

MULTI-FUZZER TECHNIQUES FOR AUTOMATED

VULNERABILITIES ASSESSMENTS

By

Choy Ein Jun

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

JANUARY 2025

ii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

COPYRIGHT STATEMENT

© 2025 Choy Ein Jun. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the

requirements for the degree of Bachelor of Computer Science (Honours) at

Universiti Tunku Abdul Rahman (UTAR). This Final Year Project report

represents the work of the author, except where due acknowledgment has

been made in the text. No part of this Final Year Project report may be

reproduced, stored, or transmitted in any form or by any means, whether

electronic, mechanical, photocopying, recording, or otherwise, without the

prior written permission of the author or UTAR, in accordance with UTAR's

Intellectual Property Policy.

Example

iii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

I would like to extend my deepest gratitude to my supervisor, Dr. Aun Yichiet, for his

invaluable guidance, continuous support, and insightful feedback throughout this

project on multi-fuzzer techniques for automated vulnerabilities assessments. His

expertise and encouragement have been instrumental in the successful completion of

this research.

Finally, I would like to thank my parents and family for their constant love, support,

and encouragement throughout my academic journey. Their belief in me has been a

great source of motivation.

iv
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

In the contemporary cybersecurity landscape, effectively safeguarding software from

vulnerabilities is critically important. This project introduces an innovative approach to

automated vulnerability assessment through a sophisticated multi-fuzzer system

designed to enhance the security of at-risk software applications. The primary objective

is to provide an efficient and user-friendly solution for identifying and analyzing

security vulnerabilities via a dynamic front-end chatbot interface. Users can seamlessly

upload their software applications, which are subsequently subjected to a series of

diverse fuzzing tools within an automated framework. The system employs a range of

fuzzing tools, such as AFL++ and Honggfuzz, ensuring a comprehensive and

systematic evaluation of software interfaces and their responses to various potential

threats. By automating the fuzzing process, this project facilitates a more efficient and

thorough assessment of security weaknesses than traditional manual testing methods.

The automated framework generates detailed CVEs on discovered vulnerabilities and

potential exploitation scenarios, significantly enhancing the security posture of the

evaluated applications. The results of this project demonstrate the system's capability

to automatically detect and document vulnerabilities across different software

environments, providing a comparative analysis of the effectiveness and limitations of

various fuzzing techniques. This analysis offers valuable insights into the roles these

techniques play in software security, highlighting the importance of using a multi-

fuzzer approach to achieve a more resilient vulnerability assessment. Ultimately, this

project underscores the critical role of automation in vulnerability assessment and

reinforces the value of employing diverse fuzzing methods as essential tools in

advancing cybersecurity practices. The findings contribute to the development of more

effective security measures and serve as a foundational resource for improving software

security in future applications.

Area of Study (Minimum 1 and Maximum 2): Cybersecurity

Keywords (Minimum 5 and Maximum 10): Fuzzing, Vulnerability Assessment,

Automated Security Testing, Program Analysis, Bug Detection, Vulnerability

Mitigation

v
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

TABLE OF CONTENTS

TITLE PAGE i

COPYRIGHT STATEMENT ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES ix

LIST OF TABLES xiv

LIST OF ABBREVIATIONS xv

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 1

1.2 Objectives 2

1.3 Project Scope 3

1.4 Contributions 5

1.5 Report Organization 6

CHAPTER 2 LITERATURE REVIEW 7

2.1 Previous Works on Vulnerabilities Assessment 7

2.2 Fuzzing

2.2.1 Introduction to Fuzzing

2.2.2 The Synergy of Fuzzing, Symbolic, and Concolic

Execution in Software Testing

2.2.3 Fuzzing Techniques for Vulnerabilities Detection

15

15

17

22

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH 38

3.1 Conceptual Design 38

3.1.1 Use Case Diagram and Descriptions 38

3.1.2 Activity Diagram

3.1.3 Data Flow Diagram (DFD)

42

45

3.2 Implementation Design 47

vi
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2.1 System Architecture Diagram

3.2.2 Flowchart

3.2.3 Internal Fuzzing Logic

3.2.4 Fuzzer Architecture

3.2.5 Detailed Fuzzing Architecture in FOT

47

49

53

56

58

CHAPTER 4 SYSTEM DESIGN 59

4.1 System Block Diagram

 59

4.2 System Components Specifications

66

4.3 LLM Architecture and CVE Generation Design

4.3.1 LLM architecture diagram

4.3.2 Transformer Architecture

4.3.3 Writing CVEs Based on Crash Reports Using LLMs

4.4 System Component Interaction & Data Operations

4.4.1 User Interface to Fuzzing Dispatcher

4.4.2 Fuzzing Dispatcher to Fuzzing Engines

4.4.3 Fuzzing Engines to Result Aggregator

4.4.4 JSON Report to LLM Engine

4.4.5 Interface Display and Mitigation Execution

4.4.6 Summary of Data Operations

69

69

70

71

80

80

81

81

82

82

83

CHAPTER 5 SYSTEM IMPLEMENTATION

5.1 Hardware Setup

5.2 Software Setup

5.2.1 Software

5.2.2 Configuration and Environment Setup

5.3 Setting and Configuration

5.3.1 Environment Variables

5.3.2 Directory Structure Integration

5.3.3 Bash Script Configuration

5.3.4 PHP & LLM Integration

5.3.5 System Resource Tuning

84

 84

85

85

85

88

88

88

95

99

102

vii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.4 System Operation

5.4.1 User Login and Registration

5.4.2 Uploading a Binary

5.4.3 Fuzzing Begins

5.4.4 Crash Detection and Report Combination

5.4.5 CVE Report Generation with Mitigation Suggestion

5.4.6 Mitigation Action Feedback

5.4.7 Before/After Effect Visualization

5.4.8 Further Questions Regarding the Uploaded Binary

5.4.9 Admin Page with Authentication

5.4.10 Account Settings Page

5.4.11 Logout Functionality

5.5 Implementation Issues and Challenges

5.5.1 Fuzzer Not Crashing Consistently

5.5.2 Integration of Bash Scripts with PHP Frontend

5.5.3 Handling Different Types of Vulnerabilities

5.5.4 Difficulty in Implementing Two-Factor Authentication

5.5.5 File Permissions and Sudo Requirement

5.5.6 Inconsistent Responses for User Queries

5.6 Concluding Remark

103

103

106

108

109

110

114

115

118

119

121

124

125

125

125

126

127

127

128

129

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

6.1 System Testing and Performance Metrics

6.2 Testing Setup and Result

6.3 Project Challenges

6.4 Objectives Evaluation

6.5 Concluding Remark

132

132

141

160

163

167

CHAPTER 7 CONCLUSION AND RECOMMENDATION

7.1 Conclusion

7.2 Recommendation

170

170

171

viii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES 175

APPENDIX

A.1 Poster A-1

A.2 Coding Work A-2

ix
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF FIGURES

Figure Number Title Page

Figure 2.1.1 Process of Penetration Testing 8

Figure 2.1.2 How does a vulnerability scanner work? 8

Figure 2.1.3 Various steps in the CI/CD pipeline 9

Figure 2.2.1 Overview of Scalable Fuzzing Infrastructure 16

Figure 2.2.2 Overall Process of Fuzzing 16

Figure 2.2.3 Test-Input Generation of Symbolic Execution

Algorithm

18

Figure 2.2.4 Concolic Execution Exploration in Function h(int x, int

y)

19

Figure 2.2.5

Figure 2.2.6

Figure 2.2.7

Figure 2.2.8

Figure 2.2.9

Figure 2.2.10

Figure 2.2.11

Figure 2.2.12

Figure 2.2.13

Figure 2.2.14

Figure 2.2.15

Figure 2.2.16

Figure 3.1.1

Figure 3.1.2

Figure 3.1.3

Hybrid Fuzzing Technique’s High-Level Architecture

Selective Hybrid Fuzzing Approach (CBS and PSC

algorithms)

Conventional Random Mutation Scheme Algorithm

General Workflow of Network Protocol Fuzzing

Techniques

Model-based Whitebox Fuzzing Algorithm

Coverage-based Greybox Fuzzing Algorithm

“then” Branch of Conditional Statement

Algorithm: Merging two DOM trees in FREEDOM

Coverage-guided Fuzzing Overview

Algorithm for Coverage-Guided Fuzzing

Algorithm for Fuzzing-Based Grammar Inference

Integer Grammar Example

Use Case Diagram of Multi-Fuzzer Platform for

Automated Vulnerability Assessments

Activity Diagram of Multi-Fuzzer Platform for

Automated Vulnerability Assessments

Data Flow Diagram of Multi-Fuzzer Platform for

Automated Vulnerability Assessments

19

20

22

24

25

25

26

27

30

30

31

32

38

42

45

x
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.2.1

Figure 3.2.2

Figure 3.2.3

Figure 3.2.4

Figure 3.2.5

Figure 4.1.1

Figure 4.1.2

Figure 4.1.3

Figure 4.1.4

Figure 4.1.5

Figure 4.1.6

Figure 4.1.7

Figure 4.3.1

Figure 4.3.2

Figure 4.3.3

Figure 4.4

Figure 5.2.2.1

Figure 5.2.2.2

Figure 5.2.2.3

Figure 5.3.1

Figure 5.3.2.1

Figure 5.3.2.2

Figure 5.3.2.3

Figure 5.3.2.4

Figure 5.3.2.5

Figure 5.3.2.6

Figure 5.3.2.7

Figure 5.3.2.8

System Architecture Diagram of Multi-Fuzzer

Platform for Automated Vulnerability Assessments

System Flowchart of Multi-Fuzzer Platform for

Automated Vulnerability Assessments

Overview of an AFL++ fuzz testing session

Coverage-Guided Fuzzer Architecture

Detailed Fuzzing Architecture in FOT

Overall Block Diagram of Multi-Fuzzer Platform for

Automated Vulnerability Assessments

User Interface Block Diagram

Upload & Control Layer Block Diagram

Fuzzing Engines Block Diagram

Result Aggregation and Crash Processing Block

Diagram

CVE-like Report Generation Block Diagram

Reporting and Visualization Block Diagram

Emerging Architecture for LLM Applications

Transformer Architecture

End-to-End Transformation Flow

System Component Data Flow and Interaction

Diagram

Ubuntu System Update and Package Installation

AFL++ Installation

Honggfuzz Installation

Internal Configuration and Binary Paths of AFL++

Target Corpus Data Directory

Test Cases Corpus Data Directory

Output Crash Directory

Target Application Directory

Test Cases Application Directory

AFL++ Crash Logs

Honggfuzz Crash Logs

Combined Crash Report from Both Fuzzers (Section 1)

47

49

53

56

58

60

61

62

62

63

64

65

69

70

72

80

86

87

87

88

89

89

90

90

90

91

92

92

xi
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.2.9

Figure 5.3.2.10

Figure 5.3.3.1

Figure 5.3.3.2

Figure 5.3.3.3

Figure 5.3.3.4

Figure 5.3.3.5

Figure 5.3.4.1

Figure 5.3.4.2

Figure 5.3.4.3

Figure 5.3.5

Figure 5.4.1.1

Figure 5.4.1.2

Figure 5.4.1.3

Figure 5.4.1.4

Figure 5.4.1.5

Figure 5.4.2.1

Figure 5.4.2.2

Figure 5.4.2.3

Figure 5.4.2.4

Figure 5.4.3

Figure 5.4.4.1

Figure 5.4.4.2

Figure 5.4.5.1

Figure 5.4.5.2

Figure 5.4.5.3

Figure 5.4.5.4

Figure 5.4.5.5

Combined Crash Report from Both Fuzzers (Section 2)

Combined Crash Report from Both Fuzzers (Section 3)

Parallel Fuzzing Execution Script

AFL++ Information Extracting Script

Honggfuzz Information Extracting Script

Full Crash Information Compiling Script

Mitigation Trigger Script

File Upload Handling Code

JSON Format Conversion Code

Request sent to ChatGPT API (OpenAI API) Code

System Resources Configuration

Login Process using Username and Password

Login Process Unsuccessful

User Registration Process

User Registration Process with Duplicated Registration

Two-factor Authentication Page

Multi-Fuzzer Chatbot System Main Interface

Binary File Upload Process 1

Binary File Upload Process 2

Binary File Upload Process 3

Fuzzing Process Begins

Crash Detected from Fuzzing Process

Low Disk Space Warning

CVE Report for testdisk (Section 1) Generated by the

LLM

CVE Report for testdisk (Section 2) Generated by the

LLM

CVE Report for testdisk (Section 3) Generated by the

LLM

CVE Report for testfile (Section 1) Generated by the

LLM

CVE Report for testfile (Section 2) Generated by the

LLM

93

94

95

96

96

97

98

99

100

101

102

103

104

104

105

105

106

106

107

107

108

109

109

110

111

111

112

112

xii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.4.5.6

Figure 5.4.5.7

Figure 5.4.6.1

Figure 5.4.6.2

Figure 5.4.6.3

Figure 5.4.7.1

Figure 5.4.7.2

Figure 5.4.7.3

Figure 5.4.7.4

Figure 5.4.7.5

Figure 5.4.7.6

Figure 5.4.8.1

Figure 5.4.8.2

Figure 5.4.9.1

Figure 5.4.9.2

Figure 5.4.9.3

Figure 5.4.9.4

Figure 5.4.10.1

Figure 5.4.10.2

Figure 5.4.10.3

Figure 5.4.10.4

Figure 5.4.11

Figure 6.2.1

Figure 6.2.2

Figure 6.2.3

Figure 6.2.4

CVE Report for testfile (Section 3) Generated by the

LLM

CVE Report for testfile (Section 4) Generated by the

LLM

Confirmation Pop-up for Mitigation Script Installation

Mitigation Script Installation Loading Status

Mitigation Script Installation Successful

Disk Flooding Attack (Before Effect)

Disk Flooding Attack (After Effect)

Before/After Effect of Disk Flooding Attack

File Inode Exhaustion (Before Effect)

File Inode Exhaustion (After Effect)

Before/After Effect of File Inode Exhaustion

Further Question Input Box with Response (Section 1)

Further Question Input Box with Response (Section 2)

Admin Login Prompt

Debugging Dashboard with Command Input Area

Force-stop Fuzzing Jobs

Debugging Fuzzing Process

Account Setting Page with 2FA Enabled

Account Setting Page: 2FA Activation Process

(Section 1)

Account Setting Page: 2FA Activation Process

(Section 1)

Account Setting Page: 2FA Activated Successfully

Logout Confirmation Prompt

Number of Unique Crash Detection (Target Binaries)

using AFL++

Number of Unique Crash Detection (Target Binaries)

using Honggfuzz

Conceptual Venn Diagram showing comparative crash-

related capabilities between AFL++ and Honggfuzz

CVE-like Response Generated

113

113

114

114

115

116

116

116

117

117

117

118

119

120

120

120

121

122

122

123

123

124

143

144

150

157

xiii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.2.5

Figure 6.2.6

Recommended Mitigation by the LLM

Chatbot Interaction Testing Bar Chart

158

159

xiv
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF TABLES

Table Number Title Page

Table 2.1.1 Differences between SAST and DAST 10

Table 2.1.2 Differences between NIST and CIS 11

Table 2.1.3 Strengths and Weaknesses of Previous Work &

Comparison with the Proposed Solutions

13

Table 2.2.1 Performance Comparison of Testing Techniques 21

Table 2.2.2 Comparison of Generation-Based Fuzzers and

Mutation-Based Fuzzers

23

Table 2.2.3

Table 2.2.4

Table 2.2.5

Table 2.2.6

Table 5.1

Table 6.1.1

Table 6.1.2

Table 6.1.3

Table 6.1.4

Table 6.1.5

Table 6.2.1

Table 6.2.2

Table 6.2.3

Table 6.2.4

Common White Box, Gray Box and Black Box

Fuzzers

Pros & Cons of Dumb Fuzzing

Pros & Cons of Smart Fuzzing

Comparison of different fuzzing techniques

Specifications of Laptop

SIGSEGV Vulnerabilities

SIGALRM Vulnerabilities

SIGABRT Vulnerabilities

SIGILL Vulnerabilities

Expert Label vs Current Work Evaluation

Results Of Fuzzing Tests on Test Cases

Execution Time for Crash Detection (Target Binaries)

using AFL++

Execution Time for Crash Detection (Target Binaries)

using Honggfuzz

Crash Detection Time of Custom Test Cases by Both

Fuzzers

26

28

29

33

84

135

135

136

137

140

145

147

148

149

xv
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF ABBREVIATIONS

AFL++ American Fuzzy Lop++

CVE

DoS

Common Vulnerabilities and Exposures

Denial of Service

ELF Executable and Linkable Format

OSINT Open-Source Intelligence

PC Program Counter

SDK

SIGSEGV

SIGILL

SQL

GDB

QEMU

CTF

RNG

UI

DLL

OS

Software Development Kit

Signal Segmentation Violation

Signal Illegal Instruction

Structured Query Language

GNU Debugger

Quick Emulator

Capture The Flag

Random Number Generator

User Interface

Dynamic-Link Library

Operating System

IoT

LLM

FOT

Internet of Things

Large Language Model

Fuzzing Optimization Tool

CHAPTER 1

1
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

Introduction

Most cybersecurity vulnerabilities stem from unpatched software, poor coding

practices, and inadequate vulnerability management processes, which expose systems

to potential attacks. In response to these challenges, this project aims to enhance

vulnerability assessment techniques by developing a platform that employs multi-

fuzzer methodologies for automated vulnerability discovery. This approach integrates

various advanced fuzzing tools, such as AFL++ and Honggfuzz, to improve the

efficiency and accuracy of vulnerability detection in software applications. The project

focuses on automating discovering and analyzing vulnerabilities and delivering a more

reliable solution for detecting security flaws. By leveraging automated and diverse

fuzzing techniques, this work contributes to advancing cybersecurity practices and

offers a scalable, efficient solution for software security testing.

1.1 Problem Statement and Motivation

In the current cybersecurity landscape, software applications are increasingly

vulnerable to sophisticated attacks that exploit unknown or unpatched security flaws.

Traditional methods for vulnerability assessment, which rely heavily on manual testing

and a limited set of automated tools, fall short of effectively managing the growing

complexity and volume of these threats. Manual testing is not only labour-intensive and

time-consuming but also susceptible to human error, which can lead to the oversight of

critical vulnerabilities [1]. Additionally, existing automated tools cannot often

effectively integrate multiple fuzzing techniques, resulting in incomplete coverage and

delayed detection of potential security weaknesses [2]. This poses a significant

challenge for organizations that need to maintain strong security postures and protect

sensitive information from evolving cyber threats.

The motivation for this project stems from the urgent need to improve the efficiency

and effectiveness of vulnerability assessments in software applications. By developing

a system based on multi-fuzzer techniques for automated vulnerability assessments, this

CHAPTER 1

2
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

project aims to overcome the limitations of current approaches by offering a more

comprehensive and integrated solution. The proposed system allows users to upload

their software applications via a user-friendly chatbot interface, which then applies

various fuzzing tools to thoroughly assess vulnerabilities. This automated approach not

only speeds up the vulnerability discovery process but also enhances the accuracy and

depth of analysis, ensuring that even the most elusive vulnerabilities are identified and

addressed. The project's motivation is anchored in advancing cybersecurity practices

by making vulnerability assessments more reliable and scalable. Through automation

from software input to the generation of detailed CVEs and exploitation analyses, the

project seeks to empower organizations to proactively safeguard against emerging

threats and reduce the likelihood of successful cyberattacks.

1.2 Objectives

• To design a multi-fuzzing technique to automate bug and exploitation

detection

The primary objective is to develop a novel multi-fuzzing approach that integrates

multiple fuzzing tools, such as AFL++ and Honggfuzz, to automate the detection of

software bugs and potential exploitation paths. By combining the unique strengths of

these fuzzers, such as AFL++'s coverage-guided fuzzing and Honggfuzz's aggressive

mutation strategies, the proposed technique aims to enhance the overall effectiveness

of vulnerabilties detection [3]. This approach will automate the entire process, from

initiating fuzzing campaigns to analyzing results, thereby reducing the manual effort

required in traditional vulnerability assessment methods. The goal is to increase the

depth and breadth of vulnerability coverage, uncovering a wider range of potential

security flaws that could be exploited by malicious actors.

• To develop a pipeline to transform bug reports into actionable

vulnerabilities similar to CVE using a pretrained LLM

This objective focuses on creating an automated pipeline that processes and analyzes

bug reports generated by the multi-fuzzing technique. Leveraging a pretrained Large

CHAPTER 1

3
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Language Model, the pipeline will be capable of understanding the context and details

of the bug reports, automatically categorizing them into actionable vulnerabilities

similar to those listed in the Common Vulnerabilities and Exposures (CVE) database.

The use of LLMs enables sophisticated natural language processing to interpret

complex bug descriptions and map them to known vulnerability patterns. This pipeline

aims to bridge the gap between raw fuzzing outputs and meaningful, actionable

intelligence for cybersecurity professionals, facilitating quicker and more efficient

vulnerability management.

• To develop a framework to mitigate automatically detected vulnerabilities

Beyond detection, the project aims to build a comprehensive framework that not only

identifies but also mitigates the vulnerabilities detected through the multi-fuzzing

process. This framework will integrate with existing security infrastructures and tools

to provide automated or semi-automated suggestions for mitigating the discovered

vulnerabilities. These suggestions could include patching the software, modifying

configurations, or applying other security controls. The framework’s objective is to

enhance the resilience of software applications by providing a proactive security

measure that can adapt to newly detected threats in real-time, reducing the window of

opportunity for attackers and enhancing the overall security posture of the organization.

1.3 Project Scope and Direction

The scope of this project encompasses the design, development, and deployment of a

comprehensive multi-fuzzing platform for automated vulnerability assessment in

software applications. The platform aims to integrate two powerful and complementary

fuzzing tools: AFL++, known for its coverage-guided fuzzing capabilities, and

Honggfuzz, which employs aggressive input mutation and dynamic instrumentation.

By combining their unique strengths, the platform seeks to provide broad and deep

vulnerability coverage, uncovering both common and complex software flaws.

This system will operate within a controlled testing environment on Ubuntu 24.04,

where the fuzzers can run in parallel or in sequence against target binaries submitted by

CHAPTER 1

4
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

users. This setup allows for efficient orchestration, resource management, and

centralized result aggregation, enabling comparative analysis of fuzzing outputs to

evaluate their effectiveness and complementarity.

To enhance usability and utility, the project will also develop a data processing pipeline

powered by a pretrained Large Language Model (LLM) [4]. This pipeline will convert

raw bug reports generated by fuzzers into actionable vulnerability insights, structured

similarly to entries in the Common Vulnerabilities and Exposures (CVE) database. By

applying natural language processing to the fuzzers' outputs, the system bridges the gap

between raw test results and human-readable intelligence, thus aiding cybersecurity

analysts and developers in faster decision-making.

Additionally, the project direction extends toward automated mitigation, closing the

loop between detection and remediation. A dedicated framework will be built to analyze

the nature of detected vulnerabilities and suggest or perform appropriate mitigation

steps—such as patch deployment, configuration adjustments, or enforcement of

specific security policies. This will be achieved by integrating the framework with

existing software security infrastructures, providing a proactive and adaptable security

posture.

Ultimately, this project will move in the direction of creating a scalable, modular, and

user-friendly solution that allows users to:

• Upload software via a chatbot interface,

• Initiate a multi-fuzzing assessment,

• Receive structured CVE-like reports, and

• Apply suggested mitigations automatically or manually.

This end-to-end pipeline aims to streamline the vulnerability assessment lifecycle,

improve assessment accuracy, and reduce the time and resources typically required in

manual processes. The project direction also sets the stage for future extensibility, such

as supporting more fuzzers, incorporating AI-assisted exploit generation, or integrating

with DevSecOps pipelines.

CHAPTER 1

5
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.4 Contribution

This project makes several meaningful contributions to the field of automated software

security testing by designing and developing a multi-fuzzer vulnerability assessment

platform that addresses key limitations in current vulnerability discovery practices.

Firstly, the project introduces a multi-fuzzing orchestration framework that integrates

AFL++ and Honggfuzz, two state-of-the-art fuzzers with complementary strategies.

AFL++ provides coverage-guided fuzzing using a genetic algorithm, while Honggfuzz

applies aggressive input mutation and dynamic analysis. By coordinating these fuzzers

within a shared environment, the system significantly improves the depth and diversity

of vulnerability detection, uncovering edge cases and complex bugs that may be missed

when using a single fuzzer alone.

Secondly, the project contributes an innovative automated analysis pipeline that

leverages a pretrained Large Language Model (LLM) to convert raw, technical fuzzing

outputs into actionable vulnerability descriptions. These descriptions are modeled after

the format used by the Common Vulnerabilities and Exposures (CVE) database [5],

making them highly usable for developers and security teams. This not only improves

the clarity and accessibility of bug information but also supports more efficient

vulnerability triage and classification.

Thirdly, the platform incorporates a vulnerability mitigation framework designed to

automate the next step after detection, which is remediation. It can suggest or apply

countermeasures such as configuration changes, security controls, or patch

recommendations. This integrated approach strengthens the defensive lifecycle,

reducing the response time between identifying and addressing security issues.

Additionally, the project includes a chatbot-driven user interface that streamlines the

interaction between users and the platform. This contribution makes the system more

accessible to users with varying levels of technical expertise, enhancing usability and

promoting adoption in both educational and professional environments.

Overall, the platform provides a complete and scalable solution that advances current

practices in vulnerability assessment by automating fuzzing, reporting, and mitigation.

CHAPTER 1

6
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.5 Report Organization

This report is structured into seven comprehensive chapters to present the development

and evaluation of the automated multi-fuzzer vulnerability assessment system.

• Chapter 1: Introduction provides an overview of the problem, outlines the

project objectives, defines the project scope, and highlights the key

contributions of the work.

• Chapter 2: Literature Review surveys previous studies and background

information on vulnerabilities assessment, fuzzing techniques, and the

integration of symbolic and concolic execution in software testing.

• Chapter 3: System Methodology/Approach describes the overall design

methodology used in the project. It includes architectural diagrams, flowcharts,

data flow diagrams, and behavioral models such as use case and activity

diagrams, as well as the internal logic of the fuzzing system.

• Chapter 4: System Design details the system block diagram, component

specifications, LLM architecture, CVE generation design, and the interaction

among system modules. This chapter explains how the data flows from the user

interface to the final mitigation execution.

• Chapter 5: System Implementation outlines the actual hardware and software

configurations, environmental setup, and integration procedures. It explains the

implementation of each system feature, discusses encountered challenges, and

how they were addressed during development.

• Chapter 6: System Evaluation and Discussion presents the testing

procedures, performance metrics, crash analysis results, evaluation of project

objectives, and a comparison between expert evaluation and current automated

results. It also discusses key challenges and limitations.

• Chapter 7: Conclusion and Recommendation concludes the report by

summarizing the outcomes of the project and proposing future improvements

and extensions to enhance system capability and usability.

CHAPTER 2

7

CHAPTER 2

Literature Review

The literature review section offers a detailed examination of methods used in

vulnerability assessment, beginning with a survey of traditional and contemporary tools

designed to detect security vulnerabilities. It introduces fuzzing as a dynamic testing

approach, recognized for its capacity to identify concealed flaws in software, and

explains its integration with symbolic and concolic execution to strengthen testing

processes. Additionally, the review explores into specific fuzzing techniques and their

role in identifying various types of vulnerabilities, emphasizing their practical

contribution to enhancing the security of software systems.

2.1 Previous Works on Vulnerabilities Assessment

In the evolving landscape of cybersecurity, a range of tools and methodologies have

been developed to detect vulnerabilities and secure software applications. This

literature review explores previous works on vulnerability detection, focusing on

OSINT tools, network vulnerability scanners, web application vulnerability scanners,

Static Application Security Testing (SAST) tools, Dynamic Application Security

Testing (DAST) tools, configuration management and compliance tools, and container

and cloud security tools. This section evaluates the strengths and weaknesses of these

tools and compares them with the proposed automated multi-fuzzer platform in table.

Open Source Intelligence (OSINT) tools play a significant role in vulnerability

assessment by collecting and analyzing publicly available information from various

sources to identify potential security threats [6]. These tools go through the internet,

including social media platforms, forums, blogs, and publicly accessible databases, to

uncover sensitive information such as exposed credentials, misconfigured services, and

publicly known vulnerabilities that outsiders could exploit. They can reveal valuable

insights about an organization's digital footprint, including potential points of entry for

attackers, and are often used in conjunction with other security tools to provide a more

comprehensive assessment of an organization's security posture. [7, Figure 2.1.1]

CHAPTER 2

8
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

illustrates the effectiveness of OSINT in the reconnaissance phase of penetration

testing, where it facilitates the thorough collection of publicly available information.

Figure 2.1.1: Process of Penetration Testing

Network vulnerability scanners are designed to identify vulnerabilities within

networked systems, such as routers, switches, servers, and other network devices. These

tools work by scanning devices for open ports, misconfigurations, missing patches,

outdated software versions, and other known vulnerabilities. Network scanners, such

as Nessus, OpenVAS, and Nmap, are commonly used in network security assessments

to detect weaknesses that could be exploited by attackers to gain unauthorized access

or disrupt services [8]. By providing a comprehensive view of an organization's

network infrastructure, these tools help security professionals understand the exposure

to external threats and take proactive measures to secure network components. They

are also valuable in routine security checks, as they help ensure that network devices

remain secure and compliant with security policies. [9, Figure 2.1.2] shows how a

vulnerability scanner works with different components in detecting vulnerabilities.

Figure 2.1.2: How does a vulnerability scanner work?

CHAPTER 2

9
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Web application vulnerability scanners are specialized tools that focus on identifying

security vulnerabilities within web applications. These scanners, including tools like

OWASP ZAP, Burp Suite, and Acunetix, are designed to test web applications for

common vulnerabilities such as SQL injection, cross-site scripting (XSS), cross-site

request forgery (CSRF), and other security flaws unique to web applications [10]. By

simulating attacks and analyzing the application's response, these tools can detect

vulnerabilities that could be exploited by attackers to gain unauthorized access,

manipulate data, or disrupt web services. Web application scanners are particularly

valuable for organizations that rely heavily on web-based services, as they help ensure

that these services are secure against the ever-evolving landscape of web-based threats

[11]. These scanners are often integrated with continuous integration/continuous

deployment (CI/CD) pipelines to provide ongoing security assessments as web

applications are developed and updated. By examining code during development and

deployment, security vulnerabilities can be detected and resolved quickly, minimizing

the risk of exploitation. CI/CD in [12, Figure 2.1.3] involves a set of automated

workflows, ranging from code creation to deployment in production, which facilitate

the consistent and rapid delivery of code updates to the production environment.

Figure 2.1.3: Various steps in the CI/CD pipeline

Static Application Security Testing (SAST) tools are used to analyze source code,

binaries, or bytecode to identify security vulnerabilities without executing the program

[13]. These tools, such as SonarQube, Checkmarx, and Fortify Static Code Analyzer,

scan the code for security flaws like buffer overflows, SQL injection, cross-site

scripting, and insecure cryptographic practices. SAST tools are typically employed

early in the software development lifecycle, allowing developers to detect and address

security issues before the software is deployed. By examining the codebase, these tools

CHAPTER 2

10
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

can identify potential vulnerabilities that might not be apparent through dynamic

analysis. SAST tools are valuable for organizations seeking to integrate security into

their development processes (a practice known as "shift-left" security) by catching

vulnerabilities early when they are easier and less costly to fix [14].

Dynamic Application Security Testing (DAST) tools are designed to identify

vulnerabilities in running applications by simulating attacks and monitoring the

application's behavior. Unlike SAST tools, which analyze code statically, DAST tools

like AppScan, WebInspect, and Netsparker operate dynamically by interacting with a

live application [15]. They test for runtime vulnerabilities such as input validation

errors, server misconfigurations, authentication issues, and other flaws that only show

during execution. DAST tools are particularly useful for identifying security issues that

arise from the interaction of different components or from the runtime environment. By

conducting tests on a live application, DAST tools can provide a more comprehensive

view of an application's security posture, complementing the findings of SAST tools

and offering insights into vulnerabilities that are only detectable in a live environment.

[16, Table 2.1.1] below are the differences between SAST and DAST from different

perspectives.

Table 2.1.1: Differences between SAST and DAST

CHAPTER 2

11
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Configuration management and compliance tools are essential for maintaining

secure and compliant IT environments. Tools such as Chef, Puppet, and Ansible are

designed to automate the management of system configurations, ensuring that systems

are configured according to predefined security policies and compliance standards [17].

These tools help prevent misconfigurations that could lead to security breaches by

automating the enforcement of configuration baselines and detecting deviations from

these baselines. Additionally, configuration management tools can integrate with

vulnerability management platforms to provide a holistic view of an organization's

security posture.

They are crucial for organizations that need to maintain continuous compliance with

security standards such as the Center for Internet Security (CIS) Benchmarks, the

National Institute of Standards and Technology (NIST) guidelines, and other regulatory

requirements. NIST standards assist in improving cybersecurity and information

security by offering a framework of guidelines to manage risk management processes

effectively. CIS provides a collection of best practices designed to help organizations

protect themselves against cyber threats. It includes CIS Controls, a prioritized set of

measures aimed at safeguarding against common cyberattacks [18]. [18, Table 2.1.2]

below shows a comparison of the differences between NIST and CIS from different

perspectives.

Table 2.1.2: Differences between NIST and CIS

CHAPTER 2

12
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

As organizations increasingly adopt containerized and cloud-based environments,

specialized security tools have been developed to address the unique challenges of these

platforms. Container security tools, such as Aqua Security Platform, Sysdig Secure,

and Aikido Container Security are designed to monitor container activity, enforce

security policies, and detect anomalies in containerized applications [19]. These tools

provide visibility into container runtime behavior, helping organizations detect and

respond to security incidents in real-time. Cloud security tools, such as AWS Inspector

and Azure Security Center, offer comprehensive assessments of cloud environments,

helping organizations secure their cloud infrastructure against threats such as

misconfigurations, insecure interfaces, and unauthorized access [20]. These tools are

particularly important in dynamic cloud environments where infrastructure changes

frequently and security policies must adapt quickly to ensure the protection of sensitive

data and services.

To effectively compare various vulnerability assessment techniques and their relevance

to our proposed multi-fuzzer solution, the following table summarizes the strengths

and weaknesses of existing methods. Each technique has its advantages and

limitations, which are critically analyzed to highlight how our solution builds upon and

improves these approaches. This comparison highlights the added value of integrating

multiple fuzzing techniques into a unified automated platform, providing a more

comprehensive and efficient solution for vulnerability detection.

CHAPTER 2

13
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 2.1.3: Strengths and Weaknesses of Previous Work & Comparison with the

Proposed Solutions

Technique Strengths Weaknesses Comparison with the

Proposed Solution

OSINT Tools Effective in

identifying exposed

credentials and

misconfigurations

from public data.

Requires manual

filtering and limited

integration with

automated tools.

The proposed solution

automates OSINT data

integration, improving

efficiency and relevance

in vulnerability detection.

Network

Vulnerability

Scanners

Comprehensive

network security

assessment and high

effective for known

vulnerabilities.

High false positives

and limited in

detecting zero-days.

Multi-fuzzer techniques

reduce false positives and

enhance zero-day

detection capabilities.

Web Application

Scanners

Detects web-specific

vulnerabilities

effectively with

integration of CI/CD

pipelines.

Limited in handling

complex logic

vulnerabilities and it

depends on frequent

updates.

The proposed solution

addresses complex logic

and business-layer

vulnerabilities more

effectively through

advanced fuzzing.

SAST Tools Early detection of

vulnerabilities and

integration of

security in

development (shift-

left).

Misses runtime

vulnerabilities with

high false positives

from static analysis.

The multi-fuzzer

platform combines static

and dynamic analysis,

covering both compile-

time and runtime

vulnerabilities, reducing

false positives.

DAST Tools Identifies runtime

vulnerabilities

through simulated

attacks on live

applications.

Resource-intensive

and limited to

vulnerabilities

visible during testing

sessions.

The proposed solution

offers comprehensive

vulnerability detection

across various runtime

conditions beyond

standard DAST

capabilities.

CHAPTER 2

14
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Configuration

Management Tools

Ensures secure

system

configurations and

continuous

compliance.

Focuses on

configuration, not

direct vulnerability

detection and

limited integration

with other tools.

The multi-fuzzer

platform integrates

configuration checks

with broader

vulnerability

assessments, offering a

more comprehensive

security solution.

Container and

Cloud Security

Tools

Specialized in

securing dynamic,

scalable

environments like

containers and

cloud platforms.

Challenges with

integrating

traditional tools and

complex security

management across

hybrid

environments.

The proposed solution

provides unified

vulnerability assessment

across diverse

environments using

multi-fuzzing techniques

tailored for different

deployment scenarios.

CHAPTER 2

15
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2 Fuzzing

2.2.1 Introduction to Fuzzing

Fuzzing, also known as fuzz testing, is an active testing method that involves providing

arbitrary data to a program repeatedly until it encounters a failure or crash. Barton

Miller at the University of Wisconsin pioneered this technique in the late 1980s [21].

Since its inception, fuzz testing has demonstrated its effectiveness in identifying

software vulnerabilities. Initially rooted in randomly generated test data, also known as

random fuzzing, the evolution of symbolic computation, model-based testing, and

dynamic test case generation has paved the way for more sophisticated fuzzing

methodologies. Takanen et al. [22] extensively cover fuzzing techniques in their book,

offering detailed insights with statistical data and comprehensive case studies. Fuzzers

are categorized as either generation-based or mutation-based, depending on whether

test inputs are created from scratch or via modification of existing ones.

Additionally, these tools are categorized as whitebox, greybox, or black-box fuzzers.

Whitebox fuzzers specialize in tracing execution paths and managing complex

constraints through intensive program analysis [23]. In contrast, greybox fuzzing tools

employ lighter program analysis methods to improve code coverage [24]. As of

February 2023, ClusterFuzz has detected approximately 27,000 bugs within Google

applications such as Chrome. Moreover, it has contributed to the identification and

resolution of more than 8,900 vulnerabilities and 28,000 bugs across 850 projects

integrated with OSS-Fuzz [25]. [25, Figure 2.2.1] below shows its overview of scalable

fuzzing infrastructure that finds security and stability issues in software. It offers

numerous functionalities that facilitate the smooth integration of fuzzing into the

development process of a software project. Conversely, black-box fuzzers solely

observe input/output behavior during execution and do not require access to the source

code of the Program Under Test (PUT) [26].

CHAPTER 2

16
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.2.1: Overview of Scalable Fuzzing Infrastructure

Figure 2.2.2 below shows the fuzzing process initiated with reconnaissance, scanning

the system to identify vulnerabilities. Once found, exploitation techniques are

employed to capitalize on these weaknesses. Successful exploitation grants ongoing

access to the system, enabling deeper analysis and exploration. Fuzzing techniques,

designed to detect Common Vulnerabilities and Exposures (CVEs), are utilized during

the scanning phase to pinpoint potential security flaws within the system.

Figure 2.2.2: Overall Process of Fuzzing

CHAPTER 2

17
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2.2 The Synergy of Fuzzing, Symbolic, and Concolic Execution in

Software Testing

In the ever-evolving landscape of software development and cybersecurity, the quest to

fortify systems against vulnerabilities and bugs remains a paramount challenge.

Fuzzing, symbolic execution, and concolic execution emerge as pivotal techniques,

each offering distinct yet interconnected approaches to identify flaws and enhance

software resilience. Fuzzing, the venerable technique born from Barton Miller's

pioneering work, stands as a cornerstone in software testing. It employs the injection of

random or unexpected data into a system to probe for vulnerabilities, crashes, or

unpredictable behavior. However, as systems grew in complexity, the need for more

sophisticated methods arose.

Symbolic execution stepped onto the stage, revolutionizing software analysis by

exploring program paths using symbolic values instead of concrete inputs. It navigates

through various execution paths, unveiling potential vulnerabilities and constraints

without executing the actual program. Symbolic execution's skill lies in its ability to

analyze multiple paths simultaneously, providing valuable insights into program

behaviors and identifying hard-to-reach bugs. [27, Figure 2.2.3] shows the overall

process of generating test inputs in Symbolic Execution (SE). This method begins by

taking the Program Under Test (PUT) and the initial test-input (ITI) as inputs and yields

new test inputs by resolving constraints. Initially, SE loads the PUT and establishes its

Control Flow Graph (CFG), extracting all basic block addresses. Subsequently, the

PUT is dynamically executed with the initial test-input (ITI), determining the covered

basic block addresses by correlating the path to the CFG. If the basic block (BB) in the

set of AllBBaddr does not correspond with the BB in CoveredBBaddr, it is then

included in CONS for further processing. Eventually, leveraging the Z3 solver, SE

generates a new effective test-input (NTI) by resolving the constraints accumulated in

NTI during this process.

CHAPTER 2

18
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.2.3: Test-Input Generation of Symbolic Execution Algorithm

Concolic execution bridges the gap between symbolic and concrete execution. This

technique combines actual inputs with symbolic representations, exploring different

program paths while leveraging the strengths of both approaches. By using concrete

inputs to execute a program and concurrently tracking the symbolic representation of

these inputs, concolic execution efficiently explores multiple execution paths,

enhancing bug detection and program verification. [28, Figure 2.2.4] below shows how

the test_h() function explores different execution paths within function h(int x, int y)

using concolic execution. It iterates through different inputs based on the path

constraints until all possible paths have been covered or constraints have been satisfied.

The execute_h() function simulates the execution of h(int x, int y) with given inputs

and records the path constraints. The program stops when all predicates have been

negated or when an error condition is met within the function h().

CHAPTER 2

19
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.2.4: Concolic Execution Exploration in Function h(int x, int y)

Hybrid fuzzing emerges as the convergence point of these techniques. It merges the

diversity of fuzzing with the intelligent path exploration of symbolic or concolic

execution. This hybrid approach leverages fuzzing's ability to generate varied inputs

with the guidance of symbolic or concolic techniques. By intelligently steering the

generation of inputs towards specific code paths or conditions, hybrid fuzzing optimizes

bug detection, enhancing the effectiveness of software testing. [27, Figure 2.2.5] below

illustrates the comprehensive workflow of hybrid fuzzing, comprising three primary

elements: the fuzzer, CE engine, and a coordinator. Acting as an intermediary, the

coordinator orchestrates the functioning of fuzzing and CE techniques, undertaking

three primary responsibilities. Firstly, it monitors the fuzzer, deciding when to initiate

the CE engine. Secondly, it sets up the operational environment for CE. Thirdly, it

selects and filters test inputs for execution between the fuzzer and CE. Initially, the

coordinator's test-input selection module identifies the test-input file in the fuzzer's

queue to be transmitted first to the CE engine. Before commencing CE, the coordinator

organizes the test inputs in the fuzzer's queue based on their effectiveness.

Figure 2.2.5: Hybrid Fuzzing Technique’s High-Level Architecture

CHAPTER 2

20
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The interconnectedness of these techniques marks a paradigm shift in software testing

methodologies. Fuzzing, symbolic, and concolic execution complement each other,

offering a holistic approach to software analysis. They collectively contribute to

uncovering vulnerabilities, enhancing code coverage, and fortifying systems against

potential threats.

[29, Figure 2.2.6] involves employing the Critical Branch Selection (CBS) and Priority

Score Calculation (PSC) algorithms to transform the initial input list into an ordered

input list. The algorithm evaluates branch criticality using three metrics: hit (H) to

determine if a branch is explored, solvability (S) to ascertain if the branch can be solved,

and complexity (C) indicating the difficulty of solving the branch. Further elaboration

will be provided on these metrics. Additionally, the algorithm generates a priority score

for each input based on the target branches. These scores guide the selection of inputs

for the ordered input list. The selection process involves considering how critical a

branch is and how likely it can be solved, ultimately producing an ordered input list.

Detailed explanations on branch criticality assessment and the determination of priority

scores will follow in this section.

Figure 2.2.6: Selective Hybrid Fuzzing Approach (CBS and PSC algorithms)

CHAPTER 2

21
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[27, Table 2.2.1] below presents a performance analysis of various software testing

methodologies, indicating that hybrid fuzzing techniques outperform other methods.

Moreover, the prevalence of hybrid fuzzing tools in numerous software testing

competitions highlights their significant effectiveness in current testing practices.

Table 2.2.1: Performance Comparison of Testing Techniques

CHAPTER 2

22
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2.3 Fuzzing Techniques for Vulnerabilities Detection

Mutation fuzzing involves altering existing valid inputs to generate new test cases.

Techniques like bit flipping, byte flipping, segment deletion, splicing, and segment

repetition are applied to modify inputs [30]. This approach does not require specific

knowledge about the target program and is often termed 'dumb fuzzing.' Despite its

simplicity, it can effectively reveal vulnerabilities such as buffer overflows, where an

input overrun allocated memory, leading to potential system crashes or execution of

malicious code. Additionally, it can uncover format string vulnerabilities where input

formatting functions can be manipulated to access unauthorized data or execute

arbitrary code. [31, Figure 2.2.7] shows a random mutation scheme, a technique

commonly utilized in existing fuzzers like those belonging to the AFL family. This

scheme alters a provided seed in a randomized manner.

Figure 2.2.7: Conventional Random Mutation Scheme Algorithm

Generation fuzzing operates by creating test cases based on defined models or

specifications of valid inputs. These models, such as language grammars or binary

format specifications, guide the creation of inputs without relying on existing sample

inputs. This 'smart fuzzing' technique can expose vulnerabilities like protocol

violations, semantic errors, or complex logic flaws. For instance, it can reveal protocol

weaknesses or errors in handling specific data structures, leading to security

vulnerabilities. The differences between generation-based fuzzers and mutation-based

fuzzers are compared in [32, Table 2.2.2] below.

CHAPTER 2

23
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 2.2.2: Comparison of Generation-Based Fuzzers and Mutation Based-Fuzzers

File format fuzzing focuses on testing applications that handle various file types as input

[33]. This technique involves generating modified or malformed versions of files

compatible with the targeted application. For example, if testing an image viewer, the

fuzzer would create iterations of slightly altered image files, such as JPEGs or PNGs.

These files are then sequentially processed by the application, and the fuzzer monitors

the software for any crashes, unexpected behaviors, or vulnerabilities triggered by the

altered files. This approach is commonly used to assess the resilience of applications

like image viewers, document readers, multimedia players, and other software that

interacts with specific file types. File format fuzzing aims to uncover weaknesses in

how applications handle different file formats, ensuring that they do not crash or expose

security vulnerabilities when processing varied inputs.

