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ABSTRACT 

 

This study explores the potential of artificial intelligence (AI) techniques to enhance 

species distribution modelling (SDM) for assessing biodiversity loss due to 

environmental change, focusing on Strigiformes (owls) in Malaysia, which remain 

understudied and vulnerable to climate threats. Traditional SDM methods often 

struggle to capture complex ecological interactions because they rely on linear 

assumptions. There is a lack of comprehensive studies focused on predicting the future 

distribution of these species under varying environmental scenarios in Malaysia.To 

address these issues, this study proposes the use of machine learning and deep learning 

models, specifically Random Forests (RF) and Multi-Layer Perceptrons (MLP), 

complemented by Explainable AI (XAI) techniques, to improve predictive accuracy, 

robustness, and interpretability of SDMs. The models were developed with eight key 

environmental variables which are annual mean temperature, mean diurnal range, 

isothermality, annual precipitation, precipitation of wettest month, primary forest, 

secondary forest and urban area cover for the genus Ketupa (a genus of Strigiformes) 

in Malaysia. Data splitting techniques, including random and spatial block were 

evaluated to address spatial autocorrelation and improve model generalization. Spatial 

block sampling demonstrated superior performance, with smaller performance gaps in 

Area Under the Receiver Operating Characteristic curve (AUROC) and Area Under the 

Precision Recall curve (AUCPR) when tested on East Malaysia independent dataset, 

confirming its robustness for extrapolation. Environmental analysis identified urban 

area cover as the most influential predictor of habitat suitability, followed by annual 

precipitation. Response curve analysis revealed critical environmental thresholds that 

align with Ketupa’s ecological preferences for tropical lowland and wetland habitats. 

Habitat suitability mapping under future climate and land-use scenarios indicates a 

potential loss of high-quality habitat and a flattening of suitability gradients.  

Area of Study: Artificial Intelligence in Ecological Modelling 

Keywords: Random Forest, Multi-Layer Perceptron, Species Distribution Modelling, 

Ketupa, Explainable AI (XAI)  
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CHAPTER 1 INTRODUCTION 

Environmental changes , such as climate change, has significantly impacted our world 

in recent decades, causing extensive disruptions to ecosystems and threatening 

biodiversity [1]. The Intergovernmental Panel on Climate Change (IPCC) reports that 

global temperatures have risen by approximately 1.0°C above pre-industrial levels, 

primarily due to human activities [2].  

Environmental change has profoundly impacted various species in Malaysia, including 

Strigiformes (owls). Among the Strigiformes, the genus Ketupa is a powerful birds of 

prey that function as predators in freshwater ecosystems and serve as important 

indicators of healthy ecosystems [3–5]. In Malaysia, both Ketupa zeylonensis and 

Ketupa ketupu are classified as species of "Least Concern" by the IUCN [6]. However, 

Ketupa zeylonensis faces significant threats in regions such as Turkey and parts of 

Europe, where habitat loss and dam construction have critically impacted its population 

[4]. A 2015 study [7] revealed that hydroelectric reservoirs in Sarawak inundate habitats 

for 331 bird species, 164 mammal species, 2,100 tree species and 17,700 arthropod 

species, with 4–7 arthropod species extinctions predicted. While extinctions of birds, 

mammals, and trees are not anticipated, the ecological consequences remain 

substantial. Additionally, the Sarawak government recently announced the construction 

of dams on Sungai Gaat, Sungai Tutoh, and Sungai Belaga. This highlights the 

vulnerability of species under the global climate change and environmental change [8].   

As global temperatures continue to rise, the habitats and survival of these species are 

increasingly threatened. Evidence suggests that for every degree Celsius increase in 

temperature, a significant number of species face heightened risk of extinction [9]. The 

shifting climate can lead to habitat loss, changes in food availability, and altered 

predator-prey dynamics, all of which can create cascading effects on species and the 

broader ecosystems they sustain.  

In this context, species distribution modelling (SDM) has emerged as a critical tool for 

understanding how species respond to changing environmental conditions. SDMs allow 

researchers to predict how species distributions might shift in response to 

environmental change, helping to identify areas that are likely to remain suitable for 

species survival in the future [10, 11]. These models provide valuable insights that can 



CHAPTER 1 

2 

Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
  

inform conservation strategies, such as the establishment of protected areas and the 

development of policies aimed at preserving biodiversity [11]. 

1.1 Problem Statement and Motivation 

Species distribution modelling (SDM) is an established technique for predicting species 

distributions. However, conventional SDM models often have limitations in their 

ability to capture complex ecological relationships and interactions due to their reliance 

on linear assumptions and the assumption of independence among predictors [12]. In 

recent years, with the advancement of technology, artificial intelligence (AI) techniques 

have been introduced to enhance the accuracy and predictive power of SDMs, including 

machine learning models such as Random Forests (RFs), Support Vector Machines 

(SVM), and neural networks. They offer greater flexibility and can model complex non-

linear relationships and interactions among environmental variables [13]. 

Strigiformes have shown significant reactions to environmental change, which is 

altering their habitats, food availability, and reproductive cycles, leading to shifts in 

population dynamics and species distribution [14]. Despite these emerging threats, 

there is a lack of comprehensive studies focused on predicting the future distribution of 

these species under varying environmental scenarios in Malaysia. This study aims to 

address this gap by focusing on Strigiformes, using AI-based species distribution 

modelling (SDM) techniques to predict how these species will be affected by ongoing 

and future environmental changes. 

According to [15], although SDM have been widely applied across various regions, 

environmental conditions and ecological dynamics can differ significantly from one 

country to another. This makes it crucial for each country to conduct its own studies, 

even if similar research has been done elsewhere. There are substantial gaps in SDM 

applications across different biological groups and regions, particularly in highly 

biodiverse areas like many Asian territories, including Malaysia. 

This motivation drives this study to explore SDM for species in Malaysia, focusing 

specifically on Strigiformes. Malaysia's unique climate and diverse ecosystems present 

distinct challenges and opportunities, underscoring the importance of localized research 

to account for the specific environmental variables and species interactions present in 

the region. 
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Moreover, accuracy and explainability are crucial in SDM, particularly when the 

findings are used to inform conservation strategies and policy decisions [16]. AI 

techniques, which are excel at handling multi-variate problems, offer significant 

advantages in this context [16–18]. By employing AI-based SDM, higher accuracy and 

better explainability can be achieved. 

This study aims to leverage AI techniques to develop robust SDM models that can 

accurately predict the distributions of species within the Strigiformes under various 

environmental scenarios in Malaysia. Enhanced accuracy and explainability will 

empower decision-makers with reliable data, enabling them to make informed 

decisions to protect Malaysia's biodiversity effectively. 

1.2 Objectives 

The primary objective of this study is to develop a robust SDM framework that 

effectively addresses the limitations identified in current SDM research, particularly in 

the context of tropical regions like Malaysia. Specifically, this study will focus on 

modelling the distribution of Strigiformes (Ketupa) within Malaysia's unique 

environmental conditions. By doing so, it aims to fill the existing research gap and 

contribute to a more comprehensive understanding of how environmental change 

impacts species in underrepresented tropical regions. 

To achieve the main objective, the study embarks the following sub-objectives: 

1. To propose the development and comparison of Random Forest (RF) and Multi-

Layer Perceptrons (MLP) for species distribution modelling.  

The objective is to identify the most suitable model by evaluating predictive 

performance under the specific challenges of the study, including a relatively small 

dataset size and Malaysia's unique tropical geographical conditions. This approach 

seeks to ensure accurate and robust predictions for species distributions under 

current and future environmental scenarios. 

2. To enhance the interpretability of the predictive models.  

As models become more complex, they often become less interpretable. Therefore, 

this study aims to integrate Explainable AI (XAI) techniques, such as Shapley 

Additive Explanations (SHAP), to provide clear insights into how specific 

environmental variables influence species distributions in different regions of 



CHAPTER 1 

4 

Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
  

Malaysia. By incorporating XAI, the study seeks not only to improve the model’s 

predictive accuracy but also to ensure that the predictions are interpretable and 

actionable. 

3. To evaluate the effectiveness of data splitting techniques, specifically random 

sampling and spatial block sampling techniques in species distribution modelling. 

Random sampling is widely used for its simplicity and ability to provide a 

randomized distribution of training and testing data, but it may lead to 

overestimated model performance due to spatial dependence in the data. In 

contrast, spatial block sampling reduces spatial autocorrelation by dividing the 

study area into distinct spatial blocks, ensuring that training and testing data are 

spatially independent. This study aims to compare these sampling techniques to 

determine which is better suited for modeling species distributions under diverse 

climatic scenarios.  

4. To assess the impact of environmental change on species distributions.  

Probabilistic mapping is visualization tools used for capturing the likelihood of 

species presence and shifts in distribution under changing environmental 

conditions. This study will apply probabilistic mapping into species distribution 

models (SDMs) for evaluating both current distribution and forecast potential shifts 

of Strigiformes (Ketupa) in Malaysia. This integration will allow for a more 

accurate and actionable understanding of how species in tropical regions may 

respond to current and future environmental changes.  
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1.3 Project Scope and Direction 

1. This research aims to develop a species distribution modelling (SDM) framework 

to assess the impact of environmental change on biodiversity in Malaysia, with a 

particular emphasis on Ketupa (a genus within Strigiformes). By utilizing 

occurrence data from the Global Biodiversity Information Facility [19],climatic 

variables such as temperature and precipitation from WorldClim [20],  terrain 

attributes such as slope derived from digital elevation models [21] and land-use data 

from the Land-Use Harmonization 2 (LUH2) dataset [22]. This study will 

concentrate on the primary environmental factors influencing species distribution 

changes as a consequence of environmental change.  

2. Moreover, by using the Python and R programming language, the project will 

implement various artificial intelligence techniques to develop a robust SDM 

framework.  

3. This framework will not only forecast the future population distributions of 

Strigiformes (Ketupa) in Malaysia but also identify the contribution of 

environmental variables to these predictions. 

1.4 Contributions 

In this research work, the performance of various AI models shall be compared to 

identify the most effective approach for species distribution modelling (SDM). 

Additionally, the research will analyze the contribution of different environmental 

variables to the distributions of genus Ketupa, offering a detailed understanding of 

which environmental factors are most influential. The predictive results generated by 

the proposed models will support informed decision-making in conservation strategies, 

helping to mitigate the adverse effects of environmental change on biodiversity in 

Malaysia. 
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1.5 Report Organization 

This report is organized into 6 chapters: Chapter 1 Introduction, Chapter 2 Literature 

Review, Chapter 3 System Model, Chapter 4 System Implementation and Experiment 

Results, Chapter 5 Evaluation and Discussion, Chapter 6 Conclusion and Future Works. 

The first chapter detailed the introduction of this project which includes problem 

statement, project background and motivation, project scope, project objectives, project 

contribution and report organization. The second chapter is the literature review carried 

out on several existing studies in ecological modelling. The third chapter discusses the 

overall research methodology. The fourth chapter is regarding the details on how to 

implement the system pipeline. Furthermore, the fifth chapter reports the evaluation 

and discussion on the result of experiments. Lastly, the sixth chapter makes a 

conclusion and discussion on future work for this study. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Previous Works 

Statistical models have long been essential in species distribution modelling (SDM), 

offering a balance between simplicity and insight. Unlike more complex machine 

learning models, statistical approaches prioritize interpretability and explicitly define 

relationships between variables. These models typically assume a structured form, 

either linear or non-linear, and often incorporate domain-specific knowledge to guide 

the selection and transformation of predictor variables [23]. Statistical models are 

particularly valued for their ability to quantify the effects of individual environmental 

factors on species distributions, providing clear, interpretable outputs that can be 

directly linked to ecological theory. This makes them powerful tools for hypothesis 

testing and for understanding the underlying mechanisms driving species distributions, 

rather than just focusing on predictive accuracy. 

2.1.1 Comparative performance of generalized additive models and multivariate 

adaptive regression splines for statistical modelling of species distributions 

The study [24] utilized presence-absence data for 15 freshwater fish species, which 

were modeled against 16 environmental predictors to evaluate the performance of five 

different model sets. It included individual Generalized Additive Models (GAM) and 

Multivariate Adaptive Regression Splines (MARS), both with and without interactions, 

as well as a multi-response MARS model.  

GAM fitting in the study initially began with an attempt to use all predictor variables 

as smooth terms, followed by a backwards and forwards stepwise procedure to remove 

non-significant terms. However, due to the large dataset size, this approach proved slow 

and memory-intensive, making it difficult to compare the significance of linear versus 

smooth terms. As an alternative, the authors employed the BRUTO algorithm, which 

fits a GAM using an adaptive back-fitting procedure. This method reduced computation 

time and allowed for more rigorous performance assessment, ultimately showing that 

BRUTO/GAM models outperformed full stepwise GAM models. 

On the other hand, MARS adjusts for fitting by using a process that involves fitting 

piecewise linear basis functions to model relationships between the response variable 

and the predictors. These basis functions are defined by selecting "knots" within the 
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range of each predictor variable, where the slope of the relationship can change. The 

selection of these knots and the corresponding basis functions is done automatically 

through a forward stepwise process, which aims to minimize the residual sum of 

squares. Once the model reaches a specified maximum size, a backward-pruning 

procedure is applied to remove basis functions that contribute the least to the model's 

fit, potentially eliminating entire predictors that do not significantly improve the 

model's performance. 

The evaluation of the models focused on their ability to explain deviance and their 

discriminatory power by ROC area. According to Table 2.1, GAM models generally 

explained about 7% more deviance than non-interaction MARS models, suggesting a 

slight advantage for GAM in capturing complex species-environment relationships. 

Both GAM and MARS models performed similarly in terms of discriminatory power. 

This indicates that both methods are equally effective in distinguishing between sites 

where species are present or absent. 

Table 2.1 Summary of GAM and MARS models [24] 

 

Both GAM and MARS models are capable of evaluating the contribution of individual 

environmental predictors to species distributions. In GAM, this is achieved through the 

flexibility of the smoothing functions applied to the predictor variables. The 

significance of each predictor can be assessed by observing changes in deviance when 

the predictor is added or removed from the model, as well as by examining the smooth 

curves that depict the relationship between the predictor and species presence.  

