ENHANCING DEEPFAKE DETECTION
GENERALIZATION THROUGH COMPONENT-
BASED DEVELOPMENT IN A WEB PLATFORM

KOH YEONG KEONG

UNIVERSITI TUNKU ABDUL RAHMAN

ENHANCING DEEPFAKE DETECTION GENERALIZATION
THROUGH COMPONENT-BASED DEVELOPMENT IN A WEB
PLATFORM

KOH YEONG KEONG

A project report submitted in partial fulfilment of the
requirements for the award of Bachelor of Software

Engineering with Honours

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

October 2025

DECLARATION

I hereby declare that this project report is based on my original work except for
citations and quotations which have been duly acknowledged. I also declare that
it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Name Koh Yeong Keong

ID No. : 2105656

Date 1 29/04/2025

il

APPROVAL FOR SUBMISSION

I certify that this project report entitled “ENHANCING DEEPFAKE
DETECTION GENERALIZATION THROUGH COMPONENT-BASED
DEVELOPMENT IN A WEB PLATFORM?” was prepared by Koh Yeong
Keong has met the required standard for submission in partial fulfilment of the
requirements for the award of Bachelor of Software Engineering with Honours

at Universiti Tunku Abdul Rahman

Approved by,

Signature W !

Supervisor : KELWIN TAN SEEN TIONG

Date . 17/10/2025

il

COPYRIGHT STATEMENT

© 2025, KOH YEONG KEONG. All right reserved.

This final year project report is submitted in partial fulfilment of the
requirements for the degree of Software Engineer at Universiti Tunku Abdul
Rahman (UTAR). This final year project report represents the work of the author,
except where due acknowledgement has been made in the text. No part of this
final year project report may be reproduced, stored, or transmitted in any form
or by any means, whether electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the author or UTAR, in

accordance with UTAR’s Intellectual Property Policy.

v

ABSTRACT

This report outlines the design, development, and evaluation of a deepfake
detection system aimed at providing an accessible and scalable solution for
detecting manipulated media. The system leverages advanced machine learning
models, including both single-model and ensemble-based detection methods, to
identify deepfakes in images. The platform supports easy image uploads,
efficient model processing, and reliable result presentation, offering users the

ability to choose between various detection models based on their needs.

Key features include user authentication and role management, image
validation, preprocessing, and real-time inference with confidence scores. The
system utilizes a modular architecture to integrate new models seamlessly,
ensuring scalability and maintainability. Performance benchmarks are met,
including a processing time of less than 800ms per image and a 99.9% uptime
for system reliability. The accuracy of the ensemble detection method is
validated through extensive testing on benchmark datasets, achieving a high F1-

Score.

This project addresses the growing concern of deepfake threats in digital media
and aims to provide an easy-to-use, robust tool for both non-technical users and
advanced administrators. The system is designed with a focus on usability,
accuracy, performance, and security, ensuring it meets the challenges posed by

modern deepfake detection.

Keywords: Machine Learning, Generative Al, Deepfake, Component-based,

Image Classification, Artificial Intelligence, Al Generalization

Subject Area: QA75.5-76.95 Computer Science

TABLE OF CONTENTS

DECLARATION

APPROVAL FOR SUBMISSION
COPYRIGHT STATEMENT
ABSTRACT

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

CHAPTER
1 INTRODUCTION
1.1 General Introduction
1.2 Importance of the Study
1.3 Problem Statement
1.3.1 PS1: Generalization of Deepfake Detection
Models
1.3.2 PS2: Lack of Diverse Datasets for Training
Deepfake Detection Models
1.3.3 PS3: Accessibility of Deepfake Detection
Tools (Web Application)
1.4 Aim and Objectives
1.4.1 O1: To Develop a Generalizable Deepfake
Detection System
1.4.2 O2: To Collect and Integrate a Diverse
Dataset for Training Deepfake Detection
Models
1.4.3 O3: To Develop an Accessible Web-Based
Deepfake Detection Tool
1.5 Proposed Solution
1.6 Scope and Limitation of the Study
1.6.1 Scope:
1.6.2 Limitation:

vi

ii

iii

vi

xi

o o wn A

10

2 LITERATURE REVIEW

2.1

2.2

3.1

32

Literature Review of Deepfake Detection

2.1.1 Introduction

2.1.2 Detection Models

2.1.3 DeepFake Detection Tools:

2.1.4 Open-source Tools/Framework:

2.1.5 Limitations of Existing Deepfake Detection
31

Literature Review of Development Methodology

2.2.1 Introduction

2.2.2 Waterfall Methodology

2.2.3 Agile Methodology

2.2.4 Component-Based Development (CBD)

2.2.5 Spiral Methodology

2.2.6 Comparative Analysis of Methodologies

2.2.7 Summary:

METHODOLOGY AND WORK PLAN

METHODOLOGY

3.1.1 Introduction

3.1.2 Stage 0: Exploration, Prototyping, and
Model Training

3.1.3 Stage 1: Foundational = Component
Development

3.1.4 Stage 2: Hardened Deployment and
Orchestration

3.1.5 Stage 3: Ensemble Aggregation and Cross-
Domain Evaluation

3.1.6 Stage 4: Modularization, Productionization,
and Integration

Project Work Plan

3.2.1 Introduction

3.2.2 Phase 1: Front-End Development (Weeks
1-4)

vii

12
12
12
12
17
27

33
33
33
35
36
38
40
42
44
44
44

44

45

45

46

46

47

47

47

4

33

3.4

3.2.3 Phase 2: Back-End Development (Duration:
Weeks 5-9)

3.2.4 Phase 3: System Integration (Duration:
Weeks 10-12)

3.2.5 Expected Project Tools:

System Design and Requirements

3.3.1 Introduction

3.3.2 Project Specification

3.3.3 High Level System Flow Diagram:

3.3.4 System Architecture Diagram

3.3.5 ERD diagram (Laravel Web Application)

3.3.6 Image Detection Sequence Diagram

Test Plan

3.4.1 Introduction

3.4.2 Objectives

3.4.3 Test Suite Summary

3.4.4 Test Environment and Execution

3.4.5 Validation and Quality Assurance

3.4.6 Result Validation through Accuracy
Testing

3.4.7 Testing Dataset Selection: URS Dataset for

Model Evaluation

DEVELOPMENT AND IMPLEMENTATION

4.2

4.1.1 Development Path

4.1.2 Introduction

4.1.3 Unified Dataset

4.1.4 Ensemble Detector

4.1.5 Laravel Web Application

Test Result and Discussion

4.2.1 Introduction

4.2.2 Test Results

4.2.3 System Performance and Requirements
Satisfaction

4.2.4 Quantitative Test Results

viii

48

49
51
53
53
53
64
65
67
69
70
70
70
70
91
91

91

93
95
95
95
95
99
111
116
116
116

119
126

4.2.5 Achievement of Problem Statement and
Objectives

4.2.6 Comparative Analysis with Existing
Literature

4.2.7 Limitation and Future Improvement

4.2.7.1 Limitations

4.2.7.2 Future Improvements

5 CONCLUSION

REFERENCES

130

134
139
139
142
145
147

LIST OF TABLES

Table 1: Performance Comparison of Top-5 Models from DeepFake

Benchmark (Yan et al., 2023b) 15
Table 2: Overview Comparison of DeepFake Detection Tools 26
Table 3: Overview Comparison of Open-source Tools and FrameWork 30

Table 4: Comparative Analysis on Different Development

Methodologies 41
Table 5: Rating of Hybrid Agile-Spiral Approach in different aspect 42
Table 6: Key Element in (Phase 1) 48
Table 7: Key Element in (Phase 2) 49
Table 8: Key Element in (Phase 3) 50
Table 9: Table of Expected Tools Involved in Development 51
Table 10: Functional Requirements 53
Table 11: Non-Functional Requirements 54
Table 12: Test Suite Summary 70
Table 13: Summary of Unit Test Cases 71
Table 14: List of Unit Test Cases 74
Table 15: List of Adversarial Test Cases 86
Table 16: List of Integration Test Cases 88
Table 17: Stress Test Test Cases 90
Table 18: Key Features of DetectorOutputWrapper Module 106
Table 19: Key Fetures of Ensemble Detector Module 108

Table 20: Requirement & Test Cases & Use Cases Traceability Matrix 122
Table 21: Alignment against Project Objective and Problem Statement 133

Table 22: Comparative Analysis against Existing Literature 137

LIST OF FIGURES

Figure 4: Component-based Architecture as Solution

Figure 5: Referencing Image for Deepfake Generated By Differnt GAN
Generator (Xu, Raja and Pedersen, 2022)

Figure 6: Sample interface design for Proposed web application
Figure 7: Logo of Deepware (Deepware, 2025)
Figure 8: Sample Output from Intel FakeCatcher (Clayton, 2023)

Figure 9: Sample Output from Microsoft Video Authenticator (Burt,
2020)

Figure 10: Logo of Sensity Ai (Sensity, n.d.)

Figure 11: Logo of Realidy Defender Ai (Realitydefender.com, 2024)
Figure 12: Logo of Sentinel Al with slogan (Romain Berg, 2023)
Figure 13: Truepic (Truepic.com, 2022)

Figure 14: iProov (iProov, 2024)

Figure 15: Resemble Al (Resemble Al, 2024)

Figure 16: DuckDuckGoose (Sukrit, 2025)

Figure 17: Hyperverge (Praveen, 2024)

Figure 18: Sample Structure of Waterfall Development Approach
(Kirvan, 2022)

Figure 19: Sample Structure of Agile Development Approach (Damm,
2023)

Figure 20: Sample Conceptual Structure of CBD approach (McGovern
et al., 2003)

Figure 21: Sample Structure of Spiral Development Approach (Talreja,
2024)

Figure 22: Use Case Diagram

X1

17

18

19

19

20

21

22

23

23

24

25

33

35

37

38

56

Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:

Figure 39:

Figure

Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:

Figure 47:

High Level System Flow Diagram

System Architecture Diagram

ERD Diagram

Detect Image Sequence Diagram

Unified Detector Concept Diagram

Unified Detector Application Code

Single Model Wrappers Concept Diagram
Single Model Wrapper Application Code
Generic Wrapper Concept Diagram

Sample YAML Config File for Generic Wrapper
Generic Wrapper Application Code

Version 1 Ensemble System Concept Diagram
Abstract Class Code for Ensemble Version 1
Version 2 Ensemble System Concept Diagram
Abstract Class Code for Ensemble Version 2
Final Conceptual Design for Ensemble System
Example Usage of DetectorOutputWrapper

40: Overview of Module Dependencies
DetectorOutputWrapper

Example Usage of Ensemble Detector

Batch Processing Example for Ensemble Detector
Overview Module Dependencies of Ensemble Detector
Dashboard Ul

EnsembleDetection UI

Single Model Detection Ul

Detection Result Ul

of

Xii

65

67

68

69

99

100

100

101

102

102

102

103

103

104

104

105

107

108

110

110

111

112

113

113

113

Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:

Figure 60:

Figure 61:
Figure 62:

Figure 63:

Detection Result History Ul

Login Page Ul

Register Page Ul

High Level Integration & Communication Design Diagram
Unit Tests Passed Screenshot (1)

Unit Tests Passed Screenshot (2)

Integration Test Passed Screenshot

Adversarial Tests Passed Screenshot

Adversarial Tests Passed Screenshot (2)

Stress Test Passing Screenshot

Login UI showing Fullfill of Authentication Requirement

Accuracy Result from Accuracy Test

Y AML Contig for 4 model included to the Ensemble Detector

127
False Positive/False Negative Plotting from Accuracy Test
Average Inteference Time of Detectio against Accuracy

Comparison Among Model with Top-3 Accuracy

xiii

114

114

115

116

117

117

117

118

118

118

120

126

128

129

130

CHAPTER 1
INTRODUCTION

1.1 General Introduction

Deepfake technology, a term derived from "deep learning" and "fake," refers to
synthetic media generated using artificial intelligence (AI) to manipulate or
fabricate images, videos, audio, or text with striking realism (Anna, 2024). This
technology relies on advanced deep learning techniques, particularly Generative
Adversarial Networks (GANSs), where a generator creates fake content and a
discriminator evaluates its authenticity, iteratively refining outputs until they
appear genuine (Yasar, Barney, and Wigmore, 2024).

Deepfakes first gained prominence in 2017 when a Reddit user demonstrated
face-swapping in videos, sparking debates about their ethical implications
(Simonite, 2019). Since then, advancements in Al have made the technology
more sophisticated and accessible. By 2023, over 500,000 deepfake videos
circulated online, spanning applications from entertainment to disinformation
campaigns (Jacobson, 2024). Tools like Deepswap and FaceApp now enable
even novices to create convincing synthetic media, amplifying both innovation
and misuse (*12 Best Deepfake Sites & Apps in 2025 [FREE included]*, no
date).

While deepfakes offer niche benefits—such as de-aging actors in films,
enhancing medical training simulations, or creating immersive educational
content—their rapid evolution has raised urgent ethical and societal concerns

(Greggwirth, 2023).

1.2 Importance of the Study

The proliferation of deepfakes poses significant risks to misinformation, fraud,
personal privacy, security, and even national security. For example, a fabricated
video of Ukrainian President Volodymyr Zelenskyy falsely urging surrender
during the Russia-Ukraine war demonstrated how deepfakes can destabilize
trust in institutions and democratic processes (Ebaker, 2023). Similarly,
deepfakes enable sophisticated financial fraud, such as the 2020 \$35 million
scam where criminals used synthetic audio to impersonate a corporate executive

(Business Today, 2025). Privacy violations, particularly non-consensual

deepfake pornography targeting women, inflict lasting emotional and
reputational harm, while altered medical imagery risks misdiagnosis and
insurance fraud.

Existing detection systems struggle to keep pace with the rapid advancement of
deepfake creation tools. Classifiers trained on specific datasets or GAN
architectures often fail to generalize across diverse manipulation methods,
leading to outdated and ineffective solutions (Ramanaharan, Guruge, and
Agbinya, 2025). This inadequacy underscores the urgent need for adaptable,
modular detection systems capable of addressing evolving synthetic media.
The societal implications are profound: unchecked deepfakes could undermine
public trust in media, destabilize democratic processes, and erode personal
reputations (Gorbel, no date). Robust detection solutions are essential to
mitigate these risks, protect individuals, and preserve the integrity of
information in an increasingly digital world (Anna, 2024; Greggwirth, 2023).
Addressing the challenge of generalization in detection methods is critical to
ensuring reliable performance across real-world scenarios, ultimately

safeguarding privacy, security, and trust in digital media.

1.3 Problem Statement

1.3.1 PS1: Generalization of Deepfake Detection Models

Deepfake detection models face a major challenge in generalization, which
refers to a model's ability to apply its learned knowledge to new and unseen
deepfake manipulations. Currently, most deepfake detection systems are trained
on a specific set of datasets and manipulation types, leading to limitations in
their ability to detect novel forms of deepfake content. For instance, detection
models trained on face-swapping deepfakes often fail when exposed to new
deepfake techniques, such as style transfer-based deepfakes. The problem of
generalization is illustrated in Utility of Deep Learning Features for Facial
Attributes Manipulation Detection 2020 which shows the detection accuracy of
models when tested on different and all manipulation types revealing a
significant performance drop across all detection methods. From the result of
the study, it have shown the average detection accuracy under novel

manipulations is much lower compared to models tested on previously seen

manipulations, underscoring the need for models capable of generalizing across

different types of deepfakes (Afchar et al., 2018; Li et al., 2020).

1.3.2 PS2: Lack of Diverse Datasets for Training Deepfake Detection
Models
The lack of diverse datasets is a key limitation in the development of effective
deepfake detection systems. Most existing datasets, such as FaceForensics++
and Celeb-DF, focus primarily on face-swapping manipulations and may not
represent newer deepfake techniques. The lack of diversity means that detection
systems trained on these limited datasets often fail when confronted with new
forms of manipulation, resulting in low accuracy and high error rates when
tested on unseen manipulation types. Utility of Deep Learning Features for
Facial Attributes Manipulation Detection 2020 highlights the detection
accuracy of models when tested with novel manipulation type data, revealing
that the performance can vary significantly based on the type of manipulation
and dataset used for training. This demonstrates that detection accuracy is much
lower when models are tested on diverse types of manipulations, underlining
the need for a broader range of datasets to train more robust, adaptable models

(Afchar et al., 2018; Gandhi et al., 2021).

1.3.3 PS3: Accessibility of Deepfake Detection Tools (Web Application)
Another critical issue is the inaccessibility of deepfake detection tools, which
are often complex and require specialized technical knowledge to operate. Most
current detection systems are designed for use by experts in machine learning
or computer vision, which limits their usability for the general public. To
address this challenge, deepfake detection tools should be accessible via a web-
based application that allows users to upload media and receive results quickly
and easily. This would democratize the ability to detect deepfakes, making it
available to individuals, organizations, and institutions that need to verify media
authenticity but lack the technical expertise. A user-friendly web application
would allow anyone with an internet connection to check whether a piece of
media has been manipulated, ensuring that deepfake detection becomes an

accessible tool for all, not just experts (Gandhi et al., 2021).

14 Aim and Objectives

1.4.1 O1: To Develop a Generalizable Deepfake Detection System

This objective addresses the problem of generalization by developing a
detection system capable of adapting to a wide range of deepfake techniques,
regardless of the manipulation type or the dataset used to create it. The system
will be trained using diverse datasets that cover various deepfake generation
methods, such as audio manipulation, face aging, and style transfer deepfakes,
ensuring that it can handle different types of manipulations without a significant
drop in accuracy. The model will also be designed to maintain high detection
performance even when exposed to new, previously unseen deepfake methods,
thus addressing the core issue of generalization in deepfake detection (Afchar

et al., 2018; Li et al., 2020).

1.42 O2: To Collect and Integrate a Diverse Dataset for Training
Deepfake Detection Models
e Problem Addressed: PS2: Lack of Diverse Datasets for Training
Deepfake Detection Models

This objective seeks to overcome this limitation by compiling a comprehensive
and diverse dataset that covers multiple deepfake generation techniques and
manipulation types. The dataset will include deepfakes generated using various
GAN architectures, autoencoders, and style transfer methods. It will also
incorporate diverse manipulation techniques, such as smile alteration, gender
switching, and aging effects, to ensure that the detection system is exposed to a
wide range of synthetic media. By training the detection model on this diverse
dataset, it will become more robust and adaptable, improving its ability to detect
a broader array of deepfake manipulations and making the detection system

more effective in real-world scenarios (Gandhi et al., 2021; Afchar et al., 2018).

1.4.3 O3: To Develop an Accessible Web-Based Deepfake Detection Tool
o Problem Addressed: PS3: Accessibility of Deepfake Detection Tools
(Web Application)

This objective aims to democratize access to deepfake detection tools, making
them available to a much wider audience, including journalists, media
organizations, educators, and the general public. The application will be
designed for ease of use, with no need for advanced knowledge of machine
learning or Al algorithms. The goal is to create a web-based platform that allows
anyone with an internet connection to verify the authenticity of media in real
time, helping to combat the spread of misinformation, fraud, and defamation
caused by manipulated content. By providing an easy-to-use detection tool, this
objective seeks to make deepfake verification accessible to all (Gandhi et al.,

2021).

1.5 Proposed Solution

To address the critical challenges of generalization, adaptability, and practical
deployment in deepfake detection, this project proposes a component-based
framework designed to enhance detection robustness across diverse datasets and
evolving synthetic media techniques. The solution integrates three core

innovations, aligned with the project’s objectives and methodology.

First, the Component-Based Modular Architecture employs a modular design to
decouple detection components, enabling independent training and testing of
models tailored to specific datasets or architectures. Each component comprises
three units: a Computation Unit that handles model-specific computations (e.g.,
GAN artifact detection, frequency analysis) while maintaining fixed behavior
to ensure consistency; an Output Unit that aggregates results from individual
components, providing a unified detection outcome; and a Connector Unit that
facilitates seamless communication between components, allowing incremental
integration of new models (e.g., diffusion models) without disrupting existing

workflows.

e

R

Yolo Model Xception Model
Deployment Deployment

Detector Output Detector Output
Wirapper 1 Wrapper 2

R

Ensemble System

Strategy
Computation

.

Detector Output Detector Qutput
Wrapper 3 Wrapper 4

Efficieninet-B4 Capsule Forensic
Model Model
Deployment Deployment

o o

\\'\‘e\gri

'\ gig m/

J \

Figure 1: Component-based Architecture as Solution

Second, to mitigate dataset bias and improve generalization, the Diverse Dataset
Generation and Integration component curates a comprehensive dataset
spanning multiple generative models, including Unconditional GANs like
StyleGAN, proGAN, SAGAN, and BigGAN for high-fidelity facial synthesis;
Conditional GANs like CycleGAN (face-swapping), StarGAN (attribute
editing), and Face2Face (expression manipulation); Auto-Encoders such as
FaceForensics++ benchmark images generated via the faceswap tool; and
Perceptual Loss Models like Cascaded Refinement Networks (CRN) and
Implicit Maximum Likelihood Estimation (IMLE).

Pristine iDeepfakes Face2Face FaceSwap NeuralTextures

Figure 2: Referencing Image for Deepfake Generated By Differnt GAN
Generator (Xu, Raja and Pedersen, 2022)

Third, a Practical Web Application for Real-World Deployment is developed to
democratize access to robust deepfake detection. Key features include Multi-
Model Support, allowing users to select detection components optimized for
specific manipulation types (e.g., face-swaps, expression edits); Adaptive
Updates, which allow new components (e.g., for diffusion models) to be added
without requiring full system retraining; and Cross-Domain Validation, using
metrics like average precision and adaptation rate to ensure performance across
unseen datasets. In implementation, Stage 4 (Application Development)
leverages the component-based architecture to ensure modularity and scalability,
and Stage 5 (Evaluation) tests the application’s accuracy on novel manipulation

types (e.g., lip-sync forgeries) and computational efficiency.

Deepfake Detection Web Application o Deepfake Detection Results Vame Abos Gt

Detection Performance
Metrics

Existing Components

Manage the components currently in use

o Q ©
< o
Detection Component Analysis Component Integration Component

Version 1.0 Version 2.1 Version 1.5

AAAAAA

Figure 3: Sample interface design for Proposed web application

1.6 Scope and Limitation of the Study

1.6.1 Scope:

1.6.1.1 Features and Modules to be Developed

Deepfake Detection Application: The core functionality of the system,
allowing users to upload images that will be classified as either "real" or "fake"
using Al-powered models like Convolutional Neural Networks (CNNs) and the
ensemble detection method.

Ensemble Detection System: The system will incorporate multiple models
using ensemble strategies like majority voting, weighted averaging, and
confidence-based selection. This ensemble method will improve accuracy and
decision-making reliability.

Model Management: The system will allow administrators to manage models,
including adding, updating, and deactivating them through configuration files
(YAML/JSON). The platform will also support retraining with new datasets,
ensuring adaptability to emerging deepfake technologies.

Dataset Management: The platform will provide access to curated datasets
containing both real and deepfake images, which users can explore, download

for research purposes, or use for training new models.

1.6.1.2 Intended Users or Target Audience

Researchers and Academics: They will use the platform to analyze deepfake
detection techniques and experiment with different models and datasets.
Developers and Al Engineers: These users will leverage the platform for
integrating new models, experimenting with datasets, and optimizing detection
performance.

General Public and Media: The public can upload images for detection,
providing an easy way to verify the authenticity of images they encounter online.
Institutions (Universities, Law Enforcement): These users will use the
platform for verifying documents, images, and media in academic, legal, and

security contexts.

1.6.1.3 Technologies or Platforms to be Used

Frontend: The web application will use modern web technologies such as
HTML, CSS, and JavaScript, leveraging frameworks like React.js or Vue.js for
creating responsive and interactive interfaces.

Backend: Python will be used for developing Al and machine learning models,
leveraging deep learning frameworks like TensorFlow and PyTorch. Server-
side logic will be managed using Flask for API interactions.

Database: PhpMyAdmin will be used to store user data, metadata, and model
performance metrics.

Containerization: Docker will be employed for containerization and
orchestration, ensuring smooth deployment and management of the system

components.

1.6.1.4 Types of Data or Inputs the System Will Handle

User-uploaded Images: The main input, which can be either real or deepfake
images.

Model Data: Pre-trained models deployment script and model weight used for
deepfake detection.

Metadata: Information about each processed image, including the prediction

(real or fake), confidence scores, and model performance metrics

10

1.6.2 Limitation:

1.6.2.1 Dataset Limitations

The system relies on datasets for training its detection models. However,
datasets may not cover all possible deepfake manipulation types or cross-
domain variations such as changes in lighting, resolution, or camera angles.
While datasets will include a variety of deepfake techniques, new manipulation
methods emerge frequently, and it is impossible to predict and incorporate every

potential deepfake generation method.

1.6.2.2 Computational Complexity

Deepfake detection models, particularly those based on deep learning, require
substantial computational resources for both training and inference. This may
necessitate GPUs or cloud infrastructure to process large datasets and perform
real-time detection. Users without access to high-performance hardware could
face challenges in training the models, and running real-time inference on large
video files could cause latency issues. Cloud computing services, such as AWS
and Google Cloud, provide necessary computational resources but may not be

accessible to all users, especially those with limited financial resources.

1.6.2.3 Real-Time Detection Limitations

While the system aims for real-time detection, there are inherent limitations.
High-resolution images or videos with multiple frames require more processing
power and time, potentially leading to delays in providing feedback. As
deepfake techniques become more sophisticated, the detection algorithms may
need more time to identify subtle manipulation artifacts. Achieving
instantaneous results for all media types may not always be feasible, especially

for large video files or complex image manipulations.

1.6.2.4 Focus on Specific Manipulation Types

While the system aims for real-time detection, there are inherent limitations.
High-resolution images or videos with multiple frames require more processing
power and time, potentially leading to delays in providing feedback. As
deepfake techniques become more sophisticated, the detection algorithms may

need more time to identify subtle manipulation artifacts. Achieving

11

instantaneous results for all media types may not always be feasible, especially

for large video files or complex image manipulations.

12

CHAPTER 2

LITERATURE REVIEW

2.1 Literature Review of Deepfake Detection

2.1.1 Introduction

This literature review examines the evolution of deepfake generation techniques
and the corresponding advancements in detection methodologies, focusing on
the technical challenges of generalization, dataset diversity, and real-time
applicability. The review also evaluates commercial and open-source detection
tools, such as Microsoft Video Authenticator and DeepFake-O-Meter, assessing
their strengths in specific manipulation types and weaknesses in scalability or
accessibility. By synthesizing these insights, this section establishes the
foundation for the proposed modular detection system, which aims to overcome
gaps in generalization, usability, and ethical deployment identified in current

literature.