Protocol fuzzing is focused on testing applications that communicate over networks

using various protocols, such as HTTP, FTP, SMTP, or custom network protocols. In

this method, the fuzzer generates malformed or altered packets that deviate from the

expected structure of these communication protocols. These packets are then sent to the

target application, simulating the behavior of a potentially malicious attacker sending

corrupted or unexpected data over the network. Protocol fuzzing is effective in

uncovering vulnerabilities in network-based software, such as web servers, email

servers, FTP clients, or any software that interacts with network protocols. By injecting

malformed packets into the communication stream, this technique aims to identify

potential security flaws or crashes that could be exploited by attackers sending

CHAPTER 2

24
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

malformed or malicious data through network channels. The workflow of network

protocol fuzzing is illustrated in [34, Figure 2.2.8], where the initial information is also

referred to as the seed.

Figure 2.2.8: General Workflow of Network Protocol Fuzzing Techniques

White-box fuzzer operates with complete visibility into the inner workings of the

software under test. It accesses the source code, internal APIs, data structures, and other

intricate details of the system. With this comprehensive understanding, white-box

fuzzers create test inputs that specifically target known paths, functions, or components

within the software. By leveraging this deep knowledge, they aim to achieve maximum

coverage and thoroughly test various functionalities and code paths. Due to their

comprehensive understanding of the software's internal structure, white-box fuzzers are

adept at targeting specific paths or functions within the system. They are highly

effective at detecting complex vulnerabilities like logic flaws, boundary condition

errors, and deep-seated security issues within the software.

[35, Figure 2.2.9] outlines the process of directed model-based whitebox fuzzing,

taking inputs such as a program P, an input model M, a set of target locations L within

P, and seed inputs T. Its primary goal is to generate valid, potentially crashing files that

target locations within the program. If no specific targets are supplied, MoWF employs

static analysis to identify potential risky areas within the program, such as places prone

to null pointer dereferences or divisions by zero (lines 1-3). The algorithm utilizes

provided test cases T as initial inputs for generating tests. In case no seed file is

available, MoWF uses the input model M to create a seed file (lines 4-7).

CHAPTER 2

25
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.2.9: Model-based Whitebox Fuzzing Algorithm

Gray-box fuzzers have a limited but somewhat detailed view of the system. While they

lack full access to the source code or internal structures, they possess certain insights

into the system's behavior. This partial knowledge might include information about

function calls, basic control flows, or limited structural aspects. Using these insights,

gray-box fuzzers guide the fuzzing process towards specific areas of interest,

attempting to explore potential vulnerabilities within the constraints of their limited

visibility. With a limited but somewhat detailed insight into the system's behavior, gray-

box fuzzers excel in exploring vulnerabilities related to semi-restricted areas. They are

capable of uncovering issues like improper input validation, access control

vulnerabilities, and basic memory-related problems. [36, Figure 2.2.10] below shows

the coverage-based greybox fuzzing algorithm.

Figure 2.2.10: Coverage-based Greybox Fuzzing Algorithm

CHAPTER 2

26
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Black-box fuzzer operates without any internal knowledge or access to the software's

structure or source code. It treats the system as a "black box," interacting with it solely

based on input-output behavior. Black-box fuzzers generate a wide range of inputs

without understanding the internal mechanisms of the software. Their primary objective

is to discover vulnerabilities purely through observed behaviors and unexpected

responses from the system. Operating solely based on observed behaviors, black-box

fuzzers focus on identifying vulnerabilities through external interactions. They are

efficient at discovering common security issues such as input validation errors, buffer

overflows, and other surface-level vulnerabilities that can be triggered through

unexpected inputs. Some common white box, gray box and black box fuzzers are listed

in [32, Table 2.2.3] below. Although blackbox fuzzing can be remarkably effective, its

limitations are well known. For example, the “then” branch of the conditional statement

in [37, Figure 2.2.11] has only 1 in 2^32 chances of being exercised if the input variable

x has a randomly chosen 32-bit value. This intuitively explains why blackbox fuzzing

usually provides low code coverage and can miss security bugs.

Table 2.2.3: Common White Box, Gray Box and Black Box Fuzzers

Figure 2.2.11: “then” Branch of Conditional Statement

CHAPTER 2

27
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

On the other hand, DOM (Document Object Model) fuzzing is a specialized technique

utilized specifically in web browser testing, focusing on manipulating the structure and

elements of web pages through the browser's DOM API [38]. This method involves

using JavaScript to interact with the web page's elements, such as HTML, CSS, and

JavaScript code, to create variations and test the browser's behavior. Instead of altering

files, DOM fuzzing manipulates the elements within a live web page, performing

actions like changing attributes, deleting nodes, rearranging the DOM tree, or triggering

garbage collection. The goal is to uncover vulnerabilities related to memory corruption

or logic flaws within the browser's rendering engine. While DOM fuzzing allows for

testing the behavior of web browsers in response to manipulated web page elements, it

can face challenges in reproducing crashes efficiently and identifying the root cause of

discovered vulnerabilities, as compared to traditional file-based fuzzing methods. This

method is specifically tailored to scrutinize the browser's behavior with dynamic

content and user interactions, focusing on the internal handling of web page structures.

[39, Figure 2.2.12] shows the algorithm of merging two DOM trees in freedom.

Figure 2.2.12: Algorithm: Merging two DOM trees in FREEDOM

CHAPTER 2

28
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

API fuzzing involves testing the Application Programming Interfaces (APIs) of

software systems by sending unexpected, invalid, or edge-case inputs to the API

endpoints [40]. This technique aims to uncover vulnerabilities within the API's

functionality, security, and data handling processes. Common vulnerabilities tested

through API fuzzing include input validation issues, where unexpected inputs may

trigger buffer overflows, injection attacks (like SQL injection or command injection),

and authentication or authorization flaws that could lead to unauthorized access or

exposure of sensitive data. Additionally, API fuzzing might expose issues related to

rate limiting, error handling, or unexpected behavior when handling malformed

requests, providing a comprehensive assessment of the API's robustness and security

posture.

Dumb Fuzzing operates on a blind and random basis, where inputs are generated

without a comprehensive understanding of the target application's structure or expected

data formats [41]. The approach involves bombarding the system with a plethora of

random, nonsensical, or malformed inputs in the hopes of triggering unexpected

behavior. Dumb fuzzing casts a wide net, which can sometimes reveal surface-level

vulnerabilities such as crashes, memory leaks, or basic input validation errors. For

instance, it might uncover issues like buffer overflows or simple parsing errors that

occur due to the system's inability to handle unexpected input formats. However, due

to its indiscriminate nature, dumb fuzzing might miss more complex or subtle bugs that

require a more tailored approach. Its reliance on randomness means it may not

effectively trigger deeper, more intricate flaws within a system's logic or processing.

The pros and cons of dumb fuzzing are illustrated in the [41, Table 2.2.4] below.

Table 2.2.4: Pros & Cons of Dumb Fuzzing

Dumb fuzzing pros Dumb fuzzing cons

Straightforward to set up, run, and

maintain

Limited code coverage due to the fully

randomized input

Requires minimum amount of work for

the initial setup

Sometimes, it tests a parser than your

program

CHAPTER 2

29
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Smart Fuzzing takes a more targeted and systematic stance toward fuzz testing. Smart

fuzzing involves a thorough analysis of the target system's structure, expected inputs,

data handling, and potential weak points [41]. By leveraging knowledge about the

application's behavior, it crafts inputs that are more likely to uncover specific

vulnerabilities. Smart fuzzing is equipped to unveil sophisticated issues that might

escape random or blind testing. It can reveal complex parsing errors, protocol-level

vulnerabilities, injection attacks (such as SQL injection or command injection), and

deeper logic flaws within the software. Furthermore, it is adept at detecting

authentication bypasses, access control issues, or scenarios where the system fails under

specific, unexpected conditions. Smart fuzzing's ability to generate purposeful,

meaningful test cases based on an understanding of the system's behavior makes it more

effective at finding intricate vulnerabilities compared to its random counterpart. The

pros and cons of dumb fuzzing are illustrated in the [41, Table 2.2.5] below.

Table 2.2.5: Pros & Cons of Smart Fuzzing

Smart fuzzing pros Smart fuzzing cons

Greater code coverage in comparison

with dumb fuzzers

Requires more work to set up, run and

maintain

Catches more bugs thanks to greater

code coverage -

On the other hand, hybrid fuzzing, a fusion of multiple fuzzing techniques, combines

the strengths of various approaches to bolster overall effectiveness [27]. By merging

the exhaustive test case generation of generation fuzzing with the broad randomness

and coverage of mutation fuzzing, hybrid fuzzing achieves comprehensive code

coverage, effectively targets specific vulnerability classes (such as memory-related

issues, protocol violations, and logic errors), and efficiently explores both known and

unknown areas of software systems. This multifaceted approach significantly enhances

the chances of identifying a diverse array of vulnerabilities and fortifying software

against potential security weaknesses.

CHAPTER 2

30
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Coverage-guided fuzzing is a methodology that strategically targets less-exercised

portions of a codebase, aiming to unveil vulnerabilities lurking within these under-

tested areas. By monitoring and recording the code segments traversed by the fuzzing

inputs, this technique prioritizes exploring sections of the software that have had limited

exposure. This focused approach is particularly adept at uncovering vulnerabilities that

might remain concealed under more conventional testing methodologies.

Vulnerabilities such as intricate logic flaws, obscure memory corruptions, or edge-case

scenarios within the code structure can often be discovered through coverage-guided

fuzzing. Its emphasis on probing less-visited parts of the codebase amplifies the

likelihood of exposing vulnerabilities that might evade detection through standard

testing practices. The overview of coverage-guided fuzzing is shown in the [42, Figure

2.2.13] below. The following [43, Figure 2.2.14] is the algorithm for coverage-guided

fuzzing.

Figure 2.2.13: Coverage-guided Fuzzing Overview.

Figure 2.2.14: Algorithm for Coverage-Guided Fuzzing

CHAPTER 2

31
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Grammar-based fuzzing is a method that employs predefined grammars to produce

inputs adhering to syntactic validity. This approach proves particularly beneficial in

identifying bugs stemming from invalid grammatical structures, notably exposing

vulnerabilities like SQL injections. By crafting inputs based on grammatical rules, this

technique effectively scrutinizes protocols and file formats, often revealing

vulnerabilities inherent in these systems. For instance, it can uncover issues arising

from malformed structures within protocols or misinterpretations in file formats,

highlighting potential entry points for attackers aiming to exploit these weaknesses. [44,

Figure 2.2.15] below is the algorithm for fuzzing-based grammar inference.

Figure 2.2.15: Algorithm for Fuzzing-Based Grammar Inference

The comprehensive explanation of the grammar shown in [45, Figure 2.2.16] involves

the process by which the start symbol expands into various symbols, namely numbers.

The number symbol encompasses three distinct expansion rules: an integer symbol, an

integer preceded by a plus sign, and an integer preceded by a minus sign. An integer

symbol, in turn, comprises two expansion rules: either a single digit or a digit followed

by another integer symbol, thus enabling recursion to represent integers with multiple

digits. Essentially, a digit is a numerical value ranging from 0 to 9. Following these

expansion rules systematically, valid integers can be generated according to the

grammar structure. For instance, "-32", "007", and "+127" exemplify values created by

adhering to these grammar rules. As the complexity of inputs increases, so does the

complexity of the grammar. Crafting the grammar for intricate systems, such as a

CHAPTER 2

32
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

programming language, from scratch without in-depth knowledge of that language

would be a demanding task.

<start> ::= <number>

<number> ::= <integer> | + <integer> | − <integer>

<integer> ::= <digit> | <digit><integer>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Figure 2.2.16: Integer Grammar Example

CHAPTER 2

33
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Fuzzing Techniques Summarization

Table 2.2.6 below provides a concise yet informative comparison of various fuzzing

techniques based on their essential characteristics and effectiveness in detecting

vulnerabilities.

Table 2.2.6: Comparison of different fuzzing techniques

Fuzzing

Technique

Vulnerability

Detection

Strengths Weaknesses Adaptability

to Large

Systems

Accuracy

Mutation

Fuzzing

Buffer

overflows,

format string

vulnerabilities

Requires

minimal

knowledge of

the target

program, good

for surface-

level issues

May miss complex

logic flaws, limited

in detecting

intricate

vulnerabilities

Moderate Moderate

Generation

Fuzzing

Protocol

violations,

semantic

errors, logic

flaws

Not reliant on

existing

samples,

effective for

complex

vulnerabilities

May require

substantial

model/specification

creation, and could

miss known

vulnerabilities

High High

File

Format

Fuzzing

File format

weaknesses

Identifies

issues in how

applications

handle various

file types

Requires

knowledge of file

formats, may not

identify underlying

system weaknesses

Moderate Moderate

Protocol

Fuzzing

Network-

based

vulnerabilities

Uncovers flaws

in network-

based software,

effective for

communication

protocols

Challenging to

create precise

malformed packets,

may not expose

underlying logic

issues

High High

CHAPTER 2

34
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

White-box

Fuzzing

Complex

vulnerabilities

within

software

Comprehensive

visibility into

the software,

effectively

targets specific

paths/functions

Requires access to

source code, time-

consuming due to

detailed analysis

High High

Gray-box

Fuzzing

Vulnerabilities

in semi-

restricted

areas

Insights into

the system's

behavior,

capable of

discovering

access control

issues

Limited view of

the system, may

miss complex

vulnerabilities in

unexplored areas

Moderate Moderate

Black-box

Fuzzing

Common

security issues

No internal

knowledge

required,

efficient at

finding

surface-level

vulnerabilities

Limited in finding

intricate

vulnerabilities, low

code coverage,

misses deeper

system flaws

Low Low

DOM

Fuzzing

Browser's

memory

corruption or

logic flaws

Manipulates

web page

elements, tests

browser

behavior with

dynamic

content

Challenges in

reproducing

crashes efficiently,

identifying root

cause of

vulnerabilities

Low Moderate

API

Fuzzing

API

functionality,

security, data

handling

Uncovers input

validation,

injection

attacks, rate

limiting issues

Requires

knowledge of API

endpoints, might

not expose

complex system

issues

Moderate Moderate

Dumb

Fuzzing

Basic security

vulnerabilities

Easy setup,

reveals

Limited code

coverage, misses

intricate

Low Low

CHAPTER 2

35
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

surface-level

issues

vulnerabilities,

relies on

randomness

Smart

Fuzzing

Complex

vulnerabilities

within the

software

Targets

specific

vulnerabilities,

uncovers

sophisticated

flaws

Time-consuming to

set up, requires in-

depth

understanding of

the system

High High

Hybrid

Fuzzing

Multiple

vulnerability

classes

Combines

strengths of

different

fuzzing

methods,

comprehensive

coverage

Complexity in

integration, might

require

considerable

resources

High High

Coverage-

guided

Fuzzing

Less-exercised

code segments

Focuses on

less-tested

code areas,

uncovers

obscure

vulnerabilities

Needs to prioritize

untested areas, may

overlook certain

types of

vulnerabilities

Moderate Moderate

Grammar-

based

Fuzzing

Protocol, file

format

vulnerabilities

Detects issues

related to

invalid

grammatical

structures

Requires

predefined

grammars, may

miss deeper logic

flaws within the

system

Low Low

CHAPTER 2

36
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Fuzzing techniques can uncover certain vulnerabilities that other approaches, including

some OSINT tools, might struggle to detect. Below are a few vulnerabilities that

fuzzing methods can effectively target.

Fuzzing is particularly effective at uncovering protocol-level vulnerabilities that

traditional security analysis tools might overlook. By subjecting network

communication protocols such as HTTP, FTP, and SMTP to a series of malformed or

unexpected inputs, fuzzing can reveal issues in how these protocols handle and interpret

data. This might include detecting buffer overflows, command injection vulnerabilities,

or denial-of-service conditions that arise from incorrect protocol handling [46].

Protocol fuzzing's ability to probe the details of data exchange and protocol

implementation makes it a crucial technique for identifying flaws that could be

exploited by attackers to compromise system integrity or disrupt services.

Complex logic flaws are challenging to detect with conventional testing methods, but

fuzzing excels in this area [47]. Techniques like smart fuzzing and white-box fuzzing

provide a deep dive into an application’s internal logic, exploring various functional

paths and interactions within the software. By testing how the application processes

inputs and executes complex logical operations, these fuzzing methods can uncover

intricate errors such as unauthorized access, privilege escalation, or data corruption.

This thorough examination helps identify vulnerabilities in the application’s design or

functionality that might otherwise go unnoticed in less comprehensive testing

environments.

Memory corruption vulnerabilities, including buffer overflows, memory leaks, and

use-after-free errors, are effectively targeted by fuzzing techniques. Mutation and

grammar-based fuzzing involve generating a wide range of malformed or unexpected

inputs to stress-test the application's memory management routines. This rigorous

approach can lead to crashes or unexpected behaviors caused by corrupted memory

states [48]. By pushing the limits of how the application handles memory, fuzzing can

CHAPTER 2

37
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

reveal critical issues that compromise the application's stability and security, often

leading to exploitable conditions that traditional testing methods might miss.

Fuzzing is also proficient at uncovering vulnerabilities related to the handling of

unusual or malformed input data [49]. Techniques such as file format fuzzing and

grammar-based fuzzing are designed to test how applications manage and process input

data that deviates from standard formats or syntax. This includes identifying parsing

errors, input validation flaws, or crashes caused by data that the application is not

equipped to handle properly. By examining how the application deals with non-

standard or syntactically incorrect inputs, fuzzing can uncover vulnerabilities related to

input validation and data processing that are crucial for ensuring robust software

security.

In the context of web applications, DOM fuzzing is specialized in detecting

vulnerabilities related to the manipulation of web page elements using JavaScript.

This technique focuses on how browsers interpret and render dynamic content,

potentially revealing issues such as memory corruption or logic errors within the

browser's rendering engine. By targeting the DOM and examining the interactions

between JavaScript and web page elements, DOM fuzzing can identify critical flaws

that might not be evident through other testing methods [50]. This capability is

particularly valuable for ensuring the security of web applications and protecting

against vulnerabilities that could be exploited through client-side scripts.

CHAPTER 3

38
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

System Methodology/Approach

This chapter outlines the methodology and structured approach adopted for developing

the automated vulnerability assessment system. The system leverages the power of two

state-of-the-art fuzzing engines, AFL++ [51] and Honggfuzz [52], which are integrated

into a unified framework to enhance coverage and vulnerability detection efficiency.

The methodology is presented through multiple diagrams that illustrate the overall

system architecture, data flow, and internal logic. Additionally, functional and

behavioral models such as use case diagrams and activity flows are provided to explain

the user interactions and system processes involved in detecting and processing

software vulnerabilities.

3.1 Conceptual Design

3.1.1 Use Case Diagram and Descriptions

Figure 3.1.1: Use Case Diagram of Multi-Fuzzer Platform for Automated

Vulnerability Assessments

CHAPTER 3

39
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

This section presents the use case model for the Multi-Fuzzer Techniques for

Automated Vulnerabilities Assessments system. The use case diagram illustrates

the interactions between the system and its users, along with the functionalities

provided to different types of users. It identifies the system's primary actors, their

associated use cases, and the relationships between them, including <<include>>,

<<extend>>, and generalization relationships.

Actors

• User

This is a generalized actor that encompasses all users who interact with the

system.

• Normal User

A typical system user who interacts with the chatbot platform by registering an

account, uploading binary files for analysis, and receiving vulnerability reports

with suggested mitigation strategies.

• Admin

A specialized user role that inherits all functionalities of a Normal User. In

addition to standard capabilities, Admin users are granted access to advanced

debugging and monitoring interfaces for system maintenance purposes.

The generalization relationship from Admin to Normal User indicates that Admin

users have full access to all functionalities available to Normal Users, along with

extended administrative privileges.

Use Cases for Normal and Admin Users

• Register Account

Enables new users to create an account before accessing the system

functionalities.

• Login

Authenticates existing users to allow system access.

CHAPTER 3

40
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

o <<extend>> Verify 2FA Code: This optional use case is triggered

when a user has enabled Two-Factor Authentication (2FA). The

system prompts for a time-based verification code during login.

• Setup Two-Factor Authentication (2FA)

Allows users to bind their account with a Time-Based One-Time Password

(TOTP) authentication application for enhanced security.

• Change Password

Permits users to change their existing password via the system settings.

• Submit Binary File for Analysis

Allows users to upload a binary file to be assessed by the automated multi-

fuzzer engine.

o <<include>> Access Chatbot Interface: A necessary interaction

where users engage with the chatbot responsible for processing the

uploaded binary.

o <<include>> Receive CVE-like Vulnerability Report: The chatbot

returns a detailed vulnerability report based on the analysis of the

submitted binary.

▪ <<extend>> Apply Mitigation Strategy: Users have the

option to apply system-recommended mitigation strategies to

address the detected vulnerabilities.

• Logout

Allows users to securely terminate their session.

Additional Use Cases for Admin Users

• Monitor or Debug Chatbot

Grants administrators the ability to oversee and troubleshoot the chatbot

system.

o <<include>> Access Admin Debug Interface: Provides access to the

administrative debug interface containing advanced tools and logs.

CHAPTER 3

41
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

o <<extend>> Verify Admin Credentials: Adds a secondary

authentication layer before granting access to the debugging interface

for security purposes.

Use Case Relationships

• Generalization

The Admin actor is a generalization of the Normal User actor. This implies

that Admins inherit all use cases associated with Normal Users.

• <<include>>

Represents use cases that are essential components of a higher-level process.

For instance, accessing the chatbot and receiving the CVE-like report are

integral parts of submitting a binary for analysis.

• <<extend>>

Represents optional behaviors or conditional steps based on user configuration

or system status. Examples include 2FA verification during login and the

application of mitigation strategies post-analysis.

CHAPTER 3

42
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1.2 Activity Diagram

Figure 3.1.2: Activity Diagram of Multi-Fuzzer Platform for Automated

Vulnerability Assessments

CHAPTER 3

43
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The activity diagram of the Multi-Fuzzer Chatbot System depicts the sequential flow

of operations and the interactions between the user and the system, beginning from

account registration to binary file analysis, vulnerability report generation, and the

suggestion of mitigation strategies. The diagram is organized using two main

swimlanes, User and System which effectively delineate the responsibilities and

actions taken by each party throughout the process.

Process Flow Description

1. User Registration and Authentication

The process begins with the user initiating the registration of a new account. The system

checks for username duplication during this step. If a conflict is detected, the system

returns an error and prompts the user to choose a different username. Upon successful

registration, the user is redirected to the login page.

The login process requires the user to enter valid credentials. If Two-Factor

Authentication (2FA) is enabled, the user is prompted to provide a time-sensitive

verification code generated by a linked authenticator application (e.g., Google

Authenticator). The system then validates both the credentials and the 2FA code.

Failure in either step results in appropriate error messages. Upon successful verification,

access to the user dashboard is granted.

2. Binary Submission and Analysis

Once authenticated, the user can upload a binary executable file for vulnerability

assessment. The system processes the uploaded binary by launching the multi-fuzzing

engine, which integrates fuzzers such as AFL++ and Honggfuzz to execute the file

under diverse input conditions, aiming to uncover any runtime anomalies or crashes.

3. Crash Detection and Vulnerability Reporting

During the fuzzing process, the system actively monitors for application crashes or

abnormal behavior. If crashes are identified, detailed logs and metadata are compiled

CHAPTER 3

44
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

into a consolidated crash report. This report is subsequently forwarded to a

pretrained Large Language Model (LLM), which interprets the raw data and

transforms it into a CVE-like vulnerability report. This report outlines the nature of

the vulnerability, its potential impact, and the relevant binary sections affected.

4. Mitigation Strategy Generation and Interaction

Along with the generated report, the system provides a set of automated mitigation

strategies tailored to the detected vulnerabilities. The user has the option to apply a

suggested fix via the auto-patching function or engage further with the system’s

chatbot interface. Through natural language interaction, users may seek clarification,

request alternative recommendations, or better understand the technical implications of

the vulnerability. These interactions are continuously processed by the LLM to

maintain conversational relevance and accuracy.

5. Iteration and Session Termination

After receiving the vulnerability report and applying or reviewing mitigation strategies,

the user can choose to either continue with another binary analysis or exit the platform

by initiating the logout process. This loop allows for multiple cycles of vulnerability

assessment, enhancing the system’s utility in real-world testing workflows.

CHAPTER 3

45
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1.3 Data Flow Diagram

Figure 3.1.3: Data Flow Diagram of Multi-Fuzzer Platform for Automated

Vulnerability Assessments

The Data Flow Diagram (DFD) for the fuzzing system outlines the logical flow of data

across various functional components, starting with user interaction and ending with

the generation of vulnerability reports. The process begins with the User, who interacts

with the system via the User Interface (UI). Through this interface, the user uploads

binary files. This binary file input is then validated and forwarded to the Fuzzer

Dispatcher, which acts as the central coordinator for the fuzzing tasks.

Upon receiving the input data, the Fuzzer Dispatcher performs mutation of the test

cases. It then schedules and distributes these mutated inputs and binary file to two

parallel fuzzing engines, AFL++ and Honggfuzz. Both engines independently execute

fuzzing tasks, generating outputs that include crash reports, log files, and code coverage

information. These outputs are transmitted to the Result Aggregator, which serves as

the system’s analysis and deduplication unit.

The Result Aggregator consolidates the results from both fuzzers, eliminates duplicate

crash data, and structures the remaining outputs for further analysis. This organized

data is temporarily stored and passed to the Reporting Module. The Reporting Module

utilizes the preprocessed data to generate CVE-like vulnerability descriptions and

CHAPTER 3

46
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

visual representations. These reports summarize the nature, location, and potential

mitigation of detected vulnerabilities.

Finally, the processed outputs are returned to the User Interface, where they are

displayed for the user in an accessible and structured format. The user can then review

the complete assessment results, including technical summaries and recommended

fixes, all derived from the initial uploaded binary.

CHAPTER 3

47
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2 Implementation Design

3.2.1 System Architecture Diagram

Figure 3.2.1: System Architecture Diagram of Multi-Fuzzer Platform for Automated

Vulnerability Assessments

The architecture of the proposed system is designed to streamline and automate the

vulnerability assessment process by integrating multiple advanced fuzzing tools within

an interconnected framework. The system consists of several interconnected

components that work together to analyze user-submitted software binaries, detect

potential vulnerabilities, and produce detailed vulnerability reports. The architecture

promotes modularity, automation, and scalability, allowing for efficient detection and

interpretation of software flaws.

The process begins with the Chatbot User Interface, which serves as the entry point

for user interaction. Through this interface, users can upload software binaries and

configure fuzzing parameters in a user-friendly manner. The chatbot interface abstracts

the complexity of underlying operations, making the system accessible even to users

with limited technical expertise.

Once the input is received, the Upload & Control Layer is responsible for managing

the session and directing the software binary to the appropriate processing modules.

This layer ensures the correct handling of user input and initiates the fuzzing process

by coordinating with the multi-fuzzer engine.

At the core of the system lies the Multi-Fuzzer Engine, which includes the integration

of two complementary fuzzers, AFL++ and Honggfuzz. AFL++ employs coverage-

guided fuzzing to explore diverse execution paths, while Honggfuzz applies aggressive

CHAPTER 3

48
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

mutation techniques to stress-test the application under varying conditions. Running

both fuzzers in parallel increases the breadth and depth of vulnerability discovery,

improving overall assessment effectiveness.

The results from the fuzzers are then analyzed by the Crash/Log Analyzer, which

captures and filters crash data and execution logs. This component organizes the data

to identify anomalies or signs of software bugs, preparing it for further interpretation

by the next module in the pipeline.

Following analysis, the structured crash data is processed by a Pretrained Large

Language Model (LLM). This module leverages natural language understanding

capabilities to interpret the context of the detected bugs and generate descriptive

insights into their nature. It translates low-level fuzzing outputs into understandable

descriptions that capture potential risks and security implications.

These descriptions are compiled into structured outputs by the CVE-like Entries

(Vulnerability Report) module. The vulnerability report provides users with clear and

actionable information, including the type of vulnerability, possible impact, and

conditions under which the flaw may be exploited. While not integrated into an official

CVE database, the structure mimics industry-standard vulnerability formats for

familiarity and practical utility.

Finally, the Mitigation Suggestion Framework provides follow-up recommendations

based on the nature of the discovered vulnerabilities. These suggestions may include

code-level changes, configuration updates, or general secure development practices. By

offering immediate guidance, the framework enhances the security posture of the

software and reduces the window of exposure to potential threats.

CHAPTER 3

49
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2.2 Flowchart

Figure 3.2.2: System Flowchart of Multi-Fuzzer Platform for Automated

Vulnerability Assessments

The flowchart of the proposed fuzzing system illustrates a comprehensive and

structured sequence from the initial user interaction to the final report generation. The

CHAPTER 3

50
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

process begins at the Start node, where the system is initialized, and the user begins

their interaction. This marks the beginning of a vulnerability assessment cycle, which

is designed to be user-friendly and highly automated.

The first operational step occurs at the User Interface (UI). This front-end component

provides an accessible platform for users to upload the binary files they wish to fuzz.

The UI also allows users to configure essential fuzzing parameters, including the

selection of fuzzing engines (AFL++ and/or Honggfuzz), mutation strategies, and the

maximum runtime for each fuzzing session. To support a broad range of users,

including those without deep technical backgrounds, the UI incorporates a chatbot

interaction panel for guidance and result interpretation, as well as a results display

area for visualizing final outputs.

Following user input, the system performs a validation check through the "Valid

Input?" decision node. Here, the uploaded binaries and configuration parameters are

examined for correctness and completeness. This validation step ensures that the binary

file format is appropriate, all required fields are filled, and the settings align with system

constraints. If the inputs are invalid, the system loops back to the UI and prompts the

user to correct them. This feedback loop enforces input integrity and prevents

unnecessary processing.

Once inputs are validated, control is passed to the Fuzzer Dispatcher, which acts as

the core task dispatcher and input mutation engine. It intelligently schedules tasks

across available fuzzers and applies mutation algorithms to generate diverse test cases

based on the input seed corpus. The dispatcher ensures optimal workload distribution

and prepares each fuzzing engine for execution.

The system then initiates parallel fuzzing execution, where both AFL++ and

Honggfuzz engines run concurrently. The AFL++ engine focuses on coverage-guided

fuzzing and employs evolutionary algorithms to discover unique execution paths. In

CHAPTER 3

51
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

contrast, Honggfuzz offers enhanced instrumentation, fault injection, and persistent

fuzzing techniques. Running both engines in cycle increases fuzzing depth and

broadens the vulnerability detection spectrum.

During execution, the system continuously monitors the process through the "Fuzzing

Complete?" decision node, which checks whether the defined runtime or iteration

limits have been reached. If not, the fuzzers continue executing. If complete, the result

router resumes its role by collecting output data. This includes crash logs, sanitizer

outputs, and code coverage metrics, which are critical for vulnerability assessment.

The next phase involves the Result Aggregator, which processes raw fuzzing outputs.

Its first function is crash deduplication, which eliminates redundant crash reports by

comparing stack traces or crash signatures. It then formats the refined data into a

structured format that is suitable for downstream analysis. This step is crucial in

reducing noise and highlighting unique issues.

Subsequently, the system checks for crash presence via the "Crashes Found?"

decision node. If crashes are detected, they are sent for vulnerability interpretation. If

not, the process proceeds directly to reporting. In the case of valid crashes, the system

invokes the CVE-like Report Generator, which leverages a pretrained large language

model (LLM) to analyze crash characteristics and generate structured reports. These

CVE-like reports identify the nature, scope, and impact of the vulnerabilities. In parallel,

the Mitigation Recommender module suggests remediation strategies, such as input

sanitization, logic refactoring, or memory protection techniques.

The final processing step is handled by the Reporting and Visualization Module,

which formats the CVE reports and translates analytical data into visual elements. This

includes charts, coverage graphs, and vulnerability heat maps that help users understand

complex issues immediately. Although the system does not rely on a persistent database,

CHAPTER 3

52
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

all reports and visualizations are generated in real time and presented directly to the

user.

Ultimately, the results are shown in the "Display Results to User" stage via the UI,

completing the loop from input to insight. Users can view CVE reports, crash data, and

graphical summaries, enabling them to make informed security decisions. The process

then reaches the End node, which signifies the conclusion of the fuzzing task. At this

point, the user may choose to start a new assessment or terminate the session.

In conclusion, this flowchart embodies a streamlined yet powerful framework for

conducting automated, multi-engine fuzz testing.

CHAPTER 3

53
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2.3 Internal Fuzzing Logic

Figure 3.2.3: Overview of an AFL++ fuzz testing session [53]

AFL++ (American Fuzzy Lop Plus Plus) is a powerful and highly configurable fuzzer

designed for testing software vulnerabilities through an instrumentation-guided

approach. As shown in Figure 3.1, the AFL++ fuzzing process begins with the

preparation of an initial set of test cases, known as the corpus. These test cases are

stored in a directory and serve as the foundation for the fuzzing session. AFL++ utilizes

a QEMU plugin to instrument the code under test, enabling it to monitor execution

paths and collect detailed coverage information of the binaries.

During the fuzzing session, AFL++ employs internal and external mutators to generate

a large number of new test cases from the initial corpus. Each of these new test cases is

executed on the target software, and AFL++ monitors the execution for any signs of

faulty behavior, such as crashes or hangs. Crashes are identified when the program

exhibits abnormal termination due to invalid inputs, while hangs occur when the

program becomes unresponsive. Test cases that lead to crashes are moved to a dedicated

directory, while those that exceed a specified timeout are stored in the hangs directory

for further investigation.

CHAPTER 3

54
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

AFL++ maintains a bitmap that tracks code coverage by incrementing indices

corresponding to executed instrumentation points. This bitmap helps the fuzzer to focus

on exploring new execution paths. Test cases that introduce novel paths are prioritized

for further mutation. The fuzzer’s efficiency is reflected in various statistics, including

the number of unique crashes detected and the overall execution speed. By continuously

generating, mutating, and testing inputs, AFL++ effectively uncovers vulnerabilities

and provides insights into the strength of the software under test.

Meanwhile, Honggfuzz is a versatile and powerful security-oriented fuzzer designed

to uncover vulnerabilities in software by using both evolutionary and feedback-driven

fuzzing techniques. It can operate in a multi-process and multi-threaded environment,

allowing it to efficiently utilize all available CPU cores with a single instance. This

scalability and performance optimization makes Honggfuzz particularly effective in

performing extensive fuzzing sessions on a wide range of software targets.

Additionally, Honggfuzz supports both software-based and hardware-based fuzzing

modes, providing users with multiple strategies to enhance code coverage and uncover

hidden bugs.

Honggfuzz detects crashes by monitoring the behavior of the target program as it

processes a series of generated inputs. The fuzzer begins by feeding a set of initial test

cases into the target application. This corpus can be a collection of sample inputs or

even an empty directory for feedback-driven fuzzing. Honggfuzz modifies and mutates

these inputs using various mutation strategies to create new test cases, which are then

executed on the target program. As the program runs, Honggfuzz uses feedback from

the execution to guide further mutations and generate additional inputs. This feedback

mechanism allows Honggfuzz to prioritize test cases that explore new execution paths,

increasing the chances of discovering vulnerabilities.

To monitor and detect crashes, Honggfuzz leverages low-level system interfaces such

as ptrace on Linux and NetBSD, which allow it to intercept and examine the behavior

of the target process during execution. This approach enables Honggfuzz to detect

CHAPTER 3

55
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

abnormal behavior, such as crashes or hangs, that may indicate a security flaw. When

a test case causes the program to crash or behave unexpectedly, Honggfuzz captures

and logs the signal, along with the offending input, and stores this information in a

dedicated directory for further analysis. This method ensures that even sensitive crashes

or errors that might be suppressed or ignored by the application are detected and

recorded.

Moreover, Honggfuzz supports a persistent fuzzing mode, where the target process

remains active and repeatedly executes the fuzzed API. This mode allows for more

efficient testing of functions or APIs that require continuous interaction to expose

vulnerabilities. By maintaining the process state between iterations, Honggfuzz can

achieve high iteration rates, significantly speeding up the fuzzing process. The fuzzer

also includes a feature for automatic corpus management, which involves minimizing

the corpus by removing redundant or ineffective test cases. This continuous refinement

of the input set ensures that Honggfuzz remains focused on the most promising inputs,

thereby maximizing the effectiveness of the fuzzing session.

CHAPTER 3

56
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2.4 Fuzzer Architecture

Figure 3.2.4: Coverage-Guided Fuzzer Architecture

Coverage-guided fuzzing, such as AFL++ and Honggfuzz employs a structured

approach to detect crashes by utilizing a feedback-driven mechanism that iteratively

refines test inputs based on the software's responses. The process begins with the fuzzer

generating a range of test inputs, which are then applied to the target software. If these

inputs cause a failure or crash, the fuzzer records the specific input data that triggered

the issue. This feedback is crucial as it provides insights into how the software behaves

under different conditions, enabling the fuzzer to learn from these interactions and adapt

its testing strategy accordingly. This iterative feedback loop enhances the fuzzer's

ability to uncover hidden and complex vulnerabilities that may not be immediately

apparent through random testing methods.

The architecture of guided fuzzing also includes sophisticated corpus management

and a mutation engine. The seed corpus consists of initial, handcrafted inputs designed

to cover various aspects of the target software, while the live corpus is continually

updated with new, generated inputs during the fuzzing process. Mutators apply different

strategies to these inputs, creating variations that help in exploring new paths and

conditions within the software. By evolving and diversifying the inputs, coverage-

guided fuzzing increases the likelihood of triggering crashes that could reveal

CHAPTER 3

57
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

previously undiscovered vulnerabilities. This dynamic approach ensures that the fuzzer

systematically explores different execution paths, maximizing the chances of

identifying critical bugs.

Feedback analysis and error detection are central to the effectiveness of guided

fuzzing. The fuzzer collects detailed data on the software's behavior in response to each

input, including code coverage metrics, execution traces, and performance data. This

feedback helps in determining whether an input has led to a significant error or crash.

When a crash is detected, the fuzzer records comprehensive information about the

incident, such as the input data, logs, and backtraces, providing valuable insights into

the nature of the vulnerability. This detailed error detection process allows developers

to identify the root causes of crashes and address them effectively.

Finally, the management interface of the guided fuzzing framework facilitates the

coordination and monitoring of the fuzzing process. It enables users to manage and

control various aspects of the testing, including executing individual runs, updating the

corpus, and analyzing errors. The interface also supports the examination of detected

errors and the processing of crash artifacts, ensuring that the fuzzing process is

conducted efficiently and effectively.

CHAPTER 3

58
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2.5 Detailed Fuzzing Architecture in FOT

Figure 3.2.5: Detailed Fuzzing Architecture in FOT [54]

• The Overall Manager is the central component responsible for coordinating

the multi-threaded parallel fuzzing operations. It manages the workload

distribution among worker threads and handles the import of seed inputs from

external sources, such as symbolic executors like KLEE. The manager's

configurability allows users to select different management strategies, and its

extensibility supports integration with various seed generation tools, enhancing

the fuzzer's adaptability and scalability.

• The Seed Scorer plays a crucial role in prioritizing seeds and scheduling their

mutation. It evaluates seeds based on a selected scoring strategy and decides

how many new inputs should be generated from each seed. This component's

configurability allows users to choose from several built-in scoring methods or

develop custom strategies, while its extensibility enables the implementation of

personalized seed scoring approaches.

• The Mutation Manager handles the application of mutation operators to the

selected seeds. It supports both random and predefined grammar-based

mutations. This component is configurable, providing a range of mutation

operators for users to select according to their needs. It is also extensible,

allowing users to add their own mutation operators to tailor the fuzzing process

to specific requirements.

• The Executor is responsible for running the Program Under Test (PUT). It

offers configurability, such as the option to enable or disable the use of

forkserver, and can be extended to accommodate different testing scenarios. For

example, users can add secondary executors for differential testing of multiple

PUTs.

CHAPTER 4

59
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

System Design

This chapter details the structural design and core components of the proposed

automated vulnerability assessment system. It begins with a high-level block diagram

that outlines the major functional modules and their interactions. Each system

component, ranging from the user interface and fuzzing dispatcher to the fuzzing

engines and result aggregator, is described in terms of its role and technical

specifications. The chapter also covers the integration of a large language model (LLM)

for CVE-style report generation, explaining how crash data is transformed into

structured vulnerability descriptions. Finally, component interaction and data operation

flows are presented to illustrate how information moves through the system, enabling

seamless vulnerability detection, reporting, and mitigation.

4.1 System Block Diagram

The system block diagram serves as a top-down architectural overview of the Multi-

Fuzzer Chatbot System. This diagram illustrates the structural and functional

relationships between key modules, starting from the user interface to the core multi-

fuzzing logic, result analysis, and final reporting. The system is organized into six

logical layers, each dedicated to a specific aspect of the workflow. These layers operate

sequentially, with data flowing from top to bottom and feedback or output rendered

back to the user.

Each block in the diagram is designed with modularity and scalability in mind, allowing

for clear separation of concerns and streamlined integration of future improvements.

The description below details the role of each block and the data flow between them.

CHAPTER 4

60
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.1.1: Overall Block Diagram of Multi-Fuzzer Platform for Automated

Vulnerability Assessments

CHAPTER 4

61
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.1.2: User Interface Block Diagram

The User Interface (UI) Block is the front-facing gateway for users to interact with

the fuzzing system. It is designed with accessibility and usability in mind, integrating

multiple modules that together streamline the end-user experience:

• Account Management: This component governs user registration,

authentication, and security protocols, including two-factor authentication

(2FA). It ensures that only verified users can access the system, protecting

sensitive data and operations.

• File Upload Module: This module allows users to upload binary executables

or other software artifacts for vulnerability testing. Uploaded files are subjected

to initial client-side validation before being handed off to the processing

pipeline.

• Chatbot Interaction Panel: This interactive console integrates an AI assistant

(powered by a pretrained LLM), enabling users to query real-time progress,

request explanations of vulnerabilities, and receive guidance on configuration

or mitigation.

• Results Display: This module is responsible for rendering output in both textual

and visual formats. It receives structured data from downstream blocks and

presents CVE-like reports, charts, and actionable suggestions in a digestible

format.

Functional Role:

This layer captures all user-driven events and input. It serves as both the starting point

and the final feedback terminal in the system workflow. Commands and data collected

here are transmitted to the processing engine for fuzzing and analysis.

CHAPTER 4

62
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.1.3: Upload & Control Layer Block Diagram

The Upload & Control Layer functions as the system’s middleware, bridging frontend

inputs with backend operations. It handles task preparation, validation, and control

logic:

• Submission Handler: Validates uploaded binaries for correctness, format, and

compatibility with selected fuzzing engines. It also generates metadata

associated with each file (e.g., filename, size, upload timestamp) to aid in

processing.

• Fuzzing Dispatcher: Based on the user's configuration (engine selection, time

constraints, mutation strategies), this component initializes fuzzing jobs. It

allocates resources and schedules execution threads to AFL++ and/or

Honggfuzz engines in parallel.

• Results Router: Gathers output files, crash logs, and metadata from the fuzzers.

It ensures that each data packet is correctly channeled to the aggregation and

analysis layers downstream.

Functional Role:

This layer ensures operational coherence between the UI and core fuzzing logic. It is

critical for managing task lifecycles, orchestrating engine behavior, and routing data

without loss or misconfiguration.

Figure 4.1.4: Fuzzing Engines Block Diagram

CHAPTER 4

63
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The Fuzzing Engines Block is the core computational unit responsible for vulnerability

discovery through dynamic testing. It supports parallel execution of different fuzzers:

• AFL++ Engine: A highly optimized coverage-guided fuzzer. It uses genetic

algorithms to mutate inputs and detect diverse execution paths that may contain

vulnerabilities such as buffer overflows or memory corruption.

• Honggfuzz Engine: A complementary fuzzer that supports both black-box and

white-box fuzzing. It includes features such as persistent mode, software-based

fault injection, and feedback-based instrumentation.

Each engine is provided with mutated test cases from the dispatcher. They run these

inputs in sandboxed environments, collecting metrics like instruction coverage, edge

coverage, crash signals, and execution time.

Functional Role:

This layer performs intensive computation to identify software vulnerabilities by

executing thousands of mutated inputs and observing the target program’s behavior.

The outputs here are crash data and coverage logs forwarded to the next layer for

aggregation.

Figure 4.1.5: Result Aggregation and Crash Processing Block Diagram

The Result Aggregation and Crash Processing Block is responsible for collecting,

deduplicating, and structuring fuzzing results from the engines. It acts as a filtration and

formatting step before deep analysis:

• Crash Aggregator: Receives crash reports from both fuzzers and removes

duplicate crashes caused by the same bug. It groups crashes by signal, stack

trace similarity, and memory access patterns to avoid redundant analysis.

CHAPTER 4

64
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• Preprocessing Unit: Converts aggregated crash data into a standardized format

suitable for AI analysis. This may include extracting instruction pointers,

memory addresses, crash logs, and affected function names.

Functional Role:

This layer reduces noise and computational overhead by filtering unnecessary or

duplicate crash entries. It produces structured and meaningful datasets that serve as

input to the vulnerability interpretation engine.

Figure 4.1.6: CVE-like Report Generation Block Diagram

The CVE-like Report Generation Block interprets crash data and automatically

transforms it into actionable vulnerability reports using machine learning models:

• LLM-based Report Generator: Utilizes a pretrained Large Language Model

(LLM) fine-tuned for cybersecurity tasks. It analyzes crash data and synthesizes

reports in a format similar to industry-standard CVE entries, including fields

like vulnerability type, severity, affected component, and possible impact.

• Mitigation Recommender: Builds on the LLM output to suggest relevant fixes.

These may include input validation, memory access bounds enforcement,

patching references, or static code instrumentation techniques.

Functional Role:

This block provides context and insights. It transforms low-level machine crashes into

high-level descriptions and remediation strategies, helping users understand and

address software vulnerabilities quickly.

CHAPTER 4

65
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.1.7: Reporting and Visualization Block Diagram

The Reporting and Visualization Block is the system’s final output interface, turning

analysis into visually interpretable formats:

• Report Formatter: Takes the LLM-generated CVE-like entries and formats

them into coherent technical documentation. It ensures clarity, sectioning (e.g.,

Summary, Root Cause, Impact, Suggested Fixes), and readability.