In contrast, MARS evaluates the contribution of predictors by fitting piecewise linear 

basis functions that define the relationship between the response variable and the 

predictors. These basis functions enable MARS to model interactions and non-linear 

relationships in a more segmented and interpretable manner. During the model-building 

process, MARS selects the most relevant predictors by retaining only those basis 
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functions that significantly reduce the residual sum of squares, while less important 

predictors are pruned during the backward elimination process. Table 2.2 identified a 

small set of dominant predictors, such as stream flow (SegFlow), summer air 

temperature (SegJanT), distance to the coast (DSDist), and catchment slope (USSlope), 

which were consistently significant across both GAM and MARS models, though their 

relative importance varied slightly between the two methods. 

Table 2.2 Summary of contributions of predictors to models [24] 

 

2.1.2 Advantages and Disadvantages of Statistical Model 

Overall, the advantages of conventional models in species distribution, such as 

statistical models, have been highlighted in [24]. These models offer significant 

benefits due to their ease of interpretation and implementation. They are 

straightforward to understand, making it easier for researchers and decision-makers to 

interpret the relationships between species occurrences and environmental variables. 

Additionally, statistical models are well-suited for smaller datasets, as they do not 

require the extensive data that more complex models might need to perform effectively. 

Their simplicity also facilitates quick implementation, allowing for more immediate 

application in ecological studies and environmental management. 

However, according to [25], statistical models have notable limitations, including 

inflexibility and a lack of interaction handling. These models often assume linear or 

simple non-linear relationships, which can oversimplify the true nature of ecological 
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interactions.  This rigidity makes it difficult for statistical models to accurately capture 

intricate, non-linear patterns or the interactions between multiple environmental 

variables. As a result, they may fail to account for the complexity inherent in ecological 

systems, leading to less accurate predictions and potentially misleading conclusions 

when the underlying relationships are more complex than the model structure allows. 

2.2 Related Works 

Recent advancements in species distribution modelling (SDM) have increasingly relied 

on machine learning and deep learning techniques, which offer substantial 

improvements over conventional statistical models [13]. Machine learning methods 

such as Random Forest (RF), Support Vector Machines (SVM), and Maximum Entropy 

(MAXENT) provide greater flexibility and accuracy by effectively capturing non-linear 

relationships and interactions among environmental variables. Deep learning 

approaches, including Artificial Neural Networks (ANNs) and Convolutional Neural 

Networks (CNNs), further enhance predictive capabilities by leveraging neural 

networks to model high-dimensional data. They excel at handling large datasets and 

uncovering complex patterns that traditional models often miss. As a result, these 

advanced techniques have become essential in SDM, providing more reliable 

predictions and deeper insights into species-environment relationships.  

2.2.1 The predictive performance and stability of six species distribution models 

According to [26], the study assesses the predictive performance and stability of six 

widely used SDMs: BIOCLIM, DOMAIN, Mahalanobis distance (MAHAL), RF, 

MAXENT, and SVM. The focus is on evaluating how well these models predict the 

potential distribution areas for five common tree species in China. 

The study uses presence-only distribution data for one coniferous species, Pinus 

massoniana, and four broad-leaf species, Betula platyphylla, Quercus wutaishanica, 

Quercus mongolica, and Quercus variabilis. These species were selected as test subjects 

from the Eco-Environmental Sciences Research Center and Ecosystems and Ecosystem 

Service Zoning in China. The data were rasterized at a spatial resolution of five arc-

minutes. 

The study uses 26 ecological-environmental variables, which include 19 bio-climatic 

factors, three human disturbance factors, and three soil factors. The data for the bio-
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climatic factors were extracted from the Global Climate Data, representing the period 

1950-2000. Human disturbance factors were obtained from the Center for International 

Earth Science Information Network, and soil factors were sourced from the Atlas of the 

Biosphere. 

In order to avoid overfitting and improve the model performance, the study calculates 

Pearson's correlation coefficients between pairs of variables. After this preprocessing 

step, 13 final environmental variables are selected for modelling which are shown in 

Table 2.3. For SDMs requiring presence/absence data, 500 pseudo-absence points are 

randomly generated across China, excluding known presence points. The dataset is split 

into a training set (80%) and a test set (20%). This process is repeated 100 times to 

evaluate model stability. 

Table 2.3 26 environment variables [26] 

 

Table 2.4 provides a concise comparison of six SDMs used in the study. It summarizes 

each model's methodology, key advantages, and disadvantages. 
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Table 2.4 Comparison of Six SDMs 

Model Description Advantages Disadvantages 

BIOCLIM 

Uses percentile 

distribution of 

climatic variables 

to assess suitability 

• Simple to understand 

and implement 

• Ignores variable 

interactions 

• Handles climatic 

suitability well 

• May oversimplify 

niches 

DOMAIN 

Uses Gower 

distance to assign 

habitat suitability 

based on proximity 

to known 

occurrences 

• Considers 

environmental similarity 
• Threshold sensitivity 

• Flexible threshold 

setting 

• Limited handling of 

complex interactions 

MAHAL 

Uses Mahalanobis 

distance to rank 

sites based on 

environmental 

correlations 

• Accounts for variable 

correlations 

• Risk of 

overestimating 

suitability 

• Effective area 

identification 

• Careful 

interpretation needed 

RF 

Ensemble of 

decision trees using 

random subsets of 

data 

• Handles complex 

interactions 

• Computationally 

intensive 

• Robust to overfitting 
• Complex 

interpretation 

MAXENT 

Maximum entropy 

modelling 

assuming uniform 

species spread 

• Performs well with 

limited data 

• Sensitive to 

regularization 

• Produces continuous 

suitability maps 

• Potential overfitting 

without tuning 

SVM 

Finds optimal 

hyperplane, 

handles non-linear 

relationships via 

kernel 

• Effective in high-

dimensional spaces 

• Computationally 

demanding 

• Robust with proper 

regularization 

• Sensitive to kernel 

and parameters 
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Each model was implemented using the same 13 environmental variables, following 

the standard procedures specific to each modelling technique. The predictive 

performance was evaluated using the Kappa statistic and area under the curve (AUC) 

values, which are widely accepted metrics for assessing model accuracy. 

In Table 2.5, the models MAHAL, RF, MAXENT, and SVM consistently outperformed 

BIOCLIM and DOMAIN in both mean AUC and Kappa values. BIOCLIM and 

DOMAIN also had significantly higher standard deviations, indicating more variability 

and less consistent predictions, whereas MAHAL, RF, MAXENT, and SVM showed 

lower standard deviations, reflecting greater consistency. Figure 2.1 further illustrates 

that BIOCLIM and DOMAIN had higher coefficients of variability (CV) for AUC and 

Kappa values, indicating greater variation in performance compared to the more 

consistent MAHAL, RF, MAXENT, and SVM models. 

Table 2.5 Mean Value and Confidence Interval of AUC and Kappa [20] 
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Figure 2.1 The variable coefficient (CV) of Kappa for six SDMs [26] 

The study's key contribution is its comprehensive evaluation, showing that advanced 

machine learning models like RF and MAXENT offer superior predictive performance 

and stability, making them ideal for modelling complex ecological systems. On the 

other hand, the study also highlights the value of simpler models like BIOCLIM and 

DOMAIN. While they are less accurate, they are highly interpretable and easy to use, 

making them valuable for applications where simplicity and ease of implementation are 

important. Overall, the study underscores the importance of selecting SDMs based on 

the specific needs of the research, balancing the trade-offs between model complexity, 

accuracy, and interpretability. 

2.2.2 Exploring the potential of neural networks for species distribution modeling 

The study [27] explores the use of neural networks, specifically Multi-Layer 

Perceptrons (MLPs) in SDM. Traditionally, SDMs have relied on statistical models like 

Generalized Linear Models (GLMs), Generalized Additive Models (GAMs), and 

machine learning methods such as RF and MAXENT. However, with advancements in 

deep learning, there is growing interest in exploring neural networks as a more flexible 

and potentially more powerful approach. This study compares the performance of 
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MLPs with these established methods, focusing on both single-species and multi-

species modelling to assess whether neural networks can deliver comparable or superior 

results in predicting species distributions. 

The dataset used in this study includes occurrence data for 225 species across six 

geographically diverse regions: Australian Wet Tropic (AWT), Canada (CAN), New 

South Wales (NSW), New Zealand (NZ), South America (SA), and Switzerland (SWI). 

Each region has 11 to 13 environmental covariates, including climatic and pedological 

variables, essential for modelling species distributions. The environmental covariates, 

which include both continuous and categorical variables, undergo normalization to 

ensure that the inputs to the neural network are on a similar scale. Categorical variables, 

where present, are one-hot encoded before being input into the MLP models.  

This study focuses on applying MLPs in SDM, designed for both single-species and 

multi-species modelling. The architecture consists of multiple layers, each including a 

fully connected layer, followed by batch normalization, the sigmoid linear unit (SiLU) 

activation function, and dropout for regularization. For the single-species model, the 

output layer contains a single neuron, while the multi-species model expands the output 

layer to accommodate predictions for multiple species simultaneously. This multi-

species approach is particularly advantageous for species with limited occurrence data, 

as it allows the model to leverage co-occurring environmental patterns from related 

species. The architecture of the MLP models is shown in Figure 2.2. 

 

Figure 2.2 Architecture Diagram of MLP model [27] 

The hyperparameters of the MLP models were fine-tuned using the Optuna library, 

which automates the search process and identifies the best-performing configurations. 

For each model, the authors conducted 50 iterations of the hyperparameter search, 

adjusting parameters such as the number of layers, width of the MLP, learning rate, 
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weight decay, and dropout rate. As referred in Table 2.6, the best hyperparameters were 

selected based on performance on a validation set. 

Table 2.6 Best hyperparameters for multi-species model [27] 

 

The evaluation of the MLP models was conducted using the Area Under the Receiver 

Operating Characteristic curve (AUROC). Table 2.7 compares the MLP models with 

established SDM methods. The authors found that the MLP models achieved 

comparable AUROC scores with state-of-the-art SDM methods, indicating that neural 

networks can perform at a level similar to or slightly better than traditional methods, 

particularly when trained on multiple species simultaneously. 

Table 2.7 Mean AUROC for MLP and state-of-the-art models [27] 

 

This study contributes to the growing body of research on the application of neural 

networks to SDM, demonstrating that MLPs can achieve competitive performance 

compared to state-of-the-art methods. It also highlights the potential benefits of multi-

species modelling, particularly for species with limited occurrence data, suggesting a 

new direction for improving SDM accuracy. 
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2.2.3 Effects of sample size and network depth on a deep learning approach to 

species distribution modeling 

According to [28], it explores the application of deep learning, particularly Artificial 

Neural Networks (ANNs), to the task of SDM. This study aims to understand how 

variations in sample size and the depth of neural network architectures impact the 

performance of SDMs. With the increasing use of deep learning in ecological modelling, 

this study provides valuable insights into the conditions under which deep neural 

networks (DNNs) can be effectively utilized, compared to traditional methods like RF.  

Occurrence data for this study were sourced from the National Aquatic Monitoring 

Center, focusing on freshwater macroinvertebrates collected across various sites in the 

western United States. The environmental predictors were derived from the StreamCat 

dataset, which provides a comprehensive set of 242 variables characterizing 

geoclimatic conditions across millions of stream segments. Table 2.8 presents ten key 

variables chosen for their significance in macroinvertebrate ecology. 

Table 2.8 Variables included as predictors in SDM [28] 

 

In data preprocessing, the environmental variables were standardized to ensure 

comparability. The dataset was then split into training, validation, and test sets, with 

stratification to maintain proportional species representation. As to assess the impact of 

sample size on model performance, three data subsets (100, 1,000, and 10,000 sites) 

were created for each genus, with each subset split into 70% training and 30% 

validation sets. 

This study used the Adam optimizer, known for its robustness and efficiency, with a 

default learning rate of 0.001. The rectified linear unit (ReLU) activation function was 

applied across all hidden layers to enable faster learning and avoid issues like vanishing 

gradients. Batch normalization was used throughout, but dropout was excluded as it did 
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not improve performance in preliminary tests. The binary cross-entropy loss function 

was used, appropriate for the binary classification tasks, and the batch size was set to 

50 for all models. Early stopping was implemented to determine the optimal number of 

training epochs, stopping when no improvement in validation loss was observed for 10 

consecutive epochs. This approach enhanced model performance and reduced 

optimization time compared to traditional grid search methods. 

For comparison, RF models were also developed using the randomForest package in R, 

with 500 trees and three variables randomly selected at each node, providing a strong 

baseline against which to evaluate the neural networks. 

The study employed a random grid search strategy to optimize the number of nodes in 

each hidden layer. In order to manage the computational complexity, probabilistic 

reduction techniques were applied, narrowing the hyperparameter space. This approach 

involved randomly sampling a small fraction of possible node configurations and 

further reducing the search space by eliminating configurations that showed negative 

correlations with model performance in the initial runs. Table 2.9 summarizes the tested 

hyperparameter combinations for each neural network architecture after applying these 

reduction techniques. 

Table 2.9 Optimization strategy [28] 

The primary performance metric used was the True Skill Statistic (TSS), which 

balances sensitivity and specificity, making it particularly suitable for evaluating 

models dealing with imbalanced datasets like species distribution data. TSS was 

calculated for both training and validation sets to monitor overfitting and generalization 

performance. 
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The results in Figure 2.3 showed that as the sample size increased from 100 to 10,000 

sites, validation set performance improved significantly, indicating better 

generalization with larger datasets. Deeper networks performed better on larger datasets 

but offered no consistent advantage on smaller ones, suggesting that added complexity 

benefits only when sufficient data is available. 

RF models performed comparably or slightly better than neural networks, especially on 

smaller datasets. This highlights the robustness of RF as a modelling technique in 

ecological studies, where data scarcity is often a challenge.  

