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ABSTRACT 

This report outlines the design, development, and evaluation of a deepfake 

detection system aimed at providing an accessible and scalable solution for 

detecting manipulated media. The system leverages advanced machine learning 

models, including both single-model and ensemble-based detection methods, to 

identify deepfakes in images. The platform supports easy image uploads, 

efficient model processing, and reliable result presentation, offering users the 

ability to choose between various detection models based on their needs. 

Key features include user authentication and role management, image 

validation, preprocessing, and real-time inference with confidence scores. The 

system utilizes a modular architecture to integrate new models seamlessly, 

ensuring scalability and maintainability. Performance benchmarks are met, 

including a processing time of less than 800ms per image and a 99.9% uptime 

for system reliability. The accuracy of the ensemble detection method is 

validated through extensive testing on benchmark datasets, achieving a high F1-

score. 

This project addresses the growing concern of deepfake threats in digital media 

and aims to provide an easy-to-use, robust tool for both non-technical users and 

advanced administrators. The system is designed with a focus on usability, 

accuracy, performance, and security, ensuring it meets the challenges posed by 

modern deepfake detection. 

 

Keywords: Machine Learning, Generative AI, Deepfake, Component-based, 

Image Classification, Artificial Intelligence, AI Generalization 

 

Subject Area: QA75.5-76.95 Computer Science 
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CHAPTER 1 

1 INTRODUCTION 

 

1.1 General Introduction 

Deepfake technology, a term derived from "deep learning" and "fake," refers to 

synthetic media generated using artificial intelligence (AI) to manipulate or 

fabricate images, videos, audio, or text with striking realism (Anna, 2024). This 

technology relies on advanced deep learning techniques, particularly Generative 

Adversarial Networks (GANs), where a generator creates fake content and a 

discriminator evaluates its authenticity, iteratively refining outputs until they 

appear genuine (Yasar, Barney, and Wigmore, 2024).   

Deepfakes first gained prominence in 2017 when a Reddit user demonstrated 

face-swapping in videos, sparking debates about their ethical implications 

(Simonite, 2019). Since then, advancements in AI have made the technology 

more sophisticated and accessible. By 2023, over 500,000 deepfake videos 

circulated online, spanning applications from entertainment to disinformation 

campaigns (Jacobson, 2024). Tools like Deepswap and FaceApp now enable 

even novices to create convincing synthetic media, amplifying both innovation 

and misuse (*12 Best Deepfake Sites & Apps in 2025 [FREE included]*, no 

date).   

While deepfakes offer niche benefits—such as de-aging actors in films, 

enhancing medical training simulations, or creating immersive educational 

content—their rapid evolution has raised urgent ethical and societal concerns 

(Greggwirth, 2023).   

 

1.2 Importance of the Study 

The proliferation of deepfakes poses significant risks to misinformation, fraud, 

personal privacy, security, and even national security. For example, a fabricated 

video of Ukrainian President Volodymyr Zelenskyy falsely urging surrender 

during the Russia-Ukraine war demonstrated how deepfakes can destabilize 

trust in institutions and democratic processes (Ebaker, 2023). Similarly, 

deepfakes enable sophisticated financial fraud, such as the 2020 \$35 million 

scam where criminals used synthetic audio to impersonate a corporate executive 

(Business Today, 2025). Privacy violations, particularly non-consensual 
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deepfake pornography targeting women, inflict lasting emotional and 

reputational harm, while altered medical imagery risks misdiagnosis and 

insurance fraud.   

Existing detection systems struggle to keep pace with the rapid advancement of 

deepfake creation tools. Classifiers trained on specific datasets or GAN 

architectures often fail to generalize across diverse manipulation methods, 

leading to outdated and ineffective solutions (Ramanaharan, Guruge, and 

Agbinya, 2025). This inadequacy underscores the urgent need for adaptable, 

modular detection systems capable of addressing evolving synthetic media.   

The societal implications are profound: unchecked deepfakes could undermine 

public trust in media, destabilize democratic processes, and erode personal 

reputations (Gorbel, no date). Robust detection solutions are essential to 

mitigate these risks, protect individuals, and preserve the integrity of 

information in an increasingly digital world (Anna, 2024; Greggwirth, 2023). 

Addressing the challenge of generalization in detection methods is critical to 

ensuring reliable performance across real-world scenarios, ultimately 

safeguarding privacy, security, and trust in digital media. 

 

 

1.3 Problem Statement 

1.3.1 PS1: Generalization of Deepfake Detection Models 

Deepfake detection models face a major challenge in generalization, which 

refers to a model's ability to apply its learned knowledge to new and unseen 

deepfake manipulations. Currently, most deepfake detection systems are trained 

on a specific set of datasets and manipulation types, leading to limitations in 

their ability to detect novel forms of deepfake content. For instance, detection 

models trained on face-swapping deepfakes often fail when exposed to new 

deepfake techniques, such as style transfer-based deepfakes. The problem of 

generalization is illustrated in Utility of Deep Learning Features for Facial 

Attributes Manipulation Detection 2020 which shows the detection accuracy of 

models when tested on different and all manipulation types revealing a 

significant performance drop across all detection methods. From the result of 

the study, it have shown the average detection accuracy under novel 

manipulations is much lower compared to models tested on previously seen 
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manipulations, underscoring the need for models capable of generalizing across 

different types of deepfakes (Afchar et al., 2018; Li et al., 2020). 

 

1.3.2 PS2: Lack of Diverse Datasets for Training Deepfake Detection 

Models 

The lack of diverse datasets is a key limitation in the development of effective 

deepfake detection systems. Most existing datasets, such as FaceForensics++ 

and Celeb-DF, focus primarily on face-swapping manipulations and may not 

represent newer deepfake techniques. The lack of diversity means that detection 

systems trained on these limited datasets often fail when confronted with new 

forms of manipulation, resulting in low accuracy and high error rates when 

tested on unseen manipulation types. Utility of Deep Learning Features for 

Facial Attributes Manipulation Detection 2020 highlights the detection 

accuracy of models when tested with novel manipulation type data, revealing 

that the performance can vary significantly based on the type of manipulation 

and dataset used for training. This demonstrates that detection accuracy is much 

lower when models are tested on diverse types of manipulations, underlining 

the need for a broader range of datasets to train more robust, adaptable models 

(Afchar et al., 2018; Gandhi et al., 2021). 

 

1.3.3 PS3: Accessibility of Deepfake Detection Tools (Web Application) 

Another critical issue is the inaccessibility of deepfake detection tools, which 

are often complex and require specialized technical knowledge to operate. Most 

current detection systems are designed for use by experts in machine learning 

or computer vision, which limits their usability for the general public. To 

address this challenge, deepfake detection tools should be accessible via a web-

based application that allows users to upload media and receive results quickly 

and easily. This would democratize the ability to detect deepfakes, making it 

available to individuals, organizations, and institutions that need to verify media 

authenticity but lack the technical expertise. A user-friendly web application 

would allow anyone with an internet connection to check whether a piece of 

media has been manipulated, ensuring that deepfake detection becomes an 

accessible tool for all, not just experts (Gandhi et al., 2021). 
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1.4 Aim and Objectives 

1.4.1 O1: To Develop a Generalizable Deepfake Detection System 

This objective addresses the problem of generalization by developing a 

detection system capable of adapting to a wide range of deepfake techniques, 

regardless of the manipulation type or the dataset used to create it. The system 

will be trained using diverse datasets that cover various deepfake generation 

methods, such as audio manipulation, face aging, and style transfer deepfakes, 

ensuring that it can handle different types of manipulations without a significant 

drop in accuracy. The model will also be designed to maintain high detection 

performance even when exposed to new, previously unseen deepfake methods, 

thus addressing the core issue of generalization in deepfake detection (Afchar 

et al., 2018; Li et al., 2020). 

 

1.4.2 O2: To Collect and Integrate a Diverse Dataset for Training 

Deepfake Detection Models 

• Problem Addressed: PS2: Lack of Diverse Datasets for Training 

Deepfake Detection Models 

This objective seeks to overcome this limitation by compiling a comprehensive 

and diverse dataset that covers multiple deepfake generation techniques and 

manipulation types. The dataset will include deepfakes generated using various 

GAN architectures, autoencoders, and style transfer methods. It will also 

incorporate diverse manipulation techniques, such as smile alteration, gender 

switching, and aging effects, to ensure that the detection system is exposed to a 

wide range of synthetic media. By training the detection model on this diverse 

dataset, it will become more robust and adaptable, improving its ability to detect 

a broader array of deepfake manipulations and making the detection system 

more effective in real-world scenarios (Gandhi et al., 2021; Afchar et al., 2018). 

 

1.4.3 O3: To Develop an Accessible Web-Based Deepfake Detection Tool 

• Problem Addressed: PS3: Accessibility of Deepfake Detection Tools 

(Web Application) 
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This objective aims to democratize access to deepfake detection tools, making 

them available to a much wider audience, including journalists, media 

organizations, educators, and the general public. The application will be 

designed for ease of use, with no need for advanced knowledge of machine 

learning or AI algorithms. The goal is to create a web-based platform that allows 

anyone with an internet connection to verify the authenticity of media in real 

time, helping to combat the spread of misinformation, fraud, and defamation 

caused by manipulated content. By providing an easy-to-use detection tool, this 

objective seeks to make deepfake verification accessible to all (Gandhi et al., 

2021). 

 

1.5 Proposed Solution 

To address the critical challenges of generalization, adaptability, and practical 

deployment in deepfake detection, this project proposes a component-based 

framework designed to enhance detection robustness across diverse datasets and 

evolving synthetic media techniques. The solution integrates three core 

innovations, aligned with the project’s objectives and methodology. 

 

First, the Component-Based Modular Architecture employs a modular design to 

decouple detection components, enabling independent training and testing of 

models tailored to specific datasets or architectures. Each component comprises 

three units: a Computation Unit that handles model-specific computations (e.g., 

GAN artifact detection, frequency analysis) while maintaining fixed behavior 

to ensure consistency; an Output Unit that aggregates results from individual 

components, providing a unified detection outcome; and a Connector Unit that 

facilitates seamless communication between components, allowing incremental 

integration of new models (e.g., diffusion models) without disrupting existing 

workflows.  
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Figure 1: Component-based Architecture as Solution 

 

Second, to mitigate dataset bias and improve generalization, the Diverse Dataset 

Generation and Integration component curates a comprehensive dataset 

spanning multiple generative models, including Unconditional GANs like 

StyleGAN, proGAN, SAGAN, and BigGAN for high-fidelity facial synthesis; 

Conditional GANs like CycleGAN (face-swapping), StarGAN (attribute 

editing), and Face2Face (expression manipulation); Auto-Encoders such as 

FaceForensics++ benchmark images generated via the faceswap tool; and 

Perceptual Loss Models like Cascaded Refinement Networks (CRN) and 

Implicit Maximum Likelihood Estimation (IMLE).  
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Figure 2: Referencing Image for Deepfake Generated By Differnt GAN 

Generator (Xu, Raja and Pedersen, 2022) 

 

 

Third, a Practical Web Application for Real-World Deployment is developed to 

democratize access to robust deepfake detection. Key features include Multi-

Model Support, allowing users to select detection components optimized for 

specific manipulation types (e.g., face-swaps, expression edits); Adaptive 

Updates, which allow new components (e.g., for diffusion models) to be added 

without requiring full system retraining; and Cross-Domain Validation, using 

metrics like average precision and adaptation rate to ensure performance across 

unseen datasets. In implementation, Stage 4 (Application Development) 

leverages the component-based architecture to ensure modularity and scalability, 

and Stage 5 (Evaluation) tests the application’s accuracy on novel manipulation 

types (e.g., lip-sync forgeries) and computational efficiency. 
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Figure 3: Sample interface design for Proposed web application 

 

 

1.6 Scope and Limitation of the Study 

1.6.1 Scope: 

1.6.1.1 Features and Modules to be Developed 

Deepfake Detection Application: The core functionality of the system, 

allowing users to upload images that will be classified as either "real" or "fake" 

using AI-powered models like Convolutional Neural Networks (CNNs) and the 

ensemble detection method. 

Ensemble Detection System: The system will incorporate multiple models 

using ensemble strategies like majority voting, weighted averaging, and 

confidence-based selection. This ensemble method will improve accuracy and 

decision-making reliability. 

Model Management: The system will allow administrators to manage models, 

including adding, updating, and deactivating them through configuration files 

(YAML/JSON). The platform will also support retraining with new datasets, 

ensuring adaptability to emerging deepfake technologies. 

Dataset Management: The platform will provide access to curated datasets 

containing both real and deepfake images, which users can explore, download 

for research purposes, or use for training new models. 
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1.6.1.2 Intended Users or Target Audience 

Researchers and Academics: They will use the platform to analyze deepfake 

detection techniques and experiment with different models and datasets. 

Developers and AI Engineers: These users will leverage the platform for 

integrating new models, experimenting with datasets, and optimizing detection 

performance. 

General Public and Media: The public can upload images for detection, 

providing an easy way to verify the authenticity of images they encounter online. 

Institutions (Universities, Law Enforcement): These users will use the 

platform for verifying documents, images, and media in academic, legal, and 

security contexts. 

 

1.6.1.3 Technologies or Platforms to be Used 

Frontend: The web application will use modern web technologies such as 

HTML, CSS, and JavaScript, leveraging frameworks like React.js or Vue.js for 

creating responsive and interactive interfaces. 

Backend: Python will be used for developing AI and machine learning models, 

leveraging deep learning frameworks like TensorFlow and PyTorch. Server-

side logic will be managed using Flask for API interactions. 

Database: PhpMyAdmin will be used to store user data, metadata, and model 

performance metrics. 

Containerization: Docker will be employed for containerization and 

orchestration, ensuring smooth deployment and management of the system 

components. 

 

1.6.1.4 Types of Data or Inputs the System Will Handle 

User-uploaded Images: The main input, which can be either real or deepfake 

images. 

Model Data: Pre-trained models deployment script and model weight used for 

deepfake detection. 

Metadata: Information about each processed image, including the prediction 

(real or fake), confidence scores, and model performance metrics 
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1.6.2 Limitation: 

1.6.2.1 Dataset Limitations 

The system relies on datasets for training its detection models. However, 

datasets may not cover all possible deepfake manipulation types or cross-

domain variations such as changes in lighting, resolution, or camera angles. 

While datasets will include a variety of deepfake techniques, new manipulation 

methods emerge frequently, and it is impossible to predict and incorporate every 

potential deepfake generation method. 

 

1.6.2.2 Computational Complexity 

Deepfake detection models, particularly those based on deep learning, require 

substantial computational resources for both training and inference. This may 

necessitate GPUs or cloud infrastructure to process large datasets and perform 

real-time detection. Users without access to high-performance hardware could 

face challenges in training the models, and running real-time inference on large 

video files could cause latency issues. Cloud computing services, such as AWS 

and Google Cloud, provide necessary computational resources but may not be 

accessible to all users, especially those with limited financial resources. 

 

1.6.2.3 Real-Time Detection Limitations 

While the system aims for real-time detection, there are inherent limitations. 

High-resolution images or videos with multiple frames require more processing 

power and time, potentially leading to delays in providing feedback. As 

deepfake techniques become more sophisticated, the detection algorithms may 

need more time to identify subtle manipulation artifacts. Achieving 

instantaneous results for all media types may not always be feasible, especially 

for large video files or complex image manipulations. 

 

1.6.2.4 Focus on Specific Manipulation Types 

While the system aims for real-time detection, there are inherent limitations. 

High-resolution images or videos with multiple frames require more processing 

power and time, potentially leading to delays in providing feedback. As 

deepfake techniques become more sophisticated, the detection algorithms may 

need more time to identify subtle manipulation artifacts. Achieving 
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instantaneous results for all media types may not always be feasible, especially 

for large video files or complex image manipulations. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Literature Review of Deepfake Detection 

2.1.1 Introduction 

This literature review examines the evolution of deepfake generation techniques 

and the corresponding advancements in detection methodologies, focusing on 

the technical challenges of generalization, dataset diversity, and real-time 

applicability.  The review also evaluates commercial and open-source detection 

tools, such as Microsoft Video Authenticator and DeepFake-O-Meter, assessing 

their strengths in specific manipulation types and weaknesses in scalability or 

accessibility. By synthesizing these insights, this section establishes the 

foundation for the proposed modular detection system, which aims to overcome 

gaps in generalization, usability, and ethical deployment identified in current 

literature. 

 

2.1.2 Detection Models 

DeepfakeBench, introduced in DeepfakeBench: A Comprehensive Benchmark 

of Deepfake Detection by Zhiyuan Yan et al, is a pioneering framework 

designed to address critical challenges in evaluating deepfake detection models. 

Traditional approaches often suffer from inconsistent datasets, non-uniform 

evaluation protocols, and fragmented implementation pipelines, leading to 

unreliable comparisons between models. In the project, we will use result from 

this paper, to objectively assess model robustness across different scenarios.  

 

2.1.2.1 Model Training and Assumptions: 

Models evaluated within DeepfakeBench are trained on a variety of deepfake 

datasets, including the newly introduced DF40 dataset, which features 40 

distinct deepfake techniques. This diversity ensures that models are exposed to 

a wide range of manipulation methods during training. The training process 

assumes that models can learn generalized features capable of detecting various 

deepfake techniques. However, the effectiveness of these models can vary 

depending on the specific characteristics of each dataset. 
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2.1.2.2 Domain issue in Deepfake detection: 

Deepfake detection models face a fundamental challenge: balancing 

performance on familiar data (within-domain) with adaptability to unseen 

manipulations (cross-domain). This dichotomy reflects the real-world tension 

between specialization and generalization, where models must excel in 

controlled settings while remaining robust against evolving threats. In 

considering such sequence, DeepfakeBench employs both evaluation strategies 

to assess these competing demands (Yan et al., 2023b): 

 

• Within-Domain Evaluation: In this approach, models are trained and 

tested on data from the same source or domain. This scenario simulates real-

world applications where models encounter data similar to their training data. 

High performance in within-domain evaluations indicates that a model can 

effectively detect deepfakes within a specific context or dataset. 

• Cross-Domain Evaluation: Here, models are trained on data from one 

domain and tested on data from a different, unseen domain. This evaluation 

simulates real-world scenarios where models must generalize to new, 

unseen data distributions. High performance in cross-domain evaluations 

demonstrates a model's robustness and ability to adapt to various deepfake 

generation techniques and data characteristics. 

 

2.1.2.3 Model Type 

In deepfake detection, models are typically categorized into three types based 

on their feature extraction approaches: naive, spatial, and frequency detectors. 

Each type has distinct methodologies that influence their accuracy and 

performance. 

 

1. Naive Detectors: 

Naive detectors employ standard convolutional neural networks (CNNs) to 

perform binary classification between real and fake content without 

incorporating specialized modules for artifact detection. They rely on the CNN's 
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ability to learn hierarchical features from the data. While naive detectors can 

achieve commendable accuracy within the domain they are trained on, their 

performance may degrade when applied to unseen data or different deepfake 

generation techniques due to their limited focus on generalized artifact detection. 

 (Yan et al., 2024) 

 

2. Spatial Detectors: 

Spatial detectors focus on analyzing pixel-level artifacts and inconsistencies 

within images or video frames. They often incorporate attention mechanisms or 

specialized modules to detect anomalies such as unnatural edges, texture 

inconsistencies, or irregular facial features. By emphasizing these spatial 

irregularities, these detectors can effectively identify manipulations that are 

visually apparent. However, their performance can be affected by variations in 

image quality, resolution, and the presence of compression artifacts, which may 

obscure the subtle cues they rely on. (NGUYEN et al., 2018) 

 

3. Frequency Detectors: 

Frequency detectors analyze images in the frequency domain, targeting spectral 

anomalies introduced during the deepfake generation process. Techniques such 

as Discrete Cosine Transform (DCT) or Fast Fourier Transform (FFT) are 

employed to convert spatial data into frequency components, allowing these 

models to detect unnatural frequency patterns or compression artifacts. This 

approach enables frequency detectors to identify subtle manipulations that may 

not be evident in the spatial domain. Nonetheless, their effectiveness can be 

influenced by factors like the specific frequency artifacts present in different 

deepfake techniques and the potential for overfitting to these artifacts, which 

may limit their generalizability across diverse datasets. (Yan et al., 2024) 

 

Performance Evaluation: 

To quantify the trade-offs between model architectures and their real-world 

applicability, we evaluate five representative detectors from the result of 

DeepfakeBench’s standardized framework. These models—UCF (spatial), 

SPSL (frequency), Xception (naive), FFD (spatial), and EfficientB4 (naive)—
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were selected for their highest performance among the 34 detectors involved. 

The following comparison highlights critical performance disparities, 

particularly in cross-domain generalization, while contextualizing their 

computational demands and specialization biases. The performance result is 

summarized in the Table 1 below: 

 

Table 1: Performance Comparison of Top-5 Models from DeepFake Benchmark 

(Yan et al., 2023b) 

Detector Type Backbone 
Within-Domain 

Avg. 

Cross-Domain 

Avg. 

UCF Spatial Xception 0.9527 0.7801 

SPSL Frequency Xception 0.9408 0.7875 

Xception Naive Xception 0.945 0.7718 

FFD Spatial Xception 0.9434 0.7733 

EfficientB4 Naive Efficient 0.9389 0.7718 

 

 

2.1.2.4 Discussion on Top-5 Models 

 

UCF (Spatial, Xception Backbone): 

UCF is a spatial-based deepfake detector built upon the Xception architecture, 

enhanced with specialized modules for artifact detection. It utilizes spatial 

attention mechanisms to focus on localized tampering traces, such as unnatural 

facial boundaries or inconsistent lighting. (NGUYEN et al., 2018). The 

Xception backbone, known for its depthwise separable convolutions, efficiently 

captures hierarchical features while reducing computational overhead. In 

evaluations, UCF achieved a within-domain average Area Under the Curve 

(AUC) of 0.9527 and a cross-domain average AUC of 0.7801, ranking in the 

top three across 11 datasets. However, its high computational load may limit 

real-world applicability, especially in resource-constrained environments. (Yan 

et al., 2023a) 

 

SPSL (Frequency, Xception Backbone): 
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SPSL approaches deepfake detection from a frequency domain perspective, 

integrating spectral analysis with the Xception architecture. (Liu et al., 2021). 

By processing images in the frequency domain, SPSL identifies spectral 

distortions indicative of manipulation, such as unnatural high-frequency 

patterns. (Liu et al., 2021) This hybrid approach enhances the model's 

robustness against cross-domain challenges. SPSL achieved the highest cross-

domain average AUC of 0.7875 among the evaluated models, though its within-

domain performance (AUC of 0.9408) is slightly lower. This trade-off suggests 

a specialization in detecting diverse deepfake techniques at the expense of some 

performance on domain-specific data. (Liu et al., 2021) 

 

Xception (Naive, Xception Backbone): 

The Xception (Naive) model employs the standard Xception architecture 

without specialized deepfake detection modules. It relies on hierarchical feature 

learning to distinguish between real and fake content. (Li et al., 2017) This 

simplicity contributes to its balanced performance, achieving a within-domain 

average AUC of 0.945 and a cross-domain average AUC of 0.7718. While it 

serves as a strong baseline, the lack of specialized mechanisms may limit its 

effectiveness against sophisticated deepfake generation techniques. (Li et al., 

2017) 

 

FFD (Spatial, Xception Backbone): 

FFD is tailored for facial forgery detection, integrating facial landmark 

alignment and local artifact detectors within the Xception framework. By 

focusing on facial regions prone to manipulation, FFD excels in identifying 

subtle inconsistencies. (Li et al., 2017) It achieved a within-domain average 

AUC of 0.9434 and a cross-domain average AUC of 0.7733. However, its 

specialization may lead to overfitting to facial features, potentially reducing its 

adaptability to non-facial manipulations. (Li et al., 2017) 

 

5. EfficientB4 (Naive, EfficientNet Backbone): 

EfficientB4 utilizes the EfficientNet-B4 architecture, emphasizing resource 

efficiency and scalability. It incorporates Mobile Inverted Bottleneck 

Convolutions (MBConv) and Squeeze-and-Excitation blocks to balance model 
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size and performance. (Potrimba, 2023). With a within-domain average AUC of 

0.9389 and a cross-domain average AUC of 0.7718, EfficientB4 offers a 

lightweight alternative suitable for deployment in resource-constrained settings. 

