

DEVELOPMENT OF GINGER PLANT HEALTH MONITORING SYSTEM

BY

BU JIA WEI

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

February 2025

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

COPYRIGHT STATEMENT

© 2025 Bu Jia Wei. All rights reserved.

This Final Year Project proposal is submitted in partial fulfillment of the

requirements for the degree of Bachelor of Computer Science (Honours) at

Universiti Tunku Abdul Rahman (UTAR). This Final Year Project proposal

represents the work of the author, except where due acknowledgment has been made

in the text. No part of this Final Year Project proposal may be reproduced, stored, or

transmitted in any form or by any means, whether electronic, mechanical,

photocopying, recording, or otherwise, without the prior written permission of the

author or UTAR, in accordance with UTAR's Intellectual Property Policy.

Example

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

ACKNOWLEDGEMENTS

I want to extend my sincerest gratitude to my supervisor, Dr. Ng Hui Fuang, for his vast

contribution of guidance, encouragement, and support throughout this project. Your expertise

and insight have elevated my knowledge and ability to an entirely new level. I am most thankful

to have been allowed to work under your charge. This project has been a yardstick in my

academic journey and has encouraged me to move beyond excellence in this area of intellectual

pursuit.

Specifically, and not least, thanks go to my colleague, Loh Kin Ming, for his unshakeable

commitment, intelligence, and camaraderie, which have contributed a great deal of value to

this research project. Your leadership in creating the dataset enabled this research, and I am

grateful for the working collaboration that came out of it.

I would like to thank Ernest Tan Cong Ying and Wong Kenji too for their generous efforts in

annotating the dataset deployed in this project. Your time and effort were extremely crucial in

the success of the model training and testing process.

Lastly, I would also wish to offer my sincerest gratitude to my parents and family for their

unconditional love, encouragement, support, and belief in me. Your encouragement has been

the driving force of my education, and I owe a lifelong debt to the sacrifices you have made to

allow me to reach so far.

Without the combined guidance, advice, and encouragement of these fantastic people, the

completion of this project would not have been possible. I consider myself extremely lucky

and grateful to each one of you. Thank you, all of you.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

ABSTRACT

The general intelligent agriculture system is integrated with several other technologies such as

sensors, automated irrigation, fertilization, and surveillance systems for increasing efficiency

and improving productivity. This project discusses anomaly detection (AD) in images taken

from plantations, an important part of such systems. In the related task of plant disease

detection, much previous work has relied on various supervised learning approaches; the use

of convolutional neural networks and other deep learning models trained on large, annotated

datasets of diseased plants has become common. However, this would remain a less feasible

approach, considering some practical challenges to acquiring such datasets, particularly in real-

world farming scenarios. For example, it is highly impractical and tedious to expect the farmers

themselves to take clear, labelled images of every plant. Besides, data collection usually

includes flying drones or moving cameras, adding more problems in capturing regular and

quality images.

This project applies the unsupervised anomaly detection concept, which avoids the use of large-

scale pre-labeled datasets. The proposed system trains the model only on healthy ginger plant

images to learn normal patterns and detect deviations, if any, as potential anomalies. Such

deviations can be because of a disease in the plant or other health problems. This will not only

reduce the overhead of manual data labelling but also enhance the practicality of deploying the

system in dynamic agricultural environments. The flagged anomalous images can be used later

to augment the supervised learning models, thus enabling hybrid supervision for further

refinement of the system.

The strength of the AD model for real-world images of varied natural environmental conditions

considers changes in background, light, and climate. Automating plant health monitoring,

reduces manual inspections to a minimum, hence allowing farmers to identify health problems

much earlier, take remedial measures, and focus on strategic features of crop management.

Overall efficiency increases, labour costs are reduced, and much healthier plantations ensue,

hence promoting sustainable agriculture. It signals a very promising step toward the

exploitation of artificial intelligence to address challenges in modern farming.

Area of Study (Maximum 2): Artificial Intelligence, Computer Vision

Keywords (Maximum 5): Plant Health Monitoring, Anomaly Detection, Unsupervised

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

Learning, Image Processing, Smart Agriculture

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

TABLE OF CONTENTS

TITLE PAGE i

COPYRIGHT STATEMENT ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS vi

LIST OF FIGURES ix

LIST OF TABLES xi

LIST OF ABBREVIATIONS xiii

CHAPTER 1 INTRODUCTION 1

1.1 Ginger Plantation 1

1.2 Problem Statement 2

1.3 Motivation 4

1.4 Project Scope 6

1.5 Project Objectives 6

1.6 Contributions 7

1.7 Report Organization 7

CHAPTER 2 LITERATURE REVIEW 9

2.1 Previous Works on Plant Health Detection 9

2.1.1 Plant Health Detection using Supervised Learning Model 9

2.1.2 Plant Monitoring System using Unsupervised Learning

Model

12

2.2 Limitation of Previous Studies 18

2.3 Possible Solutions 19

2.3.1 Model Options 20

2.4 Summary 39

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH 41

3.1 System Overview 41

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

3.2 Data Collection and Preparation 42

3.3 Anomaly Detection Model 44

3.4 Evaluation Metrics and Testing Conditions 46

3.5 Activity Diagram 48

3.5 Summary 50

CHAPTER 4 SYSTEM DESIGN 51

4.1 System Model 51

4.1.1 Project Workflow Overview 51

4.1.2 Full System Component 52

4.2 Requirements Specification 54

4.3 Modular Class Design and Code Reusability 56

4.4 Software and Packages Used 61

4.4.1 Software 61

4.4.2 Python Packages 62

4.4.3 Other Considerations 63

CHAPTER 5 SYSTEM IMPLEMENTATION 65

 5.1 Hardware Setup 65

5.2 Software Setup 67

5.3 Setting and Configuration 68

5.3.1 Dataset Configuration 68

5.3.2 System Configuration 69

5.3.3 Environment Variables 69

5.3.4 Discord Bot Setup 70

5.4 System Operation 70

5.5 Implementation Issues and Challenges 78

5.6 Concluding Remark 80

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 81

6.1 System Testing and Performance Metrics

81

6.1.1 Dataset 82

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

6.1.2 Training and Testing Configuration 85

6.1.3 Chosen Model 88

6.1.4 Explanation of Metrics 90

6.1.5 Visual Evaluation 92

6.2 Result 93

6.2.1 Weeks Evaluation Results 95

6.2.2 Project Workflow Overview 127

6.2.3 Observation Paragraph 131

6.3 Project Challenges 131

6.4 Objectives Evaluation 133

6.5 Concluding Remark 134

CHAPTER 7 CONCLUSION AND RECOMMENDATION 136

7.1 Conclusion 136

7.2 Recommendation 137

REFERENCES 139

 APPENDIX 144

 POSTER 147

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

LIST OF FIGURES

Figure Number Title Page

Figure 1.1.1 Ginger Plant 2

Figure 1.1.2 Ginger Plantation. 2

Figure 1.2.1 Yellow Spot on Ginger Plant Leaves. 3

Figure 1.2.2 Caterpillar Found in Ginger Plant 3

Figure 1.3.1 Smart Agriculture System 5

Figure 2.1.1.1 Label Dataset on Ginger Plant Leaves 10

Figure 2.1.1.2 Result of Custom CNN Compare to Other Model 11

Figure 2.1.1.3 CNN Model Design 11

Figure 2.1.1.4 Result Comparing with other Model on Multiple Type of

Plant

12

Figure 2.1.1.5 Dataset Images of Rice Plantation 12

Figure 2.1.2.1 Result of AD on Citrus Leaf 15

Figure 2.1.2.2 AD Result on Soil Against Time 16

Figure 3.5.1 Activity Diagram for Ginger Plant Health Detection System 49

Figure 4.1.1.1 Context Diagram for Plant Monitoring System 51

Figure 4.1.2.1 DFD-Level 0 for Plant Monitoring System 52

Figure 5.4.1 System Initialization Configuration for the channel-

webhook mapping visualization

71

Figure 5.4.2 Train Command Invocation 72

Figure 5.4.3 Log Channel Confirmation 72

Figure 5.4.4 Dedicated Thread Logging for a full walkthrough of the

training workflow

73

Figure 5.4.5 Help Command Output for a sample output in a Discord

channel.

74

Figure 5.4.6 Predict Setup Command 75

Figure 5.4.7 Predict Command Result 76

Figure 5.4.8 Visual examples of Green outputs 76

Figure 5.4.9 Visual examples of Blue outputs 77

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

Figure 5.4.10 Visual examples of Yellow outputs 77

Figure 5.4.11 Visual examples of Red outputs 78

Figure 6.1.1.1 Formulae of Dying Variation 84

Figures 6.2.1.1 Week 3 Normal-Present-Smalles, Medium, Largest Plant

Images

95

Figures 6.2.1.2 Week 3 Contrast Adjustment 0.7, 0.9, 1.1 and 1.3 96

Figures 6.2.1.3 Week 3 Hue Down 15 and 30 97

Figures 6.2.1.4 Week 3 Dying Variation 1, 2 and 3 97

Figure 6.2.1.5 Week 3 Result STFPM 98

Figures 6.2.1.6 Week 8 Normal-Present-Smalles, Medium, Largest Plant

Images

103

Figures 6.2.1.7 Week 8 Contrast Adjustment 0.7, 0.9, 1.1 and 1.3 104

Figures 6.2.1.8 Week 8 Hue Down 15 and 30 105

Figures 6.2.1.9 Week 8 Dying Variation 1, 2 and 3 105

Figure 6.2.1.10 Week 8 Result STFPM 107

Figures 6.2.1.11 Week 12 Normal-Present-Smalles, Medium, Largest Plant

Images

112

Figures 6.2.1.12 Week 12 Contrast Adjustment 0.7, 0.9, 1.1 and 1.3 112

Figures 6.2.1.13 Week 12 Hue Down 15 and 30 113

Figures 6.2.1.14 Week 12 Dying Variation 1, 2 and 3 114

Figure 6.2.1.15 Week 12 Result STFPM 115

Figures 6.2.1.16 Week 18 Normal-Present-Smalles, Medium, Largest Plant

Images

120

Figures 6.2.1.17 Week 18 Contrast Adjustment 0.7, 0.9, 1.1 and 1.3 121

Figures 6.2.1.18 Week 18 Hue Down 15 and 30 122

Figures 6.2.1.19 Week 18 Dying Variation 1, 2 and 3 122

Figure 6.2.1.20 Week 18 Result STFPM 123

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xi

LIST OF TABLES

Table Number Title Page

Table 2.1.1.1 Table on the Result for Shreekakshimi 10

Table 2.1.2.1 Performance of Model against Other Model 18

Table 6.2.1.1 Week 3 Result 98

Table 6.2.1.2 Week 3 CFlow Confusion Matrix 99

Table 6.2.1.3 Week 3 Fastflow Confusion Matrix 99

Table 6.2.1.4 Week 3 PatchCore Confusion Matrix 99

Table 6.2.1.5 Week 3 Reverse Distillation Confusion Matrix 99

Table 6.2.1.6 Week 3 STFPM Confusion Matrix 99

Table 6.2.1.7 Week 3 Performance Metrics 100

Table 6.2.1.8 Week 8 Result 106

Table 6.2.1.9 Week 8 CFlow Confusion Matrix 107

Table 6.2.1.10 Week 8 Fastflow Confusion Matrix 107

Table 6.2.1.11 Week 8 PatchCore Confusion Matrix 108

Table 6.2.1.12 Week 8 Reverse Distillation Confusion Matrix 108

Table 6.2.1.13 Week 8 STFPM Confusion Matrix 108

Table 6.2.1.14 Week 8 Performance Metrics 108

Table 6.2.1.15 Week 12 Result 114

Table 6.2.1.16 Week 12 CFlow Confusion Matrix 115

Table 6.2.1.17 Week 12 Fastflow Confusion Matrix 115

Table 6.2.1.18 Week 12 PatchCore Confusion Matrix 115

Table 6.2.1.19 Week 12 Reverse Distillation Confusion Matrix 116

Table 6.2.1.20 Week 12 STFPM Confusion Matrix 116

Table 6.2.1.21 Week 12 Performance Metrics 116

Table 6.2.1.22 Week 18 Result 123

Table 6.2.1.23 Week 18 CFlow Confusion Matrix 124

Table 6.2.1.24 Week 18 Fastflow Confusion Matrix 124

Table 6.2.1.25 Week 18 PatchCore Confusion Matrix 124

Table 6.2.1.26 Week 18 Reverse Distillation Confusion Matrix 124

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xii

Table 6.2.1.27 Week 18 STFPM Confusion Matrix 124

Table 6.2.1.28 Week 18 Performance Metrics 125

Table 6.2.2.1 Average Result on Variable and Performance Metrics 128

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiii

LIST OF ABBREVIATIONS

OCC One-Class Classification

ROI Region of Interest

IPP Integrated Performance Primitives

CNN Convolutional Neural Network

UI User Interface

AD Anomaly Detection

VLLM Vision Large Language Model

VLM Vision-Language Model

OOP Object-Oriented Programming

API Application Programming Interface

ABOD Angle-base Outlier Detection

CLUSTER Clustering-Based Local Outlier

COF Connectivity-Based Outlier Factor

HISTOGRAM Histogram-Based Outlier Detection

IFOREST Isolation Forest

k-NN k-Nearest Neighbors Destector

LOF Local Outlier Factor

OCSVM One-class Support Vector Machine Detector

PCA Principal Component Analysis

MCD Minimum Covariance Determinant

SOD Subspace Outlier Selection

SOS Stochastic Outlier Selection

AIVAD Accurate and Interpretable Video Anomaly Detection

CFA Coupled-hypersphere-based Feature Adaptation

CFLOW Conditional Normalizing Flows

CSFLOW Cross-Scale-Flows

DRÆM Discriminatively Trained Reconstruction Anomaly Embedding

Model

DFKDE Deep Feature Kernel Density Estimation

DFM Deep Feature Modelling

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiv

DSR Dual Subspace Re-Projection

FRE Feature Reconstruction Error

GANomaly Generative Adversarial Network for Anomaly Detection

PaDiM Patch Distribution Modeling

RKDE Region-Based Kernel Density Estimation

STFPM Student-Teacher Feature Pyramid Matching

UFLOW U-shaped Normalizing Flow

WIN_CLIP Windowed-Based Contrastive Language-Image Pre-training

LLaVa Large Language and Vision Assistant

CLIP Contrastive Language-Image Pre-training

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

Chapter 1

Introduction

In this chapter, we give an introduction to the ginger plant plantation and discuss the issues that

are associated with the current systems used for the health monitoring of plants. Manual

inspection for identifying plant health is generally slow, labour-intensive and prone to human

errors making the response to a disease outbreak slow. We are motivated by the necessity to

optimize these processes by creating a better system with the aid of machine learning.

Specifically, we would like to introduce an unsupervised AD models that might always observe

the ginger plants for health issues in detail and at an early stage. It also seeks to improve

agricultural practices to provide farmers with better ways and means of detecting health

compared to traditional reliance on human labour and knowledge. It also advances the domain

of machine learning by showcasing how it can solve real-life problems in the real world of

agriculture.

1.1 Ginger Plantation

The ginger plant is a widely cultivated spice all over the world, ginger plant is normally planted

in southeast Asia. It is famous for its strong spicy odour and has been credited with several

health benefits [1]. The Ginger plant belongs to the Zingiberaceae family. Ginger is a plant,

and the preparation involves using the rootstalk to cut the growth of the plant. The method of

harvesting ginger is by pulling up the rhizome from the ground, washing it then exposing it to

the sun for drying. [2] Ginger plant requires a lot of effort in farming and the introduction of

various technology has helped in the plantation. Water and nutrients are pumped to the plant

with the help of a pump which is located at a central point and the farmer knows the condition

of the plant by looking at it. [3][4] For that reason, it is difficult to transfer this experience to

new workers. Based on this, our project is to solve the problem by developing a ginger plant

health monitoring system through training in unsupervised AD. It is advisable to have a library

that can identify anomalies in plants in a relatively short time using images from the drone as

a dataset, using realistic data.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

Figure 1.1.1 Ginger Plant [5] Figure 1.1.2 Ginger Plantation [6]

1.2 Problem Statement

Engaging in the construction of a completely automatized system for the monitoring of plant

health is not particularly without difficulties, especially if one needs to apply unsupervised AD

towards the task. The challenges highlighted above are what our project aims at trying to

address in plant health monitoring. Different from supervised approaches, where the data set

contains labelled data, unsupervised AD does not require labelled data and works well in

situations where anomalous cases are rare. Additional challenges are observed when working

with actual plants in natural conditions including plant size, plant development, surrounding

environment, and noise. These factors add more challenges such as achieving detection

accuracy regardless of the plant growth health, reducing the false positive rate due to the

fluctuations in plant growth, and finally achieving real-time performance despite random

recording environments. Our work positions itself to address these challenges and to offer an

efficient and sound solution for automated plant health monitoring using unsupervised machine

learning.

1. Human monitoring

These days, the process of planting ginger plants calls for the higher experiences eye of

the farmer to determine whether or not the plant is receiving the right amount of

nutrients. This is why the eye of a trained farmer is vital so that the yield of ginger

plants can be nurtured effectively to produce a higher yield of ginger rootstalk. The

defect or unhealthy plant is usually discarded thereby increasing losses to the farmer.

Therefore, giving the required quantity of nutrients will reduce the loss incurred by the

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

farmer. The farmer is also required to check which plant is defective and removed so

that the farmer does not spend resources on a plant that will not produce a sellable

product. Consequently, this entailed a high entry barrier for the green farmer to venture

into ginger production through the establishment of their new plantation. Our project

wants to solve this problem by aiding the farmer's vision of detecting defective plants

from all the healthy plants in the plantation using an unsupervised AD machine learning

model.

Figure 1.2.1 [7]

Yellow Spot on Ginger Plant Leaves

Figure 1.2.2

Caterpillar Found in Ginger Plant

2. Real-world monitoring system

Most studies on health monitoring systems concern themselves with hypothetical

models of examining real-world settings, for instance, highly close-up images of plant

leaves. However, this approach is not feasible in most real-world plantations because it

time time-consuming for close-up shots of various plants. Even the environment such

as background and noise might contribute to the algorithm results. Most of the current

research in this area applies well-defined backgrounds to reduce background noise in

the collected data set; however, this is not feasible in a real-world scenario as the nature

of soil for a certain point in the field varies from farm to farm, we should take in the

background as part of our dataset and find ways to eliminate the vision from taking it

into account. In ginger plantations, plants are generally grouped, therefore an effective

solution must be one that can identify an anomaly in various plants and isolate the plant

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

region that has the anomaly from the others. The existing research is mostly concerned

with the detection of individual plants, while in practice, the plants may overlap each

other, and it distorts the detection algorithms. Following these limitations, our project

will train an unsupervised AD algorithm using real-world datasets in hopes of

developing a model that can detect anomalies in a real-world plantation environment.

3. Unsupervised AD

The rate of disease incidence in ginger plants is not very frequent; therefore, it is

difficult to find a large number of datasets on ginger plant images that are infected,

which are essential for the training of the health detection model. Hence our approach

entails training an unsupervised AD model using images of only healthy ginger plants.

In this way, we will feed the model with samples of what a healthy plant looks like and

then be able to train the model on what it means for it to be unhealthy or to point to

features that may suggest illness or another defect. This forms a basis for the evolution

of a good health -monitoring system that monitors health. The anomalies identified by

this model will help for the subsequent models, which one can train for the specific

objective of finding health or particular types of diseases in plants. Our project is to

devise a dependable approach to unsupervised AD that doesn’t only identify the

abnormalities in ginger plants, but also gathers and store data on the anomalous plants.

It will help extend the current knowledge of the plant anomalies and assist in the future

endeavors of developing models specific to the disease.

1.3 Motivation

This project was established because of the rising need to modernize the plantation industry,

especially through the application of the latest technology. With the help of the unsupervised

AD approach used, the management of the ginger plantations becomes more effective, as the

constant monitoring of the plantation's health no longer requires human intervention and the

farmer can do other more essential task. The project helps in acquiring valuable information

on the health and state of the ginger plants, which is useful not only for health identification

but also for the ensuing expansion of the plantation. To the new farmers, the system proves

useful because through using it, they are in a position to be provided with well-organized

information on how they can start and manage their ginger plantations. In the case of the well-

experienced farmers, it helps in the early identification of diseases thus enabling them to

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

intervene before the situation gets out of hand hence increasing both the quantity and quality

of yields. The real-time monitoring makes sure that the farmers get quick feedback on the health

of the plants to protect them. Due to the early warning and assessment of the state of plants,

the proposed system offers the farmer an opportunity to make the right decisions hence

enhancing the yield of the farm and making the farming process less hazardous. This project

not only brings the agriculture sector into the modern world but also enhances the abilities of

the farmers introducing a new set of tools to regulate productivity and protect the crops from

diseases and unfavorable conditions.

Figure 1.3.1 Smart Agriculture System [8]

Apart from the positive impact that this project will have towards the agricultural sector, there

is a strong desire to improve the uptake of unsupervised learning, especially AD within the

machine learning community. It is for this reason that the true farm data has a lot of variability

mainly from the growth stage of plants, environmental effects, and backgrounds that provides

a perfect testing ground for machine learning researchers to test how models can be trained and

fine-tuned in a real-life environment that is unstructured. As this project is devoted to AD

without using any labelled data it is also an attempt to demonstrate what is possible with the

help of unsupervised learning methodologies for solving real-world problems. In addition, the

efficiency of the system in processing real-time traffic and its expansibility offer important

lessons on how to deploy the learning models in applications requiring timeliness and at a large

scale. This project be a good reference to the machine learning society, to advance more

research on the resilient, flexible models which will be implemented across the other sectors

apart from farming.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

1.4 Project Scope

The scope of the project is to create a application on the health se monitoring system using a

unsupervised AD model training on the detection of ginger plant using the dataset of real life

video from a ginger plantation.

1. Ginger Plant

This project goal is to detect AD on the ginger plant using dataset capturing from a

drone for ginger plant applications. The project scope is limited only to the detection of

anomaly for ginger plant and unsupervised AD model should be produced for this

purpose.

2. Unsupervised AD

This project goal is to create a model for the purpose of detecting anomaly in the ginger

plant using a unsupervised AD model. The project scope is limited only to the creation

of one model.

1.5 Project Objectives

Our project objectives is to create a complete application on the health monitoring system using

unsupervised AD. Our project should be able to be used on able to tackle on the real life

applications on detection of plant health.

1. Detection of Anomalous Ginger Plant

Our project should be able to detect ginger plant and produce and output on whether a

plant is anomalous or normal with very high accuracy. Our detection model should be

able to pinpoint the anomalous part in the image and provide the farmer on which plant

is problematic.

2. Practical Health Monitoring System

Our project solutions should be able to use real-world situation as a data and achieve

good accuracy on detection on ginger plant on actual plantation. Our projects aims to

be a application for the use case of detecting health plant in real farm.

3. Unsupervised AD

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

Our project should be detection using a unsupervised AD model using a large sample

of healthy plant from the ginger plantation and produce one model of unsupervised AD

model

1.6 Contributions

This project aims to contribute significantly to both the agricultural and machine learning

communities by providing a robust unsupervised AD model for plant health monitoring.

Firstly, it offers a practical, real-world solution for disease detection through the use of real-

time camera feeds or video recordings of ginger plants. This approach allows for immediate

identification of potential health issues, thereby assisting farmers in taking timely action to

manage plant healths and improve overall crop health. By integrating real-time data processing,

the project addresses the need for efficient, scalable monitoring systems in agriculture,

ultimately aiding in better disease management and increased crop yields.

Secondly, the project seeks to expand the dataset of anomalous plants, which will be invaluable

for the future development of computer vision models targeted at health detection. This

enhanced dataset will support ongoing research and refinement of AD algorithms, enabling the

creation of more accurate and effective models. Additionally, the project includes a user-

friendly training module that facilitates the integration of new datasets from different plants,

allowing for easy adaptation and training of models on new crops. This feature will assist in

the development of plant-specific detection systems and contribute to the broader machine-

learning field by demonstrating practical applications of unsupervised learning techniques.

Overall, the project not only enhances agricultural practices but also advances machine learning

research by providing new data and methodologies for AD in dynamic environments

1.7 Report Organization

This report is structured into seven chapters. Chapter 1 outlines the project background,

aim/objectives, problem, and scope. Chapter 2 outlines the review of existing anomaly

detection systems in plant disease monitoring in terms of their limitations and the rationale for

the approach adopted in this study. Chapter 3 outlines the system methodology in terms of the

general approach, data capture, and the model selection process. Chapter 4 outlines the system

design, which includes the system architecture, the systems and integration techniques used in

developing the system. Chapter 5 outlines the system implementation, including the systems

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 8

used and the technologies adopted, data preparation for the data set used for the system, and

the preliminary tests performed. Chapter 6 outlines the system evaluation in terms of analysis

of experimental results, evaluation of the performance of the model, and the problem

encountered. Chapter 7 concludes the report by outlining the conclusion of the study as well as

the strengths and weaknesses of the system and areas recommended for improvement in the

future.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 9

Chapter 2

Literature Review

2.1 Previous Works on Plant Health Detection

In recent years, the use of computer vision and machine learning models in the detection of

health in plants is common, there is various research done on such topic with varying degrees

of success on many plants using different models, proving that using such models has the

potential of becoming a solution for this issue.

2.1.1 Plant Health Detection using Supervised Learning Model

The most common model used in the detection of health in plants is the CNN model this CNN

model used to solve this problem is usually made up of 3 steps, First is the collection of the

dataset, training on the model and computer vision techniques to show on the defective area of

the plant.

