

PERSONAL FINANCE MANAGEMENT AND BUDGET APPLICATION

BY

Calvin Ching Kai Xuan

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

FEBRUARY 2025

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

COPYRIGHT STATEMENT

© 2025 Calvin Ching Kai Xuan. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the requirements

for the degree of Bachelor of Computer Science (Honours) at Universiti Tunku

Abdul Rahman (UTAR). This Final Year Project report represents the work of the

author, except where due acknowledgment has been made in the text. No part of this

Final Year Project report may be reproduced, stored, or transmitted in any form or

by any means, whether electronic, mechanical, photocopying, recording, or

otherwise, without the prior written permission of the author or UTAR, in

accordance with UTAR's Intellectual Property Policy.

Example

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

ACKNOWLEDGEMENTS

I would like to sincerely thank my supervisor, Ms Chai Meei Tyng, for guiding me through

this project and providing valuable advice and encouragement. Your support has been

instrumental in helping me stay focused and motivated.

I am also deeply grateful to my family for their love, understanding, and continuous support

throughout my studies. Lastly, I want to thank my friends for their encouragement and for

always being there when I needed them. Thank you all for being part of this journey with me.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

ABSTRACT

With the growing complexity of modern financial systems, it has become essential for

individuals to manage their personal finances wisely to stay informed and in control of their

financial activities. While many finance-related mobile apps exist, most lack the

comprehensive features needed for complete and flexible money management. This project,

titled "Personal Finance Management and Budget Application," addresses this gap by offering

a complete and user-friendly mobile platform for personal finance management. The

application enables users to manage a variety of financial tasks, including adding income,

expenses, and transfers, handling multiple accounts, setting budgets, and categorizing

transactions into customizable categories and subcategories for both income and expense types.

The app supports full CRUD (Create, Read, Update, Delete) operations for transactions,

accounts, categories, subcategories, and budgets. To help users stay within their budgets, the

app incorporates a built-in notification system that alerts users when their spending in any

category reaches the predefined limit. Financial reports, presented via pie charts, bar charts,

and line graphs, provide users with a visual representation of their spending habits and financial

progress. Additionally, users can easily back up or transfer their data through JSON file imports

and exports. A standout feature of the app is its ability to suggest categories and subcategories

based on the transaction note, speeding up data entry. The receipt scanner, which reads

transaction details from images of receipts, further enhances efficiency by automatically filling

in important information. The app is developed using Flutter for mobile interfaces and SQLite

for local data storage, offering a clean and intuitive user experience. With this app, users are

empowered with the tools they need to better manage their finances, stay organized, and

cultivate positive financial habits.

Area of Study (Minimum 1 and Maximum 2): Mobile Application, User Experience

Keywords (Minimum 5 and Maximum 10): Finance Management, Budget Tracking, Mobile

Application, Data Visualization, Receipt Scanning

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

TABLE OF CONTENTS

TITLE PAGE i

COPYRIGHT STATEMENT ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES ix

LIST OF TABLES xi

LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 2

1.2 Objectives 5

1.3 Project Scope and Direction 6

1.4 Contributions 8

1.5 Report Organization 11

CHAPTER 2 LITERATURE REVIEW 13

2.1 Overview of Reviewed Applications 13

 2.1.1 Monefy Overview 14

 2.1.2 1Money Overview 16

 2.1.3 Spendee Overview 18

2.2 Summary of Limitations in Existing Applications 20

2.3 Proposed Solution 21

CHAPTER 3 SYSTEM METHODOLOGY 23

3.1 System Design Overview 25

3.1.1 System Architecture Diagram 25

3.1.2 Use Case Diagram 28

3.1.3 Activity Diagram 32

 3.1.4 User Interface Design 36

CHAPTER 4 SYSTEM DESIGN 44

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

 4.1 System Block Diagram 44

 4.2 System Components Specifications 45

 4.3 Components Design 48

 4.3.1 UI Layer Components 49

 4.3.2 Logic Layer Components 50

 4.3.4 External Libraries 52

 4.4 System Components Interaction Operations 52

 4.4.1 Adding a Transaction 52

 4.4.2 Updating a Transaction 53

 4.4.3 Budget Management and Notifications 53

 4.4.4 Generating Reports and Charts 54

 4.4.5 Managing Categories and Subcategories 54

 4.4.6 Account and Transfer Handling 54

CHAPTER 5 SYSTEM IMPLEMENTATION 56

 5.1 Hardware Setup 56

 5.1.1 Development Machine (Laptop) Specification 56

 5.1.2 Mobile Device for Testing 56

 5.1.3 Peripheral Devices and Tools 57

5.2 Software Setup 57

 5.2.1 Development Environment 57

 5.2.2 Flutter Dependencies 58

 5.2.3 Summary 59

5.3 Setting and Configuration 59

 5.3.1 Flutter Environment Configuration 59

 5.3.2 Android Manifest Configuration 60

 5.3.3 SQLite Database Initialization 60

5.4 System Operation (with Screenshot) 63

 5.4.1 Application Launch 64

 5.4.2 Dashboard 65

 5.4.3 Add Account 66

 5.4.4 Add Category with Subcategory 67

 5.4.5 Add Budget 68

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

 5.4.6 Add Transaction 69

 5.4.7 Setting Page 70

 5.4.8 Report Page 72

 5.4.9 User Profile Page 73

5.5 Implementation Issues and Challenges 73

 5.5.1 Database Design and Schema Relationships 74

 5.5.2 Receipt Scanning and OCR Integration 74

 5.5.3 Transaction Logic Integration 74

 5.5.4 Report Generation and Chart Extraction 74

 5.5.5 Dynamic UI State Management 75

 5.5.6 Testing on Emulators and Physical Devices 75

 5.5.7 Category and Subcategory Handling 75

5.6 Concluding Remark 75

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 77

6.1 System Testing and Performance Metrics 77

 6.1.1 Testing Approach 77

 6.1.2 Performance Metrics and Results 78

 6.1.3 Usability Observations 79

 6.1.4 Limitations and Observed Constraints 79

 6.1.5 Summary 80

6.2 Testing Setup and Result 80

 6.2.1 Testing Environment Overview 80

 6.2.2 Emulator and Device Setup 81

 6.2.3 Test Data Setup 81

 6.2.4 Functional Testing Results 82

 6.2.5 Key Observations and Notes 83

 6.2.6 Summary 83

6.3 Project Challenges 83

 6.3.1 Dynamic Transaction Logic with Account and Budget

Handling

83

 6.3.2 Subcategory Implementation Across Multiple Screens 84

 6.3.3 OCR Integration and Data Filtering 84

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

 6.3.4 Report Generation from Complex Data Sets 84

 6.3.5 Emulator vs. Device Discrepancies 85

 6.3.6 Permission Handling and File Access 85

 6.3.7 Time and Scope Constraints 85

6.4 Objectives Evaluation 86

CHAPTER 7 CONCLUSION AND RECOMMENDATION 88

7.1 Conclusion 88

7.2 Future Work 89

 7.2.1 Cloud Synchronization and Multi-Device Support 89

 7.2.2 Advanced AI-Powered Analytics 89

 7.2.3 Multi-Currency and Localization Support 90

REFERENCES 90

APPENDIX 91

POSTER 91

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

LIST OF FIGURES

Figure Number Title Page

Figure 2.1.1 Monefy Homepage – 1 14

Figure 2.1.2 Monefy Homepage – 2 14

Figure 2.1.3 Monefy Add Transaction 14

Figure 2.1.4 Monefy View Transaction 14

Figure 2.1.5 1Money Category Page 16

Figure 2.1.6 1Money Transaction Page 16

Figure 2.1.7 1Money Budget Page 16

Figure 2.1.8 1Money Overview Page 16

Figure 2.1.9 Spendee Spending Overview 18

Figure 2.1.10 Spendee Timeline 18

Figure 2.1.11 Spendee Wallet 18

Figure 2.1.12 Spendee Budget Overview 18

Figure 3.1.1 System Architecture Diagram 25

Figure 3.1.2 Use Case Diagram 29

Figure 3.1.3 Full Activity Diagram 33

Figure 3.1.4 Activity Diagram (Add transaction) 34

Figure 3.1.5 Dashboard Screen UI 37

Figure 3.1.6 Transaction Add Screen UI 38

Figure 3.1.7 Transaction Update Screen UI 39

Figure 3.1.8 Report Screen UI 40

Figure 3.1.9 Account Screen UI 41

Figure 3.1.10 Budget Screen UI 42

Figure 3.1.11 Category Screen UI 43

Figure 4.1.1 Block Diagram 44

Figure 4.3.1 System Flow Chart 49

Figure 5.4.1 Splash Screen 64

Figure 5.4.2 Dashboard Screen (Empty) 65

Figure 5.4.3 Dashboard Screen 65

Figure 5.4.4 Account Screen (Empty) 66

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

Figure 5.4.5 Account Screen 66

Figure 5.4.6 Add Account 66

Figure 5.4.7 Category Screen (Empty) 67

Figure 5.4.8 Category Screen 67

Figure 5.4.9 Add Category 67

Figure 5.4.10 Budget Screen (Empty) 68

Figure 5.4.11 Budget Screen 68

Figure 5.4.12 Add Budget 68

Figure 5.4.13 Transaction Add Screen (Income) 69

Figure 5.4.14 Transaction Add Screen (Expense) 69

Figure 5.4.15 Transaction Add Screen (Transfer) 69

Figure 5.4.16 Setting Screen 70

Figure 5.4.17 Report Screen (Empty) 71

Figure 5.4.18 Report Screen (Pie Chart for Overview) 71

Figure 5.4.19 Report Screen (Pie Chart for Income) 71

Figure 5.4.20 Report Screen (Pie Chart for Expense) 71

Figure 5.4.21 Report Screen (Bar Chart for Income) 71

Figure 5.4.22 Report Screen (Bar Chart for Expense) 71

Figure 5.4.23 Report Screen (Line Chart for Income & Expense) 72

Figure 5.4.24 Report Screen (Line Chart for Overall Savings) 72

Figure 5.4.25 Report Screen (Recent Transaction) 72

Figure 5.4.26 User Profile Page 73

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xi

LIST OF TABLES

Table Number Title Page

Table 2.2.1 Limitation Table 20

Table 4.2.1 User Interface Components 46

Table 4.2.2 Logic Layer Component 47

Table 4.2.3 Local Storage Layer 47

Table 4.2.4 External Libraries and Tools 48

Table 5.1.1 Specifications of Computer 56

Table 5.1.2 Specifications of Smartphone 57

Table 5.2.1 Development Environment 58

Table 5.2.2 Flutter Dependencies 59

Table 5.3.1 Android Manifest Configuration 60

Table 5.3.2 Account Table in Database 61

Table 5.3.3 Transaction Table in Database 61

Table 5.3.4 Categories Table in Database 61

Table 5.3.5 Subcategories Table in Database 62

Table 5.3.6 Budgets Table in Database 62

Table 5.3.7 Category Preferences Table in Database 62

Table 5.3.8 User Table in Database 63

Table 6.1.1 Performance Metrics and Results 79

Table 6.2.1 Testing Environment Overview 81

Table 6.2.2 Emulator and Device Setup 81

Table 6.2.3 Test Data Setup 82

Table 6.2.4 Functional Testing Results 83

Table 6.4.1 Objectives Evaluation 87

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xii

LIST OF ABBREVIATIONS

FYP Final Year Project

OCR Optical Character Recognition

UI User Interface

UX User Experience

ML Machine Learning

AI Artificial Intelligence

API Application Programming Interface

DB Database

SQL Structured Query Language

SDK Software Development Kit

IDE Integrated Development Environment

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

Chapter 1

Introduction

In today’s increasingly complex financial environment, managing personal finances effectively

is crucial for individuals striving to make better financial decisions and maintain control over

their money. Individuals must manage various financial accounts—such as bank accounts,

credit cards, loans, and e-wallets—while also keeping track of income from different sources

and managing expenses across categories like food, transportation, and utilities. In addition to

managing daily finances, many people aim to achieve financial goals such as saving for a major

purchase, repaying debts, or building emergency funds.

Given this complexity, it is unsurprising that many individuals rely on mobile applications to

assist with personal finance management. Applications such as Monefy [1], 1Money [2], and

Spendee [3] offer tools for tracking expenses and setting budgets. However, despite their

popularity, these applications present several limitations that restrict their usefulness:

• Monefy simplifies expense tracking but lacks support for managing multiple financial

accounts in a single interface.

• 1Money includes budgeting features but offers limited customization in organizing

expense categories and subcategories.