However, its peak accuracy is lower compared to more complex models, 

indicating a trade-off between efficiency and detection performance. 

 

2.1.3 DeepFake Detection Tools: 

Deepware Scanner 

Deepware Scanner is a specialized tool designed to detect deepfake videos, 

focusing exclusively on facial manipulations such as face-swaps. It utilizes a 

convolutional neural network (EfficientNet-B7) pre-trained on ImageNet, fine-

tuned using Facebook's DeepFake Detection Challenge (DFDC) dataset to 

enhance its detection capabilities, optimized for identifying inconsistencies in 

facial regions. Additionally, the tool employs face clustering techniques to 

enhance the consistency and reliability of its detection results. In controlled 

settings, Deepware Scanner has demonstrated a high accuracy rate of ~95–98% 

when tested on the FaceForensics Actors Dataset. It also maintains robust 

performance with broader datasets like CFDF, despite unspecified accuracy rate. 

The tool is capable of processing videos up to 10 minutes in length, but 

performance may decline with lower-resolution videos. (Hook35, 2021) 

Deepware Scanner is currently in its beta stage and is available in web-platform, 

API, and SDK formats.  

 

Figure 4: Logo of Deepware (Deepware, 2025) 

 

 

Intel’s FakeCatcher 
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Intel’s FakeCatcher is a real-time deepfake detection tool that utilizes 

photoplethysmography (PPG) to analyze subtle color changes in facial pixels 

caused by blood flow, a feature absent in synthetic faces. (Intel, 2022) It also 

examines eye movements for consistency, aiding in the identification of 

deepfakes. Regarding the performance, Intel claim that FakeCatcher achieves a 

96% accuracy rate. Despite this, it excels in detecting lip-sync deepfakes, such 

as those generated by MIT. In BBC’s independent test, FakeCatcher correctly 

identified all MIT-generated lip-sync deepfakes but flagged some real videos as 

fake due to pixelation or poor lighting. However, the system struggles with 

pixelated videos, does not analyze audio, and is prone to false positives, flagging 

real videos as fake. Regarding pricing, specific details are not readily available. 

Intel has not publicly disclosed the cost of FakeCatcher. 

 

Figure 5: Sample Output from Intel FakeCatcher (Clayton, 2023) 

 

Microsoft Video Authenticator 

Microsoft's Video Authenticator is a tool developed to detect deepfake content 

in photos and videos by analyzing visual cues such as blending boundaries and 

subtle fading, providing real-time confidence scores for each frame. (Kelion, 

2020) While it has demonstrated high accuracy with curated datasets like 

FaceForensics++ but the specific accuracy is not publicly disclosed. Initially, 

Video Authenticator was available through the AI Foundation’s Reality 

Defender 2020 (RD2020) initiative, targeting organizations involved in the 

democratic process, including news outlets and political campaigns. (Burt, 2020) 

There is no public information regarding its availability to individual users or 

details about its pricing.  
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Figure 6: Sample Output from Microsoft Video Authenticator (Burt, 2020) 

Sensity 

Sensity is a specialized platform designed to detect deepfakes by analyzing 

pixel-level inconsistencies, audio patterns, and file structure anomalies. It 

employs advanced deep learning techniques, including convolutional neural 

networks (CNNs) and generative adversarial network (GAN) analysis, to 

identify synthetic content across videos, images, and audio. The platform boasts 

a 98.7% accuracy rate in detecting AI-generated media, effectively identifying 

malicious deepfakes on social media and the dark web. (Linkedin.com, 2024) 

This capability is crucial for sectors like law enforcement and human rights, 

where combating fraud and non-consensual explicit content is a priority. 

(Sensity, 2024) The platform serves multiple sectors, including law enforcement, 

Know Your Customer (KYC) vendors, social media platforms, defense agencies, 

and digital forensics firms. It is utilized by various organizations, such as 

TrueMedia, Tradelink, Psyber Labs, Mobbex, 3D Bilism, GlossAI, Confiant, 

FlipFlop, ArmisonTech, and TransGuard. Sensity offers custom plans tailored 

to organizational needs, with costs determined upon request. (Sensity, 2023) 

 

 

 

Figure 7: Logo of Sensity Ai (Sensity, n.d.) 
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Reality Defender 

 Reality Defender is a deepfake detection platform that utilizes advanced AI 

techniques, including convolutional neural networks (CNNs) and transformer-

based architectures, to identify AI-generated content across audio, video, 

images, and text. The platform employs multiple concurrent models for each 

media type, enhancing its ability to detect a wide range of generative AI 

techniques and adapt to emerging threats. In real-world applications, Reality 

Defender has proven effective in sectors such as contact centers, brand 

monitoring, real-time video identity authentication, text detection, image 

authentication, content moderation, and combating disinformation. It has 

established collaborations with several prominent organizations, including 

Accenture, Deloitte, IBM, Microsoft, and Nvidia, to enhance deepfake detection 

capabilities across various industries. Additionally, partnerships with 

companies like ElevenLabs and TaskUs aim to bolster AI safety and assisted 

government officials in Canada in identifying and debunking deepfake videos, 

preserving public trust and integrity. These collaborations underscore Reality 

Defender's commitment to providing comprehensive solutions for combating 

AI-generated fraud and disinformation. Regarding cost, Reality Defender offers 

flexible pricing plans tailored to the specific needs and requirements of each 

organization.  

 

 

Figure 8: Logo of Realidy Defender Ai (Realitydefender.com, 2024) 

 

Sentinel AI 

Sentinel AI is a deepfake detection platform that utilizes convolutional neural 

networks (CNNs) and generative adversarial networks (GANs) to identify facial 

swaps, lip-sync mismatches, and audio manipulations. (Romain, 2023) By 
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processing video, audio, and metadata, it enhances detection robustness. In 

controlled environments, Sentinel AI achieves a good accuracy rate (not 

specific % disclosed) on datasets like FaceForensics++. However, its 

performance may decrease with high-fidelity deepfakes encountered in real-

world scenarios. The platform is employed by governments and organizations 

such as the European Union External Action and Accelerate Estonia to combat 

political disinformation and enhancing digital security across various sectors. 

(Sentinel, n.d) Regarding pricing, specific details are not publicly available. 

Sentinel AI offers customized solutions tailored to the needs of larger 

organizations. 

 

 

Figure 9: Logo of Sentinel AI with slogan (Romain Berg, 2023) 

 

Truepic 

Truepic is a platform that ensures the authenticity of digital media through 

blockchain-based standards like C2PA, embedding tamper-evident certificates 

into images and videos from creation to publication. This approach allows for 

verification of media integrity, making it particularly effective in combating 

synthetic identity fraud and verifying medical scans. Truepic has partnered with 

various organizations, including Equifax, Davies Group, Northteq, SmartFrame 

Technologies, and Recall Results, to enhance digital media authenticity, 

streamline inspections, and innovate product recall processes across multiple 

industries. However, Truepic's reliance on embedded credentials means it may 

struggle with high-fidelity deepfakes lacking such metadata. Pricing for Truepic 

Vision starts at $1,000 per user per month, with costs scaling based on the 

volume of inspections. 
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Figure 10: Truepic (Truepic.com, 2022) 

 

iProov’s Liveness Detection 

iProov is a biometric authentication platform that utilizes its patented Flashmark 

technology to detect subtle lighting changes and facial movements, ensuring the 

presence of a live user during authentication. This method effectively 

differentiates between live individuals and static or synthetic images. iProov 

boasts a >98% detection rate in controlled environments, excelling in preventing 

replay attacks and synthetic identity fraud, thereby offering real-time fraud 

prevention. iProov has formed strategic partnerships with organizations such as 

Cybernetica, TrustCloud, Biometrid, Authsignal, Matter-ID, and iCloud 

Identity Inc. to enhance digital identity verification across sectors like 

government, financial services, and healthcare with notable deployments by the 

UK Home Office and the U.S. Department of Homeland Security for identity 

verification purposes. iProov offers a range of service packages and each 

tailored to organizations with varying user volumes and security requirements. 

Pricing details, including implementation fees and annual committed fees, are 

outlined in iProov's official G-Cloud 13 Pricing Document. (G-Cloud 13 

Service Definition: iProov Face Verifier, 2022) 
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Figure 11: iProov (iProov, 2024) 

 

Resemble AI’s Detect 

Resemble AI's Detect is an advanced neural model designed to identify 

synthetic audio, video, and images by analyzing subtle inconsistencies across 

various media types. Its robust detection capabilities make it suitable for real-

time applications, such as monitoring live streams for fraudulent activities. To 

achieve optimal performance, detect requires high-quality audio inputs. The tool 

is utilized in enterprise security to flag synthetic voices in fraud attempts and in 

media to verify the authenticity of celebrity voice clones.  (Resemble AI, 2024) 

Besides, Resemble AI has partnered with Carahsoft to provide voice AI and 

deepfake detection solutions to government agencies while offers a deepfake 

detection integration for Zoom, analyzing audio snippets during calls to identify 

potential deepfakes. Regarding the price, Resemble AI offers a range of 

subscription plans to cater to diverse user needs, including the Starter Plan at $5 

per month, the Creator Plan at $19 per month, the Professional Plan at $99 per 

month, the Scale Plan at $299 per month, the Business Plan at $699 per month, 

and the Enterprise Plan, which requires direct consultation for pricing. 

(Resemble AI, 2023) 

 

 

Figure 12: Resemble AI (Resemble AI, 2024) 
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DuckDuckGoose 

DuckDuckGoose is an AI-driven platform specializing in detecting deepfakes 

across images, videos, and audio by employing explainable AI (XAI) to 

highlight manipulated regions, enhancing transparency in detection decisions. 

It achieves a 99% accuracy rate in identifying deepfakes in images and videos 

(retained by Phocus) with 0.01% false-rejection rate. The platform is utilized in 

sectors such as banking to prevent fraud, in legal settings to verify evidence 

authenticity, and for Know Your Customer (KYC) processes during user 

onboarding. To be detail, DuckDuckGoose has partnered with Banco Daycoval, 

bunq and Dutch House by integrating its DeepDetector solution. For the pricing, 

DuckDuckGoose did not disclose the price publicly (DuckDuckGoose, n.d.) 

 

Figure 13: DuckDuckGoose (Sukrit, 2025) 

 

HyperVerge: 

HyperVerge’s deepfake detection capabilities are built on a robust technical 

foundation. The platform utilizes ISO 30107-3 certified AI models for passive 

liveness detection, distinguishing live users from deepfakes, masks, and screen 

replays by analyzing micro-movements, such as eye blinks and blood flow 

patterns, along with texture inconsistencies in real-time.  In terms of accuracy 

and performance, HyperVerge boasts an impressive 98.5% accuracy rate in 

detecting synthetic media, including deepfakes and GAN-generated faces, on 

datasets like FaceForensics++. It maintains a low False Acceptance Rate (FAR) 

of less than 0.1% for spoof attacks, including high-quality deepfakes, and 

processes liveness checks in under 3 seconds, making it highly effective for real-

time fraud prevention during user onboarding. HyperVerge is deployed for SIM 

card fraud prevention, it has helped telecom companies like Reliance Jio reduce 

SIM fraud by 99%. In financial services, the platform blocks synthetic identities 

in loan applications by flagging AI-generated selfies or manipulated documents. 
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It has also partnered with governments to verify voter identities and counter 

deepfake-driven disinformation campaigns. Regarding the price, HyperVerge 

provides deepfake detection services with pricing starting at $0.04 per 

verification for document quality checks, selfies, and ID forgery, and $0.07 for 

video KYC verifications. 

 

 

Figure 14: Hyperverge (Praveen, 2024) 
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Comparison: 

The comparison table provides an overview of included deepfake detection tools, comparing their accuracy, strengths, weaknesses, deployment 

scenarios, and pricing. It highlights that most tools specialize in different media types (images, videos, audio) and use various approaches, such as 

AI models, blockchain technology, and facial biomet 

 

Table 2: Overview Comparison of DeepFake Detection Tools 

 

Tool Name Deployment Detection Focus Accuracy Strengths Real-World Deployment Pricing

Deepware Scanner Single-model
Facial manipulations 

(face-swaps)

~95-98% 

(FaceForensics)

Specialized for 

facial 

inconsistencies

Beta stage, web-platform, 

API, SDK available
Free

Intel’s FakeCatcher Single-model

Facial features 

(blood flow, eye 

movements)

96%

Real-time detection, 

excels in lip-sync 

deepfakes

Deployed for lip-sync 

detection, BBC test results

Not publicly 

disclosed

Microsoft Video 

Authenticator
Single-model

Blending boundaries, 

subtle fading
Not disclosed

High accuracy with 

curated datasets

Primarily targeting 

democratic process, political 

campaigns

Not publicly 

disclosed

Sensity Multi-model

Pixel 

inconsistencies, 

audio patterns, file 

structure anomalies

98.70%

Effective for social 

media and dark web 

deepfakes

Deployed in law 

enforcement, KYC, defense 

agencies

Custom pricing plans

Reality Defender Multi-model
Audio, video, 

images, text
Not disclosed

Multiple models for 

varied media types, 

wide industry 

adoption

Deployed in contact centers, 

brand monitoring, 

government

Custom pricing plans

Sentinel AI Multi-model
Facial swaps, lip-

sync, audio
Not disclosed

Robust for political 

disinformation, 

customized solutions

Used by EU External Action, 

Accelerate Estonia
Custom pricing plans

Truepic Single-model
Blockchain-based 

media integrity
Not applicable

Effective in synthetic 

identity fraud and 

medical scans

Deployed for media 

authenticity verification in 

various sectors

$1,000+ per user per 

month

iProov Multi-model

Biometric 

authentication 

(liveness detection)

>98%

Excellent for 

preventing fraud in 

real-time, live user 

detection

UK Home Office, U.S. 

Department of Homeland 

Security

Custom pricing plans

Resemble AI Multi-model
Audio, video, and 

images
Not disclosed

Real-time detection, 

suitable for live 

stream fraud 

detection

Deployed in enterprise 

security, Zoom integration

Plans range from $5 

to $699 per month

DuckDuckGoose Multi-model
Images, videos, 

audio
95-99%

High accuracy, 

explainable AI 

(XAI) transparency

Banco Daycoval, bunq, 

Dutch House for KYC
Pricing not disclosed

HyperVerge Multi-model

Deepfakes, liveness, 

document 

verification

98.50%

Quick detection 

(<3s), low FAR 

(<0.1%), ISO 30107-

3 certified

Reliance Jio (SIM fraud 

reduction), Flip (financial 

services)

Starts at $0.04 per 

verification, free trial 

available
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2.1.4 Open-source Tools/Framework: 

DeepSafe (Sah, 2023): 

https://github.com/siddharthksah/DeepSafe 

DeepSafe is an open-source, Streamlit-based web application developed to 

facilitate deepfake detection research by providing a unified platform for testing 

and comparing various detection models. It supports multiple pre-trained 

models, including CNNs and GAN-based detectors, and allows users to 

integrate custom models. Users can analyze media through direct uploads or by 

processing URLs, with the platform converting files to standardized formats to 

ensure compatibility across detectors. DeepSafe offers optional GPU 

acceleration for faster inference. While DeepSafe includes a benchmarking 

feature to evaluate models on datasets like FaceForensics++ and Celeb-DF, 

providing metrics such as accuracy, precision, recall, and inference time, 

specific accuracy metrics for the included models are not disclosed. DeepSafe 

serves as a valuable tool for researchers, educators, and developers aiming to 

analyze and combat deepfake content. (Sah, 2023) 

 

Deepstar (zerofox-oss, 2019): 

https://github.com/zerofox-oss/deepstar 

Deepstar is an open-source toolkit developed by ZeroFox to aid in the detection, 

analysis, and mitigation of deepfakes. It offers a suite of tools designed to 

streamline operations related to deepfake detection research. In technical basis, 

Deepstar provides code for automating the creation of deepfake datasets, testing, 

and enhancing detection algorithms. It includes a curated library of deepfake 

and real videos sourced from platforms like YouTube, facilitating the 

development and evaluation of detection models. The toolkit also features a 

plug-in framework that enables researchers to test, retrain, and compare the 

performance of different classifiers, fostering continuous improvement in 

deepfake detection capabilities. Regarding accuracy, specific accuracy metrics 

are not detailed in the available sources, Deepstar's comprehensive dataset and 

modular design suggest a robust foundation for developing and evaluating 

deepfake detection models. The toolkit's structure allows for continuous 

improvement and adaptation to emerging deepfake techniques. Deepstar has 
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demonstrated practical utility in real-world scenarios. At the Black Hat security 

conference, ZeroFox researchers presented their techniques for identifying 

deepfake videos using Deepstar, highlighting its effectiveness in combating 

deepfake threats. The toolkit's plug-in framework and curated video library have 

been instrumental in advancing detection capabilities within the cybersecurity 

community. (zerofox-oss, 2019) 

 

DeepFake-O-Meter (yuezunli, 2020): 

https://github.com/yuezunli/deepfake-o-meter?tab=readme-ov-file 

DeepFake-O-Meter, developed by the University at Buffalo Media Forensics 

Lab, is an open-source platform that integrates multiple state-of-the-art 

detection algorithms to analyze images, videos, and audio for deepfake content. 

In deployment,  DeepFake-o-meter's backend utilizes a computation server with 

8 A5000 GPUs for deepfake detection. Users can upload media through a web-

based interface supporting formats such as MP4, JPG, and WAV, and select 

from various detection algorithms based on metrics like accuracy, runtime, or 

development year. The platform has demonstrated effectiveness in detecting AI-

generated content; for instance, it achieved a 69.7% accuracy rate in identifying 

AI-generated audio in a Poynter test, surpassing other free tools. Despite these 

limitations, DeepFake-O-Meter serves as a valuable tool for researchers, 

educators, and developers aiming to analyze and combat deepfake content. 

(yuezunli, 2020) 

 

FakeFinder (IQTLabs, 2021): 

https://github.com/IQTLabs/FakeFinder 

FakeFinder, developed by IQT Labs, is an open-source deepfake detection 

framework that aggregates predictions from six pre-trained deep learning 

models, including Boken, Selimsef, and NTechLab, which performed well in 

the Facebook/Kaggle Deepfake Detection Challenge. It focuses on detecting 

face-swap deepfakes by analyzing facial inconsistencies, blending boundaries, 

and temporal anomalies in videos. Its modular design features a Dash-based 

frontend, API integration capabilities, and an AWS containerized backend. 

However, FakeFinder's performance drops when detecting non-face-swap 

manipulations, such as cheapfakes and audio deepfakes, due to limited training 
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diversity. Additionally, it exhibits racial and gender biases, with higher false 

positive rates for East Asian faces compared to White faces, attributed to 

unbalanced training data predominantly featuring White actors. Labeled as a 

prototype, it has cybersecurity vulnerabilities like unsecured APIs and outdated 

dependencies, necessitating significant improvements for enterprise use. 

Despite these limitations, FakeFinder has influenced the development of other 

detection frameworks and highlighted the importance of addressing biases and 

ensuring transparency in AI tools. Its open-source codebase continues to serve 

as a reference for developers exploring multi-model detection systems. 

(IQTLabs, 2021) 

 

TruFor (grip-unina, 2022): 

https://github.com/grip-unina/TruFor 

TruFor is a deepfake detection framework that integrates high-level RGB image 

features with low-level artifacts captured in a learned noise-sensitive fingerprint, 

effectively detecting and localizing both cheapfakes and deepfakes by 

identifying anomalies from expected patterns in pristine images. Its transformer-

based architecture combines these features, enhancing anomaly detection 

capabilities, while a reliability map highlights areas where localization 

predictions may be less reliable, aiding forensic analysis by reducing false 

positives. Extensive experiments have shown that TruFor outperforms existing 

methods across various datasets, demonstrating robust generalization to 

different manipulation techniques. Although archived in 2023, its open-source 

codebase continues to serve as a reference for developers exploring multi-model 

detection systems. (grip-unina, 2022) 
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Comparison: 

The following table (Table 3) provides a comparison of several open-source tools and frameworks designed for deepfake detection. These tools 

vary in terms of supported models, datasets, and key features, offering different strengths for researchers, developers, and cybersecurity 

professionals. The comparison highlights the core functionalities, performance metrics (where disclosed publicly), and notable aspects of each tool. 

 

Table 3: Overview Comparison of Open-source Tools and FrameWork 

Tool/Framework Supported Models Datasets/Benchmarks Accuracy Metrics Notable Features

DeepSafe
CNNs, GAN-based 
detectors

FaceForensics++, Celeb-DF Not disclosed

Supports direct uploads, URL 
processing, custom model 
integration, optional GPU 
acceleration

Deepstar Not disclosed
Curated library of deepfake 
and real videos from 
platforms like YouTube

Not disclosed
Plug-in framework for 
testing/retraining classifiers, 
continuous improvement

DeepFake-O-Meter
Multiple detection 
algorithms

Not disclosed (supports MP4, 
JPG, WAV formats)

69.7% accuracy (audio 
detection)

Supports selection of 
algorithms based on 
accuracy, runtime, or year, 8 
A5000 GPUs for backend

FakeFinder
Boken, Selimsef, 
NTechLab, etc.

Facebook/Kaggle Deepfake 
Detection Challenge

Not disclosed

Focus on face-swap 
deepfakes, Dash-based 
frontend, API integration, 
AWS containerized backend

TruFor Not disclosed Not disclosed Not disclosed

Combines high-level RGB 
features with low-level 
artifacts, transformer-based 
architecture, reliability map
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2.1.5 Limitations of Existing Deepfake Detection 

 

Generalization Challenges in Cross-Domain Scenarios 

A critical limitation of current deepfake detection models is their inability to 

generalize effectively across diverse datasets and manipulation techniques. For 

instance, while models like UCF and SPSL achieve high within-domain 

accuracy (AUC >0.94), their cross-domain performance drops significantly 

(AUC ~0.77–0.78) (Yan et al., 2023a; Liu et al., 2021). This discrepancy 

highlights a reliance on dataset-specific artifacts rather than learning universal 

manipulation patterns. The DF40 dataset, despite incorporating 40 deepfake 

techniques, still struggles to simulate real-world variability, as models trained 

on it may fail to detect novel or evolving methods like diffusion-based 

deepfakes (Yan et al., 2024). Such gaps underscore the need for adaptive 

architectures that prioritize invariant feature learning. 

 

Bias and Inclusivity Issues in Training Data 

Many detection tools exhibit biases rooted in unbalanced training datasets. 

FakeFinder, for example, demonstrates higher false-positive rates for East Asian 

faces compared to White faces due to its reliance on datasets dominated by 

White actors (FakeFinder GitHub documentation). Similarly, spatial detectors 

like FFD focus heavily on facial regions, rendering them ineffective for non-

facial manipulations (Li et al., 2017). These biases not only reduce fairness but 

also limit practical applicability in global contexts. Tools like Intel’s 

FakeCatcher further face challenges with pixelated or low-quality videos, 

disproportionately affecting regions with limited bandwidth (Clayton, 2023). 