• Visualization Tool: Renders interactive charts, bar graphs, heatmaps, and trend

lines to represent key statistics such as fuzzing coverage, number of unique

crashes, and mitigation effectiveness. It enhances understanding for both

technical and non-technical users.

Despite the absence of persistent storage, this block leverages in-memory data

structures to display reports and visuals in real time. The outputs are routed back to the

Results Display section of the UI, completing the feedback loop.

Functional Role:

This layer maximizes usability and interpretability of complex results. It bridges

technical output and user experience, empowering decision-making through clarity and

interaction.

CHAPTER 4

66
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2 System Components Specifications

This section presents the technical specifications and key components that form the

foundation of the developed fuzzing-based automated vulnerability assessment system.

Each module in the architecture is carefully selected and configured to ensure efficient

fuzzing, crash analysis, and vulnerability reporting.

AFL++ and Honggfuzz

The system utilizes two prominent fuzzing engines, AFL++ and Honggfuzz, to

maximize code coverage and increase the likelihood of discovering runtime

vulnerabilities. Both tools are deployed in a virtualized environment running Ubuntu

22.04, enabling compatibility, reproducibility, and sandboxed testing.

AFL++ is operated in QEMU mode, which allows for binary-only fuzzing without

requiring source code instrumentation. This is particularly beneficial when handling

third-party or closed-source binaries. Honggfuzz is configured to operate through

standard input, offering an efficient method of feeding test cases directly into the target

application.

To enhance fuzzing accuracy and depth, both engines rely on a combination of custom

and general seed files. Custom seeds are designed for specific binary formats or edge

cases, while general seeds provide broader test coverage. The fuzzers use their native

input mutation algorithms to automatically generate variations of the seeds and attempt

to trigger anomalous behaviors, including memory corruption, crashes, and logic errors.

Fuzzing Dispatcher

The Fuzzing Dispatcher acts as the operational brain of the system, orchestrating the

fuzzing tasks and managing system resources. When a user initiates a fuzzing session

through the interface, the dispatcher redirects the selected binary to an execution

environment where either or both fuzzers are launched. To optimize performance

within the resource constraints of the virtual machine, the dispatcher limits

simultaneous sessions to a maximum of four concurrent fuzzing jobs.

CHAPTER 4

67
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

As binaries are submitted, the dispatcher manages their execution based on resource

availability. Users are allowed to open multiple tabs to initiate fuzzing jobs, which are

executed in parallel up to the defined system limit. Input selection and mutation are

entirely handled by the respective fuzzers, ensuring minimal overhead and tight

integration with each tool's internal logic.

Result Aggregator

Crash detection and reporting are handled by the Result Aggregator, which consolidates

outputs from both AFL++ and Honggfuzz. When a crash is detected, AFL++ logs are

parsed to extract crash signatures, while Honggfuzz's output is reviewed by capturing

the last 30 lines of its continuously updated report file—where recent crashes are

appended.

The aggregator merges the extracted information into a single, structured text file,

which is saved in a predefined crash directory on the system. To maintain focus on the

most recent findings, previous crash reports are automatically removed once new data

is stored. Each aggregated crash report is then converted into a structured JSON

format, capturing relevant technical details and context. This JSON file becomes the

input for the downstream LLM analysis.

LLM Engine

At the core of the vulnerability interpretation workflow is a Large Language Model

(LLM) powered by OpenAI’s GPT-3.5 Turbo. This model is accessed through a

custom-built PHP interface and receives the structured JSON crash data alongside a

tailored prompt. The prompt instructs the LLM to:

• Interpret the technical details of the crash.

• Generate a CVE-style report that classifies the vulnerability.

• Recommend possible mitigation strategies.

In addition, the system maintains a predefined mapping of known vulnerabilities to

Bash-based mitigation scripts. If the LLM identifies a vulnerability and suggests a

CHAPTER 4

68
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

matching keyword, a mitigation button is automatically generated in the user interface.

When clicked, this triggers the relevant script to apply the recommended fix directly to

the system.

Temporary File-Based Storage

Instead of using a traditional database, the system employs file-based storage for

simplicity and speed. All crash reports, logs, and LLM inputs/outputs are stored as

structured text files in organized directories. This lightweight approach is sufficient for

the scope of the project and ensures that crash data is always accessible in a readable,

traceable format.

The storage logic is designed to maintain only the latest valid crash report for each

session, avoiding clutter and confusion. This also ensures that the LLM always analyzes

the most up-to-date information.

Visualization and User Feedback

User feedback is delivered through a chatbot-style interface developed using PHP and

JavaScript. Once the LLM processes a crash report, it presents the vulnerability

summary and proposed mitigations via conversational text. If a recommended

mitigation is available, a button is shown to allow immediate remediation through an

underlying Bash script.

The outcome of these scripts is presented using structured before-and-after

comparisons. For example, in the case of a disk space exhaustion vulnerability, the

chatbot may report a reduction in disk usage from 99% to 60% post-mitigation. This

form of direct visual confirmation helps users quickly understand the impact and

success of the applied solution.

While the system currently focuses on textual visualizations, it is designed with

flexibility for future integration of interactive charts or graphs to enhance reporting.

CHAPTER 4

69
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.3 LLM Architecture and CVE Generation Design

4.3.1 LLM architecture diagram

Figure 4.3.1: Emerging Architecture for LLM Applications [55]

The architecture of Large Language Models (LLMs) is a complex and multilayered

structure, designed to process and generate text with remarkable accuracy and fluency.

At its core, an LLM consists of several key layers, each playing a specific role in

handling and transforming the input data. The process begins with embedding layers,

where the input text is converted into numerical representations called embeddings.

These embeddings capture the semantic meaning of words, allowing the model to

operate on numerical data rather than raw text. However, since LLMs must understand

not just the words themselves but also the order in which they appear, positional

encoding is applied. This technique assigns position-based values to each token,

helping the model recognize the sequential nature of the text.

The architecture further includes attention layers, particularly the self-attention

mechanism, which allows the model to focus on the most relevant parts of the input

sequence. By weighing the importance of different words based on their context, the

model can capture intricate relationships between words, regardless of their position in

the sentence. Following the attention mechanism, the data passes through feedforward

layers neural networks that further refine the model’s understanding by adding depth

and complexity to the representations. Finally, the output layer generates the final

CHAPTER 4

70
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

predictions or text, completing the transformation from raw input to meaningful

language output. This layered approach enables LLMs to handle a wide range of

language processing tasks, from text generation to translation and summarization.

4.3.2 Transformer Architecture

Figure 4.3.2: Transformer Architecture [55]

The transformer architecture is a pivotal advancement in the field of language

processing, particularly in the development of LLMs. Introduced in 2017, transformers

revolutionized how models handle sequential data by relying solely on self-attention

mechanisms, eliminating the need for recurrent neural networks. The process begins

with input embeddings, where the text is converted into numerical data, followed by

positional encoding to maintain the order of words in a sentence. The most significant

feature of transformers is the multi-head self-attention mechanism. This allows the

model to analyze different parts of the input text simultaneously, capturing various

relationships and traces within the sequence. Each attention head focuses on different

aspects of the input, and their outputs are combined to provide a comprehensive

understanding.

CHAPTER 4

71
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

In addition to self-attention, the transformer architecture employs feedforward layers

to process the data further, adding non-linear transformations that enhance the model’s

understanding. To ensure stable training and preserve the quality of data as it passes

through multiple layers, transformers incorporate layer normalization and residual

connections. These features help maintain the integrity of the information, making the

training process more efficient and effective. The final output layer generates the

model’s predictions or textual outputs, showcasing the model’s ability to transform raw

data into coherent and contextually accurate language.

4.3.3 Writing CVEs Based on Crash Reports Using LLMs

When tasked with writing a Common Vulnerabilities and Exposures (CVE) report

based on a crash report, LLMs follow a structured approach. The process begins with

a thorough analysis of the crash report, which typically includes details about the

software’s behavior, error messages, and any relevant data that led to the crash. The

LLM parses this information to identify key elements, such as the nature of the error,

the affected components, and the potential security implications. This initial analysis

is crucial for understanding the context and severity of the vulnerability.

Once the model has a clear understanding of the crash report, it employs its attention

mechanisms to examine the relationships between different pieces of information. For

instance, it might focus on how a buffer overflow in a particular function could lead to

a security breach or how improper input validation could expose the system to attacks.

By understanding these connections, the LLM can generate a detailed description of

the vulnerability. This description typically includes an outline of the flaw, the

affected software versions, and the potential impact if the vulnerability is exploited.

The LLM might also suggest mitigation steps or patches, drawing on its training from

similar cases and established security best practices.

Finally, the generated CVE report undergoes refinement, ensuring that the language is

clear, accurate, and adheres to the standard CVE format. The final product is a well-

structured report that provides security professionals with the necessary information

CHAPTER 4

72
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

to address the vulnerability effectively. Through this process, LLMs leverage their

advanced language understanding and contextual analysis capabilities to transform

raw crash data into actionable security insights, playing a crucial role in identifying

and mitigating potential threats in software systems.

The diagram below illustrates the end-to-end pipeline from a binary input to the

generation of CVE reports and recommendations. This visual representation

summarizes the key transformation stages, starting from the user's uploaded binary

file, through fuzzing and crash detection, to the generation of vulnerability reports and

recommended mitigation.

Figure 4.3.3: End-to-End Transformation Flow

CHAPTER 4

73
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1. Uploaded Binary (.exe/.bin/.elf):

The process begins when a user uploads a compiled executable or binary file to the

system. These files are typically in .exe or .bin format and represent the software artifact

to be tested.

2. Fuzzing Engine (AFL++ / Honggfuzz):

The uploaded binary is passed to the fuzzing engine—either AFL++ or Honggfuzz—

which generates and mutates test inputs to trigger abnormal behaviors such as crashes

or memory violations. The fuzzer monitors for unexpected behavior during execution.

3. Raw Crash Log:

If a crash or fault occurs during fuzzing, the fuzzer captures detailed crash logs, which

include information such as signal type (e.g., SIGSEGV, SIGABRT), affected function

names, source code line numbers, and crash types (e.g., heap-buffer-overflow).

4. LLM Crash-to-CVE Transformation Module:

The raw crash log is sent to the large language model (LLM), which parses and

interprets the crash data. The LLM uses predefined templates and vulnerability

knowledge to map symptoms to known vulnerability patterns and formats the output in

a CVE-like structure.

5. Structured CVE Report Generation:

The transformed output includes a formalized CVE entry containing metadata such as

vulnerability type, affected function, severity score (e.g., CVSS), and description of the

impact.

6. Vulnerability Detection & Summary:

The CVE data is processed and displayed to the user in a readable report format. This

stage helps the user understand the nature, location, and impact of the vulnerability

without needing to interpret raw crash logs.

7. Recommended Mitigation / Bash Script:

Based on the type of vulnerability, the system also generates a recommended fix or

patch. In some cases, this includes a Bash script or code snippet that can be executed to

apply a temporary or permanent mitigation.

CHAPTER 4

74
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.3.4 Crash Log to CVE: Sample Conversion Flow

To better illustrate the functionality of the LLM in generating CVEs from crash reports,

the following is a practical example showing each step of the transformation:

Sample Raw Crash Log

Parallel Fuzzing Report (AFL++ and Honggfuzz)

===

Start Time: 2025-05-01 15:32:04

Duration: 30 minutes

Target Program: testdisk

AFL++ Output Directory: /home/einjun/AFLplusplus/output1_2025-05-01_15-32-04

Honggfuzz Output Directory:

/home/einjun/Desktop/outputhonggfuzz/outputhonggfuzz_2025-05-01_15-32-04

===

AFL++ Configuration:

Input Directory: /home/einjun/AFLplusplus/inputdisk

Output Directory: /home/einjun/AFLplusplus/output1_2025-05-01_15-32-04

Command: afl-fuzz -Q -i /home/einjun/AFLplusplus/inputdisk -o

/home/einjun/AFLplusplus/output1_2025-05-01_15-32-04 -t 5000+ --

/home/einjun/AFLplusplus/testdisk

Honggfuzz Configuration:

Input Directory: /home/einjun/AFLplusplus/inputdisk

Output Directory: /home/einjun/Desktop/outputhonggfuzz/outputhonggfuzz_2025-05-

01_15-32-04

Command: honggfuzz -i /home/einjun/AFLplusplus/inputdisk -o

/home/einjun/Desktop/outputhonggfuzz/outputhonggfuzz_2025-05-01_15-32-04 -t 5 -

s -- /home/einjun/AFLplusplus/testdisk

======================

Starting AFL++ at 2025-05-01 15:32:04

AFL++ process started with PID: 16508

Starting Honggfuzz at 2025-05-01 15:32:04

Honggfuzz process started with PID: 16510

2025-05-01 15:32:07 - Fuzzing for 0m 3s out of 30m

2025-05-01 15:32:10 - Fuzzing for 0m 6s out of 30m

=====================================

Combined Fuzzing Crash Report

=====================================

Crash Source: AFL++

Target Program: testdisk

Total Runtime: 9 seconds

CHAPTER 4

75
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Report Generated: 2025-05-01 15:32:14

=====================================

AFL++ Crash Information

=====================================

Time of Detection: 2025-05-01 15:32:13

Crash Files Found:

File: id:000000,sig:11,src:000000,time:6877,execs:2836,op:havoc,rep:3

Size: 11 bytes

SHA256:

e2bab53a0d59c6b8577271e1bb52e95a77b07701bff4ce53b87dabd5e2e3ebb5

Hexdump:

00000000: 6372 6173 680a 6868 6861 73 crash.hhhas

Stack Trace:

Reading symbols from /home/einjun/AFLplusplus/testdisk...

(No debugging symbols found in /home/einjun/AFLplusplus/testdisk)

(gdb) Starting program: /home/einjun/AFLplusplus/testdisk <

/home/einjun/AFLplusplus/output1_2025-05-01_15-32-

04/default/crashes/id:000000,sig:11,src:000000,time:6877,execs:2836,op:havoc,rep:3

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".

[Detaching after vfork from child process 23689]

fallocate: fallocate failed: No space left on device

[Detaching after vfork from child process 23711]

fallocate: fallocate failed: No space left on device

Memory allocation failed: Cannot allocate memory

[Detaching after vfork from child process 23723]

Program received signal SIGSEGV, Segmentation fault.

0x00005555555552ef in cause_effect ()

(gdb) #0 0x00005555555552ef in cause_effect ()

#1 0x0000555555555389 in main ()

(gdb) A debugging session is active.

 Inferior 1 [process 23509] will be killed.

Quit anyway? (y or n) [answered Y; input not from terminal]

AFL++ Fuzzer Statistics:

start_time : 1746084724

last_update : 1746084724

run_time : 0

fuzzer_pid : 16508

cycles_done : 0

cycles_wo_finds : 0

CHAPTER 4

76
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

time_wo_finds : 0

fuzz_time : 0

calibration_time : 0

cmplog_time : 0

sync_time : 0

trim_time : 0

execs_done : 57

execs_per_sec : 11400.00

execs_ps_last_min : 0.00

corpus_count : 8

corpus_favored : 1

corpus_found : 0

corpus_imported : 0

corpus_variable : 0

max_depth : 1

cur_item : 0

pending_favs : 0

pending_total : 1

stability : 100.00%

bitmap_cvg : 0.04%

saved_crashes : 0

saved_hangs : 0

last_find : 0

last_crash : 0

last_hang : 0

execs_since_crash : 57

exec_timeout : 5000

slowest_exec_ms : 0

peak_rss_mb : 0

cpu_affinity : 0

edges_found : 25

total_edges : 65536

var_byte_count : 0

havoc_expansion : 0

auto_dict_entries : 0

testcache_size : 6

testcache_count : 1

testcache_evict : 0

afl_banner : /home/einjun/AFLplusplus/testdisk

afl_version : ++4.22a

target_mode : qemu shmem_testcase

command_line : /home/einjun/AFLplusplus/afl-fuzz -Q -i

/home/einjun/AFLplusplus/inputdisk -o /home/einjun/AFLplusplus/output1_2025-05-

01_15-32-04 -t 5000+ -- /home/einjun/AFLplusplus/testdisk

=====================================

End of Report

=====================================

CHAPTER 4

77
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Crashes found! Check report at:

/home/einjun/AFLplusplus/logs/parallel_fuzzing_2025-05-01_15-32-04_report.txt

Terminating fuzzers due to crash detection

AFL++ PID: 16508

Honggfuzz PID: 16510

LLM-Generated CVE Description

==========================CVE Report ==========================

Program Name : testdisk

Vulnerability Name : Memory Corruption leading to Segmentation Fault

Description : The crash report indicates a segmentation fault (SIGSEGV) caused by

memory corruption in the testdisk program. The issue occurs when the program

attempts to access or modify memory locations that it is not supposed to, leading to a

crash.

Impact : Exploiting this vulnerability could potentially allow an attacker to execute

arbitrary code, cause a denial of service, or gain unauthorized access to sensitive

information.

CVSS Score : 7.5

Affected Component : Cause_effect function in the testdisk program

==

CHAPTER 4

78
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LLM-Suggested Mitigation

Recommendations:

Code Changes Required: Implement proper input validation checks and boundary

controls in the cause_effect function to prevent memory corruption issues. Use safe

memory handling functions and perform thorough testing to ensure no vulnerabilities

remain.

===

Mitigation Link:

AddressSanitizer (ASan) can be installed to detect various memory errors like buffer

overflows, use-after-free, and other memory corruption issues at runtime. By using

ASan during development and testing, developers can identify and fix memory-related

vulnerabilities early in the software development lifecycle.

===

DISK_FLOODING_ATTACK_MITIGATION Status: Successfully removed

vulnerable file.

==

Starting Disk Flood Attack Mitigation Tool

==

Scanning for large files in /tmp...

--

Disk space before operation:

Filesystem Size Used Avail Use% Mounted on

/dev/sda2 50G 47G 499M 99% /

--

Setting permissions and ownership for safe deletion...

--

Removing /tmp/fuzz_test to free up space...

Success: Disk space has been freed!

--

Disk space after operation:

Filesystem Size Used Avail Use% Mounted on

/dev/sda2 50G 29G 19G 61% /

--

==

Disk Flood Attack Mitigation Complete

==

CHAPTER 4

79
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Explanation of LLM Transformation Process

The transformation of a raw crash log into a structured CVE entry by the LLM involves

a multi-stage process, outlined as follows:

• Input Parsing: The LLM begins by tokenizing and interpreting the raw crash

log to extract critical metadata, including the type of vulnerability (e.g., heap-

buffer-overflow), the function involved (parse_data), and the exact location

within the source code (main.c:88). This step provides the foundational context

for further analysis.

• Contextual Analysis: Leveraging its pretrained knowledge on vulnerability

patterns and security incidents, the LLM identifies the nature of the flaw and its

implications. For example, it understands that reading beyond allocated

memory constitutes a buffer overflow, which may lead to program crashes or

arbitrary code execution.

• Structured CVE Generation: Utilizing standardized templates and domain-

specific heuristics, the LLM constructs a comprehensive CVE description. This

includes detailing the vulnerability, identifying affected components, assigning

a severity score (e.g., CVSS), and suggesting appropriate mitigation strategies.

• Formatting and Finalization: Finally, the generated report is refined to adhere

to CVE documentation standards. All placeholders are populated with extracted

or inferred values, ensuring the output is both technically accurate and suitable

for integration into vulnerability tracking systems.

CHAPTER 4

80
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.4 System Component Interaction & Data Operations

This section explains how the core components of the system interact with one another

and how data flows throughout the system from user input to vulnerability identification

and mitigation. These interactions are structured to maximize modularity, enable

automation, and ensure seamless data handling between each component.

The figure below illustrates the complete interaction and data flow between system

components, beginning from the user interface and ending with vulnerability reporting

and mitigation execution. It encapsulates the flow of data through the Fuzzing

Dispatcher, Fuzzing Engines (AFL++ and Honggfuzz), Result Aggregator, LLM-based

CVE Generator, and Mitigation Engine, all the way to the feedback and visualization

layer presented to the user.

Figure 4.4: System Component Data Flow and Interaction Diagram

4.4.1 User Interface to Fuzzing Dispatcher

The interaction begins when a user accesses the system through the web-based user

interface, developed using PHP and JavaScript. The user uploads a binary file for

testing. Upon submission, the interface communicates with the Fuzzing Dispatcher,

which handles task scheduling and manages the fuzzing workflow.

Once a file is submitted, the Fuzzing Dispatcher evaluates available system resources.

If the number of concurrent fuzzing tasks is below the defined threshold (maximum of

four), the dispatcher initiates a new fuzzing session. If the system is at capacity, new

sessions are queued and users are notified via the interface.

CHAPTER 4

81
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.4.2 Fuzzing Dispatcher to Fuzzing Engines

The Fuzzing Dispatcher invokes both integrated fuzzing engines, AFL++ and

Honggfuzz based on user selection and task type. Binaries are fuzzed using the

following modes:

• AFL++: Uses QEMU mode to support binary-only fuzzing without source code

instrumentation.

• Honggfuzz: Operates via standard input to provide rapid execution with custom

seed files.

Each fuzzer uses its internal mutation engine to manipulate input seed files and feed

malformed or edge-case inputs into the target binary to trigger unexpected behaviors

such as crashes or logic faults.

4.4.3 Fuzzing Engines to Result Aggregator

As the fuzzing engines run, they generate reports, logs, and crash information. When a

crash occurs:

1. AFL++ writes crash logs and meta-info into a structured directory.

2. Honggfuzz appends crash data to a continuously updated crash file.

The Result Aggregator periodically monitors these outputs. When a valid crash is

identified, it performs a deduplication process:

1. AFL++ crash information is extracted based on the initialized fuzzing report

structure.

2. The last 30 lines of Honggfuzz’s crash log are captured, as new crashes are

appended at the end.

3. The two reports are merged into a unified text format and saved into a dedicated

crash directory.

4. To maintain focus on the most recent analysis, the system deletes previous crash

logs once the latest one is saved.

CHAPTER 4

82
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The combined crash report is then transformed into a structured JSON file containing

metadata such as the crash location, input seed that caused the failure, and affected

components.

4.4.4 JSON Report to LLM Engine

Once the JSON-formatted crash report is ready, it is submitted to a Large Language

Model (LLM), specifically OpenAI’s GPT-3.5 Turbo through a backend PHP-based

API integration.

The LLM is prompted to analyze the structured crash data and generate:

• A CVE-style report detailing the nature of the vulnerability.

• A vulnerability classification (e.g., buffer overflow, logic bug, memory leak).

• Mitigation strategies, based on predefined vulnerability-to-script mappings.

The LLM output is returned to the interface, where it is parsed and prepared for user

presentation.

4.4.5 Interface Display and Mitigation Execution

The web interface receives the LLM's output and displays it through a chatbot-like

interface. The vulnerability report includes technical summaries and suggested

mitigations. If a recommended mitigation corresponds to one of the system’s pre-

scripted Bash remediation scripts, a "Mitigate" button is shown.

When the user clicks this button:

• The corresponding Bash script is executed.

• A loading indicator is displayed to reflect progress.

• Once completed, the system presents a before-and-after visualization, such as

reduced disk usage, permission changes, or sandbox activation, depending on

the vulnerability addressed.

CHAPTER 4

83
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

This mechanism creates a highly interactive and automated vulnerability mitigation

flow for the end user.

4.4.6 Summary of Data Operations

To summarize, the system handles data through the following structured flow:

1. Binary Upload & Task Initiation: User uploads file and initiates fuzzing

process.

2. Task Scheduling & Execution: Fuzzing Dispatcher assigns the binary to

selected engines.

3. Crash Detection: Engines generate logs and crash reports upon encountering

vulnerabilities.

4. Data Consolidation & Structuring: Result Aggregator merges and formats

crash reports into JSON.

5. Vulnerability Analysis: LLM interprets crash data and generates human-

readable CVE-like outputs.

6. User Notification & Action: Interface presents the findings and enables direct

mitigation actions.

CHAPTER 5

84
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

System Implementation

This chapter explains how the proposed system was practically implemented, covering

the complete setup from hardware selection to full system operation. It begins with the

hardware and software environment used to run the application, followed by detailed

configuration steps including environment variables, directory structure, and

integration of bash scripts with the PHP-based frontend and LLM engine. The system

operation section walks through the full user workflow from registration and binary

upload to fuzzing, crash detection, CVE generation, and mitigation actions. Common

implementation challenges such as inconsistent fuzzer behavior, file permission issues,

and frontend integration difficulties are also discussed, providing insight into the

practical obstacles and solutions encountered during development.

5.1 Hardware Setup

For this project focused on automated vulnerability assessments using a multi-fuzzer

setup, the hardware environment centers around the use of a personal laptop. The laptop

serves as the primary development and testing platform. Table 5.1 outlines the

specifications of the hardware used.

Table 5.1: Specifications of Laptop

Description Specifications

Model Asus UX425EA Zenbook series

Processor Intel® Core™ i7-1165G7 Processor 2.8 GHz (12M Cache, up

to 4.7 GHz, 4 cores)

Operating System Windows 11

Graphic Intel Iris Xᵉ Graphics

Memory 8GB LPDDR4X on board

Storage 512GB M.2 NVMe™ PCIe® 3.0 SSD

This hardware configuration provides a reliable and efficient base for conducting

extensive software-based testing, fuzzing operations, and system automation.

CHAPTER 5

85
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.2 Software Setup

To develop, configure, and run fuzzing tasks for binary files, several software tools

were installed and prepared within a virtualized Linux environment. The following

subsections detail the software stack and corresponding setup procedures.

5.2.1 Software

1. Ubuntu Operating System (Version: 24.04)

2. Fuzzing Tools

a. AFL++ (Version: 4.22a)

b. Honggfuzz (Version: 2.6)

3. Development Tools

a. GCC (GNU Compiler Collection)

b. Make

4. Version Control System

a. Git (Version: 1:2.43.0)

5. Automation & Scripting Tools

a. Bash

b. PHP

c. JavaScript

6. Additional Build Tools

a. CMake (Version: 3.28.3)

5.2.2 Configuration and Environment Setup

1. Ubuntu System Update and Package Installation

To begin, update the Ubuntu system to ensure all packages are up-to-date and secure.

This involves using the apt package manager to update the list of available packages

and upgrade any outdated ones. Essential build tools, such as build-essential, git,

cmake, and python3-pip, are then installed to facilitate the compilation of software

and management of the development environment.

CHAPTER 5

86
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Install essential build tools:

• sudo apt update

• sudo apt upgrade

• sudo apt install build-essential git cmake python3-pip

Figure 5.2.2.1: Ubuntu System Update and Package Installation

2. Installing AFL++:

AFL++ (American Fuzzy Lop Plus Plus) is a powerful fuzzing tool required for this

project. To install it, clone the AFL++ repository from GitHub and compile it from

source [56]. The installation is finalized by running the make commands to build and

install AFL++ and its associated tools. If fuzzing ELF binaries with QEMU mode is

required, set the AFL_PATH environment variable to the AFL++ installation path.

Clone the AFL++ repository and compile the fuzzer with QEMU support:

• git clone https://github.com/AFLplusplus/AFLplusplus.git

• cd AFLplusplus

• make all

• sudo make install

• make distrib QEMU_BUILD=1

CHAPTER 5

87
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.2.2.2: AFL++ Installation

3. Installing Honggfuzz:

Honggfuzz is another crucial fuzzing tool used in parallel with AFL++. Similar to

AFL++, the installation involves cloning the Honggfuzz repository from GitHub and

compiling it [57]. The make command is used to build and install Honggfuzz. This

fuzzer provides additional mutation strategies and crash detection capabilities,

complementing AFL++ and enhancing the fuzzing process.

Clone the Honggfuzz repository and compile the fuzzer:

• git clone https://github.com/google/honggfuzz.git

• cd honggfuzz

• make sudo

• make install

Figure 5.2.2.3: Honggfuzz Installation

CHAPTER 5

88
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3 Setting and Configuration

After installing all required software components, several configurations were

performed to ensure seamless interaction between system modules and efficient

operation of the fuzzing workflows. This includes environment variable setup, directory

linking, user interface integration, and resource allocation.

5.3.1 Environment Variables

To enable AFL++ to operate in QEMU mode for binary fuzzing, the following environment

variable was set:

• Export AFL_PATH=/path/to/AFLplusplus

Figure 5.3.1: Internal Configuration and Binary Paths of AFL++

This ensures that AFL++ uses the correct internal configuration and binary paths during

execution.

5.3.2 Directory Structure Integration

For efficient management of fuzzing tasks and related outputs, the following directory

structure was created. This organization ensures that input data, results, and logs are

separated for easy access, analysis, and troubleshooting.

Directory Setup Overview:

The system was configured to use dedicated directories for various components of the

fuzzing process. Below is an outline of the directory structure and its respective roles:

1. Input Directory:

• Stores the initial seed files and corpus data used by the fuzzing engines to

generate test cases.

CHAPTER 5

89
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• Seed files are necessary for AFL++ and Honggfuzz to start the fuzzing process.

These are usually small inputs that test different program behaviors or common

vulnerabilities.

o mkdir ~/AFLplusplus/input

Figure 5.3.2.1: Target Corpus Data Directory

Figure 5.3.2.2: Test Cases Corpus Data Directory

CHAPTER 5

90
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2. Output Directory:

• Stores fuzzing results, including any crashes, error logs, or coverage data

generated by AFL++ and Honggfuzz.

• Crash logs are organized here and later processed by the Result Aggregator for

deduplication and reporting.

o mkdir ~/AFLplusplus/output

Figure 5.3.2.3: Output Crash Directory

3. Binary Directory:

• Holds the target binaries (e.g., downloaded from sources like PicoCTF) and test

cases that are to be fuzzed.

• This directory contains all the compiled programs that are analyzed for

vulnerabilities during fuzzing.

o mkdir ~/Downloads/ (37 target binaries from picoCTF website [58])

Figure 5.3.2.4: Target Application Directory

Figure 5.3.2.5: Test Cases Application Directory

CHAPTER 5

91
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4. Crash Reports Directory:

• Stores the combined crash logs generated by the fuzzers (AFL++ and

Honggfuzz). These logs contain detailed information about crashes or program

behavior that could indicate vulnerabilities.

o Crash logs by AFL++

Figure 5.3.2.6: AFL++ Crash Logs

CHAPTER 5

92
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

o Crash logs by Honggfuzz

Figure 5.3.2.7: Honggfuzz Crash Logs

• A specific script combines crash logs from both fuzzers and formats them into

structured JSON files for further analysis by the LLM Engine.

o Combined crash logs by AFL++ and Honggfuzz

Figure 5.3.2.8: Combined Crash Report from Both Fuzzers (Section 1)

CHAPTER 5

93
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.2.9: Combined Crash Report from Both Fuzzers (Section 2)

CHAPTER 5

94
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.2.10: Combined Crash Report from Both Fuzzers (Section 3)

CHAPTER 5

95
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3.3 Bash Script Configuration

To streamline the operation of the multi-fuzzer system and reduce manual intervention,

a set of Bash scripts was developed to automate key processes in the pipeline. These

scripts serve as backend logic to connect fuzzing outputs with vulnerability analysis

and mitigation workflows.

a. Fuzzing Execution Script

• This script is responsible for launching AFL++ or Honggfuzz based on the user's

selection.

• It accepts parameters such as the target binary path, input seed folder, and output

directory.

• It ensures that no more than four fuzzers run concurrently to optimize system

performance.

Figure 5.3.3.1: Parallel Fuzzing Execution Script

b. Crash Report Aggregator

This script handles the collection and merging of crash reports from both fuzzers:

• AFL++: Parses fuzzing queue and crash summary.

CHAPTER 5

96
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.3.2: AFL++ Information Extracting Script

• Honggfuzz: Extracts information from the latest crash report.

CHAPTER 5

97
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.3.3: Honggfuzz Information Extracting Script

• Once fuzzing completes or a crash is detected, this script extracts crash logs

from both AFL++ and Honggfuzz output directories.

• The logs are filtered and deduplicated to avoid repetition and combined into a

single text file.

• This file is then converted to JSON format to be processed by the LLM.

Figure 5.3.3.4: Full Crash Information Compiling Script

c. Mitigation Trigger Script

• After receiving the CVE-like report and mitigation advice from the LLM, the

system presents a "Mitigate" button in the UI.

• When the button is clicked, this Bash script executes predefined commands to

apply fixes, such as modifying source code, changing file permissions, or

applying input validation logic.

• It then compares and logs the "before" and "after" states to show the impact of

the fix.

CHAPTER 5

98
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.3.5: Mitigation Trigger Script

CHAPTER 5

99
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3.4 PHP & LLM Integration

The PHP backend plays a crucial role in integrating various components of the multi-

fuzzer system, ensuring that fuzzing tasks are automated and seamlessly connected to

the vulnerability analysis engine powered by the LLM. The following describes how

PHP was configured to handle these interactions.

a. File Upload and Fuzzer Trigger

• File Upload Handling: The PHP backend is responsible for receiving user-

submitted files (target binaries) via the user interface. This is managed using

PHP's file upload mechanism, which ensures that files are transferred securely

to the server.

• Fuzzer Trigger: Upon successful file upload, the PHP backend communicates

with the fuzzing dispatcher (using shell commands) to trigger both fuzzers. The

file is then placed in the appropriate directory for processing.

Figure 5.3.4.1: File Upload Handling Code

b. Fuzzing Result Capture and Crash Report Processing

• Result Capture: Once the fuzzing process completes, the PHP backend

monitors the output directories of both AFL++ and Honggfuzz for crash reports.

These logs, which are captured by the backend, contain the details of the

crashes, including error messages and stack traces.

CHAPTER 5

100
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• Crash Report Processing: The raw crash logs are processed to extract valuable

information (shown in section 5.3.3), such as crash type, vulnerability potential,

and input seeds that triggered the crashes. This information is then prepared for

further analysis by converting the logs into a structured format (JSON).

c. Conversion to JSON Format

• Data Structuring: To prepare the crash data for the LLM, the processed logs

are converted into JSON format. This structured format allows the system to

send detailed, consistent input to the LLM for vulnerability analysis.

• Standardized Format: This includes critical data such as the vulnerability

type, location, severity, and any specific trigger conditions found in the fuzzing

session. A consistent structure ensures smooth interaction between PHP and the

LLM API.

Figure 5.3.4.2: JSON Format Conversion Code

d. Sending Structured Data to OpenAI GPT-3.5 Turbo API

• LLM Integration: The PHP backend integrates with the OpenAI GPT-3.5

Turbo API, which is tasked with analyzing the structured crash data. The

backend sends the JSON payload containing fuzzing results, with a prompt

asking GPT-3.5 to generate a CVE-style report and possible mitigations.

• API Call Handling: To maintain security, API keys used to authenticate the

PHP backend with OpenAI are stored securely in a .env or config file, ensuring

that sensitive credentials are not exposed in the code. The backend executes the

CHAPTER 5

101
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

API request and waits for the response, which includes CVE-like reports and

mitigation advice.

Figure 5.3.4.3: Request sent to ChatGPT API (OpenAI API) Code

e. Displaying CVE-style Reports and Mitigation Options

• UI Display: Upon receiving the analysis from GPT-3.5, the PHP backend

processes the response and displays it in the user interface. The report includes

detailed CVE-style information, such as:

o Vulnerability description

o Affected components

o Risk severity

o Possible attack vectors

• Interactive Mitigation Options: The user interface also displays interactive

options, such as a “Mitigate” button, for each vulnerability. When clicked, this

triggers predefined mitigation scripts (written in Bash) to resolve the detected

issue. PHP ensures smooth interaction between the user interface and backend

logic to execute these scripts.

f. API Key Security

• Secure Storage: To ensure the security of the application and prevent

unauthorized access to the OpenAI API, API keys are stored in a .env file or a

configuration file outside the source code. This file is secured and not pushed

to version control systems, thereby safeguarding the keys from exposure.

CHAPTER 5

102
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3.5 System Resource Tuning

Optimizing system resources is essential for running multiple fuzzers efficiently.

Adjust kernel settings to handle core dumps correctly by modifying the

kernel.core_pattern using the sysctl command. Additionally, increase the file

descriptor limit with the ulimit command to support extensive fuzzing sessions, which

may require handling many simultaneous files. This step ensures the system can

manage the high resource demands of fuzzing without encountering bottlenecks or

crashes.

Adjust system configurations to allocate sufficient CPU cores and memory for parallel

fuzzing with AFL++ and Honggfuzz:

• Core dump settings were adjusted for better crash traceability using:

o sudo sysctl -w kernel.core_pattern=/fuzzing/cores/core.%e.%p.%h.%t

• Ulimit was increased to allow a higher number of open file descriptors.

o ulimit -n 1048576

Figure 5.3.5: System Resources Configuration

This helped maintain system performance under load from up to four concurrent

fuzzing tasks.

CHAPTER 5

103
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.4 System Operation

This section provides a detailed walkthrough of how the system operates, from user

login and registration to the fuzzing process, crash detection, CVE report generation,

and mitigation actions. The following steps outline the operation, accompanied by

relevant screenshots for each phase.

5.4.1 User Login and Registration

Before users can interact with the system, they must log in or register for an account.

The registration process includes basic user details and 2FA (Two-Factor

Authentication) for enhanced security. The login page also ensures that only authorized

users can access the fuzzing features.

• Login Process:

The login page prompts users for their credentials (username and password).

Once entered, the system verifies the credentials against the database. Upon

successful verification, users are granted access to the fuzzing platform.

Figure 5.4.1.1: Login Process using Username and Password

CHAPTER 5

104
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Situation where the username or password does not match:

Figure 5.4.1.2: Login Process Unsuccessful

• Registration Process:

New users can register by providing their information (username, email,

password), and once registered, they will be redirected to the login page.

Figure 5.4.1.3: User Registration Process

CHAPTER 5

105
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Situation where the username or email already exists in the database:

Figure 5.4.1.4: User Registration Process with Duplicated Registration

• 2FA Implementation:

After entering their credentials, users are redirected to another page and required

to enter a code sent to their authenticator (Google Authenticator) as part of the

two-factor authentication process, ensuring that only authorized users can log

in.

Figure 5.4.1.5: Two-factor Authentication Page

CHAPTER 5

106
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.4.2 Uploading a Binary

Once logged in, users can upload their binary files for fuzzing. The interface allows for

easy selection and upload of target binaries.

Figure 5.4.2.1: Multi-Fuzzer Chatbot System Main Interface

• Upload Process:

The user selects binary files (testdisk.elf and testfile.elf) from their local

machine and uploads it via the web interface. The file is then transferred to the

server, where it is stored in a designated directory for fuzzing.

Figure 5.4.2.2: Binary File Upload Process 1

CHAPTER 5

107
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.4.2.3: Binary File Upload Process 2

Figure 5.4.2.4: Binary File Upload Process 3

CHAPTER 5

108
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.4.3 Fuzzing Begins

After the binary is uploaded, the fuzzing process begins. The system automatically

triggers either AFL++ or Honggfuzz, depending on the configuration, and the fuzzing

task runs in the background.

• Fuzzing Execution:

A terminal window shows the output of AFL++ or Honggfuzz as they execute

the fuzzing process. The system captures any crashes or errors detected during

this phase.

Figure 5.4.3: Fuzzing Process Begins

CHAPTER 5

109
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.4.4 Crash Detection and Report Combination

When a crash is detected, the system automatically stops fuzzing, processes the crash

logs, and combines them into a single report. This report is then formatted and sent to

the LLM (OpenAI GPT-3.5 Turbo API) for vulnerability analysis.

• Crash Detection:

The fuzzing engine detects a crash, and the backend captures the crash log.

• Report Combination:

The system combines crash logs from AFL++ and Honggfuzz into a single

structured report, ready to be sent to the LLM for analysis.

Figure 5.4.4.1: Crash Detected from Fuzzing Process

Figure 5.4.4.2: Low Disk Space Warning

Figure 5.4.4.2: Low Disk Space Warning illustrates the system’s real-time response

when a crash is detected during the fuzzing of the "testdisk" program, triggered by a

disk space exhaustion attack. As the fuzzer injects malformed inputs, the program's

CHAPTER 5

110
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

behavior leads to excessive disk usage, prompting the system to display a warning about

critically low disk space. This alert not only signals the presence of a vulnerability but

also helps prevent system instability by prompting immediate mitigation actions.

5.4.5 CVE Report Generation with Mitigation Suggestion

Once the data reaches the LLM, it processes the input and generates a CVE-style

vulnerability report with suggested mitigations. This report is then displayed on the user

interface.

• CVE Report Generation:

The LLM produces a detailed CVE report, including:

o Program Name

o Vulnerability Name

o Description

o Impact

o CVSS Score

o Affected Component

CVE Report generated for program: testdisk.elf

Figure 5.4.5.1: CVE Report for testdisk (Section 1) Generated by the LLM

CHAPTER 5

111
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.4.5.2: CVE Report for testdisk (Section 2) Generated by the LLM

Figure 5.4.5.3: CVE Report for testdisk (Section 3) Generated by the LLM

CHAPTER 5

112
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CVE Report generated for program: testfile.elf

Figure 5.4.5.4: CVE Report for testfile (Section 1) Generated by the LLM

Figure 5.4.5.5: CVE Report for testfile (Section 2) Generated by the LLM

CHAPTER 5

113
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.4.5.6: CVE Report for testfile (Section 3) Generated by the LLM

Figure 5.4.5.7: CVE Report for testfile (Section 4) Generated by the LLM

CHAPTER 5

114
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.4.6 Mitigation Action Feedback

The user is presented with interactive mitigation options, which can be executed with

the click of a button. Upon clicking the "Mitigate" button, the system triggers the

corresponding mitigation script, which runs on the server.

• Mitigation Execution:

Once the user clicks the "Mitigate" button, a bash script runs to implement the

suggested security measures. The user interface shows a "loading" status while

the script executes and then displays the results.

Figure 5.4.6.1: Confirmation Pop-up for Mitigation Script Installation

Figure 5.4.6.2: Mitigation Script Installation Loading Status

CHAPTER 5

115
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.4.6.3: Mitigation Script Installation Successful

5.4.7 Before/After Effect Visualization

After the mitigation script is executed, the system presents a clear visualization of the

effects before and after the vulnerability was addressed. This feature is designed to help

users understand how the mitigation improved the system's security or performance by

comparing the state of the system before and after the intervention.

Before/After Effect:

The system displays a visual comparison of the specific state before and after the

mitigation. For example, if a vulnerability involves disk space exploitation, such as

inode exhaustion or disk flooding, the visualization will show how the disk space or

inodes were impacted before and after the mitigation. The goal is to demonstrate how

the mitigation script directly addresses the vulnerability and restores the system to a

secure state.

CHAPTER 5

116
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Before/After Effect (testdisk.elf):

Figure 5.4.7.1: Disk Flooding Attack (Before Effect)

This figure shows the disk space utilization before the mitigation script runs. The df -h

command outputs the disk usage, highlighting any flooding or excessive consumption

of disk space, which could lead to system instability or even denial of service (DoS) if

not mitigated.

Figure 5.4.7.2: Disk Flooding Attack (After Effect)

After the mitigation script is applied, this figure shows how the disk usage has been

brought back to normal, resolving the disk flooding vulnerability. The system is no

longer overwhelmed by excessive disk usage, ensuring a secure environment and

preventing potential system failures.

Figure 5.4.7.3: Before/After Effect of Disk Flooding Attack

CHAPTER 5

117
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Before/After Effect (testfile.elf):

Figure 5.4.7.4: File Inode Exhaustion (Before Effect)

This figure illustrates the state of the file system before the mitigation was applied,

showing how inode exhaustion has led to reduced file system capacity. The command

stat -f /tmp is used to display information about the file system, particularly the usage

of inodes, showing a potentially insecure state with an excessive number of inodes

consumed.

Figure 5.4.7.5: File Inode Exhaustion (After Effect)

After the mitigation script runs, this figure shows the resolved file system state. The

inode usage has been reduced, bringing the system back to a secure state where inode

consumption is within acceptable limits. This visualization shows how the mitigation

script effectively restored the system's file handling to a stable, secure level.

Figure 5.4.7.6: Before/After Effect of File Inode Exhaustion

CHAPTER 5

118
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

These consolidated figures provide a side-by-side view of the system before and after

the mitigation, showing both inode exhaustion and disk flooding vulnerabilities and

how they were addressed. The comparison helps users clearly visualize the impact of

the mitigation and confirms that the vulnerabilities were successfully resolved.

5.4.8 Further Questions Regarding the Uploaded Binary

After the fuzzing and initial analysis are completed, the system provides an option for

users to ask additional questions regarding their uploaded binary and the associated

vulnerabilities.

• Question Interface:

Users can input specific questions such as:

o "Is the vulnerability related to memory corruption?"

o "What kind of buffer overflow occurred?"

o "Can you suggest code-level patches for this?"

• Response Generation:

The system forwards these questions along with the previous crash report

context to the LLM. The LLM provides answers or guidance based on the

binary's fuzzing and crash data.

Figure 5.4.8.1: Further Question Input Box with Response (Section 1)

CHAPTER 5

119
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.4.8.2: Further Question Input Box with Response (Section 2)

5.4.9 Admin Page with Authentication

An authenticated Admin Page is available for authorized users (admins or developers)

to manage, debug, and interact with fuzzing tasks directly.

• Authentication Gate:

The admin page is protected and requires additional login credentials separate

from the user login.

• Admin Functionalities:

Inside the Admin Panel, users can:

o View active fuzzing tasks.

o Manually input bash commands to debug the fuzzing processes.

o Force-stop or restart fuzzing jobs.

o View full raw logs from the fuzzer output.

CHAPTER 5

120
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.4.9.1: Admin Login Prompt

Figure 5.4.9.2: Debugging Dashboard with Command Input Area

Figure 5.4.9.3: Force-stop Fuzzing Jobs

CHAPTER 5

121
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.4.9.4: Debugging Fuzzing Process

5.4.10 Account Settings Page

The system provides a comprehensive Account Settings Page, allowing users to manage

security features like password changes and 2FA setup.

• Password Change:

Users can update their account password by entering:

o Current password

o New password

o Confirmation of the new password

• 2FA Setup (Authenticator App Integration):

Users can enable 2FA by:

o Scanning a QR Code using an Authenticator App (e.g., Google

Authenticator, Microsoft Authenticator).

o Entering the 6-digit verification code generated by the app.

o Upon successful entry, the system will confirm that 2FA has been

enabled successfully.

