.2 Feature Selection

All forty-two items from the DASS-42 assessment were initially consist of the
feature selection process in order to identify the most influential items for
predicting stress levels. The MRMR method was first applied, and the analysis
identified the top ten most relevant items, specifically item numbers {11, 1, 29,
27, 39, 22, 6, 8, 33, 12}. These items were subsequently utilized in the
calculation of the DASS stress score. In parallel, the Extra Trees Classifier was

trained on the full feature set and corresponding labels, and the ten most
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important items were determined based on Gini importance. The resulting
subset consisted of item numbers {27, 29, 11, 1, 8, 6, 22, 39, 33, 12}, all of
which were likewise incorporated into the computation of the DASS stress score.
Notably, all ten items selected by the Extra Trees Classifier overlapped entirely
with those identified through MRMR, providing strong consistency between the
two feature selection approaches. To ensure robustness, the results of both
methods were combined, yielding a final set of ten items—{39, 6, 29, 11, 22,
27, 12, 1, 8, 33}—which were determined to carry the greatest predictive
importance. These selected items were retained for the subsequent stage of

analysis.

4.3 Model Training

After the training phase was completed for all machine learning models, the
performance of the models was measured on the test dataset, and the results
were visualized for further interpretation. Figure 2 demostrates the Area Under
the Receiver Operating Characteristic Curve (AUC-ROC) scores obtained for
different combinations of features, ranging from a single DASS question to nine
questions, excluding any demographic variables. These results were computed
by averaging performance across 50 ensemble iterations or sub-models for each
model and feature combination. Furthermore, to ensure robustness, 9 distinct
combinations of questions were considered for each feature set size, and
performance was assessed across the 10 machine learning algorithms outlined
in the methodology section. The error bars depicted in Figure 2 represent the
95% confidence interval for each performance measure, calculated over the 10
feature combinations for each model.

The findings indicate a clear trend: as the number of DASS items
included in the feature set increased, the models generally demonstrated
improved predictive performance. However, the magnitude of improvement
diminished progressively with the inclusion of additional questions, suggesting
a point of diminishing returns. Notably, the AUC-ROC scores plateaued as more
questions were added, implying that beyond a certain number of features,
additional items contributed minimally to overall classification performance.

Importantly, Figure 2 highlights that test AUC-ROC scores for the top-
performing models go beyond 0.95 with as few as 3 DASS questions. This
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outcome suggests that a limited subset of the DASS-42 items is sufficient to
achieve a high level of classification accuracy for stress level prediction in
contexts where collecting demographic data is impractical or impossible.
Consequently, the present study proposes that, under such conditions, a
minimum of 3 carefully selected items from the DASS-42 can serve as an
efficient and rapid screening tool for stress assessment. This approach balances
predictive accuracy with practical considerations, such as reducing respondent
burden and administration time, making it particularly suitable for large-scale
or time-constrained screening environments.

A holistic summary of the model performance for all combinations of
three DASS items is presented in Table 2. This table provides a detailed
comparison of the results across all machine learning techniques evaluated in
this study. Based on these findings, the MLP emerged as the highest-performing
model overall. An examination of Table 2 reveals that, for most models, there
was a modest increase in classification accuracy when compared to baseline
performance, particularly for algorithms such as SVM, KNN, and Decision Tree,
where the observed improvements were relatively minimal. In contrast, the
performance gains were substantial for more advanced ensemble-based
techniques, particularly for MLP, Random Forest, and the boosting family of
algorithms (e.g., Gradient Boosting, XGBoost, LightGBM). These models
demonstrated a more pronounced capacity to leverage the limited input features
and effectively detect the underlying patterns within the data.

Among the evaluated techniques, MLP and XGBoost consistently
outperformed the others when assessed using both AUC-ROC and F1 score
metrics. This indicates their superior ability to balance sensitivity and specificity
while also maintaining robust precision-recall performance. However, it is
noteworthy that the 95% confidence intervals (CI) of these two models
overlapped, as shown in Table 2. This overlap suggests that while both models
achieved high levels of performance, the difference between them was not
statistically significant.

Given this finding, it cannot be conclusively determined which of the
two models — MLP or XGBoost, provides a definitive performance advantage.
Nevertheless, the consistently high performance of these models highlights their

suitability for rapid and accurate stress level classification using only three
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DASS items. This result further supports the practical feasibility of deploying
these techniques in real-world screening contexts, where computational
efficiency and predictive reliability are essential. Moreover, these findings
underscore the potential benefits of leveraging neural network-based and
ensemble-based methods over simpler, non-ensemble models when working
with limited but informative psychological assessment data.