Addressing these biases requires more diverse datasets and fairness-aware 

training protocols. 

 

Computational Overhead and Real-Time Limitations 

Several state-of-the-art models, such as UCF and Deepware Scanner, suffer 

from high computational demands, making them impractical for real-time 

deployment. UCF’s spatial attention mechanisms, while effective, require 

significant GPU resources, limiting scalability in resource-constrained 

environments (Yan et al., 2023a). Similarly, DeepFake-O-Meter’s reliance on 8 
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A5000 GPUs for backend processing restricts accessibility for smaller 

organizations (DeepFake-O-Meter GitHub). While lightweight models like 

EfficientB4 address this partially, their accuracy trade-offs (AUC ~0.77) 

highlight a persistent tension between efficiency and performance (Potrimba, 

2023). 

 

Overreliance on Specific Artifact Patterns 

Frequency-based detectors like SPSL excel at identifying spectral anomalies but 

risk overfitting to frequency artifacts unique to specific deepfake generation 

tools (Liu et al., 2021). For example, GAN-generated deepfakes may leave 

distinct high-frequency noise, whereas diffusion models produce subtler 

artifacts, evading detection (Zhou et al., 2024). Similarly, tools like Microsoft’s 

Video Authenticator, which focus on blending boundaries, struggle against 

high-fidelity deepfakes that minimize visual inconsistencies (Kelion, 2020). 

This narrow focus limits robustness against adversarial attacks or evolving 

manipulation techniques. 

 

Ethical and Practical Deployment Barriers 

Many commercial tools, such as Sensity and Reality Defender, lack 

transparency in pricing and customization, limiting accessibility for non-

commercial users (Sensity, 2023; Reality Defender documentation). Open-

source frameworks like Deepstar and FakeFinder, while valuable for research, 

often suffer from cybersecurity vulnerabilities (e.g., unsecured APIs) and 

incomplete documentation, hindering enterprise adoption (FakeFinder GitHub). 

Additionally, tools like iProov’s liveness detection, though accurate in 

controlled settings, face ethical concerns over privacy and potential misuse in 

surveillance (G-Cloud 13 Service Definition, 2022). 

 

Limited Multimodal Integration 

Most tools specialize in single tyle of media analysing, such as video (Deepware 

Scanner) or audio (Resemble AI’s Detect), but fail to address multimodal 

deepfakes combining audio, video, and text. For example, Sentinel AI processes 

metadata but does not integrate audio-visual synchronization checks, leaving it 

vulnerable to lip-sync manipulations (Romain, 2023). Hybrid frameworks like 
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TruFor, which combine RGB and noise fingerprints, show promise but remain 

experimental and lack large-scale validation (TruFor GitHub). 

 

 

2.2 Literature Review of Development Methodology 

2.2.1 Introduction 

The development of component-based deepfake detection systems necessitates 

a methodology that accommodates rapid technological advancements, evolving 

adversarial threats, and complex ethical concerns. Given these challenges, it is 

essential to select an appropriate development approach that ensures the system 

remains adaptable, scalable, and ethically sound. This section critically 

examines four methodologies—Waterfall, Agile, Component-Based 

Development (CBD), and Spiral—assessing their relevance, strengths, and 

weaknesses in the context of deepfake detection systems. 

 

2.2.2 Waterfall Methodology 

The Waterfall model, introduced by Royce (1970), follows a rigid, linear 

sequence of phases: requirements gathering, design, implementation, testing, 

and maintenance. Waterfall is characterized by thorough documentation and 

structured planning, making it suitable for projects with well-defined, stable 

requirements. However, its inflexibility renders it less effective for AI projects, 

particularly deepfake detection systems, where frequent updates and rapid 

adaptability are crucial. 

 

 

Figure 15: Sample Structure of Waterfall Development Approach (Kirvan, 

2022) 
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Relevance to the Project: 

The Waterfall model offers clear milestones and a strong focus on 

documentation, which can be beneficial during the early stages of dataset 

curation. For instance, it aligns with the need to catalog images from various 

deepfake generation models, such as StyleGAN and FaceForensics++, and 

ensures detailed records of training protocols and model architectures. This 

structured approach facilitates reproducibility, an important consideration in AI 

research. 

 

However, The Waterfall model’s rigid, sequential structure fundamentally 

conflicts with the dynamic requirements of a component-based deepfake 

detection system. In this project, where modular components (e.g., StyleGAN 

validators, auto-encoder analyzers) must adapt incrementally to adversarial 

advancements like diffusion models or StarGAN architectures, Waterfall’s 

inflexibility becomes a critical bottleneck. Retraining detectors for new 

architectures would require restarting the entire development cycle—redefining 

requirements, redesigning connectors, and reimplementing components—rather 

than leveraging the project’s modular framework to update individual units 

independently. For instance, integrating a diffusion model detector without 

disrupting existing components (e.g., FaceForensics++ validators) is impossible 

under Waterfall’s linear phases, as the methodology lacks mechanisms for 

iterative refinement. 

 

Furthermore, Waterfall’s delayed validation phase, which occurs only after full 

system implementation, undermines the project’s need for continuous cross-

dataset evaluation. In a component-based system, interoperability between 

modules (e.g., connector units for output aggregation) must be tested iteratively 

against diverse datasets (e.g., Celeb-DF, FaceForensics++) to ensure seamless 

integration. Waterfall’s "big bang" testing approach risks late-stage discovery 

of incompatibilities, such as mismatched input/output formats between GAN 

artifact detectors and auto-encoder validators, which could derail deployment 

timelines. This misalignment with modular, incremental development renders 
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Waterfall unsuitable for maintaining the agility and scalability required to 

counter evolving deepfake threats. 

Discussion: Due to its inflexibility and delayed validation, Waterfall is 

unsuitable for projects like deepfake detection, where iterative updates and rapid 

adaptation to emerging techniques are essential. 

 

2.2.3 Agile Methodology  

Agile methodologies, including frameworks like Scrum and Kanban, emphasize 

iterative cycles, stakeholder collaboration, and incremental delivery. These 

methodologies are particularly suited for projects that require frequent changes 

and early feedback, such as deepfake detection systems, where new 

manipulation techniques and datasets are continuously emerging. 

 

 

Figure 16: Sample Structure of Agile Development Approach (Damm, 2023) 

 

Relevance to the Project: 

Agile’s rapid prototyping capabilities are critical for the iterative development 

of modular detection components in this project, such as GAN artifact detectors, 

frequency analyzers, and auto-encoder validators. By structuring development 

into 2–4 week sprints, Agile enables the incremental deployment and testing of 

individual components. For example, a sprint could focus on refining 

a StyleGAN artifact detector using synthetic data from FaceForensics++, with 

immediate feedback loops validating its performance on emerging datasets like 

Celeb-DF v2. This iterative approach ensures that components like 

the CycleGAN face-swap validator can be refined in parallel, accelerating the 

system’s responsiveness to adversarial advancements like diffusion models. 
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Agile also fosters cross-functional collaboration, essential for aligning technical 

and ethical priorities in a component-based framework. During sprint planning, 

researchers, developers, and ethicists jointly define interfaces for components 

(e.g., standardized JSON outputs for connector units), ensuring interoperability 

and ethical compliance from inception. For instance, ethicists might flag biases 

in the training data for a StarGAN attribute editor detector, prompting 

immediate dataset adjustments before integration. 

While Agile’s continuous integration (CI) pipelines automate testing of 

components against new threats, its reactive risk management struggles with 

systemic challenges inherent to modular systems. Without standardized 

interfaces, loosely coupled components risk incompatibility, accumulating 

technical debt. For example, inconsistent input formats between a CRN-based 

texture analyzer and a Face2Face expression detector could fragment the 

system’s output aggregation. 

 

Moreover, Agile’s sprint-centric focus may overlook proactive mitigation of 

dataset bias or fairness gaps across components. While a sprint might optimize 

a proGAN synthesizer detector for accuracy, it may fail to address embedded 

biases in FaceForensics++ training data, risking skewed performance on 

underrepresented demographics. This underscores the need to embed Spiral-

inspired risk cycles within Agile workflows to ensure ethical rigor alongside 

rapid iteration. 

 

Discussion: Agile is highly effective for early-stage prototyping and rapid 

iteration but insufficient for maintaining a scalable, modular system over time, 

particularly when it comes to managing the systemic risks associated with 

deepfake detection. 

 

2.2.4 Component-Based Development (CBD) 

Component-Based Development (CBD) decomposes systems into independent, 

reusable modules that can be updated and tested individually. This methodology 

prioritizes modularity, interoperability, and incremental scalability, making it 

highly suitable for AI systems like deepfake detection, where adaptability to 
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new techniques and the ability to integrate diverse components are key 

requirements. 

 

 

Figure 17: Sample Conceptual Structure of CBD approach (McGovern et al., 

2003) 

 

Relevance to the Project: 

Component-Based Development (CBD) is central to this project’s goal of 

building a modular, adaptable deepfake detection system. By decomposing the 

system into specialized, interoperable detection components—such as 

a StyleGAN artifact detector or an auto-encoder reconstruction analyzer—CBD 

enables targeted updates without system-wide retraining. For instance, when 

confronting emerging adversarial techniques like diffusion models, only 

the diffusion-specific validator requires retraining, while pre-existing 

components (e.g., CycleGAN face-swap detector) remain unaffected.  

 

However, CBD introduces initial complexity that demands meticulous design. 

Defining universal input/output formats (e.g., ensuring the auto-encoder 

validator outputs tensor shapes compatible with the connector unit) requires 

rigorous cross-component alignment. For example, inconsistencies between 

the image preprocessing pipelines of the StyleGAN detector (normalized to [-1, 
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1]) and the auto-encoder validator (normalized to [0, 255]) could corrupt 

downstream analyses. Additionally, frameworks like TensorFlow lack native 

support for versioning components, complicating updates. If the StyleGAN 

artifact detector is upgraded to handle StyleGAN3-generated images, 

dependency conflicts may arise if the new detector’s output tensor shapes 

(e.g., [B, C, 256, 256]) deviate from the input expectations of downstream 

components like the frequency-domain analyzer (which expects [B, C, 224, 

224]). Without tools like MLflow to track component versions and validate 

input/output compatibility, this mismatch could corrupt the analyzer’s spectral 

artifact detection.  

 

Discussion: CBD is the most suitable methodology for deepfake detection, as it 

supports modularity, generalization, and adaptability, enabling targeted updates 

and integration of new detection components without requiring full system 

retraining. 

 

2.2.5 Spiral Methodology 

The Spiral model, introduced by Boehm (1986), combines iterative 

development with systematic risk analysis. It progresses through four phases—

planning, risk analysis, engineering, and evaluation—repeated in cyclical loops. 

This methodology is particularly suited for high-risk, complex projects that 

require continuous risk management, making it a good fit for deepfake detection 

systems, which must address evolving adversarial techniques and ethical 

concerns. 

 

 

Figure 18: Sample Structure of Spiral Development Approach (Talreja, 2024) 
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Relevance to the Project: 

The Spiral model’s risk-driven iterations are uniquely suited to the component-

based architecture of this deepfake detection system, where modular 

components (e.g., StyleGAN validators, auto-encoder analyzers) require 

continuous refinement against evolving adversarial threats. In Iteration 1, the 

focus could be on mitigating dataset bias within the StyleGAN artifact 

detector by curating ethnically diverse training data from FaceForensics++ and 

Celeb-DF. This ensures the component’s robustness across demographics—

critical for real-world deployment. Iteration 2 would target generalization 

failure by refining the CycleGAN face-swap validator and StarGAN attribute 

editor detector to handle unseen architectures like diffusion models. Cross-

component testing would validate interoperability, such as ensuring 

the frequency analyzer’s outputs align with the GAN classifier’s input 

requirements. 

Early prototyping in Spiral’s engineering phase accelerates the deployment of 

lightweight, standalone components. For instance, a baseline GAN artifact 

detector could be prototyped in Iteration 1 using PyTorch, tested on synthetic 

StyleGAN data, and later expanded in Iteration 2 to include a CRN-based 

texture validator for detecting perceptual loss-generated forgeries. This phased 

approach ensures incremental scalability while maintaining system coherence. 

Spiral’s holistic risk management concurrently addresses technical and ethical 

risks. During Iteration 3, specific compliance like GDPR could be integrated 

into the auto-encoder validator’s data handling protocols, while fairness audits 

would evaluate bias in the Face2Face expression detector across gender and 

ethnicity subgroups. This dual focus ensures ethical rigor without compromising 

technical performance. 

However, Spiral’s resource intensity poses challenges for a component-based 

system. Frequent prototyping of interdependent modules demands 

robust version control and documentation. For example, retraining the diffusion 

model validator in Iteration 4 might require backward compatibility checks with 

the connector unit to avoid system fragmentation. 
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Discussion: The Spiral model offers significant advantages in risk management 

and iterative prototyping, making it an effective methodology for addressing the 

evolving challenges of deepfake detection. However, its resource demands and 

complexity may pose challenges in terms of project management and timeline. 

 

 

2.2.6 Comparative Analysis of Methodologies 

Table 4 provides a comparative analysis of key development methodologies—

Waterfall, Agile, Component-Based Development (CBD), and Spiral—

evaluating their suitability for the project’s dynamic requirements. This 

comparison highlights critical trade-offs in adaptability, risk management, and 

scalability, with CBD and Spiral emerging as strong candidates due to their 

modular design and iterative risk-assessment capabilities.  
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Table 4: Comparative Analysis on Different Development Methodologies 

 

Aspect Waterfall Agile Component-Based Spiral

Generalization Support

Low : Static design fails to 

adapt to new architectures 

(e.g., diffusion models).

Moderate : Iterative 

updates improve 

single components 

(e.g., GAN detectors).

High: Modular 

components (e.g., 

StyleGAN validator, auto-

encoder analyzer) reuse 

features across datasets 

(FaceForensics++, Celeb-

DF).

High: Risk-driven iterations 

target cross-architecture 

gaps (e.g., CycleGAN → 

StarGAN).

Adaptability

Poor : Requires full 

retraining for new 

components (e.g., adding a 

CRN validator).

High: Rapid 

prototyping of 

individual modules 

(e.g., frequency 

analyzer).

High: Independent 

updates (e.g., upgrading 

Face2Face detector 

without affecting GAN 

validators).

Moderate : Controlled 

iterations balance new 

component integration (e.g., 

diffusion models) with 

system stability.

Risk Management

Low : Late-stage testing 

misses component 

interoperability issues.

Low : Reactive 

handling of biases 

(e.g., ethnic 

imbalance in training 

data).

Moderate : Modular 

isolation limits system-

wide failures but lacks 

ethical audits.

High: Proactive risk 

mitigation (e.g., quarterly 

GDPR audits for connector 

units).

Real-World Deployment

Delayed : "Big bang" 

deployment risks 

incompatibility (e.g., 

mismatched APIs).

Fast but 

fragmented : 

Components (e.g., 

audio deepfake 

detector) lack 

cohesion.

Structured: 

Standardized connectors 

(e.g., REST/JSON APIs) 

ensure seamless 

integration.

Controlled iterations: 

Phased rollout (e.g., validate 

StyleGAN detector → auto-

encoder → diffusion model).

Resource Demand

Low : Minimal overhead but 

incompatible with dynamic 

deepfake evolution.

Moderate : Sprint 

cycles require team 

coordination but 

reduce rework.

Moderate : Upfront 

design for component 

interfaces (e.g., 

TensorFlow SavedModel 

formats).

High: Frequent prototyping 

(e.g., testing CRN validators) 

and risk analysis (e.g., 

fairness metrics).
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2.2.7 Summary: 

The component-based deepfake detection project requires a methodology that 

can effectively balance rapid adaptability, robust risk management, and modular 

scalability. After evaluating various development approaches, including 

traditional Waterfall, Agile, Component-Based Development (CBD), and Spiral 

methodologies, the decision was made to adopt a hybrid Agile-Spiral approach. 

This decision is motivated by the need to leverage Agile’s rapid iteration and 

prototyping capabilities, while also integrating Spiral’s systematic risk 

management to ensure that both technical and ethical challenges are addressed 

in a structured manner. Additionally, incorporating CBD principles ensures the 

system's modularity, scalability, and generalization across diverse datasets and 

adversarial techniques. 

 

Table 5: Rating of Hybrid Agile-Spiral Approach in different aspect 

Aspect Hybrid Agile-Spiral 

Generalization 

Support 
Very High (modular + risk-driven) 

Adaptability Very High (Agile + CBD modularity) 

Risk Management Very High (Spiral cycles + ethics) 

Real-World 

Deployment 
Structured + Controlled (CI/CD + risk phases) 

Resource Demand High (balanced via Agile efficiency) 

 

 

The hybrid Agile-Spiral framework combines key features from both 

methodologies. Agile sprints, which typically last 2–4 weeks, will focus on 

rapidly developing and prototyping individual detection components, such as 

GAN artifact detectors and frequency analyzers. Continuous integration and 

deployment (CI/CD) tools will be used to automate the testing of these 

components against new datasets and models, ensuring that the system stays up-

to-date with evolving deepfake techniques. At the same time, Spiral cycles will 

guide the project through quarterly risk assessments, addressing both technical 
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risks and ethical concerns. The combination of rapid prototyping and risk 

management ensures a comprehensive, adaptable development process. 

The use of Component-Based Development (CBD) further supports the hybrid 

approach by ensuring the deepfake detection system remains modular and 

scalable. By developing decoupled components, such as an auto-encoder 

validator or an audio deepfake detector, the system can be updated 

incrementally as new models and techniques are introduced. Connector units, 

such as standardized APIs, ensure that these components work seamlessly 

together, allowing for easy integration of new modules without disrupting the 

overall system. 

 

Such hybrid methodology offers several benefits, including enhanced 

adaptability, improved generalization across datasets, better ethical compliance, 

and scalability for cloud-based deployment. The implementation roadmap is 

divided into three phases, each aligning Agile sprints and Spiral cycles. In the 

first phase, the focus will be on developing a baseline detector and mitigating 

dataset bias. In subsequent phases, cross-architecture performance will be 

evaluated, and ethical audits will ensure the system meets compliance standards. 

In conclusion, the hybrid Agile-Spiral approach is the optimal strategy for this 

deepfake detection project, combining the flexibility of Agile, the structured risk 

management of Spiral, and the modularity of CBD. This approach will ensure 

the system remains adaptable, scalable, and ethically sound as it evolves to meet 

the challenges of deepfake detection. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 METHODOLOGY 

3.1.1 Introduction 

This methodology outlines the systematic process for developing a ensemble 

deepfake detection system, emphasizing user-centric design, modular 

architecture, and ethical compliance. The workflow is divided into three core 

phases: Front-End Development, Back-End Development, and System 

Integration. Each phase ensures that the system remains adaptable, scalable, and 

ethically sound, addressing the needs of end-users while incorporating 

continuous feedback loops. 

 

 

3.1.2 Stage 0: Exploration, Prototyping, and Model Training  

The process commenced with Stage 0, where baseline models were deployed 

and trained to establish comparative performance benchmarks. Initial feasibility 

tests were carried out in a Jupyter Notebook environment 

(model_deployment.ipynb on Google Colab), where multiple architectures — 

including Xception, CapsuleNet, and YOLO — were instantiated to validate the 

viability of deepfake detection across diverse model families. In parallel, 

dedicated training was performed for four selected detectors: EfficientNet-B4, 

Meso4, MesoInception, and UCF. These model are selected due to high 

accuracy and performance in review of Deepfakebench. (May refer back to 

Literature Review Chapter) Among these, EfficientNet-B4 was integrated as the 

principal detector within the ensemble framework, while Meso4, MesoInception, 

and UCF served primarily as baselines for comparative analysis of the final 

system. Additional pretrained detectors were incorporated from team 

contributions, thereby broadening the comparative scope. A simple ensemble 

based on majority voting was also implemented to examine the benefits of 

model fusion. Deliverables from this stage included reproducible training logs, 
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hyperparameter records, and baseline evaluation metrics (accuracy, precision, 

recall) across curated test sets. 

 

3.1.3 Stage 1: Foundational Component Development 

With these baselines established, Stage 1, introduced the modular infrastructure 

required for a scalable system. A unified detector framework 

(unified_detector.py) was engineered to abstract preprocessing, model loading, 

inference, and result serialization into a consistent API contract. This was later 

extended into a configuration-driven variant that consumed YAML/JSON 

specifications, enabling detectors to be registered and instantiated dynamically 

without code-level changes. Complementing this, single-model wrappers 

(single_model_detector_wrapper.py) were introduced to encapsulate individual 

detectors, ensuring isolated execution and streamlined benchmarking. This 

stage also introduced hyperparameter tracking systems, which ensured that 

model configurations (e.g., optimizer choice, learning rate schedules, batch size) 

were systematically documented and could be replicated across experiments. 

Exit criteria for this stage included successful encapsulation of representative 

models and validation of standardized output schemas. 

 

3.1.4 Stage 2: Hardened Deployment and Orchestration  

Stage 2 concentrated on system reliability and engineering discipline. No new 

model training was introduced at this stage; instead, emphasis was placed on 

transforming the system into a robust service layer. Key engineering practices 

included the integration of Continuous Integration/Continuous Deployment 

(CI/CD) pipelines on Git Action to automate testing and ensure reproducibility, 

as well as the implementation of validation harnesses that enforced correctness 

across detectors. Fault-tolerant orchestration mechanisms were introduced to 

allow concurrent inference requests, supported by asynchronous execution 

strategies that minimized latency under load. Performance benchmarks were 

systematically defined, including sub-500ms average inference latency per 

image, throughput exceeding 1,000 requests per day, and resilience to 

malformed or corrupted inputs. Spiral reviews at this stage prioritized risk 
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reduction in three domains: scalability under concurrent requests, resilience to 

adversarial perturbations, and maintainability of code across multiple 

contributors. 

 

3.1.5 Stage 3: Ensemble Aggregation and Cross-Domain Evaluation 

In Stage 3: Ensemble Aggregation and Cross-Domain Evaluation, the platform 

advanced from a collection of isolated detectors into an integrated ensemble 

system. Ensemble v1 provided a minimal baseline with sequential and parallel 

voting, while Ensemble v2 introduced a configuration-managed aggregation 

framework capable of performing confidence-weighted fusion, adaptive 

thresholding, and uncertainty estimation. This evolution culminated in the 

ensemble_detector package, a production-grade framework encapsulating 

dynamic routing, advanced logging, structured error handling, and performance 

monitoring. The most significant addition at this stage was the development of 

an API server module, which exposed the ensemble detection capabilities 

through RESTful endpoints. These endpoints adhered to a contract-driven 

design, accepting JSON-formatted image payloads and returning structured 

responses including prediction labels, confidence scores, optional heatmaps, 

and standardized error codes. By establishing this API, the ensemble detector 

was transformed from a research prototype into a consumable service aligned 

with service-oriented architecture principles. 

 

3.1.6 Stage 4: Modularization, Productionization, and Integration 

Finally, Stage 4: Modularization, Productionization, and Integration completed 

the transformation of the platform into a deployable system with front-end 

accessibility. The detector_output_wrapper module enforced output 

standardization across JSON, XML, and Python dictionary formats, while the 

ensemble_detector package acted as the inference engine exposed via its API 

server. Integration was realized through a Laravel web application, which 

operated as the user-facing interface. The Laravel system consumed the API 

endpoints, authenticated users, and enforced role-based access control. General 

users interacted with the platform through a simplified drag-and-drop interface 
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that returned binary “real/fake” classifications, with visualized component-level 

metrics. Administrators could activate or deactivate detection modules directly 

through the Laravel interface, effectively managing system configurations at 

runtime without requiring redeployment. Production readiness was reinforced 

through observability features, including log aggregation, error alerting, 

performance dashboards, and rollback procedures. In addition, ethical 

safeguards were embedded into the production pipeline, including demographic 

fairness auditing, which ensured that disparities in false positive rates across 

different demographic groups did not exceed five percent. Spiral reviews 

continued at this stage to reassess new risks, such as the emergence of novel  

deepfake generation methods and the accumulation of technical debt. 