CHAPTER 5

122
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• 2FA Status:

The system also displays whether 2FA is currently enabled or disabled for the

account.

Figure 5.4.10.1: Account Setting Page with 2FA Enabled

Figure 5.4.10.2: Account Setting Page: 2FA Activation Process (Section 1)

CHAPTER 5

123
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.4.10.3: Account Setting Page: 2FA Activation Process (Section 2)

Figure 5.4.10.4: Account Setting Page: 2FA Activated Successfully

CHAPTER 5

124
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.4.11 Logout Functionality

A Logout Button is provided across the user interface for security and session

management purposes.

• Functionality:

o When clicked, the user session is immediately destroyed.

o All authentication tokens, including 2FA tokens, are invalidated.

o The user is redirected securely to the Login Page.

• Security:

o Proper session destruction prevents unauthorized reuse of login

sessions, ensuring user data remains protected even after logout.

Figure 5.4.11: Logout Confirmation Prompt

CHAPTER 5

125
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.5 Implementation Issues and Challenges

5.5.1 Fuzzer Not Crashing Consistently

• Problem and Impact:

Despite running AFL++ and Honggfuzz, there were instances when these

fuzzers failed to generate crashes for certain binaries, even though

vulnerabilities were suspected. The fuzzers did not always produce crashes

consistently, particularly with binaries from the picoCTF challenge set, where

certain files contained deep vulnerabilities that required extensive time to

expose. As fuzzing results are crucial for identifying vulnerabilities, this

inconsistency in crash generation caused gaps in vulnerability assessment. In

some cases, vulnerabilities went undetected, which reduced the effectiveness of

the system in evaluating the security of the provided binaries.

• Solution:

To tackle this issue, I adjusted the fuzzing configurations, such as increasing the

allotted time for fuzzing sessions and diversifying the seed files used in the

fuzzing process. The seed files were carefully selected to include a wider range

of edge cases to ensure that fuzzing would cover more potential vulnerability

scenarios. Additionally, more detailed logging mechanisms were implemented

to track fuzzing progress and identify why certain binaries did not generate

crashes, allowing for further refinement and troubleshooting of the fuzzing

process.

5.5.2 Integration of Bash Scripts with PHP Frontend

• Problem and Impact:

The integration between Bash scripts (responsible for controlling the fuzzing

process and generating reports) and the PHP frontend posed several challenges.

Specifically, the PHP server would sometimes fail to execute Bash commands,

or it would hang while waiting for the output. This was particularly problematic

in the context of real-time fuzzing feedback, as users could not see the progress

or results of fuzzing immediately. The lack of smooth communication between

the frontend and the backend caused delays in displaying results to users and

CHAPTER 5

126
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

disrupted the seamless flow of the fuzzing process, ultimately degrading the

user experience.

• Solution:

To address this, I optimized the way PHP executed Bash scripts using the exec()

function, ensuring that Bash commands could be executed properly. I also made

sure that the PHP server had the correct permissions to run these scripts.

Additionally, I incorporated robust error handling and logging in the PHP code

to track any issues that occurred during script execution. This improved the

overall reliability of the system, ensuring that fuzzing tasks could be executed

without interruption and that users received real-time updates on the progress

and results of the fuzzing process.

5.5.3 Handling Different Types of Vulnerabilities

• Problem and Impact:

The fuzzing process often revealed various types of vulnerabilities, including

buffer overflows, memory leaks, and input validation errors. However, these

vulnerabilities were not always handled consistently across different fuzzing

engines. For instance, some engines would produce detailed crash reports for

specific types of vulnerabilities, while others would miss certain edge cases.

The inconsistent identification and categorization of vulnerabilities caused

confusion in the reporting process and sometimes resulted in incomplete

mitigation suggestions. This inconsistency hindered the system's ability to

deliver accurate and actionable vulnerability reports to users.

• Solution:

To resolve this, I implemented a categorization system that classified

vulnerabilities and target binaries based on predefined tags. This allowed for

more consistent handling and reporting of vulnerabilities, ensuring that each

vulnerability type had a corresponding mitigation strategy. Additionally, the

fuzzing engines were fine-tuned to better target specific types of vulnerabilities,

which helped improve the precision of the fuzzing results and the quality of the

mitigation recommendations.

CHAPTER 5

127
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.5.4 Difficulty in Implementing Two-Factor Authentication

• Problem and Impact:

Integrating Two-Factor Authentication (2FA) with Google Authenticator

presented significant challenges. The process of generating and verifying QR

codes, as well as securely managing the user input, was complex. Additionally,

there were some security concerns related to ensuring that the 2FA process was

seamless and didn't interfere with the overall user experience. Users also had

difficulty setting up 2FA, leading to a higher likelihood of errors during

configuration and setup.

• Solution:

To overcome these challenges, I streamlined the 2FA process by simplifying

the generation and scanning of QR codes using the Google Authenticator app.

Detailed error handling and user-friendly prompts were incorporated to guide

users through the setup process, ensuring that they could complete 2FA

activation without issues. This enhancement improved security while

maintaining ease of use for users, ensuring that 2FA was both effective and non-

intrusive.

5.5.5 File Permissions and Sudo Requirement

• Problem and Impact:

Some files and scripts required elevated permissions (sudo) to execute, which

caused issues when trying to integrate these components with the web frontend.

Web browsers generally restrict the ability to run scripts with elevated

privileges, creating a conflict between the necessary permissions for the

backend scripts and the security restrictions of the browser. This prevented the

fuzzing process from running as expected, particularly when certain scripts

were needed to access restricted resources.

• Solution:

I resolved this issue by adjusting file permissions to ensure that only the

necessary scripts had elevated privileges and by minimizing the need for sudo

access. Additionally, I ensured that scripts requiring higher privileges were

executed outside the web interface, reducing the risk of security vulnerabilities.

CHAPTER 5

128
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

This allowed the system to function properly while maintaining the necessary

security controls.

5.5.6 Inconsistent Responses for User Queries

• Problem and Impact:

Initially, the system provided responses based on the immediate conversation

history, which sometimes resulted in inconsistent or incomplete answers. When

users inquired about previously addressed topics, the system was unable to

generate relevant responses, leading to confusion and frustration.

• Solution:

A conversation history feature was introduced, allowing the system to reference

past interactions. This enabled the system to provide consistent and accurate

responses based on the full history of the conversation, improving user

satisfaction and the overall functionality of the chatbot.

CHAPTER 5

129
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.6 Concluding Remark

This section outlined the development and implementation of the Multi-Fuzzer

Automated Vulnerability Assessment System, which combines fuzzing engines, a

vulnerability analysis pipeline, and an intuitive user interface to automate the process

of detecting and mitigating security vulnerabilities in uploaded binaries. Overall, the

system has effectively achieved its core objectives of automating vulnerability

detection and providing actionable insights, all while maintaining an intuitive and user-

friendly experience.

Achievement of System Objectives:

The implementation of this system has successfully met its primary goals. The

integration of multiple fuzzing engines (AFL++ and Honggfuzz) ensures that a wide

range of vulnerabilities can be tested across different types of binaries. The use of

OpenAI's GPT-3.5 Turbo LLM allowed us to automate the analysis of crash reports,

generate CVE-style reports, and suggest mitigation strategies. This level of automation

minimizes user intervention while providing highly valuable insights into the

vulnerabilities detected.

The user interface (UI) offers a simple, streamlined process for uploading files,

monitoring fuzzing progress, and receiving results, which is ideal for developers and

security professionals. With clear visual feedback and interactive mitigation

suggestions, the system simplifies the complex process of vulnerability assessment and

response.

Areas for Future Improvement:

While the system has performed well within its current scope, there are a few areas

where improvements could be made to enhance functionality in future versions:

1. Training a Custom LLM for Security Needs: Rather than relying on a

pretrained LLM like GPT-3.5, future versions of the system could explore

training a custom LLM specifically designed for security vulnerabilities. This

LLM would be trained using a curated dataset of security-related crash reports,

CHAPTER 5

130
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CVE data, and known mitigation strategies. By using a model tailored to

security needs, we can expect more accurate and contextually relevant analysis,

without the token limit constraints associated with current LLMs. This shift

would also improve processing time and eliminate the need for pre-processing

or chunking of crash reports.

2. Enhanced Database Integration: Although the current system handles report

storage and processing, future versions could incorporate a more sophisticated

database for storing detailed vulnerability data. This would include information

like CVSS scores, affected components, and historical vulnerability data, which

would enhance the system's ability to track, analyze, and report on

vulnerabilities over time. A more robust database integration could also support

advanced query capabilities and better scalability.

3. Advanced Reporting and Visualization: The current reporting system

generates CVE-style reports, but future improvements could offer more

advanced visualizations of vulnerability trends, system performance, and deeper

insights into individual vulnerabilities. This could include graphical

representations of affected code areas, risk levels, and detailed mitigation steps.

4. Broader Fuzzing Engine Support: Currently, the system supports AFL++ and

Honggfuzz. Future updates could introduce additional fuzzing engines to extend

the range of vulnerabilities detected, allowing the system to assess a wider

variety of binaries and software environments.

Smoothness of User Experience and Automation Level Achieved:

The system offers a smooth and intuitive user experience, guiding users through each

step of the vulnerability assessment process. File uploads are simple, fuzzing progress

is tracked in real time, and results are displayed in a clear, actionable format. Users are

also presented with interactive mitigation suggestions that allow them to take

immediate action.

In terms of automation, the system excels in streamlining complex tasks. The fuzzing

process, crash detection, report generation, and mitigation suggestion features all run

CHAPTER 5

131
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

automatically, with minimal user input required. However, there are still opportunities

for further automation, particularly in the management of crash reports and the handling

of the fuzzing process. Future versions could focus on enhancing these automated

workflows, particularly around handling large crash reports and improving database

integration.

CHAPTER 6

132
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

System Evaluation and Discussion

6.1 System Testing and Performance Metrics

To ensure the developed system meets its intended functionality and performance

requirements, extensive testing was conducted across multiple dimensions, including

functionality, performance, usability, and system sturdiness. The primary goal of

system testing was to validate the integration of multi-fuzzing engines, crash report

generation, LLM-based vulnerability assessment, and user interface interactions in a

real-world environment.

Testing Methods

The following testing strategies were employed:

• Functional Testing:

Functional testing focused on verifying that each module within the system,

such as file uploading, fuzzing initiation, crash aggregation, CVE-like

reporting, and mitigation operations correctly and as intended. Each user action,

from file upload to receiving a completed vulnerability report, was thoroughly

tested to ensure end-to-end workflow reliability.

• Performance Testing:

The system’s performance was evaluated based on fuzzing speed, crash

detection rates, system response times, and resource utilization (CPU and

memory) during concurrent fuzzing operations. Both normal and stress

scenarios were simulated to measure the system's stability under load.

• Usability Testing:

The user interface was tested for intuitiveness and responsiveness. Focus was

placed on the file upload process, access to crash reports, system control

CHAPTER 6

133
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

features, and account management (e.g., 2FA setup). Smoothness of user

navigation and task completion time were considered as usability metrics.

• Stress and Scalability Testing:

The system was subjected to heavy testing loads, such as running multiple

fuzzing sessions simultaneously, processing large binary files, and generating a

high volume of crash reports. This helped assess the system’s capability to

maintain performance without degradation under extreme conditions.

• Security Testing:

Testing was also conducted to verify the robustness of security features,

including login authentication, admin access controls, and two-factor

authentication (2FA) setup. Attempts were made to simulate unauthorized

access scenarios to validate the system's protection mechanisms.

Performance Metrics

The following key performance metrics were used to evaluate the system:

• Fuzzing Speed:

Measured by the number of test cases generated and executed per minute by the

fuzzers (AFL++ and Honggfuzz). This metric indicated the system’s efficiency

in exploring vulnerabilities within uploaded binaries.

• Crash Detection Rate:

Calculated by the number of crashes detected relative to the total fuzzing time.

A higher detection rate implied better effectiveness in exposing vulnerabilities.

CHAPTER 6

134
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• Resource Utilization:

Monitored CPU and memory consumption during active fuzzing sessions.

Acceptable thresholds were defined to ensure system responsiveness and avoid

overload, especially when running concurrent fuzzers.

• Response Time for CVE Report Generation:

The time taken from the moment a crash was detected until a structured CVE-

like vulnerability report was generated and displayed to the user.

• Error Rate and Recovery:

Monitored how frequently system errors occurred and how effectively the

system recovered from such errors through automated reprocessing or user

prompts.

• Usability Metrics:

Evaluated based on user feedback regarding the ease of file uploads, crash report

accessibility, and account management.

Quality Metrics:

The number of unique vulnerabilities metric tracks how many distinct vulnerabilities

are discovered during the testing process. This metric helps evaluate the effectiveness

of the fuzzing approach in identifying new and previously undetected issues. A higher

count of unique vulnerabilities suggests a more thorough and effective testing process.

Severity of vulnerabilities assesses the criticality and potential impact of the identified

issues. It classifies vulnerabilities based on their risk levels, such as high, medium, or

low. Prioritizing high-severity vulnerabilities ensures that the most critical issues are

addressed first, enhancing the overall security posture and risk management of the

application. The tables below illustrate the different types of vulnerabilities

associated with specific signals that were detected during the fuzzing process. Each

CHAPTER 6

135
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

signal corresponds to a particular type of error or exception in the system, which, when

triggered, can expose unique vulnerabilities in the software.

Table 6.1.1: SIGSEGV Vulnerabilities

The SIGSEGV (Segmentation Fault) signal occurs when a program attempts to access

an invalid memory location. This is a critical signal as it often leads to serious

vulnerabilities:

• Buffer Overflow and Use-After-Free are high-severity vulnerabilities that can

allow attackers to execute arbitrary code or manipulate memory, leading to

complete system compromise.

• Null Pointer Dereference and Stack Overflow are medium-severity issues that

can result in crashes or unintended behavior.

• Dangling Pointer Access and Memory Corruption are lower-severity

vulnerabilities that may lead to subtle bugs but can also escalate under certain

conditions.

Table 6.1.2: SIGALRM Vulnerabilities

CHAPTER 6

136
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The SIGALRM signal is generated when a timer set by the alarm() function expires.

This signal can expose vulnerabilities related to time management and resource usage:

• Denial of Service (DoS) vulnerabilities are rated as high severity because they

can render a service unavailable, disrupting operations.

• Race Conditions and Timeout Vulnerabilities are medium-severity

vulnerabilities that can cause unpredictable behavior or allow attackers to

exploit timing issues.

• Resource Exhaustion is a low-severity vulnerability, but if left unaddressed, it

can degrade system performance over time.

Table 6.1.3: SIGABRT Vulnerabilities

The SIGABRT signal is sent by the abort() function, typically indicating an assertion

failure or an abnormal termination of the program:

• Assertion Failures and Denial of Service (DoS) vulnerabilities are high-

severity issues, as they can lead to abrupt terminations or crashes, potentially

allowing further exploits.

• Memory Leaks are low-severity but can accumulate over time, leading to

degraded performance.

• Inconsistent State vulnerabilities are medium-severity, as they can lead to

unpredictable system behavior, making the software unreliable.

CHAPTER 6

137
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 6.1.4: SIGILL Vulnerabilities

The SIGILL signal indicates that the program has attempted to execute an illegal

machine instruction. This can reveal vulnerabilities in the code that handle execution

flows:

• Code Injection and Binary Exploitation are high-severity vulnerabilities,

allowing attackers to insert and execute malicious code.

• Corrupted Executable Code and Incompatible Instruction Set are medium-

severity issues that can cause crashes or improper execution.

• Malware or Trojan Execution is a medium-severity vulnerability but can

become critical if the malware spreads or causes significant damage.

CHAPTER 6

138
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Single Fuzzer Evaluation

When evaluating a single fuzzer, such as AFL++ or Honggfuzz, the focus is on its

standalone effectiveness in detecting vulnerabilities within target binaries. Single

fuzzers operate independently and utilize specific techniques to uncover flaws.

Performance metrics for single fuzzers often include crash detection rate and execution

time for crash detection. For instance, AFL++ might demonstrate variable effectiveness

across different binaries, with certain binaries showing high crash detection rates while

others might remain unaffected. Execution times can also vary significantly, indicating

areas where the fuzzer may be slower in identifying issues. Additionally, the quality of

vulnerabilities discovered, ranging from high-severity to low-severity, provides insight

into the fuzzer's ability to detect critical and subtle flaws.

Multi-Fuzzer Approach Evaluation

In contrast, evaluating a multi-fuzzer approach involves assessing the combined

effectiveness of multiple fuzzing tools, such as AFL++ and Honggfuzz, when used

together. This approach leverages the strengths of different fuzzers to achieve a more

comprehensive vulnerability detection. Multi-fuzzer evaluations typically focus on

metrics such as cumulative crash detection rate, overall execution efficiency, and the

range of vulnerabilities discovered. The integration of multiple fuzzers can enhance the

overall detection capability by covering a broader range of potential issues, including

those that individual fuzzers might miss. For example, while AFL++ might excel in

certain areas, Honggfuzz might provide superior results in others, leading to a more

thorough identification of unique crashes and vulnerabilities. The multi-fuzzer

approach aims to combine these strengths, resulting in higher overall effectiveness and

efficiency. Additionally, quality metrics such as the severity of detected vulnerabilities

can reveal the approach's ability to identify and prioritize critical issues more

effectively. By evaluating multiple fuzzers together, this approach ensures a more

reliable and comprehensive assessment of the target application’s security.

CHAPTER 6

139
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Expert Label Evaluation

The expert label evaluation serves as a benchmark for assessing the accuracy and

effectiveness of vulnerability detection tools and methodologies. Experts in the field

often rely on established standards and best practices to identify and classify

vulnerabilities. These evaluations are typically characterized by their rigorous approach

to assessing the severity and impact of vulnerabilities, using well-defined criteria and

manual verification processes. For instance, an expert might employ in-depth

knowledge and experience to determine the criticality of a vulnerability, ensuring that

only those with significant implications are flagged as high severity. This process often

involves detailed code reviews, exhaustive testing, and comprehensive analysis of

potential exploit scenarios. The expert label provides a high level of confidence in the

accuracy of vulnerability classification and offers a reference point for comparing the

results of automated tools.

Current Work Evaluation

The current work evaluation, which involves using automated fuzzing tools and

techniques, provides a different perspective on vulnerability detection. In this context,

the evaluation focuses on the performance and effectiveness of tools like AFL++ and

Honggfuzz in identifying vulnerabilities within target binaries. Metrics such as crash

detection rates, execution times, and the number and severity of detected vulnerabilities

are used to evaluate the effectiveness of these tools. While automated methods offer the

advantage of scalability and efficiency, they may not always match the precision of

expert-led evaluations. The current work’s approach involves assessing how well these

tools perform in detecting unique crashes and vulnerabilities, and comparing their

results to those identified by experts. This comparison helps in understanding the

strengths and limitations of automated tools and their ability to complement or enhance

traditional expert evaluations. By analyzing the results from both expert labels and

current work, one can gain a comprehensive view of the effectiveness and reliability of

vulnerability detection methods, ensuring that automated tools provide results that are

both actionable and accurate.

CHAPTER 6

140
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

As shown in Table 6.1.5, while the Expert Label Evaluation offers unparalleled

accuracy and depth, the Current Work Evaluation provides scalable and efficient

vulnerability detection, complementing expert assessments.

Table 6.1.5: Expert Label vs Current Work Evaluation

Through a comprehensive testing framework combining these methods and metrics, the

system was rigorously validated to ensure it not only meets its functional objectives but

also delivers an efficient and user-friendly vulnerability assessment experience.

CHAPTER 6

141
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2 Testing Setup and Result

This section outlines the testing setup, including the configuration of both the fuzzing

system and the chatbot interface, along with the various test cases executed to validate

the functionality and performance of the entire system.

Testing Setup

1. Fuzzing System Configuration:

o Fuzzers Used: AFL++ and Honggfuzz were chosen for their distinct

approaches to fuzzing. AFL++ operates using genetic algorithms, while

Honggfuzz applies coverage-based fuzzing to target vulnerabilities

efficiently.

o Target Binaries: A mix of .elf binaries from the PicoCTF challenge set,

which included various types of challenges (buffer overflows, memory

issues, etc.), was used for fuzz testing. Each binary was tested with

custom seed files to ensure a diverse set of inputs, maximizing the

effectiveness of the fuzzers in detecting vulnerabilities.

o Fuzzing Parameters: The fuzzing was configured to run with a

predefined number of concurrent sessions (up to 4), with mutation

applied using the internal algorithms of both fuzzers. The fuzzing was

conducted over a 24-hour period for each set of target binaries, ensuring

that both fuzzers had ample time to explore and identify vulnerabilities.

2. Chatbot System Configuration:

o LLM Integration: The LLM was integrated to analyze and generate

CVE-like reports from the crash logs collected by the fuzzing system.

The chatbot serves as an interactive user interface, which collects crash

reports, processes them via the LLM, and outputs findings in a

structured format.

o Interaction Flow: Test cases were created to simulate the user

interacting with the chatbot. These included uploading crash reports,

CHAPTER 6

142
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

requesting CVE-like outputs, and using dynamic feedback mechanisms

to guide the user through mitigation suggestions.

o Performance Testing: The chatbot's response times were evaluated,

focusing on how quickly it could process crash data and generate

meaningful feedback.

Test Cases

1. Fuzzing Performance Testing:

o Objective: To validate the fuzzing capabilities of the system, ensuring

that AFL++ and Honggfuzz detect vulnerabilities in the provided target

binaries.

o Execution: Both AFL++ and Honggfuzz were run on a set of binaries

with seed files. The performance was evaluated based on the number of

crashes detected and the time taken to detect the first crash. Each fuzzer

was tested on multiple types of binaries, including custom-made test

cases and picoCTF binaries.

o Results:

▪ AFL++: AFL++ performed better on custom-made test cases,

detecting vulnerabilities with more precision. While the number

of crashes detected was smaller than Honggfuzz, AFL++ was

better at identifying more specific vulnerabilities that were not

identified by Honggfuzz.

▪ Honggfuzz: On the other hand, Honggfuzz demonstrated

superior performance on picoCTF binaries, detecting a higher

volume of crashes more quickly. The execution time for crash

detection was shorter for Honggfuzz, with many binaries

triggering crashes within seconds.

▪ Key Findings: While Honggfuzz excelled in speed and volume

of crash detection in certain scenarios, AFL++ proved more

reliable and efficient for specific, custom-made test cases,

CHAPTER 6

143
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

showcasing its capability to perform in more controlled

environments.

Performance Testing 1: Crash Detection Count per Fuzzer

The crash detection rate is a critical performance metric for evaluating the

effectiveness of a fuzzer. It quantifies the number of unique crashes or faults detected

during the fuzzing process. This metric is calculated as the ratio of detected crashes to

the total number of test cases executed. A high crash detection rate signifies that the

fuzzer is successfully uncovering issues within the target application, indicating its

strength in identifying potential vulnerabilities. The following sections provide a

comparative analysis of the crash detection capabilities of two different fuzzers, AFL++

and Honggfuzz, when applied to 37 target binaries in .elf format. The purpose of these

comparisons is to evaluate the effectiveness of each fuzzer in detecting unique crashes,

which is a critical measure of their ability to identify potential vulnerabilities.

Figure 6.2.1: Number of Unique Crash Detection (Target Binaries) using AFL++

In Figure 6.2.1, the performance of AFL++ is shown. AFL++ detected a relatively small

number of unique crashes across the 37 target binaries. Particularly, it identified 6

unique crashes for binary 30 and 5 crashes for binary 34, representing the highest

crash detection numbers for this fuzzer. Additionally, AFL++ detected 3 crashes for

binary 24 and 2 for binary 29. The fuzzer also identified 1 unique crash each for

CHAPTER 6

144
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

binaries 7, 23, 33, and 37. However, for most of the target binaries (29 out of 37),

AFL++ detected no crashes at all, indicating limited effectiveness in those cases.

Figure 6.2.2: Number of Unique Crash Detection (Target Binaries) using Honggfuzz

In contrast, Figure 6.2.2 illustrates the performance of Honggfuzz, which shows a

much stronger ability to detect unique crashes. The number 99 is used as a

placeholder in the graph for instances where the actual number of immediate crashes

detected was exceedingly high, beyond the scope of the graph's capacity to represent

accurately. Honggfuzz frequently reached a crash detection number of 99 across many

binaries, indicating a very high number of detected crashes. While Honggfuzz also

failed to detect crashes for some binaries, it significantly outperformed AFL++ overall.

Markedly, Honggfuzz detected 27 unique crashes for binary 29 and 15 for binary 36,

underscoring its strong performance across most of the tested binaries.

After evaluating the fuzzers on compiled binaries, a second round of tests was

conducted using hand-crafted vulnerability cases to assess precision and crash quality.

CHAPTER 6

145
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Performance Analysis on Designed Vulnerability Test Cases

In addition to the 37 compiled target binaries, a separate set of custom-made test cases

was developed to evaluate the fuzzers' precision in detecting specific vulnerability

patterns such as segmentation faults, illegal instructions, and timeouts. These test

cases simulate controlled vulnerable conditions and are used to assess the quality of

crash detection beyond volume. When applied to the custom-made test cases, however,

AFL++ proved more effective in detecting specific vulnerabilities, suggesting that

Honggfuzz’s higher volume of crash detections is not always indicative of detecting the

most critical vulnerabilities.

The following table presents the results of fuzzing tests conducted using AFL++ and

Honggfuzz on various test cases. The table evaluates the effectiveness of both fuzzing

engines by recording whether a crash occurred within 30 minutes, identifying the signal

associated with the crash, and noting which fuzzer successfully detected the crash.

Table 6.2.1: Results Of Fuzzing Tests on Test Cases

The results of the fuzzing tests indicate that AFL++ outperformed Honggfuzz in terms

of crash detection across most test cases. Specifically, AFL++ successfully identified

crashes for most of the test cases, including those that triggered SIGSEGV

(segmentation faults), SIGABRT (abort signals), SIGFPE (floating-point exceptions),

SIGILL (illegal instruction errors), and SIGALRM (execution timeout alarms). These

signals correspond to vulnerabilities such as memory access violations, logic errors,

invalid operations, and time-based execution faults. By detecting these signal-triggered

CHAPTER 6

146
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

crashes, the system has achieved the quality metrics for identifying and classifying

multiple categories of vulnerabilities during the fuzzing process.

 In contrast, Honggfuzz did not detect any crashes for most test cases, highlighting a

significant performance gap between the two fuzzing engines. Honggfuzz demonstrated

the ability to detect crashes in a few instances, specifically in the testsleep case, where

both fuzzers detected the same crash. However, its overall performance was weaker

compared to AFL++ in this set of tests.

While the 37 target binaries provide a broad assessment of fuzzer performance on real-

world compiled code, the custom-made test cases are designed to test specific

vulnerability categories in isolation. These results suggest that AFL++ is a more reliable

fuzzer for detecting a wider range of vulnerabilities across different test cases.

However, Honggfuzz may still be useful for specific scenarios where it can identify

unique crashes, as seen in certain cases. Further optimization and testing with additional

test cases may be necessary to fully evaluate the performance of both fuzzers in a

variety of environments.

Summary of Findings:

• Honggfuzz demonstrated superior performance in detecting a higher number of

crashes across most of the binaries, including picoCTF targets.

• AFL++ performed better for the custom-made test cases, identifying more

subtle vulnerabilities with greater precision. This makes AFL++ a more reliable

choice for specific types of vulnerabilities not easily triggered by fuzzing

techniques used by Honggfuzz.

CHAPTER 6

147
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Performance Testing 2: Execution Time per Fuzzer

Execution time for crash detection measures the time it takes for the fuzzer to identify

the initial crash during a fuzzing session. This metric provides insight into the efficiency

of the fuzzing process. Shorter execution times before the first crash are desirable as

they suggest that the fuzzer is quickly uncovering potential issues while still

maintaining effective test coverage. This efficiency is crucial for optimizing the overall

performance of the fuzzing campaign. The following tables compare the execution time

for crash detection between two fuzzers, AFL++ and Honggfuzz, when applied to the

same set of 37 target binaries in .elf format. The tables provide insights into how quickly

each fuzzer was able to identify the first crash during the fuzzing process, measured in

minutes for AFL++ and seconds for Honggfuzz.

Table 6.2.2: Execution Time for Crash Detection (Target Binaries) using AFL++

This table shows the execution time in minutes for AFL++ to detect the first crash

across the 37 target binaries. The data reveals that AFL++ was able to detect crashes

for only a few binaries, and when it did, the time required was relatively long.

• It took 31 minutes to detect a crash for binary 7.

• For binary 23, it took 291 minutes to identify the first crash, the longest

detection time recorded.

• Other remarkable detection times include 14 minutes for binary 33, 12 minutes

for binary 30, 1 minute for binary 24, 29, 34 and 37.

• For most binaries, AFL++ did not detect any crashes, as indicated by the dashes.

CHAPTER 6

148
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 6.2.3: Execution Time for Crash Detection (Target Binaries) using Honggfuzz

In contrast, this table shows the execution time in seconds for Honggfuzz to detect the

first crash for the same set of binaries. Honggfuzz demonstrated significantly faster

crash detection times across a wider range of binaries.

• The detection times are much shorter, with many crashes detected within 2 to 3

seconds for binaries 6, 8, 10, 11, 12, 16, 19, 20, 21, 24, 26, 27, 29, 34, 36 and

37.

• Honggfuzz identified crashes in binaries where AFL++ did not, with detection

times between 1 second to 3 seconds.

• The fastest detection times recorded were 1 second for binaries 11, 16, 19, 21,

26, 27, 29, 36 and 37.

While the previous analysis focused on real-world target binaries in .elf format to

measure general crash detection performance, the next section examines how both

fuzzers perform when applied to a controlled set of custom-made test cases designed

to contain known vulnerabilities. This allows for a more focused evaluation of each

fuzzer's ability to detect subtle or edge-case bugs and provides further insight into their

crash detection speed and effectiveness in different contexts.

CHAPTER 6

149
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Crash Detection Time Analysis

Table 6.2.4 presents the crash detection times recorded by AFL++ and Honggfuzz for

each custom-made test case. This analysis focuses on the time (in seconds) taken to

detect the first crash during each fuzzing session. A dash ("-") indicates that no crash

was detected within the observation period.

Table 6.2.4: Crash Detection Time of Custom Test Cases by Both Fuzzers

Summary of Crash Detection Time:

The crash detection time analysis highlights several important observations:

• AFL++ consistently demonstrated quick crash detection times across all

custom-made test cases where a crash was found, typically within 2 to 12

seconds.

• Honggfuzz struggled to detect crashes in most of these test cases, except for

testsleep, where it outperformed AFL++ by detecting the crash in just 1 second.

• Overall, AFL++ proved to be more capable and efficient in detecting crashes

within this specific test case set, covering a wider range of vulnerabilities in a

shorter amount of time.

• The testsleep case is noteworthy as it is the only scenario where both fuzzers

successfully detected a crash, with Honggfuzz being faster.

CHAPTER 6

150
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Conclusion on Performance Testing

The performance of AFL++ and Honggfuzz showed distinct strengths and weaknesses

depending on the nature of the test cases. For custom-made test cases, AFL++

demonstrated better precision in identifying vulnerabilities, particularly in complex

binary paths, though it took longer to detect crashes due to its deeper instrumentation.

In contrast, Honggfuzz exhibited faster execution times and a higher volume of crashes,

especially when tested against simpler binaries such as those from the picoCTF suite.

Figure 6.2.3: Conceptual Venn Diagram showing comparative crash-related

capabilities between AFL++ and Honggfuzz

As illustrated in the Venn diagram comparison, AFL++ excels at exploring deeper code

paths and producing more unique crashes, while Honggfuzz performs better in speed

and consistency, making it suitable for quick assessments and logic bugs. Both fuzzers

share common capabilities such as memory error detection and compatibility with

standard crash logging mechanisms. Future work should focus on leveraging the

complementary strengths of both fuzzers and integrating additional fuzzing engines to

expand coverage and enhance the detection of a broader range of vulnerabilities.

CHAPTER 6

151
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Discussion: Effectiveness of Multi-Fuzzer and LLM

From the testing results, using multiple fuzzers AFL++ and Honggfuzz offers practical

benefits in terms of coverage and efficiency. AFL++ was more effective on hand-

crafted test cases, especially those involving memory issues or logical edge cases that

required deeper execution paths. This is likely due to its use of QEMU mode, which,

although slower, provides better code instrumentation and supports fuzzing of complex

binaries.

Honggfuzz, on the other hand, was noticeably faster and managed to detect a much

larger number of crashes in less time. This speed is advantageous when running short

fuzzing campaigns or when quick initial feedback is needed. However, many of the

crashes detected by Honggfuzz were not always high-impact or meaningful. Some were

repetitive or not exploitable, highlighting a trade-off between quantity and quality of

crashes.

By combining both fuzzers in the system, the user gets the best of both worlds, which

Honggfuzz can surface fast, shallow bugs, while AFL++ can go deeper to find more

hidden or subtle vulnerabilities. This dual-fuzzer design increases the probability of

uncovering both surface-level and deep-rooted issues in software under test.

The LLM layer further adds practical value. It automatically processes raw crash logs,

some of which are hard for average users to interpret and generates CVE-like

vulnerability reports in natural language. These reports include the type of bug (e.g.,

buffer overflow, null pointer dereference), where it occurred, and mitigation

suggestions. This significantly reduces the manual effort typically required in

vulnerability triage and documentation.

In practice, this multi-fuzzer with the help of the LLM approach allows even non-

experts to run vulnerability assessments, understand the crash root cause, and apply

recommended fixes via the system’s auto-mitigation scripts. It lowers the entry barrier

for secure development and testing.

CHAPTER 6

152
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

However, limitations remain. For example:

• The LLM’s interpretation depends on how well-structured the input logs are.

• Crash deduplication is still a challenge, especially with high-volume outputs

from Honggfuzz.

• The mitigation scripts, while useful, are still basic and might not fully resolve

complex issues.

In conclusion, the combination of multiple fuzzers and an LLM-powered analysis

engine provides a practical and efficient solution for vulnerability discovery and

response. It is especially beneficial in environments with limited security expertise or

time for deep manual inspection.

CHAPTER 6

153
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2. Chatbot Interaction Testing:

o Objective: To ensure the chatbot correctly interprets fuzzing results and

generates accurate, structured CVE-like reports with relevant mitigation

guidance.

o Execution: A set of fuzzing logs, including crash reports from both

AFL++ and Honggfuzz, was uploaded and processed via the chatbot

interface. Users simulated real-world usage by uploading binaries and

interacting with the chatbot for analysis and remediation suggestions.

o Results:

▪ The chatbot successfully processed crash reports and generated

CVE-like summaries. The feedback loop within the chatbot

provided users with clear, actionable mitigation suggestions.

▪ The system was able to handle multiple requests concurrently

without significant delay, demonstrating smooth performance

even with high volumes of data.

Results of Chatbot Interaction on the Testcases (testdisk):

Step 1: Uploaded Fuzzing Log

The testing begins with uploading a combined fuzzing crash log generated by AFL++

or Honggfuzz. This log typically contains raw execution context, crash locations, and

relevant memory or register information. The process tests the system’s ability to parse

various types of crash data and validate whether the input is accepted in real time. This

confirms the robustness of the input-processing pipeline and ensures compatibility with

different output formats from both fuzzers.

Parallel Fuzzing Report (AFL++ and Honggfuzz)

===

Start Time: 2025-05-01 15:32:04

Duration: 30 minutes

Target Program: testdisk

AFL++ Output Directory: /home/einjun/AFLplusplus/output1_2025-05-01_15-32-04

CHAPTER 6

154
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Honggfuzz Output Directory:

/home/einjun/Desktop/outputhonggfuzz/outputhonggfuzz_2025-05-01_15-32-04

===

AFL++ Configuration:

Input Directory: /home/einjun/AFLplusplus/inputdisk

Output Directory: /home/einjun/AFLplusplus/output1_2025-05-01_15-32-04

Command: afl-fuzz -Q -i /home/einjun/AFLplusplus/inputdisk -o

/home/einjun/AFLplusplus/output1_2025-05-01_15-32-04 -t 5000+ --

/home/einjun/AFLplusplus/testdisk

Honggfuzz Configuration:

Input Directory: /home/einjun/AFLplusplus/inputdisk

Output Directory: /home/einjun/Desktop/outputhonggfuzz/outputhonggfuzz_2025-05-

01_15-32-04

Command: honggfuzz -i /home/einjun/AFLplusplus/inputdisk -o

/home/einjun/Desktop/outputhonggfuzz/outputhonggfuzz_2025-05-01_15-32-04 -t 5 -

s -- /home/einjun/AFLplusplus/testdisk

======================

Starting AFL++ at 2025-05-01 15:32:04

AFL++ process started with PID: 16508

Starting Honggfuzz at 2025-05-01 15:32:04

Honggfuzz process started with PID: 16510

2025-05-01 15:32:07 - Fuzzing for 0m 3s out of 30m

2025-05-01 15:32:10 - Fuzzing for 0m 6s out of 30m

=====================================

Combined Fuzzing Crash Report

=====================================

Crash Source: AFL++

Target Program: testdisk

Total Runtime: 9 seconds

Report Generated: 2025-05-01 15:32:14

=====================================

AFL++ Crash Information

=====================================

Time of Detection: 2025-05-01 15:32:13

Crash Files Found:

File: id:000000,sig:11,src:000000,time:6877,execs:2836,op:havoc,rep:3

Size: 11 bytes

SHA256:

e2bab53a0d59c6b8577271e1bb52e95a77b07701bff4ce53b87dabd5e2e3ebb5

Hexdump:

00000000: 6372 6173 680a 6868 6861 73 crash.hhhas

CHAPTER 6

155
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Stack Trace:

Reading symbols from /home/einjun/AFLplusplus/testdisk...

(No debugging symbols found in /home/einjun/AFLplusplus/testdisk)

(gdb) Starting program: /home/einjun/AFLplusplus/testdisk <

/home/einjun/AFLplusplus/output1_2025-05-01_15-32-

04/default/crashes/id:000000,sig:11,src:000000,time:6877,execs:2836,op:havoc,rep:3

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".

[Detaching after vfork from child process 23689]

fallocate: fallocate failed: No space left on device

[Detaching after vfork from child process 23711]

fallocate: fallocate failed: No space left on device

Memory allocation failed: Cannot allocate memory

[Detaching after vfork from child process 23723]

Program received signal SIGSEGV, Segmentation fault.

0x00005555555552ef in cause_effect ()

(gdb) #0 0x00005555555552ef in cause_effect ()

#1 0x0000555555555389 in main ()

(gdb) A debugging session is active.

 Inferior 1 [process 23509] will be killed.

Quit anyway? (y or n) [answered Y; input not from terminal]

AFL++ Fuzzer Statistics:

start_time : 1746084724

last_update : 1746084724

run_time : 0

fuzzer_pid : 16508

cycles_done : 0

cycles_wo_finds : 0

time_wo_finds : 0

fuzz_time : 0

calibration_time : 0

cmplog_time : 0

sync_time : 0

trim_time : 0

execs_done : 57

execs_per_sec : 11400.00

execs_ps_last_min : 0.00

corpus_count : 8

corpus_favored : 1

corpus_found : 0

corpus_imported : 0

corpus_variable : 0

max_depth : 1

CHAPTER 6

156
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

cur_item : 0

pending_favs : 0

pending_total : 1

stability : 100.00%

bitmap_cvg : 0.04%

saved_crashes : 0

saved_hangs : 0

last_find : 0

last_crash : 0

last_hang : 0

execs_since_crash : 57

exec_timeout : 5000

slowest_exec_ms : 0

peak_rss_mb : 0

cpu_affinity : 0

edges_found : 25

total_edges : 65536

var_byte_count : 0

havoc_expansion : 0

auto_dict_entries : 0

testcache_size : 6

testcache_count : 1

testcache_evict : 0

afl_banner : /home/einjun/AFLplusplus/testdisk

afl_version : ++4.22a

target_mode : qemu shmem_testcase

command_line : /home/einjun/AFLplusplus/afl-fuzz -Q -i

/home/einjun/AFLplusplus/inputdisk -o /home/einjun/AFLplusplus/output1_2025-05-

01_15-32-04 -t 5000+ -- /home/einjun/AFLplusplus/testdisk

=====================================

End of Report

=====================================

Crashes found! Check report at:

/home/einjun/AFLplusplus/logs/parallel_fuzzing_2025-05-01_15-32-04_report.txt

Terminating fuzzers due to crash detection

AFL++ PID: 16508

Honggfuzz PID: 16510

CHAPTER 6

157
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Step 2: CVE Report Generated from Sample Raw Crash Log

Immediately following the log upload, the chatbot interprets the content using the

integrated LLM engine and generates a structured, CVE-style vulnerability description.

This includes information such as the program name, vulnerability type, the function

or component affected, and the severity level. This part of the interaction demonstrates

that the AI component of the system can not only process low-level crash information

but also abstract it into a format that aligns with common security reporting standards

(like CVEs). The figure highlights the effectiveness of the system in turning raw logs

into human-readable, actionable insights.

Figure 6.2.4: CVE-like Response Generated

Step 3: Recommended Mitigation

The final portion of the screenshot presents the chatbot’s proposed mitigation steps.

These include code-level fixes (e.g., bounds checking, memory sanitization), best

practices (e.g., using safer functions), or configuration changes. In this example, the

recommendation is tailored based on the vulnerability type detected in the fuzzing

CHAPTER 6

158
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

report. This output verifies the system's ability to generate not just diagnostic reports,

but also practical remediation strategies that are clear and helpful for developers or

security analysts. It reflects the chatbot’s role as an assistant in the secure software

development lifecycle.

Figure 6.2.5: Recommended Mitigation by the LLM

To better illustrate the effectiveness of the chatbot’s output during testing, a bar chart

was created to visualize key performance metrics. Figure 6.2.6 compares four critical

aspects: CVE summary generation, mitigation provided, format accuracy, and user

feedback clarity. The results indicate that the chatbot achieved a 100% success rate in

generating CVE-like summaries, while 95% of the outputs included relevant mitigation

guidance. Format accuracy stood at 90%, demonstrating the chatbot's consistency in

presenting structured information. Meanwhile, user feedback on clarity reached 80%,

showing that most users found the responses understandable and actionable. This visual

representation reinforces the chatbot’s reliability and highlights areas where further

refinement could enhance user experience.

CHAPTER 6

159
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.2.6: Chatbot Interaction Testing Bar Chart

3. System Integration Testing:

o Objective: To evaluate how well the fuzzing system integrates with the

chatbot interface and whether the entire workflow functions seamlessly.

o Execution: A series of test cases were designed to simulate real-world

usage, where the user would upload a binary, view analysis, and receive

mitigation advice. These tests also checked for any data flow issues

between the fuzzing backend and the chatbot frontend.

o Results:

▪ The integration between the fuzzing system and the chatbot was

successful, with no significant data loss or performance

degradation observed. The chatbot accurately displayed the

fuzzing results, and the mitigation suggestions were in line with

the detected vulnerabilities.

CHAPTER 6

160
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.3 Project Challenges

During the testing and implementation of the multi-fuzzer chatbot system, several

challenges arose that affected both the technical and non-technical aspects of the

project. These challenges were crucial to address to ensure the system's effectiveness

and reliability in detecting vulnerabilities. Below is a discussion of the technical and

non-technical challenges faced during the evaluation process.

Technical Challenges

1. Performance Bottlenecks:

One of the significant technical challenges encountered was the high resource

usage during concurrent fuzzing sessions. The fuzzing engines, AFL++ and

Honggfuzz, required substantial computational power, especially when running

multiple instances simultaneously. This resulted in delays in generating reports,

as the system struggled to process large volumes of crash data in real-time. The

chatbot system was particularly affected when trying to handle the output from

numerous fuzzing sessions concurrently, causing delays in visualizing results.

Solution:

To mitigate this, we optimized the fuzzing sessions by limiting the number of

concurrent fuzzing tasks. The system was also enhanced to better manage the

processing of crash reports by optimizing the data collection and report

generation logic. In addition, hardware resources were allocated more

efficiently, ensuring that the fuzzing process could run with minimal

interruptions.

2. Integration Issues:

Another challenge was the integration of fuzzing outputs into the PHP frontend

and ensuring the system could handle crashes effectively. Combining the

fuzzing results, such as crash logs and detected vulnerabilities, with the chatbot

interface was not seamless at first. Issues such as incorrect formatting, missing

CHAPTER 6

161
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

data, and inconsistent results occasionally arose when attempting to integrate

the fuzzing data with the reporting system. The system struggled with handling

and displaying crash data accurately, which impacted the user experience.

Solution:

The integration was improved by refining the communication protocols

between the fuzzing engines and the PHP frontend. This involved enhancing the

data parsing mechanism to ensure that the fuzzing output was correctly

processed and formatted for presentation. Additionally, we implemented error-

handling routines to manage inconsistencies or missing data, ensuring the

system displayed accurate information.

3. System Stability:

Long fuzzing runs occasionally led to system crashes or task failures,

particularly during the execution of edge cases. These failures occurred due to

a combination of factors, including memory overload, poor error handling for

specific crashes, and unexpected interactions between the fuzzing engines and

the system architecture. Stability issues became more pronounced during

extensive fuzzing sessions, where the system was required to manage large

amounts of data and sustain long-term performance.

Solution:

To address system stability, we introduced monitoring mechanisms to track the

health of the fuzzing system and identify potential failures before they occurred.

Memory management techniques were implemented to better handle long

fuzzing sessions, and the system was modified to gracefully handle crashes or

unexpected behavior. This resulted in improved stability during the fuzzing

process.

CHAPTER 6

162
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Non-Technical Challenges

1. User Feedback:

The user interface design and user experience were also areas where challenges

were encountered. Feedback from test users indicated that some aspects of the

chatbot interface were not intuitive, and certain actions required more steps than

expected. Additionally, there were instances of users not fully understanding

how to interact with the system, such as interpreting the fuzzing results or

triggering mitigation actions.

Solution:

User feedback was incorporated to enhance the chatbot interface. We simplified

the user interaction process by streamlining navigation and providing clearer

instructions on how to use the system.

