

ENHANCING DEEPFAKE DETECTION

GENERALIZATION THROUGH COMPONENT-

BASED DEVELOPMENT IN A WEB PLATFORM

KOH YEONG KEONG

UNIVERSITI TUNKU ABDUL RAHMAN

ENHANCING DEEPFAKE DETECTION GENERALIZATION

THROUGH COMPONENT-BASED DEVELOPMENT IN A WEB

PLATFORM

KOH YEONG KEONG

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Software

Engineering with Honours

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

October 2025

i

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that

it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Name Koh Yeong Keong

ID No. : 2105656

Date : 29/04/2025

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “ENHANCING DEEPFAKE

DETECTION GENERALIZATION THROUGH COMPONENT-BASED

DEVELOPMENT IN A WEB PLATFORM” was prepared by Koh Yeong

Keong has met the required standard for submission in partial fulfilment of the

requirements for the award of Bachelor of Software Engineering with Honours

at Universiti Tunku Abdul Rahman

Approved by,

Signature :

Supervisor : KELWIN TAN SEEN TIONG

Date : 17/10/2025

iii

COPYRIGHT STATEMENT

© 2025, KOH YEONG KEONG. All right reserved.

This final year project report is submitted in partial fulfilment of the

requirements for the degree of Software Engineer at Universiti Tunku Abdul

Rahman (UTAR). This final year project report represents the work of the author,

except where due acknowledgement has been made in the text. No part of this

final year project report may be reproduced, stored, or transmitted in any form

or by any means, whether electronic, mechanical, photocopying, recording, or

otherwise, without the prior written permission of the author or UTAR, in

accordance with UTAR’s Intellectual Property Policy.

iv

v

ABSTRACT

This report outlines the design, development, and evaluation of a deepfake

detection system aimed at providing an accessible and scalable solution for

detecting manipulated media. The system leverages advanced machine learning

models, including both single-model and ensemble-based detection methods, to

identify deepfakes in images. The platform supports easy image uploads,

efficient model processing, and reliable result presentation, offering users the

ability to choose between various detection models based on their needs.

Key features include user authentication and role management, image

validation, preprocessing, and real-time inference with confidence scores. The

system utilizes a modular architecture to integrate new models seamlessly,

ensuring scalability and maintainability. Performance benchmarks are met,

including a processing time of less than 800ms per image and a 99.9% uptime

for system reliability. The accuracy of the ensemble detection method is

validated through extensive testing on benchmark datasets, achieving a high F1-

score.

This project addresses the growing concern of deepfake threats in digital media

and aims to provide an easy-to-use, robust tool for both non-technical users and

advanced administrators. The system is designed with a focus on usability,

accuracy, performance, and security, ensuring it meets the challenges posed by

modern deepfake detection.

Keywords: Machine Learning, Generative AI, Deepfake, Component-based,

Image Classification, Artificial Intelligence, AI Generalization

Subject Area: QA75.5-76.95 Computer Science

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

COPYRIGHT STATEMENT iii

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES x

LIST OF FIGURES xi

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 1

1.3 Problem Statement 2

1.3.1 PS1: Generalization of Deepfake Detection

Models 2

1.3.2 PS2: Lack of Diverse Datasets for Training

Deepfake Detection Models 3

1.3.3 PS3: Accessibility of Deepfake Detection

Tools (Web Application) 3

1.4 Aim and Objectives 4

1.4.1 O1: To Develop a Generalizable Deepfake

Detection System 4

1.4.2 O2: To Collect and Integrate a Diverse

Dataset for Training Deepfake Detection

Models 4

1.4.3 O3: To Develop an Accessible Web-Based

Deepfake Detection Tool 4

1.5 Proposed Solution 5

1.6 Scope and Limitation of the Study 8

1.6.1 Scope: 8

1.6.2 Limitation: 10

vii

2 LITERATURE REVIEW 12

2.1 Literature Review of Deepfake Detection 12

2.1.1 Introduction 12

2.1.2 Detection Models 12

2.1.3 DeepFake Detection Tools: 17

2.1.4 Open-source Tools/Framework: 27

2.1.5 Limitations of Existing Deepfake Detection

 31

2.2 Literature Review of Development Methodology 33

2.2.1 Introduction 33

2.2.2 Waterfall Methodology 33

2.2.3 Agile Methodology 35

2.2.4 Component-Based Development (CBD) 36

2.2.5 Spiral Methodology 38

2.2.6 Comparative Analysis of Methodologies 40

2.2.7 Summary: 42

3 METHODOLOGY AND WORK PLAN 44

3.1 METHODOLOGY 44

3.1.1 Introduction 44

3.1.2 Stage 0: Exploration, Prototyping, and

Model Training 44

3.1.3 Stage 1: Foundational Component

Development 45

3.1.4 Stage 2: Hardened Deployment and

Orchestration 45

3.1.5 Stage 3: Ensemble Aggregation and Cross-

Domain Evaluation 46

3.1.6 Stage 4: Modularization, Productionization,

and Integration 46

3.2 Project Work Plan 47

3.2.1 Introduction 47

3.2.2 Phase 1: Front-End Development (Weeks

1–4) 47

viii

3.2.3 Phase 2: Back-End Development (Duration:

Weeks 5–9) 48

3.2.4 Phase 3: System Integration (Duration:

Weeks 10–12) 49

3.2.5 Expected Project Tools: 51

3.3 System Design and Requirements 53

3.3.1 Introduction 53

3.3.2 Project Specification 53

3.3.3 High Level System Flow Diagram: 64

3.3.4 System Architecture Diagram 65

3.3.5 ERD diagram (Laravel Web Application) 67

3.3.6 Image Detection Sequence Diagram 69

3.4 Test Plan 70

3.4.1 Introduction 70

3.4.2 Objectives 70

3.4.3 Test Suite Summary 70

3.4.4 Test Environment and Execution 91

3.4.5 Validation and Quality Assurance 91

3.4.6 Result Validation through Accuracy

Testing 91

3.4.7 Testing Dataset Selection: URS Dataset for

Model Evaluation 93

4 DEVELOPMENT AND IMPLEMENTATION 95

4.1.1 Development Path 95

4.1.2 Introduction 95

4.1.3 Unified Dataset 95

4.1.4 Ensemble Detector 99

4.1.5 Laravel Web Application 111

4.2 Test Result and Discussion 116

4.2.1 Introduction 116

4.2.2 Test Results 116

4.2.3 System Performance and Requirements

Satisfaction 119

4.2.4 Quantitative Test Results 126

ix

4.2.5 Achievement of Problem Statement and

Objectives 130

4.2.6 Comparative Analysis with Existing

Literature 134

4.2.7 Limitation and Future Improvement 139

4.2.7.1 Limitations 139

4.2.7.2 Future Improvements 142

5 CONCLUSION 145

REFERENCES 147

x

LIST OF TABLES

Table 1: Performance Comparison of Top-5 Models from DeepFake

Benchmark (Yan et al., 2023b) 15

Table 2: Overview Comparison of DeepFake Detection Tools 26

Table 3: Overview Comparison of Open-source Tools and FrameWork 30

Table 4: Comparative Analysis on Different Development

Methodologies 41

Table 5: Rating of Hybrid Agile-Spiral Approach in different aspect 42

Table 6: Key Element in (Phase 1) 48

Table 7: Key Element in (Phase 2) 49

Table 8: Key Element in (Phase 3) 50

Table 9: Table of Expected Tools Involved in Development 51

Table 10: Functional Requirements 53

Table 11: Non-Functional Requirements 54

Table 12: Test Suite Summary 70

Table 13: Summary of Unit Test Cases 71

Table 14: List of Unit Test Cases 74

Table 15: List of Adversarial Test Cases 86

Table 16: List of Integration Test Cases 88

Table 17: Stress Test Test Cases 90

Table 18: Key Features of DetectorOutputWrapper Module 106

Table 19: Key Fetures of Ensemble Detector Module 108

Table 20: Requirement & Test Cases & Use Cases Traceability Matrix 122

Table 21: Alignment against Project Objective and Problem Statement 133

Table 22: Comparative Analysis against Existing Literature 137

xi

LIST OF FIGURES

Figure 4: Component-based Architecture as Solution 6

Figure 5: Referencing Image for Deepfake Generated By Differnt GAN

Generator (Xu, Raja and Pedersen, 2022) 7

Figure 6: Sample interface design for Proposed web application 8

Figure 7: Logo of Deepware (Deepware, 2025) 17

Figure 8: Sample Output from Intel FakeCatcher (Clayton, 2023) 18

Figure 9: Sample Output from Microsoft Video Authenticator (Burt,

2020) 19

Figure 10: Logo of Sensity Ai (Sensity, n.d.) 19

Figure 11: Logo of Realidy Defender Ai (Realitydefender.com, 2024) 20

Figure 12: Logo of Sentinel AI with slogan (Romain Berg, 2023) 21

Figure 13: Truepic (Truepic.com, 2022) 22

Figure 14: iProov (iProov, 2024) 23

Figure 15: Resemble AI (Resemble AI, 2024) 23

Figure 16: DuckDuckGoose (Sukrit, 2025) 24

Figure 17: Hyperverge (Praveen, 2024) 25

Figure 18: Sample Structure of Waterfall Development Approach

(Kirvan, 2022) 33

Figure 19: Sample Structure of Agile Development Approach (Damm,

2023) 35

Figure 20: Sample Conceptual Structure of CBD approach (McGovern

et al., 2003) 37

Figure 21: Sample Structure of Spiral Development Approach (Talreja,

2024) 38

Figure 22: Use Case Diagram 56

xii

Figure 23: High Level System Flow Diagram 65

Figure 24: System Architecture Diagram 67

Figure 25: ERD Diagram 68

Figure 26: Detect Image Sequence Diagram 69

Figure 27: Unified Detector Concept Diagram 99

Figure 28: Unified Detector Application Code 100

Figure 29: Single Model Wrappers Concept Diagram 100

Figure 30: Single Model Wrapper Application Code 101

Figure 31: Generic Wrapper Concept Diagram 102

Figure 32: Sample YAML Config File for Generic Wrapper 102

Figure 33: Generic Wrapper Application Code 102

Figure 34: Version 1 Ensemble System Concept Diagram 103

Figure 35: Abstract Class Code for Ensemble Version 1 103

Figure 36: Version 2 Ensemble System Concept Diagram 104

Figure 37: Abstract Class Code for Ensemble Version 2 104

Figure 38: Final Conceptual Design for Ensemble System 105

Figure 39: Example Usage of DetectorOutputWrapper 107

Figure 40: Overview of Module Dependencies of

DetectorOutputWrapper 108

Figure 41: Example Usage of Ensemble Detector 110

Figure 42: Batch Processing Example for Ensemble Detector 110

Figure 43: Overview Module Dependencies of Ensemble Detector 111

Figure 44: Dashboard UI 112

Figure 45: EnsembleDetection UI 113

Figure 46: Single Model Detection UI 113

Figure 47: Detection Result UI 113

xiii

Figure 48: Detection Result History UI 114

Figure 49: Login Page UI 114

Figure 50: Register Page UI 115

Figure 51: High Level Integration & Communication Design Diagram 116

Figure 52: Unit Tests Passed Screenshot (1) 117

Figure 53: Unit Tests Passed Screenshot (2) 117

Figure 54: Integration Test Passed Screenshot 117

Figure 55: Adversarial Tests Passed Screenshot 118

Figure 56: Adversarial Tests Passed Screenshot (2) 118

Figure 57: Stress Test Passing Screenshot 118

Figure 58: Login UI showing Fullfill of Authentication Requirement 120

Figure 59: Accuracy Result from Accuracy Test 126

Figure 60: YAML Config for 4 model included to the Ensemble Detector

 127

Figure 61: False Positive/False Negative Plotting from Accuracy Test 128

Figure 62: Average Inteference Time of Detectio against Accuracy 129

Figure 63: Comparison Among Model with Top-3 Accuracy 130

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

Deepfake technology, a term derived from "deep learning" and "fake," refers to

synthetic media generated using artificial intelligence (AI) to manipulate or

fabricate images, videos, audio, or text with striking realism (Anna, 2024). This

technology relies on advanced deep learning techniques, particularly Generative

Adversarial Networks (GANs), where a generator creates fake content and a

discriminator evaluates its authenticity, iteratively refining outputs until they

appear genuine (Yasar, Barney, and Wigmore, 2024).

Deepfakes first gained prominence in 2017 when a Reddit user demonstrated

face-swapping in videos, sparking debates about their ethical implications

(Simonite, 2019). Since then, advancements in AI have made the technology

more sophisticated and accessible. By 2023, over 500,000 deepfake videos

circulated online, spanning applications from entertainment to disinformation

campaigns (Jacobson, 2024). Tools like Deepswap and FaceApp now enable

even novices to create convincing synthetic media, amplifying both innovation

and misuse (*12 Best Deepfake Sites & Apps in 2025 [FREE included]*, no

date).

While deepfakes offer niche benefits—such as de-aging actors in films,

enhancing medical training simulations, or creating immersive educational

content—their rapid evolution has raised urgent ethical and societal concerns

(Greggwirth, 2023).

1.2 Importance of the Study

The proliferation of deepfakes poses significant risks to misinformation, fraud,

personal privacy, security, and even national security. For example, a fabricated

video of Ukrainian President Volodymyr Zelenskyy falsely urging surrender

during the Russia-Ukraine war demonstrated how deepfakes can destabilize

trust in institutions and democratic processes (Ebaker, 2023). Similarly,

deepfakes enable sophisticated financial fraud, such as the 2020 \$35 million

scam where criminals used synthetic audio to impersonate a corporate executive

(Business Today, 2025). Privacy violations, particularly non-consensual

2

deepfake pornography targeting women, inflict lasting emotional and

reputational harm, while altered medical imagery risks misdiagnosis and

insurance fraud.

Existing detection systems struggle to keep pace with the rapid advancement of

deepfake creation tools. Classifiers trained on specific datasets or GAN

architectures often fail to generalize across diverse manipulation methods,

leading to outdated and ineffective solutions (Ramanaharan, Guruge, and

Agbinya, 2025). This inadequacy underscores the urgent need for adaptable,

modular detection systems capable of addressing evolving synthetic media.

The societal implications are profound: unchecked deepfakes could undermine

public trust in media, destabilize democratic processes, and erode personal

reputations (Gorbel, no date). Robust detection solutions are essential to

mitigate these risks, protect individuals, and preserve the integrity of

information in an increasingly digital world (Anna, 2024; Greggwirth, 2023).

Addressing the challenge of generalization in detection methods is critical to

ensuring reliable performance across real-world scenarios, ultimately

safeguarding privacy, security, and trust in digital media.

1.3 Problem Statement

1.3.1 PS1: Generalization of Deepfake Detection Models

Deepfake detection models face a major challenge in generalization, which

refers to a model's ability to apply its learned knowledge to new and unseen

deepfake manipulations. Currently, most deepfake detection systems are trained

on a specific set of datasets and manipulation types, leading to limitations in

their ability to detect novel forms of deepfake content. For instance, detection

models trained on face-swapping deepfakes often fail when exposed to new

deepfake techniques, such as style transfer-based deepfakes. The problem of

generalization is illustrated in Utility of Deep Learning Features for Facial

Attributes Manipulation Detection 2020 which shows the detection accuracy of

models when tested on different and all manipulation types revealing a

significant performance drop across all detection methods. From the result of

the study, it have shown the average detection accuracy under novel

manipulations is much lower compared to models tested on previously seen

3

manipulations, underscoring the need for models capable of generalizing across

different types of deepfakes (Afchar et al., 2018; Li et al., 2020).

1.3.2 PS2: Lack of Diverse Datasets for Training Deepfake Detection

Models

The lack of diverse datasets is a key limitation in the development of effective

deepfake detection systems. Most existing datasets, such as FaceForensics++

and Celeb-DF, focus primarily on face-swapping manipulations and may not

represent newer deepfake techniques. The lack of diversity means that detection

systems trained on these limited datasets often fail when confronted with new

forms of manipulation, resulting in low accuracy and high error rates when

tested on unseen manipulation types. Utility of Deep Learning Features for

Facial Attributes Manipulation Detection 2020 highlights the detection

accuracy of models when tested with novel manipulation type data, revealing

that the performance can vary significantly based on the type of manipulation

and dataset used for training. This demonstrates that detection accuracy is much

lower when models are tested on diverse types of manipulations, underlining

the need for a broader range of datasets to train more robust, adaptable models

(Afchar et al., 2018; Gandhi et al., 2021).

1.3.3 PS3: Accessibility of Deepfake Detection Tools (Web Application)

Another critical issue is the inaccessibility of deepfake detection tools, which

are often complex and require specialized technical knowledge to operate. Most

current detection systems are designed for use by experts in machine learning

or computer vision, which limits their usability for the general public. To

address this challenge, deepfake detection tools should be accessible via a web-

based application that allows users to upload media and receive results quickly

and easily. This would democratize the ability to detect deepfakes, making it

available to individuals, organizations, and institutions that need to verify media

authenticity but lack the technical expertise. A user-friendly web application

would allow anyone with an internet connection to check whether a piece of

media has been manipulated, ensuring that deepfake detection becomes an

accessible tool for all, not just experts (Gandhi et al., 2021).

4

1.4 Aim and Objectives

1.4.1 O1: To Develop a Generalizable Deepfake Detection System

This objective addresses the problem of generalization by developing a

detection system capable of adapting to a wide range of deepfake techniques,

regardless of the manipulation type or the dataset used to create it. The system

will be trained using diverse datasets that cover various deepfake generation

methods, such as audio manipulation, face aging, and style transfer deepfakes,

ensuring that it can handle different types of manipulations without a significant

drop in accuracy. The model will also be designed to maintain high detection

performance even when exposed to new, previously unseen deepfake methods,

thus addressing the core issue of generalization in deepfake detection (Afchar

et al., 2018; Li et al., 2020).

1.4.2 O2: To Collect and Integrate a Diverse Dataset for Training

Deepfake Detection Models

• Problem Addressed: PS2: Lack of Diverse Datasets for Training

Deepfake Detection Models

This objective seeks to overcome this limitation by compiling a comprehensive

and diverse dataset that covers multiple deepfake generation techniques and

manipulation types. The dataset will include deepfakes generated using various

GAN architectures, autoencoders, and style transfer methods. It will also

incorporate diverse manipulation techniques, such as smile alteration, gender

switching, and aging effects, to ensure that the detection system is exposed to a

wide range of synthetic media. By training the detection model on this diverse

dataset, it will become more robust and adaptable, improving its ability to detect

a broader array of deepfake manipulations and making the detection system

more effective in real-world scenarios (Gandhi et al., 2021; Afchar et al., 2018).

1.4.3 O3: To Develop an Accessible Web-Based Deepfake Detection Tool

• Problem Addressed: PS3: Accessibility of Deepfake Detection Tools

(Web Application)

5

This objective aims to democratize access to deepfake detection tools, making

them available to a much wider audience, including journalists, media

organizations, educators, and the general public. The application will be

designed for ease of use, with no need for advanced knowledge of machine

learning or AI algorithms. The goal is to create a web-based platform that allows

anyone with an internet connection to verify the authenticity of media in real

time, helping to combat the spread of misinformation, fraud, and defamation

caused by manipulated content. By providing an easy-to-use detection tool, this

objective seeks to make deepfake verification accessible to all (Gandhi et al.,

2021).

1.5 Proposed Solution

To address the critical challenges of generalization, adaptability, and practical

deployment in deepfake detection, this project proposes a component-based

framework designed to enhance detection robustness across diverse datasets and

evolving synthetic media techniques. The solution integrates three core

innovations, aligned with the project’s objectives and methodology.

First, the Component-Based Modular Architecture employs a modular design to

decouple detection components, enabling independent training and testing of

models tailored to specific datasets or architectures. Each component comprises

three units: a Computation Unit that handles model-specific computations (e.g.,

GAN artifact detection, frequency analysis) while maintaining fixed behavior

to ensure consistency; an Output Unit that aggregates results from individual

components, providing a unified detection outcome; and a Connector Unit that

facilitates seamless communication between components, allowing incremental

integration of new models (e.g., diffusion models) without disrupting existing

workflows.

6

Figure 1: Component-based Architecture as Solution

Second, to mitigate dataset bias and improve generalization, the Diverse Dataset

Generation and Integration component curates a comprehensive dataset

spanning multiple generative models, including Unconditional GANs like

StyleGAN, proGAN, SAGAN, and BigGAN for high-fidelity facial synthesis;

Conditional GANs like CycleGAN (face-swapping), StarGAN (attribute

editing), and Face2Face (expression manipulation); Auto-Encoders such as

FaceForensics++ benchmark images generated via the faceswap tool; and

Perceptual Loss Models like Cascaded Refinement Networks (CRN) and

Implicit Maximum Likelihood Estimation (IMLE).

7

Figure 2: Referencing Image for Deepfake Generated By Differnt GAN

Generator (Xu, Raja and Pedersen, 2022)

Third, a Practical Web Application for Real-World Deployment is developed to

democratize access to robust deepfake detection. Key features include Multi-

Model Support, allowing users to select detection components optimized for

specific manipulation types (e.g., face-swaps, expression edits); Adaptive

Updates, which allow new components (e.g., for diffusion models) to be added

without requiring full system retraining; and Cross-Domain Validation, using

metrics like average precision and adaptation rate to ensure performance across

unseen datasets. In implementation, Stage 4 (Application Development)

leverages the component-based architecture to ensure modularity and scalability,

and Stage 5 (Evaluation) tests the application’s accuracy on novel manipulation

types (e.g., lip-sync forgeries) and computational efficiency.

8

Figure 3: Sample interface design for Proposed web application

1.6 Scope and Limitation of the Study

1.6.1 Scope:

1.6.1.1 Features and Modules to be Developed

Deepfake Detection Application: The core functionality of the system,

allowing users to upload images that will be classified as either "real" or "fake"

using AI-powered models like Convolutional Neural Networks (CNNs) and the

ensemble detection method.

Ensemble Detection System: The system will incorporate multiple models

using ensemble strategies like majority voting, weighted averaging, and

confidence-based selection. This ensemble method will improve accuracy and

decision-making reliability.

Model Management: The system will allow administrators to manage models,

including adding, updating, and deactivating them through configuration files

(YAML/JSON). The platform will also support retraining with new datasets,

ensuring adaptability to emerging deepfake technologies.

Dataset Management: The platform will provide access to curated datasets

containing both real and deepfake images, which users can explore, download

for research purposes, or use for training new models.

9

1.6.1.2 Intended Users or Target Audience

Researchers and Academics: They will use the platform to analyze deepfake

detection techniques and experiment with different models and datasets.

Developers and AI Engineers: These users will leverage the platform for

integrating new models, experimenting with datasets, and optimizing detection

performance.

General Public and Media: The public can upload images for detection,

providing an easy way to verify the authenticity of images they encounter online.

Institutions (Universities, Law Enforcement): These users will use the

platform for verifying documents, images, and media in academic, legal, and

security contexts.

1.6.1.3 Technologies or Platforms to be Used

Frontend: The web application will use modern web technologies such as

HTML, CSS, and JavaScript, leveraging frameworks like React.js or Vue.js for

creating responsive and interactive interfaces.

Backend: Python will be used for developing AI and machine learning models,

leveraging deep learning frameworks like TensorFlow and PyTorch. Server-

side logic will be managed using Flask for API interactions.

Database: PhpMyAdmin will be used to store user data, metadata, and model

performance metrics.

Containerization: Docker will be employed for containerization and

orchestration, ensuring smooth deployment and management of the system

components.

1.6.1.4 Types of Data or Inputs the System Will Handle

User-uploaded Images: The main input, which can be either real or deepfake

images.

Model Data: Pre-trained models deployment script and model weight used for

deepfake detection.

Metadata: Information about each processed image, including the prediction

(real or fake), confidence scores, and model performance metrics

10

1.6.2 Limitation:

1.6.2.1 Dataset Limitations

The system relies on datasets for training its detection models. However,

datasets may not cover all possible deepfake manipulation types or cross-

domain variations such as changes in lighting, resolution, or camera angles.

While datasets will include a variety of deepfake techniques, new manipulation

methods emerge frequently, and it is impossible to predict and incorporate every

potential deepfake generation method.

1.6.2.2 Computational Complexity

Deepfake detection models, particularly those based on deep learning, require

substantial computational resources for both training and inference. This may

necessitate GPUs or cloud infrastructure to process large datasets and perform

real-time detection. Users without access to high-performance hardware could

face challenges in training the models, and running real-time inference on large

video files could cause latency issues. Cloud computing services, such as AWS

and Google Cloud, provide necessary computational resources but may not be

accessible to all users, especially those with limited financial resources.

1.6.2.3 Real-Time Detection Limitations

While the system aims for real-time detection, there are inherent limitations.

High-resolution images or videos with multiple frames require more processing

power and time, potentially leading to delays in providing feedback. As

deepfake techniques become more sophisticated, the detection algorithms may

need more time to identify subtle manipulation artifacts. Achieving

instantaneous results for all media types may not always be feasible, especially

for large video files or complex image manipulations.

1.6.2.4 Focus on Specific Manipulation Types

While the system aims for real-time detection, there are inherent limitations.