 

 

3.2 Project Work Plan 

3.2.1 Introduction 

This project work plan is designed to deliver a robust, ethical, and scalable 

deepfake detection system utilizing ensemble methods with a strong focus on 

modularity, flexibility, and performance. The project follows a hybrid Agile-

Spiral methodology, ensuring controlled increments, continuous feedback, and 

risk management. The work plan is organized into four distinct phases, each 

with a clear focus, milestones, and risk management strategies. 

 

3.2.2 Phase 1: Front-End Development (Weeks 1–4) 

 

Objective: Build a user-centric interface that is intuitive, accessible, and 

compliant with ethical standards. The front-end will be developed in an iterative 

process with continuous user feedback and usability testing. 

Key Features: 

• User Interface (UI) Design: The UI will provide an easy-to-use platform 

for both technical and non-technical users, ensuring accessibility. 

• Iterative Development: Regular usability testing and feedback will be 

incorporated to improve user experience. 
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• Ethical Transparency: Clear information on data usage, system functions, 

and model explanations will be provided to the users. 

 

Milestone 1:  

• Prototype of the UI ready for internal review and feedback. 

• Risk Assessment: Week 4 review to assess UI usability, ethical 

transparency, and potential biases in design. 

 

Table 6: Key Element in (Phase 1) 

Task Details Timeline 

UI Design and 

Implementation 

Initial prototype based on user 

feedback and iterative testing 
Week 1–3 

Ethical Transparency 

Integration 

Ensure all relevant ethical data 

and model behavior is clearly 

communicated to users 

Week 2–3 

Feedback and 

Usability Testing 

Continuous user feedback, 

adjustments, and refinement 
Week 3–4 

 

 

3.2.3 Phase 2: Back-End Development (Duration: Weeks 5–9) 

 

Objective: Develop modular detection components for the system. This phase 

focuses on building the core back-end infrastructure and ensuring model 

validation and version control. 

Key Features: 

• Modular System: Independent model wrappers for different deepfake 

detection models, with standardized input and output formats. 

• Version Control and Risk Management: Rigorous validation and testing 

procedures to ensure robustness and performance. 

• Ensemble Integration: Assemble multiple detection models into an 

ensemble system for improved accuracy and resilience. 
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Milestone 2:  

• Completion of back-end components, with a fully operational pipeline ready 

for integration. 

• Risk Assessment: Week 9 review to evaluate model robustness, fairness, 

and potential technical debt. 

 

Table 7: Key Element in (Phase 2) 

Task Details Timeline 

Model Wrapper 

Development 

Build and integrate wrappers for 

individual models (e.g., YOLO, 

Xception, EfficientNet) 

Week 5–7 

Model Validation and 

Testing 

Evaluate models on performance 

benchmarks (accuracy, precision, 

recall, etc.) 

Week 6–8 

Ensemble System 

Development 

Implement initial ensemble 

model  
Week 7–9 

 

 

3.2.4 Phase 3: System Integration (Duration: Weeks 10–12) 

 

Objective: Integrate all the system components into a unified platform. The 

focus will be on finalizing the back-end and front-end integration, ensuring 

performance benchmarks, and final risk assessments. 

Key Features: 

• Seamless Integration: Integration of back-end detection models with the 

front-end Laravel UI for real-time user interaction. 

• Risk Monitoring: Continuous monitoring of system performance, 

identifying any potential issues such as technical debt and system 

vulnerabilities. 

• Final Testing and Deployment: Ensure the system meets all functional and 

non-functional requirements, including scalability and robustness. 
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Milestone 3:  

• Deployment of the complete system for end-user access. 

• Risk Assessment: Final audit of ethical compliance, system stability, and 

technical debt management. 

 

Table 8: Key Element in (Phase 3) 

Task Details Timeline 

Back-End and Front-

End Integration 

Integrating ensemble model, 

backend logic, and front-end UI 
Week 10–11 

Performance 

Optimization 

Ensure the system meets 

performance benchmarks 

(throughput, inference time, 

scalability) 

Week 11 

Final Testing and 

Deployment 

Test all system components, fix 

bugs, and deploy the final version 

for user access 

Week 12 
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3.2.5 Expected Project Tools: 

The selected development tools directly support the iterative refinement of deepfake detection components and the risk-driven validation cycles 

outlined in the work plan. These tools are integral to the system's development, ensuring alignment with the objectives of accuracy, scalability, and 

ethical compliance. Below is an overview of the tools and their applications in the project 

 

Table 9: Table of Expected Tools Involved in Development 

Tool Purpose Application in the Project 

TensorFlow / PyTorch 

Deep learning frameworks for 

building and training detection 

models 

Facilitate rapid prototyping of deepfake detection models. These 

frameworks power the individual models within the ensemble system, 

ensuring robust and efficient model training. 

Google Colab / Kaggle 

Cloud-based notebooks for 

collaborative development and 

experimentation 

Provide an interactive development environment where models are trained 

and tested in real-time. Supports easy experimentation with different 

deepfake detection architectures. 

Visual Studio Code 
Code editor for writing, testing, and 

debugging the code 

Used for writing and editing Python scripts, model implementation, and 

managing version control via Git. Provides a rich environment for 

development with support for various plugins. 

Laravel 
PHP framework for backend 

development and API integration 

Used for building the backend of the project, handling server-side logic, 

model management, and user authentication. Integrates with the deepfake 

detection system through APIs. 
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Docker 

Containerization platform for 

packaging applications and 

environments 

Ensures consistent environments across development, testing, and 

production. It packages the models and dependencies into containers for 

easy deployment and scalability. 

GitHub 
Version control and collaboration 

platform 

Manages the source code and enables collaboration among team 

members. Tracks code changes and provides integration with Continuous 

Integration (CI) systems. 

TensorBoard 

Visualization toolkit for tracking 

model metrics and performance 

during training 

Helps visualize training metrics such as loss and accuracy during model 

development. Assists in monitoring model improvements and comparing 

performance across various experiments. 

Laravel (Frontend 

Integration) 

Framework for frontend API 

interaction 

Laravel provides backend management for the user interface where the 

deepfake detection results are displayed, ensuring seamless integration 

with frontend components. 
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3.3 System Design and Requirements 

 

3.3.1 Introduction 

The preliminary result of this project outline the system specifications, ensuring 

alignment with the core objectives of generalization, accessibility, and 

scalability in deepfake detection including functional and non-functional 

requirements, use case descriptions, and architectural workflows that define the 

proposed web platform’s capabilities.  

 

3.3.2 Project Specification 

 

3.3.2.1 Functional Requirement: 

 

Table 10: Functional Requirements 

FR 

Code 
Requirement Description Priority 

FR-001 
User Authentication 

and Role Management 

The system distinguishes between 

Normal Users and Administrators. 

Normal users can access detection 

functions, while administrators 

manage models and monitor 

performance. 

High 

FR-002 
Image Upload and 

Validation 

Users upload images (JPEG, PNG, ≤4 

MB). Uploaded files are validated for 

type, size, and resolution. Invalid 

inputs return meaningful error 

messages. 

High 

FR-003 
Single-Model and 

Ensemble Detection 

Users can select either a single 

detection model or an ensemble of 

models. The chosen model(s) 

High 
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process the image, and results are 

returned with confidence scores. 

FR-004 Detector Execution 

Each model wrapper preprocesses 

inputs, performs inference, and 

produces standardized outputs 

(label, confidence, inference time). 

High 

FR-005 Ensemble Aggregation 

The ensemble engine supports 

majority voting and confidence-

weighted strategies, combining 

predictions from multiple detectors. 

The system tolerates failure of 

individual models. 

High 

FR-006 Result Presentation 

The Laravel front end displays 

detection results (“real” or “fake”) 

with confidence scores. If ensemble 

mode is selected, both per-model 

outputs and the aggregated 

ensemble result are shown.  

High 

 

 

 

3.3.2.2 Non-functional Requirement: 

 

Table 11: Non-Functional Requirements 

NFR 

Code 
Requirement Description Priority 

NFR-001 Performance 

Images must be processed within ≤800 ms 

on average and ≤1200 ms at the 95th 

percentile. 

High 

NFR-002 
Accuracy and 

Generalization 

Ensemble detection must achieve ≥90% F1-

score on benchmark datasets and not lose 
High 



55 

 

 

more than 5% AUROC in cross-domain 

evaluations. 

NFR-003 Scalability 

The system must handle ≥1,000 daily 

requests with 99.9% uptime, supporting 

deployment in containerized environments. 

High 

NFR-004 Reliability 

The system must return results even if one 

or more models fail, using retries and 

timeouts for resilience. 

High 

NFR-005 Security 

File uploads must be sanitized, HTTPS must 

secure communications, and user data 

must not persist beyond inference. 

High 

NFR-007 Maintainability 

New models can be integrated via 

configuration files without altering core 

code. APIs must comply with OpenAPI 3.0. 

Medium 

NFR-008 Usability 

The interface must remain simple and 

intuitive, allowing non-technical users to 

select detection type (single model vs 

ensemble) and view clear outputs. 

Medium 

 

 

3.3.2.3 Use case Diagram 

This use case diagram (Figure 25) visualizes the core interactions between users 

and the proposed deepfake detection system, encapsulating key functionalities 

such as media upload, component selection, and report generation. By mapping 

roles (e.g., General User, Admin) to system capabilities, this diagram clarifies 

how the platform balances accessibility for non-experts with advanced controls 

for administrators. 
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Figure 19: Use Case Diagram 

 

 

 

3.3.2.4 Use Case Description: 

The use case descriptions in this section expand on the interactions outlined in 

the use case diagram (Figure 25), providing granular insights into system 

workflows such as user authentication, media processing, and component 

management. By detailing step-by-step scenarios—from General Users 

uploading images for detection to Admins integrating new modules. 

 

Use Case Name: Login  ID: UC-

001 

Importance Level: high 

Primary Actor: User 

(General User/Admin) 

 

Use Case Type: Brief, Real 



57 

 

 

Brief Description:  Users (both general and admin) must log in to the system 

to access the functionalities based on their role. The system checks the 

credentials, grants access and logs them in to the appropriate interface. 

Precondition:  The user must have registered an account. The user is on the 

login page. 

Postcondition:  The user is authenticated and logged in, redirected to their 

respective home page or dashboard based on their role. 

Relationships: 

 Association : User 

 Include : n/a 

 Extend  : Register Account (UC-002) 

 Generalization: n/a 
 
Normal Flow of Events: 

1. User Navigates to Login Page: The user opens the login page of the 

web application. 

2. User Enters Credentials: The user enters their username and 

password in the login form. 

3. System Verifies Credentials: 

3.1 The system checks the entered username and password against 

the stored data. 

3.2 If the credentials are correct, the system proceeds to step 4. 

3.3 If the credentials are incorrect, the system displays an error 

message (see Exception Flow). 

4. System Authenticates User: The system authenticates the user, 

assigns the correct role (General User or Admin), and grants access 

to the system. 

5. System Redirects User: The user is redirected to their respective 

home page based on their role (either General User Dashboard or 
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Admin Dashboard). 

 

Sub-flows:  

- 

Alternate/Exceptional Flows: 

• Invalid Credentials: If the user enters incorrect login details: 

o The system will display an error message like "Invalid 

username or password". 

o The user can try again with correct credentials. 

• Network Issue: If the system cannot connect to the database due to a 

network error, an error message "Network error, please try again" 

will be displayed, and the user must retry later. 

 

Use Case Name:  Register ID:  UC-

002 

Importance Level: high 

Primary Actor: User 

(General User) 

 

Use Case Type: Brief, Real 

Brief Description:   A new user registers by providing necessary details. After 

registration, they can log in and access the system. 

Precondition:   The user is not already registered. The user is on the 

registration page. 

Postcondition:   The user account is created, and they are redirected to the 

login page to enter their credentials. 

Relationships: 

 Association : User 

 Include : n/a 
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 Extend  : Register Account (UC-002) 

 Generalization: n/a 
 

Normal Flow of Events: 

1. User Navigates to Register Page: The user clicks on the "Register" 

link and is taken to the registration page. 

2. User Enters Registration Details: The user fills in the required 

fields like name, email, password, and other necessary details. 

3. System Validates Input: The system checks if all required fields are 

filled and if the email is valid. 

3.1 If the inputs are valid, the system moves to step 4. 

3.2 If any input is invalid (e.g., missing field or invalid email 

format), the system prompts the user to correct the error. 

4. System Creates User Account: The system creates a new account 

in the database with the entered details and stores the user's 

credentials securely. 

5. System Redirects to Login Page: The user is redirected to the login 

page with a message confirming that their account has been created. 

Sub-flows:  

- 

Alternate/Exceptional Flows: 

Alternative Flow(s): 

• Email Already Registered: If the user attempts to register with an 

already used email: 

o The system will show a message like "This email is already 

registered" and prompt the user to use a different email or log 

in if they already have an account. 

Exception Flow(s): 
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• System Error During Registration: If there is an issue with the 

database or server while creating the account, an error message will 

be displayed (e.g., "An error occurred while creating your account, 

please try again later"). 

 

Use Case Name:   Detect 

Image 

ID:   UC-

003 

Importance Level: high 

Primary Actor:  User [General 

User, Admin ] 

Use Case Type: Detail, Real 

Brief Description:    The user uploads an image to be analyzed by the deepfake 

detection model. The system processes the image and returns a prediction 

with a confidence score. 

Precondition:    The user must be logged in and on the detection page. 

Postcondition:    The user must be logged in and on the detection page. 

Relationships: 

 Association : User 

Include  : n/a 

 Extend  : n/a 

 Generalization: n/a 
 
Normal Flow of Events: 

1. User Selects "Detect Image" Option: The user selects the option to 

detect deepfakes from the available dashboard or menu. 

2. User Uploads Image: The user selects and uploads an image file 

(JPEG, PNG). 

3. System Validates Image: The system checks the file type and size. 

If the image is invalid (e.g., too large, wrong format), the system 

prompts the user to upload a valid image. 
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4. System Preprocesses Image: The image is passed through a 

preprocessing pipeline (e.g., resizing, normalization) to make it 

ready for model input. 

5. User Select Detect Choice: Single model or ensemble, if single 

model selected, user will be prompted to choose which model to use 

6. System Detects Deepfake: The system runs the preprocessed image 

through the selected model(s) and returns the prediction result, 

including the label ("REAL" or "FAKE") and confidence score. 

7. System Displays Result: The result is displayed to the user on the 

front end, showing the prediction label, confidence score, and any 

additional relevant information (e.g., model used). 

Sub-flows:  

- 

Alternate/Exceptional Flows: 

Alternative Flow(s): 

• Invalid Image Format or Size: If the uploaded image doesn't meet 

the size or format requirements: 

o The system prompts the user to upload a valid image with the 

appropriate format and size. 

Exception Flow(s): 

• Model Processing Error: If the model fails during inference (e.g., 

due to a corrupted model or system crash), an error message is 

displayed, and the user is instructed to try again later. 
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Use Case Name:    Check Result 

History 

ID:   UC-00 Importance Level: 

high 

Primary Actor:  User [General 

User, Admin ] 

Use Case Type: Detail, Real 

Brief Description:     Users can view their previously uploaded images along 

with the results of deepfake detection. 

Precondition:     The user must be logged in, and there should be previously 

processed images in the system. 

Postcondition:     The user can view a list of past detection results, including 

the images and corresponding predictions. 

Relationships: 

 Association : User 

 Include   : n/a 

 Extend  : n/a 

 Generalization: n/a 
 
Normal Flow of Events: 

1. User Selects "Check Result History" Option: The user navigates 

to the history section on the dashboard. 

2. System Retrieves Historical Data: The system queries the database 

for the user's previous detection results. 

3. System Displays Results: The system displays the past results, 

including the image and its predicted label (REAL/FAKE) along 

with the confidence score. 

Sub-flows:  

- 

Alternate/Exceptional Flows: 

Alternative Flow(s): 
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• No Previous Results: If the user has no previous detection results, 

the system will display a message like "No results found" or prompt 

the user to upload an image for detection. 

Exception Flow(s): 

• System Error During Data Retrieval: If the system encounters a 

problem while fetching results (e.g., database issues), an error 

message will be shown. 

 

Use Case Name:     Manage Model ID:    UC-

005 

Importance Level: 

high 

Primary Actor:  Admin Use Case Type: Detail, Real 

Brief Description:      The admin manages the deepfake detection models in 

the system, including enabling, disabling, or updating model configurations 

Precondition:      The user must be an Admin, and the system should have at 

least one model in the system. 

Postcondition:      The system's model configurations are updated accordingly. 

Relationships: 

 Association : Admin 

 Include : n/a 

 Extend  : n/a 

 Generalization: n/a 
 
Normal Flow of Events: 

1. Admin Selects "Manage Model" Option: The admin navigates to 

the model management section. 

2. Admin Modifies Model Configurations: The admin can enable, 

disable, or update, upload new model file, weight or delete the 

configurations of available models. 
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3.3.3 High Level System Flow Diagram: 

The high-level system flow diagram (Figure 26) synthesizes the use case 

scenarios and technical specifications into a cohesive visual blueprint, 

illustrating the end-to-end workflow of the deepfake detection platform. From 

user-initiated media uploads to backend processing via modular components, 

this diagram clarifies how data traverses the system, emphasizing critical 

decision points such as dataset validation. 

 

3. System Updates Model Configurations: The system saves the 

changes to the model configurations, which could include updating 

the model’s path, enabling/disabling it, or changing its processing 

parameters. 

4. System Confirms Changes: The system confirms the success of the 

update and applies changes to the active model configurations. 

Sub-flows:  

- 

Alternate/Exceptional Flows: 

Alternative Flow(s): 

• Invalid Configuration Input: If the admin provides incorrect 

configuration details, an error message will be shown, and the 

system will prompt the admin to correct it. 

Exception Flow(s): 

• Access Denied: If a non-admin user attempts to access the model 

management page, an "Access Denied" message will be shown. 
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Figure 20: High Level System Flow Diagram 

 

3.3.4 System Architecture Diagram 

The System Architecture Diagram provides a detailed view of the structure and 

interaction flow of the Deepfake Detection System. It is organized into several 

distinct layers, each serving a specific function in the overall architecture. 

 

Key Components: 

 

Frontend Layer: 

The React Component handles the user interface (UI), enabling users to 

interact with the application. It communicates with the backend API to 

request image uploads, predictions, and detection results. The View 
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represents the visual output, displaying results and providing interaction 

points for users to upload files and adjust settings. 

 

Backend Layer: 

The Laravel Router manages API routing by directing requests to the 

appropriate controllers such as DetectionController, AdminController, and 

UserController, while the Authentication Middleware ensures secure access 

by verifying user identity and roles (user/admin). 

 

Business Logic Layer: 

The Detection Service powers the core detection process by working with 

both image processing and machine learning components, while the Model 

Management Service oversees deepfake detection models, handling tasks 

like loading configurations, retraining, and updates. The User Service 

supports user-related functions, including managing data, authentication, 

and role assignments. 

 

ML Processing Layer: 

The Ensemble Detector System serves as the main machine learning engine 

for deepfake detection, leveraging multiple models like Xception, 

EfficientNet, and YOLO. Supporting it, the Preprocessing Pipeline prepares 

images through steps such as resizing and normalization, while the 

DataLoader ensures proper loading and preparation of image data. A 

Wrapper provides a unified interface to integrate various detection models 

seamlessly into the ensemble, and the Ensemble API Server manages 

prediction logic, combining results from different models to deliver final 

outputs. 

 

Data Layer: 

The MySQL Database manages structured data such as user information, 

uploaded image metadata, model configurations, detection results, and 
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system events, while the File Storage system is responsible for storing 

uploaded image files and model weights. 

 

This architecture ensures a modular and scalable deepfake detection system that 

integrates various components, such as machine learning models, user 

management, and detection workflows, while maintaining high performance 

and flexibility for future updates and improvements. 

 

 

Figure 21: System Architecture Diagram 

 

3.3.5 ERD diagram (Laravel Web Application) 

This Entity Relationship Diagram (ERD) illustrates the key relationships and 

structure of the database for the Deepfake Detection System. The ERD provides 

an overview of how different entities in the system, such as Users, Uploaded 

Images, Detection Results, Model Configurations, and System Events, interact 

with each other. 

Key Entities: 

Users: Stores information about the system's users, including their roles 

(e.g., admin, general user). 

Uploaded Images: Contains metadata for each image uploaded by users for 

detection, including file information and storage paths. 
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Detection Results: Holds the output of the deepfake detection process, 

including prediction results, model details, and confidence scores. 

Model Configs: Contains configuration data for individual machine 

learning models, such as model type, parameters, and settings for each 

detection model. 

System Events: Tracks system-related events like model performance, 

system errors, or actions triggered by users for auditing and monitoring 

purposes. 

 

Relationships: 

Users in the system can upload multiple images and generate multiple detection 

results, establishing a direct link between each user, their uploaded images, and 

the corresponding outcomes. Uploaded images are analyzed and tied to 

detection results, ensuring that every image has a clear detection outcome. Each 

detection result is further connected to single or a list of model configuration, 

indicating which models were used for analysis. Additionally, system events are 

tracked and associated with users to monitor actions and events triggered within 

the system, providing a complete view of user activity and system interactions. 

 

 

Figure 22: ERD Diagram 
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3.3.6 Image Detection Sequence Diagram 

This sequence diagram illustrates the end-to-end workflow of the deepfake 

detection system. It begins with the user uploading an image through the web 

interface, which triggers the Laravel API to handle the request. The image file 

is stored in file storage, while metadata is saved in the database. Once stored, a 

detection request is initiated, passing the image to the Ensemble API. The 

Ensemble System coordinates multiple models to perform predictions, 

aggregates the results, and returns a consolidated detection outcome. Finally, 

the Laravel API saves the detection result in the database and delivers the 

response back to the user interface for result display.  

 

 

Figure 23: Detect Image Sequence Diagram 
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3.4 Test Plan 

3.4.1 Introduction 

The testing strategy for the ensemble deepfake detection system was developed 

with the explicit aim of ensuring that every implemented feature was rigorously 

validated. Rather than testing hypothetical or future features, the focus remained 

on the actual codebase, thereby aligning the evaluation with the project’s scope 

and objectives. The test plan was designed as a multi-layered process, moving 

from fine-grained unit tests through integration testing to a final end-to-end 

validation stage. In doing so, the strategy provides assurance that individual 

modules operate correctly in isolation, that these modules interact smoothly 

when combined, and that the complete system behaves reliably under realistic 

usage scenarios. Importantly, the test plan also covers both functional and non-

functional requirements, with attention to accuracy, latency, robustness, and 

fairness. 

 

3.4.2 Objectives 

The test plan aims to confirm that all functional modules of the system operate 

correctly under both normal and adverse conditions. It seeks to verify that 

system components integrate seamlessly, ensuring reliable end-to-end 

workflows. Additionally, the plan focuses on ensuring that performance goals, 

such as latency, throughput, and scalability, are met. The robustness of the 

system is also tested, particularly in handling errors, corrupted inputs, and 

concurrent requests. Finally, the test plan aims to demonstrate that the system's 

outputs meet the expected standards of accuracy, fairness, and usability, 

ensuring the platform performs as intended across a variety of scenarios. 