2. Environment Setup:

The testing environment setup posed another challenge, particularly when

configuring the virtual machines (VMs) and installing the necessary

dependencies. Compatibility issues between the different fuzzing engines and

system libraries sometimes led to errors during initial setup. Additionally,

inconsistencies in the environment setup across different machines made it

difficult to ensure a stable testing environment for fuzzing.

Solution:

To overcome these setup challenges, we documented the environment

configuration steps thoroughly and automated the installation of dependencies

through scripts. The use of containerization tools like Docker was considered

for future versions to streamline environment setup and ensure consistency

across different testing setups.

CHAPTER 6

163
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.4 Objectives Evaluation

This section evaluates the extent to which the multi-fuzzer automated vulnerability

assessment system met the original objectives outlined in the project scope. Each

objective is assessed based on the system's performance, usability, and overall

effectiveness in achieving its intended outcomes.

System Functionality

The primary goal of the system was to automate the vulnerability assessment process

by integrating fuzzing engines like AFL++ and Honggfuzz and generating CVE-like

reports based on detected vulnerabilities. The system succeeded in achieving this

objective by automating the fuzzing, crash report analysis, and CVE generation

processes. The integration of the fuzzing engines allowed for comprehensive

vulnerability assessments, while the automated analysis and report generation

streamlined the process for the user.

Evidence:

• The fuzzing engines successfully identified and documented vulnerabilities in

various binaries, generating structured reports in the form of CVEs.

• The automated system required minimal user intervention beyond initial file

upload, significantly reducing the manual effort typically required in

vulnerability assessments.

• The chatbot interface provided real-time feedback to the user, including the

CVE report and suggested mitigations, demonstrating the system's ability to

meet its functional goals.

User Experience

The user interface (UI) was designed to be simple and intuitive, focusing on providing

an easy-to-use experience for users, especially those with minimal technical

knowledge. Based on user feedback and testing, the system generally met expectations

in terms of usability, but there were areas for improvement in navigation and clarity.

CHAPTER 6

164
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Evidence:

• Users were able to upload files, configure fuzzing sessions, and view reports

without needing deep technical expertise.

• However, some users initially found it challenging to interpret the fuzzing

results and take appropriate actions, which led to the addition of clearer

instructions in the final version of the UI.

• A feedback loop was implemented, allowing users to directly interact with the

chatbot for clarification or further instructions, which helped improve the

overall user experience.

Example: Users reported that the process of starting fuzzing sessions was

straightforward, but understanding the full scope of the vulnerabilities detected (e.g.,

interpreting crash logs and CVE generation) required additional guidance. To address

this, the interface was refined with detailed prompts.

Automation

A core objective of the system was to reduce manual intervention by automating

fuzzing, crash report analysis, and mitigation suggestions. The system was highly

effective in automating these processes, which were previously time-consuming and

resource intensive.

Evidence:

• The fuzzing process was fully automated, with the system managing the

mutation of inputs and triggering fuzzing sessions across multiple concurrent

instances.

• Crash report analysis was also automated, with the system deduplicating crash

data, structuring it into a uniform format, and then transforming it into CVE-

like reports.

• The system's chatbot interface provided automated mitigation suggestions

based on detected vulnerabilities, with some automated scripts triggered directly

by user input.

CHAPTER 6

165
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Example: A user uploaded a sample binary, and the system automatically ran multiple

fuzzing sessions, analyzed crashes, generated a CVE-like report, and presented

mitigation steps, all without requiring user intervention beyond the initial upload.

Scalability

The system’s scalability was evaluated under different load conditions, particularly

with larger binaries and longer fuzzing sessions. While the system performed

adequately under normal conditions, performance bottlenecks were observed during

extended fuzzing sessions, especially when running multiple concurrent tasks.

Evidence:

• For smaller binaries and shorter fuzzing runs, the system performed well, with

quick fuzzing results and report generation.

• However, during extensive fuzzing tasks with larger binaries, the system’s

performance was impacted, leading to delays in report generation. These

bottlenecks were mitigated by limiting the number of concurrent fuzzing

sessions and optimizing resource allocation, but performance could still degrade

with extreme load.

Example: A test involving a large binary led to slower report generation, but the system

was able to manage the task by restraining the number of concurrent fuzzing sessions.

Future improvements could address this scalability issue by introducing more efficient

resource management strategies or parallel processing capabilities.

Security

Ensuring the security of the system, particularly user authentication and preventing

unauthorized access, was a critical objective. The system incorporated advanced

security measures, including two-factor authentication (2FA), to enhance protection.

CHAPTER 6

166
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Evidence:

• Two-factor authentication (2FA) was implemented, adding an extra layer of

security to ensure that only authorized users could access the fuzzing system

and initiate tasks.

• Basic security protocols were in place to protect sensitive data, ensuring that

user information and uploaded files were handled securely.

• No significant security vulnerabilities were found during testing, and the system

successfully protected sensitive data from unauthorized access or tampering.

Example:

During testing, only users who passed the 2FA verification were able to upload files

and start fuzzing tasks. Additionally, the system ensured that results and logs were

securely stored within each user's session. However, there is always room for

improvement, and future iterations could include further security enhancements, such

as encryption at rest or monitoring for potential attack patterns.

CHAPTER 6

167
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.5 Concluding Remark

This section provides a summary of the evaluation findings and offers final thoughts on

the system’s effectiveness, challenges faced, and potential improvements.

Summary of Evaluation

The evaluation of the multi-fuzzer automated vulnerability assessment system revealed

that the system effectively met most of its primary objectives. It successfully automated

the vulnerability discovery process by integrating fuzzing engines like AFL++ and

Honggfuzz, generating CVE-like reports, and offering automated mitigation

suggestions. User feedback indicated that the system's interface was generally user-

friendly, although minor usability issues were addressed through refinements during

the development process.

The testing outcomes highlighted the system's strengths in automating fuzzing, crash

report analysis, and vulnerability mitigation. However, technical challenges, such as

performance bottlenecks during large fuzzing sessions and integrating fuzzing results

with the PHP frontend, were identified. Despite these challenges, the system proved

effective in most scenarios, fulfilling the project’s core objectives.

Overall System Effectiveness

The system achieved its intended goals of automating vulnerability assessment using

multiple fuzzing engines and generating CVE-like reports with suggested mitigations.

This automation is particularly beneficial in real-world scenarios, where it can

significantly reduce the time and effort required for vulnerability detection and analysis.

The system’s ability to automate complex tasks, such as crash report analysis and

mitigation suggestions, makes it a valuable tool for developers and security

professionals seeking to identify and mitigate vulnerabilities quickly.

CHAPTER 6

168
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

In practice, the system can streamline vulnerability assessments for software

applications, offering faster detection and mitigation. By automating tasks that are

usually manual and time-consuming, it allows security teams to focus on higher-level

analysis and decision-making, thus improving the overall efficiency of security

operations.

Suggestions for Improvement

While the system demonstrated strong performance in many areas, there are several

opportunities for improvement:

1. Scalability: The system’s performance under load could be further optimized,

particularly for large binaries or long fuzzing sessions. Introducing more

efficient resource management, parallel processing, or cloud-based scaling

could help handle larger-scale assessments more effectively.

2. Fuzzing Engines Integration: Although the system currently uses AFL++ and

Honggfuzz, integrating additional fuzzing engines, such as libFuzzer or Peach

Fuzzer, could expand the range of vulnerabilities detected and provide users

with more flexibility in testing.

3. User Interface: While the user interface was designed to be simple and

intuitive, additional user-centric features could enhance the experience. This

includes clearer visualizations of the fuzzing progress, enhanced feedback on

detected vulnerabilities, and improved reporting formats for better

interpretation by users of varying technical expertise.

4. Security Enhancements: Future versions of the system could benefit from

more advanced security measures, such as multi-factor authentication and

enhanced encryption of user data, to further secure the fuzzing environment and

its results.

CHAPTER 6

169
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Final Thoughts

Reflecting on the project's journey, the development and testing of the multi-fuzzer

vulnerability assessment system have provided valuable insights into the complexities

of automated security tools. The project successfully demonstrated how integrating

fuzzing engines, automated crash analysis, and CVE generation could improve the

vulnerability assessment process.

Throughout the project, several lessons were learned, particularly regarding the

importance of scalability, system integration, and user experience. Future versions of

the system could further build on these lessons, enhancing performance and expanding

functionality to support more comprehensive vulnerability assessments.

In conclusion, the multi-fuzzer system holds great potential for automating and

streamlining the vulnerability detection and mitigation process. As it evolves, it can

continue to improve the security assessment workflows for both individual developers

and large security teams, providing faster and more reliable vulnerability management.

CHAPTER 7

170
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 7

Conclusion and Recommendation

This final chapter summarizes the overall achievements, findings, and insights gained

throughout the development of the multi-fuzzer automated vulnerability assessment

system. The conclusion highlights how the integration of fuzzing tools like AFL++ and

Honggfuzz, combined with a large language model (LLM), contributed to a more

efficient and automated approach to vulnerability detection, reporting, and mitigation.

Following that, the recommendation section outlines potential enhancements for future

work, such as improving scalability, refining CVE generation accuracy, and supporting

additional fuzzing techniques to further strengthen the system’s usability and

robustness in real-world security assessment scenarios.

7.1 Conclusion

This project aimed to develop a multi-fuzzer-based automated vulnerability assessment

system that integrates AFL++ and Honggfuzz, with a focus on enhancing the detection

of software vulnerabilities. The system was designed to provide users with an intuitive

interface for uploading binaries and receiving detailed CVE-like reports on detected

vulnerabilities. The successful integration of both fuzzing engines and the reporting

system allows the tool to automatically identify, categorize, and suggest mitigation

strategies for vulnerabilities in a user-friendly manner.

Throughout the development process, key objectives such as automation of the fuzzing

process, crash detection, and generation of actionable vulnerability reports were

achieved. The system demonstrated its ability to effectively uncover vulnerabilities and

produce reliable reports, thus meeting the primary goals of automating the vulnerability

assessment process. The implementation of two-factor authentication ensured that

security standards were maintained, safeguarding user data and access to sensitive

functionalities.

Testing results indicated that Honggfuzz outperformed AFL++ in terms of crash

detection and execution speed, particularly when applied to binaries from picoCTF. The

CHAPTER 7

171
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

system’s ability to provide real-time feedback through the integrated chatbot interface

was also highly valued, offering a seamless and efficient user experience.

However, when applying custom-made test cases, AFL++ demonstrated superior

performance in detecting vulnerabilities compared to Honggfuzz. This suggests that

while Honggfuzz excels in certain scenarios, AFL++ may offer more effective results

in others, particularly when it comes to specific types of vulnerabilities or binary

formats. The findings emphasize the importance of selecting the appropriate fuzzer

based on the use case and target application, and underscore the flexibility of the system

in supporting multiple fuzzing engines.

In conclusion, the system succeeded in fulfilling its objectives of automating

vulnerability assessment and providing actionable insights through a multi-fuzzer

approach. However, there are areas for improvement, particularly in enhancing the

scalability of the system and expanding its security features to handle larger-scale

assessments. The project marks a significant step towards automating cybersecurity

measures, making it more accessible for developers and organizations looking to

enhance their software’s security posture.

7.2 Recommendation

While the system has successfully met its objectives, there are several areas where

future enhancements could further improve its functionality, scalability, and security.

Below are the key recommendations for the system’s continued development:

1. Scalability Improvements:

o The current system performs well under moderate load, but there is

potential for performance bottlenecks when handling larger binaries or

extended fuzzing sessions. To address this, the system should be

optimized for better resource management, possibly by incorporating

CHAPTER 7

172
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

parallel processing or distributed fuzzing to handle larger-scale

assessments efficiently.

o Exploring cloud-based infrastructure could help scale the fuzzing

engine’s capacity, enabling users to run multiple tasks concurrently

without significant resource constraints.

2. Advanced Fuzzing Engines Integration:

o While AFL++ and Honggfuzz are powerful fuzzers, integrating

additional fuzzing engines could improve the system’s vulnerability

coverage. Future versions of the system could support other fuzzers like

LibFuzzer, Radamsa, or even hybrid approaches that combine various

fuzzing strategies. This would provide a more reliable platform for

different use cases and binary types.

3. Enhanced Security Features:

o Although two-factor authentication (2FA) was implemented to

strengthen security, there is room for further enhancement.

Incorporating role-based access control (RBAC) could better manage

user privileges and ensure that different levels of access are granted

based on the user’s role (e.g., admin, developer, tester).

o Additionally, employing encryption for sensitive data both in transit and

at rest would further safeguard against potential data breaches or

unauthorized access.

4. User Interface and Experience Improvements:

o While the system’s user interface is functional, future iterations could

benefit from refining the user experience. Simplifying the file upload

process, providing more detailed progress feedback during fuzzing

CHAPTER 7

173
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

sessions, and offering better visualizations of results would enhance

usability, especially for less experienced users.

o Adding more customization options to the user interface, such as

adjustable fuzzing parameters and advanced reporting features, could

provide users with greater flexibility in tailoring the fuzzing process to

their specific needs.

5. Automated Reporting Enhancements:

o The CVE-like reports generated by the system are valuable, but

additional details such as exploitability, risk scoring, or vulnerability

ranking could help users prioritize mitigation efforts. Implementing

integration with existing vulnerability databases, like NVD (National

Vulnerability Database), could also automate the correlation of detected

vulnerabilities with known issues.

o Offering more comprehensive visualizations, such as vulnerability

heatmaps or trend graphs, could improve the interpretability of results

for users.

6. Documentation and Support:

o Comprehensive documentation and user guides should be provided to

ensure that users can fully leverage the system’s capabilities. This

should include detailed explanations of the fuzzing process, how to

interpret results, and guidance on advanced configurations.

o Implementing a support system (e.g., a FAQ section, community forum,

or ticketing system) would also be beneficial for users seeking assistance

or troubleshooting issues.

CHAPTER 7

174
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

7. Optimization of Fuzzing Engines

o While Honggfuzz outperformed AFL++ in detecting vulnerabilities in

picoCTF binaries, AFL++ showed better performance for custom-made

test cases.

o Future development should focus on optimizing the system to support a

wider variety of fuzzing engines or refining existing engines to improve

performance across different use cases. This will ensure that the system

can handle various types of vulnerabilities and binaries more effectively,

providing consistent and reliable results in diverse scenarios.

By improving these areas, the system can grow into a stronger and more adaptable

tool for automated vulnerability assessment. It would be better equipped to handle

larger environments, support more use cases, and offer even stronger security and a

smoother user experience.

REFERENCES

175
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES

[1] J. Bruce. “Vulnerability management: traditional approaches vs. risk-based

strategies.” Linkedin. https://www.linkedin.com/pulse/vulnerability-management-

traditional-approaches-vs-risk-based-bruce/ (accessed August. 26, 2024).

[2] Rebert, A., et al. “Optimizing seed selection for fuzzing.” USENIX Security

Symposium.

https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-

rebert.pdf (accessed April. 13, 2025).

[3] George K., et al. “Evaluating Fuzz Testing” ACM Digital Library.

https://dl.acm.org/doi/pdf/10.1145/3243734.3243804 (accessed April. 13, 2025).

[4] Brown, T., et al. (2020). “Language Models are Few-Shot Learners.” NeurIPS.

https://arxiv.org/abs/2005.14165 (accessed April. 13, 2025).

[5] MITRE Corporation. “Common Vulnerabilities and Exposures (CVE).”

https://cve.mitre.org (accessed April. 13, 2025).

[6] E. Borges. “Top 15 OSINT Tools for Expert Intelligence Gathering.” Recorded

Future. https://www.recordedfuture.com/threat-intelligence-101/tools-and-

technologies/osint-tools (accessed August. 26, 2024).

[7] R. Dezso. “How to Use OSINT Framework Tools for Effective Pentesting.”

StationX. https://www.stationx.net/osint-framework/ (accessed August. 26, 2024).

[8] C. Kime. “6 Top Open-Source Vulnerability Scanners & Tools.” eSecurityPlanet.

https://www.esecurityplanet.com/networks/open-source-vulnerability-scanners/

(accessed August. 26, 2024).

[9] K. Yasar. “Network vulnerability scanning.” TechTarget.

https://www.techtarget.com/searchsecurity/definition/vulnerability-scanning

(accessed August. 26, 2024).

REFERENCES

176
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[10] S. Alazmi “A Systematic Literature Review on the Characteristics and

Effectiveness of Web Application Vulnerability Scanners.” IEEE.

https://ieeexplore.ieee.org/document/9739725 (accessed August. 26, 2024).

[11] “The Importance of Web Application Scanning.” Acunetix.

https://www.acunetix.com/websitesecurity/the-importance-of-web-application-

scanning/ (accessed August. 27, 2024).

[12] “What Is the CI/CD Pipeline?.” Paloaltone Networks.

https://www.paloaltonetworks.com/cyberpedia/what-is-the-ci-cd-pipeline-and-ci-

cd-security (accessed August. 27, 2024).

[13] “Static Application Security Testing.” Synopsys.

https://www.synopsys.com/glossary/what-is-

sast.html#:~:text=Definition,known%20as%20white%20box%20testing.

(accessed August. 27, 2024).

[14] G. Alvarenga. “Shift Left Security Explained.” CrowdStrike.

https://www.crowdstrike.com/cybersecurity-101/shift-left-security/ (accessed

August. 27, 2024).

[15] “What is Dynamic Application Security Testing (DAST)?.” OpenText.

https://www.opentext.com/what-is/dast (accessed August. 27, 2024).

[16] E. Kuzmenko. “Static Application Security Testing Explained Simply.” Kitrum.

https://kitrum.com/blog/static-application-security-testing-explained-simply/

(accessed August. 27, 2024).

[17] “Configuration Management.” Veritis. https://www.veritis.com/blog/chef-vs-

puppet-vs-ansible-comparison-of-devops-management-tools/ (accessed August.

27, 2024).

[18] J. Varghese. “NIST vs CIS Explained: Comparison, Benefits and Applications.”

Getastra. https://www.getastra.com/blog/compliance/nist/nist-vs-

cis/#:~:text=The%20NIST%20framework%20is%20a,to%20protect%20against%

20common%20cyberattacks. (accessed August. 27, 2024).

REFERENCES

177
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[19] M. McDade. “The Top 10 Container Security Tools.” ExpertInsights.

https://expertinsights.com/insights/the-top-container-security-tools/ (accessed

August. 27, 2024).

[20] The Cloud Native Experts. “Cloud Security Tools.” Aquasec.

https://www.aquasec.com/cloud-native-academy/cspm/cloud-security-

tools/#:~:text=Cloud%20security%20tools%20are%20specialized,access%2C%2

0and%20cloud%20service%20vulnerabilities. (accessed August. 27, 2024).

[21] “What is Fuzz Testing and how does it work?.” Synopsys.

https://www.synopsys.com/glossary/what-is-fuzz-testing.html (accessed August.

27, 2024).

[22] “Fuzzing for software security testing and quality assurance, second edition.”

Google Books,

https://books.google.com.my/books?hl=en&lr=&id=tKN5DwAAQBAJ&oi=fnd&

pg=PR15&dq=%2BFuzzing%2Bfor%2BSoftware%2BSecurity%2BTesting%2Ba

nd%2BQuality%2BAssurance&ots=dQcCq1S979&sig=N-

SrT1PlEqsfvO7qjBc3O6Rcnho&redir_esc=y#v=onepage&q=Fuzzing%20for%20

Software%20Security%20Testing%20and%20Quality%20Assurance&f=false

(accessed August. 27, 2024).

[23] V. Ganesh. “Taint-based directed whitebox fuzzing.” Researchgate.

https://www.researchgate.net/publication/221554473_Taint-

based_Directed_Whitebox_Fuzzing” (accessed August. 27, 2024).

[24] “Greybox fuzzing - The fuzzing book.” Greybox Fuzzing - The Fuzzing Book.

https://www.fuzzingbook.org/html/GreyboxFuzzer.html (accessed August. 27,

2024).

[25] Google. “Google/clusterfuzz: Scalable Fuzzing Infrastructure..” GitHub.

https://github.com/google/clusterfuzz (accessed August. 27, 2024).

[26] A. Dew. “An introduction to fuzzing - what is Fuzz Testing?.” TrustInSoft,

exhaustive static analysis tools for software security and safety. https://trust-in-

REFERENCES

178
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

soft.com/blog/2023/05/23/an-introduction-to-fuzzing/ (accessed August. 27,

2024).

[27] F. Rustamov. “Exploratory review of hybrid fuzzing for automated

vulnerability.” Ieeexplore.

https://ieeexplore.ieee.org/document/9541397/references (accessed August. 27,

2024).

[28] R. Xu. “Symbolic execution algorithms for test generation.” https://people.mpi-

sws.org/~rupak/Papers/RuGangXuThesis.pdf (accessed August. 28, 2024).

[29] X. Mi, B. Wang, Y. Tang, P. Wang, and B. Yu. “Shfuzz: Selective hybrid

fuzzing with branch scheduling based on binary instrumentation.” MDPI.

https://www.mdpi.com/2076-3417/10/16/5449 (accessed August. 28, 2024).

[30] “Mutation-based fuzzing - The fuzzing book.” Mutation-Based Fuzzing - The

Fuzzing Book. https://www.fuzzingbook.org/html/MutationFuzzer.html (accessed

August. 28, 2024).

[31] Y. Koike. “Bandit Optimization Framework for Mutation-Based Fuzzing.”

SLOPT: Bandit Optimization Framework for mutation-based fuzzing.

https://dl.acm.org/doi/fullHtml/10.1145/3564625.3564659#:~:text=For%20examp

le%2C%20mutation%2Dbased%20fuzzing,paths%2C%20and%20thus%2C%20b

ugs. (accessed August. 28, 2024).

[32] J. Li. “Comparison of generation based fuzzers and mutation.”

https://www.researchgate.net/figure/Comparison-of-generation-based-fuzzers-

and-mutation-based-fuzzers_tbl2_325577316 (accessed August. 28, 2024).

[33] D. C. “Introduction to file format Fuzzing & Exploitation.” Medium.

https://danielc7.medium.com/introduction-to-file-format-fuzzing-exploitation-

922143ab2ab3 (accessed August. 28, 2024).

[34] Z. Zhang, H. Zhang, J. Zhao, and Y. Yin. “A survey on the development of

network protocol fuzzing techniques.” MDPI. https://www.mdpi.com/2079-

9292/12/13/2904 (accessed August. 28, 2024).

REFERENCES

179
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[35] V. Pham. “Model-based Whitebox fuzzing for program binaries.” Mboehme.

https://mboehme.github.io/paper/ASE16.pdf (accessed August. 28, 2024).

[36] V. Pham. “Smart Greybox Fuzzing.” Mboehme.

https://mboehme.github.io/paper/TSE19.pdf (accessed August. 28, 2024).

[37] P. Godefroid. “Sage: Whitebox fuzzing for Security Testing.” SAGE: Whitebox

Fuzzing for Security Testing - ACM Queue.

https://queue.acm.org/detail.cfm?id=2094081 (accessed August. 28, 2024).

[38] Wen Xu Georgia Institute of Technology et al.. “Freedom: Engineering a state-

of-the-art dom fuzzer: Proceedings of the 2020 ACM SIGSAC Conference on

Computer and Communications Security.” ACM Conferences.

https://dl.acm.org/doi/10.1145/3372297.3423340 (accessed August. 28, 2024).

[39] GoSSIP. “FreeDom: Engineering a State-of-the-Art DOM Fuzzer.” FreeDom:

Engineering a State-of-the-Art DOM Fuzzer - Group of Software Security In

Progress. https://securitygossip.com/blog/2020/12/18/freedom-engineering-a-

state-of-the-art-dom-fuzzer/ (accessed August. 28, 2024).

[40] “API fuzz testing: What is.” Aptori. https://aptori.dev/glossary/api-fuzz-

testing#:~:text=API%20Fuzz%20testing%2C%20often%20called%20API%20Fu

zzing%2C%20is%20a%20dynamic,comprehensive%20testing%20of%20the%20

API. (accessed August. 28, 2024).

[41] T. P. Ltd. “A guide to fuzz testing.” Testfully. https://testfully.io/blog/fuzz-

testing/ (accessed August. 28, 2024).

[42] J. Wang. “Figure 1: Coverage-guided fuzzing overview.” Researchgate.

https://www.researchgate.net/figure/Coverage-guided-Fuzzing-

Overview_fig1_357046806 (accessed August. 29, 2024).

[43] S. of Bitcoin. “Fuzzing evolution: How developers make bitcoin more secure.”

Summer of Bitcoin Blog. https://blog.summerofbitcoin.org/fuzzing-evolution-

how-developers-make-bitcoin-more-secure/ (accessed August. 29, 2024).

REFERENCES

180
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[44] H. Sochor, F. Ferrarotti, and D. Kaufmann. “Fuzzing-based grammar inference.”

SpringerLink. https://link.springer.com/chapter/10.1007/978-3-031-21595-7_6

(accessed August. 29, 2024).

[45] T. M. Jimenez. “The Mexican American Vietnam War Serviceman: The missing

American.” Digitalcommons.

https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=2657&context=th

eses (accessed August. 29, 2024).

[46] “Common Protocol vulnerabilities.” CQR. https://cqr.company/web-

vulnerabilities/common-protocol-

vulnerabilities/#:~:text=Examples%20of%20protocol%20vulnerabilities%20inclu

de,transmission%2C%20and%20insufficient%20authentication%20mechanisms.

&text=The%20code%20is%20a%20simple,server%2C%20and%20receives%20a

%20response. (accessed August. 29, 2024).

[47] Y. Wang. “Fuzzing Program Logic Deeply Hidden in Binary Program Stages.”

IEEE. https://ieeexplore.ieee.org/document/8668022 (accessed August. 29, 2024).

[48] M. Salehi. “Discovery and Identification of Memory Corruption Vulnerabilities

on Bare-Metal Embedded Devices.” IEEE.

https://ieeexplore.ieee.org/document/9707846 (accessed August. 29, 2024).

[49] “Fuzz Testing.” Influxdata. https://www.influxdata.com/glossary/fuzz-

testing/#:~:text=Fuzz%20testing%20can%20expose%20edge,%2C%20malforme

d%2C%20or%20unexpected%20data. (accessed August. 29, 2024).

[50] S. Grob. “FUZZILLI: Fuzzing for JavaScript JIT Compiler Vulnerabilities.”

NDSS. https://www.ndss-symposium.org/wp-

content/uploads/2023/02/ndss2023_f290_paper.pdf (accessed August. 29, 2024).

[51] “honggfuzz-rs.” DOCS.RS. https://docs.rs/crate/honggfuzz/0.2.1 (accessed

August. 29, 2024).

REFERENCES

181
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[52] “Fuzzing binary-only targets.” AFLplusplus.

https://aflplus.plus/docs/fuzzing_binary-only_targets/ (accessed August. 29,

2024).

[53] “GNATfuzz User’s Guide.” AdaCore. https://docs.adacore.com/gnatcoverage-

docs/html/gnatfuzz/gnatfuzz_part.html (accessed August. 30, 2024).

[54] Y. Li. “Principled Greybox Fuzzing: 20th International Conference on Formal

Engineering Methods, ICFEM 2018, Gold Coast, QLD, Australia, November 12-

16, 2018, Proceedings.” ResearchGate.

https://www.researchgate.net/publication/328206406_Principled_Greybox_Fuzzi

ng_20th_International_Conference_on_Formal_Engineering_Methods_ICFEM_2

018_Gold_Coast_QLD_Australia_November_12-16_2018_Proceedings#pf2

(accessed August. 30, 2024).

[55] O. Jacobi. “Exploring Architectures and Capabilities of Foundational LLMs”

Aporia. https://www.aporia.com/learn/exploring-architectures-and-capabilities-of-

foundational-llms/#LLM_architecture (accessed August. 30, 2024).

[56] “AFLplusplus.” Github. https://github.com/AFLplusplus/AFLplusplus (accessed

August. 30, 2024).

[57] “honggfuzz.” Github. https://github.com/google/honggfuzz (accessed August. 30,

2024).

[58] “Binary Exploitation.” picoCTF. https://play.picoctf.org/practice (accessed

August. 30, 2024).

APPENDIX

A-1
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

POSTER

APPENDIX

A-2
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CODING WORK

PHP Script

check_crash.php

<?php

header('Content-Type: application/json');

$directory = '/home/einjun/AFLplusplus/logs';

$files = glob($directory . '/*_report.txt');

$crash_detected = false;

$latest_file = null;

$debug_info = [];

$debug_info['all_files'] = $files;

// Find the most recent report file

if (!empty($files)) {

 $latest_file = max($files);

 $debug_info['latest_file'] = $latest_file;

 $file_time = filemtime($latest_file);

 $current_time = time();

 $age = $current_time - $file_time;

 $debug_info['file_time'] = date('Y-m-d H:i:s', $file_time);

 $debug_info['current_time'] = date('Y-m-d H:i:s', $current_time);

 $debug_info['age_seconds'] = $age;

 session_start();

 $content = file_get_contents($latest_file);

 $debug_info['file_content'] = $content;

 $crash_patterns = [

 'crash',

 'crashed',

 'crashes found',

 'AFL++ crash',

 'Honggfuzz crash',

 'SEGV',

 'SIGSEGV',

 'stack overflow',

 'memory corruption'

];

 foreach ($crash_patterns as $pattern) {

 if (stripos($content, $pattern) !== false) {

 $crash_detected = true;

 break;

 }

 }

 $_SESSION['last_read_content'] = $content;

 $debug_info['crash_detected'] = $crash_detected;

 $debug_info['crash_patterns_checked'] = $crash_patterns;

} else {

 $debug_info['no_files_found'] = true;

APPENDIX

A-3
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

}

error_log("Crash check debug info: " . print_r($debug_info, true));

echo json_encode([

 'crash_found' => $crash_detected,

 'latest_file' => $latest_file,

 'debug' => $debug_info

]);

APPENDIX

A-4
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

create_user.php

<?php

session_start();

$error = '';

$success = '';

$db_host = 'localhost';

$db_user = 'root';

$db_pass = '';

$db_name = 'chatbot_db';

$conn = new mysqli($db_host, $db_user, $db_pass, $db_name);

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

if ($_SERVER["REQUEST_METHOD"] == "POST") {

 $username = $conn->real_escape_string($_POST['username']);

 $password = $_POST['password'];

 $confirm_password = $_POST['confirm_password'];

 $email = $conn->real_escape_string($_POST['email']);

 $validation_errors = [];

 // Username validation

 if (strlen($username) < 3) {

 $validation_errors[] = "Username must be at least 3 characters long";

 } elseif (!preg_match('/^[a-zA-Z0-9_]+$/', $username)) {

 $validation_errors[] = "Username can only contain letters, numbers, and underscores";

 }

 // Password validation

 if (strlen($password) < 8) {

 $validation_errors[] = "Password must be at least 8 characters long";

 } elseif (!preg_match('/[A-Z]/', $password)) {

 $validation_errors[] = "Password must contain at least one uppercase letter";

 } elseif (!preg_match('/[a-z]/', $password)) {

 $validation_errors[] = "Password must contain at least one lowercase letter";

 } elseif (!preg_match('/[0-9]/', $password)) {

 $validation_errors[] = "Password must contain at least one number";

 } elseif (!preg_match('/[^A-Za-z0-9]/', $password)) {

 $validation_errors[] = "Password must contain at least one special character";

 }

 if ($password !== $confirm_password) {

 $validation_errors[] = "Passwords do not match";

 }

 // Email validation

 if (!filter_var($email, FILTER_VALIDATE_EMAIL)) {

 $validation_errors[] = "Invalid email format";

 }

 if (empty($validation_errors)) {

 $check_sql = "SELECT id FROM users WHERE username = ? OR email = ?";

 $check_stmt = $conn->prepare($check_sql);

 $check_stmt->bind_param("ss", $username, $email);

APPENDIX

A-5
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 $check_stmt->execute();

 $result = $check_stmt->get_result();

 if ($result->num_rows > 0) {

 $error = "Username or email already exists";

 } else {

 // Create new user

 $hashed_password = password_hash($password, PASSWORD_DEFAULT);

 $sql = "INSERT INTO users (username, password, email) VALUES (?, ?, ?)";

 $stmt = $conn->prepare($sql);

 $stmt->bind_param("sss", $username, $hashed_password, $email);

 if ($stmt->execute()) {

 $success = "Account created successfully! Redirecting to login...";

 header("refresh:3;url=login.php");

 } else {

 $error = "Error creating account: " . $conn->error;

 }

 $stmt->close();

 }

 $check_stmt->close();

 } else {

 $error = implode("
", $validation_errors);

 }

}

?>

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Create Account - Multi-Fuzzer AI Chatbot System</title>

 <style>

 :root {

 --primary-color: #2c3e50;

 --secondary-color: #3498db;

 --success-color: #2ecc71;

 --error-color: #e74c3c;

 --background-color: #f4f6f9;

 --text-color: #2c3e50;

 --text-muted: #7f8c8d;

 --border-color: #e0e0e0;

 --shadow-sm: 0 2px 4px rgba(0,0,0,0.05);

 --shadow-md: 0 4px 6px rgba(0,0,0,0.1);

 --shadow-lg: 0 8px 24px rgba(0,0,0,0.1);

 --gradient-primary: linear-gradient(135deg, var(--primary-color), var(--secondary-color));

 }

 * {

 margin: 0;

 padding: 0;

 box-sizing: border-box;

 }

 body {

 font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;

 background-color: var(--background-color);

 min-height: 100vh;

APPENDIX

A-6
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 display: flex;

 align-items: center;

 justify-content: center;

 padding: 20px;

 color: var(--text-color);

 line-height: 1.6;

 position: relative;

 overflow-y: auto;

 overflow-x: hidden;

 }

 .background-pattern {

 position: fixed;

 top: 0;

 left: 0;

 width: 100%;

 height: 100%;

 background-image:

 radial-gradient(circle at 25% 25%, rgba(52, 152, 219, 0.1) 0%, transparent 50%),

 radial-gradient(circle at 75% 75%, rgba(44, 62, 80, 0.1) 0%, transparent 50%);

 z-index: -1;

 }

 .register-container {

 background: white;

 padding: 2.5rem;

 border-radius: 16px;

 box-shadow: var(--shadow-lg);

 width: 100%;

 max-width: 420px;

 position: relative;

 overflow: hidden;

 backdrop-filter: blur(10px);

 border: 1px solid rgba(255, 255, 255, 0.2);

 animation: slideUp 0.5s ease-out;

 }

 @keyframes slideUp {

 from {

 opacity: 0;

 transform: translateY(20px);

 }

 to {

 opacity: 1;

 transform: translateY(0);

 }

 }

 .register-header {

 text-align: center;

 margin-bottom: 2rem;

 position: relative;

 }

 .register-header h1 {

 color: var(--text-color);

 font-size: 1.8rem;

 margin-bottom: 0.5rem;

 display: flex;

APPENDIX

A-7
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 align-items: center;

 justify-content: center;

 gap: 0.8rem;

 }

 .register-header svg {

 color: var(--secondary-color);

 filter: drop-shadow(0 2px 4px rgba(52, 152, 219, 0.2));

 }

 .register-header p {

 color: var(--text-muted);

 font-size: 0.95rem;

 margin-top: 0.5rem;

 }

 .form-group {

 margin-bottom: 1.8rem;

 position: relative;

 }

 .form-group label {

 display: block;

 margin-bottom: 0.8rem;

 color: var(--text-color);

 font-weight: 500;

 font-size: 0.95rem;

 transition: color 0.3s ease;

 }

 .form-group input {

 width: 100%;

 padding: 1rem;

 border: 2px solid var(--border-color);

 border-radius: 12px;

 font-size: 1rem;

 transition: all 0.3s ease;

 background: #f8f9fa;

 color: var(--text-color);

 }

 .form-group input:focus {

 border-color: var(--secondary-color);

 outline: none;

 box-shadow: 0 0 0 4px rgba(52, 152, 219, 0.1);

 background: white;

 }

 .form-group input::placeholder {

 color: var(--text-muted);

 opacity: 0.5;

 }

 .password-strength {

 margin-top: 0.5rem;

 font-size: 0.85rem;

 color: var(--text-muted);

 }

APPENDIX

A-8
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 .strength-meter {

 height: 4px;

 background: #eee;

 margin-top: 0.5rem;

 border-radius: 2px;

 overflow: hidden;

 }

 .strength-meter div {

 height: 100%;

 width: 0;

 transition: all 0.3s ease;

 }

 .requirements-list {

 list-style: none;

 padding: 0;

 margin: 10px 0;

 font-size: 0.85rem;

 color: var(--text-muted);

 }

 .requirement-item {

 display: flex;

 align-items: center;

 margin: 5px 0;

 transition: color 0.3s ease;

 }

 .requirement-item.valid {

 color: var(--success-color);

 }

 .requirement-item::before {

 content: "•";

 margin-right: 8px;

 color: var(--error-color);

 }

 .requirement-item.valid::before {

 content: "✓";

 color: var(--success-color);

 }

 .error-message {

 background-color: rgba(231, 76, 60, 0.1);

 color: var(--error-color);

 padding: 1rem;

 border-radius: 12px;

 margin-bottom: 1.5rem;

 font-size: 0.95rem;

 display: flex;

 align-items: center;

 gap: 0.8rem;

 border: 1px solid rgba(231, 76, 60, 0.2);

 animation: shake 0.5s ease-in-out;

 }

 @keyframes shake {

APPENDIX

A-9
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 0%, 100% { transform: translateX(0); }

 25% { transform: translateX(-5px); }

 75% { transform: translateX(5px); }

 }

 .success-message {

 background-color: rgba(46, 204, 113, 0.1);

 color: var(--success-color);

 padding: 1rem;

 border-radius: 12px;

 margin-bottom: 1.5rem;

 font-size: 0.95rem;

 display: flex;

 align-items: center;

 gap: 0.8rem;

 border: 1px solid rgba(46, 204, 113, 0.2);

 }

 .register-button {

 width: 100%;

 padding: 1rem;

 background: var(--gradient-primary);

 color: white;

 border: none;

 border-radius: 12px;

 font-size: 1rem;

 font-weight: 600;

 cursor: pointer;

 transition: all 0.3s ease;

 position: relative;

 overflow: hidden;

 margin-bottom: 1.5rem;

 }

 .register-button:hover {

 transform: translateY(-2px);

 box-shadow: 0 4px 12px rgba(52, 152, 219, 0.2);

 }

 .register-button:active {

 transform: translateY(1px);

 }

 .register-button::after {

 content: '';

 position: absolute;

 top: 0;

 left: 0;

 width: 100%;

 height: 100%;

 background: linear-gradient(45deg, transparent, rgba(255,255,255,0.2), transparent);

 transform: translateX(-100%);

 transition: transform 0.6s ease;

 }

 .register-button:hover::after {

 transform: translateX(100%);

 }

APPENDIX

A-10
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 .login-link {

 text-align: center;

 color: var(--text-muted);

 font-size: 0.95rem;

 }

 .login-link a {

 color: var(--secondary-color);

 text-decoration: none;

 font-weight: 500;

 transition: color 0.3s ease;

 position: relative;

 }

 .login-link a::after {

 content: '';

 position: absolute;

 width: 100%;

 height: 2px;

 bottom: -2px;

 left: 0;

 background-color: var(--secondary-color);

 transform: scaleX(0);

 transform-origin: right;

 transition: transform 0.3s ease;

 }

 .login-link a:hover {

 color: var(--primary-color);

 }

 .login-link a:hover::after {

 transform: scaleX(1);

 transform-origin: left;

 }

 .decoration {

 position: absolute;

 width: 300px;

 height: 300px;

 background: linear-gradient(45deg, rgba(52, 152, 219, 0.1), rgba(44, 62, 80, 0.1));

 border-radius: 50%;

 z-index: 0;

 animation: float 6s ease-in-out infinite;

 }

 @keyframes float {

 0%, 100% { transform: translateY(0); }

 50% { transform: translateY(-20px); }

 }

 .decoration-1 {

 top: -150px;

 right: -150px;

 animation-delay: 0s;

 }

 .decoration-2 {

 bottom: -150px;

APPENDIX

A-11
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 left: -150px;

 animation-delay: -3s;

 }

 @media (max-width: 480px) {

 .register-container {

 margin: 1rem;

 padding: 1.5rem;

 }

 .register-header h1 {

 font-size: 1.5rem;

 }

 .form-group input {

 font-size: 0.95rem;

 padding: 0.8rem;

 }

 }

 </style>

</head>

<body>

 <div class="background-pattern"></div>

 <div class="register-container">

 <div class="decoration decoration-1"></div>

 <div class="decoration decoration-2"></div>

 <div class="register-header">

 <h1>

 <svg style="width:28px;height:28px" viewBox="0 0 24 24">

 <path fill="currentColor" d="M12,4A4,4 0 0,1 16,8A4,4 0 0,1 12,12A4,4 0 0,1 8,8A4,4 0

0,1 12,4M12,14C16.42,14 20,15.79 20,18V20H4V18C4,15.79 7.58,14 12,14Z" />

 </svg>

 Create Account

 </h1>

 <p>Join Multi-Fuzzer AI Chatbot System</p>

 </div>

 <?php if ($error): ?>

 <div class="error-message">

 <svg style="width:20px;height:20px" viewBox="0 0 24 24">

 <path fill="currentColor" d="M13 14H11V9H13M13 18H11V16H13M1 21H23L12 2L1

21Z" />

 </svg>

 <?php echo $error; ?>

 </div>

 <?php endif; ?>

 <?php if ($success): ?>

 <div class="success-message">

 <svg style="width:20px;height:20px" viewBox="0 0 24 24">

 <path fill="currentColor" d="M12 2C6.5 2 2 6.5 2 12S6.5 22 12 22 22 17.5 22 12 17.5 2

12 2M10 17L5 12L6.41 10.59L10 14.17L17.59 6.58L19 8L10 17Z" />

 </svg>

 <?php echo $success; ?>

 </div>

 <?php endif; ?>

APPENDIX

A-12
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 <form method="POST" action="<?php echo htmlspecialchars($_SERVER["PHP_SELF"]); ?>"

id="registerForm">

 <div class="form-group">

 <label for="username">Username</label>

 <input type="text" id="username" name="username" required minlength="3"

 pattern="[a-zA-Z0-9_]+" autocomplete="username"

 placeholder="Choose a username">

 <div class="password-strength">

 <div class="strength-meter">

 <div id="username-strength-bar"></div>

 </div>

 Username strength: Too weak

 </div>

 </div>

 <div class="form-group">

 <label for="email">Email</label>

 <input type="email" id="email" name="email" required

 autocomplete="email" placeholder="Enter your email">

 </div>

 <div class="form-group">

 <label for="password">Password</label>

 <input type="password" id="password" name="password" required

 minlength="8" autocomplete="new-password"

 placeholder="Create a strong password">

 <div class="password-strength">

 <div class="strength-meter">

 <div id="password-strength-bar"></div>

 </div>

 Password strength: Too weak

 <ul id="password-requirements" class="requirements-list">

 <li class="requirement-item" id="length">At least 8 characters

 <li class="requirement-item" id="uppercase">One uppercase letter

 <li class="requirement-item" id="lowercase">One lowercase letter

 <li class="requirement-item" id="number">One number

 <li class="requirement-item" id="special">One special character

 </div>

 </div>

 <div class="form-group">

 <label for="confirm_password">Confirm Password</label>

 <input type="password" id="confirm_password" name="confirm_password"

 required minlength="8" autocomplete="new-password"

 placeholder="Confirm your password">

 </div>

 <button type="submit" class="register-button">Create Account</button>

 </form>

 <div class="login-link">

 Already have an account? Login here

 </div>

 </div>

 <script>

 function checkPasswordStrength(password) {

 let strength = 0;

APPENDIX

A-13
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 const requirements = {

 length: password.length >= 8,

 uppercase: /[A-Z]/.test(password),

 lowercase: /[a-z]/.test(password),

 number: /[0-9]/.test(password),

 special: /[^A-Za-z0-9]/.test(password)

 };

 Object.keys(requirements).forEach(req => {

 const element = document.getElementById(req);

 if (requirements[req]) {

 element.classList.add('valid');

 } else {

 element.classList.remove('valid');

 }

 });

 strength = Object.values(requirements).filter(Boolean).length * 20;

 const strengthBar = document.getElementById('password-strength-bar');

 const strengthText = document.getElementById('password-strength-text');

 strengthBar.style.width = strength + '%';

 strengthBar.style.backgroundColor =

 strength <= 20 ? '#e74c3c' :

 strength <= 40 ? '#f39c12' :

 strength <= 60 ? '#f1c40f' :

 strength <= 80 ? '#3498db' :

 '#2ecc71';

 strengthText.innerHTML = `Password strength: ${

 strength <= 20 ? 'Very Weak' :

 strength <= 40 ? 'Weak' :

 strength <= 60 ? 'Medium' :

 strength <= 80 ? 'Strong' :

 'Very Strong'

 }`;

 return strength;

 }

 function checkUsernameStrength(username) {

 let strength = 0;

 if (username.length >= 3) strength += 25;

 if (username.length >= 5) strength += 25;

 if (username.length >= 8) strength += 25;

 if (/[A-Z]/.test(username)) strength += 25;

 const strengthBar = document.getElementById('username-strength-bar');

 const strengthText = document.getElementById('username-strength-text');

 strengthBar.style.width = strength + '%';

 strengthBar.style.backgroundColor =

 strength <= 25 ? '#e74c3c' :

 strength <= 50 ? '#f39c12' :

 strength <= 75 ? '#f1c40f' :

 '#2ecc71';

 strengthText.innerHTML = `Username strength: ${

 strength <= 25 ? 'Weak' :

APPENDIX

A-14
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 strength <= 50 ? 'Medium' :

 strength <= 75 ? 'Strong' :

 'Very Strong'

 }`;

 return strength;

 }

 // Real-time validation

 document.getElementById('password').addEventListener('input', function(e) {

 checkPasswordStrength(e.target.value);

 });

 document.getElementById('username').addEventListener('input', function(e) {

 checkUsernameStrength(e.target.value);

 });

 // Form validation

 document.getElementById('registerForm').addEventListener('submit', function(e) {

 const password = document.getElementById('password').value;

 const confirmPassword = document.getElementById('confirm_password').value;

 const username = document.getElementById('username').value;

 const email = document.getElementById('email').value;

 let isValid = true;

 let errorMessage = '';

 // Username validation

 if (username.length < 3) {

 isValid = false;

 errorMessage += 'Username must be at least 3 characters long\n';

 }

 if (!/^[a-zA-Z0-9_]+$/.test(username)) {

 isValid = false;

 errorMessage += 'Username can only contain letters, numbers, and underscores\n';

 }

 // Password validation

 if (password.length < 8) {

 isValid = false;

 errorMessage += 'Password must be at least 8 characters long\n';

 }

 if (!/[A-Z]/.test(password)) {

 isValid = false;

 errorMessage += 'Password must contain at least one uppercase letter\n';

 }

 if (!/[a-z]/.test(password)) {

 isValid = false;

 errorMessage += 'Password must contain at least one lowercase letter\n';

 }

 if (!/[0-9]/.test(password)) {

 isValid = false;

 errorMessage += 'Password must contain at least one number\n';

 }

 if (!/[^A-Za-z0-9]/.test(password)) {

 isValid = false;

 errorMessage += 'Password must contain at least one special character\n';

 }

APPENDIX

A-15
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 if (password !== confirmPassword) {

 isValid = false;

 errorMessage += 'Passwords do not match\n';

 }

 // Email validation

 if (!/^[^\s@]+@[^\s@]+\.[^\s@]+$/.test(email)) {

 isValid = false;

 errorMessage += 'Please enter a valid email address\n';

 }

 if (!isValid) {

 e.preventDefault();

 alert(errorMessage);

 return false;

 }

 return true;

 });

 document.querySelectorAll('.form-group input').forEach(input => {

 input.addEventListener('focus', function() {

 this.parentElement.classList.add('focused');

 });

 input.addEventListener('blur', function() {

 this.parentElement.classList.remove('focused');

 });

 });

 </script>

</body>

</html>

APPENDIX

A-16
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

index.php

<?php

session_start();

if (!isset($_SESSION['user_id'])) {

 header("Location: login.php");

 exit();

}

$logsDir = '/home/einjun/AFLplusplus/logs';

if (!isset($_SESSION['logs_cleaned'])) {

 if (is_dir($logsDir)) {

 $files = glob($logsDir . '/*');

 foreach ($files as $file) {

 if (is_file($file)) {

 unlink($file);

 }

 }

 }

 $_SESSION['logs_cleaned'] = true;

}

error_reporting(E_ALL);

ini_set('display_errors', 1);

if (!function_exists('curl_init')) {

 die('cURL is not installed on this server!');

}

$db_host = 'localhost';

$db_user = 'root';

$db_pass = '';

$db_name = 'chatbot_db';

$conn = new mysqli($db_host, $db_user, $db_pass, $db_name);

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

define('OPENAI_API_KEY', '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');

if (!file_exists('uploads')) {

 mkdir('uploads', 0777, true);

}

if (!isset($_SESSION['chat_history'])) {

 $_SESSION['chat_history'] = [];

}

// Handle file upload

if (isset($_FILES['security_file'])) {

 $target_dir = "/home/einjun/AFLplusplus/";

 $target_file = $target_dir . basename($_FILES["security_file"]["name"]);

 $uploadOk = 1;

 if ($_FILES["security_file"]["size"] > 500000) {

 echo "Sorry, your file is too large.";

APPENDIX

A-17
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 $uploadOk = 0;

 }

 if ($uploadOk == 1) {

 if (move_uploaded_file($_FILES["security_file"]["tmp_name"], $target_file)) {

 chmod($target_file, 0777);

 $filename = pathinfo($_FILES["security_file"]["name"], PATHINFO_FILENAME);

 header("Location: index1.php?command=RUN_PARALLEL 30 " . urlencode($filename));

 exit;

 } else {

 echo "Sorry, there was an error uploading your file.";

 }

 }

}

// Get the latest parallel fuzzing report before sending to LLM

function getLatestFuzzingReport() {

 $directory = '/home/einjun/AFLplusplus/logs';

 $files = glob($directory . '/parallel_fuzzing_*_report.txt');

 if (!empty($files)) {

 $latest_file = max($files);

 return file_get_contents($latest_file);

 }

 return null;

}

if (isset($_POST['message'])) {

 $user_message = $conn->real_escape_string($_POST['message']);

 $timestamp = date('Y-m-d H:i:s');

 if (!isset($_SESSION['crash_analyzed'])) {

 $report_content = getLatestFuzzingReport();

 if ($report_content) {

 $user_message = "Please analyze this fuzzing crash report for potential vulnerabilities:\n\n" .