• Spendee provides robust visual tracking tools but lacks features to streamline handling

common user needs.

As a result of these limitations, users are often forced to use multiple apps or rely on manual

workarounds to manage their finances effectively. This can be time-consuming, error-prone,

and discouraging for users trying to maintain financial discipline.

To address these challenges, this project proposes the development of a comprehensive mobile

application, the Personal Finance Management and Budget Application. The goal is to

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

consolidate key financial management features into a single, user-friendly platform. The core

features of the application include:

1. Managing Multiple Financial Accounts: Users can track various account types (e.g.,

cash, debit cards, credit cards, loans, e-wallets) from one dashboard.

2. Tracking Income and Expenses: The app allows users to log income and expenses using

customizable categories and subcategories for better financial visibility.

3. Setting Budgets with Notifications: Users can assign budgets to different categories,

and the app will send notifications when spending approaches or exceeds the set limits.

4. Exporting and Backing Up Data: Financial records can be exported or backed up for

security, portability, and long-term accessibility.

The app is developed using Flutter [4] to ensure cross-platform compatibility on both Android

and iOS devices, and SQLite [5] is used for local data storage, allowing users to access their

information even without an internet connection.

This project aims to provide users with a powerful yet intuitive financial management tool that

improves daily money management and encourages better financial decision-making. With its

comprehensive features and user-centric design, the proposed application aspires to enhance

how individuals interact with and control their personal finances.

1.1 Problem Statement and Motivation

In the modern fast-paced and financially intricate world, effective personal finance

management has emerged as a critical necessity. The growing diversity of income sources and

spending channels has made financial tracking more challenging than ever. Individuals are no

longer limited to just cash or a single bank account; instead, they now juggle multiple financial

instruments, such as cash, debit cards, credit cards, savings accounts, loans, and digital payment

platforms like e-wallets. Additionally, modern lifestyles often include variable income from

freelance work, side businesses, or government aid, which adds to the complexity of financial

management.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

In this evolving landscape, it is crucial for users not only to track daily transactions but also to

gain a clear overview of their financial health. This includes understanding spending habits,

monitoring cash flow, avoiding overspending, and planning for both short-term and long-term

goals. However, despite the availability of numerous mobile apps designed to assist with

personal finance, most fall short in delivering a holistic and user-friendly solution. Therefore,

there is a growing demand for a comprehensive, centralized tool that simplifies personal

finance management while offering meaningful insights and control over one’s financial

activities.

Problem Statement for the Project

1. Lack of Integration and Tracking

Many existing finance apps do not support managing multiple account types within a single

platform. For instance, applications like Monefy and Spendee do not allow users to manage

different financial accounts under one system [1], [3]. As a result, users are forced to monitor

their finances across different platforms or rely on manual tracking, increasing complexity and

the risk of error.

2. Limited Expense Tracking

Most apps offer only basic expense tracking features and lack detailed categorization. Apps

like Monefy, 1Money, and Spendee do not allow users to create subcategories under broader

expense types [1], [2], [3]. For example, a general "Food" category cannot be broken down into

"Breakfast," "Lunch," and "Dinner." Without this level of granularity, users struggle to fully

understand their spending patterns or pinpoint areas for potential savings.

3. Insufficient Reporting and Visualization

Another limitation of many finance apps is their lack of detailed financial reporting. For

example, apps like Monefy do not support visualizing total cash flow or tracking income and

expenses separately by account or category [1]. Without clear visual insights, users may find it

difficult to analyze their financial data over time or detect spending trends.

To address this, the proposed application includes features such as pie charts, bar charts, and

line graphs to help users clearly visualize where their money is going and how their spending

habits evolve over time.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

4. Weak Budget Notifications

While some apps support basic budgeting, they often fail to actively notify users about their

spending status. The proposed application improves on this by providing on-screen alerts and

push notifications when a user is close to or has exceeded their set budget in any expense

category. These timely alerts help users stay on track with their financial plans and prevent

unintentional overspending.

Motivation for the Project

This project is motivated by the growing need for a better tool to manage personal finances,

especially considering the limitations found in many current finance apps. The main driving

factors include:

1. Increasing Financial Complexity

With the rise of e-wallets, digital banks, and multiple account types, users need a tool that can

consolidate and manage all financial information in one place.

2. Gap in Existing Apps

As highlighted above, popular apps like Monefy, 1Money, and Spendee do not offer a complete

set of features to support comprehensive money management [1], [2], [3]. There is a clear gap

for a well-rounded app that offers better categorization, flexible tracking, useful visualizations,

and budget alerts.

3. User Expectations for Better Features

Users today demand more than basic income and expense logs. They expect apps to help them

analyze, visualize, and take action on their financial behavior.

4. Improving User Experience

Many apps either oversimplify or overwhelm users with complex UIs. This application is

designed to strike a balance—providing a clean, intuitive interface while offering robust

features for financial tracking.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

5. Promoting Financial Awareness

By combining detailed tracking, categorized expenses, clear reports, and real-time alerts, the

app helps users develop better financial habits and gain a clearer understanding of how they

spend their money.

1.2 Objectives

The primary goal of this project is to develop a comprehensive and user-friendly personal

finance management application that enables users to efficiently track and manage their

finances. The proposed application aims to provide an all-in-one solution for managing various

financial aspects, such as income, expenses, budgets, and account balances. The specific

objectives of this project are as follows:

1. Develop Comprehensive Account Management Features

The application will allow users to manage multiple financial accounts, including cash, debit

cards, credit cards, loans, and e-wallets. CRUD (Create, Read, Update, Delete) operations will

be implemented for each account type, enabling users to efficiently maintain and track their

financial data. By centralizing account management in one application, users will gain a clear

overview of their financial status, making it easier to control and optimize their finances.

2. Enhance Financial Tracking and Reporting

The application will support detailed tracking of income and expenses, organizing them into

user-defined categories and subcategories. This functionality will provide users with insights

into their spending patterns and allow for better financial planning. Visual tools such as pie

charts and line graphs will be integrated to represent income and expenses, offering users a

clear and intuitive way to understand their financial trends over time.

3. Implement Budget Management and Notifications

Users will be able to set budgets for each expense category, enabling them to allocate a specific

amount of money for different spending areas. The application will notify users when their

spending approaches or exceeds the budget limits set, helping them stay on track with their

financial goals and avoid overspending. This feature aims to promote financial discipline and

enhance users’ budgeting capabilities.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

4. Provide Advanced Financial Tracking

The app will enable users to track and analyze their income and expenses in detail, offering

granular insights into their financial habits. Customizable subcategories under major expense

categories will allow users to break down their spending into more specific terms, facilitating

a deeper understanding of their financial behavior. Additionally, advanced filtering options will

be provided to sort and analyze financial data by category, date, or account, ensuring users can

access relevant information easily.

5. Improve User Experience and Functionality

A strong emphasis will be placed on ensuring the application is easy to use, with an intuitive

interface that simplifies financial management. The app will feature smooth navigation and

provide users with a well-organized and consistent experience, even as they manage complex

financial data. User feedback will be incorporated to refine the app’s functionality, ensuring

that it remains user-centric and effective.

6. Provide Local Data Storage with Data Export and Backup Options

All user data will be stored locally on the device using SQLite [5], ensuring that financial data

remains available even without an internet connection. Additionally, users will have the option

to export their financial data for backup purposes or further analysis. This functionality will

allow users to keep their data secure and ensure they can transfer or restore it when necessary.

By achieving these objectives, the project will deliver a feature-rich and reliable personal

finance management application that meets users’ needs for tracking and managing their

finances effectively. The application will empower users to make informed financial decisions,

improve their financial health, and achieve their financial goals with confidence.

1.3 Project Scope and Direction

The scope of this project is to design, develop, and implement a comprehensive personal

finance management application that will cater to the essential needs of users in managing their

personal finances. The primary focus will be on providing tools to manage financial accounts,

track income and expenses, setting budgets, and ensure that the application remains simple yet

effective for everyday use.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

Scope of the Project

The key functionalities to be developed within the scope of this project include:

1. Account Management

The application allows users to create, view, edit, and delete multiple types of financial

accounts, such as cash, debit cards, credit cards, loans, and e-wallets. These account types

enable users to manage their various financial sources in a single app. Each account tracks its

balance, transactions, and associated details like transaction dates, notes, and amounts. The app

provides users with a comprehensive view of all their financial assets and liabilities, offering a

centralized location for all their account activities.

2. Income and Expense Tracking

Income and expenses are central to the app’s functionality. Users can log transactions across

various accounts and categorize them under broader expense categories like Food, Transport,

Apparel, etc. The app goes beyond these main categories by allowing users to create custom

subcategories under each major category. For example, under the Food category, users can set

subcategories like Breakfast, Lunch, and Dinner, offering more detailed insights into exactly

where their money is being spent. This granularity enhances financial analysis, enabling users

to track expenditures more accurately, recognize spending patterns, and make more informed

decisions about managing their money. [6]

3. Budgeting and Expense Alerts

The budgeting feature allows users to set specific spending limits for different expense

categories, such as Food or Transport, based on their personal financial goals. The app monitors

user spending and notifies them when they approach or exceed their set budget for each

category. This real-time feedback enables users to take corrective actions promptly, such as

reducing discretionary spending in specific categories or adjusting their budgets. The ability to

define both categories and subcategories within budgets offers more control and flexibility

compared to traditional, broad budget settings.

4. Data Visualization

The app provides various data visualization tools, including pie charts, line charts, and bar

graphs, to represent financial activities. Pie charts visually break down income and expenses,

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 8

giving users a clear understanding of how their money is allocated across different categories

and subcategories. Line charts track financial trends over time, such as comparing monthly

income against expenses, helping users see whether they are sticking to their financial goals.

These visual aids transform raw financial data into meaningful insights, enabling users to filter

data based on accounts, categories, and subcategories for personalized financial analysis.

5. Data Export and Backup

The application enables users to export their financial data in the form of JSON files, which

can be stored for backup purposes or transferred to another device. This ensures users have a

secure and accessible backup of their data. By enabling data export, the app allows users to

migrate their financial data to other platforms if needed, offering convenience and flexibility.

Additionally, the ability to restore or import data on another device ensures continuity and

prevents data loss in case of device failure.

6. Receipt Scanning and Categorization

A unique feature of this application is the ability to scan receipts directly through the app. Users

can take a photo of their receipt, and the app will extract relevant details such as amount, date,

and description of the purchase. The system will then automatically suggest an appropriate

category and subcategory based on the receipt’s contents. For example, a receipt for a meal at

a restaurant will be categorized under the Food category and assigned to the Dinner

subcategory. By minimizing the need for manual input, this feature enhances efficiency and

ensures more accurate transaction classification. The automatic categorization ensures

consistency across all financial data entries, helping users maintain organized financial records

effortlessly.

1.4 Contributions

This project delivers several key contributions to the field of personal finance management by

integrating diverse functionalities into a single, user-friendly mobile application:

1. Unified Account Management

Unlike many existing tools that support only one or two account types, this application

consolidates multiple financial accounts—such as cash, debit cards, credit cards, loans, and e-

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 9

wallets—into one interface. This feature ensures that users have a comprehensive view of their

entire financial situation in one place, eliminating the need to switch between multiple apps or

manually track each account separately. By enabling full CRUD (Create, Read, Update, Delete)

operations for each account type, users can manage their accounts seamlessly, make

adjustments as needed, and track their financial data in a single location. This integration

streamlines financial tracking and reduces the complexity often associated with managing

multiple account types.

2. Granular Expense Classification

A major enhancement over basic finance apps is the ability to create customizable

subcategories under each main expense category. This feature allows users to classify their

spending with much greater detail. For instance, under the broad "Food" category, users can

create subcategories such as "Breakfast," "Lunch," and "Dinner" to gain clearer insights into

where their money is being spent. This level of customization not only helps users better

understand their spending habits but also enables them to track specific areas of overspending.

By offering this flexibility, the application empowers users to make more informed financial

decisions and adjust their budgets based on detailed data.

3. Budgeting with Real-Time Alerts

The application introduces a flexible budgeting system that allows users to set monthly or

weekly spending limits for different categories, ensuring they remain financially disciplined.

Users receive real-time alerts, both on-screen and via push notifications, when they approach

or exceed their budgeted limit. This proactive approach helps prevent overspending, a common

issue in many financial apps. By receiving instant feedback on their spending, users can make

timely adjustments to their expenses, promoting better financial management and long-term

savings.

4. Comprehensive Data Visualization

The application provides powerful visualization tools, including pie charts, bar charts, and line

graphs, to help users understand their financial data more clearly. These visual aids allow users

to analyze their income and expenses over different timeframes, such as monthly or annually.