 

Figure 2.3 Performance metrics of models [28] 

This study systematically compares the impact of network depth and sample size on the 

performance of DNNs, providing valuable insights into when and how deeper networks 

might be beneficial. The research also validates the performance of DNNs, showing 

that they can outperform shallow neural networks when trained on larger datasets, 

although they struggle with smaller datasets due to overfitting. In addition, the study 

offers a comparative analysis with RF models, demonstrating that RF often perform 

comparably or even better than DNNs, particularly with smaller datasets. This finding 

is significant as it challenges the assumption that deeper and more complex models 

always lead to better performance. 
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2.2.4 Cross-validation strategies for data with temporal, spatial, hierarchical, or 

phylogenetic structure 

In most cases, ecological data have inherent dependency structures such as spatial, 

temporal, hierarchical or phylogenetic correlations. These dependencies often violate 

the independence assumptions required by traditional validation methods. Therefore, 

random sampling as one of these traditional methods, which usually leads to overfitting 

and underestimation of prediction errors. To address the negative effects of these 

dependencies, this paper [29] introduces spatial block sampling and demonstrates that 

it is a more robust cross-validation strategy. This paper demonstrates that spatial block 

sampling produces error estimates that are closer to the true value, reduces overfitting, 

and improves model evaluation for predicting new regions or environmental conditions 

compared to traditional validation methods. 

Block cross-validation has great potential in biogeographic research, but it is 

underestimated. In addition, this paper points out that many studies aim to predict new 

time periods or geographic regions but fail to describe the motivation for their 

validation methods, which is a concern. Through simulations and case studies, this 

paper shows that block cross-validation is valuable for extrapolated predictions and 

predictions within the same time period and region. Four scenarios are explored in this 

paper: spatial blocking, stratified group blocking, phylogenetic blocking and predictive 

spatial blocking. The results confirm that random cross-validation underestimates 

errors, even when models are designed to account for dependencies. In addition, block 

cross-validation provides more reliable error estimates that closely reflect the true 

values. 

The Figure 2.4 compares cross-validation strategies for spatially structured data using 

Root-mean-square deviation (RMSE) to assess model accuracy. The black vertical line 

indicates the ideal RMSE (true error) for independent data. The overall bias of the re-

substitution and random sampling to the left, showing a significant underestimation of 

the error due to spatial autocorrelation, which produces overly optimistic results. The 

block cross-validation shows that medium-sized blocks (20×20) provide the most 

accurate RMSE estimates by balancing independence and data availability, while small 

blocks (10×10) underestimate the error and large blocks (25×50) slightly overestimate 

the error. The buffer leave-one-out method (LOO) suggests that larger buffer radii can 

be effective in reducing spatial dependence and closely aligning with the ideal RMSE. 
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Overall, blocks cross-validation and buffered LOOs outperform random sampling and 

provide more realistic and reliable error estimates for spatially structured data. 

 

Figure 2.4 RMSE for Different Sampling Methods Across 100 Simulations [29] 

 

The paper conclude that random sampling is often used and is an excellent method in 

general cross-validation. When random sampling is used in ecological data, where it is 

clearly unable to address the dependency structure of ecological data. Because of the 

random nature, it usually includes data points from nearby locations in the training and 

test sets, leading to overly optimistic error estimates. In addition, random sampling can 

lead to overfitting as the model absorbs local patterns, reducing its ability to generalise 

to new, unseen data. 

In contrast, spatial block sampling divides the data into geographically distinct blocks, 

ensuring spatial independence between the training and test datasets. This approach 

reduces overfitting by isolating spatial structure and preventing the model from learning 
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local dependencies. It also provides more reliable error estimates that better reflect the 

model's true performance on independent data. 

2.2.5 Limitations of Related Works 

Most SDM studies focus on temperate regions in the United States and Europe, with 

significantly less research dedicated to the distinctly different tropical climates in Asia 

[15]. Malaysia, in Southeast Asia, has a tropical rainforest climate with consistently 

high temperatures, humidity, and significant rainfall year-round, sharply contrasting 

with the temperate climates of the US, EU, and China [30–33]. These conditions pose 

distinct challenges for SDM in Malaysia, requiring tailored approaches to accurately 

predict species distributions. 

Overfitting is a common challenge in machine learning, especially as models become 

more complex [34]. While traditional machine learning methods typically focus on 

single-species predictions, deep neural networks (DNNs) like multi-layer perceptrons 

(MLPs) can capture intricate relationships in both single-species and multi-species 

scenarios. However, this strength can also be a drawback. Ecological datasets are 

usually small [28], which exacerbates the risk of overfitting in complex models like 

MLPs, causing them to learn noise rather than meaningful patterns. This challenge 

underscores the importance of careful model selection and regularization to ensure 

robust, generalizable predictions in ecological research. 

A significant gap in the reviewed papers is the lack of discussion on how environmental 

variables contribute to species distribution in a specific region. It is important to 

understand the influence of environmental factors such as temperature and precipitation 

in a specific region, especially for the prediction of species' responses to climate change  

[35]. Without this focus, the models may fail to capture the full complexity of species-

environment interactions, leading to less accurate predictions and potentially 

overlooking critical factors that drive species distribution. 
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2.3 Proposed Solutions 

As to address the limitations identified in current SDM research, this study will focus 

on modelling the distribution of Strigiformes in Malaysia. By doing so, this study aims 

to fill the existing research gap and contribute to a more comprehensive understanding 

of how environmental change impacts species in tropical regions, particularly within 

Malaysia's unique climatic conditions, which are underrepresented in current SDM 

research. 

To evaluate the most suitable data splitting method for environmental condition 

predictions, this study implements both random sampling and spatial block sampling, 

following the methodology discussed in [29]. The results will reveal which sampling 

method better generalizes across spatially independent regions, guiding the approach to 

future environmental predictions. The identified sampling method will be applied in 

subsequent analyses or further studies to enhance predictive accuracy and reliability 

Based on the reviewed papers in Chapter 2, Random Forest (RF) models demonstrated 

strong performance across various species and sample sizes, while Multi-Layer 

Perceptrons (MLPs) are particularly effective with large datasets and multi-species 

distributions. However, MLPs are prone to overfitting, particularly when dealing with 

smaller datasets. Therefore, this study focuses on the development and comparison of 

RF and MLP models to determine the most suitable approach for the specific context 

of a relatively small dataset size and Malaysia’s unique tropical geographical conditions. 

The comparison aims to evaluate predictive performance, robustness, and 

generalization ability under current and future environmental scenarios. 

In many existing studies, the role of environmental variables in influencing species 

distribution is often underexplored. Simultaneously, models used in SDM face 

challenges in balancing accuracy, complexity, and interpretability. As models become 

more sophisticated, like MLPs and RFs, they tend to become increasingly complex and 

harder to interpret. As to address this, this study will integrate Explainable AI (XAI) 

techniques, such as Shapley Additive Explanations (SHAP)to provide insights into how 

environmental factors influence predictions in specific regions in Malaysia. By 

applying XAI, the aim is to improve the proposed model’s accuracy while ensuring that 

predictions are both interpretable and actionable.  
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In order to have a more comprehensive understanding of the impact of environmental 

change on Strigiformes in Malaysia, this study will integrate probabilistic mapping into 

species distribution models. The probabilistic maps will be carried out for both current 

and future environmental scenarios, allowing the assessment current suitability of 

habitats and forecasting potential shifts. 
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CHAPTER 3 SYSTEM MODEL 

3.1 Research Methodology 

The methodology for this study is designed to develop and evaluate predictive models 

for species distribution under current and future environmental scenarios. The approach 

involves the development of machine learning and deep learning models, including 

Random Forest (RF), Multi-Layer Perceptrons (MLP). 

The Figure 3.1 below outlines the overview of research framework of this study, which 

consists of three main phases. The Data Preprocessing phase (red section) includes 

collecting presence and environmental data, removing duplicates, generating pseudo-

absence data, resampling environmental variables, and conducting Pearson correlation 

analysis to produce a finalized occurrence dataset. The Data Splitting Method 

Evaluation phase (yellow section) will compare random sampling and spatial block 

sampling methods by developing and evaluating models to determine the better 

splitting strategy. Next, the Model Development and Evaluation phase (blue section) 

applies the selected sampling method to the whole Malaysia dataset for model 

development and evaluation. Finally, the Environmental Impact and Habitat Analysis 

phase (green section) used the trained models to conduct environmental impact 

assessments and create habitat suitability maps for current and future conditions. 
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Figure 3.1 Overview of Research Framework  
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3.1.1 Data Preprocessing 

The first phase of the project focuses on data preprocessing, which includes the 

collection, cleaning and preparation of presence and environmental data. It begins with 

the collection of presence data from biodiversity databases from Global Biodiversity 

Information Facility (GBIF) [19], and the acquisition of 19 environmental variables 

from sources WorldClim [20]. In addition, elevation and slope data were retrieved from 

National Aeronautics and Space Administration (NASA) Shuttle Radar Topography 

Mission (SRTM) Digital Elevation 30m dataset [21], while land cover variables, 

including primary forest, secondary forest, and urban areas, were obtained from the 

Land-Use Harmonization (LUH2) dataset [22].  

A. Presence Data 

The study area includes both West and East Malaysia, focusing on modelling the 

distribution of Ketupa (a genus of Strigiformes). For this research, presence-only data 

shall be obtained from the GBIF, concentrating on records within Malaysia's 

geographical boundaries [19]. The specific species for study are listed in Table 3.1. 

Table 3.1 Selected species under Ketupa  

Order Genus Species 

Strigiformes Ketupa 

Ketupa ketupu 

Ketupa zeylonensis 

Ketupa sumatrana 

Ketupa coromanda 

 

B. Environmental Data 

Furthermore, the 19 bioclimatic variables sourced from WorldClim [20], along with 

additional terrain and land-use variables are listed in Table 3.2. The total 24 

envrionmental variables have been demonstrated to play a critical role in species 

distribution modelling, making them highly suitable for this study [26, 36]. 
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Table 3.2 24 Environmental variables  

Variable Description 

BIO1 Annual Mean Temperature 

BIO2 Mean Diurnal Range (Mean of monthly (max temp - min temp)) 

BIO3 Isothermality (BIO2/BIO7) (×100) 

BIO4 Temperature Seasonality (standard deviation ×100) 

BIO5 Max Temperature of Warmest Month 

BIO6 Min Temperature of Coldest Month 

BIO7 Temperature Annual Range (BIO5 - BIO6) 

BIO8 Mean Temperature of Wettest Quarter 

BIO9 Mean Temperature of Driest Quarter 

BIO10 Mean Temperature of Warmest Quarter 

BIO11 Mean Temperature of Coldest Quarter 

BIO12 Annual Precipitation 

BIO13 Precipitation of Wettest Month 

BIO14 Precipitation of Driest Month 

BIO15 Precipitation Seasonality (Coefficient of Variation) 

BIO16 Precipitation of Wettest Quarter 

BIO17 Precipitation of Driest Quarter 

BIO18 Precipitation of Warmest Quarter 

BIO19 Precipitation of Coldest Quarter 

Elevation Elevation above sea level (meters) from NASA SRTM  

Slope Terrain slope derived from NASA SRTM 

Primf_median 

Proportion of grid cell covered by forested primary land (LUH2 

primf) 

Secdf_median 

Proportion of grid cell covered by potentially forested 

secondary land (LUH2 secdf) 

Urban_median Proportion of grid cell covered by urban areas (LUH2 urban) 
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C. Remove Duplicates 

To ensure data integrity and usability, duplicate presence records are identified and 

removed. The spatial resolution for analysis is set at 1 kilometre (km) to ensure 

consistency with environmental variables and to account for species-level habitat 

precision. Within each 1 km grid, only one presence record is retained, while others are 

treated as duplicates to avoid overrepresentation of data in densely sampled areas [37]. 

The environmental variables are similarly resampled to match this 1 km spatial 

resolution, ensuring compatibility between the environmental predictors and 

occurrence data.  

C. Pseudo-absence Generation 

To prepare presence-only data for use in machine learning models like RF and MLP, 

pseudo-absence data are required to be generated.  According to the suggestion in [38],  

random selection of pseudo absence with minimum distance away from presence data 

is a robust method for such models. Based on the recommendation, the number of 

pseudo-absences should match the number of presence data. Additionally, the 

generation process should be repeated 5 times to improve reliability.  

There is no specific research on the home range of genus Ketupa is currently available. 

To address this limitation, a study [39] of related species within same order, 

Strigiformes was used as a reference.  The barn owl, which also belongs to Strigiformes 

order, has been found that its home range size is approximately 10 km. Therefore, this 

study will set the minimum distance of pseudo-absence generation as 10 km. This 

approach will eventually increase the likelihood that pseudo-absences represent true 

absences, improving the robustness and reliability of models. 

D. Pearson Correlation Analysis 

The Pearson correlation coefficient is a widely used statistical measure that quantifies 

the linear relationship between two variables, providing a value between -1 and 1, 

where values closer to -1 or 1 indicate a stronger linear relationship [40]. The threshold 

of 0.7 is commonly used in various studies, as it effectively minimizes the risk of 

multicollinearity, thereby enhancing the accuracy and reliability of SDM projections 

[41]. After this, data standardization will be applied to ensure all variables are on a 
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comparable scale, which is essential for optimizing the performance of deep learning 

models like MLP. 

The formula of Pearson Coefficient is shown in equation 3.1: 

𝑟 =
∑ (𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)𝑛

𝑖=1

√∑ (𝑋𝑖 − 𝑋̅)2𝑛
𝑖=1 √∑ (𝑌𝑖 − 𝑌̅)2𝑛

𝑖=1

 

(3.1) 

where: 

• Covariance(X, Y) = ∑ (𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)𝑛
𝑖=1  

• Standard Deviation(X) = √∑ (𝑋𝑖 − 𝑋̅)2𝑛
𝑖=1  

• Standard Deviation(Y) = √∑ (𝑌𝑖 − 𝑌̅)2𝑛
𝑖=1  

3.1.2 Data Splitting Method Evaluation 

The second phase of the project evaluates different data splitting methods to identify 

the most suitable approach for species distribution modeling (SDM) in Malaysia. The 

occurrence data is divided into West Malaysia (used for model training and testing) and 

East Malaysia (used as an independent evaluation dataset). Two sampling strategies are 

employed: random sampling and spatial block sampling. 

As discussed in Chapter 2, the paper [29] demonstrates dependency structures such as 

spatial, temporal, or phylogenetic correlations in ecological data often violate the 

independence assumptions of traditional validation methods, leading to overestimated 

model performance. Spatial block sampling is an effective method for ensuring spatial 

independence between training and test datasets. 

For this study, random sampling randomly selects data points for training and testing, 

while spatial block sampling divides the dataset into geographically distinct blocks. 