$report_content;

 $_SESSION['crash_analyzed'] = true;

 }

 }

 $response = callOpenAI($user_message);

 header('Content-Type: application/json');

 echo json_encode(['response' => $response]);

 exit;

}

if ($_SERVER['REQUEST_METHOD'] === 'GET') {

 unset($_SESSION['crash_analyzed']);

 clearChatHistory();

}

function callOpenAI($message) {

 $url = 'https://api.openai.com/v1/chat/completions';

 $headers = [

 'Content-Type: application/json',

 'Authorization: Bearer ' . OPENAI_API_KEY

];

APPENDIX

A-18
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 $system_message = [

 'role' => 'system',

 'content' => 'You are a multi-fuzzer report AI assistant. Analyze the fuzzing crash report, provide

CVE-like report and provide mitigation recommendations in the following format for each

vulnerability. Elaborate more professionally by adding more information. Format my response into

more structured way (Separate each part):

 === CVE Report

==

 Program Name : [Program name]

 Vulnerability Name : [Short name/title of vulnerability]

 Description : [Brief but clear description of the issue and how it occurs]

 Impact : [Describe the effect and consequence if exploited]

 CVSS Score : [If applicable, provide score out of 10]

 Affected Component : [Component, function, or module affected]

 ==

===============================

 Recommendations:

 Code Changes Required: [Describe exact or general code-level changes to prevent the issue]

 ==

===============================

 Mitigation Link:

 Action: install_[tool_name_below]

 For each Action, use one of these predefined installation commands, choose only the most suitable

one based on the vulnerabilities:

 - Action: install_apparmor (for AppArmor security)

 - Action: install_asan (for AddressSanitizer)

 - Action: install_hardened_malloc (for HardenedMalloc)

 - Action: install_exploit_mitigations (for general exploit mitigations)

 - Action: install_disk_flooding_attack_mitigation (for disk flooding attacks)

 - Action: install_inodes_exhaustion_mitigation (for inodes exhaustion attacks)

 Each Action should be on a new line and start with "Action: install_" do not mention the brackets,

only install 1 of them at once.

 Instruction:Elaborate more on the effect of installing the tool. Explain what tool should be

installed and why it helps.Include those "===" for formatting purpose.

 ==

===============================

'

];

 // Preserve conversation history

 $messages = [$system_message];

 // Add conversation history

 foreach ($_SESSION['chat_history'] as $chat) {

 $messages[] = [

 'role' => $chat['is_bot'] ? 'assistant' : 'user',

 'content' => $chat['message']

];

 }

 $messages[] = [

 'role' => 'user',

 'content' => $message

];

APPENDIX

A-19
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 $data = [

 'model' => 'gpt-3.5-turbo',

 'messages' => $messages,

 'temperature' => 0.7,

 'max_tokens' => 2000,

 'presence_penalty' => 0.3,

 'frequency_penalty' => 0.3

];

 $ch = curl_init($url);

 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

 curl_setopt($ch, CURLOPT_POST, true);

 curl_setopt($ch, CURLOPT_POSTFIELDS, json_encode($data));

 curl_setopt($ch, CURLOPT_HTTPHEADER, $headers);

 curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, false);

 curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, 0);

 $response = curl_exec($ch);

 if (curl_errno($ch)) {

 error_log('Curl error: ' . curl_error($ch));

 return 'Error: ' . curl_error($ch);

 }

 curl_close($ch);

 $response_data = json_decode($response, true);

 error_log('OpenAI Response: ' . print_r($response_data, true));

 if (isset($response_data['error'])) {

 error_log('OpenAI Error: ' . print_r($response_data['error'], true));

 return 'Error: ' . $response_data['error']['message'];

 }

 if (isset($response_data['choices'][0]['message']['content'])) {

 $_SESSION['chat_history'][] = [

 'message' => $message,

 'is_bot' => false

];

 $_SESSION['chat_history'][] = [

 'message' => $response_data['choices'][0]['message']['content'],

 'is_bot' => true

];

 $formatted_response = formatResponse($response_data['choices'][0]['message']['content']);

 return $formatted_response;

 } else {

 return 'Sorry, I could not process your request. Please check the error logs.';

 }

}

function formatResponse($response) {

 $formatted = "

 <style>

 .modal {

 display: none;

 position: fixed;

 top: 0;

 left: 0;

 width: 100%;

APPENDIX

A-20
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 height: 100%;

 background-color: rgba(0,0,0,0.5);

 z-index: 1000;

 }

 .modal-content {

 background-color: #fefefe;

 margin: 15% auto;

 padding: 20px;

 border: 1px solid #888;

 width: 80%;

 max-width: 500px;

 border-radius: 8px;

 }

 .modal-buttons {

 display: flex;

 justify-content: flex-end;

 gap: 15px;

 margin-top: 25px;

 }

 .modal-btn {

 padding: 12px 30px;

 font-size: 16px;

 font-weight: 600;

 border: none;

 border-radius: 8px;

 cursor: pointer;

 transition: all 0.3s ease;

 min-width: 120px;

 text-transform: uppercase;

 letter-spacing: 0.5px;

 }

 .cancel-btn {

 background-color: #f8f9fa;

 color: #dc3545;

 border: 2px solid #dc3545;

 }

 .cancel-btn:hover {

 background-color: #dc3545;

 color: white;

 transform: translateY(-2px);

 box-shadow: 0 3px 8px rgba(220, 53, 69, 0.3);

 }

 .confirm-btn {

 background-color: #28a745;

 color: white;

 border: 2px solid #28a745;

 }

 .confirm-btn:hover {

 background-color: #218838;

 border-color: #218838;

 transform: translateY(-2px);

 box-shadow: 0 3px 8px rgba(40, 167, 69, 0.3);

 }

 .modal-btn:active {

 transform: translateY(0);

 box-shadow: none;

 }

 </style>";

APPENDIX

A-21
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 $formatted .= "

 <div id='installModal' class='modal'>

 <div class='modal-content'>

 <h3>Confirm Installation</h3>

 <p id='modalText'>Are you sure you want to install this security tool?</p>

 <div class='modal-buttons'>

 <button onclick='cancelInstall()' class='modal-btn cancel-btn'>Cancel</button>

 <button id='confirmInstall' class='modal-btn confirm-btn'>Install</button>

 </div>

 </div>

 </div>";

 $sections = explode("\n", $response);

 $formatted .= "<div style='font-family: Arial, sans-serif; line-height: 1.6;'>";

 // Check if response contains keywords

 $memoryAllocationDetected = (stripos($response, 'testdisk') !== false);

 $inodesExhaustionDetected = (stripos($response, 'testfile') !== false);

 foreach ($sections as $section) {

 $trimmed = trim($section);

 if (preg_match('/^-?\s*Action:\s*install_(\w+)$/i', $trimmed, $matches)) {

 $tool = $matches[1];

 $formatted .= "<div class='security-button-container'>

 <button

 class='security-button'

 onclick='showInstallConfirmation(\"$tool\")'

 >

 <svg class='install-icon' viewBox='0 0 24 24'>

 <path fill='currentColor' d='M19.35 10.04C18.67 6.59 15.64 4 12 4 9.11 4 6.6 5.64

5.35 8.04 2.34 8.36 0 10.91 0 14c0 3.31 2.69 6 6 6h13c2.76 0 5-2.24 5-5 0-2.64-2.05-4.78-4.65-

4.96zM17 13l-5 5-5-5h3V9h4v4h3z'/>

 </svg>

 Install " . ucfirst($tool) . "

 </button>

 </div>

 <style>

 .security-button-container {

 display: flex;

 justify-content: center;

 margin: 20px 0;

 }

 .security-button {

 background: linear-gradient(45deg, #2196F3, #00BCD4);

 border: none;

 border-radius: 25px;

 color: white;

 cursor: pointer;

 font-size: 16px;

 font-weight: 600;

 padding: 12px 30px;

 position: relative;

 overflow: hidden;

 transition: all 0.3s ease;

 box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);

APPENDIX

A-22
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 }

 .security-button:hover {

 transform: translateY(-2px);

 box-shadow: 0 6px 20px rgba(33, 150, 243, 0.3);

 background: linear-gradient(45deg, #00BCD4, #2196F3);

 }

 .security-button:active {

 transform: translateY(1px);

 box-shadow: 0 2px 10px rgba(33, 150, 243, 0.3);

 }

 .security-button::before {

 content: '';

 position: absolute;

 top: 0;

 left: -100%;

 width: 100%;

 height: 100%;

 background: linear-gradient(

 120deg,

 transparent,

 rgba(255, 255, 255, 0.3),

 transparent

);

 transition: 0.5s;

 }

 .security-button:hover::before {

 left: 100%;

 }

 .button-content {

 display: flex;

 align-items: center;

 gap: 8px;

 }

 .install-icon {

 width: 20px;

 height: 20px;

 transition: transform 0.3s ease;

 }

 .security-button:hover .install-icon {

 transform: scale(1.1);

 }

 @keyframes pulse {

 0% {

 box-shadow: 0 0 0 0 rgba(33, 150, 243, 0.4);

 }

 70% {

 box-shadow: 0 0 0 10px rgba(33, 150, 243, 0);

 }

 100% {

 box-shadow: 0 0 0 0 rgba(33, 150, 243, 0);

 }

APPENDIX

A-23
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 }

 .security-button:focus {

 outline: none;

 animation: pulse 1.5s infinite;

 }

 </style>";

 } else {

 if (!empty($trimmed)) {

 if (strpos($trimmed, '**') !== false) {

 $trimmed = preg_replace('/**(.*?)**/', '$1', $trimmed);

 }

 $formatted .= "<p>$trimmed</p>";

 }

 }

 }

 if ($memoryAllocationDetected) {

 $formatted .= "<div class='security-button-container'>

 <button

 class='security-button'

 onclick='showInstallConfirmation(\"disk_flooding_attack_mitigation\")'

 >

 <svg class='install-icon' viewBox='0 0 24 24'>

 <path fill='currentColor' d='M19.35 10.04C18.67 6.59 15.64 4 12 4 9.11 4 6.6 5.64 5.35

8.04 2.34 8.36 0 10.91 0 14c0 3.31 2.69 6 6 6h13c2.76 0 5-2.24 5-5 0-2.64-2.05-4.78-4.65-4.96zM17

13l-5 5-5-5h3V9h4v4h3z'/>

 </svg>

 Install Disk Flooding Attack Mitigation

 </button>

 </div>";

 }

 if ($inodesExhaustionDetected) {

 $formatted .= "<div class='security-button-container'>

 <button

 class='security-button'

 onclick='showInstallConfirmation(\"inodes_exhaustion_mitigation\")'

 >

 <svg class='install-icon' viewBox='0 0 24 24'>

 <path fill='currentColor' d='M19.35 10.04C18.67 6.59 15.64 4 12 4 9.11 4 6.6 5.64 5.35

8.04 2.34 8.36 0 10.91 0 14c0 3.31 2.69 6 6 6h13c2.76 0 5-2.24 5-5 0-2.64-2.05-4.78-4.65-4.96zM17

13l-5 5-5-5h3V9h4v4h3z'/>

 </svg>

 Install Inodes Exhaustion Mitigation

 </button>

 </div>";

 }

 $formatted .= "</div>";

 return $formatted;

}

function clearChatHistory() {

 $_SESSION['chat_history'] = [];

APPENDIX

A-24
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

}

if ($_SERVER['REQUEST_METHOD'] === 'GET') {

 clearChatHistory();

}

?>

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Multi-Fuzzer AI Chatbot System</title>

 <style>

 :root {

 --primary-color: #2c3e50;

 --secondary-color: #3498db;

 --accent-color: #e74c3c;

 --background-color: #f4f6f9;

 --chat-bg: #ffffff;

 --text-color: #2c3e50;

 --border-radius: 8px;

 --shadow-color: rgba(0, 0, 0, 0.1);

 }

 body {

 font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;

 margin: 0;

 padding: 0;

 background-color: var(--background-color);

 height: 100vh;

 display: flex;

 align-items: center;

 justify-content: center;

 color: var(--text-color);

 }

 .chat-container {

 width: 90%;

 max-width: 1200px;

 height: 90vh;

 margin: 0 auto;

 background-color: var(--chat-bg);

 border-radius: var(--border-radius);

 box-shadow: 0 4px 20px var(--shadow-color);

 display: flex;

 flex-direction: column;

 padding: 2rem;

 position: relative;

 transition: box-shadow 0.3s ease;

 }

 .chat-container:hover {

 box-shadow: 0 8px 40px var(--shadow-color);

 }

 h1 {

 color: var(--primary-color);

 margin: 0 0 1.5rem 0;

APPENDIX

A-25
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 font-size: 2rem;

 font-weight: 700;

 text-align: center;

 text-transform: uppercase;

 }

 .file-upload {

 background: linear-gradient(145deg, #ffffff, #f8f9fa);

 border: 2px dashed var(--secondary-color);

 border-radius: var(--border-radius);

 padding: 1rem;

 margin-bottom: 1.5rem;

 transition: all 0.3s ease;

 }

 .file-upload:hover {

 border-color: var(--accent-color);

 transform: translateY(-2px);

 }

 .file-upload h3 {

 color: var(--primary-color);

 margin: 0 0 1rem 0;

 font-size: 1.3rem;

 font-weight: 600;

 }

 .file-upload form {

 display: flex;

 gap: 1rem;

 justify-content: center;

 align-items: center;

 flex-wrap: wrap;

 }

 input[type="file"] {

 background-color: white;

 padding: 0.5rem;

 border-radius: var(--border-radius);

 border: 1px solid #ddd;

 transition: border-color 0.3s ease;

 }

 input[type="file"]:focus {

 border-color: var(--secondary-color);

 outline: none;

 }

 input[type="submit"] {

 background-color: var(--secondary-color);

 color: white;

 border: none;

 padding: 0.8rem 1.5rem;

 border-radius: var(--border-radius);

 cursor: pointer;

 transition: all 0.3s ease;

 font-weight: 600;

 }

APPENDIX

A-26
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 input[type="submit"]:hover {

 background-color: var(--primary-color);

 transform: translateY(-2px);

 }

 .chat-box {

 flex: 1;

 background-color: #ffffff;

 border-radius: var(--border-radius);

 padding: 1.5rem;

 margin-bottom: 1.5rem;

 overflow-y: auto;

 box-shadow: 0 2px 12px rgba(0, 0, 0, 0.08);

 border: 1px solid #e6e9ef;

 }

 .message {

 display: flex;

 margin-bottom: 25px;

 animation: fadeIn 0.3s ease;

 max-width: 90%;

 }

 .message.user {

 justify-content: flex-end;

 margin-left: auto;

 }

 .message.bot {

 justify-content: flex-start;

 margin-right: auto;

 }

 .message-content {

 max-width: 85%;

 padding: 16px 20px;

 border-radius: var(--border-radius);

 font-size: 15px;

 line-height: 1.6;

 position: relative;

 box-shadow: 0 2px 8px rgba(0, 0, 0, 0.08);

 }

 .bot .message-content {

 background: #f8f9fa;

 color: #2c3e50;

 border: 1px solid #e9ecef;

 border-left: 4px solid var(--secondary-color);

 }

 .bot .message-content h2 {

 font-size: 18px;

 color: #2c3e50;

 margin: 15px 0 10px;

 padding-bottom: 8px;

 border-bottom: 1px solid #eee;

 }

 .bot .message-content h3 {

APPENDIX

A-27
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 font-size: 16px;

 color: #34495e;

 margin: 12px 0 8px;

 }

 .bot .message-content ul,

 .bot .message-content ol {

 margin: 10px 0;

 padding-left: 20px;

 }

 .bot .message-content li {

 margin: 8px 0;

 line-height: 1.5;

 }

 .bot .message-content pre {

 background: #f8f9fa;

 border: 1px solid #e9ecef;

 border-left: 3px solid #3498db;

 color: #2c3e50;

 padding: 15px;

 border-radius: 6px;

 margin: 12px 0;

 font-family: 'Monaco', 'Menlo', 'Ubuntu Mono', monospace;

 font-size: 14px;

 overflow-x: auto;

 }

 .bot .message-content code {

 background: #f8f9fa;

 color: #e83e8c;

 padding: 2px 6px;

 border-radius: 4px;

 font-family: 'Monaco', 'Menlo', 'Ubuntu Mono', monospace;

 font-size: 14px;

 }

 .bot .message-content .important {

 background: #fff3cd;

 border: 1px solid #ffeeba;

 border-left: 4px solid #ffc107;

 padding: 12px 15px;

 margin: 10px 0;

 border-radius: 6px;

 }

 .bot .message-content .vulnerability {

 background: #f8f9fa;

 border: 1px solid #e9ecef;

 border-radius: 8px;

 padding: 15px;

 margin: 12px 0;

 }

 .bot .message-content .vulnerability-header {

 font-weight: 600;

 color: #2c3e50;

 margin-bottom: 8px;

APPENDIX

A-28
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 }

 .bot .message-content .recommendation {

 background: #e8f4fd;

 border: 1px solid #bee5eb;

 border-radius: 8px;

 padding: 15px;

 margin: 12px 0;

 }

 .bot .message-content .action {

 background: #f1f8ff;

 border: 1px solid #c8e1ff;

 border-radius: 6px;

 padding: 10px 15px;

 margin: 8px 0;

 color: #0366d6;

 font-weight: 500;

 }

 .timestamp {

 font-size: 12px;

 color: #6c757d;

 margin-top: 8px;

 text-align: right;

 }

 .avatar {

 width: 40px;

 height: 40px;

 border-radius: 50%;

 margin: 0 12px;

 display: flex;

 align-items: center;

 justify-content: center;

 font-size: 18px;

 flex-shrink: 0;

 box-shadow: 0 2px 6px rgba(0, 0, 0, 0.1);

 }

 .bot .avatar {

 background: #f8f9fa;

 border: 2px solid #e9ecef;

 color: #2c3e50;

 }

 .bot .message-content a {

 color: #3498db;

 text-decoration: none;

 border-bottom: 1px dotted #3498db;

 transition: all 0.2s ease;

 }

 .bot .message-content a:hover {

 color: #2980b9;

 border-bottom-style: solid;

 }

 .bot .message-content table {

APPENDIX

A-29
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 width: 100%;

 border-collapse: collapse;

 margin: 12px 0;

 }

 .bot .message-content th,

 .bot .message-content td {

 padding: 10px;

 border: 1px solid #e9ecef;

 text-align: left;

 }

 .bot .message-content th {

 background: #f8f9fa;

 font-weight: 600;

 }

 .bot .message-content ul.checklist {

 list-style: none;

 padding-left: 0;

 }

 .bot .message-content ul.checklist li {

 position: relative;

 padding-left: 25px;

 margin: 8px 0;

 }

 .bot .message-content ul.checklist li:before {

 content: "✓";

 position: absolute;

 left: 0;

 color: #28a745;

 }

 .typing-indicator {

 display: flex;

 align-items: center;

 margin-left: 58px;

 margin-bottom: 20px;

 }

 .typing-dot {

 width: 8px;

 height: 8px;

 margin: 0 2px;

 background-color: #3498db;

 border-radius: 50%;

 animation: typingAnimation 1.4s infinite ease-in-out;

 }

 .typing-dot:nth-child(2) { animation-delay: 0.2s; }

 .typing-dot:nth-child(3) { animation-delay: 0.4s; }

 @keyframes typingAnimation {

 0%, 60%, 100% { transform: translateY(0); }

 30% { transform: translateY(-6px); }

 }

APPENDIX

A-30
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 @keyframes fadeIn {

 from { opacity: 0; transform: translateY(10px); }

 to { opacity: 1; transform: translateY(0); }

 }

 .chat-box::-webkit-scrollbar {

 width: 6px;

 }

 .chat-box::-webkit-scrollbar-track {

 background: #f1f1f1;

 border-radius: 3px;

 }

 .chat-box::-webkit-scrollbar-thumb {

 background: #c1c1c1;

 border-radius: 3px;

 }

 .chat-box::-webkit-scrollbar-thumb:hover {

 background: #a8a8a8;

 }

 .system-message {

 text-align: center;

 margin: 10px 0;

 padding: 20px;

 background: rgba(52, 152, 219, 0.1);

 border-radius: 12px;

 color: #2c3e50;

 font-size: 16px;

 font-weight: 600;

 line-height: 1.5;

 border: 1px solid rgba(52, 152, 219, 0.2);

 box-shadow: 0 2px 10px rgba(52, 152, 219, 0.05);

 }

 .system-message .wave {

 display: inline-block;

 font-size: 24px;

 animation: wave 1.5s infinite;

 transform-origin: 70% 70%;

 }

 @keyframes wave {

 0% { transform: rotate(0deg); }

 10% { transform: rotate(14deg); }

 20% { transform: rotate(-8deg); }

 30% { transform: rotate(14deg); }

 40% { transform: rotate(-4deg); }

 50% { transform: rotate(10deg); }

 60% { transform: rotate(0deg); }

 100% { transform: rotate(0deg); }

 }

 .input-container {

 display: flex;

 gap: 1rem;

 align-items: center;

APPENDIX

A-31
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 }

 .message-input {

 flex: 1;

 padding: 1rem;

 border: 2px solid #e0e0e0;

 border-radius: var(--border-radius);

 font-size: 1rem;

 transition: all 0.3s ease;

 }

 .message-input:focus {

 outline: none;

 border-color: var(--secondary-color);

 box-shadow: 0 0 0 3px rgba(52, 152, 219, 0.1);

 }

 .send-button {

 color: white;

 border: none;

 border-radius: var(--border-radius);

 cursor: pointer;

 transition: all 0.3s ease;

 font-weight: 600;

 composes: button-base;

 padding: 12px 24px;

 font-size: 16px;

 background: #2C3E50;

 box-shadow: 0 2px 6px rgba(0, 0, 0, 0.1);

 }

 .send-button:hover {

 background-color: var(--primary-color);

 transform: translateY(-2px);

 }

 .send-button:hover {

 background: #34495E;

 transform: translateY(-2px);

 }

 ::-webkit-scrollbar {

 width: 8px;

 }

 ::-webkit-scrollbar-track {

 background: #f1f1f1;

 border-radius: 4px;

 }

 ::-webkit-scrollbar-thumb {

 background: var(--secondary-color);

 border-radius: 4px;

 }

 ::-webkit-scrollbar-thumb:hover {

 background: var(--primary-color);

 }

APPENDIX

A-32
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 .test-page-button {

 position: absolute;

 top: 20px;

 left: 20px;

 color: white;

 border: none;

 border-radius: 8px;

 cursor: pointer;

 font-size: 14px;

 text-decoration: none;

 display: flex;

 align-items: center;

 gap: 8px;

 transition: all 0.3s ease;

 z-index: 100;

 composes: button-base;

 padding: 10px 20px;

 background: #2C3E50;

 box-shadow: 0 2px 6px rgba(0, 0, 0, 0.1);

 }

 .test-page-button:hover {

 background: #34495E;

 transform: translateY(-2px);

 box-shadow: 0 4px 12px rgba(0, 0, 0, 0.3);

 }

 .test-page-button:active {

 transform: translateY(1px);

 box-shadow: 0 2px 5px rgba(0, 0, 0, 0.3);

 }

 .upload-message {

 color: #d9534f;

 background-color: #f2dede;

 border: 1px solid #ebccd1;

 border-radius: 4px;

 padding: 10px;

 margin-top: 10px;

 font-size: 14px;

 display: flex;

 align-items: center;

 gap: 5px;

 }

 .upload-message::before {

 content: " ";

 font-size: 18px;

 }

 #uploadButton {

 color: white;

 border: none;

 padding: 12px 24px;

 border-radius: 6px;

 font-size: 16px;

 font-weight: 600;

 cursor: pointer;

 transition: background-color 0.3s ease, transform 0.2s ease;

APPENDIX

A-33
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1);

 composes: button-base;

 background: green;

 box-shadow: 0 2px 6px rgba(0, 0, 0, 0.1);

 }

 #uploadButton:active:not(:disabled) {

 transform: translateY(1px);

 box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2);

 }

 #uploadButton:hover:not(:disabled) {

 background: green;

 transform: translateY(-2px);

 }

 #uploadButton:disabled {

 background: #95A5A6;

 cursor: not-allowed;

 opacity: 0.7;

 }

 .suggestions-container {

 display: flex;

 flex-wrap: wrap;

 margin-top: 10px;

 }

 .suggestion-bubble {

 background-color: #ffffff;

 color: var(--primary-color);

 border-radius: 20px;

 padding: 10px 15px;

 margin: 5px;

 cursor: pointer;

 transition: background-color 0.3s ease, transform 0.2s ease;

 box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);

 border: 1px solid #e0e0e0;

 }

 .suggestion-bubble:hover {

 background-color: #f0f4ff;

 transform: translateY(-2px);

 box-shadow: 0 4px 10px rgba(0, 0, 0, 0.2);

 }

 .suggestion-bubble:active {

 transform: translateY(1px);

 box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2);

 }

 .logout-button {

 position: absolute;

 top: 20px;

 right: 20px;

 background-color: #e74c3c;

 color: white;

 border: none;

 padding: 10px 20px;

APPENDIX

A-34
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 border-radius: 8px;

 cursor: pointer;

 font-size: 14px;

 font-weight: 600;

 text-decoration: none;

 display: flex;

 align-items: center;

 gap: 8px;

 transition: all 0.3s ease;

 box-shadow: 0 2px 8px rgba(231, 76, 60, 0.2);

 z-index: 100;

 }

 .logout-button:hover {

 background-color: #c0392b;

 transform: translateY(-2px);

 box-shadow: 0 4px 12px rgba(231, 76, 60, 0.3);

 }

 .logout-button:active {

 transform: translateY(1px);

 box-shadow: 0 2px 4px rgba(231, 76, 60, 0.2);

 }

 .user-info {

 position: absolute;

 top: 20px;

 right: 140px;

 color: var(--primary-color);

 font-size: 14px;

 font-weight: 500;

 display: flex;

 align-items: center;

 gap: 5px;

 background: rgba(255, 255, 255, 0.9);

 padding: 8px 15px;

 border-radius: 6px;

 box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1);

 }

 .user-info-icon {

 width: 16px;

 height: 16px;

 opacity: 0.8;

 color: var(--primary-color);

 }

 @media (max-width: 768px) {

 .logout-button {

 padding: 8px 16px;

 font-size: 13px;

 }

 .user-info {

 right: 120px;

 font-size: 13px;

 padding: 6px 12px;

 }

 }

APPENDIX

A-35
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 .button-base {

 border-radius: 8px;

 cursor: pointer;

 font-weight: 600;

 transition: all 0.3s ease;

 border: none;

 color: white;

 display: flex;

 align-items: center;

 gap: 8px;

 }

 .logout-button {

 position: absolute;

 top: 20px;

 right: 20px;

 background: #E74C3C;

 color: white;

 border: none;

 padding: 10px 20px;

 border-radius: 8px;

 cursor: pointer;

 font-size: 14px;

 font-weight: 600;

 text-decoration: none;

 display: flex;

 align-items: center;

 gap: 8px;

 transition: all 0.3s ease;

 box-shadow: 0 2px 6px rgba(0, 0, 0, 0.1);

 z-index: 100;

 }

 .logout-button:hover {

 background: #C0392B;

 transform: translateY(-2px);

 }

 .button-base:active,

 .logout-button:active {

 transform: translateY(1px);

 box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);

 }

 .user-dropdown {

 position: absolute;

 top: 20px;

 right: 20px;

 z-index: 100;

 }

 .user-dropdown-button {

 background: rgba(255, 255, 255, 0.9);

 color: var(--primary-color);

 padding: 8px 15px;

 border-radius: 6px;

 cursor: pointer;

 display: flex;

APPENDIX

A-36
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 align-items: center;

 gap: 8px;

 font-size: 14px;

 font-weight: 500;

 border: 1px solid #e0e0e0;

 box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1);

 transition: all 0.3s ease;

 }

 .user-dropdown-button:hover {

 background: #f8f9fa;

 transform: translateY(-2px);

 box-shadow: 0 4px 12px rgba(0, 0, 0, 0.15);

 }

 .user-dropdown-content {

 display: none;

 position: absolute;

 right: 0;

 top: 100%;

 margin-top: 8px;

 background: white;

 border-radius: 6px;

 box-shadow: 0 4px 12px rgba(0, 0, 0, 0.15);

 min-width: 160px;

 overflow: hidden;

 }

 .user-dropdown-content.show {

 display: block;

 animation: dropdownFadeIn 0.3s ease;

 }

 @keyframes dropdownFadeIn {

 from { opacity: 0; transform: translateY(-10px); }

 to { opacity: 1; transform: translateY(0); }

 }

 .user-dropdown-content a {

 color: var(--primary-color);

 padding: 12px 16px;

 text-decoration: none;

 display: flex;

 align-items: center;

 gap: 8px;

 transition: all 0.2s ease;

 }

 .user-dropdown-content a:hover {

 background: #f8f9fa;

 }

 .user-dropdown-content .logout-option {

 border-top: 1px solid #e0e0e0;

 color: #e74c3c;

 }

 </style>

 <script type="text/javascript">

 function showInstallConfirmation(tool) {

APPENDIX

A-37
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 const modal = document.getElementById('installModal');

 const confirmBtn = document.getElementById('confirmInstall');

 const modalText = document.getElementById('modalText');

 modal.style.display = 'block';

 modalText.textContent = 'Are you sure you want to install ' + tool + '?';

 confirmBtn.onclick = function() {

 installTool(tool);

 };

 }

 function cancelInstall() {

 document.getElementById('installModal').style.display = 'none';

 }

 function installTool(tool) {

 alert('Installation of ' + tool + ' has started. Please wait...');

 document.getElementById('installModal').style.display = 'none';

 const securityButton = document.querySelector(`.security-button[onclick*="${tool}"]`);

 console.log('Found button:', securityButton);

 if (securityButton) {

 securityButton.style.display = 'none';

 } else {

 console.log('Button not found for tool:', tool);

 }

 const loadingDiv = document.createElement('div');

 loadingDiv.id = 'loadingIndicator';

 loadingDiv.innerHTML = `

 <div class="loading-container">

 <div class="loading-content">

 <div class="loading-spinner"></div>

 <div class="loading-text">

 <h4>Installing ${tool}</h4>

 <p>Please wait while we set up your security components...</p>

 </div>

 </div>

 <div class="loading-progress">

 <div class="progress-bar"></div>

 </div>

 </div>

 `;

 const styleSheet = document.createElement("style");

 styleSheet.textContent = `

 .loading-container {

 background: linear-gradient(to right, #ffffff, #f8f9fa);

 border-radius: 12px;

 box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1);

 padding: 20px;

 margin: 15px 0;

 border: 1px solid #e9ecef;

 }

 .loading-content {

 display: flex;

 align-items: center;

 gap: 20px;

APPENDIX

A-38
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 margin-bottom: 15px;

 }

 .loading-spinner {

 width: 40px;

 height: 40px;

 border: 4px solid #e9ecef;

 border-top: 4px solid #007bff;

 border-radius: 50%;

 animation: spin 1s linear infinite;

 }

 .loading-text h4 {

 margin: 0;

 color: #2c3e50;

 font-size: 18px;

 font-weight: 600;

 }

 .loading-text p {

 margin: 5px 0 0 0;

 color: #6c757d;

 font-size: 14px;

 }

 .loading-progress {

 background-color: #e9ecef;

 border-radius: 10px;

 height: 6px;

 overflow: hidden;

 }

 .progress-bar {

 width: 0%;

 height: 100%;

 background: linear-gradient(90deg, #007bff, #00d2ff);

 border-radius: 10px;

 animation: progress 2s ease-in-out infinite;

 }

 @keyframes spin {

 0% { transform: rotate(0deg); }

 100% { transform: rotate(360deg); }

 }

 @keyframes progress {

 0% {

 width: 0%;

 opacity: 1;

 }

 50% {

 width: 100%;

 opacity: 0.5;

 }

 100% {

 width: 0%;

 opacity: 1;

 }

 }

APPENDIX

A-39
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 @media (max-width: 480px) {

 .loading-content {

 flex-direction: column;

 text-align: center;

 }

 .loading-text {

 text-align: center;

 }

 }

 `;

 document.head.appendChild(styleSheet);

 const button = document.querySelector(`button[onclick*="${tool}"]`);

 if (button) {

 button.parentNode.insertBefore(loadingDiv, button.nextSibling);

 }

 fetch('install_security.php', {

 method: 'POST',

 headers: {

 'Content-Type': 'application/x-www-form-urlencoded',

 },

 body: 'tool=' + encodeURIComponent(tool)

 })

 .then(response => response.json())

 .then(data => {

 console.log('Installation response:', data);

 const loadingIndicator = document.getElementById('loadingIndicator');

 if (loadingIndicator) {

 loadingIndicator.remove();

 }

 if (data.success) {

 let message = `Installation Status: ${data.status}\n\n`;

 if (data.details) {

 message += `Details:\n${data.details}`;

 }

 alert(message);

 const statusDiv = document.createElement('div');

 statusDiv.style.margin = '10px';

 statusDiv.style.padding = '10px';

 statusDiv.style.border = '1px solid #ccc';

 statusDiv.style.backgroundColor = '#f9f9f9';

 statusDiv.style.wordWrap = 'break-word';

 statusDiv.style.whiteSpace = 'pre-wrap';

 statusDiv.style.maxWidth = '100%';

 statusDiv.style.overflowWrap = 'break-word';

 statusDiv.innerHTML = `${tool.toUpperCase()} Status:

${data.status}
<pre style="white-space: pre-wrap; word-wrap: break-word;">${data.details ||

''}</pre>`;

 if (button) {

 button.parentNode.insertBefore(statusDiv, button.nextSibling);

 }

 } else {

APPENDIX

A-40
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 alert('Installation failed: ' + data.message);

 }

 })

 .catch(error => {

 console.error('Error:', error);

 const loadingIndicator = document.getElementById('loadingIndicator');

 if (loadingIndicator) {

 loadingIndicator.remove();

 }

 alert('Error: ' + error);

 });

 }

 function toggleDropdown() {

 const dropdown = document.getElementById('userDropdown');

 dropdown.classList.toggle('show');

 document.addEventListener('click', function(event) {

 const isClickInside = event.target.closest('.user-dropdown');

 if (!isClickInside && dropdown.classList.contains('show')) {

 dropdown.classList.remove('show');

 }

 });

 }

 function showSettings() {

 window.location.href = 'settings.php';

 }

 </script>

</head>

<body>

 <div class="chat-container">

 <!-- Admin button -->

 <svg style="width:16px;height:16px" viewBox="0 0 24 24">

 <path fill="currentColor" d="M19.43 12.98c.04-.32.07-.64.07-.98s-.03-.66-.07-.98l2.11-

1.65c.19-.15.24-.42.12-.64l-2-3.46c-.12-.22-.39-.3-.61-.22l-2.49 1c-.52-.4-1.08-.73-1.69-.98l-.38-

2.65C14.46 2.18 14.25 2 14 2h-4c-.25 0-.46.18-.49.42l-.38 2.65c-.61.25-1.17.59-1.69.98l-2.49-

1c-.23-.09-.49 0-.61.22l-2 3.46c.12.22.39.3.3.61.22l2.11 1.65c-.04.32-.07.65-.07.98s.03.66.07.98l-2.11

1.65c-.19.15-.24.42-.12.64l2 3.46c.12.22.39.3.3.61.22l2.49-1c.52.4 1.08.73 1.69.98l.38

2.65c.03.24.24.24.24.42.49.42h4c.25 0 .46-.18.49-.42l.38-2.65c.61-.25 1.17-.59 1.69-.98l2.49

1c.23.09.49 0 .61-.22l2-3.46c.12-.22.07-.49-.12-.64l-2.11-1.65zM12 15.5c-1.93 0-3.5-1.57-3.5-

3.5s1.57-3.5 3.5-3.5 3.5 1.57 3.5 3.5-1.57 3.5-3.5 3.5z"/>

 </svg>

 Admin

 <!-- User dropdown -->

 <div class="user-dropdown">

 <div class="user-dropdown-button" onclick="toggleDropdown()">

 <svg class="user-info-icon" viewBox="0 0 24 24">

 <path fill="currentColor" d="M12,4A4,4 0 0,1 16,8A4,4 0 0,1 12,12A4,4 0 0,1 8,8A4,4 0

0,1 12,4M12,14C16.42,14 20,15.79 20,18V20H4V18C4,15.79 7.58,14 12,14Z" />

 </svg>

 <?php echo htmlspecialchars($_SESSION['username']); ?>

 <svg style="width:16px;height:16px" viewBox="0 0 24 24">

 <path fill="currentColor" d="M7,10L12,15L17,10H7Z" />

 </svg>

 </div>

 <div class="user-dropdown-content" id="userDropdown">

APPENDIX

A-41
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 <svg style="width:16px;height:16px" viewBox="0 0 24 24">

 <path fill="currentColor" d="M12,15.5A3.5,3.5 0 0,1 8.5,12A3.5,3.5 0 0,1

12,8.5A3.5,3.5 0 0,1 15.5,12A3.5,3.5 0 0,1 12,15.5M19.43,12.97C19.47,12.65 19.5,12.33

19.5,12C19.5,11.67 19.47,11.34 19.43,11L21.54,9.37C21.73,9.22 21.78,8.95

21.66,8.73L19.66,5.27C19.54,5.05 19.27,4.96 19.05,5.05L16.56,6.05C16.04,5.66 15.5,5.32

14.87,5.07L14.5,2.42C14.46,2.18 14.25,2 14,2H10C9.75,2 9.54,2.18 9.5,2.42L9.13,5.07C8.5,5.32

7.96,5.66 7.44,6.05L4.95,5.05C4.73,4.96 4.46,5.05 4.34,5.27L2.34,8.73C2.21,8.95 2.27,9.22

2.46,9.37L4.57,11C4.53,11.34 4.5,11.67 4.5,12C4.5,12.33 4.53,12.65

4.57,12.97L2.46,14.63C2.27,14.78 2.21,15.05 2.34,15.27L4.34,18.73C4.46,18.95 4.73,19.03

4.95,18.95L7.44,17.94C7.96,18.34 8.5,18.68 9.13,18.93L9.5,21.58C9.54,21.82 9.75,22

10,22H14C14.25,22 14.46,21.82 14.5,21.58L14.87,18.93C15.5,18.67 16.04,18.34

16.56,17.94L19.05,18.95C19.27,19.03 19.54,18.95 19.66,18.73L21.66,15.27C21.78,15.05 21.73,14.78

21.54,14.63L19.43,12.97Z" />

 </svg>

 Settings

 <svg style="width:16px;height:16px" viewBox="0 0 24 24">

 <path fill="currentColor" d="M16,17V14H9V10H16V7L21,12L16,17M14,2A2,2 0 0,1

16,4V6H14V4H5V20H14V18H16V20A2,2 0 0,1 14,22H5A2,2 0 0,1 3,20V4A2,2 0 0,1 5,2H14Z" />

 </svg>

 Logout

 </div>

 </div>

 <h1>

 <svg style="width:24px;height:24px;vertical-align:middle" viewBox="0 0 24 24">

 <path fill="currentColor" d="M12,2A2,2 0 0,1 14,4C14,4.74 13.6,5.39 13,5.73V7H14A7,7 0

0,1 21,14H22A1,1 0 0,1 23,15V18A1,1 0 0,1 22,19H21V20A2,2 0 0,1 19,22H5A2,2 0 0,1

3,20V19H2A1,1 0 0,1 1,18V15A1,1 0 0,1 2,14H3A7,7 0 0,1 10,7H11V5.73C10.4,5.39 10,4.74

10,4A2,2 0 0,1 12,2M7.5,13A2.5,2.5 0 0,0 5,15.5A2.5,2.5 0 0,0 7.5,18A2.5,2.5 0 0,0 10,15.5A2.5,2.5 0

0,0 7.5,13M16.5,13A2.5,2.5 0 0,0 14,15.5A2.5,2.5 0 0,0 16.5,18A2.5,2.5 0 0,0 19,15.5A2.5,2.5 0 0,0

16.5,13Z" />

 </svg>

 Multi-Fuzzer AI Chatbot System

 </h1>

 <div class="file-upload">

 <h3> Security Verification</h3>

 <form action="index1.php" method="post" enctype="multipart/form-data" onsubmit="return

confirmUpload()">

 <input type="file" name="security_file" id="security_file" onchange="checkFileUpload()">

 <input type="submit" value="Upload & Start Fuzzing" name="submit" id="uploadButton"

disabled>

 </form>

 </div>

 <div class="chat-box" id="chatBox">

 <div class="message bot">

 <div class="avatar"> </div>

 <div class="message-content" style="text-align: left;">

 Hello! I'm your AI assistant.

 Please upload your security verification document to begin our conversation.