1. Ginger Plant

Shreelakshmi's paper collected 7014 pictures of label ginger dataset of 150 by 150

pixels images as shown in Figure 2.1.1.1. [9] Shreelakshmi states that CNN is quite

effective at classifying the images into healthy and disease categories with high

accuracy rates measured from various studies. Table 2.1.1.1 shows the result in the

paper where the best method produces a 99.53% accuracy using DCNN, SRGAN,

WGAN, VGG16, ResNet50 and DenseNet21 while the other model produces at least

92.68 accuracy.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 10

Figure 2.1.1.1 Label Dataset on Ginger Plant Leaves [9]

Table 2.1.1.1 Table on the Result for Shreekakshimi [9]

2. Single Plant Organ Training

Boulent states that a model that specializes in a single organ of the same plant is better

compared to training on a specific plant and therefore better than a model that trains on

a variety of plants. [10] The dataset they use is from a public dataset from Plantvillage

which contribute some unknown variable as to the time and date or the condition of the

image it is taken. The paper uses a CNN model from scratch and due to the limited in

data for CNN, it uses previous cycle weightage to continue training. The area of the

dataset chosen to be used for training as weed out using feature extraction and fine-

tuning. Figure 2.1.1.2 shows the result of their custom CNN model against another

model.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 11

Figure 2.1.1.2 Result of Custom CNN Compare to Other Model [10]

3. Multiple Plant Training

Geetharamani’s paper also uses a dataset provided by PlantVillage accounting for

54305 images of 13 different plant leaves.[11] The datasets are processed and produced

in different orientations and provide noise to augment the images. The model they plan

to train the Deep CNN model is provided by scikit-learn and other libraries are used to

assist in the training such as Keras, pillow and OpenCV libraries. The model design is

shown in Figure 2.1.1.3. The images go through convolutional layers that act as a

feature extraction to extract defects in plant leaves and perform another layer to leave

behind additional discriminative features which are used to build the CNN model on

the feature of leaves. The result of this model is used to compare against another model

in Figure 2.1.1.4. This proves that the CNN model can be used to classify the health of

multiple different plants with high accuracy.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 12

Figure 2.1.1.3 CNN Model Design [11]

Figure 2.1.1.4 Result Comparing with other Model on Multiple Type of Plant [11]

4. Multiple Model and Fast CNN

Li’s paper works on the need for a workable health detection model on a rice plant.[12]

The dataset is collected locally in Anhui, Jiangxi and Hunan Province, China using a

handheld phone composed of 1800 images of rice sheath blight, 1760 images of rice

stem borer and 1760 images of rice brown spot which is shown in Figure 2.1.1.5. The

model they use is a composite of the model. They use Faster-RCNN for object detector

in the ROI. A custom DCNN Backbone for the feature detection. Yolo for the detection

of the disease. Through a combination of multiple models is able to accurately predict

and locate the disease spot from the images.

Figure 2.1.1.5 Dataset Images of Rice Plantation [12]

2.1.2 Plant Monitoring System using Unsupervised Learning Model

AD[13] describes a statistical process used in machine learning and data analytics to define

atypical patterns, outliers from expected behaviour, or unexpected events within a dataset. This

becomes particularly important when applications involving labelled events become too cost-

intensive, for instance in fraud detection, cybersecurity, and monitoring within heavy industry.

It has attracted significant interest in agriculture because of its ability to detect changes in plant

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 13

growth and health, among other features that are hardly visible to the naked eye. Traditional

approaches to AD have normally involved some sort of supervised learning model, in which

common and not-so-common cases are well-labelled, and thus used for the training of an

algorithm. In most practical applications, especially in agriculture, the labelled data is small,

and the conditions affecting plant health may differ to such an extent that unsupervised learning

models are much more applicable.

In a ginger plantation, the detection of an anomaly will be possibly a very strong tool for real-

time monitoring because maintaining yield and quality will depend on the detection of health.

Diseases mostly occur in the leaf, stem, and root portions in ginger plants, as in many other

crops; therefore, early detection of such diseases is essential to prevent large-scale damage.

However, growth characteristics in ginger plants together with environmental factors such as

fluctuating weather conditions and uneven soil quality make it difficult to rely on set

indications of diseases. In the same vein, unsupervised AD is very helpful, for it does not

depend on the extensive labelled dataset either of sick plants but finds deviances from the

standard growth habits of healthy ginger plants.

It may further include one field of ginger cultivation, monitoring daily or weekly plant

development with the help of real-time video. It could then be analyzed with an unsupervised

AD algorithm over time to learn what normal behaviour in plants is under different ambient

conditions. This model can identify when a plant or cluster of plants starts to exhibit atypical

behaviours like a colour change in leaves, irregular growth, unexpected drooping of leaves,

and raise an alert for either disease or other stressor effects. That is, since the model has been

trained over general trends within healthy plants, it can handle a wide range of environmental

conditions without explicit training in every conceivable disease.

Integration of AD techniques in ginger plant monitoring would provide farmers with early

warnings in case there are complications; therefore, they have been able to take their

precautionary measures in time before the spreading of the disease all over their crops. This

will contribute to more efficiency in the management of the disease and less overreliance on

manual surveillance and operations. The models that are not based on prior assumptions

flexible for different agricultural environments are scalable and practical for use in identifying

crop diseases, for example, ginger.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 14

1. AD for Plant Health

Adhiwibawa [14] conducted research regarding the use of a citrus plant for AD in leaf

health. The dataset that was used in this research consists of 60 images taken by a digital

camera. Each image falls into one of two categories: normal leaves and abnormal

leaves. Object segmentation is one of the preprocessing steps in which leaves are

cropped out from the background to make them the main objects of interest.

Preprocessing normalizes the model for AD to only characterize the leaf and not be

influenced by any background noise.

In this regard, AD includes colour feature extraction, which focuses on colour as the

main symptom for symptom-based indication of the health status of the leaf. Some

diseases or environmental stress often appear as colour changes in leaves, such as

yellowing or some darker spots. After that, the colour features are analyzed, and then

the system decides if a leaf is normal or abnormal. The AD is done by the T2 Hotelling

Multivariate Control Chart, which is a statistical method for monitoring the normal

distribution of multivariate data. T2 = (x - x̄)' S-1(x - x̄), where x is the sample data, x̄

denotes the mean, and S is the covariance matrix. The expression is useful in telling

just how far any particular sample has strayed from what had been expected to be the

norm.

For the threshold computation of AD, the F-distribution is computed at a certain

significance level (alpha) as Upper Control Limit (UCL) that sets the boundary on what

can be an outlier. Samples that fall beyond this threshold are flagged as an anomaly.

Figure 2.1.2.1 shows the result of applying the AD model to the citrus plant leaves as a

visual representation of the differences between healthy and anomalous samples.

This technique of AD meets the demand for a strong method that can indicate the

possible problem of the citrus plant, whether by infection of diseases or environmental

stress, using multivariate data such as colour. The system then gives attention to

multiple variables, using statistical control charts that can indeed show the difference

between normal variations in the colour of leaves and those which indicate that there is

a problem. Techniques such as these become increasingly important for early health

detection and agricultural monitoring.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 15

Figure 2.1.2.1 Result of AD on Citrus Leaf [14]

2. AD in Smart Agriculture

Catalano's [15] paper proposes an AD framework for smart agricultural systems using

Multivariate Linear Regression and Long Short-Term Memory. He uses Multivariate

Linear Regression to analyze the dependent and independent relationship of two

variables-like environmental factors and sensor data, respectively a system will use to

determine under normal conditions. Meanwhile, LSTM is a powerful model for time

series prediction that will enable forecasting future sensor readings based on their

historical data. These combinations activate an AD system which will point out any

deviation from expected behavior that could be malicious tampering or an

environmental issue.

The proposed system provides intrusion detection for intrusion of pests into crops or

other humans' attempts to destroy crops. They also detect a cyberattack aimed at

tampering with sensor data or causing system failure. This may be facilitated by an AD

mechanism analyzing the real-time data from sensors and flagging abnormal patterns

indicating harmful events or disruptions. Besides, enhanced security boosts system

resilience by promptly identifying system failures or accidents brought about by human

error. For example, if a farmer, due to human error, makes a mistake on the plantation,

then the AD system would flag this because of inconsistency in the data.

Figure 2.1.2.2: The output of the AD system showing temperature against time. In this

context, abnormal fluctuation in temperatures that could indicate tampering with

sensors or some other environmental stressor was accurately detected by the system.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 16

Early detection of the anomaly provides valuable insights to farmers about actionable

outcomes that help them protect crop yield and system integrity.

It identifies that, in general, AD has become of prime importance in contemporary smart

agriculture, since its complexity requires devices that are interconnected and quite

impossible to monitor manually for every threat or malfunction that can be imagined.

Thus, with advanced LSTM machine learning models automating this process, farmers

can manage their operations more efficiently while protecting themselves against both

external threats and internal errors.

Figure 2.1.2.2 AD Result on Soil Against Time [15]

3. Deep Neural Network AD in Plant

Deep learning was seen to emerge as a revolutionary technology in agriculture, more

in the sphere of plant health detection. This technique had substantial edges over the

traditional methods due to the capability of handling large volumes of data, automation

of monitoring processes, and enhancement in precision in the identification of early

signs of deterioration in plant health. It finds its place in agriculture, where large-scale

fields normally cannot be inspected manually. Deep learning has been acting as a game-

changing technique in health detection and monitoring crop health based on image

analysis.

Nirmala et al. [16] have discussed the application of deep learning to detect

complications in agriculture by using AD. The authors have focused their research on

using deep neural networks to classify plants as healthy or diseased by visually

identifying features from images taken through sensors placed in the field. In such a

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 17

way, this idea integrates deep learning with anomaly-based diagnosis for locating

abnormal patterns in growth or health indicative of disease, pest attacks, or other kinds

of environmental stressors. Their system applies deep learning to realize a robust real-

time, large-scale monitoring of agriculture.

One of the most significant advantages that deep learning models such as DNNs have

is analyzing unstructured data-that is, images- and, from them, extracting meaningful

features for the identification of health in plants. Unlike the conventional methods that

depend on predefined thresholds or manually labelled datasets, deep learning models

learn from data input directly. Hence, this can adapt to several types of plants and

further environmental conditions. This flexibility would come in handy in agriculture

because it takes into consideration different lighting conditions, soil conditions, and

weather conditions.

Perhaps scalability is one of the major advantages of using deep learning in plant health

detection. Image sensors can monitor large areas constantly, and the deep learning

model can work with continuous data to identify deviations from normal plant behavior

by real-time processing. Often these minor changes, which a human eye would not

notice, might point out very early stages of certain diseases or stress of the plant due to

environmental factors and allow farmers to take remedial measures before things take

a turn for the worse. With deep learning models, precision agriculture is much needed

in areas of accurate and timely data that help maximize crop yields and quality.

Furthermore, deep learning models can be built in such a way that it will automatically

recognize various types of diseases for different types of crops, making the application

versatile for use across diverse agricultural domains. For instance, based on the colour,

texture, or shape of a leaf, the model will be able to classify whether the plant is healthy

or diseased and whether it suffers from a nutritional deficiency. It is this capability of

handling multivariate data that enables complex patterns to be detected, which

otherwise might not be readily apparent with traditional methods of analysis.

Table 2.1.2.1 shows the result of the Deep learning model compare against with other

model on the performance evaluation of image processing analysis.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 18

Table 2.1.2.1 Performance of Model against Other Model [16]

2.2 Limitation of Previous Studies

Most of the earlier works conducted on plant health monitoring are eminently limited and point

to the disconnection between theoretically related research and actual application. One of the

main problems with most of the studies is the nature of their idealistic approach, which, for the

greater part of it, fails to capture or even come close to the complexity and realities of the actual

agricultural settings. For instance, most of the related works make do with a dataset comprising

no more than a few labelled diseased plants. As pointed out by J. As Boulent et al.[9] pointed

out, since these labelled datasets will not only be very labour-intensive but on one hand also

impracticable on a large scale, the labelling process is extremely resource-consuming to label

each instance of plant disease manually. This approach is unworkable for farmers who are

already stretched thin with daily responsibilities. Similarly, labelling every plant for research

purposes is just as unrealistic considering the number of plants and the amount of work that

would entail.

Most images in such studies are close-up shots or cropped to show only a few spots of the

diseases. While such a system serves to simplify the training of models, it does not accurately

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 19

portray conditions that exist in real life. In practice, crops are rarely evaluated under optimal

conditions. Instead, farmers seek applications that handle and process entire fields of crops

with ease in a single run. Although helpful in the controlled environment of a research setup,

close-up images cannot present the full dimensions of an actual farm setting where plants are

grown in close groups and the backgrounds can be very different. This creates some issues in

that the models while training on such images, have difficulty generalizing when applied to

more complex, real-world environments.

Another critical limitation regards many of these works failing to take into consideration the

dynamic nature evident in agricultural environments. Real farms go through changes in weather

conditions, plant growth stages, and different backgrounds contributing to the look of the plants

and possible disease manifestations. Training these models on idealized static images omits

variances in these factors, hence leading to poor performance of the models when such varying

conditions occur. A system useful for practical application therefore needs to rest on rapid,

complete field scans, rather than cropped and isolated images. Models should be robust to

detect anomalies based on broader plant features and adapt to the variability characterizing real

farming conditions.

In other words, much of the available literature related to the monitoring of health in plants is

a bit too idealistic, with little consideration or modelling of what happens in the real world with

agricultural concerns. This is further exacerbated by the limited, manually intensive nature of

dataset labelling, often focused on close-up and cropped images; both factors together detract

from the effectiveness that might be achieved in a real-world setting. This underlines the urgent

need for solutions that can fill the gap by processing volumes of diverse data representative of

real-world conditions to generate actionable insights for farmers in these complex, variable

conditions.

2.3 Possible Solutions

This limitation is addressed in this project by designing a scheme whereby real-world images

and scenarios are taken for training and testing purposes of AD. Such traditional methods

usually rely on idealized data sets, which might not depict the actual scene for such agricultural

environmental conditions. Our work overcomes this limitation by taking in video footage of

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 20

real life from ginger plantations at various periods. This will ensure that the developed models

are not only efficient in laboratory conditions but also in real-life applications.

Real images were used in our project to make the model more robust against the challenges of

relatively diverse and dynamic agricultural setups. The video sequences were preprocessed

with sequences of motion blur and background changes. This allows our model to learn from

a dataset that exhibits realistic properties. This ensures that the idealistic datasets problem is

surmounted, as the model learns from images that have real variation in a normal farm setting—

from stages of plant growth to light and environmental noise.

For this, we would like to apply methods of AD, for which the model is to be trained on the

concept of what a normal ginger plant looks like. That would turn out to be useful in enabling

the model to pick up features that deviate from the learned norm, such as symptoms of disease.

We are also introducing video footage from a real farm to take into account the real-world

motion blur and other artefacts not often taken into consideration within the research setting.

The drones will also capture images of the ginger plantation in high resolution. Drones can fly

quickly over large areas, taking several pictures from several angles. It makes the dataset

collected rich and variable for training. In this respect, data gathering speeds up and provides

the opportunity to consider real plantation variability size in one dataset. It is within this line

of thought that our proposal shall, therefore, aim to bring together theoretical research and

practical application in suggesting a more reliable and accurate plant health monitoring system.

Based on actual data collected in the field, we are evolving a model that should work brilliantly

under both artificial and actual-life situations in a step-up mode. This will help in contributing

further strategies toward the effective management of diseases at a larger level in agriculture.

2.3.1 Model Options

Anomaly detection models are highly varied in methodology and technological basis and each

form is adapted to deal with specific properties of data sets. While there might exist models

that perform perfectly well on specific data sets, in general, it's assumed that their performance

cannot be generalized to all data spaces. This holds primarily due to data distribution variance,

complexity in features, environmental noise, and application-specific needs. There exists no

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 21

universally best-performing AD model currently; rather, the performance of each model

depends on the specific challenges and conditions of the problem under consideration.

Given these factors, the need for a rigorous and methodical evaluation process in the selection

of an AD model for a new application becomes a high priority. When the application involves

monitoring plant health based on video images of dynamic and uncontrolled fields, the need

for this becomes imperative. A methodical process for selecting AD models includes cross-

comparisons of multiple AD models tested on the same data to enable objective evaluation.

This enables model-specific merits and pitfalls to be determined concerning their ability to

generalise outside the conditions under which it has been trained, robustness to noise and

artefacts, and ability to detect nuances in anomalies that constitute early indicators of plant

decline in health.

Moreover, benchmarking model performance on diverse datasets is also important to ascertain

scalability and real-world viability. A well-performing AD model on benchmark datasets—

collected usually in a controlled lab environment—could not perform when implemented in

the field environment, as data in the field environment would be more complex, dynamic, and

unpredictable. For instance, variation in lighting conditions, clutter in the background, plant

placement, and natural irregularity in plant growth could all pose enormous challenges not

found in controlled environments. For that reason, intensive benchmarking on diverse datasets

must be performed to assist in ensuring that the implemented AD model not only performs

correctly but also robustly and reliably for real-world farm monitoring.

In a critical evaluation, the review should include a wide range of AD model types so that the

optimal solution can be established. In general, AD models fall into three broad categories:

conventional models (e.g., statistical models, traditional machine learning algorithms), neural

network-based models (e.g., convolutional autoencoders, deep one-class classifiers and

generative models), and the newly developed Vision-Language Models (VLMs), which utilize

the strong ability to generalize across multimodality through pretraining. These types all have

analogous strengths and weaknesses. The conventional models are usually simple to use, easily

interpretable, and efficient but may not have optimal performance on highly complex data. The

neural network-based models can learn very complex patterns and non-linear relationships but

are highly dependent on hyper-parameter tuning and the need for very large data. VLMs are a

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 22

new promising direction that can perform zero-shot and few-shot but their performance in the

case of domain-specific fields in plant health monitoring is a subject of ongoing work. Thus to

select the optimum AD solution for ginger plant anomaly detection in various applications,

representative models of each of the three types need to be tested and benchmarked

systematically. These tests need to be performed in conditions approximating the deployment

environment in question while being careful to monitor metrics that range from detection

accuracy to false positive rates to robustness to variability to computational efficiency. It's only

by adopting a scrupulous empirical and iterative approach that we can arrive at an effective

high-fidelity AD system to facilitate real-time field-level ginger plant monitoring.

1. Traditional Models

Traditional AD models, including OCSVM, Random Forests, and k-NN, are based on

statistical and heuristic methods for anomaly detection. Traditional models perform

very well when the feature space is well-defined and low-dimensional, with structured

data. The interpretability and simplicity of these models make them very suitable for

small or less complex datasets. However, their performance considerably deteriorates

in high-dimensional or noisy datasets, since it may fail to capture complex patterns or

subtle anomalies often present in plant health monitoring datasets.

I. ABOD - This is the method to identify outliers for high-dimensional data. Due to the

"curse of dimensionality," distances become less meaningful in high-dimensional

spaces. The ABOD method overcomes this problem by focusing on angles between

distance vectors of points, which are more informative for AD in such spaces. The key

idea is that inliers, or normal data points, cluster around and therefore have higher

variance in the angles formed by vectors connecting these points, while outliers

typically sit further away from these clusters and tend to produce more uniform angles.

ABOD effectively distinguishes between inliers and outliers by comparing the angular

variance between data points. This approach capitalizes on the fact that inliers have

more variability in their angle distributions, whereas outliers have less variability,

which allows their more reliable detection in high-dimensional spaces. [17]

II. CLUSTER - Clustering-based Local Outlier Detection transforms multivariate outlier

detection into univariate by applying statistical tools designed for one dimension. This

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 23

is developed using a new metric, δ is the minimum distance needed by a point to enter

an area of a higher-density neighbourhood. The local density is computed for each data

point based on its distance from a set of points in some neighbouring region. Once

transformed, the dataset is treated as univariate, allowing for the application of

statistical methods such as Chebyshev's inequality to estimate the proportion of

outliers. The method further refines outlier detection by introducing concepts like

(kσδCm +¯ δCm) connected and density peak reachability that allow the identification

of outliers about clusters and local density peaks. That significantly reduces the

computational complexity required, and it can allow quite accurate outlier detection in

a high-dimensional dataset. [18]

III. COF - COF algorithm uses a kernel function to transform the input feature space and

computes connectivity between data points. This technique first maps the data to a new

feature space using a kernel function. Then, it determines the k-NN for each data point,

constructing a nearest-trail dataset. The algorithm calculates the average distance of

chaining, which can be considered a weighted distance for the nearest-neighbour path.

The COF for a data point is computed from the ratio of its average distance to the k-

NN and the average distance of its neighbours. A greater COF indicates an increased

possibility that the point may be considered an outlier. In COF, several kernel functions

are Gaussian and polynomial and Operate on the data to embed them in higher-

dimensional space for better outlier detection. In such a way, the performance of

anomaly detection will be significantly improved within complex data. [19]

IV. HISTOGRAM - Histogram-based Outlier Score algorithm: uses histogram

representations of the features' distribution to calculate the likelihood of occurrence of

each value by means of the frequency of this very value. First, the histograms are scaled

to have a maximum height of 1; the probability of each value is mapped to a scale from

0 to 1. Values closer to 0 are more anomalous. For computing the anomaly score,

combine the histogram of all features by taking, for each feature, the logarithm of the

inverse probability. A higher anomaly score indicates a higher likelihood of the data

point being an outlier. The algorithm also introduces the concept of dynamic

histograms, where bins are adjusted in width based on the data distribution, addressing

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 24

issues like unused bins and improving the representation of data with varying densities.

[20]

V. IFOREST - The Isolation Forest algorithm is one of the AD methods that employ the

concept of isolation trees to detect anomalies by isolating data points with shorter path

lengths. It works by constructing multiple isolation trees, each of which is an expert in

detecting different anomalies. One of the strong points of IFOREST is its ability to

work with small sample sizes, which enhances its capacity to isolate anomalies

effectively. Unlike methods requiring large sample sizes, IFOREST benefits from sub-

sampling (that is, selecting instances at random without replacement) because a smaller

sample interferes less with normal points, thus giving better anomaly isolation.

Common issues in AD, like swamping-in which the algorithm mistakenly identifies

normal points as anomalies-and masking, in which anomalies are hidden by dense

normal clusters-are handled in IFOREST through partial models. This sub-sampling

strategy allows IFOREST to handle these challenges more effectively, resulting in

improved detection of anomalies, especially in datasets with large, dense normal point

clusters. [21]

VI. k-NN - k-NN AD is a distance-based anomaly detection algorithm that identifies

anomalous data points based on their distances from other data points in the dataset.

Every data point is assigned an anomaly score, which is the sum of distances to its k

nearest neighbours. The basic assumption is that normal data points are clustered

densely while anomalous points are far away from the majority. The algorithm relies

on the choice of k and the distance metric, often Euclidean distance, to determine the

nearest neighbours. One challenge of k-NN is its dependency on the selection of k,

which can lead to instability, especially in high-dimensional spaces where data sparsity

and the curse of dimensionality can degrade performance. To enhance stability and

robustness, ensemble methods combine outputs from multiple k-NN models,

aggregating their anomaly scores using techniques like averaging or maximization.

This helps mitigate issues like parameter sensitivity and variability in unsupervised

learning scenarios.[22]

VII. LOF - The Local Outlier Factor is a density-based AD that detects outliers by

comparing the local density of a data point with the local densities of its neighbours.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 25

Unlike most methods that consider the general distribution of data, LOF concerns the

local neighbourhood around a given point. It calculates the Local Reachability

Density(LRD), which is the density of a point in its neighbourhood, considering the

distances to its nearest neighbours. A point that has a low LRD compared to its

neighbours is flagged as an outlier. The LOF score is computed then by comparing the

LRD of a point with the average LRD of its neighbours. A LOF score greater than 1

indicates the point is an outlier, with values increasing as the degree of outlierness

rises. This method is particularly useful for detecting anomalies in datasets with

varying densities and is applied in domains such as medical records, where outliers can

represent important abnormalities.[23]

VIII. MCD - Minimum Covariance Determinant is a robust statistical technique that finds a

subset of data points that has the minimum determinant of their covariance matrix to

detect outliers in high-dimensional datasets. MCD focuses on a subset of data of size

M, with ⌈N/2⌉≤M≤N, which is least affected by outliers. For any subset, compute the

empirical mean and covariance based on the points, and retain the subset with the

smallest determinant of the covariance matrix. This ensures that the resulting mean and

covariance matrix are resistant to the presence of outliers. MCD differentiates between

vertical outliers data points that substantially deviate from the linear relationship but

with non-outlying predictors and leverage points, which are points with extreme values

for the predictors. While traditional methods for computing location and scatter rely

on the least squares residuals and can therefore be insensitive to certain types of

outliers, the MCD approach focuses on minimizing the covariance determinant. [24]

IX. SOD - Subspace Outlier Detection represents a robust algorithm for finding outliers in

meaningful subspaces of high-dimensional data space. It differs from traditional

methods evaluating outliers over the full dimensionality of a dataset because SOD

performs outlier detection by focusing its attention on subsets of attributes or arbitrarily

oriented subspaces. SOD is especially good in high-dimensional spaces wherein the

notion of distance or density becomes less reliable by analyzing deviations in localized

or lower-dimensional projections. In spatial data contexts, neighbourhood structure

based on specific spatial attributes is often utilized, while deviation relative to these

neighbours is evaluated using another attribute. This dual focus enables the detection

of anomalies that are contextually significant, such as spatial outliers deviating in a

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 26

specific feature within their spatial proximity. This approach is widely applicable in

areas like geospatial analysis, social networks, and complex multidimensional

datasets.[25]

X. SOS - Stochastic Outlier Selection is a probabilistic approach toward outlier detection

in a dataset. Unlike traditional methods that consider rigid thresholds or distance

measures, SOS defines an affinity-based framework to compute the outlier probability

of each data point. It computes affinities by comparing pairwise similarities among

data points, emphasizing the local neighbourhood structure. It models the likelihood

that each point is an outlier through a stochastic process, defining the outlier

probability as a result of the relative affinity of a point to its neighbours. Hence, points

having low affinity to their neighbourhood will have higher outlier probabilities to set

them apart from the rest. SOS is particularly suited for datasets with complex or

nonlinear structures, as it does not assume any specific distribution or global data

properties. Due to its probabilistic nature, SOS gives a nuanced view of outlierness and

hence is of value in applications such as AD, fraud detection, and exploratory data

analysis. [26]

2. Neural Network-Based Models

Neural network-based AD models rely on deep learning to represent complex patterns

and dependencies inherent in the data. Well-known models in this class are PatchCore,

PaDiM, and EfficientAD. These models work extremely well with high-dimensional

and unstructured data, such as images or videos, which makes them perfectly suitable

for plant health monitoring using real-time video recordings. They use feature

extraction from pre-trained networks, localized anomaly scoring, and dimensionality

reduction to detect anomalies with high precision. However, most of these models

require a lot of computational resources and large amounts of data to train the models,

which may not be feasible in resource-constrained environments.