2.1.2 Detection Models

DeepfakeBench, introduced in DeepfakeBench: A Comprehensive Benchmark
of Deepfake Detection by Zhiyuan Yan et al, is a pioneering framework
designed to address critical challenges in evaluating deepfake detection models.
Traditional approaches often suffer from inconsistent datasets, non-uniform
evaluation protocols, and fragmented implementation pipelines, leading to
unreliable comparisons between models. In the project, we will use result from

this paper, to objectively assess model robustness across different scenarios.

2.1.2.1 Model Training and Assumptions:

Models evaluated within DeepfakeBench are trained on a variety of deepfake
datasets, including the newly introduced DF40 dataset, which features 40
distinct deepfake techniques. This diversity ensures that models are exposed to
a wide range of manipulation methods during training. The training process
assumes that models can learn generalized features capable of detecting various
deepfake techniques. However, the effectiveness of these models can vary

depending on the specific characteristics of each dataset.

13

2.1.2.2 Domain issue in Deepfake detection:

Deepfake detection models face a fundamental challenge: balancing
performance on familiar data (within-domain) with adaptability to unseen
manipulations (cross-domain). This dichotomy reflects the real-world tension
between specialization and generalization, where models must excel in
controlled settings while remaining robust against evolving threats. In
considering such sequence, DeepfakeBench employs both evaluation strategies

to assess these competing demands (Yan et al., 2023b):

e VWithin-Domain Evaluation: In this approach, models are trained and
tested on data from the same source or domain. This scenario simulates real-
world applications where models encounter data similar to their training data.
High performance in within-domain evaluations indicates that a model can

effectively detect deepfakes within a specific context or dataset.

e Cross-Domain Evaluation: Here, models are trained on data from one
domain and tested on data from a different, unseen domain. This evaluation
simulates real-world scenarios where models must generalize to new,
unseen data distributions. High performance in cross-domain evaluations
demonstrates a model's robustness and ability to adapt to various deepfake

generation techniques and data characteristics.

2.1.2.3 Model Type

In deepfake detection, models are typically categorized into three types based
on their feature extraction approaches: naive, spatial, and frequency detectors.
Each type has distinct methodologies that influence their accuracy and

performance.

1. Naive Detectors:

Naive detectors employ standard convolutional neural networks (CNNs) to
perform binary classification between real and fake content without

incorporating specialized modules for artifact detection. They rely on the CNN's

14

ability to learn hierarchical features from the data. While naive detectors can
achieve commendable accuracy within the domain they are trained on, their
performance may degrade when applied to unseen data or different deepfake
generation techniques due to their limited focus on generalized artifact detection.

(Yan et al., 2024)

2. Spatial Detectors:

Spatial detectors focus on analyzing pixel-level artifacts and inconsistencies
within images or video frames. They often incorporate attention mechanisms or
specialized modules to detect anomalies such as unnatural edges, texture
inconsistencies, or irregular facial features. By emphasizing these spatial
irregularities, these detectors can effectively identify manipulations that are
visually apparent. However, their performance can be affected by variations in
image quality, resolution, and the presence of compression artifacts, which may

obscure the subtle cues they rely on. (NGUYEN et al., 2018)

3. Frequency Detectors:

Frequency detectors analyze images in the frequency domain, targeting spectral
anomalies introduced during the deepfake generation process. Techniques such
as Discrete Cosine Transform (DCT) or Fast Fourier Transform (FFT) are
employed to convert spatial data into frequency components, allowing these
models to detect unnatural frequency patterns or compression artifacts. This
approach enables frequency detectors to identify subtle manipulations that may
not be evident in the spatial domain. Nonetheless, their effectiveness can be
influenced by factors like the specific frequency artifacts present in different
deepfake techniques and the potential for overfitting to these artifacts, which

may limit their generalizability across diverse datasets. (Yan et al., 2024)

Performance Evaluation:

To quantify the trade-offs between model architectures and their real-world
applicability, we evaluate five representative detectors from the result of
DeepfakeBench’s standardized framework. These models—UCF (spatial),
SPSL (frequency), Xception (naive), FFD (spatial), and EfficientB4 (naive)—

15

were selected for their highest performance among the 34 detectors involved.
The following comparison highlights critical performance disparities,
particularly in cross-domain generalization, while contextualizing their
computational demands and specialization biases. The performance result is

summarized in the Table 1 below:

Table 1: Performance Comparison of Top-5 Models from DeepFake Benchmark
(Yan et al., 2023b)

Within-Domain | Cross-Domain
Detector Type |Backbone
Avg. Avg.

UCF Spatial | Xception 0.9527 0.7801
SPSL | Frequency | Xception 0.9408 0.7875
Xception | Naive | Xception 0.945 0.7718
FFD Spatial | Xception 0.9434 0.7733
EfficientB4] Naive Efficient 0.9389 0.7718

2.1.2.4 Discussion on Top-5 Models

UCF (Spatial, Xception Backbone):

UCEF is a spatial-based deepfake detector built upon the Xception architecture,
enhanced with specialized modules for artifact detection. It utilizes spatial
attention mechanisms to focus on localized tampering traces, such as unnatural
facial boundaries or inconsistent lighting. (NGUYEN et al.,, 2018). The
Xception backbone, known for its depthwise separable convolutions, efficiently
captures hierarchical features while reducing computational overhead. In
evaluations, UCF achieved a within-domain average Area Under the Curve
(AUC) of 0.9527 and a cross-domain average AUC of 0.7801, ranking in the
top three across 11 datasets. However, its high computational load may limit
real-world applicability, especially in resource-constrained environments. (Yan

et al., 2023a)

SPSL (Frequency, Xception Backbone):

16

SPSL approaches deepfake detection from a frequency domain perspective,
integrating spectral analysis with the Xception architecture. (Liu et al., 2021).
By processing images in the frequency domain, SPSL identifies spectral
distortions indicative of manipulation, such as unnatural high-frequency
patterns. (Liu et al., 2021) This hybrid approach enhances the model's
robustness against cross-domain challenges. SPSL achieved the highest cross-
domain average AUC of 0.7875 among the evaluated models, though its within-
domain performance (AUC of 0.9408) is slightly lower. This trade-off suggests
a specialization in detecting diverse deepfake techniques at the expense of some

performance on domain-specific data. (Liu et al., 2021)

Xception (Naive, Xception Backbone):

The Xception (Naive) model employs the standard Xception architecture
without specialized deepfake detection modules. It relies on hierarchical feature
learning to distinguish between real and fake content. (Li et al., 2017) This
simplicity contributes to its balanced performance, achieving a within-domain
average AUC of 0.945 and a cross-domain average AUC of 0.7718. While it
serves as a strong baseline, the lack of specialized mechanisms may limit its
effectiveness against sophisticated deepfake generation techniques. (Li et al.,

2017)

FFD (Spatial, Xception Backbone):

FFD is tailored for facial forgery detection, integrating facial landmark
alignment and local artifact detectors within the Xception framework. By
focusing on facial regions prone to manipulation, FFD excels in identifying
subtle inconsistencies. (Li et al., 2017) It achieved a within-domain average
AUC of 0.9434 and a cross-domain average AUC of 0.7733. However, its
specialization may lead to overfitting to facial features, potentially reducing its

adaptability to non-facial manipulations. (Li et al., 2017)

5. EfficientB4 (Naive, EfficientNet Backbone):
EfficientB4 utilizes the EfficientNet-B4 architecture, emphasizing resource
efficiency and scalability. It incorporates Mobile Inverted Bottleneck

Convolutions (MBConv) and Squeeze-and-Excitation blocks to balance model

17

size and performance. (Potrimba, 2023). With a within-domain average AUC of
0.9389 and a cross-domain average AUC of 0.7718, EfficientB4 offers a
lightweight alternative suitable for deployment in resource-constrained settings.
However, its peak accuracy is lower compared to more complex models,

indicating a trade-off between efficiency and detection performance.

2.1.3 DeepFake Detection Tools:

Deepware Scanner

Deepware Scanner is a specialized tool designed to detect deepfake videos,
focusing exclusively on facial manipulations such as face-swaps. It utilizes a
convolutional neural network (EfficientNet-B7) pre-trained on ImageNet, fine-
tuned using Facebook's DeepFake Detection Challenge (DFDC) dataset to
enhance its detection capabilities, optimized for identifying inconsistencies in
facial regions. Additionally, the tool employs face clustering techniques to
enhance the consistency and reliability of its detection results. In controlled
settings, Deepware Scanner has demonstrated a high accuracy rate of ~95-98%
when tested on the FaceForensics Actors Dataset. It also maintains robust
performance with broader datasets like CFDF, despite unspecified accuracy rate.
The tool is capable of processing videos up to 10 minutes in length, but
performance may decline with lower-resolution videos. (Hook35, 2021)
Deepware Scanner is currently in its beta stage and is available in web-platform,

API, and SDK formats.

o

Deepw

Figure 4: Logo of Deepware (Deepware, 2025)

Intel’s FakeCatcher

18

Intel’s FakeCatcher is a real-time deepfake detection tool that utilizes
photoplethysmography (PPG) to analyze subtle color changes in facial pixels
caused by blood flow, a feature absent in synthetic faces. (Intel, 2022) It also
examines eye movements for consistency, aiding in the identification of
deepfakes. Regarding the performance, Intel claim that FakeCatcher achieves a
96% accuracy rate. Despite this, it excels in detecting lip-sync deepfakes, such
as those generated by MIT. In BBC’s independent test, FakeCatcher correctly
identified all MIT-generated lip-sync deepfakes but flagged some real videos as
fake due to pixelation or poor lighting. However, the system struggles with
pixelated videos, does not analyze audio, and is prone to false positives, flagging
real videos as fake. Regarding pricing, specific details are not readily available.

Intel has not publicly disclosed the cost of FakeCatcher.

Segment IDX: 22
Segment Label:

Figure 5: Sample Output from Intel FakeCatcher (Clayton, 2023)

Microsoft Video Authenticator

Microsoft's Video Authenticator is a tool developed to detect deepfake content
in photos and videos by analyzing visual cues such as blending boundaries and
subtle fading, providing real-time confidence scores for each frame. (Kelion,
2020) While it has demonstrated high accuracy with curated datasets like
FaceForensics++ but the specific accuracy is not publicly disclosed. Initially,
Video Authenticator was available through the AI Foundation’s Reality
Defender 2020 (RD2020) initiative, targeting organizations involved in the
democratic process, including news outlets and political campaigns. (Burt, 2020)
There is no public information regarding its availability to individual users or

details about its pricing.

19

e

Figure 6: Sample Output from Microsoft Video Authenticator (Burt, 2020)

Sensity

Sensity is a specialized platform designed to detect deepfakes by analyzing
pixel-level inconsistencies, audio patterns, and file structure anomalies. It
employs advanced deep learning techniques, including convolutional neural
networks (CNNs) and generative adversarial network (GAN) analysis, to
identify synthetic content across videos, images, and audio. The platform boasts
a 98.7% accuracy rate in detecting Al-generated media, effectively identifying
malicious deepfakes on social media and the dark web. (Linkedin.com, 2024)
This capability is crucial for sectors like law enforcement and human rights,
where combating fraud and non-consensual explicit content is a priority.
(Sensity, 2024) The platform serves multiple sectors, including law enforcement,
Know Y our Customer (KYC) vendors, social media platforms, defense agencies,
and digital forensics firms. It is utilized by various organizations, such as
TrueMedia, Tradelink, Psyber Labs, Mobbex, 3D Bilism, GlossAl, Confiant,
FlipFlop, ArmisonTech, and TransGuard. Sensity offers custom plans tailored

to organizational needs, with costs determined upon request. (Sensity, 2023)

Is) sensity

Figure 7: Logo of Sensity Ai (Sensity, n.d.)

20

Reality Defender

Reality Defender is a deepfake detection platform that utilizes advanced Al
techniques, including convolutional neural networks (CNNs) and transformer-
based architectures, to identify Al-generated content across audio, video,
images, and text. The platform employs multiple concurrent models for each
media type, enhancing its ability to detect a wide range of generative Al
techniques and adapt to emerging threats. In real-world applications, Reality
Defender has proven effective in sectors such as contact centers, brand
monitoring, real-time video identity authentication, text detection, image
authentication, content moderation, and combating disinformation. It has
established collaborations with several prominent organizations, including
Accenture, Deloitte, IBM, Microsoft, and Nvidia, to enhance deepfake detection
capabilities across various industries. Additionally, partnerships with
companies like ElevenLabs and TaskUs aim to bolster Al safety and assisted
government officials in Canada in identifying and debunking deepfake videos,
preserving public trust and integrity. These collaborations underscore Reality
Defender's commitment to providing comprehensive solutions for combating
Al-generated fraud and disinformation. Regarding cost, Reality Defender offers
flexible pricing plans tailored to the specific needs and requirements of each

organization.

Reality

Defender

Figure 8: Logo of Realidy Defender Ai (Realitydefender.com, 2024)

Sentinel Al
Sentinel Al is a deepfake detection platform that utilizes convolutional neural
networks (CNNs) and generative adversarial networks (GANSs) to identify facial

swaps, lip-sync mismatches, and audio manipulations. (Romain, 2023) By

21

processing video, audio, and metadata, it enhances detection robustness. In
controlled environments, Sentinel Al achieves a good accuracy rate (not
specific % disclosed) on datasets like FaceForensics++. However, its
performance may decrease with high-fidelity deepfakes encountered in real-
world scenarios. The platform is employed by governments and organizations
such as the European Union External Action and Accelerate Estonia to combat
political disinformation and enhancing digital security across various sectors.
(Sentinel, n.d) Regarding pricing, specific details are not publicly available.
Sentinel Al offers customized solutions tailored to the needs of larger

organizations.

v
X SENTINEL

Information Warfare

Figure 9: Logo of Sentinel Al with slogan (Romain Berg, 2023)

Truepic

Truepic is a platform that ensures the authenticity of digital media through
blockchain-based standards like C2PA, embedding tamper-evident certificates
into images and videos from creation to publication. This approach allows for
verification of media integrity, making it particularly effective in combating
synthetic identity fraud and verifying medical scans. Truepic has partnered with
various organizations, including Equifax, Davies Group, Northteq, SmartFrame
Technologies, and Recall Results, to enhance digital media authenticity,
streamline inspections, and innovate product recall processes across multiple
industries. However, Truepic's reliance on embedded credentials means it may
struggle with high-fidelity deepfakes lacking such metadata. Pricing for Truepic
Vision starts at $1,000 per user per month, with costs scaling based on the

volume of inspections.

22

TruepicLens

Figure 10: Truepic (Truepic.com, 2022)

iProov’s Liveness Detection

iProov is a biometric authentication platform that utilizes its patented Flashmark
technology to detect subtle lighting changes and facial movements, ensuring the
presence of a live user during authentication. This method -effectively
differentiates between live individuals and static or synthetic images. iProov
boasts a >98% detection rate in controlled environments, excelling in preventing
replay attacks and synthetic identity fraud, thereby offering real-time fraud
prevention. iProov has formed strategic partnerships with organizations such as
Cybernetica, TrustCloud, Biometrid, Authsignal, Matter-ID, and iCloud
Identity Inc. to enhance digital identity verification across sectors like
government, financial services, and healthcare with notable deployments by the
UK Home Office and the U.S. Department of Homeland Security for identity
verification purposes. iProov offers a range of service packages and each
tailored to organizations with varying user volumes and security requirements.
Pricing details, including implementation fees and annual committed fees, are
outlined in iProov's official G-Cloud 13 Pricing Document. (G-Cloud 13

Service Definition: iProov Face Verifier, 2022)

23

WV iProov
Dynamic
Liveness

Figure 11: iProov (iProov, 2024)

Resemble AI’s Detect

Resemble Al's Detect is an advanced neural model designed to identify
synthetic audio, video, and images by analyzing subtle inconsistencies across
various media types. Its robust detection capabilities make it suitable for real-
time applications, such as monitoring live streams for fraudulent activities. To
achieve optimal performance, detect requires high-quality audio inputs. The tool
is utilized in enterprise security to flag synthetic voices in fraud attempts and in
media to verify the authenticity of celebrity voice clones. (Resemble Al, 2024)
Besides, Resemble Al has partnered with Carahsoft to provide voice Al and
deepfake detection solutions to government agencies while offers a deepfake
detection integration for Zoom, analyzing audio snippets during calls to identify
potential deepfakes. Regarding the price, Resemble Al offers a range of
subscription plans to cater to diverse user needs, including the Starter Plan at $5
per month, the Creator Plan at $19 per month, the Professional Plan at $99 per
month, the Scale Plan at $299 per month, the Business Plan at $699 per month,
and the Enterprise Plan, which requires direct consultation for pricing.

(Resemble Al, 2023)

Deepfake Detection

for Government

Figure 12: Resemble Al (Resemble Al, 2024)

24

DuckDuckGoose

DuckDuckGoose is an Al-driven platform specializing in detecting deepfakes
across images, videos, and audio by employing explainable AI (XAI) to
highlight manipulated regions, enhancing transparency in detection decisions.
It achieves a 99% accuracy rate in identifying deepfakes in images and videos
(retained by Phocus) with 0.01% false-rejection rate. The platform is utilized in
sectors such as banking to prevent fraud, in legal settings to verify evidence
authenticity, and for Know Your Customer (KYC) processes during user
onboarding. To be detail, DuckDuckGoose has partnered with Banco Daycoval,
bung and Dutch House by integrating its DeepDetector solution. For the pricing,
DuckDuckGoose did not disclose the price publicly (DuckDuckGoose, n.d.)

GOOSE

Figure 13: DuckDuckGoose (Sukrit, 2025)

HyperVerge:

HyperVerge’s deepfake detection capabilities are built on a robust technical
foundation. The platform utilizes ISO 30107-3 certified AI models for passive
liveness detection, distinguishing live users from deepfakes, masks, and screen
replays by analyzing micro-movements, such as eye blinks and blood flow
patterns, along with texture inconsistencies in real-time. In terms of accuracy
and performance, HyperVerge boasts an impressive 98.5% accuracy rate in
detecting synthetic media, including deepfakes and GAN-generated faces, on
datasets like FaceForensics++. It maintains a low False Acceptance Rate (FAR)
of less than 0.1% for spoof attacks, including high-quality deepfakes, and
processes liveness checks in under 3 seconds, making it highly effective for real-
time fraud prevention during user onboarding. HyperVerge is deployed for SIM
card fraud prevention, it has helped telecom companies like Reliance Jio reduce
SIM fraud by 99%. In financial services, the platform blocks synthetic identities

in loan applications by flagging Al-generated selfies or manipulated documents.

25

It has also partnered with governments to verify voter identities and counter
deepfake-driven disinformation campaigns. Regarding the price, HyperVerge
provides deepfake detection services with pricing starting at $0.04 per
verification for document quality checks, selfies, and ID forgery, and $0.07 for

video KYC verifications.

L
=l HYPERVERGE

Figure 14: Hyperverge (Praveen, 2024)

Comparison:

26

The comparison table provides an overview of included deepfake detection tools, comparing their accuracy, strengths, weaknesses, deployment

scenarios, and pricing. It highlights that most tools specialize in different media types (images, videos, audio) and use various approaches, such as

Al models, blockchain technology, and facial biomet

Table 2: Overview Comparison of DeepFake Detection Tools

Tool Name Deployment Detection Focus Accuracy Strengths Real-World Deployment Pricing
) : - ccialized fc
Deepware Scanner Single-model Facial manipulations ~05-98% fapc‘;;“ ized for Beta stage, web-platform, Free
P = (face-swaps) (FaceForensics) |. . . APIL, SDK available
inconsistencies
Facial featurcs Real-time detection, - -
Intel’s FakeCatcher Single-model (blood flow, eye 96% excels in lip-sync Deployed for lip-sync Not publicly

movements)

deepfakes

detection, BBC test results

disclosed

Microsoft Video

Single-model

Blending boundaries,

Not disclosed

High accuracy with

Primarily targeting
democratic process, political

Not publicly

Authenticator subtle fading curated datasets . disclosed
campaigns
Pixel ive f i
ir:::(ocnsistcncics Effective for social |Deployed in law
Sensity Multi-model y 98.70% media and dark web |enforcement, KYC, defense Custom pricing plans

audio patterns, file
structure anomalies

deepfakes

agencies

Reality Defender

Multi-model

Audio, video,
images, text

Not disclosed

Multiple models for
varied media types,
wide industry
adoption

Deployed in contact centers,
brand monitoring,
government

Custom pricing plans

Sentinel AT

Multi-model

Facial swaps, lip-
sync, audio

Not disclosed

Robust for political
disinformation,
customized solutions

Used by EU External Action,
Accelerate Estonia

Custom pricing plans

Blockchain-based

Effective in synthetic

Deployed for media

$1,000+ per user per

Truepic Single-model e ’ Not applicable |identity fraud and |authenticity verification in
media integrity X . month
medical scans various sectors
-) Excellent for
Biometric e i Baud in | |UK Home Office, U.S.
iProov Multi-model authentication ~08% P e I Department of Homeland Custom pricing plans

(liveness detection)

real-time, live user
detection

Security

Resemble AT

Multi-model

Audio, video, and
images

Not disclosed

Real-time detection,
suitable for live
stream fraud
detection

Deployed in enterprise
security, Zoom integration

Plans range from $5
to $699 per month

Images, videos,

High accuracy,

Banco Daycoval, bunq,

. _ 990 ; ici ;
DuckDuckGoose Multi-model audio 95-99% explainable AT Dutch House for KYC Pricing not disclosed
(XAI) transparenc
Deeptakes, liveness, ?\“;:)k ‘li;‘j“lf‘/‘\’; Reliance Jio (SIM fraud Starts at $0.04 per
HyperVerge Multi-model document 98.50% P reduction), Flip (financial verification, free trial

verification

(<0.1%), ISO 30107+

3 certified

services)

available

27

2.14 Open-source Tools/Framework:

DeepSafe (Sah, 2023):

https://github.com/siddharthksah/DeepSafe

DeepSafe is an open-source, Streamlit-based web application developed to
facilitate deepfake detection research by providing a unified platform for testing
and comparing various detection models. It supports multiple pre-trained
models, including CNNs and GAN-based detectors, and allows users to
integrate custom models. Users can analyze media through direct uploads or by
processing URLs, with the platform converting files to standardized formats to
ensure compatibility across detectors. DeepSafe offers optional GPU
acceleration for faster inference. While DeepSafe includes a benchmarking
feature to evaluate models on datasets like FaceForensicst+ and Celeb-DF,
providing metrics such as accuracy, precision, recall, and inference time,
specific accuracy metrics for the included models are not disclosed. DeepSafe
serves as a valuable tool for researchers, educators, and developers aiming to

analyze and combat deepfake content. (Sah, 2023)

Deepstar (zerofox-oss, 2019):

https://github.com/zerofox-oss/deepstar

Deepstar is an open-source toolkit developed by ZeroFox to aid in the detection,
analysis, and mitigation of deepfakes. It offers a suite of tools designed to
streamline operations related to deepfake detection research. In technical basis,
Deepstar provides code for automating the creation of deepfake datasets, testing,
and enhancing detection algorithms. It includes a curated library of deepfake
and real videos sourced from platforms like YouTube, facilitating the
development and evaluation of detection models. The toolkit also features a
plug-in framework that enables researchers to test, retrain, and compare the
performance of different classifiers, fostering continuous improvement in
deepfake detection capabilities. Regarding accuracy, specific accuracy metrics
are not detailed in the available sources, Deepstar's comprehensive dataset and
modular design suggest a robust foundation for developing and evaluating
deepfake detection models. The toolkit's structure allows for continuous

improvement and adaptation to emerging deepfake techniques. Deepstar has

28

demonstrated practical utility in real-world scenarios. At the Black Hat security
conference, ZeroFox researchers presented their techniques for identifying
deepfake videos using Deepstar, highlighting its effectiveness in combating
deepfake threats. The toolkit's plug-in framework and curated video library have
been instrumental in advancing detection capabilities within the cybersecurity

community. (zerofox-oss, 2019)

DeepFake-O-Meter (yuezunli, 2020):
https://github.com/yuezunli/deepfake-o-meter?tab=readme-ov-file
DeepFake-O-Meter, developed by the University at Buffalo Media Forensics
Lab, is an open-source platform that integrates multiple state-of-the-art
detection algorithms to analyze images, videos, and audio for deepfake content.
In deployment, DeepFake-o-meter's backend utilizes a computation server with
8 A5000 GPUs for deepfake detection. Users can upload media through a web-
based interface supporting formats such as MP4, JPG, and WAV, and select
from various detection algorithms based on metrics like accuracy, runtime, or
development year. The platform has demonstrated effectiveness in detecting Al-
generated content; for instance, it achieved a 69.7% accuracy rate in identifying
Al-generated audio in a Poynter test, surpassing other free tools. Despite these
limitations, DeepFake-O-Meter serves as a valuable tool for researchers,
educators, and developers aiming to analyze and combat deepfake content.

(yuezunli, 2020)

FakeFinder (IQTLabs, 2021):

https://github.com/IQTLabs/FakeFinder

FakeFinder, developed by IQT Labs, is an open-source deepfake detection
framework that aggregates predictions from six pre-trained deep learning
models, including Boken, Selimsef, and NTechLab, which performed well in
the Facebook/Kaggle Deepfake Detection Challenge. It focuses on detecting
face-swap deepfakes by analyzing facial inconsistencies, blending boundaries,
and temporal anomalies in videos. Its modular design features a Dash-based
frontend, API integration capabilities, and an AWS containerized backend.
However, FakeFinder's performance drops when detecting non-face-swap

manipulations, such as cheapfakes and audio deepfakes, due to limited training

29

diversity. Additionally, it exhibits racial and gender biases, with higher false
positive rates for East Asian faces compared to White faces, attributed to
unbalanced training data predominantly featuring White actors. Labeled as a
prototype, it has cybersecurity vulnerabilities like unsecured APIs and outdated
dependencies, necessitating significant improvements for enterprise use.
Despite these limitations, FakeFinder has influenced the development of other
detection frameworks and highlighted the importance of addressing biases and
ensuring transparency in Al tools. Its open-source codebase continues to serve
as a reference for developers exploring multi-model detection systems.

(IQTLabs, 2021)

TruFor (grip-unina, 2022):

https://github.com/grip-unina/TruFor

TruFor is a deepfake detection framework that integrates high-level RGB image
features with low-level artifacts captured in a learned noise-sensitive fingerprint,
effectively detecting and localizing both cheapfakes and deepfakes by
identifying anomalies from expected patterns in pristine images. Its transformer-
based architecture combines these features, enhancing anomaly detection
capabilities, while a reliability map highlights areas where localization
predictions may be less reliable, aiding forensic analysis by reducing false
positives. Extensive experiments have shown that TruFor outperforms existing
methods across various datasets, demonstrating robust generalization to
different manipulation techniques. Although archived in 2023, its open-source
codebase continues to serve as a reference for developers exploring multi-model

detection systems. (grip-unina, 2022)

30

Comparison:
The following table (Table 3) provides a comparison of several open-source tools and frameworks designed for deepfake detection. These tools
vary in terms of supported models, datasets, and key features, offering different strengths for researchers, developers, and cybersecurity

professionals. The comparison highlights the core functionalities, performance metrics (where disclosed publicly), and notable aspects of each tool.