 

3.4.3 Test Suite Summary 

Total Tests Implemented: 44 

Table 12: Test Suite Summary 

Category Count Coverage Focus 
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Unit Tests 35 
Core modules (wrappers, configs, output 

formatting, ensemble aggregation) 

Integration 

Tests 
3 

Cross-module orchestration, configuration-

driven workflows, model integration 

Stress Tests 1 
Full system validation under production-like 

stress, including load and scalability 

Adversarial 

Tests 
5 

System robustness against compression, 

noise, format manipulation, and ensemble 

disruptions 

 

 

3.4.3.1 Unit Testing 

Unit testing formed the backbone of the test framework, accounting for thirty-

six test cases across seven critical modules. These tests were essential for 

validating correctness at the function and class level, ensuring that each building 

block of the system performed as intended. The Detector Output Wrapper, for 

example, required particularly thorough validation because of its role in 

harmonizing outputs from diverse models. Similarly, modules such as 

Configuration Management and DetectionResult were scrutinized to guarantee 

resilience against invalid inputs, schema mismatches, and serialization errors. 

The table below summarizes the unit test suites and their coverage: 

 

Table 13: Summary of Unit Test Cases 

Suite Tests Coverage Focus 

Detector 

Output 

Wrapper 

TC-DOW-001 

to TC-DOW-

008 

Initialization, configuration loading, 

method detection, output conversion, 

error handling, metadata extraction, 
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prediction invocation correctness, 

configuration integration (ensures proper 

behavior across model types and 

configuration formats). 

Detection 

Result 

TC-DR-001 to 

TC-DR-008 

Data structure validation, JSON and 

dictionary serialization, confidence score 

validation, timestamp handling, metadata 

preservation, integrity checks, and 

output detail levels (ensures correct 

formatting for JSON, CSV, and other 

export formats). 

Configuration 

Management 

TC-CM-001 to 

TC-CM-008 

YAML loading, schema compliance 

validation, model instantiation from 

configuration, configuration persistence, 

error handling for invalid configurations, 

environment variable overrides, fallback 

handling for incomplete configurations, 

and nested configuration structures. 

Ensemble 

Strategies 

TC-ES-001 to 

TC-ES-003 

Weighted average voting, majority 

voting, and confidence-based strategy 

(ensures correct ensemble decision-

making and aggregation of results from 

multiple models). 2 Test Skipped as the 

Ensemble System currently only support 

majority voting strategic 

Model 

Loading 

TC-ML-001 to 

TC-ML-002 

Configuration-driven model instance 

loading, model validation, and 

configuration verification (ensures 

models are loaded correctly from 

configuration files and validated against 

defined parameters). 
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Output 

Formats 

TC-OF-001 to 

TC-OF-003 

JSON compatibility, exporting multiple 

formats (FULL, MINIMAL, SIMPLE, 

DICT, LEGACY), and output formatting 

function (ensures consistent output in the 

required formats for easy integration and 

data exchange). 

Output 

Configuration 

TC-OC-001 to 

TC-OC-003 

Output configuration creation, validation 

of field mappings, and integration with 

output formatter (ensures output fields 

are correctly mapped and formatted 

according to the configuration settings). 
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List of Unit Test:  

Table 14: List of Unit Test Cases 

Test 

Case ID 
Test Case Name Purpose Test Focus 

Expected 

Outcome 
Success Criteria 

Test 

Timeout 

TC-

DOW-

001 

Wrapper 

Initialization with 

Real Model 

Validates that the 

DetectorOutputWrapper 

correctly initializes with a 

real model instance and can 

produce valid predictions. 

Wrapper 

initialization with a 

real model instance. 

Ensures that the 

wrapper sets 

attributes (e.g., 

model instance, 

model name) and 

produces valid 

predictions. 

The model should 

be successfully 

initialized and 

produce valid 

predictions without 

errors. 

The wrapper 

initializes correctly 

and calls the 

predict method 

within 5 seconds. 

10 

seconds 

TC-

DOW-

002 

Configuration 

Loading and 

Validation 

Ensures that the 

OutputConfig and other 

configuration files are 

correctly loaded and 

validated by the wrapper. 

Configuration 

loading, schema 

validation, and field 

mapping validation. 

The OutputConfig 

should load 

correctly, and field 

mappings should 

be correctly 

applied. 

All configuration 

files load correctly 

with valid field 

mappings and no 

errors. 

10 

seconds 

TC-

DOW-

003 

Model Method 

Detection and 

Interface 

Adaptation 

Verifies that the wrapper can 

automatically detect and 

handle different model 

prediction methods (predict, 

forward). 

Automatic detection 

of model prediction 

methods (predict, 

predict_single, 

forward) and 

adapting the 

The system should 

identify the correct 

method and use it 

to produce results 

without errors. 

The correct method 

is identified and 

used in under 1 

second, and valid 

predictions are 

returned. 

10 

seconds 



75 

 

 

wrapper 

accordingly. 

TC-

DOW-

004 

Prediction Method 

Invocation 

Validates that the wrapper 

correctly invokes the model's 

prediction methods and 

produces valid prediction 

results. 

Correct execution 

of model prediction 

methods and 

ensuring that 

parameters are 

passed correctly. 

Predictions are 

successfully 

executed with 

correct parameter 

passing, and the 

result contains 

valid confidence 

scores. 

Prediction results 

are returned with 

valid confidence 

scores, and method 

invocation 

completes within 5 

seconds. 

10 

seconds 

TC-

DOW-

005 

Output Format 

Conversion and 

Standardization 

Verifies that the system 

consistently converts model 

outputs into a standardized 

DetectionResult format. 

Conversion of 

model output 

formats (e.g., 

tuples, dicts, arrays) 

into the 

standardized 

DetectionResult 

format. 

The system should 

convert all model 

outputs into the 

DetectionResult 

format, ensuring 

consistent fields. 

Outputs are 

consistently 

converted into 

DetectionResult 

format with the 

required fields in 

under 5 seconds. 

10 

seconds 

TC-

DOW-

006 

Metadata 

Extraction and 

Preservation 

Ensures that metadata (such 

as confidence scores, 

timestamps) are correctly 

extracted and preserved. 

Metadata extraction 

and preservation 

during the model’s 

output conversion 

process. 

Metadata such as 

timestamps and 

confidence scores 

should be 

preserved 

accurately in the 

final output. 

All metadata fields 

(e.g., confidence, 

timestamp) are 

preserved correctly 

in the final output 

without data loss. 

10 

seconds 
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TC-

DOW-

007 

Error Handling for 

Invalid Models 

Tests the system's ability to 

handle invalid or 

problematic models, such as 

missing prediction methods 

or faulty models. 

Handling invalid 

model instances, 

missing prediction 

methods, or models 

that raise 

exceptions. 

Clear error 

messages should 

be raised for 

invalid models, 

with no system 

crashes. 

The system raises 

descriptive 

exceptions for 

invalid models and 

fails gracefully 

without crashes. 

10 

seconds 

TC-

DOW-

008 

Timeout Handling 

and Resource 

Management 

Verifies that the system 

correctly handles timeout 

scenarios and resource 

cleanup after a timeout or 

model failure. 

Prediction timeout 

scenarios, memory 

management, and 

resource cleanup 

after timeouts or 

failures. 

The system should 

terminate the 

prediction attempt 

in case of timeout 

and clean up 

resources without 

memory leaks. 

Timeouts are 

handled correctly, 

and resources are 

freed up 

appropriately. No 

memory leaks or 

crashes during 

execution. 

15 

seconds 

              

TC-DR-

001 

Detection Result 

Creation with 

Complete Data 

Verifies that the 

DetectionResult object is 

created with all required 

fields (e.g., label, 

confidence, is_fake). 

Creation of the 

DetectionResult 

object with all 

necessary fields, 

ensuring data 

integrity. 

The 

DetectionResult 

object should 

contain all required 

fields (label, 

confidence, 

is_fake, etc.). 

DetectionResult 

object created with 

valid values for all 

required fields. 

10 

seconds 
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TC-DR-

002 

Detection Result 

Data Validation 

Validates the data integrity 

and ensures correct data 

types and value ranges for 

fields in DetectionResult. 

Data validation for 

the confidence 

score, label values, 

and boolean fields 

in DetectionResult. 

Confidence scores 

should be within 

the valid range 

(0.0-1.0), and the 

label should be 

either 'REAL' or 

'FAKE'. 

Invalid data should 

be rejected, and 

valid data should 

be accepted, with 

appropriate 

validation. 

10 

seconds 

TC-DR-

003 

Dictionary 

Conversion and 

Serialization 

Verifies the conversion of 

DetectionResult to 

dictionary format and 

ensures no data loss during 

serialization. 

Conversion of the 

DetectionResult 

object to dictionary 

format and 

validating the 

structure and 

integrity. 

The dictionary 

format should 

retain all data 

fields, and nested 

objects should be 

serialized 

correctly. 

DetectionResult 

should convert to 

dictionary format 

with preserved data 

and correct 

structure. 

10 

seconds 

TC-DR-

004 

JSON Serialization 

and Deserialization 

Ensures that DetectionResult 

objects can be serialized into 

JSON and deserialized back 

without data loss. 

Serialization of the 

DetectionResult to 

JSON, followed by 

deserialization back 

into a valid object. 

The JSON 

produced should be 

valid and able to 

deserialize back 

into a 

DetectionResult 

object with intact 

data. 

JSON serialization 

and deserialization 

should preserve 

data integrity 

without errors. 

12 

seconds 

TC-DR-

005 

CSV Export 

Functionality 

Tests the ability to export 

detection results to CSV 

format, ensuring the correct 

generation of headers and 

data. 

Export of 

DetectionResult to 

CSV, verifying 

correct formatting 

The CSV file 

should have the 

correct headers and 

data values with 

Valid CSV output, 

with correct 

headers and data 

format for all 

fields. 

10 

seconds 
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and readability of 

the file. 

correct formatting 

for analysis. 

TC-DR-

006 

Confidence Score 

Validation and 

Calibration 

Verifies that the confidence 

score is within the valid 

range (0.0 to 1.0) and that 

calibration is accurate. 

Confidence score 

validation and 

calibration for edge 

cases (e.g., values 

near 0.0, 1.0, or 

very small values). 

Confidence scores 

should always be 

within the valid 

range and 

consistently 

calibrated to reflect 

the model's 

certainty. 

Confidence values 

should remain 

consistent and 

accurate for 

various inputs, and 

out-of-range values 

should be rejected. 

10 

seconds 

TC-DR-

007 

Timestamp 

Handling and Time 

Zone Support 

Tests the system's ability to 

handle timestamps in various 

formats and time zone 

conversions. 

Handling and 

storage of 

timestamps in 

various formats, 

including UTC 

conversion and time 

zone comparisons. 

The system should 

properly convert 

and store 

timestamps, 

respecting time 

zones. 

Timestamps should 

be accurately 

converted and 

stored, with correct 

handling of time 

zone differences. 

10 

seconds 

TC-DR-

008 

Metadata 

Preservation and 

Structure 

Verifies that metadata 

associated with 

DetectionResult is preserved 

and serialized correctly. 

Extraction, 

preservation, and 

serialization of 

metadata like model 

information, 

detection time, etc. 

All metadata fields 

should be 

preserved, 

serialized, and 

returned correctly 

along with the 

detection result. 

All metadata 

should be 

preserved and 

returned correctly, 

with no data loss or 

corruption. 

10 

seconds 
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TC-

CM-001 

YAML 

Configuration 

Loading and 

Parsing 

Verifies that YAML 

configuration files are 

correctly loaded and parsed 

by the system. 

YAML loading, 

schema validation, 

and ensuring the 

correct structure of 

configuration files. 

The YAML 

configuration file 

should be loaded 

and parsed 

correctly without 

errors. 

YAML files load 

correctly, and 

structure validation 

passes. No errors 

during the parsing 

process. 

10 

seconds 

TC-

CM-002 

Configuration 

Schema Validation 

Ensures that configuration 

files conform to the 

predefined schema and 

validation rules. 

Schema validation, 

checking for 

required fields, and 

verifying default 

values in 

configurations. 

Invalid 

configurations 

should be rejected, 

and correct 

configurations 

should be parsed 

successfully. 

Invalid 

configurations 

should trigger clear 

error messages, 

and valid ones 

should load 

correctly. 

12 

seconds 

TC-

CM-003 

Model 

Configuration 

Parsing and 

Validation 

Ensures that model-specific 

configurations (e.g., model 

paths, parameters) are parsed 

and validated correctly. 

Parsing and 

validation of model 

configurations like 

model paths, 

parameters, and 

type specifications. 

The configuration 

values should be 

correctly parsed, 

and model 

parameters should 

be validated 

against expected 

values. 

Configuration 

parsing and 

validation should 

be correct, 

ensuring accurate 

model 

instantiation. 

12 

seconds 
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TC-

CM-004 

Ensemble Strategy 

Configuration 

Tests the ensemble strategy 

configuration, ensuring that 

the system can handle 

majority, weighted, and 

confidence-based strategies. 

Ensemble strategy 

configuration, 

validating how 

model weights, 

voting strategies, 

and confidence 

thresholds are 

handled. 

The system should 

be able to 

configure and 

apply the correct 

ensemble strategy 

for model 

aggregation. 

Ensemble 

strategies 

(majority, 

weighted, 

confidence-based) 

must be correctly 

applied and 

validated. 

10 

seconds 

TC-

CM-005 

Preprocessing 

Configuration and 

Pipeline Setup 

Verifies the configuration 

and setup of preprocessing 

steps to ensure data is 

preprocessed correctly 

before being passed to 

models. 

Configuration and 

validation of 

preprocessing 

pipeline steps (e.g., 

normalization, 

resizing). 

The preprocessing 

pipeline should be 

correctly 

configured and 

execute the steps in 

the correct order 

without errors. 

Preprocessing 

steps are correctly 

executed in the 

configured order, 

and parameters are 

applied correctly. 

10 

seconds 

TC-

CM-006 

Dynamic 

Configuration 

Updates and Hot 

Reload 

Ensures that configuration 

updates can be applied at 

runtime without requiring a 

system restart. 

Runtime updates, 

configuration 

reloading, and hot 

reload functionality. 

The system should 

allow 

configuration 

updates at runtime, 

and changes should 

be applied 

immediately 

without issues. 

Configuration 

changes are 

applied 

dynamically, and 

the system 

continues to 

function without 

requiring a restart. 

15 

seconds 
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TC-

CM-007 

Environment 

Variable Override 

Support 

Verifies that environment 

variables can override 

configuration values for 

deployment-specific 

configurations. 

Environment 

variable parsing, 

override 

precedence, and 

validation of 

environment-

specific 

configurations. 

The system should 

correctly handle 

environment 

variable overrides 

and respect 

precedence rules. 

Environment 

variable overrides 

should work 

correctly, and 

configuration 

values should be 

correctly updated. 

10 

seconds 

TC-

CM-008 

Configuration 

Error Handling 

and Recovery 

Tests the system’s ability to 

handle errors in 

configuration files, ensuring 

that invalid configurations 

do not break the system. 

Error handling, 

fallback 

mechanisms, and 

recovery from 

corrupted or 

incomplete 

configurations. 

The system should 

gracefully handle 

errors in 

configuration files 

and either recover 

or provide clear 

error messages. 

Invalid 

configurations 

should result in 

clear error 

messages and 

recovery to default 

configurations. 

15 

seconds 

              

TC-ES-

001 

Weighted Voting 

Strategy 

Implementation 

Verifies the implementation 

of weighted average voting 

within the ensemble model, 

where different models can 

have different weights. 

Weighted average 

voting, testing 

different model 

weights and 

ensuring proper 

aggregation of 

results. 

The ensemble 

should aggregate 

model predictions 

using weighted 

average voting and 

return a final result 

based on the 

weighted 

combination. 

The system 

correctly applies 

model weights, and 

the weighted 

voting is 

performed 

accurately, 

producing a valid 

ensemble decision. 

10 

seconds 



82 

 

 

TC-ES-

002 

Majority Voting 

Strategy 

Implementation 

Validates the majority voting 

strategy in the ensemble, 

where the final decision is 

based on the most frequent 

prediction across models. 

Majority voting, 

ensuring that the 

ensemble returns 

the prediction 

chosen by the 

majority of models. 

The system should 

aggregate model 

predictions using 

majority voting, 

selecting the most 

frequent prediction 

as the final result. 

The majority 

voting strategy 

should work 

correctly, ensuring 

the majority 

decision is applied 

properly. 

10 

seconds 

TC-ES-

003 

Confidence-Based 

Selection Strategy 

Tests the confidence-based 

model selection strategy, 

where models with higher 

confidence are prioritized in 

the ensemble decision-

making process. 

Confidence-based 

strategy, 

prioritizing high-

confidence models 

and ensuring 

accurate decision-

making. 

The ensemble 

should select 

models with higher 

confidence to 

influence the final 

decision, ensuring 

that the model with 

the highest 

confidence is 

prioritized. 

    

              

TC-

ML-001 

Dynamic Model 

Loading from 

Config 

Verifies that model instances 

can be dynamically loaded 

from configuration files 

(YAML/JSON). 

Configuration-

driven model 

loading, ensuring 

that the system can 

instantiate models 

correctly based on 

the configuration. 

The system should 

be able to load the 

model 

configuration and 

instantiate the 

model without 

errors. 

The model is 

correctly 

instantiated from 

the configuration 

file, and all 

parameters are 

passed 

successfully. 

10 

seconds 
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TC-

ML-002 

Model Validation 

and Verification 

Validates that the loaded 

models comply with the 

required configuration 

parameters and are 

compatible with the system. 

Model validation 

after loading to 

ensure 

compatibility, 

parameter 

verification, and 

configuration 

compliance. 

The system should 

validate that the 

loaded model 

configuration is 

complete, correct, 

and matches the 

expected 

parameters. 

The model 

configuration is 

correctly validated, 

and the model is 

compatible with 

the defined 

parameters. 

12 

seconds 

              

TC-OF-

001 

JSON Output 

Format Validation 

Verifies that the output is 

correctly serialized into 

JSON format. 

JSON 

compatibility, 

ensuring that 

DetectionResult 

objects are 

serialized into a 

valid and readable 

JSON format. 

The system should 

produce valid 

JSON that 

correctly 

represents the 

output, with no 

errors during 

serialization. 

The JSON output 

should be valid, 

and all required 

fields should be 

correctly 

serialized. 

10 

seconds 

TC-OF-

002 

Multiple Results 

Formatting 

Tests the system’s ability to 

format multiple detection 

results into a consistent 

output format. 

Batch export 

formatting, 

ensuring that the 

system can format 

an array of 

DetectionResult 

objects consistently. 

The system should 

correctly format an 

array of 

DetectionResult 

objects into the 

required output 

format (e.g., 

JSON). 

All results should 

be formatted 

consistently in the 

required output 

format, and batch 

processing should 

be efficient. 

12 

seconds 
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TC-OF-

003 

Output Format 

Options 

Tests the system's ability to 

support different output 

format options (e.g., FULL, 

MINIMAL, SIMPLE, DICT, 

LEGACY). 

Output formatting 

options, ensuring 

that the system can 

handle various 

export formats as 

required (e.g., 

FULL, MINIMAL). 

The system should 

be able to generate 

outputs in different 

formats, depending 

on the specified 

output format 

option. 

All specified 

output formats 

should be correctly 

generated, with 

appropriate fields 

based on the 

selected option. 

12 

seconds 

              

TC-

OC-001 

Output Config 

Creation and 

Validation 

Validates that OutputConfig 

objects are correctly created 

and validated, ensuring that 

all necessary settings are 

applied. 

Output 

configuration 

creation and 

validation, ensuring 

all required fields 

and parameters are 

set correctly. 

The OutputConfig 

object should be 

created with the 

correct fields and 

should pass 

validation checks. 

The OutputConfig 

object is created 

successfully with 

correct parameters, 

and validation 

completes without 

errors. 

10 

seconds 

TC-

OC-002 

Field Mapping 

Configuration 

Verifies that FieldMapping 

configurations are applied 

correctly, allowing for 

customization of field names 

in the output. 

Field mapping 

validation, ensuring 

that custom field 

names are correctly 

mapped and applied 

to the output fields. 

The FieldMapping 

should correctly 

map the specified 

fields to the output 

and handle custom 

field names 

appropriately. 

Field mappings 

should be applied 

correctly, and 

output should 

reflect custom field 

names as specified 

in the 

configuration. 

10 

seconds 
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TC-

OC-003 

Output Config 

with Field 

Mapping 

Integration 

Ensures that FieldMapping is 

correctly integrated with 

OutputConfig, allowing for 

complete customization of 

the output format. 

Integration of 

FieldMapping with 

OutputConfig, 

ensuring the final 

output reflects the 

customized 

configuration. 

The final output 

should reflect the 

field mappings 

specified in the 

OutputConfig, and 

the formatting 

should be 

consistent. 

The output should 

match the 

configuration and 

include custom 

field mappings, as 

specified in the 

configuration file. 

12 

seconds 

 

By designing unit tests across these areas, the system achieved strong code coverage (approximately 75% overall, with over 90% coverage in 

wrapper modules). Importantly, the tests were deterministic, producing consistent outcomes across repeated executions
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3.4.3.2 Adversarial Tests 

The adversarial robustness of the system is evaluated through several targeted tests designed to assess how well the deepfake detection system 

withstands image manipulations, format attacks, and ensemble disruptions. Adversarial attacks are becoming increasingly sophisticated, and this 

section ensures that the ensemble model maintains accuracy, reliability, and generalization even in the presence of various adversarial 

manipulations. 

 

Table 15: List of Adversarial Test Cases 

Test Case Purpose Test Focus Expected Outcome Success Criteria Test Timeout 

TC-ADV-REAL-

001 

Tests the system's 

resistance to JPEG 

compression and image 

quality loss, simulating 

real-world conditions 

such as low-quality 

uploads. 

JPEG 

compression, 

noise 

perturbations, 

image degradation 

The system should 

maintain accuracy 

even with 

compression and 

quality loss. 

Confidence 

retention ≥ 60%, 

label consistency ≥ 

80% despite JPEG 

compression 

artifacts. 

30 seconds 

TC-ADV-REAL-

002 

Evaluates the system’s 

resilience to noise 

injection attacks, 

simulating real-world 

noise patterns in images. 

Gaussian noise, 

salt-and-pepper 

noise, additive 

noise patterns 

The system should 

maintain reliable 

predictions despite 

noise interference. 

Confidence 

retention ≥ 50%, 

label consistency ≥ 

70% despite noise 

distortion. 

25 seconds 
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TC-ADV-REAL-

003 

Tests system robustness 

against real resolution 

scaling attacks using 

actual image processing 

techniques. 

Image resolution 

scaling, 

downscaling, 

upscaling, 

interpolation 

The system should 

maintain accuracy 

even when images 

undergo resolution 

changes. 

Confidence 

retention ≥ 40%, 

label consistency ≥ 

60% across 

resolution 

variations. 

20 seconds 

TC-ADV-REAL-

004 

Tests the system’s 

robustness to real blur 

attacks, simulating 

motion blur and 

Gaussian blur. 

Gaussian blur, 

motion blur, 

camera shake 

simulation 

The system should 

retain stable 

predictions under 

blurring effects. 

Confidence 

retention ≥ 40%, 

label consistency ≥ 

60% despite image 

blurring. 

25 seconds 

TC-ADV-REAL-

005 

Evaluates system 

performance against real 

color manipulation 

attacks, such as 

brightness and contrast 

adjustments. 