The ability to compare financial trends through line graphs, for example, enables users to

monitor their spending habits and identify areas where they may be overspending or saving too

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 10

little. Interactive filters further allow users to drill down into their financial data by account,

category, or date, offering personalized analysis. This data-driven approach makes financial

management more transparent and empowers users to make informed decisions.

5. Receipt Scanning and Automatic Categorization

To simplify expense tracking, the app includes a receipt-scanning feature that automatically

captures transaction details such as amount, and merchant from photos of receipts. Automating

this process cuts down on manual input, helping users save time and reducing the likelihood of

mistakes. Additionally, the application uses keyword-based suggestions to automatically

categorize expenses based on the receipt's content. This functionality is especially useful for

users who frequently make purchases in various categories, ensuring that transactions are

accurately classified without requiring manual input.

6. Offline Data Storage with Export/Import

For users who may not always have access to the internet, the app stores financial data locally

using SQLite, allowing users to access and manage their information even when offline. This

feature is particularly beneficial for users with limited internet connectivity or those who need

to track their finances on the go. Furthermore, the app supports data export and import

functionality through JSON files, enabling users to back up their financial data, transfer it to

another device, or migrate it to another platform. This feature ensures users have full control

over their data and can access it whenever needed, without risk of data loss.

7. Improved User Experience and Interface

The application prioritizes user experience, offering an intuitive, engaging, and seamless

interface. Unlike many financial apps that suffer from cluttered layouts and overwhelming

navigation, this application addresses common usability issues by providing a clean, simple,

and accessible design. The layout is easy to navigate, and the fonts are large enough for

comfortable reading, even on smaller devices. The goal is to enhance user engagement by

creating a visually appealing, straightforward interface that simplifies financial management.

By reducing friction in the user interface, the app helps users stay focused on their financial

goals without being distracted by confusing or overly complex elements.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 11

These contributions combine to deliver a robust, feature-rich application that simplifies

personal finance management. With its intuitive design, flexible features, and detailed tracking

capabilities, the app empowers users to take full control of their financial health while offering

practical tools for budgeting, tracking, and planning.

1.5 Report Organization

This report is organized into seven chapters to comprehensively present the development,

implementation, and evaluation of the Personal Finance Management and Budget Application.

Chapter 1 – Introduction:

This chapter introduces the project by outlining the background, motivation, and rationale

behind the development of the application. It highlights the problems identified in existing

financial apps and explains the need for an all-in-one solution. The chapter also defines the

research objectives, scope, and direction of the project, emphasizes key contributions, and

provides an overview of the structure of the report.

Chapter 2 – Literature Review:

This chapter reviews existing mobile applications and relevant studies in the field of personal

finance management. It analyzes the strengths and limitations of popular apps such as Monefy,

1Money, and Spendee. Through comparative analysis, it identifies gaps in functionality,

customization, and usability, which inform the design choices made in the proposed system.

Chapter 3 – System Methodology/Approach:

This chapter outlines the development methodology and system modeling techniques used in

the project. It includes visual representations such as system architecture, use case, and activity

diagrams, which describe the functional flow and interactions within the application. The

chapter also details the step-by-step approach taken to transform user requirements into a

working system.

Chapter 4 – System Design:

This chapter presents the technical blueprint of the application. It includes system block

diagrams, detailed specifications for each software component, and descriptions of the design

of interfaces and data structures. It also covers how the different components interact to achieve

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 12

the core functionalities, including account management, transaction tracking, and budget

control.

Chapter 5 – System Implementation:

This chapter discusses the practical implementation of the system. It covers the development

environment setup, software tools, and technologies used, along with configuration procedures

and key implementation strategies. The chapter features user interface screenshots to illustrate

the construction of each functionality and includes a discussion of the challenges encountered

during development and the solutions implemented.

Chapter 6 – System Evaluation and Discussion:

This chapter evaluates the performance and reliability of the application. It details the testing

methods employed, presents test cases and results, and discusses how effectively the system

meets its objectives. The chapter also reflects on the development experience, identifies key

technical challenges, and assesses how well the implemented features align with user needs.

Chapter 7 – Conclusion and Recommendations:

The final chapter summarizes the outcomes of the project, including the achievements and

lessons learned throughout the development process. It offers recommendations for future

improvements, such as feature expansions or the integration of advanced financial analytics, to

further enhance the value of the application.

In addition to the chapters, the report includes supplementary sections such as References,

Appendix, and Poster. The References section provides bibliographic support, the Appendix

includes additional materials like diagrams or source code, and the Poster offers a visual

summary of the project.

Chapter 2

Literature Review

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 13

2.1 Overview of Reviewed Applications

Several popular personal finance applications were reviewed to understand the current

landscape of mobile budgeting tools and identify existing gaps. The selected apps—Monefy,

1Money, and Spendee—are known for their popularity and usability. Each provides core

financial tracking functionality, but they also exhibit limitations that restrict detailed financial

analysis and customization. The sections below discuss each application in terms of its features,

strengths, and limitations.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 14

2.1.1 Monefy Overview

Figure 2.1.1 Monefy Homepage – 1

Figure 2.1.2 Monefy Homepage – 2

Figure 2.1.3 Monefy Add Transaction

Figure 2.1.4 Monefy View Transaction

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 15

Monefy is a popular mobile application for expense tracking that emphasizes ease of use and

speed of data entry. It allows users to log income and expenses using a simple and colorful

interface. One of Monefy’s main strengths is its visual and intuitive design, where users can

quickly understand their financial standing through pie charts and other visual summaries. It

also supports different currencies and allows simple category-based tracking.

However, despite its user-friendly interface, Monefy has several notable limitations when it

comes to detailed financial management. The application does not support the tracking of

multiple account types separately. All transactions are pooled into a single account view, which

restricts users from managing funds across different financial sources such as e-wallets, debit

cards, and loans. Furthermore, Monefy lacks the flexibility to customize or create subcategories

under major expense categories. This limits the user's ability to track specific patterns of

spending. For example, while a user may be able to track food-related expenses, they cannot

further classify them into “Breakfast,” “Lunch,” and “Dinner” for deeper insight.

Another limitation is the absence of advanced budgeting and financial analysis tools. Monefy

offers only basic monthly budgeting, and it lacks features like spending alerts, automated

recurring transactions, or goal setting. It also provides limited options for exporting or backing

up data securely.

In contrast, the proposed application in this project addresses several of these shortcomings. It

supports multiple account types with independent tracking, allows users to define subcategories

for greater precision, and includes budget notifications to help users stay within their financial

limits. The goal is to provide a more comprehensive and flexible solution for personal finance

management, building upon the strengths of apps like Monefy while filling in the gaps they

leave behind.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 16

2.1.2 1Money Overview

Figure 2.1.5 1Money Category Page

Figure 2.1.6 1Money Transaction Page

Figure 2.1.7 1Money Budget Page

Figure 2.1.8 1Money Overview Page

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 17

1Money is a popular mobile application designed to assist users in managing their personal

finances. It offers core features such as expense and income tracking, and supports multiple

account types including cash, debit cards, and bank accounts. These features help users

maintain an organized overview of their financial status.

The interface of 1Money is clean and user-friendly, allowing quick entry of transactions and

providing summary views with pie charts for visual representation. It also allows users to set

monthly budgets for various expense categories, helping them monitor and control their

spending habits.

However, 1Money has several limitations that impact the level of detail and customization

available to users. Most notably, it does not support the creation of subcategories within main

categories, which restricts users from tracking expenses at a more granular level. For example,

within the “Transportation” category, users cannot separately view expenses for fuel, public

transport, or parking.

Another key limitation is that many of 1Money’s more advanced features—such as multiple

account support, visualizations, and budget tracking—require users to purchase the premium

version of the app. This paywall can be a barrier for users who seek a full-featured finance

management tool without incurring additional costs.

In contrast, the application developed in this project addresses these issues by offering

subcategory support for detailed classification, account-level tracking, budget notifications,

and visual reports—all without requiring any premium purchase. This makes it a more

accessible and flexible alternative for users who need comprehensive personal finance

management features.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 18

2.1.3 Spendee Overview

Figure 2.1.9 Spendee Spending

Overview

Figure 2.1.10 Spendee Timeline

Figure 2.1.11 Spendee Wallet

Figure 2.1.12 Spendee Budget Overview

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 19

Spendee is a well-known personal finance app that provides users with tools to manage their

income and expenses. It allows tracking across various financial accounts, offering an

organized dashboard for visualizing financial activity. The app is popular for its appealing

design and ease of use, especially for quick transaction entry and budget tracking.

One of Spendee’s strengths lies in its use of visual elements such as colorful pie charts and

graphs to represent spending distributions. Users can categorize their expenses, set budgets,

and view how their spending aligns with those limits. However, the app offers limited

flexibility in category customization, as it does not support the creation of detailed

subcategories within each main category. This restricts users who wish to track expenses with

more precision. [6]

Furthermore, while Spendee includes features for tracking multiple accounts and setting

budgets, many of these capabilities—along with additional visualizations and analytics—are

locked behind a premium subscription. Users who do not upgrade may find themselves

restricted in terms of how much financial insight and control they can gain through the app.

The application developed in this project aims to overcome these limitations by allowing users

to define their own subcategories under each expense category, track transactions in detail, and

visualize spending through pie and line charts. All of these features are included without

requiring a paid subscription, making it a more accessible and user-friendly option for those

who need a robust finance management solution.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 20

2.2 Summary of Limitations in Existing Applications

Despite the popularity and user base of existing personal finance applications such as Monefy,

1Money, and Spendee, they exhibit notable limitations that reduce their effectiveness for

comprehensive financial management.

Limitation Table

Limitation Monefy 1Money Spendee Proposed App

Subcategory Support ✖ ✖ ✖ ✔

Multi-Account Support ✖ ✔ ✖ ✔

Budget Alerts ✖ ✔ ✖ ✔

Export/Backup Options ✔ ✔ ✖ ✔

Interface Clutter or Limited Customization ✖ ✖ ✔ ✔

Smart Scanning and Prediction ✖ ✖ ✖ ✔

Premium Required for Full Features ✖ ✔ ✔ ✖

Table 2.2.1 Limitation Table

Monefy is known for its simplicity and ease of use, but it falls short in a few critical areas.

It lacks support for managing multiple financial accounts separately; all transactions are pooled

together, making it difficult for users to track their finances across different sources like e-

wallets, debit cards, or loans. It also does not allow the creation of subcategories under expense

categories, limiting users from tracking detailed spending patterns (e.g., distinguishing between

breakfast, lunch, and dinner under the “Food” category). Additionally, it lacks advanced

budgeting tools and does not provide spending alerts or future projections.

1Money improves on Monefy by supporting multiple accounts and budget tracking but still

lacks subcategory support. Users can assign budgets to the main categories, but they cannot

further classify expenses within them. Furthermore, many of its core features, such as detailed

budgeting and advanced visual analytics, are locked behind a premium version, restricting

access for users who prefer free tools.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 21

Spendee offers a visually appealing dashboard and multiple account support, but

customization is still limited. Like the others, it does not support subcategory creation, and

many of its premium features (such as detailed charts, custom reports, and cloud sync) require

payment. This again limits accessibility and flexibility for users without a premium

subscription.

These gaps in functionality highlight a clear opportunity for improvement. The proposed

application aims to fill these gaps by offering all key features—such as multi-account tracking,

subcategory creation, budget alerts, and visual reporting—without requiring a paid upgrade.

2.3 Proposed Solution

The proposed application is developed to overcome the limitations observed in existing

applications. Its design is centered on delivering a more detailed, flexible, and accessible

personal finance management experience. Key improvements include:

1. Support for Multiple Account Types:

Unlike Monefy, this application allows users to manage transactions across various account

types including cash, debit cards, credit cards, loans, and e-wallets. Each account is tracked

independently to offer clearer financial insights.

2. Custom Subcategory Creation:

To provide more detailed expense tracking, users can define subcategories under each main

category. For instance, under “Food,” users can create subcategories like “Breakfast”, “Lunch”

or “Dinner”. This allows deeper analysis of spending habits. [6]

3. Budget Alerts and Notifications:

The app supports setting monthly budgets and provides real-time notifications when users

approach or exceed their limits. This feature encourages responsible spending and budget

discipline.

4. Visual Reporting:

Comprehensive pie and line charts offer users an intuitive overview of their financial behavior.

Users can view income vs. expenses over time and identify trends or anomalies easily.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 22

5. Smart Scanning and Prediction:

To streamline data entry, users can scan receipts or bills, and the system automatically extracts

relevant details such as amount, category, and date. Additionally, a prediction system uses past

behavior to suggest subcategories when entering a new transaction, reducing manual input and

improving consistency.