Both models are evaluated using the independent data from East Malaysia and the West 

Malaysia test set.  

Based on previous research [29], models trained with random sampling are expected to 

perform better on the West Malaysia test set but may struggle with extrapolation to the 
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East Malaysia dataset. Conversely, spatial block sampling models, designed for better 

generalization across regions, are expected to outperform random sampling in the East 

Malaysia evaluation. This analysis will determine which sampling method is more 

robust and will be adopted for subsequent steps, including model development, 

environmental data impact analysis and habitat suitability map. 

3.1.3 Model Development and Evaluation 

This phase includes applying the best sampling method identified in the second phase, 

followed by model development and evaluation. The whole Malaysia occurrence 

dataset is used for model training and evaluation.  

Subsequently, Random Forest (RF) and Multi-Layer Perceptron (MLP) are developed 

to capture species-environment relationships effectively. 

A. Random Forest (RF) Model Architecture 

This research develops RF models [42] across both datasets and genera under study. 

Each RF model is configured with 500 decision trees. At each decision node within the 

trees, three variables are randomly selected for consideration when determining the best 

split. This approach helps in generating a diverse set of trees, reducing the risk of 

overfitting [28]. 

B. Multi-Layer Perceptron (MLP) Model Architecture 

The MLP model [28] is employed to capture the complex, non-linear relationships 

between environmental variables and species distributions. The input layer processes 

environmental variables after Pearson correlation [40], and the output layer consists of 

a single node with a sigmoid activation function. The MLP architecture consists of an 

input layer, three hidden layers and a single node output layer. 

Input Layer: 

The input layer processes the standardized environmental variables after Pearson 

correlation [40]. 

Hidden Layers: 

This study uses three hidden layers to balance the model complexity and dataset size 

(approximately 1000 training records), following suggestions from reviewed paper 
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[28]. The Rectified Linear Unit (ReLU) activation function is used on all hidden layers 

to enhance learning efficiency by addressing the vanishing gradient problem. 

Output Layer: 

The output layer comprises a single neuron with a sigmoid activation function, 

predicting the probability of species presence. 

Optimization and Loss Function: 

The Adam optimizer is used for model training [28]. The binary cross-entropy loss 

function is utilized to minimize the classification error between predicted and true 

labels. 

Training Strategy: 

The MLP models underwent hyperparameter tuning using a custom randomized search 

procedure, primarily focusing on the number of neurons in each hidden layer, learning 

rate, dropout rate, batch size, and number of epochs. The specific search space and 

implementation details are provided in Chapter 4. 

C. Evaluation 

The Area Under the Receiver Operating Characteristic Curve (AUROC) [43] and the 

Area Under the Precision-Recall Curve (AUCPR) [44] are metrics used for evaluating 

binary classification models, offering complementary insights into model performance. 

AUROC is derived from the Receiver Operating Characteristic (ROC) curve, which 

plots the True Positive Rate (TPR) against the False Positive Rate (FPR) across various 

classification thresholds.  

TPR, also known as sensitivity or recall, is the proportion of actual positive instances 

correctly identified by the model as shown in equation 3.2: 

TPR  = 
True Positives (TP)

True Positives (TP) + False Negatives (FN)
 

(3.2) 

FPR represents the proportion of actual negative instances incorrectly identified as 

positive as presented in equation 3.3: 
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FPR = 
False Positives (FP)

True Negatives (TN) +False Positives (FP)
 

(3.3) 

By evaluating TPR as given in equation 3.2 and FPR as given in equation 3.3 across all 

possible thresholds, the ROC curve visualizes the trade-off between true positives and 

false positives. AUROC, as the area under this curve, provides a comprehensive 

evaluation of the model's discriminative power, particularly valuable in scenarios with 

class imbalance, ensuring that the model's performance is not biased toward the 

majority class. 

AUCPR is calculated by integrating the Precision-Recall (PR) curve, which plots 

Precision against Recall. The curve represents how these two metrics trade off as the 

classification threshold changes. The formula of Precision and Recall are shown in 

equation 3.4 and equation 3.5. 
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Precision: 

Precision = 
True Positives (TP)

True Positives (TP) +False Positives (FP)
 

(3.4) 

Recall: 

Recall  = 
True Positives (TP)

True Positives (TP) + False Negatives (FN)
 

(3.5) 

By evaluating Precision as given in equation 3.4 and Recall as shown in equation 3.5 

across all possible thresholds, the Precision-Recall curve visualizes the trade-off 

between the accuracy of positive predictions and the model's ability to identify all actual 

positives. AUCPR quantifies this trade-off, providing a focused evaluation of the 

model's performance on the positive class. 

AUROC evaluates a model's ability to distinguish between positive and negative 

classes by incorporating all classes from confusion matrix as illustrated in Figure 3.2. 

In contrast, AUCPR is calculated based on Precision and Recall, which do not account 

for true negatives class. In this study, the datasets from GBIF [19] include only 

presence-only data, while absence data is artificially generated as pseudo-absence data, 

resulting in an imbalanced dataset. 
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Figure 3.2 Confusion Matrix 

In ecological modelling, datasets often consist of presence-only data, and even when 

true absence data is available, presence data typically represents a rare event within the 

dataset. According to [45], AUROC often inflates performance when dealing with 

imbalanced datasets,, either due to a majority of true negatives or because true negatives 

are represented by pseudo-absence data. The study suggests using AUCPR as a 

complementary metric for assessing performance of model because it ignores true 

negatives (including pseudo-absence data) and focuses solely on the model’s ability to 

predict presence data. By using both AUROC and AUCPR, it ensures a more accurate 

and reliable evaluation of model performance 

3.1.4 Environmental Impact and Habitat Analysis 

Finally, the environmental impact and habitat analysis phase focuses on evaluating the 

influence of environmental variables on species distribution using advanced 

interpretability techniques. This phase aims to provide insights into the relationships 

between predictor variables and species occurrence 

The analysis employs three key methods: Mean Decrease in Impurity (MDI) [42], 

Shapley values (SHAP) [46], and response curves. 
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A. Mean Decrease in Impurity 

Mean Decrease in Impurity (MDI) [42] ranks environmental variables based on their 

contribution to reducing impurity in decision trees, providing an overall measure of 

variable importance within the Random Forest (RF) model. Impurity is measured using 

Gini Impurity, which quantifies the likelihood of incorrectly classifying a randomly 

chosen sample if it were randomly labeled according to the distribution of the labels in 

a given node.  

The formula for Gini Impurity is given in equation 3.6 below: 

 𝐺𝑖𝑛𝑖 =  1 − 𝑝1
2 −  𝑝2

2  

 (3.6) 

where: 

• 𝑝1 : The proportion of samples in presence class. 

• 𝑝2 : The proportion of samples in absence class. 

The Gini Impurity Reduction is calculated as presented in equation 3.7: 

 𝐺𝑖𝑛𝑖 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =  𝐺𝑖𝑛𝑖 𝑃𝑎𝑟𝑒𝑛𝑡 − (
𝑛𝑙𝑒𝑓𝑡

𝑛𝑝𝑎𝑟𝑒𝑛𝑡
∙ 𝐺𝑖𝑛𝑖 𝑙𝑒𝑓𝑡 +  

𝑛𝑟𝑖𝑔ℎ𝑡

𝑛𝑝𝑎𝑟𝑒𝑛𝑡
∙ 𝐺𝑖𝑛𝑖 𝑟𝑖𝑔ℎ𝑡) 

(3.7) 

where: 

• 𝐺𝑖𝑛𝑖𝑝𝑎𝑟𝑒𝑛𝑡: Gini Impurity of the parent node. 

• 𝐺𝑖𝑛𝑖𝑙𝑒𝑓𝑡,  𝐺𝑖𝑛𝑖𝑟𝑖𝑔ℎ𝑡: Gini impurities of the left and right child nodes after split. 

• 𝑛𝑝𝑎𝑟𝑒𝑛𝑡,  𝑛𝑙𝑒𝑓𝑡,  𝑛𝑟𝑖𝑔ℎ𝑡: Number of samples in parent, left child and right child 

nodes. 

 

MDI measures the overall importance of a feature by summing the Gini impurity 

reductions for that feature across all nodes and averaging it across all trees in a RF. 

It is important to note that MDI method can be only applied to tree-based models. Since 

MDI relies on the hierarchical structure of decision trees to calculate the feature 
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importance, it is not applicable to non-tree models like MLP. Therefore, in this study, 

MDI analysis is conducted exclusively on the RF models. 

B. Shapley Values 

Shapley values [46] offer an interpretable approach by quantifying each variable's 

contribution to individual predictions, capturing both localized effects and variable 

interactions. Shapley values are derived from cooperative game theory and provide a 

fair allocation of contribution among variables.  

The formula of Shapley Values is shown in equation 3.8: 

𝜙𝑖 = ∑
|𝑆|! ⋅ (|𝐹| − |𝑆| − 1)!

|𝐹|!
𝑆⊆𝐹∖{𝑖}

⋅ [𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)] 

(3.8) 

where: 

• The set of all environmental variables ({𝑥1, 𝑥2, . . . , 𝑥𝑛}) 

• 𝑆: A subset of variables excluding  

• |𝑆|: The number of variables in subset  

• 𝑓(𝑆): The prediction of the model using only the variables in 𝑆 (other variables 

are marginalized or ignored). 

• 𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆): The marginal contribution of variable 𝑥𝑖  when added to 

subset 𝑆. 

• 
∣𝑆∣!⋅(∣𝐹∣−∣𝑆∣−1)!

∣𝐹∣!
: A weighting factor that ensures all subsets are weighted fairly 

based on their size. 

Shapley values provide a robust understanding of variable importance by accounting 

for interactions and dependencies among predictors. 

C. Response Curves 

Response curves are generated to illustrate how each environmental variable influences 

the predicted probability of species presence [47]. To create these curves, the target 

variable is systematically varied across its range while all other variables are held 
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constant at their mean values. This approach isolates the effect of the target variable, 

allowing the model's response to changes in that variable to be assessed independently. 

These curves provide a visual understanding of species responses to environmental 

conditions, highlighting critical thresholds and ranges essential for determining habitat 

suitability. 

By combining MDI, Shapley values, and response curves, it ensures a comprehensive 

understanding of the environmental drivers of species distribution, contributing to the 

creation of accurate habitat suitability models and maps. 

D. Habitat Suitability Map 

The trained models generate spatially explicit probability layers that depict the present-

day likelihood of genus Ketupa occurrence as well as projections for 2061–2080 under 

two Coupled Model Intercomparison Project Phase 6 (CMIP-6) climate pathways: 

Shared Socioeconomic Pathway 2–4.5 (SSP2-4.5), representing a moderate-emissions 

scenario, and Shared Socioeconomic Pathway 5–8.5 (SSP5-8.5), representing a high-

emissions trajectory. 

To move beyond simple visual comparison, the continuous habitat suitability 

probabilities are classified into four discrete classes as shown in Table 3.3. The analysis 

focuses on net area changes within each suitability category to assess spatial and 

ecological shifts between current and future scenarios [48]. 

The classification thresholds are summarized in Table 3.3. 

Table 3.3 Habitat Suitability Classification 

Suitability Class Probability Range 

High 0.75 – 1.00 

Moderate 0.50 – 0.75 

Poor 0.25 – 0.50 

Unsuitable 0.00 – 0.25 
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3.2 System Requirements 

3.2.1 Hardware 

 

Table 3.4 Specifications of Hardware 

Description Specifications 

Model Acer Nitro 5 AN515 Gaming Laptop 

Processor Intel(R) Core(TM) i5-9300H CPU @ 2.40GHz   2.40 GHz 

Operating System Windows 10 

Graphic NVIDIA GeForce GTX 1650 

Memory 12.0 GB RAM 2667MHz DDR4 

Storage 512GB PCIe® 3.0 NVMe™ M.2 SSD 

 

3.2.2 Software Requirement 

This research utilizes Python as the primary programming language, with Jupyter 

Notebook for coding and workflow documentation. Google Earth Engine (GEE) is 

employed for preprocessing environmental data, generating geospatial layers. Machine 

learning and deep learning models are developed by Scikit-learn, while TensorFlow is 

planned for training deep learning models such as Multi-Layer Perceptrons. Matplotlib 

and Seaborn are used for data visualization, while GeoPandas is essential for managing 

geospatial data. Additionally, R programming is used specifically for spatial block 

analysis, taking advantage of its specialized ecological and spatial statistics packages. 
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CHAPTER 4 IMPLEMENTATION & EXPERIMENT 

RESULTS 

4.1 Data Preprocessing Implementation 

4.1.1 Presence Data Cleaning 

First, after loading the genus Ketupa data from the dataset, the rows with missing values 

were removed using the .dropna() method. The cleaned data was then converted into a 

GeoPandas DataFrame to prepare it for use in Google Earth Engine. Figure 4.1 below 

illustrates the data size and structure of the DataFrame. 

 

Figure 4.1 Showing data size and structure 
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4.1.2 Selecting Area of Interest 

After that, the next important step was to define the area of interest (AOI) for this study. 

The focus of the study is Malaysia, as shown in Figure 4.2. 

 

Figure 4.2 Area of Interest of Study (Highlighted with a Red Boundary) 

 

4.1.3 Remove Duplicates 

The duplicate and closely located points were removed, with the grain size set to 1 km 

(1000 metres) [37], ensuring that only data within Malaysia was retained. The original 

genus Ketupa dataset size of 5575 points was reduced to a final dataset size of 749 

points. This significant reduction indicates that many points were either duplicates or 

located too close to one another, which could increase spatial autocorrelation. The data 

points have been plotted on a map, as shown in Figure 4.4, where the blue points 

represent the original data, and the red points represent the final dataset. 