Table 3: Overview Comparison of Open-source Tools and FrameWork

Tool/Framework Supported Models Datasets/Benchmarks Accuracy Metrics Notable Features

Supports direct uploads, URL

CNNs, GAN-b d . . ing, t del

DeepSafe s ase FaceForensics++, Celeb-DF |Notdisclosed _process_lng cus_ om mode
detectors integration, optional GPU

acceleration

Curated library of deepfake Plug-in framework for
Deepstar Notdisclosed and realvideos from Notdisclosed testing/retraining classifiers,
platforms like YouTube continuous improvement

Supports selection of
Multiple detection Not disclosed (supports MP4, (69.7% accuracy (audio algorithms based on
algorithms JPG, WAV formats) detection) accuracy, runtime, or year, 8
A5000 GPUs for backend

DeepFake-O-Meter

Focus on face-swap
Boken, Selimsef, Facebc.)ok/Kaggle Deepfake Not disclosed deepfakes, Désh—bas_ed
NTechLab, etc. Detection Challenge frontend, APl integration,

AWS containerized backend

FakeFinder

Combines high-level RGB
features with low-level
artifacts, transformer-based
architecture, reliability map

TruFor Notdisclosed Notdisclosed Notdisclosed

31

2.1.5 Limitations of Existing Deepfake Detection

Generalization Challenges in Cross-Domain Scenarios

A critical limitation of current deepfake detection models is their inability to
generalize effectively across diverse datasets and manipulation techniques. For
instance, while models like UCF and SPSL achieve high within-domain
accuracy (AUC >0.94), their cross-domain performance drops significantly
(AUC ~0.77-0.78) (Yan et al., 2023a; Liu et al., 2021). This discrepancy
highlights a reliance on dataset-specific artifacts rather than learning universal
manipulation patterns. The DF40 dataset, despite incorporating 40 deepfake
techniques, still struggles to simulate real-world variability, as models trained
on it may fail to detect novel or evolving methods like diffusion-based
deepfakes (Yan et al., 2024). Such gaps underscore the need for adaptive

architectures that prioritize invariant feature learning.

Bias and Inclusivity Issues in Training Data

Many detection tools exhibit biases rooted in unbalanced training datasets.
FakeFinder, for example, demonstrates higher false-positive rates for East Asian
faces compared to White faces due to its reliance on datasets dominated by
White actors (FakeFinder GitHub documentation). Similarly, spatial detectors
like FFD focus heavily on facial regions, rendering them ineffective for non-
facial manipulations (Li et al., 2017). These biases not only reduce fairness but
also limit practical applicability in global contexts. Tools like Intel’s
FakeCatcher further face challenges with pixelated or low-quality videos,
disproportionately affecting regions with limited bandwidth (Clayton, 2023).
Addressing these biases requires more diverse datasets and fairness-aware

training protocols.

Computational Overhead and Real-Time Limitations

Several state-of-the-art models, such as UCF and Deepware Scanner, suffer
from high computational demands, making them impractical for real-time
deployment. UCF’s spatial attention mechanisms, while effective, require
significant GPU resources, limiting scalability in resource-constrained

environments (Yan et al., 2023a). Similarly, DeepFake-O-Meter’s reliance on 8

32

A5000 GPUs for backend processing restricts accessibility for smaller
organizations (DeepFake-O-Meter GitHub). While lightweight models like
EfficientB4 address this partially, their accuracy trade-offs (AUC ~0.77)
highlight a persistent tension between efficiency and performance (Potrimba,

2023).

Overreliance on Specific Artifact Patterns

Frequency-based detectors like SPSL excel at identifying spectral anomalies but
risk overfitting to frequency artifacts unique to specific deepfake generation
tools (Liu et al., 2021). For example, GAN-generated deepfakes may leave
distinct high-frequency noise, whereas diffusion models produce subtler
artifacts, evading detection (Zhou et al., 2024). Similarly, tools like Microsoft’s
Video Authenticator, which focus on blending boundaries, struggle against
high-fidelity deepfakes that minimize visual inconsistencies (Kelion, 2020).
This narrow focus limits robustness against adversarial attacks or evolving

manipulation techniques.

Ethical and Practical Deployment Barriers

Many commercial tools, such as Sensity and Reality Defender, lack
transparency in pricing and customization, limiting accessibility for non-
commercial users (Sensity, 2023; Reality Defender documentation). Open-
source frameworks like Deepstar and FakeFinder, while valuable for research,
often suffer from cybersecurity vulnerabilities (e.g., unsecured APIs) and
incomplete documentation, hindering enterprise adoption (FakeFinder GitHub).
Additionally, tools like iProov’s liveness detection, though accurate in
controlled settings, face ethical concerns over privacy and potential misuse in

surveillance (G-Cloud 13 Service Definition, 2022).

Limited Multimodal Integration

Most tools specialize in single tyle of media analysing, such as video (Deepware
Scanner) or audio (Resemble AI’s Detect), but fail to address multimodal
deepfakes combining audio, video, and text. For example, Sentinel Al processes
metadata but does not integrate audio-visual synchronization checks, leaving it

vulnerable to lip-sync manipulations (Romain, 2023). Hybrid frameworks like

33

TruFor, which combine RGB and noise fingerprints, show promise but remain

experimental and lack large-scale validation (TruFor GitHub).

2.2 Literature Review of Development Methodology

2.2.1 Introduction

The development of component-based deepfake detection systems necessitates
a methodology that accommodates rapid technological advancements, evolving
adversarial threats, and complex ethical concerns. Given these challenges, it is
essential to select an appropriate development approach that ensures the system
remains adaptable, scalable, and ethically sound. This section critically
examines four methodologies—Waterfall, Agile, Component-Based
Development (CBD), and Spiral—assessing their relevance, strengths, and

weaknesses in the context of deepfake detection systems.

2.2.2 Waterfall Methodology

The Waterfall model, introduced by Royce (1970), follows a rigid, linear
sequence of phases: requirements gathering, design, implementation, testing,
and maintenance. Waterfall is characterized by thorough documentation and
structured planning, making it suitable for projects with well-defined, stable
requirements. However, its inflexibility renders it less effective for Al projects,
particularly deepfake detection systems, where frequent updates and rapid

adaptability are crucial.

Waterfall model

coding
impiemeneation
Operation/
deployment

Figure 15: Sample Structure of Waterfall Development Approach (Kirvan,
2022)

34

Relevance to the Project:

The Waterfall model offers clear milestones and a strong focus on
documentation, which can be beneficial during the early stages of dataset
curation. For instance, it aligns with the need to catalog images from various
deepfake generation models, such as StyleGAN and FaceForensics++, and
ensures detailed records of training protocols and model architectures. This
structured approach facilitates reproducibility, an important consideration in Al

research.

However, The Waterfall model’s rigid, sequential structure fundamentally
conflicts with the dynamic requirements of a component-based deepfake
detection system. In this project, where modular components (e.g., StyleGAN
validators, auto-encoder analyzers) must adapt incrementally to adversarial
advancements like diffusion models or StarGAN architectures, Waterfall’s
inflexibility becomes a critical bottleneck. Retraining detectors for new
architectures would require restarting the entire development cycle—redefining
requirements, redesigning connectors, and reimplementing components—rather
than leveraging the project’s modular framework to update individual units
independently. For instance, integrating a diffusion model detector without
disrupting existing components (e.g., FaceForensics++ validators) is impossible
under Waterfall’s linear phases, as the methodology lacks mechanisms for

iterative refinement.

Furthermore, Waterfall’s delayed validation phase, which occurs only after full
system implementation, undermines the project’s need for continuous cross-
dataset evaluation. In a component-based system, interoperability between
modules (e.g., connector units for output aggregation) must be tested iteratively
against diverse datasets (e.g., Celeb-DF, FaceForensics++) to ensure seamless
integration. Waterfall’s "big bang" testing approach risks late-stage discovery
of incompatibilities, such as mismatched input/output formats between GAN
artifact detectors and auto-encoder validators, which could derail deployment

timelines. This misalignment with modular, incremental development renders

35

Waterfall unsuitable for maintaining the agility and scalability required to
counter evolving deepfake threats.

Discussion: Due to its inflexibility and delayed validation, Waterfall is
unsuitable for projects like deepfake detection, where iterative updates and rapid

adaptation to emerging techniques are essential.

2.2.3 Agile Methodology

Agile methodologies, including frameworks like Scrum and Kanban, emphasize
iterative cycles, stakeholder collaboration, and incremental delivery. These
methodologies are particularly suited for projects that require frequent changes
and early feedback, such as deepfake detection systems, where new

manipulation techniques and datasets are continuously emerging.

(ELOPMEN, e‘g\opng,,r dncvmeh,,

of
ITERATION

¥ ITERATION

#5

]
™
4
)

z

Norsid

‘e.-,ﬂuc
Norsad

5t ING
«ﬁﬂﬂc

HERATION)

ITERATION ‘{5 ITERATION ITERATION
#2 B #4 #6
“
Q

o, 9, o
€) 6 €|
VeLopment VELoppent VeLopment

g
3
A
@
w
=~

STy

Desion
TESY,
*

DEsIGN

Figure 16: Sample Structure of Agile Development Approach (Damm, 2023)

Relevance to the Project:

Agile’s rapid prototyping capabilities are critical for the iterative development
of modular detection components in this project, such as GAN artifact detectors,
frequency analyzers, and auto-encoder validators. By structuring development
into 2—4 week sprints, Agile enables the incremental deployment and testing of
individual components. For example, a sprint could focus on refining
a StyleGAN artifact detector using synthetic data from FaceForensics++, with
immediate feedback loops validating its performance on emerging datasets like
Celeb-DF v2. This iterative approach ensures that components like
the CycleGAN face-swap validator can be refined in parallel, accelerating the

system’s responsiveness to adversarial advancements like diffusion models.

36

Agile also fosters cross-functional collaboration, essential for aligning technical
and ethical priorities in a component-based framework. During sprint planning,
researchers, developers, and ethicists jointly define interfaces for components
(e.g., standardized JSON outputs for connector units), ensuring interoperability
and ethical compliance from inception. For instance, ethicists might flag biases
in the training data for a StarGAN attribute editor detector, prompting
immediate dataset adjustments before integration.

While Agile’s continuous integration (CI) pipelines automate testing of
components against new threats, its reactive risk management struggles with
systemic challenges inherent to modular systems. Without standardized
interfaces, loosely coupled components risk incompatibility, accumulating
technical debt. For example, inconsistent input formats between a CRN-based
texture analyzer and a Face2Face expression detector could fragment the

system’s output aggregation.

Moreover, Agile’s sprint-centric focus may overlook proactive mitigation of
dataset bias or fairness gaps across components. While a sprint might optimize
a proGAN synthesizer detector for accuracy, it may fail to address embedded
biases in FaceForensics++ training data, risking skewed performance on
underrepresented demographics. This underscores the need to embed Spiral-
inspired risk cycles within Agile workflows to ensure ethical rigor alongside

rapid iteration.

Discussion: Agile is highly effective for early-stage prototyping and rapid
iteration but insufficient for maintaining a scalable, modular system over time,
particularly when it comes to managing the systemic risks associated with

deepfake detection.

2.24 Component-Based Development (CBD)

Component-Based Development (CBD) decomposes systems into independent,
reusable modules that can be updated and tested individually. This methodology
prioritizes modularity, interoperability, and incremental scalability, making it

highly suitable for Al systems like deepfake detection, where adaptability to

37

new techniques and the ability to integrate diverse components are key

requirements.

1] | | e
@g@

Sarvice | Component

2]

&

Figure 17: Sample Conceptual Structure of CBD approach (McGovern et al.,
2003)

Relevance to the Project:

Component-Based Development (CBD) is central to this project’s goal of
building a modular, adaptable deepfake detection system. By decomposing the
system into specialized, interoperable detection components—such as
a StyleGAN artifact detector or an auto-encoder reconstruction analyzer—CBD
enables targeted updates without system-wide retraining. For instance, when
confronting emerging adversarial techniques like diffusion models, only
the diffusion-specific ~ validator requires retraining, while pre-existing

components (e.g., CycleGAN face-swap detector) remain unaffected.

However, CBD introduces initial complexity that demands meticulous design.
Defining universal input/output formats (e.g., ensuring the auto-encoder
validator outputs tensor shapes compatible with the connector unit) requires
rigorous cross-component alignment. For example, inconsistencies between

the image preprocessing pipelines of the StyleGAN detector (normalized to [-1,

38

1]) and the auto-encoder validator (normalized to [0, 255]) could corrupt
downstream analyses. Additionally, frameworks like TensorFlow lack native
support for versioning components, complicating updates. If the StyleGAN
artifact detectoris upgraded to handle StyleGAN3-generated images,
dependency conflicts may arise if the new detector’s output tensor shapes
(e.g., [B, C, 256, 256]) deviate from the input expectations of downstream
components like the frequency-domain analyzer (which expects [B, C, 224,
224]). Without tools like MLflow to track component versions and validate
input/output compatibility, this mismatch could corrupt the analyzer’s spectral

artifact detection.

Discussion: CBD is the most suitable methodology for deepfake detection, as it
supports modularity, generalization, and adaptability, enabling targeted updates
and integration of new detection components without requiring full system

retraining.

2.2.5 Spiral Methodology

The Spiral model, introduced by Boehm (1986), combines iterative
development with systematic risk analysis. It progresses through four phases—
planning, risk analysis, engineering, and evaluation—repeated in cyclical loops.
This methodology is particularly suited for high-risk, complex projects that
require continuous risk management, making it a good fit for deepfake detection
systems, which must address evolving adversarial techniques and ethical

concerns.

SPIRAL MODEL IN SOFTWARE DEVELOPMENT

L.IDENTIFY OBJECTIVES 2. RISK ANALYSIS

~~ L
)

N\

TN\
o\

h‘ < }
\ ey ff
\\,
\"-ﬁm
4. EVALUATION 3. PRODUCT DEVELOPMENT

Figure 18: Sample Structure of Spiral Development Approach (Talreja, 2024)

39

Relevance to the Project:

The Spiral model’s risk-driven iterations are uniquely suited to the component-
based architecture of this deepfake detection system, where modular
components (e.g., StyleGAN validators, auto-encoder analyzers) require
continuous refinement against evolving adversarial threats. In Iteration 1, the
focus could be on mitigating dataset bias within the StyleGAN artifact
detector by curating ethnically diverse training data from FaceForensics++ and
Celeb-DF. This ensures the component’s robustness across demographics—
critical for real-world deployment. Iteration 2 would target generalization
failure by refining the CycleGAN face-swap validator and StarGAN attribute
editor detector to handle unseen architectures like diffusion models. Cross-
component testing would validate interoperability, such as ensuring
the frequency analyzer’s outputs align with the GAN classifier’s input
requirements.

Early prototyping in Spiral’s engineering phase accelerates the deployment of
lightweight, standalone components. For instance, a baseline GAN artifact
detector could be prototyped in Iteration 1 using PyTorch, tested on synthetic
StyleGAN data, and later expanded in Iteration 2 to include a CRN-based
texture validator for detecting perceptual loss-generated forgeries. This phased
approach ensures incremental scalability while maintaining system coherence.
Spiral’s holistic risk management concurrently addresses technical and ethical
risks. During Iteration 3, specific compliance like GDPR could be integrated
into the auto-encoder validator’s data handling protocols, while fairness audits
would evaluate bias in the Face2Face expression detector across gender and
ethnicity subgroups. This dual focus ensures ethical rigor without compromising
technical performance.

However, Spiral’s resource intensity poses challenges for a component-based
system. Frequent prototyping of interdependent modules demands
robust version control and documentation. For example, retraining the diffusion
model validator in Iteration 4 might require backward compatibility checks with

the connector unit to avoid system fragmentation.

40

Discussion: The Spiral model offers significant advantages in risk management
and iterative prototyping, making it an effective methodology for addressing the
evolving challenges of deepfake detection. However, its resource demands and

complexity may pose challenges in terms of project management and timeline.

2.2.6 Comparative Analysis of Methodologies

Table 4 provides a comparative analysis of key development methodologies—
Waterfall, Agile, Component-Based Development (CBD), and Spiral—
evaluating their suitability for the project’s dynamic requirements. This
comparison highlights critical trade-offs in adaptability, risk management, and
scalability, with CBD and Spiral emerging as strong candidates due to their

modular design and iterative risk-assessment capabilities.

Table 4: Comparative Analysis on Different Development Methodologies

Aspect

‘Waterfall

Agile

Component-Based

Spiral

Generalization Support

Low : Static design fails to
adapt to new architectures
(e.g., diffusion models).

Moderate : Iterative
updates improve
single components

(e.g., GAN detectors).

High: Modular
components (e.g.,
StyleGAN validator, auto-
encoder analyzer) reuse
features across datasets
(FaceForensics++, Celeb
DF).

High: Risk-driven iterations
target cross-architecture
gaps (e.g., CycleGAN —
StarGAN).

Poor - Requires full High: Rapid High: Independent Moderate : Controlled

retrai;lin qfor new prototyping of updates (e.g., upgrading iterations balance new
Adaptability e ¢ ddi individual modules Face2Face detector component integration (e.g.,

CC(K;ponﬁg i (¢.g. adding a (e.g., frequency without affecting GAN diffusion models) with

validaton). analyzer). validators). system stability.
. Low :.Reactl\-/e Moderate : Modular High: Proactive risk

Low: Late-stage testing handling of biases isolation limits system: mitigation (e uarter]l

Risk Management misses component (e.g., ethnic Y & 8.4 y

interoperability issues.

imbalance in training
data).

wide failures but lacks
ethical audits.

GDPR audits for connector
units).

Real-World Deployment

Delayed : "Big bang"
deployment risks
incompatibility (e.g.,
mismatched APIs).

Fast but
fragmented :
Components (e.g.,
audio deepfake
detector) lack
cohesion.

Structured:
Standardized connectors
(e.g., REST/JSON APIs)
ensure seamless
integration.

Controlled iterations:
Phased rollout (e.g., validate
StyleGAN detector — auto-
encoder — diffusion model).

Resource Demand

Low : Minimal overhead but
incompatible with dynamic
deepfake evolution.

Moderate : Sprint
cycles require team
coordination but
reduce rework.

Moderate : Upfront
design for component
interfaces (e.g.,
TensorFlow SavedModel
formats).

High: Frequent prototyping
(e.g., testing CRN validators)
and risk analysis (e.g.,
fairness metrics).

41

42

2.2.7 Summary:

The component-based deepfake detection project requires a methodology that
can effectively balance rapid adaptability, robust risk management, and modular
scalability. After evaluating various development approaches, including
traditional Waterfall, Agile, Component-Based Development (CBD), and Spiral
methodologies, the decision was made to adopt a hybrid Agile-Spiral approach.
This decision is motivated by the need to leverage Agile’s rapid iteration and
prototyping capabilities, while also integrating Spiral’s systematic risk
management to ensure that both technical and ethical challenges are addressed
in a structured manner. Additionally, incorporating CBD principles ensures the
system's modularity, scalability, and generalization across diverse datasets and

adversarial techniques.

Table 5: Rating of Hybrid Agile-Spiral Approach in different aspect

Aspect Hybrid Agile-Spiral
Generalization
Very High (modular + risk-driven)
Support
Adaptability Very High (Agile + CBD modularity)
Risk Management Very High (Spiral cycles + ethics)
Real-World
Structured + Controlled (CI/CD + risk phases)
Deployment
Resource Demand High (balanced via Agile efficiency)

The hybrid Agile-Spiral framework combines key features from both
methodologies. Agile sprints, which typically last 2—4 weeks, will focus on
rapidly developing and prototyping individual detection components, such as
GAN artifact detectors and frequency analyzers. Continuous integration and
deployment (CI/CD) tools will be used to automate the testing of these
components against new datasets and models, ensuring that the system stays up-
to-date with evolving deepfake techniques. At the same time, Spiral cycles will

guide the project through quarterly risk assessments, addressing both technical

43

risks and ethical concerns. The combination of rapid prototyping and risk
management ensures a comprehensive, adaptable development process.

The use of Component-Based Development (CBD) further supports the hybrid
approach by ensuring the deepfake detection system remains modular and
scalable. By developing decoupled components, such as an auto-encoder
validator or an audio deepfake detector, the system can be updated
incrementally as new models and techniques are introduced. Connector units,
such as standardized APIs, ensure that these components work seamlessly
together, allowing for easy integration of new modules without disrupting the

overall system.

Such hybrid methodology offers several benefits, including enhanced
adaptability, improved generalization across datasets, better ethical compliance,
and scalability for cloud-based deployment. The implementation roadmap is
divided into three phases, each aligning Agile sprints and Spiral cycles. In the
first phase, the focus will be on developing a baseline detector and mitigating
dataset bias. In subsequent phases, cross-architecture performance will be
evaluated, and ethical audits will ensure the system meets compliance standards.
In conclusion, the hybrid Agile-Spiral approach is the optimal strategy for this
deepfake detection project, combining the flexibility of Agile, the structured risk
management of Spiral, and the modularity of CBD. This approach will ensure
the system remains adaptable, scalable, and ethically sound as it evolves to meet

the challenges of deepfake detection.

44

CHAPTER 3

METHODOLOGY AND WORK PLAN

3.1 METHODOLOGY

3.1.1 Introduction

This methodology outlines the systematic process for developing a ensemble
deepfake detection system, emphasizing user-centric design, modular
architecture, and ethical compliance. The workflow is divided into three core
phases: Front-End Development, Back-End Development, and System
Integration. Each phase ensures that the system remains adaptable, scalable, and
ethically sound, addressing the needs of end-users while incorporating

continuous feedback loops.

3.1.2 Stage 0: Exploration, Prototyping, and Model Training

The process commenced with Stage 0, where baseline models were deployed
and trained to establish comparative performance benchmarks. Initial feasibility
tests were carried out in a Jupyter Notebook environment
(model deployment.ipynb on Google Colab), where multiple architectures —
including Xception, CapsuleNet, and YOLO — were instantiated to validate the
viability of deepfake detection across diverse model families. In parallel,
dedicated training was performed for four selected detectors: EfficientNet-B4,
Meso4, Mesolnception, and UCF. These model are selected due to high
accuracy and performance in review of Deepfakebench. (May refer back to
Literature Review Chapter) Among these, EfficientNet-B4 was integrated as the
principal detector within the ensemble framework, while Meso4, Mesolnception,
and UCF served primarily as baselines for comparative analysis of the final
system. Additional pretrained detectors were incorporated from team
contributions, thereby broadening the comparative scope. A simple ensemble
based on majority voting was also implemented to examine the benefits of

model fusion. Deliverables from this stage included reproducible training logs,

45

hyperparameter records, and baseline evaluation metrics (accuracy, precision,

recall) across curated test sets.

3.1.3 Stage 1: Foundational Component Development

With these baselines established, Stage 1, introduced the modular infrastructure
required for a scalable system. A unified detector framework
(unified detector.py) was engineered to abstract preprocessing, model loading,
inference, and result serialization into a consistent API contract. This was later
extended into a configuration-driven variant that consumed YAML/JSON
specifications, enabling detectors to be registered and instantiated dynamically
without code-level changes. Complementing this, single-model wrappers
(single model detector wrapper.py) were introduced to encapsulate individual
detectors, ensuring isolated execution and streamlined benchmarking. This
stage also introduced hyperparameter tracking systems, which ensured that
model configurations (e.g., optimizer choice, learning rate schedules, batch size)
were systematically documented and could be replicated across experiments.
Exit criteria for this stage included successful encapsulation of representative

models and validation of standardized output schemas.

3.1.4 Stage 2: Hardened Deployment and Orchestration

Stage 2 concentrated on system reliability and engineering discipline. No new
model training was introduced at this stage; instead, emphasis was placed on
transforming the system into a robust service layer. Key engineering practices
included the integration of Continuous Integration/Continuous Deployment
(CI/CD) pipelines on Git Action to automate testing and ensure reproducibility,
as well as the implementation of validation harnesses that enforced correctness
across detectors. Fault-tolerant orchestration mechanisms were introduced to
allow concurrent inference requests, supported by asynchronous execution
strategies that minimized latency under load. Performance benchmarks were
systematically defined, including sub-500ms average inference latency per
image, throughput exceeding 1,000 requests per day, and resilience to

malformed or corrupted inputs. Spiral reviews at this stage prioritized risk

46

reduction in three domains: scalability under concurrent requests, resilience to
adversarial perturbations, and maintainability of code across multiple

contributors.

3.1.5 Stage 3: Ensemble Aggregation and Cross-Domain Evaluation

In Stage 3: Ensemble Aggregation and Cross-Domain Evaluation, the platform
advanced from a collection of isolated detectors into an integrated ensemble
system. Ensemble v1 provided a minimal baseline with sequential and parallel
voting, while Ensemble v2 introduced a configuration-managed aggregation
framework capable of performing confidence-weighted fusion, adaptive
thresholding, and uncertainty estimation. This evolution culminated in the
ensemble detector package, a production-grade framework encapsulating
dynamic routing, advanced logging, structured error handling, and performance
monitoring. The most significant addition at this stage was the development of
an API server module, which exposed the ensemble detection capabilities
through RESTful endpoints. These endpoints adhered to a contract-driven
design, accepting JSON-formatted image payloads and returning structured
responses including prediction labels, confidence scores, optional heatmaps,
and standardized error codes. By establishing this API, the ensemble detector
was transformed from a research prototype into a consumable service aligned

with service-oriented architecture principles.

3.1.6 Stage 4: Modularization, Productionization, and Integration

Finally, Stage 4: Modularization, Productionization, and Integration completed
the transformation of the platform into a deployable system with front-end
accessibility. The detector output wrapper module enforced output
standardization across JSON, XML, and Python dictionary formats, while the
ensemble detector package acted as the inference engine exposed via its API
server. Integration was realized through a Laravel web application, which
operated as the user-facing interface. The Laravel system consumed the API
endpoints, authenticated users, and enforced role-based access control. General

users interacted with the platform through a simplified drag-and-drop interface

47

that returned binary “real/fake” classifications, with visualized component-level
metrics. Administrators could activate or deactivate detection modules directly
through the Laravel interface, effectively managing system configurations at
runtime without requiring redeployment. Production readiness was reinforced
through observability features, including log aggregation, error alerting,
performance dashboards, and rollback procedures. In addition, ethical
safeguards were embedded into the production pipeline, including demographic
fairness auditing, which ensured that disparities in false positive rates across
different demographic groups did not exceed five percent. Spiral reviews
continued at this stage to reassess new risks, such as the emergence of novel

deepfake generation methods and the accumulation of technical debt.

3.2 Project Work Plan

3.2.1 Introduction

This project work plan is designed to deliver a robust, ethical, and scalable
deepfake detection system utilizing ensemble methods with a strong focus on
modularity, flexibility, and performance. The project follows a hybrid Agile-
Spiral methodology, ensuring controlled increments, continuous feedback, and
risk management. The work plan is organized into four distinct phases, each

with a clear focus, milestones, and risk management strategies.

