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ABSTRACT 

 

The general intelligent agriculture system is integrated with several other technologies such as 

sensors, automated irrigation, fertilization, and surveillance systems for increasing efficiency 

and improving productivity. This project discusses anomaly detection (AD) in images taken 

from plantations, an important part of such systems. In the related task of plant disease 

detection, much previous work has relied on various supervised learning approaches; the use 

of convolutional neural networks and other deep learning models trained on large, annotated 

datasets of diseased plants has become common. However, this would remain a less feasible 

approach, considering some practical challenges to acquiring such datasets, particularly in real-

world farming scenarios. For example, it is highly impractical and tedious to expect the farmers 

themselves to take clear, labelled images of every plant. Besides, data collection usually 

includes flying drones or moving cameras, adding more problems in capturing regular and 

quality images. 

This project applies the unsupervised anomaly detection concept, which avoids the use of large-

scale pre-labeled datasets. The proposed system trains the model only on healthy ginger plant 

images to learn normal patterns and detect deviations, if any, as potential anomalies. Such 

deviations can be because of a disease in the plant or other health problems. This will not only 

reduce the overhead of manual data labelling but also enhance the practicality of deploying the 

system in dynamic agricultural environments. The flagged anomalous images can be used later 

to augment the supervised learning models, thus enabling hybrid supervision for further 

refinement of the system. 

The strength of the AD model for real-world images of varied natural environmental conditions 

considers changes in background, light, and climate. Automating plant health monitoring, 

reduces manual inspections to a minimum, hence allowing farmers to identify health problems 

much earlier, take remedial measures, and focus on strategic features of crop management. 

Overall efficiency increases, labour costs are reduced, and much healthier plantations ensue, 

hence promoting sustainable agriculture. It signals a very promising step toward the 

exploitation of artificial intelligence to address challenges in modern farming. 

 

Area of Study (Maximum 2): Artificial Intelligence, Computer Vision 

 

Keywords (Maximum 5): Plant Health Monitoring, Anomaly Detection, Unsupervised 
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Learning, Image Processing, Smart Agriculture 
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Chapter 1 

Introduction 

 

In this chapter, we give an introduction to the ginger plant plantation and discuss the issues that 

are associated with the current systems used for the health monitoring of plants. Manual 

inspection for identifying plant health is generally slow, labour-intensive and prone to human 

errors making the response to a disease outbreak slow. We are motivated by the necessity to 

optimize these processes by creating a better system with the aid of machine learning. 

Specifically, we would like to introduce an unsupervised AD models that might always observe 

the ginger plants for health issues in detail and at an early stage. It also seeks to improve 

agricultural practices to provide farmers with better ways and means of detecting health 

compared to traditional reliance on human labour and knowledge. It also advances the domain 

of machine learning by showcasing how it can solve real-life problems in the real world of 

agriculture. 

 

1.1  Ginger Plantation  

The ginger plant is a widely cultivated spice all over the world, ginger plant is normally planted 

in southeast Asia. It is famous for its strong spicy odour and has been credited with several 

health benefits [1]. The Ginger plant belongs to the Zingiberaceae family. Ginger is a plant, 

and the preparation involves using the rootstalk to cut the growth of the plant. The method of 

harvesting ginger is by pulling up the rhizome from the ground, washing it then exposing it to 

the sun for drying. [2] Ginger plant requires a lot of effort in farming and the introduction of 

various technology has helped in the plantation. Water and nutrients are pumped to the plant 

with the help of a pump which is located at a central point and the farmer knows the condition 

of the plant by looking at it. [3][4] For that reason, it is difficult to transfer this experience to 

new workers. Based on this, our project is to solve the problem by developing a ginger plant 

health monitoring system through training in unsupervised AD. It is advisable to have a library 

that can identify anomalies in plants in a relatively short time using images from the drone as 

a dataset, using realistic data. 
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Figure 1.1.1 Ginger Plant [5] Figure 1.1.2 Ginger Plantation [6] 

 

 

1.2  Problem Statement  

Engaging in the construction of a completely automatized system for the monitoring of plant 

health is not particularly without difficulties, especially if one needs to apply unsupervised AD 

towards the task. The challenges highlighted above are what our project aims at trying to 

address in plant health monitoring. Different from supervised approaches, where the data set 

contains labelled data, unsupervised AD does not require labelled data and works well in 

situations where anomalous cases are rare. Additional challenges are observed when working 

with actual plants in natural conditions including plant size, plant development, surrounding 

environment, and noise. These factors add more challenges such as achieving detection 

accuracy regardless of the plant growth health, reducing the false positive rate due to the 

fluctuations in plant growth, and finally achieving real-time performance despite random 

recording environments. Our work positions itself to address these challenges and to offer an 

efficient and sound solution for automated plant health monitoring using unsupervised machine 

learning. 

 

1.  Human monitoring 

These days, the process of planting ginger plants calls for the higher experiences eye of 

the farmer to determine whether or not the plant is receiving the right amount of 

nutrients. This is why the eye of a trained farmer is vital so that the yield of ginger 

plants can be nurtured effectively to produce a higher yield of ginger rootstalk. The 

defect or unhealthy plant is usually discarded thereby increasing losses to the farmer. 

Therefore, giving the required quantity of nutrients will reduce the loss incurred by the 
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farmer. The farmer is also required to check which plant is defective and removed so 

that the farmer does not spend resources on a plant that will not produce a sellable 

product. Consequently, this entailed a high entry barrier for the green farmer to venture 

into ginger production through the establishment of their new plantation. Our project 

wants to solve this problem by aiding the farmer's vision of detecting defective plants 

from all the healthy plants in the plantation using an unsupervised AD machine learning 

model. 

 

  

Figure 1.2.1 [7] 

Yellow Spot on Ginger Plant Leaves 

Figure 1.2.2 

Caterpillar Found in Ginger Plant 

 

 

2. Real-world monitoring system 

Most studies on health monitoring systems concern themselves with hypothetical 

models of examining real-world settings, for instance, highly close-up images of plant 

leaves. However, this approach is not feasible in most real-world plantations because it 

time time-consuming for close-up shots of various plants. Even the environment such 

as background and noise might contribute to the algorithm results. Most of the current 

research in this area applies well-defined backgrounds to reduce background noise in 

the collected data set; however, this is not feasible in a real-world scenario as the nature 

of soil for a certain point in the field varies from farm to farm, we should take in the 

background as part of our dataset and find ways to eliminate the vision from taking it 

into account. In ginger plantations, plants are generally grouped, therefore an effective 

solution must be one that can identify an anomaly in various plants and isolate the plant 
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region that has the anomaly from the others. The existing research is mostly concerned 

with the detection of individual plants, while in practice, the plants may overlap each 

other, and it distorts the detection algorithms. Following these limitations, our project 

will train an unsupervised AD algorithm using real-world datasets in hopes of 

developing a model that can detect anomalies in a real-world plantation environment.  

 

3. Unsupervised AD 

The rate of disease incidence in ginger plants is not very frequent; therefore, it is 

difficult to find a large number of datasets on ginger plant images that are infected, 

which are essential for the training of the health detection model. Hence our approach 

entails training an unsupervised AD model using images of only healthy ginger plants. 

In this way, we will feed the model with samples of what a healthy plant looks like and 

then be able to train the model on what it means for it to be unhealthy or to point to 

features that may suggest illness or another defect. This forms a basis for the evolution 

of a good health -monitoring system that monitors health. The anomalies identified by 

this model will help for the subsequent models, which one can train for the specific 

objective of finding health or particular types of diseases in plants. Our project is to 

devise a dependable approach to unsupervised AD that doesn’t only identify the 

abnormalities in ginger plants, but also gathers and store data on the anomalous plants. 

It will help extend the current knowledge of the plant anomalies and assist in the future 

endeavors of developing models specific to the disease.  

 

1.3  Motivation 

This project was established because of the rising need to modernize the plantation industry, 

especially through the application of the latest technology. With the help of the unsupervised 

AD approach used, the management of the ginger plantations becomes more effective, as the 

constant monitoring of the plantation's health no longer requires human intervention and the 

farmer can do other more essential task. The project helps in acquiring valuable information 

on the health and state of the ginger plants, which is useful not only for health identification 

but also for the ensuing expansion of the plantation. To the new farmers, the system proves 

useful because through using it, they are in a position to be provided with well-organized 

information on how they can start and manage their ginger plantations. In the case of the well-

experienced farmers, it helps in the early identification of diseases thus enabling them to 
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intervene before the situation gets out of hand hence increasing both the quantity and quality 

of yields. The real-time monitoring makes sure that the farmers get quick feedback on the health 

of the plants to protect them. Due to the early warning and assessment of the state of plants, 

the proposed system offers the farmer an opportunity to make the right decisions hence 

enhancing the yield of the farm and making the farming process less hazardous. This project 

not only brings the agriculture sector into the modern world but also enhances the abilities of 

the farmers introducing a new set of tools to regulate productivity and protect the crops from 

diseases and unfavorable conditions. 

 

 

Figure 1.3.1 Smart Agriculture System [8] 

 

Apart from the positive impact that this project will have towards the agricultural sector, there 

is a strong desire to improve the uptake of unsupervised learning, especially AD within the 

machine learning community. It is for this reason that the true farm data has a lot of variability 

mainly from the growth stage of plants, environmental effects, and backgrounds that provides 

a perfect testing ground for machine learning researchers to test how models can be trained and 

fine-tuned in a real-life environment that is unstructured. As this project is devoted to AD 

without using any labelled data it is also an attempt to demonstrate what is possible with the 

help of unsupervised learning methodologies for solving real-world problems. In addition, the 

efficiency of the system in processing real-time traffic and its expansibility offer important 

lessons on how to deploy the learning models in applications requiring timeliness and at a large 

scale. This project be a good reference to the machine learning society, to advance more 

research on the resilient, flexible models which will be implemented across the other sectors 

apart from farming. 
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1.4  Project Scope 

The scope of the project is to create a application on the health se monitoring system using a 

unsupervised AD model training on the detection of ginger plant using the dataset of real life 

video from a ginger plantation. 

 

1. Ginger Plant 

This project goal is to detect AD on the ginger plant using dataset capturing from a 

drone for ginger plant applications. The project scope is limited only to the detection of 

anomaly for ginger plant and unsupervised AD model should be produced for this 

purpose. 

 

2. Unsupervised AD 

This project goal is to create a model for the purpose of detecting anomaly in the ginger 

plant using a unsupervised AD model. The project scope is limited only to the creation 

of one model.  

 

1.5  Project Objectives 

Our project objectives is to create a complete application on the health monitoring system using 

unsupervised AD. Our project should be able to be used on able to tackle on the real life 

applications on detection of plant health. 

 

1. Detection of Anomalous Ginger Plant 

Our project should be able to detect ginger plant and produce and output on whether a 

plant is anomalous or normal with very high accuracy. Our detection model should be 

able to pinpoint the anomalous part in the image and provide the farmer on which plant 

is problematic. 

 

2. Practical Health Monitoring System 

Our project solutions should be able to use real-world situation as a data and achieve 

good accuracy on detection on ginger plant on actual plantation. Our projects aims to 

be a application for the use case of detecting health plant in real farm. 

 

3. Unsupervised AD 
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Our project should be detection using a unsupervised AD model using a large sample 

of healthy plant from the ginger plantation and produce one model of unsupervised AD 

model 

 

1.6 Contributions 

This project aims to contribute significantly to both the agricultural and machine learning 

communities by providing a robust unsupervised AD model for plant health monitoring. 

Firstly, it offers a practical, real-world solution for disease detection through the use of real-

time camera feeds or video recordings of ginger plants. This approach allows for immediate 

identification of potential health issues, thereby assisting farmers in taking timely action to 

manage plant healths and improve overall crop health. By integrating real-time data processing, 

the project addresses the need for efficient, scalable monitoring systems in agriculture, 

ultimately aiding in better disease management and increased crop yields. 

 

Secondly, the project seeks to expand the dataset of anomalous plants, which will be invaluable 

for the future development of computer vision models targeted at health detection. This 

enhanced dataset will support ongoing research and refinement of AD algorithms, enabling the 

creation of more accurate and effective models. Additionally, the project includes a user-

friendly training module that facilitates the integration of new datasets from different plants, 

allowing for easy adaptation and training of models on new crops. This feature will assist in 

the development of plant-specific detection systems and contribute to the broader machine-

learning field by demonstrating practical applications of unsupervised learning techniques. 

Overall, the project not only enhances agricultural practices but also advances machine learning 

research by providing new data and methodologies for AD in dynamic environments 

 

1.7  Report Organization 

This report is structured into seven chapters. Chapter 1 outlines the project background, 

aim/objectives, problem, and scope. Chapter 2 outlines the review of existing anomaly 

detection systems in plant disease monitoring in terms of their limitations and the rationale for 

the approach adopted in this study. Chapter 3 outlines the system methodology in terms of the 

general approach, data capture, and the model selection process. Chapter 4 outlines the system 

design, which includes the system architecture, the systems and integration techniques used in 

developing the system. Chapter 5 outlines the system implementation, including the systems 
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used and the technologies adopted, data preparation for the data set used for the system, and 

the preliminary tests performed. Chapter 6 outlines the system evaluation in terms of analysis 

of experimental results, evaluation of the performance of the model, and the problem 

encountered. Chapter 7 concludes the report by outlining the conclusion of the study as well as 

the strengths and weaknesses of the system and areas recommended for improvement in the 

future. 
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Chapter 2 

Literature Review 

 

2.1  Previous Works on Plant Health Detection 

In recent years, the use of computer vision and machine learning models in the detection of 

health in plants is common, there is various research done on such topic with varying degrees 

of success on many plants using different models, proving that using such models has the 

potential of becoming a solution for this issue.  

 

2.1.1  Plant Health Detection using Supervised Learning Model 

The most common model used in the detection of health in plants is the CNN model this CNN 

model used to solve this problem is usually made up of 3 steps, First is the collection of the 

dataset, training on the model and computer vision techniques to show on the defective area of 

the plant.  

 

1. Ginger Plant 

Shreelakshmi's paper collected 7014 pictures of label ginger dataset of 150 by 150 

pixels images as shown in Figure 2.1.1.1. [9] Shreelakshmi states that CNN is quite 

effective at classifying the images into healthy and disease categories with high 

accuracy rates measured from various studies. Table 2.1.1.1 shows the result in the 

paper where the best method produces a 99.53% accuracy using DCNN, SRGAN, 

WGAN, VGG16, ResNet50 and DenseNet21 while the other model produces at least 

92.68 accuracy.  
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Figure 2.1.1.1 Label Dataset on Ginger Plant Leaves [9] 

 

Table 2.1.1.1 Table on the Result for Shreekakshimi [9] 

 

2. Single Plant Organ Training 

Boulent states that a model that specializes in a single organ of the same plant is better 

compared to training on a specific plant and therefore better than a model that trains on 

a variety of plants. [10] The dataset they use is from a public dataset from Plantvillage 

which contribute some unknown variable as to the time and date or the condition of the 

image it is taken. The paper uses a CNN model from scratch and due to the limited in 

data for CNN, it uses previous cycle weightage to continue training. The area of the 

dataset chosen to be used for training as weed out using feature extraction and fine-

tuning. Figure 2.1.1.2 shows the result of their custom CNN model against another 

model. 
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Figure 2.1.1.2 Result of Custom CNN Compare to Other Model [10] 

  

3. Multiple Plant Training 

Geetharamani’s paper also uses a dataset provided by PlantVillage accounting for 

54305 images of 13 different plant leaves.[11] The datasets are processed and produced 

in different orientations and provide noise to augment the images. The model they plan 

to train the Deep CNN model is provided by scikit-learn and other libraries are used to 

assist in the training such as Keras, pillow and OpenCV libraries. The model design is 

shown in Figure 2.1.1.3. The images go through convolutional layers that act as a 

feature extraction to extract defects in plant leaves and perform another layer to leave 

behind additional discriminative features which are used to build the CNN model on 

the feature of leaves. The result of this model is used to compare against another model 

in Figure 2.1.1.4. This proves that the CNN model can be used to classify the health of 

multiple different plants with high accuracy. 
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Figure 2.1.1.3 CNN Model Design [11] 

 

Figure 2.1.1.4 Result Comparing with other Model on Multiple Type of Plant [11] 

 

4. Multiple Model and Fast CNN 

Li’s paper works on the need for a workable health detection model on a rice plant.[12] 

The dataset is collected locally in Anhui, Jiangxi and Hunan Province, China using a 

handheld phone composed of 1800 images of rice sheath blight, 1760 images of rice 

stem borer and 1760 images of rice brown spot which is shown in Figure 2.1.1.5. The 

model they use is a composite of the model. They use Faster-RCNN for object detector 

in the ROI. A custom DCNN Backbone for the feature detection. Yolo for the detection 

of the disease. Through a combination of multiple models is able to accurately predict 

and locate the disease spot from the images.  

 

Figure 2.1.1.5 Dataset Images of Rice Plantation [12] 

2.1.2  Plant Monitoring System using Unsupervised Learning Model 

AD[13] describes a statistical process used in machine learning and data analytics to define 

atypical patterns, outliers from expected behaviour, or unexpected events within a dataset. This 

becomes particularly important when applications involving labelled events become too cost-

intensive, for instance in fraud detection, cybersecurity, and monitoring within heavy industry. 

It has attracted significant interest in agriculture because of its ability to detect changes in plant 
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growth and health, among other features that are hardly visible to the naked eye. Traditional 

approaches to AD have normally involved some sort of supervised learning model, in which 

common and not-so-common cases are well-labelled, and thus used for the training of an 

algorithm. In most practical applications, especially in agriculture, the labelled data is small, 

and the conditions affecting plant health may differ to such an extent that unsupervised learning 

models are much more applicable. 

 

In a ginger plantation, the detection of an anomaly will be possibly a very strong tool for real-

time monitoring because maintaining yield and quality will depend on the detection of health. 

Diseases mostly occur in the leaf, stem, and root portions in ginger plants, as in many other 

crops; therefore, early detection of such diseases is essential to prevent large-scale damage. 

However, growth characteristics in ginger plants together with environmental factors such as 

fluctuating weather conditions and uneven soil quality make it difficult to rely on set 

indications of diseases. In the same vein, unsupervised AD is very helpful, for it does not 

depend on the extensive labelled dataset either of sick plants but finds deviances from the 

standard growth habits of healthy ginger plants. 

 

It may further include one field of ginger cultivation, monitoring daily or weekly plant 

development with the help of real-time video. It could then be analyzed with an unsupervised 

AD algorithm over time to learn what normal behaviour in plants is under different ambient 

conditions. This model can identify when a plant or cluster of plants starts to exhibit atypical 

behaviours like a colour change in leaves, irregular growth, unexpected drooping of leaves, 

and raise an alert for either disease or other stressor effects. That is, since the model has been 

trained over general trends within healthy plants, it can handle a wide range of environmental 

conditions without explicit training in every conceivable disease. 

 

Integration of AD techniques in ginger plant monitoring would provide farmers with early 

warnings in case there are complications; therefore, they have been able to take their 

precautionary measures in time before the spreading of the disease all over their crops. This 

will contribute to more efficiency in the management of the disease and less overreliance on 

manual surveillance and operations. The models that are not based on prior assumptions 

flexible for different agricultural environments are scalable and practical for use in identifying 

crop diseases, for example, ginger. 
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1. AD for Plant Health 

Adhiwibawa [14] conducted research regarding the use of a citrus plant for AD in leaf 

health. The dataset that was used in this research consists of 60 images taken by a digital 

camera. Each image falls into one of two categories: normal leaves and abnormal 

leaves. Object segmentation is one of the preprocessing steps in which leaves are 

cropped out from the background to make them the main objects of interest. 

Preprocessing normalizes the model for AD to only characterize the leaf and not be 

influenced by any background noise. 

 

In this regard, AD includes colour feature extraction, which focuses on colour as the 

main symptom for symptom-based indication of the health status of the leaf. Some 

diseases or environmental stress often appear as colour changes in leaves, such as 

yellowing or some darker spots. After that, the colour features are analyzed, and then 

the system decides if a leaf is normal or abnormal. The AD is done by the T2 Hotelling 

Multivariate Control Chart, which is a statistical method for monitoring the normal 

distribution of multivariate data. T2 = (x - x̄)' S-1(x - x̄), where x is the sample data, x̄ 

denotes the mean, and S is the covariance matrix. The expression is useful in telling 

just how far any particular sample has strayed from what had been expected to be the 

norm. 

 

For the threshold computation of AD, the F-distribution is computed at a certain 

significance level (alpha) as Upper Control Limit (UCL) that sets the boundary on what 

can be an outlier. Samples that fall beyond this threshold are flagged as an anomaly. 

Figure 2.1.2.1 shows the result of applying the AD model to the citrus plant leaves as a 

visual representation of the differences between healthy and anomalous samples. 

 

This technique of AD meets the demand for a strong method that can indicate the 

possible problem of the citrus plant, whether by infection of diseases or environmental 

stress, using multivariate data such as colour. The system then gives attention to 

multiple variables, using statistical control charts that can indeed show the difference 

between normal variations in the colour of leaves and those which indicate that there is 

a problem. Techniques such as these become increasingly important for early health 

detection and agricultural monitoring. 
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Figure 2.1.2.1 Result of AD on Citrus Leaf [14] 

 

2. AD in Smart Agriculture 

Catalano's [15] paper proposes an AD framework for smart agricultural systems using 

Multivariate Linear Regression and Long Short-Term Memory. He uses Multivariate 

Linear Regression to analyze the dependent and independent relationship of two 

variables-like environmental factors and sensor data, respectively a system will use to 

determine under normal conditions. Meanwhile, LSTM is a powerful model for time 

series prediction that will enable forecasting future sensor readings based on their 

historical data. These combinations activate an AD system which will point out any 

deviation from expected behavior that could be malicious tampering or an 

environmental issue. 

 

The proposed system provides intrusion detection for intrusion of pests into crops or 

other humans' attempts to destroy crops. They also detect a cyberattack aimed at 

tampering with sensor data or causing system failure. This may be facilitated by an AD 

mechanism analyzing the real-time data from sensors and flagging abnormal patterns 

indicating harmful events or disruptions. Besides, enhanced security boosts system 

resilience by promptly identifying system failures or accidents brought about by human 

error. For example, if a farmer, due to human error, makes a mistake on the plantation, 

then the AD system would flag this because of inconsistency in the data. 

 

Figure 2.1.2.2: The output of the AD system showing temperature against time. In this 

context, abnormal fluctuation in temperatures that could indicate tampering with 

sensors or some other environmental stressor was accurately detected by the system. 
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Early detection of the anomaly provides valuable insights to farmers about actionable 

outcomes that help them protect crop yield and system integrity. 

 

It identifies that, in general, AD has become of prime importance in contemporary smart 

agriculture, since its complexity requires devices that are interconnected and quite 

impossible to monitor manually for every threat or malfunction that can be imagined. 

Thus, with advanced LSTM machine learning models automating this process, farmers 

can manage their operations more efficiently while protecting themselves against both 

external threats and internal errors. 

 

Figure 2.1.2.2 AD Result on Soil Against Time [15] 

 

3. Deep Neural Network AD in Plant  

Deep learning was seen to emerge as a revolutionary technology in agriculture, more 

in the sphere of plant health detection. This technique had substantial edges over the 

traditional methods due to the capability of handling large volumes of data, automation 

of monitoring processes, and enhancement in precision in the identification of early 

signs of deterioration in plant health. It finds its place in agriculture, where large-scale 

fields normally cannot be inspected manually. Deep learning has been acting as a game-

changing technique in health detection and monitoring crop health based on image 

analysis. 

 

Nirmala et al. [16] have discussed the application of deep learning to detect 

complications in agriculture by using AD. The authors have focused their research on 

using deep neural networks to classify plants as healthy or diseased by visually 

identifying features from images taken through sensors placed in the field. In such a 
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way, this idea integrates deep learning with anomaly-based diagnosis for locating 

abnormal patterns in growth or health indicative of disease, pest attacks, or other kinds 

of environmental stressors. Their system applies deep learning to realize a robust real-

time, large-scale monitoring of agriculture. 