By addressing the shortcomings in current applications and integrating these enhancements,

the proposed solution provides a more complete and user-friendly financial management tool

for everyday use.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 23

Chapter 3

System Methodology

3.1 System Design Overview

The proposed financial management application is designed as an offline mobile solution

developed using the Flutter [4] framework. The goal is to provide users with a fast, lightweight,

and intelligent platform for managing their finances without relying on constant internet

connectivity. The system emphasizes efficiency, privacy, and user convenience, especially

through features like receipt scanning and smart category prediction.

The overall system architecture consists of multiple interconnected components, each designed

to perform a specific role while maintaining a modular structure for ease of maintenance and

future scalability.

Core Features and Design Components

1. Offline Functionality and Data Privacy

The application is designed to function entirely offline, eliminating the dependency on internet

connectivity. This approach ensures that users can access and manage their financial data at

any time, regardless of network availability. By not requiring cloud storage or external servers,

the system also enhances data privacy, giving users full control over their sensitive financial

information.

2. Local Database Management (SQLite)

At the core of the application is a local SQLite database that manages all transactional data,

including accounts, categories, subcategories, and user preferences. This database enables fast

data operations such as insertions, updates, deletions, and queries, all performed locally on the

user’s device. This ensures both speed and efficiency while maintaining the integrity of the

stored data.

3. Receipt Scanning Using Google ML Kit

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 24

The application features a receipt scanning functionality that leverages Google’s ML Kit [7]

for optical character recognition (OCR). Users can capture a photo of their receipt or select an

image from their gallery. The app then processes the image to enhance text clarity before

extracting the content. This content is analyzed to detect the transaction amount and related

notes, which are automatically filled into the input form, reducing manual entry and enhancing

convenience.

4. Lightweight Prediction for Auto-Categorization

Rather than implementing complex machine learning models, the app uses a lightweight, rule-

based prediction system based on user history. When a user enters a transaction note, the app

searches the local database for previous notes and retrieves the most associated category and

subcategory. This intelligent but resource-efficient method allows the app to suggest relevant

categories quickly, mimicking smart prediction while maintaining speed and storage

efficiency.

5. Dynamic Category and Subcategory Handling

To improve accuracy and user experience, the application supports dynamic linking between

categories and subcategories. When a user selects a category, the subcategory dropdown

updates to show only the relevant options. This ensures that users do not accidentally assign

unrelated subcategories, maintaining consistent and meaningful categorization of transactions.

6. Intuitive and Accessible User Interface

The interface of the application is designed to be clean, colorful, and intuitive. Color codes are

used to visually differentiate between income, expenses, and transfers. Large buttons,

dropdown menus, and input fields make navigation and usage simple for users of all

backgrounds. This user-centered design philosophy promotes usability and encourages regular

interaction with the app.

7. Modular System Architecture

The application's architecture is built using a modular structure. Components such as database

operations, OCR processing, category prediction, and UI logic—is developed independently.

This separation of concerns makes the system easy to maintain, debug, and extend in the future.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 25

Developers can introduce new features or modify existing ones without disrupting the entire

codebase.

These features work together in a loosely coupled architecture, improving maintainability and

promoting modular development. Each component operates independently yet integrates

seamlessly with the system’s core flow.

3.1.1 System Architecture Diagram

The financial management application is designed using a layered architecture that separates

concerns across different responsibilities. This design approach improves code maintainability,

scalability, and testability while also enhancing performance and offline reliability. The

architecture is divided into four primary layers:

Figure 3.1.1 System Architecture Diagram

1. UI Layer

The UI layer includes all user-facing screens and components that allow users to interact with

the system. Each screen serves a specific function and reflects real-time data updates:

• Dashboard Screen: Displays a summary of financial activities, recent transactions,

account balances, and budget status.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 26

• Add Transaction Screen: Allows users to input new transactions (income, expense,

transfer). Includes dynamic dropdowns for category/subcategory selection and optional

receipt scanning.

• Add Account Screen: Enables users to add, view, or delete financial accounts (e.g.,

cash, debit, e-wallet).

• Add Category Screen: Lets users define new categories and subcategories for

organizing transactions.

• Report & Chart Screen: Presents financial insights using visual aids such as pie charts

and line graphs, helping users analyze spending and budgeting trends.

• Budget Screen: Allows users to set monthly budgets per category and get notified when

approaching the limit.

• Setting Screen: Offers general configuration, theme selection, and app behavior

settings.

Each of these screens is developed using Flutter [4] widgets and follows best practices for

reactive UI rendering.

2. Logic Layer

This layer handles the application’s core business logic. It is responsible for processing data,

implementing rules, and coordinating between the UI and the database:

• Transaction Handler: Manages CRUD operations for transactions, including validation

and linking to accounts/categories.

• Extract Data from Receipt: Utilizes ML Kit [7] to recognize text from receipt images

and extract relevant transaction data (e.g., amount, merchant name).

• Subcategory Loader: Dynamically loads subcategories based on the selected category

to support detailed expense classification.

• Category Prediction: Predicts the category and subcategory from user-entered notes

using a lightweight, non-AI-based matching system that looks up past patterns from

stored data.

• Update Account: Adjusts account balances in real time after adding, editing, or deleting

transactions.

• Update Budget: Calculates current budget usage and checks whether a user is

approaching or exceeding limits.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 27

• Update Report: Aggregates transaction data and feeds it into visual representations for

reporting purposes.

This layer ensures smooth and accurate data flow between the interface and storage systems,

supporting intelligent behavior while maintaining offline capability.

3. Local Services

All persistent data is stored using SQLite [5], a lightweight local relational database. It provides

structured storage for:

• Transactions

• Accounts

• Categories & Subcategories

• Budgets

• User Preferences

• Category prediction mappings

This offline approach ensures users can manage their finances anytime, even without an

internet connection.

4. External Libraries

To enhance functionality and simplify complex operations, several third-party libraries are

integrated:

• ML Kit: Google’s machine learning SDK used for Optical Character Recognition

(OCR) to extract text from scanned receipts.

• Image Picker: Allows users to capture a photo from the camera or select one from the

device gallery.

• Path Provider: Identifies platform-specific storage paths to save and retrieve files

locally.

• File Handling: Supports image preprocessing and temporary storage for improving

OCR accuracy.

These libraries enable robust features such as receipt scanning and prediction while

maintaining lightweight, device-local architecture.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 28

3.1.2 Use Case Diagram

The use case diagram outlines the key functional interactions between the user and the financial

management system. It presents a high-level visual representation of how the user performs

various actions within the application and how different system components support these

operations. The system is designed to be intuitive and user-centric, allowing users to manage

their finances efficiently and flexibly through a set of core and enhanced functionalities. [8]

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 29

Figure 3.1.2 Use Case Diagram

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 30

Primary Actor

• User: The user is the central actor who interacts with the application. The user is

responsible for inputting, managing, and reviewing financial data and is the recipient

of system-generated feedback such as budget alerts and category predictions.

Use Cases and System Interactions

1. Create, Read, Update, Delete (CRUD) Transactions

• The user can perform all CRUD operations on financial transactions, including income,

expenses, and transfers.

• For income and expense entries, the user selects the relevant account, category, and

subcategory, and inputs the amount, note, and date.

• For transfers, the user specifies the source and destination accounts and transfer

amount.

• Each transaction updates the associated account balance and contributes to budget and

report calculations.

• Transactions can be edited later if mistakes occur or deleted if no longer needed.

2. Create, Read, Update, Delete (CRUD) Accounts

• Users can manage multiple types of accounts such as cash, debit cards, credit cards, or

e-wallets.

• Each account maintains a separate balance and transaction history.

• The application allows users to create new accounts with custom names and initial

balances, update account names or values, and delete unused accounts.

• Transfers between accounts are also supported and reflected in both source and

destination balances.

3. Create, Read, Update, Delete (CRUD) Categories and Subcategories

• Users can define their own categories (e.g., Food, Transport) and subcategories (e.g.,

Lunch, Taxi) to tailor the application to their spending patterns.

• This customization enables more precise tracking of financial behavior.

• Categories can be renamed, deleted, or reorganized, and subcategories are dynamically

loaded based on the selected category during transaction entry.

4. Create, Read, Update, Delete (CRUD) Budgets

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 31

• Users can assign monthly budget limits to specific categories.

• Budgets help users control their spending by setting financial boundaries for each area.

• The system monitors budget consumption and alerts the user when spending

approaches or exceeds the limit.

5. View Reports and Charts

• The application provides visual summaries of financial data in the form of pie charts

(for category-based spending), bar charts and line charts.

• Users can review spending distribution, income vs. expense comparison, and identify

areas where they may need to cut costs or reallocate budgets.

6. Receive Budget Limit Notifications

• The system includes a Notification Provider module that continuously evaluates

spending against the user’s defined budgets.

• When the spending in any budgeted category reaches a predefined threshold (e.g., 80%

of the budget), a local notification is triggered to warn the user.

• This real-time feedback helps users stay disciplined and adjust spending accordingly.

7. Scan Receipt and Extract Data

• When adding a transaction or transfer, users can choose to scan a physical receipt using

their device camera or select an image from the gallery.

• The image undergoes preprocessing to enhance OCR accuracy, and Google ML Kit’s

Text Recognition API is used to extract textual information.

• The extracted text is parsed to identify the transaction amount and possibly a note or

merchant name.

8. Predict Category from Note

• After scanning, the extracted note is used to predict the most relevant category and

subcategory based on past user behavior.

• A lightweight local algorithm (without requiring AI services or online connectivity)

matches the note with previously recorded transactions.

• If a likely match is found, the category and subcategory fields are auto-filled to speed

up the transaction entry process and reduce user input errors.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 32

3.1.3 Activity Diagram

The activity diagram illustrates the dynamic behavior and flow of actions when a user interacts

with the financial management application, particularly during the process of adding a

transaction. It helps visualize the step-by-step logic, including decision points and system

responses that occur during user interaction. [9]

The following description focuses on the “Add Transaction” activity, incorporating advanced

features like receipt scanning and category prediction.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 33

Figure 3.1.3 Full Activity Diagram

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 34

Figure 3.1.4 Activity Diagram (Add transaction)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 35

Activity Flow Description

1. Start

• The activity begins when the user navigates to the "Add Transaction" screen from the

dashboard.

2. Select Transaction Type

• The user selects the transaction type: Income, Expense, or Transfer.

• Based on the selection, the input form dynamically adjusts (e.g., source and destination

accounts for transfer).

3. Input Transaction Details

• The user enters details such as amount, note, date, account, category, and subcategory.

• The app provides dropdowns for selecting account, category, and subcategory.

Subcategories are loaded dynamically based on the selected category.

4. (Optional) Scan Receipt

• If the user chooses to scan a receipt:

• The app opens the camera or gallery via Image Picker.

• The image is preprocessed and analyzed using ML Kit’s Text Recognition.

• The system extracts transaction details (e.g., amount, note) and autofills them into the

form.

5. (Optional) Predict Category

• If a note is available (manually entered or scanned), the system attempts to predict a

category and subcategory.

• The prediction is made based on the user's previous transactions stored in the local

SQLite database.

• If a match is found, the predicted category and subcategory are selected automatically.

6. Validate Inputs

• The system checks that all required fields (e.g., amount, account, category) are filled

correctly.

• If validation fails, an error message is shown and the user must correct the input.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 36

7. Transaction Submit

• Once valid, the transaction is stored in the SQLite database.

8. Update Related Data

• The related account balance is updated based on the transaction type.

• The budget consumption is recalculated if the category is part of a budget.

• The transaction contributes to the report and chart statistics.

9. End

• The user is redirected back to the previous screen or remains on the same screen to add

another transaction.

This activity diagram provides a clear and comprehensive view of how the transaction addition

process works, including the seamless integration of advanced features like OCR and

prediction.

3.1.4 User Interface Design

The user interface (UI) of the application is designed to provide a clean, intuitive, and efficient

user experience for managing personal finances. Each screen is structured to support a specific

function of the system while maintaining consistency in layout and usability across the

application. Below is an overview of each screen and its purpose:

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 37

Figure 3.1.5 Dashboard Screen UI

1. Dashboard Screen

Acting as the application's starting screen, the dashboard offers users a summary of their overall

financial condition. It displays the total balance, income, and expense values. The screen may

also feature quick access buttons to add new transactions or view reports. It provides a high-

level snapshot of the user's finances at a glance.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 38

Figure 3.1.6 Transaction Add Screen UI

2. Transaction Add Screen

This screen allows users to add new transactions, including expenses, income, or transfers.