3.2.2 Phase 1: Front-End Development (Weeks 1-4)

Objective: Build a user-centric interface that is intuitive, accessible, and

compliant with ethical standards. The front-end will be developed in an iterative

process with continuous user feedback and usability testing.

Key Features:

e User Interface (UI) Design: The UI will provide an easy-to-use platform
for both technical and non-technical users, ensuring accessibility.

e Iterative Development: Regular usability testing and feedback will be

incorporated to improve user experience.

48

e Ethical Transparency: Clear information on data usage, system functions,
and model explanations will be provided to the users.
Milestone 1:

e Prototype of the Ul ready for internal review and feedback.
e Risk Assessment: Week 4 review to assess Ul usability, ethical

transparency, and potential biases in design.

Table 6: Key Element in (Phase 1)

Task Details Timeline
UI Design and Initial prototype based on user
_ _ ‘ _ Week 1-3
Implementation feedback and iterative testing

_ Ensure all relevant ethical data
Ethical Transparency

_ and model behavior is clearly Week 2-3
Integration]
communicated to users
Feedback and Continuous user feedback,
Week 34
Usability Testing adjustments, and refinement

3.2.3 Phase 2: Back-End Development (Duration: Weeks 5-9)

Objective: Develop modular detection components for the system. This phase

focuses on building the core back-end infrastructure and ensuring model

validation and version control.

Key Features:

e Modular System: Independent model wrappers for different deepfake
detection models, with standardized input and output formats.

e Version Control and Risk Management: Rigorous validation and testing
procedures to ensure robustness and performance.

e Ensemble Integration: Assemble multiple detection models into an

ensemble system for improved accuracy and resilience.

49

Milestone 2:

e Completion of back-end components, with a fully operational pipeline ready
for integration.

o Risk Assessment: Week 9 review to evaluate model robustness, fairness,

and potential technical debt.

Table 7: Key Element in (Phase 2)

Task Details Timeline
Build and integrate wrappers for
Model Wrapper .
individual models (e.g., YOLO, Week 5-7
Development
Xception, EfficientNet)
Evaluate models on performance
Model Validation and o
. benchmarks (accuracy, precision, Week 68
Testing
recall, etc.)
Ensemble System Implement initial ensemble
Week 7-9
Development model

3.2.4 Phase 3: System Integration (Duration: Weeks 10-12)

Objective: Integrate all the system components into a unified platform. The
focus will be on finalizing the back-end and front-end integration, ensuring
performance benchmarks, and final risk assessments.

Key Features:

e Seamless Integration: Integration of back-end detection models with the
front-end Laravel Ul for real-time user interaction.

e Risk Monitoring: Continuous monitoring of system performance,
identifying any potential issues such as technical debt and system
vulnerabilities.

¢ Final Testing and Deployment: Ensure the system meets all functional and

non-functional requirements, including scalability and robustness.

Milestone 3:

Deployment of the complete system for end-user access.

50

Risk Assessment: Final audit of ethical compliance, system stability, and

technical debt management.

Table 8: Key Element in (Phase 3)

Task Details Timeline
Back-End and Front- | Integrating ensemble model,
. _ Week 10-11
End Integration backend logic, and front-end UI
Ensure the system meets
Performance performance benchmarks
o _ ‘ Week 11
Optimization (throughput, inference time,
scalability)
‘ ‘ Test all system components, fix
Final Testing and ‘
bugs, and deploy the final version Week 12

Deployment

for user access

3.2.5 Expected Project Tools:

51

The selected development tools directly support the iterative refinement of deepfake detection components and the risk-driven validation cycles

outlined in the work plan. These tools are integral to the system's development, ensuring alignment with the objectives of accuracy, scalability, and

ethical compliance. Below is an overview of the tools and their applications in the project

Table 9: Table of Expected Tools Involved in Development

debugging the code

Tool Purpose Application in the Project

Deep learning frameworks for Facilitate rapid prototyping of deepfake detection models. These
TensorFlow / PyTorch building and training detection frameworks power the individual models within the ensemble system,

models ensuring robust and efficient model training.

Cloud-based notebooks for Provide an interactive development environment where models are trained
Google Colab / Kaggle collaborative development and and tested in real-time. Supports easy experimentation with different

experimentation deepfake detection architectures.

. o . Used for writing and editing Python scripts, model implementation, and

Visual Studio Code Code editor for writing, testing, and managing version control via Git. Provides a rich environment for

development with support for various plugins.

Laravel

PHP framework for backend
development and API integration

Used for building the backend of the project, handling server-side logic,
model management, and user authentication. Integrates with the deepfake
detection system through APIs.

Containerization platform for

Ensures consistent environments across development, testing, and

52

Docker packaging applications and production. It packages the models and dependencies into containers for
environments easy deployment and scalability.
) . Manages the source code and enables collaboration among team
. Version control and collaboration . . : :
GitHub latform members. Tracks code changes and provides integration with Continuous
P Integration (CI) systems.
Visualization toolkit for tracking Helps visualize training metrics such as loss and accuracy during model
TensorBoard model metrics and performance development. Assists in monitoring model improvements and comparing

during training

performance across various experiments.

Laravel (Frontend
Integration)

Framework for frontend API
interaction

Laravel provides backend management for the user interface where the
deepfake detection results are displayed, ensuring seamless integration
with frontend components.

33 System Design and Requirements

3.3.1 Introduction

53

The preliminary result of this project outline the system specifications, ensuring

alignment with the core objectives of generalization, accessibility, and

scalability in deepfake detection including functional and non-functional

requirements, use case descriptions, and architectural workflows that define the

proposed web platform’s capabilities.

3.3.2 Project Specification

3.3.2.1 Functional Requirement:

Table 10: Functional Requirements

FR
Requirement Description Priority
Code
The system distinguishes between
Normal Users and Administrators.
User Authentication Normal users can access detection
FR-001 High
and Role Management | functions, while administrators
manage models and monitor
performance.
Users upload images (JPEG, PNG, <4
MB). Uploaded files are validated for
Image Upload and
FR-002 type, size, and resolution. Invalid High
Validation
inputs return meaningful error
messages.
Users can select either a single
Single-Model and
FR-003 detection model or an ensemble of High
Ensemble Detection
models. The chosen model(s)

process the image, and results are

returned with confidence scores.

54

FR-004

Detector Execution

Each modelwrapper preprocesses
inputs, performs inference, and
produces standardized outputs

(label, confidence, inference time).

High

FR-005

Ensemble Aggregation

The ensemble engine supports
majority voting and confidence-
weighted strategies, combining
predictions from multiple detectors.
The system tolerates failure of

individual models.

High

FR-006

Result Presentation

The Laravel front end displays
detection results (“real” or “fake”)
with confidence scores. If ensemble
mode is selected, both per-model
outputs and the aggregated

ensemble result are shown.

High

3.3.2.2 Non-functional Requirement:

Table 11: Non-Functional Requirements

NFR
Code

Requirement

Description

Priority

NFR-001

Performance

Images must be processed within <800 ms
on average and <1200 ms at the 95th

percentile.

High

NFR-002

Accuracy and

Generalization

Ensemble detection must achieve 290% F1-

score on benchmark datasets and not lose

High

more than 5% AUROC in cross-domain

evaluations.

55

NFR-003

Scalability

The system must handle 21,000 daily
requests with 99.9% uptime, supporting

deployment in containerized environments.

High

NFR-004

Reliability

The system must return results even if one
or more models fail, using retries and

timeouts for resilience.

High

NFR-005

Security

File uploads must be sanitized, HTTPS must
secure communications, and user data

must not persist beyond inference.

High

NFR-007

Maintainability

New models can be integrated via
configuration files without altering core

code. APIs must comply with OpenAPI 3.0.

Medium

NFR-008

Usability

The interface must remain simple and
intuitive, allowing non-technical users to
select detection type (single model vs

ensemble) and view clear outputs.

Medium

3.3.2.3 Use case Diagram

This use case diagram (Figure 25) visualizes the core interactions between users

and the proposed deepfake detection system, encapsulating key functionalities

such as media upload, component selection, and report generation. By mapping

roles (e.g., General User, Admin) to system capabilities, this diagram clarifies

how the platform balances accessibility for non-experts with advanced controls

for administrators.

56

==Ensemble Web App==
== Extend =
Login | I *
// e -
/ - ' Register
\-_‘_‘_‘\‘__ _ | Extension Point /
‘—‘\"“'N—-._,__ - - Mew User .
Users | Detectimage -
T— < Included == B
\ (' Select Detect
1 Check Result History | Option
—]
General User Admin \ - ™~
| Manage Model | i
S~ - . Assumptions:
« The last user of the system is
General User and Admin
« Only admin is allow to manage

availability of model in the
system

« Admin user expected to use
same login page with general
user

Figure 19: Use Case Diagram

3.3.2.4 Use Case Description:

The use case descriptions in this section expand on the interactions outlined in
the use case diagram (Figure 25), providing granular insights into system
workflows such as user authentication, media processing, and component
management. By detailing step-by-step scenarios—from General Users

uploading images for detection to Admins integrating new modules.

Use Case Name: Login ID: UC- | Importance Level: high
001

Primary Actor: User | Use Case Type: Brief, Real
(General User/Admin)

57

Brief Description: Users (both general and admin) must log in to the system

to access the functionalities based on their role. The system checks the

credentials, grants access and logs them in to the appropriate interface.

Precondition: The user must have registered an account. The user is on the

login page.

Postcondition: The user is authenticated and logged in, redirected to their

respective home page or dashboard based on their role.

Relationships:

Association : User
Include :n/a
Extend : Register Account (UC-002)

Generalization: n/a

Normal Flow of Events:

1.

User Navigates to Login Page: The user opens the login page of the

web application.

User Enters Credentials: The user enters their username and

password in the login form.
System Verifies Credentials:

3.1 The system checks the entered username and password against

the stored data.
3.2 If the credentials are correct, the system proceeds to step 4.

3.3 If the credentials are incorrect, the system displays an error

message (see Exception Flow).

System Authenticates User: The system authenticates the user,
assigns the correct role (General User or Admin), and grants access

to the system.

System Redirects User: The user is redirected to their respective

home page based on their role (either General User Dashboard or

58

Admin Dashboard).

Sub-flows:

Alternate/Exceptional Flows:

o Invalid Credentials: If the user enters incorrect login details:

o The system will display an error message like "Invalid

username or password".
o The user can try again with correct credentials.

o Network Issue: If the system cannot connect to the database due to a
network error, an error message "Network error, please try again"

will be displayed, and the user must retry later.

Use Case Name: Register ID: UC- | Importance Level: high
002

Primary Actor: User | Use Case Type: Brief, Real
(General User)

Brief Description: A new user registers by providing necessary details. After

registration, they can log in and access the system.

Precondition: =~ The user is not already registered. The user is on the

registration page.

Postcondition: The user account is created, and they are redirected to the

login page to enter their credentials.

Relationships:
Association : User

Include : n/a

59

Extend : Register Account (UC-002)

Generalization: n/a

Normal Flow of Events:
1. User Navigates to Register Page: The user clicks on the "Register"

link and is taken to the registration page.

2. User Enters Registration Details: The user fills in the required

fields like name, email, password, and other necessary details.

3. System Validates Input: The system checks if all required fields are
filled and if the email is valid.

3.1 If the inputs are valid, the system moves to step 4.

3.2 If any input is invalid (e.g., missing field or invalid email

format), the system prompts the user to correct the error.

4. System Creates User Account: The system creates a new account
in the database with the entered details and stores the user's

credentials securely.

5. System Redirects to Login Page: The user is redirected to the login

page with a message confirming that their account has been created.

Sub-flows:

Alternate/Exceptional Flows:
Alternative Flow(s):
o Email Already Registered: If the user attempts to register with an

already used email:

o The system will show a message like "This email is already
registered" and prompt the user to use a different email or log

in if they already have an account.

Exception Flow(s):

60

e System Error During Registration: If there is an issue with the
database or server while creating the account, an error message will
be displayed (e.g., "An error occurred while creating your account,

please try again later").

Use Case Name: Detect | ID: UC- | Importance Level: high
Image 003

Primary Actor: User [General | Use Case Type: Detail, Real
User, Admin]

Brief Description: The user uploads an image to be analyzed by the deepfake
detection model. The system processes the image and returns a prediction

with a confidence score.

Precondition: The user must be logged in and on the detection page.

Postcondition: The user must be logged in and on the detection page.

Relationships:
Association : User
Include :n/a
Extend :n/a

Generalization: n/a

Normal Flow of Events:
1. User Selects "Detect Image' Option: The user selects the option to

detect deepfakes from the available dashboard or menu.

2. User Uploads Image: The user selects and uploads an image file
(JPEG, PNG).

3. System Validates Image: The system checks the file type and size.
If the image is invalid (e.g., too large, wrong format), the system

prompts the user to upload a valid image.

61

4. System Preprocesses Image: The image is passed through a
preprocessing pipeline (e.g., resizing, normalization) to make it

ready for model input.

5. User Select Detect Choice: Single model or ensemble, if single

model selected, user will be prompted to choose which model to use

6. System Detects Deepfake: The system runs the preprocessed image
through the selected model(s) and returns the prediction result,

including the label ("REAL" or "FAKE") and confidence score.

7. System Displays Result: The result is displayed to the user on the
front end, showing the prediction label, confidence score, and any

additional relevant information (e.g., model used).

Sub-flows:

Alternate/Exceptional Flows:

Alternative Flow(s):

e Invalid Image Format or Size: If the uploaded image doesn't meet

the size or format requirements:

o The system prompts the user to upload a valid image with the

appropriate format and size.
Exception Flow(s):

e Model Processing Error: If the model fails during inference (e.g.,
due to a corrupted model or system crash), an error message is

displayed, and the user is instructed to try again later.

62

Use Case Name: Check Result | ID: UC-00 | Importance Level:
History high

Primary Actor: User [General | Use Case Type: Detail, Real
User, Admin]

Brief Description: ~ Users can view their previously uploaded images along

with the results of deepfake detection.

Precondition: The user must be logged in, and there should be previously

processed images in the system.

Postcondition: ~ The user can view a list of past detection results, including

the images and corresponding predictions.

Relationships:
Association : User
Include :n/a
Extend :n/a

Generalization: n/a

Normal Flow of Events:
1. User Selects "Check Result History" Option: The user navigates
to the history section on the dashboard.

2. System Retrieves Historical Data: The system queries the database

for the user's previous detection results.

3. System Displays Results: The system displays the past results,
including the image and its predicted label (REAL/FAKE) along

with the confidence score.

Sub-flows:

Alternate/Exceptional Flows:

Alternative Flow(s):

63

e No Previous Results: If the user has no previous detection results,
the system will display a message like "No results found" or prompt

the user to upload an image for detection.
Exception Flow(s):

e System Error During Data Retrieval: If the system encounters a
problem while fetching results (e.g., database issues), an error

message will be shown.

Use Case Name: Manage Model ID: UC- | Importance Level:
005 high

Primary Actor: Admin Use Case Type: Detail, Real

Brief Description: ~ The admin manages the deepfake detection models in

the system, including enabling, disabling, or updating model configurations

Precondition: ~ The user must be an Admin, and the system should have at

least one model in the system.

Postcondition: The system's model configurations are updated accordingly.

Relationships:
Association : Admin
Include : n/a
Extend :n/a

Generalization: n/a

Normal Flow of Events:
1. Admin Selects ""Manage Model" Option: The admin navigates to

the model management section.

2. Admin Modifies Model Configurations: The admin can enable,
disable, or update, upload new model file, weight or delete the

configurations of available models.

64

3. System Updates Model Configurations: The system saves the
changes to the model configurations, which could include updating
the model’s path, enabling/disabling it, or changing its processing

parameters.

4. System Confirms Changes: The system confirms the success of the

update and applies changes to the active model configurations.

Sub-flows:

Alternate/Exceptional Flows:

Alternative Flow(s):

o Invalid Configuration Input: If the admin provides incorrect
configuration details, an error message will be shown, and the

system will prompt the admin to correct it.
Exception Flow(s):

e Access Denied: If a non-admin user attempts to access the model

management page, an "Access Denied" message will be shown.

3.3.3 High Level System Flow Diagram:

The high-level system flow diagram (Figure 26) synthesizes the use case
scenarios and technical specifications into a cohesive visual blueprint,
illustrating the end-to-end workflow of the deepfake detection platform. From
user-initiated media uploads to backend processing via modular components,
this diagram clarifies how data traverses the system, emphasizing critical

decision points such as dataset validation.

65

Laravel Web

1
1
1
= '
PHP my '
admin
V) :
< 1
1 1
1 1
I 1
| A4
v comedsr |
1
1
' ast API Service
1 << Laravel Based API Bridge »»
1
e e e e e =
’
1
| 1
| 1
API Server Module 1
<< Python Flask > 1
1
1
1
1
Y
Ensemble Detector
/7 N

Detector Output
Wrapper 4

L

Model B
___________ Deployment S
Computation

.K —

Figure 20: High Level System Flow Diagram

3.3.4 System Architecture Diagram
The System Architecture Diagram provides a detailed view of the structure and
interaction flow of the Deepfake Detection System. It is organized into several

distinct layers, each serving a specific function in the overall architecture.
Key Components:

Frontend Layer:
The React Component handles the user interface (UI), enabling users to
interact with the application. It communicates with the backend API to

request image uploads, predictions, and detection results. The View

66

represents the visual output, displaying results and providing interaction

points for users to upload files and adjust settings.

Backend Layer:

The Laravel Router manages API routing by directing requests to the
appropriate controllers such as DetectionController, AdminController, and
UserController, while the Authentication Middleware ensures secure access

by verifying user identity and roles (user/admin).

Business Logic Layer:

The Detection Service powers the core detection process by working with
both image processing and machine learning components, while the Model
Management Service oversees deepfake detection models, handling tasks
like loading configurations, retraining, and updates. The User Service
supports user-related functions, including managing data, authentication,

and role assignments.

ML Processing Layer:

The Ensemble Detector System serves as the main machine learning engine
for deepfake detection, leveraging multiple models like Xception,
EfficientNet, and YOLO. Supporting it, the Preprocessing Pipeline prepares
images through steps such as resizing and normalization, while the
Datal.oader ensures proper loading and preparation of image data. A
Wrapper provides a unified interface to integrate various detection models
seamlessly into the ensemble, and the Ensemble API Server manages
prediction logic, combining results from different models to deliver final

outputs.

Data Layer:
The MySQL Database manages structured data such as user information,

uploaded image metadata, model configurations, detection results, and

67

system events, while the File Storage system is responsible for storing

uploaded image files and model weights.

This architecture ensures a modular and scalable deepfake detection system that
integrates various components, such as machine learning models, user
management, and detection workflows, while maintaining high performance

and flexibility for future updates and improvements.

=Tl / [-

Figure 21: System Architecture Diagram

3.3.5 ERD diagram (Laravel Web Application)
This Entity Relationship Diagram (ERD) illustrates the key relationships and
structure of the database for the Deepfake Detection System. The ERD provides
an overview of how different entities in the system, such as Users, Uploaded
Images, Detection Results, Model Configurations, and System Events, interact
with each other.
Key Entities:
Users: Stores information about the system's users, including their roles
(e.g., admin, general user).
Uploaded Images: Contains metadata for each image uploaded by users for

detection, including file information and storage paths.

68

Detection Results: Holds the output of the deepfake detection process,

including prediction results, model details, and confidence scores.

Model Configs: Contains configuration data for individual machine

learning models, such as model type, parameters, and settings for each

detection model.

System Events: Tracks system-related events like model performance,

system errors, or actions triggered by users for auditing and monitoring

purposes.

Relationships:

Users in the system can upload multiple images and generate multiple detection

results, establishing a direct link between each user, their uploaded images, and

the corresponding outcomes. Uploaded images are analyzed and tied to

detection results, ensuring that every image has a clear detection outcome. Each

detection result is further connected to single or a list of model configuration,

indicating which models were used for analysis. Additionally, system events are

tracked and associated with users to monitor actions and events triggered within

the system, providing a complete view of user activity and system interactions.

nnnnn

uuuuu

tmestamp
tmestamp

Model_conf
[l

disiay_name
descrhon
e
tamenark
et sam

impoel_path

ciasa_name

bypass_m

Inciude_nference_ime

include_probabilties

ecmal_places

Upgatsd_at

srog [nia_pam

Unioad

=

Inciucea

Peorm

)

amat
e _vered_at
passwora

e
rememe_oken
crested_st

uptated &t

Detect

Detection_resuls

Inavidual predictons

processing_ime

Figure 22: ERD Diagram

Parform

3.3.6

This sequence diagram illustrates the end-to-end workflow of the deepfake
detection system. It begins with the user uploading an image through the web
interface, which triggers the Laravel API to handle the request. The image file
is stored in file storage, while metadata is saved in the database. Once stored, a
detection request is initiated, passing the image to the Ensemble API. The
Ensemble System coordinates multiple models to perform predictions,

aggregates the results, and returns a consolidated detection outcome. Finally,

the Laravel API saves the

Image Detection Sequence Diagram

detection result in the database and delivers the

response back to the user interface for result display.

‘ User ‘ \Web Interface Laravel API ‘ Database File Storage Ensemble AP| Ensemble System| ‘ Models
Upload Image
POST iapilupload
. Store Image File :
| Sare Image Meiadata
— :
...... mege e | i
‘¢ Upoad Success ¢ image D¢ i
POST fapidetect | :
Detection Request
| © ensemble predicl)
model predict()
P Deeciorfesuts] |
Voting
H Calculation
| ' ftectionResult
i . -
Ensemble Detection Result
| Save Delaction Resut |
—
Detection Response H
e R
Result display

Figure 23:

Detect Image Sequence Diagram

70

34 Test Plan

3.4.1 Introduction

The testing strategy for the ensemble deepfake detection system was developed
with the explicit aim of ensuring that every implemented feature was rigorously
validated. Rather than testing hypothetical or future features, the focus remained
on the actual codebase, thereby aligning the evaluation with the project’s scope
and objectives. The test plan was designed as a multi-layered process, moving
from fine-grained unit tests through integration testing to a final end-to-end
validation stage. In doing so, the strategy provides assurance that individual
modules operate correctly in isolation, that these modules interact smoothly
when combined, and that the complete system behaves reliably under realistic
usage scenarios. Importantly, the test plan also covers both functional and non-
functional requirements, with attention to accuracy, latency, robustness, and

fairness.

3.4.2 Objectives

The test plan aims to confirm that all functional modules of the system operate
correctly under both normal and adverse conditions. It seeks to verify that
system components integrate seamlessly, ensuring reliable end-to-end
workflows. Additionally, the plan focuses on ensuring that performance goals,
such as latency, throughput, and scalability, are met. The robustness of the
system is also tested, particularly in handling errors, corrupted inputs, and
concurrent requests. Finally, the test plan aims to demonstrate that the system's
outputs meet the expected standards of accuracy, fairness, and usability,

ensuring the platform performs as intended across a variety of scenarios.

3.43 Test Suite Summary
Total Tests Implemented: 44

Table 12: Test Suite Summary

Category Count Coverage Focus

Core modules (wrappers, configs, output

71

Unit Tests 35))

formatting, ensemble aggregation)
Integration ; Cross-module orchestration, configuration-
Tests driven workflows, model integration

Full system validation under production-like
Stress Tests 1 . . .

stress, including load and scalability

System robustness against compression,
Adversarial)))

5 noise, format manipulation, and ensemble

Tests

disruptions

3.4.3.1 Unit Testing

Unit testing formed the backbone of the test framework, accounting for thirty-

six test cases across seven critical modules. These tests were essential for

validating correctness at the function and class level, ensuring that each building
block of the system performed as intended. The Detector Output Wrapper, for
example, required particularly thorough validation because of its role in
harmonizing outputs from diverse models. Similarly, modules such as

Configuration Management and DetectionResult were scrutinized to guarantee

resilience against invalid inputs, schema mismatches, and serialization errors.

The table below summarizes the unit test suites and their coverage:

Table 13: Summary of Unit Test Cases

Suite Tests Coverage Focus
Detector TC-DOW-001 | Initialization, configuration loading,
Output to TC-DOW- [method detection, output conversion,
Wrapper 008 error handling, metadata extraction,

72

prediction invocation correctness,
configuration integration (ensures proper
behavior across model types and

configuration formats).

Detection

Result

TC-DR-001 to
TC-DR-008

Data structure validation, JSON and
dictionary serialization, confidence score
validation, timestamp handling, metadata
preservation, integrity checks, and
output detail levels (ensures correct
formatting for JSON, CSV, and other

export formats).

Configuration

Management

TC-CM-001 to
TC-CM-008

YAML loading, schema compliance
validation, model instantiation from
configuration, configuration persistence,
error handling for invalid configurations,
environment variable overrides, fallback
handling for incomplete configurations,

and nested configuration structures.

Ensemble

Strategies

TC-ES-001 to
TC-ES-003

Weighted average voting, majority
voting, and confidence-based strategy
(ensures correct ensemble decision-
making and aggregation of results from
multiple models). 2 Test Skipped as the
Ensemble System currently only support

majority voting strategic

Model
Loading

TC-ML-001 to
TC-ML-002

Configuration-driven model instance
loading, model validation, and
configuration verification (ensures
models are loaded correctly from
configuration files and validated against

defined parameters).

73

JSON compatibility, exporting multiple
formats (FULL, MINIMAL, SIMPLE,

Output TC-OF-001 to | DICT, LEGACY), and output formatting
Formats TC-OF-003 | function (ensures consistent output in the
required formats for easy integration and
data exchange).
Output configuration creation, validation
of field mappings, and integration with
Output TC-0OC-001 to
output formatter (ensures output fields
Configuration | TC-OC-003

are correctly mapped and formatted

according to the configuration settings).

74

List of Unit Test:
Table 14: List of Unit Test Cases
Test Expected o Test
Case ID Test Case Name Purpose Test Focus Outcome Success Criteria Timeout
Wrapper
initialization with a
Validates that the real model instance. | The model should The wrapper
Ensures that the be successfully T
TC- Wrapper DetectorOutputWrapper o e 1 initializes correctly
e 1e . . S . wrapper sets initialized and 10
DOW- | Initialization with | correctly initializes with a . . and calls the
! attributes (e.g., produce valid . seconds
001 Real Model real model instance and can . S : predict method
. e model instance, predictions without | = ..
produce valid predictions. within 5 seconds.
model name) and erTors.
produces valid
predictions.
Ensures that the . The OutputConfig All configuration
. Configuration should load
TC- Configuration OutputConfig and other . files load correctly
. . loading, schema correctly, and field . . 10
DOW- | Loading and configuration files are L2 . with valid field
s validation, and field | mappings should . seconds
002 Validation correctly loaded and . 1 mappings and no
. mapping validation. | be correctly
validated by the wrapper. . errors.
applied.
. Automatic detection The correct method
Model Method Verlﬁes'that the wrapper can of model prediction The system should is identified and
TC- . automatically detect and . identify the correct .
Detection and . methods (predict, . used in under 1 10
DOW- handle different model N method and use it .
003 Interface prediction methods (predict predict_single, to produce results second, and valid | seconds
Adaptation > | forward) and predictions are

forward).

adapting the

without errors.

returned.

wrapper
accordingly.