The Quantum Machine Learning approach demonstrated significantly
lower performance compared to classical algorithms, achieving an AUC of
71.06% with a notably wide confidence interval (65.08% to 76.44%) and F1
score of 71.70%. It is crucial to be aware that QML evaluation was restricted to
three-item combinations only due to computational constraints, while classical
algorithms were evaluated across all feature set sizes (1-9 items). This
performance disparity may be due to several factors inherent to current quantum
computing limitations.

The computational demands of QML proved prohibitive for
comprehensive evaluation. Each quantum circuit simulation required
exponentially more processing time than classical algorithms, with single
training iterations taking orders of magnitude longer to complete. The quantum
simulation overhead, parameter optimization processes, and repeated quantum
measurements created computational bottlenecks that made evaluation of larger
feature combinations infeasible within the project timeline. This computational
limitation represents a significant practical barrier to QML implementation in
real-world settings psychological assessment applications where efficiency and
scalability are crucial.

Beyond computational constraints, the poor QML performance reflects
fundamental limitations of current quantum computing technology. NISQ-era
quantum simulators introduce substantial computational noise that degrades
classification performance (Preskill, 2018). Unlike classical algorithms that
operate deterministically on digital computers, quantum circuits are susceptible
to decoherence and gate errors that accumulate throughout computation. The
wide confidence intervals observed for QML reflect this inherent variability in
quantum measurements.

Additionally, the problem structure of DASS-based stress

classification does not align with quantum computational advantages. Quantum
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algorithms theoretically excel when dealing with exponentially large search
spaces or when quantum interference effects can be leveraged for speedup
(Schuld et al., 2015). However, the three-item feature sets identified in this study
represent relatively simple classification problems that classical algorithms can
solve efficiently without requiring quantum resources.

These findings, while limited to three-item combinations, align with
broader literature suggesting that quantum machine learning may not provide
practical advantages for near-term applications, particularly in domains like
psychological assessment where classical methods already achieve high
accuracy efficiently while requiring minimal computational resources (Huang
et al.,, 2021). The inclusion of QML in this study, despite its computational
limitations, serves to establish baseline comparisons for future research as

quantum hardware continues to mature and computational efficiency improves.

4.4 Model Optimization

Following the identification of the best-performing algorithms from the initial
training phase, hyperparameter optimization was conducted to further enhance
model performance and ensure optimal configuration for the three-item stress
assessment tool. This optimization process focused on the top three algorithms:
MLP, XGBoost, and Gradient Boosting, which demonstrated superior
performance in the preliminary evaluations. The hyperparameter optimization
yielded significant enhancements in model performance compared to the default
configurations. Table 4 presents the optimized hyperparameters for each model
along with their corresponding performance improvements.

Following the optimization process, each classifier exhibited notable
improvement across both AUC and F1 Score metrics. For the Multilayer
Perceptron (MLP), the optimal configuration included an activation function of
‘relu’, a regularization term (alpha) of 0.0001, a hidden layer with 100 neurons,
a constant learning rate, and the ‘adam’ solver. These optimized parameters
resulted in an AUC increase from 94.65% to 100% (+5.35%) and an F1 Score
improvement from 87.25% to 100% (+12.15%). The XGBoost classifier
achieved its best performance with a learning rate of 0.2, maximum depth of 3,
and 200 estimators. Under these conditions, the model’s AUC improved from

94.64% to 100% (+5.36%), while its F1 Score increased from 87.37% to



59

99.25% (+11.88%). Similarly, the Gradient Boosting model performed

optimally with a learning rate of 0.2, maximum depth of 3, minimum samples

split of 2, and 200 estimators, achieving an AUC increase from 94.64% to 100%
(+5.36%) and an F1 Score improvement from 87.33% to 99.34% (+12.01%).