Users can:

• Enter transaction amount and date.

• Choose a category and subcategory (dynamically loaded).

• Add a note for reference.

• Scan receipt using the device camera and extract transaction details using ML Kit [7].

• Automatically predict the transaction category based on the content of the note.

The screen dynamically adjusts input fields based on the transaction type, ensuring simplicity

and minimizing input errors.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 39

Figure 3.1.7 Transaction Update Screen UI

3. Transaction Update Screen

The transaction update screen functions similarly to the add screen but is used to modify

existing entries. Users can view the current transaction details, make changes to the amount,

category, date, or note, and save updates. This feature ensures that users can correct mistakes

or update information as needed.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 40

Figure 3.1.8 Report Screen UI

4. Report Screen

The report screen visualizes the user's financial data through interactive charts and summaries.

It includes:

• Pie charts showing expense distribution by category.

• Line or bar charts showing trends over time.

• Filters to view reports by time period (daily, monthly, custom range).

This helps users understand their spending habits and manage their budget more effectively.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 41

Figure 3.1.9 Account Screen UI

5. Account Screen

In this screen, users can manage different financial accounts such as cash, e-wallets, debit

cards, or bank accounts. The screen allows:

• Adding new accounts.

• Editing or deleting existing accounts.

• Viewing balance summaries per account.

This feature helps users track how their money is distributed across different financial sources.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 42

Figure 3.1.10 Budget Screen UI

6. Budget Setting Screen

This screen lets users set monthly budgets for selected categories. Key features include:

• Input fields for budget amount per category.

• Visual indicators of spending progress relative to budget.

• Budget alerts if the user is approaching or exceeding the limit (handled by notification

logic).

This feature encourages responsible financial behavior and helps users stay on track with their

goals.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 43

Figure 3.1.11 Category Screen UI

7. Category Screen

Users can manage both categories and subcategories through this screen. It supports:

• Adding, editing, and deleting main categories.

• Adding nested subcategories to allow detailed classification of expenses and income.

This customization enhances the accuracy of tracking and reporting by aligning with individual

financial preferences.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 44

Chapter 4

System Design

4.1 System Block Diagram

The system block diagram illustrates the overall structure and interaction between the key

components within the application. It outlines the flow of data and the connection between the

user interface, logic processing, and the storage layer. [10]

Figure 4.1.1 Block Diagram

The application consists of the following major components:

User Interface (UI): Handles user interaction through screens such as Dashboard, Add

Transaction, Add Account, Category Management, Report, and Budget Settings.

1. Logic Layer:

Processes input data, performs validation, handles operations like category prediction and

report generation, and communicates between UI and database.

2. SQLite Database:

Acts as the local data store for transactions, categories, accounts, budgets, and preferences.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 45

3. External Libraries and Tools:

• Google ML Kit: Used for OCR (optical character recognition) when scanning receipts.

• Image Picker: For capturing or selecting receipt images.

• Path Provider and File Handling: For managing local file paths and storage access.

4. Block Diagram Explanation:

• The UI layer initiates requests such as adding a transaction or scanning a receipt.

• The Logic layer handles prediction and parsing operations, such as extracting data from

OCR text and matching it with past user preferences.

• Extracted and processed data is stored or retrieved from the SQLite database.

• External libraries assist in extracting and analyzing image content.

This modular separation enhances maintainability and offline usability, as all operations are

conducted locally without requiring internet access or external APIs.

4.2 System Components Specifications

This section provides a comprehensive description of each major component involved in the

development of the offline financial management application. The system was developed using

Flutter and Dart [11], with a modular architecture to support scalability, maintainability, and

smooth user interactions. The application is designed to work entirely offline, relying on a local

SQLite database, while integrating essential functionalities such as receipt scanning and

lightweight prediction to enhance user experience.

1. User Interface Components

The user interface layer serves as the bridge between the user and the system’s core logic. It is

designed with simplicity and usability in mind, allowing users to manage their financial

activities with minimal effort.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 46

UI Screen Functionality Description

Dashboard

Screen

Acts as the central hub showing an overview of total balance, income,

expenses, and view for all transaction records. It also includes shortcuts

to add transaction.

Add Transaction

Screen

Allows users to add new income, expense, or transfer transactions. Users

can scan receipts to auto-fill fields and trigger category prediction based

on the note entered.

Update

Transaction

Screen

Provides users the ability to edit or delete existing transactions, ensuring

accuracy and flexibility in managing records.

Account Screen Enables users to create, update, or delete financial accounts such as

Cash, Bank, or E-Wallet. Account balances are dynamically updated

based on transactions.

Budget Setting

Screen

Users can define monthly budget limits for each category. The system

monitors spending and provides alerts when nearing or exceeding the

limit.

Category Screen Supports creation, update, and deletion of categories and subcategories.

Useful for organizing financial records under personalized labels.

Report Screen Displays visual summaries such as pie charts and bar charts to reflect

spending patterns, income sources, and category-wise breakdowns over

selectable time ranges.

Table 4.2.1 User Interface Components

2. Logic Layer Components

This layer handles the core application logic. It processes data input by the user or from external

sources (e.g., image OCR), updates the local database, and ensures consistency across UI

displays.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 47

Logic

Component

Role and Functionality

Transaction

Handler

Manages creation, update, and deletion of transactions. Ensures account

balances are adjusted accordingly and updates are reflected in reports

and budgets.

Extract Data

from Receipt

Integrates Google ML Kit for OCR to extract text data (amount, notes)

from receipt images. Preprocesses the image for improved accuracy.

Category

Prediction

Uses a lightweight matching system to compare the note with previous

entries. Suggests a category and subcategory without using AI/ML

models or remote servers.

Subcategory

Loader

Automatically loads subcategories relevant to the chosen category.

Enhances dynamic UI behavior and simplifies data input.

Update Account Adjusts the balance of involved accounts (source and destination) during

transactions or transfers. Ensures real-time synchronization with UI.

Update Budget Checks current spending against user-defined budgets. Sends alerts

when budget usage reaches critical levels.

Update Report Regenerates visual reports and data summaries whenever transactions

are added, updated, or deleted. Maintains historical accuracy.

Table 4.2.2 Logic Layer Component

3. Local Storage Layer

The local storage component provides persistent and structured data management for the

application without requiring internet connectivity.

Component Details

SQLite

Database

Used as the core storage system for all app data including transactions,

accounts, categories, subcategories, budgets, and user preferences. It

enables complex querying and supports the app’s offline-first nature.

Prediction

Preferences

Maintains mapping between transaction notes and

categories/subcategories. Supports instant lookup for prediction

functionality.

Table 4.2.3 Local Storage Layer

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 48

4. External Libraries and Tools

These libraries extend the core functionality of the application without adding server

dependencies. Each tool serves a specific purpose in supporting system performance, accuracy,

or user interaction.

Library / Tool Purpose and Contribution

Google ML Kit (Text

Recognition)

Performs OCR on receipt images to extract text such as amount and

note. Enables the scanning feature in a lightweight and efficient

way.

Image Picker Allows users to select images from their gallery or take a new photo

using the device camera. Supports both iOS and Android.

Path Provider Accesses and manages file system paths for temporary or

permanent storage on the device. Ensures compatibility with offline

behavior.

File Handling Reads, stores, and processes images and text files. Supports image

preprocessing before OCR and general data operations.

Table 4.2.4 External Libraries and Tools

By combining these components, the system offers a robust financial management solution that

operates entirely offline while still offering advanced features such as receipt scanning and

transaction prediction. The layered design allows for future scalability and integration without

major architectural overhauls.

4.3 Components Design

This section explains the design of each major component in the system, categorized according

to the architectural layers. The goal is to clarify the function of each part and how they work

together to form a cohesive, maintainable, and scalable mobile application. The system is

divided into four primary layers: the UI layer, logic layer, local services, and external libraries.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 49

Figure 4.3.1 System Flow Chart

4.3.1 UI Layer Components

The User Interface (UI) layer serves as the interaction point between the user and the system.

Each screen is designed to be intuitive, responsive, and aligned with user expectations for

managing financial records.

1. Dashboard Screen

Displays a summary of financial data such as total balance, recent transactions, and quick

navigation shortcuts. Designed for rapid overview and access to key functionalities.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 50

2. Transaction Add Screen

Enables users to input new financial entries with fields such as amount, category, subcategory,

account, date, and optional notes. Supports features like receipt scanning and category

prediction.

3. Transaction Update Screen

Allows users to edit existing transaction entries. Pre-fills current data for modification and

maintains data consistency with the database.

4. Report Screen

Generates visual charts and summaries of spending, income, and budgets. Uses filtered queries

from SQLite [5] to display data by date, category, or account.

5. Account Screen

Lets users add, update, or delete accounts (e.g., cash, bank, e-wallet). Automatically updates

balance calculations.

6. Budget Setting Screen

Provides options to set monthly budgets per category. Triggers notifications when limits are

approached or exceeded.

7. Category Screen

Enables CRUD operations for categories and subcategories, allowing full customization of

expense/income classification.

4.3.2 Logic Layer Components

The Logic layer handles data processing, business rules, and internal operations of the app.

This layer ensures that user inputs and actions are correctly translated into system behavior.

1. Transaction Handler

Manage all operations related to transactions: adding, updating, deleting, and validating input

data before inserting into the database.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 51

2. Extract Data from Receipt

Integrates with Google ML Kit [7] to perform OCR on receipt images. Parses recognized text

to identify amounts and descriptions for pre-filling transaction fields.

3. Subcategory Loader

Dynamically loads subcategories based on the selected category from the database. Ensures

accurate data binding in the UI dropdowns.

4. Category Prediction

Implements lightweight prediction logic by matching normalized keywords in the note field

with user-preferred categories from past transactions. Enhances user efficiency without heavy

AI models.

5. Update Account

Ensures that account balances reflect real-time updates based on transaction changes or

transfers.

6. Update Budget

Tracks current spending per category and compares it with user-defined budget thresholds.

Also handles logic for triggering limit alerts.

7. Update Report

Collects and processes filtered data to generate charts and summaries shown in the report

screen.

4.3.3 Local Services

This layer represents the system's storage mechanism and internal services that ensure

persistent data across user sessions.

1. SQLite Database

Acts as the primary data store for transactions, accounts, categories, budgets, and preferences.

Supports relational data integrity and local queries with indexing for performance.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 52

2. Data Access Helper (DatabaseHelper)

A singleton service that wraps SQL queries and abstracts low-level database operations like

table creation, data insertion, updates, and joins.

4.3.4 External Libraries

These components extend the system's capability beyond native Flutter [4] functions, enabling

advanced features such as OCR and file handling.

1. Google ML Kit

Provides text recognition (OCR) for extracting information from scanned receipts. Used to

improve transaction input accuracy and speed.

2. Image Picker

Allows users to capture or select receipt images from the device camera or gallery. Integrates

with the ML Kit pipeline.

3. Path Provider

Retrieves paths for temporary or persistent file storage on the device, used during receipt

preprocessing or exporting.

4. File Handling

Custom logic for managing image loading, caching, and temporary storage during scanning or

preview.

4.4 System Components Interaction Operations

This section describes how different system components interact during key operations in the

application. It outlines the flow of data and the collaboration between UI, logic, local services,

and external libraries to deliver core functionalities such as adding a transaction, scanning a

receipt, updating budgets, and generating reports. These interaction processes ensure the

system behaves reliably and intuitively from the user's perspective.

4.4.1 Adding a Transaction

1. User Input (UI Layer)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 53

• The user navigates to the Transaction Add Screen and fills in details such as amount,

category, subcategory, note, and date.

• If a receipt is used, the user taps the scan button to initiate OCR.

2. Receipt Scanning (External Library + Logic Layer)

• Image Picker captures the image.

• The image is passed to ML Kit [7] for text recognition.

• Extracted text is parsed to identify the amount and optional note.

• The logic attempts to predict the category based on keywords in the note.

3. Transaction Processing (Logic Layer)

• The validated transaction data is passed to the Transaction Handler.

• Account balance is updated via the Update Account logic.

• The transaction is stored in the SQLite Database.

4.4.2 Updating a Transaction

1. Load Existing Data (UI + Local Services)

• The Transaction Update Screen fetches the current transaction details from the

database.

• Pre-fills all form fields for editing.

2. Modify and Save (Logic Layer)

• Upon user changes, the system verifies and updates the transaction in the database.

• If the amount or account changes, the account balance is recalculated.

• Linked budget and reports are also updated accordingly.