 

One of the most significant advantages that deep learning models such as DNNs have 

is analyzing unstructured data-that is, images- and, from them, extracting meaningful 

features for the identification of health in plants. Unlike the conventional methods that 

depend on predefined thresholds or manually labelled datasets, deep learning models 

learn from data input directly. Hence, this can adapt to several types of plants and 

further environmental conditions. This flexibility would come in handy in agriculture 

because it takes into consideration different lighting conditions, soil conditions, and 

weather conditions. 

 

Perhaps scalability is one of the major advantages of using deep learning in plant health 

detection. Image sensors can monitor large areas constantly, and the deep learning 

model can work with continuous data to identify deviations from normal plant behavior 

by real-time processing. Often these minor changes, which a human eye would not 

notice, might point out very early stages of certain diseases or stress of the plant due to 

environmental factors and allow farmers to take remedial measures before things take 

a turn for the worse. With deep learning models, precision agriculture is much needed 

in areas of accurate and timely data that help maximize crop yields and quality. 

 

Furthermore, deep learning models can be built in such a way that it will automatically 

recognize various types of diseases for different types of crops, making the application 

versatile for use across diverse agricultural domains. For instance, based on the colour, 

texture, or shape of a leaf, the model will be able to classify whether the plant is healthy 

or diseased and whether it suffers from a nutritional deficiency. It is this capability of 

handling multivariate data that enables complex patterns to be detected, which 

otherwise might not be readily apparent with traditional methods of analysis. 

 

Table 2.1.2.1 shows the result of the Deep learning model compare against with other 

model on the performance evaluation of image processing analysis. 
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Table 2.1.2.1 Performance of Model against Other Model [16] 

 

2.2  Limitation of Previous Studies  

Most of the earlier works conducted on plant health monitoring are eminently limited and point 

to the disconnection between theoretically related research and actual application. One of the 

main problems with most of the studies is the nature of their idealistic approach, which, for the 

greater part of it, fails to capture or even come close to the complexity and realities of the actual 

agricultural settings. For instance, most of the related works make do with a dataset comprising 

no more than a few labelled diseased plants. As pointed out by J. As Boulent et al.[9] pointed 

out, since these labelled datasets will not only be very labour-intensive but on one hand also 

impracticable on a large scale, the labelling process is extremely resource-consuming to label 

each instance of plant disease manually. This approach is unworkable for farmers who are 

already stretched thin with daily responsibilities. Similarly, labelling every plant for research 

purposes is just as unrealistic considering the number of plants and the amount of work that 

would entail. 

 

Most images in such studies are close-up shots or cropped to show only a few spots of the 

diseases. While such a system serves to simplify the training of models, it does not accurately 
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portray conditions that exist in real life. In practice, crops are rarely evaluated under optimal 

conditions. Instead, farmers seek applications that handle and process entire fields of crops 

with ease in a single run. Although helpful in the controlled environment of a research setup, 

close-up images cannot present the full dimensions of an actual farm setting where plants are 

grown in close groups and the backgrounds can be very different. This creates some issues in 

that the models while training on such images, have difficulty generalizing when applied to 

more complex, real-world environments. 

 

Another critical limitation regards many of these works failing to take into consideration the 

dynamic nature evident in agricultural environments. Real farms go through changes in weather 

conditions, plant growth stages, and different backgrounds contributing to the look of the plants 

and possible disease manifestations. Training these models on idealized static images omits 

variances in these factors, hence leading to poor performance of the models when such varying 

conditions occur. A system useful for practical application therefore needs to rest on rapid, 

complete field scans, rather than cropped and isolated images. Models should be robust to 

detect anomalies based on broader plant features and adapt to the variability characterizing real 

farming conditions. 

 

In other words, much of the available literature related to the monitoring of health in plants is 

a bit too idealistic, with little consideration or modelling of what happens in the real world with 

agricultural concerns. This is further exacerbated by the limited, manually intensive nature of 

dataset labelling, often focused on close-up and cropped images; both factors together detract 

from the effectiveness that might be achieved in a real-world setting. This underlines the urgent 

need for solutions that can fill the gap by processing volumes of diverse data representative of 

real-world conditions to generate actionable insights for farmers in these complex, variable 

conditions. 

 

2.3  Possible Solutions  

 

This limitation is addressed in this project by designing a scheme whereby real-world images 

and scenarios are taken for training and testing purposes of AD. Such traditional methods 

usually rely on idealized data sets, which might not depict the actual scene for such agricultural 

environmental conditions. Our work overcomes this limitation by taking in video footage of 
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real life from ginger plantations at various periods. This will ensure that the developed models 

are not only efficient in laboratory conditions but also in real-life applications. 

 

Real images were used in our project to make the model more robust against the challenges of 

relatively diverse and dynamic agricultural setups. The video sequences were preprocessed 

with sequences of motion blur and background changes. This allows our model to learn from 

a dataset that exhibits realistic properties. This ensures that the idealistic datasets problem is 

surmounted, as the model learns from images that have real variation in a normal farm setting—

from stages of plant growth to light and environmental noise. 

 

For this, we would like to apply methods of AD, for which the model is to be trained on the 

concept of what a normal ginger plant looks like. That would turn out to be useful in enabling 

the model to pick up features that deviate from the learned norm, such as symptoms of disease. 

We are also introducing video footage from a real farm to take into account the real-world 

motion blur and other artefacts not often taken into consideration within the research setting. 

 

The drones will also capture images of the ginger plantation in high resolution. Drones can fly 

quickly over large areas, taking several pictures from several angles. It makes the dataset 

collected rich and variable for training. In this respect, data gathering speeds up and provides 

the opportunity to consider real plantation variability size in one dataset. It is within this line 

of thought that our proposal shall, therefore, aim to bring together theoretical research and 

practical application in suggesting a more reliable and accurate plant health monitoring system. 

Based on actual data collected in the field, we are evolving a model that should work brilliantly 

under both artificial and actual-life situations in a step-up mode. This will help in contributing 

further strategies toward the effective management of diseases at a larger level in agriculture. 

 

2.3.1  Model Options 

Anomaly detection models are highly varied in methodology and technological basis and each 

form is adapted to deal with specific properties of data sets. While there might exist models 

that perform perfectly well on specific data sets, in general, it's assumed that their performance 

cannot be generalized to all data spaces. This holds primarily due to data distribution variance, 

complexity in features, environmental noise, and application-specific needs. There exists no 



Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    21 
 

universally best-performing AD model currently; rather, the performance of each model 

depends on the specific challenges and conditions of the problem under consideration. 

 

Given these factors, the need for a rigorous and methodical evaluation process in the selection 

of an AD model for a new application becomes a high priority. When the application involves 

monitoring plant health based on video images of dynamic and uncontrolled fields, the need 

for this becomes imperative. A methodical process for selecting AD models includes cross-

comparisons of multiple AD models tested on the same data to enable objective evaluation. 

This enables model-specific merits and pitfalls to be determined concerning their ability to 

generalise outside the conditions under which it has been trained, robustness to noise and 

artefacts, and ability to detect nuances in anomalies that constitute early indicators of plant 

decline in health. 

 

Moreover, benchmarking model performance on diverse datasets is also important to ascertain 

scalability and real-world viability. A well-performing AD model on benchmark datasets—

collected usually in a controlled lab environment—could not perform when implemented in 

the field environment, as data in the field environment would be more complex, dynamic, and 

unpredictable. For instance, variation in lighting conditions, clutter in the background, plant 

placement, and natural irregularity in plant growth could all pose enormous challenges not 

found in controlled environments. For that reason, intensive benchmarking on diverse datasets 

must be performed to assist in ensuring that the implemented AD model not only performs 

correctly but also robustly and reliably for real-world farm monitoring. 

 

In a critical evaluation, the review should include a wide range of AD model types so that the 

optimal solution can be established. In general, AD models fall into three broad categories: 

conventional models (e.g., statistical models, traditional machine learning algorithms), neural 

network-based models (e.g., convolutional autoencoders, deep one-class classifiers and 

generative models), and the newly developed Vision-Language Models (VLMs), which utilize 

the strong ability to generalize across multimodality through pretraining. These types all have 

analogous strengths and weaknesses. The conventional models are usually simple to use, easily 

interpretable, and efficient but may not have optimal performance on highly complex data. The 

neural network-based models can learn very complex patterns and non-linear relationships but 

are highly dependent on hyper-parameter tuning and the need for very large data. VLMs are a 
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new promising direction that can perform zero-shot and few-shot but their performance in the 

case of domain-specific fields in plant health monitoring is a subject of ongoing work. Thus to 

select the optimum AD solution for ginger plant anomaly detection in various applications, 

representative models of each of the three types need to be tested and benchmarked 

systematically. These tests need to be performed in conditions approximating the deployment 

environment in question while being careful to monitor metrics that range from detection 

accuracy to false positive rates to robustness to variability to computational efficiency. It's only 

by adopting a scrupulous empirical and iterative approach that we can arrive at an effective 

high-fidelity AD system to facilitate real-time field-level ginger plant monitoring. 

 

1. Traditional Models 

Traditional AD models, including OCSVM, Random Forests, and k-NN, are based on 

statistical and heuristic methods for anomaly detection. Traditional models perform 

very well when the feature space is well-defined and low-dimensional, with structured 

data. The interpretability and simplicity of these models make them very suitable for 

small or less complex datasets. However, their performance considerably deteriorates 

in high-dimensional or noisy datasets, since it may fail to capture complex patterns or 

subtle anomalies often present in plant health monitoring datasets. 

 

I. ABOD - This is the method to identify outliers for high-dimensional data. Due to the 

"curse of dimensionality," distances become less meaningful in high-dimensional 

spaces. The ABOD method overcomes this problem by focusing on angles between 

distance vectors of points, which are more informative for AD in such spaces. The key 

idea is that inliers, or normal data points, cluster around and therefore have higher 

variance in the angles formed by vectors connecting these points, while outliers 

typically sit further away from these clusters and tend to produce more uniform angles. 

ABOD effectively distinguishes between inliers and outliers by comparing the angular 

variance between data points. This approach capitalizes on the fact that inliers have 

more variability in their angle distributions, whereas outliers have less variability, 

which allows their more reliable detection in high-dimensional spaces. [17] 

 

II. CLUSTER - Clustering-based Local Outlier Detection transforms multivariate outlier 

detection into univariate by applying statistical tools designed for one dimension. This 
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is developed using a new metric, δ is the minimum distance needed by a point to enter 

an area of a higher-density neighbourhood. The local density is computed for each data 

point based on its distance from a set of points in some neighbouring region. Once 

transformed, the dataset is treated as univariate, allowing for the application of 

statistical methods such as Chebyshev's inequality to estimate the proportion of 

outliers. The method further refines outlier detection by introducing concepts like 

(kσδCm +¯ δCm ) connected and density peak reachability that allow the identification 

of outliers about clusters and local density peaks. That significantly reduces the 

computational complexity required, and it can allow quite accurate outlier detection in 

a high-dimensional dataset. [18] 

 

 

III. COF - COF algorithm uses a kernel function to transform the input feature space and 

computes connectivity between data points. This technique first maps the data to a new 

feature space using a kernel function. Then, it determines the k-NN for each data point, 

constructing a nearest-trail dataset. The algorithm calculates the average distance of 

chaining, which can be considered a weighted distance for the nearest-neighbour path. 

The COF for a data point is computed from the ratio of its average distance to the k-

NN and the average distance of its neighbours. A greater COF indicates an increased 

possibility that the point may be considered an outlier. In COF, several kernel functions 

are Gaussian and polynomial and Operate on the data to embed them in higher-

dimensional space for better outlier detection. In such a way, the performance of 

anomaly detection will be significantly improved within complex data. [19] 

 

IV. HISTOGRAM - Histogram-based Outlier Score algorithm: uses histogram 

representations of the features' distribution to calculate the likelihood of occurrence of 

each value by means of the frequency of this very value. First, the histograms are scaled 

to have a maximum height of 1; the probability of each value is mapped to a scale from 

0 to 1. Values closer to 0 are more anomalous. For computing the anomaly score, 

combine the histogram of all features by taking, for each feature, the logarithm of the 

inverse probability. A higher anomaly score indicates a higher likelihood of the data 

point being an outlier. The algorithm also introduces the concept of dynamic 

histograms, where bins are adjusted in width based on the data distribution, addressing 
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issues like unused bins and improving the representation of data with varying densities. 

[20] 

 

V. IFOREST - The Isolation Forest algorithm is one of the AD methods that employ the 

concept of isolation trees to detect anomalies by isolating data points with shorter path 

lengths. It works by constructing multiple isolation trees, each of which is an expert in 

detecting different anomalies. One of the strong points of IFOREST is its ability to 

work with small sample sizes, which enhances its capacity to isolate anomalies 

effectively. Unlike methods requiring large sample sizes, IFOREST benefits from sub-

sampling (that is, selecting instances at random without replacement) because a smaller 

sample interferes less with normal points, thus giving better anomaly isolation. 

Common issues in AD, like swamping-in which the algorithm mistakenly identifies 

normal points as anomalies-and masking, in which anomalies are hidden by dense 

normal clusters-are handled in IFOREST through partial models. This sub-sampling 

strategy allows IFOREST to handle these challenges more effectively, resulting in 

improved detection of anomalies, especially in datasets with large, dense normal point 

clusters. [21] 

 

VI. k-NN - k-NN AD is a distance-based anomaly detection algorithm that identifies 

anomalous data points based on their distances from other data points in the dataset. 

Every data point is assigned an anomaly score, which is the sum of distances to its k 

nearest neighbours. The basic assumption is that normal data points are clustered 

densely while anomalous points are far away from the majority. The algorithm relies 

on the choice of k and the distance metric, often Euclidean distance, to determine the 

nearest neighbours. One challenge of k-NN is its dependency on the selection of k, 

which can lead to instability, especially in high-dimensional spaces where data sparsity 

and the curse of dimensionality can degrade performance. To enhance stability and 

robustness, ensemble methods combine outputs from multiple k-NN models, 

aggregating their anomaly scores using techniques like averaging or maximization. 

This helps mitigate issues like parameter sensitivity and variability in unsupervised 

learning scenarios.[22] 

 

VII. LOF - The Local Outlier Factor is a density-based AD that detects outliers by 

comparing the local density of a data point with the local densities of its neighbours. 
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Unlike most methods that consider the general distribution of data, LOF concerns the 

local neighbourhood around a given point. It calculates the Local Reachability 

Density(LRD), which is the density of a point in its neighbourhood, considering the 

distances to its nearest neighbours. A point that has a low LRD compared to its 

neighbours is flagged as an outlier. The LOF score is computed then by comparing the 

LRD of a point with the average LRD of its neighbours. A LOF score greater than 1 

indicates the point is an outlier, with values increasing as the degree of outlierness 

rises. This method is particularly useful for detecting anomalies in datasets with 

varying densities and is applied in domains such as medical records, where outliers can 

represent important abnormalities.[23] 

 

VIII. MCD - Minimum Covariance Determinant is a robust statistical technique that finds a 

subset of data points that has the minimum determinant of their covariance matrix to 

detect outliers in high-dimensional datasets. MCD focuses on a subset of data of size 

M, with ⌈N/2⌉≤M≤N, which is least affected by outliers. For any subset, compute the 

empirical mean and covariance based on the points, and retain the subset with the 

smallest determinant of the covariance matrix. This ensures that the resulting mean and 

covariance matrix are resistant to the presence of outliers. MCD differentiates between 

vertical outliers data points that substantially deviate from the linear relationship but 

with non-outlying predictors and leverage points, which are points with extreme values 

for the predictors. While traditional methods for computing location and scatter rely 

on the least squares residuals and can therefore be insensitive to certain types of 

outliers, the MCD approach focuses on minimizing the covariance determinant. [24] 

 

IX. SOD - Subspace Outlier Detection represents a robust algorithm for finding outliers in 

meaningful subspaces of high-dimensional data space. It differs from traditional 

methods evaluating outliers over the full dimensionality of a dataset because SOD 

performs outlier detection by focusing its attention on subsets of attributes or arbitrarily 

oriented subspaces. SOD is especially good in high-dimensional spaces wherein the 

notion of distance or density becomes less reliable by analyzing deviations in localized 

or lower-dimensional projections. In spatial data contexts, neighbourhood structure 

based on specific spatial attributes is often utilized, while deviation relative to these 

neighbours is evaluated using another attribute. This dual focus enables the detection 

of anomalies that are contextually significant, such as spatial outliers deviating in a 
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specific feature within their spatial proximity. This approach is widely applicable in 

areas like geospatial analysis, social networks, and complex multidimensional 

datasets.[25] 

 

X. SOS - Stochastic Outlier Selection is a probabilistic approach toward outlier detection 

in a dataset. Unlike traditional methods that consider rigid thresholds or distance 

measures, SOS defines an affinity-based framework to compute the outlier probability 

of each data point. It computes affinities by comparing pairwise similarities among 

data points, emphasizing the local neighbourhood structure. It models the likelihood 

that each point is an outlier through a stochastic process, defining the outlier 

probability as a result of the relative affinity of a point to its neighbours. Hence, points 

having low affinity to their neighbourhood will have higher outlier probabilities to set 

them apart from the rest. SOS is particularly suited for datasets with complex or 

nonlinear structures, as it does not assume any specific distribution or global data 

properties. Due to its probabilistic nature, SOS gives a nuanced view of outlierness and 

hence is of value in applications such as AD, fraud detection, and exploratory data 

analysis. [26] 

 

2. Neural Network-Based Models 

Neural network-based AD models rely on deep learning to represent complex patterns 

and dependencies inherent in the data. Well-known models in this class are PatchCore, 

PaDiM, and EfficientAD. These models work extremely well with high-dimensional 

and unstructured data, such as images or videos, which makes them perfectly suitable 

for plant health monitoring using real-time video recordings. They use feature 

extraction from pre-trained networks, localized anomaly scoring, and dimensionality 

reduction to detect anomalies with high precision. However, most of these models 

require a lot of computational resources and large amounts of data to train the models, 

which may not be feasible in resource-constrained environments. 

 

I. AIVAD - Accurate and Interpretable Video Anomaly Detection is a robust 

framework for detecting anomalies in video sequences by combining interpretable 

and deep features. The approach includes three stages: pre-processing, feature 

extraction, and density estimation. Pre-processing includes optical flow maps that 
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track the motion of objects across frames, and an object detector localizes and 

classifies objects within bounding boxes. These feature-extracting objects are 

represented through a velocity feature derived from optical flow to capture motion, 

through pose features based on body landmarks, or other deep features extracted 

from video and images using a pre-trained CLIP model that captures nuances lost 

in the other representations. For density estimation, anomaly scores are computed 

with GMMs for low-dimensional velocity features and k-NN models for high-

dimensional pose and deep features. These scores are integrated into a unified 

anomaly measure, thus enabling high detection accuracy along with interpretable 

outputs suitable for various datasets. [27] 

 

II. CFA - The Coupled-hypersphere-based Feature Adaptation method addresses the 

bias of pre-trained CNNs by refining anomaly localization through feature 

adaptation and memory bank optimization. CFA learns patch descriptors from 

normal samples, clustering these features densely around memorized 

representations stored in a memory bank. Utilizing a hypersphere-based loss 

function, CFA ensures that normal features are tightly clustered while abnormal 

features are effectively separated. Hard negative samples in turn provide contrastive 

supervision to further enhance feature discrimination. The memory bank is then 

iteratively refined using an EMA for efficient compression of normal feature 

representations. During testing, CFA compares patch features to their nearest 

memorized counterparts, generating anomaly heatmaps. A sophisticated scoring 

function is used that combines distance and certainty metrics to mitigate the 

underestimation of normal features. This ensures precise anomaly localization, as 

evidenced by superior AUROC scores on benchmark datasets like MVTec AD, 

demonstrating its effectiveness in challenging anomaly detection scenarios.[28] 

 

III. CFLOW - The method for anomaly detection based on feature extraction and 

likelihood estimation. Feature vectors containing semantic information are 

extracted by the CFLOW encoder using a discriminatively-trained CNN with a 

multi-scale feature pyramid pooling. Since it is pre-trained on large datasets such as 

ImageNet, both the local and global information is captured to deal with variability 

in the size and shape of anomalies. The CFLOW decoder estimates the likelihood 
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of these feature vectors using conditional normalizing flows, integrating spatial 

priors through positional encoding. Each decoder layer combines feature vectors 

with spatial conditions in an efficient manner using translation-equivariant 

architectures. Training entails maximizing the log-likelihood of features, while 

testing calculates likelihoods and maps anomaly scores via normalized 

probabilities. CFLOW-AD is computationally efficient compared to methods like 

Spatial Pyramid Anomaly Detection Embedding (SPADE) and PaDiM, avoiding 

large memory needs by not relying on train galleries or extensive covariance 

matrices. It excels in balancing accuracy and resource usage in real-world anomaly 

detection scenarios.[29] 

 

IV. CSFLOW - Cross-Scale Flows: It is one of the advanced techniques that were 

performed for defect detection on images with a cross-scale flow architecture, 

allowing the information from feature maps at multiple scales to flow across. By 

the sharing of information among different scales, this method increases density 

estimation and likelihood computation. Convolutional layers are applied to the 

extraction of features, while the features are then furthered into coupling blocks, 

each performing an affine transformation. These blocks split the feature tensors, 

apply scale and shift transformations, and recombine, thereby enabling the model 

to capture complex dependencies across scales. To stabilize training, a soft 

clamping technique is applied to the scaling components. The aim is to maximize 

the likelihood of the features by minimizing the negative log-likelihood in a latent 

space. A key advantage of this method is its ability to localize defects by preserving 

positional information, allowing defect detection at specific image regions, which 

is crucial for fine-grained analysis in real-world applications.[30] 

 

V. DRÆM - Discriminatively Trained Reconstruction Anomaly Embedding Model 

combines two key sub-networks: a reconstructive sub-network and a discriminative 

sub-network. The reconstructive sub-network uses an encoder-decoder architecture 

to detect and reconstruct anomalies while preserving non-anomalous regions of the 

image. It is trained to reconstruct the original image from a corrupted version 

generated by a simulator, with losses combining SSIM and L2 loss. The 

discriminative sub-network has a U-Net-like architecture, learning a joint 
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reconstruction-anomaly embedding. It generates anomaly segmentation maps by 

analyzing the difference between the reconstructed and original images. The 

approach utilizes a simulated anomaly generation process whereby artificial 

anomalies are added to the image using random texture augmentations and noise 

generation. This provides a diverse set of anomalous samples without requiring real 

anomaly data. This allows the network to learn the representation of anomalies 

regarding their deviation from normality. The final output is an image-level 

anomaly score based on the segmentation mask. [31] 

 

VI. DFKDE - Deep Feature Kernel Density Estimation: This method incorporates deep 

learning into kernel density estimation for better performance in complicated 

scenarios, such as photon mapping. DFKDE leverages a pre-trained neural network 

backbone to extract the hierarchy of features from the input data that captures the 

essential patterns and context. Noise is reduced, and computational complexity is 

lowered for these features by using Principal Component Analysis. The 

normalization makes the features consistent. This is followed by the modelling of a 

probability density function using KDE. These learned features are used by the 

KDE to assign a density score. At training time, KDE fits on normal data to learn 

the distribution; during inference, regions with low density signify anomalies or 

deviations. For photon mapping, this approach enables photon density estimation, 

which is efficient due to encoding of individual photon characteristics and the local 

context in a learned kernel. It reduces the number of photons needed for achieving 

accurate results for such effects as caustics and is computationally efficient, which 

provides fine quality. [32] 

 

VII. DFM - This is a deep neural network-based approach that models class-conditional 

probability distributions in the feature space using the feature representations 

learned by a DNN. A DNN is trained to classify samples into N classes, and class-

conditional distributions are fitted to the deep features at different network layers. 