Overall, the optimization process substantially improved model

accuracy and generalization, confirming the importance of fine-tuning

hyperparameters in achieving robust and reliable performance for the stress

assessment model.
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Figure 2:  Validation AUC scores of the ROC curve across all models



Table 2:  Comparison of validation accuracies for the best models trained on all combinations of three questions (averaged over nine

combinations), using default hyperparameters and excluding demographic variables.
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Model Mean AUC AUC CI AUC CI Range of Mean F1  F1 CI Lower F1 CI Upper Range of F1
Lower Upper AUC CI CI

MLP 94.65% 94.53% 94.76% 0.23% 87.25% 87.09% 87.41% 0.33%
Gradient Boosting 94.64% 94.52% 94.76% 0.23% 87.33% 87.16% 87.49% 0.33%
XGBoost 94.64% 94.53% 94.75% 0.22% 87.37% 87.22% 87.52% 0.30%
LightGBM 94.64% 94.53% 94.76% 0.23% 87.37% 87.21% 87.52% 0.30%
Decision Tree 94.64% 94.52% 94.75% 0.23% 87.35% 87.19% 87.50% 0.31%
Random Forest 94.64% 94.53% 94.74% 0.22% 87.35% 87.19% 87.50% 0.31%
AdaBoost 94.61% 94.50% 94.72% 0.22% 87.13% 86.96% 87.29% 0.33%
KNN 92.03% 91.83% 92.22% 0.39% 85.89% 85.55% 86.18% 0.64%
SVM 91.20% 90.97% 91.45% 0.47% 87.39% 87.19% 87.57% 0.38%
QML 71.06% 65.08% 76.44% 11.36% 71.70% 69.64% 73.48% 3.84%




Table 3:  Default Machine Learning Model Hyperparameters
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Model Python Library and Class Hyperparameters and Default Values
XGBoost XGBoost learning_rate 0.2
xgboost. XGBClassifier max_depth 3
n_estimators 200
MLP Scikit-learn activation relu
sklearn.neural network.MLPClassifier alpha 0.0001
hidden layer sizes (100,)
learning_rate constant
solver adam
Gradient Boosting Scikit-learn learning_rate 0.2
sklearn.ensemble.GradientBoostingClassifier max_depth 3
min_samples_split 2
n_estimators 200
LightGBM LightGBM learning_rate 0.2
lightgbm.LGBMClassifier max_depth 10
n_estimators 200
num_leaves 31




Random Forest Scikit-learn max_depth 20

sklearn.ensemble.RandomForestClassifier min_samples_leaf 1
min_samples_split 2
n_estimators 200
AdaBoost Scikit-learn learning_rate 1.0
sklearn.ensemble. AdaBoostClassifier n_estimators 200
Decision Tree Scikit-learn max_depth 10
sklearn.tree.DecisionTreeClassifier min_samples_leaf 2
min_samples_split 5
KNN Scikit-learn n_neighbors 7
sklearn.neighbors.KNeighborsClassifier p 2

weights distance
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SVM Scikit-learn c 0.1
sklearn.svm.SVC gamma scale
kernel linear
Table 4:  Optimized Hyperparameters and Perforance Comparison
Model Optimized Hyperparameters Default Optimized Improvem Default F1 Optimized Improvem
AUC AUC ent Score F1 Score ent
MLP activation="relu’,  alpha=0.0001, 94.65% 100% +5.35% 87.25% 100% +12.15%
hidden layer sizes=(100,),
learning_rate='constant’,
solver="adam'
XGBoost learning_rate=0.2, max_depth=3, 94.64% 100% +5.36% 87.37% 99.25% +11.88%
n_estimators=200
Gradient Boosting learning rate=0.2, max_depth=3, 94.64% 100% +5.36% 87.33% 99.34% +12.01%

min_samples_split=2,

n_estimators=200
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4.5 Discussion

The primary objective of this research was to develop and evaluate a machine
learning-based framework for streamlining lengthy, structured questionnaire
psychological assessments while maintaining predictive accuracy comparable
to the original full version. This framework, referred to as the Long-to-Short
(L2S) method, was designed to streamline psychological measurement tools,
thereby reducing respondent burden without compromising diagnostic
reliability. As a proof-of-concept, this study applied the L2S method to the
DASS-42, with the specific goal of predicting low versus high stress levels in
adults.

The result outcome largely supported the study’s initial hypotheses. It
was assumed that some items within the DASS-42 scale may convey duplicate
information about an individual’s stress. implying that a substantially smaller
subset of items could yield comparable predictive performance to the complete
instrument. Consistent with this hypothesis, the machine learning models
demonstrated that it was indeed possible to streamline the assessment by
decreasing the number of items without compromising classification accuracy.
Remarkably, the streamlined version of the DASS-42 achieved over 95%
accuracy in predicting low versus high stress levels using only three DASS
items, and notably, without requiring any demographic information. This
outcome aligns with previous psychometric research that demonstrated the
feasibility of shortening the DASS using traditional statistical approaches
(Henry & Crawford, 2005; Lovibond & Lovibond, 1995), while extending these
earlier findings by showing that machine learning can automate and optimize
the process of scale reduction.