As mentioned previously, the genus Ketupa includes several species. After presence 

data preprocessing, which involved duplicate removal and spatial filtering, the final 

dataset retained four Ketupa species. The distribution of presence points among the 

species is shown in Figure 4.5: Ketupa ketupu with 477 records, Ketupa sumatrana with 

242 records, Ketupa coromanda with 25 records, and Ketupa zeylonensis with 5 

records. 
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Figure 4.3 Implementation of Removing Duplicates 

 

 

Figure 4.4 Plotting Data Points on Google Map 
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Figure 4.5 Distribution of Ketupa Species Presence Records 

 

4.1.4 Pearson Correlation Analysis 

After loading the datasets from WorldClim [20], NASA SRTM Digital Elevation [21] 

and Land-Use Harmonization [22], Pearson Correlation Analysis [40] is performed to 

address potential multicollinearity. A total of 10,000 random points within the AOI are 

selected and paired with all 24 environmental variables. A Pearson correlation matrix 

is then generated for these variables using the data from the 10,000 points. 
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Figure 4.6 Pearson Correlation Matrix 

 

The correlation matrix has been generated, and as discussed in Chapter 3.1.1 Data 

Preprocessing section, a threshold of 0.7 is applied. This threshold is commonly used 

in various studies as it effectively reduces the risk of multicollinearity [41]. After 

removing highly correlated variables based on this criterion, the remaining variables 

are bio01 (annual mean temperature), bio02 (mean diurnal range), bio03 

(isothermality), bio12 (annual precipitation), bio13 (precipitation of wettest month), 

slope (Terrain Slope), primf (Primary Forest Cover Fraction), secdf (Secondary Forest 

Cover Fraction), and urban (Urban Area). The updated correlation matrix is presented 
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in 

 

Figure 4.7. 
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Figure 4.7 Updated Correlation Matrix 

4.1.5 Initial Feature Importance Analysis 

The initial set of predictors was determined based on Pearson correlation analysis, as 

summarized in Table 4.1. To further assess the true contribution of each predictor to 

species distribution modelling, an initial feature importance evaluation was conducted. 

Three complementary methods were used to examine variable importance: Response 

Curves, Shapley values (SHAP), and performance metrics. 
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Table 4.1 Predictors after Pearson Correlation Analysis 

 Variable Description 

1 BIO1 Annual Mean Temperature 

2 BIO2 Mean Diurnal Range (Mean of monthly (max temp - min temp)) 

3 BIO3 Isothermality (BIO2/BIO7) (×100) 

4 BIO12 Annual Precipitation 

5 BIO13 Precipitation of Wettest Month 

6 Slope Terrain slope derived from NASA SRTM 

7 Primf_medi

an Proportion of grid cell covered by forested primary land (LUH2) 

8 Secf_media

n 

Proportion of grid cell covered by potentially forested secondary 

land (LUH2) 

9 Urban_medi

an Proportion of grid cell covered by urban areas (LUH2) 

 

Random Forest models were developed using these nine predictors, with each model 

configured with 500 decision trees. At each decision node, three variables were 

randomly selected to determine the best split, promoting diversity among the trees. 

Analysis of variable importance revealed that the slope predictor displayed inconsistent 

response curve patterns across all cross-validation folds in Figure 4.8, suggesting weak 

and unstable relationships with species occurrence. Furthermore, slope showed the 

lowest mean Shapley value impact among all predictors, indicating minimal 

contribution to model predictions, as illustrated in Figure 4.9. 
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Figure 4.8 Response Curve for Slope using Random Forest 

 

Figure 4.9 Mean Shapley Values of Random Forest 

To further validate this observation, the slope variable was removed, and the model was 

retrained using the remaining eight predictors: bio01, bio02, bio03, bio12, bio13, 

urban_median, primf_median, and secdf_median.  
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Comparison of the final results demonstrated that removing the slope variable did not 

lead to any significant decline in model performance, as illustrated in Figure 4.10. 

These outcomes confirmed that the slope variable did not meaningfully contribute to 

the predictive power of the model, and its exclusion served to simplify the model 

without compromising accuracy or robustness. 

 

Figure 4.10 Performance Comparison between 9 variables and 8 variables 

 

4.1.6 Pseudo-absence Generation 

The GBIF datasets [19] include only presence-only data. Before model development, 

pseudo-absence data needs to be generated to act as the negative class. As discussed in 

Chapter 3.2.1 Data Preprocessing section, buffer is set at 10 km (10,000 m), meaning 

pseudo-absence points are located at least 10 km away from any presence point for 

genus Ketupa. As shown in Figure 4.12, the black-colored regions indicate the possible 

areas for pseudo-absence generation. 
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Figure 4.11 Implementation of Generating Area for Pseudo-Absence  

 

 

Figure 4.12 Area for Pseudo-Absence Generation 

 

4.2 Data Splitting Method Evaluation Implementation 

In this phase, the target is to determine the better sampling method between random 

sampling and spatial block sampling. The occurrence data is divided into West 

Malaysia (used for model training and testing) and East Malaysia (used as an 

independent evaluation dataset). Both sampling methods adopt a 7:3 proportion for 

splitting the data [49]. 
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Figure 4.13 West Malaysia(Blue-colored Region) and East Malaysia(Green-colored 

Region) 

4.2.1 Random Sampling 

Random Sampling implementation is shown in Figure 4.14, it uses randomColumn 

method to split the data into training and testing sets based on a specified threshold 

(e.g., 0.7 for a 70:30 split).  While it does not guarantee an exact 70:30 proportion, the 

split is very close, especially for large datasets. 

 

Figure 4.14 Implementation of Random Sampling 

 

4.2.2 Spatial Block Sampling 

To prepare the spatial block sampling for this study, a water mask was created to 

exclude water bodies. Each grid cell covers an area of 25 km². Multiple grids were 

generated to cover West Malaysia. Similar to the random sampling method, 
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randomColumn method was used for splitting, but in this case, it splits the grids into 

training and testing sets, rather than data points. 

 

Figure 4.15 Implementation of Spatial Block Sampling 

 

 

Figure 4.16 Spatial Grid Layout Covering West Malaysia (Black Grids) 
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4.2.3 Data Splitting Method Evaluation 

To determine the best-performing data splitting method, the AUROC and AUCPR 

performance of each sampling method is compared using the RF model, as explained 

in Chapter 4.3.1, Model Architecture Implementation. 

For AUROC performance: 

1. Random Sampling Method: 

o As shown in Table 4.1, this method performs significantly better on the 

West Malaysia test set compared to the East Malaysia independent 

dataset. 

o As illustrated in Figure 4.17, it experiences a 41.14% performance 

decrease (AUROC) when evaluated on independent data (East 

Malaysia), confirming that models trained with random sampling 

struggle with extrapolation across different regions. 

2. Spatial Block Sampling Method: 

o Shows a smaller performance gap between the West Malaysia test set 

and the East Malaysia evaluation dataset. 

o As shown in Figure 4.17, it experiences a 27.50% performance decrease 

in AUROC, indicating better generalization compared to the random 

sampling model. 

For AUCPR performance: 

1. Random Sampling Method: 

o As illustrated in Figure 4.18, it performs well on the West Malaysia test 

set but demonstrates a significant 42.45% performance decrease when 

evaluated on East Malaysia. 

o This indicates poor generalization to unseen regions, highlighting the 

limitations of random sampling for cross-region predictions. 

2. Spatial Block Sampling Method: 
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o As illustrated in Figure 4.18, it shows better generalization compared to 

the random sampling method, with a smaller 30.49% performance 

decrease when moving from West Malaysia (test set) to East Malaysia 

(independent evaluation dataset). 

o The smaller performance gap reflects the improved ability of the spatial 

block sampling method to handle geographic variability and 

extrapolation. 

The Table 4.2 summarizes the evaluation results of Random Sampling and Spatial 

Block Sampling methods based on AUROC and AUCPR metrics, including an 

assessment of standard deviation values. Models trained using Random Sampling 

performed well on the random sampling test set (AUROC: 0.9483 ± 0.0077, AUCPR: 

0.9598 ± 0.0049), indicating high accuracy with minimal variability. However, on the 

independent set, they showed a significant performance drop (AUROC: 0.5582 ± 

0.1310, AUCPR: 0.5524 ± 0.0975), with high standard deviations reflecting 

inconsistent generalization. In contrast, Spatial Block Sampling models displayed more 

stable performance on the independent set (AUROC: 0.6050 ± 0.0925, AUCPR: 0.5941 

± 0.0796) and slightly lower performance on the random sampling set (AUROC: 0.8345 

± 0.0462, AUCPR: 0.8547 ± 0.0434).  

The results align with the findings of paper [29], which highlights that random sampling 

struggles to handle spatial autocorrelation, leading to an overestimation of the model's 

performance. In contrast, spatial block sampling helps to mitigate this issue by 

addressing spatial dependency. This study confirms that spatial block sampling is the 

more reliable method, as it provides better generalization and is less affected by 

performance drops when applied to new regions. This is particularly beneficial since 

this study aims to create habitat suitability maps under future environmental conditions, 

which inherently involve extrapolation. 
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Figure 4.17 AUROC Performance Comparison Between Different Data Splitting 

Methods 

 

Figure 4.18 AUCPR Performance Comparison Between Different Data Splitting 

Methods 

 

Table 4.2 Performance of Different Sampling Methods 

  Evaluation Set 
AUROC  

(Mean±StdDev) 

AUCPR  

(Mean±StdDev) 

Random 

Sampling  

Random Sampling Set 
0.9483 ± 0.0077 0.9598 ± 0.0049 

Random 

Sampling  

Independent Set 
0.5582 ± 0.1310 0.5524 ± 0.0975 

Spatial Block 

Sampling  

Random Sampling Set 
0.8345 ± 0.0462 0.8547 ± 0.0434 

Spatial Block 

Sampling  

Independent Set 
0.6050 ± 0.0925 0.5941 ± 0.0796 
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Spatial Block Sampling has been shown to mitigate the bias introduced by spatial 

autocorrelation (SAC). However, according to literature review paper [29], there is no 

a standard rule of measurement of the optimal block size. To determine an appropriate 

block size for the occurrence data, the SAC range was quantified using  

cv_spatial_autocor() function form the blockCV package [50]. This function estimates 

the spatial autocorrelation structure by generating semivariograms of model residuals 

across spatially structured data and calculating the empirical range where 

autocorrelation becomes negligible. An example of a semivariogram generated from 

one of the splits is illustrated in Figure 4.19, highlighting the spatial dependence pattern 

observed in the data. 

All data splits were evaluated using this function, returning empirical SAC ranges 

between 68.8 km and 77.5 km, with a mean range of 68.5 km, as presented in Table 

4.3. Given that the initial experimental design considered a 25 km block size, with 25 

km as the incremental unit, this study adopted a 75 km block size. The 75 km block 

width was chosen because it exceeds the mean SAC range, while 50 km would have 

fallen below it. This ensures that training and testing data points are sufficiently 

separated to strongly reduce the effects of SAC, thus improving model robustness and 

generalization. 

Table 4.3 Spatial Autocorrelation Range Results 

Dataset SAC Range (meters) 

Dataset 1  68808.45 

Dataset 2 69193.98 

Dataset 3 62311.07 

Dataset 4 64517.68 

Dataset 5 77465.46 

Mean 68459.33 
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Figure 4.19 Semivariogram of Occurrence Data 

  



CHAPTER 4 

58 

Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

4.3 Model Development and Evaluation Implementation 

4.3.1 Model Architecture Implementation 

A. Random Forest Models 

In this study, the Random Forest (RF) models were developed using the 

RandomForestClassifier from the Scikit-learn library [51] in Python. The classifier was 

configured with 500 decision trees and the number of features considered at each split 

was set to 3. 

Based on the methodology outlined in Chapter 3.1.1 pseudo-absence generation 

section, 5 RF models with same hyperparameters were developed to ensure the 

reliability of pseudo-absence generation [38]. For each iteration, a new set of pseudo-

absence points was generated while maintaining the same presence points. Spatial block 

sampling was then applied to each dataset to ensure spatial independence between 

training and testing sets. This iterative process enhances the robustness of the model by 

accounting for variability in pseudo-absence generation and ensuring consistent 

performance across different datasets. 

  

Figure 4.20 Implementation of Random Forest Architecture  
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B. Multi-Layer Perceptron (MLP) Models 

Following the RF development, a suite of five MLP models was trained on exactly the 

same presence and pseudo-absence datasets that had been generated with spatial block 

splitting.  

To optimize the MLP architecture and training configurations, a custom randomized 

search procedure was implemented. The search space included: 

• Number of neurons in each hidden layer (n1, n2, n3): Random integers between 

32 and 128 

• Learning rate (lr): Continuous values between 10-4 and 10-3 (log-uniform 

distribution) 

• Dropout rate (dropout): Continuous values between 0.0 and 0.3 

• Batch size: 16, 32, or 64 

• Number of training epochs: 10, 20, or 30 

A total of 100 random trials were conducted (n_iter = 100). For each trial, a model was 

trained and evaluated across all spatial folds, and the mean AUROC across folds was 

used as the selection criterion. 

The best performing hyperparameter configuration identified from the random search 

is as follows: 

• First hidden layer: 84 neurons 

• Second hidden layer: 81 neurons 

• Third hidden layer: 42 neurons 

• Learning rate: 0.00053 

• Dropout rate: 0.168 

• Batch size: 16 

• Epochs: 30 

This optimized MLP configuration was subsequently used for final model training and 

evaluation. The implementation details of the custom randomized search procedure for 

MLP hyperparameter optimization are illustrated in Figure 4.21. 
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Figure 4.21 Implementation of Multi-layer Perceptron Architecture 
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4.3.2 Evaluation of AUROC and AUCPR 

After training the RF models and MLP models, it was evaluated using the spatial block 

sampling test set to assess its performance in terms of AUROC and AUCPR. As 

illustrated in Figure 4.22, the evaluation metrics were computed using the scikit-learn 

library to ensure accurate measurement of AUROC and AUCPR values. 

 

Figure 4.22 Implementation of AUROC and AUCPR 

4.4 Environmental Impact and Habitat Analysis 

4.4.1 Gini Impurity Analysis 

Gini Impurity Reduction analysis was applied to evaluate the contribution of each 

environmental variable to reducing classification uncertainty within the Random Forest 

model [42, 46]. This method identifies the most influential predictors by measuring 

how much each variable improves the model's ability to classify data points at decision 

tree splits. A total of eight environmental variables were included in the analysis: bio01 

(Annual Mean Temperature), bio02 (Mean Diurnal Range), bio03 (Isothermality), 

bio12 (Annual Precipitation), bio13 (Precipitation of Wettest Month), primf_median 

(Primary Forest Cover), secf_median (Secondary Forest Cover), and urban_median 

(Urban Area Cover). 