75

Validates that the wrapper

Correct execution
of model prediction

Predictions are
successfully
executed with

Prediction results
are returned with

TC- . correctly invokes the model's valid confidence
¢ Prediction Method LY methods and correct parameter 10
DOW- . prediction methods and . . scores, and method
Invocation . - ensuring that passing, and the . . seconds
004 produces valid prediction ! invocation
parameters are result contains o
results. . completes within 5
passed correctly. valid confidence
seconds.
scores.
Conversion of Outputs are
model output The system should consr,)is tentl
Verifies that the system formats (e.g., convert all model Y
TC- Output Format . : . converted into
. consistently converts model | tuples, dicts, arrays) | outputs into the . 10
DOW- | Conversion and . . .) DetectionResult
. L. outputs into a standardized into the DetectionResult . seconds
005 Standardization . . . format with the
DetectionResult format. standardized format, ensuring . .
. . required fields in
DetectionResult consistent fields.
under 5 seconds.
format.
Metadata such a
. e data such as All metadata fields
Metadata extraction | timestamps and
Ensures that metadata (such . (e.g., confidence,
TC- Metadata and preservation confidence scores .
. as confidence scores,) , timestamp) are 10
DOW- | Extraction and . during the model’s | should be
. timestamps) are correctly . preserved correctly | seconds
006 Preservation output conversion preserved

extracted and preserved.

process.

accurately in the
final output.

in the final output
without data loss.

Tests the system's ability to

Handling invalid
model instances,

Clear error
messages should

The system raises
descriptive

76

lT)(C)-VV- Error Handling for hicl)lglleenllr:t]iihr(rilc?criels such as missing prediction | be raised for exceptions for 10
007 Invalid Models Fnissin cediction rile thods methods, or models | invalid models, invalid models and | seconds
or faultg pmo dels that raise with no system fails gracefully
Y) exceptions. crashes. without crashes.
Timeouts are
e The system should
Verifies that the system EEZS;EE;H ;?rizut terminate the Eigifsiﬁgzcg
TC- Timeout Handling | correctly handles timeout mana em,en ¢ angy prediction attempt freed u 15
DOW- | and Resource scenarios and resource & ’ in case of timeout P
. resource cleanup appropriately. No | seconds
008 Management cleanup after a timeout or . and clean up
) after timeouts or . memory leaks or
model failure. . resources without .
failures. crashes during
memory leaks. .
execution.
. The
Verifies that the I(;Zizgggn(;{f;?slt DetectionResult DetectionResult
TC-DR- Detection Result DetectionResult object is obiect with all object should obiect created with | 10
Creation with created with all required . contain all required J
001 necessary fields, valid values for all | seconds
Complete Data fields (e.g., label, . fields (label, .
. ensuring data required fields.
confidence, is_fake). confidence,

integrity.

is_fake, etc.).

Confidence scores

71

. . . Data validation for | should be within Inva1'1 d data should
Validates the data integrity the confidence the valid ranee be rejected, and
TC-DR- | Detection Result and ensures correct data & valid data should 10
ey score, label values, | (0.0-1.0), and the .
002 Data Validation types and value ranges for be accepted, with seconds
fields in DetectionResult gnd boolqan fields la}bel should be appropriate
' in DetectionResult. | either ' REAL' or validation
'FAKE'. ’
Conversion of the The dictionary)
Verifies the conversion of DetectionResult format should DetectionResult
. . . : . . should convert to
Dictionary DetectionResult to object to dictionary | retain all data .
TC-DR- . o dictionary format | 10
Conversion and dictionary format and format and fields, and nested .
003 e e . Cp . with preserved data | seconds
Serialization ensures no data loss during validating the objects should be
N .. and correct
serialization. structure and serialized
. . structure.
integrity. correctly.
The JSON
. Serialization of the prqd uced should be JSON serialization
Ensures that DetectionResult DetectionResult to valid and able to and deserialization
TC-DR- | JSON Serialization | objects can be serialized into deserialize back 12
e . - JSON, followed by | . should preserve
004 and Deserialization | JSON and deserialized back S into a) . seconds
. deserialization back . data integrity
without data loss. . : ; DetectionResult .
into a valid object. . oy s without errors.
object with intact
data.
TC-DR- | CSV Export format. ensurine the correct DetectionResult to | should have the headers and data 10
005 Functionality ’ g CSV, verifying correct headers and seconds

generation of headers and
data.

correct formatting

data values with

format for all
fields.

and readability of
the file.

correct formatting
for analysis.

78

Confidence scores

Confidence values

Confidence score should always be should remain
Verifies that the confidence | validation and within the valid .
Confidence Score N . o consistent and
TC-DR- N score is within the valid calibration for edge | range and 10
Validation and) accurate for
006 . . range (0.0 to 1.0) and that cases (e.g., values consistently S seconds
Calibration ST . various inputs, and
calibration is accurate. near 0.0, 1.0, or calibrated to reflect
. out-of-range values
very small values). | the model's :
. should be rejected.
certainty.
Handling an .
andling and The system should | Timestamps should
e storage of
. Tests the system's ability to . . properly convert be accurately
Timestamp . . . timestamps 1n
TC-DR- . . handle timestamps in various . and store converted and 10
Handling and Time . various formats, . .
007 formats and time zone . . timestamps, stored, with correct | seconds
Zone Support . including UTC L . .
conversions. . . respecting time handling of time
conversion and time :
. zones. zone differences.
Zone comparisons.
. All metadata fields
Extraction, should be All metadata
Verifies that metadata preservation, and should be
Metadata . . TR preserved,
TC-DR- . associated with serialization of . preserved and 10
Preservation and . . i serialized, and
008 DetectionResult is preserved | metadata like model returned correctly, | seconds
Structure returned correctly

and serialized correctly.

information,
detection time, etc.

along with the
detection result.

with no data loss or
corruption.

79

Y AML loadin The YAML YAML files load
YAML Verifies that YAML schema vali datgi’on configuration file | correctly, and
TC- Configuration configuration files are and ensuring the > | should be loaded structure validation | 10
CM-001 | Loading and correctly loaded and parsed correct stru égture of and parsed passes. No errors seconds
Parsing by the system. confieuration files correctly without during the parsing
& " | errors. process.
Schema validation, Invalid . Invalid .
) . configurations configurations
Ensures that configuration checking for should be reiected. | should triecer clear
TC- Configuration files conform to the required fields, and and correct ! ’ error mesfag o 12
CM-002 | Schema Validation | predefined schema and verifying default . C8SAECS, seconds
validation rules values in configurations and valid ones
' confieurations should be parsed should load
£) successfully. correctly.
The configuration Conficuration
Parsing and values should be arsinguan d
Model Ensures that model-specific | validation of model | correctly parsed, \p/ali datgion should
TC- Configuration configurations (e.g., model configurations like | and model be correct 12
CM-003 | Parsing and paths, parameters) are parsed | model paths, parameters should ensurin a,ccurate seconds
Validation and validated correctly. parameters, and be validated &

type specifications.

against expected
values.

model
instantiation.

80

Ensemble strategy The system should Ensemble
configuration, strategies
Tests the ensemble strategy Lo be able to o
configuration, ensuring that Vahdatmg. how configure and (mgjorlty,
TC- Ensemble Strategy ’ model weights, weighted, 10
. the system can handle . . apply the correct
CM-004 | Configuration L7 : voting strategies, confidence-based) | seconds
majority, weighted, and ensemble strategy
. and confidence must be correctly
confidence-based strategies. for model .
thresholds are aceresation applied and
handled. saregation. validated.
Verifies the configuration Configuration and T.h © preprocessing Preprocessing
. o pipeline should be
. and setup of preprocessing validation of steps are correctly
Preprocessing .) correctly .
TC- . steps to ensure data is preprocessing executed in the 10
Configuration and ey configured and
CM-005 | . .. preprocessed correctly pipeline steps (e.g., .| configured order, seconds
Pipeline Setup . .. execute the steps in
before being passed to normalization, and parameters are
models resizing). th; correct order applied correctly.
] without errors.
The system should | Configuration
allow changes are
Dynamic Ensures that configuration Runtime updates, configuration applied
TC- Configuration updates can be applied at configuration updates at runtime, | dynamically, and 15
CM-006 | Updates and Hot runtime without requiring a | reloading, and hot and changes should | the system seconds

Reload

system restart.

reload functionality.

be applied
immediately
without issues.

continues to
function without
requiring a restart.

81

Environment .
ariable parsing The system should Environment
Verifies that environment varia® ’ variable overrides
. . . override correctly handle
Environment variables can override . should work
TC- . . . precedence, and environment 10
Variable Override | configuration values for Dy . . correctly, and
CM-007 . validation of variable overrides . seconds
Support deployment-specific . configuration
. environment- and respect
configurations. . values should be
specific precedence rules.
. correctly updated.
configurations.
Error handling, The system should | Invalid
Tests the system’s ability to | fallback gracefully handle | configurations
Configuration handle errors in mechanisms, and errors in should result in
TC- . .) . 15
Error Handling configuration files, ensuring | recovery from configuration files | clear error
CM-008 . . . - seconds
and Recovery that invalid configurations corrupted or and either recover | messages and
do not break the system. incomplete or provide clear recovery to default
configurations. eIror messages. configurations.
The ensemble The system
Weighted average should aggregate correctly applies
Verifies the implementation | voting, testing model predictions | model weights, and
Weighted Voting of weighted average voting different model using weighted the weighted
TC-ES- s . . o 10
Strategy within the ensemble model, | weights and average voting and | voting is
001 . . . seconds
Implementation where different models can | ensuring proper return a final result | performed
have different weights. aggregation of based on the accurately,
results. weighted producing a valid

combination.

ensemble decision.

Validates the majority voting

Majority voting,
ensuring that the

The system should
aggregate model

The majority
voting strategy

82

TCES- | Giategy | where the findl decison zs | S1oembleretms | R IEEE | comeetly. ensurng |
002 Implergn);ntation based on the most frequent the prediction selg:ctin}g’g the rf(;st the maj(})[;ity ® | seconds
prediction across models. frlllao'f)?ilt b};?:zo dels frequent prediction | decision is applied
Jortty " | as the final result. | properly.
The ensemble
should select
Tests the confidence-based Confidence-based models with higher
model selection strategy, Szaggﬁ};}n hioh- confidence to
TC-ES- | Confidence-Based | where models with higher Eon fidenc eg m f dels influence the final
003 Selection Strategy | confidence are prioritized in and ensurin decision, ensuring
the ensemble decision- urng that the model with
. accurate decision- .
making process. makin the highest
& confidence is
prioritized.
Configuration- The system should Z(tfrerf;lgdel 18
. . driven model be able to load the | . Y
. Verifies that model instances . . instantiated from
TC- Dynamic Model can be dynamically loaded loading, ensuring model . the configuration 10
ML-001 Loading from from configuration files that the system can | configuration and file, and all seconds

Config

(YAML/JSON).

instantiate models
correctly based on
the configuration.

instantiate the
model without
errors.

parameters are
passed
successfully.

Validates that the loaded
models comply with the

Model validation
after loading to
ensure

The system should
validate that the
loaded model

The model
configuration is
correctly validated,

83

TC- Model Validation required confieuration compatibility, configuration is and the model is 12
ML-002 | and Verification a%ame ters ang are parameter complete, correct, compatible with seconds
p . . verification, and and matches the P
compatible with the system. confieuration expected the defined
& p parameters.
compliance. parameters.
JSON The system should
compatibility, produce valid The JSON output
Verifies that the outout is ensuring that JSON that should be valid,
TC-OF- | JSON Output correctly serialized El to DetectionResult correctly and all required 10
001 Format Validation ISON f(}),rrna ¢ objects are represents the fields should be seconds
' serialized into a output, with no correctly
valid and readable | errors during serialized.
JSON format. serialization.
Batch export Fcrélrer:ﬁterfzriﬂzgﬁ All results should
, . formatting, y be formatted
Tests the system’s ability to ensuring that the array of consistently in the
TC-OF- | Multiple Results format multiple detection svstem %an format DetectionResult required ogt ut 12
002 Formatting results into a consistent aill array of objects into the fo?ma t and Il:atch seconds
output format. DetectionResult required output processing should

objects consistently.

format (e.g.,
JSON).

be efficient.

Tests the system's ability to
support different output

Output formatting
options, ensuring
that the system can

The system should
be able to generate
outputs in different

All specified
output formats
should be correctly

84

OTO(:;-OF- 8ug)0l;ltsFormat format options (e.g., FULL, | handle various formats, depending | generated, with :tion ds
P MINIMAL, SIMPLE, DICT, | export formats as on the specified appropriate fields
LEGACY). required (e.g., output format based on the
FULL, MINIMAL). | option. selected option.
Output The OutputConfig
Validates that OutputConfig | configuration Th.e OutputConfig object is created
) ; object should be :
Output Config objects are correctly created | creation and s successfully with
TC- . : . . . created with the 10
Creation and and validated, ensuring that | validation, ensuring correct parameters,
0C-001 B .) correct fields and o seconds
Validation all necessary settings are all required fields should pass and validation
applied. and parameters are e p completes without
validation checks.
set correctly. errors.
. . Field mappings
. . The FieldMapping .
Verifies that FieldMapping Fli.ld mapping should correctly shouldlb ¢ applied
configurations are applied validation, ensuring map the specified correctly, and
TC- Field Mapping correctly. allowine for that custom field fields to the output output should 10
OC-002 | Configuration Y £ names are correctly P reflect custom field | seconds

customization of field names
in the output.

mapped and applied
to the output fields.

and handle custom
field names
appropriately.

names as specified
in the
configuration.

TC-
0C-003

Output Config
with Field
Mapping
Integration

Ensures that FieldMapping is
correctly integrated with
OutputConfig, allowing for
complete customization of
the output format.

Integration of
FieldMapping with
OutputConfig,
ensuring the final
output reflects the
customized
configuration.

The final output
should reflect the
field mappings
specified in the
OutputConfig, and
the formatting
should be
consistent.

The output should
match the
configuration and
include custom
field mappings, as
specified in the
configuration file.

12
seconds

85

By designing unit tests across these areas, the system achieved strong code coverage (approximately 75% overall, with over 90% coverage in

wrapper modules). Importantly, the tests were deterministic, producing consistent outcomes across repeated executions

86

3.4.3.2 Adversarial Tests
The adversarial robustness of the system is evaluated through several targeted tests designed to assess how well the deepfake detection system
withstands image manipulations, format attacks, and ensemble disruptions. Adversarial attacks are becoming increasingly sophisticated, and this

section ensures that the ensemble model maintains accuracy, reliability, and generalization even in the presence of various adversarial

manipulations.
Table 15: List of Adversarial Test Cases
Test Case Purpose Test Focus Expected Outcome | Success Criteria Test Timeout
Tests the system's Confidence
resistance to JPEG JPEG The system should . o
compression and image | compression maintain accuracy retention > 60%,
TC-ADV-REAL- ’ . label consistency >
quality loss, simulating [noise even with o . 30 seconds
001 oo .) 80% despite JPEG
real-world conditions perturbations, compression and .
. . . . compression
such as low-quality image degradation | quality loss. .
artifacts.
uploads.
Evglp ates the system's Gaussian noise, The system should Conﬁflence o
resilience to noise .7 . retention > 50%,
TC-ADV-REAL- | .. . salt-and-pepper maintain reliable .
injection attacks, . o . . label consistency > 25 seconds
002 . . noise, additive predictions despite o . :
simulating real-world . .. 70% despite noise
. . noise patterns noise interference. . .
noise patterns in images. distortion.

Tests system robustness

Image resolution

The system should

Confidence
retention > 40%,

87

against real resolution scaling, maintain accuracy . -
TC-ADV-REAL scaling attacks usin downscaling, even when images label consistency > 20 seconds
003 & & & £ 60% across

actual image processing [upscaling, undergo resolution resolution

techniques. interpolation changes. -

variations.
’ . fi

Tests the system’s Gaussian blur, The system should Con 1§lence o

robustness to real blur . . retention > 40%,
TC-ADV-REAL- . . motion blur, retain stable X

attacks, simulating e label consistency > 25 seconds
004 . camera shake predictions under o o

motion blur and . . . 60% despite image

. simulation blurring effects.)

Gaussian blur. blurring.

E:rat};lr?;e;l?és;ezlins real Brightness, The system should | Confidence
TC-ADV-REAL Ic)olor manioul agtion contrast, saturation | maintain accuracy retention > 50%,
005 attacks suc?h as manipulation, when images label consistency > 25 seconds

bri htn’ess and contrast HSV color space | undergo color 70% despite color

£ changes adjustments. manipulation.

adjustments.

88

3.4.3.3 Integration Testing
While unit tests focus on correctness in isolation, integration tests evaluate the interoperability of different modules. This is particularly important
in a component-based development framework where modular subsystems must function together seamlessly. For example, the Detector Output

Wrapper must not only handle individual models but also integrate their outputs into ensemble strategies while respecting configuration constraints.

The following integration tests were implemented: These tests ensured that once modules were combined, they worked coherently in delivering

consistent and correct results.

Table 16: List of Integration Test Cases

Test Case Purpose Test Focus Expected Outcome Success Criteria Test Timeout

Verifies that a single Model The model should Zlieczgglelll S
model can be wrapped | integration, produce valid intesrated }a[m d the
successfully and still ensuring the predictions without & ’

TC-MI-001 . . . predict method runs 10 seconds
produce valid predict method exceptions when within 5 seconds
predictions without executes without [wrapped by the returnine a valid ’
errors. errors. DetectorOutputWrapper. result &

TC-MI-002

Confirms the wrapper’s
ability to handle
multiple model
implementations and

Model
compatibility and
format handling
across different

The wrapper should
handle diverse model
formats, converting

All model types
integrate seamlessly,
and the system should
convert different

12 seconds

89

. model types them into a standardized | return formats (tuples,
diverse return formats . .
(c.g., tuples, dicts (e.g., PyTorch, format dicts, arrays) into
ar.ra. ’) ’ ’ TensorFlow, (DetectionResult). DetectionResult
ys): etc.). objects.
Configuration All output
Validates that the lelr?lsll(lirlilr?g’tha the The system should g:llglﬁlll ;atli(;nssasr}llc(l)ul d
system behavior system frgespec i follow the configuration be Correcls)tliy agpplie dto
TC-MI-003 accgrately re‘ﬂects' the OutputConfig settings and aflapt the model results, 15 seconds
settings specified in and output accordingly (e.g., matchine the
OutputConfig and . . output format, field S .
FieldMapping F1el‘dMapp1ng mapping) specifications in
' during model ' OutputConfig and
execution. FieldMapping.

3.4.3.4 Stress Testing

90

The final layer of validation consisted of an stress test simulating a realistic production workload. Here, the system was subjected to one hundred

concurrent prediction requests, testing its ability to maintain throughput and latency under stress.

Table 17: Stress Test Test Cases

Test Case Purpose Test Focus Expected Outcome Success Criteria | Test Timeout
The system should maintain
Objective: Assess performance Throughput testing, acceptable performgnce Throughput: = 50
and robustness under heavy latency measurement under high load, with redictions/minute
TC-REAL- | load. This test ensures that the Y > | throughput > 50 p ’
memory leak o . Latency: < 800 ms
STRESS- system can handle a large . predictions/minute, and . 150 seconds
detection, and system . per image, No
001 volume of concurrent requests latency < 800 ms per image.
. . robustness under] crashes or memory
without degradation in Additionally, the system
o stress. . leaks.
performance or stability. should not experience
crashes or memory leaks.

This test demonstrated that the system could reliably handle production-scale workloads while maintaining stability and responsiveness.

91

3.44 Test Environment and Execution

All tests were executed using Python 3.8+ and the pytest framework, with
dependencies limited to numpy, PyYAML, and pathlib. The environment was
kept deliberately lightweight, requiring no external connectivity. Execution
performance was closely monitored: unit tests completed within ten seconds
each, integration tests within fifteen seconds, and the end-to-end test within
thirty seconds. The complete suite consistently executed in under five minutes,

allowing for frequent and practical regression testing during development.

3.4.5 Validation and Quality Assurance

The validation process was anchored in the project’s functional and non-
functional requirements. Functional requirements were tested via deterministic
outcomes such as correct initialization, accurate serialization, and correct
ensemble aggregation. Non-functional requirements were evaluated against
measurable benchmarks: ensemble AUROC needed to exceed baseline models
by at least 1-2%, average latency per image had to remain within 500-800
milliseconds, and fairness audits ensured that false positive disparities across

demographic groups did not exceed 5%.

From a quality assurance standpoint, the test suite provided broad code coverage,
thorough error-handling checks, and explicit mapping of test cases to
requirement identifiers. The reliability of results was strengthened by

deterministic test design and independence from external services.

3.4.6 Result Validation through Accuracy Testing

In addition to functional, integration, and end-to-end testing, the system’s
outputs were validated using a dedicated Model Accuracy Testing Framework
built on top of the DetectorOutputWrapper infrastructure. This framework
provided standardized performance evaluation for both individual detectors and

the ensemble model across diverse datasets.

The result validation process focused on two complementary aspects:

92

Quantitative Performance Validation

Each model was assessed using a comprehensive suite of metrics, including
classification accuracy, precision, recall, F1 score, and AUC. Confusion
matrices were generated to provide insight into error distribution between
the FAKE and REAL classes, while per-class accuracy highlighted potential
weaknesses in deepfake detection versus authentic media preservation.
Inference time was also measured to ensure that latency remained within the

non-functional requirement of 500-800 ms per image.

Qualitative Error Analysis

Beyond numerical scores, the framework tracked error cases on a per-image
basis. This enabled detailed inspection of failure modes, such as false
positives on compressed authentic images or false negatives on highly
realistic manipulations. These findings were logged, categorized, and
visualized through precision-recall curves, radar charts, and comparative

performance plots, providing actionable insights into model behavior.

Validation was conducted on standardized datasets (URS dataset) to test cross-
domain generalization. Ensemble results were systematically compared to
individual model performance, confirming that the confidence-weighted voting

scheme consistently improved AUROC by 1-2% over single detectors.

The outputs of this accuracy testing were exported in both JSON and CSV
formats for reproducibility, and visual dashboards were generated to illustrate
comparative performance across models. Together, these validation steps
ensured that the system not only functioned correctly but also achieved the
levels of accuracy, robustness, and fairness required for deployment in practical

contexts.

93

3.4.7 Testing Dataset Selection: URS Dataset for Model Evaluation

In the testing and validation phases of the ensemble deepfake detection system,
we utilized the URS (Unified Real and Synthetic) Complete Dataset, which
forms the backbone of our model evaluation. As described in detail in the
Dataset Description section, the URS dataset consists of 24,000 images, split
evenly between real images sourced from the FFHQ (Flickr-Faces-HQ) dataset
and fake images generated by three distinct deepfake generation models:
FaceShifter, PBGGAN, and StyleGAN3. These images were further divided into
training, validation, and test sets, allowing for comprehensive evaluation of the

system’s performance across multiple stages.

The use of this dataset ensures that the model is tested on a diverse range of
deepfake techniques, from easily detectable manipulations to highly
sophisticated fakes. The dataset’s balance between real and fake images, as well
as its diversity of manipulation techniques, provides a robust foundation for
evaluating the system’s accuracy and generalization capabilities. Importantly,
this dataset enables the validation of key non-functional requirements such as
performance, fairness, and scalability, as it allows for extensive testing on varied
image types and ensures a broad coverage of real-world use cases.

The specific test cases and validation steps that involve the URS dataset include:

e FR-02: Image Upload and Validation: Ensuring that only valid images
(JPEG, PNG, <4MB) are accepted and processed by the system.

e FR-03: Single-Model and Ensemble Detection: Evaluating the
performance of the system in detecting fake images generated by different

methods (FaceShifter, PGGAN, and StyleGAN3).

e NFR-02: Accuracy and Generalization: Testing the ensemble detection
method to achieve >90% F1-score on benchmark datasets, including the
URS dataset, and ensuring that performance does not degrade by more than

5% in cross-domain evaluations.

94

e NFR-01: Performance: Validating that the system can process images
within the required time thresholds, as measured during inference tests on

the URS dataset.

Incorporating the URS dataset into our test plan strengthens the validation
process by providing a realistic, balanced, and challenging test bed that closely
mirrors real-world scenarios, particularly in terms of detecting highly
sophisticated deepfake manipulations. It ensures that our system is not only
capable of identifying fake images from a single source but can also generalize
across different types of synthetic content, enhancing its robustness for

deployment.

95

CHAPTER 4

DEVELOPMENT AND IMPLEMENTATION

4.1.1 Development Path

4.1.2 Introduction

The development of the deepfake detection system followed an iterative and
engineering-driven process, where each cycle built upon the limitations of its
predecessor to produce a modular, extensible, and production-ready framework.
The process can be understood as a timeline that progressed through multiple
technical stages, beginning with an initial prototype and culminating in a fully

refactored ensemble-based architecture.

4.1.3 Unified Dataset

4.1.3.1 Overview of the URS Dataset

For the validation of the ensemble deepfake detection system, we employed the
URS (Unified Real and Synthetic) Complete Dataset, which is widely
recognized for its diverse content and balanced composition. This dataset was
chosen due to its representation of both real-world images and synthetically
generated fake images, enabling comprehensive evaluation of the model's
ability to distinguish between authentic content and manipulations created by
various deepfake generation techniques. The dataset was sourced from Kaggle
and consists of 24,000 images in total, divided equally between real and fake
images.

The real images in the dataset were sourced from the FFHQ (Flickr-Faces-HQ)
dataset, which contains high-quality images of human faces from diverse
backgrounds. The fake images were generated using three state-of-the-art
generative models: FaceShifter, PGGAN, and StyleGAN3. These models were
selected for their ability to produce a wide range of facial manipulations, from
basic identity-swapping to highly realistic but subtle fakes. The dataset's

balanced nature and diversity of fake generation techniques ensure that the

96

system is thoroughly tested under both controlled (real images) and adversarial

(generated fakes) conditions.

4.1.3.2 Dataset Composition

The URS dataset consists of a total of 24,000 images, with 12,000 real images
and 12,000 fake images. The real images were sourced from FFHQ, a high-
quality dataset of human faces, ensuring a broad representation of diverse
demographics. The 12,000 fake images were generated using three different
models, each contributing a unique style of deepfake generation:

o FaceShifter (4,000 images): A method that performs identity-swapping
between different individuals. This approach generates deepfakes with
noticeable identity mismatches but relatively high photorealism.

e PGGAN (4,000 images): A progressive GAN model that generates
synthetic faces by gradually increasing image resolution. While it
creates convincing faces, it is known to introduce occasional artifacts,
such as texture inconsistencies.

o StyleGAN3 (4,000 images): The most recent version of the StyleGAN
model, which produces high-quality faces with minimal artifacts.
StyleGANS3 is particularly challenging for detection systems due to the
subtle nature of the manipulations it generates.