I. AIVAD - Accurate and Interpretable Video Anomaly Detection is a robust

framework for detecting anomalies in video sequences by combining interpretable

and deep features. The approach includes three stages: pre-processing, feature

extraction, and density estimation. Pre-processing includes optical flow maps that

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 27

track the motion of objects across frames, and an object detector localizes and

classifies objects within bounding boxes. These feature-extracting objects are

represented through a velocity feature derived from optical flow to capture motion,

through pose features based on body landmarks, or other deep features extracted

from video and images using a pre-trained CLIP model that captures nuances lost

in the other representations. For density estimation, anomaly scores are computed

with GMMs for low-dimensional velocity features and k-NN models for high-

dimensional pose and deep features. These scores are integrated into a unified

anomaly measure, thus enabling high detection accuracy along with interpretable

outputs suitable for various datasets. [27]

II. CFA - The Coupled-hypersphere-based Feature Adaptation method addresses the

bias of pre-trained CNNs by refining anomaly localization through feature

adaptation and memory bank optimization. CFA learns patch descriptors from

normal samples, clustering these features densely around memorized

representations stored in a memory bank. Utilizing a hypersphere-based loss

function, CFA ensures that normal features are tightly clustered while abnormal

features are effectively separated. Hard negative samples in turn provide contrastive

supervision to further enhance feature discrimination. The memory bank is then

iteratively refined using an EMA for efficient compression of normal feature

representations. During testing, CFA compares patch features to their nearest

memorized counterparts, generating anomaly heatmaps. A sophisticated scoring

function is used that combines distance and certainty metrics to mitigate the

underestimation of normal features. This ensures precise anomaly localization, as

evidenced by superior AUROC scores on benchmark datasets like MVTec AD,

demonstrating its effectiveness in challenging anomaly detection scenarios.[28]

III. CFLOW - The method for anomaly detection based on feature extraction and

likelihood estimation. Feature vectors containing semantic information are

extracted by the CFLOW encoder using a discriminatively-trained CNN with a

multi-scale feature pyramid pooling. Since it is pre-trained on large datasets such as

ImageNet, both the local and global information is captured to deal with variability

in the size and shape of anomalies. The CFLOW decoder estimates the likelihood

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 28

of these feature vectors using conditional normalizing flows, integrating spatial

priors through positional encoding. Each decoder layer combines feature vectors

with spatial conditions in an efficient manner using translation-equivariant

architectures. Training entails maximizing the log-likelihood of features, while

testing calculates likelihoods and maps anomaly scores via normalized

probabilities. CFLOW-AD is computationally efficient compared to methods like

Spatial Pyramid Anomaly Detection Embedding (SPADE) and PaDiM, avoiding

large memory needs by not relying on train galleries or extensive covariance

matrices. It excels in balancing accuracy and resource usage in real-world anomaly

detection scenarios.[29]

IV. CSFLOW - Cross-Scale Flows: It is one of the advanced techniques that were

performed for defect detection on images with a cross-scale flow architecture,

allowing the information from feature maps at multiple scales to flow across. By

the sharing of information among different scales, this method increases density

estimation and likelihood computation. Convolutional layers are applied to the

extraction of features, while the features are then furthered into coupling blocks,

each performing an affine transformation. These blocks split the feature tensors,

apply scale and shift transformations, and recombine, thereby enabling the model

to capture complex dependencies across scales. To stabilize training, a soft

clamping technique is applied to the scaling components. The aim is to maximize

the likelihood of the features by minimizing the negative log-likelihood in a latent

space. A key advantage of this method is its ability to localize defects by preserving

positional information, allowing defect detection at specific image regions, which

is crucial for fine-grained analysis in real-world applications.[30]

V. DRÆM - Discriminatively Trained Reconstruction Anomaly Embedding Model

combines two key sub-networks: a reconstructive sub-network and a discriminative

sub-network. The reconstructive sub-network uses an encoder-decoder architecture

to detect and reconstruct anomalies while preserving non-anomalous regions of the

image. It is trained to reconstruct the original image from a corrupted version

generated by a simulator, with losses combining SSIM and L2 loss. The

discriminative sub-network has a U-Net-like architecture, learning a joint

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 29

reconstruction-anomaly embedding. It generates anomaly segmentation maps by

analyzing the difference between the reconstructed and original images. The

approach utilizes a simulated anomaly generation process whereby artificial

anomalies are added to the image using random texture augmentations and noise

generation. This provides a diverse set of anomalous samples without requiring real

anomaly data. This allows the network to learn the representation of anomalies

regarding their deviation from normality. The final output is an image-level

anomaly score based on the segmentation mask. [31]

VI. DFKDE - Deep Feature Kernel Density Estimation: This method incorporates deep

learning into kernel density estimation for better performance in complicated

scenarios, such as photon mapping. DFKDE leverages a pre-trained neural network

backbone to extract the hierarchy of features from the input data that captures the

essential patterns and context. Noise is reduced, and computational complexity is

lowered for these features by using Principal Component Analysis. The

normalization makes the features consistent. This is followed by the modelling of a

probability density function using KDE. These learned features are used by the

KDE to assign a density score. At training time, KDE fits on normal data to learn

the distribution; during inference, regions with low density signify anomalies or

deviations. For photon mapping, this approach enables photon density estimation,

which is efficient due to encoding of individual photon characteristics and the local

context in a learned kernel. It reduces the number of photons needed for achieving

accurate results for such effects as caustics and is computationally efficient, which

provides fine quality. [32]

VII. DFM - This is a deep neural network-based approach that models class-conditional

probability distributions in the feature space using the feature representations

learned by a DNN. A DNN is trained to classify samples into N classes, and class-

conditional distributions are fitted to the deep features at different network layers.

It works by computing the log-likelihood of features concerning these distributions

at test time for identifying in-distribution samples as high likelihood and,

respectively, out-of-distribution or adversarial samples as low likelihood. Unlike

previous methods which are based on the assumptions of tied covariance Gaussian

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 30

distributions (such as LDA), more flexible models are used by DFM, such as

separate multivariate Gaussians or Gaussian Mixture Models, which have a greater

ability to capture complex structures of high-dimensional feature space. The

parameters of these distributions are estimated by maximum likelihood, while

GMM complexity is controlled by criteria including BIC. This generative modelling

improves the estimation of uncertainty and robustness in classification. [33]

VIII. DSR - Dual Subspace Re-Projection is a novel architecture for surface anomaly

detection, taking advantage of quantized latent space representation and dual

decoders. DSR processes the input image into two quantized feature maps (high and

low resolution) using a ResNet-based encoder and a vector quantization (VQ)

mechanism. These two decoders are then specialized into different tasks: the general

appearance decoder reconstructs high-fidelity natural images, while the object-

specific decoder constrains reconstructions to normal appearances of the trained

object. The anomalies are found through the comparison of these decoders' outputs

via an anomaly detection module that creates feature resolution segmentation

masks, which have been upsampled for pixel-level localization. Apart from that,

DSR embodies an anomaly generation method by which its training is performed

with the injection of near-in-distribution anomalies in a quantized feature space. It

has been trained hierarchically, first in a general image reconstruction scenario, and

later on fine-tuning for anomaly detection using a high-resolution upsampling

module.[34]

IX. EfficientAD - EfficientAD is a lightweight framework for video anomaly detection

that aims at reducing the computational cost of the process without compromising

detection accuracy. It introduces Patch Description Network (PDN), a shallow

convolutional network of only four layers, generating feature vectors for 33×33

pixel patches in one forward pass. To further make PDN efficient and expressive, it

is distilled from a deeper pre-trained network such as WideResNet-101.

EfficientAD adopts a lightweight Student-Teacher (S-T) model, in which the

teacher is a PDN and the student imitates the outputs of the teacher, guided by a

hard feature loss promoting high-loss regions for training. This enhances anomaly

detection by focusing on key features while suppressing false positives. Logical

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 31

anomalies are detected using an autoencoder that compares its reconstructions with

teacher outputs. Normalized anomaly maps from the S–T model and autoencoder

are combined to capture both structural and logical anomalies. EfficientAD can

deliver real-time performance with robust localization: less than 1ms on modern

GPUs. [35]

X. FastFlow - FastFlow is an unsupervised anomaly detection method that seeks to

localize and detect anomalies in visual data. The method is based on a representation

approach whereby it extracts features of normal images for building a probability

distribution and then compares features of test images to this distribution for

anomaly detection. The feature extractor has either ResNet or Vision Transformers

(ViT). In any case, both ViT are better in capturing the local and global

relationships. For ResNet, the features from the last layers of the first three blocks

are taken. FastFlow uses a 2D flow model with invertible transformations to map

image features into the distribution of normal images. This model measures the

likelihood of an image's features by a bijective mapping, where anomalies have low

likelihoods. The flow model is constructed using many transformation blocks, each

with an affine coupling layer and neural networks. Spatial information is preserved

by incorporating 2D convolutions into the flow model, ensuring accurate anomaly

localization.[36]

XI. FRE -: Feature Reconstruction Error method identifies anomalies by analyzing

features extracted from a pre-trained deep neural network (DNN) through a shallow

linear autoencoder. It compresses high-dimensional features into a lower-

dimensional space and reconstructs them by computing the FRE, which is the

difference between the original and reconstructed features. FRE provides an

uncertainty score for anomaly detection and localization; larger errors indicate

anomalies. Image-level detection relies on the norm of FRE, while pixel-level

localization maps FRE errors across spatial dimensions. FRE is flexible; it works

with intermediate DNN layers and combines multi-layer FRE maps for enhanced

performance. The implementation strategies include PCA-based deterministic

methods, which provide computational stability and finite convergence, and

iterative autoencoder approaches, more suitable for large datasets due to their

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 32

memory efficiency and flexibility in regularization. FRE maps offer precise

segmentation by resizing to input resolution, enabling accurate anomaly detection

and localization across diverse tasks.[37]

XII. GANomaly - GANomaly is an anomaly detection framework that works by training

Generative Adversarial Networks on normal data to identify outliers. The model

contains three sub-networks: a generator, an encoder, and a discriminator. The

generator encodes the input data into the latent space, reconstructs it via a decoder,

and produces realistic outputs. A second encoder re-encodes these outputs, and their

latent representations are compared to detect anomalies. Training involves three

losses: adversarial loss, which makes the generated images indistinguishable from

the real data distribution; contextual loss, which minimizes the reconstruction error;

and encoder loss, which aligns the latent representations. At inference time,

anomalies are scored with the encoder loss since both the generator and encoder fail

to represent anomalous features as they were trained only on normal data.

GANomaly excels in unsupervised scenarios, offering robust performance for

image anomaly detection and localization by exploiting discrepancies in the learned

latent space.[38]

XIII. PaDiM - PaDiM is a deep anomaly detection model that utilizes the strength of pre-

trained CNNs to extract semantic and spatial features for anomaly localization.

During training, each image patch is mapped to embedding vectors, which are

derived from activation maps of different CNN layers and capture multi-resolution

contextual information. These embeddings are modeled as multivariate Gaussian

distributions and their mean and covariance matrices are estimated for each patch

position across the training data. This approach encodes the distribution of normal

data, including inter-layer correlations. At inference, embeddings of test image

patches are compared against the learned Gaussian distributions using the

Mahalanobis distance that quantifies the deviation of a patch from normalcy. Then

it generates an anomaly map where high scores indicate anomalous regions. The

method avoids the computational overhead of k-NN-based approaches by using

precomputed parametric distributions, making it efficient for both training and

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 33

testing. PaDiM excels in anomaly localization and is scalable for high-resolution

inputs.[39]

XIV. PatchCore - PatchCore is an effective technique for the detection and localization

of anomalies by using patch-level features extracted from a pre-trained CNN. The

approach was developed by building a memory bank of the localized features

aggregated from the intermediate layers of the CNN. Contrary to global feature

representations, PatchCore relies on mid-level features to maintain the spatial

resolution and contextual relevance required for anomaly detection. In particular,

scalability is addressed by PatchCore by employing a greedy subsampling strategy,

corset reduction, that retains the diversity and coverage of the memory bank but

greatly reduces its size. This reduces computational overhead at inference time with

limited degradation in detection accuracy. During inference, every test image is

divided into patches whose features are matched to the memory bank through

nearest-neighbour matching. Anomalies are identified based on the distance

between test patches and their closest nominal patches. A re-weighting mechanism

further enhances robustness by adjusting scores based on the rarity of neighbouring

patches. PatchCore efficiently generates pixel-level anomaly maps while

maintaining state-of-the-art performance across diverse datasets.[40]

XV. Reverse Distillation - Reverse Distillation proposes a teacher-student architecture

for anomaly detection and localization. The pre-trained teacher encoder (E)

extracts multi-scale representations, and the student decoder (D) reconstructs these

features from a compact embedding created by a trainable one-class bottleneck

embedding module (OCBE). The OCBE condenses rich high-dimensional teacher

features into low-dimensional space with a focus on anomaly-free patterns,

mitigating redundancy. It is designed to fail in reconstructing the anomalous

features, leading to a high discrepancy between teacher and student outputs in case

of anomalies. At inference time, cosine similarity maps between the teacher and

student representations are used to compute both pixel-wise and sample-level

anomaly scores, where higher discrepancies would imply abnormalities. The main

novelties include reverse knowledge distillation order, transferring high-level

teacher features to low-level student layers, multiscale features for better anomaly

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 34

localization, and compact OCBEs, which amplify the feature differences on

anomalies. The experiments conducted on the MVTec dataset show state-of-the-art

performance, with particular attention to anomaly localization and detection.[41]

XVI. RKDE - The Region-Based Kernel Density Estimation method presents a three-

stage anomaly detection pipeline inspired by Hinami et al. These are region

extraction, feature extraction, and density estimation. Region Extraction:

While Hinami et al. used GOP and MOP methods, the proposed method here,

RKDE, relies on Faster-RCNN with a ResNet50 backbone. RKDE produces

scattered regions which are target-focused using non-maximum suppression. This

reduces the number of regions to tens in one frame and hence removes the need to

use many normality models. Feature extraction: The features are drawn from

AlexNet's fully connected (7th layer) or convolutional layers (3rd layer). The fully

connected variant accordingly tunes AlexNet for multi-task classification, while the

convolution variant maps the features directly to spatial positions, thereby allowing

higher processing rates. Density estimation: Gaussian KDE is applied on reduced

feature dimensions compressed by PCA. Unlike Hinami, RKDE scales feature

vectors instead of normalizing them, preserving their length information for

enhanced anomaly detection. To address performance, RKDE introduces feature

rejection during exposure for the convolutional variant, limiting accepted features

to that novel relative to prior data, ensuring efficiency in both analysis and model

creation.[42]

XVII. STFPM - The Student-Teacher Feature Pyramid Matching framework identifies

anomalies using a student-teacher learning approach combined with a feature

pyramid structure. The teacher network, pre-trained on a classification task, such as

ResNet-18, generates multi-scale feature maps that capture low-level (textures,

edges) and high-level (contextual) information. The identically architected student

network is trained to emulate the teacher's feature outputs for normal images. The

training minimizes differences, using 2-normalized vector distances between

corresponding feature maps at each pyramid scale, focusing on hierarchical learning

for better anomaly detection across various object sizes. During testing, the teacher

and student extract features from an input image, and deviations from their feature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 35

maps indicate the position of anomalies. These deviations get aggregated into an

anomaly map that highlights the anomalous pixels. By combining feature pyramids

with pixel-level analysis, STFPM provides precise, multi-scale anomaly

localization, making it suitable for detecting diverse and subtle anomalies

efficiently.[43]

XVIII. UFlow - UFlow is a method for unsupervised anomaly detection and segmentation

composed of four phases: Feature Extraction, U-shaped Normalizing Flow,

Anomaly Score Map Generation, and A Contrario Anomaly Segmentation.

During the first phase, multi-scale features are extracted using a novel MS-CaIT

architecture that combines Transformer models with U-Net-inspired designs for

rich, scale-specific feature representations. It will introduce a U-shaped

Normalizing Flow architecture for anomaly detection, using invertible

transformations that ensure statistical independence of multi-scale embeddings for

precise likelihood estimation of anomalies. Then, it calculates anomaly scores,

associates a likelihood with each pixel by using these embeddings, and efficiently

generates anomaly maps. Finally, the fourth phase applies a contrario framework to

segment anomalies, using a hierarchical tree structure of connected components

based on level sets of the anomaly map. This ensures accurate anomaly

segmentation with unsupervised statistical thresholds while maintaining flexibility

and robustness across datasets.[44]

3. VLMs

The recent breakthroughs in AD are based on VLMs that combine vision and language

through large-scale pretraining. These models, such as VLLM, leverage both visual and

contextual information to improve the performance of AD. Using multimodal

embeddings, VLMs can contextualize visual data with semantic information, making

them quite powerful for complex scenarios. For example, a VLM can detect anomalies

in plant health by analyzing visual cues together with textual descriptions of how plants

should look. While these models have immense potential, their actual deployment

requires sophisticated infrastructure and careful fine-tuning to effectively address

domain-specific challenges.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 36

I. WinCLIP – WinCLIP and its extension, WinCLIP+, are state-of-the-art

frameworks of zero-shot anomaly classification and segmentation based on

powerful language-image embeddings developed for CLIP. WinCLIP improves

the detection of anomalies by incorporating Compositional Prompt

Ensembles (CPE), which describe "normal" and "anomalous" states of objects

through structured language prompts in a task-specific way and align text-image

representations to increase accuracy in the classification process. Segmentation

in WinCLIP follows a window-based approach for dense, multiscale visual

feature extraction, which allows pixel-level anomaly detection with

computational efficiency. It harmonically aggregates predictions across

overlapping windows and scales to balance local details and global context.

WinCLIP+ extends this by incorporating a few-shot reference association

module, using a small set of normal images to create reference memories at

multiple scales. This integration improves the detection of anomalies that are

context-dependent or hard to define through language alone. By combining

predictions from language-guided and visual-based approaches, WinCLIP+

achieves superior performance in both classification and segmentation

tasks.[45]

II. LLaVa - The proposed LLaVA-o1 framework extends the reasoning capability

of VLMs through a structured, step-by-step reasoning process. It involves four

stages of reasoning: Summary, Caption, Reasoning, and Conclusion, which

allow progressive development from problem interpretation to answer

generation. Each stage has an embedded tag that will be self-activated by the

model without prompt engineering. A key innovation is the stage-level beam

search during inference, which maximizes reasoning accuracy by selecting the

best response at each stage. Trained on the LLaVA-o1-100k dataset, a curated

collection integrating general-purpose and science-focused VQA datasets, the

model is fine-tuned to improve reasoning and scalability. Results indicate that

LLaVA-o1 outperforms baseline models in logical reasoning, instance

reasoning, and domain-specific tasks, particularly in math and science. Its

structured output design ensures robust, accurate answers and better

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 37

performance across complex reasoning benchmarks, demonstrating its

efficiency and adaptability.[46]

III. Phi3 - The Phi-3 model family is a suite of transformer-based decoder

architectures optimized for efficiency and performance across different sizes

and applications. The Phi-3-mini model has a hidden dimension of 3072, 32

attention heads, and 32 layers, with a 4K default context length extendable to

128K using LongRope. It is pre-trained on 3.3T tokens, supports 4-bit

quantization for mobile deployment, and leverages the Llama-2 tokenizer for

compatibility. The Phi-3-small, with 7B parameters, improves multilingual

tokenization via tiktoken, allows for an 8192 context length, and features several

innovations, including blocksparse attention, which helps to improve training

and inference speeds while reducing KV cache requirements. The Phi-3.5-MoE

uses a Mixture-of-Experts architecture where, out of 16 expert networks, two

are activated at any one time to achieve efficiency. Training is focused on high-

value, filtered data that emphasize reasoning and logical competencies rather

than low-value information. Post-training involves supervised fine-tuning

(SFT) and direct preference optimization (DPO), enhancing safety, reasoning,

and user interaction capabilities. These models showcase adaptability,

efficiency, and on-device performance, suitable for both research and practical

deployment.[47]

IV. Llama3 - The Llama 3 model family builds on the dense Transformer

architecture of its predecessors, Llama and Llama 2, focusing on improved data

quality, diversity, and training scale rather than architectural overhauls. Key

enhancements include Grouped Query Attention (GQA) with 8 key-value

heads for faster inference and reduced key-value cache sizes, and an attention

mask that isolates self-attention within documents, particularly effective in

long-sequence pre-training. Llama 3 has a 128K tokenizer (28K more than last

time, and entirely covers non-English languages), with better compression rates

and multilingualism without hurting English performance. The model uses

Rotary Positional Embeddings with a higher base frequency of 500,000 which

allows for context lengths of up to 32,768. Architectural details differ by size:

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 38

the largest, 405B model, has 126 layers, a hidden dimension of 16,384, and 128

attention heads. Training achieves near-compute-optimal scaling, utilizing 3.8

× 10²⁵ FLOPs, ensuring robust performance across diverse tasks.[48]

V. Moondream - Moondream is a 1.6-billion-parameter language model

developed by Vikhyatk, combining the works of SigLIP Phi-1.5 with the vast

training dataset of LLaVa. This model has been developed with research

applications in mind, strictly for non-commercial use, hence being an important

asset in the academic world. The architecture represents the blend of state-of-

the-art techniques combined with quality datasets, thus showcasing a

commitment to advancing the frontier of AI. Moondream's objective is to

establish a touchstone for efficient computation, innovation, and artificial

intelligence development, reinforcing its role as a significant tool for advancing

the field. [49]

VI. BakLLaVa - BakLLaVA is a VLM developed through a collaboration between

LAION, Ontocord, and Skunkworks AI. Based on the Mistral 7B base model,

this VLM has been expanded by the LLaVA 1.5 architecture for further

improvement. Designed for efficiency, BakLLaVA integrates smoothly with the

llama.cpp framework, offering developers a faster and more resource-friendly

alternative to models like GPT-4 with Vision capabilities. This innovation

underlines its great potential for real-time applications and scenarios where

computational resources are limited, hence making it very powerful for visual

and language understanding. [49]

VII. MiniCPM - MiniCPM focuses on the most efficient training of small language

models to be deployed rapidly on end devices using Model Wind Tunnel

Experiments (MWTE). Three key aspects that MWTE probes are hyper-

parameter scaling, optimal batch size, and learning rate stability. The model

leverages Tensor Program techniques for stabilizing scaling across different

model sizes and thus improves loss prediction accuracy without extensive

tuning for each scale. Experiments on batch size show that optimal batch sizes

minimize loss while balancing resource utilization, using a modified approach

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 39

from Kaplan et al. MiniCPM's experiments on learning rate show that a

consistent learning rate of 0.01, despite model scaling, yields the lowest loss

across different model sizes. These insights into hyper-parameters, batch size,

and learning rates enable efficient training and scaling of SLMs, providing a

foundation for larger models, improving both computational efficiency and

model performance during training, and ensuring that optimal parameters can

be applied to LLMs as well.[50]

The category choice for the model depends on several aspects, such as the complexity of the

dataset, available resources, and desired accuracy. Classic models are simple and interpretable;

neural network-based models bring state-of-the-art performance to complex visual data, while

VLMs represent the frontier of AD by combining vision and language to gain a nuanced

understanding of anomalies. This will surely call for a wide-based review of models across

these categories to ensure the most feasible solution for plant health monitoring systems.

2.4 Summary

Literature reviews emphasize that previous works on plant health monitoring were suffering

from significant limitations, mainly idealized approaches that do not match real-world

agricultural environments. Such challenges include reliance on small manually labeled datasets

and the use of close-up or cropped images that limit the applicability of these methods in

dynamic farm settings. Additionally, existing models often overlook environmental variations

like weather, plant growth stages, and diverse backgrounds, which are critical for real-world

robustness.

In this respect, the proposed project adopts an AD approach using real-world video footage

from ginger plantations. Training models with images of healthy plants would allow them to

detect deviations from learned patterns, thus finding anomalies that would enable early disease

detection without requiring a large amount of labelled data. Video-based data captures realistic

conditions, including motion blur and environmental variability, enhancing the model's

robustness and applicability in practical farming scenarios.

The review also points out that suitable AD detection models should be selected by

comprehensive evaluation. AD models can be divided into traditional methods, neural network-

based approaches, and advanced VLM. Traditional models are simple and interpretable but

have difficulties in high-dimensional data. Neural network-based models do well in processing

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 40

complex visual data but require a lot of computation resources and big training data. VLMs are

the latest development in the field, integrating vision and language to allow for contextual AD,

but require highly sophisticated infrastructure.

This project combines some of these approaches to lay emphasis on practical applicability and

robust model evaluation in an attempt to bridge the gap between theoretical research and

practical implementation of plant health monitoring.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 41

Chapter 3

System Methodology/Approach

This chapter gives an overview of the overall methodology adopted to design and implement

the plant health anomaly detection system. It summarizes the significant steps adopted for

developing the system, which vary from data acquisition and processing to model creation,

system integration, and output generation. Each module of the system—such as the anomaly

detection model, database, API, and user interface—is explained in terms of its aim,

functionality, and communication with other modules. The methodology further explains tools,

frameworks, and methods used to guarantee the system is scalable, correct, and fit for

agricultural applications in reality. The scientific methodology spells out how the system was

produced step by step.

3.1 System Overview

The proposed plant health anomaly monitoring system here is deployed in a modular manner,

where one module can run independently but part of a whole pipeline. Four primary modules

form the system: Anomaly Detection Model, Database Module, API Module, and User

Interface (UI). A block-by-block design facilitates flexibility, maintainability, and scalability.

1. Anomaly Detection Model

The Anomaly Detection Model is the core analytical engine of the system. It accepts

input plant images or video frames, extracts features, and applies an unsupervised

learning algorithm to detect anomalies that may indicate plant health or disease. The

model can detect subtle, out-of-distribution variations without labelled data.

2. Database Module

The Database Module is responsible for storing all useful information, raw input videos

or images, and processed results (e.g., heatmaps, anomaly scores) as well as user

information, and system logs. It maintains structured and manageable information to be

used for analysis, audit, and potential future retraining.

3. API Module

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 42

The API Module is the interface layer with the backend system and external

components, including the UI and third-party services. The API Module provides

RESTful endpoints for operations such as submission of data, fetching the detection

results, and system status inquiry. Interoperability and integration into other agri-

monitoring platforms are made possible by the modular API design.

4. User Interface Module

The User Interface (UI) Module is a user-friendly platform on which users can engage

with the system. Upload plant data, run anomaly detection processes, and view output

results in the form of heatmaps and anomaly scores. The interface is designed for

simplicity and accessibility to address the needs of technical and non-technical users.

These modules combined provide a robust platform that can monitor plant health in real-time

or batch-wise, enabling early plant anomaly detection and proactive crop management.

3.2 Data Collection and Preparation

The data set used in this study was built from real-world observations of ginger plants, amassed

over an extended growing period and prepared for the purpose of unsupervised anomaly

detection. The preparation is explained in a series of key steps, as follows.

1. Data Acquisition

Data was accumulated in collaboration with a local ginger farmer over the period from

week 3 to week 20 of the plant growth cycle. Video images were taken from three

angles: side, 60-degree angle, and top-down. The different angles were intended to

capture the visual structure of the plants in a more integrated way, so that subtle changes

in health, not easily noticeable from a single angle, can be determined. To maintain

temporal consistency, video frames were sampled at a fixed rate of one frame every

three seconds, which yielded images in JPG or PNG format.