The results in Figure 4.23 suggest that precipitation-related variables (bio12 and bio13) 

are the most influential factors in predicting species distribution of Ketupa, 
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underscoring the importance of water availability and seasonal rainfall patterns for 

habitat suitability. Temperature-related variables (bio01, bio02, and bio03) are 

relatively less influential compared to precipitation. 

The chart in Figure 4.24 illustrates the Coefficient of Variation (CV) for the selected 

bioclimatic variables, highlighting differences in their variability across the study area. 

A total of 5000 points were randomly selected from Malaysia. Precipitation-related 

variables, such as bio13 (precipitation of wettest month) with the highest CV (26.99%) 

and bio12 (annual precipitation) with a CV of 22.72%, show significantly greater 

variability compared to temperature-related variables like bio03 (isothermality) with 

the lowest CV (4.51%). This suggests that precipitation variables may have a more 

dynamic influence on Ketupa distributions, while temperature variables tend to exhibit 

more stable spatial patterns, which explains why bio03 has the lowest variable 

importance. 

This observation also aligns with Malaysia’s climatic patterns, as described in [52]. 

Malaysia's equatorial location ensures uniform temperatures with annual variations 

below 2°C, except during cold surges affecting the east coast, where variations remain 

below 3°C. Additionally, precipitation follows typical tropical region patterns but is 

influenced by seasonal wind flow and local topography. This further supports the 

observed variability in precipitation-related variables, such as bio12 and bio13, 

compared to the more stable temperature-related variables. 
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Figure 4.23 Mean Decrease in Impurity of Environmental Variables  

 

Figure 4.24 Coefficient of Variation for 5 Environmental Variables 
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4.4.2 Shapley Values Implementation 

To implement Shapley Values analysis, this study use Shapley Additive Explanation 

(SHAP) library from [53], which provides a unified framework for interpreting the 

contributions of each feature to individual model predictions. Shapley Values assign 

each feature an importance value based on its marginal contribution across all possible 

feature combinations. 

In this study, separate Shapley Values analyses were conducted for both Random Forest 

(RF) and Multi-Layer Perceptron (MLP) models. For RF models, the TreeExplainer 

was used for optimization of tree-based algorithms. For MLP models, a model-agnostic 

Explainer was applied. Bar plots were generated to visualize the average absolute 

Shapley values for each feature, allowing identification of the most significant 

predictors in species distribution modelling. 

 

Figure 4.25 Implementation of Shapley Values Generation 
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4.4.3 Response Curve Implementation 

To implement response curve analysis, the minimum, maximum, and mean values of 

each variable are extracted from the 5 training datasets. The target variable is then 

systematically varied across its range while all other variables are held constant at their 

mean values. This method isolates the effect of the target variable, allowing the model's 

response to changes in that variable to be assessed independently [47]. 

 

Figure 4.26 Implementation of Response Curve Generation 
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4.4.3 Habitat Suitability Map Implementation 

Habitat suitability maps were generated by averaging the predicted probabilities from 

five model replications, each trained with distinct pseudo-absence datasets. This 

ensemble approach improves the robustness of predictions by reducing the variability 

introduced by random pseudo-absence generation. The final continuous suitability 

maps were then categorized into four habitat classes based on defined thresholds: high 

(0.75–1.00), medium (0.50–0.75), poor (0.25–0.50), and unsuitable (0.00–0.25) [48]. 

To evaluate changes in habitat suitability under future climate and land-use conditions, 

suitability maps were generated for three scenarios: current conditions, current 

conditions, and two future scenarios for the period 2061–2080—Shared Socioeconomic 

Pathway 2–4.5 (SSP2-4.5,) and Shared Socioeconomic Pathway 5–8.5 (SSP5-8.5). 

SSP2-4.5 represents a moderate-emissions pathway characterized by balanced 

socioeconomic development and land-use pressure, while SSP5-8.5 reflects a high-

emissions, fossil-fuel-driven trajectory with intensive land-use expansion. Climate 

projections were derived from the Coupled Model Intercomparison Project Phase 6 

(CMIP6) model known as Max Planck Institute Earth System Model (MPI-ESM1-2-

HR), which provides high-resolution simulations with enhanced Earth system 

representation [20]. Corresponding land-use projections were obtained from the Land-

Use Harmonization (LUH2) dataset [22, 54], with SSP2-4.5 aligned to the Model for 

Energy Supply Strategy Alternatives and their General Environmental Impact–Global 

Biosphere Management Model (MESSAGE-GLOBIOM) assumptions and SSP5-8.5 

based on the Regional Model of Investment and Development–Model of Agricultural 

Production and its Impact on the Environment (REMIND-MAGPIE) scenario. 
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Figure 4.27 Habitat Suitability Map Implementation 
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CHAPTER 5 EVALUATION AND DISCUSSION 

5.1 Model Performance Comparison 

The performance of the Multilayer Perceptron (MLP) and Random Forest (RF) models 

was evaluated using two primary metrics: Area Under the Receiver Operating 

Characteristic Curve (AUROC) and Area Under the Precision-Recall Curve (AUCPR). 

Across all datasets, RF models consistently outperformed MLP models in AUROC, as 

summarized in Figure 5.1. 

In terms of AUC-PR, RF models also outperformed MLP models in all datasets except 

for Dataset 3, where the MLP achieved a slightly higher AUC-PR score (0.897 

compared to RF’s 0.889), as shown in Figure 5.2. Despite this exception, Random 

Forest models demonstrated superior overall performance across the majority of folds. 

Further analysis of the average performance metrics, summarized in Table 5.1, 

reinforces this conclusion. Random Forest achieved an average AUROC of 0.8784 ± 

0.0289 and an average AUC-PR of 0.8718 ± 0.0300, while the MLP achieved an 

average AUROC of 0.8359 ± 0.0292 and an average AUC-PR of 0.8398 ± 0.0530. 

Notably, Random Forest not only achieved higher mean scores but also demonstrated 

lower standard deviations compared to the MLP, indicating more stable and consistent 

performance across datasets. 

These findings are consistent with previous studies. Study [28] indicated that deep 

neural networks, particularly those with multiple hidden layers, tend to overfit and 

suffer from reduced generalization ability on smaller datasets, while also 

acknowledging that Random Forest models often maintain strong performance under 

such conditions. In addition, study [26] further supported the robustness of Random 

Forest across a wide range of dataset sizes among different machine learning models. 

The dataset used in this study comprised 1,490 records, with approximately 1,000 

samples allocated to the training set in each fold. This dataset size is considered 

relatively small for training deep neural networks, which may explain why the MLP 
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model with three hidden layers underperformed relative to the Random Forest models 

in this study. 

 

Figure 5.1 AUROC Performance of MLP and RF among All Test Set 

 

Figure 5.2 AUC-PR Performance of MLP and RF among All Test Set 

 

Table 5.1 Average Performance of MLP and RF using Test Sets 

Model Average AUROC (Mean ± Std) Average AUC-PR (Mean ± Std) 

MLP 0.8359 ± 0.0292 0.8398 ± 0.0530 

Random Forest 0.8784 ± 0.0289 0.8718 ± 0.0300 
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5.2 Predictor Importance Analysis 

Although the RF models were ultimately selected as the final working models over the 

MLP models, predictor importance analysis was conducted on both architectures to 

allow for comparison and deeper interpretation. 

The average absolute Shapley values across all datasets for both RF and MLP models 

are summarized in Figure 5.3. In both models, urban_median (proportion of urban land 

cover) emerged as the most impactful predictor, with average Shapley values of 0.10 

for RF and 0.12 for MLP. This was followed by bio12 (Annual Precipitation), which 

achieved Shapley values of 0.08 in RF and 0.09 in MLP. In contrast, bio02 (Mean 

Diurnal Range) was the least important predictor in the RF model, with a Shapley value 

of 0.02, and the second least important in the MLP model, with a value of 0.04. 

These findings differ from the Mean Decrease in Impurity (MDI) analysis presented 

earlier in Figure 4.23, where bio12 (Annual Precipitation) and bio13 (Precipitation of 

Wettest Month) were ranked as the most important variables, while primf_median 

(Primary Forest Cover) and bio03 (Isothermality) were among the least influential. One 

possible explanation for this discrepancy relates to the concept of feature cardinality. 

Cardinality refers to the number of unique values a feature can assume. The Scikit-learn 

documentation [55] notes that features with higher cardinality often receive artificially 

elevated importance scores in impurity-based methods such as MDI. This phenomenon 

is illustrated in Figure 5.4, which shows a positive relationship between Mean Decrease 

in Impurity scores and feature cardinality, with bio12 and bio13 exhibiting the highest 

cardinality among all predictors. 

Consequently, while the MDI results provide some insights, they may not fully reflect 

true predictor importance due to this inherent bias. Greater emphasis is placed on the 

Shapley values analysis, which is less sensitive to feature cardinality and distribution 

effects. Based on the Shapley findings, urban_median and bio12 are confirmed as the 

two most important predictors, while bio02 is identified as the least important. 

Subsequent Response Curve analysis will therefore focus on interpreting the effects of 

these three key predictors on species distribution. 
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Figure 5.3 Mean Shapley Values of RF and MLP models 

 

Figure 5.4 Relationship between Feature Cardinality and MDI 
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A. Urban_Median (Proportion of grid cell covered by urban areas) 

Figure 5.5 illustrates the response curves for the predictor urban_median across five RF 

and five MLP models, with the black lines representing the mean response. The 

maximum observed value of urban_median in the dataset is approximately 0.7. Both 

models exhibit a strong positive relationship between urban cover and predicted species 

presence, particularly within the 0.0–0.3 range. This indicates that low-to-moderate 

levels of urbanization may provide suitable habitat conditions for species within the 

genus Ketupa, potentially due to factors such as increased prey availability, alternative 

roosting structures, or habitat heterogeneity. Similar trends have been reported for other 

urban-adapted owl species such as Strix aluco (Tawny Owl), which frequently occupies 

peri-urban landscapes that blend forest patches with built environments [56], and Ninox 

strenua (Powerful Owl), which has been observed persisting in urban areas where prey 

density remains sufficient [57]. 

Beyond an urban_median value of 0.3, the response curves plateau until predicted 

suitability of 0.7. This plateau likely reflects a lack of occurrence data in highly 

urbanized areas, as most high urban_median values in the dataset correspond to a small 

number of presence records located in the Kuala Lumpur region. Previous research [58, 

59] has demonstrated that global biodiversity platforms such as GBIF are prone to 

spatial sampling biases, where data collection tends to concentrate near urban centers, 

while remote or less accessible habitats are often underrepresented. As a result, models 

may overestimate suitability in urban areas if trained on such spatially biased datasets 

without sufficient contrasting absence data. 

In the present study, the distribution of urban_median values is visualized in Figure 5.6, 

revealing that most presence points fall within the 0.0–0.3 range, with a secondary 

cluster near 0.7. This uneven distribution, particularly the limited number of samples 

representing highly urbanized areas, restricts the model’s ability to effectively 

differentiate habitat suitability across the full urbanization gradient. Consequently, the 

elevated suitability estimates beyond 0.3 should be interpreted with caution, as they 

may reflect underlying spatial bias rather than true ecological preference. 
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Figure 5.5 Response Curve for Urban_median of RF and MLP models 

 

Figure 5.6 Relationship between Urban_median and Shapley values 
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B. Bio12 (Annual Precipitation) 

The response curve for bio12 in Figure 5.7 aligns well with the ecological information 

provided about the Ketupa' habitat preferences. This genus is known to inhabit areas 

such as mangroves, tropical forests, and freshwater wetlands [5, 60]. Mangroves 

typically experience an annual precipitation range of 2000–3000 mm, while tropical 

montane forests have an annual precipitation range of 1000–3000 mm [61, 62]. This 

ecological evidence aligns with the results of the response curve. The response curve 

indicates that the habitat suitability is moderate for precipitation levels below 2000 mm, 

gradually increasing to peak suitability around 2500–3000 mm. This trend is further 

supported by the scatter plot of Shapley values and bio12 in Figure 5.8, where Shapley 

contributions are also highest within this precipitation range. 

This pattern suggests that the conditions found in mangroves and the wetter regions of 

tropical montane forests likely represent core ecological niche for genus Ketupa. 

However, beyond 3000 mm, the response curve shows a sharp decline in predicted 

suitability. This indicates that extremely wet environments, such as lowland rainforests 

with precipitation exceeding 3500 mm, may not be as suitable for Ketupa. Additionally, 

areas with precipitation over 3500 mm are predominantly located in the inland regions 

of Sarawak, known for being the highest annual rainfall areas in Malaysia, particularly 

on hill slopes [52]. It is possible that genus Ketupa has been poorly surveyed in these 

inland Sarawak areas, leading to an apparent drop in suitability due to insufficient data 

from these regions [58, 59]. This could represent a modeling artifact rather than an 

ecological reality. 
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Figure 5.7 Response Curve for Bio12 (Annual Precipitation) of RF and MLP models 

 

Figure 5.8 Relationship between Bio12 (Annual Precipitation) and Shapley Values 
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C. Bio02 (Mean Diurnal Range) 

The response curves for bio02 (Mean Diurnal Range) exhibited relatively inconsistent 

patterns compared to other predictors, with notable differences observed between the 

Random Forest (RF) and Multi-Layer Perceptron (MLP) models. Both models 

indicated an optimum suitability range between 70 and 90 (equivalent to 7–9 °C), yet 

the overall curve shapes diverged significantly. RF models displayed a broad dome-

shaped pattern, where suitability increased from approximately 0.65 at bio02 = 70 

(7 °C) to a peak near 0.75 around bio02 = 75–100 (7.5–10 °C), followed by a gradual 

decline back to 0.65 around bio02 = 110 (11 °C). In contrast, MLP models produced a 

sharper, more pronounced peak, beginning with low suitability (~0.3), gradually 

increasing to ~0.7 between 80 and 90 (8–9 °C), and then decreasing and plateauing 

beyond 90 (9 °C). 

This shared peak suggests that moderate diel temperature variation (7–9 °C) may be 

associated with more favorable ecological conditions, potentially due to factors such as 

increased prey activity or reduced thermoregulatory stress. However, this does not 

necessarily indicate that genus Ketupa prefers habitats within this bio02 range or that 

bio02 is a key driver of their distribution.  The high variability among individual model 

curves, especially within the MLP ensemble, indicates low importance in prediction. 