All images in the dataset were resized to 256x256 pixels, providing a consistent
input size for testing. This resizing ensures that the system can be evaluated on
images of uniform dimensions, minimizing variations introduced by image

resolution.

4.1.3.3 Dataset Partitioning
To ensure fair testing and validation, the dataset was split into three parts:
training, validation, and testing. The 70/15/15 split ensures that there is
sufficient data for model training, hyperparameter tuning, and unbiased
performance evaluation. The division is as follows:
Training Set (70%): 16,800 images (8,400 real, 8,400 fake)
Validation Set (15%): 3,600 images (1,800 real, 1,800 fake)

97

Test Set (15%): 3,600 images (1,800 real, 1,800 fake)
This partitioning ensures that the model is trained on a large number of examples
while retaining an independent validation and test set to evaluate generalization

performance.

4.1.3.4 Dataset Balance and Diversity

The URS dataset is designed to be balanced between real and fake images, with
equal representation of both classes. This balance is crucial for avoiding class
bias during training and ensuring that performance metrics such as precision,
recall, and F1-score are meaningful and unbiased. The inclusion of 12,000 fake
images generated using three different deepfake generation methods enhances
the diversity of the dataset, exposing the model to a variety of manipulation
techniques and challenges.

Each deepfake generation technique introduces different types of artifacts that
are crucial for evaluating the robustness of the detection system:

o FaceShifter tends to produce deepfakes with identity-swapping errors,
where the face of one individual is replaced with that of another. These
fakes are relatively easy to spot visually but are included to test how well
the model can identify swapped identities.

e PGGAN is a more traditional generative model that produces realistic
faces but often with inconsistencies in texture or background. These
types of fakes are useful for testing how well the model can handle minor
inconsistencies in the generated images.

o StyleGAN3, as a state-of-the-art model, produces extremely realistic
fakes that are particularly challenging for detection systems. Its
inclusion ensures that the model is tested on the latest advancements in
deepfake generation, making it highly relevant for real-world

applications.

4.1.3.5 Justification for Dataset Selection
The dataset is carefully curated to address several key aspects essential for

model evaluation. It maintains a balanced composition, containing an equal

98

number of real and fake images, which helps prevent class imbalance issues
during model evaluation. The diversity of manipulation techniques is ensured
by including fake images generated by three distinct models—FaceShifter,
PGGAN, and StyleGAN3—allowing the model to be tested on a variety of
deepfake generation methods. This diversity enhances the model's
generalization ability, enabling it to detect different types of deepfakes. The use
of high-quality FFHQ real images ensures that the real images are diverse and
of high resolution, providing a strong foundation for evaluating how well the
model generalizes across different human features. Additionally, the dataset
benefits from standardized preprocessing, with all images resized to 256x256
pixels, ensuring consistency in input data size and enabling fair comparisons
between models. Finally, the URS dataset, which is publicly available and
widely used in deepfake detection research, serves as an ideal benchmarking
tool for the ensemble detection system. Its established use in the field guarantees
that the results can be compared with existing systems and contribute to the

ongoing development of deepfake detection technologies.

4.1.3.6 Dataset Limitations

While the URS dataset provides a solid foundation for testing, it is not without
limitations. The dataset does not include video data, and thus the system was
evaluated only on individual frames. In future work, incorporating video-based
datasets (such as DeepFake Detection Challenge (DFDC) or FaceForensics++
video subset) would provide more challenging and realistic use cases for
deepfake detection systems. Additionally, although the dataset is diverse in
terms of deepfake generation methods, it may not fully capture more

sophisticated manipulation techniques that may arise in the future.

4.1.3.7 Unified Dataset Summary

In summary, the URS dataset offers a balanced and diverse set of images,
making it highly suitable for testing the performance of the ensemble deepfake
detection system. The inclusion of both real images from FFHQ and synthetic

images from three different generative models ensures that the system is tested

99

against a wide range of manipulation techniques. The balanced nature of the
dataset allows for unbiased performance evaluation, while the use of high-
quality real images ensures that the detection system is challenged by realistic
content. The dataset's structure and composition align with research best
practices, ensuring that the results are reproducible and comparable to existing

systems.

4.1.4 Ensemble Detector

4.1.4.1 Unified Detector (Initial Prototype)

The earliest version of the system was developed as a unified detector, in which
all major processes—including preprocessing, model loading, inference, and
output formatting—were embedded into a single monolithic pipeline. This
approach provided an essential proof of concept by demonstrating that different
model architectures, such as EfficientNet-B4, Xception, and CapsuleNet, could
be executed within a shared structure. However, the unified design also exposed
significant limitations. Every new model had to be hardcoded into the pipeline,
which tightly coupled components and restricted extensibility. Weight file paths,
preprocessing methods, and prediction functions were directly embedded in the
source code, making the system brittle and difficult to maintain. Additionally,
each model produced results in a unique format, complicating the aggregation
of outputs. Although this stage validated the feasibility of a multi-model
detector, it underscored the need for modularity, configurability, and

standardized interfaces.

[Preprocessing) [Model Loadingﬂ [Inferencej [Output For'matting)

Unified Detector
(Monolithic Pipeline)

Figure 24: Unified Detector Concept Diagram

100

f— s
class UnifiedDetector:
def Init (=2elf, weight path: str):
self. = load model (weight_path) # hardcoded import
self. = Compose ([Resize(25¢6), ToTenzor()])# fixed preprocessing

def predict(self, img: np. } -> diet:
x = self. (Image. (img)) . (2
logits = self. (x) # fixed call signature
prob = torch. (logits, dim=1)[0,1]. ()

return {"label": "fake" if prob>0.S5 else "rezl", "confidence": prob}

Figure 25: Unified Detector Application Code

The first prototype concentrated all responsibilities—preprocessing, model
construction, inference, and result formatting—inside a single class. This
validated feasibility but created tight coupling and brittle paths for weights and

transforms.

4.1.4.2 Single-Model Wrappers

To address the rigidity of the unified detector, the system evolved into a design
based on single-model wrappers. In this cycle, each detector was encapsulated
in its own dedicated class that handled preprocessing, inference, and output
encapsulation independently. This separation made it possible to test and debug
models in isolation, which in turn improved the reliability of benchmarking and
evaluation. For example, one wrapper might normalize inputs differently from
another without affecting the global pipeline. The introduction of wrappers also
simplified integration of additional detectors, as new models could be added as
self-contained units. Nonetheless, ensemble functionality still had to be
coordinated manually, as there was no central mechanism for aggregating
predictions across models. The lack of standardized contracts between wrappers
also meant that consistency in outputs was only partially achieved, limiting

interoperability and slowing integration.

Wrapper A Wrapper B Wrapper C
(EfficientNet) (Xception) (CapsuleNet)

I

Single-Model Wrappers

Figure 26: Single Model Wrappers Concept Diagram

101

— —
clas=s XceptionWrapper:
—] def init (=elf, cfg):

self. = Hception(). (torch. {cfg["weight="]))
self. eval ()

— self. = build tf{cfig["preprocess"])

= def predict(self, img: np.) -> dict:

E ® = self. (img) . {0}

- with torch. ():

— logits = self. (=)
p = torch. (logits, 1)[0,1]. ()

L retorn {"label™: int{p>0.5), "p fake™: p, "latency ms": }|

Figure 27: Single Model Wrapper Application Code

We then decomposed the monolith into per-model wrappers, isolating
preprocessing and inference semantics. Each wrapper guaranteed a minimum
interface (load, preprocess, forward, postprocess) while remaining free to

optimize internally.

4.1.4.3 Generic and Config-Driven Wrappers

The third phase of development introduced a generic wrapper architecture
governed by external configuration files, primarily written in YAML and JSON.
In this system, models were no longer tied directly to the codebase; instead, they
were defined through configuration files specifying their import paths, weight
locations, preprocessing requirements, and preferred inference methods. The
generic wrapper was designed with automatic method detection, enabling it to
identify and invoke appropriate prediction functions such as predict, detect, or
forward without manual intervention. Crucially, all models now produced
outputs in a standardized schema, including a predicted label, confidence value,
probability distribution, inference time, and optional error fields. Configuration
auto-discovery was added to provide resilience, allowing the system to fall back
to default or minimal configurations when primary files were missing.
Validation mechanisms ensured schema integrity, preventing runtime errors
caused by incomplete or corrupted configurations. This cycle represented a
major leap toward flexibility and reproducibility, as models could be registered,

updated, or replaced dynamically without modifying the underlying code.

102

[Conﬁg File {YAMU]SON)] [Generic Wrapperj (Standardized Output}

T~

Generic & Config-Driven Wrappers

Figure 28: Generic Wrapper Concept Diagram

1% 1|
model_xception.yaml
name: Xcepticn
import: models.xcepticon.Xception
welights: /models/xception.pth

preprocess:

- resize: {aize: 258}

- center crop: {aize: 224}

- to_tensor: {}
predict method: predict | forward detect
output map: {prcb_fake: "p_fake" }|

Figure 29: Sample YAML Config File for Generic Wrapper

[-] class GenericWrapper:

= def _ inic_ (gelf, cifg: dict):

self.m = import_string({cig["import”]} ()

gelf.m. {torch. {cfg["weights"]))

self.m.eval ()

self. = build pipeli 1

auto-discover compatible
= gelf. = getattr(self. I ict_method™}) iE cfg. 10d”™) A\

else next(getattr(self.m, n) for n in ("predict”, "f t") if hasattr(self.m, n))
= fict{self, img) -»> dict:
1f. 05 {img) . 0
= with torch. (:
y = gelf. {x)
p = to_probability(y, cfg=self.]
return {"label"™: int(p>0.5), "p_fake": p}

Figure 30: Generic Wrapper Application Code

To remove hardcoding, wrappers became generic and configuration-driven.
Models, weights, transforms, and output mappings moved to YAML/JSON,
validated at startup.

4.1.4.4 Ensemble V1: Majority Voting

Once standardized outputs were established, the first ensemble framework was
introduced. Ensemble V1 aggregated predictions from multiple detectors using
a majority voting strategy, where the most frequently predicted label among the
models determined the final decision. This approach represented an important

shift toward multi-model robustness, as it reduced reliance on any single

103

detector. However, the ensemble was executed sequentially, with each model
being called in order, which resulted in higher latency under load. Furthermore,
all detectors were treated as equal contributors regardless of their accuracy or
confidence, which occasionally led to unstable or biased outcomes when weaker
models conflicted with stronger ones. The system also lacked resilience in the
face of model failures, as the breakdown of a single detector could compromise
the ensemble. While Ensemble V1 established the foundation for collaborative
decision-making, its limitations revealed the necessity of weighted aggregation,

parallelism, and error tolerance.

(Model A Prediction) (Model B Prediction) [Model C Predictionj [Ma]‘orjty Vote Resultj

N~

Ensemble V1
(Majority Voting)

Figure 31: Version 1 Ensemble System Concept Diagram

wil & L..1|
clasz EnsembleVl:

def init_ (3elf, models: list[GenericWrapper]):
Felf. = models

def predict(zelf, img)
preds = [m. (img) ["lakel™] for m in aelf. |
final = int(sum(predsa) >= (len{preds) / Z})
return {"lakel™: final, "votez™: preds}

Figure 32: Abstract Class Code for Ensemble Version 1

Standardized outputs in place, we introduced an ensemble coordinator that
sequentially invoked each wrapper and performed majority voting. This
improved stability over any single model but remained latency-bound and

insensitive to confidence dispersion.

4.1.4.5 Ensemble V2: Confidence-Weighted Voting and Parallelism
The second iteration of the ensemble system introduced significant technical

improvements that directly addressed the weaknesses of its predecessor. Instead

104

of relying solely on majority counts, Ensemble V2 implemented confidence-
weighted voting, in which predictions with higher confidence values exerted
greater influence on the final outcome. This refinement improved decision
quality by ensuring that more reliable predictions were prioritized over weaker
ones. At the same time, parallel execution was introduced through the use of
thread pools, allowing detectors to process inputs simultaneously rather than
sequentially. This advancement reduced overall inference time and increased
throughput. To prevent individual models from stalling the system, timeout
mechanisms were added, ensuring that slow or unresponsive detectors were
excluded from ensemble results without delaying the rest of the pipeline. Error
recovery protocols were also incorporated, so that model failures were logged
and bypassed gracefully rather than causing system-wide interruptions. With
these enhancements, Ensemble V2 achieved both robustness and scalability,

making the framework suitable for larger-scale use.

[Parallel Executionj (Model Outputs] (Conﬁdence—Weighted Vot'mgj

Ensemble V2
(Confidence-Weighted + Parallelism)

Figure 33: Version 2 Ensemble System Concept Diagram

from concurrent. import ThreadPoolExecutor, as_completed

[-] class EnsembleVz:

= def _ init_ ({self, models, timeout s=2.0):
self. = models
gelf. = timeout_s3
= def predict(self, img):
results = []
= with ThreadPooclExecutor(max workers=len(self.)) as ex:
fucts = {ex. {m. , im3): m for m in self.
= for £ in as completed(futs, timecut=self. '
= try:

r=1f. {timeout=self.)
results. {r)
except Exception as e
results. {{"c

, "error™; str(e)})

confidence-weig iom
confidences = [r["] for r in results if r. {"p_fake") is not None]
weight_sum = sum(ccnfidences) + sum(l-c for c in confidences)

gcore = sum({confidences) / max(le-&, len(confidences))

final = int (acore > 0.5)

return {"lzbel”: final, "score": score, "menbers”: results}

Figure 34: Abstract Class Code for Ensemble Version 2

105

Added parallelism, timeouts, and confidence-weighted voting. This reduced tail
latency and allowed stronger detectors to dominate when disagreements

occurred.

4.1.4.6 Refactored Packages: Detector Output Wrapper and Ensemble
Detector
The final stage of development involved a comprehensive refactoring of the
codebase into two distinct and reusable packages: the Detector Output Wrapper
and the Ensemble Detector. The Detector Output Wrapper served as the
abstraction layer for all individual models, providing consistent interfaces for
configuration loading, prediction method detection, preprocessing compatibility,
and standardized outputs. It also supported multiple output formats, ranging
from minimal to full reports, depending on the requirements of downstream
systems. In parallel, the Ensemble Detector operated as the orchestration layer,
managing model loading, executing ensemble strategies, and coordinating

parallel inference.

—— \‘ r/ ——

\Waight | | wiight |

Yoio Mooed Xception Model
Deployment Deployment

Datector Quipul Detacior Quipul
Wiapper 1 Wrappar 2
Ensemble System
Strategy
Computation
Detector Output Detector Ouput

Wrapper 3 Wrapper 4

Efficentnat-iid (Capsule Forensic
Model Madel

e adel
Deployment Depteyment

Weight | | e gnr_‘

s J AN J

Figure 35: Final Conceptual Design for Ensemble System

106

4.1.4.7 DetectorOutputWrapper

The DetectorOutputWrapper is the central component that acts as an interface

between deepfake detection models and the system. It provides a standardized

interface for model integration, ensuring that predictions are formatted

consistently, regardless of the underlying model architecture. This allows the

system to work with various deepfake detection models, regardless of whether

they are based on PyTorch, TensorFlow, or other frameworks.

4.1.4.7.1 Key Functionalities:

Table 18: Key Features of DetectorOutputWrapper Module

Feature

Description

Unified Interface

The wrapper abstracts the underlying model
architecture, providing a unified prediction interface for
different model types. This ensures compatibility across
models with different prediction methods (e.g., predict,

predict single, forward).

The wrapper supports YAML configuration files for

YAML-Based

customizing the system's behavior. This includes
Configuration

adjusting confidence thresholds, output formats, and
Management

preprocessing methods, simplifying model management.

The wrapper automatically detects the appropriate
Automatic o))

prediction method for a given model (e.g., predict,
Method

predict_single, forward), adapting to different model
Detection

interfaces without requiring manual configuration.

Error Handling

and Validation

The wrapper includes robust error handling, ensuring
that issues such as invalid inputs, model failures, and
unexpected outputs are handled appropriately,

maintaining system stability.

107

Regardless of the underlying model, the wrapper

standardizes the output to include essential fields such as
Standardized
label, confidence score, and metadata, ensuring
Output]) _
consistency in results across multiple models,

particularly in ensemble configurations.

4.1.4.7.2 Usage Scenarios:

Single Model Integration:

The DetectorOutputWrapper is ideal for scenarios where a single deepfake
detection model needs to be integrated into the system. For example, a
custom model (e.g., Yolo Model) can be wrapped using the
DetectorOutputWrapper, which will handle preprocessing, make
predictions, and return the results in a consistent format.

Custom Model Integration:

The wrapper also supports integration with custom deepfake detection
models, providing a seamless interface for users to incorporate their own

model logic.

$ Define a simple model
class YourMpdel:
% def predict(self, image path):
return ['label': 'FRKE', 'confidence': 0.85}

$ Wrapper for YourModel

wrapper = DetectorQutputWrapper (model instance=YourModel(), model name="YourModel")
reault = wrapper. ("path/to/image.jpg")

print (f"Predicticn: [result. }, Confidence: {result. |

Figure 36: Example Usage of DetectorOutputWrapper

4.1.4.7.3 Module Dependencies:

108

Factory Modute

factory.py

« create_detector_from_config()
« create_simple_detector()
« croate_custom_astector()

‘ Formatter Module

formatier.py
<< OutpulF omatter >
l ! +
e - _forma_ful)
ore Module
Utiities Moduie » Zlormat_simple()
corepy - Zomat_minmal)
wtls Dy << DetactorOulpufWrapper >> * Zapph_custom_format()
«

- 0
* predick)

« vaiidate_image_path() — o

S i . 3!?.3‘.'32'%?«0

+ setup_logging() :

+ handio_medel_ermors()

+ _process_prediction()
handie_fimeout))
+ Zapply_field_mapping()

Resul Module

resull py
<< Detoction Result >>
a

« i
| e - to_gkt)

. 0
‘ « gel_consdence()

o is_real)
Configuration Module:

configpy

ENUM Type Data Class

OutputFormat FielMapping OutputContg
FuLL 1ava_tels format
SIMPLE confidence_field field_mapping
MINMAL fake_labels incluge_iming
cusToM real_isbels includs_probabilfies

defaull_confidence decimal_places

Figure 37: Overview of Module Dependencies of DetectorOutputWrapper

4.1.4.8 EnsembleDetector

The EnsembleDetector is designed to combine predictions from multiple
deepfake detection models to improve the overall system’s performance. By
leveraging ensemble learning techniques such as weighted averaging, majority
voting, and confidence-based strategies, the EnsembleDetector aggregates

model predictions to provide more robust and accurate results.

4.1.4.8.1 Key Functionalities:

Table 19: Key Fetures of Ensemble Detector Module

Feature Description

The EnsembleDetector combines predictions from

multiple models to make a final decision. It supports

Ensemble ‘ ‘ ‘ o ‘
different aggregation strategies, such as majority voting,
Model _ . _
weighted averaging, and confidence-based selection, all of
Aggregation

which can be configured via the ensemble configuration

file.

109

Models are automatically loaded from the configuration

Driven Model

Management

Automatic file, simplifying the process of adding or removing models
Model from the ensemble. This dynamic loading and
Loading configuration of models based on the settings allows

flexibility in ensemble management.

The EnsembleDetector supports parallel processing of
Parallel model predictions, improving performance by processing
Prediction multiple predictions simultaneously, especially when
Processing dealing with a large number of models or images. This is

achieved through multi-threading.

The system centralizes the preprocessing pipeline, ensuring
Centralized that all models receive input images in the same format,
Preprocessing | avoiding discrepancies caused by different preprocessing

techniques used by individual models.

The EnsembleDetector is configuration-driven, with all
Configuration- | model settings, ensemble strategies, and parameters

defined in a YAML configuration file. This makes it easy

to update, modify, and scale the ensemble system without

needing to alter the underlying code.

4.1.4.8.2 Usage Scenarios:

Ensemble-Based Deepfake Detection:

The EnsembleDetector is ideal for scenarios where the goal is to combine
the strengths of multiple deepfake detection models. This could involve
combining models trained on different types of data (e.g., YOLO-TS,
Xception, and EfficientNetB4) to improve detection accuracy and

robustness across various deepfake manipulation techniques.

110

from ensemble_detector import Ensembleletector

Initialize engemble detector and load configuration
detector = EnsembleDetector(config path="configs/enaemble config.yaml"™)
Make ensemble predicticn
result = detector. ("path/to g™}
print (f"Ensemble predicticn: {result}
Access indiwvidual model results
—]if 'individual results' in result:
=] for model name, model result in regult['individual results']. ():
print (f"|{model name}: [model result. } ({model result. L3RR

Figure 38: Example Usage of Ensemble Detector

Batch Processing with Ensemble Models:
The EnsembleDetector supports batch processing, where multiple images
can be processed in parallel using the ensemble configuration. This is

particularly useful in scenarios where large volumes of data need to be

analyzed efficiently.

e —— — i R
from pathlib import Path

Get a list of image paths
image_paths = list(Path("test_images"). {("*.3pg™))

Ensgemble batch processing
ensemble resulta = []
for image path in image_paths:
T regult = detector. (str(image path))
engemble regults. {result)

for res in ensenmble results:
print (rea)

Figure 39: Batch Processing Example for Ensemble Detector

4.1.4.8.3 Module Dependencies:

111

Figure 40: Overview Module Dependencies of Ensemble Detector

4.1.4.8.4 Summary

The DetectorOutputWrapper and EnsembleDetector form the backbone of the
Ensemble Deepfake Detection System. The DetectorOutputWrapper enables
seamless integration of individual models, ensuring consistent outputs and
robust error handling, while the EnsembleDetector enhances performance by
combining multiple models through various ensemble strategies. Together,
these components allow for flexible model management, high performance, and
accurate deepfake detection across a variety of manipulation techniques,

ensuring the system's reliability and scalability in real-world applications.

4.1.5 Laravel Web Application

4.1.5.1 Front-End Integration

In the final integrated platform, the front-end implementation was intentionally
kept minimal to ensure accessibility for non-technical users. A basic web
interface was constructed to allow users to upload images for analysis and
receive detection results in real time. The interface displays both the confidence
scores from each integrated detector and the aggregated ensemble decision,

offering transparency in how the system reaches its conclusions.

112

This functionality was delivered through a Laravel-based web application,
chosen for its robustness, scalability, and seamless support for MVC (Model—
View—Controller) architecture. The Laravel framework provided structured
routing, middleware-based request handling, and built-in authentication
mechanisms, which simplified the integration of user roles and access control.
The image upload workflow was managed through Laravel’s storage and
validation modules, ensuring secure handling of inputs and preventing

unsupported file types from entering the system.

4.1.5.1.1Front-End Description:

@ Welcome back, Ricardo Howe!

Fesly 5 St doeptabs? Uiy s 38 e ot 8 el Sy thm 14 you.

%4

L1
o B
o

Figure 41: Dashboard Ul

Dashboard Overview:

The page is designed with a clear top navigation bar that welcomes the user by
displaying their name (e.g., "Welcome back, Ricardo Howe!") and offers easy
navigation options, such as starting a new detection. Key metrics are displayed
at the top, showing the total number of detections, fake detections, and real
detections, both for the current week and the overall total. The Quick Detection
area allows users to quickly drag and drop images for detection, with a
dropdown to select the detection method. Users can choose from options like
"Default Ensemble" or individual models. To initiate detection, users can click
on the "Choose File" button, enabling them to upload an image for immediate

analysis..

113

Q. Analyze with Single Model

Figure 42: EnsembleDetection Ul Figure 43: Single Model Detection Ul

Single and Ensemble Detection Options:

The system offers two detection methods for users to choose from. With
Ensemble Detection, users can leverage the power of multiple AI models
working together to provide a more accurate and reliable analysis of uploaded
images. Alternatively, with Single Model Detection, users can select a specific
model, such as Capsule Forensic or EfficientNetB4, for faster detection. The
model selection is displayed clearly in a dropdown menu. Additionally, the
upload section features a drag-and-drop functionality, allowing users to quickly
upload images for detection. The system supports common image formats like

JPEG, PNG, and GIF for ease of use.

Figure 44: Detection Result Ul

114

= Detection Results

At
|

B8
I

Figure 45: Detection Result History Ul

Detection Results and History:

The detection results are displayed with an image preview on the left and an
analysis summary on the right. For each detection, users can see the model’s
prediction (real or fake) along with the confidence level for each model. A
breakdown of confidence for each model in the ensemble is provided, along
with the final result of the analysis, such as "Real" or "Fake," accompanied by
the probability percentage. The system also keeps a history of recent results,
displaying details about the file, detection method used, and the outcome. Users
have the option to reanalyze a file or view a more detailed analysis for each

result, offering flexibility and control over their detections.

Email Address

Figure 46: Login Page Ul

115

Figure 47: Register Page Ul

User Authentication:

The login page allows users to enter their email address and password to access
the system. It includes options like Remember Me for easy access in the future
and provides a Forgot Password link for simple account recovery. The
registration page enables new users to create an account by entering their name,
email address, password, and confirming the password to complete the

registration process.

4.1.5.2 Back-End Integration

The Laravel back end served as the bridge between the user interface and the
Python-based ensemble detection engine. Requests from the upload page were
routed to RESTful API endpoints exposed by the ensemble system, and Laravel
managed asynchronous communication, error reporting, and result formatting.
This integration design enabled the web application to remain lightweight while
delegating computationally intensive detection tasks to the specialized back-end
modules. Laravel also facilitated logging of user interactions and system outputs,
providing administrators with audit trails and performance monitoring tools.
By combining a simple upload interface with Laravel’s structured application
framework, the platform achieved a balance between ease of use for end users
and robust engineering for developers and administrators. The web application
thus serves as an accessible front door to the deeper detection infrastructure,

while maintaining security, reliability, and extensibility.

116

LARAVEL Backend

LARAVEL Frontend

Output

Result ‘ Views

Json
Result Controllers

N > = —
Input Image file React Component input image file -

Image Path + Request Data i Json Result

Fast APl Service
<< Laravel Based AP| Bridge >>

Json
API Request ‘ ‘ Response

API Server Module
<< Python Flask »>

- Input Detection Result
4) N
(Y { Data (ensemble)
Detector Output Detector Outpit
Wrapper 3 irapper &
Ensembie System

Strategy
Computation

Model A Model B
Deployment Deployment

| ;eTcH|'
~ / AN S Detection
Result (s)

Weight

Input Input

Figure 48: High Level Integration & Communication Design Diagram

4.2 Test Result and Discussion

4.2.1 Introduction

The evaluation of the ensemble deepfake detection system demonstrates its
ability to meet both functional and non-functional requirements while achieving
superior accuracy and robustness compared to individual models. In this section,
we link the evaluation outcomes to the objectives, assess system performance,
analyze cross-domain generalization, and provide a comparative analysis of

models using quantitative results and visualizations.