High-resolution images or videos with multiple frames require more processing

power and time, potentially leading to delays in providing feedback. As

deepfake techniques become more sophisticated, the detection algorithms may

need more time to identify subtle manipulation artifacts. Achieving

11

instantaneous results for all media types may not always be feasible, especially

for large video files or complex image manipulations.

12

CHAPTER 2

2 LITERATURE REVIEW

2.1 Literature Review of Deepfake Detection

2.1.1 Introduction

This literature review examines the evolution of deepfake generation techniques

and the corresponding advancements in detection methodologies, focusing on

the technical challenges of generalization, dataset diversity, and real-time

applicability. The review also evaluates commercial and open-source detection

tools, such as Microsoft Video Authenticator and DeepFake-O-Meter, assessing

their strengths in specific manipulation types and weaknesses in scalability or

accessibility. By synthesizing these insights, this section establishes the

foundation for the proposed modular detection system, which aims to overcome

gaps in generalization, usability, and ethical deployment identified in current

literature.

2.1.2 Detection Models

DeepfakeBench, introduced in DeepfakeBench: A Comprehensive Benchmark

of Deepfake Detection by Zhiyuan Yan et al, is a pioneering framework

designed to address critical challenges in evaluating deepfake detection models.

Traditional approaches often suffer from inconsistent datasets, non-uniform

evaluation protocols, and fragmented implementation pipelines, leading to

unreliable comparisons between models. In the project, we will use result from

this paper, to objectively assess model robustness across different scenarios.

2.1.2.1 Model Training and Assumptions:

Models evaluated within DeepfakeBench are trained on a variety of deepfake

datasets, including the newly introduced DF40 dataset, which features 40

distinct deepfake techniques. This diversity ensures that models are exposed to

a wide range of manipulation methods during training. The training process

assumes that models can learn generalized features capable of detecting various

deepfake techniques. However, the effectiveness of these models can vary

depending on the specific characteristics of each dataset.

13

2.1.2.2 Domain issue in Deepfake detection:

Deepfake detection models face a fundamental challenge: balancing

performance on familiar data (within-domain) with adaptability to unseen

manipulations (cross-domain). This dichotomy reflects the real-world tension

between specialization and generalization, where models must excel in

controlled settings while remaining robust against evolving threats. In

considering such sequence, DeepfakeBench employs both evaluation strategies

to assess these competing demands (Yan et al., 2023b):

• Within-Domain Evaluation: In this approach, models are trained and

tested on data from the same source or domain. This scenario simulates real-

world applications where models encounter data similar to their training data.

High performance in within-domain evaluations indicates that a model can

effectively detect deepfakes within a specific context or dataset.

• Cross-Domain Evaluation: Here, models are trained on data from one

domain and tested on data from a different, unseen domain. This evaluation

simulates real-world scenarios where models must generalize to new,

unseen data distributions. High performance in cross-domain evaluations

demonstrates a model's robustness and ability to adapt to various deepfake

generation techniques and data characteristics.

2.1.2.3 Model Type

In deepfake detection, models are typically categorized into three types based

on their feature extraction approaches: naive, spatial, and frequency detectors.

Each type has distinct methodologies that influence their accuracy and

performance.

1. Naive Detectors:

Naive detectors employ standard convolutional neural networks (CNNs) to

perform binary classification between real and fake content without

incorporating specialized modules for artifact detection. They rely on the CNN's

14

ability to learn hierarchical features from the data. While naive detectors can

achieve commendable accuracy within the domain they are trained on, their

performance may degrade when applied to unseen data or different deepfake

generation techniques due to their limited focus on generalized artifact detection.

 (Yan et al., 2024)

2. Spatial Detectors:

Spatial detectors focus on analyzing pixel-level artifacts and inconsistencies

within images or video frames. They often incorporate attention mechanisms or

specialized modules to detect anomalies such as unnatural edges, texture

inconsistencies, or irregular facial features. By emphasizing these spatial

irregularities, these detectors can effectively identify manipulations that are

visually apparent. However, their performance can be affected by variations in

image quality, resolution, and the presence of compression artifacts, which may

obscure the subtle cues they rely on. (NGUYEN et al., 2018)

3. Frequency Detectors:

Frequency detectors analyze images in the frequency domain, targeting spectral

anomalies introduced during the deepfake generation process. Techniques such

as Discrete Cosine Transform (DCT) or Fast Fourier Transform (FFT) are

employed to convert spatial data into frequency components, allowing these

models to detect unnatural frequency patterns or compression artifacts. This

approach enables frequency detectors to identify subtle manipulations that may

not be evident in the spatial domain. Nonetheless, their effectiveness can be

influenced by factors like the specific frequency artifacts present in different

deepfake techniques and the potential for overfitting to these artifacts, which

may limit their generalizability across diverse datasets. (Yan et al., 2024)

Performance Evaluation:

To quantify the trade-offs between model architectures and their real-world

applicability, we evaluate five representative detectors from the result of

DeepfakeBench’s standardized framework. These models—UCF (spatial),

SPSL (frequency), Xception (naive), FFD (spatial), and EfficientB4 (naive)—

15

were selected for their highest performance among the 34 detectors involved.

The following comparison highlights critical performance disparities,

particularly in cross-domain generalization, while contextualizing their

computational demands and specialization biases. The performance result is

summarized in the Table 1 below:

Table 1: Performance Comparison of Top-5 Models from DeepFake Benchmark

(Yan et al., 2023b)

Detector Type Backbone
Within-Domain

Avg.

Cross-Domain

Avg.

UCF Spatial Xception 0.9527 0.7801

SPSL Frequency Xception 0.9408 0.7875

Xception Naive Xception 0.945 0.7718

FFD Spatial Xception 0.9434 0.7733

EfficientB4 Naive Efficient 0.9389 0.7718

2.1.2.4 Discussion on Top-5 Models

UCF (Spatial, Xception Backbone):

UCF is a spatial-based deepfake detector built upon the Xception architecture,

enhanced with specialized modules for artifact detection. It utilizes spatial

attention mechanisms to focus on localized tampering traces, such as unnatural

facial boundaries or inconsistent lighting. (NGUYEN et al., 2018). The

Xception backbone, known for its depthwise separable convolutions, efficiently

captures hierarchical features while reducing computational overhead. In

evaluations, UCF achieved a within-domain average Area Under the Curve

(AUC) of 0.9527 and a cross-domain average AUC of 0.7801, ranking in the

top three across 11 datasets. However, its high computational load may limit

real-world applicability, especially in resource-constrained environments. (Yan

et al., 2023a)

SPSL (Frequency, Xception Backbone):

16

SPSL approaches deepfake detection from a frequency domain perspective,

integrating spectral analysis with the Xception architecture. (Liu et al., 2021).

By processing images in the frequency domain, SPSL identifies spectral

distortions indicative of manipulation, such as unnatural high-frequency

patterns. (Liu et al., 2021) This hybrid approach enhances the model's

robustness against cross-domain challenges. SPSL achieved the highest cross-

domain average AUC of 0.7875 among the evaluated models, though its within-

domain performance (AUC of 0.9408) is slightly lower. This trade-off suggests

a specialization in detecting diverse deepfake techniques at the expense of some

performance on domain-specific data. (Liu et al., 2021)

Xception (Naive, Xception Backbone):

The Xception (Naive) model employs the standard Xception architecture

without specialized deepfake detection modules. It relies on hierarchical feature

learning to distinguish between real and fake content. (Li et al., 2017) This

simplicity contributes to its balanced performance, achieving a within-domain

average AUC of 0.945 and a cross-domain average AUC of 0.7718. While it

serves as a strong baseline, the lack of specialized mechanisms may limit its

effectiveness against sophisticated deepfake generation techniques. (Li et al.,

2017)

FFD (Spatial, Xception Backbone):

FFD is tailored for facial forgery detection, integrating facial landmark

alignment and local artifact detectors within the Xception framework. By

focusing on facial regions prone to manipulation, FFD excels in identifying

subtle inconsistencies. (Li et al., 2017) It achieved a within-domain average

AUC of 0.9434 and a cross-domain average AUC of 0.7733. However, its

specialization may lead to overfitting to facial features, potentially reducing its

adaptability to non-facial manipulations. (Li et al., 2017)

5. EfficientB4 (Naive, EfficientNet Backbone):

EfficientB4 utilizes the EfficientNet-B4 architecture, emphasizing resource

efficiency and scalability. It incorporates Mobile Inverted Bottleneck

Convolutions (MBConv) and Squeeze-and-Excitation blocks to balance model

17

size and performance. (Potrimba, 2023). With a within-domain average AUC of

0.9389 and a cross-domain average AUC of 0.7718, EfficientB4 offers a

lightweight alternative suitable for deployment in resource-constrained settings.

However, its peak accuracy is lower compared to more complex models,

indicating a trade-off between efficiency and detection performance.

2.1.3 DeepFake Detection Tools:

Deepware Scanner

Deepware Scanner is a specialized tool designed to detect deepfake videos,

focusing exclusively on facial manipulations such as face-swaps. It utilizes a

convolutional neural network (EfficientNet-B7) pre-trained on ImageNet, fine-

tuned using Facebook's DeepFake Detection Challenge (DFDC) dataset to

enhance its detection capabilities, optimized for identifying inconsistencies in

facial regions. Additionally, the tool employs face clustering techniques to

enhance the consistency and reliability of its detection results. In controlled

settings, Deepware Scanner has demonstrated a high accuracy rate of ~95–98%

when tested on the FaceForensics Actors Dataset. It also maintains robust

performance with broader datasets like CFDF, despite unspecified accuracy rate.

The tool is capable of processing videos up to 10 minutes in length, but

performance may decline with lower-resolution videos. (Hook35, 2021)

Deepware Scanner is currently in its beta stage and is available in web-platform,

API, and SDK formats.

Figure 4: Logo of Deepware (Deepware, 2025)

Intel’s FakeCatcher

18

Intel’s FakeCatcher is a real-time deepfake detection tool that utilizes

photoplethysmography (PPG) to analyze subtle color changes in facial pixels

caused by blood flow, a feature absent in synthetic faces. (Intel, 2022) It also

examines eye movements for consistency, aiding in the identification of

deepfakes. Regarding the performance, Intel claim that FakeCatcher achieves a

96% accuracy rate. Despite this, it excels in detecting lip-sync deepfakes, such

as those generated by MIT. In BBC’s independent test, FakeCatcher correctly

identified all MIT-generated lip-sync deepfakes but flagged some real videos as

fake due to pixelation or poor lighting. However, the system struggles with

pixelated videos, does not analyze audio, and is prone to false positives, flagging

real videos as fake. Regarding pricing, specific details are not readily available.

Intel has not publicly disclosed the cost of FakeCatcher.

Figure 5: Sample Output from Intel FakeCatcher (Clayton, 2023)

Microsoft Video Authenticator

Microsoft's Video Authenticator is a tool developed to detect deepfake content

in photos and videos by analyzing visual cues such as blending boundaries and

subtle fading, providing real-time confidence scores for each frame. (Kelion,

2020) While it has demonstrated high accuracy with curated datasets like

FaceForensics++ but the specific accuracy is not publicly disclosed. Initially,

Video Authenticator was available through the AI Foundation’s Reality

Defender 2020 (RD2020) initiative, targeting organizations involved in the

democratic process, including news outlets and political campaigns. (Burt, 2020)

There is no public information regarding its availability to individual users or

details about its pricing.

19

Figure 6: Sample Output from Microsoft Video Authenticator (Burt, 2020)

Sensity

Sensity is a specialized platform designed to detect deepfakes by analyzing

pixel-level inconsistencies, audio patterns, and file structure anomalies. It

employs advanced deep learning techniques, including convolutional neural

networks (CNNs) and generative adversarial network (GAN) analysis, to

identify synthetic content across videos, images, and audio. The platform boasts

a 98.7% accuracy rate in detecting AI-generated media, effectively identifying

malicious deepfakes on social media and the dark web. (Linkedin.com, 2024)

This capability is crucial for sectors like law enforcement and human rights,

where combating fraud and non-consensual explicit content is a priority.

(Sensity, 2024) The platform serves multiple sectors, including law enforcement,

Know Your Customer (KYC) vendors, social media platforms, defense agencies,

and digital forensics firms. It is utilized by various organizations, such as

TrueMedia, Tradelink, Psyber Labs, Mobbex, 3D Bilism, GlossAI, Confiant,

FlipFlop, ArmisonTech, and TransGuard. Sensity offers custom plans tailored

to organizational needs, with costs determined upon request. (Sensity, 2023)

Figure 7: Logo of Sensity Ai (Sensity, n.d.)

20

Reality Defender

 Reality Defender is a deepfake detection platform that utilizes advanced AI

techniques, including convolutional neural networks (CNNs) and transformer-

based architectures, to identify AI-generated content across audio, video,

images, and text. The platform employs multiple concurrent models for each

media type, enhancing its ability to detect a wide range of generative AI

techniques and adapt to emerging threats. In real-world applications, Reality

Defender has proven effective in sectors such as contact centers, brand

monitoring, real-time video identity authentication, text detection, image

authentication, content moderation, and combating disinformation. It has

established collaborations with several prominent organizations, including

Accenture, Deloitte, IBM, Microsoft, and Nvidia, to enhance deepfake detection

capabilities across various industries. Additionally, partnerships with

companies like ElevenLabs and TaskUs aim to bolster AI safety and assisted

government officials in Canada in identifying and debunking deepfake videos,

preserving public trust and integrity. These collaborations underscore Reality

Defender's commitment to providing comprehensive solutions for combating

AI-generated fraud and disinformation. Regarding cost, Reality Defender offers

flexible pricing plans tailored to the specific needs and requirements of each

organization.

Figure 8: Logo of Realidy Defender Ai (Realitydefender.com, 2024)

Sentinel AI

Sentinel AI is a deepfake detection platform that utilizes convolutional neural

networks (CNNs) and generative adversarial networks (GANs) to identify facial

swaps, lip-sync mismatches, and audio manipulations. (Romain, 2023) By

21

processing video, audio, and metadata, it enhances detection robustness. In

controlled environments, Sentinel AI achieves a good accuracy rate (not

specific % disclosed) on datasets like FaceForensics++. However, its

performance may decrease with high-fidelity deepfakes encountered in real-

world scenarios. The platform is employed by governments and organizations

such as the European Union External Action and Accelerate Estonia to combat

political disinformation and enhancing digital security across various sectors.

(Sentinel, n.d) Regarding pricing, specific details are not publicly available.

Sentinel AI offers customized solutions tailored to the needs of larger

organizations.

Figure 9: Logo of Sentinel AI with slogan (Romain Berg, 2023)

Truepic

Truepic is a platform that ensures the authenticity of digital media through

blockchain-based standards like C2PA, embedding tamper-evident certificates

into images and videos from creation to publication. This approach allows for

verification of media integrity, making it particularly effective in combating

synthetic identity fraud and verifying medical scans. Truepic has partnered with

various organizations, including Equifax, Davies Group, Northteq, SmartFrame

Technologies, and Recall Results, to enhance digital media authenticity,

streamline inspections, and innovate product recall processes across multiple

industries. However, Truepic's reliance on embedded credentials means it may

struggle with high-fidelity deepfakes lacking such metadata. Pricing for Truepic

Vision starts at $1,000 per user per month, with costs scaling based on the

volume of inspections.

22

Figure 10: Truepic (Truepic.com, 2022)

iProov’s Liveness Detection

iProov is a biometric authentication platform that utilizes its patented Flashmark

technology to detect subtle lighting changes and facial movements, ensuring the

presence of a live user during authentication. This method effectively

differentiates between live individuals and static or synthetic images. iProov

boasts a >98% detection rate in controlled environments, excelling in preventing

replay attacks and synthetic identity fraud, thereby offering real-time fraud

prevention. iProov has formed strategic partnerships with organizations such as

Cybernetica, TrustCloud, Biometrid, Authsignal, Matter-ID, and iCloud

Identity Inc. to enhance digital identity verification across sectors like

government, financial services, and healthcare with notable deployments by the

UK Home Office and the U.S. Department of Homeland Security for identity

verification purposes. iProov offers a range of service packages and each

tailored to organizations with varying user volumes and security requirements.

Pricing details, including implementation fees and annual committed fees, are

outlined in iProov's official G-Cloud 13 Pricing Document. (G-Cloud 13

Service Definition: iProov Face Verifier, 2022)

23

Figure 11: iProov (iProov, 2024)

Resemble AI’s Detect

Resemble AI's Detect is an advanced neural model designed to identify

synthetic audio, video, and images by analyzing subtle inconsistencies across

various media types. Its robust detection capabilities make it suitable for real-

time applications, such as monitoring live streams for fraudulent activities. To

achieve optimal performance, detect requires high-quality audio inputs. The tool

is utilized in enterprise security to flag synthetic voices in fraud attempts and in

media to verify the authenticity of celebrity voice clones. (Resemble AI, 2024)

Besides, Resemble AI has partnered with Carahsoft to provide voice AI and

deepfake detection solutions to government agencies while offers a deepfake

detection integration for Zoom, analyzing audio snippets during calls to identify

potential deepfakes. Regarding the price, Resemble AI offers a range of

subscription plans to cater to diverse user needs, including the Starter Plan at $5

per month, the Creator Plan at $19 per month, the Professional Plan at $99 per

month, the Scale Plan at $299 per month, the Business Plan at $699 per month,

and the Enterprise Plan, which requires direct consultation for pricing.

(Resemble AI, 2023)

Figure 12: Resemble AI (Resemble AI, 2024)

24

DuckDuckGoose

DuckDuckGoose is an AI-driven platform specializing in detecting deepfakes

across images, videos, and audio by employing explainable AI (XAI) to

highlight manipulated regions, enhancing transparency in detection decisions.

It achieves a 99% accuracy rate in identifying deepfakes in images and videos

(retained by Phocus) with 0.01% false-rejection rate. The platform is utilized in

sectors such as banking to prevent fraud, in legal settings to verify evidence

authenticity, and for Know Your Customer (KYC) processes during user

onboarding. To be detail, DuckDuckGoose has partnered with Banco Daycoval,

bunq and Dutch House by integrating its DeepDetector solution. For the pricing,

DuckDuckGoose did not disclose the price publicly (DuckDuckGoose, n.d.)

Figure 13: DuckDuckGoose (Sukrit, 2025)

HyperVerge:

HyperVerge’s deepfake detection capabilities are built on a robust technical

foundation. The platform utilizes ISO 30107-3 certified AI models for passive

liveness detection, distinguishing live users from deepfakes, masks, and screen

replays by analyzing micro-movements, such as eye blinks and blood flow

patterns, along with texture inconsistencies in real-time. In terms of accuracy

and performance, HyperVerge boasts an impressive 98.5% accuracy rate in

detecting synthetic media, including deepfakes and GAN-generated faces, on

datasets like FaceForensics++. It maintains a low False Acceptance Rate (FAR)

of less than 0.1% for spoof attacks, including high-quality deepfakes, and

processes liveness checks in under 3 seconds, making it highly effective for real-

time fraud prevention during user onboarding. HyperVerge is deployed for SIM

card fraud prevention, it has helped telecom companies like Reliance Jio reduce

SIM fraud by 99%. In financial services, the platform blocks synthetic identities

in loan applications by flagging AI-generated selfies or manipulated documents.

25

It has also partnered with governments to verify voter identities and counter

deepfake-driven disinformation campaigns. Regarding the price, HyperVerge

provides deepfake detection services with pricing starting at $0.04 per

verification for document quality checks, selfies, and ID forgery, and $0.07 for

video KYC verifications.

Figure 14: Hyperverge (Praveen, 2024)

26

Comparison:

The comparison table provides an overview of included deepfake detection tools, comparing their accuracy, strengths, weaknesses, deployment

scenarios, and pricing. It highlights that most tools specialize in different media types (images, videos, audio) and use various approaches, such as

AI models, blockchain technology, and facial biomet

Table 2: Overview Comparison of DeepFake Detection Tools

Tool Name Deployment Detection Focus Accuracy Strengths Real-World Deployment Pricing

Deepware Scanner Single-model
Facial manipulations

(face-swaps)

~95-98%

(FaceForensics)

Specialized for

facial

inconsistencies

Beta stage, web-platform,

API, SDK available
Free

Intel’s FakeCatcher Single-model

Facial features

(blood flow, eye

movements)

96%

Real-time detection,

excels in lip-sync

deepfakes

Deployed for lip-sync

detection, BBC test results

Not publicly

disclosed

Microsoft Video

Authenticator
Single-model

Blending boundaries,

subtle fading
Not disclosed

High accuracy with

curated datasets

Primarily targeting

democratic process, political

campaigns

Not publicly

disclosed

Sensity Multi-model

Pixel

inconsistencies,

audio patterns, file

structure anomalies

98.70%

Effective for social

media and dark web

deepfakes

Deployed in law

enforcement, KYC, defense

agencies

Custom pricing plans

Reality Defender Multi-model
Audio, video,

images, text
Not disclosed

Multiple models for

varied media types,

wide industry

adoption

Deployed in contact centers,

brand monitoring,

government

Custom pricing plans

Sentinel AI Multi-model
Facial swaps, lip-

sync, audio
Not disclosed

Robust for political

disinformation,

customized solutions

Used by EU External Action,

Accelerate Estonia
Custom pricing plans

Truepic Single-model
Blockchain-based

media integrity
Not applicable

Effective in synthetic

identity fraud and

medical scans

Deployed for media

authenticity verification in

various sectors

$1,000+ per user per

month

iProov Multi-model

Biometric

authentication

(liveness detection)

>98%

Excellent for

preventing fraud in

real-time, live user

detection

UK Home Office, U.S.

Department of Homeland

Security

Custom pricing plans

Resemble AI Multi-model
Audio, video, and

images
Not disclosed

Real-time detection,

suitable for live

stream fraud

detection

Deployed in enterprise

security, Zoom integration

Plans range from $5

to $699 per month

DuckDuckGoose Multi-model
Images, videos,

audio
95-99%

High accuracy,

explainable AI

(XAI) transparency

Banco Daycoval, bunq,

Dutch House for KYC
Pricing not disclosed

HyperVerge Multi-model

Deepfakes, liveness,

document

verification

98.50%

Quick detection

(<3s), low FAR

(<0.1%), ISO 30107-

3 certified

Reliance Jio (SIM fraud

reduction), Flip (financial

services)

Starts at $0.04 per

verification, free trial

available

27

2.1.4 Open-source Tools/Framework:

DeepSafe (Sah, 2023):

https://github.com/siddharthksah/DeepSafe

DeepSafe is an open-source, Streamlit-based web application developed to

facilitate deepfake detection research by providing a unified platform for testing

and comparing various detection models. It supports multiple pre-trained

models, including CNNs and GAN-based detectors, and allows users to

integrate custom models. Users can analyze media through direct uploads or by

processing URLs, with the platform converting files to standardized formats to

ensure compatibility across detectors. DeepSafe offers optional GPU

acceleration for faster inference. While DeepSafe includes a benchmarking

feature to evaluate models on datasets like FaceForensics++ and Celeb-DF,

providing metrics such as accuracy, precision, recall, and inference time,

specific accuracy metrics for the included models are not disclosed. DeepSafe

serves as a valuable tool for researchers, educators, and developers aiming to

analyze and combat deepfake content. (Sah, 2023)

Deepstar (zerofox-oss, 2019):

https://github.com/zerofox-oss/deepstar

Deepstar is an open-source toolkit developed by ZeroFox to aid in the detection,

analysis, and mitigation of deepfakes. It offers a suite of tools designed to

streamline operations related to deepfake detection research. In technical basis,

Deepstar provides code for automating the creation of deepfake datasets, testing,

and enhancing detection algorithms. It includes a curated library of deepfake

and real videos sourced from platforms like YouTube, facilitating the

development and evaluation of detection models. The toolkit also features a

plug-in framework that enables researchers to test, retrain, and compare the

performance of different classifiers, fostering continuous improvement in

deepfake detection capabilities. Regarding accuracy, specific accuracy metrics

are not detailed in the available sources, Deepstar's comprehensive dataset and

modular design suggest a robust foundation for developing and evaluating

deepfake detection models. The toolkit's structure allows for continuous

improvement and adaptation to emerging deepfake techniques. Deepstar has

28

demonstrated practical utility in real-world scenarios. At the Black Hat security

conference, ZeroFox researchers presented their techniques for identifying

deepfake videos using Deepstar, highlighting its effectiveness in combating

deepfake threats. The toolkit's plug-in framework and curated video library have

been instrumental in advancing detection capabilities within the cybersecurity

community. (zerofox-oss, 2019)

DeepFake-O-Meter (yuezunli, 2020):

https://github.com/yuezunli/deepfake-o-meter?tab=readme-ov-file

DeepFake-O-Meter, developed by the University at Buffalo Media Forensics

Lab, is an open-source platform that integrates multiple state-of-the-art

detection algorithms to analyze images, videos, and audio for deepfake content.