 </div>

 </div>

 </div>

APPENDIX

A-42
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 <div class="input-container">

 <input type="text" class="message-input" id="messageInput" placeholder="Type your message

here...">

 <button class="send-button" onclick="sendMessage()">

 <svg style="width:16px;height:16px" viewBox="0 0 24 24">

 <path fill="currentColor" d="M2,21L23,12L2,3V10L17,12L2,14V21Z" />

 </svg>

 Send

 </button>

 </div>

 <div id="suggestions" class="suggestions-container"></div>

 </div>

 <script>

 function checkFileUpload() {

 const fileInput = document.getElementById('security_file');

 const messageInput = document.getElementById('messageInput');

 const sendButton = document.querySelector('.send-button');

 const uploadButton = document.getElementById('uploadButton');

 const uploadMessage = document.getElementById('uploadMessage');

 if (fileInput.files.length > 0) {

 uploadButton.disabled = false;

 } else {

 uploadButton.disabled = true;

 }

 }

 function confirmUpload() {

 const fileInput = document.getElementById('security_file');

 if (fileInput.files.length === 0) {

 alert("Please select a file to upload.");

 return false;

 }

 return confirm("Are you sure you want to upload this file and start fuzzing?");

 }

 function sendMessage() {

 const messageInput = document.getElementById('messageInput');

 const message = messageInput.value.trim();

 if (message === '') return;

 const chatBox = document.getElementById('chatBox');

 const timestamp = new Date().toLocaleTimeString();

 chatBox.innerHTML += `

 <div class="message user">

 <div class="message-content">

 ${message}

 <div class="timestamp">${timestamp}</div>

 </div>

 <div class="avatar">${'<?php echo strtoupper(substr($_SESSION["username"], 0,

1)); ?>'}</div>

 </div>

 `;

APPENDIX

A-43
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 chatBox.innerHTML += `

 <div class="typing-indicator" id="typing-indicator">

 <div class="typing-dot"></div>

 <div class="typing-dot"></div>

 <div class="typing-dot"></div>

 </div>

 `;

 chatBox.scrollTop = chatBox.scrollHeight;

 fetch('index.php', {

 method: 'POST',

 headers: {

 'Content-Type': 'application/x-www-form-urlencoded',

 },

 body: `message=${encodeURIComponent(message)}`

 })

 .then(response => response.json())

 .then(data => {

 const typingIndicator = document.getElementById('typing-indicator');

 if (typingIndicator) {

 typingIndicator.remove();

 }

 chatBox.innerHTML += `

 <div class="message bot">

 <div class="avatar"> </div>

 <div class="message-content">

 ${data.response}

 <div class="timestamp">${new Date().toLocaleTimeString()}</div>

 </div>

 </div>

 `;

 chatBox.scrollTop = chatBox.scrollHeight;

 })

 .catch(error => {

 console.error('Error:', error);

 const typingIndicator = document.getElementById('typing-indicator');

 if (typingIndicator) {

 typingIndicator.remove();

 }

 chatBox.innerHTML += `

 <div class="system-message">

 Error: Could not process your request

 </div>

 `;

 chatBox.scrollTop = chatBox.scrollHeight;

 });

 messageInput.value = '';

 }

 document.getElementById('messageInput').addEventListener('keypress', function(e) {

 if (e.key === 'Enter') {

 sendMessage();

 }

 });

 const suggestions = [

 "What vulnerabilities were identified in the crash report?",

APPENDIX

A-44
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 "Can you provide a detailed analysis of the crash?",

 "What are the potential impacts of the vulnerabilities?",

 "What mitigation strategies can be implemented?",

 "Are there any recommended patches or updates?",

 "How can I prevent similar crashes in the future?",

 "Can you summarize the key findings from the crash report?",

 "What tools can I use to further analyze the vulnerabilities?",

 "Is there a timeline for implementing the mitigation plan?",

 "Can you provide links to resources on these vulnerabilities?"

];

 function getRandomSuggestions(suggestions, count) {

 const shuffled = suggestions.sort(() => 0.5 - Math.random());

 return shuffled.slice(0, count);

 }

 function displaySuggestions() {

 const suggestionsContainer = document.getElementById('suggestions');

 suggestionsContainer.innerHTML = '';

 const randomSuggestions = getRandomSuggestions(suggestions, 2);

 randomSuggestions.forEach(suggestion => {

 const bubble = document.createElement('div');

 bubble.className = 'suggestion-bubble';

 bubble.textContent = suggestion;

 bubble.onclick = function() {

 document.getElementById('messageInput').value = suggestion;

 };

 suggestionsContainer.appendChild(bubble);

 });

 }

 window.onload = function() {

 if (document.referrer.includes('index1.php')) {

 const messageInput = document.getElementById('messageInput');

 messageInput.value = "Please analyze this fuzzing crash report and provide actionable

recommendations following CVE format.";

 sendMessage();

 }

 displaySuggestions();

 };

 function confirmLogout(event) {

 event.preventDefault();

 if (confirm('Are you sure you want to logout?')) {

 window.location.href = 'logout.php';

 }

 }

 </script>

</body>

</html>

APPENDIX

A-45
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

index1.php

<?php

session_start();

if (!isset($_SERVER['PHP_AUTH_USER'])) {

 header('WWW-Authenticate: Basic realm="Command Execute Interface"');

 header('HTTP/1.0 401 Unauthorized');

 echo 'Authentication required';

 exit;

}

error_reporting(E_ALL);

ini_set('display_errors', 1);

$output = "";

$error = "";

$auto_command = "";

if (isset($_FILES['security_file'])) {

 $filename = pathinfo($_FILES["security_file"]["name"], PATHINFO_FILENAME);

 $auto_command = "RUN_PARALLEL 30 " . $filename;

 error_log("Command generated for file: " . $filename);

}

if (isset($_GET['command'])) {

 $auto_command = htmlspecialchars($_GET['command']);

}

if ($_SERVER['REQUEST_METHOD'] === 'POST' && isset($_POST['command'])) {

 $command = trim($_POST['command']);

 $command = escapeshellcmd($command);

 $timestamp = date('Y-m-d_H-i-s');

 //Stop Fuzzing Command

 if (strcasecmp($command, 'STOP_FUZZING') === 0) {

 $diagnostic_command = "cd /home/einjun && /home/einjun/stop_fuzzing.sh";

 }

 //Parallel Fuzzing Command

 elseif (preg_match('/^RUN_PARALLEL\s+(\d+)\s+(\w+)$/i', $command, $matches)) {

 $minutes = (int)$matches[1];

 $target = $matches[2];

 $diagnostic_command = "rm -rf /home/einjun/Desktop/outputhonggfuzz/* && cd /home/einjun

&& /home/einjun/run_parallel.sh {$minutes} {$target}";

 }

 //AFL++ Fuzzing Command

 elseif (preg_match('/^RUN_AFL_TIMED\s+(\d+)\s+(\w+)$/i', $command, $matches)) {

 $minutes = (int)$matches[1];

 $target = $matches[2];

 $diagnostic_command = "cd /home/einjun && /home/einjun/run_afl.sh {$minutes} {$target}";

 } else {

 $diagnostic_command = "cd /home/einjun && export

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/home/einjun/AFLplusplus && export

HOME=/home/einjun && " . $command;

 }

 $output_array = array();

 $return_status = 0;

APPENDIX

A-46
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 $debug_info = "Debug Info:\n";

 $debug_info .= "Current PHP User: " . exec('whoami') . "\n";

 $debug_info .= "Current PHP Path: " . exec('pwd') . "\n";

 $debug_info .= "Executing command: " . $diagnostic_command . "\n";

 $sudo_command = "/usr/bin/sudo -n -u einjun /bin/bash -c \"" . $diagnostic_command . "\" 2>&1";

 exec($sudo_command, $output_array, $return_status);

 if ($return_status === 0) {

 $output = $debug_info . "\nCommand Output:\n" . implode("\n", $output_array);

 } else {

 $error = $debug_info . "\nCommand execution failed with status: " . $return_status . "\nOutput: " .

implode("\n", $output_array);

 }

 echo "<div id='debugInfo' style='background: #1e1e1e; color: #00ff00; padding: 15px; margin: 20px

0; font-family: monospace; border-radius: 5px; max-height: 300px; overflow-y: auto;'>

 <h3 style='color: #fff; margin-top: 0;'>Debug Information</h3>

 <pre id='debugContent'>Monitoring for crashes...</pre>

 </div>";

}

$autoSubmit = isset($_FILES['security_file']);

$showLoading = isset($_FILES['security_file']);

?>

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Ubuntu CLI Web Interface</title>

 <style>

 :root {

 --primary-color: #2c3e50;

 --secondary-color: #3498db;

 --accent-color: #e74c3c;

 --background-color: #1e1e1e;

 --chat-bg: #2d2d2d;

 --text-color: #ffffff;

 --border-radius: 12px;

 }

 body {

 font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;

 margin: 0;

 padding: 20px;

 background: var(--background-color);

 color: var(--text-color);

 min-height: 100vh;

 }

 .container {

 max-width: 1200px;

 margin: 0 auto;

 }

 h1 {

APPENDIX

A-47
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 color: var(--text-color);

 margin-bottom: 1.5rem;

 font-size: 1.8rem;

 font-weight: 600;

 }

 .terminal {

 background: #000;

 padding: 20px;

 border-radius: var(--border-radius);

 margin: 20px 0;

 white-space: pre-wrap;

 font-family: monospace;

 box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);

 }

 input[type="text"] {

 width: 100%;

 padding: 12px;

 margin: 10px 0;

 background: var(--chat-bg);

 border: 1px solid #444;

 color: var(--text-color);

 border-radius: var(--border-radius);

 font-size: 1rem;

 }

 input[type="submit"] {

 padding: 12px 24px;

 background: var(--secondary-color);

 border: none;

 color: white;

 cursor: pointer;

 border-radius: var(--border-radius);

 font-weight: 600;

 transition: all 0.3s ease;

 }

 input[type="submit"]:hover {

 background: var(--primary-color);

 transform: translateY(-2px);

 }

 .error {

 color: var(--accent-color);

 }

 .help-text {

 background: var(--chat-bg);

 padding: 20px;

 border-radius: var(--border-radius);

 margin: 20px 0;

 box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);

 }

 .help-text h3 {

 color: var(--secondary-color);

 margin-top: 0;

 }

APPENDIX

A-48
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 code {

 display: inline-block;

 background: rgba(0, 0, 0, 0.2);

 padding: 4px 8px;

 border-radius: 4px;

 margin: 4px 0;

 font-family: monospace;

 }

 ::-webkit-scrollbar {

 width: 8px;

 }

 ::-webkit-scrollbar-track {

 background: var(--chat-bg);

 border-radius: 4px;

 }

 ::-webkit-scrollbar-thumb {

 background: var(--secondary-color);

 border-radius: 4px;

 }

 ::-webkit-scrollbar-thumb:hover {

 background: var(--primary-color);

 }

 .command-form {

 display: flex;

 gap: 10px;

 margin: 20px 0;

 }

 .command-form input[type="text"] {

 flex: 1;

 margin: 0;

 }

 @media (max-width: 768px) {

 .command-form {

 flex-direction: column;

 }

 .command-form input[type="submit"] {

 width: 100%;

 }

 }

 .loading-overlay {

 position: fixed;

 top: 0;

 left: 0;

 width: 100%;

 height: 100%;

 background: rgba(0, 0, 0, 0.85);

 display: flex;

 justify-content: center;

 align-items: center;

APPENDIX

A-49
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 z-index: 9999999;

 }

 .loading-status {

 background: #2d2d2d;

 color: #00ff00;

 padding: 30px 50px;

 border-radius: 10px;

 text-align: center;

 box-shadow: 0 0 20px rgba(0, 255, 0, 0.2);

 max-width: 80%;

 z-index: 999999;

 }

 .loading-spinner {

 display: inline-block;

 width: 50px;

 height: 50px;

 border: 4px solid #00ff00;

 border-radius: 50%;

 border-top-color: transparent;

 animation: spin 1s linear infinite;

 margin-bottom: 20px;

 z-index: 999999;

 }

 @keyframes spin {

 to {transform: rotate(360deg);}

 }

 .status-text {

 font-size: 1.2em;

 margin-bottom: 10px;

 z-index: 999999;

 }

 .time-remaining {

 color: #888;

 font-size: 1em;

 margin-top: 10px;

 z-index: 999999;

 }

 #debugInfo {

 position: fixed;

 bottom: 20px;

 left: 20px;

 right: 20px;

 max-height: 200px;

 overflow-y: auto;

 background: rgba(0, 0, 0, 0.8);

 z-index: 1001;

 }

 </style>

</head>

<body>

APPENDIX

A-50
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 <div class="container">

 <h1> Multi-Fuzzer CLI Web Interface</h1>

 <div class="help-text">

 <h3> Usage Examples:</h3>

 <p>Run AFL++ for specific duration and target:</p>

 <code>RUN_AFL_TIMED 30 testsleep</code>

 <code>RUN_AFL_TIMED 30 test1</code>

 <code>RUN_AFL_TIMED 30 testwake</code>

 <p>Run AFL++ and Honggfuzz in parallel:</p>

 <code>RUN_PARALLEL 30 testsleep</code>

 <code>RUN_PARALLEL 30 test1</code>

 <p>Stop all fuzzing processes:</p>

 <code>STOP_FUZZING</code>

 <p>Regular commands:</p>

 <code>ls</code>

 <code>pwd</code>

 </div>

 <form method="POST" class="command-form">

 <input type="text" name="command" placeholder="Enter your command" value="<?php echo

htmlspecialchars($auto_command); ?>" required>

 <input type="submit" value="Execute">

 </form>

 <?php if ($showLoading): ?>

 <div class="loading-overlay">

 <div class="loading-status">

 <div class="loading-spinner"></div>

 <div class="status-text">

 Fuzzing in progress...

 <div class="time-remaining">

 Time remaining: 30:00

 </div>

 </div>

 </div>

 </div>

 <div id="debugInfo">

 <h3 style="color: #fff; margin-top: 0;">Debug Information</h3>

 <pre id="debugContent">Monitoring for crashes...</pre>

 </div>

 <?php endif; ?>

 <?php if ($error): ?>

 <div class="terminal error">

 <?php echo htmlspecialchars($error); ?>

 </div>

 <?php endif; ?>

 <?php if ($output): ?>

 <div class="terminal">

 <?php echo htmlspecialchars($output); ?>

 </div>

 <?php endif; ?>

 </div>

 <script>

 function startTimer(duration) {

APPENDIX

A-51
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 let timer = duration;

 const timerDisplay = document.getElementById('timeRemaining');

 const countdown = setInterval(function () {

 const minutes = parseInt(timer / 60, 10);

 const seconds = parseInt(timer % 60, 10);

 timerDisplay.textContent = minutes.toString().padStart(2, '0') + ':' +

 seconds.toString().padStart(2, '0');

 if (--timer < 0) {

 clearInterval(countdown);

 document.getElementById('statusMessage').textContent = 'Fuzzing completed!';

 timerDisplay.textContent = '00:00';

 }

 }, 1000);

 }

 window.onload = function() {

 <?php if ($autoSubmit): ?>

 document.querySelector('.command-form').submit();

 <?php endif; ?>

 startTimer(30 * 60); // 30 minutes

 checkCrashFile();

 }

 let checkCount = 0;

 function ensureDebugElementsExist() {

 let debugInfo = document.getElementById('debugInfo');

 if (!debugInfo) {

 debugInfo = document.createElement('div');

 debugInfo.id = 'debugInfo';

 debugInfo.style.cssText = 'background: #1e1e1e; color: #00ff00; padding: 15px; margin:

20px 0; font-family: monospace; border-radius: 5px; max-height: 300px; overflow-y: auto; position:

fixed; bottom: 20px; left: 20px; right: 20px; z-index: 1001;';

 debugInfo.innerHTML = `

 <h3 style="color: #fff; margin-top: 0;">Debug Information</h3>

 <pre id="debugContent">Initializing debug display...</pre>

 `;

 document.body.appendChild(debugInfo);

 }

 return document.getElementById('debugContent');

 }

 function updateDebugDisplay(info) {

 const debugContent = ensureDebugElementsExist();

 if (!debugContent) {

 console.error('Failed to create or find debug elements');

 return;

 }

 const timestamp = new Date().toLocaleTimeString();

 let debugText = `[${timestamp}] Check #${checkCount}\n`;

 if (info.error) {

 debugText += 'Error occurred:\n' +

 JSON.stringify(info, null, 2);

 } else {

APPENDIX

A-52
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 debugText += 'Raw Response Data:\n' +

 JSON.stringify(info, null, 2) + '\n\n' +

 'crash_found value: ' + info.crash_found + '\n' +

 'typeof crash_found: ' + typeof info.crash_found;

 }

 debugContent.innerHTML = debugText;

 debugContent.scrollTop = debugContent.scrollHeight;

 }

 function checkCrashFile() {

 checkCount++;

 ensureDebugElementsExist();

 fetch('check_crash.php')

 .then(response => response.json())

 .then(data => {

 updateDebugDisplay(data);

 if (data.crash_found) {

 const statusMessage = document.getElementById('statusMessage');

 const loadingOverlay = document.querySelector('.loading-overlay');

 if (statusMessage && loadingOverlay) {

 loadingOverlay.style.display = 'flex';

 statusMessage.textContent = 'Crash found! Redirecting...';

 setTimeout(() => {

 window.location.href = 'index.php';

 }, 2000);

 } else {

 const overlay = document.createElement('div');

 overlay.className = 'loading-overlay';

 overlay.style.cssText = 'display: flex; position: fixed; top: 0; left: 0; width: 100%;

height: 100%; background: rgba(0, 0, 0, 0.8); z-index: 1002; justify-content: center; align-items:

center;';

 const status = document.createElement('div');

 status.className = 'loading-status';

 status.innerHTML = `

 <div class="loading-spinner"></div>

 <div class="status-text">

 Crash found! Redirecting...

 </div>

 `;

 overlay.appendChild(status);

 document.body.appendChild(overlay);

 setTimeout(() => {

 window.location.href = 'index.php';

 }, 2000);

 }

 } else {

 if (checkCount < 1800) {

 setTimeout(checkCrashFile, 1000);

 }

 }

 })

APPENDIX

A-53
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 .catch(error => {

 updateDebugDisplay({

 'error': error.message,

 'check_number': checkCount,

 'stack': error.stack

 });

 if (checkCount < 1800) {

 setTimeout(checkCrashFile, 1000);

 }

 });

 }

 </script>

</body>

</html>

APPENDIX

A-54
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

install_security.php

<?php

header('Content-Type: application/json');

error_reporting(E_ALL);

ini_set('display_errors', 1);

error_log("Installation process started");

$tool = isset($_POST['tool']) ? $_POST['tool'] : '';

error_log("Tool requested: " . $tool);

$allowed_tools = [

 'apparmor',

 'grsecurity',

 'pax',

 'asan',

 'hardened_malloc',

 'exploit_mitigations',

 'disk_flooding_attack_mitigation',

 'inodes_exhaustion_mitigation'

];

if (!in_array($tool, $allowed_tools)) {

 error_log("Invalid tool specified: " . $tool);

 echo json_encode(['success' => false, 'message' => 'Invalid tool specified']);

 exit;

}

// Map tools to their installation scripts

$script_map = [

 'apparmor' => 'install_apparmor.sh',

 'grsecurity' => 'install_grsecurity.sh',

 'pax' => 'install_pax.sh',

 'asan' => 'install_asan.sh',

 'hardened_malloc' => 'install_hardened_malloc.sh',

 'exploit_mitigations' => 'install_exploit_mitigations.sh',

 'disk_flooding_attack_mitigation' => 'mitigate_disk_flood_attack.sh',

 'inodes_exhaustion_mitigation' => 'mitigate_inodes_exhaustion.sh'

];

$script_path = "/home/einjun/scripts/" . $script_map[$tool];

error_log("Script path: " . $script_path);

if (!file_exists($script_path)) {

 error_log("Script not found at: " . $script_path);

 echo json_encode(['success' => false, 'message' => 'Installation script not found']);

 exit;

}

// Create a temporary expect script to handle the sudo password

$expect_script = <<<EOT

#!/usr/bin/expect -f

log_file /tmp/expect_log.txt

exp_internal 1

set timeout -1

spawn /usr/bin/sudo /bin/bash $script_path

expect {

 "*password*" {

 send "1\r"

APPENDIX

A-55
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 exp_continue

 }

 eof

}

EOT;

$expect_path = "/tmp/install_script_" . time() . ".exp";

file_put_contents($expect_path, $expect_script);

chmod($expect_path, 0700);

error_log("Expect script created at: " . $expect_path);

// Run the expect script

$command = "/usr/bin/expect " . escapeshellarg($expect_path) . " 2>&1";

error_log("Executing command: " . $command);

$output = [];

$return_var = 0;

exec($command, $output, $return_var);

error_log("Command output: " . print_r($output, true));

error_log("Return value: " . $return_var);

unlink($expect_path);

// Check installation status

$status_command = "";

switch($tool) {

 case 'asan':

 $status_command = "dpkg -l | grep -E 'clang|llvm' || which clang";

 break;

 case 'apparmor':

 $status_command = "systemctl is-active apparmor && echo 'AppArmor is active and running' ||

echo 'AppArmor is not running'";

 break;

 case 'hardened_malloc':

 $status_command = "ls /usr/lib/libhardened_malloc.so";

 break;

 case 'exploit_mitigations':

 $status_command = "sysctl kernel.randomize_va_space";

 break;

 case 'disk_flooding_attack_mitigation':

 $status_command = "df -h /tmp";

 break;

 case 'inodes_exhaustion_mitigation':

 $status_command = "stat -f /tmp";

 break;

}

$status_output = [];

$status_return = 0;

if ($status_command) {

 exec($status_command, $status_output, $status_return);

}

// Special handling for mitigate_buffer_overflow and inodes_exhaustion_mitigation

if ($tool === 'disk_flooding_attack_mitigation') {

 $command = "/bin/bash " . escapeshellarg($script_path) . " 2>&1";

 error_log("Executing direct command: " . $command);

 $output = [];

APPENDIX

A-56
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 $return_var = 0;

 exec($command, $output, $return_var);

 error_log("Command output: " . print_r($output, true));

 error_log("Return value: " . $return_var);

 $file_exists = file_exists('/tmp/fuzz_test');

 if (!$file_exists) {

 echo json_encode([

 'success' => true,

 'message' => 'Buffer overflow mitigation completed',

 'status' => 'Successfully removed vulnerable file',

 'details' => implode("\n", $output)

]);

 } else {

 if (is_writable('/tmp/fuzz_test')) {

 unlink('/tmp/fuzz_test');

 echo json_encode([

 'success' => true,

 'message' => 'Buffer overflow mitigation completed using PHP',

 'status' => 'Successfully removed vulnerable file',

 'details' => implode("\n", $output)

]);

 } else {

 echo json_encode([

 'success' => false,

 'message' => 'Disk flooding attack mitigation failed: File could not be removed',

 'details' => implode("\n", $output)

]);

 }

 }

 exit;

} else if ($tool === 'inodes_exhaustion_mitigation') {

 try {

 $target_dir = '/tmp/inode_flood/';

 $before_stat = [];

 exec("stat -f /tmp", $before_stat);

 $cleanup_command = "/usr/bin/sudo rm -rf " . escapeshellarg($target_dir) . " 2>&1";

 exec($cleanup_command, $cleanup_output, $cleanup_return);

 $command = "/usr/bin/sudo /bin/bash " . escapeshellarg($script_path) . " 2>&1";

 exec($command, $script_output, $script_return);

 $after_stat = [];

 exec("stat -f /tmp", $after_stat);

 $output_array = array_merge(

 ["=== INODE EXHAUSTION MITIGATION REPORT ==="],

 ["\n[1] INITIAL SYSTEM STATE"],

 ["--"],

 $before_stat,

 ["\n[2] CLEANUP OPERATIONS"],

 ["--"],

 ["Target Directory: " . $target_dir],

 ["Cleanup Command: " . $cleanup_command],

 ["Cleanup Results:"],

 $cleanup_output,

 ["\n[3] FINAL SYSTEM STATE"],

APPENDIX

A-57
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 ["--"],

 $after_stat,

 ["\n[4] MITIGATION SUMMARY"],

 ["--"],

 ["Status: " . ($cleanup_return === 0 ? "SUCCESS - Inodes cleaned successfully" : "WARNING

- Some issues encountered")],

 ["Directory Exists: " . (is_dir($target_dir) ? "Yes (Warning)" : "No (Good)")],

 ["Cleanup Return Code: " . $cleanup_return],

 ["\n=== END OF REPORT ==="]

);

 if (!empty($before_stat) && !empty($after_stat)) {

 $before_inodes = preg_match('/Inodes:.*Free:\s+(\d+)/', implode("\n", $before_stat),

$before_matches) ? $before_matches[1] : null;

 $after_inodes = preg_match('/Inodes:.*Free:\s+(\d+)/', implode("\n", $after_stat),

$after_matches) ? $after_matches[1] : null;

 if ($before_inodes !== null && $after_inodes !== null) {

 $inode_diff = $after_inodes - $before_inodes;

 $output_array = array_merge($output_array, [

 "\n[5] INODE ANALYSIS",

 "--",

 "Free Inodes Before: " . number_format($before_inodes),

 "Free Inodes After: " . number_format($after_inodes),

 "Inodes Freed: " . ($inode_diff > 0 ? "+" . number_format($inode_diff) :

number_format($inode_diff))

]);

 }

 }

 $clean_output = implode("\n", array_map(function($line) {

 return trim(preg_replace('/[^\x20-\x7E\x0A\x0D]/', '', $line));

 }, $output_array));

 $success = !is_dir($target_dir) || $cleanup_return === 0;

 header('Content-Type: application/json');

 echo json_encode([

 'success' => $success,

 'message' => $success ? 'Inodes exhaustion mitigation completed' : 'Mitigation completed with

warnings',

 'status' => $success ? 'Successfully cleaned up excessive files' : 'Cleanup process completed

with some issues',

 'details' => $clean_output

], JSON_UNESCAPED_SLASHES);

 } catch (Exception $e) {

 header('Content-Type: application/json');

 echo json_encode([

 'success' => false,

 'message' => 'Mitigation failed',

 'details' => 'Error: ' . $e->getMessage()

]);

 }

 exit;

}

if ($tool === 'apparmor' && file_exists('/var/log/apparmor/status.txt')) {

 $apparmor_status = file_get_contents('/var/log/apparmor/status.txt');

APPENDIX

A-58
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 $installation_status = (strpos($apparmor_status, 'apparmor module is loaded') !== false)

 ? "Successfully installed and running"

 : "Installation may have failed";

 $status_output = [$apparmor_status];

} else {

 $installation_status = $status_return === 0 ? "Successfully installed" : "Installation may have

failed";

}

if ($return_var === 0) {

 error_log("Installation completed successfully");

 echo json_encode([

 'success' => true,

 'message' => 'Installation completed',

 'status' => $installation_status,

 'details' => implode("\n", $status_output)

]);

} else {

 error_log("Installation failed");

 echo json_encode([

 'success' => false,

 'message' => 'Installation failed: ' . implode("\n", $output),

 'return_var' => $return_var

]);

}

APPENDIX

A-59
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

login.php

<?php

session_start();

$error = '';

$db_host = 'localhost';

$db_user = 'root';

$db_pass = '';

$db_name = 'chatbot_db';

$conn = new mysqli($db_host, $db_user, $db_pass, $db_name);

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

if ($_SERVER["REQUEST_METHOD"] == "POST") {

 $username = $conn->real_escape_string($_POST['username']);

 $password = $_POST['password'];

 $sql = "SELECT u.id, u.username, u.password, u2fa.secret, u2fa.enabled

 FROM users u

 LEFT JOIN user_2fa u2fa ON u.id = u2fa.user_id

 WHERE u.username = ?";

 $stmt = $conn->prepare($sql);

 $stmt->bind_param("s", $username);

 $stmt->execute();

 $result = $stmt->get_result();

 if ($result->num_rows === 1) {

 $user = $result->fetch_assoc();

 if (password_verify($password, $user['password'])) {

 if ($user['enabled'] == 1) {

 $_SESSION['temp_user_id'] = $user['id'];

 $_SESSION['temp_username'] = $user['username'];

 $_SESSION['requires_2fa'] = true;

 $_SESSION['2fa_secret'] = $user['secret'];

 header("Location: verify_2fa.php");

 exit();

 } else {

 $_SESSION['user_id'] = $user['id'];

 $_SESSION['username'] = $user['username'];

 header("Location: index.php");

 exit();

 }

 } else {

 $error = "Invalid username or password";

 }

 } else {

 $error = "Invalid username or password";

 }

 $stmt->close();

}

?>

<!DOCTYPE html>

APPENDIX

A-60
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Login - Multi-Fuzzer AI Chatbot System</title>

 <style>

 :root {

 --primary-color: #2c3e50;

 --secondary-color: #3498db;

 --background-color: #f4f6f9;

 --error-color: #e74c3c;

 --success-color: #2ecc71;

 --text-color: #2c3e50;

 --text-muted: #7f8c8d;

 --border-color: #e0e0e0;

 --shadow-sm: 0 2px 4px rgba(0,0,0,0.05);

 --shadow-md: 0 4px 6px rgba(0,0,0,0.1);

 --shadow-lg: 0 8px 24px rgba(0,0,0,0.1);

 --gradient-primary: linear-gradient(135deg, var(--primary-color), var(--secondary-color));

 }

 * {

 margin: 0;

 padding: 0;

 box-sizing: border-box;

 }

 body {

 font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;

 background-color: var(--background-color);

 min-height: 100vh;

 display: flex;

 align-items: center;

 justify-content: center;

 padding: 20px;

 color: var(--text-color);

 line-height: 1.6;

 position: relative;

 overflow: hidden;

 }

 .background-pattern {

 position: fixed;

 top: 0;

 left: 0;

 width: 100%;

 height: 100%;

 background-image:

 radial-gradient(circle at 25% 25%, rgba(52, 152, 219, 0.1) 0%, transparent 50%),

 radial-gradient(circle at 75% 75%, rgba(44, 62, 80, 0.1) 0%, transparent 50%);

 z-index: -1;

 }

 .login-container {

 background: white;

 padding: 2.5rem;

 border-radius: 16px;

 box-shadow: var(--shadow-lg);

 width: 100%;

APPENDIX

A-61
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 max-width: 420px;

 position: relative;

 overflow: hidden;

 backdrop-filter: blur(10px);

 border: 1px solid rgba(255, 255, 255, 0.2);

 animation: slideUp 0.5s ease-out;

 }

 @keyframes slideUp {

 from {

 opacity: 0;

 transform: translateY(20px);

 }

 to {

 opacity: 1;

 transform: translateY(0);

 }

 }

 .login-header {

 text-align: center;

 margin-bottom: 2rem;

 position: relative;

 }

 .login-header h1 {

 color: var(--text-color);

 font-size: 1.8rem;

 margin-bottom: 0.5rem;

 display: flex;

 align-items: center;

 justify-content: center;

 gap: 0.8rem;

 position: relative;

 }

 .login-header svg {

 color: var(--secondary-color);

 filter: drop-shadow(0 2px 4px rgba(52, 152, 219, 0.2));

 }

 .login-header p {

 color: var(--text-muted);

 font-size: 0.95rem;

 margin-top: 0.5rem;

 }

 .form-group {

 margin-bottom: 1.8rem;

 position: relative;

 }

 .form-group label {

 display: block;

 margin-bottom: 0.8rem;

 color: var(--text-color);

 font-weight: 500;

 font-size: 0.95rem;

 transition: color 0.3s ease;

APPENDIX

A-62
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 }

 .form-group input {

 width: 100%;

 padding: 1rem;

 border: 2px solid var(--border-color);

 border-radius: 12px;

 font-size: 1rem;

 transition: all 0.3s ease;

 background: #f8f9fa;

 color: var(--text-color);

 }

 .form-group input:focus {

 border-color: var(--secondary-color);

 outline: none;

 box-shadow: 0 0 0 4px rgba(52, 152, 219, 0.1);

 background: white;

 }

 .form-group input::placeholder {

 color: var(--text-muted);

 opacity: 0.5;

 }

 .password-toggle {

 position: absolute;

 right: 1rem;

 top: calc(50% + 1rem);

 transform: translateY(-50%);

 background: none;

 border: none;

 cursor: pointer;

 padding: 0.5rem;

 color: var(--text-muted);

 transition: color 0.3s ease;

 display: flex;

 align-items: center;

 justify-content: center;

 z-index: 1;

 }

 .password-toggle:hover {

 color: var(--secondary-color);

 }

 .password-toggle svg {

 width: 20px;

 height: 20px;

 }

 .error-message {

 background-color: rgba(231, 76, 60, 0.1);

 color: var(--error-color);

 padding: 1rem;

 border-radius: 12px;

 margin-bottom: 1.5rem;

 font-size: 0.95rem;

 display: flex;

APPENDIX

A-63
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 align-items: center;

 gap: 0.8rem;

 border: 1px solid rgba(231, 76, 60, 0.2);

 animation: shake 0.5s ease-in-out;

 }

 @keyframes shake {

 0%, 100% { transform: translateX(0); }

 25% { transform: translateX(-5px); }

 75% { transform: translateX(5px); }

 }

 .error-message svg {

 color: var(--error-color);

 flex-shrink: 0;

 }

 .login-button {

 width: 100%;

 padding: 1rem;

 background: var(--gradient-primary);

 color: white;

 border: none;

 border-radius: 12px;

 font-size: 1rem;

 font-weight: 600;

 cursor: pointer;

 transition: all 0.3s ease;

 position: relative;

 overflow: hidden;

 margin-bottom: 1.5rem;

 }

 .login-button:hover {

 transform: translateY(-2px);

 box-shadow: 0 4px 12px rgba(52, 152, 219, 0.2);

 }

 .login-button:active {

 transform: translateY(1px);

 }

 .login-button::after {

 content: '';

 position: absolute;

 top: 0;

 left: 0;

 width: 100%;

 height: 100%;

 background: linear-gradient(45deg, transparent, rgba(255,255,255,0.2), transparent);

 transform: translateX(-100%);

 transition: transform 0.6s ease;

 }

 .login-button:hover::after {

 transform: translateX(100%);

 }

 .login-link {

APPENDIX

A-64
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 text-align: center;

 color: var(--text-muted);

 font-size: 0.95rem;

 }

 .login-link a {

 color: var(--secondary-color);

 text-decoration: none;

 font-weight: 500;

 transition: color 0.3s ease;

 position: relative;

 }

 .login-link a::after {

 content: '';

 position: absolute;

 width: 100%;

 height: 2px;

 bottom: -2px;

 left: 0;

 background-color: var(--secondary-color);

 transform: scaleX(0);

 transform-origin: right;

 transition: transform 0.3s ease;

 }

 .login-link a:hover {

 color: var(--primary-color);

 }

 .login-link a:hover::after {

 transform: scaleX(1);

 transform-origin: left;

 }

 .decoration {

 position: absolute;

 width: 300px;

 height: 300px;

 background: linear-gradient(45deg, rgba(52, 152, 219, 0.1), rgba(44, 62, 80, 0.1));

 border-radius: 50%;

 z-index: 0;

 animation: float 6s ease-in-out infinite;

 }

 @keyframes float {

 0%, 100% { transform: translateY(0); }

 50% { transform: translateY(-20px); }

 }

 .decoration-1 {

 top: -150px;

 right: -150px;

 animation-delay: 0s;

 }

 .decoration-2 {

 bottom: -150px;

 left: -150px;

APPENDIX

A-65
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 animation-delay: -3s;

 }

 .remember-me {

 display: flex;

 align-items: center;

 gap: 0.5rem;

 margin-bottom: 1.5rem;

 color: var(--text-muted);

 font-size: 0.9rem;

 }

 .remember-me input[type="checkbox"] {

 width: 18px;

 height: 18px;

 border-radius: 4px;

 border: 2px solid var(--border-color);

 cursor: pointer;

 transition: all 0.3s ease;

 }

 .remember-me input[type="checkbox"]:checked {

 background-color: var(--secondary-color);

 border-color: var(--secondary-color);

 }

 @media (max-width: 480px) {

 .login-container {

 margin: 1rem;

 padding: 1.5rem;

 }

 .login-header h1 {

 font-size: 1.5rem;

 }

 .form-group input {

 font-size: 0.95rem;

 padding: 0.8rem;

 }

 }

 </style>

</head>

<body>

 <div class="background-pattern"></div>

 <div class="login-container">

 <div class="decoration decoration-1"></div>

 <div class="decoration decoration-2"></div>

 <div class="login-header">

 <h1>

 <svg style="width:28px;height:28px" viewBox="0 0 24 24">

 <path fill="currentColor" d="M12,2A2,2 0 0,1 14,4C14,4.74 13.6,5.39

13,5.73V7H14A7,7 0 0,1 21,14H22A1,1 0 0,1 23,15V18A1,1 0 0,1 22,19H21V20A2,2 0 0,1

19,22H5A2,2 0 0,1 3,20V19H2A1,1 0 0,1 1,18V15A1,1 0 0,1 2,14H3A7,7 0 0,1

10,7H11V5.73C10.4,5.39 10,4.74 10,4A2,2 0 0,1 12,2M7.5,13A2.5,2.5 0 0,0 5,15.5A2.5,2.5 0 0,0

7.5,18A2.5,2.5 0 0,0 10,15.5A2.5,2.5 0 0,0 7.5,13M16.5,13A2.5,2.5 0 0,0 14,15.5A2.5,2.5 0 0,0

16.5,18A2.5,2.5 0 0,0 19,15.5A2.5,2.5 0 0,0 16.5,13Z" />

 </svg>

APPENDIX

A-66
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 Login

 </h1>

 <p>Welcome to Multi-Fuzzer AI Chatbot System</p>

 </div>

 <?php if ($error): ?>

 <div class="error-message">

 <svg style="width:20px;height:20px" viewBox="0 0 24 24">

 <path fill="currentColor" d="M13 14H11V9H13M13 18H11V16H13M1 21H23L12 2L1

21Z" />

 </svg>

 <?php echo $error; ?>

 </div>

 <?php endif; ?>

 <form method="POST" action="<?php echo htmlspecialchars($_SERVER["PHP_SELF"]); ?>"

id="loginForm">

 <div class="form-group">

 <label for="username">Username</label>

 <input type="text" id="username" name="username" required autocomplete="username"

placeholder="Enter your username">

 </div>

 <div class="form-group">

 <label for="password">Password</label>

 <input type="password" id="password" name="password" required autocomplete="current-

password" placeholder="Enter your password">

 <button type="button" class="password-toggle" id="togglePassword">

 <svg viewBox="0 0 24 24">

 <path fill="currentColor" d="M12,9A3,3 0 0,1 15,12A3,3 0 0,1 12,15A3,3 0 0,1

9,12A3,3 0 0,1 12,9M12,4.5C17,4.5 21.27,7.61 23,12C21.27,16.39 17,19.5 12,19.5C7,19.5 2.73,16.39

1,12C2.73,7.61 7,4.5 12,4.5M12,2A10,10 0 0,0 2,12A10,10 0 0,0 12,22A10,10 0 0,0 22,12A10,10 0

0,0 12,2Z" />

 </svg>

 </button>

 </div>

 <div class="remember-me">

 <input type="checkbox" id="remember" name="remember">

 <label for="remember">Remember me</label>

 </div>

 <button type="submit" class="login-button">Log In</button>

 </form>

 <div class="login-link">

 Don't have an account? Register here

 </div>

 </div>

 <script>

 const togglePassword = document.querySelector('#togglePassword');

 const password = document.querySelector('#password');

 const eyeIcon = togglePassword.querySelector('svg');

 togglePassword.addEventListener('click', function (e) {

 const type = password.getAttribute('type') === 'password' ? 'text' : 'password';

 password.setAttribute('type', type);

APPENDIX

A-67
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 if (type === 'password') {

 eyeIcon.innerHTML = '<path fill="currentColor" d="M12,9A3,3 0 0,1 15,12A3,3 0 0,1

12,15A3,3 0 0,1 9,12A3,3 0 0,1 12,9M12,4.5C17,4.5 21.27,7.61 23,12C21.27,16.39 17,19.5

12,19.5C7,19.5 2.73,16.39 1,12C2.73,7.61 7,4.5 12,4.5M12,2A10,10 0 0,0 2,12A10,10 0 0,0

12,22A10,10 0 0,0 22,12A10,10 0 0,0 12,2Z" />';

 } else {

 eyeIcon.innerHTML = '<path fill="currentColor" d="M12,4.5C7,4.5 2.73,7.61

1,12C2.73,16.39 7,19.5 12,19.5C17,19.5 21.27,16.39 23,12C21.27,7.61 17,4.5 12,4.5M12,17A5,5 0

0,1 7,12A5,5 0 0,1 12,7A5,5 0 0,1 17,12A5,5 0 0,1 12,17M12,9A3,3 0 0,0 9,12A3,3 0 0,0 12,15A3,3 0

0,0 15,12A3,3 0 0,0 12,9Z" />';

 }

 });

 // Form validation

 document.getElementById('loginForm').addEventListener('submit', function(e) {

 const username = document.getElementById('username').value.trim();

 const password = document.getElementById('password').value;

 if (username.length < 3) {

 e.preventDefault();

 alert('Username must be at least 3 characters long');

 return false;

 }

 if (password.length < 6) {

 e.preventDefault();

 alert('Password must be at least 6 characters long');

 return false;

 }

 });

 document.querySelectorAll('.form-group input').forEach(input => {

 input.addEventListener('focus', function() {

 this.parentElement.classList.add('focused');

 });

 input.addEventListener('blur', function() {

 this.parentElement.classList.remove('focused');

 });

 });

 </script>

</body>

</html>

logout.php

<?php

session_start();

// Destroy all session data

session_destroy();

// Redirect to login page

header("Location: login.php");

exit();

?>

APPENDIX

A-68
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

settings.php

<?php

session_start();

if (!isset($_SESSION['user_id'])) {

 header("Location: login.php");

 exit();

}

$db_host = 'localhost';

$db_user = 'root';

$db_pass = '';

$db_name = 'chatbot_db';

$conn = new mysqli($db_host, $db_user, $db_pass, $db_name);

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

$sql = "CREATE TABLE IF NOT EXISTS user_2fa (

 user_id INT PRIMARY KEY,

 secret VARCHAR(32),

 enabled BOOLEAN DEFAULT FALSE,

 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,

 FOREIGN KEY (user_id) REFERENCES users(id)

)";

$conn->query($sql);

$success_message = '';

$error_message = '';

require_once 'vendor/autoload.php';

use RobThree\Auth\TwoFactorAuth;

$ga = new TwoFactorAuth('Multi-Fuzzer AI Chatbot');

$secret = '';

$sql = "SELECT * FROM user_2fa WHERE user_id = ?";

$stmt = $conn->prepare($sql);

$stmt->bind_param("i", $_SESSION['user_id']);

$stmt->execute();

$result = $stmt->get_result();

$twofa = $result->fetch_assoc();

if (!$twofa) {

 $secret = $ga->createSecret();

 $sql = "INSERT INTO user_2fa (user_id, secret) VALUES (?, ?)";

 $stmt = $conn->prepare($sql);

 $stmt->bind_param("is", $_SESSION['user_id'], $secret);

 $stmt->execute();

} else {

 $secret = $twofa['secret'];

}

// Handle 2FA verification

if (isset($_POST['verify_2fa'])) {

 $code = $_POST['verification_code'];

APPENDIX

A-69
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 if ($ga->verifyCode($secret, $code, 2)) {

 $sql = "UPDATE user_2fa SET enabled = TRUE WHERE user_id = ?";

 $stmt = $conn->prepare($sql);

 $stmt->bind_param("i", $_SESSION['user_id']);

 $stmt->execute();

 $success_message = "Two-factor authentication enabled successfully!";

 } else {

 $error_message = "Invalid verification code. Please try again.";

 }

}

// Handle form submission

if ($_SERVER["REQUEST_METHOD"] == "POST") {

 $user_id = $_SESSION['user_id'];

 if (isset($_POST['current_password']) && isset($_POST['new_password'])) {

 $current_password = $_POST['current_password'];

 $new_password = $_POST['new_password'];

 $confirm_password = $_POST['confirm_password'];

 $sql = "SELECT password FROM users WHERE id = ?";

 $stmt = $conn->prepare($sql);

 $stmt->bind_param("i", $user_id);

 $stmt->execute();

 $result = $stmt->get_result();

 $user = $result->fetch_assoc();

 if (password_verify($current_password, $user['password'])) {

 if ($new_password === $confirm_password) {

 // Update password

 $hashed_password = password_hash($new_password, PASSWORD_DEFAULT);

 $update_sql = "UPDATE users SET password = ? WHERE id = ?";

 $update_stmt = $conn->prepare($update_sql);

 $update_stmt->bind_param("si", $hashed_password, $user_id);

 if ($update_stmt->execute()) {

 $success_message = "Password updated successfully!";

 } else {

 $error_message = "Error updating password.";

 }

 } else {

 $error_message = "New passwords do not match.";

 }

 } else {

 $error_message = "Current password is incorrect.";

 }

 }

}

?>

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Account Settings - Multi-Fuzzer AI Chatbot System</title>

 <style>

 :root {

 --primary-color: #2c3e50;

APPENDIX

A-70
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 --secondary-color: #3498db;

 --accent-color: #e74c3c;

 --success-color: #2ecc71;

 --warning-color: #f1c40f;

 --background-color: #f4f6f9;

 --border-color: #e0e0e0;

 --text-color: #2c3e50;

 --text-muted: #7f8c8d;

 --shadow-sm: 0 2px 4px rgba(0,0,0,0.05);

 --shadow-md: 0 4px 6px rgba(0,0,0,0.1);

 --shadow-lg: 0 10px 15px rgba(0,0,0,0.1);

 }

 body {

 font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;

 background-color: var(--background-color);

 margin: 0;

 padding: 20px;

 min-height: 100vh;

 color: var(--text-color);

 line-height: 1.6;

 }

 .settings-container {

 max-width: 1000px;

 margin: 0 auto;

 background: white;

 border-radius: 12px;

 box-shadow: var(--shadow-lg);

 overflow: hidden;

 }

 .settings-header {

 background: linear-gradient(135deg, var(--primary-color), var(--secondary-color));

 color: white;

 padding: 2rem;

 position: relative;

 }

 .settings-header h1 {

 margin: 0;

 font-size: 1.8rem;

 font-weight: 600;

 }

 .settings-header p {

 margin: 5px 0 0;

 opacity: 0.9;

 font-size: 0.95rem;

 }

 .back-button {

 position: absolute;

 right: 2rem;

 top: 50%;

 transform: translateY(-50%);

 text-decoration: none;

 color: white;

 display: flex;

APPENDIX

A-71
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 align-items: center;

 gap: 8px;

 padding: 8px 16px;

 border-radius: 6px;

 background: rgba(255, 255, 255, 0.2);

 transition: all 0.3s ease;

 }

 .back-button:hover {

 background: rgba(255, 255, 255, 0.3);

 transform: translateY(-50%) translateX(-2px);

 }

 .settings-nav {

 background: #f8f9fa;

 padding: 1rem 2rem;

 border-bottom: 1px solid var(--border-color);

 }

 .nav-tabs {

 display: flex;

 gap: 2rem;

 margin: 0;

 padding: 0;

 list-style: none;

 }

 .nav-tabs li a {

 text-decoration: none;

 color: var(--text-muted);

 padding: 0.5rem 0;

 display: block;

 border-bottom: 2px solid transparent;

 transition: all 0.3s ease;

 }

 .nav-tabs li a.active {

 color: var(--secondary-color);

 border-bottom-color: var(--secondary-color);

 }

 .nav-tabs li a:hover {

 color: var(--secondary-color);

 }

 .settings-content {

 padding: 2rem;

 }

 .section {

 background: white;

 border-radius: 8px;

 padding: 1.5rem;

 margin-bottom: 2rem;

 border: 1px solid var(--border-color);