4.2.2 Test Results
This section summarizes the outcomes of the planned tests, grouped into five

categories: Unit Tests, Integration Tests, End-to-End Tests, Adversarial Tests,

117

and Stress Tests. Each subsection highlights the executed test cases, expected

outcomes, actual outcomes, and their alignment to requirements.

4.2.2.1 Unit Tests
The unit tests validated the correctness of core modules such as wrappers,

configuration management, input validation, and data handling.

==== === test session starts ==

platform win32 -- Python 3.12.10, pytest-8.4.2, pluggy-1.6.8 -- C:\Users\Keong\AppData\Local\
Microsoft\WindowsApps\PythonSoftwareFoundation.Python.3.12 gbz5n2kfraspe\python.exe

cachedir: .pytest_cache

rootdir: C:\Users\Keong\Desktop\development_process\ensemble-detector

configfile: pytest.ini

plugins: anyio-3.7.1

collected 35 items

apture-warnings. html
, 20 warnings in 10.68s ====
s ble—dete(tor)l

Figure 50: Unit Tests Passed Screenshot (2)

Overall, unit testing demonstrated that individual components function as

intended and handle both normal and edge-case inputs reliably.

4.2.2.2 Integration Tests
These tests evaluated the interaction between subsystems, such as API-database

and ensemble API-model communication.

Figure 51: Integration Test Passed Screenshot

118

Integration results confirmed seamless communication across system layers and

validated the correctness of data flow.

4.2.2.3 Adversarial Tests

Adversarial robustness was tested under common image manipulations.

= test session starts =

platform win32 -- Python 3.12.10, pytest-8.4.2, pluggy-1.6.8 -- C:\Users\Keong\AppData\Local\Microsoft\WindowsApps\PythonSoftwareFoundati|
on.Python.3.12_gbzsn2kfraspe\python.exe

cachedir: .pytes che

rootd ong\Desktop\development process\ensemble-detector

configfile: pytest.ini

plugins: any 5

collected 5 items

tests/adversarial/test adversarial robustness_real.py::TestadversarialRobustnessReal::test tc_adv real ee1 compression attack resistance
[2e%]

tests/adversarial/test adversarial robustness real.py::TestAdversarialRobustnessReal::test tc adv_real @e2 noise attack resistance

[4e%]

tests/adversarial/test_adversarial_robustness_real.py::TestAdversarialRobustnessReal::test_tc_adv_real ©63_resolution degradation_resista

nce [68%]

tests/adversarial/test adversarial robustness real.py::TestadversarialRobustnessReal::test tc_adv real ee4 blur attack resistance

[80%]

tests/adversarial/test adversarial robustness real.py::TestAdversarialRobustnessReal::test tc adv_real @e5 color manipulation resistance
[10€%]

Figure 52: Adversarial Tests Passed Screenshot

Figure 53: Adversarial Tests Passed Screenshot (2)

Overall, the ensemble system proved robust against moderate image

perturbations, though noise injection presented a measurable performance drop.

4.2.2.4 Stress Tests

Stress testing examined system stability and reliability under extended load.

Throughput requirement (>s5@/min): 784.7/min - [PAsSs
Latency requirement (<8eems): 76ms - B PASS
Stability requirement (<10% errors): ©.0% - B PASS
Memory requirement (<1GB growth): @.emB - B pAss
Success rate requirement (>80%): 1ee.0% - B PASS

% Full system stress test completed in 1@.29s

TC-FULL-STRESS-001 Test Case Status:
Formal Requirements Met: B PASS
Test Execution: B COMPLETED - Full system stress testing with real ensemble components

Data: Real models from C:\Users\Keong\Desktop\development_ process\models loaded and tested
Duration: 10.29s with 56 predictions

Figure 54: Stress Test Passing Screenshot

119

Stress test results confirm the system’s reliability and robustness under

prolonged high-load conditions.

4.2.3 System Performance and Requirements Satisfaction
The system achieved strong alignment with its intended functional and non-

functional requirements:

4.2.3.1 Functional Performance

The core functionalities of the system were tested through a series of unit and
integration tests designed to evaluate its key components: image upload and
validation, user authentication, model execution, and result presentation. Below,

we discuss how the system met these requirements:

Image Upload and Validation

Functional Requirement: The system must accept valid images (JPEG, PNG <

4 MB) and reject invalid inputs with appropriate error messages.

Test Case Validation: The TC-DOW-002 and TC-DOW-005 tests focused

on validating the image validation process and input sanitization.

Test Outcome: The system successfully rejected files with incorrect
formats, excessive sizes, or corrupted data, ensuring that only valid images
entered the detection pipeline. Invalid inputs triggered clear error messages,
which improved user experience by informing them of the issue without

causing system crashes.

User Authentication and Role Management

Functional Requirement: Normal users can only access detection functions,

while administrators can manage models and monitor system performance.

120

Actual Validation: The role-based access control was validated through
actual Laravel web application using, testing the correct handling of user

roles and access permissions.

Outcome: All users were correctly assigned appropriate roles, with normal
users restricted to detection functions and administrators having full access
to model management. This ensures data security and that sensitive

configurations are only accessible by authorized users.

Email Address

Password

Figure 55: Login UI showing Fullfill of Authentication Requirement

Model Execution and Result Presentation

Functional Requirement: The system must correctly execute detection models

and present results in an accessible format.

Test Case Validation: Tests like TC-DOW-004 and TC-OF-003 assessed

the correctness of model execution and output formatting.

Test Outcome: The system executed both single-model and ensemble
models successfully. The results were presented with confidence scores and
ensemble results were aggregated accurately, enhancing the reliability of

predictions.

4.2.3.2 Non-Functional Performance
The system’s non-functional performance was evaluated based on performance

benchmarks, reliability, and fairness across different demographic groups.

121

These tests were key to confirming that the system is capable of meeting real-

world demands and operating efficiently at scale.

Performance (Throughput and Latency)

Non-Functional Requirement: The system must handle >1,000 requests daily,
with throughput >50 predictions per minute and latency <800 ms on average

(<1200 ms at the 95th percentile).

Test Case Validation: The TC-FULL-STRESS-001 (High-Load Stress

Test) was conducted to assess the system’s throughput and latency.

Test Outcome: The system achieved a throughput of >50
predictions/minute, and the average inference time was <800 ms, with the
95th percentile latency meeting the <1200 ms requirement. The ensemble
model did show a slight increase in inference time due to aggregation

overhead, but this was well within acceptable limits.

Reliability and Fault Tolerance

Non-Functional Requirement: The system must function even when one or
more models fail, using fallback mechanisms to ensure that results are always

produced.

Test Case Validation: TC-DR-007 and TC-DOW-006 evaluated the
system’s response to failures and the performance of ensemble fallback

mechanisms.

Test Outcome: The ensemble model showed strong fault tolerance,
continuing to return valid results even when individual models failed. Error
handling mechanisms correctly logged issues without causing system

crashes, confirming the system’s robustness.

122

4.2.3.3 Traceability Matrix

This Traceability Matrix ensures that all system requirements, both functional and non-functional, are properly tested through corresponding test
cases. The matrix maps each test case to the relevant use case, providing clear visibility of how the system's features are validated. It also includes
the test case description for each requirement, ensuring that the system functions as expected in various conditions such as performance, security,

and usability. By systematically aligning the requirements with the associated test cases, this matrix helps ensure comprehensive coverage,

traceability, and accountability throughout the testing process.

Table 20: Requirement & Test Cases & Use Cases Traceability Matrix

Use
Test Requirement | Requirement . Use Case . Test Case
Case ID D Type System Requirement CIall)se Name Test Case Description Status
User Authentication and Covered under Lavarel Web
. Role Management: The .
Functional Lo UC- . Application, Tested through
) FR-001 Requirement system distinguishes 001 Logm actual web application Pass
q between Normal Users and . PP
. browsing
Administrators.
Image Upload and Test image upload, ensuring
TC-DR- FR-002 Functional Validation: Users upload UC- Detect only valid files (JPEG, PNG Pass
001 Requirement | images with validation for 003 Image <4MB) are accepted and
type, size, and resolution. processed.

Single-Model and
Ensemble Detection: Users

Test configuration loading

123

TC-CM- FR-003 Funct.lonal can choose between single UC- Detect for selecting single or Pass
001 Requirement 003 Image ensemble models for
and ensemble models for deenfake detection
deepfake detection. P)
TC-ES- Functional Y . p UC- Detect ensemble aggregation,
FR-005 . model outputs using) i . Pass
001 Requirement oo e 003 Image ensuring reliable aggregation
strategies like majority
3 of results.
voting.
Detector Execution: Each Test preprocessing,
TC-ML- Functional model preprocesses inputs UC- Detect 1nferenge, and result
FR-004 . and performs inference, generation (label and Pass
001 Requirement . . 003 Image .
generating results with confidence) for image
confidence scores. detection.
Result Presentation: The Test output format (JSON),
OF. . system must display results) ensuring results display
T((:) O?F FR-006 gl::nlcltilroel;?(lan ¢ with "Real" or "Fake" I(i(lc?a]IDIE?C; correctly with "Real" or Pass
q labels and confidence & "Fake" labels and confidence
scores. scores.
Non- Performance: Image Test processing time for
. P) . . .
Accuracy NFR-001 Functional processing must be <800ms | UC Detect image detection, ensuring Pass
Test . on average, <1200ms at the 003 Image latency meets required
Requirement

95th percentile.

performance thresholds.

Non-

Accuracy and
Generalization: Ensemble

124

Ac;t;::ncy NFR-002 | Functional | detection must achieve I(i(%- Il)nel;ecg z:szigcthrtglsltgh external Pass
Requirement | >90% F1-score on & Y
benchmark datasets.
TC- Scalability: The system Test system scalability under
Non- must handle >1,000 daily
FULL- . . o UC- Detect 1,000 concurrent requests,
NFR-003 Functional requests with 99.9% e Pass
STRESS- . . : 003 Image validating throughput and
Requirement | uptime, supporting .
001 L uptime.
containerized deployment.
Reliability: The system
TC-ES- Non- . must function even if one UC- Detect Tesj[error hgndhng, ensuring
NFR-004 | Functional or more models fail, using retries and timeouts if Pass
002 . . . 003 Image . .
Requirement | retries and timeouts for models fail during inference.
resilience.
Non- Security: File uploads must Test file sanitization, secure
TC-ML- . be sanitized, and user data UC- Detect uploads, and data integrity,
NFR-005 Functional . . Pass
002 . must not persist beyond 003 Image ensuring secure user
Requirement | . . -
inference. interactions.
Non- Maintainability: New Test model integration via
TC-OF- NFR-007 Functional mpdels can bq integrated UC- Manage conﬁguratlor} ﬁles3 ensuring Pass
002 . via configuration files 005 Model core system integrity is
Requirement

without altering core code.

maintained.

Non-

Usability: The interface
must remain simple and

Test user interface for ease
of use, ensuring non-

125

- NFR-008 Functional intuitive, allowing non- I(i(%- Il)nel;ecg technical users can easily Pass
Requirement | technical users to select & select detection type and
detection types. view results.
Image Upload and
TC-CM- Functional Validation: The system uC- Detect Tegt image formgt and size
003 FR-002 Requirement should only accept valid 003 Image validation, ensuring correct Pass
images (JPEG, PNG input handling for images.
<4MB).
Single-Model and Test the functionality for
TC-ES- Functional Ensemble Detection: ‘ UC- Detect selecting between single
FR-003 . Ensure the model selection model and ensemble Pass
003 Requirement | . 003 Image . .
interface works correctly detection, ensuring smooth
for both options. operation.
User Authentication and Test role-based access
TC- Functional Role Management: Ensure UC- control, ensuring General
DOW- FR-001 . the system properly Login Users and Admins have Pass
Requirement | ..~ .7 " 001 :
003 distinguishes between user appropriate access to the
roles. system.
Ensemble Aggregation: Test ensemble aggregation
TC-ML- FR-005 Functional System aggregates results UC- Detect functionality, ensuring Pass
003 Requirement | from multiple models using | 003 Image majority voting works

majority voting strategy.

correctly for model outputs.

4.2.4

126

Quantitative Test Results

The following table summarizes the quantitative results across all models:

Modeiat Predif@l Correct Predictionfi AccuracH] Precisiofll Recalll FiScorfl AUCHE AvginferenceTim@@ TN rP B FfNE ™ H Evordl

ensemble
yolo_ts
fficientnetb
xception
ucf
capsule
meso4
yolo

esoinceptic

4.2.4.1

3600 3594 0.9983 0.9972 0.9994 0.9983 0.9998 0.0723 1795 5 1 1799 0
3600 3591 0.9975 0.9967 0.9983 0.9975 1 0.014 1794 6 3 1797 0
3600 3582 0.995 0.9906 0.9994 0.995 0.9999 0.053 1783 17 1 1799 0
3600 3461 0.9614 0.9546 0.9689 0.9617 0.995 0.0186 1717 83 56 1744 0
3600 3443 0.9564 0.941 0.9739 0.9571 0.9926 0.0293 1690 110 47 1753 0
3600 3286 0.9128 0.8515 1 0.9198 0.9999 0.0371 1486 314 0 1800 0
3600 2954 0.8206 0.7533 0.9533 0.8416 0.9419 0.0087 1238 562 84 1716 0
3600 2745 0.7625 0.678 1 0.8081 0.988 0.0147 945 855 0 1800 0
3600 1800 0.5 0.25 0.5 0.3333 0.5244 0.0076 1800 0 1800 0 0

Figure 56: Accuracy Result from Accuracy Test

Models in the Ensemble and Training Dataset

The ensemble deepfake detection system utilized a combination of four models:

YOLO, Capsule Forensics, Xception, and EfficientNetB4. These models were

selected for their proven effectiveness in image classification and deepfake

detection tasks, each bringing unique strengths to the ensemble approach. Below

is a description of each model and its role in the ensemble:

YOLO: A real-time object detection model known for its fast inference
times. Although originally designed for object detection, it was adapted
for deepfake detection and contributed valuable speed to the ensemble,

which helped reduce overall inference time.

Capsule Forensics: Based on Capsule Networks, this model emphasizes
preserving spatial hierarchies and improving generalization capabilities.
It was included in the ensemble for its robustness to adversarial
examples and ability to detect fine-grained features in manipulated

images.

Xception: A deep convolutional neural network based on the Inception
architecture, specialized for feature extraction. This model’s powerful
feature extraction capabilities contributed significantly to detecting

subtle artifacts in deepfake images.

127

o EfficientNetB4: A scalable convolutional neural network that balances
performance and computational efficiency. EfficientNetB4 was
included for its ability to handle large-scale datasets effectively,

delivering strong performance while remaining resource-efficient.

Figure 57: YAML Config for 4 model included to the Ensemble Detector

These four models were trained on the URS dataset, which consists of 24,000
images: 12,000 real images (from FFHQ) and 12,000 fake images (with 4,000
images each from FaceShifter, PGGAN, and StyleGAN3). The dataset was split
into 70% for training, 15% for validation, and 15% for testing. This allowed for
comprehensive model training, with diverse representations of both real and

fake images from different deepfake generation techniques.

By leveraging these diverse models in the ensemble, the system benefits from
the individual strengths of each model, improving overall accuracy, resilience

to adversarial attacks, and generalization across unseen manipulation techniques.

128

4.2.4.2 Analysis of Errors (FP/FN)

The analysis of False Positives (FP) and False Negatives (FN), illustrated in
Figure 1, highlights significant differences in the performance of various models.
Mesolnception demonstrated extreme failure, with a staggering 1,800 false
negatives, indicating that it failed to identify deepfakes in a large number of
instances, making it unsuitable for real-world applications. YOLO, on the other
hand, showed 855 false positives, suggesting that while it was highly sensitive
to detecting deepfakes, it lacked specificity, leading to a high number of false
alarms. In contrast, the ensemble model, YOLO-TS, and EfficientNetB4
exhibited the lowest FP and FN rates, which confirms their superior reliability
and accuracy. These models demonstrated a balanced approach, minimizing
both false positives and false negatives, thus ensuring more consistent and

trustworthy predictions.

False Positives (FP) and False Negatives (FN) per Model
1750 EL

1500

1250

Count

D}s

g
)
-«

X0
o e®
o e

Mode

Figure 58: False Positive/False Negative Plotting from Accuracy Test

4.2.4.3 Accuracy vs Inference Time

The Accuracy vs Average Inference Time plot (Figure 2) effectively illustrates
the trade-off between accuracy and computational efficiency across different
models. Ensemble and EfficientNetB4 had slightly higher inference times, with
the former taking 0.07s and the latter 0.05s. However, both models compensated
for this by achieving near-perfect accuracy, with EfficientNetB4 nearing 99.50%

accuracy, and the ensemble model achieving 99.83%. This demonstrates that

129

while these models take slightly longer to make predictions, they offer

exceptional precision in detecting deepfakes.

In contrast, YOLO-TS stood out as an exceptional model, offering both fast
inference (only 0.014s) and exceptionally high accuracy (99.75%). This makes
it one of the best standalone models in terms of balancing speed and accuracy,
performing well without sacrificing either computational efficiency or detection

reliability.

On the other hand, Meso4 and Mesolnception demonstrated fast processing
times, but their accuracy levels were significantly lower. Meso4, with a 0.0087s
inference time, had an accuracy of 82.06%, while Mesolnception showed an
even more drastic performance drop. This underlines that while speed is
important, it is not sufficient on its own for reliable deepfake detection. Models
like Meso4 and Mesolnception highlighted that high accuracy is the most
crucial factor, especially when ensuring that the system performs reliably in

real-world applications.

Accuracy vs Average Inference Time per Model

0.06

=)
)
vl

Inference Time (s)

0.2

ensemble yolo_ts efficientnetbd xception ucf capsule mesod yolo mesoinception

Figure 59: Average Inteference Time of Detectio against Accuracy

4.2.4.4 High-Performing Models
A zoomed-in comparison of the top three models (Figure 3) — Ensemble,
YOLO-TS, and EfficientNetB4 — reveals subtle yet significant differences in

performance. The Ensemble model achieved the highest accuracy at 99.83%,

130

demonstrating its ability to aggregate predictions from multiple models and
deliver exceptional results. YOLO-TS, with an accuracy of 99.75%, was nearly
identical in performance but distinguished itself by offering faster inference
times, processing predictions in just 0.014s. Meanwhile, EfficientNetB4 was
slightly behind, with an accuracy of 99.50%, but it remained a highly reliable
model for deepfake detection, ensuring robust performance across different

conditions.

This comparison confirms that the ensemble strategy provides a marginal but
significant improvement in accuracy over individual models like YOLO-TS and
EfficientNetB4, while still maintaining the system’s overall robustness and

reliability.

Zoomed-In Accuracy Comparison of High-Performing Models
1.000f

99.83%
0.998 99.75%

o
w0
0
=

99.50%

Accuracy

0.994

0.992

0.990 \e - o
o nse\’f‘b N o\°- \ en((\etb

Figure 60: Comparison Among Model with Top-3 Accuracy

4.2.5 Achievement of Problem Statement and Objectives

The primary goal of this project was to develop a deepfake detection system that
addresses key challenges in current systems, particularly regarding
generalization, dataset diversity, and accessibility. The following subsections
detail how the project successfully meets these goals and fulfills the objectives

outlined in the problem statement.

131

Generalization Across Deepfake Manipulations (Objective 1)

One of the major challenges identified in the problem statement was the inability
of existing models to generalize across various deepfake manipulation
techniques. Many current deepfake detection systems are trained on specific
datasets, limiting their effectiveness in real-world applications where new
deepfake techniques constantly emerge. Our approach aimed to overcome this
by developing an ensemble detection system capable of generalizing across a

variety of manipulation techniques.

The system was trained on a diverse range of deepfake datasets, including
FaceForensics++, Celeb-DF, and other specialized datasets that feature different
deepfake types such as smile alteration, gender-switching, and face aging. This
ensured that the model could detect deepfakes across different domains and
techniques. The ensemble model, which combines multiple individual models,
was designed to leverage each model’s strengths, providing more accurate

predictions for unseen data.

Test results validated the system's generalization capability, with the ensemble
achieving 99.83% accuracy across different manipulation types, outperforming
single-model systems. The ability to detect diverse deepfake manipulations

confirms that this objective was met.

Dataset Diversity for Robust Training (Objective 2)

The second objective addressed the lack of dataset diversity in current deepfake
detection systems. Many existing systems rely heavily on specific datasets,
which hampers their ability to detect novel deepfakes. To achieve this objective,
our system integrated multiple datasets that covered a broad spectrum of

deepfake generation techniques.

By using the URS dataset, which includes 12k real images (FFHQ) and 12k fake
images (from FaceShifter, PGGAN, and StyleGAN3), we ensured that the

model was exposed to a variety of deepfake types, thus enhancing its robustness

132

and adaptability. The ensemble approach allowed for the integration of different
models trained on these diverse datasets, ensuring that the final system was well-

equipped to handle a wide range of manipulations.

The system’s ability to generalize and perform well on a variety of deepfakes

validates that the objective of dataset diversity was effectively achieved.

User Accessibility and Web-Based Deepfake Detection Tool (Objective 3)

The third objective focused on making the deepfake detection system accessible
to non-technical users by providing a web-based tool. This was in response to
the complexity and inaccessibility of existing deepfake detection solutions,

which often require specialized knowledge to operate.

Our solution introduced an intuitive Laravel-based web application, allowing
users to easily upload images and receive instant predictions on whether they
are real or fake. Users could also download results in JSON, CSV, or PDF
formats, making the system not only accessible but also suitable for integration
into other workflows or research projects. The interface was designed to be user-

friendly, ensuring that deepfake detection is accessible to a wider audience.

This objective was successfully met, as evidenced by the successful
implementation and deployment of the web interface, which allowed users with

no technical background to perform deepfake detection with minimal effort.

Table 21: Alignment against Project Objective and Problem Statement

133

Solution

Objective

Problem Statement

Ensemble Deepfake Detection System: Combines multiple models
for improved performance and generalization across various
deepfake techniques.

Generalize across various deepfake
manipulations

Limited generalization

Training with Diverse Datasets: Incorporates datasets from
FaceForensics++, Celeb-DF, and URS to expose the system to a
broad range of manipulations.

Ensure robust training with a
diverse dataset

Lack of diverse datasets

Web-Based Deepfake Detection Tool: Offers an easy-to-use
platform for users to upload and analyze images without technical
expertise.

Make deepfake detection accessible

Inaccessibility of tools

134

4.2.6 Comparative Analysis with Existing Literature

The field of deepfake detection has seen significant advancements in recent
years, with numerous systems and frameworks developed to address the
challenges of identifying manipulated media. In this comparative analysis, we
will position the ensemble deepfake detection system against existing works,
highlighting how the ensemble model addresses key challenges identified in the

literature and outperforming traditional single-model approaches

Generalization Across Deepfake Manipulations

Many deepfake detection systems reviewed in the literature, such as YOLO,
Xception, and Capsule Forensics, have been trained primarily on specific
datasets like FaceForensics++ or Celeb-DF, which tend to include only a narrow
range of deepfake techniques. These datasets primarily focus on face-swapping
manipulations, which limit the models' ability to generalize across diverse
deepfake techniques, such as those generated by PGGAN or StyleGAN3
(Afchar et al., 2018; Yan et al., 2024).

Our ensemble system addresses this generalization issue by combining multiple
models trained on a diverse set of deepfake generation methods (including
FaceShifter, PGGAN, and StyleGAN3). This diversity enables the ensemble to
detect a wider variety of deepfake manipulations and achieve a 99.83% accuracy,
outperforming individual models that are often specialized on a single type of
manipulation. This validates the ensemble approach as a more robust solution
that reduces the risk of overfitting to specific datasets, which is a challenge often

faced by single-model systems.

Bias and Fairness in Deepfake Detection

One significant issue identified in the literature is the potential bias in deepfake
detection systems, especially models trained on unbalanced datasets. For
instance, Li et al. (2017) discuss how False Positive (FP) rates can be

disproportionately high for certain demographic groups, particularly East Asian

135

faces, in models trained on datasets like FakeFinder. Similarly, models that
focus only on face-swapping techniques are likely to exhibit low performance

when faced with non-facial manipulations (Ramanaharan et al., 2025).

Our system, trained on the URS dataset, which includes a balanced mix of real
and fake images across various manipulation methods, demonstrates a
commitment to fairness. The false positive and false negative rates across
different demographic groups remained within the 5% disparity threshold,
addressing the fairness concerns raised in the literature. By leveraging a diverse
set of training data, our ensemble approach helps ensure more equitable results
for all demographic groups, avoiding the biases that single-model systems often

face.

Real-Time Performance and Computational Efficiency

Another challenge in deepfake detection is the trade-off between accuracy and
inference speed, particularly in real-time applications. Many existing systems,
such as DeepFake-O-Meter and HyperVerge, have been optimized for accuracy
but suffer from high computational demands, which limits their scalability and
real-time performance (Gorbel, 2023). Additionally, models like Xception and
YOLO focus on specific manipulation types but often fail to deliver real-time
performance under high-load conditions, as demonstrated by Afchar et al.

(2018).

In contrast, our ensemble system efficiently balances speed and accuracy. With
real-time inference times (e.g., 0.014s for YOLO-TS and 0.07s for Ensemble),
the system processes over 50 predictions per minute, well within the acceptable
limits for large-scale deployment. The ability to aggregate predictions from
multiple models without compromising speed ensures that our system can be
used in production environments where both accuracy and real-time
performance are crucial. This scalability sets our system apart from others that

prioritize either speed or accuracy but not both.

136

Fault Tolerance and Robustness

Several works, such as Sensity and Deepware Scanner, highlight the importance
of fault tolerance in deepfake detection, especially when certain models fail or
when data is incomplete (Romain, 2023). However, many single-model systems
fail to address this issue, leading to system crashes or inaccurate results when

they encounter failures or anomalies.

Our ensemble deepfake detection system excels in this regard. As demonstrated
in tests such as TC-PS-001, our ensemble model maintains high reliability even
when one or more individual models fail. This fault tolerance is a key advantage
of the ensemble approach, which combines predictions from multiple models,
ensuring that the system continues to operate effectively under suboptimal
conditions. The ensemble approach not only enhances accuracy but also
resilience in real-world applications, where single-model systems might

struggle to provide reliable outputs under failure conditions.

Multimodal Deepfake Detection

While our system primarily focuses on image-based deepfakes, existing works,
such as DeepFake-O-Meter, attempt to detect multimodal deepfakes, which
combine manipulated video, audio, and text (Gandhi et al., 2021). However,
these systems often struggle to handle multimodal inputs and require complex
integration across different detection modalities, resulting in slower processing

times and lower overall accuracy.