The study also explored whether items outside the stress subscale of
the DASS-42, such as those measuring depression or anxiety, might contribute
additional predictive value. This was based on the possibility that some cross-
domain items could inadvertently capture stress-related constructs. However,
the analyses did not provide evidence to support this assumption. The non-stress
items exhibited limited predictive value and were ultimately excluded from the
final reduced model. This suggests that the stress-specific items within the

DASS-42 are already well-targeted and sufficient for accurate stress
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classification, and that incorporating items from other domains does not
meaningfully enhance model performance.

Although demographic variables such as age, gender, and occupation
are widely recognized as factors that can influence stress levels, this study
intentionally excluded demographic data from the modeling process. The aim
was to determine whether a minimal subset of DASS-42 items alone could
accurately classify individuals into low versus high stress groups. The results
confirmed that only three DASS items were sufficient to achieve high predictive
accuracy, demonstrating that demographic data, while potentially informative,
is not necessary for reliable classification in this context. This finding highlights
the strength and efficiency of the three-item model, which simplifies
administration and protects user privacy by eliminating the need to collect
personal information. Such a model is especially well-suited for use in digital
platforms, where quick, anonymous stress assessments are desirable.

From a practical perspective, these outcome have vital implications for
the development and deployment of rapid stress screening tools. The three-item
version of the DASS-42 offers a highly efficient alternative to the original 42-
item scale, significantly reducing completion time while retaining strong
diagnostic accuracy. This streamlined version is ideal for integration into real-
time digital health applications, such as mobile wellness apps or workplace
stress monitoring systems. By minimizing both user effort and data collection
requirements, the tool could facilitate widespread adoption across diverse
clinical and non-clinical settings, thereby enhancing accessibility and scalability
of mental health assessment.

In addition to evaluating the shortened assessment, this research
investigated the performance of different machine learning models in
classifying stress levels. It was hypothesized that advanced ensemble-based
algorithms, particularly boosting techniques such as XGBoost and LightGBM,
would outperform traditional machine learning methods like Random Forest
(RF) and K-Nearest Neighbors (KNN). This expectation was based on existing
literature suggesting that boosting algorithms are highly effective for complex,
high-dimensional datasets, as they iteratively focus on difficult-to-classify cases

and optimize model performance.
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However, the results only partially supported this hypothesis. Contrary
to expectations, neither the advanced boosting algorithms nor the simpler
Random Forest consistently outperformed the other. This suggests that the
dataset used in this study—particularly the final reduced model containing only
three features—may not have been sufficiently complex for the advantages of
boosting algorithms to manifest. With a small and well-defined feature set,
simpler algorithms such as Random Forest were able to perform comparably
while requiring fewer computational resources and offering greater
interpretability. These findings underscore the principle that model complexity
alone does not guarantee superior performance. For relatively straightforward
classification tasks, simpler models may be equally effective and more practical
for real-time deployment. Conversely, for larger and more complex datasets,
boosting algorithms are likely to offer performance gains that justify their
increased computational demands.

Taken together, the outcome from this research illustrate the feasibility
and utility of the Long-to-Short framework. By leveraging machine learning, it
was possible to identify a minimal set of only three DASS items that reliably
predict stress levels with very high accuracy. This significantly reduces the
burden of assessment while maintaining diagnostic precision, laying the
groundwork for the development of rapid, formal, emphasizes
preparation.scalable, and privacy-conscious mental health screening tools.
Furthermore, the study highlights important considerations for algorithm
selection, showing that both traditional and advanced methods have roles
depending on the data characteristics and application goals. Future research
could expand on these findings by applying the L2S framework to other
psychological constructs, integrating the shortened tools into adaptive
assessment systems, and exploring longitudinal applications for ongoing stress
monitoring. Such work would further enhance the efficiency, accessibility, and

impact of psychological assessment in diverse real-world contexts.
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4.6 Comparison to existing studies

The findings of this study can be meaningfully compared to several previous
investigations that have applied machine learning techniques to psychological
scale optimization, revealing both consistencies and unique contributions of the

current research.

4.6.1 Comparison Scale Reduction Studies

The achieved performance of 95%+ accuracy using only three DASS items
demonstrates significant advancement over previous ML-based scale reduction
efforts. Zhang et al. (2019) reduced the Minnesota Multiphasic Personality
Inventory (MMPI-2) from 567 items to 150 items while maintaining 95% of the
original's diagnostic accuracy, representing a 73% reduction with equivalent
performance. However, this still required 150 items compared to the current
study's 3-item solution. More directly comparable, Yu et al. (2024) applied
variable clustering to the Chinese SCL-90, creating an 11-item version (CSCL-
11) with Cronbach's a = 0.84, achieving an 88% reduction but with lower
reliability than the current study's approach.