2. Image Labeling and Annotation

Pilot studies suggested the need for a small labelled dataset to enable evaluation and

guided preprocessing. Four of the key growth stages—weeks 3, 8, 12, and 18—were

selected for annotation. Two types of labelling were used:

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 43

• Rectangular bounding boxes for plant pot localization.

• Segmentation masks to isolate individual plants, with the first row of plants

targeted consistently for consistency.

Annotations were saved in YOLO format before being reorganized through renaming

and restructuring to suit the system's expected input pipeline.

3. Dataset Variants and Resolution Handling

Two dataset variants were developed during preprocessing:

• Variant A: Entire images were resized to square dimensions. This approach,

though, resulted in too much pixel loss, particularly rendering fine features of

plants less discernible.

• Variant B: Original resolution was kept. Segmentation mask-based cropping

was performed to remove background objects and enforce focus on the plant

object. Week-by-week cropping was also performed to normalize plant size and

position within the dataset. This variant was selected for further processing and

model training.

4. Masking and Background Removal

Segmentation masks were used to generate plant-only images by removing the

background. This helped in training the anomaly detection model on the plant region

alone, with less noise from soil, pots, or surroundings. These masked images formed

the core dataset that was utilized for training and testing.

5. Data Augmentation and Anomaly Simulation

To generate a more varied dataset and simulate potential plant anomalies, the following

augmentation techniques were employed:

• Contrast variations: Reducing and enhancing contrast levels to mimic lighting

anomalies.

• Color channel adjustments: Three sets of random colour variations to mimic

discolouration or pigment loss.

• Grayscale conversion: Used to mimic sensor degradation or environmental

stress.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 44

• Hue shifting: Small upward and downward hue shifts to mimic chlorosis or

abnormal leaf colouration.

These augmentations expanded the dataset and mimicked a range of real-world

conditions that might not be present in the original data.

This structured and multi-stage data collection and preparation process yielded a high-quality,

diverse dataset for the development and evaluation of unsupervised anomaly detection models

in realistic agricultural settings.

3.3 Anomaly Detection Model

Three prominent approaches were explored for evaluating the performance of different

anomaly detection methods in ginger plant health monitoring: traditional machine learning,

deep learning-based models, and vision-language models. Each approach was developed and

tested based on performance, hardware feasibility, and appropriateness for the nature of the

dataset collected. Below is a summary of the methodology, results, and ultimate model

selection.

1. Traditional Machine Learning with PyCaret

The first approach utilized PyCaret, an open-source low-code machine learning library

that provides functionality to explore a broad set of classical models with ease and

speed. Input features were colour- and statistical-based descriptors that were being

extracted at the image level. While PyCaret permitted easy testing and iteration, the

results were different, and performance metrics would alternate between precise and

imprecise classification. The lack of contextual and spatial information in traditional

models limited their ability to detect complex plant anomalies, leading to approximately

50/50 accuracy on test sets. Due to this variability, PyCaret-based models were not

included in the final deployment.

2. Deep Learning-Based Models with Anomalib

The second approach utilized Anomalib, an open-source deep-learning library

developed by Intel for industrial-strength anomaly detection. Anomalib offers a

collection of pre-trained models tailored to unsupervised anomaly detection with

normal-only training data. Training is done by providing only healthy (normal) plant

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 45

images as input to the model, while testing includes both normal and anomalous

samples. 50% of good and bad samples were randomly selected for testing to verify

each model's performance in distinguishing between in-distribution (normal) and out-

of-distribution (anomalous) inputs.

Among the models listed in Anomalib, the following five were shortlisted based on

promising initial performance:

• CFLOW

• FASTFLOW

• PatchCore

• Reverse Distillation

• STFPM

Each model has specific strengths and weaknesses with varied capabilities of anomaly

detection and localization. Their disparity in performance is governed by low-level

architectural design choices and feature extraction processes. To further boost general

detection accuracy and robustness, the input dataset was again optimized through

selective pruning as well as carefully engineered augmentation procedures. These

changes aimed at aligning the data with each working mode of each model more

appropriately. A detailed explanation of the working mechanism of each model is given

in the Literature Review.

3. Vision-Language Models with Ollama

The third approach tested the use of vision-language models (VLMs) with the Ollama

system, which facilitates the use of light, pre-trained AI models on local devices. The

aim was to employ semantic comprehension to detect anomalies that are not necessarily

visually evident but can be inferred contextually. The output was inconsistent and

usually unpredictable, however, owing to hardware limitations and the generic nature

of pre-trained models at hand. Similar to the traditional approach, model output showed

approximately 50% reliability in detecting real plant anomalies. VLMs were thus not

selected for deployment.

To recapitulate, deep models were chosen based on Anomalib to be resistant, scalable, and

yield confident outputs in a manner of being unsupervised. Utilizing the models, trained on

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 46

data samples of the healthy, only allows the system to mark structurally or visually defective

plants as diseased confidently, without rigorous labelling of disease status. An evaluation and

final selection process with an end were established to ensure the final choice of model

structure abides by the practical demands of real life along with agricultural surveillance goals.

3.4 Evaluation Metrics and Testing Conditions

This outlines the testing and evaluation scenarios that have been used to assess the performance

of the anomaly detection models. It includes the training configuration, such as the loss

functions, stopping criteria, and output metrics like AUROC and AUPR. In addition to typical

quantitative metrics, there was also manual inspection for proper anomaly interpretation. The

testing set was defined to reflect the visual variation that happens in the real world through

specific augmentations and the removal of uninformative samples. Readers can anticipate a

complete description of how model output was quantified, interpreted, and authenticated within

the carefully constructed setting.

1. Model Training Configuration

The same setup was employed to train all models to foster conformity across evaluation.

Every model had a maximum of 300 training epochs. Early stopping, nonetheless, was

enabled via a patience of 10 epochs and a minimum loss delta of 0.01, allowing the

training process to terminate as soon as model performance plateaued. The primary

objective function utilized in training was the model-specific loss function from every

architecture within Anomalib, tailored to unsupervised anomaly detection tasks.

2. Quantitative Evaluation Metrics

Two main performance metrics were generated by every model:

• Image-level AUROC (Area Under the Receiver Operating Characteristic

Curve): It is utilized to evaluate how well the model can distinguish between

normal and abnormal images.

• Image-level AUPR (Area Under the Precision-Recall Curve): It is utilized to

evaluate the precision-recall trade-off, which is of concern in imbalanced

datasets.

To further measure performance, precision, recall, F1-score, and accuracy were also

manually computed. These were calculated by observing model predictions at face

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 47

value, verifying whether the detected anomalies represented actual visual defects (e.g.,

disease, stress) or were misdetections of non-anomalous less common features such as

background texture, shadows, or pot rims.

3. Qualitative Assessment

With the process of unsupervised learning and very few labelled samples of anomalies,

human visual analysis was crucial in deciding model outputs. It involved checking

whether the anomalies picked by the model had correct visual signatures or else they

were artifacts of such situations as background noises or rare objects not seen during

training. Images, where the anomaly was falsely detected owing to such situations, were

marked as false positives and rectified accordingly. This process enabled better

comprehension of the behaviour of each model beyond numeric measures and also

needed to compute evaluation metrics such as precision and recall correctly.

4. Testing Conditions and Dataset Pruning

Initial attempts at extensive testing across many image variations and metrics were

found to generate no helpful results or cause a negative impact on model training and

assessment. As a result, the dataset was reduced to remove low-impact or misleading

samples that misled the model or added noise to evaluation. Strategic pruning in this

manner helped limit the test scope and improve interpretability of findings.

The final test dataset was classified in the following controlled and real-life conditions:

• Normal Samples: Unchanged images, baseline inputs.

• Contrast Adjustments: Contrast adjusted 0.7, 0.9, 1.1, and 1.3 to cover

fluctuations in environmental illumination.

• Colour Changes: Artificial distortions representing plant stress at varying rates,

grouped under Dying 1, Dying 2, and Dying 3..

• Hue Shifts: Lower hue values of 15 and 30 degrees, creating dry or reddish

visual appearances that are generally indicative of disease.

By limiting the test set to such precise conditions, testing became more focused and

informative. The refined dataset allowed higher correspondence to application goals

under real-world conditions and allowed detection capability assessment to be better

and more fairly measured for every model.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 48

In total, model comparison of anomaly detection employed both quantitative metrics and

qualitative checking to create a well-rounded model performance. Baseline comparability was

established through standard metrics like AUROC and AUPR, but human verification was

necessary to contextualize results within agriculture imaging. Redundant or unnecessary data

pruning helped improve the reliability of testing, and controlled augmentations helped enable

consistency in benchmarking among models. This assessment phase ensured that only models

which could detect interpretable and meaningful anomalies were shortlisted to be tuned and

further developed.

3.5 Activity Diagram

To provide a clear depiction of the overall workflow in the anomaly detection system, an

activity diagram was prepared to illustrate the sequential steps from data collection to anomaly

prediction. The activity diagram illustrates the elementary steps undertaken during system

development and model deployment.

The process begins with video footage donated by farmers, capturing ginger plants from the

side, 60-degree, and top angles for several weeks. The videos are then processed to obtain the

image frames every three seconds. The frames so obtained are annotated manually using pot-

bounding boxes and segmentation masks for the plants. The annotated images are then stored

in YOLO format and named consistently to maintain the dataset intact.

Once annotated, the images are subjected to a series of preprocessing operations. These involve

resizing, cropping, background removal through segmentation masks, and image

augmentations such as contrast adjustment, colour randomization, hue transformation, and

grayscale conversion. These are added to simulate real-world variability and anomalies in plant

health.

Once preprocessed, the images are split into training and test sets. The training set contains

only normal (healthy) plant images, while the test set contains both normal and anomalous

images. The dataset is then fed to selected anomaly detection models where training is

performed using unsupervised learning techniques. Training is to be performed up to 300

epochs with early stopping enabled to prevent overfitting.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 49

After model training, the system proceeds to evaluation, where the trained models are evaluated

on augmented test images. Evaluation involves computing standard metrics such as the Area

Under the Receiver Operating Characteristic (AUROC) and the Area Under the Precision-

Recall Curve (AUPR). There are also manual inspections to understand the model's ability to

localize or reason correctly anomalies, especially in cases where infrequent visual features

(e.g., unusual backgrounds or lighting) may be induced.

The final step is prediction, where the trained model is used to assess new images. The system

gives anomaly heatmaps or binary flags that indicate the presence of potential health issues in

the plants.

The activity diagram in Figure 3.5.1 nicely summarizes this end-to-end process, to convey the

structured methodology utilized in developing and testing the anomaly detection system.

Ginger Plant Health Activity Diagram

Data Acquisition Data Labelling & Annotation Data Preprocessing Model Training Model Evaluation Prediction

Ph
as

e

Record Plant Videos

Extract Frames every
3 seconds

Annotate
Bounding Boxes:Pots
Segmentation: Plants

Export Yolo Format

Augmentations
Hue

Contrast
Grayscale

Colour Manipulation

Crop and Mask

Load, Train, Save

Calculate Metrics
AUROC
AUPR

Accuracy
Precision

Recall
F1 Score

Predict New Image

Figure 3.5.1 Activity Diagram for Ginger Plant Health Detection System

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 50

Figure X: Activity Diagram showing the process flow of the plant health anomaly detection

system, including processes such as video capture, preprocessing, model training, evaluation,

and prediction.

3.6 Summary

Briefly, the system methodology outlines an iterative and procedure-based approach towards

developing an optimal plant health anomaly detection system. From data gathering and

preparation during the initial steps to choosing and evaluating models of anomaly detection,

each step was designed to emulate actual farming circumstances while upholding technical

detail orientation. Through the utilization of both automated methods and human interpretation,

the method ensures not only quantitative performance but also contextual relevance. This

foundation provides the foundation for integrating the chosen model into a broader system

architecture, which is more fully described in the System Design section.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 51

Chapter 4

System Design

The specification on the project to achieve the problem statement. The project is to build a

library on the health monitoring system for the detection of gjnger plant health and disease.

4.1 System Model

This plan of how the software should be operate and how each component works together.

4.1.1 Project Workflow Overview

Figure 4.1.1.1 illustrates the context diagram of the proposed plant health monitoring system.

The system consists of two external components and one system component: Ginger Plant,

User and the Plant Health Monitoring System. The plant health monitoring system is designed

to capture real-time visual data, primarily using image-based inputs to assess and predict the

health status of plants. The system leverages unsupervised learning techniques to detect

anomalies in plant health by learning visual cues such as changes in leaf color, texture, shape,

or other features that may indicate early signs of disease or stress. Once the visual data is

processed, the results are transmitted to the user.

Ginger Plant

User

0

Plant Health
Monitoring

System

Dataset

Images Result

Figure 4.1.1.1 Context Diagram for Plant Monitoring System

There will be a UI to allows users to view real-time results through an application. Users can

obtain the health status of their plants and receive alerts if any visual anomalies or potential

diseases are detected and the region it occurs.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 52

4.1.2 Full System Component

Figure 4.1.2.1 illustrates the key components of the system that we are required to develop.

The system relies on several critical components to function effectively, and these can be

divided into three distinct applications, each serving a vital role in the overall workflow.

Ginger Plant

Database Unit

1.0

Data processing
Unit

2.0

Anomaly
Detection Unit

3.0

API

4.0

UI

User

Download

Read

Dataset

Image and Result

Call and Result

Call and Result

Figure 4.1.2.1 DFD-Level 0 for Plant Monitoring System

The system is integrated with different units that are designed to perform specific tasks and

contribute towards the smooth running of the AD pipeline. All these units collectively

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 53

contribute to efficient data storage, processing, analysis, and user interaction, hence presenting

a complete framework for ginger plant health monitoring.

1. Database Unit

First comes the Database Unit, which serves as the project's file storage system.

Instead, the unit organizes and stores all datasets, trained models, prediction results,

and code in a structured way, not relying on traditional databases. Both historical

datasets and real-time data are organized for easy access, and trained models, together

with results, are stored for later use and analysis. The efficient organization of resources

in this unit supports smooth data flow throughout the system and contributes to its

scalability and maintainability.

2. Data Processing Unit

The second unit is the Data Processing Unit, which develops and processes raw data

coming from the Database Unit into the required format for analysis. It supports various

formats depending on different libraries. For example, it can develop the path of images

as dictionaries, prepare folder structures suitable to be used in Anomalib or generate

Pandas DataFrames for broader compatibility. By handling these preprocessing tasks,

the Data Processing Unit ensures that the raw data is prepared for further processing

and model training.

3. Anomaly Detection Unit

The core of the system is the Anomaly Detection Unit, which hosts the models

responsible for detecting anomalies in plant health. This unit manages the entire

lifecycle of the AD process: training, predicting, testing, and evaluating the models. It

will be integrated with various libraries such as Anomalibto ensure compatibility and

flexibility in model selection. This unit also supports hyperparameter tuning and

evaluation metrics to optimize the models for accurate and reliable predictions.

4. API Unit

The API unit would represent the interface between this external system and the

internal AD models. This provides different endpoints related to various functionalities

like training models, real-time prediction capabilities, or returning results. The purpose

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 54

of the API Unit would thus ensure ease of use as it abstracts the inner process flow of

the system when such facilities or functionalities must be shared by other applications

or users directly.

5. User Interface Unit

The UI unit represents the very last component of the system, which will deliver the

processed results to the end user. This unit takes the form of a messaging application,

implemented through Discord. Users can utilize the system in real-time: they get the

results of predictions and visualizations of detected anomalies right in a Discord

channel. The UI will outline the ROI where anomalies are detected, hence making it

easy for the user to interpret the output from the system and take appropriate action.

This messaging-based approach is accessible and easy to use, considering users who

are used to Discord as a platform for communication.

The system will contain six interlinked units:

1. Database Unit: used for the storage of structured files.

2. Data Processing Unit: loading and formatting of data.

3. Anomaly Detection Unit: managing and using AD models.

4. API Unit: interaction with the system from outside.

5. UI Unit: real-time user interaction over Discord.

All these units together form a cohesive framework that uses machine learning, real-time data

processing, and user-friendly interfaces for the effective and efficient monitoring of the health

status of ginger plants.

4.2 Requirements Specification

For the system to achieve its objectives of monitoring the health status of ginger plants

accurately and efficiently, the following are some of the requirements for each of the six core

units:

1. Database Unit

• The system should have a structured file storage system to store datasets, models,

results, and code.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 55

• The stored datasets should contain historical and real-time visual data for training

and prediction purposes.

• Trained models and results should be saved for reusability and further analysis.

• The system should be able to provide for the effective retrieval and management of

data stored therein for smooth integration with other units.

2. Data Processing Unit

• The system should read raw data from the Database Unit and convert it into the

required formats: dictionaries of image paths, Anomalib-compatible folder

structures, or Pandas DataFrames.

• It should support all typical preprocessing-augmenting, normalization, and resizing

to prepare the data for analysis.

• The unit needs to process data of various formats and structures for different

machine learning libraries.

• Processed data must be accessible to any subsequent components for training,

prediction, and evaluation.

3. Anomaly Detection Unit

• The system shall contain various machine-learning models for detecting anomalies

in the health of ginger plants.

• It should support model training, prediction, testing, and evaluation workflows.

• Users must be able to fine-tune model hyperparameters to optimize performance.

• The unit should feed back model accuracy and predictions to the user for the

assessment of system performance.

• Models should integrate seamlessly with the Data Processing for efficient

operation.

4. API Unit

• The system should include an API that will allow external applications or users to

interact with its components.

• The API should provide model training, running predictions, and retrieving results.

• It has to be user-friendly and documented well enough to be easily integrated with

other systems.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 56

• Real-time interaction should be supported by the API to enable efficient processing

of data and AD.

5. UI Unit

• The system should provide a Discord-based messaging application for real-time

user interaction.

• The users should have the capability to see live prediction results, including

segmented images with highlighted ROIs indicating the presence of anomalies.

• Notifications and alerts in cases of anomaly and disease detection in plants, which

may be provided through UI.

• It should ensure an easy and friendly manner so that users can draw inferences from

results and monitor performance.

• All historical data and other visualizations should be viewed through this UI for

necessary decisions to be made.

System Requirements

• The system has to integrate the five units, namely, Database, Data Processing,

Anomaly Detection, API, and UI into one unit.

• Every unit should be modular, operating independently for easy debugging.

• All units working together should enable correct real-world operation.

• The system shall deliver effective and accurate health evaluations of the ginger

plants for early detection of their anomaly conditions.

• Users must have a responsive and intuitive interface to conduct monitoring and

decision-making.

These assure that the system will be robust, modular, and user-oriented to meet the demands

of real-world plant health monitoring and AD.

4.3 Modular Class Design and Code Reusability

One of the greatest strengths of the design approach in this system revolves around modular

architecture, which makes the code more maintainable, reusable, and adaptable for further

modification. All main operations within the pipeline of anomaly detection, ranging from the

pre-processing of data to evaluation and notification, have been encapsulated into contained

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 57

classes exposing easy-to-use interfaces and hiding implementation aspects. What this achieves

is to enable third-party package or model parameter changes by modifying a single class,

without having to modify the remainder of the system.

To enable a clean development process and mitigate technical debt, the following class design

principles were used:

1. Layered Abstraction and External Wrappers

Third-party tools and services, such as pre-trained models, notification bots, or file system

utilities, are wrapped in their classes to conceal third-party logic. A good example is the

Discord.py class, which does all the logic required for sending evaluation feedback or

anomaly notifications to a Discord server. If the Discord API changes, only this class needs

to be changed, and the rest of the system remains functional.

This abstraction reduces coupling and makes external dependencies modular and

substitutable. Certain wrappers may also have dataset converters, augmentation helpers, or

model exporters.

2. Core Pipeline Classes

The core pipeline of the anomaly detection system is structured as a set of logically separate

and purpose-specific classes, each doing a distinct step of the end-to-end pipeline. This

class-based, modular architecture ensures the segregation of duty, well-defined

responsibilities, and uniform maintenance across the entire pipeline. Rather than combining

multiple functionalities into a single component, the system commits each operation—such

as data preparation, model execution, and result analysis—to a distinct specialized module.

This means higher cohesion in individual components and reduces the likelihood of

injecting hidden dependencies or side effects.

By segmenting the system into independent and distinct units, maintainability is greatly

enhanced through the design. Independent writing, testing, and updates can be performed

for each pipeline stage, enhancing debugging and extension. For instance, if a new

preprocessing algorithm or model architecture needs to be added, developers can integrate

these changes directly into the specific module without refactoring or inspecting other parts

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 58

of the codebase. This approach also improves regression testing as changes to one part of

the system are less likely to affect others' behaviour.

Separation of concerns also allows for reproducibility and consistency in the performance

of the system. The preprocessing stages ensure the standardization of input data before it

reaches the model-making process, minimizing variability and curbing the possibility of

data leakage or format inconsistencies. Likewise, the model execution module encapsulates

training, inference, configuration management, and model storage logic—enabling

replacement or tuning of various anomaly detection approaches as desired. The evaluation

phase is standalone responsible for the analysis of results, generation of metrics, and

detection of cases that need human validation. Every component executes its task in a

predictable and controlled way, which leads to a stable and transparent pipeline.

This design strategy not only keeps current development straightforward but also lays the

groundwork for future scalability. New models, metrics, or diagnostic tools are easily added

by extending or replacing one or more modules. If research advances or system

requirements shift, the modular design guarantees that the system will be flexible and

resilient. Additionally, such an architecture is ideal for collaborative development, where

different team members or contributors can focus on specific pieces without repeating

efforts or creating integration problems.

Lastly, clear, well-differentiated core classes ensure that the anomaly detection pipeline is

technologically sound and resilient but also easily deployable in the long term in research

and real-world environments. It allows the system to naturally develop while possessing a

clean, testable, and comprehensible codebase.

3. Unified High-Level Interface for Integration

To allow seamless interaction with the anomaly detection system, one unified high-level

interface has been used to capture the complexity of internal functionality. The interface

serves as a one-point entry to downstream applications to facilitate integration through

activities such as integrating the workflow of anomaly detection into a web dashboard,

integration with API-based applications, or embedding within automated pipelines for

batch testing and processing.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 59

Instead of relying on developers to acquire and manipulate the internal machinery of each

processing module—such as data preprocessing, model setup, training, prediction, and

model evaluation—the interface provides directly accessible, reasonable methods that

abstractly orchestrate these pieces together behind the scenes. Not only does this keep

headloads of developers, especially newcomers to the project team, lower but also reduces

error in misuse, ensuring reliability in different modes of deployment.

The interface at the top level is designed to prioritize usability and modularity. By

encapsulating low-level interactions with the core pipeline classes inside straightforward

function calls, the system allows the common workflows (such as model training, inference

on new data, or execution of evaluation routines) to be invoked for with minimal code and

without explicit control over low-level settings. Furthermore, the abstraction layer supports

pre-defined parameter presets, environment tests, and logging facilities, which enable

standardized execution across different environments and use cases.

It also improves maintainability and extensibility. With time, for example, new anomaly

detection models, metrics, or notification channels, the joined interface can be added

without modifying how the outside systems use it. The attached services and legacy scripts

keep running as long as the interface contracts are not being violated, which reduces the

possibility of system-wide refactoring or compatibility issues.

Secondarily, the unified interface matters to enable testing and continuous integration. Its

modularity makes it easier to be internally mocked for unit or integration testing, and its

uniformity allows repeatable automated experiments or benchmarking. This kind of

dependability is particularly important in research applications where reproducibility takes

centre stage or in production systems where reliability and accuracy come first.

Overall, the integrated high-level interface brings the system from a collection of technical

modules and transforms it into a cohesive and usable tool. It ensures that anomaly detection

functionality can be easily deployed, scaled, and customized for any number of practical

and research-based uses without sacrificing flexibility or control.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 60

4. Scalability and Future Adaptation

The system has been thoughtfully designed with scalability and adaptability for the future

as its core principles, making it transition easily in light of new demands or technological

shifts. From incorporating additional anomaly detection models, employing advanced data

augmentation strategies, to using cloud-based storage solutions, the system provides for

easy growth with minimal disruption. This flexibility is made possible to a large extent by

the modular class design, where new pieces can be added with little or no modification to

existing modules.

At the centre of such flexibility is the use of base classes and their adequately documented

interfaces. The introduction of new functionality is achieved by inheriting existing base

classes, or new logic can be introduced by following the documented patterns within the

system architecture. This makes future updates significantly less complicated as the

underlying architecture is not meddled with and new components are just added or replaced

as and when the need arises. If, for instance, a new, higher-performance anomaly detection

model comes out, developers can integrate it smoothly by declaring the correct methods

and pointing to it in the existing pipeline without needing to modify other parts of the

system.

Also, the system has been designed to support rigorous testing features. Regression tests

and unit tests are supported natively, allowing a single module to be tested independently

using mock inputs. With this, any modifications done to the system—whether they involve

bug fixes, performance improvements, or adding new features—do not inadvertently affect

the overall performance. Such isolation support for testing is extremely critical in the role

of maintaining reliability as the system becomes larger to handle more data, complex

models, or multiple use cases.

This object-oriented modular paradigm not only ensures the integrity of the system

increases but also ensures long-term sustainability. The architecture enables seamless

incorporation of new research results, tools, or techniques in such a manner that the system

remains relevant and adaptable in an evolving field. From a release to a product or the

porting of the system to several research environments, the scalable design allows upgrades

and additions to be accomplished with as little friction as possible.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 61

Briefly, the system scales and adapts with ease because it is built modular and class-based.

It becomes safe for engineers to make improvements, introduce new functionality, or

address shifting requirements without fear of destabilizing another part of the system.

Future-proofing is achieved by keeping the system stable as it is now while enabling it to

be robust enough to handle future challenges or opportunities that may arise.

For detailed code examples, method listings, and structure of each class, refer to the class

implementation readme page. [51]

4.4 Software and Packages Used

The below software and packages were selected to implement the anomaly detection system

with maximum performance, flexibility, and scalability. Every one of the tools was picked

based on its ability to accommodate the specific requirements of the project, from the basic

anomaly detection operations to system integration and user notification.

4.4.1 Software

• Python 3.11.9: Python is the primary programming language of the system. Version

3.11.9 was selected due to its performance enhancements, increased stability, and

backward compatibility with most machine-learning libraries. The dense library

ecosystem combined with the widespread use of Python in data science makes it an

ideal platform upon which to develop advanced machine learning and anomaly

detection systems. The readability and flexibility of the language also contribute to

simplifying development complexity, allowing for easy debugging and tuning through

iterative testing cycles.