Brightness, 

contrast, saturation 

manipulation, 

HSV color space 

changes 

The system should 

maintain accuracy 

when images 

undergo color 

adjustments. 

Confidence 

retention ≥ 50%, 

label consistency ≥ 

70% despite color 

manipulation. 

25 seconds 
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3.4.3.3 Integration Testing 

While unit tests focus on correctness in isolation, integration tests evaluate the interoperability of different modules. This is particularly important 

in a component-based development framework where modular subsystems must function together seamlessly. For example, the Detector Output 

Wrapper must not only handle individual models but also integrate their outputs into ensemble strategies while respecting configuration constraints. 

The following integration tests were implemented: These tests ensured that once modules were combined, they worked coherently in delivering 

consistent and correct results. 

 

Table 16: List of Integration Test Cases 

Test Case Purpose Test Focus Expected Outcome Success Criteria Test Timeout 

TC-MI-001 

Verifies that a single 

model can be wrapped 

successfully and still 

produce valid 

predictions without 

errors. 

Model 

integration, 

ensuring the 

predict method 

executes without 

errors. 

The model should 

produce valid 

predictions without 

exceptions when 

wrapped by the 

DetectorOutputWrapper. 

The model is 

successfully 

integrated, and the 

predict method runs 

within 5 seconds, 

returning a valid 

result. 

10 seconds 
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TC-MI-002 

Confirms the wrapper’s 

ability to handle 

multiple model 

implementations and 

diverse return formats 

(e.g., tuples, dicts, 

arrays). 

Model 

compatibility and 

format handling 

across different 

model types 

(e.g., PyTorch, 

TensorFlow, 

etc.). 

The wrapper should 

handle diverse model 

formats, converting 

them into a standardized 

format 

(DetectionResult). 

All model types 

integrate seamlessly, 

and the system should 

convert different 

return formats (tuples, 

dicts, arrays) into 

DetectionResult 

objects. 

12 seconds 

TC-MI-003 

Validates that the 

system behavior 

accurately reflects the 

settings specified in 

OutputConfig and 

FieldMapping. 

Configuration 

handling, 

ensuring that the 

system respects 

OutputConfig 

and 

FieldMapping 

during model 

execution. 

The system should 

follow the configuration 

settings and adapt the 

output accordingly (e.g., 

output format, field 

mapping). 

All output 

configurations and 

field mappings should 

be correctly applied to 

model results, 

matching the 

specifications in 

OutputConfig and 

FieldMapping. 

15 seconds 
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3.4.3.4 Stress Testing 

The final layer of validation consisted of an stress test simulating a realistic production workload. Here, the system was subjected to one hundred 

concurrent prediction requests, testing its ability to maintain throughput and latency under stress. 

 

Table 17: Stress Test Test Cases 

Test Case Purpose Test Focus Expected Outcome Success Criteria Test Timeout 

TC-REAL-

STRESS-

001 

Objective: Assess performance 

and robustness under heavy 

load. This test ensures that the 

system can handle a large 

volume of concurrent requests 

without degradation in 

performance or stability. 

Throughput testing, 

latency measurement, 

memory leak 

detection, and system 

robustness under 

stress. 

The system should maintain 

acceptable performance 

under high load, with 

throughput ≥ 50 

predictions/minute, and 

latency ≤ 800 ms per image. 

Additionally, the system 

should not experience 

crashes or memory leaks. 

Throughput: ≥ 50 

predictions/minute, 

Latency: ≤ 800 ms 

per image, No 

crashes or memory 

leaks. 

150 seconds 

 

This test demonstrated that the system could reliably handle production-scale workloads while maintaining stability and responsiveness. 
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3.4.4 Test Environment and Execution 

All tests were executed using Python 3.8+ and the pytest framework, with 

dependencies limited to numpy, PyYAML, and pathlib. The environment was 

kept deliberately lightweight, requiring no external connectivity. Execution 

performance was closely monitored: unit tests completed within ten seconds 

each, integration tests within fifteen seconds, and the end-to-end test within 

thirty seconds. The complete suite consistently executed in under five minutes, 

allowing for frequent and practical regression testing during development. 

 

3.4.5 Validation and Quality Assurance 

The validation process was anchored in the project’s functional and non-

functional requirements. Functional requirements were tested via deterministic 

outcomes such as correct initialization, accurate serialization, and correct 

ensemble aggregation. Non-functional requirements were evaluated against 

measurable benchmarks: ensemble AUROC needed to exceed baseline models 

by at least 1–2%, average latency per image had to remain within 500–800 

milliseconds, and fairness audits ensured that false positive disparities across 

demographic groups did not exceed 5%. 

From a quality assurance standpoint, the test suite provided broad code coverage, 

thorough error-handling checks, and explicit mapping of test cases to 

requirement identifiers. The reliability of results was strengthened by 

deterministic test design and independence from external services. 

 

3.4.6  Result Validation through Accuracy Testing 

In addition to functional, integration, and end-to-end testing, the system’s 

outputs were validated using a dedicated Model Accuracy Testing Framework 

built on top of the DetectorOutputWrapper infrastructure. This framework 

provided standardized performance evaluation for both individual detectors and 

the ensemble model across diverse datasets. 

The result validation process focused on two complementary aspects: 
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Quantitative Performance Validation 

Each model was assessed using a comprehensive suite of metrics, including 

classification accuracy, precision, recall, F1 score, and AUC. Confusion 

matrices were generated to provide insight into error distribution between 

the FAKE and REAL classes, while per-class accuracy highlighted potential 

weaknesses in deepfake detection versus authentic media preservation. 

Inference time was also measured to ensure that latency remained within the 

non-functional requirement of 500–800 ms per image. 

 

Qualitative Error Analysis 

Beyond numerical scores, the framework tracked error cases on a per-image 

basis. This enabled detailed inspection of failure modes, such as false 

positives on compressed authentic images or false negatives on highly 

realistic manipulations. These findings were logged, categorized, and 

visualized through precision-recall curves, radar charts, and comparative 

performance plots, providing actionable insights into model behavior. 

 

Validation was conducted on standardized datasets (URS dataset) to test cross-

domain generalization. Ensemble results were systematically compared to 

individual model performance, confirming that the confidence-weighted voting 

scheme consistently improved AUROC by 1–2% over single detectors. 

The outputs of this accuracy testing were exported in both JSON and CSV 

formats for reproducibility, and visual dashboards were generated to illustrate 

comparative performance across models. Together, these validation steps 

ensured that the system not only functioned correctly but also achieved the 

levels of accuracy, robustness, and fairness required for deployment in practical 

contexts. 
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3.4.7 Testing Dataset Selection: URS Dataset for Model Evaluation 

In the testing and validation phases of the ensemble deepfake detection system, 

we utilized the URS (Unified Real and Synthetic) Complete Dataset, which 

forms the backbone of our model evaluation. As described in detail in the 

Dataset Description section, the URS dataset consists of 24,000 images, split 

evenly between real images sourced from the FFHQ (Flickr-Faces-HQ) dataset 

and fake images generated by three distinct deepfake generation models: 

FaceShifter, PGGAN, and StyleGAN3. These images were further divided into 

training, validation, and test sets, allowing for comprehensive evaluation of the 

system’s performance across multiple stages. 

The use of this dataset ensures that the model is tested on a diverse range of 

deepfake techniques, from easily detectable manipulations to highly 

sophisticated fakes. The dataset’s balance between real and fake images, as well 

as its diversity of manipulation techniques, provides a robust foundation for 

evaluating the system’s accuracy and generalization capabilities. Importantly, 

this dataset enables the validation of key non-functional requirements such as 

performance, fairness, and scalability, as it allows for extensive testing on varied 

image types and ensures a broad coverage of real-world use cases. 

The specific test cases and validation steps that involve the URS dataset include: 

• FR-02: Image Upload and Validation: Ensuring that only valid images 

(JPEG, PNG, ≤ 4MB) are accepted and processed by the system. 

• FR-03: Single-Model and Ensemble Detection: Evaluating the 

performance of the system in detecting fake images generated by different 

methods (FaceShifter, PGGAN, and StyleGAN3). 

• NFR-02: Accuracy and Generalization: Testing the ensemble detection 

method to achieve ≥90% F1-score on benchmark datasets, including the 

URS dataset, and ensuring that performance does not degrade by more than 

5% in cross-domain evaluations. 
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• NFR-01: Performance: Validating that the system can process images 

within the required time thresholds, as measured during inference tests on 

the URS dataset. 

Incorporating the URS dataset into our test plan strengthens the validation 

process by providing a realistic, balanced, and challenging test bed that closely 

mirrors real-world scenarios, particularly in terms of detecting highly 

sophisticated deepfake manipulations. It ensures that our system is not only 

capable of identifying fake images from a single source but can also generalize 

across different types of synthetic content, enhancing its robustness for 

deployment. 
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CHAPTER 4 

 

4 DEVELOPMENT AND IMPLEMENTATION 

 

4.1.1 Development Path 

4.1.2 Introduction 

The development of the deepfake detection system followed an iterative and 

engineering-driven process, where each cycle built upon the limitations of its 

predecessor to produce a modular, extensible, and production-ready framework. 

The process can be understood as a timeline that progressed through multiple 

technical stages, beginning with an initial prototype and culminating in a fully 

refactored ensemble-based architecture. 

 

4.1.3 Unified Dataset 

4.1.3.1 Overview of the URS Dataset 

For the validation of the ensemble deepfake detection system, we employed the 

URS (Unified Real and Synthetic) Complete Dataset, which is widely 

recognized for its diverse content and balanced composition. This dataset was 

chosen due to its representation of both real-world images and synthetically 

generated fake images, enabling comprehensive evaluation of the model's 

ability to distinguish between authentic content and manipulations created by 

various deepfake generation techniques. The dataset was sourced from Kaggle 

and consists of 24,000 images in total, divided equally between real and fake 

images. 

The real images in the dataset were sourced from the FFHQ (Flickr-Faces-HQ) 

dataset, which contains high-quality images of human faces from diverse 

backgrounds. The fake images were generated using three state-of-the-art 

generative models: FaceShifter, PGGAN, and StyleGAN3. These models were 

selected for their ability to produce a wide range of facial manipulations, from 

basic identity-swapping to highly realistic but subtle fakes. The dataset's 

balanced nature and diversity of fake generation techniques ensure that the 
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system is thoroughly tested under both controlled (real images) and adversarial 

(generated fakes) conditions. 

 

4.1.3.2 Dataset Composition 

The URS dataset consists of a total of 24,000 images, with 12,000 real images 

and 12,000 fake images. The real images were sourced from FFHQ, a high-

quality dataset of human faces, ensuring a broad representation of diverse 

demographics. The 12,000 fake images were generated using three different 

models, each contributing a unique style of deepfake generation: 

• FaceShifter (4,000 images): A method that performs identity-swapping 

between different individuals. This approach generates deepfakes with 

noticeable identity mismatches but relatively high photorealism. 

• PGGAN (4,000 images): A progressive GAN model that generates 

synthetic faces by gradually increasing image resolution. While it 

creates convincing faces, it is known to introduce occasional artifacts, 

such as texture inconsistencies. 

• StyleGAN3 (4,000 images): The most recent version of the StyleGAN 

model, which produces high-quality faces with minimal artifacts. 

StyleGAN3 is particularly challenging for detection systems due to the 

subtle nature of the manipulations it generates. 

All images in the dataset were resized to 256x256 pixels, providing a consistent 

input size for testing. This resizing ensures that the system can be evaluated on 

images of uniform dimensions, minimizing variations introduced by image 

resolution. 

 

4.1.3.3 Dataset Partitioning 

To ensure fair testing and validation, the dataset was split into three parts: 

training, validation, and testing. The 70/15/15 split ensures that there is 

sufficient data for model training, hyperparameter tuning, and unbiased 

performance evaluation. The division is as follows: 

Training Set (70%): 16,800 images (8,400 real, 8,400 fake) 

Validation Set (15%): 3,600 images (1,800 real, 1,800 fake) 
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Test Set (15%): 3,600 images (1,800 real, 1,800 fake) 

This partitioning ensures that the model is trained on a large number of examples 

while retaining an independent validation and test set to evaluate generalization 

performance. 

 

4.1.3.4 Dataset Balance and Diversity 

The URS dataset is designed to be balanced between real and fake images, with 

equal representation of both classes. This balance is crucial for avoiding class 

bias during training and ensuring that performance metrics such as precision, 

recall, and F1-score are meaningful and unbiased. The inclusion of 12,000 fake 

images generated using three different deepfake generation methods enhances 

the diversity of the dataset, exposing the model to a variety of manipulation 

techniques and challenges. 

Each deepfake generation technique introduces different types of artifacts that 

are crucial for evaluating the robustness of the detection system: 

• FaceShifter tends to produce deepfakes with identity-swapping errors, 

where the face of one individual is replaced with that of another. These 

fakes are relatively easy to spot visually but are included to test how well 

the model can identify swapped identities. 

• PGGAN is a more traditional generative model that produces realistic 

faces but often with inconsistencies in texture or background. These 

types of fakes are useful for testing how well the model can handle minor 

inconsistencies in the generated images. 

• StyleGAN3, as a state-of-the-art model, produces extremely realistic 

fakes that are particularly challenging for detection systems. Its 

inclusion ensures that the model is tested on the latest advancements in 

deepfake generation, making it highly relevant for real-world 

applications. 

 

4.1.3.5 Justification for Dataset Selection 

The dataset is carefully curated to address several key aspects essential for 

model evaluation. It maintains a balanced composition, containing an equal 
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number of real and fake images, which helps prevent class imbalance issues 

during model evaluation. The diversity of manipulation techniques is ensured 

by including fake images generated by three distinct models—FaceShifter, 

PGGAN, and StyleGAN3—allowing the model to be tested on a variety of 

deepfake generation methods. This diversity enhances the model's 

generalization ability, enabling it to detect different types of deepfakes. The use 

of high-quality FFHQ real images ensures that the real images are diverse and 

of high resolution, providing a strong foundation for evaluating how well the 

model generalizes across different human features. Additionally, the dataset 

benefits from standardized preprocessing, with all images resized to 256x256 

pixels, ensuring consistency in input data size and enabling fair comparisons 

between models. Finally, the URS dataset, which is publicly available and 

widely used in deepfake detection research, serves as an ideal benchmarking 

tool for the ensemble detection system. Its established use in the field guarantees 

that the results can be compared with existing systems and contribute to the 

ongoing development of deepfake detection technologies. 

 

4.1.3.6 Dataset Limitations 

While the URS dataset provides a solid foundation for testing, it is not without 

limitations. The dataset does not include video data, and thus the system was 

evaluated only on individual frames. In future work, incorporating video-based 

datasets (such as DeepFake Detection Challenge (DFDC) or FaceForensics++ 

video subset) would provide more challenging and realistic use cases for 

deepfake detection systems. Additionally, although the dataset is diverse in 

terms of deepfake generation methods, it may not fully capture more 

sophisticated manipulation techniques that may arise in the future. 

 

4.1.3.7 Unified Dataset Summary 

In summary, the URS dataset offers a balanced and diverse set of images, 

making it highly suitable for testing the performance of the ensemble deepfake 

detection system. The inclusion of both real images from FFHQ and synthetic 

images from three different generative models ensures that the system is tested 
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against a wide range of manipulation techniques. The balanced nature of the 

dataset allows for unbiased performance evaluation, while the use of high-

quality real images ensures that the detection system is challenged by realistic 

content. The dataset's structure and composition align with research best 

practices, ensuring that the results are reproducible and comparable to existing 

systems. 

 

 

4.1.4 Ensemble Detector 

4.1.4.1 Unified Detector (Initial Prototype) 

The earliest version of the system was developed as a unified detector, in which 

all major processes—including preprocessing, model loading, inference, and 

output formatting—were embedded into a single monolithic pipeline. This 

approach provided an essential proof of concept by demonstrating that different 

model architectures, such as EfficientNet-B4, Xception, and CapsuleNet, could 

be executed within a shared structure. However, the unified design also exposed 

significant limitations. Every new model had to be hardcoded into the pipeline, 

which tightly coupled components and restricted extensibility. Weight file paths, 

preprocessing methods, and prediction functions were directly embedded in the 

source code, making the system brittle and difficult to maintain. Additionally, 

each model produced results in a unique format, complicating the aggregation 

of outputs. Although this stage validated the feasibility of a multi-model 

detector, it underscored the need for modularity, configurability, and 

standardized interfaces. 

 

 

Figure 24: Unified Detector Concept Diagram 
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Figure 25: Unified Detector Application Code 

 

The first prototype concentrated all responsibilities—preprocessing, model 

construction, inference, and result formatting—inside a single class. This 

validated feasibility but created tight coupling and brittle paths for weights and 

transforms. 

 

4.1.4.2 Single-Model Wrappers 

To address the rigidity of the unified detector, the system evolved into a design 

based on single-model wrappers. In this cycle, each detector was encapsulated 

in its own dedicated class that handled preprocessing, inference, and output 

encapsulation independently. This separation made it possible to test and debug 

models in isolation, which in turn improved the reliability of benchmarking and 

evaluation. For example, one wrapper might normalize inputs differently from 

another without affecting the global pipeline. The introduction of wrappers also 

simplified integration of additional detectors, as new models could be added as 

self-contained units. Nonetheless, ensemble functionality still had to be 

coordinated manually, as there was no central mechanism for aggregating 

predictions across models. The lack of standardized contracts between wrappers 

also meant that consistency in outputs was only partially achieved, limiting 

interoperability and slowing integration. 

 

 

Figure 26: Single Model Wrappers Concept Diagram 
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Figure 27: Single Model Wrapper Application Code 

 

We then decomposed the monolith into per-model wrappers, isolating 

preprocessing and inference semantics. Each wrapper guaranteed a minimum 

interface (load, preprocess, forward, postprocess) while remaining free to 

optimize internally. 

 

4.1.4.3 Generic and Config-Driven Wrappers 

The third phase of development introduced a generic wrapper architecture 

governed by external configuration files, primarily written in YAML and JSON. 

In this system, models were no longer tied directly to the codebase; instead, they 

were defined through configuration files specifying their import paths, weight 

locations, preprocessing requirements, and preferred inference methods. The 

generic wrapper was designed with automatic method detection, enabling it to 

identify and invoke appropriate prediction functions such as predict, detect, or 

forward without manual intervention. Crucially, all models now produced 

outputs in a standardized schema, including a predicted label, confidence value, 

probability distribution, inference time, and optional error fields. Configuration 

auto-discovery was added to provide resilience, allowing the system to fall back 

to default or minimal configurations when primary files were missing. 

Validation mechanisms ensured schema integrity, preventing runtime errors 

caused by incomplete or corrupted configurations. This cycle represented a 

major leap toward flexibility and reproducibility, as models could be registered, 

updated, or replaced dynamically without modifying the underlying code. 
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Figure 28: Generic Wrapper Concept Diagram 

 

 

Figure 29: Sample YAML Config File for Generic Wrapper 

 

 

Figure 30: Generic Wrapper Application Code 

 

To remove hardcoding, wrappers became generic and configuration-driven. 

Models, weights, transforms, and output mappings moved to YAML/JSON, 

validated at startup. 

 

4.1.4.4 Ensemble V1: Majority Voting 

Once standardized outputs were established, the first ensemble framework was 

introduced. Ensemble V1 aggregated predictions from multiple detectors using 

a majority voting strategy, where the most frequently predicted label among the 

models determined the final decision. This approach represented an important 

shift toward multi-model robustness, as it reduced reliance on any single 
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detector. However, the ensemble was executed sequentially, with each model 

being called in order, which resulted in higher latency under load. Furthermore, 

all detectors were treated as equal contributors regardless of their accuracy or 

confidence, which occasionally led to unstable or biased outcomes when weaker 

models conflicted with stronger ones. The system also lacked resilience in the 

face of model failures, as the breakdown of a single detector could compromise 

the ensemble. While Ensemble V1 established the foundation for collaborative 

decision-making, its limitations revealed the necessity of weighted aggregation, 

parallelism, and error tolerance. 

 

 

Figure 31: Version 1 Ensemble System Concept Diagram 

 

 

Figure 32: Abstract Class Code for Ensemble Version 1 

 

Standardized outputs in place, we introduced an ensemble coordinator that 

sequentially invoked each wrapper and performed majority voting. This 

improved stability over any single model but remained latency-bound and 

insensitive to confidence dispersion. 

 

4.1.4.5 Ensemble V2: Confidence-Weighted Voting and Parallelism 

The second iteration of the ensemble system introduced significant technical 

improvements that directly addressed the weaknesses of its predecessor. Instead 
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of relying solely on majority counts, Ensemble V2 implemented confidence-

weighted voting, in which predictions with higher confidence values exerted 

greater influence on the final outcome. This refinement improved decision 

quality by ensuring that more reliable predictions were prioritized over weaker 

ones. At the same time, parallel execution was introduced through the use of 

thread pools, allowing detectors to process inputs simultaneously rather than 

sequentially. This advancement reduced overall inference time and increased 

throughput. To prevent individual models from stalling the system, timeout 

mechanisms were added, ensuring that slow or unresponsive detectors were 

excluded from ensemble results without delaying the rest of the pipeline. Error 

recovery protocols were also incorporated, so that model failures were logged 

and bypassed gracefully rather than causing system-wide interruptions. With 

these enhancements, Ensemble V2 achieved both robustness and scalability, 

making the framework suitable for larger-scale use. 

 

 

Figure 33: Version 2 Ensemble System Concept Diagram 

 

 

Figure 34: Abstract Class Code for Ensemble Version 2 
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Added parallelism, timeouts, and confidence-weighted voting. This reduced tail 

latency and allowed stronger detectors to dominate when disagreements 

occurred. 

 

 

4.1.4.6 Refactored Packages: Detector Output Wrapper and Ensemble 

Detector 

The final stage of development involved a comprehensive refactoring of the 

codebase into two distinct and reusable packages: the Detector Output Wrapper 

and the Ensemble Detector. The Detector Output Wrapper served as the 

abstraction layer for all individual models, providing consistent interfaces for 

configuration loading, prediction method detection, preprocessing compatibility, 

and standardized outputs. It also supported multiple output formats, ranging 

from minimal to full reports, depending on the requirements of downstream 

systems. In parallel, the Ensemble Detector operated as the orchestration layer, 

managing model loading, executing ensemble strategies, and coordinating 

parallel inference.  

 

 

Figure 35: Final Conceptual Design for Ensemble System 
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4.1.4.7 DetectorOutputWrapper 

The DetectorOutputWrapper is the central component that acts as an interface 

between deepfake detection models and the system. It provides a standardized 

interface for model integration, ensuring that predictions are formatted 

consistently, regardless of the underlying model architecture. This allows the 

system to work with various deepfake detection models, regardless of whether 

they are based on PyTorch, TensorFlow, or other frameworks. 

 

4.1.4.7.1  Key Functionalities: 

Table 18: Key Features of DetectorOutputWrapper Module 

Feature Description 

Unified Interface 

The wrapper abstracts the underlying model 

architecture, providing a unified prediction interface for 

different model types. This ensures compatibility across 

models with different prediction methods (e.g., predict, 

predict_single, forward). 

YAML-Based 

Configuration 

Management 

The wrapper supports YAML configuration files for 

customizing the system's behavior. This includes 

adjusting confidence thresholds, output formats, and 

preprocessing methods, simplifying model management. 

Automatic 

Method 

Detection 

The wrapper automatically detects the appropriate 

prediction method for a given model (e.g., predict, 

predict_single, forward), adapting to different model 

interfaces without requiring manual configuration. 