In deployment, DeepFake-o-meter's backend utilizes a computation server with

8 A5000 GPUs for deepfake detection. Users can upload media through a web-

based interface supporting formats such as MP4, JPG, and WAV, and select

from various detection algorithms based on metrics like accuracy, runtime, or

development year. The platform has demonstrated effectiveness in detecting AI-

generated content; for instance, it achieved a 69.7% accuracy rate in identifying

AI-generated audio in a Poynter test, surpassing other free tools. Despite these

limitations, DeepFake-O-Meter serves as a valuable tool for researchers,

educators, and developers aiming to analyze and combat deepfake content.

(yuezunli, 2020)

FakeFinder (IQTLabs, 2021):

https://github.com/IQTLabs/FakeFinder

FakeFinder, developed by IQT Labs, is an open-source deepfake detection

framework that aggregates predictions from six pre-trained deep learning

models, including Boken, Selimsef, and NTechLab, which performed well in

the Facebook/Kaggle Deepfake Detection Challenge. It focuses on detecting

face-swap deepfakes by analyzing facial inconsistencies, blending boundaries,

and temporal anomalies in videos. Its modular design features a Dash-based

frontend, API integration capabilities, and an AWS containerized backend.

However, FakeFinder's performance drops when detecting non-face-swap

manipulations, such as cheapfakes and audio deepfakes, due to limited training

29

diversity. Additionally, it exhibits racial and gender biases, with higher false

positive rates for East Asian faces compared to White faces, attributed to

unbalanced training data predominantly featuring White actors. Labeled as a

prototype, it has cybersecurity vulnerabilities like unsecured APIs and outdated

dependencies, necessitating significant improvements for enterprise use.

Despite these limitations, FakeFinder has influenced the development of other

detection frameworks and highlighted the importance of addressing biases and

ensuring transparency in AI tools. Its open-source codebase continues to serve

as a reference for developers exploring multi-model detection systems.

(IQTLabs, 2021)

TruFor (grip-unina, 2022):

https://github.com/grip-unina/TruFor

TruFor is a deepfake detection framework that integrates high-level RGB image

features with low-level artifacts captured in a learned noise-sensitive fingerprint,

effectively detecting and localizing both cheapfakes and deepfakes by

identifying anomalies from expected patterns in pristine images. Its transformer-

based architecture combines these features, enhancing anomaly detection

capabilities, while a reliability map highlights areas where localization

predictions may be less reliable, aiding forensic analysis by reducing false

positives. Extensive experiments have shown that TruFor outperforms existing

methods across various datasets, demonstrating robust generalization to

different manipulation techniques. Although archived in 2023, its open-source

codebase continues to serve as a reference for developers exploring multi-model

detection systems. (grip-unina, 2022)

30

Comparison:

The following table (Table 3) provides a comparison of several open-source tools and frameworks designed for deepfake detection. These tools

vary in terms of supported models, datasets, and key features, offering different strengths for researchers, developers, and cybersecurity

professionals. The comparison highlights the core functionalities, performance metrics (where disclosed publicly), and notable aspects of each tool.

Table 3: Overview Comparison of Open-source Tools and FrameWork

Tool/Framework Supported Models Datasets/Benchmarks Accuracy Metrics Notable Features

DeepSafe
CNNs, GAN-based
detectors

FaceForensics++, Celeb-DF Not disclosed

Supports direct uploads, URL
processing, custom model
integration, optional GPU
acceleration

Deepstar Not disclosed
Curated library of deepfake
and real videos from
platforms like YouTube

Not disclosed
Plug-in framework for
testing/retraining classifiers,
continuous improvement

DeepFake-O-Meter
Multiple detection
algorithms

Not disclosed (supports MP4,
JPG, WAV formats)

69.7% accuracy (audio
detection)

Supports selection of
algorithms based on
accuracy, runtime, or year, 8
A5000 GPUs for backend

FakeFinder
Boken, Selimsef,
NTechLab, etc.

Facebook/Kaggle Deepfake
Detection Challenge

Not disclosed

Focus on face-swap
deepfakes, Dash-based
frontend, API integration,
AWS containerized backend

TruFor Not disclosed Not disclosed Not disclosed

Combines high-level RGB
features with low-level
artifacts, transformer-based
architecture, reliability map

31

2.1.5 Limitations of Existing Deepfake Detection

Generalization Challenges in Cross-Domain Scenarios

A critical limitation of current deepfake detection models is their inability to

generalize effectively across diverse datasets and manipulation techniques. For

instance, while models like UCF and SPSL achieve high within-domain

accuracy (AUC >0.94), their cross-domain performance drops significantly

(AUC ~0.77–0.78) (Yan et al., 2023a; Liu et al., 2021). This discrepancy

highlights a reliance on dataset-specific artifacts rather than learning universal

manipulation patterns. The DF40 dataset, despite incorporating 40 deepfake

techniques, still struggles to simulate real-world variability, as models trained

on it may fail to detect novel or evolving methods like diffusion-based

deepfakes (Yan et al., 2024). Such gaps underscore the need for adaptive

architectures that prioritize invariant feature learning.

Bias and Inclusivity Issues in Training Data

Many detection tools exhibit biases rooted in unbalanced training datasets.

FakeFinder, for example, demonstrates higher false-positive rates for East Asian

faces compared to White faces due to its reliance on datasets dominated by

White actors (FakeFinder GitHub documentation). Similarly, spatial detectors

like FFD focus heavily on facial regions, rendering them ineffective for non-

facial manipulations (Li et al., 2017). These biases not only reduce fairness but

also limit practical applicability in global contexts. Tools like Intel’s

FakeCatcher further face challenges with pixelated or low-quality videos,

disproportionately affecting regions with limited bandwidth (Clayton, 2023).

Addressing these biases requires more diverse datasets and fairness-aware

training protocols.

Computational Overhead and Real-Time Limitations

Several state-of-the-art models, such as UCF and Deepware Scanner, suffer

from high computational demands, making them impractical for real-time

deployment. UCF’s spatial attention mechanisms, while effective, require

significant GPU resources, limiting scalability in resource-constrained

environments (Yan et al., 2023a). Similarly, DeepFake-O-Meter’s reliance on 8

32

A5000 GPUs for backend processing restricts accessibility for smaller

organizations (DeepFake-O-Meter GitHub). While lightweight models like

EfficientB4 address this partially, their accuracy trade-offs (AUC ~0.77)

highlight a persistent tension between efficiency and performance (Potrimba,

2023).

Overreliance on Specific Artifact Patterns

Frequency-based detectors like SPSL excel at identifying spectral anomalies but

risk overfitting to frequency artifacts unique to specific deepfake generation

tools (Liu et al., 2021). For example, GAN-generated deepfakes may leave

distinct high-frequency noise, whereas diffusion models produce subtler

artifacts, evading detection (Zhou et al., 2024). Similarly, tools like Microsoft’s

Video Authenticator, which focus on blending boundaries, struggle against

high-fidelity deepfakes that minimize visual inconsistencies (Kelion, 2020).

This narrow focus limits robustness against adversarial attacks or evolving

manipulation techniques.

Ethical and Practical Deployment Barriers

Many commercial tools, such as Sensity and Reality Defender, lack

transparency in pricing and customization, limiting accessibility for non-

commercial users (Sensity, 2023; Reality Defender documentation). Open-

source frameworks like Deepstar and FakeFinder, while valuable for research,

often suffer from cybersecurity vulnerabilities (e.g., unsecured APIs) and

incomplete documentation, hindering enterprise adoption (FakeFinder GitHub).

Additionally, tools like iProov’s liveness detection, though accurate in

controlled settings, face ethical concerns over privacy and potential misuse in

surveillance (G-Cloud 13 Service Definition, 2022).

Limited Multimodal Integration

Most tools specialize in single tyle of media analysing, such as video (Deepware

Scanner) or audio (Resemble AI’s Detect), but fail to address multimodal

deepfakes combining audio, video, and text. For example, Sentinel AI processes

metadata but does not integrate audio-visual synchronization checks, leaving it

vulnerable to lip-sync manipulations (Romain, 2023). Hybrid frameworks like

33

TruFor, which combine RGB and noise fingerprints, show promise but remain

experimental and lack large-scale validation (TruFor GitHub).

2.2 Literature Review of Development Methodology

2.2.1 Introduction

The development of component-based deepfake detection systems necessitates

a methodology that accommodates rapid technological advancements, evolving

adversarial threats, and complex ethical concerns. Given these challenges, it is

essential to select an appropriate development approach that ensures the system

remains adaptable, scalable, and ethically sound. This section critically

examines four methodologies—Waterfall, Agile, Component-Based

Development (CBD), and Spiral—assessing their relevance, strengths, and

weaknesses in the context of deepfake detection systems.

2.2.2 Waterfall Methodology

The Waterfall model, introduced by Royce (1970), follows a rigid, linear

sequence of phases: requirements gathering, design, implementation, testing,

and maintenance. Waterfall is characterized by thorough documentation and

structured planning, making it suitable for projects with well-defined, stable

requirements. However, its inflexibility renders it less effective for AI projects,

particularly deepfake detection systems, where frequent updates and rapid

adaptability are crucial.

Figure 15: Sample Structure of Waterfall Development Approach (Kirvan,

2022)

34

Relevance to the Project:

The Waterfall model offers clear milestones and a strong focus on

documentation, which can be beneficial during the early stages of dataset

curation. For instance, it aligns with the need to catalog images from various

deepfake generation models, such as StyleGAN and FaceForensics++, and

ensures detailed records of training protocols and model architectures. This

structured approach facilitates reproducibility, an important consideration in AI

research.

However, The Waterfall model’s rigid, sequential structure fundamentally

conflicts with the dynamic requirements of a component-based deepfake

detection system. In this project, where modular components (e.g., StyleGAN

validators, auto-encoder analyzers) must adapt incrementally to adversarial

advancements like diffusion models or StarGAN architectures, Waterfall’s

inflexibility becomes a critical bottleneck. Retraining detectors for new

architectures would require restarting the entire development cycle—redefining

requirements, redesigning connectors, and reimplementing components—rather

than leveraging the project’s modular framework to update individual units

independently. For instance, integrating a diffusion model detector without

disrupting existing components (e.g., FaceForensics++ validators) is impossible

under Waterfall’s linear phases, as the methodology lacks mechanisms for

iterative refinement.

Furthermore, Waterfall’s delayed validation phase, which occurs only after full

system implementation, undermines the project’s need for continuous cross-

dataset evaluation. In a component-based system, interoperability between

modules (e.g., connector units for output aggregation) must be tested iteratively

against diverse datasets (e.g., Celeb-DF, FaceForensics++) to ensure seamless

integration. Waterfall’s "big bang" testing approach risks late-stage discovery

of incompatibilities, such as mismatched input/output formats between GAN

artifact detectors and auto-encoder validators, which could derail deployment

timelines. This misalignment with modular, incremental development renders

35

Waterfall unsuitable for maintaining the agility and scalability required to

counter evolving deepfake threats.

Discussion: Due to its inflexibility and delayed validation, Waterfall is

unsuitable for projects like deepfake detection, where iterative updates and rapid

adaptation to emerging techniques are essential.

2.2.3 Agile Methodology

Agile methodologies, including frameworks like Scrum and Kanban, emphasize

iterative cycles, stakeholder collaboration, and incremental delivery. These

methodologies are particularly suited for projects that require frequent changes

and early feedback, such as deepfake detection systems, where new

manipulation techniques and datasets are continuously emerging.

Figure 16: Sample Structure of Agile Development Approach (Damm, 2023)

Relevance to the Project:

Agile’s rapid prototyping capabilities are critical for the iterative development

of modular detection components in this project, such as GAN artifact detectors,

frequency analyzers, and auto-encoder validators. By structuring development

into 2–4 week sprints, Agile enables the incremental deployment and testing of

individual components. For example, a sprint could focus on refining

a StyleGAN artifact detector using synthetic data from FaceForensics++, with

immediate feedback loops validating its performance on emerging datasets like

Celeb-DF v2. This iterative approach ensures that components like

the CycleGAN face-swap validator can be refined in parallel, accelerating the

system’s responsiveness to adversarial advancements like diffusion models.

36

Agile also fosters cross-functional collaboration, essential for aligning technical

and ethical priorities in a component-based framework. During sprint planning,

researchers, developers, and ethicists jointly define interfaces for components

(e.g., standardized JSON outputs for connector units), ensuring interoperability

and ethical compliance from inception. For instance, ethicists might flag biases

in the training data for a StarGAN attribute editor detector, prompting

immediate dataset adjustments before integration.

While Agile’s continuous integration (CI) pipelines automate testing of

components against new threats, its reactive risk management struggles with

systemic challenges inherent to modular systems. Without standardized

interfaces, loosely coupled components risk incompatibility, accumulating

technical debt. For example, inconsistent input formats between a CRN-based

texture analyzer and a Face2Face expression detector could fragment the

system’s output aggregation.

Moreover, Agile’s sprint-centric focus may overlook proactive mitigation of

dataset bias or fairness gaps across components. While a sprint might optimize

a proGAN synthesizer detector for accuracy, it may fail to address embedded

biases in FaceForensics++ training data, risking skewed performance on

underrepresented demographics. This underscores the need to embed Spiral-

inspired risk cycles within Agile workflows to ensure ethical rigor alongside

rapid iteration.

Discussion: Agile is highly effective for early-stage prototyping and rapid

iteration but insufficient for maintaining a scalable, modular system over time,

particularly when it comes to managing the systemic risks associated with

deepfake detection.

2.2.4 Component-Based Development (CBD)

Component-Based Development (CBD) decomposes systems into independent,

reusable modules that can be updated and tested individually. This methodology

prioritizes modularity, interoperability, and incremental scalability, making it

highly suitable for AI systems like deepfake detection, where adaptability to

37

new techniques and the ability to integrate diverse components are key

requirements.

Figure 17: Sample Conceptual Structure of CBD approach (McGovern et al.,

2003)

Relevance to the Project:

Component-Based Development (CBD) is central to this project’s goal of

building a modular, adaptable deepfake detection system. By decomposing the

system into specialized, interoperable detection components—such as

a StyleGAN artifact detector or an auto-encoder reconstruction analyzer—CBD

enables targeted updates without system-wide retraining. For instance, when

confronting emerging adversarial techniques like diffusion models, only

the diffusion-specific validator requires retraining, while pre-existing

components (e.g., CycleGAN face-swap detector) remain unaffected.

However, CBD introduces initial complexity that demands meticulous design.

Defining universal input/output formats (e.g., ensuring the auto-encoder

validator outputs tensor shapes compatible with the connector unit) requires

rigorous cross-component alignment. For example, inconsistencies between

the image preprocessing pipelines of the StyleGAN detector (normalized to [-1,

38

1]) and the auto-encoder validator (normalized to [0, 255]) could corrupt

downstream analyses. Additionally, frameworks like TensorFlow lack native

support for versioning components, complicating updates. If the StyleGAN

artifact detector is upgraded to handle StyleGAN3-generated images,

dependency conflicts may arise if the new detector’s output tensor shapes

(e.g., [B, C, 256, 256]) deviate from the input expectations of downstream

components like the frequency-domain analyzer (which expects [B, C, 224,

224]). Without tools like MLflow to track component versions and validate

input/output compatibility, this mismatch could corrupt the analyzer’s spectral

artifact detection.

Discussion: CBD is the most suitable methodology for deepfake detection, as it

supports modularity, generalization, and adaptability, enabling targeted updates

and integration of new detection components without requiring full system

retraining.

2.2.5 Spiral Methodology

The Spiral model, introduced by Boehm (1986), combines iterative

development with systematic risk analysis. It progresses through four phases—

planning, risk analysis, engineering, and evaluation—repeated in cyclical loops.

This methodology is particularly suited for high-risk, complex projects that

require continuous risk management, making it a good fit for deepfake detection

systems, which must address evolving adversarial techniques and ethical

concerns.

Figure 18: Sample Structure of Spiral Development Approach (Talreja, 2024)

39

Relevance to the Project:

The Spiral model’s risk-driven iterations are uniquely suited to the component-

based architecture of this deepfake detection system, where modular

components (e.g., StyleGAN validators, auto-encoder analyzers) require

continuous refinement against evolving adversarial threats. In Iteration 1, the

focus could be on mitigating dataset bias within the StyleGAN artifact

detector by curating ethnically diverse training data from FaceForensics++ and

Celeb-DF. This ensures the component’s robustness across demographics—

critical for real-world deployment. Iteration 2 would target generalization

failure by refining the CycleGAN face-swap validator and StarGAN attribute

editor detector to handle unseen architectures like diffusion models. Cross-

component testing would validate interoperability, such as ensuring

the frequency analyzer’s outputs align with the GAN classifier’s input

requirements.

Early prototyping in Spiral’s engineering phase accelerates the deployment of

lightweight, standalone components. For instance, a baseline GAN artifact

detector could be prototyped in Iteration 1 using PyTorch, tested on synthetic

StyleGAN data, and later expanded in Iteration 2 to include a CRN-based

texture validator for detecting perceptual loss-generated forgeries. This phased

approach ensures incremental scalability while maintaining system coherence.

Spiral’s holistic risk management concurrently addresses technical and ethical

risks. During Iteration 3, specific compliance like GDPR could be integrated

into the auto-encoder validator’s data handling protocols, while fairness audits

would evaluate bias in the Face2Face expression detector across gender and

ethnicity subgroups. This dual focus ensures ethical rigor without compromising

technical performance.

However, Spiral’s resource intensity poses challenges for a component-based

system. Frequent prototyping of interdependent modules demands

robust version control and documentation. For example, retraining the diffusion

model validator in Iteration 4 might require backward compatibility checks with

the connector unit to avoid system fragmentation.

40

Discussion: The Spiral model offers significant advantages in risk management

and iterative prototyping, making it an effective methodology for addressing the

evolving challenges of deepfake detection. However, its resource demands and

complexity may pose challenges in terms of project management and timeline.

2.2.6 Comparative Analysis of Methodologies

Table 4 provides a comparative analysis of key development methodologies—

Waterfall, Agile, Component-Based Development (CBD), and Spiral—

evaluating their suitability for the project’s dynamic requirements. This

comparison highlights critical trade-offs in adaptability, risk management, and

scalability, with CBD and Spiral emerging as strong candidates due to their

modular design and iterative risk-assessment capabilities.

41

Table 4: Comparative Analysis on Different Development Methodologies

Aspect Waterfall Agile Component-Based Spiral

Generalization Support

Low : Static design fails to

adapt to new architectures

(e.g., diffusion models).

Moderate : Iterative

updates improve

single components

(e.g., GAN detectors).

High: Modular

components (e.g.,

StyleGAN validator, auto-

encoder analyzer) reuse

features across datasets

(FaceForensics++, Celeb-

DF).

High: Risk-driven iterations

target cross-architecture

gaps (e.g., CycleGAN →

StarGAN).

Adaptability

Poor : Requires full

retraining for new

components (e.g., adding a

CRN validator).

High: Rapid

prototyping of

individual modules

(e.g., frequency

analyzer).

High: Independent

updates (e.g., upgrading

Face2Face detector

without affecting GAN

validators).

Moderate : Controlled

iterations balance new

component integration (e.g.,

diffusion models) with

system stability.

Risk Management

Low : Late-stage testing

misses component

interoperability issues.

Low : Reactive

handling of biases

(e.g., ethnic

imbalance in training

data).

Moderate : Modular

isolation limits system-

wide failures but lacks

ethical audits.

High: Proactive risk

mitigation (e.g., quarterly

GDPR audits for connector

units).

Real-World Deployment

Delayed : "Big bang"

deployment risks

incompatibility (e.g.,

mismatched APIs).

Fast but

fragmented :

Components (e.g.,

audio deepfake

detector) lack

cohesion.

Structured:

Standardized connectors

(e.g., REST/JSON APIs)

ensure seamless

integration.

Controlled iterations:

Phased rollout (e.g., validate

StyleGAN detector → auto-

encoder → diffusion model).

Resource Demand

Low : Minimal overhead but

incompatible with dynamic

deepfake evolution.

Moderate : Sprint

cycles require team

coordination but

reduce rework.

Moderate : Upfront

design for component

interfaces (e.g.,

TensorFlow SavedModel

formats).

High: Frequent prototyping

(e.g., testing CRN validators)

and risk analysis (e.g.,

fairness metrics).

42

2.2.7 Summary:

The component-based deepfake detection project requires a methodology that

can effectively balance rapid adaptability, robust risk management, and modular

scalability. After evaluating various development approaches, including

traditional Waterfall, Agile, Component-Based Development (CBD), and Spiral

methodologies, the decision was made to adopt a hybrid Agile-Spiral approach.

This decision is motivated by the need to leverage Agile’s rapid iteration and

prototyping capabilities, while also integrating Spiral’s systematic risk

management to ensure that both technical and ethical challenges are addressed

in a structured manner. Additionally, incorporating CBD principles ensures the

system's modularity, scalability, and generalization across diverse datasets and

adversarial techniques.

Table 5: Rating of Hybrid Agile-Spiral Approach in different aspect

Aspect Hybrid Agile-Spiral

Generalization

Support
Very High (modular + risk-driven)

Adaptability Very High (Agile + CBD modularity)

Risk Management Very High (Spiral cycles + ethics)

Real-World

Deployment
Structured + Controlled (CI/CD + risk phases)

Resource Demand High (balanced via Agile efficiency)

The hybrid Agile-Spiral framework combines key features from both

methodologies. Agile sprints, which typically last 2–4 weeks, will focus on

rapidly developing and prototyping individual detection components, such as

GAN artifact detectors and frequency analyzers. Continuous integration and

deployment (CI/CD) tools will be used to automate the testing of these

components against new datasets and models, ensuring that the system stays up-

to-date with evolving deepfake techniques. At the same time, Spiral cycles will

guide the project through quarterly risk assessments, addressing both technical

43

risks and ethical concerns. The combination of rapid prototyping and risk

management ensures a comprehensive, adaptable development process.

The use of Component-Based Development (CBD) further supports the hybrid

approach by ensuring the deepfake detection system remains modular and

scalable. By developing decoupled components, such as an auto-encoder

validator or an audio deepfake detector, the system can be updated

incrementally as new models and techniques are introduced. Connector units,

such as standardized APIs, ensure that these components work seamlessly

together, allowing for easy integration of new modules without disrupting the

overall system.

Such hybrid methodology offers several benefits, including enhanced

adaptability, improved generalization across datasets, better ethical compliance,

and scalability for cloud-based deployment. The implementation roadmap is

divided into three phases, each aligning Agile sprints and Spiral cycles. In the

first phase, the focus will be on developing a baseline detector and mitigating

dataset bias. In subsequent phases, cross-architecture performance will be

evaluated, and ethical audits will ensure the system meets compliance standards.

In conclusion, the hybrid Agile-Spiral approach is the optimal strategy for this

deepfake detection project, combining the flexibility of Agile, the structured risk

management of Spiral, and the modularity of CBD. This approach will ensure

the system remains adaptable, scalable, and ethically sound as it evolves to meet

the challenges of deepfake detection.

44

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 METHODOLOGY

3.1.1 Introduction

This methodology outlines the systematic process for developing a ensemble

deepfake detection system, emphasizing user-centric design, modular

architecture, and ethical compliance. The workflow is divided into three core

phases: Front-End Development, Back-End Development, and System

Integration. Each phase ensures that the system remains adaptable, scalable, and

ethically sound, addressing the needs of end-users while incorporating

continuous feedback loops.

3.1.2 Stage 0: Exploration, Prototyping, and Model Training

The process commenced with Stage 0, where baseline models were deployed

and trained to establish comparative performance benchmarks. Initial feasibility

tests were carried out in a Jupyter Notebook environment

(model_deployment.ipynb on Google Colab), where multiple architectures —

including Xception, CapsuleNet, and YOLO — were instantiated to validate the

viability of deepfake detection across diverse model families. In parallel,

dedicated training was performed for four selected detectors: EfficientNet-B4,

Meso4, MesoInception, and UCF. These model are selected due to high

accuracy and performance in review of Deepfakebench. (May refer back to

Literature Review Chapter) Among these, EfficientNet-B4 was integrated as the

principal detector within the ensemble framework, while Meso4, MesoInception,

and UCF served primarily as baselines for comparative analysis of the final

system. Additional pretrained detectors were incorporated from team

contributions, thereby broadening the comparative scope. A simple ensemble

based on majority voting was also implemented to examine the benefits of

model fusion. Deliverables from this stage included reproducible training logs,

45

hyperparameter records, and baseline evaluation metrics (accuracy, precision,

recall) across curated test sets.

3.1.3 Stage 1: Foundational Component Development

With these baselines established, Stage 1, introduced the modular infrastructure

required for a scalable system. A unified detector framework

(unified_detector.py) was engineered to abstract preprocessing, model loading,

inference, and result serialization into a consistent API contract. This was later

extended into a configuration-driven variant that consumed YAML/JSON

specifications, enabling detectors to be registered and instantiated dynamically

without code-level changes. Complementing this, single-model wrappers

(single_model_detector_wrapper.py) were introduced to encapsulate individual

detectors, ensuring isolated execution and streamlined benchmarking. This

stage also introduced hyperparameter tracking systems, which ensured that

model configurations (e.g., optimizer choice, learning rate schedules, batch size)

were systematically documented and could be replicated across experiments.

Exit criteria for this stage included successful encapsulation of representative

models and validation of standardized output schemas.