4.4.3 Budget Management and Notifications

1. Budget Setup (UI + Logic Layer)

• Users define a spending limit per category in the Budget Setting Screen.

• Limits are stored locally in the SQLite Database.

2. Spending Monitoring (Logic Layer)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 54

• Each new transaction triggers a recalculation of the total spent in a budgeted category.

• If the amount exceeds or nears the limit, a budget alert notification is triggered via a

custom alerting service.

4.4.4 Generating Reports and Charts

1. Report Screen Access (UI Layer)

• The user navigates to the Report Screen, selecting filters like date range or category.

2. Data Aggregation (Logic Layer)

• The Update Report logic queries SQLite [5] for all relevant transactions.

• Data is grouped and aggregated based on the selected filters.

3. Chart Rendering (UI Layer)

• The summarized data is visualized using pie or bar charts, providing insights on income

vs expenses, top spending categories, and budget progress.

4.4.5 Managing Categories and Subcategories

1. Category CRUD (UI + Logic)

• Users can add or edit main categories and their associated subcategories.

• Changes are reflected immediately in the Add Transaction dropdowns.

2. Data Binding (Logic Layer)

• When a category is selected, the Subcategory Loader loads the corresponding

subcategories dynamically from the database.

4.4.6 Account and Transfer Handling

1. Account Operations

• Users can create or delete accounts. Balances are calculated based on linked

transactions.

2. Transfers Between Accounts

• The user selects source and destination accounts and enters the amount.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 55

• The logic deducts from the source and adds to the target account, logging the transaction

accordingly.

These interaction flows ensure a smooth and cohesive user experience, where each component

of the system is tightly integrated to deliver reliable financial management functionality.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 56

Chapter 5

SYSTEM IMPLEMENTATION

This chapter describes the process of implementing the financial management mobile

application. It outlines the setup required to run the system, including the hardware and

software configurations. Additionally, it covers the key configurations needed, provides a

walkthrough of system operation with illustrative screenshots, discusses encountered

challenges, and ends with a summary of the implementation experience.

5.1 Hardware Setup

The development and testing of the financial management mobile application required both a

computer system for coding and compiling, and a smartphone for deployment and real-

environment testing. The project was developed and tested in an offline environment to ensure

efficiency and responsiveness without reliance on cloud services.

5.1.1 Development Machine (Laptop) Specification

Description Specifications

Model Illegear Arte 14

Processor 11th Gen Intel(R) Core(TM) i7-11370H @ 3.30GHz 3.30

GHz

Operating System Windows 11

Graphic Intel Iris Xe Graphics

Memory 32GB RAM

Storage 500GB ROM

Table 5.1.1 Specifications of Computer

This laptop was used for the installation and usage of Android Studio, code writing in Dart [11]

using Flutter [4] SDK, emulation testing, and GitHub version control for collaborative

development.

5.1.2 Mobile Device for Testing

Description Specifications

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 57

Model Honor Magic 4 Pro

Processor Snapdragon 8 Gen 1

Operating System Android 14

Graphic Adreno 730

Memory 16GB RAM

Storage 256GB ROM

Table 5.1.2 Specifications of Smartphone

This smartphone was used to test real-world functionality, especially features involving camera

access, such as scanning receipts using ML Kit OCR, and performance during offline

operation.

5.1.3 Peripheral Devices and Tools

Smartphone Camera – Used for testing receipt scanning in natural environments (lighting,

focus, etc.)

Mouse and Keyboard – Connected to the laptop to aid in longer development sessions.

Internet Connection – Required only for library and SDK updates; the app itself functions fully

offline.

5.2 Software Setup

The development and deployment of the financial management application required an

appropriate software environment to ensure a stable and efficient development workflow. This

section describes the tools, platforms, and dependencies used in the project setup.

5.2.1 Development Environment

Software Component Specification

IDE Android Studio (Giraffe 2022.3.1) - Primary IDE for Flutter

development

SDK Flutter SDK (v3.0.0) - Framework for cross-platform mobile

development

Programming

Language

Dart (v3.7.3) - Language used by Flutter

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 58

Build Tools Android Gradle Plugin, Dart DevTools

Emulator / Debug

Device

Android Emulator / Physical Android Device (for real-world

testing)

Version Control Git & GitHub - For source control and collaborative development

Table 5.2.1 Development Environment

5.2.2 Flutter Dependencies

The application relies on various open-source Flutter [4] packages to support core functionality

and enhance user experience. The following table explains each dependency:

Package Name Version Purpose in the Application

intl ^0.19.0 Used for date and currency formatting.

fl_chart ^0.69.0 Enables rendering of visual data representations

like pie charts and bar charts for reports.

sliding_up_panel ^2.0.0 Provides an interactive sliding panel UI,

enhancing UX in sections like budget or reports.

sqflite ^2.0.3 Enables local SQLite database storage for

offline transaction, category, and budget data.

path ^1.8.3 Assists in file path manipulation needed for file

operations.

provider ^6.0.5 Implements state management to reflect UI

changes dynamically across the app.

pull_to_refresh ^2.0.0 Allows users to refresh data manually using a

swipe gesture, enhancing UX.

shared_preferences ^2.2.2 Stores lightweight data such as user preferences

or settings.

google_mlkit_text_recognition ^0.13.0 Provides OCR capabilities used in receipt

scanning to extract amount and note details.

image_picker ^1.0.4 Allows users to pick or capture receipt images

from camera or gallery for OCR scanning.

path_provider ^2.1.1 Locates common storage paths for

reading/writing files during OCR and receipt

handling.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 59

permission_handler ^10.4.4 Manages runtime permissions for accessing

camera, storage, and notifications.

share_plus ^7.0.2 Allows users to share exported file into Google

Drive or save as link.

flutter_local_notifications ^18.0.0 Triggers budget alert notifications locally based

on user-defined thresholds.

file_picker ^5.3.1 Provides file browsing UI, could support

importing/exporting data in future iterations.

Table 5.2.2 Flutter Dependencies

5.2.3 Summary

This carefully curated software stack allowed the development of a fully offline-capable mobile

app with intelligent features like receipt scanning and category prediction, without relying on

cloud services like Firebase. The integration of OCR through ML Kit [7] and local prediction

logic enhances user convenience while ensuring data privacy.

5.3 Setting and Configuration

This section outlines the key configurations and initial setup steps taken to ensure the system

operated correctly on both development and testing environments. These configurations

include the setup of the Flutter [4] environment, permission settings, database initialization,

and integration with ML Kit [7] for text recognition.

5.3.1 Flutter Environment Configuration

Before development, the Flutter [4] SDK was installed and configured with the Android Studio

IDE. The environment variables were set, and device emulators were installed and linked via

AVD Manager.

• Flutter SDK Path: Added to system environment variables.

• Dart SDK: Bundled with Flutter and used for application logic.

• AVD Manager: Used to create and manage emulators for testing.

• Flutter Doctor: Run to verify setup and detect missing dependencies.

5.3.2 Android Manifest Configuration

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 60

Several permissions and services were declared in the AndroidManifest.xml file to support the

application features.

Feature Permission/Service Added

Camera

Access

<uses-permission android:name="android.permission.CAMERA"/>

Storage

Access

<uses-permission

android:name="android.permission.READ_EXTERNAL_STORAGE"/> and

<uses-permission

android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

Notification

Access

<uses-permission

android:name="android.permission.POST_NOTIFICATIONS"/> (for

Android 13+)

File Access File provider declared for sharing and saving receipts

Table 5.3.1 Android Manifest Configuration

5.3.3 SQLite Database Initialization

The application uses SQLite [5] as a lightweight local database solution, ensuring all user data

is stored securely on the device. The database schema was initialized during the first application

launch using the sqflite package in Flutter [4]. The _onCreate function defines and creates

multiple interrelated tables to support core functionalities like transaction tracking, budget

planning, and goal setting.

The structure of the database is normalized for data consistency and efficient retrieval. Below

is the breakdown of each table:

Table: accounts

Field Type Description

id INTEGER Primary key (auto-increment)

name TEXT Account name (e.g., Wallet, Bank)

balance REAL Initial or updated balance

accountType TEXT Type of account (Cash, Bank, etc.)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 61

color INTEGER Color code for UI display

isArchived INTEGER Used to hide inactive/archived accounts

 Table 5.3.2 Account Table in Database

Table: transactions

Field Type Description

id INTEGER Primary key

type TEXT Income, Expense, or Transfer

date TEXT Date of transaction

account_id INTEGER FK to accounts.id for regular income/expense

from_account_id INTEGER FK to accounts.id (transfer source)

to_account_id INTEGER FK to accounts.id (transfer destination)

category TEXT Category name

subcategory TEXT Subcategory name (default: 'No Subcategory')

amount REAL Amount involved in the transaction

note TEXT Optional user note

isRecurring INTEGER Flag for recurring transactions

recurrencePattern TEXT Daily/Weekly/Monthly, etc.

Table 5.3.3 Transaction Table in Database

Table: categories

Field Type Description

id INTEGER Primary key

name TEXT Category name

type TEXT Type of transaction (Income/Expense)

iconCode INTEGER Icon code for UI display

color INTEGER Category-specific color

Table 5.3.4 Categories Table in Database

Table: subcategories

Field Type Description

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 62

id INTEGER Primary key

name TEXT Subcategory name

category_id INTEGER FK to categories.id

Table 5.3.5 Subcategories Table in Database

This table allows dynamic nesting of subcategories under each main category, enhancing

organization.

Table: budgets

Field Type Description

id INTEGER Primary key

category TEXT Category under budgeting

type TEXT Expense or Income budget

budget_limit REAL Monthly limit set by user

current_month_spent REAL Total spent in the current month

previous_months_spent REAL Cumulative value from past months

year_month TEXT YYYY-MM string for grouping

created_at TEXT Date when budget entry was created

is_active INTEGER Toggles the budget on/off for tracking

Table 5.3.6 Budgets Table in Database

Table: category_preferences

Field Type Description

id INTEGER Primary key

merchant TEXT Merchant or keyword (from receipt/note)

category TEXT Default predicted category

subcategory TEXT Default predicted subcategory

Table 5.3.7 Category Preferences Table in Database

Table: user

Field Type Description

id INTEGER Primary key

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 63

name TEXT User’s name

dob TEXT Date of birth

gender TEXT Gender

budget_notifications INTEGER Toggles alerts on budget limit exceeded

Table 5.3.8 User Table in Database

This schema supports scalable personal finance features with support for custom accounts,

subcategories, goal planning, and AI-enhanced categorization while maintaining performance

and offline capability.

5.4 System Operation (with Screenshot)

This section presents the full operational flow of the financial management application from

launching to managing financial data, highlighting how each component works within the

system. Screenshots should be inserted accordingly to visually demonstrate each described

process.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 64

Figure 5.4.1 Splash Screen

5.4.1 Application Launch

The application begins with a splash screen displaying the app logo while initializing the local

services. After the splash screen, the user is directed to the main Dashboard.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 65

Figure 5.4.2 Dashboard Screen (Empty)

Figure 5.4.3 Dashboard Screen

5.4.2 Dashboard

The Dashboard acts as the central hub for the user. It shows an overview of:

• Total balance across all transactions.

• A quick summary of income and expenses.

• Quick access buttons for common actions (e.g., Add Transaction, Bottom Navigation).

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 66

Figure 5.4.4 Account Screen

(Empty)

Figure 5.4.5 Account Screen

Figure 5.4.6 Add Account

5.4.3 Add Account

Users can create and manage financial accounts such as Cash, Bank, or E-Wallets. Each

account can have:

• A custom name

• Initial balance

• Account type

• Assigned color for display

These are stored in the local database for future transactions and balance tracking.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 67

Figure 5.4.7 Category

Screen (Empty)

Figure 5.4.8 Category

Screen

Figure 5.4.9 Add Category

5.4.4 Add Category with Subcategory

Users can define custom categories (e.g., Food, Transport) and assign subcategories (e.g.,

Lunch, Grab). Each category includes:

• Name and Type (Income or Expense)

• Associated subcategories for more detailed tracking

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 68

Figure 5.4.10 Budget Screen

(Empty)

Figure 5.4.11 Budget Screen

Figure 5.4.12 Add Budget

5.4.5 Add Budget

The budget module allows users to set monthly spending limits for specific categories. It

shows:

• Budget amount

• Category and type

• Spent amount (tracked dynamically)

• Visual indicators (e.g., progress bar)

Budgets help users control spending and are updated automatically based on transactions.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 69

Figure 5.4.13 Transaction

Add Screen (Income)

Figure 5.4.14 Transaction

Add Screen (Expense)

Figure 5.4.15 Transaction

Add Screen (Transfer)

5.4.6 Add Transaction

The transaction screen dynamically adapts based on the transaction type:

• Income / Expense: Requires account, category, subcategory, amount, and optional note.