It works by computing the log-likelihood of features concerning these distributions 

at test time for identifying in-distribution samples as high likelihood and, 

respectively, out-of-distribution or adversarial samples as low likelihood. Unlike 

previous methods which are based on the assumptions of tied covariance Gaussian 
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distributions (such as LDA), more flexible models are used by DFM, such as 

separate multivariate Gaussians or Gaussian Mixture Models, which have a greater 

ability to capture complex structures of high-dimensional feature space. The 

parameters of these distributions are estimated by maximum likelihood, while 

GMM complexity is controlled by criteria including BIC. This generative modelling 

improves the estimation of uncertainty and robustness in classification. [33] 

 

VIII. DSR - Dual Subspace Re-Projection is a novel architecture for surface anomaly 

detection, taking advantage of quantized latent space representation and dual 

decoders. DSR processes the input image into two quantized feature maps (high and 

low resolution) using a ResNet-based encoder and a vector quantization (VQ) 

mechanism. These two decoders are then specialized into different tasks: the general 

appearance decoder reconstructs high-fidelity natural images, while the object-

specific decoder constrains reconstructions to normal appearances of the trained 

object. The anomalies are found through the comparison of these decoders' outputs 

via an anomaly detection module that creates feature resolution segmentation 

masks, which have been upsampled for pixel-level localization. Apart from that, 

DSR embodies an anomaly generation method by which its training is performed 

with the injection of near-in-distribution anomalies in a quantized feature space. It 

has been trained hierarchically, first in a general image reconstruction scenario, and 

later on fine-tuning for anomaly detection using a high-resolution upsampling 

module.[34] 

 

IX. EfficientAD - EfficientAD is a lightweight framework for video anomaly detection 

that aims at reducing the computational cost of the process without compromising 

detection accuracy. It introduces Patch Description Network (PDN), a shallow 

convolutional network of only four layers, generating feature vectors for 33×33 

pixel patches in one forward pass. To further make PDN efficient and expressive, it 

is distilled from a deeper pre-trained network such as WideResNet-101. 

EfficientAD adopts a lightweight Student-Teacher (S-T) model, in which the 

teacher is a PDN and the student imitates the outputs of the teacher, guided by a 

hard feature loss promoting high-loss regions for training. This enhances anomaly 

detection by focusing on key features while suppressing false positives. Logical 
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anomalies are detected using an autoencoder that compares its reconstructions with 

teacher outputs. Normalized anomaly maps from the S–T model and autoencoder 

are combined to capture both structural and logical anomalies. EfficientAD can 

deliver real-time performance with robust localization: less than 1ms on modern 

GPUs. [35] 

 

X. FastFlow - FastFlow is an unsupervised anomaly detection method that seeks to 

localize and detect anomalies in visual data. The method is based on a representation 

approach whereby it extracts features of normal images for building a probability 

distribution and then compares features of test images to this distribution for 

anomaly detection. The feature extractor has either ResNet or Vision Transformers 

(ViT). In any case, both ViT are better in capturing the local and global 

relationships. For ResNet, the features from the last layers of the first three blocks 

are taken. FastFlow uses a 2D flow model with invertible transformations to map 

image features into the distribution of normal images. This model measures the 

likelihood of an image's features by a bijective mapping, where anomalies have low 

likelihoods. The flow model is constructed using many transformation blocks, each 

with an affine coupling layer and neural networks. Spatial information is preserved 

by incorporating 2D convolutions into the flow model, ensuring accurate anomaly 

localization.[36] 

 

XI. FRE -: Feature Reconstruction Error method identifies anomalies by analyzing 

features extracted from a pre-trained deep neural network (DNN) through a shallow 

linear autoencoder. It compresses high-dimensional features into a lower-

dimensional space and reconstructs them by computing the FRE, which is the 

difference between the original and reconstructed features. FRE provides an 

uncertainty score for anomaly detection and localization; larger errors indicate 

anomalies. Image-level detection relies on the norm of FRE, while pixel-level 

localization maps FRE errors across spatial dimensions. FRE is flexible; it works 

with intermediate DNN layers and combines multi-layer FRE maps for enhanced 

performance. The implementation strategies include PCA-based deterministic 

methods, which provide computational stability and finite convergence, and 

iterative autoencoder approaches, more suitable for large datasets due to their 
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memory efficiency and flexibility in regularization. FRE maps offer precise 

segmentation by resizing to input resolution, enabling accurate anomaly detection 

and localization across diverse tasks.[37] 

 

XII. GANomaly - GANomaly is an anomaly detection framework that works by training 

Generative Adversarial Networks on normal data to identify outliers. The model 

contains three sub-networks: a generator, an encoder, and a discriminator. The 

generator encodes the input data into the latent space, reconstructs it via a decoder, 

and produces realistic outputs. A second encoder re-encodes these outputs, and their 

latent representations are compared to detect anomalies. Training involves three 

losses: adversarial loss, which makes the generated images indistinguishable from 

the real data distribution; contextual loss, which minimizes the reconstruction error; 

and encoder loss, which aligns the latent representations. At inference time, 

anomalies are scored with the encoder loss since both the generator and encoder fail 

to represent anomalous features as they were trained only on normal data. 

GANomaly excels in unsupervised scenarios, offering robust performance for 

image anomaly detection and localization by exploiting discrepancies in the learned 

latent space.[38] 

 

XIII. PaDiM - PaDiM is a deep anomaly detection model that utilizes the strength of pre-

trained CNNs to extract semantic and spatial features for anomaly localization. 

During training, each image patch is mapped to embedding vectors, which are 

derived from activation maps of different CNN layers and capture multi-resolution 

contextual information. These embeddings are modeled as multivariate Gaussian 

distributions and their mean and covariance matrices are estimated for each patch 

position across the training data. This approach encodes the distribution of normal 

data, including inter-layer correlations. At inference, embeddings of test image 

patches are compared against the learned Gaussian distributions using the 

Mahalanobis distance that quantifies the deviation of a patch from normalcy. Then 

it generates an anomaly map where high scores indicate anomalous regions. The 

method avoids the computational overhead of k-NN-based approaches by using 

precomputed parametric distributions, making it efficient for both training and 



Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    33 
 

testing. PaDiM excels in anomaly localization and is scalable for high-resolution 

inputs.[39] 

 

XIV. PatchCore - PatchCore is an effective technique for the detection and localization 

of anomalies by using patch-level features extracted from a pre-trained CNN. The 

approach was developed by building a memory bank of the localized features 

aggregated from the intermediate layers of the CNN. Contrary to global feature 

representations, PatchCore relies on mid-level features to maintain the spatial 

resolution and contextual relevance required for anomaly detection. In particular, 

scalability is addressed by PatchCore by employing a greedy subsampling strategy, 

corset reduction, that retains the diversity and coverage of the memory bank but 

greatly reduces its size. This reduces computational overhead at inference time with 

limited degradation in detection accuracy. During inference, every test image is 

divided into patches whose features are matched to the memory bank through 

nearest-neighbour matching. Anomalies are identified based on the distance 

between test patches and their closest nominal patches. A re-weighting mechanism 

further enhances robustness by adjusting scores based on the rarity of neighbouring 

patches. PatchCore efficiently generates pixel-level anomaly maps while 

maintaining state-of-the-art performance across diverse datasets.[40] 

 

XV. Reverse Distillation - Reverse Distillation proposes a teacher-student architecture 

for anomaly detection and localization. The pre-trained teacher encoder (E) 

extracts multi-scale representations, and the student decoder (D) reconstructs these 

features from a compact embedding created by a trainable one-class bottleneck 

embedding module (OCBE). The OCBE condenses rich high-dimensional teacher 

features into low-dimensional space with a focus on anomaly-free patterns, 

mitigating redundancy. It is designed to fail in reconstructing the anomalous 

features, leading to a high discrepancy between teacher and student outputs in case 

of anomalies. At inference time, cosine similarity maps between the teacher and 

student representations are used to compute both pixel-wise and sample-level 

anomaly scores, where higher discrepancies would imply abnormalities. The main 

novelties include reverse knowledge distillation order, transferring high-level 

teacher features to low-level student layers, multiscale features for better anomaly 



Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    34 
 

localization, and compact OCBEs, which amplify the feature differences on 

anomalies. The experiments conducted on the MVTec dataset show state-of-the-art 

performance, with particular attention to anomaly localization and detection.[41] 

 

XVI. RKDE - The Region-Based Kernel Density Estimation method presents a three-

stage anomaly detection pipeline inspired by Hinami et al. These are region 

extraction, feature extraction, and density estimation. Region Extraction: 

While Hinami et al. used GOP and MOP methods, the proposed method here, 

RKDE, relies on Faster-RCNN with a ResNet50 backbone. RKDE produces 

scattered regions which are target-focused using non-maximum suppression. This 

reduces the number of regions to tens in one frame and hence removes the need to 

use many normality models. Feature extraction: The features are drawn from 

AlexNet's fully connected (7th layer) or convolutional layers (3rd layer). The fully 

connected variant accordingly tunes AlexNet for multi-task classification, while the 

convolution variant maps the features directly to spatial positions, thereby allowing 

higher processing rates. Density estimation: Gaussian KDE is applied on reduced 

feature dimensions compressed by PCA. Unlike Hinami, RKDE scales feature 

vectors instead of normalizing them, preserving their length information for 

enhanced anomaly detection. To address performance, RKDE introduces feature 

rejection during exposure for the convolutional variant, limiting accepted features 

to that novel relative to prior data, ensuring efficiency in both analysis and model 

creation.[42] 

 

XVII. STFPM - The Student-Teacher Feature Pyramid Matching framework identifies 

anomalies using a student-teacher learning approach combined with a feature 

pyramid structure. The teacher network, pre-trained on a classification task, such as 

ResNet-18, generates multi-scale feature maps that capture low-level (textures, 

edges) and high-level (contextual) information. The identically architected student 

network is trained to emulate the teacher's feature outputs for normal images. The 

training minimizes differences, using 2-normalized vector distances between 

corresponding feature maps at each pyramid scale, focusing on hierarchical learning 

for better anomaly detection across various object sizes. During testing, the teacher 

and student extract features from an input image, and deviations from their feature 
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maps indicate the position of anomalies. These deviations get aggregated into an 

anomaly map that highlights the anomalous pixels. By combining feature pyramids 

with pixel-level analysis, STFPM provides precise, multi-scale anomaly 

localization, making it suitable for detecting diverse and subtle anomalies 

efficiently.[43] 

 

XVIII. UFlow - UFlow is a method for unsupervised anomaly detection and segmentation 

composed of four phases: Feature Extraction, U-shaped Normalizing Flow, 

Anomaly Score Map Generation, and A Contrario Anomaly Segmentation. 

During the first phase, multi-scale features are extracted using a novel MS-CaIT 

architecture that combines Transformer models with U-Net-inspired designs for 

rich, scale-specific feature representations. It will introduce a U-shaped 

Normalizing Flow architecture for anomaly detection, using invertible 

transformations that ensure statistical independence of multi-scale embeddings for 

precise likelihood estimation of anomalies. Then, it calculates anomaly scores, 

associates a likelihood with each pixel by using these embeddings, and efficiently 

generates anomaly maps. Finally, the fourth phase applies a contrario framework to 

segment anomalies, using a hierarchical tree structure of connected components 

based on level sets of the anomaly map. This ensures accurate anomaly 

segmentation with unsupervised statistical thresholds while maintaining flexibility 

and robustness across datasets.[44] 

 

3. VLMs 

The recent breakthroughs in AD are based on VLMs that combine vision and language 

through large-scale pretraining. These models, such as VLLM, leverage both visual and 

contextual information to improve the performance of AD. Using multimodal 

embeddings, VLMs can contextualize visual data with semantic information, making 

them quite powerful for complex scenarios. For example, a VLM can detect anomalies 

in plant health by analyzing visual cues together with textual descriptions of how plants 

should look. While these models have immense potential, their actual deployment 

requires sophisticated infrastructure and careful fine-tuning to effectively address 

domain-specific challenges. 
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I. WinCLIP – WinCLIP and its extension, WinCLIP+, are state-of-the-art 

frameworks of zero-shot anomaly classification and segmentation based on 

powerful language-image embeddings developed for CLIP. WinCLIP improves 

the detection of anomalies by incorporating Compositional Prompt 

Ensembles (CPE), which describe "normal" and "anomalous" states of objects 

through structured language prompts in a task-specific way and align text-image 

representations to increase accuracy in the classification process. Segmentation 

in WinCLIP follows a window-based approach for dense, multiscale visual 

feature extraction, which allows pixel-level anomaly detection with 

computational efficiency. It harmonically aggregates predictions across 

overlapping windows and scales to balance local details and global context. 

WinCLIP+ extends this by incorporating a few-shot reference association 

module, using a small set of normal images to create reference memories at 

multiple scales. This integration improves the detection of anomalies that are 

context-dependent or hard to define through language alone. By combining 

predictions from language-guided and visual-based approaches, WinCLIP+ 

achieves superior performance in both classification and segmentation 

tasks.[45] 

 

II. LLaVa - The proposed LLaVA-o1 framework extends the reasoning capability 

of VLMs through a structured, step-by-step reasoning process. It involves four 

stages of reasoning: Summary, Caption, Reasoning, and Conclusion, which 

allow progressive development from problem interpretation to answer 

generation. Each stage has an embedded tag that will be self-activated by the 

model without prompt engineering. A key innovation is the stage-level beam 

search during inference, which maximizes reasoning accuracy by selecting the 

best response at each stage. Trained on the LLaVA-o1-100k dataset, a curated 

collection integrating general-purpose and science-focused VQA datasets, the 

model is fine-tuned to improve reasoning and scalability. Results indicate that 

LLaVA-o1 outperforms baseline models in logical reasoning, instance 

reasoning, and domain-specific tasks, particularly in math and science. Its 

structured output design ensures robust, accurate answers and better 
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performance across complex reasoning benchmarks, demonstrating its 

efficiency and adaptability.[46] 

 

III. Phi3 - The Phi-3 model family is a suite of transformer-based decoder 

architectures optimized for efficiency and performance across different sizes 

and applications. The Phi-3-mini model has a hidden dimension of 3072, 32 

attention heads, and 32 layers, with a 4K default context length extendable to 

128K using LongRope. It is pre-trained on 3.3T tokens, supports 4-bit 

quantization for mobile deployment, and leverages the Llama-2 tokenizer for 

compatibility. The Phi-3-small, with 7B parameters, improves multilingual 

tokenization via tiktoken, allows for an 8192 context length, and features several 

innovations, including blocksparse attention, which helps to improve training 

and inference speeds while reducing KV cache requirements. The Phi-3.5-MoE 

uses a Mixture-of-Experts architecture where, out of 16 expert networks, two 

are activated at any one time to achieve efficiency. Training is focused on high-

value, filtered data that emphasize reasoning and logical competencies rather 

than low-value information. Post-training involves supervised fine-tuning 

(SFT) and direct preference optimization (DPO), enhancing safety, reasoning, 

and user interaction capabilities. These models showcase adaptability, 

efficiency, and on-device performance, suitable for both research and practical 

deployment.[47] 

 

IV. Llama3 - The Llama 3 model family builds on the dense Transformer 

architecture of its predecessors, Llama and Llama 2, focusing on improved data 

quality, diversity, and training scale rather than architectural overhauls. Key 

enhancements include Grouped Query Attention (GQA) with 8 key-value 

heads for faster inference and reduced key-value cache sizes, and an attention 

mask that isolates self-attention within documents, particularly effective in 

long-sequence pre-training. Llama 3 has a 128K tokenizer (28K more than last 

time, and entirely covers non-English languages), with better compression rates 

and multilingualism without hurting English performance. The model uses 

Rotary Positional Embeddings with a higher base frequency of 500,000 which 

allows for context lengths of up to 32,768. Architectural details differ by size: 
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the largest, 405B model, has 126 layers, a hidden dimension of 16,384, and 128 

attention heads. Training achieves near-compute-optimal scaling, utilizing 3.8 

× 10²⁵ FLOPs, ensuring robust performance across diverse tasks.[48] 

 

V. Moondream - Moondream is a 1.6-billion-parameter language model 

developed by Vikhyatk, combining the works of SigLIP Phi-1.5 with the vast 

training dataset of LLaVa. This model has been developed with research 

applications in mind, strictly for non-commercial use, hence being an important 

asset in the academic world. The architecture represents the blend of state-of-

the-art techniques combined with quality datasets, thus showcasing a 

commitment to advancing the frontier of AI. Moondream's objective is to 

establish a touchstone for efficient computation, innovation, and artificial 

intelligence development, reinforcing its role as a significant tool for advancing 

the field. [49] 

 

VI. BakLLaVa - BakLLaVA is a VLM developed through a collaboration between 

LAION, Ontocord, and Skunkworks AI. Based on the Mistral 7B base model, 

this VLM has been expanded by the LLaVA 1.5 architecture for further 

improvement. Designed for efficiency, BakLLaVA integrates smoothly with the 

llama.cpp framework, offering developers a faster and more resource-friendly 

alternative to models like GPT-4 with Vision capabilities. This innovation 

underlines its great potential for real-time applications and scenarios where 

computational resources are limited, hence making it very powerful for visual 

and language understanding. [49] 

 

VII. MiniCPM - MiniCPM focuses on the most efficient training of small language 

models to be deployed rapidly on end devices using Model Wind Tunnel 

Experiments (MWTE). Three key aspects that MWTE probes are hyper-

parameter scaling, optimal batch size, and learning rate stability. The model 

leverages Tensor Program techniques for stabilizing scaling across different 

model sizes and thus improves loss prediction accuracy without extensive 

tuning for each scale. Experiments on batch size show that optimal batch sizes 

minimize loss while balancing resource utilization, using a modified approach 
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from Kaplan et al. MiniCPM's experiments on learning rate show that a 

consistent learning rate of 0.01, despite model scaling, yields the lowest loss 

across different model sizes. These insights into hyper-parameters, batch size, 

and learning rates enable efficient training and scaling of SLMs, providing a 

foundation for larger models, improving both computational efficiency and 

model performance during training, and ensuring that optimal parameters can 

be applied to LLMs as well.[50] 

 

The category choice for the model depends on several aspects, such as the complexity of the 

dataset, available resources, and desired accuracy. Classic models are simple and interpretable; 

neural network-based models bring state-of-the-art performance to complex visual data, while 

VLMs represent the frontier of AD by combining vision and language to gain a nuanced 

understanding of anomalies. This will surely call for a wide-based review of models across 

these categories to ensure the most feasible solution for plant health monitoring systems. 

 

2.4  Summary 

Literature reviews emphasize that previous works on plant health monitoring were suffering 

from significant limitations, mainly idealized approaches that do not match real-world 

agricultural environments. Such challenges include reliance on small manually labeled datasets 

and the use of close-up or cropped images that limit the applicability of these methods in 

dynamic farm settings. Additionally, existing models often overlook environmental variations 

like weather, plant growth stages, and diverse backgrounds, which are critical for real-world 

robustness. 

In this respect, the proposed project adopts an AD approach using real-world video footage 

from ginger plantations. Training models with images of healthy plants would allow them to 

detect deviations from learned patterns, thus finding anomalies that would enable early disease 

detection without requiring a large amount of labelled data. Video-based data captures realistic 

conditions, including motion blur and environmental variability, enhancing the model's 

robustness and applicability in practical farming scenarios. 

The review also points out that suitable AD detection models should be selected by 

comprehensive evaluation. AD models can be divided into traditional methods, neural network-

based approaches, and advanced VLM. Traditional models are simple and interpretable but 

have difficulties in high-dimensional data. Neural network-based models do well in processing 
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complex visual data but require a lot of computation resources and big training data. VLMs are 

the latest development in the field, integrating vision and language to allow for contextual AD, 

but require highly sophisticated infrastructure. 

This project combines some of these approaches to lay emphasis on practical applicability and 

robust model evaluation in an attempt to bridge the gap between theoretical research and 

practical implementation of plant health monitoring. 
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Chapter 3 

System Methodology/Approach 

 

This chapter gives an overview of the overall methodology adopted to design and implement 

the plant health anomaly detection system. It summarizes the significant steps adopted for 

developing the system, which vary from data acquisition and processing to model creation, 

system integration, and output generation. Each module of the system—such as the anomaly 

detection model, database, API, and user interface—is explained in terms of its aim, 

functionality, and communication with other modules. The methodology further explains tools, 

frameworks, and methods used to guarantee the system is scalable, correct, and fit for 

agricultural applications in reality. The scientific methodology spells out how the system was 

produced step by step. 

 

3.1  System Overview 

The proposed plant health anomaly monitoring system here is deployed in a modular manner, 

where one module can run independently but part of a whole pipeline. Four primary modules 

form the system: Anomaly Detection Model, Database Module, API Module, and User 

Interface (UI). A block-by-block design facilitates flexibility, maintainability, and scalability. 

 

1. Anomaly Detection Model 

The Anomaly Detection Model is the core analytical engine of the system. It accepts 

input plant images or video frames, extracts features, and applies an unsupervised 

learning algorithm to detect anomalies that may indicate plant health or disease. The 

model can detect subtle, out-of-distribution variations without labelled data. 

 

2. Database Module 

The Database Module is responsible for storing all useful information, raw input videos 

or images, and processed results (e.g., heatmaps, anomaly scores) as well as user 

information, and system logs. It maintains structured and manageable information to be 

used for analysis, audit, and potential future retraining. 

 

3. API Module 
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The API Module is the interface layer with the backend system and external 

components, including the UI and third-party services. The API Module provides 

RESTful endpoints for operations such as submission of data, fetching the detection 

results, and system status inquiry. Interoperability and integration into other agri-

monitoring platforms are made possible by the modular API design. 

 

4. User Interface Module 

The User Interface (UI) Module is a user-friendly platform on which users can engage 

with the system. Upload plant data, run anomaly detection processes, and view output 

results in the form of heatmaps and anomaly scores. The interface is designed for 

simplicity and accessibility to address the needs of technical and non-technical users. 

 

These modules combined provide a robust platform that can monitor plant health in real-time 

or batch-wise, enabling early plant anomaly detection and proactive crop management. 

 

3.2  Data Collection and Preparation 

The data set used in this study was built from real-world observations of ginger plants, amassed 

over an extended growing period and prepared for the purpose of unsupervised anomaly 

detection. The preparation is explained in a series of key steps, as follows. 

 

1. Data Acquisition 

Data was accumulated in collaboration with a local ginger farmer over the period from 

week 3 to week 20 of the plant growth cycle. Video images were taken from three 

angles: side, 60-degree angle, and top-down. The different angles were intended to 

capture the visual structure of the plants in a more integrated way, so that subtle changes 

in health, not easily noticeable from a single angle, can be determined. To maintain 

temporal consistency, video frames were sampled at a fixed rate of one frame every 

three seconds, which yielded images in JPG or PNG format. 

 

2. Image Labeling and Annotation 

Pilot studies suggested the need for a small labelled dataset to enable evaluation and 

guided preprocessing. Four of the key growth stages—weeks 3, 8, 12, and 18—were 

selected for annotation. Two types of labelling were used: 
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• Rectangular bounding boxes for plant pot localization. 

• Segmentation masks to isolate individual plants, with the first row of plants 

targeted consistently for consistency. 

Annotations were saved in YOLO format before being reorganized through renaming 

and restructuring to suit the system's expected input pipeline. 

 

3. Dataset Variants and Resolution Handling 

Two dataset variants were developed during preprocessing: 

• Variant A: Entire images were resized to square dimensions. This approach, 

though, resulted in too much pixel loss, particularly rendering fine features of 

plants less discernible. 

• Variant B: Original resolution was kept. Segmentation mask-based cropping 

was performed to remove background objects and enforce focus on the plant 

object. Week-by-week cropping was also performed to normalize plant size and 

position within the dataset. This variant was selected for further processing and 

model training. 

 

4. Masking and Background Removal 

Segmentation masks were used to generate plant-only images by removing the 

background. This helped in training the anomaly detection model on the plant region 

alone, with less noise from soil, pots, or surroundings. These masked images formed 

the core dataset that was utilized for training and testing. 

 

5. Data Augmentation and Anomaly Simulation 

To generate a more varied dataset and simulate potential plant anomalies, the following 

augmentation techniques were employed: 

• Contrast variations: Reducing and enhancing contrast levels to mimic lighting 

anomalies. 

• Color channel adjustments: Three sets of random colour variations to mimic 

discolouration or pigment loss. 

• Grayscale conversion: Used to mimic sensor degradation or environmental 

stress. 
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• Hue shifting: Small upward and downward hue shifts to mimic chlorosis or 

abnormal leaf colouration. 