3.1.4 Stage 2: Hardened Deployment and Orchestration

Stage 2 concentrated on system reliability and engineering discipline. No new

model training was introduced at this stage; instead, emphasis was placed on

transforming the system into a robust service layer. Key engineering practices

included the integration of Continuous Integration/Continuous Deployment

(CI/CD) pipelines on Git Action to automate testing and ensure reproducibility,

as well as the implementation of validation harnesses that enforced correctness

across detectors. Fault-tolerant orchestration mechanisms were introduced to

allow concurrent inference requests, supported by asynchronous execution

strategies that minimized latency under load. Performance benchmarks were

systematically defined, including sub-500ms average inference latency per

image, throughput exceeding 1,000 requests per day, and resilience to

malformed or corrupted inputs. Spiral reviews at this stage prioritized risk

46

reduction in three domains: scalability under concurrent requests, resilience to

adversarial perturbations, and maintainability of code across multiple

contributors.

3.1.5 Stage 3: Ensemble Aggregation and Cross-Domain Evaluation

In Stage 3: Ensemble Aggregation and Cross-Domain Evaluation, the platform

advanced from a collection of isolated detectors into an integrated ensemble

system. Ensemble v1 provided a minimal baseline with sequential and parallel

voting, while Ensemble v2 introduced a configuration-managed aggregation

framework capable of performing confidence-weighted fusion, adaptive

thresholding, and uncertainty estimation. This evolution culminated in the

ensemble_detector package, a production-grade framework encapsulating

dynamic routing, advanced logging, structured error handling, and performance

monitoring. The most significant addition at this stage was the development of

an API server module, which exposed the ensemble detection capabilities

through RESTful endpoints. These endpoints adhered to a contract-driven

design, accepting JSON-formatted image payloads and returning structured

responses including prediction labels, confidence scores, optional heatmaps,

and standardized error codes. By establishing this API, the ensemble detector

was transformed from a research prototype into a consumable service aligned

with service-oriented architecture principles.

3.1.6 Stage 4: Modularization, Productionization, and Integration

Finally, Stage 4: Modularization, Productionization, and Integration completed

the transformation of the platform into a deployable system with front-end

accessibility. The detector_output_wrapper module enforced output

standardization across JSON, XML, and Python dictionary formats, while the

ensemble_detector package acted as the inference engine exposed via its API

server. Integration was realized through a Laravel web application, which

operated as the user-facing interface. The Laravel system consumed the API

endpoints, authenticated users, and enforced role-based access control. General

users interacted with the platform through a simplified drag-and-drop interface

47

that returned binary “real/fake” classifications, with visualized component-level

metrics. Administrators could activate or deactivate detection modules directly

through the Laravel interface, effectively managing system configurations at

runtime without requiring redeployment. Production readiness was reinforced

through observability features, including log aggregation, error alerting,

performance dashboards, and rollback procedures. In addition, ethical

safeguards were embedded into the production pipeline, including demographic

fairness auditing, which ensured that disparities in false positive rates across

different demographic groups did not exceed five percent. Spiral reviews

continued at this stage to reassess new risks, such as the emergence of novel

deepfake generation methods and the accumulation of technical debt.

3.2 Project Work Plan

3.2.1 Introduction

This project work plan is designed to deliver a robust, ethical, and scalable

deepfake detection system utilizing ensemble methods with a strong focus on

modularity, flexibility, and performance. The project follows a hybrid Agile-

Spiral methodology, ensuring controlled increments, continuous feedback, and

risk management. The work plan is organized into four distinct phases, each

with a clear focus, milestones, and risk management strategies.

3.2.2 Phase 1: Front-End Development (Weeks 1–4)

Objective: Build a user-centric interface that is intuitive, accessible, and

compliant with ethical standards. The front-end will be developed in an iterative

process with continuous user feedback and usability testing.

Key Features:

• User Interface (UI) Design: The UI will provide an easy-to-use platform

for both technical and non-technical users, ensuring accessibility.

• Iterative Development: Regular usability testing and feedback will be

incorporated to improve user experience.

48

• Ethical Transparency: Clear information on data usage, system functions,

and model explanations will be provided to the users.

Milestone 1:

• Prototype of the UI ready for internal review and feedback.

• Risk Assessment: Week 4 review to assess UI usability, ethical

transparency, and potential biases in design.

Table 6: Key Element in (Phase 1)

Task Details Timeline

UI Design and

Implementation

Initial prototype based on user

feedback and iterative testing
Week 1–3

Ethical Transparency

Integration

Ensure all relevant ethical data

and model behavior is clearly

communicated to users

Week 2–3

Feedback and

Usability Testing

Continuous user feedback,

adjustments, and refinement
Week 3–4

3.2.3 Phase 2: Back-End Development (Duration: Weeks 5–9)

Objective: Develop modular detection components for the system. This phase

focuses on building the core back-end infrastructure and ensuring model

validation and version control.

Key Features:

• Modular System: Independent model wrappers for different deepfake

detection models, with standardized input and output formats.

• Version Control and Risk Management: Rigorous validation and testing

procedures to ensure robustness and performance.

• Ensemble Integration: Assemble multiple detection models into an

ensemble system for improved accuracy and resilience.

49

Milestone 2:

• Completion of back-end components, with a fully operational pipeline ready

for integration.

• Risk Assessment: Week 9 review to evaluate model robustness, fairness,

and potential technical debt.

Table 7: Key Element in (Phase 2)

Task Details Timeline

Model Wrapper

Development

Build and integrate wrappers for

individual models (e.g., YOLO,

Xception, EfficientNet)

Week 5–7

Model Validation and

Testing

Evaluate models on performance

benchmarks (accuracy, precision,

recall, etc.)

Week 6–8

Ensemble System

Development

Implement initial ensemble

model
Week 7–9

3.2.4 Phase 3: System Integration (Duration: Weeks 10–12)

Objective: Integrate all the system components into a unified platform. The

focus will be on finalizing the back-end and front-end integration, ensuring

performance benchmarks, and final risk assessments.

Key Features:

• Seamless Integration: Integration of back-end detection models with the

front-end Laravel UI for real-time user interaction.

• Risk Monitoring: Continuous monitoring of system performance,

identifying any potential issues such as technical debt and system

vulnerabilities.

• Final Testing and Deployment: Ensure the system meets all functional and

non-functional requirements, including scalability and robustness.

50

Milestone 3:

• Deployment of the complete system for end-user access.

• Risk Assessment: Final audit of ethical compliance, system stability, and

technical debt management.

Table 8: Key Element in (Phase 3)

Task Details Timeline

Back-End and Front-

End Integration

Integrating ensemble model,

backend logic, and front-end UI
Week 10–11

Performance

Optimization

Ensure the system meets

performance benchmarks

(throughput, inference time,

scalability)

Week 11

Final Testing and

Deployment

Test all system components, fix

bugs, and deploy the final version

for user access

Week 12

51

3.2.5 Expected Project Tools:

The selected development tools directly support the iterative refinement of deepfake detection components and the risk-driven validation cycles

outlined in the work plan. These tools are integral to the system's development, ensuring alignment with the objectives of accuracy, scalability, and

ethical compliance. Below is an overview of the tools and their applications in the project

Table 9: Table of Expected Tools Involved in Development

Tool Purpose Application in the Project

TensorFlow / PyTorch

Deep learning frameworks for

building and training detection

models

Facilitate rapid prototyping of deepfake detection models. These

frameworks power the individual models within the ensemble system,

ensuring robust and efficient model training.

Google Colab / Kaggle

Cloud-based notebooks for

collaborative development and

experimentation

Provide an interactive development environment where models are trained

and tested in real-time. Supports easy experimentation with different

deepfake detection architectures.

Visual Studio Code
Code editor for writing, testing, and

debugging the code

Used for writing and editing Python scripts, model implementation, and

managing version control via Git. Provides a rich environment for

development with support for various plugins.

Laravel
PHP framework for backend

development and API integration

Used for building the backend of the project, handling server-side logic,

model management, and user authentication. Integrates with the deepfake

detection system through APIs.

52

Docker

Containerization platform for

packaging applications and

environments

Ensures consistent environments across development, testing, and

production. It packages the models and dependencies into containers for

easy deployment and scalability.

GitHub
Version control and collaboration

platform

Manages the source code and enables collaboration among team

members. Tracks code changes and provides integration with Continuous

Integration (CI) systems.

TensorBoard

Visualization toolkit for tracking

model metrics and performance

during training

Helps visualize training metrics such as loss and accuracy during model

development. Assists in monitoring model improvements and comparing

performance across various experiments.

Laravel (Frontend

Integration)

Framework for frontend API

interaction

Laravel provides backend management for the user interface where the

deepfake detection results are displayed, ensuring seamless integration

with frontend components.

53

3.3 System Design and Requirements

3.3.1 Introduction

The preliminary result of this project outline the system specifications, ensuring

alignment with the core objectives of generalization, accessibility, and

scalability in deepfake detection including functional and non-functional

requirements, use case descriptions, and architectural workflows that define the

proposed web platform’s capabilities.

3.3.2 Project Specification

3.3.2.1 Functional Requirement:

Table 10: Functional Requirements

FR

Code
Requirement Description Priority

FR-001
User Authentication

and Role Management

The system distinguishes between

Normal Users and Administrators.

Normal users can access detection

functions, while administrators

manage models and monitor

performance.

High

FR-002
Image Upload and

Validation

Users upload images (JPEG, PNG, ≤4

MB). Uploaded files are validated for

type, size, and resolution. Invalid

inputs return meaningful error

messages.

High

FR-003
Single-Model and

Ensemble Detection

Users can select either a single

detection model or an ensemble of

models. The chosen model(s)

High

54

process the image, and results are

returned with confidence scores.

FR-004 Detector Execution

Each model wrapper preprocesses

inputs, performs inference, and

produces standardized outputs

(label, confidence, inference time).

High

FR-005 Ensemble Aggregation

The ensemble engine supports

majority voting and confidence-

weighted strategies, combining

predictions from multiple detectors.

The system tolerates failure of

individual models.

High

FR-006 Result Presentation

The Laravel front end displays

detection results (“real” or “fake”)

with confidence scores. If ensemble

mode is selected, both per-model

outputs and the aggregated

ensemble result are shown.

High

3.3.2.2 Non-functional Requirement:

Table 11: Non-Functional Requirements

NFR

Code
Requirement Description Priority

NFR-001 Performance

Images must be processed within ≤800 ms

on average and ≤1200 ms at the 95th

percentile.

High

NFR-002
Accuracy and

Generalization

Ensemble detection must achieve ≥90% F1-

score on benchmark datasets and not lose
High

55

more than 5% AUROC in cross-domain

evaluations.

NFR-003 Scalability

The system must handle ≥1,000 daily

requests with 99.9% uptime, supporting

deployment in containerized environments.

High

NFR-004 Reliability

The system must return results even if one

or more models fail, using retries and

timeouts for resilience.

High

NFR-005 Security

File uploads must be sanitized, HTTPS must

secure communications, and user data

must not persist beyond inference.

High

NFR-007 Maintainability

New models can be integrated via

configuration files without altering core

code. APIs must comply with OpenAPI 3.0.

Medium

NFR-008 Usability

The interface must remain simple and

intuitive, allowing non-technical users to

select detection type (single model vs

ensemble) and view clear outputs.

Medium

3.3.2.3 Use case Diagram

This use case diagram (Figure 25) visualizes the core interactions between users

and the proposed deepfake detection system, encapsulating key functionalities

such as media upload, component selection, and report generation. By mapping

roles (e.g., General User, Admin) to system capabilities, this diagram clarifies

how the platform balances accessibility for non-experts with advanced controls

for administrators.

56

Figure 19: Use Case Diagram

3.3.2.4 Use Case Description:

The use case descriptions in this section expand on the interactions outlined in

the use case diagram (Figure 25), providing granular insights into system

workflows such as user authentication, media processing, and component

management. By detailing step-by-step scenarios—from General Users

uploading images for detection to Admins integrating new modules.

Use Case Name: Login ID: UC-

001

Importance Level: high

Primary Actor: User

(General User/Admin)

Use Case Type: Brief, Real

57

Brief Description: Users (both general and admin) must log in to the system

to access the functionalities based on their role. The system checks the

credentials, grants access and logs them in to the appropriate interface.

Precondition: The user must have registered an account. The user is on the

login page.

Postcondition: The user is authenticated and logged in, redirected to their

respective home page or dashboard based on their role.

Relationships:

 Association : User

 Include : n/a

 Extend : Register Account (UC-002)

 Generalization: n/a

Normal Flow of Events:

1. User Navigates to Login Page: The user opens the login page of the

web application.

2. User Enters Credentials: The user enters their username and

password in the login form.

3. System Verifies Credentials:

3.1 The system checks the entered username and password against

the stored data.

3.2 If the credentials are correct, the system proceeds to step 4.

3.3 If the credentials are incorrect, the system displays an error

message (see Exception Flow).

4. System Authenticates User: The system authenticates the user,

assigns the correct role (General User or Admin), and grants access

to the system.

5. System Redirects User: The user is redirected to their respective

home page based on their role (either General User Dashboard or

58

Admin Dashboard).

Sub-flows:

-

Alternate/Exceptional Flows:

• Invalid Credentials: If the user enters incorrect login details:

o The system will display an error message like "Invalid

username or password".

o The user can try again with correct credentials.

• Network Issue: If the system cannot connect to the database due to a

network error, an error message "Network error, please try again"

will be displayed, and the user must retry later.

Use Case Name: Register ID: UC-

002

Importance Level: high

Primary Actor: User

(General User)

Use Case Type: Brief, Real

Brief Description: A new user registers by providing necessary details. After

registration, they can log in and access the system.

Precondition: The user is not already registered. The user is on the

registration page.

Postcondition: The user account is created, and they are redirected to the

login page to enter their credentials.

Relationships:

 Association : User

 Include : n/a

59

 Extend : Register Account (UC-002)

 Generalization: n/a

Normal Flow of Events:

1. User Navigates to Register Page: The user clicks on the "Register"

link and is taken to the registration page.

2. User Enters Registration Details: The user fills in the required

fields like name, email, password, and other necessary details.

3. System Validates Input: The system checks if all required fields are

filled and if the email is valid.

3.1 If the inputs are valid, the system moves to step 4.

3.2 If any input is invalid (e.g., missing field or invalid email

format), the system prompts the user to correct the error.

4. System Creates User Account: The system creates a new account

in the database with the entered details and stores the user's

credentials securely.

5. System Redirects to Login Page: The user is redirected to the login

page with a message confirming that their account has been created.

Sub-flows:

-

Alternate/Exceptional Flows:

Alternative Flow(s):

• Email Already Registered: If the user attempts to register with an

already used email:

o The system will show a message like "This email is already

registered" and prompt the user to use a different email or log

in if they already have an account.

Exception Flow(s):

60

• System Error During Registration: If there is an issue with the

database or server while creating the account, an error message will

be displayed (e.g., "An error occurred while creating your account,

please try again later").

Use Case Name: Detect

Image

ID: UC-

003

Importance Level: high

Primary Actor: User [General

User, Admin]

Use Case Type: Detail, Real

Brief Description: The user uploads an image to be analyzed by the deepfake

detection model. The system processes the image and returns a prediction

with a confidence score.

Precondition: The user must be logged in and on the detection page.

Postcondition: The user must be logged in and on the detection page.

Relationships:

 Association : User

Include : n/a

 Extend : n/a

 Generalization: n/a

Normal Flow of Events:

1. User Selects "Detect Image" Option: The user selects the option to

detect deepfakes from the available dashboard or menu.

2. User Uploads Image: The user selects and uploads an image file

(JPEG, PNG).

3. System Validates Image: The system checks the file type and size.

If the image is invalid (e.g., too large, wrong format), the system

prompts the user to upload a valid image.

61

4. System Preprocesses Image: The image is passed through a

preprocessing pipeline (e.g., resizing, normalization) to make it

ready for model input.

5. User Select Detect Choice: Single model or ensemble, if single

model selected, user will be prompted to choose which model to use

6. System Detects Deepfake: The system runs the preprocessed image

through the selected model(s) and returns the prediction result,

including the label ("REAL" or "FAKE") and confidence score.

7. System Displays Result: The result is displayed to the user on the

front end, showing the prediction label, confidence score, and any

additional relevant information (e.g., model used).

Sub-flows:

-

Alternate/Exceptional Flows:

Alternative Flow(s):

• Invalid Image Format or Size: If the uploaded image doesn't meet

the size or format requirements:

o The system prompts the user to upload a valid image with the

appropriate format and size.

Exception Flow(s):

• Model Processing Error: If the model fails during inference (e.g.,

due to a corrupted model or system crash), an error message is

displayed, and the user is instructed to try again later.

62

Use Case Name: Check Result

History

ID: UC-00 Importance Level:

high

Primary Actor: User [General

User, Admin]

Use Case Type: Detail, Real

Brief Description: Users can view their previously uploaded images along

with the results of deepfake detection.

Precondition: The user must be logged in, and there should be previously

processed images in the system.

Postcondition: The user can view a list of past detection results, including

the images and corresponding predictions.

Relationships:

 Association : User

 Include : n/a

 Extend : n/a

 Generalization: n/a

Normal Flow of Events:

1. User Selects "Check Result History" Option: The user navigates

to the history section on the dashboard.

2. System Retrieves Historical Data: The system queries the database

for the user's previous detection results.

3. System Displays Results: The system displays the past results,

including the image and its predicted label (REAL/FAKE) along

with the confidence score.

Sub-flows:

-

Alternate/Exceptional Flows:

Alternative Flow(s):

63

• No Previous Results: If the user has no previous detection results,

the system will display a message like "No results found" or prompt

the user to upload an image for detection.

Exception Flow(s):

• System Error During Data Retrieval: If the system encounters a

problem while fetching results (e.g., database issues), an error

message will be shown.

Use Case Name: Manage Model ID: UC-

005

Importance Level:

high

Primary Actor: Admin Use Case Type: Detail, Real

Brief Description: The admin manages the deepfake detection models in

the system, including enabling, disabling, or updating model configurations

Precondition: The user must be an Admin, and the system should have at

least one model in the system.

Postcondition: The system's model configurations are updated accordingly.

Relationships:

 Association : Admin

 Include : n/a

 Extend : n/a

 Generalization: n/a

Normal Flow of Events:

1. Admin Selects "Manage Model" Option: The admin navigates to

the model management section.

2. Admin Modifies Model Configurations: The admin can enable,

disable, or update, upload new model file, weight or delete the

configurations of available models.

64

3.3.3 High Level System Flow Diagram:

The high-level system flow diagram (Figure 26) synthesizes the use case

scenarios and technical specifications into a cohesive visual blueprint,

illustrating the end-to-end workflow of the deepfake detection platform. From

user-initiated media uploads to backend processing via modular components,

this diagram clarifies how data traverses the system, emphasizing critical

decision points such as dataset validation.

3. System Updates Model Configurations: The system saves the

changes to the model configurations, which could include updating

the model’s path, enabling/disabling it, or changing its processing

parameters.

4. System Confirms Changes: The system confirms the success of the

update and applies changes to the active model configurations.

Sub-flows:

-

Alternate/Exceptional Flows:

Alternative Flow(s):

• Invalid Configuration Input: If the admin provides incorrect

configuration details, an error message will be shown, and the

system will prompt the admin to correct it.

Exception Flow(s):

• Access Denied: If a non-admin user attempts to access the model

management page, an "Access Denied" message will be shown.

65

Figure 20: High Level System Flow Diagram

3.3.4 System Architecture Diagram

The System Architecture Diagram provides a detailed view of the structure and

interaction flow of the Deepfake Detection System. It is organized into several

distinct layers, each serving a specific function in the overall architecture.

Key Components:

Frontend Layer:

The React Component handles the user interface (UI), enabling users to

interact with the application. It communicates with the backend API to

request image uploads, predictions, and detection results. The View

66

represents the visual output, displaying results and providing interaction

points for users to upload files and adjust settings.

Backend Layer:

The Laravel Router manages API routing by directing requests to the

appropriate controllers such as DetectionController, AdminController, and

UserController, while the Authentication Middleware ensures secure access

by verifying user identity and roles (user/admin).

Business Logic Layer:

The Detection Service powers the core detection process by working with

both image processing and machine learning components, while the Model

Management Service oversees deepfake detection models, handling tasks

like loading configurations, retraining, and updates. The User Service

supports user-related functions, including managing data, authentication,

and role assignments.

ML Processing Layer:

The Ensemble Detector System serves as the main machine learning engine

for deepfake detection, leveraging multiple models like Xception,

EfficientNet, and YOLO. Supporting it, the Preprocessing Pipeline prepares

images through steps such as resizing and normalization, while the

DataLoader ensures proper loading and preparation of image data. A

Wrapper provides a unified interface to integrate various detection models

seamlessly into the ensemble, and the Ensemble API Server manages

prediction logic, combining results from different models to deliver final

outputs.

Data Layer:

The MySQL Database manages structured data such as user information,

uploaded image metadata, model configurations, detection results, and

67

system events, while the File Storage system is responsible for storing

uploaded image files and model weights.

This architecture ensures a modular and scalable deepfake detection system that

integrates various components, such as machine learning models, user

management, and detection workflows, while maintaining high performance

and flexibility for future updates and improvements.

Figure 21: System Architecture Diagram

3.3.5 ERD diagram (Laravel Web Application)

This Entity Relationship Diagram (ERD) illustrates the key relationships and

structure of the database for the Deepfake Detection System. The ERD provides

an overview of how different entities in the system, such as Users, Uploaded

Images, Detection Results, Model Configurations, and System Events, interact

with each other.

Key Entities:

Users: Stores information about the system's users, including their roles

(e.g., admin, general user).

Uploaded Images: Contains metadata for each image uploaded by users for

detection, including file information and storage paths.

68

Detection Results: Holds the output of the deepfake detection process,

including prediction results, model details, and confidence scores.

Model Configs: Contains configuration data for individual machine

learning models, such as model type, parameters, and settings for each

detection model.

System Events: Tracks system-related events like model performance,

system errors, or actions triggered by users for auditing and monitoring

purposes.

Relationships:

Users in the system can upload multiple images and generate multiple detection

results, establishing a direct link between each user, their uploaded images, and

the corresponding outcomes. Uploaded images are analyzed and tied to

detection results, ensuring that every image has a clear detection outcome. Each

detection result is further connected to single or a list of model configuration,

indicating which models were used for analysis. Additionally, system events are

tracked and associated with users to monitor actions and events triggered within

the system, providing a complete view of user activity and system interactions.

Figure 22: ERD Diagram

69

3.3.6 Image Detection Sequence Diagram

This sequence diagram illustrates the end-to-end workflow of the deepfake

detection system. It begins with the user uploading an image through the web

interface, which triggers the Laravel API to handle the request. The image file

is stored in file storage, while metadata is saved in the database. Once stored, a

detection request is initiated, passing the image to the Ensemble API. The

Ensemble System coordinates multiple models to perform predictions,

aggregates the results, and returns a consolidated detection outcome. Finally,

the Laravel API saves the detection result in the database and delivers the

response back to the user interface for result display.

Figure 23: Detect Image Sequence Diagram

70

3.4 Test Plan

3.4.1 Introduction

The testing strategy for the ensemble deepfake detection system was developed

with the explicit aim of ensuring that every implemented feature was rigorously

validated. Rather than testing hypothetical or future features, the focus remained

on the actual codebase, thereby aligning the evaluation with the project’s scope

and objectives. The test plan was designed as a multi-layered process, moving

from fine-grained unit tests through integration testing to a final end-to-end

validation stage. In doing so, the strategy provides assurance that individual

modules operate correctly in isolation, that these modules interact smoothly

when combined, and that the complete system behaves reliably under realistic

usage scenarios. Importantly, the test plan also covers both functional and non-

functional requirements, with attention to accuracy, latency, robustness, and

fairness.

3.4.2 Objectives

The test plan aims to confirm that all functional modules of the system operate

correctly under both normal and adverse conditions. It seeks to verify that

system components integrate seamlessly, ensuring reliable end-to-end

workflows. Additionally, the plan focuses on ensuring that performance goals,

such as latency, throughput, and scalability, are met. The robustness of the

system is also tested, particularly in handling errors, corrupted inputs, and

concurrent requests. Finally, the test plan aims to demonstrate that the system's

outputs meet the expected standards of accuracy, fairness, and usability,

ensuring the platform performs as intended across a variety of scenarios.

3.4.3 Test Suite Summary

Total Tests Implemented: 44

Table 12: Test Suite Summary

Category Count Coverage Focus

71

Unit Tests 35
Core modules (wrappers, configs, output

formatting, ensemble aggregation)

Integration

Tests
3

Cross-module orchestration, configuration-

driven workflows, model integration

Stress Tests 1
Full system validation under production-like

stress, including load and scalability

Adversarial

Tests
5

System robustness against compression,

noise, format manipulation, and ensemble

disruptions

3.4.3.1 Unit Testing

Unit testing formed the backbone of the test framework, accounting for thirty-

six test cases across seven critical modules. These tests were essential for

validating correctness at the function and class level, ensuring that each building

block of the system performed as intended. The Detector Output Wrapper, for

example, required particularly thorough validation because of its role in

harmonizing outputs from diverse models. Similarly, modules such as

Configuration Management and DetectionResult were scrutinized to guarantee

resilience against invalid inputs, schema mismatches, and serialization errors.