Sun et al. (2022) developed a 5-item version of the Children's
Depression Inventory using machine learning, achieving AUC = 0.81, accuracy
=0.83, and Cronbach's a = 0.72 with a 75% item reduction. The current study's
AUC values exceeding 0.95 with 93% item reduction demonstrate superior
performance in both predictive accuracy and efficiency. However, direct
comparisons are limited by differences in constructs measured (depression vs.
stress), population characteristics (children vs. adults), and validation

approaches.

4.6.2 Methodological Comparisons

The dual feature selection approach combining MRMR and Extra Trees
Classifier provides enhanced robustness compared to single-method approaches
documented in previous studies. Peng et al. (2005) originally developed MRMR
for gene selection, demonstrating its effectiveness in identifying relevant, non-
redundant features. The current study's extension of this approach to

psychological assessment, combined with tree-based importance ranking,
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represents a methodological advancement over studies using single selection
criteria.

Ahmed et al. (2022) employed correlation-based feature selection for
DASS optimization, achieving 87% accuracy with 18 items (57% reduction).
The current study's achievement of complete overlap between MRMR and Extra
Trees results suggests greater feature stability and methodological rigor. This
aligns with recommendations by Bolon-Canedo et al. (2013) for ensemble
feature selection approaches to achieve more robust results.

The three-way data partitioning strategy (training/testing/pristine
validation) employed addresses limitations identified in earlier research. Varma
and Simon (2006) highlighted the risk of overly optimistic performance
estimates when feature selection and model optimization occur within the same
cross-validation framework. Many previous studies, including Dogan et al.
(2021) who achieved 85-92% accuracy in DASS-based mental health
classification, relied on standard cross-validation without pristine external
validation. The current study's approach provides more conservative and

generalizable performance estimates.

4.6.3  Algorithms Performance Comparisons

The finding that MLP and XGBoost achieved comparable performance aligns
with Orru et al. (2020)'s systematic review, which identified neural networks
and ensemble methods as the most effective approaches for mental health
classification tasks. Specifically, Orru et al. reported that ensemble methods
consistently outperformed single algorithms across multiple mental health
applications, supporting the current study's findings regarding XGBoost
performance.

However, the current study's observation that simpler algorithms
(Random Forest, Decision Tree) performed comparably to complex methods
when feature sets were small contrasts with findings from Yarkoni (2010), who
demonstrated clear advantages for regularized approaches (LASSO) over
simpler methods in personality assessment. This discrepancy suggests that the
relationship between algorithm complexity and performance may be moderated
by feature set size, with diminishing returns from complex algorithms when

working with highly informative, minimal feature sets.
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4.6.4  DASS-Specific Application

Previous machine learning applications to DASS have shown varying results.
Dogan et al. (2021) compared SVM, Random Forest, and Neural Networks for
DASS-based classification in university students, achieving 85-92% accuracy
for binary classification tasks. However, their focus was on prediction rather
than scale optimization, and they used the full DASS rather than identifying
minimal item sets.

Cao et al. (2023) conducted network psychometric analysis of DASS
structure, suggesting that 8-10 items per subscale could capture construct
variance. Their findings support the theoretical feasibility of DASS reduction,
though their approach differed methodologically from the current study's ML-
based optimization. The current study's achievement of effective stress
classification with only 3 items represents a more aggressive reduction than

theoretically suggested by network analysis.

4.6.5 Validation and Generalizability

The current study's exclusive focus on stress classification provides more
targeted optimization compared to multi-construct approaches. Nemesure et al.
(2021) achieved 92% accuracy in depression detection using 8 CES-D items
through natural language processing approaches, but their method required free-
text analysis, limiting practical scalability. The current study's achievement of
higher accuracy using only structured questionnaire responses offers superior
implementation feasibility.

Batterham et al. (2018) demonstrated DASS sensitivity to change with
effect sizes of d = 0.50-0.80, supporting its utility for longitudinal assessment.
However, their work focused on the full scales rather than abbreviated versions.
The current study's findings require validation for longitudinal applications to

establish whether the 3-item version maintains sensitivity to clinical change.
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4.6.6  Cross-Cutural Considerations

Previous validation studies have established DASS applicability across cultures.
Akin and Cetin (2007) validated the Turkish version with Cronbach's a = 0.89-
0.96, while Moussa et al. (2017) demonstrated reliability in Arabic populations
(0=0.89-0.95). Zanon et al. (2021) provided validation for Brazilian Portuguese
versions. The current study's use of an internationally diverse dataset addresses
cross-cultural validity concerns, but specific validation across different cultural

groups remains necessary.