These augmentations expanded the dataset and mimicked a range of real-world 

conditions that might not be present in the original data. 

 

This structured and multi-stage data collection and preparation process yielded a high-quality, 

diverse dataset for the development and evaluation of unsupervised anomaly detection models 

in realistic agricultural settings. 

 

3.3  Anomaly Detection Model 

Three prominent approaches were explored for evaluating the performance of different 

anomaly detection methods in ginger plant health monitoring: traditional machine learning, 

deep learning-based models, and vision-language models. Each approach was developed and 

tested based on performance, hardware feasibility, and appropriateness for the nature of the 

dataset collected. Below is a summary of the methodology, results, and ultimate model 

selection. 

 

1. Traditional Machine Learning with PyCaret 

The first approach utilized PyCaret, an open-source low-code machine learning library 

that provides functionality to explore a broad set of classical models with ease and 

speed. Input features were colour- and statistical-based descriptors that were being 

extracted at the image level. While PyCaret permitted easy testing and iteration, the 

results were different, and performance metrics would alternate between precise and 

imprecise classification. The lack of contextual and spatial information in traditional 

models limited their ability to detect complex plant anomalies, leading to approximately 

50/50 accuracy on test sets. Due to this variability, PyCaret-based models were not 

included in the final deployment. 

 

2. Deep Learning-Based Models with Anomalib 

The second approach utilized Anomalib, an open-source deep-learning library 

developed by Intel for industrial-strength anomaly detection. Anomalib offers a 

collection of pre-trained models tailored to unsupervised anomaly detection with 

normal-only training data. Training is done by providing only healthy (normal) plant 
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images as input to the model, while testing includes both normal and anomalous 

samples. 50% of good and bad samples were randomly selected for testing to verify 

each model's performance in distinguishing between in-distribution (normal) and out-

of-distribution (anomalous) inputs. 

 

Among the models listed in Anomalib, the following five were shortlisted based on 

promising initial performance: 

• CFLOW 

• FASTFLOW 

• PatchCore 

• Reverse Distillation 

• STFPM 

Each model has specific strengths and weaknesses with varied capabilities of anomaly 

detection and localization. Their disparity in performance is governed by low-level 

architectural design choices and feature extraction processes. To further boost general 

detection accuracy and robustness, the input dataset was again optimized through 

selective pruning as well as carefully engineered augmentation procedures. These 

changes aimed at aligning the data with each working mode of each model more 

appropriately. A detailed explanation of the working mechanism of each model is given 

in the Literature Review. 

 

3. Vision-Language Models with Ollama 

The third approach tested the use of vision-language models (VLMs) with the Ollama 

system, which facilitates the use of light, pre-trained AI models on local devices. The 

aim was to employ semantic comprehension to detect anomalies that are not necessarily 

visually evident but can be inferred contextually. The output was inconsistent and 

usually unpredictable, however, owing to hardware limitations and the generic nature 

of pre-trained models at hand. Similar to the traditional approach, model output showed 

approximately 50% reliability in detecting real plant anomalies. VLMs were thus not 

selected for deployment. 

 

To recapitulate, deep models were chosen based on Anomalib to be resistant, scalable, and 

yield confident outputs in a manner of being unsupervised. Utilizing the models, trained on 
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data samples of the healthy, only allows the system to mark structurally or visually defective 

plants as diseased confidently, without rigorous labelling of disease status. An evaluation and 

final selection process with an end were established to ensure the final choice of model 

structure abides by the practical demands of real life along with agricultural surveillance goals. 

 

3.4  Evaluation Metrics and Testing Conditions 

This outlines the testing and evaluation scenarios that have been used to assess the performance 

of the anomaly detection models. It includes the training configuration, such as the loss 

functions, stopping criteria, and output metrics like AUROC and AUPR. In addition to typical 

quantitative metrics, there was also manual inspection for proper anomaly interpretation. The 

testing set was defined to reflect the visual variation that happens in the real world through 

specific augmentations and the removal of uninformative samples. Readers can anticipate a 

complete description of how model output was quantified, interpreted, and authenticated within 

the carefully constructed setting. 

 

1. Model Training Configuration 

The same setup was employed to train all models to foster conformity across evaluation. 

Every model had a maximum of 300 training epochs. Early stopping, nonetheless, was 

enabled via a patience of 10 epochs and a minimum loss delta of 0.01, allowing the 

training process to terminate as soon as model performance plateaued. The primary 

objective function utilized in training was the model-specific loss function from every 

architecture within Anomalib, tailored to unsupervised anomaly detection tasks. 

 

2. Quantitative Evaluation Metrics 

Two main performance metrics were generated by every model: 

• Image-level AUROC (Area Under the Receiver Operating Characteristic 

Curve): It is utilized to evaluate how well the model can distinguish between 

normal and abnormal images. 

• Image-level AUPR (Area Under the Precision-Recall Curve): It is utilized to 

evaluate the precision-recall trade-off, which is of concern in imbalanced 

datasets. 

To further measure performance, precision, recall, F1-score, and accuracy were also 

manually computed. These were calculated by observing model predictions at face 
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value, verifying whether the detected anomalies represented actual visual defects (e.g., 

disease, stress) or were misdetections of non-anomalous less common features such as 

background texture, shadows, or pot rims. 

 

3. Qualitative Assessment 

With the process of unsupervised learning and very few labelled samples of anomalies, 

human visual analysis was crucial in deciding model outputs. It involved checking 

whether the anomalies picked by the model had correct visual signatures or else they 

were artifacts of such situations as background noises or rare objects not seen during 

training. Images, where the anomaly was falsely detected owing to such situations, were 

marked as false positives and rectified accordingly. This process enabled better 

comprehension of the behaviour of each model beyond numeric measures and also 

needed to compute evaluation metrics such as precision and recall correctly. 

 

4. Testing Conditions and Dataset Pruning 

Initial attempts at extensive testing across many image variations and metrics were 

found to generate no helpful results or cause a negative impact on model training and 

assessment. As a result, the dataset was reduced to remove low-impact or misleading 

samples that misled the model or added noise to evaluation. Strategic pruning in this 

manner helped limit the test scope and improve interpretability of findings. 

 

The final test dataset was classified in the following controlled and real-life conditions: 

• Normal Samples: Unchanged images, baseline inputs. 

• Contrast Adjustments: Contrast adjusted 0.7, 0.9, 1.1, and 1.3 to cover 

fluctuations in environmental illumination. 

• Colour Changes: Artificial distortions representing plant stress at varying rates, 

grouped under Dying 1, Dying 2, and Dying 3.. 

• Hue Shifts: Lower hue values of 15 and 30 degrees, creating dry or reddish 

visual appearances that are generally indicative of disease. 

By limiting the test set to such precise conditions, testing became more focused and 

informative. The refined dataset allowed higher correspondence to application goals 

under real-world conditions and allowed detection capability assessment to be better 

and more fairly measured for every model. 
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In total, model comparison of anomaly detection employed both quantitative metrics and 

qualitative checking to create a well-rounded model performance. Baseline comparability was 

established through standard metrics like AUROC and AUPR, but human verification was 

necessary to contextualize results within agriculture imaging. Redundant or unnecessary data 

pruning helped improve the reliability of testing, and controlled augmentations helped enable 

consistency in benchmarking among models. This assessment phase ensured that only models 

which could detect interpretable and meaningful anomalies were shortlisted to be tuned and 

further developed. 

 

3.5  Activity Diagram 

To provide a clear depiction of the overall workflow in the anomaly detection system, an 

activity diagram was prepared to illustrate the sequential steps from data collection to anomaly 

prediction. The activity diagram illustrates the elementary steps undertaken during system 

development and model deployment. 

The process begins with video footage donated by farmers, capturing ginger plants from the 

side, 60-degree, and top angles for several weeks. The videos are then processed to obtain the 

image frames every three seconds. The frames so obtained are annotated manually using pot-

bounding boxes and segmentation masks for the plants. The annotated images are then stored 

in YOLO format and named consistently to maintain the dataset intact. 

 

Once annotated, the images are subjected to a series of preprocessing operations. These involve 

resizing, cropping, background removal through segmentation masks, and image 

augmentations such as contrast adjustment, colour randomization, hue transformation, and 

grayscale conversion. These are added to simulate real-world variability and anomalies in plant 

health. 

 

Once preprocessed, the images are split into training and test sets. The training set contains 

only normal (healthy) plant images, while the test set contains both normal and anomalous 

images. The dataset is then fed to selected anomaly detection models where training is 

performed using unsupervised learning techniques. Training is to be performed up to 300 

epochs with early stopping enabled to prevent overfitting. 

 



Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    49 
 

After model training, the system proceeds to evaluation, where the trained models are evaluated 

on augmented test images. Evaluation involves computing standard metrics such as the Area 

Under the Receiver Operating Characteristic (AUROC) and the Area Under the Precision-

Recall Curve (AUPR). There are also manual inspections to understand the model's ability to 

localize or reason correctly anomalies, especially in cases where infrequent visual features 

(e.g., unusual backgrounds or lighting) may be induced. 

 

The final step is prediction, where the trained model is used to assess new images. The system 

gives anomaly heatmaps or binary flags that indicate the presence of potential health issues in 

the plants. 

 

The activity diagram in Figure 3.5.1 nicely summarizes this end-to-end process, to convey the 

structured methodology utilized in developing and testing the anomaly detection system. 

 

Ginger Plant Health Activity Diagram
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Figure 3.5.1 Activity Diagram for Ginger Plant Health Detection System 
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Figure X: Activity Diagram showing the process flow of the plant health anomaly detection 

system, including processes such as video capture, preprocessing, model training, evaluation, 

and prediction. 

 

3.6  Summary 

Briefly, the system methodology outlines an iterative and procedure-based approach towards 

developing an optimal plant health anomaly detection system. From data gathering and 

preparation during the initial steps to choosing and evaluating models of anomaly detection, 

each step was designed to emulate actual farming circumstances while upholding technical 

detail orientation. Through the utilization of both automated methods and human interpretation, 

the method ensures not only quantitative performance but also contextual relevance. This 

foundation provides the foundation for integrating the chosen model into a broader system 

architecture, which is more fully described in the System Design section. 
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Chapter 4 

System Design 

 

The specification on the project to achieve the problem statement. The project is to build a 

library on the health monitoring system for the detection of gjnger plant health and disease. 

 

4.1  System Model 

This plan of how the software should be operate and how each component works together. 

 

4.1.1 Project Workflow Overview 

Figure 4.1.1.1 illustrates the context diagram of the proposed plant health monitoring system. 

The system consists of two external components and one system component: Ginger Plant, 

User and the Plant Health Monitoring System. The plant health monitoring system is designed 

to capture real-time visual data, primarily using image-based inputs to assess and predict the 

health status of plants. The system leverages unsupervised learning techniques to detect 

anomalies in plant health by learning visual cues such as changes in leaf color, texture, shape, 

or other features that may indicate early signs of disease or stress. Once the visual data is 

processed, the results are transmitted to the user.  
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Plant Health 
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System

Dataset

Images Result

 

Figure 4.1.1.1 Context Diagram for Plant Monitoring System 

There will be a UI to allows users to view real-time results through an application. Users can 

obtain the health status of their plants and receive alerts if any visual anomalies or potential 

diseases are detected and the region it occurs. 
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4.1.2  Full System Component 

Figure 4.1.2.1 illustrates the key components of the system that we are required to develop. 

The system relies on several critical components to function effectively, and these can be 

divided into three distinct applications, each serving a vital role in the overall workflow. 
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Figure 4.1.2.1 DFD-Level 0 for Plant Monitoring System 

 

The system is integrated with different units that are designed to perform specific tasks and 

contribute towards the smooth running of the AD pipeline. All these units collectively 
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contribute to efficient data storage, processing, analysis, and user interaction, hence presenting 

a complete framework for ginger plant health monitoring. 

 

1. Database Unit 

First comes the Database Unit, which serves as the project's file storage system. 

Instead, the unit organizes and stores all datasets, trained models, prediction results, 

and code in a structured way, not relying on traditional databases. Both historical 

datasets and real-time data are organized for easy access, and trained models, together 

with results, are stored for later use and analysis. The efficient organization of resources 

in this unit supports smooth data flow throughout the system and contributes to its 

scalability and maintainability. 

 

2. Data Processing Unit 

The second unit is the Data Processing Unit, which develops and processes raw data 

coming from the Database Unit into the required format for analysis. It supports various 

formats depending on different libraries. For example, it can develop the path of images 

as dictionaries, prepare folder structures suitable to be used in Anomalib or generate 

Pandas DataFrames for broader compatibility. By handling these preprocessing tasks, 

the Data Processing Unit ensures that the raw data is prepared for further processing 

and model training. 

 

3. Anomaly Detection Unit 

The core of the system is the Anomaly Detection Unit, which hosts the models 

responsible for detecting anomalies in plant health. This unit manages the entire 

lifecycle of the AD process: training, predicting, testing, and evaluating the models. It 

will be integrated with various libraries such as Anomalibto ensure compatibility and 

flexibility in model selection. This unit also supports hyperparameter tuning and 

evaluation metrics to optimize the models for accurate and reliable predictions. 

 

4. API Unit 

The API unit would represent the interface between this external system and the 

internal AD models. This provides different endpoints related to various functionalities 

like training models, real-time prediction capabilities, or returning results. The purpose 
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of the API Unit would thus ensure ease of use as it abstracts the inner process flow of 

the system when such facilities or functionalities must be shared by other applications 

or users directly. 

 

5. User Interface Unit 

The UI unit represents the very last component of the system, which will deliver the 

processed results to the end user. This unit takes the form of a messaging application, 

implemented through Discord. Users can utilize the system in real-time: they get the 

results of predictions and visualizations of detected anomalies right in a Discord 

channel. The UI will outline the ROI where anomalies are detected, hence making it 

easy for the user to interpret the output from the system and take appropriate action. 

This messaging-based approach is accessible and easy to use, considering users who 

are used to Discord as a platform for communication. 

 

The system will contain six interlinked units: 

1. Database Unit: used for the storage of structured files. 

2. Data Processing Unit: loading and formatting of data. 

3. Anomaly Detection Unit: managing and using AD models. 

4. API Unit: interaction with the system from outside. 

5. UI Unit: real-time user interaction over Discord. 

 

All these units together form a cohesive framework that uses machine learning, real-time data 

processing, and user-friendly interfaces for the effective and efficient monitoring of the health 

status of ginger plants. 

 

4.2  Requirements Specification 

For the system to achieve its objectives of monitoring the health status of ginger plants 

accurately and efficiently, the following are some of the requirements for each of the six core 

units: 

  

1. Database Unit 

• The system should have a structured file storage system to store datasets, models, 

results, and code. 
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• The stored datasets should contain historical and real-time visual data for training 

and prediction purposes. 

• Trained models and results should be saved for reusability and further analysis. 

• The system should be able to provide for the effective retrieval and management of 

data stored therein for smooth integration with other units. 

  

2. Data Processing Unit 

• The system should read raw data from the Database Unit and convert it into the 

required formats: dictionaries of image paths, Anomalib-compatible folder 

structures, or Pandas DataFrames. 

• It should support all typical preprocessing-augmenting, normalization, and resizing 

to prepare the data for analysis. 

• The unit needs to process data of various formats and structures for different 

machine learning libraries. 

• Processed data must be accessible to any subsequent components for training, 

prediction, and evaluation. 

 

3. Anomaly Detection Unit 

• The system shall contain various machine-learning models for detecting anomalies 

in the health of ginger plants. 

• It should support model training, prediction, testing, and evaluation workflows. 

• Users must be able to fine-tune model hyperparameters to optimize performance. 

• The unit should feed back model accuracy and predictions to the user for the 

assessment of system performance. 

• Models should integrate seamlessly with the Data Processing for efficient 

operation. 

  

4. API Unit 

• The system should include an API that will allow external applications or users to 

interact with its components. 

• The API should provide model training, running predictions, and retrieving results. 

• It has to be user-friendly and documented well enough to be easily integrated with 

other systems. 
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• Real-time interaction should be supported by the API to enable efficient processing 

of data and AD. 

 

5. UI Unit 

• The system should provide a Discord-based messaging application for real-time 

user interaction. 

• The users should have the capability to see live prediction results, including 

segmented images with highlighted ROIs indicating the presence of anomalies. 

• Notifications and alerts in cases of anomaly and disease detection in plants, which 

may be provided through UI. 

• It should ensure an easy and friendly manner so that users can draw inferences from 

results and monitor performance. 

• All historical data and other visualizations should be viewed through this UI for 

necessary decisions to be made. 

 

System Requirements 

• The system has to integrate the five units, namely, Database, Data Processing, 

Anomaly Detection, API, and UI into one unit. 

• Every unit should be modular, operating independently for easy debugging. 

• All units working together should enable correct real-world operation. 

• The system shall deliver effective and accurate health evaluations of the ginger 

plants for early detection of their anomaly conditions. 

• Users must have a responsive and intuitive interface to conduct monitoring and 

decision-making. 

 

These assure that the system will be robust, modular, and user-oriented to meet the demands 

of real-world plant health monitoring and AD. 

 

4.3  Modular Class Design and Code Reusability 

One of the greatest strengths of the design approach in this system revolves around modular 

architecture, which makes the code more maintainable, reusable, and adaptable for further 

modification. All main operations within the pipeline of anomaly detection, ranging from the 

pre-processing of data to evaluation and notification, have been encapsulated into contained 
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classes exposing easy-to-use interfaces and hiding implementation aspects. What this achieves 

is to enable third-party package or model parameter changes by modifying a single class, 

without having to modify the remainder of the system. 

 

To enable a clean development process and mitigate technical debt, the following class design 

principles were used: 

 

1. Layered Abstraction and External Wrappers 

Third-party tools and services, such as pre-trained models, notification bots, or file system 

utilities, are wrapped in their classes to conceal third-party logic. A good example is the 

Discord.py class, which does all the logic required for sending evaluation feedback or 

anomaly notifications to a Discord server. If the Discord API changes, only this class needs 

to be changed, and the rest of the system remains functional. 

 

This abstraction reduces coupling and makes external dependencies modular and 

substitutable. Certain wrappers may also have dataset converters, augmentation helpers, or 

model exporters. 

 

2. Core Pipeline Classes 

The core pipeline of the anomaly detection system is structured as a set of logically separate 

and purpose-specific classes, each doing a distinct step of the end-to-end pipeline. This 

class-based, modular architecture ensures the segregation of duty, well-defined 

responsibilities, and uniform maintenance across the entire pipeline. Rather than combining 

multiple functionalities into a single component, the system commits each operation—such 

as data preparation, model execution, and result analysis—to a distinct specialized module. 

This means higher cohesion in individual components and reduces the likelihood of 

injecting hidden dependencies or side effects. 

 

By segmenting the system into independent and distinct units, maintainability is greatly 

enhanced through the design. Independent writing, testing, and updates can be performed 

for each pipeline stage, enhancing debugging and extension. For instance, if a new 

preprocessing algorithm or model architecture needs to be added, developers can integrate 

these changes directly into the specific module without refactoring or inspecting other parts 
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of the codebase. This approach also improves regression testing as changes to one part of 

the system are less likely to affect others' behaviour. 

 

Separation of concerns also allows for reproducibility and consistency in the performance 

of the system. The preprocessing stages ensure the standardization of input data before it 

reaches the model-making process, minimizing variability and curbing the possibility of 

data leakage or format inconsistencies. Likewise, the model execution module encapsulates 

training, inference, configuration management, and model storage logic—enabling 

replacement or tuning of various anomaly detection approaches as desired. The evaluation 

phase is standalone responsible for the analysis of results, generation of metrics, and 

detection of cases that need human validation. Every component executes its task in a 

predictable and controlled way, which leads to a stable and transparent pipeline. 

 

This design strategy not only keeps current development straightforward but also lays the 

groundwork for future scalability. New models, metrics, or diagnostic tools are easily added 

by extending or replacing one or more modules. If research advances or system 

requirements shift, the modular design guarantees that the system will be flexible and 

resilient. Additionally, such an architecture is ideal for collaborative development, where 

different team members or contributors can focus on specific pieces without repeating 

efforts or creating integration problems. 

 

Lastly, clear, well-differentiated core classes ensure that the anomaly detection pipeline is 

technologically sound and resilient but also easily deployable in the long term in research 

and real-world environments. It allows the system to naturally develop while possessing a 

clean, testable, and comprehensible codebase. 

 

3. Unified High-Level Interface for Integration 

To allow seamless interaction with the anomaly detection system, one unified high-level 

interface has been used to capture the complexity of internal functionality. The interface 

serves as a one-point entry to downstream applications to facilitate integration through 

activities such as integrating the workflow of anomaly detection into a web dashboard, 

integration with API-based applications, or embedding within automated pipelines for 

batch testing and processing. 
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Instead of relying on developers to acquire and manipulate the internal machinery of each 

processing module—such as data preprocessing, model setup, training, prediction, and 

model evaluation—the interface provides directly accessible, reasonable methods that 

abstractly orchestrate these pieces together behind the scenes. Not only does this keep 

headloads of developers, especially newcomers to the project team, lower but also reduces 

error in misuse, ensuring reliability in different modes of deployment. 

 

The interface at the top level is designed to prioritize usability and modularity. By 

encapsulating low-level interactions with the core pipeline classes inside straightforward 

function calls, the system allows the common workflows (such as model training, inference 

on new data, or execution of evaluation routines) to be invoked for with minimal code and 

without explicit control over low-level settings. Furthermore, the abstraction layer supports 

pre-defined parameter presets, environment tests, and logging facilities, which enable 

standardized execution across different environments and use cases. 

 

It also improves maintainability and extensibility. With time, for example, new anomaly 

detection models, metrics, or notification channels, the joined interface can be added 

without modifying how the outside systems use it. The attached services and legacy scripts 

keep running as long as the interface contracts are not being violated, which reduces the 

possibility of system-wide refactoring or compatibility issues. 

 

Secondarily, the unified interface matters to enable testing and continuous integration. Its 

modularity makes it easier to be internally mocked for unit or integration testing, and its 

uniformity allows repeatable automated experiments or benchmarking. This kind of 

dependability is particularly important in research applications where reproducibility takes 

centre stage or in production systems where reliability and accuracy come first. 

 

Overall, the integrated high-level interface brings the system from a collection of technical 

modules and transforms it into a cohesive and usable tool. It ensures that anomaly detection 

functionality can be easily deployed, scaled, and customized for any number of practical 

and research-based uses without sacrificing flexibility or control. 
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4. Scalability and Future Adaptation 

The system has been thoughtfully designed with scalability and adaptability for the future 

as its core principles, making it transition easily in light of new demands or technological 

shifts. From incorporating additional anomaly detection models, employing advanced data 

augmentation strategies, to using cloud-based storage solutions, the system provides for 

easy growth with minimal disruption. This flexibility is made possible to a large extent by 

the modular class design, where new pieces can be added with little or no modification to 

existing modules. 

 

At the centre of such flexibility is the use of base classes and their adequately documented 

interfaces. The introduction of new functionality is achieved by inheriting existing base 

classes, or new logic can be introduced by following the documented patterns within the 

system architecture. This makes future updates significantly less complicated as the 

underlying architecture is not meddled with and new components are just added or replaced 

as and when the need arises. If, for instance, a new, higher-performance anomaly detection 

model comes out, developers can integrate it smoothly by declaring the correct methods 

and pointing to it in the existing pipeline without needing to modify other parts of the 

system. 

 

Also, the system has been designed to support rigorous testing features. Regression tests 

and unit tests are supported natively, allowing a single module to be tested independently 

using mock inputs. With this, any modifications done to the system—whether they involve 

bug fixes, performance improvements, or adding new features—do not inadvertently affect 

the overall performance. Such isolation support for testing is extremely critical in the role 

of maintaining reliability as the system becomes larger to handle more data, complex 

models, or multiple use cases. 

 

This object-oriented modular paradigm not only ensures the integrity of the system 

increases but also ensures long-term sustainability. The architecture enables seamless 

incorporation of new research results, tools, or techniques in such a manner that the system 

remains relevant and adaptable in an evolving field. From a release to a product or the 

porting of the system to several research environments, the scalable design allows upgrades 

and additions to be accomplished with as little friction as possible. 
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Briefly, the system scales and adapts with ease because it is built modular and class-based. 