• Transfer: Requires selecting “From” and “To” accounts and the amount.

• Category prediction can pre-fill values based on previous behaviors.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 70

Figure 5.4.16 Setting Screen

5.4.7 Setting Page

The Settings page allows configuration of:

• Income/Expense Category Setting

• Theme Selection

• Export/import options

• Access to user profile

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 71

Figure 5.4.17 Report Screen

(Empty)

Figure 5.4.18 Report Screen

(Pie Chart for Overview)

Figure 5.4.19 Report Screen

(Pie Chart for Income)

Figure 5.4.20 Report Screen

(Pie Chart for Expense)

Figure 5.4.21 Report Screen

(Bar Chart for Income)

Figure 5.4.22 Report Screen

(Bar Chart for Expense)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 72

Figure 5.4.23 Report Screen

(Line Chart for

Income & Expense)

Figure 5.4.24 Report Screen

(Line Chart for

Overall Savings)

Figure 5.4.25 Report Screen

(Recent Transaction)

5.4.8 Report Page

Reports include visual and statistical breakdowns of financial behavior. Using fl_chart, it

displays:

• Pie chart of expenses by category

• Bar graph of income and expense trends

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 73

Figure 5.4.26 User Profile Page

5.4.9 User Profile Page

Accessible from the Settings page, the User Profile Page allows users to:

• Edit personal information (name, gender, date of birth)

• Configure personal preferences

Summary

Each function in the app is designed to operate smoothly in an offline environment, with data

stored locally using SQLite. The interface remains intuitive and responsive, allowing users to

manage finances efficiently.

5.5 Implementation of Issues and Challenges

During the system implementation phase of the financial management mobile application,

several technical and functional challenges were encountered. These challenges affected both

the frontend and backend components and required thoughtful solutions to maintain the

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 74

stability and reliability of the application. The key issues and their corresponding resolutions

are detailed below:

5.5.1 Database Design and Schema Relationships

• Challenge: Establishing relational integrity among complex tables such as transactions,

accounts, budgets, and goals was challenging. Special attention was needed for optional

fields (e.g., from_account_id, to_account_id) and foreign keys.

• Resolution: Implemented well-defined foreign key constraints and default values,

alongside data validation logic in the app, ensuring consistency and preventing

orphaned records.

5.5.2 Receipt Scanning and OCR Integration

• Challenge: The receipt scanning feature using Google ML Kit Text Recognition often

captured too much unwanted or irrelevant data from receipts, such as logos, ads, or

decorative lines, making it difficult to extract only the useful financial information

(merchant, total amount, etc.).

• Resolution: Added basic preprocessing to remove noise and allowed manual user input

to verify or correct the extracted content. Also introduced the option to skip

categorization if parsing failed.

5.5.3 Transaction Logic Integration

• Challenge: Implementing robust transaction logic that accurately updated related

components such as accounts and budgets was complex, especially when handling

different transaction types (Income, Expense, Transfer). Transfer logic in particular

required dual updates (subtract and add) across two accounts, while maintaining budget

integrity.

• Resolution: Developed a modular logic layer that handles each transaction type with

condition-based checks. Ensured budgets were updated correctly and accounts were

synced with every transaction or deletion.

5.5.4 Report Generation and Chart Extraction

• Challenge: When extracting data for visual charts and summary reports, encountering

null values or missing categories could cause application crashes or UI inconsistencies.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 75

• Resolution: Used SQL IFNULL or COALESCE functions in queries to provide

fallback values. Also applied defensive programming to handle empty or null datasets

gracefully, ensuring the chart UI loaded without breaking.

5.5.5 Dynamic UI State Management

• Challenge: Synchronizing UI elements across multiple screens (e.g., dashboard, report,

account list) after data changes was crucial for real-time feedback.

• Resolution: Utilized the Provider package to manage state efficiently. Ensured reactive

updates using ChangeNotifier and listeners, which minimized performance overhead

and maintained consistent data views.

5.5.6 Testing on Emulators and Physical Devices

Ensuring consistent UI behavior and functionality across different devices introduced device

compatibility challenges.

• Challenge: UI scaling and layout differences across screen sizes and resolutions.

• Resolution: Tested on both emulators and physical Android devices, using responsive

widgets and layout builders to accommodate various screen dimensions.

5.5.7 Category and Subcategory Handling

• Challenge: Implementing a system with both categories and subcategories added

significant development complexity. This affected multiple modules including the

transaction screen, budget setting, and report generation. Additional challenges

included:

o Dynamically updating subcategory lists based on selected category.

o Storing and retrieving nested data properly.

o Designing an intuitive UI to display and allow editing of subcategories.

• Resolution: Created a dedicated subcategory UI and linked it with category selection

logic. Applied filtering in the logic layer to ensure subcategories displayed

appropriately. Modified related SQL queries and logic structures to account for

subcategories wherever relevant.

5.6 Concluding Remark

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 76

The system implementation phase marked a crucial milestone in transforming the conceptual

design into a fully functional mobile application. Throughout this chapter, each component—

from hardware and software setup to implementation challenges—has been systematically

discussed to reflect the depth of development efforts invested.

The application successfully integrates core features such as account management, category

and subcategory handling, budgeting, transaction logging, and comprehensive reporting.

Despite the absence of Firebase or any cloud-based synchronization mechanisms, the system

operates efficiently in an offline environment using a local SQLite database for data persistence

and reliability. This design choice promotes user data privacy and ensures accessibility without

requiring internet connectivity.

Key functionalities like receipt scanning and automated category prediction were implemented

using Google ML Kit [7] and a local rule-based prediction engine. These features enhance user

experience and reduce the manual effort needed to input data, though they also introduced

unique development and debugging challenges. Each issue—such as managing complex

subcategory relationships or preventing UI crashes from null data—was addressed through

iterative testing and code refinement.

In summary, this chapter documented not only the technical foundation of the system but also

the problem-solving mindset adopted during development. The successful implementation of

this personal finance application lays a strong groundwork for further evaluation and

refinement in the subsequent chapter.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 77

Chapter 6

SYSTEM EVALUATION AND DISCUSSION

6.1 System Testing and Performance Metrics

System testing plays a vital role in the software development process, serving to verify that the

completed application adheres to both functional and non-functional specifications. For this

financial management mobile application, extensive testing was performed to validate user

interface flow, database interactions, logic correctness, performance stability, and usability of

features including receipt scanning and offline prediction logic.

Since the application operates entirely offline without Firebase or cloud-based services, all tests

were conducted in a standalone environment on both real devices and emulators. The testing

focused on the application’s reliability under typical user operations such as adding

transactions, scanning receipts, generating reports, and handling categories and subcategories.

6.1.1 Testing Approach

The following testing methodologies were applied:

1. Manual Functional Testing

Each core feature was manually tested by simulating real-life use cases:

• Adding, editing, and deleting accounts, transactions, budgets, categories, and goals.

• Transferring funds between accounts.

• Switching between different transaction types (income, expense, transfer).

• Checking the correctness of calculations, category suggestions, and UI responses.

2. Unit Testing

The logic for prediction, budget calculations, transaction type handling, and subcategory

assignment was modularized and tested independently. Flutter’s test framework was used to

automate unit testing for selected Dart functions.

3. Integration Testing

Multiple components were tested together to ensure:

• Data flows from UI to the SQLite database correctly.

• Budget calculations update in real-time with each transaction.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 78

• Subcategory loading is consistent across different transaction screens.

• Receipt scanning and prediction trigger updates to UI and database without delay.

4. UI/UX Testing

• Focused on layout responsiveness across screen sizes and orientations.

• Verified consistency in theme colors, icons, and user interactions.

• Ensured modals, dropdowns, and forms were working smoothly, especially in the Add

Transaction screen.

5. Performance Testing

The app was subjected to tests measuring:

• Cold and warm start times.

• Latency in form submission.

• Database query efficiency under different data volumes.

• Memory usage and CPU load during OCR scanning.

6.1.2 Performance Metrics and Results

Metric Target Value Observed Result Status

App Initial Launch

Time

< 2 seconds < 1 seconds on

average

 Passed

App Resume (Warm

Start)

< 1.5 seconds < 1 seconds Passed

Add Transaction

Delay

< 1 second < 1 seconds Passed

Receipt Scan to

Prediction Time

< 5 seconds (for 720p

image)

Avg. 1-2 seconds

depending on image

quality

 Passed

Category Prediction

Accuracy

≥ 80% (based on trained

local pattern)

100% accuracy with

repeated merchants

 Passed

Budget Auto-Update

Accuracy

100% correct budget

deduction/update

Fully accurate across

all tested categories

 Passed

Chart Rendering Time

(Report Page)

< 2 second < 1 seconds for pie

and bar charts

 Passed

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 79

App Crashes during

Operations

0 None observed Passed

Error Handling

Coverage

100% (fallback UI, null

checks)

Handled gracefully

with validation

 Passed

Table 6.1.1 Performance Metrics and Results

6.1.3 Usability Observations

1. Navigation and Layout:

The bottom navigation bar and sliding panels offered intuitive transitions. All major functions

were reachable within 2 taps from the home screen.

2. Feedback and Notifications:

Budget warning notifications, toast messages, and form validations improved the user

experience.

3. Manual Edit Support:

After OCR scanning, users could adjust extracted data—essential for correcting any

mismatches in prediction.

4. Subcategory Display:

While useful for detailed tracking, maintaining subcategory visibility across UI screens added

development complexity but resulted in better user control.

6.1.4 Limitations and Observed Constraints

1. Device-Specific OCR Behavior:

Lower-end devices with poor camera quality affected the accuracy of receipt recognition.

2. Data Volume Lag:

Inserting over 1000 transactions into the database showed minor performance lag during report

generation, though optimization with indexing and optimized SQL helped mitigate this.

3. Single Device Testing:

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 80

As the app is offline-only, cross-device syncing and backup testing were not applicable and not

implemented.

4. Limited Prediction Context:

The category predictor works well for recurring merchants or notes but lacks accuracy for one-

time purchases or vague descriptions.

6.1.5 Summary

Overall, the application passed all major system testing benchmarks. The performance and

stability under offline conditions were solid, and the inclusion of AI-powered categorization

and OCR added practical value. The integration of subcategories, budget tracking, and

reporting features performed reliably even under moderate data loads.

These testing results validate that the system meets its initial design goals and is ready for real-

world deployment with future improvements such as cloud backup, enhanced AI modeling,

and multi-device support.

6.2 Testing Setup and Result

This section outlines the configuration of the testing environment, emulator and physical device

setup, types of tests performed, test data used, and the actual outcomes. It ensures that all key

modules, especially those related to account management, transactions, receipt scanning, and

reports—operate as expected under various conditions.

6.2.1 Testing Environment Overview

Component Specification / Tool Used

IDE Android Studio Giraffe (2022.3.1 Patch 3)

Framework Flutter SDK 3.19.5

Testing Tools Flutter Test, Manual Functional Testing, SQLite Viewer

Database Inspection Android Studio Inspector, DB Browser for SQLite

Version Control Git (Main Branch only) using GitHub

Table 6.2.1 Testing Environment Overview

6.2.2 Emulator and Device Setup

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 81

To ensure compatibility, UI responsiveness, and real-world behavior, the application was tested

on both emulator and actual physical devices.

Device Type Details

Emulator Pixel 6 Emulator (Android 13, API 33), 1080x2340 screen, 8GB virtual

RAM

Physical

Device

Honor Magic 4 Pro (Android 13), 12GB RAM, Snapdragon 8 Gen 1

Table 6.2.2 Emulator and Device Setup

Emulator Testing Goals:

Conduct rapid validation for UI layout, component interaction, database integration, and

network permissions (for ML Kit OCR).

Physical Device Testing Goals:

Focus on camera handling, receipt image processing, real-time OCR recognition, gesture

behavior, and app responsiveness on a high-performance device.