• Discord: Discord is utilized for notification and communication in the system. It is a

notification system in which results of evaluation, anomalies, and status updates are

published. Stakeholders are notified in a timely fashion of significant events, for

instance, when an evaluation is complete or when there are anomalies. The use of

Discord enhances real-time communication and provides an easy-to-use interface for

system notifications that improves user experience and system operation efficacy.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 62

4.4.2 Python Packages

• Anomalib: Anomalib is a specialized Python library for anomaly detection that

provides a collection of pre-trained models and utilities to facilitate unsupervised

anomaly detection on visual data. Anomalib is utilized in this project as the primary

tool for model training and inference. It accommodates different state-of-the-art

anomaly detection models like STFPM (Spatiotemporal Flow Prediction Model) and

PatchCore, which are critical to identifying abnormalities in plant health using video

and image data. The adaptability of Anomalib allows the system to easily transition

between models, which means one can experiment with different methods of plant

health detection and fine-tune configurations depending on performance measures.

▪ Model Training and Testing: Modularity in Anomalib allows a straightforward

model interchange, so it is possible to experiment with diverse strategies without

implementing major modifications into the codebase. As a demonstration, the

system can change from the STFPM model to PatchCore, and even between

training, testing, and anomaly detection through a simple interface for

accommodative adjustment of the system to divergent conditions or specifications.

▪ Preprocessing of data: In addition to model-oriented functionality, Anomalib also

provides essential preprocessing tools for the data. These include masking, resizing,

and augmenting the training image and video data to ensure that the data set is

equally prepared and formatted.

• Discord: The Discord library is utilized for providing real-time notifications to a given

Discord server, which is a simple and effective way to alert users or stakeholders of

critical events, such as model testing completion or detection of anomalies. Discord

notifications are especially useful in keeping the team informed of the system's

performance without any need for manual intervention.

▪ Real-time Alerts: For instance, the system will automatically notify through

Discord when it finishes training a model or performing an inference task, alerting

users about the completion status and evaluation results such as AUROC scores,

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 63

accuracy, or number of anomalies detected. Such integration keeps stakeholders

informed at all times regarding the system's performance.

▪ Integration with Model Evaluation: DiscordNotifier class is closely coupled with

the ModelEvaluator component, which handles model output. Once an evaluation

has been finished, the system sends a message to a given Discord channel, including

a summary of important performance metrics, e.g., accuracy, precision, recall, or

AUROC. This is especially useful for monitoring in research or production settings,

where timely insight is essential.

• OpenCV: For image and video processing operations in the system, OpenCV was used

to handle various preprocessing activities. OpenCV is used for extracting frames from

videos, resizing, masking, and segmenting images. OpenCV's flexibility allows the

system to efficiently handle image transformations such as applying filters, resizing

images, and handling more complex operations like object detection or image

enhancement. This is particularly significant in preprocessing steps where raw video

recording information is converted to useful input formats for the model. OpenCV's

simplicity in integrating with other libraries and complete collection of image

manipulation functionality position it as a key component within the pipeline. It also

provides the performance that can handle processing big data sets, which is crucial in

real-time anomaly detection systems.

4.4.3 Other Considerations

• Scalability and Extensibility: These selected tools are not only useful under the current

infrastructure of the system but are very scalable and can be easily extended to support

upcoming changes. Any new anomaly detection algorithms or complex methods can be

easily incorporated into the existing system by extending the corresponding base

classes or adding new logic. For instance, if there is a new anomaly detection algorithm,

it can be integrated with minimal disruption to the other components of the system.

Modularity afforded by toolkits like Anomalib and Flask means new components can

be added without necessarily complicating the system.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 64

• Cross-Compatibility: With the use of Python and the most widely used libraries like

Flask and Anomalib, there is an assurance that the system will be compatible with most

environments and platforms. The system may be hosted in various servers, deployed in

various cloud environments, and augmented with additional tools such as cloud storage

for data processing or additional notification services.

These packages and software tools act in concert with each other to form an integrated, agile,

and elastic system that can identify anomalies in plant health data. Utilizing established,

widely-supported technologies, the system is robust in use and flexible in a way that allows it

to extend in the future.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 65

Chapter 5

System Implementation

The system implementation part provides a thorough description of the configuration and

deployment process of the anomaly detection system. It outlines the steps needed to set up the

project environment, e.g., installing dependencies, installing the necessary software, and

combining the various elements used in the pipeline. The implementation process is scheduled

to ensure smooth deployment, from preprocessing the data to testing the model, and includes a

demonstration of the functioning system with sample input data to display its operational

output.

Issues encountered during the implementation phase are also tackled, citing issues such as

dependency management, model tuning, and data preprocessing complexities. The issues are

solved to ensure the system's robustness and reliability. In addition, the section provides

remarks about the overall performance of the system, pointing out locations where future

improvements or optimizations would make the system even more scalable and responsive in

real use. The objective of this section is to provide an explicit instruction guide for installing,

running, and debugging the system, encouraging simplicity and effective deployment to varied

environments.

You can refer to the original repository for all the information here.[52]

5.1 Hardware Setup

The development, training, and evaluation of the anomaly detection system were conducted on

a local machine with the following hardware specifications:.

• Processor: AMD Ryzen 7 6800H with Radeon Graphics

• Memory: 16 GB DDR5 RAM (4800 MT/s) – 8 GB utilized during model training and

inference

• GPU: NVIDIA GeForce RTX 3060 Laptop GPU (6 GB VRAM)

• Storage: 1 TB SSD

• Operating System: Windows 11 (64-bit) x86-64

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 66

This hardware setup is a mid-range consumer-grade machine that is capable of handling the

computational demands of the anomaly detection system. The large count of cores and multi-

threading capability of the AMD Ryzen 7 6800H processor enabled efficient parallel

processing of tasks like frame extraction, data augmentation, and preprocessing. As only 8 GB

of the 16 GB RAM was used in the model training and inference processes, this setup offered

a compromise between computational power and memory, typical for consumer-level

hardware.

The inclusion of the NVIDIA GeForce RTX 3060 laptop GPU provided a very welcome

performance boost for deep learning tasks. With 6 GB of VRAM, it allowed for faster training

and inference of models like PatchCore and STFPM, albeit the GPU capacity remains mid-

range relative to higher-end, dedicated equipment. That aside, it performed well in the project's

context, handling real-time test scenarios with barely any lag.

The 1 TB SSD provided more than ample storage for the datasets, model weights, and result

logs, accelerating overall data retrieval and storage speeds, especially when compared to

conventional HDDs. The SSD also enabled managing the project's large video files and

numerous model configurations easily.

While the system was adequate for the scope of the project, it remains limited by consumer-

grade hardware. The processor and GPU are sufficient for research tasks, but for handling

larger datasets, more complex models, or more computationally heavy loads, the higher-spec

components (such as additional RAM, a higher-end GPU, or a dedicated server configuration)

would perform better. The configuration is ideal for academic and small-scale projects but may

lag when extended to more advanced work.

Despite these limitations, the hardware setup at the consumer level was still capable of

delivering results within an acceptable timeframe for the sake of this study. Additionally, the

system is easily scalable or portable to more powerful cloud-based or high-performance

configurations if it needs to be so for future applications, allowing for possibilities of future

developments or commercial applications.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 67

5.2 Software Setup

To set up the project environment for development and execution, the following software and

packages are required. This includes Python, Git, GitHub Desktop, virtual environment tools,

and all necessary dependencies specified in the requirements.txt file. The following steps

outline the process for setting up the software environment. For more comprehensive

information refer to the ReadMe[53].

1. Python Installation

Ensure that Python 3.11.9 or later is installed on your machine. Python is the core

language used for the development of the anomaly detection system, and the system

relies on Python's robust ecosystem of libraries to handle data processing, model

training, and evaluation.

2. Git or GitHub Desktop

You can clone the repository using Git or GitHub Desktop. Both methods provide an

easy way to obtain the latest project version and ensure that you can pull updates as

needed.

3. Creating a Virtual Environment

It is recommended to create a virtual environment to keep the dependencies isolated

and ensure compatibility with different systems. This is especially useful when working

on multiple projects that may require different versions of libraries.

4. Install Dependencies

Once the virtual environment is activated, install all the necessary dependencies using

the requirements.txt file provided in the repository. This ensures that you have the right

versions of the required packages.

This will install all the required Python packages, including essential ones like

Anomalib, OpenCV, Flask, and Discord, among others. For a full list of dependencies,

refer to Appendix A: Software and Package Requirements.

5. Verification

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 68

After installation, you can verify that all dependencies are properly set up by running a

sample script or checking the installed libraries using:

pip freeze

This will list all the installed packages along with their versions, allowing you to

confirm that the setup was successful.

By following these steps, you will have a fully configured environment that is ready for running

the anomaly detection system, ensuring that all dependencies are in place for the system's

proper operation.

5.3 Setting and Configuration

This section presents all the settings necessary for dataset preparation, system parameter

tuning, environment variable management, and integration with the Discord bot. Each part of

the system must be well configured to provide real-time interaction with the anomaly detection

system during training, testing, and seamless execution. The project is developed with

maintainability, reproducibility, and real-world deployment in consideration. This part also

talks about compatibility problems and requirements for the system to perform well, especially

regarding Anomalib and platform-dependent permissions. For more comprehensive

information refer to the ReadMe[53].

5.3.1 Dataset Configuration

To load and execute the anomaly detection model properly, the dataset needs to be organized

into a well-formed directory tree. Training and test datasets need to be split into the following

folders under the root directory, i.e., datasets and ensure there is train, good and bad folder.

The names good and bad for the directories and train are called out within the

anomalib_train.py file within the TrainObject initialization block.[53]

The dataset is processed by the function DatasetUnit.AnomalibLoadFolder in dataset_lib.py,

which is in charge of folder parsing, preprocessing, and loader instantiation. Customizations

such as input normalization, resizing strategy, or grayscale support can also be done in that

function. Make sure all images are of compatible formats and have the same resolutions to

prevent preprocessing errors.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 69

5.3.2 System Configuration

This configuration does not use a "patient epoch" or early-stopping. Instead, it relies on good

dataset organization and static settings defined in the training pipeline. These are set primarily

through two files: anomalib_train.py and dataset_lib.py.

• The num_workers parameter controls concurrency of the DataLoader. A high value

can be used on multiprocessor machines to improve data loading performance.

• Training and test batch sizes are also defined in the Folder constructor inside the same

method. They can be tuned by GPU memory or RAM constraints, especially when

dealing with high image dimensions or deep networks.

• Resizing of images is defined in ImageInfoObject in anomalib_train.py. Currently, it

is 256x256 pixels by default. Ensure that the images in your dataset can be resolved to

your preferred size to avoid distortions and memory overflows.

• Due to Windows' multithreading and I/O limitations, training scripts should all run

using privileged mode. Failing that, the app might not create worker threads or use

system resources that come with reading a file concurrently.

5.3.3 Environment Variables

All bot tokens and webhook URLs used by the Discord bot are stored securely in an .env file

in the root directory of the project. This approach keeps secrets out of source code and prevents

accidental exposure.

Create a .env file and include the following entries:

• TOKEN_BOT_GITHUB=<your-bot-token>

• CHANNEL_WEBHOOK_LOG=<webhook-url-for-log-channel>

• CHANNEL_WEBHOOK_PREDICT=<webhook-url-for-predict-channel>

• CHANNEL_WEBHOOK_DEBUG=<webhook-url-for-debug-channel>

• CHANNEL_WEBHOOK_CLONE=<webhook-url-for-clone-channel>

• TOKEN_BOT_GITHUB is used to authenticate the Discord bot.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 70

Webhook URLs are distributed into particular Discord channels for prediction output,

debugging, logging, and cloning commands. Be warned: Never commit or send out your

.env. Such tokens and URLs need to be treated as secret.

5.3.4 Discord Bot Setup

1. Creating a Discord Application

To create a Discord application, visit the Discord Developer Portal and log in to your

account through Discord. Click the "New Application" button to begin, then enter a

name for your application and click "Create." This will begin your project as a Discord

application. Once created, you can view all configuration options such as adding a bot,

setting OAuth2 permissions, and generating credentials. This application forms the

basis for your Discord bot and allows it to join servers, listen to commands, and respond

to channels via the API.

2. Creating Webhooks

Create a webhook for a Discord channel by first going into your Discord server and

looking at the specified text channel whereby you wish to receive messages coming

from the bot. Click on the gear icon next to the channel name to access the Edit Channel

settings. Then, go to the Integrations tab and click on Create Webhook. Name your

webhook and optionally upload an avatar to make messages sent by the webhook

visually recognizable. Copy the Webhook URL created—this URL is important, as it

allows your application or bot to send messages directly to the selected channel. Copy

this URL into your project file under the corresponding key (e.g.,

CHANNEL_WEBHOOK_LOG, CHANNEL_WEBHOOK_PREDICT, etc.). Repeat

this for each channel where you want to have separate webhooks.

5.4 System Operation

The system operation describes how the anomaly detection system operates interactively

through the Discord bot interface. It highlights the initialization process, channel-based

command access control, and the overall workflow from model training to anomaly class

prediction with visual and colour-coded output. Each stage is accompanied by Discord

channels for user communication, logging, and threaded updates in a streamlined manner.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 71

Below is an outline of the major operational aspects, along with representative figures for each

process.

1. System Initialization Configuration

The first task in the system operation is to set up the configuration of the Discord

webhooks and the respective bot-accessible channels. Since the system employs four

distinct webhook channels—log, prediction, debug, and clone—it is essential to restrict

particular bot commands to specific channels. This usability and security measure

ensures that training commands are not executed in prediction channels, and vice versa.

The bot reads the .env file and associates each webhook with its corresponding Discord

channel ID, determining the command set for that channel. This setup also enables

modular usage across various servers or projects.

Figure 5.4.1: System Initialization Configuration for the channel-webhook mapping

visualization

2. Training

Users initiate model training by sending a training command along with a model name.

This command can be executed in the appropriate channel as determined by the bot's

channel validation system. In response to this command, the bot acknowledges the

request by sending a confirmation message and then logs all relevant training actions

(including loading of datasets, epoch progress, and validation performance) to the log

channel. Simultaneously, a new Discord thread for that training session is created,

where real-time discussion and updates are wrapped and structured. Threaded logging

here provides a step-by-step, readable history of training events, model checkpoints,

and status messages.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 72

Figure 5.4.2: Train Command Invocation

Figure 5.4.3: Log Channel Confirmation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 73

Figure 5.4.4: Dedicated Thread Logging for a full walkthrough of the training

workflow

3. Help Command

There is a default ~help command on every channel to assist users by displaying the list

of allowed commands for the specific channel. This assists users in knowing their

current working context and prevents them from accidentally using commands

restricted to other channels. The help message is constructed dynamically depending

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 74

on which webhook is being used and provides real-time guidance without recourse to

external documentation.

Figure 5.4.5: Help Command Output for a sample output in a Discord channel.

4. Prediction Workflow

Prediction has two main steps: setup and image submission. The user initially uses the

setup command to select the trained model to use for prediction. Once the model is

loaded and confirmed by the bot, the user then submits an image using the predict

command. The model executes the image and returns the results along with a

confidence level and classification output.

The prediction output is color-coded to indicate the severity or class of detection:

• Green – Normal: The plant or object is confidently normal, and no anomaly is

detected.

• Blue – Potentially Normal: The sample is almost normal but close to the

boundary and might need monitoring.

• Yellow – Potential Anomaly: There are minor irregularities that suggest the

sample might be drifting towards an anomalous condition.

• Red – Anomaly Detected: There is a clear and high-confidence anomaly

detected in the sample.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 75

Each colour-coded response is presented with annotated images, prediction confidence

scores, and links to the relevant thread for context or next steps.

Figure 5.4.6: Predict Setup Command

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 76

Figure 5.4.7: Predict Command Result

Figures 5.4.8 Visual examples of Green outputs

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 77

Figures 5.4.9 Visual examples of Blue outputs

Figures 5.4.10 Visual examples of Yellow outputs

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 78

Figures 5.4.11 Visual examples of Red outputs

5.5 Implementation Issues and Challenges

During the creation of the ginger plant anomaly detection system, several implementation

problems and issues were brought about by the utilization of third-party software, shifting

frameworks, and uncertainties regarding system design and scale. Among the most basic

challenges was the result of utilizing Anomalib, an extremely efficient but quickly evolving

library for anomaly detection. While Anomalib provides access to several cutting-edge models,

the update frequency tends to also bring compatibility issues along. A couple of the models

that previously were available are now deprecated or in production branches, and there is no

possibility of using those in a production environment without an additional modification.

Therefore, this project required a selective selection of stable versions and the building of an

adaptive structure capable of accepting modification with minimal disruption. But in achieving

this, it limited the range of successful anomaly detection models unless general rewrites of

internal training and inferencing pipelines were performed.

Yet another major contributor was the input/output manipulation required to bridge the gap

between Anomalib's rigid internal processes and the custom use cases needed by the system.

Since Anomalib demands inputs to be provided in a specific format and inference be computed

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 79

in a format not easily applied to asynchronous environments like Discord or Flask APIs, custom

wrappers and interceptors had to be constructed. These features enabled the system to feed

dynamic inputs (e.g., images users upload) into the models and then record the output to

transform it into a suitable form for display on Discord. This included not just common outputs

like confidence scores but also annotated images and colour-coded interpretations for end

users. These personalizations introduced layers of complexity, with the necessity of in-depth

knowledge of Anomalib's codebase and frequent debugging with version updates.

The second principal development challenge was the uncertainty of the project's scope and

outcome. As this was the developer's first experience of creating a production-grade system

with real-time AI inference, Discord integration, and multi-threaded training pipelines, many

design decisions had to be made on the fly. The system initially had a wide-brush stroke plan—

such as providing anomaly detection through a Discord interface—yet no fixed map of how

the individual modules (like model training, logging, user handling, and response prediction)

were to be implemented or scaled up. This lack of clarity failed to enable prior planning for the

system's size, memory requirements, or concurrency issues. It also posed the threat of

architectural mismatches or incompatibilities down the road, especially if demand from users

increases or the project is expanded to handle multiple simultaneous models or more intricate

workflows.

Synchronizing multiple asynchronous systems—Discord bot, Flask API, and Anomalib

training and prediction loops—was also difficult to align thread safety and performance.

Discord and Flask are on separate event loops, and Anomalib's training procedures are blocking

and CPU/GPU-bound by design. Ensuring that such features would be able to coexist and work

together without going into interface lock-up mode or shared resource corruption needed

extensive utilization of concurrency techniques and testing. This was exacerbated by the

limited support and documentation available for using Anomalib and Discord.py

simultaneously.

In general, the deployment of this system was a process of continuous adaptation and

debugging. Despite the technical difficulties and the learning curve, these problems provided

valuable lessons in software integration, real-time AI deployment, and future-proofing and

modularity design. The end system, though imperfect and still in need of future maintenance,

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 80

is a working proof-of-concept that finds a balance between usability, model performance, and

system robustness in an R&D environment.

5.6 Concluding Remark

The deployment of the Ginger Plant Anomaly Detection System has revealed the complexity

and intricacy of integrating various technologies into a singular, working pipeline. In its

essence, the system couples the strong strength of Anomalib for unsupervised anomaly

detection with a Discord-based interaction model to offer a leading, accessible monitoring

solution. Each component—from data preparation and training to inference and result

sharing—was deliberately designed to work together in concert under a unified architecture,

even with the inherent limitations of third-party dependencies and constantly shifting software

libraries.

Through the utilization of a three-tier architecture (interface, processing, and data), the system

compartmentalized its necessary functions to allow modular scalability and management. Flask

delivered asynchronous processing successfully, Discord offered an interactive communication

layer, and Python scripts served as a basis for workloads in anomaly detection. Webhook

configurations, mappings of channel-threads, and tokenized environment variables were

employed to address the issue of managing Discord commands on various channels and

separation of concerns.

While the system in its current state functions as expected, the implementation process

provided valuable lessons. It became clear that flexibility and anticipation are paramount,

particularly when working with ever-evolving machine learning platforms like Anomalib. The

system is designed with extensibility, and it is thus possible to include additional models,

additional support datasets, and optimize interaction mechanisms in the future. Lastly, this

deployment not only achieved the project objectives but also offered a scalable platform for

future innovations in automated plant health monitoring.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 81

Chapter 6

System Evaluation and Discussion

In this chapter, we will examine and evaluate the performance of the developed system by

conducting thorough testing and examining the performance of the anomaly detection models

implemented against their performance metrics. We will cover the testing environment, how

we tested the performance of the system, and the obtained results from the testing phase. This

chapter will also cover the issues faced while developing the system, particularly due to the

dependencies on third-party software and the uncertainty in anomaly detection tasks.

Additionally, we will analyze how far the project objectives were met and talk about the lessons

learned while implementing. Finally, we will conclude by providing an insight into the overall

success of the project and provide recommendations for any improvements and developments

in the future.

6.1 System Testing and Performance Metrics

System testing and performance measurement are key aspects of ascertaining the effectiveness

and correctness of an anomaly detection system. In this section, we provide an overview of the

system's testing process, the performance metrics taken to analyze its performance, and how

the system is tested for its robustness and correctness in detecting plant health anomalies. The

testing process includes several key aspects:

• Dataset: The choice and creation of the dataset are significant elements in determining

the range within which the system can operate at its best under varying conditions. The

dataset should mirror real-world scenarios as much as possible, with variations in the

health of plants and environmental factors.

• Training and Testing Configuration: The training configuration defines how the model

is trained, outlining the specific configurations used to optimize its learning. This

includes details such as the selection of the training set, test set, and if transformations

or augmentations are made to the images.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 82

• Selected Model: The choice of a model for anomaly detection influences the

effectiveness with which it will detect deviations in the plant health data. The model

should be capable of handling real-world data complexity and identifying subtle

changes that could represent disease or stress in plants.

• Description of Metrics: There are various performance metrics for assessing the model's

success at detecting anomalies. Typical metrics like accuracy, precision, recall, F1

score, ROC curves, and AUC provide information on how effectively the model

identifies true positives (correct anomalies) and does not identify false positives or

negatives.

• Visual Inspection: Visual inspection is an important part of system testing, especially

in anomaly detection. By observing output images and visualized results, it is possible

to interpret how well the model has localized anomalies and how the model responds

to different types of inputs, i.e., normal, near-normal, and defective plant images.

Together, they provide a complete overview of the system's capability to detect plant

anomalies, responsiveness to various factors, and overall performance in real-world

applications. The following sections will discuss the dataset details, training setup, models

chosen, performance metrics, and visual judgment results, providing an overall performance

evaluation of the system.

6.1.1 Dataset

In the first phase of testing, significant efforts were made to organize and tune the dataset to

enhance the model's capability to detect ginger plant anomalies. Dataset preparation involved

several key phases, which were crucial for training and testing system performance. Following

is the description of dataset preparation and the transformations conducted to determine its

strength and validity of results:

1. Dataset Composition

The dataset includes images taken over a period of four weeks with their respective

week labels: Week 3, Week 8, Week 12, and Week 18. The images for each week are

as follows:

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 83

• Week 3: 25 images

• Week 8: 65 images

• Week 12: 33 images

• Week 18: 107 images

These images were also divided into training and testing sets, with every third image in

the sequence being selected for the test set.

2. Preprocessing and Cropping

One of the initial problems observed was the non-uniform scaling of images, resulting

in the loss of useful plant features and scale information. To bypass this, we cropped

the images based on the largest region of interest (ROI) each week. This served to retain

and normalize the most prominent characteristics of the plants in the dataset. By taking

the largest ROI, we were able to minimize scale differences that could bewilder the

model, particularly in detecting faint anomalies in plant health.

3. Image Variations for Testing

In the test set, the following variations were added to give a comprehensive evaluation

of the anomaly detection system:

Good images:

• Contrast Adjustments: The contrast of the good (normal) images was

modified by adjusting the contrast factor. The contrast was modified with

factors of 0.7, 0.9, 1.1, and 1.3 to simulate minor environmental changes that

can naturally occur in a ginger farm.

•

Bad (defective) images:

• Hue Shift: Hue shift was utilized to simulate disease or stress. The shift was

applied down 15% and 30% and rotated the hue by 180 degrees, inducing

artificial anomalies in the plant colour.

• Dying Variations: One of the significant challenges in plant disease detection

is handling subtle signs of plant deterioration. To simulate this, three levels of

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 84

hue, saturation, and value (HSV) alterations were created to produce dying plant

variations. The alterations were defined as follows:

a) Variation 1: (10, 50, 50) - Slight alterations in hue, saturation, and value.

b) Variation 2: (20, 70, 70) - Moderate alterations in hue, saturation, and value.

c) Variation 3: (30, 90, 90) - Larger changes, simulating more severe

symptoms of plant decay.

Using the formulae:

Figure 6.1.1.1 Formulae of Dying Variation

This modification created a wide range of abnormal-looking plants, closely

resembling real degradation due to factors such as nutrient deficiency, disease,

or age.

4. Splitting the Dataset

a) Train and Test Set Split: Images were divided into train and test sets, with a crucial

test set choosing approach:

• They chose every third image from the available images for the test set.

• This aided in getting a good representation of images from every week so that

there would be no bias from overfitting the model to certain periods.

b) Evaluation Set: To guarantee that the performance of the model was always

assessed in various circumstances, half of the test set was also assigned as the

evaluation set. This assisted in creating more realistic settings for model validation,

such that the model could be validated on data it had not seen before.

5. Images Use for Training

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 85

It only used normal images to train it so that the model wasn't influenced by any labelled

anomalies during learning. This also enabled the model to learn healthy plant patterns

first before it was exposed to anomalous conditions.

By contrast adjustments and introducing very few changes to the regular images, the

model was rendered more robust to identify even slight changes in the healthy plants,

which would later allow it to identify anomalies more precisely.

6. Model Testing and Anomaly Detection

The divided and preprocessed dataset was also used to validate the anomaly detection

model by applying the transformations on the normal (good) images and incorporating

some other types of anomalies (bad) to represent real-case scenarios. This enabled the

model to detect subtle and gross changes in plant health and functionality.

The contrast, hue shift, and dying variations provided a diverse range of test cases to

assess the model's ability to handle diverse forms of plant anomalies.

This refined dataset and its careful preparation served to ensure the system's ability to

successfully identify anomalies under varying conditions. The issues of scaling,

transformations of images, and dataset splitting were duly addressed, allowing for a more stable

and accurate evaluation of the model's performance in anomaly detection in plant health.

6.1.2 Training and Testing Configuration

Having prepared the dataset, the next most critical task in building a successful anomaly

detection system is establishing a good training and testing regime. This phase is necessary to

ensure that the models not only learn useful patterns in the data but also generalize well to new,

unseen situations without overfitting. The settings chosen in this project are informed by the

demands of the Anomalib framework, real-world hardware constraints, and experimental

objectives of plant anomaly detection using unsupervised learning. This section presents

training and testing settings, such as training parameters, resource utilization, and model

persistence strategy.