It becomes safe for engineers to make improvements, introduce new functionality, or 

address shifting requirements without fear of destabilizing another part of the system. 

Future-proofing is achieved by keeping the system stable as it is now while enabling it to 

be robust enough to handle future challenges or opportunities that may arise. 

 

For detailed code examples, method listings, and structure of each class, refer to the class 

implementation readme page. [51] 

 

4.4  Software and Packages Used 

The below software and packages were selected to implement the anomaly detection system 

with maximum performance, flexibility, and scalability. Every one of the tools was picked 

based on its ability to accommodate the specific requirements of the project, from the basic 

anomaly detection operations to system integration and user notification. 

 

4.4.1 Software 

• Python 3.11.9: Python is the primary programming language of the system. Version 

3.11.9 was selected due to its performance enhancements, increased stability, and 

backward compatibility with most machine-learning libraries. The dense library 

ecosystem combined with the widespread use of Python in data science makes it an 

ideal platform upon which to develop advanced machine learning and anomaly 

detection systems. The readability and flexibility of the language also contribute to 

simplifying development complexity, allowing for easy debugging and tuning through 

iterative testing cycles. 

 

• Discord: Discord is utilized for notification and communication in the system. It is a 

notification system in which results of evaluation, anomalies, and status updates are 

published. Stakeholders are notified in a timely fashion of significant events, for 

instance, when an evaluation is complete or when there are anomalies. The use of 

Discord enhances real-time communication and provides an easy-to-use interface for 

system notifications that improves user experience and system operation efficacy. 
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4.4.2 Python Packages 

• Anomalib: Anomalib is a specialized Python library for anomaly detection that 

provides a collection of pre-trained models and utilities to facilitate unsupervised 

anomaly detection on visual data. Anomalib is utilized in this project as the primary 

tool for model training and inference. It accommodates different state-of-the-art 

anomaly detection models like STFPM (Spatiotemporal Flow Prediction Model) and 

PatchCore, which are critical to identifying abnormalities in plant health using video 

and image data. The adaptability of Anomalib allows the system to easily transition 

between models, which means one can experiment with different methods of plant 

health detection and fine-tune configurations depending on performance measures. 

 

▪ Model Training and Testing: Modularity in Anomalib allows a straightforward 

model interchange, so it is possible to experiment with diverse strategies without 

implementing major modifications into the codebase. As a demonstration, the 

system can change from the STFPM model to PatchCore, and even between 

training, testing, and anomaly detection through a simple interface for 

accommodative adjustment of the system to divergent conditions or specifications. 

 

▪ Preprocessing of data: In addition to model-oriented functionality, Anomalib also 

provides essential preprocessing tools for the data. These include masking, resizing, 

and augmenting the training image and video data to ensure that the data set is 

equally prepared and formatted. 

 

• Discord: The Discord library is utilized for providing real-time notifications to a given 

Discord server, which is a simple and effective way to alert users or stakeholders of 

critical events, such as model testing completion or detection of anomalies. Discord 

notifications are especially useful in keeping the team informed of the system's 

performance without any need for manual intervention. 

 

▪ Real-time Alerts: For instance, the system will automatically notify through 

Discord when it finishes training a model or performing an inference task, alerting 

users about the completion status and evaluation results such as AUROC scores, 
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accuracy, or number of anomalies detected. Such integration keeps stakeholders 

informed at all times regarding the system's performance. 

 

▪ Integration with Model Evaluation: DiscordNotifier class is closely coupled with 

the ModelEvaluator component, which handles model output. Once an evaluation 

has been finished, the system sends a message to a given Discord channel, including 

a summary of important performance metrics, e.g., accuracy, precision, recall, or 

AUROC. This is especially useful for monitoring in research or production settings, 

where timely insight is essential. 

 

 

• OpenCV: For image and video processing operations in the system, OpenCV was used 

to handle various preprocessing activities. OpenCV is used for extracting frames from 

videos, resizing, masking, and segmenting images. OpenCV's flexibility allows the 

system to efficiently handle image transformations such as applying filters, resizing 

images, and handling more complex operations like object detection or image 

enhancement. This is particularly significant in preprocessing steps where raw video 

recording information is converted to useful input formats for the model. OpenCV's 

simplicity in integrating with other libraries and complete collection of image 

manipulation functionality position it as a key component within the pipeline. It also 

provides the performance that can handle processing big data sets, which is crucial in 

real-time anomaly detection systems. 

 

4.4.3 Other Considerations 

• Scalability and Extensibility: These selected tools are not only useful under the current 

infrastructure of the system but are very scalable and can be easily extended to support 

upcoming changes. Any new anomaly detection algorithms or complex methods can be 

easily incorporated into the existing system by extending the corresponding base 

classes or adding new logic. For instance, if there is a new anomaly detection algorithm, 

it can be integrated with minimal disruption to the other components of the system. 

Modularity afforded by toolkits like Anomalib and Flask means new components can 

be added without necessarily complicating the system. 
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• Cross-Compatibility: With the use of Python and the most widely used libraries like 

Flask and Anomalib, there is an assurance that the system will be compatible with most 

environments and platforms. The system may be hosted in various servers, deployed in 

various cloud environments, and augmented with additional tools such as cloud storage 

for data processing or additional notification services. 

 

These packages and software tools act in concert with each other to form an integrated, agile, 

and elastic system that can identify anomalies in plant health data. Utilizing established, 

widely-supported technologies, the system is robust in use and flexible in a way that allows it 

to extend in the future. 
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Chapter 5 

System Implementation 

 

The system implementation part provides a thorough description of the configuration and 

deployment process of the anomaly detection system. It outlines the steps needed to set up the 

project environment, e.g., installing dependencies, installing the necessary software, and 

combining the various elements used in the pipeline. The implementation process is scheduled 

to ensure smooth deployment, from preprocessing the data to testing the model, and includes a 

demonstration of the functioning system with sample input data to display its operational 

output. 

 

Issues encountered during the implementation phase are also tackled, citing issues such as 

dependency management, model tuning, and data preprocessing complexities. The issues are 

solved to ensure the system's robustness and reliability. In addition, the section provides 

remarks about the overall performance of the system, pointing out locations where future 

improvements or optimizations would make the system even more scalable and responsive in 

real use. The objective of this section is to provide an explicit instruction guide for installing, 

running, and debugging the system, encouraging simplicity and effective deployment to varied 

environments. 

 

You can refer to the original repository for all the information here.[52] 

 

5.1  Hardware Setup 

The development, training, and evaluation of the anomaly detection system were conducted on 

a local machine with the following hardware specifications:. 

• Processor: AMD Ryzen 7 6800H with Radeon Graphics 

• Memory: 16 GB DDR5 RAM (4800 MT/s) – 8 GB utilized during model training and 

inference 

• GPU: NVIDIA GeForce RTX 3060 Laptop GPU (6 GB VRAM) 

• Storage: 1 TB SSD 

• Operating System: Windows 11 (64-bit) x86-64 
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This hardware setup is a mid-range consumer-grade machine that is capable of handling the 

computational demands of the anomaly detection system. The large count of cores and multi-

threading capability of the AMD Ryzen 7 6800H processor enabled efficient parallel 

processing of tasks like frame extraction, data augmentation, and preprocessing. As only 8 GB 

of the 16 GB RAM was used in the model training and inference processes, this setup offered 

a compromise between computational power and memory, typical for consumer-level 

hardware. 

 

The inclusion of the NVIDIA GeForce RTX 3060 laptop GPU provided a very welcome 

performance boost for deep learning tasks. With 6 GB of VRAM, it allowed for faster training 

and inference of models like PatchCore and STFPM, albeit the GPU capacity remains mid-

range relative to higher-end, dedicated equipment. That aside, it performed well in the project's 

context, handling real-time test scenarios with barely any lag. 

 

The 1 TB SSD provided more than ample storage for the datasets, model weights, and result 

logs, accelerating overall data retrieval and storage speeds, especially when compared to 

conventional HDDs. The SSD also enabled managing the project's large video files and 

numerous model configurations easily. 

 

While the system was adequate for the scope of the project, it remains limited by consumer-

grade hardware. The processor and GPU are sufficient for research tasks, but for handling 

larger datasets, more complex models, or more computationally heavy loads, the higher-spec 

components (such as additional RAM, a higher-end GPU, or a dedicated server configuration) 

would perform better. The configuration is ideal for academic and small-scale projects but may 

lag when extended to more advanced work. 

 

Despite these limitations, the hardware setup at the consumer level was still capable of 

delivering results within an acceptable timeframe for the sake of this study. Additionally, the 

system is easily scalable or portable to more powerful cloud-based or high-performance 

configurations if it needs to be so for future applications, allowing for possibilities of future 

developments or commercial applications. 
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5.2  Software Setup 

To set up the project environment for development and execution, the following software and 

packages are required. This includes Python, Git, GitHub Desktop, virtual environment tools, 

and all necessary dependencies specified in the requirements.txt file. The following steps 

outline the process for setting up the software environment. For more comprehensive 

information refer to the ReadMe[53]. 

 

1. Python Installation 

Ensure that Python 3.11.9 or later is installed on your machine. Python is the core 

language used for the development of the anomaly detection system, and the system 

relies on Python's robust ecosystem of libraries to handle data processing, model 

training, and evaluation. 

 

2. Git or GitHub Desktop 

You can clone the repository using Git or GitHub Desktop. Both methods provide an 

easy way to obtain the latest project version and ensure that you can pull updates as 

needed. 

 

3. Creating a Virtual Environment 

It is recommended to create a virtual environment to keep the dependencies isolated 

and ensure compatibility with different systems. This is especially useful when working 

on multiple projects that may require different versions of libraries. 

 

4. Install Dependencies 

Once the virtual environment is activated, install all the necessary dependencies using 

the requirements.txt file provided in the repository. This ensures that you have the right 

versions of the required packages. 

 

This will install all the required Python packages, including essential ones like 

Anomalib, OpenCV, Flask, and Discord, among others. For a full list of dependencies, 

refer to Appendix A: Software and Package Requirements. 

 

5. Verification 
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After installation, you can verify that all dependencies are properly set up by running a 

sample script or checking the installed libraries using: 

pip freeze 

This will list all the installed packages along with their versions, allowing you to 

confirm that the setup was successful. 

 

By following these steps, you will have a fully configured environment that is ready for running 

the anomaly detection system, ensuring that all dependencies are in place for the system's 

proper operation. 

 

5.3  Setting and Configuration 

This section presents all the settings necessary for dataset preparation, system parameter 

tuning, environment variable management, and integration with the Discord bot. Each part of 

the system must be well configured to provide real-time interaction with the anomaly detection 

system during training, testing, and seamless execution. The project is developed with 

maintainability, reproducibility, and real-world deployment in consideration. This part also 

talks about compatibility problems and requirements for the system to perform well, especially 

regarding Anomalib and platform-dependent permissions. For more comprehensive 

information refer to the ReadMe[53]. 

 

5.3.1  Dataset Configuration 

To load and execute the anomaly detection model properly, the dataset needs to be organized 

into a well-formed directory tree. Training and test datasets need to be split into the following 

folders under the root directory, i.e., datasets and ensure there is train, good and bad folder. 

 

The names good and bad for the directories and train are called out within the 

anomalib_train.py file within the TrainObject initialization block.[53] 

 

The dataset is processed by the function DatasetUnit.AnomalibLoadFolder in dataset_lib.py, 

which is in charge of folder parsing, preprocessing, and loader instantiation. Customizations 

such as input normalization, resizing strategy, or grayscale support can also be done in that 

function. Make sure all images are of compatible formats and have the same resolutions to 

prevent preprocessing errors. 
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5.3.2  System Configuration 

This configuration does not use a "patient epoch" or early-stopping. Instead, it relies on good 

dataset organization and static settings defined in the training pipeline. These are set primarily 

through two files: anomalib_train.py and dataset_lib.py. 

 

• The num_workers  parameter controls concurrency of the DataLoader. A high value 

can be used on multiprocessor machines to improve data loading performance. 

 

• Training and test batch sizes are also defined in the Folder constructor inside the same 

method. They can be tuned by GPU memory or RAM constraints, especially when 

dealing with high image dimensions or deep networks. 

 

• Resizing of images is defined in ImageInfoObject in anomalib_train.py. Currently, it 

is 256x256 pixels by default. Ensure that the images in your dataset can be resolved to 

your preferred size to avoid distortions and memory overflows. 

 

• Due to Windows' multithreading and I/O limitations, training scripts should all run 

using privileged mode. Failing that, the app might not create worker threads or use 

system resources that come with reading a file concurrently. 

 

5.3.3  Environment Variables 

All bot tokens and webhook URLs used by the Discord bot are stored securely in an .env file 

in the root directory of the project. This approach keeps secrets out of source code and prevents 

accidental exposure. 

 

Create a .env file and include the following entries: 

• TOKEN_BOT_GITHUB=<your-bot-token> 

• CHANNEL_WEBHOOK_LOG=<webhook-url-for-log-channel> 

• CHANNEL_WEBHOOK_PREDICT=<webhook-url-for-predict-channel> 

• CHANNEL_WEBHOOK_DEBUG=<webhook-url-for-debug-channel> 

• CHANNEL_WEBHOOK_CLONE=<webhook-url-for-clone-channel> 

• TOKEN_BOT_GITHUB is used to authenticate the Discord bot. 
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Webhook URLs are distributed into particular Discord channels for prediction output, 

debugging, logging, and cloning commands.     Be warned: Never commit or send out your 

.env. Such tokens and URLs need to be treated as secret. 

 

5.3.4  Discord Bot Setup 

1. Creating a Discord Application 

To create a Discord application, visit the Discord Developer Portal and log in to your 

account through Discord. Click the "New Application" button to begin, then enter a 

name for your application and click "Create." This will begin your project as a Discord 

application. Once created, you can view all configuration options such as adding a bot, 

setting OAuth2 permissions, and generating credentials. This application forms the 

basis for your Discord bot and allows it to join servers, listen to commands, and respond 

to channels via the API. 

 

2. Creating Webhooks 

Create a webhook for a Discord channel by first going into your Discord server and 

looking at the specified text channel whereby you wish to receive messages coming 

from the bot. Click on the gear icon next to the channel name to access the Edit Channel 

settings. Then, go to the Integrations tab and click on Create Webhook. Name your 

webhook and optionally upload an avatar to make messages sent by the webhook 

visually recognizable. Copy the Webhook URL created—this URL is important, as it 

allows your application or bot to send messages directly to the selected channel. Copy 

this URL into your project file under the corresponding key (e.g., 

CHANNEL_WEBHOOK_LOG, CHANNEL_WEBHOOK_PREDICT, etc.). Repeat 

this for each channel where you want to have separate webhooks. 

 

5.4  System Operation 

The system operation describes how the anomaly detection system operates interactively 

through the Discord bot interface. It highlights the initialization process, channel-based 

command access control, and the overall workflow from model training to anomaly class 

prediction with visual and colour-coded output. Each stage is accompanied by Discord 

channels for user communication, logging, and threaded updates in a streamlined manner. 
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Below is an outline of the major operational aspects, along with representative figures for each 

process. 

 

1. System Initialization Configuration 

The first task in the system operation is to set up the configuration of the Discord 

webhooks and the respective bot-accessible channels. Since the system employs four 

distinct webhook channels—log, prediction, debug, and clone—it is essential to restrict 

particular bot commands to specific channels. This usability and security measure 

ensures that training commands are not executed in prediction channels, and vice versa. 

The bot reads the .env file and associates each webhook with its corresponding Discord 

channel ID, determining the command set for that channel. This setup also enables 

modular usage across various servers or projects. 

 

Figure 5.4.1: System Initialization Configuration for the channel-webhook mapping 

visualization 

 

2. Training 

Users initiate model training by sending a training command along with a model name. 

This command can be executed in the appropriate channel as determined by the bot's 

channel validation system. In response to this command, the bot acknowledges the 

request by sending a confirmation message and then logs all relevant training actions 

(including loading of datasets, epoch progress, and validation performance) to the log 

channel. Simultaneously, a new Discord thread for that training session is created, 

where real-time discussion and updates are wrapped and structured. Threaded logging 

here provides a step-by-step, readable history of training events, model checkpoints, 

and status messages. 
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Figure 5.4.2: Train Command Invocation 

 

Figure 5.4.3: Log Channel Confirmation 
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Figure 5.4.4: Dedicated Thread Logging for a full walkthrough of the training 

workflow 

 

3. Help Command 

There is a default ~help command on every channel to assist users by displaying the list 

of allowed commands for the specific channel. This assists users in knowing their 

current working context and prevents them from accidentally using commands 

restricted to other channels. The help message is constructed dynamically depending 
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on which webhook is being used and provides real-time guidance without recourse to 

external documentation. 

 

Figure 5.4.5: Help Command Output for a sample output in a Discord channel. 

 

4. Prediction Workflow 

Prediction has two main steps: setup and image submission. The user initially uses the 

setup command to select the trained model to use for prediction. Once the model is 

loaded and confirmed by the bot, the user then submits an image using the predict 

command. The model executes the image and returns the results along with a 

confidence level and classification output. 

 

The prediction output is color-coded to indicate the severity or class of detection: 

 

• Green – Normal: The plant or object is confidently normal, and no anomaly is 

detected. 

• Blue – Potentially Normal: The sample is almost normal but close to the 

boundary and might need monitoring. 

• Yellow – Potential Anomaly: There are minor irregularities that suggest the 

sample might be drifting towards an anomalous condition. 

• Red – Anomaly Detected: There is a clear and high-confidence anomaly 

detected in the sample. 
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Each colour-coded response is presented with annotated images, prediction confidence 

scores, and links to the relevant thread for context or next steps. 

 

Figure 5.4.6: Predict Setup Command 
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Figure 5.4.7: Predict Command Result 

 

Figures 5.4.8 Visual examples of Green outputs 
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Figures 5.4.9 Visual examples of Blue outputs 

 

Figures 5.4.10 Visual examples of Yellow outputs 
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Figures 5.4.11 Visual examples of Red outputs 

 

5.5  Implementation Issues and Challenges 

During the creation of the ginger plant anomaly detection system, several implementation 

problems and issues were brought about by the utilization of third-party software, shifting 

frameworks, and uncertainties regarding system design and scale. Among the most basic 

challenges was the result of utilizing Anomalib, an extremely efficient but quickly evolving 

library for anomaly detection. While Anomalib provides access to several cutting-edge models, 

the update frequency tends to also bring compatibility issues along. A couple of the models 

that previously were available are now deprecated or in production branches, and there is no 

possibility of using those in a production environment without an additional modification. 

Therefore, this project required a selective selection of stable versions and the building of an 

adaptive structure capable of accepting modification with minimal disruption. But in achieving 

this, it limited the range of successful anomaly detection models unless general rewrites of 

internal training and inferencing pipelines were performed. 

 

Yet another major contributor was the input/output manipulation required to bridge the gap 

between Anomalib's rigid internal processes and the custom use cases needed by the system. 

Since Anomalib demands inputs to be provided in a specific format and inference be computed 
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in a format not easily applied to asynchronous environments like Discord or Flask APIs, custom 

wrappers and interceptors had to be constructed. These features enabled the system to feed 

dynamic inputs (e.g., images users upload) into the models and then record the output to 

transform it into a suitable form for display on Discord. This included not just common outputs 

like confidence scores but also annotated images and colour-coded interpretations for end 

users. These personalizations introduced layers of complexity, with the necessity of in-depth 

knowledge of Anomalib's codebase and frequent debugging with version updates. 

 

The second principal development challenge was the uncertainty of the project's scope and 

outcome. As this was the developer's first experience of creating a production-grade system 

with real-time AI inference, Discord integration, and multi-threaded training pipelines, many 

design decisions had to be made on the fly. The system initially had a wide-brush stroke plan—

such as providing anomaly detection through a Discord interface—yet no fixed map of how 

the individual modules (like model training, logging, user handling, and response prediction) 

were to be implemented or scaled up. This lack of clarity failed to enable prior planning for the 

system's size, memory requirements, or concurrency issues. It also posed the threat of 

architectural mismatches or incompatibilities down the road, especially if demand from users 

increases or the project is expanded to handle multiple simultaneous models or more intricate 

workflows. 

 

Synchronizing multiple asynchronous systems—Discord bot, Flask API, and Anomalib 

training and prediction loops—was also difficult to align thread safety and performance. 

Discord and Flask are on separate event loops, and Anomalib's training procedures are blocking 

and CPU/GPU-bound by design. Ensuring that such features would be able to coexist and work 

together without going into interface lock-up mode or shared resource corruption needed 

extensive utilization of concurrency techniques and testing. This was exacerbated by the 

limited support and documentation available for using Anomalib and Discord.py 

simultaneously. 

 

In general, the deployment of this system was a process of continuous adaptation and 

debugging. Despite the technical difficulties and the learning curve, these problems provided 

valuable lessons in software integration, real-time AI deployment, and future-proofing and 

modularity design. The end system, though imperfect and still in need of future maintenance, 
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is a working proof-of-concept that finds a balance between usability, model performance, and 

system robustness in an R&D environment. 

 

5.6 Concluding Remark 

The deployment of the Ginger Plant Anomaly Detection System has revealed the complexity 

and intricacy of integrating various technologies into a singular, working pipeline. In its 

essence, the system couples the strong strength of Anomalib for unsupervised anomaly 

detection with a Discord-based interaction model to offer a leading, accessible monitoring 

solution. Each component—from data preparation and training to inference and result 

sharing—was deliberately designed to work together in concert under a unified architecture, 

even with the inherent limitations of third-party dependencies and constantly shifting software 

libraries. 

 

Through the utilization of a three-tier architecture (interface, processing, and data), the system 

compartmentalized its necessary functions to allow modular scalability and management. Flask 

delivered asynchronous processing successfully, Discord offered an interactive communication 

layer, and Python scripts served as a basis for workloads in anomaly detection. Webhook 

configurations, mappings of channel-threads, and tokenized environment variables were 

employed to address the issue of managing Discord commands on various channels and 

separation of concerns. 

 

While the system in its current state functions as expected, the implementation process 

provided valuable lessons. It became clear that flexibility and anticipation are paramount, 

particularly when working with ever-evolving machine learning platforms like Anomalib. The 

system is designed with extensibility, and it is thus possible to include additional models, 

additional support datasets, and optimize interaction mechanisms in the future. Lastly, this 

deployment not only achieved the project objectives but also offered a scalable platform for 

future innovations in automated plant health monitoring. 
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Chapter 6 

System Evaluation and Discussion 

 

In this chapter, we will examine and evaluate the performance of the developed system by 

conducting thorough testing and examining the performance of the anomaly detection models 

implemented against their performance metrics. We will cover the testing environment, how 

we tested the performance of the system, and the obtained results from the testing phase. This 

chapter will also cover the issues faced while developing the system, particularly due to the 

dependencies on third-party software and the uncertainty in anomaly detection tasks. 

Additionally, we will analyze how far the project objectives were met and talk about the lessons 

learned while implementing. Finally, we will conclude by providing an insight into the overall 

success of the project and provide recommendations for any improvements and developments 

in the future. 

 

6.1  System Testing and Performance Metrics 

System testing and performance measurement are key aspects of ascertaining the effectiveness 

and correctness of an anomaly detection system. In this section, we provide an overview of the 

system's testing process, the performance metrics taken to analyze its performance, and how 

the system is tested for its robustness and correctness in detecting plant health anomalies. The 

testing process includes several key aspects: 

 

• Dataset: The choice and creation of the dataset are significant elements in determining 

the range within which the system can operate at its best under varying conditions. The 

dataset should mirror real-world scenarios as much as possible, with variations in the 

health of plants and environmental factors. 

 

• Training and Testing Configuration: The training configuration defines how the model 

is trained, outlining the specific configurations used to optimize its learning. This 

includes details such as the selection of the training set, test set, and if transformations 

or augmentations are made to the images. 
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• Selected Model: The choice of a model for anomaly detection influences the 

effectiveness with which it will detect deviations in the plant health data. The model 

should be capable of handling real-world data complexity and identifying subtle 

changes that could represent disease or stress in plants. 