The table below summarizes the unit test suites and their coverage:

Table 13: Summary of Unit Test Cases

Suite Tests Coverage Focus

Detector

Output

Wrapper

TC-DOW-001

to TC-DOW-

008

Initialization, configuration loading,

method detection, output conversion,

error handling, metadata extraction,

72

prediction invocation correctness,

configuration integration (ensures proper

behavior across model types and

configuration formats).

Detection

Result

TC-DR-001 to

TC-DR-008

Data structure validation, JSON and

dictionary serialization, confidence score

validation, timestamp handling, metadata

preservation, integrity checks, and

output detail levels (ensures correct

formatting for JSON, CSV, and other

export formats).

Configuration

Management

TC-CM-001 to

TC-CM-008

YAML loading, schema compliance

validation, model instantiation from

configuration, configuration persistence,

error handling for invalid configurations,

environment variable overrides, fallback

handling for incomplete configurations,

and nested configuration structures.

Ensemble

Strategies

TC-ES-001 to

TC-ES-003

Weighted average voting, majority

voting, and confidence-based strategy

(ensures correct ensemble decision-

making and aggregation of results from

multiple models). 2 Test Skipped as the

Ensemble System currently only support

majority voting strategic

Model

Loading

TC-ML-001 to

TC-ML-002

Configuration-driven model instance

loading, model validation, and

configuration verification (ensures

models are loaded correctly from

configuration files and validated against

defined parameters).

73

Output

Formats

TC-OF-001 to

TC-OF-003

JSON compatibility, exporting multiple

formats (FULL, MINIMAL, SIMPLE,

DICT, LEGACY), and output formatting

function (ensures consistent output in the

required formats for easy integration and

data exchange).

Output

Configuration

TC-OC-001 to

TC-OC-003

Output configuration creation, validation

of field mappings, and integration with

output formatter (ensures output fields

are correctly mapped and formatted

according to the configuration settings).

74

List of Unit Test:

Table 14: List of Unit Test Cases

Test

Case ID
Test Case Name Purpose Test Focus

Expected

Outcome
Success Criteria

Test

Timeout

TC-

DOW-

001

Wrapper

Initialization with

Real Model

Validates that the

DetectorOutputWrapper

correctly initializes with a

real model instance and can

produce valid predictions.

Wrapper

initialization with a

real model instance.

Ensures that the

wrapper sets

attributes (e.g.,

model instance,

model name) and

produces valid

predictions.

The model should

be successfully

initialized and

produce valid

predictions without

errors.

The wrapper

initializes correctly

and calls the

predict method

within 5 seconds.

10

seconds

TC-

DOW-

002

Configuration

Loading and

Validation

Ensures that the

OutputConfig and other

configuration files are

correctly loaded and

validated by the wrapper.

Configuration

loading, schema

validation, and field

mapping validation.

The OutputConfig

should load

correctly, and field

mappings should

be correctly

applied.

All configuration

files load correctly

with valid field

mappings and no

errors.

10

seconds

TC-

DOW-

003

Model Method

Detection and

Interface

Adaptation

Verifies that the wrapper can

automatically detect and

handle different model

prediction methods (predict,

forward).

Automatic detection

of model prediction

methods (predict,

predict_single,

forward) and

adapting the

The system should

identify the correct

method and use it

to produce results

without errors.

The correct method

is identified and

used in under 1

second, and valid

predictions are

returned.

10

seconds

75

wrapper

accordingly.

TC-

DOW-

004

Prediction Method

Invocation

Validates that the wrapper

correctly invokes the model's

prediction methods and

produces valid prediction

results.

Correct execution

of model prediction

methods and

ensuring that

parameters are

passed correctly.

Predictions are

successfully

executed with

correct parameter

passing, and the

result contains

valid confidence

scores.

Prediction results

are returned with

valid confidence

scores, and method

invocation

completes within 5

seconds.

10

seconds

TC-

DOW-

005

Output Format

Conversion and

Standardization

Verifies that the system

consistently converts model

outputs into a standardized

DetectionResult format.

Conversion of

model output

formats (e.g.,

tuples, dicts, arrays)

into the

standardized

DetectionResult

format.

The system should

convert all model

outputs into the

DetectionResult

format, ensuring

consistent fields.

Outputs are

consistently

converted into

DetectionResult

format with the

required fields in

under 5 seconds.

10

seconds

TC-

DOW-

006

Metadata

Extraction and

Preservation

Ensures that metadata (such

as confidence scores,

timestamps) are correctly

extracted and preserved.

Metadata extraction

and preservation

during the model’s

output conversion

process.

Metadata such as

timestamps and

confidence scores

should be

preserved

accurately in the

final output.

All metadata fields

(e.g., confidence,

timestamp) are

preserved correctly

in the final output

without data loss.

10

seconds

76

TC-

DOW-

007

Error Handling for

Invalid Models

Tests the system's ability to

handle invalid or

problematic models, such as

missing prediction methods

or faulty models.

Handling invalid

model instances,

missing prediction

methods, or models

that raise

exceptions.

Clear error

messages should

be raised for

invalid models,

with no system

crashes.

The system raises

descriptive

exceptions for

invalid models and

fails gracefully

without crashes.

10

seconds

TC-

DOW-

008

Timeout Handling

and Resource

Management

Verifies that the system

correctly handles timeout

scenarios and resource

cleanup after a timeout or

model failure.

Prediction timeout

scenarios, memory

management, and

resource cleanup

after timeouts or

failures.

The system should

terminate the

prediction attempt

in case of timeout

and clean up

resources without

memory leaks.

Timeouts are

handled correctly,

and resources are

freed up

appropriately. No

memory leaks or

crashes during

execution.

15

seconds

TC-DR-

001

Detection Result

Creation with

Complete Data

Verifies that the

DetectionResult object is

created with all required

fields (e.g., label,

confidence, is_fake).

Creation of the

DetectionResult

object with all

necessary fields,

ensuring data

integrity.

The

DetectionResult

object should

contain all required

fields (label,

confidence,

is_fake, etc.).

DetectionResult

object created with

valid values for all

required fields.

10

seconds

77

TC-DR-

002

Detection Result

Data Validation

Validates the data integrity

and ensures correct data

types and value ranges for

fields in DetectionResult.

Data validation for

the confidence

score, label values,

and boolean fields

in DetectionResult.

Confidence scores

should be within

the valid range

(0.0-1.0), and the

label should be

either 'REAL' or

'FAKE'.

Invalid data should

be rejected, and

valid data should

be accepted, with

appropriate

validation.

10

seconds

TC-DR-

003

Dictionary

Conversion and

Serialization

Verifies the conversion of

DetectionResult to

dictionary format and

ensures no data loss during

serialization.

Conversion of the

DetectionResult

object to dictionary

format and

validating the

structure and

integrity.

The dictionary

format should

retain all data

fields, and nested

objects should be

serialized

correctly.

DetectionResult

should convert to

dictionary format

with preserved data

and correct

structure.

10

seconds

TC-DR-

004

JSON Serialization

and Deserialization

Ensures that DetectionResult

objects can be serialized into

JSON and deserialized back

without data loss.

Serialization of the

DetectionResult to

JSON, followed by

deserialization back

into a valid object.

The JSON

produced should be

valid and able to

deserialize back

into a

DetectionResult

object with intact

data.

JSON serialization

and deserialization

should preserve

data integrity

without errors.

12

seconds

TC-DR-

005

CSV Export

Functionality

Tests the ability to export

detection results to CSV

format, ensuring the correct

generation of headers and

data.

Export of

DetectionResult to

CSV, verifying

correct formatting

The CSV file

should have the

correct headers and

data values with

Valid CSV output,

with correct

headers and data

format for all

fields.

10

seconds

78

and readability of

the file.

correct formatting

for analysis.

TC-DR-

006

Confidence Score

Validation and

Calibration

Verifies that the confidence

score is within the valid

range (0.0 to 1.0) and that

calibration is accurate.

Confidence score

validation and

calibration for edge

cases (e.g., values

near 0.0, 1.0, or

very small values).

Confidence scores

should always be

within the valid

range and

consistently

calibrated to reflect

the model's

certainty.

Confidence values

should remain

consistent and

accurate for

various inputs, and

out-of-range values

should be rejected.

10

seconds

TC-DR-

007

Timestamp

Handling and Time

Zone Support

Tests the system's ability to

handle timestamps in various

formats and time zone

conversions.

Handling and

storage of

timestamps in

various formats,

including UTC

conversion and time

zone comparisons.

The system should

properly convert

and store

timestamps,

respecting time

zones.

Timestamps should

be accurately

converted and

stored, with correct

handling of time

zone differences.

10

seconds

TC-DR-

008

Metadata

Preservation and

Structure

Verifies that metadata

associated with

DetectionResult is preserved

and serialized correctly.

Extraction,

preservation, and

serialization of

metadata like model

information,

detection time, etc.

All metadata fields

should be

preserved,

serialized, and

returned correctly

along with the

detection result.

All metadata

should be

preserved and

returned correctly,

with no data loss or

corruption.

10

seconds

79

TC-

CM-001

YAML

Configuration

Loading and

Parsing

Verifies that YAML

configuration files are

correctly loaded and parsed

by the system.

YAML loading,

schema validation,

and ensuring the

correct structure of

configuration files.

The YAML

configuration file

should be loaded

and parsed

correctly without

errors.

YAML files load

correctly, and

structure validation

passes. No errors

during the parsing

process.

10

seconds

TC-

CM-002

Configuration

Schema Validation

Ensures that configuration

files conform to the

predefined schema and

validation rules.

Schema validation,

checking for

required fields, and

verifying default

values in

configurations.

Invalid

configurations

should be rejected,

and correct

configurations

should be parsed

successfully.

Invalid

configurations

should trigger clear

error messages,

and valid ones

should load

correctly.

12

seconds

TC-

CM-003

Model

Configuration

Parsing and

Validation

Ensures that model-specific

configurations (e.g., model

paths, parameters) are parsed

and validated correctly.

Parsing and

validation of model

configurations like

model paths,

parameters, and

type specifications.

The configuration

values should be

correctly parsed,

and model

parameters should

be validated

against expected

values.

Configuration

parsing and

validation should

be correct,

ensuring accurate

model

instantiation.

12

seconds

80

TC-

CM-004

Ensemble Strategy

Configuration

Tests the ensemble strategy

configuration, ensuring that

the system can handle

majority, weighted, and

confidence-based strategies.

Ensemble strategy

configuration,

validating how

model weights,

voting strategies,

and confidence

thresholds are

handled.

The system should

be able to

configure and

apply the correct

ensemble strategy

for model

aggregation.

Ensemble

strategies

(majority,

weighted,

confidence-based)

must be correctly

applied and

validated.

10

seconds

TC-

CM-005

Preprocessing

Configuration and

Pipeline Setup

Verifies the configuration

and setup of preprocessing

steps to ensure data is

preprocessed correctly

before being passed to

models.

Configuration and

validation of

preprocessing

pipeline steps (e.g.,

normalization,

resizing).

The preprocessing

pipeline should be

correctly

configured and

execute the steps in

the correct order

without errors.

Preprocessing

steps are correctly

executed in the

configured order,

and parameters are

applied correctly.

10

seconds

TC-

CM-006

Dynamic

Configuration

Updates and Hot

Reload

Ensures that configuration

updates can be applied at

runtime without requiring a

system restart.

Runtime updates,

configuration

reloading, and hot

reload functionality.

The system should

allow

configuration

updates at runtime,

and changes should

be applied

immediately

without issues.

Configuration

changes are

applied

dynamically, and

the system

continues to

function without

requiring a restart.

15

seconds

81

TC-

CM-007

Environment

Variable Override

Support

Verifies that environment

variables can override

configuration values for

deployment-specific

configurations.

Environment

variable parsing,

override

precedence, and

validation of

environment-

specific

configurations.

The system should

correctly handle

environment

variable overrides

and respect

precedence rules.

Environment

variable overrides

should work

correctly, and

configuration

values should be

correctly updated.

10

seconds

TC-

CM-008

Configuration

Error Handling

and Recovery

Tests the system’s ability to

handle errors in

configuration files, ensuring

that invalid configurations

do not break the system.

Error handling,

fallback

mechanisms, and

recovery from

corrupted or

incomplete

configurations.

The system should

gracefully handle

errors in

configuration files

and either recover

or provide clear

error messages.

Invalid

configurations

should result in

clear error

messages and

recovery to default

configurations.

15

seconds

TC-ES-

001

Weighted Voting

Strategy

Implementation

Verifies the implementation

of weighted average voting

within the ensemble model,

where different models can

have different weights.

Weighted average

voting, testing

different model

weights and

ensuring proper

aggregation of

results.

The ensemble

should aggregate

model predictions

using weighted

average voting and

return a final result

based on the

weighted

combination.

The system

correctly applies

model weights, and

the weighted

voting is

performed

accurately,

producing a valid

ensemble decision.

10

seconds

82

TC-ES-

002

Majority Voting

Strategy

Implementation

Validates the majority voting

strategy in the ensemble,

where the final decision is

based on the most frequent

prediction across models.

Majority voting,

ensuring that the

ensemble returns

the prediction

chosen by the

majority of models.

The system should

aggregate model

predictions using

majority voting,

selecting the most

frequent prediction

as the final result.

The majority

voting strategy

should work

correctly, ensuring

the majority

decision is applied

properly.

10

seconds

TC-ES-

003

Confidence-Based

Selection Strategy

Tests the confidence-based

model selection strategy,

where models with higher

confidence are prioritized in

the ensemble decision-

making process.

Confidence-based

strategy,

prioritizing high-

confidence models

and ensuring

accurate decision-

making.

The ensemble

should select

models with higher

confidence to

influence the final

decision, ensuring

that the model with

the highest

confidence is

prioritized.

TC-

ML-001

Dynamic Model

Loading from

Config

Verifies that model instances

can be dynamically loaded

from configuration files

(YAML/JSON).

Configuration-

driven model

loading, ensuring

that the system can

instantiate models

correctly based on

the configuration.

The system should

be able to load the

model

configuration and

instantiate the

model without

errors.

The model is

correctly

instantiated from

the configuration

file, and all

parameters are

passed

successfully.

10

seconds

83

TC-

ML-002

Model Validation

and Verification

Validates that the loaded

models comply with the

required configuration

parameters and are

compatible with the system.

Model validation

after loading to

ensure

compatibility,

parameter

verification, and

configuration

compliance.

The system should

validate that the

loaded model

configuration is

complete, correct,

and matches the

expected

parameters.

The model

configuration is

correctly validated,

and the model is

compatible with

the defined

parameters.

12

seconds

TC-OF-

001

JSON Output

Format Validation

Verifies that the output is

correctly serialized into

JSON format.

JSON

compatibility,

ensuring that

DetectionResult

objects are

serialized into a

valid and readable

JSON format.

The system should

produce valid

JSON that

correctly

represents the

output, with no

errors during

serialization.

The JSON output

should be valid,

and all required

fields should be

correctly

serialized.

10

seconds

TC-OF-

002

Multiple Results

Formatting

Tests the system’s ability to

format multiple detection

results into a consistent

output format.

Batch export

formatting,

ensuring that the

system can format

an array of

DetectionResult

objects consistently.

The system should

correctly format an

array of

DetectionResult

objects into the

required output

format (e.g.,

JSON).

All results should

be formatted

consistently in the

required output

format, and batch

processing should

be efficient.

12

seconds

84

TC-OF-

003

Output Format

Options

Tests the system's ability to

support different output

format options (e.g., FULL,

MINIMAL, SIMPLE, DICT,

LEGACY).

Output formatting

options, ensuring

that the system can

handle various

export formats as

required (e.g.,

FULL, MINIMAL).

The system should

be able to generate

outputs in different

formats, depending

on the specified

output format

option.

All specified

output formats

should be correctly

generated, with

appropriate fields

based on the

selected option.

12

seconds

TC-

OC-001

Output Config

Creation and

Validation

Validates that OutputConfig

objects are correctly created

and validated, ensuring that

all necessary settings are

applied.

Output

configuration

creation and

validation, ensuring

all required fields

and parameters are

set correctly.

The OutputConfig

object should be

created with the

correct fields and

should pass

validation checks.

The OutputConfig

object is created

successfully with

correct parameters,

and validation

completes without

errors.

10

seconds

TC-

OC-002

Field Mapping

Configuration

Verifies that FieldMapping

configurations are applied

correctly, allowing for

customization of field names

in the output.

Field mapping

validation, ensuring

that custom field

names are correctly

mapped and applied

to the output fields.

The FieldMapping

should correctly

map the specified

fields to the output

and handle custom

field names

appropriately.

Field mappings

should be applied

correctly, and

output should

reflect custom field

names as specified

in the

configuration.

10

seconds

85

TC-

OC-003

Output Config

with Field

Mapping

Integration

Ensures that FieldMapping is

correctly integrated with

OutputConfig, allowing for

complete customization of

the output format.

Integration of

FieldMapping with

OutputConfig,

ensuring the final

output reflects the

customized

configuration.

The final output

should reflect the

field mappings

specified in the

OutputConfig, and

the formatting

should be

consistent.

The output should

match the

configuration and

include custom

field mappings, as

specified in the

configuration file.

12

seconds

By designing unit tests across these areas, the system achieved strong code coverage (approximately 75% overall, with over 90% coverage in

wrapper modules). Importantly, the tests were deterministic, producing consistent outcomes across repeated executions

86

3.4.3.2 Adversarial Tests

The adversarial robustness of the system is evaluated through several targeted tests designed to assess how well the deepfake detection system

withstands image manipulations, format attacks, and ensemble disruptions. Adversarial attacks are becoming increasingly sophisticated, and this

section ensures that the ensemble model maintains accuracy, reliability, and generalization even in the presence of various adversarial

manipulations.

Table 15: List of Adversarial Test Cases

Test Case Purpose Test Focus Expected Outcome Success Criteria Test Timeout

TC-ADV-REAL-

001

Tests the system's

resistance to JPEG

compression and image

quality loss, simulating

real-world conditions

such as low-quality

uploads.

JPEG

compression,

noise

perturbations,

image degradation

The system should

maintain accuracy

even with

compression and

quality loss.

Confidence

retention ≥ 60%,

label consistency ≥

80% despite JPEG

compression

artifacts.

30 seconds

TC-ADV-REAL-

002

Evaluates the system’s

resilience to noise

injection attacks,

simulating real-world

noise patterns in images.

Gaussian noise,

salt-and-pepper

noise, additive

noise patterns

The system should

maintain reliable

predictions despite

noise interference.

Confidence

retention ≥ 50%,

label consistency ≥

70% despite noise

distortion.

25 seconds

87

TC-ADV-REAL-

003

Tests system robustness

against real resolution

scaling attacks using

actual image processing

techniques.

Image resolution

scaling,

downscaling,

upscaling,

interpolation

The system should

maintain accuracy

even when images

undergo resolution

changes.

Confidence

retention ≥ 40%,

label consistency ≥

60% across

resolution

variations.

20 seconds

TC-ADV-REAL-

004

Tests the system’s

robustness to real blur

attacks, simulating

motion blur and

Gaussian blur.

Gaussian blur,

motion blur,

camera shake

simulation

The system should

retain stable

predictions under

blurring effects.

Confidence

retention ≥ 40%,

label consistency ≥

60% despite image

blurring.

25 seconds

TC-ADV-REAL-

005

Evaluates system

performance against real

color manipulation

attacks, such as

brightness and contrast

adjustments.

Brightness,

contrast, saturation

manipulation,

HSV color space

changes

The system should

maintain accuracy

when images

undergo color

adjustments.

Confidence

retention ≥ 50%,

label consistency ≥

70% despite color

manipulation.

25 seconds

88

3.4.3.3 Integration Testing

While unit tests focus on correctness in isolation, integration tests evaluate the interoperability of different modules. This is particularly important

in a component-based development framework where modular subsystems must function together seamlessly. For example, the Detector Output

Wrapper must not only handle individual models but also integrate their outputs into ensemble strategies while respecting configuration constraints.

The following integration tests were implemented: These tests ensured that once modules were combined, they worked coherently in delivering

consistent and correct results.

Table 16: List of Integration Test Cases

Test Case Purpose Test Focus Expected Outcome Success Criteria Test Timeout

TC-MI-001

Verifies that a single

model can be wrapped

successfully and still

produce valid

predictions without

errors.

Model

integration,

ensuring the

predict method

executes without

errors.

The model should

produce valid

predictions without

exceptions when

wrapped by the

DetectorOutputWrapper.

The model is

successfully

integrated, and the

predict method runs

within 5 seconds,

returning a valid

result.

10 seconds

89

TC-MI-002

Confirms the wrapper’s

ability to handle

multiple model

implementations and

diverse return formats

(e.g., tuples, dicts,

arrays).

Model

compatibility and

format handling

across different

model types

(e.g., PyTorch,

TensorFlow,

etc.).

The wrapper should

handle diverse model

formats, converting

them into a standardized

format

(DetectionResult).

All model types

integrate seamlessly,

and the system should

convert different

return formats (tuples,

dicts, arrays) into

DetectionResult

objects.

12 seconds

TC-MI-003

Validates that the

system behavior

accurately reflects the

settings specified in

OutputConfig and

FieldMapping.

Configuration

handling,

ensuring that the

system respects

OutputConfig

and

FieldMapping

during model

execution.

The system should

follow the configuration

settings and adapt the

output accordingly (e.g.,

output format, field

mapping).

All output

configurations and

field mappings should

be correctly applied to

model results,

matching the

specifications in

OutputConfig and

FieldMapping.

15 seconds

90

3.4.3.4 Stress Testing

The final layer of validation consisted of an stress test simulating a realistic production workload. Here, the system was subjected to one hundred

concurrent prediction requests, testing its ability to maintain throughput and latency under stress.

Table 17: Stress Test Test Cases

Test Case Purpose Test Focus Expected Outcome Success Criteria Test Timeout

TC-REAL-

STRESS-

001

Objective: Assess performance

and robustness under heavy

load. This test ensures that the

system can handle a large

volume of concurrent requests

without degradation in

performance or stability.

Throughput testing,

latency measurement,

memory leak

detection, and system

robustness under

stress.

The system should maintain

acceptable performance

under high load, with

throughput ≥ 50

predictions/minute, and

latency ≤ 800 ms per image.

Additionally, the system

should not experience

crashes or memory leaks.

Throughput: ≥ 50

predictions/minute,

Latency: ≤ 800 ms

per image, No

crashes or memory

leaks.

150 seconds

This test demonstrated that the system could reliably handle production-scale workloads while maintaining stability and responsiveness.

91

3.4.4 Test Environment and Execution

All tests were executed using Python 3.8+ and the pytest framework, with

dependencies limited to numpy, PyYAML, and pathlib. The environment was

kept deliberately lightweight, requiring no external connectivity. Execution

performance was closely monitored: unit tests completed within ten seconds

each, integration tests within fifteen seconds, and the end-to-end test within

thirty seconds. The complete suite consistently executed in under five minutes,

allowing for frequent and practical regression testing during development.

3.4.5 Validation and Quality Assurance

The validation process was anchored in the project’s functional and non-

functional requirements. Functional requirements were tested via deterministic

outcomes such as correct initialization, accurate serialization, and correct

ensemble aggregation. Non-functional requirements were evaluated against

measurable benchmarks: ensemble AUROC needed to exceed baseline models

by at least 1–2%, average latency per image had to remain within 500–800

milliseconds, and fairness audits ensured that false positive disparities across

demographic groups did not exceed 5%.

From a quality assurance standpoint, the test suite provided broad code coverage,

thorough error-handling checks, and explicit mapping of test cases to

requirement identifiers. The reliability of results was strengthened by

deterministic test design and independence from external services.

3.4.6 Result Validation through Accuracy Testing

In addition to functional, integration, and end-to-end testing, the system’s

outputs were validated using a dedicated Model Accuracy Testing Framework

built on top of the DetectorOutputWrapper infrastructure. This framework

provided standardized performance evaluation for both individual detectors and

the ensemble model across diverse datasets.

The result validation process focused on two complementary aspects:

92

Quantitative Performance Validation

Each model was assessed using a comprehensive suite of metrics, including

classification accuracy, precision, recall, F1 score, and AUC. Confusion

matrices were generated to provide insight into error distribution between

the FAKE and REAL classes, while per-class accuracy highlighted potential

weaknesses in deepfake detection versus authentic media preservation.

Inference time was also measured to ensure that latency remained within the

non-functional requirement of 500–800 ms per image.

Qualitative Error Analysis

Beyond numerical scores, the framework tracked error cases on a per-image

basis. This enabled detailed inspection of failure modes, such as false

positives on compressed authentic images or false negatives on highly

realistic manipulations. These findings were logged, categorized, and

visualized through precision-recall curves, radar charts, and comparative

performance plots, providing actionable insights into model behavior.

Validation was conducted on standardized datasets (URS dataset) to test cross-

domain generalization. Ensemble results were systematically compared to

individual model performance, confirming that the confidence-weighted voting

scheme consistently improved AUROC by 1–2% over single detectors.