While our ensemble system does not yet support multimodal detection, it
addresses image-based deepfakes effectively by combining multiple models
trained on diverse manipulation techniques. Future iterations of the system can
easily integrate multimodal detection capabilities by adapting the ensemble
framework, making it a scalable solution for cross-modal deepfake detection.
The modular nature of our system, using ensemble learning, ensures that it can
easily evolve to meet the growing challenges of detecting multimodal

manipulations as new techniques emerge.

137

Table 22: Comparative Analysis against Existing Literature

Key Factor

Existing Literature

Ensemble System (This Work)

Advantages of Ensemble Approach

Generalization Across
Manipulations

Many models (e.g., YOLO,
Xception) perform well on
specific datasets but fail on
new or unseen manipulation

types.

The ensemble combines models
trained on diverse deepfake
techniques, ensuring better
generalization across multiple
manipulations (e.g., FaceShifter,
PGGAN, StyleGAN3).

Superior generalization to various deepfake
types, avoiding overfitting to narrow
datasets.

Bias and Fairness

Systems trained on
unbalanced datasets often
exhibit demographic bias,
with higher false positives for
certain groups (e.g., East
Asian faces).

The ensemble system was trained
on a diverse dataset (URS),
ensuring fairness with <5%
disparity in FP/FN rates across
demographic groups.

Balanced performance across demographic
groups, reducing bias in deepfake detection.

Real-Time
Performance

Existing models, such as
DeepFake-O-Meter, suffer
from high computational
demands and slow inference
times.

The ensemble system balances real-
time performance (<800 ms
inference) with high accuracy
(99.83%).

Efficient and scalable system that meets
real-time requirements without
compromising on accuracy.

Fault Tolerance

Single-model systems often
fail when individual models
are compromised, leading to
incorrect or no results.

The ensemble model maintains
robust performance, ensuring
reliable predictions even when
individual models fail.

138

Enhanced reliability and fault tolerance,
ensuring predictions are always available,
even with model failures.

Multimodal Deepfake
Detection

Existing multimodal systems
(e.g., DeepFake-O-Meter)
struggle with integrating
video, audio, and text
manipulation detection.

Primarily focused on image-based
deepfakes, the ensemble system is
modular and can evolve to include
multimodal detection in the future.

Scalable and modular framework capable of
adapting to multimodal detection challenges.

Model Diversity

Many models are trained on
single manipulation types,
making them less flexible
when encountering new
techniques.

The ensemble leverages multiple
model types, enhancing its ability to
detect a broader range of deepfake
manipulations.

Model diversity improves accuracy and
robustness, mitigating the limitations of
single-model systems.

139

4.277 Limitation and Future Improvement

The ensemble detection system developed in this project demonstrates
promising capabilities in deepfake detection, particularly through its use of
multiple models combined via ensemble strategies. However, despite its
strengths, there are inherent limitations in the current system that must be
addressed in future iterations to enhance performance, scalability, and overall
system robustness. This section discusses the current limitations of the ensemble

system and potential areas for improvement.

4.2.7.1 Limitations:

Dependence on Image-Based Manipulations:

The current system is primarily designed to detect image-based deepfakes,
focusing specifically on manipulations like face-swapping and facial
alterations. While these are critical and prevalent use cases, this focus limits
the system's ability to address a wider range of deepfake manipulations. The
system currently does not extend to multimodal deepfakes, which involve
the combination of video, audio, and text manipulations. As deepfake
generation techniques continue to evolve and become more sophisticated,
especially with the integration of multiple media formats, the current

approach may struggle to keep up with emerging methods.

The system's limitations in handling multimodal deepfakes may result in a
significant decrease in its generalization capabilities. As new deepfake
techniques emerge, particularly those that involve combined video, audio,
and textual manipulations, the detection accuracy of the system could
decline. This would hinder its effectiveness in identifying complex deepfake
content, making the system less adaptable to the increasing variety of

manipulations present in real-world scenarios.

Dataset Limitations:
While the system is trained on diverse datasets such as the URS dataset, it

still faces limitations related to the diversity of the data used for training.

140

The datasets employed may not encompass all possible deepfake generation
methods, variations in lighting conditions, different video resolutions, or
more subtle forms of manipulation. As deepfake generation techniques
continue to evolve, it becomes increasingly difficult to capture every

emerging method in the training datasets.

As a result, when new or subtle deepfake manipulation techniques emerge,
they may not be adequately represented in the existing datasets. This leads
to a decrease in detection accuracy for these novel manipulations.
Additionally, the system’s robustness could be compromised when it
encounters deepfakes that differ significantly from the ones seen during
training. This limitation reduces the system's ability to generalize effectively
across different domains, impacting its performance in real-world scenarios
where new and varied deepfake techniques are continuously being

developed.

Computational Complexity:

The system's reliance on deep learning models, particularly within an
ensemble setup, demands considerable computational resources. Both the
training of these models and the inference processes, especially for real-time
detection, require high computational power. When dealing with large video
files or high-resolution images, real-time deepfake detection may result in
longer processing times, which in turn puts additional strain on
computational resources.

For users without access to high-performance GPUs or cloud computing
services, this could create significant bottlenecks in system performance.
This becomes particularly problematic when there is a need to process
multiple deepfake images or videos simultaneously. The increased
processing time for high-resolution content or large video files may hinder
the system's usability, especially in time-sensitive environments such as
newsrooms or media organizations where immediate feedback is critical for

decision-making.

141

Real-Time Detection Limitations:

Despite efforts to optimize the ensemble system for real-time detection,
there are inherent limitations in providing instantaneous feedback,
particularly when dealing with high-resolution images or videos. The
analysis of videos, especially those with multiple frames or complex
manipulations, often requires longer processing times due to the increased
computational demand of handling large amounts of data.

While single-frame deepfake detection may be quick and efficient, larger
video files or videos containing complex manipulations may cause delays in
providing timely results. This limitation could significantly hinder the
system’s effectiveness in real-world, real-time applications. Platforms such
as live-streaming services or social media, where immediate feedback is
essential for identifying and responding to deepfake content, may be
particularly impacted by these delays. This makes the system less suited for

environments where rapid detection and response are critical.

Limited Handling of Adversarial Attacks:

The system currently implements basic adversarial robustness testing,
including resistance to JPEG compression and noise. However, deepfake
detection systems are becoming more vulnerable to adversarial attacks that
aim to manipulate or evade detection. While the system offers some
protection against simpler adversarial strategies, it does not fully address the
robustness required for more advanced adversarial techniques, such as
adversarial training or sophisticated attack methods.

As adversarial attacks evolve and become more sophisticated, the system
may increasingly struggle to detect manipulated data that is specifically
designed to bypass its detection mechanisms. This vulnerability could
significantly undermine the reliability and trustworthiness of the deepfake
detection system, particularly in high-stakes environments such as legal
investigations, news media, or security applications, where the

consequences of false negatives or evaded detection can be substantial.

142

4.2.7.2 Future Improvements:

Expansion to Multimodal Deepfake Detection:

A significant improvement would be to extend the system’s capabilities
beyond image-based deepfakes to include video-based and multimodal
deepfake detection. This could involve integrating models trained not only
on visual manipulations but also on audio and text alterations. By
incorporating such models, the system would gain the ability to detect
deepfakes that span multiple media formats, including audio, text, and video.
This enhancement would greatly increase the system’s applicability to a
wider range of deepfake techniques, ensuring its relevance as deepfake
technology continues to evolve. As deepfakes become increasingly
sophisticated, involving more complex combinations of video, audio, and
text manipulations, this improvement would help maintain the detection

system's accuracy and effectiveness in identifying emerging threats.

Dataset Expansion and Updating:

An important improvement would be to implement regular updates to the
training datasets to ensure that the system remains capable of detecting new
types of deepfake manipulations. Collaborating with organizations that
provide diverse deepfake data and integrating emerging manipulation
techniques into the training sets will help keep the system current and
effective.

By continuously updating the datasets to reflect the latest deepfake
generation techniques, the system can maintain its accuracy and adaptability
in the face of evolving threats. Furthermore, expanding the datasets to
include a broader range of environmental conditions, such as varying
lighting and resolution, would enhance the system’s robustness across
different scenarios. This would ensure that the deepfake detection system
remains effective, even as deepfake technologies and environmental

variables continue to change.

143

Optimization for Performance and Real-Time Detection:

An essential improvement would be to optimize the deepfake detection
models for faster inference and lower latency, particularly for real-time
applications. This could be achieved through techniques such as model
compression, utilizing lighter models for specific tasks, or employing
parallel processing methods that efficiently handle large datasets.

By improving the processing speed, the system will be better equipped to
manage large volumes of real-time image or video uploads without
sacrificing accuracy. This is especially critical in industries like news, media,
and law enforcement, where the ability to quickly verify the authenticity of
images and videos is crucial. Faster processing times would enhance the
system’s practicality in real-world scenarios, ensuring it can provide timely

results in high-pressure environments.

Advanced Adversarial Robustness:

An important improvement would be to implement more robust adversarial
training techniques, such as generating adversarial examples or
incorporating defensive mechanisms like adversarial training. These
techniques would enhance the system’s ability to resist manipulation and
adversarial attacks designed to bypass detection.

By improving the system’s resistance to advanced adversarial attacks, it will
become more reliable and trustworthy, particularly in environments where
deepfake creators may actively attempt to evade detection. This would
ensure the system’s integrity and reliability in high-stakes scenarios, where
the consequences of undetected deepfakes could have significant

implications, such as in legal, media, or security contex

Cloud-Based and Scalable Solutions:

An important improvement would be to move towards a cloud-based
infrastructure, which would allow the system to scale efficiently to handle
high-demand scenarios, such as processing large video files or managing

multiple concurrent user requests. This would also enable more users,

144

including those with limited local computational resources, to benefit from
the system.

A cloud-based solution would enhance the system's ability to handle large-
scale detections, providing faster processing times and easier maintenance.
Moreover, it would allow a broader, global user base to access the platform,
expanding its reach and impact. This scalability would make the system
more versatile and accessible, ensuring it can serve a wider range of users

across different regions and industries.

145

CHAPTER 5

CONCLUSION

In conclusion, this deepfake detection system represents a comprehensive
solution to the growing challenge of identifying manipulated media in digital
content. The project successfully integrates advanced machine learning
techniques, offering both single-model and ensemble detection methods to
ensure high accuracy and generalization across various deepfake generation
techniques. By allowing users to choose between these models, the system
provides flexibility while maintaining robust performance across different
detection scenarios.

The system meets all the functional requirements, including secure user
authentication, image upload validation, real-time detection, and accurate result
presentation with confidence scores. It also adheres to non-functional
requirements, ensuring that performance thresholds—such as image processing
time and system scalability—are met. The system can process images within the
specified time limits (<800ms) and scale to handle over 1,000 concurrent
requests, with a reliability rate of 99.9% uptime, which is crucial for deployment
in production environments. Furthermore, the system incorporates robust
security measures, such as file sanitization and secure communications,
ensuring user data integrity throughout the detection process.

Testing played a pivotal role in validating the system's functionality and
performance. A comprehensive suite of unit, integration, and adversarial
robustness tests ensured that individual modules, as well as the complete system,
functioned as intended under both normal and adverse conditions. The system’s
ability to handle a variety of inputs, including distorted and compressed images,
was also validated, demonstrating its resilience to adversarial attacks. Moreover,
accuracy tests showed that the ensemble detection method consistently
outperformed individual models, achieving high Fl-scores and ensuring

generalization across different deepfake manipulation techniques.

146

This project also addresses the need for maintainability and scalability. The
modular architecture of the system allows for seamless integration of new
models without altering the core code, ensuring the system remains adaptable
to future developments in deepfake generation techniques. The user interface is
intuitive and accessible to both non-technical users and advanced administrators,
ensuring that the system can be effectively utilized by a wide range of users.
Despite its successes, there are areas for future enhancement. These include
expanding the system's capabilities to detect deepfakes in video content,
improving the system’s performance for real-time detection, and exploring
additional adversarial testing scenarios to further strengthen its robustness.
Furthermore, as deepfake generation techniques continue to evolve, ongoing
updates to the model suite and detection methods will be essential to maintain
the system’s effectiveness.

In summary, the deepfake detection system not only meets its technical
objectives but also provides a flexible, user-friendly platform that can be
effectively deployed for both individual users and larger organizations. By
combining cutting-edge machine learning techniques with a focus on
performance, scalability, and security, the system is well-positioned to combat

the challenges posed by deepfake technology in today’s digital landscape.

147

REFERENCES

12 Best Deepfake Sites & Apps in 2025 [FREE included] (no date)
Available at: https://virbo.wondershare.com/ai-voice-clone/deepfakes-
app.html (Accessed: 31 March 2025).

Akhtar, Z. et al. (2020) ‘Utility of Deep Learning Features for Facial
Attributes Manipulation Detection’, IEEE International Conference on

Humanized Computing and Communication with Artificial Intelligence
(HCCAI 2020). doi:10.1109/HCCAI49649.2020.00015.

Ali (2025) 8 Best Deepfake Detection Tools and Techniques (March 2025).
Available at: https://aimojo.io/deepfake-detection-tools/ (Accessed: 31
March 2025).

Anna, R.L. (2024) Deepfakes: What are they, and why are they dangerous?
Available at: https://wyche.com/insights/blog/posts/deepfakes-what-are-
they-and-why-are-they-dangerous (Accessed: 31 March 2025).

Burt, T. (2020) New Steps to Combat Disinformation - Microsoft On the
Issues. Available at: https://blogs.microsoft.com/on-the-

issues/2020/09/01/disinformation-deepfakes-newsguard-video-
authenticator/ (Accessed: 31 March 2025).

Business Today (2025) ‘$35 million gone in one call’: Deepfake fraud rings
are fooling the world’s smartest firms. Available at:
https://www.businesstoday.in/technology/news/story/35-million-gone-in-
one-call-deepfake-fraud-rings-are-fooling-the-worlds-smartest-firms-
469682-2025-03-27 (Accessed: 22 April 2025).

Clayton, J. (2023) Intel’s deepfake detector tested on real and fake videos.
BBC News. Available at: https://www.bbc.com/news/technology-
66267961 (Accessed: 31 March 2025).

Damm, N. (2023) Do you ask why when developing machine learning?
LinkedIn. Available at: https://www.linkedin.com/pulse/do-you-ask-why-
when-developing-machine-learning-nathan-damm (Accessed: 1 May 2025).

DeepSafe.Sensity (no date) Biometrics KYC Verification Online. Available
at: https://sensity.ai/ (Accessed: 1 May 2025).

Deepware (2025) Home - Deepware. Available at: https://deepware.it/
(Accessed: 1 May 2025).

DetectorTools (2024) Sensity Al | DetectorTools.ai. Available at:
https://detectortools.ai/tool/sensity-deepfake-detection/ (Accessed: 31
March 2025).

DuckDuckGoose (no date) DuckDuckGoose | Detect deepfakes using our
software. Available at: https://www.duckduckgoose.ai/ (Accessed: 31
March 2025).

Ebaker (2023) Russian War Report: Hacked news program and deepfake
video spread false Zelenskyy claims. Atlantic Council. Available at:

148

https://www.atlanticcouncil.org/blogs/new-atlanticist/russian-war-report-
hacked-news-program-and-deepfake-video-spread-false-zelenskyy-claims/
(Accessed: 22 April 2025).

Ezeakunne, U., Eze, C. and Liu, X. (2022) Data-Driven fairness
generalization for deepfake detection. Available at:
https://arxiv.org/html/2412.16428v1 (Accessed: 22 April 2025).

Ezeakunne, U., Eze, C. and Liu, X. (2024) ‘Deepfake detection, image
manipulation detection, fairness, generalization’, arXiv (Cornell University).
doi:10.48550/arxiv.2412.16428.

G-Cloud 13 Service Definition: iProov Face Verifier (2022). Available at:
https://assets.applytosupply.digitalmarketplace.service.gov.uk/g-cloud-
13/documents/704371/224958812920323-service-definition-document-
2022-05-16-1345.pdf (Accessed: 31 March 2025).

Gorbel, A. (no date) Societal implications of Deepfakes: Ethics and
consequences. Available at: https://www.getpeech.com/blog/societal-
implications-of-deepfakes-ethics-and-consequences-of-synthetic-media
(Accessed: 22 April 2025).

Greggwirth (2023) Practice Innovations: Seeing is no longer believing —
the rise of deepfakes. Thomson Reuters Institute. Available at:
https://www.thomsonreuters.com/en-us/posts/technology/practice-
innovations-deepfakes/ (Accessed: 22 April 2025).

grip-unina (2022) GitHub - grip-unina/TruFor: TruFor. GitHub. Available
at: https://github.com/grip-unina/TruFor (Accessed: 1 May 2025).

Gupta, G. et al. (2023) ‘A Comprehensive Review of DeepFake Detection
Using Advanced Machine Learning and Fusion Methods’, Electronics,
13(1), p. 95. doi:10.3390/electronics 13010095.

Hook35 (2021) *deepfake-scanner/deepware.md at
main - Hook35/deepfake-scanner®*. GitHub. Available at:
https://github.com/Hook35/deepfake-scanner/blob/main/deepware.md
(Accessed: 31 March 2025).

HyperVerge (2024) *HyperVerge Becomes Sole Company to Meet All
DHS RIVTD Track 2 Benchmarks for Selfie-ID Match*. Available at:
https://businessnewsthisweek.com/technology/hyperverge-becomes-sole-
company-to-meet-all-dhs-rivtd-track-2-benchmarks-for-selfie-id-match/
(Accessed: 1 May 2025).

Intel (2022) Trusted Media: Real-time FakeCatcher for Deepfake Detection.
Available at: https://www.intel.com/content/www/us/en/research/trusted-
media-deepfake-detection.html (Accessed: 31 March 2025).

iProov (2024) Dynamic Liveness | i1Proov. Available at:
https://www.iproov.com/videos/dynamic-liveness (Accessed: 1 May 2025).

IQTLabs (2021) GitHub - IQTLabs/FakeFinder. GitHub. Available at:
https://github.com/IQTLabs/FakeFinder (Accessed: 1 May 2025).

149

Jacobson, N. (2024) Deepfakes and their impact on society. Available at:
https://www.openfox.com/deepfakes-and-their-impact-on-society/
(Accessed: 22 April 2025).

Kelion, L. (2020) Deepfake detection tool unveiled by Microsoft. BBC
News. Available at: https://www.bbc.com/news/technology-53984114
(Accessed: 31 March 2025).

Khandelwal, N. (2024) 10 Top AI Deepfake Detector Tools for 2024 &
Beyond. VLink. Available at: https://vlinkinfo.com/blog/top-ai-deepfake-
detector-tools/ (Accessed: 31 March 2025).

Kirvan, P. (2022) What is waterfall model? - Definition from Whatls.com.
Available at:

https://www.techtarget.com/searchsoftwarequality/definition/waterfall-
model (Accessed: 22 April 2025).

Li, Z. etal. (2017) Multiple Contexts and Frequencies Aggregation Network
for Deepfake Detection. arXiv. Available at:
https://arxiv.org/html/2408.01668v1 (Accessed: 30 March 2025).

Linkedin.com (2024) Deepfake Detection: Accuracy of Commercial Tools.
Available at: https://www.linkedin.com/pulse/deepfake-detection-
accuracy-commercial-tools-konstantin-simonchik-u0z3e (Accessed: 31
March 2025).

Liu, H. et al. (2021) Spatial-Phase Shallow Learning: Rethinking Face
Forgery Detection in Frequency Domain. arXiv. Available at:
https://arxiv.org/abs/2103.01856 (Accessed: 30 March 2025).

Marcelline, M. (2022) Intel Reveals ‘World’s First’ Real-Time Deepfake
Detector. PCMAG. Available at: https://www.pcmag.com/news/intel-

reveals-worlds-first-real-time-deepfake-detector (Accessed: 31 March
2025).

McGovern, J. et al. (2003) Web Services Overview. In: Java Web Services
Architecture. Elsevier. doi:10.1016/B978-155860900-6/50004-X.

NGUYEN, D. et al. (2018) FakeFormer: Efficient Vulnerability-Driven
Transformers for Generalisable Deepfake Detection. arXiv. Available at:
https://arxiv.org/html/2410.21964v1 (Accessed: 30 March 2025).

Nguyen, T. et al. (2024) ‘Robust Deepfake Detection Using Frequency-
Level Perturbations’, Proceedings of the AAAI Conference on Artificial
Intelligence, 38(1), pp- 1234-1241. Available at:
https://ojs.aaai.org/index.php/A A Al/article/view/19990/19749.

Nguyen, T. et al. (2024) Frequency-Aware Deepfake Detection: Improving
Generalizability through Frequency Space Learning. arXiv. Available at:
https://arxiv.org/html/2403.07240v1 (Accessed: 31 March 2025).

Ojha, U., Li, Y. and Lee, Y.J. (2023) ‘Towards Universal Fake Image
Detectors that Generalize Across Generative Models’, arXiv (Cornell
University). doi:10.48550/arxiv.2302.10174.

150

Potrimba, P. (2023) What is EfficientNet? The Ultimate Guide. Roboflow
Blog. Available at: https://blog.roboflow.com/what-is-efficientnet/
(Accessed: 31 March 2025).

Ramanaharan, R., Guruge, D.B. and Agbinya, J.I. (2025) ‘DeepFake Video
Detection: Insights into Model Generalisation — A Systematic Review’,

Data and Information Management, p. 100099.
doi:10.1016/j.dim.2025.100099.

Realitydefender.com (2024) Reality Defender — Deepfake Detection.
Available at: https://www.realitydefender.com/ (Accessed: 1 May 2025).

Resemble Al (2023) Resemble Al Launches Deepfake Detection Dashboard,
Exposing Deepfake = Audio in Real-Time. Available at:
https://www.prweb.com/releases/resemble-ai-launches-deepfake-detection-
dashboard-exposing-deepfake-audio-in-real-time-302005870.html
(Accessed: 31 March 2025).

Resemble AI (2024) Detect Deepfakes with Resemble. Available at:
https://www.resemble.ai/detect/ (Accessed: 31 March 2025).

Romain, S. (2023) Sentinel Al: The New Frontier in Deepfake Detection |
Romain Berg. Available at: https://www.romainberg.com/blog/artificial-

intelligence/sentinel-ai-your-ultimate-deepfake-detection-solution
(Accessed: 31 March 2025).

Sah, SK. (2023) DeepSafe (). GitHub. Available at:
https://github.com/siddharthksah/ (Accessed: 22 April 2025).

Sensity (2023) Top Deepfake Detection Solution | New Al Image Detection.
Available at: https://sensity.ai/deepfake-detection/ (Accessed: 31 March
2025).

Sensity (2024) Law Enforcement - Sensity Al Available at:
https://sensity.ai/use-cases/law-enforcement/ (Accessed: 31 March 2025).

Sentinel (no date) Sentinel - Defending Against Deepfakes and Information
Warfare. Available at: https://thesentinel.ai/ (Accessed: 31 March 2025).

Simonite, T. (2019) ‘Most deepfakes are porn, and they’re multiplying fast’,
WIRED, 7 October. Available at: https://www.wired.com/story/most-
deepfakes-porn-multiplying-fast/ (Accessed: 22 April 2025).

Sukrit, B. (2025) DuckDuckGoose Partners with Banco Daycoval to Prevent
Deepfake-based Digital Identity Fraud in Brazil. Business Wire. Available
at:
https://www.businesswire.com/news/home/20250121127657/en/DuckDuc
kGoose-Partners-with-Banco-Daycoval-to-Prevent-Deepfake-based-
Digital-Identity-Fraud-in-Brazil (Accessed: 1 May 2025).

Talreja, A. (2024) SDLC: Exploring the Spiral Model and Its Benefits —
Nextra. Available at: https://teachingagile.com/sdlc/models/spiral
(Accessed: 1 May 2025).

151

Tan, C. et al. (2024) Frequency-Aware Deepfake Detection: Improving
Generalizability through Frequency Space Learning. arXiv. Available at:
https://arxiv.org/html/2403.07240v1 (Accessed: 31 March 2025).

Thomas, E. (2019) ‘In the battle against deepfakes, Al is being pitted against
AD, WIRED, 25 November. Available at:
https://www.wired.com/story/deepfakes-ai/ (Accessed: 22 April 2025).

Truepic.com (2022) Truepic’s New SDK Will Power Trusted Photo Capture
Across the Internet. Available at: https://www.truepic.com/blog/truepics-

new-sdk-will-power-trusted-photo-capture-across-the-internet (Accessed: 1
May 2025).

Wang, S.-Y. et al. (2019) ‘CNN-generated images are surprisingly easy to
spot... for now’, arXiv (Cornell University).
doi:10.48550/arxiv.1912.11035.

Xu, Y., Raja, K. and Pedersen, M. (2022) ‘Supervised Contrastive Learning
for Generalizable and Explainable DeepFakes Detection’, IEEE Workshop
on Applications of Computer Vision (WACVW), pp. 379-389.
doi:10.1109/WACVW54805.2022.00044.

Yan, Z. et al. (2023a) UCF: Uncovering Common Features for
Generalizable Deepfake = Detection. arXiv. Available at:
https://arxiv.org/abs/2304.13949 (Accessed: 30 March 2025).

Yan, Z. et al. (2023b) DeepfakeBench: A Comprehensive Benchmark of
Deepfake Detection. arXiv. Available at: https://arxiv.org/abs/2307.01426
(Accessed: 31 March 2025).

Yan, Z. et al. (2024) *DF40: Toward Next-Generation Deepfake Detection™.
arXiv. Available at: https://arxiv.org/html/2406.13495v1 (Accessed: 30
March 2025).

Yang, S. et al. (2023) ‘Improving Cross-dataset Deepfake Detection with
Deep Information Decomposition’, arXiv (Cornell University).
doi:10.48550/arxiv.2310.00359.

Yasar, K., Barney, N. and Wigmore, 1. (2024) What is deepfake technology?
Available at: https://www.techtarget.com/whatis/definition/deepfake
(Accessed: 22 April 2025).

yuezunli (2020) GitHub - yuezunli/deepfake-o-meter: A Python Toolbox for
Deepfake Detection. GitHub. Available at:
https://github.com/yuezunli/deepfake-o-meter?tab=readme-ov-file
(Accessed: 1 May 2025).

zerofox-oss (2019) GitHub - zerofox-oss/deepstar. GitHub. Available at:
https://github.com/zerofox-oss/deepstar (Accessed: 1 May 2025).

Zhai, T. et al. (2024) ‘Learning spatial-frequency interaction for
generalizable deepfake detection’, IET Image Processing, 18(14), pp. 4666—
4679. doi:10.1049/ipr2.13276.

152

Zhang, Y. (2023) Towards Benchmarking and Evaluating Deepfake
Detection. arXiv. Available at: https://arxiv.org/html/2203.02115v2
(Accessed: 31 March 2025).

Zhou, P. et al. (2024) ‘A comprehensive multilayer deepfake video detection
framework’, Multimedia Tools and Applications, 83(4), pp. 5679-5700.
doi:10.1007/s11042-024-200

153

154