 

• Description of Metrics: There are various performance metrics for assessing the model's 

success at detecting anomalies. Typical metrics like accuracy, precision, recall, F1 

score, ROC curves, and AUC provide information on how effectively the model 

identifies true positives (correct anomalies) and does not identify false positives or 

negatives. 

 

• Visual Inspection: Visual inspection is an important part of system testing, especially 

in anomaly detection. By observing output images and visualized results, it is possible 

to interpret how well the model has localized anomalies and how the model responds 

to different types of inputs, i.e., normal, near-normal, and defective plant images. 

 

Together, they provide a complete overview of the system's capability to detect plant 

anomalies, responsiveness to various factors, and overall performance in real-world 

applications. The following sections will discuss the dataset details, training setup, models 

chosen, performance metrics, and visual judgment results, providing an overall performance 

evaluation of the system. 

 

6.1.1 Dataset 

In the first phase of testing, significant efforts were made to organize and tune the dataset to 

enhance the model's capability to detect ginger plant anomalies. Dataset preparation involved 

several key phases, which were crucial for training and testing system performance. Following 

is the description of dataset preparation and the transformations conducted to determine its 

strength and validity of results: 

 

1. Dataset Composition 

The dataset includes images taken over a period of four weeks with their respective 

week labels: Week 3, Week 8, Week 12, and Week 18. The images for each week are 

as follows: 
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• Week 3: 25 images 

• Week 8: 65 images 

• Week 12: 33 images 

• Week 18: 107 images 

 

These images were also divided into training and testing sets, with every third image in 

the sequence being selected for the test set. 

 

2. Preprocessing and Cropping 

One of the initial problems observed was the non-uniform scaling of images, resulting 

in the loss of useful plant features and scale information. To bypass this, we cropped 

the images based on the largest region of interest (ROI) each week. This served to retain 

and normalize the most prominent characteristics of the plants in the dataset. By taking 

the largest ROI, we were able to minimize scale differences that could bewilder the 

model, particularly in detecting faint anomalies in plant health. 

 

3. Image Variations for Testing 

In the test set, the following variations were added to give a comprehensive evaluation 

of the anomaly detection system: 

 

Good images: 

• Contrast Adjustments: The contrast of the good (normal) images was 

modified by adjusting the contrast factor. The contrast was modified with 

factors of 0.7, 0.9, 1.1, and 1.3 to simulate minor environmental changes that 

can naturally occur in a ginger farm. 

•  

Bad (defective) images: 

• Hue Shift: Hue shift was utilized to simulate disease or stress. The shift was 

applied down 15% and 30% and rotated the hue by 180 degrees, inducing 

artificial anomalies in the plant colour. 

• Dying Variations: One of the significant challenges in plant disease detection 

is handling subtle signs of plant deterioration. To simulate this, three levels of 
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hue, saturation, and value (HSV) alterations were created to produce dying plant 

variations. The alterations were defined as follows: 

a) Variation 1: (10, 50, 50) - Slight alterations in hue, saturation, and value. 

b) Variation 2: (20, 70, 70) - Moderate alterations in hue, saturation, and value. 

c) Variation 3: (30, 90, 90) - Larger changes, simulating more severe 

symptoms of plant decay. 

 

Using the formulae: 

Figure 6.1.1.1 Formulae of Dying Variation 

 

This modification created a wide range of abnormal-looking plants, closely 

resembling real degradation due to factors such as nutrient deficiency, disease, 

or age. 

 

4. Splitting the Dataset 

a) Train and Test Set Split: Images were divided into train and test sets, with a crucial 

test set choosing approach: 

• They chose every third image from the available images for the test set. 

• This aided in getting a good representation of images from every week so that 

there would be no bias from overfitting the model to certain periods. 

 

b) Evaluation Set: To guarantee that the performance of the model was always 

assessed in various circumstances, half of the test set was also assigned as the 

evaluation set. This assisted in creating more realistic settings for model validation, 

such that the model could be validated on data it had not seen before. 

 

5. Images Use for Training 
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It only used normal images to train it so that the model wasn't influenced by any labelled 

anomalies during learning. This also enabled the model to learn healthy plant patterns 

first before it was exposed to anomalous conditions. 

 

By contrast adjustments and introducing very few changes to the regular images, the 

model was rendered more robust to identify even slight changes in the healthy plants, 

which would later allow it to identify anomalies more precisely. 

 

6. Model Testing and Anomaly Detection 

The divided and preprocessed dataset was also used to validate the anomaly detection 

model by applying the transformations on the normal (good) images and incorporating 

some other types of anomalies (bad) to represent real-case scenarios. This enabled the 

model to detect subtle and gross changes in plant health and functionality. 

 

The contrast, hue shift, and dying variations provided a diverse range of test cases to 

assess the model's ability to handle diverse forms of plant anomalies. 

 

This refined dataset and its careful preparation served to ensure the system's ability to 

successfully identify anomalies under varying conditions. The issues of scaling, 

transformations of images, and dataset splitting were duly addressed, allowing for a more stable 

and accurate evaluation of the model's performance in anomaly detection in plant health. 

 

6.1.2 Training and Testing Configuration 

Having prepared the dataset, the next most critical task in building a successful anomaly 

detection system is establishing a good training and testing regime. This phase is necessary to 

ensure that the models not only learn useful patterns in the data but also generalize well to new, 

unseen situations without overfitting. The settings chosen in this project are informed by the 

demands of the Anomalib framework, real-world hardware constraints, and experimental 

objectives of plant anomaly detection using unsupervised learning. This section presents 

training and testing settings, such as training parameters, resource utilization, and model 

persistence strategy. 

 

Training Configuration 
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1. Training Strategy and Early Stopping: 

• A loss step scheduler is used in the training process to monitor the model's training 

loss over epochs. 

 

• Early stopping with patience of 10 epochs is employed to prevent overtraining and 

save computation resources, whereby training will stop if no improvement is seen 

after 10 consecutive validation steps. 

 

• Mode is 'min', trying to minimize the loss function during training, and minimum 

delta is 0.01, which defines the minimum improvement in loss to be considered an 

improvement. 

 

• Verbose mode is enabled to display real-time diagnostics and progress during 

training, tracking the learning behaviour and detecting problems early. 

 

2. Thresholding Mechanism and Evaluation Task: 

• Instead of a fixed predefined threshold, the system uses F1 Adaptive Thresholding. 

It automatically selects the best threshold according to the F1 score, which is a trade-

off between precision and recall and is particularly useful in scenarios of 

imbalanced data or blurry anomaly boundaries. 

 

• The task is defined as 'classification', casting the anomaly detection as a binary 

problem normal or anomalous which aligns with the format of test data and 

simplifies evaluation. 

 

• Performance metrics are AUROC (Area Under the Receiver Operating 

Characteristic Curve) and AUPR (Area Under the Precision-Recall Curve). These 

metrics are suitable for evaluating anomaly detection models since they are not 

affected by class imbalance and provide a general view of performance across all 

thresholds. 

 

3. Hardware and Runtime Settings: 
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• Maximum epochs is 300, providing ample training time while balancing against the 

risk of overfitting. We choose this number since most of the model did not reach 

the maximum epochs. 

 

• Device auto-selection (device=auto) and accelerator auto-setting (accelerator=auto) 

are used to automatically choose the most appropriate available computing 

hardware (GPU or CPU) for computing based on compatibility and performance 

regardless of the environment of the system. 

 

• Due to hardware limitations of available hardware, i.e., CPU and memory size, data 

loading workers are restricted to 2. This reduces parallel fetching of data but 

prevents system crashes and allows smoother runtime during training. 

 

4. Train/Test Split Strategy: 

• In this setup, a manual train/test split is enforced by defaulting the split ratio to 0, 

providing full control over dataset distribution. 

 

• This option guarantees there is no training and test data leakage between datasets, 

preserving the integrity of the test process and ensuring realistic test conditions. 

 

5. Image Preprocessing and Format: 

• All the images are resized to 256 × 256 pixels, which is a common input size for 

the majority of convolutional models. Standardization also conserves GPU memory 

usage and compatibility with all the models realized in Anomalib. 

 

• The images are converted to RGB colour format, which is what the majority of 

trained vision backbones expect and which preserves colour information critical to 

anomaly detection, such as hue and saturation-based variation in plant health. 

 

• At the end of the training, all models are saved in PyTorch (.pt) format to facilitate 

compact storage and easy reloading for inference or further fine-tuning. This also 

facilitates future portability and integration into other systems. 
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Testing Configuration 

• Testing is minimalist and realistic, replicating the way the system would be utilized in 

the real world in deployment scenarios. 

 

• Test images are shown in the raw form, and there is no preprocessing or transformation 

done at test time. This enables the same variations, defects, and environmental 

conditions that appear during real-time operation to appear during testing. 

 

• This straightforward test setup achieves two goals: first, it provides a clear measure of 

the model's capacity to handle raw input; second, it does not introduce any artificial 

gains that would distort the performance metrics. 

 

Overall, this system's train/test configuration is aimed at establishing a controlled yet realistic 

environment for model performance evaluation. By sacrificing rigour (in the form of 

meticulous parameter tuning and data handling) for ease (especially in testing), this 

configuration offers a good foundation for meaningful performance evaluation and reliable 

field deployment. It also models real-world constraints such as limited computational resources 

and evolving software tools, which makes the system not just effective but also sustainable. 

 

6.1.3 Chosen Model 

The selection of anomaly detection models is a key determinant of the overall system's 

accuracy, robustness, and practical applicability. Five unsupervised anomaly detection models 

from the Anomalib library were chosen for this project based on their strengths, architectural 

novelty, and demonstrated performance in earlier research and preliminary experiments. Each 

of the models was chosen to play a distinct role in detecting subtle to obvious anomalies under 

diverse conditions and test weeks of the ginger plant dataset. Their combination enables 

exhaustive evaluation and improves the capability of the system to detect a wide variety of 

plant health issues. 

 

The five models that have been selected to be evaluated are: 

• CFlow 

CFlow was chosen because of its strong performance on difficult plant image datasets 

with diverse structures and lighting conditions. Its conditional normalizing flow model 
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enables it to learn fine-grained spatial feature representations, making it especially 

helpful in identifying differences in healthy and unhealthy plant structures in big 

datasets. CFlow showed consistently stable results in preliminary experiments, 

particularly in high-resolution plant shape and texture change extraction. 

 

• FastFlow 

FastFlow is included because of its speed and real-time inference capability, together 

with its stable anomaly detection under different visual conditions. While it does not 

necessarily produce the most accurate heat maps, its overall anomaly classification is 

good and consistent. FastFlow is a nice speed versus accuracy balance model that would 

be suitable for systems requiring quick feedback, i.e., real-time monitoring systems. 

 

• PatchCore 

PatchCore is selected due to its stability and versatility across a variety of datasets. It is 

a patch-wise feature embedding approach with a memory bank, making it very effective 

at general-purpose anomaly detection. PatchCore performs well even when the fine 

details are not as salient, and it had a strong resilience to false positives in initial testing. 

It is often a "baseline strong performer," making it a valuable component of 

comparative studies and deployment scenarios. 

 

• Reverse Distillation 

This model is included primarily for its prospects in detecting anomalies such as 

shadows, wilting, or fallen-over plants — conditions that are typically more challenging 

for normal models. Reverse Distillation relies on a student-teacher framework, where 

the disagreement between the outputs of the teacher and student represents potential 

anomalies. It is strong in detecting scene-level inconsistencies and subtle changes in 

plant posture or environment, which was effective in week 12 and week 18 testing when 

plants were collapsing or dying. 

 

• STFPM 

STFPM was selected due to its high performance in fine localization of anomalies. It 

takes advantage of multi-scale feature matching and can identify very slight deviations 

from the learned normal distribution. During visual inspection, STFPM consistently 
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produced high-resolution anomaly maps well correlated with areas of interest in 

diseased plants. Its accuracy and resolution place it at the top of the models for 

individuals interested in fine anomaly localization. 

 

Through the use of this heterogeneous collection of models, the system benefits from the 

unique strengths that each one brings. Whereas some of the models, like STFPM and CFlow, 

are directed towards pixel-wise high-detail localization, others like PatchCore and FastFlow 

offer more general anomaly detection with shorter response times. Reverse Distillation 

completes the others by filling in structural and environmental anomalies. Together, these 

models offer a broad toolkit for plant health analysis and anomaly detection in a variety of real-

world agricultural contexts. 

 

6.1.4 Explanation of Metrics 

To most effectively measure the performance of the anomaly detection models, a diverse set 

of metrics was used to ensure both the classification accuracy and ability to generalize to new, 

unseen data were properly investigated. The metrics provide insight into the model's decision-

making, particularly when the datasets are imbalanced and the anomaly severity levels. Manual 

evaluation was carried out by comparing each prediction output image-by-image against the 

ground truth. Note that all the evaluation images were completely unseen to the models during 

training so that there could be an unbiased and fair model generalization test. 

 

The following key metrics were utilized: 

• True Negative (TN): Number of correctly identified normal (healthy) plant images. 

• False Positive (FP): Number of normal images incorrectly identified as anomalies. 

• False Negative (FN): Number of actual anomalous images misclassified as normal. 

• True Positive (TP): Number of correctly identified anomalous images. 

From these values, a variety of derived metrics were calculated: 

• Accuracy: Overall correctness of the model: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

• Precision: Proportion of true anomalies among all detected anomalies: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 



Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    91 
 

 

• Recall (Sensitivity): Ability to detect actual anomalies: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

• Specificity: Ability to correctly identify normal samples: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

• F1 Score: Harmonic mean of precision and recall, balancing both false positives and 

false negatives: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

• False Positive Rate (FPR): Likelihood of misclassifying a normal image as an anomaly: 

𝐹𝑃𝑅 =  
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

 

• False Negative Rate (FNR): Likelihood of missing an actual anomaly: 

𝐹𝑁𝑅 =  
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 

 

• Balanced Accuracy: Average of sensitivity and specificity, useful when classes are 

imbalanced: 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 

 

• Youden’s Index (J): A metric that summarizes the performance by maximizing the 

distance from random chance classification: 

𝐽 =  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 − 1 

 

• Negative Predictive Value (NPV): Probability that a negative prediction truly 

corresponds to a normal image: 

𝑁𝑃𝑉 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
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These metrics were vital in interpreting model performance outside binary classification, 

delivering insight into over-predicting anomaly models of anomalies, failing to detect weak 

instances, and predicting confidence to believe within the true agricultural setting. 

 

Besides manually vetted metrics, two automatically produced metrics from the training phase 

were utilized as well: 

• AUROC (Area Under the Receiver Operating Characteristic Curve): Assesses the 

discriminative ability of the model in separating normal and anomalous samples at 

varying thresholds. The higher AUROC indicates better discrimination. 

 

• AUPR (Area Under the Precision-Recall Curve): Most helpful with imbalanced 

datasets, examining precision-recall trade-offs. 

 

The values for AUROC and AUPR were recorded during training and indicate performance on 

the test split utilized by the training setup. However because these are developed during training 

from artificial variations or static test sets, they serve only as secondary pointers and not as the 

final source of assessment. The underlying performance analysis was calculated from manual 

verification and confusion matrix-based metrics to better emulate the real-world challenges and 

model reliability in actual deployments. 

 

6.1.5 Visual Evaluation 

In addition to quantitative metrics, visual evaluation also played a critical role in establishing 

the real-world performance of every anomaly detection model. This involved using original 

cropped-size images every week, allowing the models to predict over a greater number of pixels 

and ensuring the unambiguous representation of plant features. Visual inspection was 

imperative not just to validate prediction effectiveness but also in determining spatial location 

of detected faults—something non-scalar measurements cannot quantify. 

 

For realistic "good" image evaluation, a sample was considered correctly predicted if an 

anomaly was not detected in the plant zone. When anomalies were detected by the model in 

background areas (e.g., soil, pots, or shadows outside of the plant zone), predictions were not 
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regarded as false positives. This prevented the assessment from disproportionately focusing on 

the system's ability to detect plant health compared to unrelated image noise. 

 

For "bad" image evaluation, predictions were only considered valid anomalies if the predicted 

area overlapped most of the actual anomaly on the plant, say areas of discolouration, distortion, 

or wilt. If anomaly predictions were outside the region of interest (ROI) or indicated healthy 

plant tissue, they were excluded from performance metrics. This stringent ROI-based 

validation ensured that model predictability was specifically linked with a proper semantic 

understanding of plant health conditions, not simply pixel-level faults. 

 

With the aid of this visual validation process, evaluation gave precedence to interpretability 

and applicability in the real world in a field setup, ensuring models were not just 

mathematically sound but visually and semantically understandable when utilized for ginger 

plant health surveillance. 

 

6.2  Result 

This section gives the comprehensive performance testing results of the system's anomaly 

detection on five selected models — CFlow, FastFlow, PatchCore, Reverse Distillation, and 

STFPM — on four diverse weekly datasets labelled as Week 3, Week 8, Week 12, and Week 

18. Each week's dataset represents ginger plants' cumulative growth and fluctuation in health 

obtained under true field conditions. These data sets are chosen specifically to contain a broad 

range of plant health states and environment states, with the test conditions consequently being 

realistic and difficult. All images used in the evaluation phase here are novel; i.e., they were 

not present in training at all and therefore provide an effective basis through which to test true 

generalization ability. 

 

Each week's data was subjected to four feature-based test conditions: Normal images, Contrast 

Down variations, Hue Downshifts, and Dying Plant simulations. These test cases reflect typical 

plant health degradation situations, such as loss of leaf colour, reduced light exposure, and 

starting wilting. The aim was to find out the models' ability to effectively pick out anomalies 

in both subtle and obvious plant stress conditions. For all these differences, confusion matrices 

and a full set of performance metrics were computed to provide both statistical and practical 

information regarding each model's performance under stress and normal conditions. 
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Performance metrics include commonly used classification metrics such as Accuracy, 

Precision, Recall (Sensitivity), Specificity, F1 Score, False Positive Rate, False Negative Rate, 

Balanced Accuracy, Youden's Index, and Negative Predictive Value. These values were 

acquired by manually verifying each model's prediction output against ground-truth labels by 

pixel-based visual anomaly inspection. Precautions were taken to distinguish between true 

detection and false alarms by removing predictions that were outside the plant region of interest 

(ROI), particularly when anomalies were being wrongly detected in the background. 

 

Besides the manually verified metrics, the models also produced automated performance 

metrics such as AUROC (Area Under Receiver Operating Characteristic Curve) and AUPR 

(Area Under Precision-Recall Curve) while training. These are other metrics of the models' 

threshold optimization and classification capability while performing the task of anomaly 

detection. Although AUROC and AUPR are useful high-level summaries, manually validated 

metrics provide ground-truth confirmation of whether or not the predictions made were indeed 

useful and reliable in field conditions. 

 

In visual validation, all test images were kept at their original crop size to supply optimal pixel 

area for anomaly prediction. This allowed a more detailed assessment of how well the model 

could localize anomalies and how reliably it could identify prominent patterns. Anomaly 

detections were only taken as true positives when these were occurring within the ROI of 

anomalous plants. Predictions on healthy plants or background noise were not being counted 

to avoid unfair inflation of false positive or false negative rates. Healthy image variations like 

changes, in contrast, were only included as good detections if no anomalies were being falsely 

detected. 

 

The subsequent subsections provide a comprehensive breakdown of results for each week's 

data. Each test condition is then preceded by confusion matrix visualization, a table of 

performance metrics, and a brief interpretation of model strengths and weaknesses in the 

condition. This comprehensive method presents a clear and measurable appreciation of the 

system's actual performance and highlights which models and conditions are most responsible 

for successful or failed detection. 
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6.2.1 Weeks Evaluation Results 

Week 3 

1. Overview 

Week 3 assessment is focused on a relatively early stage of ginger plant growth. Various 

augmentation images were used for testing each depicting healthy or artificially 

unhealthy plant conditions under various visual augmentations. The conditions are 

nicely chosen to evaluate the anomaly detection capability of the selected models, 

which were trained on normal plant images alone. The Week 3 dataset is comprised of 

smaller and thinner-developed plants, which may have unique challenges to proper 

anomaly detection by offering fewer visual cues and thinner vegetative cover. 

 

2. Test Conditions and Augmentations 

Four test scenarios were prepared for Week 3: 

• Normal images: Unmodified crop-sized top-down captures of healthy plants. 

Figures 6.2.1.1 Week 3 Normal-Present-Smalles, Medium, Largest Plant Images 

 

• Contrast Up and Down: Images modified using contrast adjustments (0.7, 0.9, 

1.1 and 1.3 factors) to simulate environmental lighting issues. 
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Figures 6.2.1.2 Week 3 Contrast Adjustment 0.7, 0.9, 1.1 and 1.3 

 

• Hue Down: Images where hue values were shifted down (15% and 30% of 180) 

to simulate changes in leaf coloration due to nutrient issues or early disease 

symptoms. 
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Figures 6.2.1.3 Week 3 Hue Down 15 and 30. 

 

• Dying Variation: Images processed with HSV transformations simulating leaf 

browning and drying using predefined hue, saturation, and value reduction 

combinations. 

Figures 6.2.1.4 Week 3 Dying Variation 1, 2 and 3 

 

Each of these categories was intended to validate how the models respond not only to 

genuine anomalies but also to borderline or ambiguous visual cues. 

 

3. Confusion Matrix 

For each test case, model predictions were manually validated against expected 

outcomes, and confusion matrices were constructed accordingly. This included detailed 

counts of:  

 



Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    98 
 

The result as shown below: 

 

Table 6.2.1.1 Week 3 Result 

 

Each confusion matrix provides insight into the model’s sensitivity and its robustness 

against visual artifacts that resemble real plant issues. 

 

 

Figure 6.2.1.5 Week 3 Result STFPM 

 

a. CFlow 
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Predicted 
Positive 

Predicted 
Negative 

Actual Positive 7 13 
Actual 
Negative 4 16 

Table 6.2.1.2 Week 3 CFlow Confusion Matrix 

 

b. Fastflow 

  
Predicted 
Positive 

Predicted 
Negative 

Actual Positive 9 11 
Actual 
Negative 0 20 
Table 6.2.1.3 Week 3 Fastflow Confusion Matrix 

 

c. PatchCore 

  
Predicted 
Positive 

Predicted 
Negative 

Actual Positive 9 11 
Actual 
Negative 0 20 
Table 6.2.1.4 Week 3 PatchCore Confusion Matrix 

 

d. Reverse Distillation 

  
Predicted 
Positive 

Predicted 
Negative 

Actual Positive 9 12 
Actual 
Negative 3 17 

Table 6.2.1.5 Week 3 Reverse Distillation Confusion Matrix 

 

e. STFPM 

  
Predicted 
Positive 

Predicted 
Negative 

Actual Positive 12 9 
Actual 
Negative 1 19 

Table 6.2.1.6 Week 3 STFPM Confusion Matrix 

 

4. Performance Metrics 

Based on the confusion matrix, the following metrics were computed: 
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model cflow fastflow patchcore 
reverse 
distillation stfpm 

Accuracy 57.50% 72.50% 72.50% 63.41% 75.61% 
Precision 63.64% 100.00% 100.00% 75.00% 92.31% 
Recall (Sensitivity) 35.00% 45.00% 45.00% 42.86% 57.14% 
Specificity 80.00% 100.00% 100.00% 85.00% 95.00% 
F1 Score 45.16% 62.07% 62.07% 54.55% 70.59% 
False Positive Rate 20.00% 0.00% 0.00% 15.00% 5.00% 
False Negative Rate 65.00% 55.00% 55.00% 57.14% 42.86% 
Balanced Accuracy 57.50% 72.50% 72.50% 63.93% 76.07% 
Youden's Index (J) 15.00% 45.00% 45.00% 27.86% 52.14% 
Negative Predictive Value 55.17% 64.52% 64.52% 58.62% 67.86% 
AUROC 81.00% 68.50% 79.25% 76.75% 75.75% 
AUPR 82.69% 72.28% 83.09% 76.45% 81.79% 

Table 6.2.1.7 Week 3 Performance Metrics 

 

These metrics were critical in identifying not just accuracy, but also the trade-offs 

between catching all anomalies and avoiding false alarms. Additionally, AUROC and 

AUPR scores were extracted from the training phase and included as baseline model 

quality indicators. 