The outputs of this accuracy testing were exported in both JSON and CSV

formats for reproducibility, and visual dashboards were generated to illustrate

comparative performance across models. Together, these validation steps

ensured that the system not only functioned correctly but also achieved the

levels of accuracy, robustness, and fairness required for deployment in practical

contexts.

93

3.4.7 Testing Dataset Selection: URS Dataset for Model Evaluation

In the testing and validation phases of the ensemble deepfake detection system,

we utilized the URS (Unified Real and Synthetic) Complete Dataset, which

forms the backbone of our model evaluation. As described in detail in the

Dataset Description section, the URS dataset consists of 24,000 images, split

evenly between real images sourced from the FFHQ (Flickr-Faces-HQ) dataset

and fake images generated by three distinct deepfake generation models:

FaceShifter, PGGAN, and StyleGAN3. These images were further divided into

training, validation, and test sets, allowing for comprehensive evaluation of the

system’s performance across multiple stages.

The use of this dataset ensures that the model is tested on a diverse range of

deepfake techniques, from easily detectable manipulations to highly

sophisticated fakes. The dataset’s balance between real and fake images, as well

as its diversity of manipulation techniques, provides a robust foundation for

evaluating the system’s accuracy and generalization capabilities. Importantly,

this dataset enables the validation of key non-functional requirements such as

performance, fairness, and scalability, as it allows for extensive testing on varied

image types and ensures a broad coverage of real-world use cases.

The specific test cases and validation steps that involve the URS dataset include:

• FR-02: Image Upload and Validation: Ensuring that only valid images

(JPEG, PNG, ≤ 4MB) are accepted and processed by the system.

• FR-03: Single-Model and Ensemble Detection: Evaluating the

performance of the system in detecting fake images generated by different

methods (FaceShifter, PGGAN, and StyleGAN3).

• NFR-02: Accuracy and Generalization: Testing the ensemble detection

method to achieve ≥90% F1-score on benchmark datasets, including the

URS dataset, and ensuring that performance does not degrade by more than

5% in cross-domain evaluations.

94

• NFR-01: Performance: Validating that the system can process images

within the required time thresholds, as measured during inference tests on

the URS dataset.

Incorporating the URS dataset into our test plan strengthens the validation

process by providing a realistic, balanced, and challenging test bed that closely

mirrors real-world scenarios, particularly in terms of detecting highly

sophisticated deepfake manipulations. It ensures that our system is not only

capable of identifying fake images from a single source but can also generalize

across different types of synthetic content, enhancing its robustness for

deployment.

95

CHAPTER 4

4 DEVELOPMENT AND IMPLEMENTATION

4.1.1 Development Path

4.1.2 Introduction

The development of the deepfake detection system followed an iterative and

engineering-driven process, where each cycle built upon the limitations of its

predecessor to produce a modular, extensible, and production-ready framework.

The process can be understood as a timeline that progressed through multiple

technical stages, beginning with an initial prototype and culminating in a fully

refactored ensemble-based architecture.

4.1.3 Unified Dataset

4.1.3.1 Overview of the URS Dataset

For the validation of the ensemble deepfake detection system, we employed the

URS (Unified Real and Synthetic) Complete Dataset, which is widely

recognized for its diverse content and balanced composition. This dataset was

chosen due to its representation of both real-world images and synthetically

generated fake images, enabling comprehensive evaluation of the model's

ability to distinguish between authentic content and manipulations created by

various deepfake generation techniques. The dataset was sourced from Kaggle

and consists of 24,000 images in total, divided equally between real and fake

images.

The real images in the dataset were sourced from the FFHQ (Flickr-Faces-HQ)

dataset, which contains high-quality images of human faces from diverse

backgrounds. The fake images were generated using three state-of-the-art

generative models: FaceShifter, PGGAN, and StyleGAN3. These models were

selected for their ability to produce a wide range of facial manipulations, from

basic identity-swapping to highly realistic but subtle fakes. The dataset's

balanced nature and diversity of fake generation techniques ensure that the

96

system is thoroughly tested under both controlled (real images) and adversarial

(generated fakes) conditions.

4.1.3.2 Dataset Composition

The URS dataset consists of a total of 24,000 images, with 12,000 real images

and 12,000 fake images. The real images were sourced from FFHQ, a high-

quality dataset of human faces, ensuring a broad representation of diverse

demographics. The 12,000 fake images were generated using three different

models, each contributing a unique style of deepfake generation:

• FaceShifter (4,000 images): A method that performs identity-swapping

between different individuals. This approach generates deepfakes with

noticeable identity mismatches but relatively high photorealism.

• PGGAN (4,000 images): A progressive GAN model that generates

synthetic faces by gradually increasing image resolution. While it

creates convincing faces, it is known to introduce occasional artifacts,

such as texture inconsistencies.

• StyleGAN3 (4,000 images): The most recent version of the StyleGAN

model, which produces high-quality faces with minimal artifacts.

StyleGAN3 is particularly challenging for detection systems due to the

subtle nature of the manipulations it generates.

All images in the dataset were resized to 256x256 pixels, providing a consistent

input size for testing. This resizing ensures that the system can be evaluated on

images of uniform dimensions, minimizing variations introduced by image

resolution.

4.1.3.3 Dataset Partitioning

To ensure fair testing and validation, the dataset was split into three parts:

training, validation, and testing. The 70/15/15 split ensures that there is

sufficient data for model training, hyperparameter tuning, and unbiased

performance evaluation. The division is as follows:

Training Set (70%): 16,800 images (8,400 real, 8,400 fake)

Validation Set (15%): 3,600 images (1,800 real, 1,800 fake)

97

Test Set (15%): 3,600 images (1,800 real, 1,800 fake)

This partitioning ensures that the model is trained on a large number of examples

while retaining an independent validation and test set to evaluate generalization

performance.

4.1.3.4 Dataset Balance and Diversity

The URS dataset is designed to be balanced between real and fake images, with

equal representation of both classes. This balance is crucial for avoiding class

bias during training and ensuring that performance metrics such as precision,

recall, and F1-score are meaningful and unbiased. The inclusion of 12,000 fake

images generated using three different deepfake generation methods enhances

the diversity of the dataset, exposing the model to a variety of manipulation

techniques and challenges.

Each deepfake generation technique introduces different types of artifacts that

are crucial for evaluating the robustness of the detection system:

• FaceShifter tends to produce deepfakes with identity-swapping errors,

where the face of one individual is replaced with that of another. These

fakes are relatively easy to spot visually but are included to test how well

the model can identify swapped identities.

• PGGAN is a more traditional generative model that produces realistic

faces but often with inconsistencies in texture or background. These

types of fakes are useful for testing how well the model can handle minor

inconsistencies in the generated images.

• StyleGAN3, as a state-of-the-art model, produces extremely realistic

fakes that are particularly challenging for detection systems. Its

inclusion ensures that the model is tested on the latest advancements in

deepfake generation, making it highly relevant for real-world

applications.

4.1.3.5 Justification for Dataset Selection

The dataset is carefully curated to address several key aspects essential for

model evaluation. It maintains a balanced composition, containing an equal

98

number of real and fake images, which helps prevent class imbalance issues

during model evaluation. The diversity of manipulation techniques is ensured

by including fake images generated by three distinct models—FaceShifter,

PGGAN, and StyleGAN3—allowing the model to be tested on a variety of

deepfake generation methods. This diversity enhances the model's

generalization ability, enabling it to detect different types of deepfakes. The use

of high-quality FFHQ real images ensures that the real images are diverse and

of high resolution, providing a strong foundation for evaluating how well the

model generalizes across different human features. Additionally, the dataset

benefits from standardized preprocessing, with all images resized to 256x256

pixels, ensuring consistency in input data size and enabling fair comparisons

between models. Finally, the URS dataset, which is publicly available and

widely used in deepfake detection research, serves as an ideal benchmarking

tool for the ensemble detection system. Its established use in the field guarantees

that the results can be compared with existing systems and contribute to the

ongoing development of deepfake detection technologies.

4.1.3.6 Dataset Limitations

While the URS dataset provides a solid foundation for testing, it is not without

limitations. The dataset does not include video data, and thus the system was

evaluated only on individual frames. In future work, incorporating video-based

datasets (such as DeepFake Detection Challenge (DFDC) or FaceForensics++

video subset) would provide more challenging and realistic use cases for

deepfake detection systems. Additionally, although the dataset is diverse in

terms of deepfake generation methods, it may not fully capture more

sophisticated manipulation techniques that may arise in the future.

4.1.3.7 Unified Dataset Summary

In summary, the URS dataset offers a balanced and diverse set of images,

making it highly suitable for testing the performance of the ensemble deepfake

detection system. The inclusion of both real images from FFHQ and synthetic

images from three different generative models ensures that the system is tested

99

against a wide range of manipulation techniques. The balanced nature of the

dataset allows for unbiased performance evaluation, while the use of high-

quality real images ensures that the detection system is challenged by realistic

content. The dataset's structure and composition align with research best

practices, ensuring that the results are reproducible and comparable to existing

systems.

4.1.4 Ensemble Detector

4.1.4.1 Unified Detector (Initial Prototype)

The earliest version of the system was developed as a unified detector, in which

all major processes—including preprocessing, model loading, inference, and

output formatting—were embedded into a single monolithic pipeline. This

approach provided an essential proof of concept by demonstrating that different

model architectures, such as EfficientNet-B4, Xception, and CapsuleNet, could

be executed within a shared structure. However, the unified design also exposed

significant limitations. Every new model had to be hardcoded into the pipeline,

which tightly coupled components and restricted extensibility. Weight file paths,

preprocessing methods, and prediction functions were directly embedded in the

source code, making the system brittle and difficult to maintain. Additionally,

each model produced results in a unique format, complicating the aggregation

of outputs. Although this stage validated the feasibility of a multi-model

detector, it underscored the need for modularity, configurability, and

standardized interfaces.

Figure 24: Unified Detector Concept Diagram

100

Figure 25: Unified Detector Application Code

The first prototype concentrated all responsibilities—preprocessing, model

construction, inference, and result formatting—inside a single class. This

validated feasibility but created tight coupling and brittle paths for weights and

transforms.

4.1.4.2 Single-Model Wrappers

To address the rigidity of the unified detector, the system evolved into a design

based on single-model wrappers. In this cycle, each detector was encapsulated

in its own dedicated class that handled preprocessing, inference, and output

encapsulation independently. This separation made it possible to test and debug

models in isolation, which in turn improved the reliability of benchmarking and

evaluation. For example, one wrapper might normalize inputs differently from

another without affecting the global pipeline. The introduction of wrappers also

simplified integration of additional detectors, as new models could be added as

self-contained units. Nonetheless, ensemble functionality still had to be

coordinated manually, as there was no central mechanism for aggregating

predictions across models. The lack of standardized contracts between wrappers

also meant that consistency in outputs was only partially achieved, limiting

interoperability and slowing integration.

Figure 26: Single Model Wrappers Concept Diagram

101

Figure 27: Single Model Wrapper Application Code

We then decomposed the monolith into per-model wrappers, isolating

preprocessing and inference semantics. Each wrapper guaranteed a minimum

interface (load, preprocess, forward, postprocess) while remaining free to

optimize internally.

4.1.4.3 Generic and Config-Driven Wrappers

The third phase of development introduced a generic wrapper architecture

governed by external configuration files, primarily written in YAML and JSON.

In this system, models were no longer tied directly to the codebase; instead, they

were defined through configuration files specifying their import paths, weight

locations, preprocessing requirements, and preferred inference methods. The

generic wrapper was designed with automatic method detection, enabling it to

identify and invoke appropriate prediction functions such as predict, detect, or

forward without manual intervention. Crucially, all models now produced

outputs in a standardized schema, including a predicted label, confidence value,

probability distribution, inference time, and optional error fields. Configuration

auto-discovery was added to provide resilience, allowing the system to fall back

to default or minimal configurations when primary files were missing.

Validation mechanisms ensured schema integrity, preventing runtime errors

caused by incomplete or corrupted configurations. This cycle represented a

major leap toward flexibility and reproducibility, as models could be registered,

updated, or replaced dynamically without modifying the underlying code.

102

Figure 28: Generic Wrapper Concept Diagram

Figure 29: Sample YAML Config File for Generic Wrapper

Figure 30: Generic Wrapper Application Code

To remove hardcoding, wrappers became generic and configuration-driven.

Models, weights, transforms, and output mappings moved to YAML/JSON,

validated at startup.

4.1.4.4 Ensemble V1: Majority Voting

Once standardized outputs were established, the first ensemble framework was

introduced. Ensemble V1 aggregated predictions from multiple detectors using

a majority voting strategy, where the most frequently predicted label among the

models determined the final decision. This approach represented an important

shift toward multi-model robustness, as it reduced reliance on any single

103

detector. However, the ensemble was executed sequentially, with each model

being called in order, which resulted in higher latency under load. Furthermore,

all detectors were treated as equal contributors regardless of their accuracy or

confidence, which occasionally led to unstable or biased outcomes when weaker

models conflicted with stronger ones. The system also lacked resilience in the

face of model failures, as the breakdown of a single detector could compromise

the ensemble. While Ensemble V1 established the foundation for collaborative

decision-making, its limitations revealed the necessity of weighted aggregation,

parallelism, and error tolerance.

Figure 31: Version 1 Ensemble System Concept Diagram

Figure 32: Abstract Class Code for Ensemble Version 1

Standardized outputs in place, we introduced an ensemble coordinator that

sequentially invoked each wrapper and performed majority voting. This

improved stability over any single model but remained latency-bound and

insensitive to confidence dispersion.

4.1.4.5 Ensemble V2: Confidence-Weighted Voting and Parallelism

The second iteration of the ensemble system introduced significant technical

improvements that directly addressed the weaknesses of its predecessor. Instead

104

of relying solely on majority counts, Ensemble V2 implemented confidence-

weighted voting, in which predictions with higher confidence values exerted

greater influence on the final outcome. This refinement improved decision

quality by ensuring that more reliable predictions were prioritized over weaker

ones. At the same time, parallel execution was introduced through the use of

thread pools, allowing detectors to process inputs simultaneously rather than

sequentially. This advancement reduced overall inference time and increased

throughput. To prevent individual models from stalling the system, timeout

mechanisms were added, ensuring that slow or unresponsive detectors were

excluded from ensemble results without delaying the rest of the pipeline. Error

recovery protocols were also incorporated, so that model failures were logged

and bypassed gracefully rather than causing system-wide interruptions. With

these enhancements, Ensemble V2 achieved both robustness and scalability,

making the framework suitable for larger-scale use.

Figure 33: Version 2 Ensemble System Concept Diagram

Figure 34: Abstract Class Code for Ensemble Version 2

105

Added parallelism, timeouts, and confidence-weighted voting. This reduced tail

latency and allowed stronger detectors to dominate when disagreements

occurred.

4.1.4.6 Refactored Packages: Detector Output Wrapper and Ensemble

Detector

The final stage of development involved a comprehensive refactoring of the

codebase into two distinct and reusable packages: the Detector Output Wrapper

and the Ensemble Detector. The Detector Output Wrapper served as the

abstraction layer for all individual models, providing consistent interfaces for

configuration loading, prediction method detection, preprocessing compatibility,

and standardized outputs. It also supported multiple output formats, ranging

from minimal to full reports, depending on the requirements of downstream

systems. In parallel, the Ensemble Detector operated as the orchestration layer,

managing model loading, executing ensemble strategies, and coordinating

parallel inference.

Figure 35: Final Conceptual Design for Ensemble System

106

4.1.4.7 DetectorOutputWrapper

The DetectorOutputWrapper is the central component that acts as an interface

between deepfake detection models and the system. It provides a standardized

interface for model integration, ensuring that predictions are formatted

consistently, regardless of the underlying model architecture. This allows the

system to work with various deepfake detection models, regardless of whether

they are based on PyTorch, TensorFlow, or other frameworks.

4.1.4.7.1 Key Functionalities:

Table 18: Key Features of DetectorOutputWrapper Module

Feature Description

Unified Interface

The wrapper abstracts the underlying model

architecture, providing a unified prediction interface for

different model types. This ensures compatibility across

models with different prediction methods (e.g., predict,

predict_single, forward).

YAML-Based

Configuration

Management

The wrapper supports YAML configuration files for

customizing the system's behavior. This includes

adjusting confidence thresholds, output formats, and

preprocessing methods, simplifying model management.

Automatic

Method

Detection

The wrapper automatically detects the appropriate

prediction method for a given model (e.g., predict,

predict_single, forward), adapting to different model

interfaces without requiring manual configuration.

Error Handling

and Validation

The wrapper includes robust error handling, ensuring

that issues such as invalid inputs, model failures, and

unexpected outputs are handled appropriately,

maintaining system stability.

107

Standardized

Output

Regardless of the underlying model, the wrapper

standardizes the output to include essential fields such as

label, confidence score, and metadata, ensuring

consistency in results across multiple models,

particularly in ensemble configurations.

4.1.4.7.2 Usage Scenarios:

Single Model Integration:

The DetectorOutputWrapper is ideal for scenarios where a single deepfake

detection model needs to be integrated into the system. For example, a

custom model (e.g., Yolo Model) can be wrapped using the

DetectorOutputWrapper, which will handle preprocessing, make

predictions, and return the results in a consistent format.

Custom Model Integration:

The wrapper also supports integration with custom deepfake detection

models, providing a seamless interface for users to incorporate their own

model logic.

Figure 36: Example Usage of DetectorOutputWrapper

4.1.4.7.3 Module Dependencies:

108

Figure 37: Overview of Module Dependencies of DetectorOutputWrapper

4.1.4.8 EnsembleDetector

The EnsembleDetector is designed to combine predictions from multiple

deepfake detection models to improve the overall system’s performance. By

leveraging ensemble learning techniques such as weighted averaging, majority

voting, and confidence-based strategies, the EnsembleDetector aggregates

model predictions to provide more robust and accurate results.

4.1.4.8.1 Key Functionalities:

Table 19: Key Fetures of Ensemble Detector Module

Feature Description

Ensemble

Model

Aggregation

The EnsembleDetector combines predictions from

multiple models to make a final decision. It supports

different aggregation strategies, such as majority voting,

weighted averaging, and confidence-based selection, all of

which can be configured via the ensemble configuration

file.

109

Automatic

Model

Loading

Models are automatically loaded from the configuration

file, simplifying the process of adding or removing models

from the ensemble. This dynamic loading and

configuration of models based on the settings allows

flexibility in ensemble management.

Parallel

Prediction

Processing

The EnsembleDetector supports parallel processing of

model predictions, improving performance by processing

multiple predictions simultaneously, especially when

dealing with a large number of models or images. This is

achieved through multi-threading.

Centralized

Preprocessing

The system centralizes the preprocessing pipeline, ensuring

that all models receive input images in the same format,

avoiding discrepancies caused by different preprocessing

techniques used by individual models.

Configuration-

Driven Model

Management

The EnsembleDetector is configuration-driven, with all

model settings, ensemble strategies, and parameters

defined in a YAML configuration file. This makes it easy

to update, modify, and scale the ensemble system without

needing to alter the underlying code.

4.1.4.8.2 Usage Scenarios:

Ensemble-Based Deepfake Detection:

The EnsembleDetector is ideal for scenarios where the goal is to combine

the strengths of multiple deepfake detection models. This could involve

combining models trained on different types of data (e.g., YOLO-TS,

Xception, and EfficientNetB4) to improve detection accuracy and

robustness across various deepfake manipulation techniques.

110

Figure 38: Example Usage of Ensemble Detector

Batch Processing with Ensemble Models:

The EnsembleDetector supports batch processing, where multiple images

can be processed in parallel using the ensemble configuration. This is

particularly useful in scenarios where large volumes of data need to be

analyzed efficiently.

Figure 39: Batch Processing Example for Ensemble Detector

4.1.4.8.3 Module Dependencies:

111

Figure 40: Overview Module Dependencies of Ensemble Detector

4.1.4.8.4 Summary

The DetectorOutputWrapper and EnsembleDetector form the backbone of the

Ensemble Deepfake Detection System. The DetectorOutputWrapper enables

seamless integration of individual models, ensuring consistent outputs and

robust error handling, while the EnsembleDetector enhances performance by

combining multiple models through various ensemble strategies. Together,

these components allow for flexible model management, high performance, and

accurate deepfake detection across a variety of manipulation techniques,

ensuring the system's reliability and scalability in real-world applications.

4.1.5 Laravel Web Application

4.1.5.1 Front-End Integration

In the final integrated platform, the front-end implementation was intentionally

kept minimal to ensure accessibility for non-technical users. A basic web

interface was constructed to allow users to upload images for analysis and

receive detection results in real time. The interface displays both the confidence

scores from each integrated detector and the aggregated ensemble decision,

offering transparency in how the system reaches its conclusions.

112

This functionality was delivered through a Laravel-based web application,

chosen for its robustness, scalability, and seamless support for MVC (Model–

View–Controller) architecture. The Laravel framework provided structured

routing, middleware-based request handling, and built-in authentication

mechanisms, which simplified the integration of user roles and access control.

The image upload workflow was managed through Laravel’s storage and

validation modules, ensuring secure handling of inputs and preventing

unsupported file types from entering the system.

4.1.5.1.1 Front-End Description:

Figure 41: Dashboard UI

Dashboard Overview:

The page is designed with a clear top navigation bar that welcomes the user by

displaying their name (e.g., "Welcome back, Ricardo Howe!") and offers easy

navigation options, such as starting a new detection. Key metrics are displayed

at the top, showing the total number of detections, fake detections, and real

detections, both for the current week and the overall total. The Quick Detection

area allows users to quickly drag and drop images for detection, with a

dropdown to select the detection method. Users can choose from options like

"Default Ensemble" or individual models. To initiate detection, users can click

on the "Choose File" button, enabling them to upload an image for immediate

analysis..

113

Figure 42: EnsembleDetection UI

Figure 43: Single Model Detection UI

Single and Ensemble Detection Options:

The system offers two detection methods for users to choose from. With

Ensemble Detection, users can leverage the power of multiple AI models

working together to provide a more accurate and reliable analysis of uploaded

images. Alternatively, with Single Model Detection, users can select a specific

model, such as Capsule Forensic or EfficientNetB4, for faster detection. The

model selection is displayed clearly in a dropdown menu. Additionally, the

upload section features a drag-and-drop functionality, allowing users to quickly

upload images for detection. The system supports common image formats like

JPEG, PNG, and GIF for ease of use.

Figure 44: Detection Result UI

114

Figure 45: Detection Result History UI

Detection Results and History:

The detection results are displayed with an image preview on the left and an

analysis summary on the right. For each detection, users can see the model’s

prediction (real or fake) along with the confidence level for each model. A

breakdown of confidence for each model in the ensemble is provided, along

with the final result of the analysis, such as "Real" or "Fake," accompanied by

the probability percentage. The system also keeps a history of recent results,

displaying details about the file, detection method used, and the outcome. Users

have the option to reanalyze a file or view a more detailed analysis for each

result, offering flexibility and control over their detections.

Figure 46: Login Page UI

115

Figure 47: Register Page UI

User Authentication:

The login page allows users to enter their email address and password to access

the system. It includes options like Remember Me for easy access in the future

and provides a Forgot Password link for simple account recovery. The

registration page enables new users to create an account by entering their name,

email address, password, and confirming the password to complete the

registration process.

4.1.5.2 Back-End Integration

The Laravel back end served as the bridge between the user interface and the

Python-based ensemble detection engine. Requests from the upload page were

routed to RESTful API endpoints exposed by the ensemble system, and Laravel

managed asynchronous communication, error reporting, and result formatting.

This integration design enabled the web application to remain lightweight while

delegating computationally intensive detection tasks to the specialized back-end

modules. Laravel also facilitated logging of user interactions and system outputs,

providing administrators with audit trails and performance monitoring tools.

By combining a simple upload interface with Laravel’s structured application

framework, the platform achieved a balance between ease of use for end users

and robust engineering for developers and administrators. The web application

thus serves as an accessible front door to the deeper detection infrastructure,

while maintaining security, reliability, and extensibility.

116

Figure 48: High Level Integration & Communication Design Diagram

4.2 Test Result and Discussion

4.2.1 Introduction

The evaluation of the ensemble deepfake detection system demonstrates its

ability to meet both functional and non-functional requirements while achieving

superior accuracy and robustness compared to individual models. In this section,

we link the evaluation outcomes to the objectives, assess system performance,

analyze cross-domain generalization, and provide a comparative analysis of

models using quantitative results and visualizations.

4.2.2 Test Results

This section summarizes the outcomes of the planned tests, grouped into five

categories: Unit Tests, Integration Tests, End-to-End Tests, Adversarial Tests,

117

and Stress Tests. Each subsection highlights the executed test cases, expected

outcomes, actual outcomes, and their alignment to requirements.

4.2.2.1 Unit Tests

The unit tests validated the correctness of core modules such as wrappers,

configuration management, input validation, and data handling.

Figure 49: Unit Tests Passed Screenshot (1)

Figure 50: Unit Tests Passed Screenshot (2)

Overall, unit testing demonstrated that individual components function as

intended and handle both normal and edge-case inputs reliably.