The inconsistencies in response patterns further suggest that bio02 has a minimal 

overall influence on habitat suitability, as small changes in training conditions result in 

substantial fluctuations in its modeled contribution. 

These findings contrast sharply with studies from other regions. For instance, in the 

case of the Mexican Spotted Owl (Strix occidentalis lucida), bio02 was identified as the 

most important climatic predictor, contributing 44.8% to model gain in a MaxEnt 

analysis [63]. Suitability in that study peaked at 11 °C and dropped significantly outside 

the optimal 7–12 °C range. 

This discrepancy highlights the critical need for region-specific species distribution 

models. Unlike owls in temperate regions, Ketupa genus in Malaysia inhabit tropical 

environments with relatively stable temperature regimes and narrower thermal 

fluctuations. According to [15], although SDMs have been widely applied across 

various regions, environmental conditions and ecological dynamics can differ 

significantly from one country to another. This underscores the importance of 
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conducting localized studies, even when similar research has already been performed 

elsewhere. Substantial gaps remain in SDM applications across different biological 

groups and geographic regions, particularly in highly biodiverse areas such as Malaysia 

 

 

Figure 5.9 Response Curve for Bio02 (Mean Diurnal Range) of RF and MLP models 
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5.3 Habitat Suitability Map Comparison 

Figure 5.10 presents habitat suitability maps for the genus Ketupa under current 

conditions and two future scenarios: SSP2-4.5 and SSP5-8.5 projected for the period 

2061–2080. Figure 5.11 further summarizes the distribution of habitat suitability 

classes across these scenarios using a stacked bar chart. Under current conditions, 

45.23% of the area is classified as unsuitable, 33.13% as poor, 14.42% as moderate, 

and 7.22% as high suitability. In contrast, both future scenarios reveal a substantial 

shift: in SSP2-4.5, unsuitable areas disappear entirely, while poor and moderate 

suitability increase to 48.07% and 51.47%, respectively. High suitability drops sharply 

to just 0.46%. A similar trend is seen in SSP5-8.5, where poor and moderate suitability 

rise to 51.63% and 48.36%, and high suitability declines further to only 0.01%. 

While the disappearance of unsuitable areas may initially appear positive, this change 

does not indicate improved habitat conditions for Ketupa. The sharp decline in high 

suitability zones across both SSP scenarios suggests the loss of optimal habitats. 

Although the increase in moderate and poor suitability reflects an overall shift toward 

the center of the suitability scale, this flattening of the gradient diminishes the 

ecological distinction between favorable and unfavorable regions, effectively 

compressing the species’ niche space. 

One possible explanation for this convergence is the contrasting influence of future 

urbanization and climate variables. In both SSP2-4.5 and SSP5-8.5, urban cover is 

projected to increase, and urban_median is the most influential variable in the model—

positively associated with habitat suitability. This urban expansion likely elevates 

predicted suitability across large areas. However, climatic conditions are projected to 

worsen, particularly in terms of precipitation and temperature variability, which exert 

negative effects on suitability through variables such as bio12 and bio02. These 

opposing influences may cancel each other out, pushing predictions away from both 

extreme unsuitable and highly suitable, clustering them around moderate values. 

Overall, despite the apparent reduction in unsuitable classifications, the near-complete 

loss of high suitability areas and the compression of predictions into intermediate 

classes suggest potential habitat degradation and loss of ecological optimality. These 

findings do not support an optimistic outlook for genus Ketupa under future conditions. 

Instead, they highlight the importance of cautious interpretation and reinforce the need 
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for early conservation planning, especially in regions currently identified as high-

quality habitats that may be at risk of decline. 

 

Figure 5.10 Habitat Suitability Maps for both scenarios 

 

 



CHAPTER 5 

 

80 

Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

 

Figure 5.11 Stacked Habitat Suitability Comparison 
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CHAPTER 6 CONCLUSION AND FUTURE WORKS 

6.1 Conclusion 

This study focused on modelling the habitat suitability of the Ketupa genus in Malaysia, 

addressing key challenges in species distribution modelling (SDM), such as spatial 

autocorrelation and sampling bias. By comparing Random Forest (RF) and Multi-Layer 

Perceptron (MLP) models, the study aimed to establish a robust and interpretable SDM 

framework tailored to a tropical biodiversity context. To further enhance prediction 

reliability and ecological understanding, environmental impact analyses were 

conducted using three complementary techniques: response curves, Gini impurity 

reduction, and Shapley values. 

Among the data splitting strategies, spatial block sampling outperformed random 

sampling by mitigating spatial dependency and improving model generalization across 

independent geographic regions. In terms of predictive performance, Random Forest 

achieved superior results, with an average AUROC of 0.8784 ± 0.0289 and AUC-PR 

of 0.8718 ± 0.0300, compared to MLP's AUROC of 0.8359 ± 0.0292 and AUC-PR of 

0.8398 ± 0.0530.  

The predictor importance analysis consistently identified urban area cover 

(urban_median) as the most influential environmental variable, followed by bio12 

(annual precipitation). Conversely, bio02 (mean diurnal range) was found to be the least 

significant, a result that contrasts with studies on temperate-region owls such as the 

Mexican Spotted Owl [63], where bio02 was dominant. This highlights the importance 

of region-specific SDMs, particularly in tropical environments like Malaysia, where 

ecological responses to environmental variables may differ significantly. 

Finally, habitat suitability mapping revealed a worrying trend under future climate and 

land-use scenarios for the period 2061–2080. While 7.22% of the landscape is currently 

categorized as high suitability, this proportion drops drastically to 0.46% under SSP2-

4.5 and further to 0.01% under SSP5-8.5. These results indicate a potential loss of 

optimal habitats and a narrowing of suitable ecological conditions, despite increased 

urbanization. Overall, the findings suggest that Ketupa species in Malaysia may face 

increasing habitat constraints in the future, reinforcing the need for early conservation 

planning and more localized ecological research. 
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6.2 Future Works 

As data scarcity and sampling bias remain persistent challenges in biological research, 

including species distribution modelling (SDM) [28, 58, 59], emerging deep learning 

techniques such as zero-shot and few-shot learning offer promising solutions. Zero-shot 

learning leverages ecological representations learned from a broad range of species to 

infer plausible habitat suitability patterns, even in the absence of direct occurrence data 

for the target species [64]. Similarly, few-shot SDM approaches, such as the Few-Shot 

Spatial Implicit Neural Representations (FS-SINR) proposed by Lange et al. [65], have 

demonstrated strong potential for predicting habitat suitability using only a limited 

number of observations. FS-SINR, a Transformer-based model, encodes geographic 

coordinates and optional metadata into spatially aware embeddings, allowing for 

accurate inference without requiring model retraining. These approaches combine the 

flexibility of deep learning with the ability to handle sparse datasets, making them 

particularly suitable for modelling the distributions of rare or newly described species. 

Although this study quantified the projected decline in high-suitability habitats under 

Shared Socioeconomic Pathway 2–4.5 (SSP2-4.5) and Shared Socioeconomic Pathway 

5–8.5 (SSP5-8.5) for the period 2061–2080, the specific environmental drivers 

responsible for these changes remain uncertain. Future studies should consider further 

analysis on impact of variables, in which individual environmental variables are held 

constant between current and future projections to isolate their independent effects on 

habitat suitability. In addition, model explainability tools such as differential SHAP 

(Shapley values) analysis across timeframes can help identify which variable shifts 

contribute most significantly to habitat loss. Combining this approach with spatial trend 

analysis of climate and land-use data may offer more mechanistic insight into the causes 

of future distributional shifts and further improve model interpretability. 



REFERENCES 

83 

Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

REFERENCES 

[1] C. Bellard, C. Bertelsmeier, P. Leadley, W. Thuiller, and F. Courchamp, ‘Impacts of 

climate change on the future of biodiversity’, Ecology Letters, vol. 15, no. 4, pp. 365–377, 

Apr. 2012, doi: 10.1111/j.1461-0248.2011.01736.x. 

[2] Ipcc, Global Warming of 1.5°C: IPCC Special Report on Impacts of Global Warming of 

1.5°C above Pre-industrial Levels in Context of Strengthening Response to Climate 

Change, Sustainable Development, and Efforts to Eradicate Poverty, 1st ed. Cambridge 

University Press, 2022. doi: 10.1017/9781009157940. 

[3] Hong, Shiao-Yu, Sun, Yuan-Hsun, Wu, Hsin-Ju, and Chen, Chao-Chieh, ‘Spatial 

distribution of the Tawny Fish Owl Ketupa flavipes shaped by natural and man-made 

factors in Taiwan’, Forktail, vol. 29, pp. 48–51, 2013. 

[4] M. Arszulowicz, ‘Ketupa zeylonensis’, Animal Diversity Web. Accessed: Jan. 24, 2025. 

[Online]. Available: https://www.thevibes.com/articles/news/100693/sarawak-govt-

confirms-construction-of-three-more-hydroelectric-dams 

[5] Thai National Parks, ‘Buffy Fish Owl’, Thai National Parks. Accessed: Dec. 04, 2024. 

[Online]. Available: https://www.thainationalparks.com/species/buffy-fish-owl 

[6] MyBIS, ‘Malaysia Biodiversity Information System’, Malaysia Biodiversity Information 

System. Accessed: Jan. 24, 2025. [Online]. Available: https://www.mybis.gov.my/ 

[7] J. Kitzes and R. Shirley, ‘Estimating biodiversity impacts without field surveys: A case 

study in northern Borneo’, Ambio, vol. 45, no. 1, pp. 110–119, Feb. 2016, doi: 

10.1007/s13280-015-0683-3. 

[8] S. Then, ‘Sarawak govt confirms construction of three more hydroelectric dams’, The 

Vibes. [Online]. Available: https://www.thevibes.com/articles/news/100693/sarawak-

govt-confirms-construction-of-three-more-hydroelectric-dams 

[9] M. C. Urban, ‘Accelerating extinction risk from climate change’, Science, vol. 348, no. 

6234, pp. 571–573, May 2015, doi: 10.1126/science.aaa4984. 

[10] S. J. Phillips, R. P. Anderson, and R. E. Schapire, ‘Maximum entropy modeling of species 

geographic distributions’, Ecological Modelling, vol. 190, no. 3–4, pp. 231–259, Jan. 

2006, doi: 10.1016/j.ecolmodel.2005.03.026. 

[11] J. Elith and J. R. Leathwick, ‘Species Distribution Models: Ecological Explanation and 

Prediction Across Space and Time’, Annu. Rev. Ecol. Evol. Syst., vol. 40, no. 1, pp. 677–

697, Dec. 2009, doi: 10.1146/annurev.ecolsys.110308.120159. 

[12] F. Recknagel, ‘Applications of machine learning to ecological modelling’, Ecological 

Modelling, vol. 146, no. 1–3, pp. 303–310, Dec. 2001, doi: 10.1016/S0304-

3800(01)00316-7. 

[13] J. Zhang and S. Li, ‘A Review of Machine Learning Based Species’ Distribution 

Modelling’, in 2017 International Conference on Industrial Informatics - Computing 

Technology, Intelligent Technology, Industrial Information Integration (ICIICII), Wuhan: 

IEEE, Dec. 2017, pp. 199–206. doi: 10.1109/ICIICII.2017.76. 

[14] R. E. Matadamas, P. L. Enríquez, L. Guevara, and A. G. Navarro-Sigüenza, ‘Stairway to 

extinction? Influence of anthropogenic climate change on distribution patterns of montane 

Strigiformes in Mesoamerica’, ACE, vol. 17, no. 2, p. art37, 2022, doi: 10.5751/ACE-

02314-170237. 

[15] M. Fois, A. Cuena-Lombraña, G. Fenu, and G. Bacchetta, ‘Using species distribution 

models at local scale to guide the search of poorly known species: Review, 

methodological issues and future directions’, Ecological Modelling, vol. 385, pp. 124–

132, Oct. 2018, doi: 10.1016/j.ecolmodel.2018.07.018. 



REFERENCES 

84 

Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

[16] M. Ryo, B. Angelov, S. Mammola, J. M. Kass, B. M. Benito, and F. Hartig, ‘Explainable 

artificial intelligence enhances the ecological interpretability of black‐box species 

distribution models’, Ecography, vol. 44, no. 2, pp. 199–205, Feb. 2021, doi: 

10.1111/ecog.05360. 

[17] S. Christin, É. Hervet, and N. Lecomte, ‘Applications for deep learning in ecology’, 

Methods Ecol Evol, vol. 10, no. 10, pp. 1632–1644, Oct. 2019, doi: 10.1111/2041-

210X.13256. 

[18] L. Brugere, Y. Kwon, A. E. Frazier, and P. Kedron, ‘Improved prediction of tree species 

richness and interpretability of environmental drivers using a machine learning approach’, 

Forest Ecology and Management, vol. 539, p. 120972, Jul. 2023, doi: 

10.1016/j.foreco.2023.120972. 

[19] GBIF.Org User, ‘Occurrence Download’. The Global Biodiversity Information Facility, 

p. 2493397, 2024. doi: 10.15468/DL.RM4MYH. 

[20] S. E. Fick and R. J. Hijmans, ‘WorldClim 2: new 1‐km spatial resolution climate surfaces 

for global land areas’, Intl Journal of Climatology, vol. 37, no. 12, pp. 4302–4315, Oct. 

2017, doi: 10.1002/joc.5086. 

[21] T. G. Farr et al., ‘The Shuttle Radar Topography Mission’, Reviews of Geophysics, vol. 

45, no. 2, p. 2005RG000183, Jun. 2007, doi: 10.1029/2005RG000183. 

[22] G. Hurtt et al., ‘Harmonization of Global Land Use Change and Management for the 

Period 850-2015’. Earth System Grid Federation, 2019. doi: 

10.22033/ESGF/INPUT4MIPS.10454. 

[23] A. Guisan, T. C. Edwards, and T. Hastie, ‘Generalized linear and generalized additive 

models in studies of species distributions: setting the scene’, Ecological Modelling, vol. 

157, no. 2–3, pp. 89–100, Nov. 2002, doi: 10.1016/S0304-3800(02)00204-1. 

[24] J. R. Leathwick, J. Elith, and T. Hastie, ‘Comparative performance of generalized additive 

models and multivariate adaptive regression splines for statistical modelling of species 

distributions’, Ecological Modelling, vol. 199, no. 2, pp. 188–196, Nov. 2006, doi: 

10.1016/j.ecolmodel.2006.05.022. 