 

5. Visual Evaluation Insight 

The Week 3 visual evaluation step was insightful regarding the response of each model 

to normal and anomalous visual cues, especially when viewed at full crop resolution. 

Anomaly predictions were overlaid on the test images in this step, and qualitative 

observations were recorded on how well the predictions aligned with the actual plant 

conditions. 

 

• CFlow showed consistent alignment with normal samples, often producing 

clean prediction masks with little or no false positives. Its behaviour on anomaly 

images—particularly under hue shift and dying leaf simulations—was difficult 

to interpret. In many cases, the model neither indicated anomalies with 

confidence nor showed strong heatmap hints. This is worrying regarding 

whether it is responding appropriately or just not registering more subtle 

changes. 
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• FastFlow performed adequately on good and bad cases. On normal samples and 

contrast changes, it maintained acceptable prediction clarity. On bad samples, 

the model had some ability to highlight suspicious areas, but sensitivity was 

low. Visual cues like browning or colour changes were not strongly suggested, 

reflecting a lack of discriminative power for mild anomaly transformations. 

 

• PatchCore also followed the same trend as FastFlow, with good performance on 

good images and tolerably medium performance on bad ones. On dying 

variation and hue-down cases, it could weakly indicate areas of the problem but 

was not able to cross the anomaly threshold. Like FastFlow, it appeared to sense 

something was wrong but was not confident enough to explicitly call it an 

anomaly. 

 

• Reverse Distillation varied slightly in detecting early discolouration and 

yellowing even in "good" images, which, though it points to sensitivity, can lead 

to false positives on borderline cases. In anomalous cases, especially with dying 

variants, the model was capable of detecting affected regions but could be 

refined with further tuning to amplify anomaly signal strength. Its performance 

is suggestive of a strong underlying ability, but with a threshold that must be 

tuned. 

 

• STFPM was the most stable in terms of visual feedback. It accurately 

differentiated normal and abnormal samples and consistently emphasized 

affected areas under hue-down and dying conditions. However, its performance 

on hue-down 15% variation cases was somewhat of a concern. It tended to label 

minor hue changes as anomalies even when these were within acceptable visual 

limits for healthy plants. Nonetheless, among all models, STFPM had the best 

localization and confidence on visual anomaly maps. 

 

Of all the models, hue-down changes were the hardest to evaluate. These sorts of 

changes consistently produced anomaly flags on actual "good" as well as "bad" 

samples, hiding the model's ability to identify subtle changes in coloration. This points 
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out the need for either more complex hue-sensitive augmentation processing or refined 

thresholding logic. 

 

Overall, the Week 3 visual evaluation accentuates both the model strengths and 

weaknesses present. It confirms the necessity for continued human-in-the-loop 

validation, especially where model outputs are responsive to uncertain colour or 

contrast variation in real-world plant images. 

 

The Week 3 visual evaluation indicates that while all models possessed a baseline ability to 

delineate normal from anomalous plant conditions, they exhibited variable sensitivity and 

accuracy. CFlow performed well under normal samples and struggled to make definitive 

outputs on anomalous ones, which called its reliability under subtle disturbances into question. 

FastFlow and PatchCore were largely consistent but lacked the depth to pick up on less obvious 

signs of stress such as early colour shifts. Reverse Distillation yielded good discolouration and 

shadow-based anomaly detection with high potential, though, in some good samples, it was 

bordering on being too sensitive. STFPM was most consistent, with well-localized and sharp 

detections and good trade-off between sensitivity and specificity. Hue-down transformations, 

however, exposed a blind spot common to all the models, which tended to confuse even 

visually healthy images. These results highlight the importance of tailored preprocessing and 

postprocessing methods, particularly for ambiguous or colour-based anomaly cues in plant 

health monitoring. 

 

Week 8 

1. Overview 

In Week 8, the dataset increased significantly in terms of size and visual variety, posing 

a more taxing test of each model's capacity for generalization. Week 8 introduced 

additional diverse leaf patterns, lighting conditions, and anomaly severities, including 

slight yellowing, moderate leaf curling, and increased image complexity. The test 

focused on the strength of the model under this more challenging distribution, namely 

their performance on both normal and augmented good samples (e.g., contrast 

variations) and the more subtle bad samples, such as slight hue variations and early 

signs of dying. The visual results allow more subtle observations about model strengths 

and weaknesses under field-like conditions, where anomaly signals are practically 
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never binary and may lie in visually ambiguous ranges. The Week 8 results are a critical 

waypoint for dividing those models that can scale effectively as data complexity grows 

and those that require further tuning or domain-specific adaptation. 

 

2. Test Conditions and Augmentations 

Four test scenarios were prepared for Week 8: 

• Normal images: Unmodified crop-sized top-down captures of healthy plants. 

Figures 6.2.1.6 Week 8 Normal-Present-Smalles, Medium, Largest Plant Images 
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• Contrast Up and Down: Images modified using contrast adjustments (0.7, 0.9, 

1.1 and 1.3 factors) to simulate environmental lighting issues. 

 

Figures 6.2.1.7 Week 8 Contrast Adjustment 0.7, 0.9, 1.1 and 1.3 
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• Hue Down: Images where hue values were shifted down (15% and 30% of 180) 

to simulate changes in leaf coloration due to nutrient issues or early disease 

symptoms. 

Figures 6.2.1.8 Week 8 Hue Down 15 and 30. 

 

• Dying Variation: Images processed with HSV transformations simulating leaf 

browning and drying using predefined hue, saturation, and value reduction 

combinations. 

Figures 6.2.1.9 Week 8 Dying Variation 1, 2 and 3 
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Each of these categories was intended to validate how the models respond not only to 

genuine anomalies but also to borderline or ambiguous visual cues. 

 

3. Confusion Matrix 

For each test case, model predictions were manually validated against expected 

outcomes, and confusion matrices were constructed accordingly. This included detailed 

counts of:  

 

The result as shown below: 

Table 6.2.1.8 Week 8 Result 

 

Each confusion matrix provides insight into the model’s sensitivity and its robustness 

against visual artifacts that resemble real plant issues. 
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Figure 6.2.1.10 Week 8 Result STFPM 

 

 

a. CFlow 

  
Predicted 
Positive 

Predicted 
Negative 

Actual Positive 13 13 
Actual 
Negative 5 16 

Table 6.2.1.9 Week 8 CFlow Confusion Matrix 

 

b. Fastflow 

  
Predicted 
Positive 

Predicted 
Negative 

Actual Positive 31 22 
Actual 
Negative 3 50 
Table 6.2.1.10 Week 8 Fastflow Confusion Matrix 

 

c. PatchCore 
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Predicted 
Positive 

Predicted 
Negative 

Actual Positive 33 20 
Actual 
Negative 0 53 
Table 6.2.1.11 Week 8 PatchCore Confusion Matrix 

 

d. Reverse Distillation 

  
Predicted 
Positive 

Predicted 
Negative 

Actual Positive 34 19 
Actual 
Negative 1 52 

Table 6.2.1.12 Week 8 Reverse Distillation Confusion Matrix 

 

e. STFPM 

  
Predicted 
Positive 

Predicted 
Negative 

Actual Positive 40 13 
Actual 
Negative 0 54 
Table 6.2.1.13 Week 8 STFPM Confusion Matrix 

 

4. Performance Metrics 

Based on the confusion matrix, the following metrics were computed: 

model cflow fastflow patchcore 
reverse 
distillation stfpm 

Accuracy 57.55% 76.42% 81.13% 81.13% 87.85% 
Precision 72.22% 91.18% 100.00% 97.14% 100.00% 
Recall (Sensitivity) 24.53% 58.49% 62.26% 64.15% 75.47% 
Specificity 90.57% 94.34% 100.00% 98.11% 100.00% 
F1 Score 36.62% 71.26% 76.74% 77.27% 86.02% 
False Positive Rate 9.43% 5.66% 0.00% 1.89% 0.00% 
False Negative Rate 75.47% 41.51% 37.74% 35.85% 24.53% 
Balanced Accuracy 57.55% 76.42% 81.13% 81.13% 87.74% 
Youden's Index (J) 15.09% 52.83% 62.26% 62.26% 75.47% 
Negative Predictive Value 54.55% 69.44% 72.60% 73.24% 80.60% 
AUROC 75.99% 76.68% 84.12% 85.62% 80.69% 
AUPR 84.75% 75.99% 89.04% 88.83% 77.17% 

Table 6.2.1.14 Week 8 Performance Metrics 
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These metrics were critical in identifying not just accuracy, but also the trade-offs 

between catching all anomalies and avoiding false alarms. Additionally, AUROC and 

AUPR scores were extracted from the training phase and included as baseline model 

quality indicators. 

 

5. Visual Evaluation Insight 

Week 8 visual evaluation provided deeper insight into how effective each model had 

been in coping with increasing dataset complexity and higher plant condition 

variability. With increasing use of full crop resolution for testing, models were assessed 

on the basis of their ability to accurately localize anomalies and avoid false detections, 

particularly as increasingly variable contrast and hue changes were included. 

 

• CFlow performed well on normal samples, often generating clean masks 

without mistakenly labeling the background. However, its performance in bad 

samples was still inconsistent. The model did not conclusively react to many 

visually apparent anomalies, especially under slight hue variations or 

progressive plant rot. Though its low sensitivity might restrict false positives, it 

also raised questions about its general detection confidence and reliability. 

 

• FastFlow did better robustness on normal samples, perhaps due to better 

background handling and fine-tuning in prediction confidence. Its anomaly 

detection on bad images was slightly improved, with clearer heatmaps around 

affected areas. Still, subtle changes such as early-stage decay or slight hue 

downshifts continued to be underrepresented. The model appeared to need 

stronger anomaly triggers to be confident about classifying an image as 

abnormal. 

 

• PatchCore was especially strong on handling normal as well as anomaly images. 

It performed excellent discrimination on normal examples without the need for 

explicit background filtering. Under anomaly instances particularly with 

dwindling variations the model produced logical heatmap activations. While it 

failed to cross over anomaly thresholds sometimes on more sublet cases, its 
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localization remained consistent with actual areas of interest, hence serving as 

a reliable middle-ground candidate. 

 

• Reverse Distillation further improved its interpretability by showing abnormal 

regions clearly even in complex plant geometries. It handled dying and hue-

shifted variants more firmly than it had in Week 3 and managed to differentiate 

between normal versus suspect plant condition. Its sensitivity also managed to 

detect incipient discoloration and minute structural weakness. However, it still 

required slight calibration to reduce false positives from benign hue changes. 

 

• STFPM nonetheless performed better than all the rest of the models when it 

came to map distinctness and anomaly localization. It highly discriminated 

normal from poor samples, often yielding intricate and specific heatmaps even 

for very minor changes. Hue-down cases were well taken care of, though at the 

15% threshold some of the visual clues were borderline leading to slight 

changes at times being classified wrongly as anomalies. Nonetheless, STFPM 

still performed better with minimal misclassification and good spatial accuracy. 

 

Hue-down 15% was similarly a recurring problem on all models. This change was 

subtle enough that it was within normal limits but was able to mislead some models 

into marking them as anomalies. This merely serves to highlight the importance of 

better anomaly thresholding logic and possibly re-thinking if such subtle hue changes 

would even be considered anomalies under field conditions. 

 

In short, Week 8 visual checks reminded that while all models have improved 

predictions, particularly for clear cases, minor plant health changes remain difficult to 

address without advanced tuning or domain-knowledgeful boost. STFPM, PatchCore, 

and Reverse Distillation proved most helpful, but all models exhibited features that 

must be investigated further when determining future deployment strategy. 

 

Week 8's visual evaluation confirms continued improvement in model stability and detection 

confidence, with almost all models demonstrating greater capability in responding to more 

sophisticated plant structure and denser leaf pattern. CFlow continued its excellence in precise 
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predictions of typical samples but remained limited in decisiveness when subjected to subtle 

anomalies its indecision in the ability to discriminate minor visual impairments remained an 

ongoing shortcoming. FastFlow also fared marginally better in Week 3 with improved attention 

and reduced noise in predictions, yet still lacked the depth for routine flagging of borderline 

anomalies, especially color-related changes. PatchCore also achieved a fair performance with 

virtues in especially "dying" changes where indication was strongly prominent, but did exhibit 

some conservatism towards considering gentle deviations as anomalies. Reverse Distillation 

demonstrated good visual acuteness, correctly identifying discolored and shadowed regions, 

though its heightened sensitivity occasionally picked up non-critical differences, indicating that 

thresholding could be improved. STFPM once more outperformed the others, demonstrating 

excellent localization accuracy and robust anomaly detection—even in visually ambiguous 

cases. However, hue-down 15% conversions remained a problematic case for all but efficiently 

still managed to miss some anomalies or detect them falsely in healthy samples. These results 

emphasize the importance of high color sensitivity calibration and validate STFPM's leadership 

as a prevailing model for accurate plant anomaly detection at this level of development. 

 

Week 12 

1. Overview 

The Week 12 analysis is based on a more mature stage of ginger plant development 

with denser foliage and more organized spatial plant patterning compared to earlier 

stages. This week's data set is a variety of test images, normal and synthetically 

transformed samples that simulate usual signs of stress such as discoloration, contrast 

variation, and wilting leaves. Controlled augmentations have generated these test 

samples that mimic real-world environmental variation and physiological 

imperfections. 

 

The larger plant size and density in Week 12 provides a more informative set of visual 

features, enabling the models to better recognize abnormal patterns. However, this 

introduces the added complexity of distracting background features and more complex 

spatial relationships between healthy and infected areas. All the anomaly detection 

models being compared are still trained using normal plant images only to maintain the 

purity of the unsupervised learning framework. The Week 12 exam is a mid-point 
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benchmark, gauging how far the models generalize to more visually advanced and 

biologically developed plant states without first seeing anomalous cases. 

 

2. Test Conditions and Augmentations 

Four test scenarios were prepared for Week 12: 

• Normal images: Unmodified crop-sized top-down captures of healthy plants. 

Figures 6.2.1.11 Week 12 Normal-Present-Smalles, Medium, Largest Plant Images 

 

• Contrast Up and Down: Images modified using contrast adjustments (0.7, 0.9, 

1.1 and 1.3 factors) to simulate environmental lighting issues. 
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Figures 6.2.1.12 Week 12 Contrast Adjustment 0.7, 0.9, 1.1 and 1.3 

 

• Hue Down: Images where hue values were shifted down (15% and 30% of 180) 

to simulate changes in leaf coloration due to nutrient issues or early disease 

symptoms. 

Figures 6.2.1.13 Week 12 Hue Down 15 and 30. 
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• Dying Variation: Images processed with HSV transformations simulating leaf 

browning and drying using predefined hue, saturation, and value reduction 

combinations. 

Figures 6.2.1.14 Week 12 Dying Variation 1, 2 and 3 

 

Each of these categories was intended to validate how the models respond not only to 

genuine anomalies but also to borderline or ambiguous visual cues. 

 

3. Confusion Matrix 

For each test case, model predictions were manually validated against expected 

outcomes, and confusion matrices were constructed accordingly. This included detailed 

counts of:  

 

The result as shown below: 

Table 6.2.1.15 Week 12 Result 

 

Each confusion matrix provides insight into the model’s sensitivity and its robustness 

against visual artifacts that resemble real plant issues. 
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Figure 6.2.1.15 Week 12 Result STFPM 

 

a. CFlow 

  
Predicted 
Positive 

Predicted 
Negative 

Actual Positive 6 13 
Actual 
Negative 7 16 
Table 6.2.1.16 Week 12 CFlow Confusion Matrix 

 

b. Fastflow 

  
Predicted 
Positive 

Predicted 
Negative 

Actual Positive 15 13 
Actual 
Negative 6 22 
Table 6.2.1.17 Week 12 Fastflow Confusion Matrix 

 

c. PatchCore 

  
Predicted 
Positive 

Predicted 
Negative 

Actual Positive 18 10 
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Actual 
Negative 0 28 

Table 6.2.1.18 Week 12 PatchCore Confusion Matrix 

 

d. Reverse Distillation 

  
Predicted 
Positive 

Predicted 
Negative 

Actual Positive 22 6 
Actual 
Negative 4 24 

Table 6.2.1.19 Week 12 Reverse Distillation Confusion Matrix 

 

e. STFPM 

  
Predicted 
Positive 

Predicted 
Negative 

Actual Positive 23 5 
Actual 
Negative 0 28 
Table 6.2.1.20 Week 12 STFPM Confusion Matrix 

 

4. Performance Metrics 

Based on the confusion matrix, the following metrics were computed: 

model cflow fastflow patchcore 
reverse 
distillation stfpm 

Accuracy 48.21% 66.07% 82.14% 82.14% 91.07% 
Precision 46.15% 71.43% 100.00% 84.62% 100.00% 
Recall (Sensitivity) 21.43% 53.57% 64.29% 78.57% 82.14% 
Specificity 75.00% 78.57% 100.00% 85.71% 100.00% 
F1 Score 29.27% 61.22% 78.26% 81.48% 90.20% 
False Positive Rate 25.00% 21.43% 0.00% 14.29% 0.00% 
False Negative Rate 78.57% 46.43% 35.71% 21.43% 17.86% 
Balanced Accuracy 48.21% 66.07% 82.14% 82.14% 91.07% 
Youden's Index (J) -3.57% 32.14% 64.29% 64.29% 82.14% 
Negative Predictive Value 48.84% 62.86% 73.68% 80.00% 84.85% 
AUROC 7.14% 78.83% 75.77% 73.09% 76.59% 
AUPR 75.00% 78.49% 70.91% 71.60% 66.63% 

Table 6.2.1.21 Week 12 Performance Metrics 

 

These metrics were critical in identifying not just accuracy, but also the trade-offs 

between catching all anomalies and avoiding false alarms. Additionally, AUROC and 
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AUPR scores were extracted from the training phase and included as baseline model 

quality indicators. 

 

5. Visual Evaluation Insight 

The Week 12 visual inspection step provides a mid-stage insight into how each anomaly 

detection model responded to ginger plants with moderate growth. The dataset for this 

week has varied images, which is a well-balanced mix of normal and abnormal 

conditions, along with simulated augmentations such as dying leaves, contrast changes, 

and hue shifts. The vegetation at this growth stage is denser and more developed than 

in Week 8, with greater shadow and texture complexity, offering subtle challenges to 

anomaly detection. 

 

• CFlow provided a decent but sub-par performance on normal images. Its 

predictions were occasionally interrupted by background elements, and 

prediction masks were noisy. On anomalous images, especially in the dying or 

hue-down case, CFlow performed exceedingly poorly, producing indistinct or 

useless heatmaps. The model did not highlight critical areas numerous times or 

discern between minor visual noise vs. actual anomalies, an indication of 

insufficient sensitivity at this mid-stage growth. 

 

• FastFlow mimicked CFlow's performance with normal predictions moderately 

well aligned but disrupted by visual noise, possibly plant shadow or minor 

textural differences. On the anomaly samples, FastFlow was unstable and less 

convincing with faint heatmap signals on obvious cases like dying leaves. Its 

inability to flag anomalies confidently or localize them sharply reduces its 

practical utility without further tuning or refinement. 

 

• PatchCore, in contrast, performed exceptionally well, particularly on normal 

samples where its emphasis on small details made it impervious to background 

noise. Rather astonishingly, PatchCore detected plant shadows as anomalies, 

which, although technically incorrect, speaks volumes about its hypersensitivity 

visually. On dying samples and colour change, the model exhibited clear and 

confident detection, outperforming both CFlow and FastFlow by a long way. 
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• Reverse Distillation provided solid and stable performance in most test cases. 

On good images, it maintained low anomaly scores, even though background 

interference impacted its consistency to some extent. On bad samples, 

especially those with dying plant symptoms, the model possessed decent 

capability to highlight anomalous regions, but its responses lacked the 

consistency of PatchCore or STFPM. It was equivocal on hue-down at 15%, but 

at 30% it began to respond more emphatically, suggesting that its sensitivity 

curve is more commensurate with stronger visual changes. 

 

• STFPM continued to be a leading performer. It maintained perfect alignment on 

normal samples with no false positives and exhibited excellent precision in 

identifying dying and highly altered plants. In hue-down tests, STFPM behaved 

as intended it had negligible detection at 15% shifts but became effective at 

30%, which means it has a well-calibrated sensitivity threshold. Among all 

models, STFPM offered the best localization accuracy and anomaly confidence 

combination. 

 

Across the board, hue-down changes remained difficult, particularly at the 15% level 

where changes were too subtle for some models to mark as anomalies with any 

certainty. Models like CFlow and FastFlow would miss these changes, while PatchCore 

and STFPM responded more reliably at larger hue changes. Visual clutter caused by 

background noise continued to be a challenge, particularly for CFlow and Reverse 

Distillation. 

 

In conclusion, Week 12 confirmed the differences in the way each model handles mid-

stage plant imagery. Whereas PatchCore and STFPM featured high sensitivity and 

interpretability, models like CFlow and FastFlow lagged, with unclear anomaly signals 

and noisy predictions. This stage demonstrated that as plant size and complexity 

increase, model robustness to background artifacts and weak cues becomes ever more 

crucial making STFPM and PatchCore the leading candidates for field deployment in 

practice. 
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The Week 12 visual examination demonstrates an improved delineation between normal and 

abnormal plant conditions, with all models exhibiting varying degrees of consistency and 

finesse. CFlow performed modestly on good samples but lacked consistency, with a tendency 

to yield noisy or incomplete heatmaps on anomalous inputs. FastFlow exhibited similar 

performance reasonably good for healthy plants but struggled with subtle anomalies, which 

resulted in ambiguous predictions. PatchCore was good at precise anomaly localization, 

especially on the dying leaf samples, but tended to mistake shadows for abnormal as it was 

very sensitive. Reverse Distillation performed very well on both good and defective images, 

though being moderately troubled by background artifacts, meaning that it required improved 

context filtering. STFPM yielded the most consistent and visually accurate results, with correct 

identification of normal and anomalous regions and minimal false positives. Hue-down 

transformations nonetheless remained difficult for all models, particularly at lower intensity 

shifts, reflecting a continued limitation for colour-based anomaly detection. These findings 

highlight again the need for calibrated detection thresholds and more advanced handling of 

subtle colour gradations to enhance reliability for plant health monitoring. 

 

Week 18 

1. Overview 

Week 18 assessment is the most advanced stage of ginger plant growth documented in 

this study and contains the biggest collection of images so far. Unlike in the earlier 

weeks, the visual scene in Week 18 is compactly occupied by mature ginger plants 

placed next to one another, eliminating visible background elements. This offers a 

unique test environment wherein anomaly detection models must attend only to fine-

grained visual details of the plants themselves, decoupled from contextual background 

separation. 

 

Anomaly localization is harder but perhaps more accurate without non-plant areas and 

high plant density, assuming the model can successfully discern subtle intra-plant 

anomalies. The test images include original healthy samples and augmented versions 

mimicking real-world issues like leaf discolouration, colour variations, and contrast 

degradation. The vast amount of images in this set provides a solid foundation for 

evaluating model scalability, stability, and sensitivity under conditions highly akin to 

full-field agricultural applications. 
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Because of the homogeneity of the scene and the maturity of the plants, Week 18 is a 

critical checkpoint for the performance of anomaly detection models on dense, 

complex, and semantically homogeneous data. The performance here suggests the 

viability of a model being put into production environments where false positives have 

higher costs and accuracy in highlighting plant-level anomalies matters. 

 

2. Test Conditions and Augmentations 

Four test scenarios were prepared for Week 18: 

• Normal images: Unmodified crop-sized top-down captures of healthy plants. 

Figures 6.2.1.16 Week 18 Normal-Present-Smalles, Medium, Largest Plant Images 

 

• Contrast Up and Down: Images modified using contrast adjustments (0.7, 0.9, 

1.1 and 1.3 factors) to simulate environmental lighting issues. 
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Figures 6.2.1.17 Week 18 Contrast Adjustment 0.7, 0.9, 1.1 and 1.3 

 

• Hue Down: Images where hue values were shifted down (15% and 30% of 180) 

to simulate changes in leaf coloration due to nutrient issues or early disease 

symptoms. 
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Figures 6.2.1.18 Week 18 Hue Down 15 and 30. 