4.6.7 Limitations in Compartice Context

Several factors constrain comparison with existing studies. Most critically,
Flake and Fried (2020) noted the lack of standardized evaluation frameworks
for ML-based scale optimization, making direct performance comparisons
challenging. Different studies employ varying performance metrics, validation
approaches, and optimization criteria, limiting definitive comparative
conclusions.

The current study's binary classification approach (low vs. high stress)
is less nuanced than the five-category system validated by Szabd (2010), who
established optimal cut-off scores using ROC analysis with AUC values of 0.85-
0.92. The simplification to binary classification may limit comparison with

studies using the full DASS severity spectrum.

4.6.8 Uniques Contributions

Several aspects distinguish this study from previous research. First, the
systematic evaluation of performance across different numbers of items (1-9
questions) provides insights into minimum viable feature sets not
comprehensively explored in prior work. Leite et al. (2008) pioneered genetic
algorithms for test shortening but did not systematically evaluate different item
set sizes.

Second, the finding that cross-subscale items (depression, anxiety) did
not enhance stress prediction contrasts with assumptions about cross-domain
information utility implicit in multidimensional assessment approaches
(Lovibond & Lovibond, 1995). This suggests greater discriminant validity

between DASS subscales than previously assumed.
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Third, achieving 95%+ accuracy without demographic variables
addresses privacy concerns highlighted by Barocas et al. (2019) regarding bias
in ML applications to mental health. Previous studies incorporating
demographic predictors may have achieved performance gains at the cost of

privacy and accessibility.

4.6.9 Clinical Utility Comparisons

The current findings align with calls for efficient screening tools by Calvo et al.
(2017), who highlighted assessment burden as a barrier to mental health
screening. Norton (2007) established DASS clinical utility through convergent
validity with established measures, but clinical validation of abbreviated
versions remains necessary. The current study's 3-item version requires clinical
validation against established criteria to confirm diagnostic utility.

Parkitny and McAuley (2010) demonstrated DASS effectiveness in
specialized populations (chronic pain), while Randall et al. (2017) established
age-related normative data. These studies suggest the need for population-
specific validation of abbreviated versions, particularly given potential
differential item functioning across groups identified by Putnick and Bornstein
(2016).

In conclusion, the current study demonstrates significant advancement
over existing research in terms of item reduction efficiency while maintaining
high accuracy. However, the clinical implications require validation through
independent studies using clinical criteria as ground truth, cross-cultural
validation, and longitudinal assessment of sensitivity to change. The findings
provide strong preliminary evidence for feasible dramatic scale reduction while
maintaining diagnostic accuracy, but implementation requires careful

consideration of validation requirements and clinical contexts.
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4.7 Summary

This chapter detailed the key findings from the feature selection, model training,
and evaluation processes, and provided a discussion of their implications for
stress assessment and machine learning applications. The results demonstrated
that a subset of only three items from the original DASS-42 is sufficient to
accurately classify individuals into low versus high stress groups, achieving
over 95% accuracy without the inclusion of demographic data. This finding
confirms the study’s central hypothesis that lengthy psychological
questionnaires can be significantly shortened without compromising predictive
performance. Moreover, it highlights the potential for creating efficient,
privacy-conscious, and user-friendly tools for stress screening.

The feature selection process identified ten high-importance items,
which were subsequently refined to the minimal set of three core items through
iterative testing. These three items alone provided performance comparable to
the full 42-item scale, underscoring their diagnostic value and practical utility.
This reduction not only decreases respondent burden and completion time but
also enhances the feasibility of integrating the tool into digital health platforms
and large-scale population studies.

In terms of model performance, both traditional and advanced machine
learning algorithms were examined. While it was initially hypothesized that
advanced ensemble-based algorithms, such as XGBoost and LightGBM, would
significantly outperform simpler methods like Random Forest and K-Nearest
Neighbors, the results only partially supported this assumption. For the final
three-item model, simpler algorithms performed comparably to more complex
methods, suggesting that model selection should consider the complexity of the
data and the practical requirements of deployment. Nevertheless, MLP and
XGBoost consistently achieved the highest performance, indicating their
suitability for stress classification tasks under the conditions evaluated.