6.2.3 Test Data Setup

To simulate real-world financial activity and verify functionality under different scenarios,

custom datasets were inserted into the SQLite database:

Data Type Sample Values

Accounts Cash Wallet, CIMB Bank, Touch ‘n Go Wallet, Tabung Haji

Categories/Subcategories Food (Lunch, Dinner), Transport (Car, Bus), Bills (Electric,

Water)

Transactions 200 entries of income, expense, and transfer (diverse types and

dates)

Budgets Monthly budget for Food, Transport, Entertainment, and Bills

Receipts (for OCR) 10 real photo receipts taken under varying lighting and text

conditions

Figure 6.2.3 Test Data Setup

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 82

6.2.4 Functional Testing Results

Testing was conducted on major application modules. The outcomes are summarized below:

Feature Expected Outcome Result Remarks

App Launch Splash screen loads, main

dashboard appears without

crash

 Passed Smooth even in offline

mode

Account

Creation/Editing

New accounts saved, color

and type displayed

correctly

 Passed No data duplication

Add Category/

Subcategory

All categories saved;

subcategories linked and

displayed properly

 Passed Dynamic dropdowns

work well

Budget Setup

and Monitoring

Budgets applied by

category; warnings on limit

exceed

 Passed Alert shown on

overspending

Add Transaction

(Income/Expense

/Transfer)

Amount, account, category

updates reflected in DB and

UI

 Passed Balanced transfers

verified

OCR Receipt

Scanning

Recognized amount,

merchant, and optional note

from image

 Passed

(minor edits)

Preprocessing helps with

image clarity

Auto-

Categorization

Prediction

Predicts category from

merchant/note data

 Passed Fallback to manual edit

available

Monthly Report

Generation

Displays correct charts with

category-wise summary

 Passed Handled null values to

avoid crash

Subcategory

Visibility

Visible in transaction,

budget, and report screens

 Passed UI designed to display

sub-layer hierarchy

Data Sync and

Offline Usability

Full app usability without

cloud services

 Passed All features function

offline as intended

Figure 6.2.4 Functional Testing Results

6.2.5 Key Observations and Notes

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 83

1. OCR Testing: Most receipts worked well, especially with good lighting. Some required

manual edits due to unclear print or unusual formatting.

2. Null and Edge Handling: Special attention was given to avoid null-related crashes in charts

and reports using default values and fallback logic in SQL queries.

3. Subcategory Complexity: Required nested UI elements and database linkage logic for

accurate rendering, particularly when fetching filtered report data.

6.2.6 Summary

All functional and visual components of the financial management application passed testing

criteria across emulator and physical devices. The SQLite database schema, offline-first

architecture, and dynamic UI logic proved stable and effective. The testing approach

highlighted the importance of preprocessing for OCR and precise handling of subcategory data

in multi-layer modules such as transactions, budgets, and reports.

6.3 Project Challenges

This section outlines the major challenges encountered during the development and testing of

the financial management application. These challenges involved technical complexities, data

handling, and interface integration that required careful planning and iterative solutions.

6.3.1 Dynamic Transaction Logic with Account and Budget Handling

Challenge:

Managing various transaction types (Income, Expense, Transfer) required precise logic to

update account balances and budget limits appropriately. Incorrect implementation could lead

to mismatched balances or over/under-budgeting.

Resolution:

• Developed a transaction handler that dynamically updates related account and budget

values.

• Implemented logic to differentiate handling for single-account (income/expense) and

dual-account (transfer) operations.

• Ensured rollback mechanisms for transaction edits and deletions to maintain data

accuracy.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 84

6.3.2 Subcategory Implementation Across Multiple Screens

Challenge:

Supporting subcategories introduced added complexity across multiple application

components including the transaction screen, budget setup, and report generation.

Resolution:

• Built a dedicated subcategory table linked with parent categories.

• Updated UI to support dynamic subcategory dropdowns and implemented conditional

loading logic.

• Designed a custom subcategory view within the budget and report screens to enhance

clarity.

6.3.3 OCR Integration and Data Filtering

Challenge:

Text recognition via Google ML Kit [7] often returned excessive and irrelevant data, which

made it difficult to extract meaningful information like merchant name or total amount.

Resolution:

• Applied image preprocessing to enhance text clarity.

• Implemented filtering logic to extract values associated with keywords like “total”,

“amount”, and “merchant”.

• Enabled manual editing of auto-filled values to correct inaccuracies from OCR output.

6.3.4 Report Generation from Complex Data Sets

Challenge:

Generating visual reports from inconsistent or sparse transaction data (e.g., missing values)

sometimes caused runtime errors or blank charts.

Resolution:

• Incorporated SQL functions like IFNULL and COALESCE to ensure fallback values

for missing data.

• Built robust error handling within chart-rendering logic to gracefully display “No data”

messages.

• Validated data structures before visualization to prevent application crashes.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 85

6.3.5 Emulator vs. Device Discrepancies

Challenge:

Differences in UI rendering and interactions between the emulator and physical devices (e.g.,

Honor Magic 4 Pro) led to unexpected layout shifts and gesture handling issues.

Resolution:

• Extensively tested on both platforms to identify and correct layout discrepancies.

• Utilized flexible layout strategies (MediaQuery, Expanded, SafeArea) to adapt UI

components across screen sizes.

• Tuned gesture responsiveness and spacing to align with actual device behaviors.

6.3.6 Permission Handling and File Access

Challenge:

Accessing device features like the camera and storage required careful permission

management, especially with different Android API behaviors.

Resolution:

• Integrated permission_handler to request and check runtime permissions dynamically.

• Developed user prompts and fallbacks for denied permissions.

• Ensured compatibility across common Android versions during file and image

operations.

6.3.7 Time and Scope Constraints

Challenge:

Balancing feature completeness with time limitations was a significant challenge. Advanced

features like category prediction and full cloud sync were out of scope due to limited

development time.

Resolution:

• Focused on building and refining core functionality first (account, transaction, budget,

and reporting).

• Modularized the codebase to allow easy future expansion of postponed features.

• Maintained clean documentation and version tracking for consistent project progress.

6.4 Objectives Evaluation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 86

This section evaluates the extent to which the project achieved its predefined objectives, as

outlined during the proposal phase. The financial management application was designed with

the aim of helping users track, manage, and analyze their personal finances through an intuitive

mobile interface.

Objective Evaluation

1. Allow users to manage

multiple accounts

 Achieved. Users can add, update, and delete multiple

accounts (e.g., Cash, Bank, eWallet) with customizable

names, balances, and colors.

2. Enable income, expense,

and transfer tracking

 Achieved. The app supports all three transaction types,

including transfer logic between accounts, with accurate

balance calculations.

3. Implement a categorization

system with subcategories

 Achieved. Categories and subcategories are fully

integrated into transaction entries, budgeting, and

reporting.

4. Support custom budget

setting and tracking

 Achieved. Users can define monthly budgets for

specific categories and monitor current and previous

spending performance.

5. Generate visual reports and

summaries of transactions

 Achieved. Bar charts and pie charts summarize

expenses by category and account, with filterable options

for time periods.

6. Implement a receipt

scanning feature using OCR

 Achieved. Google ML Kit is integrated to scan receipt

images and extract relevant data like amount and merchant

name.

7. Allow offline usage with

local data storage

 Achieved. Data is stored locally using sqflite, with no

internet or cloud sync required.

8. Provide basic user profile

and settings customization

 Achieved. Users can update their profile and manage

app preferences such as budget notifications.

9. Ensure a responsive and

user-friendly interface

 Achieved. The app is designed using Flutter with

adaptive layout widgets, ensuring a smooth user

experience across screen sizes.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 87

10. Use structured and

maintainable code with version

control

 Achieved. The app was developed using modular

architecture with provider for state management and Git for

version tracking.

Table 6.4.1 Objectives Evaluation

Overall Assessment

All core objectives were successfully implemented and tested. While some advanced

enhancements (e.g., predictive categorization, cloud sync, goal setting) were excluded due to

time constraints, the project delivered a complete, functional, and extensible financial

management application.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 88

CHAPTER 7:

CONCLUSION AND FUTURE WORK

7.1 Conclusion

This Final Year Project was initiated to design and develop a mobile-based financial

management application that empowers users to manage their daily financial activities

conveniently and efficiently — even in offline environments. The objective was to create a

comprehensive personal finance tracking solution incorporating features such as account

management, categorized transactions, budget monitoring, and receipt-based input automation.

The entire development followed a systematic methodology. Chapter 3 detailed the

architectural and behavioral aspects of the system including use case, activity flow, and layered

design. Chapter 4 outlined the structural design and modular components comprising the UI

Layer, Logic Layer, Local Services, and External Libraries. Subsequently, implementation was

carried out using the Flutter [4] framework, and SQLite [5] was utilized for local data

persistence. The system was built to be fully functional without any reliance on cloud services

or internet connectivity, addressing a key real-world pain point for users in data-restricted or

privacy-sensitive environments.

The application now supports the following major functionalities:

• User-friendly dashboard with summarized financial overview.

• Ability to add, update, and archive multiple accounts.

• Transaction handling for income, expenses, and transfers.

• Category and subcategory assignment for better classification.

• Monthly budget management with current vs. historical comparison.

• Receipt scanning using Google ML Kit's OCR feature to assist in faster input and auto-

categorization.

• Reporting and visual analytics to present monthly spending trends.

• A setting screen for basic customization and user profile handling.

Despite a wide array of completed features, the project did encounter notable development

challenges. For instance, integrating a category–subcategory system required careful

coordination across multiple modules (e.g., transaction input, budgeting, reporting), and

creating a dedicated UI for managing subcategories. In addition, developing logic to properly

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 89

synchronize transactions with account balances and budget utilization, along with robust error

handling in SQL queries for chart generation, was technically demanding.

Nonetheless, these challenges were effectively addressed, resulting in a stable and maintainable

codebase. Testing on an actual physical device (Honor Magic 4 Pro) ensured that the system

performed reliably in real-life usage scenarios.

In conclusion, the project has successfully met its primary goal: to deliver an intuitive and

practical financial management application that operates without internet dependency. It serves

as a strong proof of concept and a functional tool that could benefit a wide range of users in

managing their personal finances more effectively.

7.2 Future Work

While the core objectives of the application have been achieved, there remains significant

potential for enhancement and scalability. The following points outline promising future

directions:

7.2.1 Cloud Synchronization and Multi-Device Support

Currently, all data resides locally on the user’s device. A future version can integrate cloud

services (e.g., Firebase Firestore or Google Drive backup) to enable seamless synchronization

across multiple devices. This will also allow data recovery in cases of device failure or

replacement.

7.2.2 Advanced AI-Powered Analytics

Introducing AI/ML-based predictive features would increase the application’s intelligence. For

instance, automatic suggestion of categories based on past user behavior, predictive budget

setting, or anomaly detection in transactions (e.g., unusually high expenses) could offer

proactive financial insights.

7.2.3 Multi-Currency and Localization Support

To expand the application’s user base, future development could support multiple currencies,

exchange rate tracking, and language localization, making it adaptable to various countries and

regions.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 90

REFERENCES

[1] Monefy, “Monefy – Money Manager App.” [Online]. Available: https://monefy.me/.

[2] 1Money, “1Money – Expense Tracker & Budget Planner.” [Online]. Available:

https://1moneyapp.com/.

[3] Spendee, “Spendee – Budget and Expense Tracker App.” [Online]. Available:

https://www.spendee.com/.

[4] Flutter, “Flutter - Build apps for any screen,” [Online]. Available: https://flutter.dev/

[5] SQLite, “SQLite Home Page,” [Online]. Available: https://www.sqlite.org/

[6] S. Todorovic and N. Ahuja, “Learning subcategory relevances for category recognition,”

Jun. 2008. [Online] Doi: 10.1109/CVPR.2008.4587366

[7] Google Developers, “ML Kit Text Recognition,” [Online]. Available:

https://developers.google.com/ml-kit/vision/text-recognition

[8] Visual Paradigm, “What is Use Case Diagram?,” Visual-paradigm.com, 2019. [Online].

Available: https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-

use-case-diagram/

[9] Visual Paradigm, “What is Activity Diagram?,” Visual-paradigm.com, 2019. [Online].

Available: https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-

activity-diagram/

[10] Indeed, “What Is a Block Diagram? Definition, Uses and Types,” Indeed Career Guide,

2024. [Online]. Available: https://www.indeed.com/career-advice/career-development/what-

is-block-diagram

[11] Dart Programming Language, “Dart - Language for Flutter,” [Online]. Available:

https://dart.dev/

https://monefy.me/
https://1moneyapp.com/
https://www.spendee.com/
https://flutter.dev/
https://www.sqlite.org/
https://doi.org/10.1109/CVPR.2008.4587366
https://developers.google.com/ml-kit/vision/text-recognition
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-use-case-diagram/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-use-case-diagram/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-activity-diagram/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-activity-diagram/
https://www.indeed.com/career-advice/career-development/what-is-block-diagram
https://www.indeed.com/career-advice/career-development/what-is-block-diagram
https://dart.dev/

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 91

APPENDIX

POSTER