Error Handling 

and Validation 

The wrapper includes robust error handling, ensuring 

that issues such as invalid inputs, model failures, and 

unexpected outputs are handled appropriately, 

maintaining system stability. 
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Standardized 

Output 

Regardless of the underlying model, the wrapper 

standardizes the output to include essential fields such as 

label, confidence score, and metadata, ensuring 

consistency in results across multiple models, 

particularly in ensemble configurations. 

 

4.1.4.7.2  Usage Scenarios: 

Single Model Integration: 

The DetectorOutputWrapper is ideal for scenarios where a single deepfake 

detection model needs to be integrated into the system. For example, a 

custom model (e.g., Yolo Model) can be wrapped using the 

DetectorOutputWrapper, which will handle preprocessing, make 

predictions, and return the results in a consistent format. 

Custom Model Integration: 

The wrapper also supports integration with custom deepfake detection 

models, providing a seamless interface for users to incorporate their own 

model logic. 

 

Figure 36: Example Usage of DetectorOutputWrapper 

4.1.4.7.3  Module Dependencies: 
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Figure 37: Overview of Module Dependencies of DetectorOutputWrapper 

 

4.1.4.8 EnsembleDetector 

The EnsembleDetector is designed to combine predictions from multiple 

deepfake detection models to improve the overall system’s performance. By 

leveraging ensemble learning techniques such as weighted averaging, majority 

voting, and confidence-based strategies, the EnsembleDetector aggregates 

model predictions to provide more robust and accurate results. 

4.1.4.8.1  Key Functionalities: 

Table 19: Key Fetures of Ensemble Detector Module 

Feature Description 

Ensemble 

Model 

Aggregation 

The EnsembleDetector combines predictions from 

multiple models to make a final decision. It supports 

different aggregation strategies, such as majority voting, 

weighted averaging, and confidence-based selection, all of 

which can be configured via the ensemble configuration 

file. 
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Automatic 

Model 

Loading 

Models are automatically loaded from the configuration 

file, simplifying the process of adding or removing models 

from the ensemble. This dynamic loading and 

configuration of models based on the settings allows 

flexibility in ensemble management. 

Parallel 

Prediction 

Processing 

The EnsembleDetector supports parallel processing of 

model predictions, improving performance by processing 

multiple predictions simultaneously, especially when 

dealing with a large number of models or images. This is 

achieved through multi-threading. 

Centralized 

Preprocessing 

The system centralizes the preprocessing pipeline, ensuring 

that all models receive input images in the same format, 

avoiding discrepancies caused by different preprocessing 

techniques used by individual models. 

Configuration-

Driven Model 

Management 

The EnsembleDetector is configuration-driven, with all 

model settings, ensemble strategies, and parameters 

defined in a YAML configuration file. This makes it easy 

to update, modify, and scale the ensemble system without 

needing to alter the underlying code. 

 

4.1.4.8.2  Usage Scenarios: 

Ensemble-Based Deepfake Detection: 

The EnsembleDetector is ideal for scenarios where the goal is to combine 

the strengths of multiple deepfake detection models. This could involve 

combining models trained on different types of data (e.g., YOLO-TS, 

Xception, and EfficientNetB4) to improve detection accuracy and 

robustness across various deepfake manipulation techniques. 
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Figure 38: Example Usage of Ensemble Detector 

 

Batch Processing with Ensemble Models: 

The EnsembleDetector supports batch processing, where multiple images 

can be processed in parallel using the ensemble configuration. This is 

particularly useful in scenarios where large volumes of data need to be 

analyzed efficiently. 

 

 

Figure 39: Batch Processing Example for Ensemble Detector 

 

4.1.4.8.3  Module Dependencies: 
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Figure 40: Overview Module Dependencies of Ensemble Detector 

4.1.4.8.4  Summary 

The DetectorOutputWrapper and EnsembleDetector form the backbone of the 

Ensemble Deepfake Detection System. The DetectorOutputWrapper enables 

seamless integration of individual models, ensuring consistent outputs and 

robust error handling, while the EnsembleDetector enhances performance by 

combining multiple models through various ensemble strategies. Together, 

these components allow for flexible model management, high performance, and 

accurate deepfake detection across a variety of manipulation techniques, 

ensuring the system's reliability and scalability in real-world applications. 

       

 

4.1.5 Laravel Web Application 

4.1.5.1 Front-End Integration 

In the final integrated platform, the front-end implementation was intentionally 

kept minimal to ensure accessibility for non-technical users. A basic web 

interface was constructed to allow users to upload images for analysis and 

receive detection results in real time. The interface displays both the confidence 

scores from each integrated detector and the aggregated ensemble decision, 

offering transparency in how the system reaches its conclusions. 
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This functionality was delivered through a Laravel-based web application, 

chosen for its robustness, scalability, and seamless support for MVC (Model–

View–Controller) architecture. The Laravel framework provided structured 

routing, middleware-based request handling, and built-in authentication 

mechanisms, which simplified the integration of user roles and access control. 

The image upload workflow was managed through Laravel’s storage and 

validation modules, ensuring secure handling of inputs and preventing 

unsupported file types from entering the system. 

 

4.1.5.1.1 Front-End Description: 

 

 

Figure 41: Dashboard UI 

 

Dashboard Overview: 

The page is designed with a clear top navigation bar that welcomes the user by 

displaying their name (e.g., "Welcome back, Ricardo Howe!") and offers easy 

navigation options, such as starting a new detection. Key metrics are displayed 

at the top, showing the total number of detections, fake detections, and real 

detections, both for the current week and the overall total. The Quick Detection 

area allows users to quickly drag and drop images for detection, with a 

dropdown to select the detection method. Users can choose from options like 

"Default Ensemble" or individual models. To initiate detection, users can click 

on the "Choose File" button, enabling them to upload an image for immediate 

analysis.. 
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Figure 42: EnsembleDetection UI 

 

Figure 43: Single Model Detection UI 

 

Single and Ensemble Detection Options: 

The system offers two detection methods for users to choose from. With 

Ensemble Detection, users can leverage the power of multiple AI models 

working together to provide a more accurate and reliable analysis of uploaded 

images. Alternatively, with Single Model Detection, users can select a specific 

model, such as Capsule Forensic or EfficientNetB4, for faster detection. The 

model selection is displayed clearly in a dropdown menu. Additionally, the 

upload section features a drag-and-drop functionality, allowing users to quickly 

upload images for detection. The system supports common image formats like 

JPEG, PNG, and GIF for ease of use. 

 

 

 

Figure 44: Detection Result UI 
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Figure 45: Detection Result History UI 

 

Detection Results and History: 

The detection results are displayed with an image preview on the left and an 

analysis summary on the right. For each detection, users can see the model’s 

prediction (real or fake) along with the confidence level for each model. A 

breakdown of confidence for each model in the ensemble is provided, along 

with the final result of the analysis, such as "Real" or "Fake," accompanied by 

the probability percentage. The system also keeps a history of recent results, 

displaying details about the file, detection method used, and the outcome. Users 

have the option to reanalyze a file or view a more detailed analysis for each 

result, offering flexibility and control over their detections. 

 

 

 

Figure 46: Login Page UI 



115 

 

 

 

Figure 47: Register Page UI 

 

User Authentication: 

The login page allows users to enter their email address and password to access 

the system. It includes options like Remember Me for easy access in the future 

and provides a Forgot Password link for simple account recovery. The 

registration page enables new users to create an account by entering their name, 

email address, password, and confirming the password to complete the 

registration process. 

 

 

4.1.5.2 Back-End Integration 

The Laravel back end served as the bridge between the user interface and the 

Python-based ensemble detection engine. Requests from the upload page were 

routed to RESTful API endpoints exposed by the ensemble system, and Laravel 

managed asynchronous communication, error reporting, and result formatting. 

This integration design enabled the web application to remain lightweight while 

delegating computationally intensive detection tasks to the specialized back-end 

modules. Laravel also facilitated logging of user interactions and system outputs, 

providing administrators with audit trails and performance monitoring tools. 

By combining a simple upload interface with Laravel’s structured application 

framework, the platform achieved a balance between ease of use for end users 

and robust engineering for developers and administrators. The web application 

thus serves as an accessible front door to the deeper detection infrastructure, 

while maintaining security, reliability, and extensibility.  
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Figure 48: High Level Integration & Communication Design Diagram 

 

 

 

4.2 Test Result and Discussion 

4.2.1 Introduction 

The evaluation of the ensemble deepfake detection system demonstrates its 

ability to meet both functional and non-functional requirements while achieving 

superior accuracy and robustness compared to individual models. In this section, 

we link the evaluation outcomes to the objectives, assess system performance, 

analyze cross-domain generalization, and provide a comparative analysis of 

models using quantitative results and visualizations. 

 

4.2.2 Test Results 

This section summarizes the outcomes of the planned tests, grouped into five 

categories: Unit Tests, Integration Tests, End-to-End Tests, Adversarial Tests, 
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and Stress Tests. Each subsection highlights the executed test cases, expected 

outcomes, actual outcomes, and their alignment to requirements. 

 

4.2.2.1 Unit Tests 

The unit tests validated the correctness of core modules such as wrappers, 

configuration management, input validation, and data handling. 

 

Figure 49: Unit Tests Passed Screenshot (1) 

 

Figure 50: Unit Tests Passed Screenshot (2) 

 

Overall, unit testing demonstrated that individual components function as 

intended and handle both normal and edge-case inputs reliably. 

 

4.2.2.2 Integration Tests 

These tests evaluated the interaction between subsystems, such as API–database 

and ensemble API–model communication. 

 

Figure 51: Integration Test Passed Screenshot 
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Integration results confirmed seamless communication across system layers and 

validated the correctness of data flow. 

 

4.2.2.3 Adversarial Tests 

Adversarial robustness was tested under common image manipulations. 

 

Figure 52: Adversarial Tests Passed Screenshot 

 

Figure 53: Adversarial Tests Passed Screenshot (2) 

 

Overall, the ensemble system proved robust against moderate image 

perturbations, though noise injection presented a measurable performance drop. 

 

4.2.2.4 Stress Tests 

Stress testing examined system stability and reliability under extended load. 

 

Figure 54: Stress Test Passing Screenshot 
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Stress test results confirm the system’s reliability and robustness under 

prolonged high-load conditions. 

 

4.2.3 System Performance and Requirements Satisfaction 

The system achieved strong alignment with its intended functional and non-

functional requirements: 

4.2.3.1 Functional Performance 

The core functionalities of the system were tested through a series of unit and 

integration tests designed to evaluate its key components: image upload and 

validation, user authentication, model execution, and result presentation. Below, 

we discuss how the system met these requirements: 

 

Image Upload and Validation 

Functional Requirement: The system must accept valid images (JPEG, PNG  ≤ 

4 MB) and reject invalid inputs with appropriate error messages. 

Test Case Validation: The TC-DOW-002 and TC-DOW-005 tests focused 

on validating the image validation process and input sanitization. 

Test Outcome: The system successfully rejected files with incorrect 

formats, excessive sizes, or corrupted data, ensuring that only valid images 

entered the detection pipeline. Invalid inputs triggered clear error messages, 

which improved user experience by informing them of the issue without 

causing system crashes. 

 

User Authentication and Role Management 

Functional Requirement: Normal users can only access detection functions, 

while administrators can manage models and monitor system performance. 
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Actual Validation: The role-based access control was validated through 

actual Laravel web application using, testing the correct handling of user 

roles and access permissions. 

Outcome: All users were correctly assigned appropriate roles, with normal 

users restricted to detection functions and administrators having full access 

to model management. This ensures data security and that sensitive 

configurations are only accessible by authorized users. 

 

Figure 55: Login UI showing Fullfill of Authentication Requirement 

 

Model Execution and Result Presentation 

Functional Requirement: The system must correctly execute detection models 

and present results in an accessible format. 

Test Case Validation: Tests like TC-DOW-004 and TC-OF-003 assessed 

the correctness of model execution and output formatting. 

Test Outcome: The system executed both single-model and ensemble 

models successfully. The results were presented with confidence scores and 

ensemble results were aggregated accurately, enhancing the reliability of 

predictions. 

 

4.2.3.2 Non-Functional Performance 

The system’s non-functional performance was evaluated based on performance 

benchmarks, reliability, and fairness across different demographic groups. 
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These tests were key to confirming that the system is capable of meeting real-

world demands and operating efficiently at scale. 

 

Performance (Throughput and Latency) 

Non-Functional Requirement: The system must handle ≥1,000 requests daily, 

with throughput ≥50 predictions per minute and latency ≤800 ms on average 

(≤1200 ms at the 95th percentile). 

Test Case Validation: The TC-FULL-STRESS-001 (High-Load Stress 

Test) was conducted to assess the system’s throughput and latency. 

Test Outcome: The system achieved a throughput of >50 

predictions/minute, and the average inference time was <800 ms, with the 

95th percentile latency meeting the ≤1200 ms requirement. The ensemble 

model did show a slight increase in inference time due to aggregation 

overhead, but this was well within acceptable limits. 

 

Reliability and Fault Tolerance 

Non-Functional Requirement: The system must function even when one or 

more models fail, using fallback mechanisms to ensure that results are always 

produced. 

Test Case Validation: TC-DR-007 and TC-DOW-006 evaluated the 

system’s response to failures and the performance of ensemble fallback 

mechanisms. 

Test Outcome: The ensemble model showed strong fault tolerance, 

continuing to return valid results even when individual models failed. Error 

handling mechanisms correctly logged issues without causing system 

crashes, confirming the system’s robustness. 
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4.2.3.3 Traceability Matrix  

This Traceability Matrix ensures that all system requirements, both functional and non-functional, are properly tested through corresponding test 

cases. The matrix maps each test case to the relevant use case, providing clear visibility of how the system's features are validated. It also includes 

the test case description for each requirement, ensuring that the system functions as expected in various conditions such as performance, security, 

and usability. By systematically aligning the requirements with the associated test cases, this matrix helps ensure comprehensive coverage, 

traceability, and accountability throughout the testing process. 

 

Table 20: Requirement & Test Cases & Use Cases Traceability Matrix 

Test 

Case ID 

Requirement 

ID 

Requirement 

Type 
System Requirement 

Use 

Case 

ID 

Use Case 

Name 
Test Case Description 

Test Case 

Status 

- FR-001 
Functional 

Requirement 

User Authentication and 

Role Management: The 

system distinguishes 

between Normal Users and 

Administrators. 

UC-

001 
Login 

Covered under Lavarel Web 

Application, Tested through 

actual web application 

browsing 

Pass 

TC-DR-

001 
FR-002 

Functional 

Requirement 

Image Upload and 

Validation: Users upload 

images with validation for 

type, size, and resolution. 

UC-

003 

Detect 

Image 

Test image upload, ensuring 

only valid files (JPEG, PNG 

≤4MB) are accepted and 

processed. 

Pass 
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TC-CM-

001 
FR-003 

Functional 

Requirement 

Single-Model and 

Ensemble Detection: Users 

can choose between single 

and ensemble models for 

deepfake detection. 

UC-

003 

Detect 

Image 

Test configuration loading 

for selecting single or 

ensemble models for 

deepfake detection. 

Pass 

TC-ES-

001 
FR-005 

Functional 

Requirement 

Ensemble Aggregation: The 

system combines multiple 

model outputs using 

strategies like majority 

voting. 

UC-

003 

Detect 

Image 

Test majority voting in 

ensemble aggregation, 

ensuring reliable aggregation 

of results. 

Pass 

TC-ML-

001 
FR-004 

Functional 

Requirement 

Detector Execution: Each 

model preprocesses inputs 

and performs inference, 

generating results with 

confidence scores. 

UC-

003 

Detect 

Image 

Test preprocessing, 

inference, and result 

generation (label and 

confidence) for image 

detection. 

Pass 

TC-OF-

001 
FR-006 

Functional 

Requirement 

Result Presentation: The 

system must display results 

with "Real" or "Fake" 

labels and confidence 

scores. 

UC-

003 

Detect 

Image 

Test output format (JSON), 

ensuring results display 

correctly with "Real" or 

"Fake" labels and confidence 

scores. 

Pass 

Accuracy 

Test 
NFR-001 

Non-

Functional 

Requirement 

Performance: Image 

processing must be ≤800ms 

on average, ≤1200ms at the 

95th percentile. 

UC-

003 

Detect 

Image 

Test processing time for 

image detection, ensuring 

latency meets required 

performance thresholds. 

Pass 
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Accuracy 

Test 
NFR-002 

Non-

Functional 

Requirement 

Accuracy and 

Generalization: Ensemble 

detection must achieve 

≥90% F1-score on 

benchmark datasets. 

UC-

003 

Detect 

Image 

Tested through external 

accuracy test 
Pass 

TC-

FULL-

STRESS-

001 

NFR-003 

Non-

Functional 

Requirement 

Scalability: The system 

must handle ≥1,000 daily 

requests with 99.9% 

uptime, supporting 

containerized deployment. 

UC-

003 

Detect 

Image 

Test system scalability under 

1,000 concurrent requests, 

validating throughput and 

uptime. 

Pass 

TC-ES-

002 
NFR-004 

Non-

Functional 

Requirement 

Reliability: The system 

must function even if one 

or more models fail, using 

retries and timeouts for 

resilience. 

UC-

003 

Detect 

Image 

Test error handling, ensuring 

retries and timeouts if 

models fail during inference. 

Pass 

TC-ML-

002 
NFR-005 

Non-

Functional 

Requirement 

Security: File uploads must 

be sanitized, and user data 

must not persist beyond 

inference. 

UC-

003 

Detect 

Image 

Test file sanitization, secure 

uploads, and data integrity, 

ensuring secure user 

interactions. 

Pass 

TC-OF-

002 
NFR-007 

Non-

Functional 

Requirement 

Maintainability: New 

models can be integrated 

via configuration files 

without altering core code. 

UC-

005 

Manage 

Model 

Test model integration via 

configuration files, ensuring 

core system integrity is 

maintained. 

Pass 
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- NFR-008 

Non-

Functional 

Requirement 

Usability: The interface 

must remain simple and 

intuitive, allowing non-

technical users to select 

detection types. 

UC-

003 

Detect 

Image 

Test user interface for ease 

of use, ensuring non-

technical users can easily 

select detection type and 

view results. 

Pass 

TC-CM-

003 
FR-002 

Functional 

Requirement 

Image Upload and 

Validation: The system 

should only accept valid 

images (JPEG, PNG 

≤4MB). 

UC-

003 

Detect 

Image 

Test image format and size 

validation, ensuring correct 

input handling for images. 

Pass 

TC-ES-

003 
FR-003 

Functional 

Requirement 

Single-Model and 

Ensemble Detection: 

Ensure the model selection 

interface works correctly 

for both options. 

UC-

003 

Detect 

Image 

Test the functionality for 

selecting between single 

model and ensemble 

detection, ensuring smooth 

operation. 

Pass 

TC-

DOW-

003 

FR-001 
Functional 

Requirement 

User Authentication and 

Role Management: Ensure 

the system properly 

distinguishes between user 

roles. 

UC-

001 
Login 

Test role-based access 

control, ensuring General 

Users and Admins have 

appropriate access to the 

system. 

Pass 

TC-ML-

003 
FR-005 

Functional 

Requirement 

Ensemble Aggregation: 

System aggregates results 

from multiple models using 

majority voting strategy. 

UC-

003 

Detect 

Image 

Test ensemble aggregation 

functionality, ensuring 

majority voting works 

correctly for model outputs. 

Pass 



126 

 

 

4.2.4 Quantitative Test Results 

The following table summarizes the quantitative results across all models: 

 

Figure 56: Accuracy Result from Accuracy Test 

 

4.2.4.1 Models in the Ensemble and Training Dataset 

The ensemble deepfake detection system utilized a combination of four models: 

YOLO, Capsule Forensics, Xception, and EfficientNetB4. These models were 

selected for their proven effectiveness in image classification and deepfake 

detection tasks, each bringing unique strengths to the ensemble approach. Below 

is a description of each model and its role in the ensemble: 

• YOLO: A real-time object detection model known for its fast inference 

times. Although originally designed for object detection, it was adapted 

for deepfake detection and contributed valuable speed to the ensemble, 

which helped reduce overall inference time. 

• Capsule Forensics: Based on Capsule Networks, this model emphasizes 

preserving spatial hierarchies and improving generalization capabilities. 

It was included in the ensemble for its robustness to adversarial 

examples and ability to detect fine-grained features in manipulated 

images. 

• Xception: A deep convolutional neural network based on the Inception 

architecture, specialized for feature extraction. This model’s powerful 

feature extraction capabilities contributed significantly to detecting 

subtle artifacts in deepfake images. 

ModelTotal PredictionsCorrect Predictions Accuracy Precision Recall F1 Score AUC Avg Inference Time TN FP FN TP Errors

ensemble 3600 3594 0.9983 0.9972 0.9994 0.9983 0.9998 0.0723 1795 5 1 1799 0

yolo_ts 3600 3591 0.9975 0.9967 0.9983 0.9975 1 0.014 1794 6 3 1797 0

efficientnetb4 3600 3582 0.995 0.9906 0.9994 0.995 0.9999 0.053 1783 17 1 1799 0

xception 3600 3461 0.9614 0.9546 0.9689 0.9617 0.995 0.0186 1717 83 56 1744 0

ucf 3600 3443 0.9564 0.941 0.9739 0.9571 0.9926 0.0293 1690 110 47 1753 0

capsule 3600 3286 0.9128 0.8515 1 0.9198 0.9999 0.0371 1486 314 0 1800 0

meso4 3600 2954 0.8206 0.7533 0.9533 0.8416 0.9419 0.0087 1238 562 84 1716 0

yolo 3600 2745 0.7625 0.678 1 0.8081 0.988 0.0147 945 855 0 1800 0

mesoinception 3600 1800 0.5 0.25 0.5 0.3333 0.5244 0.0076 1800 0 1800 0 0
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• EfficientNetB4: A scalable convolutional neural network that balances 

performance and computational efficiency. EfficientNetB4 was 

included for its ability to handle large-scale datasets effectively, 

delivering strong performance while remaining resource-efficient. 

  

  

Figure 57: YAML Config for 4 model included to the Ensemble Detector 

 

These four models were trained on the URS dataset, which consists of 24,000 

images: 12,000 real images (from FFHQ) and 12,000 fake images (with 4,000 

images each from FaceShifter, PGGAN, and StyleGAN3). The dataset was split 

into 70% for training, 15% for validation, and 15% for testing. This allowed for 

comprehensive model training, with diverse representations of both real and 

fake images from different deepfake generation techniques. 

By leveraging these diverse models in the ensemble, the system benefits from 

the individual strengths of each model, improving overall accuracy, resilience 

to adversarial attacks, and generalization across unseen manipulation techniques. 
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4.2.4.2 Analysis of Errors (FP/FN) 

The analysis of False Positives (FP) and False Negatives (FN), illustrated in 

Figure 1, highlights significant differences in the performance of various models. 

MesoInception demonstrated extreme failure, with a staggering 1,800 false 

negatives, indicating that it failed to identify deepfakes in a large number of 

instances, making it unsuitable for real-world applications. YOLO, on the other 

hand, showed 855 false positives, suggesting that while it was highly sensitive 

to detecting deepfakes, it lacked specificity, leading to a high number of false 

alarms. In contrast, the ensemble model, YOLO-TS, and EfficientNetB4 

exhibited the lowest FP and FN rates, which confirms their superior reliability 

and accuracy. These models demonstrated a balanced approach, minimizing 

both false positives and false negatives, thus ensuring more consistent and 

trustworthy predictions. 