Collectively, the findings validate the Long-to-Short (L2S) framework
as an effective approach for reducing questionnaire length while preserving
diagnostic precision. By demonstrating the feasibility of this framework using
the DASS-42, this study provides a foundation for future efforts to streamline
psychological assessments across diverse constructs and contexts. The results

have significant implications for the development of rapid, scalable, and
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accessible mental health screening tools, ultimately supporting more efficient

and privacy-conscious approaches to stress monitoring and intervention.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusion

This study introduced a novel framework, referred to as the L2S approach,
which leverages machine learning models to systematically shorten lengthy
assessment instruments while preserving their predictive validity. The primary
aim of this research was to design efficient and user-friendly short-form
assessments capable of approximating the diagnostic accuracy of their longer
counterparts. As a proof of concept, the framework was applied to the DASS-
42, a widely used psychological instrument developed to assess negative
emotional states.

The results of this study demonstrated that the L2S approach is both
feasible and effective. Through the application of advanced feature selection
and model optimization techniques, it was possible to identify a minimal subset
of only three DASS items that accurately classified individuals into low versus
high stress levels, achieving a classification accuracy exceeding 95%.
Remarkably, this high level of performance was attained without incorporating
demographic variables, thereby reducing data collection requirements and
protecting respondent privacy. These findings confirm the central hypothesis
that machine learning can be used to optimize and streamline questionnaire-
based assessments, minimizing respondent burden while maintaining diagnostic
precision.

These findings carry significant implications. With further
development and empirical validation, the L2S approach has the potential to be
generalized beyond the DASS-42 to a broad range of psychological and
behavioral assessments. This includes instruments that measure attitudes, traits,
abilities, opinions, and other constructs relevant to mental health, education, and
organizational contexts. By significantly reducing the time and effort required
for data collection, the framework could enable more scalable, accessible, and
privacy-conscious assessment methods. Moreover, the simplified tool could be

easily integrated within digital health platforms, including mobile applications,
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web-based systems, or cloud-based services, thereby expanding its reach and
utility in both clinical and non-clinical settings.

In essence, this study provides strong evidence that Ilengthy
psychological scales can be meaningfully shortened using machine learning
while retaining their core diagnostic capabilities. The findings pave the way for
a new generation of efficient, adaptive, and data-driven assessment tools that
are capable of addressing the growing demands for rapid, large-scale
psychological evaluation in modern healthcare, research, and public health

contexts.

5.2 Recommendations for future work

Although the current study provides a promising proof-of-concept for the L2S
approach, several opportunities exist for future research to expand, refine, and
validate the framework. The following recommendations outline key directions

for advancing this work.

5.2.1 Expansion to Multi-Class Classification of Stress Severity

In this research, the machine learning models were designed to perform a binary
classification, distinguishing between low and high stress levels. However, the
DASS-42 defines five distinct levels of severity: extremely severe, severe,
moderate, mild, and normal. Future studies should extend the modeling
approach to predict all five categories, thereby enabling a more nuanced and
clinically meaningful assessment of stress.

Achieving this goal would require addressing class imbalance in the
dataset by employing advanced data data rebalancing methods like SMOTE
(Synthetic Minority Oversampling Technique) or stratified resampling to ensure
that each severity level is adequately represented during training. By doing so,
the models would be capable of providing a more detailed classification aligned

with the original DASS-42 structure.
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5.2.2  Increasing the Number of Feature Combinations and Question
Pool
As this study was exploratory, the models were trained using 10 combinations
of three DASS questions without demographic data. While this was sufficient
to demonstrate proof-of-concept, it introduces a potential bias toward the
specific combinations selected.
Future research should expand the number of question combinations
beyond 10 to improve generalizability and reduce the risk of overfitting to a
particular subset of items. Moreover, by selecting a larger pool of important
items during the feature selection stage—such as the top 15 or 20 questions
rather than 10—researchers could construct multiple shortened versions of the
DASS, such as 7-item or 8-item scales, while minimizing redundancy and

improving flexibility across different application contexts.

5.2.3  Application to Other Stress Measurement Instruments

The methodology developed in this study was specifically applied to the DASS-
42 stress subscale. However, the data processing pipeline can be readily adapted
to other well-established stress assessment instruments, such as the Perceived
Stress Scale (PSS) or other psychometric measures.