[25] E. Chollet Ramampiandra, A. Scheidegger, J. Wydler, and N. Schuwirth, ‘A comparison 

of machine learning and statistical species distribution models: Quantifying overfitting 

supports model interpretation’, Ecological Modelling, vol. 481, p. 110353, Jul. 2023, doi: 

10.1016/j.ecolmodel.2023.110353. 

[26] R.-Y. Duan, X.-Q. Kong, M.-Y. Huang, W.-Y. Fan, and Z.-G. Wang, ‘The Predictive 

Performance and Stability of Six Species Distribution Models’, PLoS ONE, vol. 9, no. 11, 

p. e112764, Nov. 2014, doi: 10.1371/journal.pone.0112764. 

[27] R. Zbinden, B. Kellenberger, L. H. Hughes, and D. Tuia, ‘Exploring the potential of 

neural networks for Species Distribution Modeling’, presented at the ICLR 2023 

Workshop on Tackling Climate Change with Machine Learning, 2023. [Online]. 

Available: https://www.climatechange.ai/papers/iclr2023/46 

[28] D. J. Benkendorf and C. P. Hawkins, ‘Effects of sample size and network depth on a deep 

learning approach to species distribution modeling’, Ecological Informatics, vol. 60, p. 

101137, Nov. 2020, doi: 10.1016/j.ecoinf.2020.101137. 

[29] D. R. Roberts et al., ‘Cross‐validation strategies for data with temporal, spatial, 

hierarchical, or phylogenetic structure’, Ecography, vol. 40, no. 8, pp. 913–929, Aug. 

2017, doi: 10.1111/ecog.02881. 

[30] K. H. D. Tang, ‘Climate change in Malaysia: Trends, contributors, impacts, mitigation 

and adaptations’, Science of The Total Environment, vol. 650, pp. 1858–1871, Feb. 2019, 

doi: 10.1016/j.scitotenv.2018.09.316. 



REFERENCES 

85 

Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

[31] P. A. Harrison, P. M. Berry, N. Butt, and M. New, ‘Modelling climate change impacts on 

species’ distributions at the European scale: implications for conservation policy’, 

Environmental Science & Policy, vol. 9, no. 2, pp. 116–128, Apr. 2006, doi: 

10.1016/j.envsci.2005.11.003. 

[32] C. C. Lee and S. C. Sheridan, ‘Trends in weather type frequencies across North America’, 

npj Clim Atmos Sci, vol. 1, no. 1, p. 41, Nov. 2018, doi: 10.1038/s41612-018-0051-7. 

[33] Y. Guo, Z. Zhao, F. Zhu, and X. Li, ‘Climate change may cause distribution area loss for 

tree species in southern China’, Forest Ecology and Management, vol. 511, p. 120134, 

May 2022, doi: 10.1016/j.foreco.2022.120134. 

[34] X. Ying, ‘An Overview of Overfitting and its Solutions’, J. Phys.: Conf. Ser., vol. 1168, 

p. 022022, Feb. 2019, doi: 10.1088/1742-6596/1168/2/022022. 

[35] J. A. Lee‐Yaw, J. L. McCune, S. Pironon, and S. N. Sheth, ‘Species distribution models 

rarely predict the biology of real populations’, Ecography, vol. 2022, no. 6, p. e05877, 

Jun. 2022, doi: 10.1111/ecog.05877. 

[36] C. Hari et al., ‘Future climate and land use change will equally impact global terrestrial 

vertebrate diversity’, Dec. 16, 2024. doi: 10.1101/2024.12.13.627895. 

[37] C. Seo, J. H. Thorne, L. Hannah, and W. Thuiller, ‘Scale effects in species distribution 

models: implications for conservation planning under climate change’, Biol. Lett., vol. 5, 

no. 1, pp. 39–43, Feb. 2009, doi: 10.1098/rsbl.2008.0476. 

[38] M. Barbet‐Massin, F. Jiguet, C. H. Albert, and W. Thuiller, ‘Selecting pseudo‐absences 

for species distribution models: how, where and how many?’, Methods Ecol Evol, vol. 3, 

no. 2, pp. 327–338, Apr. 2012, doi: 10.1111/j.2041-210X.2011.00172.x. 

[39] R. Séchaud et al., ‘Behaviour-specific habitat selection patterns of breeding barn owls’, 

Mov Ecol, vol. 9, no. 1, p. 18, Dec. 2021, doi: 10.1186/s40462-021-00258-6. 

[40] K. Pearson, ‘Note on Regression and Inheritance in the Case of Two Parents’, 

Proceedings of the Royal Society of London, vol. 58, pp. 240–242, 1895. 

[41] P. Brun et al., ‘Model complexity affects species distribution projections under climate 

change’, Journal of Biogeography, vol. 47, no. 1, pp. 130–142, Jan. 2020, doi: 

10.1111/jbi.13734. 

[42] L. Breiman, ‘Random Forests’, Machine Learning, vol. 45, no. 1, pp. 5–32, Oct. 2001, 

doi: 10.1023/A:1010933404324. 

[43] T. Fawcett, ‘An introduction to ROC analysis’, Pattern Recognition Letters, vol. 27, no. 

8, pp. 861–874, Jun. 2006, doi: 10.1016/j.patrec.2005.10.010. 

[44] J. Davis and M. Goadrich, ‘The relationship between Precision-Recall and ROC curves’, 

in Proceedings of the 23rd international conference on Machine learning  - ICML ’06, 

Pittsburgh, Pennsylvania: ACM Press, 2006, pp. 233–240. doi: 

10.1145/1143844.1143874. 

[45] H. R. Sofaer, J. A. Hoeting, and C. S. Jarnevich, ‘The area under the precision‐recall curve 

as a performance metric for rare binary events’, Methods Ecol Evol, vol. 10, no. 4, pp. 

565–577, Apr. 2019, doi: 10.1111/2041-210X.13140. 

[46] J.-H. Hur, S.-Y. Ihm, and Y.-H. Park, ‘A Variable Impacts Measurement in Random 

Forest for Mobile Cloud Computing’, Wireless Communications and Mobile Computing, 

vol. 2017, pp. 1–13, 2017, doi: 10.1155/2017/6817627. 

[47] M. Bazzichetto et al., ‘Sampling strategy matters to accurately estimate response curves’ 

parameters in species distribution models’, Global Ecol Biogeogr, vol. 32, no. 10, pp. 

1717–1729, Oct. 2023, doi: 10.1111/geb.13725. 

[48] N. Z. Ab Lah, Z. Yusop, M. Hashim, J. Mohd Salim, and S. Numata, ‘Predicting the 

Habitat Suitability of Melaleuca cajuputi Based on the MaxEnt Species Distribution 

Model’, Forests, vol. 12, no. 11, p. 1449, Oct. 2021, doi: 10.3390/f12111449. 



REFERENCES 

86 

Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

[49] E. M. Baglaeva, A. P. Sergeev, A. V. Shichkin, and A. G. Buevich, ‘The Effect of 

Splitting of Raw Data into Training and Test Subsets on the Accuracy of Predicting 

Spatial Distribution by a Multilayer Perceptron’, Math Geosci, vol. 52, no. 1, pp. 111–

121, Jan. 2020, doi: 10.1007/s11004-019-09813-9. 

[50] R. Valavi, J. Elith, J. J. Lahoz‐Monfort, and G. Guillera‐Arroita, ‘BLOCK CV : An R 

package for generating spatially or environmentally separated folds for k ‐fold cross‐

validation of species distribution models’, Methods Ecol Evol, vol. 10, no. 2, pp. 225–232, 

Feb. 2019, doi: 10.1111/2041-210X.13107. 

[51] F. Pedregosa et al., ‘Scikit-learn: Machine learning in Python’, the Journal of machine 

Learning research, vol. 12, pp. 2825–2830, 2011. 

[52] Malaysian Meteorological Department, ‘Climate of Malaysia’, Dec. 2024. Accessed: Dec. 

04, 2024. [Online]. Available: https://www.met.gov.my/en/pendidikan/iklim-malaysia/ 

[53] S. M. Lundberg and S.-I. Lee, ‘A Unified Approach to Interpreting Model Predictions’, 

in Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. 

Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., Curran Associates, 

Inc., 2017, pp. 4765–4774. [Online]. Available: http://papers.nips.cc/paper/7062-a-

unified-approach-to-interpreting-model-predictions.pdf 

[54] G. Hurtt et al., ‘Harmonization of Global Land Use Change and Management for the 

Period 2015-2300’. Earth System Grid Federation, 2019. doi: 

10.22033/ESGF/INPUT4MIPS.10468. 

[55] F. Pedregosa et al., ‘Feature importance evaluation with Random Forests’. [Online]. 

Available: https://scikit-

learn.org/stable/auto_examples/ensemble/plot_forest_importances.html 

[56] N. Pagaldai, J. Arizaga, M. V. Jiménez-Franco, and I. Zuberogoitia, ‘Colonization of 

Urban Habitats: Tawny Owl Abundance Is Conditioned by Urbanization Structure’, 

Animals, vol. 11, no. 10, p. 2954, Oct. 2021, doi: 10.3390/ani11102954. 

[57] B. Isaac, R. Cooke, D. Ierodiaconou, and J. White, ‘Does urbanization have the potential 

to create an ecological trap for powerful owls (Ninox strenua)?’, Biological Conservation, 

vol. 176, pp. 1–11, Aug. 2014, doi: 10.1016/j.biocon.2014.04.013. 

[58] J. Beck, M. Böller, A. Erhardt, and W. Schwanghart, ‘Spatial bias in the GBIF database 

and its effect on modeling species’ geographic distributions’, Ecological Informatics, vol. 

19, pp. 10–15, Jan. 2014, doi: 10.1016/j.ecoinf.2013.11.002. 

[59] D. E. Bowler et al., ‘Temporal trends in the spatial bias of species occurrence records’, 

Ecography, vol. 2022, no. 8, p. e06219, Aug. 2022, doi: 10.1111/ecog.06219. 

[60] Bird Society of Singapore, ‘Buffy Fish Owl’, Singapore Birds. Accessed: Dec. 04, 2024. 

[Online]. Available: https://singaporebirds.com/species/buffy-fish-owl 

[61] M. Kappelle, ‘TROPICAL FORESTS | Tropical Montane Forests’, in Encyclopedia of 

Forest Sciences, Elsevier, 2004, pp. 1782–1792. doi: 10.1016/B0-12-145160-7/00175-7. 

[62] A. Goessens et al., ‘Is Matang Mangrove Forest in Malaysia Sustainably Rejuvenating 

after More than a Century of Conservation and Harvesting Management?’, PLoS ONE, 

vol. 9, no. 8, p. e105069, Aug. 2014, doi: 10.1371/journal.pone.0105069. 

[63] M. A. Salazar-Borunda, M. E. Pereda-Solís, P. M. López-Serrano, J. A. Chávez-Simental, 

J. H. Martínez-Guerrero, and L. A. Tarango-Arámbula, ‘El cambio climático afectará la 

distribución del búho  manchado mexicano (Strix occidentalis lucida Nelson 1903)’, Rev 

Cha Se Cie For y del Amb, vol. 28, no. 2, pp. 305–318, Jan. 2023, doi: 

10.5154/r.rchscfa.2021.10.066. 

[64] R. Dinnage, ‘NicheFlow: Towards a foundation model for Species Distribution 

Modelling’, Oct. 18, 2024. doi: 10.1101/2024.10.15.618541. 



REFERENCES 

87 

Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

[65] C. Lange et al., ‘Few-shot Species Range Estimation’, 2025, arXiv. doi: 

10.48550/ARXIV.2502.14977. 
 



APPENDIX 

88 

Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

APPENDIX 

Poster 

 


	TITLE PAGE
	COPYRIGHT STATEMENT
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTER 1 INTRODUCTION
	1.1 Problem Statement and Motivation
	1.2 Objectives
	1.3 Project Scope and Direction
	1.4 Contributions
	1.5 Report Organization

	CHAPTER 2 LITERATURE REVIEW
	2.1  Previous Works
	2.1.1 Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions
	2.1.2 Advantages and Disadvantages of Statistical Model

	2.2 Related Works
	2.2.1 The predictive performance and stability of six species distribution models
	2.2.2 Exploring the potential of neural networks for species distribution modeling
	2.2.3 Effects of sample size and network depth on a deep learning approach to species distribution modeling
	2.2.4 Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure
	2.2.5 Limitations of Related Works

	2.3 Proposed Solutions

	CHAPTER 3 SYSTEM MODEL
	3.1 Research Methodology
	3.1.1 Data Preprocessing
	3.1.2 Data Splitting Method Evaluation
	3.1.3 Model Development and Evaluation
	3.1.4 Environmental  Impact and Habitat Analysis

	3.2 System Requirements
	3.2.1 Hardware
	3.2.2 Software Requirement


	CHAPTER 4 IMPLEMENTATION & EXPERIMENT RESULTS
	4.1 Data Preprocessing Implementation
	4.1.1 Presence Data Cleaning
	4.1.2 Selecting Area of Interest
	4.1.3 Remove Duplicates
	4.1.4 Pearson Correlation Analysis
	4.1.5 Initial Feature Importance Analysis
	4.1.6 Pseudo-absence Generation

	4.2 Data Splitting Method Evaluation Implementation
	4.2.1 Random Sampling
	4.2.2 Spatial Block Sampling
	4.2.3 Data Splitting Method  Evaluation

	4.3 Model Development  and Evaluation Implementation
	4.3.1 Model Architecture Implementation
	4.3.2 Evaluation of AUROC and AUCPR

	4.4 Environmental Impact and Habitat Analysis
	4.4.1 Gini Impurity Analysis
	4.4.2 Shapley Values Implementation
	4.4.3 Response Curve Implementation
	4.4.3 Habitat Suitability Map Implementation


	CHAPTER 5 EVALUATION AND DISCUSSION
	5.1 Model Performance Comparison
	5.2 Predictor Importance Analysis
	5.3 Habitat Suitability Map Comparison

	CHAPTER 6 CONCLUSION AND FUTURE WORKS
	6.1 Conclusion
	6.2 Future Works

	REFERENCES
	APPENDIX
	Poster