Training Configuration

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 86

1. Training Strategy and Early Stopping:

• A loss step scheduler is used in the training process to monitor the model's training

loss over epochs.

• Early stopping with patience of 10 epochs is employed to prevent overtraining and

save computation resources, whereby training will stop if no improvement is seen

after 10 consecutive validation steps.

• Mode is 'min', trying to minimize the loss function during training, and minimum

delta is 0.01, which defines the minimum improvement in loss to be considered an

improvement.

• Verbose mode is enabled to display real-time diagnostics and progress during

training, tracking the learning behaviour and detecting problems early.

2. Thresholding Mechanism and Evaluation Task:

• Instead of a fixed predefined threshold, the system uses F1 Adaptive Thresholding.

It automatically selects the best threshold according to the F1 score, which is a trade-

off between precision and recall and is particularly useful in scenarios of

imbalanced data or blurry anomaly boundaries.

• The task is defined as 'classification', casting the anomaly detection as a binary

problem normal or anomalous which aligns with the format of test data and

simplifies evaluation.

• Performance metrics are AUROC (Area Under the Receiver Operating

Characteristic Curve) and AUPR (Area Under the Precision-Recall Curve). These

metrics are suitable for evaluating anomaly detection models since they are not

affected by class imbalance and provide a general view of performance across all

thresholds.

3. Hardware and Runtime Settings:

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 87

• Maximum epochs is 300, providing ample training time while balancing against the

risk of overfitting. We choose this number since most of the model did not reach

the maximum epochs.

• Device auto-selection (device=auto) and accelerator auto-setting (accelerator=auto)

are used to automatically choose the most appropriate available computing

hardware (GPU or CPU) for computing based on compatibility and performance

regardless of the environment of the system.

• Due to hardware limitations of available hardware, i.e., CPU and memory size, data

loading workers are restricted to 2. This reduces parallel fetching of data but

prevents system crashes and allows smoother runtime during training.

4. Train/Test Split Strategy:

• In this setup, a manual train/test split is enforced by defaulting the split ratio to 0,

providing full control over dataset distribution.

• This option guarantees there is no training and test data leakage between datasets,

preserving the integrity of the test process and ensuring realistic test conditions.

5. Image Preprocessing and Format:

• All the images are resized to 256 × 256 pixels, which is a common input size for

the majority of convolutional models. Standardization also conserves GPU memory

usage and compatibility with all the models realized in Anomalib.

• The images are converted to RGB colour format, which is what the majority of

trained vision backbones expect and which preserves colour information critical to

anomaly detection, such as hue and saturation-based variation in plant health.

• At the end of the training, all models are saved in PyTorch (.pt) format to facilitate

compact storage and easy reloading for inference or further fine-tuning. This also

facilitates future portability and integration into other systems.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 88

Testing Configuration

• Testing is minimalist and realistic, replicating the way the system would be utilized in

the real world in deployment scenarios.

• Test images are shown in the raw form, and there is no preprocessing or transformation

done at test time. This enables the same variations, defects, and environmental

conditions that appear during real-time operation to appear during testing.

• This straightforward test setup achieves two goals: first, it provides a clear measure of

the model's capacity to handle raw input; second, it does not introduce any artificial

gains that would distort the performance metrics.

Overall, this system's train/test configuration is aimed at establishing a controlled yet realistic

environment for model performance evaluation. By sacrificing rigour (in the form of

meticulous parameter tuning and data handling) for ease (especially in testing), this

configuration offers a good foundation for meaningful performance evaluation and reliable

field deployment. It also models real-world constraints such as limited computational resources

and evolving software tools, which makes the system not just effective but also sustainable.

6.1.3 Chosen Model

The selection of anomaly detection models is a key determinant of the overall system's

accuracy, robustness, and practical applicability. Five unsupervised anomaly detection models

from the Anomalib library were chosen for this project based on their strengths, architectural

novelty, and demonstrated performance in earlier research and preliminary experiments. Each

of the models was chosen to play a distinct role in detecting subtle to obvious anomalies under

diverse conditions and test weeks of the ginger plant dataset. Their combination enables

exhaustive evaluation and improves the capability of the system to detect a wide variety of

plant health issues.

The five models that have been selected to be evaluated are:

• CFlow

CFlow was chosen because of its strong performance on difficult plant image datasets

with diverse structures and lighting conditions. Its conditional normalizing flow model

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 89

enables it to learn fine-grained spatial feature representations, making it especially

helpful in identifying differences in healthy and unhealthy plant structures in big

datasets. CFlow showed consistently stable results in preliminary experiments,

particularly in high-resolution plant shape and texture change extraction.

• FastFlow

FastFlow is included because of its speed and real-time inference capability, together

with its stable anomaly detection under different visual conditions. While it does not

necessarily produce the most accurate heat maps, its overall anomaly classification is

good and consistent. FastFlow is a nice speed versus accuracy balance model that would

be suitable for systems requiring quick feedback, i.e., real-time monitoring systems.

• PatchCore

PatchCore is selected due to its stability and versatility across a variety of datasets. It is

a patch-wise feature embedding approach with a memory bank, making it very effective

at general-purpose anomaly detection. PatchCore performs well even when the fine

details are not as salient, and it had a strong resilience to false positives in initial testing.

It is often a "baseline strong performer," making it a valuable component of

comparative studies and deployment scenarios.

• Reverse Distillation

This model is included primarily for its prospects in detecting anomalies such as

shadows, wilting, or fallen-over plants — conditions that are typically more challenging

for normal models. Reverse Distillation relies on a student-teacher framework, where

the disagreement between the outputs of the teacher and student represents potential

anomalies. It is strong in detecting scene-level inconsistencies and subtle changes in

plant posture or environment, which was effective in week 12 and week 18 testing when

plants were collapsing or dying.

• STFPM

STFPM was selected due to its high performance in fine localization of anomalies. It

takes advantage of multi-scale feature matching and can identify very slight deviations

from the learned normal distribution. During visual inspection, STFPM consistently

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 90

produced high-resolution anomaly maps well correlated with areas of interest in

diseased plants. Its accuracy and resolution place it at the top of the models for

individuals interested in fine anomaly localization.

Through the use of this heterogeneous collection of models, the system benefits from the

unique strengths that each one brings. Whereas some of the models, like STFPM and CFlow,

are directed towards pixel-wise high-detail localization, others like PatchCore and FastFlow

offer more general anomaly detection with shorter response times. Reverse Distillation

completes the others by filling in structural and environmental anomalies. Together, these

models offer a broad toolkit for plant health analysis and anomaly detection in a variety of real-

world agricultural contexts.

6.1.4 Explanation of Metrics

To most effectively measure the performance of the anomaly detection models, a diverse set

of metrics was used to ensure both the classification accuracy and ability to generalize to new,

unseen data were properly investigated. The metrics provide insight into the model's decision-

making, particularly when the datasets are imbalanced and the anomaly severity levels. Manual

evaluation was carried out by comparing each prediction output image-by-image against the

ground truth. Note that all the evaluation images were completely unseen to the models during

training so that there could be an unbiased and fair model generalization test.

The following key metrics were utilized:

• True Negative (TN): Number of correctly identified normal (healthy) plant images.

• False Positive (FP): Number of normal images incorrectly identified as anomalies.

• False Negative (FN): Number of actual anomalous images misclassified as normal.

• True Positive (TP): Number of correctly identified anomalous images.

From these values, a variety of derived metrics were calculated:

• Accuracy: Overall correctness of the model:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

• Precision: Proportion of true anomalies among all detected anomalies:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 91

• Recall (Sensitivity): Ability to detect actual anomalies:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

• Specificity: Ability to correctly identify normal samples:

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

• F1 Score: Harmonic mean of precision and recall, balancing both false positives and

false negatives:

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

• False Positive Rate (FPR): Likelihood of misclassifying a normal image as an anomaly:

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃

• False Negative Rate (FNR): Likelihood of missing an actual anomaly:

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁

• Balanced Accuracy: Average of sensitivity and specificity, useful when classes are

imbalanced:

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2

• Youden’s Index (J): A metric that summarizes the performance by maximizing the

distance from random chance classification:

𝐽 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 − 1

• Negative Predictive Value (NPV): Probability that a negative prediction truly

corresponds to a normal image:

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 92

These metrics were vital in interpreting model performance outside binary classification,

delivering insight into over-predicting anomaly models of anomalies, failing to detect weak

instances, and predicting confidence to believe within the true agricultural setting.

Besides manually vetted metrics, two automatically produced metrics from the training phase

were utilized as well:

• AUROC (Area Under the Receiver Operating Characteristic Curve): Assesses the

discriminative ability of the model in separating normal and anomalous samples at

varying thresholds. The higher AUROC indicates better discrimination.

• AUPR (Area Under the Precision-Recall Curve): Most helpful with imbalanced

datasets, examining precision-recall trade-offs.

The values for AUROC and AUPR were recorded during training and indicate performance on

the test split utilized by the training setup. However because these are developed during training

from artificial variations or static test sets, they serve only as secondary pointers and not as the

final source of assessment. The underlying performance analysis was calculated from manual

verification and confusion matrix-based metrics to better emulate the real-world challenges and

model reliability in actual deployments.

6.1.5 Visual Evaluation

In addition to quantitative metrics, visual evaluation also played a critical role in establishing

the real-world performance of every anomaly detection model. This involved using original

cropped-size images every week, allowing the models to predict over a greater number of pixels

and ensuring the unambiguous representation of plant features. Visual inspection was

imperative not just to validate prediction effectiveness but also in determining spatial location

of detected faults—something non-scalar measurements cannot quantify.

For realistic "good" image evaluation, a sample was considered correctly predicted if an

anomaly was not detected in the plant zone. When anomalies were detected by the model in

background areas (e.g., soil, pots, or shadows outside of the plant zone), predictions were not

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 93

regarded as false positives. This prevented the assessment from disproportionately focusing on

the system's ability to detect plant health compared to unrelated image noise.

For "bad" image evaluation, predictions were only considered valid anomalies if the predicted

area overlapped most of the actual anomaly on the plant, say areas of discolouration, distortion,

or wilt. If anomaly predictions were outside the region of interest (ROI) or indicated healthy

plant tissue, they were excluded from performance metrics. This stringent ROI-based

validation ensured that model predictability was specifically linked with a proper semantic

understanding of plant health conditions, not simply pixel-level faults.

With the aid of this visual validation process, evaluation gave precedence to interpretability

and applicability in the real world in a field setup, ensuring models were not just

mathematically sound but visually and semantically understandable when utilized for ginger

plant health surveillance.

6.2 Result

This section gives the comprehensive performance testing results of the system's anomaly

detection on five selected models — CFlow, FastFlow, PatchCore, Reverse Distillation, and

STFPM — on four diverse weekly datasets labelled as Week 3, Week 8, Week 12, and Week

18. Each week's dataset represents ginger plants' cumulative growth and fluctuation in health

obtained under true field conditions. These data sets are chosen specifically to contain a broad

range of plant health states and environment states, with the test conditions consequently being

realistic and difficult. All images used in the evaluation phase here are novel; i.e., they were

not present in training at all and therefore provide an effective basis through which to test true

generalization ability.

Each week's data was subjected to four feature-based test conditions: Normal images, Contrast

Down variations, Hue Downshifts, and Dying Plant simulations. These test cases reflect typical

plant health degradation situations, such as loss of leaf colour, reduced light exposure, and

starting wilting. The aim was to find out the models' ability to effectively pick out anomalies

in both subtle and obvious plant stress conditions. For all these differences, confusion matrices

and a full set of performance metrics were computed to provide both statistical and practical

information regarding each model's performance under stress and normal conditions.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 94

Performance metrics include commonly used classification metrics such as Accuracy,

Precision, Recall (Sensitivity), Specificity, F1 Score, False Positive Rate, False Negative Rate,

Balanced Accuracy, Youden's Index, and Negative Predictive Value. These values were

acquired by manually verifying each model's prediction output against ground-truth labels by

pixel-based visual anomaly inspection. Precautions were taken to distinguish between true

detection and false alarms by removing predictions that were outside the plant region of interest

(ROI), particularly when anomalies were being wrongly detected in the background.

Besides the manually verified metrics, the models also produced automated performance

metrics such as AUROC (Area Under Receiver Operating Characteristic Curve) and AUPR

(Area Under Precision-Recall Curve) while training. These are other metrics of the models'

threshold optimization and classification capability while performing the task of anomaly

detection. Although AUROC and AUPR are useful high-level summaries, manually validated

metrics provide ground-truth confirmation of whether or not the predictions made were indeed

useful and reliable in field conditions.

In visual validation, all test images were kept at their original crop size to supply optimal pixel

area for anomaly prediction. This allowed a more detailed assessment of how well the model

could localize anomalies and how reliably it could identify prominent patterns. Anomaly

detections were only taken as true positives when these were occurring within the ROI of

anomalous plants. Predictions on healthy plants or background noise were not being counted

to avoid unfair inflation of false positive or false negative rates. Healthy image variations like

changes, in contrast, were only included as good detections if no anomalies were being falsely

detected.

The subsequent subsections provide a comprehensive breakdown of results for each week's

data. Each test condition is then preceded by confusion matrix visualization, a table of

performance metrics, and a brief interpretation of model strengths and weaknesses in the

condition. This comprehensive method presents a clear and measurable appreciation of the

system's actual performance and highlights which models and conditions are most responsible

for successful or failed detection.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 95

6.2.1 Weeks Evaluation Results

Week 3

1. Overview

Week 3 assessment is focused on a relatively early stage of ginger plant growth. Various

augmentation images were used for testing each depicting healthy or artificially

unhealthy plant conditions under various visual augmentations. The conditions are

nicely chosen to evaluate the anomaly detection capability of the selected models,

which were trained on normal plant images alone. The Week 3 dataset is comprised of

smaller and thinner-developed plants, which may have unique challenges to proper

anomaly detection by offering fewer visual cues and thinner vegetative cover.

2. Test Conditions and Augmentations

Four test scenarios were prepared for Week 3:

• Normal images: Unmodified crop-sized top-down captures of healthy plants.

Figures 6.2.1.1 Week 3 Normal-Present-Smalles, Medium, Largest Plant Images

• Contrast Up and Down: Images modified using contrast adjustments (0.7, 0.9,

1.1 and 1.3 factors) to simulate environmental lighting issues.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 96

Figures 6.2.1.2 Week 3 Contrast Adjustment 0.7, 0.9, 1.1 and 1.3

• Hue Down: Images where hue values were shifted down (15% and 30% of 180)

to simulate changes in leaf coloration due to nutrient issues or early disease

symptoms.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 97

Figures 6.2.1.3 Week 3 Hue Down 15 and 30.

• Dying Variation: Images processed with HSV transformations simulating leaf

browning and drying using predefined hue, saturation, and value reduction

combinations.

Figures 6.2.1.4 Week 3 Dying Variation 1, 2 and 3

Each of these categories was intended to validate how the models respond not only to

genuine anomalies but also to borderline or ambiguous visual cues.

3. Confusion Matrix

For each test case, model predictions were manually validated against expected

outcomes, and confusion matrices were constructed accordingly. This included detailed

counts of:

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 98

The result as shown below:

Table 6.2.1.1 Week 3 Result

Each confusion matrix provides insight into the model’s sensitivity and its robustness

against visual artifacts that resemble real plant issues.

Figure 6.2.1.5 Week 3 Result STFPM

a. CFlow

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 99

Predicted
Positive

Predicted
Negative

Actual Positive 7 13
Actual
Negative 4 16

Table 6.2.1.2 Week 3 CFlow Confusion Matrix

b. Fastflow

Predicted
Positive

Predicted
Negative

Actual Positive 9 11
Actual
Negative 0 20
Table 6.2.1.3 Week 3 Fastflow Confusion Matrix

c. PatchCore

Predicted
Positive

Predicted
Negative

Actual Positive 9 11
Actual
Negative 0 20
Table 6.2.1.4 Week 3 PatchCore Confusion Matrix

d. Reverse Distillation

Predicted
Positive

Predicted
Negative

Actual Positive 9 12
Actual
Negative 3 17

Table 6.2.1.5 Week 3 Reverse Distillation Confusion Matrix

e. STFPM

Predicted
Positive

Predicted
Negative

Actual Positive 12 9
Actual
Negative 1 19

Table 6.2.1.6 Week 3 STFPM Confusion Matrix

4. Performance Metrics

Based on the confusion matrix, the following metrics were computed:

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 100

model cflow fastflow patchcore
reverse
distillation stfpm

Accuracy 57.50% 72.50% 72.50% 63.41% 75.61%
Precision 63.64% 100.00% 100.00% 75.00% 92.31%
Recall (Sensitivity) 35.00% 45.00% 45.00% 42.86% 57.14%
Specificity 80.00% 100.00% 100.00% 85.00% 95.00%
F1 Score 45.16% 62.07% 62.07% 54.55% 70.59%
False Positive Rate 20.00% 0.00% 0.00% 15.00% 5.00%
False Negative Rate 65.00% 55.00% 55.00% 57.14% 42.86%
Balanced Accuracy 57.50% 72.50% 72.50% 63.93% 76.07%
Youden's Index (J) 15.00% 45.00% 45.00% 27.86% 52.14%
Negative Predictive Value 55.17% 64.52% 64.52% 58.62% 67.86%
AUROC 81.00% 68.50% 79.25% 76.75% 75.75%
AUPR 82.69% 72.28% 83.09% 76.45% 81.79%

Table 6.2.1.7 Week 3 Performance Metrics

These metrics were critical in identifying not just accuracy, but also the trade-offs

between catching all anomalies and avoiding false alarms. Additionally, AUROC and

AUPR scores were extracted from the training phase and included as baseline model

quality indicators.

5. Visual Evaluation Insight

The Week 3 visual evaluation step was insightful regarding the response of each model

to normal and anomalous visual cues, especially when viewed at full crop resolution.

Anomaly predictions were overlaid on the test images in this step, and qualitative

observations were recorded on how well the predictions aligned with the actual plant

conditions.

• CFlow showed consistent alignment with normal samples, often producing

clean prediction masks with little or no false positives. Its behaviour on anomaly

images—particularly under hue shift and dying leaf simulations—was difficult

to interpret. In many cases, the model neither indicated anomalies with

confidence nor showed strong heatmap hints. This is worrying regarding

whether it is responding appropriately or just not registering more subtle

changes.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 101

• FastFlow performed adequately on good and bad cases. On normal samples and

contrast changes, it maintained acceptable prediction clarity. On bad samples,

the model had some ability to highlight suspicious areas, but sensitivity was

low. Visual cues like browning or colour changes were not strongly suggested,

reflecting a lack of discriminative power for mild anomaly transformations.

• PatchCore also followed the same trend as FastFlow, with good performance on

good images and tolerably medium performance on bad ones. On dying

variation and hue-down cases, it could weakly indicate areas of the problem but

was not able to cross the anomaly threshold. Like FastFlow, it appeared to sense

something was wrong but was not confident enough to explicitly call it an

anomaly.

• Reverse Distillation varied slightly in detecting early discolouration and

yellowing even in "good" images, which, though it points to sensitivity, can lead

to false positives on borderline cases. In anomalous cases, especially with dying

variants, the model was capable of detecting affected regions but could be

refined with further tuning to amplify anomaly signal strength. Its performance

is suggestive of a strong underlying ability, but with a threshold that must be

tuned.

• STFPM was the most stable in terms of visual feedback. It accurately

differentiated normal and abnormal samples and consistently emphasized

affected areas under hue-down and dying conditions. However, its performance

on hue-down 15% variation cases was somewhat of a concern. It tended to label

minor hue changes as anomalies even when these were within acceptable visual

limits for healthy plants. Nonetheless, among all models, STFPM had the best

localization and confidence on visual anomaly maps.

Of all the models, hue-down changes were the hardest to evaluate. These sorts of

changes consistently produced anomaly flags on actual "good" as well as "bad"

samples, hiding the model's ability to identify subtle changes in coloration. This points

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 102

out the need for either more complex hue-sensitive augmentation processing or refined

thresholding logic.

Overall, the Week 3 visual evaluation accentuates both the model strengths and

weaknesses present. It confirms the necessity for continued human-in-the-loop

validation, especially where model outputs are responsive to uncertain colour or

contrast variation in real-world plant images.

The Week 3 visual evaluation indicates that while all models possessed a baseline ability to

delineate normal from anomalous plant conditions, they exhibited variable sensitivity and

accuracy. CFlow performed well under normal samples and struggled to make definitive

outputs on anomalous ones, which called its reliability under subtle disturbances into question.

FastFlow and PatchCore were largely consistent but lacked the depth to pick up on less obvious

signs of stress such as early colour shifts. Reverse Distillation yielded good discolouration and

shadow-based anomaly detection with high potential, though, in some good samples, it was

bordering on being too sensitive. STFPM was most consistent, with well-localized and sharp

detections and good trade-off between sensitivity and specificity. Hue-down transformations,

however, exposed a blind spot common to all the models, which tended to confuse even

visually healthy images. These results highlight the importance of tailored preprocessing and

postprocessing methods, particularly for ambiguous or colour-based anomaly cues in plant

health monitoring.

Week 8

1. Overview

In Week 8, the dataset increased significantly in terms of size and visual variety, posing

a more taxing test of each model's capacity for generalization. Week 8 introduced

additional diverse leaf patterns, lighting conditions, and anomaly severities, including

slight yellowing, moderate leaf curling, and increased image complexity. The test

focused on the strength of the model under this more challenging distribution, namely

their performance on both normal and augmented good samples (e.g., contrast

variations) and the more subtle bad samples, such as slight hue variations and early

signs of dying. The visual results allow more subtle observations about model strengths

and weaknesses under field-like conditions, where anomaly signals are practically

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 103

never binary and may lie in visually ambiguous ranges. The Week 8 results are a critical

waypoint for dividing those models that can scale effectively as data complexity grows

and those that require further tuning or domain-specific adaptation.

2. Test Conditions and Augmentations

Four test scenarios were prepared for Week 8:

• Normal images: Unmodified crop-sized top-down captures of healthy plants.

Figures 6.2.1.6 Week 8 Normal-Present-Smalles, Medium, Largest Plant Images

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 104

• Contrast Up and Down: Images modified using contrast adjustments (0.7, 0.9,

1.1 and 1.3 factors) to simulate environmental lighting issues.

Figures 6.2.1.7 Week 8 Contrast Adjustment 0.7, 0.9, 1.1 and 1.3

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 105

• Hue Down: Images where hue values were shifted down (15% and 30% of 180)

to simulate changes in leaf coloration due to nutrient issues or early disease

symptoms.

Figures 6.2.1.8 Week 8 Hue Down 15 and 30.

• Dying Variation: Images processed with HSV transformations simulating leaf

browning and drying using predefined hue, saturation, and value reduction

combinations.

Figures 6.2.1.9 Week 8 Dying Variation 1, 2 and 3

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 106

Each of these categories was intended to validate how the models respond not only to

genuine anomalies but also to borderline or ambiguous visual cues.

3. Confusion Matrix

For each test case, model predictions were manually validated against expected

outcomes, and confusion matrices were constructed accordingly. This included detailed

counts of:

The result as shown below:

Table 6.2.1.8 Week 8 Result

Each confusion matrix provides insight into the model’s sensitivity and its robustness

against visual artifacts that resemble real plant issues.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 107

Figure 6.2.1.10 Week 8 Result STFPM

a. CFlow

Predicted
Positive

Predicted
Negative

Actual Positive 13 13
Actual
Negative 5 16

Table 6.2.1.9 Week 8 CFlow Confusion Matrix

b. Fastflow

Predicted
Positive

Predicted
Negative

Actual Positive 31 22
Actual
Negative 3 50
Table 6.2.1.10 Week 8 Fastflow Confusion Matrix

c. PatchCore

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 108

Predicted
Positive

Predicted
Negative

Actual Positive 33 20
Actual
Negative 0 53
Table 6.2.1.11 Week 8 PatchCore Confusion Matrix

d. Reverse Distillation

Predicted
Positive

Predicted
Negative

Actual Positive 34 19
Actual
Negative 1 52

Table 6.2.1.12 Week 8 Reverse Distillation Confusion Matrix

e. STFPM

Predicted
Positive

Predicted
Negative

Actual Positive 40 13
Actual
Negative 0 54
Table 6.2.1.13 Week 8 STFPM Confusion Matrix

4. Performance Metrics

Based on the confusion matrix, the following metrics were computed:

model cflow fastflow patchcore
reverse
distillation stfpm

Accuracy 57.55% 76.42% 81.13% 81.13% 87.85%
Precision 72.22% 91.18% 100.00% 97.14% 100.00%
Recall (Sensitivity) 24.53% 58.49% 62.26% 64.15% 75.47%
Specificity 90.57% 94.34% 100.00% 98.11% 100.00%
F1 Score 36.62% 71.26% 76.74% 77.27% 86.02%
False Positive Rate 9.43% 5.66% 0.00% 1.89% 0.00%
False Negative Rate 75.47% 41.51% 37.74% 35.85% 24.53%
Balanced Accuracy 57.55% 76.42% 81.13% 81.13% 87.74%
Youden's Index (J) 15.09% 52.83% 62.26% 62.26% 75.47%
Negative Predictive Value 54.55% 69.44% 72.60% 73.24% 80.60%
AUROC 75.99% 76.68% 84.12% 85.62% 80.69%
AUPR 84.75% 75.99% 89.04% 88.83% 77.17%

Table 6.2.1.14 Week 8 Performance Metrics

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 109

These metrics were critical in identifying not just accuracy, but also the trade-offs

between catching all anomalies and avoiding false alarms. Additionally, AUROC and

AUPR scores were extracted from the training phase and included as baseline model

quality indicators.

5. Visual Evaluation Insight

Week 8 visual evaluation provided deeper insight into how effective each model had

been in coping with increasing dataset complexity and higher plant condition

variability. With increasing use of full crop resolution for testing, models were assessed

on the basis of their ability to accurately localize anomalies and avoid false detections,

particularly as increasingly variable contrast and hue changes were included.

• CFlow performed well on normal samples, often generating clean masks

without mistakenly labeling the background. However, its performance in bad

samples was still inconsistent. The model did not conclusively react to many

visually apparent anomalies, especially under slight hue variations or

progressive plant rot. Though its low sensitivity might restrict false positives, it

also raised questions about its general detection confidence and reliability.

• FastFlow did better robustness on normal samples, perhaps due to better

background handling and fine-tuning in prediction confidence. Its anomaly

detection on bad images was slightly improved, with clearer heatmaps around

affected areas. Still, subtle changes such as early-stage decay or slight hue

downshifts continued to be underrepresented. The model appeared to need

stronger anomaly triggers to be confident about classifying an image as

abnormal.