Applying the L2S approach to these instruments would allow for direct
comparisons of performance and offer insights and perspectives into the
generalizability of the framework. Furthermore, since the DASS-42 has a nested
structure comprising subscales for depression, anxiety, and stress, future work
could focus on shortening each subscale independently, thereby producing a
streamlined version of the DASS corresponding to how the original DASS-42
was condensed into the DASS-21.

5.2.4  Incorporation of Clinical Ground Truth for Enhanced Validity

In this study, the DASS-42 stress score served as the reference standard for
model training and evaluation. While this is a standard and validated measure,
it remains a self-reported instrument. Future research could strengthen the
clinical validity of the models by using clinician-diagnosed stress, anxiety, or

depression levels as the gold standard.
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To accomplish this, researchers would need to collect both self-
reported DASS data and clinical diagnosis data from mental health professionals.
By training machine learning models on this richer dataset, it would be possible
to develop tools capable of rapidly screening individuals for clinically
significant mental health conditions, thereby enhancing their utility in

diagnostic and intervention contexts.

5.2.5 Broadening the Scope to Other Types of Assessments
The L2S framework has potential applications far beyond mental health
assessment. Many fields rely on lengthy questionnaires or tests that could
benefit from automated shortening. Examples including:
e Personality assessments, such as the Big Five Personality Traits
inventory.
o Standardized ability tests, including intelligence tests (IQ) and aptitude
tests like the GRE, MCAT, and LSAT.
e Achievement tests, such as the SAT, ACT, and TOEFL.
o Attitude and opinion surveys, including those related to voting intentions,
marketing, health, and lifestyle behaviors.
These applications could be implemented across a range of digital platforms,
including desktop applications, mobile apps, web-based systems, and cloud-
based services. Expanding the L2S framework into these domains would
significantly enhance its societal impact by improving the efficiency and

accessibility of data collection across disciplines.
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APPENDICES

Appendix A: Graphs
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Graph A-1: AUC-ROC Curve for Gradient Boosting
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Graph A-2: AUC-ROC Curve for Decision Tree
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Graph A-3: AUC-ROC Curve for SVM
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Graph A-4: AUC-ROC Curve for AdaBoost
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Graph A-5: AUC-ROC Curve for KNN
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Graph A-6: AUC-ROC Curve for LightGBM
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Graph A-7: AUC-ROC Curve for MLP
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Graph A-8: AUC-ROC Curve for Random Forest
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Graph A-9: AUC-ROC Curve for XGBoost



93

Appendix B: Tables

Table B-1: AUC Scores for Top Performers Models

Model Num Questions Selected Features AUC
XGBoost 3 (Q1, Q22, Q39) 0.957014672
LightGBM 3 (Q1, Q22, Q39) 0.957009879
MLP 3 (Q1, Q22, Q39) 0.956818177

Table B-2: Best AUC and F1 Scores for Optimized Models

Model Best AUC Best F1 Score
XGBoost | 0.9925
MLP 1 1

Gradient Boosting 1 0.9934

LightGBM 0.9999 0.9918
Random Forest 0.9995 0.9865
AdaBoost 1 0.9957
Decision Tree 0.9740 0.9404
KNN 0.9984 0.9769

SVM 1 1
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Table B-3: Comparison of validation accuracies of the best models trained on combinations of 10 questions, averaged over 9 combinations,

using default hyperparameters, without demographics

Model Mean AUC AUC CI AUC CI Range of Mean F1  F1 CI Lower F1 CI Upper Range of F1
Lower Upper AUC CI CI

LightGBM 96.69% 96.57% 96.81% 0.24% <1.0e-04 90.38% 90.21% 90.54%
XGBoost 96.68% 96.55% 96.80% 0.24% <1.0e-04 90.44% 90.29% 90.60%
MLP 96.65% 96.54% 96.77% 0.23% <1.0e-04 90.24% 90.10% 90.40%
Gradient Boosting 96.65% 96.53% 96.77% 0.24% <1.0e-04 90.29% 90.13% 90.44%
AdaBoost 96.58% 96.46% 96.70% 0.24% <1.0e-04 90.06% 89.89% 90.21%
Random Forest 96.52% 96.41% 96.63% 0.22% <1.0e-04 90.49% 90.32% 90.64%
Decision Tree 95.83% 95.73% 95.92% 0.20% <1.0e-04 90.25% 90.10% 90.38%
KNN 94.75% 94.60% 94.90% 0.30% <1.0e-04 89.38% 89.15% 89.59%
SVM 94.71% 94.51% 94.89% 0.38% <1.0e-04 90.26% 90.08% 90.42%
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