 

• Dying Variation: Images processed with HSV transformations simulating leaf 

browning and drying using predefined hue, saturation, and value reduction 

combinations. 

Figures 6.2.1.19 Week 18 Dying Variation 1, 2 and 3 

 

Each of these categories was intended to validate how the models respond not only to 

genuine anomalies but also to borderline or ambiguous visual cues. 

 

3. Confusion Matrix 
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For each test case, model predictions were manually validated against expected 

outcomes, and confusion matrices were constructed accordingly. This included detailed 

counts of:  

 

The result as shown below: 

Table 6.2.1.22 Week 18 Result 

 

Each confusion matrix provides insight into the model’s sensitivity and its robustness 

against visual artifacts that resemble real plant issues. 

 

Figure 6.2.1.20 Week 18 Result STFPM 
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a. CFlow 

  
Predicted 
Positive 

Predicted 
Negative 

Actual Positive 34 13 
Actual 
Negative 50 16 
Table 6.2.1.23 Week 18 CFlow Confusion Matrix 

 

b. Fastflow 

  
Predicted 
Positive 

Predicted 
Negative 

Actual Positive 60 28 
Actual 
Negative 9 79 
Table 6.2.1.24 Week 18 Fastflow Confusion Matrix 

 

c. PatchCore 

  
Predicted 
Positive 

Predicted 
Negative 

Actual Positive 73 15 
Actual 
Negative 0 88 

Table 6.2.1.25 Week 18 PatchCore Confusion Matrix 

 

d. Reverse Distillation 

  
Predicted 
Positive 

Predicted 
Negative 

Actual Positive 64 24 
Actual 
Negative 5 83 

Table 6.2.1.26 Week 18 Reverse Distillation Confusion Matrix 

 

e. STFPM 

  
Predicted 
Positive 

Predicted 
Negative 

Actual Positive 71 17 
Actual 
Negative 0 88 
Table 6.2.1.27 Week 18 STFPM Confusion Matrix 
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4. Performance Metrics 

Based on the confusion matrix, the following metrics were computed: 

model cflow fastflow patchcore 
reverse 
distillation stfpm 

Accuracy 40.91% 78.98% 91.48% 83.52% 90.34% 
Precision 40.48% 86.96% 100.00% 92.75% 100.00% 
Recall (Sensitivity) 38.64% 68.18% 82.95% 72.73% 80.68% 
Specificity 43.18% 89.77% 100.00% 94.32% 100.00% 
F1 Score 39.53% 76.43% 90.68% 81.53% 89.31% 
False Positive Rate 56.82% 10.23% 0.00% 5.68% 0.00% 
False Negative Rate 61.36% 31.82% 17.05% 27.27% 19.32% 
Balanced Accuracy 40.91% 78.98% 91.48% 83.52% 90.34% 
Youden's Index (J) -18.18% 57.95% 82.95% 67.05% 80.68% 
Negative Predictive Value 41.30% 73.83% 85.44% 77.57% 83.81% 
AUROC 17.88% 91.43% 91.86% 88.78% 97.48% 
AUPR 34.60% 93.03% 94.11% 90.46% 97.95% 

Table 6.2.1.28 Week 18 Performance Metrics 

 

These metrics were critical in identifying not just accuracy, but also the trade-offs 

between catching all anomalies and avoiding false alarms. Additionally, AUROC and 

AUPR scores were extracted from the training phase and included as baseline model 

quality indicators. 

 

5. Visual Evaluation Insight 

Week 18 visual inspection presented a full challenge with the biggest image set so far 

which had densely planted ginger crops lined up next to one another with minimal or 

no background distractions. This specific arrangement gave a cleaner environment for 

the detection of visual anomalies so clearer analysis could be performed of model 

behaviour under ideal conditions. Anomaly overlays were tested in full-resolution 

images, helping identify the strengths and weaknesses of each model. 

 

• CFlow had unstable behavior. On well-behaved samples, it often produced 

streaky heatmaps with sparse false positives, reducing interpretability. Even 

when there was a clean background, the model struggled to maintain stability 

and tended to mark out non-anomalous regions. However, in dying and hue-

down situations, while it could not produce robust anomaly masks, it rankably 
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identified the regions correctly—i.e., it could be utilized as a validation layer, 

but not as a primary detector. 

 

• FastFlow delivered mean visual quality, particularly on normal samples where 

its output was acceptable despite numerous erroneous highlights. On dying and 

hue-down 30% samples, FastFlow was greatly improved, accurately 

highlighting regions of interest despite occasionally not extending to the 

anomaly boundary. However, a hue-down of 15% remained a soft spot, often 

not being highlighted. Overall, FastFlow's ability to localize anomalies made it 

visually comprehendible, but lacking in decisiveness about faint anomalies. 

 

• PatchCore performed exceptionally well, especially on anomaly samples. It 

detected all dying symptoms confidently and generated consistent heatmaps 

with good localization. On great samples, the model flagged some residual pot 

structures as anomalies but successful filtering reduced most such false alarms. 

Its sensitivity was very useful in dying and hue-down testing. Despite some low-

level misclassifications, PatchCore was one of the most dependable detectors 

for Week 18. 

 

• Reverse Distillation was very sensitive, detecting both plant roots and subtle 

colour changes. Interestingly, it tended to flag triangular root growth patterns as 

anomalies, which are likely normal variations not well represented in the 

training data. On dead samples, even when detection scores were below the 

threshold, the anomaly regions were flagged—suggesting that with threshold 

tuning, performance could be significantly improved. Hue-down performance 

at 15% remained poor, but detection on structurally different features like roots 

was always robust. 

 

• STFPM was still the most visually accurate model. On normal samples, it had 

no qualms about producing clean, blank masks. For dying leaves, it ranked 

anomaly regions with high confidence correctly, even for samples that 

technically failed detection thresholds. Hue-down 15% changes caused score 

reductions, but the anomaly regions were still distinctly highlighted, confirming 
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STFPM's localization capability. At 30%, detection became much clearer. Its 

ability to consistently favour correct areas, even under slight changes, makes 

STFPM the strongest and most consistent model visually. 

 

In general, the Week 18 dataset (high size and low background noise) facilitated a purer 

test of anomaly detection performance. Highly context-dependent background models 

(e.g., CFlow) did not work well, whereas highly internally consistent models 

(PatchCore, STFPM) worked well. Hue-down transformations remained difficult for 

most but a handful of models at 15%, though higher variation levels improved 

interpretability. Visual intuition this week decidedly supports the use of STFPM and 

PatchCore in real-world applications, especially where accurate localization and low 

background interference are a top priority. 

 

The Week 18 visual testing illustrates strong model robustness growth, especially against the 

high image count of the dataset and low background noise by highly dense plant stands. CFlow 

exhibited basic performance on shared samples but remained behind in anomaly cases with 

scant visual cues even when they contained blatant defects. FastFlow had decent consistency, 

accurately localizing bad sample errors, but also provided some bad classifications on good 

samples, showing ongoing sensitivity limitations. PatchCore had strong overall performance, 

particularly in dead leaf detection and rejecting irrelevant pot-based outliers, and is rated to be 

one of the better-performing models this week. Reverse Distillation performed well, especially 

where root abnormalities occurred in plants, although it tended to incorrectly flag normal root 

shapes as abnormal on occasion due to lack of exposure during training. STFPM again 

performed exceptionally well, correctly identifying gross and fine abnormalities, and even 

when detection failed, it still produced high anomaly scores for the right regions. While hue-

down conversions, especially at 15%, remained a weak link for all models, the more explicit 

visual organization of Week 18 images further exposed each model's detection rationale. These 

findings reinforce the need for clean input data and continue to emphasize the need for diverse 

training samples and higher model sensitivity to tiny colour and structural changes. 

 

6.2.2 Project Workflow Overview 

To give a summary of the performance analysis, the table below is a summary of each model's 

average scores on all the test weeks and anomaly conditions. The measures that encompass 
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Accuracy, F1 Score, Specificity, and corresponding diagnostic measures are summarized. 

From the table, a glimpse of the effectiveness of each model can be seen as well as a 

comparison of overall model quality. 

 

Model Performance Overview 

Based on averaged performance metrics for all test setups, STFPM is overall the best model. It 

has very high sensitivity and specificity the best F1 Score (84.03%) and maximum detection 

power per false positive control. PatchCore is second-best with perfect precision and specificity 

but with marginally lower sensitivity and recall. Reverse Distillation ranks third with perfect 

performance in the majority of classes but with intermittent sensitivity sacrifices. Fourth is 

FastFlow, with decent overall accuracy but poor anomaly sensitivity and hue-based 

transformation. Last but not least, CFlow consistently underperformed, particularly in cases of 

dying and hue-down conditions, and hence is the least accurate among the models tested. 

 

Appendix A shows the complete table. 

 

model cflow fastflow patchcore 
reverse 
distillation stfpm 

Normal 74.90% 87.92% 100.00% 93.06% 100.00% 
contrast down 0.7 65.97% 93.65% 100.00% 92.36% 93.75% 
contrast down 0.9 78.33% 91.67% 100.00% 96.67% 100.00% 
contrast up 1.1 71.88% 90.93% 100.00% 85.42% 100.00% 
contrast up 1.3 71.67% 86.25% 100.00% 87.24% 100.00% 
dying 1 47.53% 70.09% 83.01% 78.72% 74.11% 
dying 2 22.44% 84.74% 100.00% 72.92% 95.64% 
dying 3 33.19% 87.64% 100.00% 91.67% 100.00% 
hue down 15 19.98% 24.30% 18.53% 29.13% 29.18% 
hue down 30 25.00% 38.13% 42.50% 51.70% 79.39% 
Accuracy 51.04% 73.49% 81.81% 77.55% 86.22% 
Precision 55.62% 87.39% 100.00% 87.38% 98.08% 
Recall (Sensitivity) 29.90% 56.31% 63.63% 64.58% 73.86% 
Specificity 72.19% 90.67% 100.00% 90.79% 98.75% 
F1 Score 37.65% 67.75% 76.94% 73.71% 84.03% 
False Positive Rate 27.81% 9.33% 0.00% 9.21% 1.25% 
False Negative Rate 70.10% 43.69% 36.37% 35.42% 26.14% 
Balanced Accuracy 51.04% 73.49% 81.81% 77.68% 86.30% 
Youden's Index (J) 2.09% 46.98% 63.63% 55.36% 72.61% 
Negative Predictive Value 49.96% 67.66% 74.06% 72.36% 79.28% 
AUROC 45.50% 78.86% 82.75% 81.06% 82.63% 
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AUPR 69.26% 79.95% 84.29% 81.83% 80.89% 
Table 6.2.2.1 Average Result on Variable and Performance Metrics 

 

• STFPM – Best Overall Performer 

Strengths: 

▪ Highest average accuracy (86.22%) and best F1 score (84.03%), showing a strong 

balance between precision and recall. 

▪ Excellent at localizing anomalies, particularly in dying and contrast variation 

scenarios. 

▪ High specificity (98.75%) and very low false positive rate (1.25%), meaning it 

rarely misclassifies healthy plants. 

▪ Best performer in hue-down 30%, a previously difficult category for all models. 

 

Weaknesses: 

▪ Slight sensitivity to minor hue shifts (15%), occasionally flagging healthy images. 

▪ May require tuning of sensitivity thresholds to prevent false alarms in borderline 

cases. 

 

• PatchCore – Strong Precision, Slight Recall Limitations 

Strengths: 

▪ Perfect precision (100%) and specificity (100%), meaning it only flags anomalies 

when it is very sure. 

▪ Excellent in detecting dying conditions, particularly in “dying 2” and “dying 3”. 

▪ Ideal for applications that require minimal false positives. 

 

Weaknesses: 

▪ Moderate recall (63.63%), indicating it sometimes misses subtle anomalies. 

▪ Underperformed slightly in hue-down scenarios, where sensitivity was not high 

enough to cross anomaly thresholds. 

▪ May benefit from greater sensitivity in early-stage or subtle color changes. 

 

• Reverse Distillation – Balanced and Promising 

Strengths: 
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▪ Consistently strong across many conditions, especially in contrast variations and 

dying 3. 

▪ Good recall (64.58%) and F1 score (73.71%), indicating a balance between 

sensitivity and precision. 

▪ Excellent at detecting structural abnormalities and discoloration, including root 

shape anomalies. 

 

Weaknesses: 

▪ Slight tendency to flag normal plant structures as anomalies, such as triangular 

roots, possibly due to limited diversity in training data. 

▪ High variability in performance depending on visual input complexity. 

 

• FastFlow – Decent Generalist, Lacking Sensitivity 

Strengths: 

▪ High precision (87.39%) and specificity (90.67%), indicating a good ability to avoid 

false positives. 

▪ Performs well in normal conditions and under mild contrast variations. 

 

Weaknesses: 

▪ Low recall (56.31%) and limited sensitivity to subtle anomalies like early 

discoloration or mild dying. 

▪ Poor performance in hue-down conditions, especially at 15%. 

▪ Often detects the anomaly regions visually but fails to surpass detection thresholds. 

 

• CFlow – Least Reliable Overall 

Strengths: 

▪ Performs acceptably on normal samples (74.90% accuracy), often generating clean 

maps with minimal false positives. 

▪ Good at indicating normalcy rather than flagging anomalies, making it suitable as a 

baseline validator. 

 

Weaknesses: 
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▪ Lowest performance across nearly all metrics, including recall (29.90%), F1 score 

(37.65%), and AUROC (45.50%). 

▪ Poor sensitivity to hue-down and dying samples, often failing to flag visible 

anomalies. 

▪ May lack robustness against color-based transformations or require better threshold 

tuning. 

 

This overview supports the requirement of model selection based on overall as well as task-

dependent factors, especially for agriculture anomaly detection where sensitivity to marginal 

visual changes becomes a mandate. 

 

6.2.3 Observation Paragraph 

During the test weeks, the top-performing week overall was Week 12, during which most of 

the models were found to be highly consistent with visual anomalies with the highest possible 

detection confidence, particularly for the dying and contrast transformation scenarios. 

Throughout the course of the study, STFPM was uniformly superior to other models, producing 

the most consistent anomaly localization, the highest average accuracy, and a balanced 

sensitivity-specificity profile. PatchCore similarly exhibited exceptional precision, especially 

in false negative avoidance, and Reverse Distillation presented a balanced and flexible 

performance under varying conditions. CFlow, by contrast, uniformly underperformed, 

especially in nuanced transformations, demonstrating shortfalls in its anomaly thresholding. 

Among all tested features, hue-based transformations (particularly hue-down 15%) posed the 

strongest challenge to all models, more often than not blurring the boundary between 

anomalous and healthy appearances. The challenge highlights the necessity of increasing 

colour sensitivity as well as enhanced feature calibration to further enhance anomaly detection 

robustness under real-world plant imagery. 

 

6.3  Project Challenges 

During the construction and testing of the ginger plant anomaly detection system, several 

problems of a practical and technical nature cropped up that influenced the system's reliability 

and construction timeline. 
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▪ Inconsistent Weekly Image Data: One of the most salient problems was inconsistency 

in weekly image recordings. Variations in camera orientation, illumination, and 

stability of recordings led data to differ radically week after week. Such inconsistency 

reduced model resistance and made it challenging to compare results reasonably over 

test times. 

 

▪ Poor Image Framing: The majority of the images were small or snapped from an in-

close angle, cropping the ginger plant. Since the models depend on full plant context to 

detect anomalies, these weakly framed inputs decreased detection performance and 

undermined the anomaly localization validity. 

 

▪ Constraints on Hardware: Low computing capacity restricted the training process, 

particularly longer model training sessions. The limitations affected the training batch 

sizes and the possibility of experimenting with larger or more complex models, causing 

the progress to be slower and real-time testing to be limited. 

 

▪ Limited Image Quantity: The data set contained too few images, limiting the model's 

learning capacity and generalizing performance across different plant condition types. 

In some weeks, there were too few available samples to be assessed validly. 

 

▪ Lack of Anomalous Data: One of the large issues was that there were no annotated 

anomaly images present in the training data. This limited the models from learning 

actual-world disease symptoms and required them to rely on subtle statistical variances, 

which may not have been substantial. 

 

▪ Training Data Affected Test Output: As the training input images did not cover all 

ranges of plant orientations and environmental conditions, test outputs were highly 

sensitive to direction or position changes. This difference reduced performance 

consistency and emphasized diversified training sets. 

 

▪ Time-Consuming Training Process: Training of the anomaly detection model, although 

on a small dataset, was time-consuming—particularly when tuning hyperparameters or 
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retraining after modification. This slowed down the process of evaluation and the 

number of experiments possible within the given timeframe 

 

Despite all these challenges, the project managed to yield valuable insights into the 

performance and abilities of unsupervised anomaly detection models for monitoring plant 

health. 

 

6.4  Objectives Evaluation 

This section examines the extent to which the project met the initial goals defined at the 

beginning, considering both the technical implementation and the practical issues faced. 

 

▪ Objectives 

1. Objective 1: Detection of Anomalous Ginger Plant was partially achieved. The model 

was able to classify plants as normal or anomalous and could localize the anomalous 

regions with heat maps. However, despite models like STFPM and PatchCore 

performing well, the detection accuracy was image condition-dependent. False 

positives and localization mistakes were seen, especially in suboptimal test conditions. 

 

2. Objective 2: A Practical Health Monitoring System was achieved to some extent. The 

system was tested with weekly plantation data gathered from a real ginger farm. While 

the detection models ran on real-world inputs, inconsistency in images, insufficient 

anomaly samples, and small dataset sizes impacted performance consistency. The 

system had promise but needs improvement to be consistent in general field conditions. 

 

3. Objective 3: Unsupervised Anomaly Detection was fully achieved. All the models 

tested were trained unsupervised on healthy plant images. Five state-of-the-art 

unsupervised AD models (CFlow, FastFlow, PatchCore, Reverse Distillation, STFPM) 

were tested in the project and compared for anomaly detection performance without 

prior annotation of anomalies. 

 

As discussed in Section 6.3, several factors prevented the full achievement of objectives. Poor 

quality and inconsistent image data prevented the generalizability of models across test 

environments. Lack of proper confirmation of anomaly samples restricted testing against true 
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performance, while time and hardware limitations prevented extensive tuning and 

experimenting. These factors affected the achievement of Objectives 1 and 2 most. 

 

6.5  Concluding Remark 

▪ Summary of Findings 

The project managed to effectively validate the applicability of using unsupervised 

anomaly detection models in ginger plant health monitoring. STFPM and PatchCore were 

among the five tested models that performed best and consistently with robust and high 

performance across varying test conditions, particularly excelling others in precision and 

locality of anomalies. The performance of the system was, however, affected by real-world 

issues such as irregularly occurring weak image quality, limited anomaly samples, and 

limited dataset size. These problems made it difficult to ensure consistent detection 

accuracy, especially in ambiguous cases like weak colouration or image distortions. 

 

▪ Lessons Learned 

Several valuable lessons were uncovered in the process of the project. Data quality was as 

crucial as model choice—issues like bad framing, image resolution, and limited anomalies 

had a tremendous effect on model performance. It also became clear that even the best 

models require meticulous preprocessing and evaluation plans to be able to perform 

effectively in real-world agricultural environments. Additionally, coordinating the training 

and evaluation process within time and hardware constraints was an exercise in learning 

resource optimization and project scope management. 

 

▪ System Success and Limitations 

Overall, the system succeeded in its primary technical objectives, showing that 

unsupervised AD models can detect anomalies in real ginger plantation data without 

labelling. Integration with a user interface like a Discord bot and successful deployment of 

Anomalib-based models were significant achievements. Despite these efforts, the system 

remains susceptible to limitations—primarily, reliance on good-quality input images, 

challenges in detecting minor anomalies, and inadequate model robustness in extreme 

environments. Unavailability of confirmed anomaly samples also limited capability to 

quantify true model accuracy under field conditions. 
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▪ Suggestions for Future Work 

Future development should focus on getting the dataset more uniform and highly resolved 

by employing additional images and obtaining validated instances of anomalies. Tuning 

the hyperparameters for the model, exploring the lightweight deployment of the model for 

real-time use, and improving image processing techniques can continue to improve the 

accuracy. Getting the system to support operation with multiple plant types, incorporating 

active learning for enhanced annotation of anomalies, and supporting user interface 

functionality (e.g., mobile or web-based dashboards) would both expand the useful 

application and extensibility of the system.) 
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Chapter 7 

Conclusion and Recommendation 

 

This chapter concludes the research and development process of building an unsupervised 

anomaly detection system for ginger plant health monitoring. It recapitulates the primary 

discoveries, discusses the system's overall performance, and provides closure to the primary 

objectives of the project. The reader can expect an overview of technical breakthroughs, system 

performance, limitations faced, and the overall implications of the discoveries on agricultural 

technology and avenues for further research. 

 

7.1  Conclusion 

This project was able to explore the use of an unsupervised anomaly detection system for 

monitoring the health of ginger plants using real farming data. Through the use of state-of-the-

art models provided by the Anomalib framework, the system was able to evaluate the plant 

conditions with promising outcomes on different environmental conditions and weekly image 

batches. Among the models tried out—CFlow, FastFlow, PatchCore, Reverse Distillation, and 

STFPM—STFPM and PatchCore were the most stable performers, with high specificity, 

decent precision, and stable anomaly localization even for visually challenging cases. 

 

The integration of anomaly detection and an easy-to-use Discord bot interface made the system 

usable and feasible for potential real-world adoption. However, limitations such as variable 

image quality, limited anomaly samples, and time-demanding training processes impacted the 

robustness and generalizability of the solution. Despite these limitations, the system showed 

promise as a non-invasive, automated ginger plant health monitoring system under field 

conditions. 

 

In conclusion, the project achieved its main objectives: implementing an unsupervised 

detection model, creating a prototype real-life health monitoring system, and evaluating its 

effectiveness through diverse test scenarios. The results stress the importance of quality 

datasets and standard preprocessing in achieving accurate anomaly detection in agricultural 

environments.. 

 



Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    137 
 

7.2  Recommendation 

Based on the observations and challenges encountered throughout this project, several 

recommendations are provided to ensure better development and deployment in the future: 

 

1. Improve Image Data Collection 

Ensure image datasets are always captured with good framing, lighting, and resolution. 

Avoid very close or zoomed-in shots that crop out parts of the plant, and try to have 

consistency in the conditions for each weekly collection. 

 

2. Expand the Dataset 

Increase the size and diversity of the training dataset, particularly by including 

confirmed anomaly cases (e.g., diseased, wilted, pest-affected plants). This will help 

improve model reliability and allow for more meaningful evaluation metrics. 

 

3. Enhance Preprocessing Pipelines 

Implement preprocessing techniques such as background removal, colour 

normalization, and image stabilization to increase model input quality. These steps can 

provide a significant boost to detection accuracy, particularly for subtle anomalies. 

 

4. Optimize Training Efficiency 

Reduce the training time by exploring more computationally efficient variants of the 

models or transfer learning approaches. Explore GPU acceleration and batch training 

approaches to make the system more scalable. 

 

5. Extend to Real-Time Monitoring 

Explore lightweight model versions for real-time applications so that live feedback 

through the Discord bot or other mobile/web interfaces is possible. This would 

significantly enhance the ease of use of the system for farmers. 

 

6. Consider Semi-Supervised Learning 

Introduce semi-supervised methods that can include limited labeled data to direct 

learning, with the potential to enhance performance in situations where fully 

unsupervised techniques fail. 
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7. Collaborate with Agricultural Experts 

Closely interact with farmers or agronomists in order to confirm the anomalies 

identified by the system and make the outputs actionable and meaningful within an 

actual farming setup. 

 

These recommendations are aimed at developing the prototype into a robust, scalable, and 

efficient agricultural monitoring system. With further development and incorporation of 

additional data, the system can significantly assist farmers in the early identification of plant 

health issues, improving yield and sustainability in ginger farming. 
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