• PatchCore was especially strong on handling normal as well as anomaly images.

It performed excellent discrimination on normal examples without the need for

explicit background filtering. Under anomaly instances particularly with

dwindling variations the model produced logical heatmap activations. While it

failed to cross over anomaly thresholds sometimes on more sublet cases, its

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 110

localization remained consistent with actual areas of interest, hence serving as

a reliable middle-ground candidate.

• Reverse Distillation further improved its interpretability by showing abnormal

regions clearly even in complex plant geometries. It handled dying and hue-

shifted variants more firmly than it had in Week 3 and managed to differentiate

between normal versus suspect plant condition. Its sensitivity also managed to

detect incipient discoloration and minute structural weakness. However, it still

required slight calibration to reduce false positives from benign hue changes.

• STFPM nonetheless performed better than all the rest of the models when it

came to map distinctness and anomaly localization. It highly discriminated

normal from poor samples, often yielding intricate and specific heatmaps even

for very minor changes. Hue-down cases were well taken care of, though at the

15% threshold some of the visual clues were borderline leading to slight

changes at times being classified wrongly as anomalies. Nonetheless, STFPM

still performed better with minimal misclassification and good spatial accuracy.

Hue-down 15% was similarly a recurring problem on all models. This change was

subtle enough that it was within normal limits but was able to mislead some models

into marking them as anomalies. This merely serves to highlight the importance of

better anomaly thresholding logic and possibly re-thinking if such subtle hue changes

would even be considered anomalies under field conditions.

In short, Week 8 visual checks reminded that while all models have improved

predictions, particularly for clear cases, minor plant health changes remain difficult to

address without advanced tuning or domain-knowledgeful boost. STFPM, PatchCore,

and Reverse Distillation proved most helpful, but all models exhibited features that

must be investigated further when determining future deployment strategy.

Week 8's visual evaluation confirms continued improvement in model stability and detection

confidence, with almost all models demonstrating greater capability in responding to more

sophisticated plant structure and denser leaf pattern. CFlow continued its excellence in precise

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 111

predictions of typical samples but remained limited in decisiveness when subjected to subtle

anomalies its indecision in the ability to discriminate minor visual impairments remained an

ongoing shortcoming. FastFlow also fared marginally better in Week 3 with improved attention

and reduced noise in predictions, yet still lacked the depth for routine flagging of borderline

anomalies, especially color-related changes. PatchCore also achieved a fair performance with

virtues in especially "dying" changes where indication was strongly prominent, but did exhibit

some conservatism towards considering gentle deviations as anomalies. Reverse Distillation

demonstrated good visual acuteness, correctly identifying discolored and shadowed regions,

though its heightened sensitivity occasionally picked up non-critical differences, indicating that

thresholding could be improved. STFPM once more outperformed the others, demonstrating

excellent localization accuracy and robust anomaly detection—even in visually ambiguous

cases. However, hue-down 15% conversions remained a problematic case for all but efficiently

still managed to miss some anomalies or detect them falsely in healthy samples. These results

emphasize the importance of high color sensitivity calibration and validate STFPM's leadership

as a prevailing model for accurate plant anomaly detection at this level of development.

Week 12

1. Overview

The Week 12 analysis is based on a more mature stage of ginger plant development

with denser foliage and more organized spatial plant patterning compared to earlier

stages. This week's data set is a variety of test images, normal and synthetically

transformed samples that simulate usual signs of stress such as discoloration, contrast

variation, and wilting leaves. Controlled augmentations have generated these test

samples that mimic real-world environmental variation and physiological

imperfections.

The larger plant size and density in Week 12 provides a more informative set of visual

features, enabling the models to better recognize abnormal patterns. However, this

introduces the added complexity of distracting background features and more complex

spatial relationships between healthy and infected areas. All the anomaly detection

models being compared are still trained using normal plant images only to maintain the

purity of the unsupervised learning framework. The Week 12 exam is a mid-point

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 112

benchmark, gauging how far the models generalize to more visually advanced and

biologically developed plant states without first seeing anomalous cases.

2. Test Conditions and Augmentations

Four test scenarios were prepared for Week 12:

• Normal images: Unmodified crop-sized top-down captures of healthy plants.

Figures 6.2.1.11 Week 12 Normal-Present-Smalles, Medium, Largest Plant Images

• Contrast Up and Down: Images modified using contrast adjustments (0.7, 0.9,

1.1 and 1.3 factors) to simulate environmental lighting issues.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 113

Figures 6.2.1.12 Week 12 Contrast Adjustment 0.7, 0.9, 1.1 and 1.3

• Hue Down: Images where hue values were shifted down (15% and 30% of 180)

to simulate changes in leaf coloration due to nutrient issues or early disease

symptoms.

Figures 6.2.1.13 Week 12 Hue Down 15 and 30.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 114

• Dying Variation: Images processed with HSV transformations simulating leaf

browning and drying using predefined hue, saturation, and value reduction

combinations.

Figures 6.2.1.14 Week 12 Dying Variation 1, 2 and 3

Each of these categories was intended to validate how the models respond not only to

genuine anomalies but also to borderline or ambiguous visual cues.

3. Confusion Matrix

For each test case, model predictions were manually validated against expected

outcomes, and confusion matrices were constructed accordingly. This included detailed

counts of:

The result as shown below:

Table 6.2.1.15 Week 12 Result

Each confusion matrix provides insight into the model’s sensitivity and its robustness

against visual artifacts that resemble real plant issues.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 115

Figure 6.2.1.15 Week 12 Result STFPM

a. CFlow

Predicted
Positive

Predicted
Negative

Actual Positive 6 13
Actual
Negative 7 16
Table 6.2.1.16 Week 12 CFlow Confusion Matrix

b. Fastflow

Predicted
Positive

Predicted
Negative

Actual Positive 15 13
Actual
Negative 6 22
Table 6.2.1.17 Week 12 Fastflow Confusion Matrix

c. PatchCore

Predicted
Positive

Predicted
Negative

Actual Positive 18 10

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 116

Actual
Negative 0 28

Table 6.2.1.18 Week 12 PatchCore Confusion Matrix

d. Reverse Distillation

Predicted
Positive

Predicted
Negative

Actual Positive 22 6
Actual
Negative 4 24

Table 6.2.1.19 Week 12 Reverse Distillation Confusion Matrix

e. STFPM

Predicted
Positive

Predicted
Negative

Actual Positive 23 5
Actual
Negative 0 28
Table 6.2.1.20 Week 12 STFPM Confusion Matrix

4. Performance Metrics

Based on the confusion matrix, the following metrics were computed:

model cflow fastflow patchcore
reverse
distillation stfpm

Accuracy 48.21% 66.07% 82.14% 82.14% 91.07%
Precision 46.15% 71.43% 100.00% 84.62% 100.00%
Recall (Sensitivity) 21.43% 53.57% 64.29% 78.57% 82.14%
Specificity 75.00% 78.57% 100.00% 85.71% 100.00%
F1 Score 29.27% 61.22% 78.26% 81.48% 90.20%
False Positive Rate 25.00% 21.43% 0.00% 14.29% 0.00%
False Negative Rate 78.57% 46.43% 35.71% 21.43% 17.86%
Balanced Accuracy 48.21% 66.07% 82.14% 82.14% 91.07%
Youden's Index (J) -3.57% 32.14% 64.29% 64.29% 82.14%
Negative Predictive Value 48.84% 62.86% 73.68% 80.00% 84.85%
AUROC 7.14% 78.83% 75.77% 73.09% 76.59%
AUPR 75.00% 78.49% 70.91% 71.60% 66.63%

Table 6.2.1.21 Week 12 Performance Metrics

These metrics were critical in identifying not just accuracy, but also the trade-offs

between catching all anomalies and avoiding false alarms. Additionally, AUROC and

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 117

AUPR scores were extracted from the training phase and included as baseline model

quality indicators.

5. Visual Evaluation Insight

The Week 12 visual inspection step provides a mid-stage insight into how each anomaly

detection model responded to ginger plants with moderate growth. The dataset for this

week has varied images, which is a well-balanced mix of normal and abnormal

conditions, along with simulated augmentations such as dying leaves, contrast changes,

and hue shifts. The vegetation at this growth stage is denser and more developed than

in Week 8, with greater shadow and texture complexity, offering subtle challenges to

anomaly detection.

• CFlow provided a decent but sub-par performance on normal images. Its

predictions were occasionally interrupted by background elements, and

prediction masks were noisy. On anomalous images, especially in the dying or

hue-down case, CFlow performed exceedingly poorly, producing indistinct or

useless heatmaps. The model did not highlight critical areas numerous times or

discern between minor visual noise vs. actual anomalies, an indication of

insufficient sensitivity at this mid-stage growth.

• FastFlow mimicked CFlow's performance with normal predictions moderately

well aligned but disrupted by visual noise, possibly plant shadow or minor

textural differences. On the anomaly samples, FastFlow was unstable and less

convincing with faint heatmap signals on obvious cases like dying leaves. Its

inability to flag anomalies confidently or localize them sharply reduces its

practical utility without further tuning or refinement.

• PatchCore, in contrast, performed exceptionally well, particularly on normal

samples where its emphasis on small details made it impervious to background

noise. Rather astonishingly, PatchCore detected plant shadows as anomalies,

which, although technically incorrect, speaks volumes about its hypersensitivity

visually. On dying samples and colour change, the model exhibited clear and

confident detection, outperforming both CFlow and FastFlow by a long way.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 118

• Reverse Distillation provided solid and stable performance in most test cases.

On good images, it maintained low anomaly scores, even though background

interference impacted its consistency to some extent. On bad samples,

especially those with dying plant symptoms, the model possessed decent

capability to highlight anomalous regions, but its responses lacked the

consistency of PatchCore or STFPM. It was equivocal on hue-down at 15%, but

at 30% it began to respond more emphatically, suggesting that its sensitivity

curve is more commensurate with stronger visual changes.

• STFPM continued to be a leading performer. It maintained perfect alignment on

normal samples with no false positives and exhibited excellent precision in

identifying dying and highly altered plants. In hue-down tests, STFPM behaved

as intended it had negligible detection at 15% shifts but became effective at

30%, which means it has a well-calibrated sensitivity threshold. Among all

models, STFPM offered the best localization accuracy and anomaly confidence

combination.

Across the board, hue-down changes remained difficult, particularly at the 15% level

where changes were too subtle for some models to mark as anomalies with any

certainty. Models like CFlow and FastFlow would miss these changes, while PatchCore

and STFPM responded more reliably at larger hue changes. Visual clutter caused by

background noise continued to be a challenge, particularly for CFlow and Reverse

Distillation.

In conclusion, Week 12 confirmed the differences in the way each model handles mid-

stage plant imagery. Whereas PatchCore and STFPM featured high sensitivity and

interpretability, models like CFlow and FastFlow lagged, with unclear anomaly signals

and noisy predictions. This stage demonstrated that as plant size and complexity

increase, model robustness to background artifacts and weak cues becomes ever more

crucial making STFPM and PatchCore the leading candidates for field deployment in

practice.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 119

The Week 12 visual examination demonstrates an improved delineation between normal and

abnormal plant conditions, with all models exhibiting varying degrees of consistency and

finesse. CFlow performed modestly on good samples but lacked consistency, with a tendency

to yield noisy or incomplete heatmaps on anomalous inputs. FastFlow exhibited similar

performance reasonably good for healthy plants but struggled with subtle anomalies, which

resulted in ambiguous predictions. PatchCore was good at precise anomaly localization,

especially on the dying leaf samples, but tended to mistake shadows for abnormal as it was

very sensitive. Reverse Distillation performed very well on both good and defective images,

though being moderately troubled by background artifacts, meaning that it required improved

context filtering. STFPM yielded the most consistent and visually accurate results, with correct

identification of normal and anomalous regions and minimal false positives. Hue-down

transformations nonetheless remained difficult for all models, particularly at lower intensity

shifts, reflecting a continued limitation for colour-based anomaly detection. These findings

highlight again the need for calibrated detection thresholds and more advanced handling of

subtle colour gradations to enhance reliability for plant health monitoring.

Week 18

1. Overview

Week 18 assessment is the most advanced stage of ginger plant growth documented in

this study and contains the biggest collection of images so far. Unlike in the earlier

weeks, the visual scene in Week 18 is compactly occupied by mature ginger plants

placed next to one another, eliminating visible background elements. This offers a

unique test environment wherein anomaly detection models must attend only to fine-

grained visual details of the plants themselves, decoupled from contextual background

separation.

Anomaly localization is harder but perhaps more accurate without non-plant areas and

high plant density, assuming the model can successfully discern subtle intra-plant

anomalies. The test images include original healthy samples and augmented versions

mimicking real-world issues like leaf discolouration, colour variations, and contrast

degradation. The vast amount of images in this set provides a solid foundation for

evaluating model scalability, stability, and sensitivity under conditions highly akin to

full-field agricultural applications.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 120

Because of the homogeneity of the scene and the maturity of the plants, Week 18 is a

critical checkpoint for the performance of anomaly detection models on dense,

complex, and semantically homogeneous data. The performance here suggests the

viability of a model being put into production environments where false positives have

higher costs and accuracy in highlighting plant-level anomalies matters.

2. Test Conditions and Augmentations

Four test scenarios were prepared for Week 18:

• Normal images: Unmodified crop-sized top-down captures of healthy plants.

Figures 6.2.1.16 Week 18 Normal-Present-Smalles, Medium, Largest Plant Images

• Contrast Up and Down: Images modified using contrast adjustments (0.7, 0.9,

1.1 and 1.3 factors) to simulate environmental lighting issues.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 121

Figures 6.2.1.17 Week 18 Contrast Adjustment 0.7, 0.9, 1.1 and 1.3

• Hue Down: Images where hue values were shifted down (15% and 30% of 180)

to simulate changes in leaf coloration due to nutrient issues or early disease

symptoms.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 122

Figures 6.2.1.18 Week 18 Hue Down 15 and 30.

• Dying Variation: Images processed with HSV transformations simulating leaf

browning and drying using predefined hue, saturation, and value reduction

combinations.

Figures 6.2.1.19 Week 18 Dying Variation 1, 2 and 3

Each of these categories was intended to validate how the models respond not only to

genuine anomalies but also to borderline or ambiguous visual cues.

3. Confusion Matrix

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 123

For each test case, model predictions were manually validated against expected

outcomes, and confusion matrices were constructed accordingly. This included detailed

counts of:

The result as shown below:

Table 6.2.1.22 Week 18 Result

Each confusion matrix provides insight into the model’s sensitivity and its robustness

against visual artifacts that resemble real plant issues.

Figure 6.2.1.20 Week 18 Result STFPM

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 124

a. CFlow

Predicted
Positive

Predicted
Negative

Actual Positive 34 13
Actual
Negative 50 16
Table 6.2.1.23 Week 18 CFlow Confusion Matrix

b. Fastflow

Predicted
Positive

Predicted
Negative

Actual Positive 60 28
Actual
Negative 9 79
Table 6.2.1.24 Week 18 Fastflow Confusion Matrix

c. PatchCore

Predicted
Positive

Predicted
Negative

Actual Positive 73 15
Actual
Negative 0 88

Table 6.2.1.25 Week 18 PatchCore Confusion Matrix

d. Reverse Distillation

Predicted
Positive

Predicted
Negative

Actual Positive 64 24
Actual
Negative 5 83

Table 6.2.1.26 Week 18 Reverse Distillation Confusion Matrix

e. STFPM

Predicted
Positive

Predicted
Negative

Actual Positive 71 17
Actual
Negative 0 88
Table 6.2.1.27 Week 18 STFPM Confusion Matrix

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 125

4. Performance Metrics

Based on the confusion matrix, the following metrics were computed:

model cflow fastflow patchcore
reverse
distillation stfpm

Accuracy 40.91% 78.98% 91.48% 83.52% 90.34%
Precision 40.48% 86.96% 100.00% 92.75% 100.00%
Recall (Sensitivity) 38.64% 68.18% 82.95% 72.73% 80.68%
Specificity 43.18% 89.77% 100.00% 94.32% 100.00%
F1 Score 39.53% 76.43% 90.68% 81.53% 89.31%
False Positive Rate 56.82% 10.23% 0.00% 5.68% 0.00%
False Negative Rate 61.36% 31.82% 17.05% 27.27% 19.32%
Balanced Accuracy 40.91% 78.98% 91.48% 83.52% 90.34%
Youden's Index (J) -18.18% 57.95% 82.95% 67.05% 80.68%
Negative Predictive Value 41.30% 73.83% 85.44% 77.57% 83.81%
AUROC 17.88% 91.43% 91.86% 88.78% 97.48%
AUPR 34.60% 93.03% 94.11% 90.46% 97.95%

Table 6.2.1.28 Week 18 Performance Metrics

These metrics were critical in identifying not just accuracy, but also the trade-offs

between catching all anomalies and avoiding false alarms. Additionally, AUROC and

AUPR scores were extracted from the training phase and included as baseline model

quality indicators.

5. Visual Evaluation Insight

Week 18 visual inspection presented a full challenge with the biggest image set so far

which had densely planted ginger crops lined up next to one another with minimal or

no background distractions. This specific arrangement gave a cleaner environment for

the detection of visual anomalies so clearer analysis could be performed of model

behaviour under ideal conditions. Anomaly overlays were tested in full-resolution

images, helping identify the strengths and weaknesses of each model.

• CFlow had unstable behavior. On well-behaved samples, it often produced

streaky heatmaps with sparse false positives, reducing interpretability. Even

when there was a clean background, the model struggled to maintain stability

and tended to mark out non-anomalous regions. However, in dying and hue-

down situations, while it could not produce robust anomaly masks, it rankably

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 126

identified the regions correctly—i.e., it could be utilized as a validation layer,

but not as a primary detector.

• FastFlow delivered mean visual quality, particularly on normal samples where

its output was acceptable despite numerous erroneous highlights. On dying and

hue-down 30% samples, FastFlow was greatly improved, accurately

highlighting regions of interest despite occasionally not extending to the

anomaly boundary. However, a hue-down of 15% remained a soft spot, often

not being highlighted. Overall, FastFlow's ability to localize anomalies made it

visually comprehendible, but lacking in decisiveness about faint anomalies.

• PatchCore performed exceptionally well, especially on anomaly samples. It

detected all dying symptoms confidently and generated consistent heatmaps

with good localization. On great samples, the model flagged some residual pot

structures as anomalies but successful filtering reduced most such false alarms.

Its sensitivity was very useful in dying and hue-down testing. Despite some low-

level misclassifications, PatchCore was one of the most dependable detectors

for Week 18.

• Reverse Distillation was very sensitive, detecting both plant roots and subtle

colour changes. Interestingly, it tended to flag triangular root growth patterns as

anomalies, which are likely normal variations not well represented in the

training data. On dead samples, even when detection scores were below the

threshold, the anomaly regions were flagged—suggesting that with threshold

tuning, performance could be significantly improved. Hue-down performance

at 15% remained poor, but detection on structurally different features like roots

was always robust.

• STFPM was still the most visually accurate model. On normal samples, it had

no qualms about producing clean, blank masks. For dying leaves, it ranked

anomaly regions with high confidence correctly, even for samples that

technically failed detection thresholds. Hue-down 15% changes caused score

reductions, but the anomaly regions were still distinctly highlighted, confirming

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 127

STFPM's localization capability. At 30%, detection became much clearer. Its

ability to consistently favour correct areas, even under slight changes, makes

STFPM the strongest and most consistent model visually.

In general, the Week 18 dataset (high size and low background noise) facilitated a purer

test of anomaly detection performance. Highly context-dependent background models

(e.g., CFlow) did not work well, whereas highly internally consistent models

(PatchCore, STFPM) worked well. Hue-down transformations remained difficult for

most but a handful of models at 15%, though higher variation levels improved

interpretability. Visual intuition this week decidedly supports the use of STFPM and

PatchCore in real-world applications, especially where accurate localization and low

background interference are a top priority.

The Week 18 visual testing illustrates strong model robustness growth, especially against the

high image count of the dataset and low background noise by highly dense plant stands. CFlow

exhibited basic performance on shared samples but remained behind in anomaly cases with

scant visual cues even when they contained blatant defects. FastFlow had decent consistency,

accurately localizing bad sample errors, but also provided some bad classifications on good

samples, showing ongoing sensitivity limitations. PatchCore had strong overall performance,

particularly in dead leaf detection and rejecting irrelevant pot-based outliers, and is rated to be

one of the better-performing models this week. Reverse Distillation performed well, especially

where root abnormalities occurred in plants, although it tended to incorrectly flag normal root

shapes as abnormal on occasion due to lack of exposure during training. STFPM again

performed exceptionally well, correctly identifying gross and fine abnormalities, and even

when detection failed, it still produced high anomaly scores for the right regions. While hue-

down conversions, especially at 15%, remained a weak link for all models, the more explicit

visual organization of Week 18 images further exposed each model's detection rationale. These

findings reinforce the need for clean input data and continue to emphasize the need for diverse

training samples and higher model sensitivity to tiny colour and structural changes.

6.2.2 Project Workflow Overview

To give a summary of the performance analysis, the table below is a summary of each model's

average scores on all the test weeks and anomaly conditions. The measures that encompass

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 128

Accuracy, F1 Score, Specificity, and corresponding diagnostic measures are summarized.

From the table, a glimpse of the effectiveness of each model can be seen as well as a

comparison of overall model quality.

Model Performance Overview

Based on averaged performance metrics for all test setups, STFPM is overall the best model. It

has very high sensitivity and specificity the best F1 Score (84.03%) and maximum detection

power per false positive control. PatchCore is second-best with perfect precision and specificity

but with marginally lower sensitivity and recall. Reverse Distillation ranks third with perfect

performance in the majority of classes but with intermittent sensitivity sacrifices. Fourth is

FastFlow, with decent overall accuracy but poor anomaly sensitivity and hue-based

transformation. Last but not least, CFlow consistently underperformed, particularly in cases of

dying and hue-down conditions, and hence is the least accurate among the models tested.

Appendix A shows the complete table.

model cflow fastflow patchcore
reverse
distillation stfpm

Normal 74.90% 87.92% 100.00% 93.06% 100.00%
contrast down 0.7 65.97% 93.65% 100.00% 92.36% 93.75%
contrast down 0.9 78.33% 91.67% 100.00% 96.67% 100.00%
contrast up 1.1 71.88% 90.93% 100.00% 85.42% 100.00%
contrast up 1.3 71.67% 86.25% 100.00% 87.24% 100.00%
dying 1 47.53% 70.09% 83.01% 78.72% 74.11%
dying 2 22.44% 84.74% 100.00% 72.92% 95.64%
dying 3 33.19% 87.64% 100.00% 91.67% 100.00%
hue down 15 19.98% 24.30% 18.53% 29.13% 29.18%
hue down 30 25.00% 38.13% 42.50% 51.70% 79.39%
Accuracy 51.04% 73.49% 81.81% 77.55% 86.22%
Precision 55.62% 87.39% 100.00% 87.38% 98.08%
Recall (Sensitivity) 29.90% 56.31% 63.63% 64.58% 73.86%
Specificity 72.19% 90.67% 100.00% 90.79% 98.75%
F1 Score 37.65% 67.75% 76.94% 73.71% 84.03%
False Positive Rate 27.81% 9.33% 0.00% 9.21% 1.25%
False Negative Rate 70.10% 43.69% 36.37% 35.42% 26.14%
Balanced Accuracy 51.04% 73.49% 81.81% 77.68% 86.30%
Youden's Index (J) 2.09% 46.98% 63.63% 55.36% 72.61%
Negative Predictive Value 49.96% 67.66% 74.06% 72.36% 79.28%
AUROC 45.50% 78.86% 82.75% 81.06% 82.63%

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 129

AUPR 69.26% 79.95% 84.29% 81.83% 80.89%
Table 6.2.2.1 Average Result on Variable and Performance Metrics

• STFPM – Best Overall Performer

Strengths:

▪ Highest average accuracy (86.22%) and best F1 score (84.03%), showing a strong

balance between precision and recall.

▪ Excellent at localizing anomalies, particularly in dying and contrast variation

scenarios.

▪ High specificity (98.75%) and very low false positive rate (1.25%), meaning it

rarely misclassifies healthy plants.

▪ Best performer in hue-down 30%, a previously difficult category for all models.

Weaknesses:

▪ Slight sensitivity to minor hue shifts (15%), occasionally flagging healthy images.

▪ May require tuning of sensitivity thresholds to prevent false alarms in borderline

cases.

• PatchCore – Strong Precision, Slight Recall Limitations

Strengths:

▪ Perfect precision (100%) and specificity (100%), meaning it only flags anomalies

when it is very sure.

▪ Excellent in detecting dying conditions, particularly in “dying 2” and “dying 3”.

▪ Ideal for applications that require minimal false positives.

Weaknesses:

▪ Moderate recall (63.63%), indicating it sometimes misses subtle anomalies.

▪ Underperformed slightly in hue-down scenarios, where sensitivity was not high

enough to cross anomaly thresholds.

▪ May benefit from greater sensitivity in early-stage or subtle color changes.

• Reverse Distillation – Balanced and Promising

Strengths:

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 130

▪ Consistently strong across many conditions, especially in contrast variations and

dying 3.

▪ Good recall (64.58%) and F1 score (73.71%), indicating a balance between

sensitivity and precision.

▪ Excellent at detecting structural abnormalities and discoloration, including root

shape anomalies.

Weaknesses:

▪ Slight tendency to flag normal plant structures as anomalies, such as triangular

roots, possibly due to limited diversity in training data.

▪ High variability in performance depending on visual input complexity.

• FastFlow – Decent Generalist, Lacking Sensitivity

Strengths:

▪ High precision (87.39%) and specificity (90.67%), indicating a good ability to avoid

false positives.

▪ Performs well in normal conditions and under mild contrast variations.

Weaknesses:

▪ Low recall (56.31%) and limited sensitivity to subtle anomalies like early

discoloration or mild dying.

▪ Poor performance in hue-down conditions, especially at 15%.

▪ Often detects the anomaly regions visually but fails to surpass detection thresholds.

• CFlow – Least Reliable Overall

Strengths:

▪ Performs acceptably on normal samples (74.90% accuracy), often generating clean

maps with minimal false positives.

▪ Good at indicating normalcy rather than flagging anomalies, making it suitable as a

baseline validator.

Weaknesses:

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 131

▪ Lowest performance across nearly all metrics, including recall (29.90%), F1 score

(37.65%), and AUROC (45.50%).

▪ Poor sensitivity to hue-down and dying samples, often failing to flag visible

anomalies.

▪ May lack robustness against color-based transformations or require better threshold

tuning.