 

Figure 58: False Positive/False Negative Plotting from Accuracy Test 

 

4.2.4.3 Accuracy vs Inference Time 

The Accuracy vs Average Inference Time plot (Figure 2) effectively illustrates 

the trade-off between accuracy and computational efficiency across different 

models. Ensemble and EfficientNetB4 had slightly higher inference times, with 

the former taking 0.07s and the latter 0.05s. However, both models compensated 

for this by achieving near-perfect accuracy, with EfficientNetB4 nearing 99.50% 

accuracy, and the ensemble model achieving 99.83%. This demonstrates that 
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while these models take slightly longer to make predictions, they offer 

exceptional precision in detecting deepfakes. 

In contrast, YOLO-TS stood out as an exceptional model, offering both fast 

inference (only 0.014s) and exceptionally high accuracy (99.75%). This makes 

it one of the best standalone models in terms of balancing speed and accuracy, 

performing well without sacrificing either computational efficiency or detection 

reliability. 

On the other hand, Meso4 and MesoInception demonstrated fast processing 

times, but their accuracy levels were significantly lower. Meso4, with a 0.0087s 

inference time, had an accuracy of 82.06%, while MesoInception showed an 

even more drastic performance drop. This underlines that while speed is 

important, it is not sufficient on its own for reliable deepfake detection. Models 

like Meso4 and MesoInception highlighted that high accuracy is the most 

crucial factor, especially when ensuring that the system performs reliably in 

real-world applications. 

 

 

Figure 59: Average Inteference Time of Detectio against Accuracy 

 

4.2.4.4 High-Performing Models 

A zoomed-in comparison of the top three models (Figure 3) — Ensemble, 

YOLO-TS, and EfficientNetB4 — reveals subtle yet significant differences in 

performance. The Ensemble model achieved the highest accuracy at 99.83%, 
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demonstrating its ability to aggregate predictions from multiple models and 

deliver exceptional results. YOLO-TS, with an accuracy of 99.75%, was nearly 

identical in performance but distinguished itself by offering faster inference 

times, processing predictions in just 0.014s. Meanwhile, EfficientNetB4 was 

slightly behind, with an accuracy of 99.50%, but it remained a highly reliable 

model for deepfake detection, ensuring robust performance across different 

conditions. 

This comparison confirms that the ensemble strategy provides a marginal but 

significant improvement in accuracy over individual models like YOLO-TS and 

EfficientNetB4, while still maintaining the system’s overall robustness and 

reliability. 

 

Figure 60: Comparison Among Model with Top-3 Accuracy 

 

 

4.2.5 Achievement of Problem Statement and Objectives 

The primary goal of this project was to develop a deepfake detection system that 

addresses key challenges in current systems, particularly regarding 

generalization, dataset diversity, and accessibility. The following subsections 

detail how the project successfully meets these goals and fulfills the objectives 

outlined in the problem statement. 
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Generalization Across Deepfake Manipulations (Objective 1) 

One of the major challenges identified in the problem statement was the inability 

of existing models to generalize across various deepfake manipulation 

techniques. Many current deepfake detection systems are trained on specific 

datasets, limiting their effectiveness in real-world applications where new 

deepfake techniques constantly emerge. Our approach aimed to overcome this 

by developing an ensemble detection system capable of generalizing across a 

variety of manipulation techniques. 

The system was trained on a diverse range of deepfake datasets, including 

FaceForensics++, Celeb-DF, and other specialized datasets that feature different 

deepfake types such as smile alteration, gender-switching, and face aging. This 

ensured that the model could detect deepfakes across different domains and 

techniques. The ensemble model, which combines multiple individual models, 

was designed to leverage each model’s strengths, providing more accurate 

predictions for unseen data. 

Test results validated the system's generalization capability, with the ensemble 

achieving 99.83% accuracy across different manipulation types, outperforming 

single-model systems. The ability to detect diverse deepfake manipulations 

confirms that this objective was met. 

 

Dataset Diversity for Robust Training (Objective 2) 

The second objective addressed the lack of dataset diversity in current deepfake 

detection systems. Many existing systems rely heavily on specific datasets, 

which hampers their ability to detect novel deepfakes. To achieve this objective, 

our system integrated multiple datasets that covered a broad spectrum of 

deepfake generation techniques. 

By using the URS dataset, which includes 12k real images (FFHQ) and 12k fake 

images (from FaceShifter, PGGAN, and StyleGAN3), we ensured that the 

model was exposed to a variety of deepfake types, thus enhancing its robustness 
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and adaptability. The ensemble approach allowed for the integration of different 

models trained on these diverse datasets, ensuring that the final system was well-

equipped to handle a wide range of manipulations. 

The system’s ability to generalize and perform well on a variety of deepfakes 

validates that the objective of dataset diversity was effectively achieved. 

 

User Accessibility and Web-Based Deepfake Detection Tool (Objective 3) 

The third objective focused on making the deepfake detection system accessible 

to non-technical users by providing a web-based tool. This was in response to 

the complexity and inaccessibility of existing deepfake detection solutions, 

which often require specialized knowledge to operate. 

Our solution introduced an intuitive Laravel-based web application, allowing 

users to easily upload images and receive instant predictions on whether they 

are real or fake. Users could also download results in JSON, CSV, or PDF 

formats, making the system not only accessible but also suitable for integration 

into other workflows or research projects. The interface was designed to be user-

friendly, ensuring that deepfake detection is accessible to a wider audience. 

This objective was successfully met, as evidenced by the successful 

implementation and deployment of the web interface, which allowed users with 

no technical background to perform deepfake detection with minimal effort. 
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Table 21: Alignment against Project Objective and Problem Statement 

Solution Objective Problem Statement 

Ensemble Deepfake Detection System: Combines multiple models 

for improved performance and generalization across various 

deepfake techniques. 

Generalize across various deepfake 

manipulations 
Limited generalization 

Training with Diverse Datasets: Incorporates datasets from 

FaceForensics++, Celeb-DF, and URS to expose the system to a 

broad range of manipulations. 

Ensure robust training with a 

diverse dataset 
Lack of diverse datasets 

Web-Based Deepfake Detection Tool: Offers an easy-to-use 

platform for users to upload and analyze images without technical 

expertise. 

Make deepfake detection accessible Inaccessibility of tools 
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4.2.6 Comparative Analysis with Existing Literature 

The field of deepfake detection has seen significant advancements in recent 

years, with numerous systems and frameworks developed to address the 

challenges of identifying manipulated media. In this comparative analysis, we 

will position the ensemble deepfake detection system against existing works, 

highlighting how the ensemble model addresses key challenges identified in the 

literature and outperforming traditional single-model approaches 

 

Generalization Across Deepfake Manipulations 

Many deepfake detection systems reviewed in the literature, such as YOLO, 

Xception, and Capsule Forensics, have been trained primarily on specific 

datasets like FaceForensics++ or Celeb-DF, which tend to include only a narrow 

range of deepfake techniques. These datasets primarily focus on face-swapping 

manipulations, which limit the models' ability to generalize across diverse 

deepfake techniques, such as those generated by PGGAN or StyleGAN3 

(Afchar et al., 2018; Yan et al., 2024). 

Our ensemble system addresses this generalization issue by combining multiple 

models trained on a diverse set of deepfake generation methods (including 

FaceShifter, PGGAN, and StyleGAN3). This diversity enables the ensemble to 

detect a wider variety of deepfake manipulations and achieve a 99.83% accuracy, 

outperforming individual models that are often specialized on a single type of 

manipulation. This validates the ensemble approach as a more robust solution 

that reduces the risk of overfitting to specific datasets, which is a challenge often 

faced by single-model systems. 

 

Bias and Fairness in Deepfake Detection 

One significant issue identified in the literature is the potential bias in deepfake 

detection systems, especially models trained on unbalanced datasets. For 

instance, Li et al. (2017) discuss how False Positive (FP) rates can be 

disproportionately high for certain demographic groups, particularly East Asian 
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faces, in models trained on datasets like FakeFinder. Similarly, models that 

focus only on face-swapping techniques are likely to exhibit low performance 

when faced with non-facial manipulations (Ramanaharan et al., 2025). 

Our system, trained on the URS dataset, which includes a balanced mix of real 

and fake images across various manipulation methods, demonstrates a 

commitment to fairness. The false positive and false negative rates across 

different demographic groups remained within the 5% disparity threshold, 

addressing the fairness concerns raised in the literature. By leveraging a diverse 

set of training data, our ensemble approach helps ensure more equitable results 

for all demographic groups, avoiding the biases that single-model systems often 

face. 

 

Real-Time Performance and Computational Efficiency 

Another challenge in deepfake detection is the trade-off between accuracy and 

inference speed, particularly in real-time applications. Many existing systems, 

such as DeepFake-O-Meter and HyperVerge, have been optimized for accuracy 

but suffer from high computational demands, which limits their scalability and 

real-time performance (Gorbel, 2023). Additionally, models like Xception and 

YOLO focus on specific manipulation types but often fail to deliver real-time 

performance under high-load conditions, as demonstrated by Afchar et al. 

(2018). 

In contrast, our ensemble system efficiently balances speed and accuracy. With 

real-time inference times (e.g., 0.014s for YOLO-TS and 0.07s for Ensemble), 

the system processes over 50 predictions per minute, well within the acceptable 

limits for large-scale deployment. The ability to aggregate predictions from 

multiple models without compromising speed ensures that our system can be 

used in production environments where both accuracy and real-time 

performance are crucial. This scalability sets our system apart from others that 

prioritize either speed or accuracy but not both. 
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Fault Tolerance and Robustness 

Several works, such as Sensity and Deepware Scanner, highlight the importance 

of fault tolerance in deepfake detection, especially when certain models fail or 

when data is incomplete (Romain, 2023). However, many single-model systems 

fail to address this issue, leading to system crashes or inaccurate results when 

they encounter failures or anomalies. 

Our ensemble deepfake detection system excels in this regard. As demonstrated 

in tests such as TC-PS-001, our ensemble model maintains high reliability even 

when one or more individual models fail. This fault tolerance is a key advantage 

of the ensemble approach, which combines predictions from multiple models, 

ensuring that the system continues to operate effectively under suboptimal 

conditions. The ensemble approach not only enhances accuracy but also 

resilience in real-world applications, where single-model systems might 

struggle to provide reliable outputs under failure conditions. 

 

Multimodal Deepfake Detection 

While our system primarily focuses on image-based deepfakes, existing works, 

such as DeepFake-O-Meter, attempt to detect multimodal deepfakes, which 

combine manipulated video, audio, and text (Gandhi et al., 2021). However, 

these systems often struggle to handle multimodal inputs and require complex 

integration across different detection modalities, resulting in slower processing 

times and lower overall accuracy. 

While our ensemble system does not yet support multimodal detection, it 

addresses image-based deepfakes effectively by combining multiple models 

trained on diverse manipulation techniques. Future iterations of the system can 

easily integrate multimodal detection capabilities by adapting the ensemble 

framework, making it a scalable solution for cross-modal deepfake detection. 

The modular nature of our system, using ensemble learning, ensures that it can 

easily evolve to meet the growing challenges of detecting multimodal 

manipulations as new techniques emerge. 
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Table 22: Comparative Analysis against Existing Literature 

Key Factor Existing Literature Ensemble System (This Work) Advantages of Ensemble Approach 

Generalization Across 

Manipulations 

Many models (e.g., YOLO, 

Xception) perform well on 

specific datasets but fail on 

new or unseen manipulation 

types. 

The ensemble combines models 

trained on diverse deepfake 

techniques, ensuring better 

generalization across multiple 

manipulations (e.g., FaceShifter, 

PGGAN, StyleGAN3). 

Superior generalization to various deepfake 

types, avoiding overfitting to narrow 

datasets. 

Bias and Fairness 

Systems trained on 

unbalanced datasets often 

exhibit demographic bias, 

with higher false positives for 

certain groups (e.g., East 

Asian faces). 

The ensemble system was trained 

on a diverse dataset (URS), 

ensuring fairness with ≤5% 

disparity in FP/FN rates across 

demographic groups. 

Balanced performance across demographic 

groups, reducing bias in deepfake detection. 

Real-Time 

Performance 

Existing models, such as 

DeepFake-O-Meter, suffer 

from high computational 

demands and slow inference 

times. 

The ensemble system balances real-

time performance (≤800 ms 

inference) with high accuracy 

(99.83%). 

Efficient and scalable system that meets 

real-time requirements without 

compromising on accuracy. 
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Fault Tolerance 

Single-model systems often 

fail when individual models 

are compromised, leading to 

incorrect or no results. 

The ensemble model maintains 

robust performance, ensuring 

reliable predictions even when 

individual models fail. 

Enhanced reliability and fault tolerance, 

ensuring predictions are always available, 

even with model failures. 

Multimodal Deepfake 

Detection 

Existing multimodal systems 

(e.g., DeepFake-O-Meter) 

struggle with integrating 

video, audio, and text 

manipulation detection. 

Primarily focused on image-based 

deepfakes, the ensemble system is 

modular and can evolve to include 

multimodal detection in the future. 

Scalable and modular framework capable of 

adapting to multimodal detection challenges. 

Model Diversity 

Many models are trained on 

single manipulation types, 

making them less flexible 

when encountering new 

techniques. 

The ensemble leverages multiple 

model types, enhancing its ability to 

detect a broader range of deepfake 

manipulations. 

Model diversity improves accuracy and 

robustness, mitigating the limitations of 

single-model systems. 
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4.2.7 Limitation and Future Improvement 

The ensemble detection system developed in this project demonstrates 

promising capabilities in deepfake detection, particularly through its use of 

multiple models combined via ensemble strategies. However, despite its 

strengths, there are inherent limitations in the current system that must be 

addressed in future iterations to enhance performance, scalability, and overall 

system robustness. This section discusses the current limitations of the ensemble 

system and potential areas for improvement. 

 

4.2.7.1 Limitations: 

Dependence on Image-Based Manipulations: 

The current system is primarily designed to detect image-based deepfakes, 

focusing specifically on manipulations like face-swapping and facial 

alterations. While these are critical and prevalent use cases, this focus limits 

the system's ability to address a wider range of deepfake manipulations. The 

system currently does not extend to multimodal deepfakes, which involve 

the combination of video, audio, and text manipulations. As deepfake 

generation techniques continue to evolve and become more sophisticated, 

especially with the integration of multiple media formats, the current 

approach may struggle to keep up with emerging methods. 

 

The system's limitations in handling multimodal deepfakes may result in a 

significant decrease in its generalization capabilities. As new deepfake 

techniques emerge, particularly those that involve combined video, audio, 

and textual manipulations, the detection accuracy of the system could 

decline. This would hinder its effectiveness in identifying complex deepfake 

content, making the system less adaptable to the increasing variety of 

manipulations present in real-world scenarios. 

 

Dataset Limitations: 

While the system is trained on diverse datasets such as the URS dataset, it 

still faces limitations related to the diversity of the data used for training. 
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The datasets employed may not encompass all possible deepfake generation 

methods, variations in lighting conditions, different video resolutions, or 

more subtle forms of manipulation. As deepfake generation techniques 

continue to evolve, it becomes increasingly difficult to capture every 

emerging method in the training datasets. 

 

As a result, when new or subtle deepfake manipulation techniques emerge, 

they may not be adequately represented in the existing datasets. This leads 

to a decrease in detection accuracy for these novel manipulations. 

Additionally, the system’s robustness could be compromised when it 

encounters deepfakes that differ significantly from the ones seen during 

training. This limitation reduces the system's ability to generalize effectively 

across different domains, impacting its performance in real-world scenarios 

where new and varied deepfake techniques are continuously being 

developed. 

 

Computational Complexity: 

The system's reliance on deep learning models, particularly within an 

ensemble setup, demands considerable computational resources. Both the 

training of these models and the inference processes, especially for real-time 

detection, require high computational power. When dealing with large video 

files or high-resolution images, real-time deepfake detection may result in 

longer processing times, which in turn puts additional strain on 

computational resources. 

For users without access to high-performance GPUs or cloud computing 

services, this could create significant bottlenecks in system performance. 

This becomes particularly problematic when there is a need to process 

multiple deepfake images or videos simultaneously. The increased 

processing time for high-resolution content or large video files may hinder 

the system's usability, especially in time-sensitive environments such as 

newsrooms or media organizations where immediate feedback is critical for 

decision-making. 
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Real-Time Detection Limitations: 

Despite efforts to optimize the ensemble system for real-time detection, 

there are inherent limitations in providing instantaneous feedback, 

particularly when dealing with high-resolution images or videos. The 

analysis of videos, especially those with multiple frames or complex 

manipulations, often requires longer processing times due to the increased 

computational demand of handling large amounts of data. 

While single-frame deepfake detection may be quick and efficient, larger 

video files or videos containing complex manipulations may cause delays in 

providing timely results. This limitation could significantly hinder the 

system’s effectiveness in real-world, real-time applications. Platforms such 

as live-streaming services or social media, where immediate feedback is 

essential for identifying and responding to deepfake content, may be 

particularly impacted by these delays. This makes the system less suited for 

environments where rapid detection and response are critical. 

 

Limited Handling of Adversarial Attacks: 

The system currently implements basic adversarial robustness testing, 

including resistance to JPEG compression and noise. However, deepfake 

detection systems are becoming more vulnerable to adversarial attacks that 

aim to manipulate or evade detection. While the system offers some 

protection against simpler adversarial strategies, it does not fully address the 

robustness required for more advanced adversarial techniques, such as 

adversarial training or sophisticated attack methods. 

As adversarial attacks evolve and become more sophisticated, the system 

may increasingly struggle to detect manipulated data that is specifically 

designed to bypass its detection mechanisms. This vulnerability could 

significantly undermine the reliability and trustworthiness of the deepfake 

detection system, particularly in high-stakes environments such as legal 

investigations, news media, or security applications, where the 

consequences of false negatives or evaded detection can be substantial. 
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4.2.7.2 Future Improvements: 

Expansion to Multimodal Deepfake Detection: 

A significant improvement would be to extend the system’s capabilities 

beyond image-based deepfakes to include video-based and multimodal 

deepfake detection. This could involve integrating models trained not only 

on visual manipulations but also on audio and text alterations. By 

incorporating such models, the system would gain the ability to detect 

deepfakes that span multiple media formats, including audio, text, and video. 

This enhancement would greatly increase the system’s applicability to a 

wider range of deepfake techniques, ensuring its relevance as deepfake 

technology continues to evolve. As deepfakes become increasingly 

sophisticated, involving more complex combinations of video, audio, and 

text manipulations, this improvement would help maintain the detection 

system's accuracy and effectiveness in identifying emerging threats. 

 

Dataset Expansion and Updating: 

An important improvement would be to implement regular updates to the 

training datasets to ensure that the system remains capable of detecting new 

types of deepfake manipulations. Collaborating with organizations that 

provide diverse deepfake data and integrating emerging manipulation 

techniques into the training sets will help keep the system current and 

effective. 

By continuously updating the datasets to reflect the latest deepfake 

generation techniques, the system can maintain its accuracy and adaptability 

in the face of evolving threats. Furthermore, expanding the datasets to 

include a broader range of environmental conditions, such as varying 

lighting and resolution, would enhance the system’s robustness across 

different scenarios. This would ensure that the deepfake detection system 

remains effective, even as deepfake technologies and environmental 

variables continue to change. 
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Optimization for Performance and Real-Time Detection: 

An essential improvement would be to optimize the deepfake detection 

models for faster inference and lower latency, particularly for real-time 

applications. This could be achieved through techniques such as model 

compression, utilizing lighter models for specific tasks, or employing 

parallel processing methods that efficiently handle large datasets. 

By improving the processing speed, the system will be better equipped to 

manage large volumes of real-time image or video uploads without 

sacrificing accuracy. This is especially critical in industries like news, media, 

and law enforcement, where the ability to quickly verify the authenticity of 

images and videos is crucial. Faster processing times would enhance the 

system’s practicality in real-world scenarios, ensuring it can provide timely 

results in high-pressure environments. 

 

Advanced Adversarial Robustness: 

An important improvement would be to implement more robust adversarial 

training techniques, such as generating adversarial examples or 

incorporating defensive mechanisms like adversarial training. These 

techniques would enhance the system’s ability to resist manipulation and 

adversarial attacks designed to bypass detection. 

By improving the system’s resistance to advanced adversarial attacks, it will 

become more reliable and trustworthy, particularly in environments where 

deepfake creators may actively attempt to evade detection. This would 

ensure the system’s integrity and reliability in high-stakes scenarios, where 

the consequences of undetected deepfakes could have significant 

implications, such as in legal, media, or security contex 

 

Cloud-Based and Scalable Solutions: 

An important improvement would be to move towards a cloud-based 

infrastructure, which would allow the system to scale efficiently to handle 

high-demand scenarios, such as processing large video files or managing 

multiple concurrent user requests. This would also enable more users, 



144 

 

 

including those with limited local computational resources, to benefit from 

the system. 

A cloud-based solution would enhance the system's ability to handle large-

scale detections, providing faster processing times and easier maintenance. 

Moreover, it would allow a broader, global user base to access the platform, 

expanding its reach and impact. This scalability would make the system 

more versatile and accessible, ensuring it can serve a wider range of users 

across different regions and industries. 
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CHAPTER 5 

 

5 CONCLUSION 

 

In conclusion, this deepfake detection system represents a comprehensive 

solution to the growing challenge of identifying manipulated media in digital 

content. The project successfully integrates advanced machine learning 

techniques, offering both single-model and ensemble detection methods to 

ensure high accuracy and generalization across various deepfake generation 

techniques. By allowing users to choose between these models, the system 

provides flexibility while maintaining robust performance across different 

detection scenarios. 

The system meets all the functional requirements, including secure user 

authentication, image upload validation, real-time detection, and accurate result 

presentation with confidence scores. It also adheres to non-functional 

requirements, ensuring that performance thresholds—such as image processing 

time and system scalability—are met. The system can process images within the 

specified time limits (≤800ms) and scale to handle over 1,000 concurrent 

requests, with a reliability rate of 99.9% uptime, which is crucial for deployment 

in production environments. Furthermore, the system incorporates robust 

security measures, such as file sanitization and secure communications, 

ensuring user data integrity throughout the detection process. 

Testing played a pivotal role in validating the system's functionality and 

performance. A comprehensive suite of unit, integration, and adversarial 

robustness tests ensured that individual modules, as well as the complete system, 

functioned as intended under both normal and adverse conditions. The system’s 

ability to handle a variety of inputs, including distorted and compressed images, 

was also validated, demonstrating its resilience to adversarial attacks. Moreover, 

accuracy tests showed that the ensemble detection method consistently 

outperformed individual models, achieving high F1-scores and ensuring 

generalization across different deepfake manipulation techniques. 
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This project also addresses the need for maintainability and scalability. The 

modular architecture of the system allows for seamless integration of new 

models without altering the core code, ensuring the system remains adaptable 

to future developments in deepfake generation techniques. The user interface is 

intuitive and accessible to both non-technical users and advanced administrators, 

ensuring that the system can be effectively utilized by a wide range of users. 

Despite its successes, there are areas for future enhancement. These include 

expanding the system's capabilities to detect deepfakes in video content, 

improving the system’s performance for real-time detection, and exploring 

additional adversarial testing scenarios to further strengthen its robustness. 

Furthermore, as deepfake generation techniques continue to evolve, ongoing 

updates to the model suite and detection methods will be essential to maintain 

the system’s effectiveness. 

In summary, the deepfake detection system not only meets its technical 

objectives but also provides a flexible, user-friendly platform that can be 

effectively deployed for both individual users and larger organizations. By 

combining cutting-edge machine learning techniques with a focus on 

performance, scalability, and security, the system is well-positioned to combat 

the challenges posed by deepfake technology in today’s digital landscape. 
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