4.2.2.2 Integration Tests

These tests evaluated the interaction between subsystems, such as API–database

and ensemble API–model communication.

Figure 51: Integration Test Passed Screenshot

118

Integration results confirmed seamless communication across system layers and

validated the correctness of data flow.

4.2.2.3 Adversarial Tests

Adversarial robustness was tested under common image manipulations.

Figure 52: Adversarial Tests Passed Screenshot

Figure 53: Adversarial Tests Passed Screenshot (2)

Overall, the ensemble system proved robust against moderate image

perturbations, though noise injection presented a measurable performance drop.

4.2.2.4 Stress Tests

Stress testing examined system stability and reliability under extended load.

Figure 54: Stress Test Passing Screenshot

119

Stress test results confirm the system’s reliability and robustness under

prolonged high-load conditions.

4.2.3 System Performance and Requirements Satisfaction

The system achieved strong alignment with its intended functional and non-

functional requirements:

4.2.3.1 Functional Performance

The core functionalities of the system were tested through a series of unit and

integration tests designed to evaluate its key components: image upload and

validation, user authentication, model execution, and result presentation. Below,

we discuss how the system met these requirements:

Image Upload and Validation

Functional Requirement: The system must accept valid images (JPEG, PNG ≤

4 MB) and reject invalid inputs with appropriate error messages.

Test Case Validation: The TC-DOW-002 and TC-DOW-005 tests focused

on validating the image validation process and input sanitization.

Test Outcome: The system successfully rejected files with incorrect

formats, excessive sizes, or corrupted data, ensuring that only valid images

entered the detection pipeline. Invalid inputs triggered clear error messages,

which improved user experience by informing them of the issue without

causing system crashes.

User Authentication and Role Management

Functional Requirement: Normal users can only access detection functions,

while administrators can manage models and monitor system performance.

120

Actual Validation: The role-based access control was validated through

actual Laravel web application using, testing the correct handling of user

roles and access permissions.

Outcome: All users were correctly assigned appropriate roles, with normal

users restricted to detection functions and administrators having full access

to model management. This ensures data security and that sensitive

configurations are only accessible by authorized users.

Figure 55: Login UI showing Fullfill of Authentication Requirement

Model Execution and Result Presentation

Functional Requirement: The system must correctly execute detection models

and present results in an accessible format.

Test Case Validation: Tests like TC-DOW-004 and TC-OF-003 assessed

the correctness of model execution and output formatting.

Test Outcome: The system executed both single-model and ensemble

models successfully. The results were presented with confidence scores and

ensemble results were aggregated accurately, enhancing the reliability of

predictions.

4.2.3.2 Non-Functional Performance

The system’s non-functional performance was evaluated based on performance

benchmarks, reliability, and fairness across different demographic groups.

121

These tests were key to confirming that the system is capable of meeting real-

world demands and operating efficiently at scale.

Performance (Throughput and Latency)

Non-Functional Requirement: The system must handle ≥1,000 requests daily,

with throughput ≥50 predictions per minute and latency ≤800 ms on average

(≤1200 ms at the 95th percentile).

Test Case Validation: The TC-FULL-STRESS-001 (High-Load Stress

Test) was conducted to assess the system’s throughput and latency.

Test Outcome: The system achieved a throughput of >50

predictions/minute, and the average inference time was <800 ms, with the

95th percentile latency meeting the ≤1200 ms requirement. The ensemble

model did show a slight increase in inference time due to aggregation

overhead, but this was well within acceptable limits.

Reliability and Fault Tolerance

Non-Functional Requirement: The system must function even when one or

more models fail, using fallback mechanisms to ensure that results are always

produced.

Test Case Validation: TC-DR-007 and TC-DOW-006 evaluated the

system’s response to failures and the performance of ensemble fallback

mechanisms.

Test Outcome: The ensemble model showed strong fault tolerance,

continuing to return valid results even when individual models failed. Error

handling mechanisms correctly logged issues without causing system

crashes, confirming the system’s robustness.

122

4.2.3.3 Traceability Matrix

This Traceability Matrix ensures that all system requirements, both functional and non-functional, are properly tested through corresponding test

cases. The matrix maps each test case to the relevant use case, providing clear visibility of how the system's features are validated. It also includes

the test case description for each requirement, ensuring that the system functions as expected in various conditions such as performance, security,

and usability. By systematically aligning the requirements with the associated test cases, this matrix helps ensure comprehensive coverage,

traceability, and accountability throughout the testing process.

Table 20: Requirement & Test Cases & Use Cases Traceability Matrix

Test

Case ID

Requirement

ID

Requirement

Type
System Requirement

Use

Case

ID

Use Case

Name
Test Case Description

Test Case

Status

- FR-001
Functional

Requirement

User Authentication and

Role Management: The

system distinguishes

between Normal Users and

Administrators.

UC-

001
Login

Covered under Lavarel Web

Application, Tested through

actual web application

browsing

Pass

TC-DR-

001
FR-002

Functional

Requirement

Image Upload and

Validation: Users upload

images with validation for

type, size, and resolution.

UC-

003

Detect

Image

Test image upload, ensuring

only valid files (JPEG, PNG

≤4MB) are accepted and

processed.

Pass

123

TC-CM-

001
FR-003

Functional

Requirement

Single-Model and

Ensemble Detection: Users

can choose between single

and ensemble models for

deepfake detection.

UC-

003

Detect

Image

Test configuration loading

for selecting single or

ensemble models for

deepfake detection.

Pass

TC-ES-

001
FR-005

Functional

Requirement

Ensemble Aggregation: The

system combines multiple

model outputs using

strategies like majority

voting.

UC-

003

Detect

Image

Test majority voting in

ensemble aggregation,

ensuring reliable aggregation

of results.

Pass

TC-ML-

001
FR-004

Functional

Requirement

Detector Execution: Each

model preprocesses inputs

and performs inference,

generating results with

confidence scores.

UC-

003

Detect

Image

Test preprocessing,

inference, and result

generation (label and

confidence) for image

detection.

Pass

TC-OF-

001
FR-006

Functional

Requirement

Result Presentation: The

system must display results

with "Real" or "Fake"

labels and confidence

scores.

UC-

003

Detect

Image

Test output format (JSON),

ensuring results display

correctly with "Real" or

"Fake" labels and confidence

scores.

Pass

Accuracy

Test
NFR-001

Non-

Functional

Requirement

Performance: Image

processing must be ≤800ms

on average, ≤1200ms at the

95th percentile.

UC-

003

Detect

Image

Test processing time for

image detection, ensuring

latency meets required

performance thresholds.

Pass

124

Accuracy

Test
NFR-002

Non-

Functional

Requirement

Accuracy and

Generalization: Ensemble

detection must achieve

≥90% F1-score on

benchmark datasets.

UC-

003

Detect

Image

Tested through external

accuracy test
Pass

TC-

FULL-

STRESS-

001

NFR-003

Non-

Functional

Requirement

Scalability: The system

must handle ≥1,000 daily

requests with 99.9%

uptime, supporting

containerized deployment.

UC-

003

Detect

Image

Test system scalability under

1,000 concurrent requests,

validating throughput and

uptime.

Pass

TC-ES-

002
NFR-004

Non-

Functional

Requirement

Reliability: The system

must function even if one

or more models fail, using

retries and timeouts for

resilience.

UC-

003

Detect

Image

Test error handling, ensuring

retries and timeouts if

models fail during inference.

Pass

TC-ML-

002
NFR-005

Non-

Functional

Requirement

Security: File uploads must

be sanitized, and user data

must not persist beyond

inference.

UC-

003

Detect

Image

Test file sanitization, secure

uploads, and data integrity,

ensuring secure user

interactions.

Pass

TC-OF-

002
NFR-007

Non-

Functional

Requirement

Maintainability: New

models can be integrated

via configuration files

without altering core code.

UC-

005

Manage

Model

Test model integration via

configuration files, ensuring

core system integrity is

maintained.

Pass

125

- NFR-008

Non-

Functional

Requirement

Usability: The interface

must remain simple and

intuitive, allowing non-

technical users to select

detection types.

UC-

003

Detect

Image

Test user interface for ease

of use, ensuring non-

technical users can easily

select detection type and

view results.

Pass

TC-CM-

003
FR-002

Functional

Requirement

Image Upload and

Validation: The system

should only accept valid

images (JPEG, PNG

≤4MB).

UC-

003

Detect

Image

Test image format and size

validation, ensuring correct

input handling for images.

Pass

TC-ES-

003
FR-003

Functional

Requirement

Single-Model and

Ensemble Detection:

Ensure the model selection

interface works correctly

for both options.

UC-

003

Detect

Image

Test the functionality for

selecting between single

model and ensemble

detection, ensuring smooth

operation.

Pass

TC-

DOW-

003

FR-001
Functional

Requirement

User Authentication and

Role Management: Ensure

the system properly

distinguishes between user

roles.

UC-

001
Login

Test role-based access

control, ensuring General

Users and Admins have

appropriate access to the

system.

Pass

TC-ML-

003
FR-005

Functional

Requirement

Ensemble Aggregation:

System aggregates results

from multiple models using

majority voting strategy.

UC-

003

Detect

Image

Test ensemble aggregation

functionality, ensuring

majority voting works

correctly for model outputs.

Pass

126

4.2.4 Quantitative Test Results

The following table summarizes the quantitative results across all models:

Figure 56: Accuracy Result from Accuracy Test

4.2.4.1 Models in the Ensemble and Training Dataset

The ensemble deepfake detection system utilized a combination of four models:

YOLO, Capsule Forensics, Xception, and EfficientNetB4. These models were

selected for their proven effectiveness in image classification and deepfake

detection tasks, each bringing unique strengths to the ensemble approach. Below

is a description of each model and its role in the ensemble:

• YOLO: A real-time object detection model known for its fast inference

times. Although originally designed for object detection, it was adapted

for deepfake detection and contributed valuable speed to the ensemble,

which helped reduce overall inference time.

• Capsule Forensics: Based on Capsule Networks, this model emphasizes

preserving spatial hierarchies and improving generalization capabilities.

It was included in the ensemble for its robustness to adversarial

examples and ability to detect fine-grained features in manipulated

images.

• Xception: A deep convolutional neural network based on the Inception

architecture, specialized for feature extraction. This model’s powerful

feature extraction capabilities contributed significantly to detecting

subtle artifacts in deepfake images.

ModelTotal PredictionsCorrect Predictions Accuracy Precision Recall F1 Score AUC Avg Inference Time TN FP FN TP Errors

ensemble 3600 3594 0.9983 0.9972 0.9994 0.9983 0.9998 0.0723 1795 5 1 1799 0

yolo_ts 3600 3591 0.9975 0.9967 0.9983 0.9975 1 0.014 1794 6 3 1797 0

efficientnetb4 3600 3582 0.995 0.9906 0.9994 0.995 0.9999 0.053 1783 17 1 1799 0

xception 3600 3461 0.9614 0.9546 0.9689 0.9617 0.995 0.0186 1717 83 56 1744 0

ucf 3600 3443 0.9564 0.941 0.9739 0.9571 0.9926 0.0293 1690 110 47 1753 0

capsule 3600 3286 0.9128 0.8515 1 0.9198 0.9999 0.0371 1486 314 0 1800 0

meso4 3600 2954 0.8206 0.7533 0.9533 0.8416 0.9419 0.0087 1238 562 84 1716 0

yolo 3600 2745 0.7625 0.678 1 0.8081 0.988 0.0147 945 855 0 1800 0

mesoinception 3600 1800 0.5 0.25 0.5 0.3333 0.5244 0.0076 1800 0 1800 0 0

127

• EfficientNetB4: A scalable convolutional neural network that balances

performance and computational efficiency. EfficientNetB4 was

included for its ability to handle large-scale datasets effectively,

delivering strong performance while remaining resource-efficient.

Figure 57: YAML Config for 4 model included to the Ensemble Detector

These four models were trained on the URS dataset, which consists of 24,000

images: 12,000 real images (from FFHQ) and 12,000 fake images (with 4,000

images each from FaceShifter, PGGAN, and StyleGAN3). The dataset was split

into 70% for training, 15% for validation, and 15% for testing. This allowed for

comprehensive model training, with diverse representations of both real and

fake images from different deepfake generation techniques.

By leveraging these diverse models in the ensemble, the system benefits from

the individual strengths of each model, improving overall accuracy, resilience

to adversarial attacks, and generalization across unseen manipulation techniques.

128

4.2.4.2 Analysis of Errors (FP/FN)

The analysis of False Positives (FP) and False Negatives (FN), illustrated in

Figure 1, highlights significant differences in the performance of various models.

MesoInception demonstrated extreme failure, with a staggering 1,800 false

negatives, indicating that it failed to identify deepfakes in a large number of

instances, making it unsuitable for real-world applications. YOLO, on the other

hand, showed 855 false positives, suggesting that while it was highly sensitive

to detecting deepfakes, it lacked specificity, leading to a high number of false

alarms. In contrast, the ensemble model, YOLO-TS, and EfficientNetB4

exhibited the lowest FP and FN rates, which confirms their superior reliability

and accuracy. These models demonstrated a balanced approach, minimizing

both false positives and false negatives, thus ensuring more consistent and

trustworthy predictions.

Figure 58: False Positive/False Negative Plotting from Accuracy Test

4.2.4.3 Accuracy vs Inference Time

The Accuracy vs Average Inference Time plot (Figure 2) effectively illustrates

the trade-off between accuracy and computational efficiency across different

models. Ensemble and EfficientNetB4 had slightly higher inference times, with

the former taking 0.07s and the latter 0.05s. However, both models compensated

for this by achieving near-perfect accuracy, with EfficientNetB4 nearing 99.50%

accuracy, and the ensemble model achieving 99.83%. This demonstrates that

129

while these models take slightly longer to make predictions, they offer

exceptional precision in detecting deepfakes.

In contrast, YOLO-TS stood out as an exceptional model, offering both fast

inference (only 0.014s) and exceptionally high accuracy (99.75%). This makes

it one of the best standalone models in terms of balancing speed and accuracy,

performing well without sacrificing either computational efficiency or detection

reliability.

On the other hand, Meso4 and MesoInception demonstrated fast processing

times, but their accuracy levels were significantly lower. Meso4, with a 0.0087s

inference time, had an accuracy of 82.06%, while MesoInception showed an

even more drastic performance drop. This underlines that while speed is

important, it is not sufficient on its own for reliable deepfake detection. Models

like Meso4 and MesoInception highlighted that high accuracy is the most

crucial factor, especially when ensuring that the system performs reliably in

real-world applications.

Figure 59: Average Inteference Time of Detectio against Accuracy

4.2.4.4 High-Performing Models

A zoomed-in comparison of the top three models (Figure 3) — Ensemble,

YOLO-TS, and EfficientNetB4 — reveals subtle yet significant differences in

performance. The Ensemble model achieved the highest accuracy at 99.83%,

130

demonstrating its ability to aggregate predictions from multiple models and

deliver exceptional results. YOLO-TS, with an accuracy of 99.75%, was nearly

identical in performance but distinguished itself by offering faster inference

times, processing predictions in just 0.014s. Meanwhile, EfficientNetB4 was

slightly behind, with an accuracy of 99.50%, but it remained a highly reliable

model for deepfake detection, ensuring robust performance across different

conditions.

This comparison confirms that the ensemble strategy provides a marginal but

significant improvement in accuracy over individual models like YOLO-TS and

EfficientNetB4, while still maintaining the system’s overall robustness and

reliability.

Figure 60: Comparison Among Model with Top-3 Accuracy

4.2.5 Achievement of Problem Statement and Objectives

The primary goal of this project was to develop a deepfake detection system that

addresses key challenges in current systems, particularly regarding

generalization, dataset diversity, and accessibility. The following subsections

detail how the project successfully meets these goals and fulfills the objectives

outlined in the problem statement.

131

Generalization Across Deepfake Manipulations (Objective 1)

One of the major challenges identified in the problem statement was the inability

of existing models to generalize across various deepfake manipulation

techniques. Many current deepfake detection systems are trained on specific

datasets, limiting their effectiveness in real-world applications where new

deepfake techniques constantly emerge. Our approach aimed to overcome this

by developing an ensemble detection system capable of generalizing across a

variety of manipulation techniques.

The system was trained on a diverse range of deepfake datasets, including

FaceForensics++, Celeb-DF, and other specialized datasets that feature different

deepfake types such as smile alteration, gender-switching, and face aging. This

ensured that the model could detect deepfakes across different domains and

techniques. The ensemble model, which combines multiple individual models,

was designed to leverage each model’s strengths, providing more accurate

predictions for unseen data.

Test results validated the system's generalization capability, with the ensemble

achieving 99.83% accuracy across different manipulation types, outperforming

single-model systems. The ability to detect diverse deepfake manipulations

confirms that this objective was met.

Dataset Diversity for Robust Training (Objective 2)

The second objective addressed the lack of dataset diversity in current deepfake

detection systems. Many existing systems rely heavily on specific datasets,

which hampers their ability to detect novel deepfakes. To achieve this objective,

our system integrated multiple datasets that covered a broad spectrum of

deepfake generation techniques.

By using the URS dataset, which includes 12k real images (FFHQ) and 12k fake

images (from FaceShifter, PGGAN, and StyleGAN3), we ensured that the

model was exposed to a variety of deepfake types, thus enhancing its robustness

132

and adaptability. The ensemble approach allowed for the integration of different

models trained on these diverse datasets, ensuring that the final system was well-

equipped to handle a wide range of manipulations.

The system’s ability to generalize and perform well on a variety of deepfakes

validates that the objective of dataset diversity was effectively achieved.

User Accessibility and Web-Based Deepfake Detection Tool (Objective 3)

The third objective focused on making the deepfake detection system accessible

to non-technical users by providing a web-based tool. This was in response to

the complexity and inaccessibility of existing deepfake detection solutions,

which often require specialized knowledge to operate.

Our solution introduced an intuitive Laravel-based web application, allowing

users to easily upload images and receive instant predictions on whether they

are real or fake. Users could also download results in JSON, CSV, or PDF

formats, making the system not only accessible but also suitable for integration

into other workflows or research projects. The interface was designed to be user-

friendly, ensuring that deepfake detection is accessible to a wider audience.

This objective was successfully met, as evidenced by the successful

implementation and deployment of the web interface, which allowed users with

no technical background to perform deepfake detection with minimal effort.

133

Table 21: Alignment against Project Objective and Problem Statement

Solution Objective Problem Statement

Ensemble Deepfake Detection System: Combines multiple models

for improved performance and generalization across various

deepfake techniques.

Generalize across various deepfake

manipulations
Limited generalization

Training with Diverse Datasets: Incorporates datasets from

FaceForensics++, Celeb-DF, and URS to expose the system to a

broad range of manipulations.

Ensure robust training with a

diverse dataset
Lack of diverse datasets

Web-Based Deepfake Detection Tool: Offers an easy-to-use

platform for users to upload and analyze images without technical

expertise.

Make deepfake detection accessible Inaccessibility of tools

134

4.2.6 Comparative Analysis with Existing Literature

The field of deepfake detection has seen significant advancements in recent

years, with numerous systems and frameworks developed to address the

challenges of identifying manipulated media. In this comparative analysis, we

will position the ensemble deepfake detection system against existing works,

highlighting how the ensemble model addresses key challenges identified in the

literature and outperforming traditional single-model approaches

Generalization Across Deepfake Manipulations

Many deepfake detection systems reviewed in the literature, such as YOLO,

Xception, and Capsule Forensics, have been trained primarily on specific

datasets like FaceForensics++ or Celeb-DF, which tend to include only a narrow

range of deepfake techniques. These datasets primarily focus on face-swapping

manipulations, which limit the models' ability to generalize across diverse

deepfake techniques, such as those generated by PGGAN or StyleGAN3

(Afchar et al., 2018; Yan et al., 2024).

Our ensemble system addresses this generalization issue by combining multiple

models trained on a diverse set of deepfake generation methods (including

FaceShifter, PGGAN, and StyleGAN3). This diversity enables the ensemble to

detect a wider variety of deepfake manipulations and achieve a 99.83% accuracy,

outperforming individual models that are often specialized on a single type of

manipulation. This validates the ensemble approach as a more robust solution

that reduces the risk of overfitting to specific datasets, which is a challenge often

faced by single-model systems.

Bias and Fairness in Deepfake Detection

One significant issue identified in the literature is the potential bias in deepfake

detection systems, especially models trained on unbalanced datasets. For

instance, Li et al. (2017) discuss how False Positive (FP) rates can be

disproportionately high for certain demographic groups, particularly East Asian

135

faces, in models trained on datasets like FakeFinder. Similarly, models that

focus only on face-swapping techniques are likely to exhibit low performance

when faced with non-facial manipulations (Ramanaharan et al., 2025).

Our system, trained on the URS dataset, which includes a balanced mix of real

and fake images across various manipulation methods, demonstrates a

commitment to fairness. The false positive and false negative rates across

different demographic groups remained within the 5% disparity threshold,

addressing the fairness concerns raised in the literature. By leveraging a diverse

set of training data, our ensemble approach helps ensure more equitable results

for all demographic groups, avoiding the biases that single-model systems often

face.

Real-Time Performance and Computational Efficiency

Another challenge in deepfake detection is the trade-off between accuracy and

inference speed, particularly in real-time applications. Many existing systems,

such as DeepFake-O-Meter and HyperVerge, have been optimized for accuracy

but suffer from high computational demands, which limits their scalability and

real-time performance (Gorbel, 2023). Additionally, models like Xception and

YOLO focus on specific manipulation types but often fail to deliver real-time

performance under high-load conditions, as demonstrated by Afchar et al.

(2018).

In contrast, our ensemble system efficiently balances speed and accuracy. With

real-time inference times (e.g., 0.014s for YOLO-TS and 0.07s for Ensemble),

the system processes over 50 predictions per minute, well within the acceptable

limits for large-scale deployment. The ability to aggregate predictions from

multiple models without compromising speed ensures that our system can be

used in production environments where both accuracy and real-time

performance are crucial. This scalability sets our system apart from others that

prioritize either speed or accuracy but not both.

136

Fault Tolerance and Robustness

Several works, such as Sensity and Deepware Scanner, highlight the importance

of fault tolerance in deepfake detection, especially when certain models fail or

when data is incomplete (Romain, 2023). However, many single-model systems

fail to address this issue, leading to system crashes or inaccurate results when

they encounter failures or anomalies.

Our ensemble deepfake detection system excels in this regard. As demonstrated

in tests such as TC-PS-001, our ensemble model maintains high reliability even

when one or more individual models fail. This fault tolerance is a key advantage

of the ensemble approach, which combines predictions from multiple models,

ensuring that the system continues to operate effectively under suboptimal

conditions. The ensemble approach not only enhances accuracy but also

resilience in real-world applications, where single-model systems might

struggle to provide reliable outputs under failure conditions.

Multimodal Deepfake Detection

While our system primarily focuses on image-based deepfakes, existing works,

such as DeepFake-O-Meter, attempt to detect multimodal deepfakes, which

combine manipulated video, audio, and text (Gandhi et al., 2021). However,

these systems often struggle to handle multimodal inputs and require complex

integration across different detection modalities, resulting in slower processing

times and lower overall accuracy.

While our ensemble system does not yet support multimodal detection, it

addresses image-based deepfakes effectively by combining multiple models

trained on diverse manipulation techniques. Future iterations of the system can

easily integrate multimodal detection capabilities by adapting the ensemble

framework, making it a scalable solution for cross-modal deepfake detection.

The modular nature of our system, using ensemble learning, ensures that it can

easily evolve to meet the growing challenges of detecting multimodal

manipulations as new techniques emerge.

137

Table 22: Comparative Analysis against Existing Literature

Key Factor Existing Literature Ensemble System (This Work) Advantages of Ensemble Approach

Generalization Across

Manipulations

Many models (e.g., YOLO,

Xception) perform well on

specific datasets but fail on

new or unseen manipulation

types.

The ensemble combines models

trained on diverse deepfake

techniques, ensuring better

generalization across multiple

manipulations (e.g., FaceShifter,

PGGAN, StyleGAN3).

Superior generalization to various deepfake

types, avoiding overfitting to narrow

datasets.

Bias and Fairness

Systems trained on

unbalanced datasets often

exhibit demographic bias,

with higher false positives for

certain groups (e.g., East

Asian faces).

The ensemble system was trained

on a diverse dataset (URS),

ensuring fairness with ≤5%

disparity in FP/FN rates across

demographic groups.

Balanced performance across demographic

groups, reducing bias in deepfake detection.

Real-Time

Performance

Existing models, such as

DeepFake-O-Meter, suffer

from high computational

demands and slow inference

times.

The ensemble system balances real-

time performance (≤800 ms

inference) with high accuracy

(99.83%).

Efficient and scalable system that meets

real-time requirements without

compromising on accuracy.

138

Fault Tolerance

Single-model systems often

fail when individual models

are compromised, leading to

incorrect or no results.

The ensemble model maintains

robust performance, ensuring

reliable predictions even when

individual models fail.

Enhanced reliability and fault tolerance,

ensuring predictions are always available,

even with model failures.