This overview supports the requirement of model selection based on overall as well as task-

dependent factors, especially for agriculture anomaly detection where sensitivity to marginal

visual changes becomes a mandate.

6.2.3 Observation Paragraph

During the test weeks, the top-performing week overall was Week 12, during which most of

the models were found to be highly consistent with visual anomalies with the highest possible

detection confidence, particularly for the dying and contrast transformation scenarios.

Throughout the course of the study, STFPM was uniformly superior to other models, producing

the most consistent anomaly localization, the highest average accuracy, and a balanced

sensitivity-specificity profile. PatchCore similarly exhibited exceptional precision, especially

in false negative avoidance, and Reverse Distillation presented a balanced and flexible

performance under varying conditions. CFlow, by contrast, uniformly underperformed,

especially in nuanced transformations, demonstrating shortfalls in its anomaly thresholding.

Among all tested features, hue-based transformations (particularly hue-down 15%) posed the

strongest challenge to all models, more often than not blurring the boundary between

anomalous and healthy appearances. The challenge highlights the necessity of increasing

colour sensitivity as well as enhanced feature calibration to further enhance anomaly detection

robustness under real-world plant imagery.

6.3 Project Challenges

During the construction and testing of the ginger plant anomaly detection system, several

problems of a practical and technical nature cropped up that influenced the system's reliability

and construction timeline.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 132

▪ Inconsistent Weekly Image Data: One of the most salient problems was inconsistency

in weekly image recordings. Variations in camera orientation, illumination, and

stability of recordings led data to differ radically week after week. Such inconsistency

reduced model resistance and made it challenging to compare results reasonably over

test times.

▪ Poor Image Framing: The majority of the images were small or snapped from an in-

close angle, cropping the ginger plant. Since the models depend on full plant context to

detect anomalies, these weakly framed inputs decreased detection performance and

undermined the anomaly localization validity.

▪ Constraints on Hardware: Low computing capacity restricted the training process,

particularly longer model training sessions. The limitations affected the training batch

sizes and the possibility of experimenting with larger or more complex models, causing

the progress to be slower and real-time testing to be limited.

▪ Limited Image Quantity: The data set contained too few images, limiting the model's

learning capacity and generalizing performance across different plant condition types.

In some weeks, there were too few available samples to be assessed validly.

▪ Lack of Anomalous Data: One of the large issues was that there were no annotated

anomaly images present in the training data. This limited the models from learning

actual-world disease symptoms and required them to rely on subtle statistical variances,

which may not have been substantial.

▪ Training Data Affected Test Output: As the training input images did not cover all

ranges of plant orientations and environmental conditions, test outputs were highly

sensitive to direction or position changes. This difference reduced performance

consistency and emphasized diversified training sets.

▪ Time-Consuming Training Process: Training of the anomaly detection model, although

on a small dataset, was time-consuming—particularly when tuning hyperparameters or

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 133

retraining after modification. This slowed down the process of evaluation and the

number of experiments possible within the given timeframe

Despite all these challenges, the project managed to yield valuable insights into the

performance and abilities of unsupervised anomaly detection models for monitoring plant

health.

6.4 Objectives Evaluation

This section examines the extent to which the project met the initial goals defined at the

beginning, considering both the technical implementation and the practical issues faced.

▪ Objectives

1. Objective 1: Detection of Anomalous Ginger Plant was partially achieved. The model

was able to classify plants as normal or anomalous and could localize the anomalous

regions with heat maps. However, despite models like STFPM and PatchCore

performing well, the detection accuracy was image condition-dependent. False

positives and localization mistakes were seen, especially in suboptimal test conditions.

2. Objective 2: A Practical Health Monitoring System was achieved to some extent. The

system was tested with weekly plantation data gathered from a real ginger farm. While

the detection models ran on real-world inputs, inconsistency in images, insufficient

anomaly samples, and small dataset sizes impacted performance consistency. The

system had promise but needs improvement to be consistent in general field conditions.

3. Objective 3: Unsupervised Anomaly Detection was fully achieved. All the models

tested were trained unsupervised on healthy plant images. Five state-of-the-art

unsupervised AD models (CFlow, FastFlow, PatchCore, Reverse Distillation, STFPM)

were tested in the project and compared for anomaly detection performance without

prior annotation of anomalies.

As discussed in Section 6.3, several factors prevented the full achievement of objectives. Poor

quality and inconsistent image data prevented the generalizability of models across test

environments. Lack of proper confirmation of anomaly samples restricted testing against true

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 134

performance, while time and hardware limitations prevented extensive tuning and

experimenting. These factors affected the achievement of Objectives 1 and 2 most.

6.5 Concluding Remark

▪ Summary of Findings

The project managed to effectively validate the applicability of using unsupervised

anomaly detection models in ginger plant health monitoring. STFPM and PatchCore were

among the five tested models that performed best and consistently with robust and high

performance across varying test conditions, particularly excelling others in precision and

locality of anomalies. The performance of the system was, however, affected by real-world

issues such as irregularly occurring weak image quality, limited anomaly samples, and

limited dataset size. These problems made it difficult to ensure consistent detection

accuracy, especially in ambiguous cases like weak colouration or image distortions.

▪ Lessons Learned

Several valuable lessons were uncovered in the process of the project. Data quality was as

crucial as model choice—issues like bad framing, image resolution, and limited anomalies

had a tremendous effect on model performance. It also became clear that even the best

models require meticulous preprocessing and evaluation plans to be able to perform

effectively in real-world agricultural environments. Additionally, coordinating the training

and evaluation process within time and hardware constraints was an exercise in learning

resource optimization and project scope management.

▪ System Success and Limitations

Overall, the system succeeded in its primary technical objectives, showing that

unsupervised AD models can detect anomalies in real ginger plantation data without

labelling. Integration with a user interface like a Discord bot and successful deployment of

Anomalib-based models were significant achievements. Despite these efforts, the system

remains susceptible to limitations—primarily, reliance on good-quality input images,

challenges in detecting minor anomalies, and inadequate model robustness in extreme

environments. Unavailability of confirmed anomaly samples also limited capability to

quantify true model accuracy under field conditions.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 135

▪ Suggestions for Future Work

Future development should focus on getting the dataset more uniform and highly resolved

by employing additional images and obtaining validated instances of anomalies. Tuning

the hyperparameters for the model, exploring the lightweight deployment of the model for

real-time use, and improving image processing techniques can continue to improve the

accuracy. Getting the system to support operation with multiple plant types, incorporating

active learning for enhanced annotation of anomalies, and supporting user interface

functionality (e.g., mobile or web-based dashboards) would both expand the useful

application and extensibility of the system.)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 136

Chapter 7

Conclusion and Recommendation

This chapter concludes the research and development process of building an unsupervised

anomaly detection system for ginger plant health monitoring. It recapitulates the primary

discoveries, discusses the system's overall performance, and provides closure to the primary

objectives of the project. The reader can expect an overview of technical breakthroughs, system

performance, limitations faced, and the overall implications of the discoveries on agricultural

technology and avenues for further research.

7.1 Conclusion

This project was able to explore the use of an unsupervised anomaly detection system for

monitoring the health of ginger plants using real farming data. Through the use of state-of-the-

art models provided by the Anomalib framework, the system was able to evaluate the plant

conditions with promising outcomes on different environmental conditions and weekly image

batches. Among the models tried out—CFlow, FastFlow, PatchCore, Reverse Distillation, and

STFPM—STFPM and PatchCore were the most stable performers, with high specificity,

decent precision, and stable anomaly localization even for visually challenging cases.

The integration of anomaly detection and an easy-to-use Discord bot interface made the system

usable and feasible for potential real-world adoption. However, limitations such as variable

image quality, limited anomaly samples, and time-demanding training processes impacted the

robustness and generalizability of the solution. Despite these limitations, the system showed

promise as a non-invasive, automated ginger plant health monitoring system under field

conditions.

In conclusion, the project achieved its main objectives: implementing an unsupervised

detection model, creating a prototype real-life health monitoring system, and evaluating its

effectiveness through diverse test scenarios. The results stress the importance of quality

datasets and standard preprocessing in achieving accurate anomaly detection in agricultural

environments..

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 137

7.2 Recommendation

Based on the observations and challenges encountered throughout this project, several

recommendations are provided to ensure better development and deployment in the future:

1. Improve Image Data Collection

Ensure image datasets are always captured with good framing, lighting, and resolution.

Avoid very close or zoomed-in shots that crop out parts of the plant, and try to have

consistency in the conditions for each weekly collection.

2. Expand the Dataset

Increase the size and diversity of the training dataset, particularly by including

confirmed anomaly cases (e.g., diseased, wilted, pest-affected plants). This will help

improve model reliability and allow for more meaningful evaluation metrics.

3. Enhance Preprocessing Pipelines

Implement preprocessing techniques such as background removal, colour

normalization, and image stabilization to increase model input quality. These steps can

provide a significant boost to detection accuracy, particularly for subtle anomalies.

4. Optimize Training Efficiency

Reduce the training time by exploring more computationally efficient variants of the

models or transfer learning approaches. Explore GPU acceleration and batch training

approaches to make the system more scalable.

5. Extend to Real-Time Monitoring

Explore lightweight model versions for real-time applications so that live feedback

through the Discord bot or other mobile/web interfaces is possible. This would

significantly enhance the ease of use of the system for farmers.

6. Consider Semi-Supervised Learning

Introduce semi-supervised methods that can include limited labeled data to direct

learning, with the potential to enhance performance in situations where fully

unsupervised techniques fail.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 138

7. Collaborate with Agricultural Experts

Closely interact with farmers or agronomists in order to confirm the anomalies

identified by the system and make the outputs actionable and meaningful within an

actual farming setup.

These recommendations are aimed at developing the prototype into a robust, scalable, and

efficient agricultural monitoring system. With further development and incorporation of

additional data, the system can significantly assist farmers in the early identification of plant

health issues, improving yield and sustainability in ginger farming.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 139

REFERENCES

[1] The Editors of Encyclopedia Britannica, “Ginger | plant,” Encyclopædia Britannica. Jan.

11, 2019. Available: https://www.britannica.com/plant/ginger

[2] “How To Grow Ginger? Growing Ginger Root Is Not That Hard...,”

Tropicalpermaculture.com, 2020. https://www.tropicalpermaculture.com/growing-ginger.html

[3] “Smart Ginger Cultivation Techniques: Revolutionizing Rhizome Production in Indonesia

- FnB Tech,” FnB Agritech, Jul. 16, 2024. https://agritech.fnb.tech/smart-ginger-cultivation-

techniques-production/ (accessed Sep. 02, 2024).

[4] Aceng Sambas, Mujiarto Mujiarto, Gugun Gundara, Gunawan Refiadi, Neneng Sri

Mulyati, and Ibrahim Mohammed Sulaiman, “Development of Smart Farming Technology on

Ginger Plants in Padamulya Ciamis Village, West Java, Indonesia,” International Journal of

Research in Community Service, vol. 4, no. 3, pp. 93–99, Jul. 2023, doi:

https://doi.org/10.46336/ijrcs.v4i3.483.

[5] Britannica.com, 2024. https://cdn.britannica.com/19/231119-050-35483892/Indian-

ginger-Zingiber-officinale.jpg (accessed Sep. 07, 2024).

[6] Hawaii.edu, 2024. https://cms.ctahr.hawaii.edu/portals/43/Ginger%20Field.jpg (accessed

Sep. 07, 2024).

[7] Peat-cloud.com, 2024. https://content.peat-cloud.com/w400/leaf-spot-of-ginger-ginger-

1582821332.jpg (accessed Sep. 07, 2024).

[8] Zenadrone.com, 2024. https://www.zenadrone.com/wp-content/uploads/2022/10/smart-

farming-and-plantation.jpg (accessed Sep. 07, 2024).

[9] S. C M and C. Raju, "Revolutionizing Crop Management: An Emphasis on Ginger Leaf

Disease Detection Techniques Using Machine Learning and IoT," 2023 International

Conference on Data Science and Network Security (ICDSNS), Tiptur, India, 2023, pp. 1-5,

doi: 10.1109/ICDSNS58469.2023.10245472.

[10] J. Boulent, S. Foucher, J. Théau, and P.-L. St-Charles, “Convolutional Neural Networks

for the Automatic Identification of Plant Diseases,” Frontiers in Plant Science, vol. 10, Jul.

2019, doi: https://doi.org/10.3389/fpls.2019.00941.

[11] G. G. and A. P. J., “Identification of plant leaf diseases using a nine-layer deep

convolutional neural network,” Computers & Electrical Engineering, vol. 76, pp. 323–338, Jun.

2019, doi: https://doi.org/10.1016/j.compeleceng.2019.04.011.

[12] D. Li et al., “A Recognition Method for Rice Plant Diseases and Pests Video Detection

Based on Deep Convolutional Neural Network,” Sensors, vol. 20, no. 3, p. 578, Jan. 2020, doi:

https://doi.org/10.3390/s20030578.

https://www.britannica.com/plant/ginger
https://www.tropicalpermaculture.com/growing-ginger.html
https://doi.org/10.46336/ijrcs.v4i3.483
https://doi.org/10.3389/fpls.2019.00941
https://doi.org/10.1016/j.compeleceng.2019.04.011
https://doi.org/10.3390/s20030578

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 140

[13] “What is Anomaly Detection? Definition & FAQs,” Avi Networks.

https://avinetworks.com/glossary/anomaly-

detection/#:~:text=Anomaly%20detection%20is%20the%20identification

[14] Marcelinus A.S. Adhiwibawa, Waego Hadi Nugroho, and None Solimun, “Detection

of Anomalies in Citrus Leaves Using Digital Image Processing and T2 Hotelling Multivariate

Control Chart,” Mar. 2019, doi: https://doi.org/10.1109/icaiit.2019.8834453.

[15] C. Catalano, L. Paiano, F. Calabrese, M. Cataldo, L. Mancarella, and F. Tommasi,

“Anomaly detection in smart agriculture systems,” Computers in Industry, vol. 143, p. 103750,

Dec. 2022, doi: https://doi.org/10.1016/j.compind.2022.103750.

[16] A.P.Nirmala, Ansar Isak Sheikh, Dr. R. Kesavamoorthy, Dr. Raja M, Anantha Rao

Gottimukkala, and Dr.R.Thiagarajan, “An Approach for Detecting Complications in

Agriculture Using Deep Learning and Anomaly-Based Diagnosis,” Mathematical Statistician

and Engineering Applications, vol. Vol 70 No. 2 (2021), no. 2094-0343, pp. 880–889, Dec.

2021, doi: https://doi.org/10.17762/msea.v70i2.2086.

[17] D. C. Ilie-Ablachim and B. Dumitrescu, “Angle-Based Dictionary Learning for Outlier

Detection,” pp. 01–06, Dec. 2023, doi: https://doi.org/10.1109/scc59637.2023.10527594.

[18] H. Du, S. Zhao, D. Zhang, and J. Wu, “Novel clustering-based approach for Local

Outlier Detection,” IEEE Xplore, Apr. 01, 2016. https://ieeexplore.ieee.org/document/7562187

(accessed May 30, 2023).

[19] Y. Wang, K. Li, and S. Gan, “A Kernel Connectivity-based Outlier Factor Algorithm

for Rare Data Detection in a Baking Process,” IFAC-PapersOnLine, vol. 51, no. 18, pp. 297–

302, 2018, doi: https://doi.org/10.1016/j.ifacol.2018.09.316.

[20] I. Aguilera-Martos et al., “Multi-step histogram based outlier scores for unsupervised

anomaly detection: ArcelorMittal engineering dataset case of study,” Neurocomputing, vol.

544, pp. 126228–126228, Aug. 2023, doi: https://doi.org/10.1016/j.neucom.2023.126228.

[21] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation Forest,” 2008 Eighth IEEE

International Conference on Data Mining, Dec. 2008, doi:

https://doi.org/10.1109/icdm.2008.17.

[22] Y. Chen, Q. Zhao, and L. Lu, “Combining the outputs of various k-nearest neighbor

anomaly detectors to form a robust ensemble model for high-dimensional geochemical

anomaly detection,” Journal of Geochemical Exploration, vol. 231, p. 106875, Dec. 2021, doi:

https://doi.org/10.1016/j.gexplo.2021.106875.

[23] A. Wijayanto, A. Sugiharto, and R. Santoso, “Detection Model for Potential Flooding

Areas Using K-Means and Local Outlier Factor (LOF),” 2024 4th International Conference of

Science and Information Technology in Smart Administration (ICSINTESA), pp. 445–450,

Jul. 2024, doi: https://doi.org/10.1109/icsintesa62455.2024.10747854.

[24] J. ALMutawa, “Identification of errors-in-variables model with observation outliers

based on Minimum-Covariance-Determinant,” Proceedings of the ... American Control

https://avinetworks.com/glossary/anomaly-detection/#:~:text=Anomaly%20detection%20is%20the%20identification
https://avinetworks.com/glossary/anomaly-detection/#:~:text=Anomaly%20detection%20is%20the%20identification
https://doi.org/10.1109/icaiit.2019.8834453
https://doi.org/10.1016/j.compind.2022.103750
https://doi.org/10.17762/msea.v70i2.2086
https://doi.org/10.1109/scc59637.2023.10527594
https://doi.org/10.1016/j.ifacol.2018.09.316
https://doi.org/10.1016/j.neucom.2023.126228
https://doi.org/10.1109/icdm.2008.17
https://doi.org/10.1016/j.gexplo.2021.106875
https://doi.org/10.1109/icsintesa62455.2024.10747854

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 141

Conference/Proceedings of the American Control Conference, Jul. 2007, doi:

https://doi.org/10.1109/acc.2007.4282931.

[25] Bas van Stein, Matthijs van Leeuwen, and T. Bäck, “Local subspace-based outlier

detection using global neighbourhoods,” arXiv (Cornell University), Dec. 2016, doi:

https://doi.org/10.1109/bigdata.2016.7840717.

[26] K. Chatterjee, K. Mahapatra, and N. R. Chaudhuri, “Robust Recovery of PMU Signals

With Outlier Characterization and Stochastic Subspace Selection,” IEEE Transactions on

Smart Grid, vol. 11, no. 4, pp. 3346–3358, Jul. 2020, doi:

https://doi.org/10.1109/tsg.2019.2961561.

[27] T. Reiss and Y. Hoshen, “Attribute-based Representations for Accurate and

Interpretable Video Anomaly Detection,” arXiv.org, Dec. 01, 2022.

https://arxiv.org/abs/2212.00789 (accessed Nov. 05, 2023).

[28] S. Lee, S. Lee, and Byung Cheol Song, “CFA: Coupled-hypersphere-based Feature

Adaptation for Target-Oriented Anomaly Localization,” arXiv (Cornell University), Jun. 2022,

doi: https://doi.org/10.48550/arxiv.2206.04325.

[29] D. Gudovskiy, Shun Ishizaka, and Kazuki Kozuka, “CFLOW-AD: Real-Time

Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows,”

arXiv (Cornell University), Jul. 2021, doi: https://doi.org/10.48550/arxiv.2107.12571.

[30] M. Rudolph, T. Wehrbein, B. Rosenhahn, and B. Wandt, “Fully Convolutional Cross-

Scale-Flows for Image-based Defect Detection,” arXiv (Cornell University), Jan. 2021, doi:

https://doi.org/10.48550/arxiv.2110.02855.

[31] Vitjan Zavrtanik, M. Kristan, and Danijel Skočaj, “DRAEM -- A discriminatively

trained reconstruction embedding for surface anomaly detection,” Aug. 2021, doi:

https://doi.org/10.48550/arxiv.2108.07610.

[32] “DFKDE - Anomalib v0.3.7,” Readthedocs.io, 2023.

https://anomalib.readthedocs.io/en/v0.3.7/reference_guide/algorithms/dfkde.html (accessed

Dec. 03, 2024).

[33] N. A. Ahuja, I. Ndiour, T. Kalyanpur, and O. Tickoo, “Probabilistic Modeling of Deep

Features for Out-of-Distribution and Adversarial Detection,” arXiv.org, Sep. 25, 2019.

https://arxiv.org/abs/1909.11786 (accessed Jul. 18, 2023).

[34] V. Zavrtanik, M. Kristan, and D. Skočaj, “DSR -- A dual subspace re-projection

network for surface anomaly detection,” arXiv (Cornell University), Jan. 2022, doi:

https://doi.org/10.48550/arxiv.2208.01521.

[35] K. Batzner, L. Heckler, and R. König, “EfficientAD: Accurate Visual Anomaly

Detection at Millisecond-Level Latencies,” arXiv.org, Mar. 25, 2023.

https://arxiv.org/abs/2303.14535v1 (accessed May 26, 2023).

https://doi.org/10.1109/acc.2007.4282931
https://doi.org/10.1109/bigdata.2016.7840717
https://doi.org/10.1109/tsg.2019.2961561
https://doi.org/10.48550/arxiv.2206.04325
https://doi.org/10.48550/arxiv.2107.12571
https://doi.org/10.48550/arxiv.2110.02855
https://doi.org/10.48550/arxiv.2108.07610
https://doi.org/10.48550/arxiv.2208.01521

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 142

[36] J. Yu et al., “FastFlow: Unsupervised Anomaly Detection and Localization via 2D

Normalizing Flows,” arXiv (Cornell University), Nov. 2021, doi:

https://doi.org/10.48550/arxiv.2111.07677.

[37] I. Ndiour, N. Ahuja, U. Genc, and O. Tickoo, “FRE: A Fast Method For Anomaly

Detection And Segmentation,” arXiv (Cornell University), Jan. 2022, doi:

https://doi.org/10.48550/arxiv.2211.12650.

[38] S. Akcay, Amir Atapour-Abarghouei, and T. P. Breckon, “GANomaly: Semi-

Supervised Anomaly Detection via Adversarial Training,” May 2018, doi:

https://doi.org/10.48550/arxiv.1805.06725.

[39] T. Defard, Aleksandr Setkov, A. Loesch, and Romaric Audigier, “PaDiM: a Patch

Distribution Modeling Framework for Anomaly Detection and Localization,” arXiv (Cornell

University), Nov. 2020, doi: https://doi.org/10.48550/arxiv.2011.08785.

[40] K. Roth, Latha Pemula, J. Zepeda, Bernhard Schölkopf, T. Brox, and P. V. Gehler,

“Towards Total Recall in Industrial Anomaly Detection,” arXiv (Cornell University), Jun.

2021, doi: https://doi.org/10.48550/arxiv.2106.08265.

[41] H. Deng and X. Li, “Anomaly Detection via Reverse Distillation from One-Class

Embedding,” arXiv.org, 2022, doi: https://doi.org/10.48550/arXiv.2201.10703.

[42] P. Adey, O. Hamilton, Magnus Bordewich, and T. Breckon, “Region Based Anomaly

Detection with Real-Time Training and Analysis,” 2021 20th IEEE International Conference

on Machine Learning and Applications (ICMLA), pp. 495–499, Dec. 2019, doi:

https://doi.org/10.1109/icmla.2019.00092.

[43] G. Wang, S. Han, E. Ding, and D. Huang, “Student-Teacher Feature Pyramid Matching

for Anomaly Detection,” arXiv (Cornell University), Mar. 2021, doi:

https://doi.org/10.48550/arxiv.2103.04257.

[44] M. Tailanian, Á. Pardo, and P. Musé, “U-Flow: A U-shaped Normalizing Flow for

Anomaly Detection with Unsupervised Threshold,” arXiv (Cornell University), Jan. 2022, doi:

https://doi.org/10.48550/arxiv.2211.12353.

[45] J. Jeong, Y. Zou, T. Kim, D. Zhang, A. Ravichandran, and O. Dabeer, “WinCLIP: Zero-

/Few-Shot Anomaly Classification and Segmentation,” arXiv.org, Mar. 26, 2023.

https://arxiv.org/abs/2303.14814 (accessed Jun. 12, 2024).

[46] G. Xu, P. Jin, L. Hao, Y. Song, L. Sun, and L. Yuan, “LLaVA-o1: Let Vision Language

Models Reason Step-by-Step,” arXiv (Cornell University), Nov. 2024, doi:

https://doi.org/10.48550/arxiv.2411.10440.

[47] M. Abdin et al., “Phi-3 Technical Report: A Highly Capable Language Model Locally

on Your Phone,” arXiv.org, Apr. 23, 2024. https://arxiv.org/abs/2404.14219

[48] A. Dubey et al., “The Llama 3 Herd of Models,” arXiv (Cornell University), Jul. 2024,

doi: https://doi.org/10.48550/arxiv.2407.21783.

https://doi.org/10.48550/arxiv.2111.07677
https://doi.org/10.48550/arxiv.2211.12650
https://doi.org/10.48550/arxiv.1805.06725
https://doi.org/10.48550/arxiv.2011.08785
https://doi.org/10.48550/arxiv.2106.08265
https://doi.org/10.48550/arXiv.2201.10703
https://doi.org/10.1109/icmla.2019.00092
https://doi.org/10.48550/arxiv.2103.04257
https://doi.org/10.48550/arxiv.2211.12353
https://doi.org/10.48550/arxiv.2411.10440
https://doi.org/10.48550/arxiv.2407.21783

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 143

[49] A. Ghosh, A. Acharya, S. Saha, V. Jain, and A. CHadha, “Exploring the Frontier of

Vision-Language Models: A Survey of Current Methodologies and Future Directions,” arXiv

(Cornell University), Feb. 2024, doi: https://doi.org/10.48550/arxiv.2404.07214.

[50] S. Hu et al., “MiniCPM: Unveiling the Potential of Small Language Models with

Scalable Training Strategies,” arXiv (Cornell University), Apr. 2024, doi:

https://doi.org/10.48550/arxiv.2404.06395.

[51] JiaWeiBu, “GingerPlantAnomaly/classes/README.md at main ·

JiaWeiBu/GingerPlantAnomaly,” GitHub, 2025.

https://github.com/JiaWeiBu/GingerPlantAnomaly/blob/main/classes/README.md

(accessed May 03, 2025).

[52] JiaWeiBu, “GitHub - JiaWeiBu/GingerPlantAnomaly: A unsupervised ginger plant

anomaly detection model” GitHub, 2025. https://github.com/JiaWeiBu/GingerPlantAnomaly

(accessed May 03, 2025).

[53] JiaWeiBu, “GingerPlantAnomaly/README_setup.md at main ·

JiaWeiBu/GingerPlantAnomaly,” GitHub, 2025.

https://github.com/JiaWeiBu/GingerPlantAnomaly/blob/main/README_setup.md (accessed

May 03, 2025).

https://doi.org/10.48550/arxiv.2404.07214
https://doi.org/10.48550/arxiv.2404.06395

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 144

APPENDIX A Training Result

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 145

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 146

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 147

POSTER