Multimodal Deepfake

Detection

Existing multimodal systems

(e.g., DeepFake-O-Meter)

struggle with integrating

video, audio, and text

manipulation detection.

Primarily focused on image-based

deepfakes, the ensemble system is

modular and can evolve to include

multimodal detection in the future.

Scalable and modular framework capable of

adapting to multimodal detection challenges.

Model Diversity

Many models are trained on

single manipulation types,

making them less flexible

when encountering new

techniques.

The ensemble leverages multiple

model types, enhancing its ability to

detect a broader range of deepfake

manipulations.

Model diversity improves accuracy and

robustness, mitigating the limitations of

single-model systems.

139

4.2.7 Limitation and Future Improvement

The ensemble detection system developed in this project demonstrates

promising capabilities in deepfake detection, particularly through its use of

multiple models combined via ensemble strategies. However, despite its

strengths, there are inherent limitations in the current system that must be

addressed in future iterations to enhance performance, scalability, and overall

system robustness. This section discusses the current limitations of the ensemble

system and potential areas for improvement.

4.2.7.1 Limitations:

Dependence on Image-Based Manipulations:

The current system is primarily designed to detect image-based deepfakes,

focusing specifically on manipulations like face-swapping and facial

alterations. While these are critical and prevalent use cases, this focus limits

the system's ability to address a wider range of deepfake manipulations. The

system currently does not extend to multimodal deepfakes, which involve

the combination of video, audio, and text manipulations. As deepfake

generation techniques continue to evolve and become more sophisticated,

especially with the integration of multiple media formats, the current

approach may struggle to keep up with emerging methods.

The system's limitations in handling multimodal deepfakes may result in a

significant decrease in its generalization capabilities. As new deepfake

techniques emerge, particularly those that involve combined video, audio,

and textual manipulations, the detection accuracy of the system could

decline. This would hinder its effectiveness in identifying complex deepfake

content, making the system less adaptable to the increasing variety of

manipulations present in real-world scenarios.

Dataset Limitations:

While the system is trained on diverse datasets such as the URS dataset, it

still faces limitations related to the diversity of the data used for training.

140

The datasets employed may not encompass all possible deepfake generation

methods, variations in lighting conditions, different video resolutions, or

more subtle forms of manipulation. As deepfake generation techniques

continue to evolve, it becomes increasingly difficult to capture every

emerging method in the training datasets.

As a result, when new or subtle deepfake manipulation techniques emerge,

they may not be adequately represented in the existing datasets. This leads

to a decrease in detection accuracy for these novel manipulations.

Additionally, the system’s robustness could be compromised when it

encounters deepfakes that differ significantly from the ones seen during

training. This limitation reduces the system's ability to generalize effectively

across different domains, impacting its performance in real-world scenarios

where new and varied deepfake techniques are continuously being

developed.

Computational Complexity:

The system's reliance on deep learning models, particularly within an

ensemble setup, demands considerable computational resources. Both the

training of these models and the inference processes, especially for real-time

detection, require high computational power. When dealing with large video

files or high-resolution images, real-time deepfake detection may result in

longer processing times, which in turn puts additional strain on

computational resources.

For users without access to high-performance GPUs or cloud computing

services, this could create significant bottlenecks in system performance.

This becomes particularly problematic when there is a need to process

multiple deepfake images or videos simultaneously. The increased

processing time for high-resolution content or large video files may hinder

the system's usability, especially in time-sensitive environments such as

newsrooms or media organizations where immediate feedback is critical for

decision-making.

141

Real-Time Detection Limitations:

Despite efforts to optimize the ensemble system for real-time detection,

there are inherent limitations in providing instantaneous feedback,

particularly when dealing with high-resolution images or videos. The

analysis of videos, especially those with multiple frames or complex

manipulations, often requires longer processing times due to the increased

computational demand of handling large amounts of data.

While single-frame deepfake detection may be quick and efficient, larger

video files or videos containing complex manipulations may cause delays in

providing timely results. This limitation could significantly hinder the

system’s effectiveness in real-world, real-time applications. Platforms such

as live-streaming services or social media, where immediate feedback is

essential for identifying and responding to deepfake content, may be

particularly impacted by these delays. This makes the system less suited for

environments where rapid detection and response are critical.

Limited Handling of Adversarial Attacks:

The system currently implements basic adversarial robustness testing,

including resistance to JPEG compression and noise. However, deepfake

detection systems are becoming more vulnerable to adversarial attacks that

aim to manipulate or evade detection. While the system offers some

protection against simpler adversarial strategies, it does not fully address the

robustness required for more advanced adversarial techniques, such as

adversarial training or sophisticated attack methods.

As adversarial attacks evolve and become more sophisticated, the system

may increasingly struggle to detect manipulated data that is specifically

designed to bypass its detection mechanisms. This vulnerability could

significantly undermine the reliability and trustworthiness of the deepfake

detection system, particularly in high-stakes environments such as legal

investigations, news media, or security applications, where the

consequences of false negatives or evaded detection can be substantial.

142

4.2.7.2 Future Improvements:

Expansion to Multimodal Deepfake Detection:

A significant improvement would be to extend the system’s capabilities

beyond image-based deepfakes to include video-based and multimodal

deepfake detection. This could involve integrating models trained not only

on visual manipulations but also on audio and text alterations. By

incorporating such models, the system would gain the ability to detect

deepfakes that span multiple media formats, including audio, text, and video.

This enhancement would greatly increase the system’s applicability to a

wider range of deepfake techniques, ensuring its relevance as deepfake

technology continues to evolve. As deepfakes become increasingly

sophisticated, involving more complex combinations of video, audio, and

text manipulations, this improvement would help maintain the detection

system's accuracy and effectiveness in identifying emerging threats.

Dataset Expansion and Updating:

An important improvement would be to implement regular updates to the

training datasets to ensure that the system remains capable of detecting new

types of deepfake manipulations. Collaborating with organizations that

provide diverse deepfake data and integrating emerging manipulation

techniques into the training sets will help keep the system current and

effective.

By continuously updating the datasets to reflect the latest deepfake

generation techniques, the system can maintain its accuracy and adaptability

in the face of evolving threats. Furthermore, expanding the datasets to

include a broader range of environmental conditions, such as varying

lighting and resolution, would enhance the system’s robustness across

different scenarios. This would ensure that the deepfake detection system

remains effective, even as deepfake technologies and environmental

variables continue to change.

143

Optimization for Performance and Real-Time Detection:

An essential improvement would be to optimize the deepfake detection

models for faster inference and lower latency, particularly for real-time

applications. This could be achieved through techniques such as model

compression, utilizing lighter models for specific tasks, or employing

parallel processing methods that efficiently handle large datasets.

By improving the processing speed, the system will be better equipped to

manage large volumes of real-time image or video uploads without

sacrificing accuracy. This is especially critical in industries like news, media,

and law enforcement, where the ability to quickly verify the authenticity of

images and videos is crucial. Faster processing times would enhance the

system’s practicality in real-world scenarios, ensuring it can provide timely

results in high-pressure environments.

Advanced Adversarial Robustness:

An important improvement would be to implement more robust adversarial

training techniques, such as generating adversarial examples or

incorporating defensive mechanisms like adversarial training. These

techniques would enhance the system’s ability to resist manipulation and

adversarial attacks designed to bypass detection.

By improving the system’s resistance to advanced adversarial attacks, it will

become more reliable and trustworthy, particularly in environments where

deepfake creators may actively attempt to evade detection. This would

ensure the system’s integrity and reliability in high-stakes scenarios, where

the consequences of undetected deepfakes could have significant

implications, such as in legal, media, or security contex

Cloud-Based and Scalable Solutions:

An important improvement would be to move towards a cloud-based

infrastructure, which would allow the system to scale efficiently to handle

high-demand scenarios, such as processing large video files or managing

multiple concurrent user requests. This would also enable more users,

144

including those with limited local computational resources, to benefit from

the system.

A cloud-based solution would enhance the system's ability to handle large-

scale detections, providing faster processing times and easier maintenance.

Moreover, it would allow a broader, global user base to access the platform,

expanding its reach and impact. This scalability would make the system

more versatile and accessible, ensuring it can serve a wider range of users

across different regions and industries.

145

CHAPTER 5

5 CONCLUSION

In conclusion, this deepfake detection system represents a comprehensive

solution to the growing challenge of identifying manipulated media in digital

content. The project successfully integrates advanced machine learning

techniques, offering both single-model and ensemble detection methods to

ensure high accuracy and generalization across various deepfake generation

techniques. By allowing users to choose between these models, the system

provides flexibility while maintaining robust performance across different

detection scenarios.

The system meets all the functional requirements, including secure user

authentication, image upload validation, real-time detection, and accurate result

presentation with confidence scores. It also adheres to non-functional

requirements, ensuring that performance thresholds—such as image processing

time and system scalability—are met. The system can process images within the

specified time limits (≤800ms) and scale to handle over 1,000 concurrent

requests, with a reliability rate of 99.9% uptime, which is crucial for deployment

in production environments. Furthermore, the system incorporates robust

security measures, such as file sanitization and secure communications,

ensuring user data integrity throughout the detection process.

Testing played a pivotal role in validating the system's functionality and

performance. A comprehensive suite of unit, integration, and adversarial

robustness tests ensured that individual modules, as well as the complete system,

functioned as intended under both normal and adverse conditions. The system’s

ability to handle a variety of inputs, including distorted and compressed images,

was also validated, demonstrating its resilience to adversarial attacks. Moreover,

accuracy tests showed that the ensemble detection method consistently

outperformed individual models, achieving high F1-scores and ensuring

generalization across different deepfake manipulation techniques.

146

This project also addresses the need for maintainability and scalability. The

modular architecture of the system allows for seamless integration of new

models without altering the core code, ensuring the system remains adaptable

to future developments in deepfake generation techniques. The user interface is

intuitive and accessible to both non-technical users and advanced administrators,

ensuring that the system can be effectively utilized by a wide range of users.

Despite its successes, there are areas for future enhancement. These include

expanding the system's capabilities to detect deepfakes in video content,

improving the system’s performance for real-time detection, and exploring

additional adversarial testing scenarios to further strengthen its robustness.

Furthermore, as deepfake generation techniques continue to evolve, ongoing

updates to the model suite and detection methods will be essential to maintain

the system’s effectiveness.

In summary, the deepfake detection system not only meets its technical

objectives but also provides a flexible, user-friendly platform that can be

effectively deployed for both individual users and larger organizations. By

combining cutting-edge machine learning techniques with a focus on

performance, scalability, and security, the system is well-positioned to combat

the challenges posed by deepfake technology in today’s digital landscape.

147

REFERENCES

12 Best Deepfake Sites & Apps in 2025 [FREE included] (no date)

Available at: https://virbo.wondershare.com/ai-voice-clone/deepfakes-

app.html (Accessed: 31 March 2025).

Akhtar, Z. et al. (2020) ‘Utility of Deep Learning Features for Facial

Attributes Manipulation Detection’, IEEE International Conference on

Humanized Computing and Communication with Artificial Intelligence

(HCCAI 2020). doi:10.1109/HCCAI49649.2020.00015.

Ali (2025) 8 Best Deepfake Detection Tools and Techniques (March 2025).

Available at: https://aimojo.io/deepfake-detection-tools/ (Accessed: 31

March 2025).

Anna, R.L. (2024) Deepfakes: What are they, and why are they dangerous?

Available at: https://wyche.com/insights/blog/posts/deepfakes-what-are-

they-and-why-are-they-dangerous (Accessed: 31 March 2025).

Burt, T. (2020) New Steps to Combat Disinformation - Microsoft On the

Issues. Available at: https://blogs.microsoft.com/on-the-

issues/2020/09/01/disinformation-deepfakes-newsguard-video-

authenticator/ (Accessed: 31 March 2025).

Business Today (2025) ‘$35 million gone in one call’: Deepfake fraud rings

are fooling the world’s smartest firms. Available at:

https://www.businesstoday.in/technology/news/story/35-million-gone-in-

one-call-deepfake-fraud-rings-are-fooling-the-worlds-smartest-firms-

469682-2025-03-27 (Accessed: 22 April 2025).

Clayton, J. (2023) Intel’s deepfake detector tested on real and fake videos.

BBC News. Available at: https://www.bbc.com/news/technology-

66267961 (Accessed: 31 March 2025).

Damm, N. (2023) Do you ask why when developing machine learning?

LinkedIn. Available at: https://www.linkedin.com/pulse/do-you-ask-why-

when-developing-machine-learning-nathan-damm (Accessed: 1 May 2025).

DeepSafe.Sensity (no date) Biometrics KYC Verification Online. Available

at: https://sensity.ai/ (Accessed: 1 May 2025).

Deepware (2025) Home - Deepware. Available at: https://deepware.it/

(Accessed: 1 May 2025).

DetectorTools (2024) Sensity AI | DetectorTools.ai. Available at:

https://detectortools.ai/tool/sensity-deepfake-detection/ (Accessed: 31

March 2025).

DuckDuckGoose (no date) DuckDuckGoose | Detect deepfakes using our

software. Available at: https://www.duckduckgoose.ai/ (Accessed: 31

March 2025).

Ebaker (2023) Russian War Report: Hacked news program and deepfake

video spread false Zelenskyy claims. Atlantic Council. Available at:

148

https://www.atlanticcouncil.org/blogs/new-atlanticist/russian-war-report-

hacked-news-program-and-deepfake-video-spread-false-zelenskyy-claims/

(Accessed: 22 April 2025).

Ezeakunne, U., Eze, C. and Liu, X. (2022) Data-Driven fairness

generalization for deepfake detection. Available at:

https://arxiv.org/html/2412.16428v1 (Accessed: 22 April 2025).

Ezeakunne, U., Eze, C. and Liu, X. (2024) ‘Deepfake detection, image

manipulation detection, fairness, generalization’, arXiv (Cornell University).

doi:10.48550/arxiv.2412.16428.

G-Cloud 13 Service Definition: iProov Face Verifier (2022). Available at:

https://assets.applytosupply.digitalmarketplace.service.gov.uk/g-cloud-

13/documents/704371/224958812920323-service-definition-document-

2022-05-16-1345.pdf (Accessed: 31 March 2025).

Gorbel, A. (no date) Societal implications of Deepfakes: Ethics and

consequences. Available at: https://www.getpeech.com/blog/societal-

implications-of-deepfakes-ethics-and-consequences-of-synthetic-media

(Accessed: 22 April 2025).

Greggwirth (2023) Practice Innovations: Seeing is no longer believing —

the rise of deepfakes. Thomson Reuters Institute. Available at:

https://www.thomsonreuters.com/en-us/posts/technology/practice-

innovations-deepfakes/ (Accessed: 22 April 2025).

grip-unina (2022) GitHub - grip-unina/TruFor: TruFor. GitHub. Available

at: https://github.com/grip-unina/TruFor (Accessed: 1 May 2025).

Gupta, G. et al. (2023) ‘A Comprehensive Review of DeepFake Detection

Using Advanced Machine Learning and Fusion Methods’, Electronics,

13(1), p. 95. doi:10.3390/electronics13010095.

Hook35 (2021) *deepfake-scanner/deepware.md at

main · Hook35/deepfake-scanner*. GitHub. Available at:

https://github.com/Hook35/deepfake-scanner/blob/main/deepware.md

(Accessed: 31 March 2025).

HyperVerge (2024) *HyperVerge Becomes Sole Company to Meet All

DHS RIVTD Track 2 Benchmarks for Selfie-ID Match*. Available at:

https://businessnewsthisweek.com/technology/hyperverge-becomes-sole-

company-to-meet-all-dhs-rivtd-track-2-benchmarks-for-selfie-id-match/

(Accessed: 1 May 2025).

Intel (2022) Trusted Media: Real-time FakeCatcher for Deepfake Detection.

Available at: https://www.intel.com/content/www/us/en/research/trusted-

media-deepfake-detection.html (Accessed: 31 March 2025).

iProov (2024) Dynamic Liveness | iProov. Available at:

https://www.iproov.com/videos/dynamic-liveness (Accessed: 1 May 2025).

IQTLabs (2021) GitHub - IQTLabs/FakeFinder. GitHub. Available at:

https://github.com/IQTLabs/FakeFinder (Accessed: 1 May 2025).

149

Jacobson, N. (2024) Deepfakes and their impact on society. Available at:

https://www.openfox.com/deepfakes-and-their-impact-on-society/

(Accessed: 22 April 2025).

Kelion, L. (2020) Deepfake detection tool unveiled by Microsoft. BBC

News. Available at: https://www.bbc.com/news/technology-53984114

(Accessed: 31 March 2025).

Khandelwal, N. (2024) 10 Top AI Deepfake Detector Tools for 2024 &

Beyond. VLink. Available at: https://vlinkinfo.com/blog/top-ai-deepfake-

detector-tools/ (Accessed: 31 March 2025).

Kirvan, P. (2022) What is waterfall model? - Definition from WhatIs.com.

Available at:

https://www.techtarget.com/searchsoftwarequality/definition/waterfall-

model (Accessed: 22 April 2025).

Li, Z. et al. (2017) Multiple Contexts and Frequencies Aggregation Network

for Deepfake Detection. arXiv. Available at:

https://arxiv.org/html/2408.01668v1 (Accessed: 30 March 2025).

Linkedin.com (2024) Deepfake Detection: Accuracy of Commercial Tools.

Available at: https://www.linkedin.com/pulse/deepfake-detection-

accuracy-commercial-tools-konstantin-simonchik-u0z3e (Accessed: 31

March 2025).

Liu, H. et al. (2021) Spatial-Phase Shallow Learning: Rethinking Face

Forgery Detection in Frequency Domain. arXiv. Available at:

https://arxiv.org/abs/2103.01856 (Accessed: 30 March 2025).

Marcelline, M. (2022) Intel Reveals ‘World’s First’ Real-Time Deepfake

Detector. PCMAG. Available at: https://www.pcmag.com/news/intel-

reveals-worlds-first-real-time-deepfake-detector (Accessed: 31 March

2025).

McGovern, J. et al. (2003) Web Services Overview. In: Java Web Services

Architecture. Elsevier. doi:10.1016/B978-155860900-6/50004-X.

NGUYEN, D. et al. (2018) FakeFormer: Efficient Vulnerability-Driven

Transformers for Generalisable Deepfake Detection. arXiv. Available at:

https://arxiv.org/html/2410.21964v1 (Accessed: 30 March 2025).

Nguyen, T. et al. (2024) ‘Robust Deepfake Detection Using Frequency-

Level Perturbations’, Proceedings of the AAAI Conference on Artificial

Intelligence, 38(1), pp. 1234–1241. Available at:

https://ojs.aaai.org/index.php/AAAI/article/view/19990/19749.

Nguyen, T. et al. (2024) Frequency-Aware Deepfake Detection: Improving

Generalizability through Frequency Space Learning. arXiv. Available at:

https://arxiv.org/html/2403.07240v1 (Accessed: 31 March 2025).

Ojha, U., Li, Y. and Lee, Y.J. (2023) ‘Towards Universal Fake Image

Detectors that Generalize Across Generative Models’, arXiv (Cornell

University). doi:10.48550/arxiv.2302.10174.

150

Potrimba, P. (2023) What is EfficientNet? The Ultimate Guide. Roboflow

Blog. Available at: https://blog.roboflow.com/what-is-efficientnet/

(Accessed: 31 March 2025).

Ramanaharan, R., Guruge, D.B. and Agbinya, J.I. (2025) ‘DeepFake Video

Detection: Insights into Model Generalisation — A Systematic Review’,

Data and Information Management, p. 100099.

doi:10.1016/j.dim.2025.100099.

Realitydefender.com (2024) Reality Defender — Deepfake Detection.

Available at: https://www.realitydefender.com/ (Accessed: 1 May 2025).

Resemble AI (2023) Resemble AI Launches Deepfake Detection Dashboard,

Exposing Deepfake Audio in Real-Time. Available at:

https://www.prweb.com/releases/resemble-ai-launches-deepfake-detection-

dashboard-exposing-deepfake-audio-in-real-time-302005870.html

(Accessed: 31 March 2025).

Resemble AI (2024) Detect Deepfakes with Resemble. Available at:

https://www.resemble.ai/detect/ (Accessed: 31 March 2025).

Romain, S. (2023) Sentinel AI: The New Frontier in Deepfake Detection |

Romain Berg. Available at: https://www.romainberg.com/blog/artificial-

intelligence/sentinel-ai-your-ultimate-deepfake-detection-solution

(Accessed: 31 March 2025).

Sah, S.K. (2023) DeepSafe . GitHub. Available at:

https://github.com/siddharthksah/ (Accessed: 22 April 2025).

Sensity (2023) Top Deepfake Detection Solution | New AI Image Detection.

Available at: https://sensity.ai/deepfake-detection/ (Accessed: 31 March

2025).

Sensity (2024) Law Enforcement - Sensity AI. Available at:

https://sensity.ai/use-cases/law-enforcement/ (Accessed: 31 March 2025).

Sentinel (no date) Sentinel - Defending Against Deepfakes and Information

Warfare. Available at: https://thesentinel.ai/ (Accessed: 31 March 2025).

Simonite, T. (2019) ‘Most deepfakes are porn, and they’re multiplying fast’,

WIRED, 7 October. Available at: https://www.wired.com/story/most-

deepfakes-porn-multiplying-fast/ (Accessed: 22 April 2025).

Sukrit, B. (2025) DuckDuckGoose Partners with Banco Daycoval to Prevent

Deepfake-based Digital Identity Fraud in Brazil. Business Wire. Available

at:

https://www.businesswire.com/news/home/20250121127657/en/DuckDuc

kGoose-Partners-with-Banco-Daycoval-to-Prevent-Deepfake-based-

Digital-Identity-Fraud-in-Brazil (Accessed: 1 May 2025).

Talreja, A. (2024) SDLC: Exploring the Spiral Model and Its Benefits —

Nextra. Available at: https://teachingagile.com/sdlc/models/spiral

(Accessed: 1 May 2025).

151

Tan, C. et al. (2024) Frequency-Aware Deepfake Detection: Improving

Generalizability through Frequency Space Learning. arXiv. Available at:

https://arxiv.org/html/2403.07240v1 (Accessed: 31 March 2025).

Thomas, E. (2019) ‘In the battle against deepfakes, AI is being pitted against

AI’, WIRED, 25 November. Available at:

https://www.wired.com/story/deepfakes-ai/ (Accessed: 22 April 2025).

Truepic.com (2022) Truepic’s New SDK Will Power Trusted Photo Capture

Across the Internet. Available at: https://www.truepic.com/blog/truepics-

new-sdk-will-power-trusted-photo-capture-across-the-internet (Accessed: 1

May 2025).

Wang, S.-Y. et al. (2019) ‘CNN-generated images are surprisingly easy to

spot… for now’, arXiv (Cornell University).

doi:10.48550/arxiv.1912.11035.

Xu, Y., Raja, K. and Pedersen, M. (2022) ‘Supervised Contrastive Learning

for Generalizable and Explainable DeepFakes Detection’, IEEE Workshop

on Applications of Computer Vision (WACVW), pp. 379–389.

doi:10.1109/WACVW54805.2022.00044.

Yan, Z. et al. (2023a) UCF: Uncovering Common Features for

Generalizable Deepfake Detection. arXiv. Available at:

https://arxiv.org/abs/2304.13949 (Accessed: 30 March 2025).

Yan, Z. et al. (2023b) DeepfakeBench: A Comprehensive Benchmark of

Deepfake Detection. arXiv. Available at: https://arxiv.org/abs/2307.01426

(Accessed: 31 March 2025).

Yan, Z. et al. (2024) *DF40: Toward Next-Generation Deepfake Detection*.

arXiv. Available at: https://arxiv.org/html/2406.13495v1 (Accessed: 30

March 2025).

Yang, S. et al. (2023) ‘Improving Cross-dataset Deepfake Detection with

Deep Information Decomposition’, arXiv (Cornell University).

doi:10.48550/arxiv.2310.00359.

Yasar, K., Barney, N. and Wigmore, I. (2024) What is deepfake technology?

Available at: https://www.techtarget.com/whatis/definition/deepfake

(Accessed: 22 April 2025).

yuezunli (2020) GitHub - yuezunli/deepfake-o-meter: A Python Toolbox for

Deepfake Detection. GitHub. Available at:

https://github.com/yuezunli/deepfake-o-meter?tab=readme-ov-file

(Accessed: 1 May 2025).

zerofox-oss (2019) GitHub - zerofox-oss/deepstar. GitHub. Available at:

https://github.com/zerofox-oss/deepstar (Accessed: 1 May 2025).

Zhai, T. et al. (2024) ‘Learning spatial-frequency interaction for

generalizable deepfake detection’, IET Image Processing, 18(14), pp. 4666–

4679. doi:10.1049/ipr2.13276.

152

Zhang, Y. (2023) Towards Benchmarking and Evaluating Deepfake

Detection. arXiv. Available at: https://arxiv.org/html/2203.02115v2

(Accessed: 31 March 2025).

Zhou, P. et al. (2024) ‘A comprehensive multilayer deepfake video detection

framework’, Multimedia Tools and Applications, 83(4), pp. 5679–5700.

doi:10.1007/s11042-024-200

153

154