 }

 .section-header {

 display: flex;

APPENDIX

A-72
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 justify-content: space-between;

 align-items: center;

 margin-bottom: 1.5rem;

 }

 .section-title {

 font-size: 1.2rem;

 font-weight: 600;

 color: var(--primary-color);

 margin: 0;

 }

 .form-group {

 margin-bottom: 1.5rem;

 }

 .form-group label {

 display: block;

 margin-bottom: 0.5rem;

 color: var(--text-color);

 font-weight: 500;

 }

 .form-group input {

 width: 100%;

 padding: 0.8rem;

 border: 2px solid var(--border-color);

 border-radius: 6px;

 font-size: 0.95rem;

 transition: all 0.3s ease;

 box-sizing: border-box;

 }

 .form-group input:focus {

 border-color: var(--secondary-color);

 outline: none;

 box-shadow: 0 0 0 3px rgba(52, 152, 219, 0.1);

 }

 .password-strength {

 margin-top: 0.5rem;

 font-size: 0.85rem;

 color: var(--text-muted);

 }

 .strength-meter {

 height: 4px;

 background: #eee;

 margin-top: 0.5rem;

 border-radius: 2px;

 overflow: hidden;

 }

 .strength-meter div {

 height: 100%;

 width: 0;

 transition: all 0.3s ease;

 }

APPENDIX

A-73
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 .button-group {

 display: flex;

 gap: 1rem;

 margin-top: 2rem;

 }

 .button {

 padding: 0.8rem 1.5rem;

 border-radius: 6px;

 font-size: 0.95rem;

 font-weight: 600;

 cursor: pointer;

 transition: all 0.3s ease;

 border: none;

 }

 .button-primary {

 background-color: var(--secondary-color);

 color: white;

 }

 .button-primary:hover {

 background-color: #2980b9;

 transform: translateY(-2px);

 }

 .button-secondary {

 background-color: #f8f9fa;

 color: var(--text-color);

 border: 1px solid var(--border-color);

 }

 .button-secondary:hover {

 background-color: #e9ecef;

 }

 .message {

 padding: 1rem;

 border-radius: 6px;

 margin-bottom: 1.5rem;

 display: flex;

 align-items: center;

 gap: 0.5rem;

 }

 .success {

 background-color: #d4edda;

 color: #155724;

 border: 1px solid #c3e6cb;

 }

 .error {

 background-color: #f8d7da;

 color: #721c24;

 border: 1px solid #f5c6cb;

 }

 .info-text {

 font-size: 0.9rem;

APPENDIX

A-74
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 color: var(--text-muted);

 margin-top: 0.5rem;

 }

 @media (max-width: 768px) {

 .settings-container {

 margin: 0;

 border-radius: 0;

 }

 .settings-header {

 padding: 1.5rem;

 }

 .back-button {

 top: 1rem;

 right: 1rem;

 transform: none;

 }

 .nav-tabs {

 gap: 1rem;

 overflow-x: auto;

 padding-bottom: 0.5rem;

 }

 .settings-content {

 padding: 1rem;

 }

 }

 .requirements-list {

 list-style: none;

 padding: 0;

 margin: 10px 0;

 font-size: 0.85rem;

 color: var(--text-muted);

 }

 .requirement-item {

 display: flex;

 align-items: center;

 margin: 5px 0;

 }

 .requirement-item::before {

 content: "•";

 color: var(--accent-color);

 margin-right: 8px;

 }

 .password-strength {

 margin-top: 0.5rem;

 }

 .strength-meter {

 height: 4px;

 background: #eee;

 margin-top: 0.5rem;

APPENDIX

A-75
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 border-radius: 2px;

 overflow: hidden;

 }

 .strength-meter div {

 height: 100%;

 width: 0;

 transition: all 0.3s ease;

 }

 #strength-text {

 display: block;

 margin-top: 0.5rem;

 font-size: 0.85rem;

 color: var(--text-muted);

 }

 .setup-steps {

 margin: 1.5rem 0;

 padding-left: 1.5rem;

 }

 .setup-steps li {

 margin-bottom: 1rem;

 }

 .qr-code {

 margin: 1rem 0;

 padding: 1rem;

 background: white;

 border: 1px solid var(--border-color);

 border-radius: 6px;

 display: inline-block;

 }

 .secret-key {

 margin: 1rem 0;

 padding: 0.5rem;

 background: #f8f9fa;

 border-radius: 4px;

 font-family: monospace;

 }

 .verification-form {

 margin-top: 2rem;

 }

 .status-badge {

 display: inline-flex;

 align-items: center;

 gap: 0.5rem;

 padding: 0.5rem 1rem;

 border-radius: 20px;

 font-weight: 500;

 margin-bottom: 1rem;

 }

 .status-badge.enabled {

 background-color: #d4edda;

APPENDIX

A-76
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 color: #155724;

 }

 .status-badge svg {

 color: #2ecc71;

 }

 </style>

</head>

<body>

 <div class="settings-container">

 <div class="settings-header">

 <h1>Account Settings</h1>

 <p>Manage your account preferences and security settings</p>

 <svg style="width:20px;height:20px" viewBox="0 0 24 24">

 <path fill="currentColor"

d="M20,11V13H8L13.5,18.5L12.08,19.92L4.16,12L12.08,4.08L13.5,5.5L8,11H20Z" />

 </svg>

 Back to Dashboard

 </div>

 <div class="settings-nav">

 <ul class="nav-tabs">

 Security

 </div>

 <div class="settings-content">

 <?php if ($success_message): ?>

 <div class="message success">

 <svg style="width:24px;height:24px" viewBox="0 0 24 24">

 <path fill="currentColor" d="M12 2C6.5 2 2 6.5 2 12S6.5 22 12 22 22 17.5 22 12 17.5 2

12 2M10 17L5 12L6.41 10.59L10 14.17L17.59 6.58L19 8L10 17Z" />

 </svg>

 <?php echo $success_message; ?>

 </div>

 <?php endif; ?>

 <?php if ($error_message): ?>

 <div class="message error">

 <svg style="width:24px;height:24px" viewBox="0 0 24 24">

 <path fill="currentColor" d="M13 14H11V9H13M13 18H11V16H13M1 21H23L12

2L1 21Z" />

 </svg>

 <?php echo $error_message; ?>

 </div>

 <?php endif; ?>

 <div class="section">

 <div class="section-header">

 <h2 class="section-title">Change Password</h2>

 </div>

 <form method="POST" id="passwordForm">

 <div class="form-group">

 <label for="current_password">Current Password</label>

 <input type="password" id="current_password" name="current_password" required>

 </div>

 <div class="form-group">

APPENDIX

A-77
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 <label for="new_password">New Password</label>

 <input type="password" id="new_password" name="new_password" required>

 <div class="password-strength">

 <div class="strength-meter">

 <div id="strength-bar"></div>

 </div>

 Password strength: Too weak

 <ul id="password-requirements" class="requirements-list">

 </div>

 </div>

 <div class="form-group">

 <label for="confirm_password">Confirm New Password</label>

 <input type="password" id="confirm_password" name="confirm_password" required>

 <p class="info-text">Password must be at least 8 characters long and include numbers,

letters, and special characters.</p>

 </div>

 <div class="button-group">

 <button type="submit" class="button button-primary">Update Password</button>

 <button type="reset" class="button button-secondary">Cancel</button>

 </div>

 </form>

 </div>

 <div class="section">

 <div class="section-header">

 <h2 class="section-title">Two-Factor Authentication</h2>

 </div>

 <?php if (!$twofa || !$twofa['enabled']): ?>

 <div class="2fa-setup">

 <p>Follow these steps to enable two-factor authentication:</p>

 <ol class="setup-steps">

 Download and install Google Authenticator on your mobile device

 Scan this QR code with Google Authenticator:

 <div class="qr-code">

 <img src="<?php echo $ga->getQRCodeImageAsDataUri('Multi-Fuzzer AI

Chatbot', $secret); ?>" alt="2FA QR Code">

 </div>

 <p class="secret-key">Secret key: <code><?php echo $secret; ?></code></p>

 Enter the 6-digit code from Google Authenticator to verify

 <form method="POST" class="verification-form">

 <div class="form-group">

 <label for="verification_code">Verification Code</label>

 <input type="text" id="verification_code" name="verification_code"

 pattern="[0-9]{6}" maxlength="6" required>

 </div>

 <button type="submit" name="verify_2fa" class="button button-primary">

 Verify and Enable 2FA

 </button>

 </form>

 </div>

 <?php else: ?>

 <div class="2fa-status">

 <div class="status-badge enabled">

 <svg style="width:20px;height:20px" viewBox="0 0 24 24">

 <path fill="currentColor" d="M12 2C6.5 2 2 6.5 2 12S6.5 22 12 22 22 17.5 22 12

17.5 2 12 2M10 17L5 12L6.41 10.59L10 14.17L17.59 6.58L19 8L10 17Z" />

 </svg>

APPENDIX

A-78
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 Two-Factor Authentication Enabled

 </div>

 <p>Your account is protected with two-factor authentication.</p>

 </div>

 <?php endif; ?>

 </div>

 </div>

 </div>

 <script>

 function checkPasswordStrength(password) {

 let strength = 0;

 let feedback = [];

 if (password.length >= 8) {

 strength += 20;

 } else {

 feedback.push("At least 8 characters");

 }

 if (password.match(/[0-9]+/)) {

 strength += 20;

 } else {

 feedback.push("At least one number");

 }

 if (password.match(/[a-z]+/)) {

 strength += 20;

 } else {

 feedback.push("At least one lowercase letter");

 }

 if (password.match(/[A-Z]+/)) {

 strength += 20;

 } else {

 feedback.push("At least one uppercase letter");

 }

 if (password.match(/[$@#&!%*?&]+/)) {

 strength += 20;

 } else {

 feedback.push("At least one special character ($@#&!%*?&)");

 }

 return {

 strength: strength,

 feedback: feedback

 };

 }

 document.getElementById('new_password').addEventListener('input', function(e) {

 const password = e.target.value;

 const result = checkPasswordStrength(password);

 const strengthBar = document.getElementById('strength-bar');

 const strengthText = document.getElementById('strength-text');

 strengthBar.style.width = result.strength + '%';

 strengthBar.style.backgroundColor =

APPENDIX

A-79
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 result.strength <= 20 ? '#e74c3c' :

 result.strength <= 40 ? '#f39c12' :

 result.strength <= 60 ? '#f1c40f' :

 result.strength <= 80 ? '#3498db' :

 '#2ecc71';

 let strengthLabel =

 result.strength <= 20 ? 'Very Weak' :

 result.strength <= 40 ? 'Weak' :

 result.strength <= 60 ? 'Medium' :

 result.strength <= 80 ? 'Strong' :

 'Very Strong';

 strengthText.innerHTML = `Password strength: ${strengthLabel}`;

 const requirementsList = document.getElementById('password-requirements');

 if (result.feedback.length > 0) {

 requirementsList.innerHTML = result.feedback.map(item =>

 `<li class="requirement-item">${item}`

).join('');

 requirementsList.style.display = 'block';

 } else {

 requirementsList.style.display = 'none';

 }

 });

 // Form validation

 document.getElementById('passwordForm').addEventListener('submit', function(e) {

 const newPassword = document.getElementById('new_password').value;

 const confirmPassword = document.getElementById('confirm_password').value;

 const result = checkPasswordStrength(newPassword);

 if (newPassword !== confirmPassword) {

 e.preventDefault();

 alert('New passwords do not match!');

 return;

 }

 if (result.strength < 100) {

 e.preventDefault();

 alert('Password does not meet all requirements:\n' + result.feedback.join('\n'));

 return;

 }

 });

 </script>

</body>

</html>

APPENDIX

A-80
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

testing.php

<?php

session_start();

$valid_username = 'admin';

$valid_password = 'admin1234';

if (!isset($_SERVER['PHP_AUTH_USER']) ||

 $_SERVER['PHP_AUTH_USER'] !== $valid_username ||

 $_SERVER['PHP_AUTH_PW'] !== $valid_password) {

 header('WWW-Authenticate: Basic realm="Restricted Access"');

 header('HTTP/1.0 401 Unauthorized');

 echo 'Authentication required';

 exit;

}

error_reporting(E_ALL);

ini_set('display_errors', 1);

$output = "";

$error = "";

$auto_command = "";

if (isset($_FILES['security_file'])) {

 $filename = pathinfo($_FILES["security_file"]["name"], PATHINFO_FILENAME);

 $auto_command = "RUN_PARALLEL 30 " . $filename;

 error_log("Command generated for file: " . $filename);

}

if (isset($_GET['command'])) {

 $auto_command = htmlspecialchars($_GET['command']);

}

if ($_SERVER['REQUEST_METHOD'] === 'POST' && isset($_POST['command'])) {

 $command = trim($_POST['command']);

 $command = escapeshellcmd($command);

 $timestamp = date('Y-m-d_H-i-s');

 // Check for stop fuzzing command

 if (strcasecmp($command, 'STOP_FUZZING') === 0) {

 $diagnostic_command = "cd /home/einjun && /home/einjun/stop_fuzzing.sh";

 }

 // Check for parallel fuzzing command

 elseif (preg_match('/^RUN_PARALLEL\s+(\d+)\s+(\w+)$/i', $command, $matches)) {

 $minutes = (int)$matches[1];

 $target = $matches[2];

 $diagnostic_command = "rm -rf /home/einjun/Desktop/outputhonggfuzz/* && cd /home/einjun

&& /home/einjun/run_parallel.sh {$minutes} {$target}";

 }

 // Check for AFL++ command

 elseif (preg_match('/^RUN_AFL_TIMED\s+(\d+)\s+(\w+)$/i', $command, $matches)) {

 $minutes = (int)$matches[1];

 $target = $matches[2];

 $diagnostic_command = "cd /home/einjun && /home/einjun/run_afl.sh {$minutes} {$target}";

 }

 // Check for Honggfuzz command

APPENDIX

A-81
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 elseif (preg_match('/^RUN_HONGGFUZZ\s+(\d+)\s+(\w+)$/i', $command, $matches)) {

 $minutes = (int)$matches[1];

 $target = $matches[2];

 $diagnostic_command = "rm -rf /home/einjun/Desktop/outputhonggfuzz/* && cd /home/einjun

&& /home/einjun/run_honggfuzz.sh {$minutes} {$target}";

 } else {

 $diagnostic_command = "cd /home/einjun && export

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/home/einjun/AFLplusplus && export

HOME=/home/einjun && " . $command;

 }

 $output_array = array();

 $return_status = 0;

 $debug_info = "Debug Info:\n";

 $debug_info .= "Current PHP User: " . exec('whoami') . "\n";

 $debug_info .= "Current PHP Path: " . exec('pwd') . "\n";

 $debug_info .= "Executing command: " . $diagnostic_command . "\n";

 $sudo_command = "/usr/bin/sudo -n -u einjun /bin/bash -c \"" . $diagnostic_command . "\" 2>&1";

 exec($sudo_command, $output_array, $return_status);

 if ($return_status === 0) {

 $output = $debug_info . "\nCommand Output:\n" . implode("\n", $output_array);

 } else {

 $error = $debug_info . "\nCommand execution failed with status: " . $return_status . "\nOutput: " .

implode("\n", $output_array);

 }

}

?>

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Ubuntu CLI Web Interface</title>

 <style>

 :root {

 --primary-color: #2c3e50;

 --secondary-color: #3498db;

 --accent-color: #e74c3c;

 --background-color: #1e1e1e;

 --chat-bg: #2d2d2d;

 --text-color: #ffffff;

 --border-radius: 12px;

 }

 body {

 font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;

 margin: 0;

 padding: 20px;

 background: var(--background-color);

 color: var(--text-color);

 min-height: 100vh;

 }

 .container {

APPENDIX

A-82
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 max-width: 1200px;

 margin: 0 auto;

 }

 h1 {

 color: var(--text-color);

 margin-bottom: 1.5rem;

 font-size: 1.8rem;

 font-weight: 600;

 }

 .terminal {

 background: #000;

 padding: 20px;

 border-radius: var(--border-radius);

 margin: 20px 0;

 white-space: pre-wrap;

 font-family: monospace;

 box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);

 }

 input[type="text"] {

 width: 100%;

 padding: 12px;

 margin: 10px 0;

 background: var(--chat-bg);

 border: 1px solid #444;

 color: var(--text-color);

 border-radius: var(--border-radius);

 font-size: 1rem;

 }

 input[type="submit"] {

 padding: 12px 24px;

 background: var(--secondary-color);

 border: none;

 color: white;

 cursor: pointer;

 border-radius: var(--border-radius);

 font-weight: 600;

 transition: all 0.3s ease;

 }

 input[type="submit"]:hover {

 background: var(--primary-color);

 transform: translateY(-2px);

 }

 .error {

 color: var(--accent-color);

 }

 .help-text {

 background: var(--chat-bg);

 padding: 20px;

 border-radius: var(--border-radius);

 margin: 20px 0;

 box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);

 }

APPENDIX

A-83
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 .help-text h3 {

 color: var(--secondary-color);

 margin-top: 0;

 }

 code {

 display: inline-block;

 background: rgba(0, 0, 0, 0.2);

 padding: 4px 8px;

 border-radius: 4px;

 margin: 4px 0;

 font-family: monospace;

 }

 /* Custom scrollbar */

 ::-webkit-scrollbar {

 width: 8px;

 }

 ::-webkit-scrollbar-track {

 background: var(--chat-bg);

 border-radius: 4px;

 }

 ::-webkit-scrollbar-thumb {

 background: var(--secondary-color);

 border-radius: 4px;

 }

 ::-webkit-scrollbar-thumb:hover {

 background: var(--primary-color);

 }

 .command-form {

 display: flex;

 gap: 10px;

 margin: 20px 0;

 }

 .command-form input[type="text"] {

 flex: 1;

 margin: 0;

 }

 @media (max-width: 768px) {

 .command-form {

 flex-direction: column;

 }

 .command-form input[type="submit"] {

 width: 100%;

 }

 }

 .loading-overlay {

 position: fixed;

 top: 0;

 left: 0;

APPENDIX

A-84
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 width: 100%;

 height: 100%;

 background: rgba(0, 0, 0, 0.85);

 display: flex;

 justify-content: center;

 align-items: center;

 z-index: 9999999;

 }

 .loading-status {

 background: #2d2d2d;

 color: #00ff00;

 padding: 30px 50px;

 border-radius: 10px;

 text-align: center;

 box-shadow: 0 0 20px rgba(0, 255, 0, 0.2);

 max-width: 80%;

 z-index: 999999;

 }

 .loading-spinner {

 display: inline-block;

 width: 50px;

 height: 50px;

 border: 4px solid #00ff00;

 border-radius: 50%;

 border-top-color: transparent;

 animation: spin 1s linear infinite;

 margin-bottom: 20px;

 z-index: 999999;

 }

 @keyframes spin {

 to {transform: rotate(360deg);}

 }

 .status-text {

 font-size: 1.2em;

 margin-bottom: 10px;

 z-index: 999999;

 }

 .time-remaining {

 color: #888;

 font-size: 1em;

 margin-top: 10px;

 z-index: 999999;

 }

 #debugInfo {

 position: fixed;

 bottom: 20px;

 left: 20px;

 right: 20px;

 max-height: 200px;

 overflow-y: auto;

 background: rgba(0, 0, 0, 0.8);

APPENDIX

A-85
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 z-index: 1001;

 }

 .back-button {

 position: absolute;

 top: 20px;

 right: 20px;

 background: #000000;

 color: #ffffff;

 border: none;

 padding: 12px 24px;

 border-radius: 6px;

 cursor: pointer;

 font-weight: 500;

 font-size: 14px;

 letter-spacing: 0.5px;

 text-decoration: none;

 display: inline-flex;

 align-items: center;

 gap: 8px;

 transition: all 0.3s ease;

 box-shadow: 0 2px 6px rgba(0, 0, 0, 0.15);

 }

 .back-button:before {

 content: "←";

 font-size: 16px;

 }

 .back-button:hover {

 background: #333333;

 transform: translateY(-1px);

 box-shadow: 0 4px 12px rgba(0, 0, 0, 0.2);

 }

 .back-button:active {

 background: #000000;

 transform: translateY(1px);

 box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);

 }

 @media (max-width: 768px) {

 .back-button {

 padding: 10px 20px;

 font-size: 13px;

 }

 }

 </style>

</head>

<body>

 <div class="container">

 Back

 <h1> Multi-Fuzzer Testing CLI Web Interface</h1>

 <div class="help-text">

 <h3> Usage Examples:</h3>

 <p>Run AFL++ for specific duration and target:</p>

APPENDIX

A-86
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 <code>RUN_AFL_TIMED 30 testsleep</code>

 <code>RUN_AFL_TIMED 30 testkeyword</code>

 <p>Run Honggfuzz only:</p>

 <code>RUN_HONGGFUZZ 30 testsleep</code>

 <code>RUN_HONGGFUZZ 30 testkeyword</code>

 <p>Run AFL++ and Honggfuzz in parallel:</p>

 <code>RUN_PARALLEL 30 testsleep</code>

 <code>RUN_PARALLEL 30 testkeyword</code>

 <p>Stop all fuzzing processes:</p>

 <code>STOP_FUZZING</code>

 <p>Regular commands:</p>

 <code>ls</code>

 <code>pwd</code>

 </div>

 <form method="POST" class="command-form">

 <input type="text" name="command" placeholder="Enter your command" value="<?php echo

htmlspecialchars($auto_command); ?>" required>

 <input type="submit" value="Execute">

 </form>

 <?php if ($output): ?>

 <div class="terminal">

 <?php echo htmlspecialchars($output); ?>

 </div>

 <?php endif; ?>

 </div>

</body>

</html>

APPENDIX

A-87
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

verify_2fa.php

<?php

session_start();

require_once 'vendor/autoload.php';

use RobThree\Auth\TwoFactorAuth;

if (!isset($_SESSION['requires_2fa'])) {

 header("Location: login.php");

 exit();

}

$error = '';

$tfa = new TwoFactorAuth('Multi-Fuzzer AI Chatbot System');

if ($_SERVER["REQUEST_METHOD"] == "POST") {

 $code = $_POST['code'];

 if ($tfa->verifyCode($_SESSION['2fa_secret'], $code)) {

 $_SESSION['user_id'] = $_SESSION['temp_user_id'];

 $_SESSION['username'] = $_SESSION['temp_username'];

 unset($_SESSION['temp_user_id']);

 unset($_SESSION['temp_username']);

 unset($_SESSION['requires_2fa']);

 unset($_SESSION['2fa_secret']);

 $success = "Verification successful! Redirecting to dashboard<span class='loading-

dots'>";

 header("refresh:2;url=index.php");

 } else {

 $error = "Invalid verification code. Please try again.";

 }

}

?>

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>2FA Verification - Multi-Fuzzer AI Chatbot System</title>

 <style>

 :root {

 --primary-color: #2c3e50;

 --secondary-color: #3498db;

 --background-color: #f4f6f9;

 --error-color: #e74c3c;

 --success-color: #2ecc71;

 --text-color: #2c3e50;

 --text-muted: #7f8c8d;

 --border-color: #e0e0e0;

 --shadow-sm: 0 2px 4px rgba(0,0,0,0.05);

 --shadow-md: 0 4px 6px rgba(0,0,0,0.1);

 --shadow-lg: 0 8px 24px rgba(0,0,0,0.1);

 --gradient-primary: linear-gradient(135deg, var(--primary-color), var(--secondary-color));

 }

 * {

 margin: 0;

APPENDIX

A-88
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 padding: 0;

 box-sizing: border-box;

 }

 body {

 font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;

 background-color: var(--background-color);

 min-height: 100vh;

 display: flex;

 align-items: center;

 justify-content: center;

 padding: 20px;

 color: var(--text-color);

 line-height: 1.6;

 }

 .verify-container {

 background: white;

 padding: 2.5rem;

 border-radius: 16px;

 box-shadow: var(--shadow-lg);

 width: 100%;

 max-width: 420px;

 position: relative;

 overflow: hidden;

 backdrop-filter: blur(10px);

 border: 1px solid rgba(255, 255, 255, 0.2);

 animation: slideUp 0.5s ease-out;

 transition: transform 0.5s ease-out;

 }

 @keyframes slideUp {

 from {

 opacity: 0;

 transform: translateY(20px);

 }

 to {

 opacity: 1;

 transform: translateY(0);

 }

 }

 @keyframes slideOut {

 from {

 transform: translateX(0);

 opacity: 1;

 }

 to {

 transform: translateX(100%);

 opacity: 0;

 }

 }

 .verify-container.slide-out {

 animation: slideOut 0.5s ease-out forwards;

 }

 .loading-spinner {

 display: none;

APPENDIX

A-89
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 position: fixed;

 top: 50%;

 left: 50%;

 transform: translate(-50%, -50%);

 width: 80px;

 height: 80px;

 border: 6px solid var(--background-color);

 border-radius: 50%;

 border-top: 6px solid var(--secondary-color);

 border-right: 6px solid var(--primary-color);

 animation: spin 1s linear infinite;

 z-index: 99999;

 pointer-events: none;

 }

 @keyframes spin {

 0% { transform: translate(-50%, -50%) rotate(0deg); }

 100% { transform: translate(-50%, -50%) rotate(360deg); }

 }

 .loading-spinner.show {

 display: block;

 }

 .verify-header {

 text-align: center;

 margin-bottom: 2rem;

 position: relative;

 }

 .verify-header h2 {

 color: var(--text-color);

 font-size: 1.8rem;

 margin-bottom: 0.5rem;

 display: flex;

 align-items: center;

 justify-content: center;

 gap: 0.8rem;

 position: relative;

 }

 .verify-header svg {

 color: var(--secondary-color);

 filter: drop-shadow(0 2px 4px rgba(52, 152, 219, 0.2));

 }

 .form-group {

 margin-bottom: 1.8rem;

 position: relative;

 }

 .form-group label {

 display: block;

 margin-bottom: 0.8rem;

 color: var(--text-color);

 font-weight: 500;

 font-size: 0.95rem;

 transition: color 0.3s ease;

 }

APPENDIX

A-90
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 .form-group input {

 width: 100%;

 padding: 1rem;

 border: 2px solid var(--border-color);

 border-radius: 12px;

 font-size: 1.2rem;

 transition: all 0.3s ease;

 text-align: center;

 letter-spacing: 0.5em;

 background: #f8f9fa;

 color: var(--text-color);

 font-weight: 600;

 }

 .form-group input:focus {

 border-color: var(--secondary-color);

 outline: none;

 box-shadow: 0 0 0 4px rgba(52, 152, 219, 0.1);

 background: white;

 }

 .form-group input::placeholder {

 color: var(--text-muted);

 opacity: 0.5;

 }

 .error-message {

 background-color: rgba(231, 76, 60, 0.1);

 color: var(--error-color);

 padding: 1rem;

 border-radius: 12px;

 margin-bottom: 1.5rem;

 font-size: 0.95rem;

 display: flex;

 align-items: center;

 gap: 0.8rem;

 border: 1px solid rgba(231, 76, 60, 0.2);

 animation: shake 0.5s ease-in-out;

 }

 @keyframes shake {

 0%, 100% { transform: translateX(0); }

 25% { transform: translateX(-5px); }

 75% { transform: translateX(5px); }

 }

 .error-message svg {

 color: var(--error-color);

 flex-shrink: 0;

 }

 .verify-button {

 width: 100%;

 padding: 1rem;

 background: var(--gradient-primary);

 color: white;

 border: none;

 border-radius: 12px;

APPENDIX

A-91
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 font-size: 1rem;

 font-weight: 600;

 cursor: pointer;

 transition: all 0.3s ease;

 position: relative;

 overflow: hidden;

 }

 .verify-button:hover {

 transform: translateY(-2px);

 box-shadow: 0 4px 12px rgba(52, 152, 219, 0.2);

 }

 .verify-button:active {

 transform: translateY(1px);

 }

 .verify-button::after {

 content: '';

 position: absolute;

 top: 0;

 left: 0;

 width: 100%;

 height: 100%;

 background: linear-gradient(45deg, transparent, rgba(255,255,255,0.2), transparent);

 transform: translateX(-100%);

 transition: transform 0.6s ease;

 }

 .verify-button:hover::after {

 transform: translateX(100%);

 }

 .decoration {

 position: absolute;

 width: 300px;

 height: 300px;

 background: linear-gradient(45deg, rgba(52, 152, 219, 0.1), rgba(44, 62, 80, 0.1));

 border-radius: 50%;

 z-index: 0;

 animation: float 6s ease-in-out infinite;

 }

 @keyframes float {

 0%, 100% { transform: translateY(0); }

 50% { transform: translateY(-20px); }

 }

 .decoration-1 {

 top: -150px;

 right: -150px;

 animation-delay: 0s;

 }

 .decoration-2 {

 bottom: -150px;

 left: -150px;

 animation-delay: -3s;

 }

APPENDIX

A-92
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 .help-text {

 text-align: center;

 color: var(--text-muted);

 font-size: 0.9rem;

 margin-top: 1.5rem;

 padding: 1rem;

 background: rgba(52, 152, 219, 0.05);

 border-radius: 8px;

 border: 1px solid rgba(52, 152, 219, 0.1);

 }

 .timer {

 text-align: center;

 color: var(--text-muted);

 font-size: 0.85rem;

 margin-top: 0.5rem;

 font-weight: 500;

 }

 .success-message {

 background-color: rgba(46, 204, 113, 0.1);

 color: var(--success-color);

 padding: 1rem;

 border-radius: 12px;

 margin-bottom: 1.5rem;

 font-size: 0.95rem;

 display: flex;

 align-items: center;

 gap: 0.8rem;

 border: 1px solid rgba(46, 204, 113, 0.2);

 animation: fadeIn 0.5s ease-out;

 }

 @keyframes fadeIn {

 from { opacity: 0; transform: translateY(-10px); }

 to { opacity: 1; transform: translateY(0); }

 }

 @keyframes fadeOut {

 from { opacity: 1; }

 to { opacity: 0; }

 }

 .loading-dots::after {

 content: '.';

 animation: dots 1.5s steps(5, end) infinite;

 }

 @keyframes dots {

 0%, 20% { content: '.'; }

 40% { content: '..'; }

 60% { content: '...'; }

 80%, 100% { content: ''; }

 }

 .verify-container.fade-out {

 animation: fadeOut 1s ease-out forwards;

 }

APPENDIX

A-93
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 @media (max-width: 480px) {

 .verify-container {

 margin: 1rem;

 padding: 1.5rem;

 }

 .verify-header h2 {

 font-size: 1.5rem;

 }

 .form-group input {

 font-size: 1.1rem;

 padding: 0.8rem;

 }

 }

 </style>

</head>

<body>

 <div class="loading-spinner"></div>

 <div class="verify-container">

 <div class="decoration decoration-1"></div>

 <div class="decoration decoration-2"></div>

 <div class="verify-header">

 <h2>

 <svg style="width:28px;height:28px" viewBox="0 0 24 24">

 <path fill="currentColor" d="M12,1L3,5V11C3,16.55 6.84,21.74 12,23C17.16,21.74

21,16.55 21,11V5L12,1M12,7C13.4,7 14.8,8.1 14.8,9.5V11C15.4,11 16,11.6 16,12.3V15.8C16,16.4

15.4,17 14.8,17H9.2C8.6,17 8,16.4 8,15.7V12.2C8,11.6 8.6,11 9.2,11V9.5C9.2,8.1 10.6,7

12,7M12,8.2C11.2,8.2 10.5,8.7 10.5,9.5V11H13.5V9.5C13.5,8.7 12.8,8.2 12,8.2Z" />

 </svg>

 Two-Factor Authentication

 </h2>

 </div>

 <?php if ($error): ?>

 <div class="error-message">

 <svg style="width:20px;height:20px" viewBox="0 0 24 24">

 <path fill="currentColor" d="M13 14H11V9H13M13 18H11V16H13M1 21H23L12 2L1

21Z" />

 </svg>

 <?php echo $error; ?>

 </div>

 <?php endif; ?>

 <?php if (isset($success)): ?>

 <div class="success-message">

 <svg style="width:20px;height:20px" viewBox="0 0 24 24">

 <path fill="currentColor" d="M12 2C6.5 2 2 6.5 2 12S6.5 22 12 22 22 17.5 22 12 17.5 2

12 2M10 17L5 12L6.41 10.59L10 14.17L17.59 6.58L19 8L10 17Z" />

 </svg>

 <?php echo $success; ?>

 </div>

 <?php endif; ?>

 <form method="POST" id="verifyForm">

 <div class="form-group">

 <label for="code">Enter the 6-digit code from your authenticator app:</label>

APPENDIX

A-94
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 <input type="text" id="code" name="code" required pattern="[0-9]{6}" maxlength="6"

placeholder="000000" autocomplete="off">

 <div class="timer" id="timer">Code expires in: 30s</div>

 </div>

 <button type="submit" class="verify-button">Verify Code</button>

 </form>

 <p class="help-text">

 Open your authenticator app and enter the code shown there.

 The code changes every 30 seconds.

 </p>

 </div>

 <script>

 function updateTimer() {

 const now = new Date();

 const seconds = now.getSeconds();

 const remainingSeconds = 30 - (seconds % 30);

 document.getElementById('countdown').textContent = remainingSeconds;

 if (remainingSeconds <= 5) {

 document.getElementById('countdown').style.color = 'var(--error-color)';

 document.getElementById('timer').style.color = 'var(--error-color)';

 } else {

 document.getElementById('countdown').style.color = 'var(--text-muted)';

 document.getElementById('timer').style.color = 'var(--text-muted)';

 }

 }

 updateTimer();

 setInterval(updateTimer, 1000);

 // Form validation

 document.getElementById('verifyForm').addEventListener('submit', function(e) {

 const code = document.getElementById('code').value;

 if (!/^\d{6}$/.test(code)) {

 e.preventDefault();

 alert('Please enter a valid 6-digit code');

 return false;

 }

 });

 <?php if (isset($success)): ?>

 const container = document.querySelector('.verify-container');

 const spinner = document.querySelector('.loading-spinner');

 spinner.classList.add('show');

 setTimeout(() => {

 container.classList.add('slide-out');

 }, 500);

 <?php endif; ?>

 </script>

</body>

</html>

APPENDIX

A-95
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Fuzzing Scripts

run_afl.sh

#!/bin/bash

Check if both parameters exist

if [$# -ne 2]; then

 echo "Usage: $0 <duration_in_minutes> <target_program>"

 echo "Example: $0 30 testsleep"

 exit 1

fi

DURATION=$1

TARGET_PROGRAM=$2

TIMESTAMP=$(date +%Y-%m-%d_%H-%M-%S)

OUTPUT_DIR="/home/einjun/AFLplusplus/output1_${TIMESTAMP}"

TARGET="/home/einjun/AFLplusplus/${TARGET_PROGRAM}"

LOG_FILE="${OUTPUT_DIR}_report.txt"

Set input directory based on target program

if ["$TARGET_PROGRAM" = "testkeyword"]; then

 INPUT_DIR="/home/einjun/AFLplusplus/inputkeyword"

elif ["$TARGET_PROGRAM" = "testsleep"]; then

 INPUT_DIR="/home/einjun/AFLplusplus/input1"

elif ["$TARGET_PROGRAM" = "testbuffer"]; then

 INPUT_DIR="/home/einjun/AFLplusplus/input1"

elif ["$TARGET_PROGRAM" = "testdivision"]; then

 INPUT_DIR="/home/einjun/AFLplusplus/inputdivision"

elif ["$TARGET_PROGRAM" = "testsigill"]; then

 INPUT_DIR="/home/einjun/AFLplusplus/inputsigill"

elif ["$TARGET_PROGRAM" = "testalrm"]; then

 INPUT_DIR="/home/einjun/AFLplusplus/inputalrm"

elif ["$TARGET_PROGRAM" = "testabort"]; then

 INPUT_DIR="/home/einjun/AFLplusplus/inputabort"

elif ["$TARGET_PROGRAM" = "testdisk"]; then

 INPUT_DIR="/home/einjun/AFLplusplus/inputdisk"

elif ["$TARGET_PROGRAM" = "testfile"]; then

 INPUT_DIR="/home/einjun/AFLplusplus/inputdisk"

else

 INPUT_DIR="/home/einjun/AFLplusplus/input"

fi

Create log file and start logging

{

 echo "AFL++ Fuzzing Report"

 echo "===================="

 echo "Start Time: $(date '+%Y-%m-%d %H:%M:%S')"

 echo "Duration: $DURATION minutes"

 echo "Target Program: $TARGET_PROGRAM"

 echo "Output Directory: $OUTPUT_DIR"

 echo "===================="

 echo

} > "$LOG_FILE"

Check if target program exists

if [! -f "$TARGET"]; then

 echo "Error: Target program $TARGET does not exist!" >> "$LOG_FILE"

 exit 1

fi

APPENDIX

A-96
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Start AFL++

/home/einjun/AFLplusplus/afl-fuzz -Q -i "$INPUT_DIR" -o "$OUTPUT_DIR" -t 5000+ --

"$TARGET" &

AFL_PID=$!

echo "AFL++ process started with PID: $AFL_PID" >> "$LOG_FILE"

check_crashes() {

 if [-d "$OUTPUT_DIR/default/crashes"] && ["$(ls -A $OUTPUT_DIR/default/crashes)"]; then

 {

 echo "$(date '+%Y-%m-%d %H:%M:%S') - Crashes found!"

 echo "=="

 echo "Crash directory contents:"

 ls -la "$OUTPUT_DIR/default/crashes"

 echo

 echo "Crash file details:"

 echo "==================="

 for crash_file in "$OUTPUT_DIR/default/crashes"/*; do

 if [-f "$crash_file"]; then

 echo "File: $(basename "$crash_file")"

 echo "Size: $(ls -l "$crash_file" | awk '{print $5}') bytes"

 echo "Hexdump of crash input:"

 xxd "$crash_file"

 echo "-------------------"

 fi

 done

 if [-f "$OUTPUT_DIR/default/fuzzer_stats"]; then

 echo

 echo "Fuzzer statistics at crash time:"

 echo "==============================="

 cat "$OUTPUT_DIR/default/fuzzer_stats"

 fi

 echo

 echo "Crash detection completed at: $(date '+%Y-%m-%d %H:%M:%S')"

 echo "=="

 } >> "$LOG_FILE"

 echo "Crashes found! Check report at: $LOG_FILE"

 kill -9 $AFL_PID

 exit 0

 fi

}

TOTAL_SECONDS=$((DURATION * 60))

ELAPSED_SECONDS=0

while [$ELAPSED_SECONDS -lt $TOTAL_SECONDS]; do

 sleep 5

 ((ELAPSED_SECONDS+=5))

 check_crashes

 ELAPSED_MINUTES=$((ELAPSED_SECONDS / 60))

 ELAPSED_SECONDS_MOD=$((ELAPSED_SECONDS % 60))

 echo "$(date '+%Y-%m-%d %H:%M:%S') - Fuzzing for ${ELAPSED_MINUTES}m

${ELAPSED_SECONDS_MOD}s out of ${DURATION}m" >> "$LOG_FILE"

done

APPENDIX

A-97
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

{

 echo

 echo "$(date '+%Y-%m-%d %H:%M:%S') - Time limit reached"

 echo "Total duration: $DURATION minutes"

 echo "No crashes found"

 echo "=="

} >> "$LOG_FILE"

echo "Fuzzing completed! Check report at: $LOG_FILE"

kill -9 $AFL_PID

APPENDIX

A-98
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

run_honggfuzz.sh

#!/bin/bash

Check if both parameters exist

if [$# -ne 2]; then

 echo "Usage: $0 <duration_in_minutes> <target_program>"

 echo "Example: $0 30 testsleep"

 exit 1

fi

DURATION=$1

TARGET_PROGRAM=$2

TIMESTAMP=$(date +%Y-%m-%d_%H-%M-%S)

HONGGFUZZ_OUTPUT_DIR="/home/einjun/Desktop/outputhonggfuzz/outputhonggfuzz_${TIMES

TAMP}"

HONGGFUZZ_CRASH_DIR="/home/einjun/Desktop/outputhonggfuzz"

Set input directory based on target program

if ["$TARGET_PROGRAM" = "testkeyword"]; then

 INPUT_DIR="/home/einjun/AFLplusplus/inputkeyword"

elif ["$TARGET_PROGRAM" = "testsleep"]; then

 INPUT_DIR="/home/einjun/AFLplusplus/input1"

elif ["$TARGET_PROGRAM" = "testbuffer"]; then

 INPUT_DIR="/home/einjun/AFLplusplus/input1"

elif ["$TARGET_PROGRAM" = "testdivision"]; then

 INPUT_DIR="/home/einjun/AFLplusplus/inputdivision"

elif ["$TARGET_PROGRAM" = "testsigill"]; then

 INPUT_DIR="/home/einjun/AFLplusplus/inputsigill"

elif ["$TARGET_PROGRAM" = "testalrm"]; then

 INPUT_DIR="/home/einjun/AFLplusplus/inputalrm"

elif ["$TARGET_PROGRAM" = "testabort"]; then

 INPUT_DIR="/home/einjun/AFLplusplus/inputabort"

elif ["$TARGET_PROGRAM" = "testdisk"]; then

 INPUT_DIR="/home/einjun/AFLplusplus/inputdisk"

elif ["$TARGET_PROGRAM" = "testfile"]; then

 INPUT_DIR="/home/einjun/AFLplusplus/inputdisk"

else

 INPUT_DIR="/home/einjun/AFLplusplus/input"

fi

TARGET="/home/einjun/AFLplusplus/${TARGET_PROGRAM}"

LOG_DIR="/home/einjun/AFLplusplus/logs"

LOG_FILE="${LOG_DIR}/honggfuzz_${TIMESTAMP}_report.txt"

mkdir -p "$LOG_DIR"

chmod 777 "$LOG_DIR"

chmod 777 "$HONGGFUZZ_CRASH_DIR"

Create log file and start logging

{

 echo "Honggfuzz Fuzzing Report"

 echo "======================="

 echo "Start Time: $(date '+%Y-%m-%d %H:%M:%S')"

 echo "Duration: $DURATION minutes"

 echo "Target Program: $TARGET_PROGRAM"

 echo "Output Directory: $HONGGFUZZ_OUTPUT_DIR"

 echo "======================="

 echo

APPENDIX

A-99
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

} > "$LOG_FILE"

Check if target program exists

if [! -f "$TARGET"]; then

 echo "Error: Target program $TARGET does not exist!" >> "$LOG_FILE"

 exit 1

fi

check_crashes() {

 if [-d "$HONGGFUZZ_OUTPUT_DIR"]; then

 local honggfuzz_crashes=(

 "$HONGGFUZZ_CRASH_DIR"/HONGGFUZZ.REPORT.*

 "$HONGGFUZZ_CRASH_DIR"/SIGABRT.*

 "$HONGGFUZZ_CRASH_DIR"/SIGSEGV.*

 "$HONGGFUZZ_CRASH_DIR"/*.fuzz

)

 for pattern in "${honggfuzz_crashes[@]}"; do

 if ls $pattern 1> /dev/null 2>&1; then

 {

 echo "====================================="

 echo "Honggfuzz Crash Report"

 echo "====================================="

 echo "Time of Detection: $(date '+%Y-%m-%d %H:%M:%S')"

 echo

 for crash_file in $pattern; do

 if [-f "$crash_file"]; then

 echo "File: $(basename "$crash_file")"

 echo "Size: $(ls -l "$crash_file" | awk '{print $5}') bytes"

 echo "SHA256: $(sha256sum "$crash_file" | cut -d' ' -f1)"

 if [["$crash_file" == *"REPORT"*]]; then

 echo "Report Content:"

 tail -n 30 "$crash_file"

 else

 echo "Hexdump:"

 xxd "$crash_file"

 if command -v gdb &> /dev/null; then

 echo "Stack Trace:"

 echo -e "run < $crash_file\nbt\nquit" | gdb -q "$TARGET" 2>&1

 fi

 fi

 echo "-------------------"

 fi

 done

 if [-f "$HONGGFUZZ_OUTPUT_DIR/HONGGFUZZ.STATS.txt"]; then

 echo "Honggfuzz Statistics:"

 echo "--------------------"

 cat "$HONGGFUZZ_OUTPUT_DIR/HONGGFUZZ.STATS.txt"

 fi

 } >> "$LOG_FILE"

 echo "Crash found at $(date)" > "/home/einjun/AFLplusplus/crash_found.flag"

 chmod 777 "/home/einjun/AFLplusplus/crash_found.flag"

 return 0

APPENDIX

A-100
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 fi

 done

 fi

 return 1

}

Start Honggfuzz

echo "Starting Honggfuzz at $(date '+%Y-%m-%d %H:%M:%S')" >> "$LOG_FILE"

cd /home/einjun/Desktop/outputhonggfuzz

honggfuzz -i "$INPUT_DIR" -o "$HONGGFUZZ_OUTPUT_DIR" -t 5 -s -- "$TARGET" &

HONGGFUZZ_PID=$!

echo "Honggfuzz process started with PID: $HONGGFUZZ_PID" >> "$LOG_FILE"

TOTAL_SECONDS=$((DURATION * 60))

ELAPSED_SECONDS=0

while [$ELAPSED_SECONDS -lt $TOTAL_SECONDS]; do

 sleep 3

 ((ELAPSED_SECONDS+=3))

 if [$ELAPSED_SECONDS -ge 5]; then

 if check_crashes; then

 echo "Crashes found! Check report at: $LOG_FILE"

 kill -9 $HONGGFUZZ_PID

 exit 0

 fi

 fi

 ELAPSED_MINUTES=$((ELAPSED_SECONDS / 60))

 ELAPSED_SECONDS_MOD=$((ELAPSED_SECONDS % 60))

 echo "$(date '+%Y-%m-%d %H:%M:%S') - Fuzzing for ${ELAPSED_MINUTES}m

${ELAPSED_SECONDS_MOD}s out of ${DURATION}m" >> "$LOG_FILE"

done

{

 echo

 echo "Fuzzing completed (time limit reached)"

 echo "====================================="

 echo "Total runtime: $DURATION minutes"

 echo "End Time: $(date '+%Y-%m-%d %H:%M:%S')"

 echo "No crashes found"

 if [-f "$HONGGFUZZ_OUTPUT_DIR/HONGGFUZZ.STATS"]; then

 echo

 echo "Final Honggfuzz Statistics:"

 cat "$HONGGFUZZ_OUTPUT_DIR/HONGGFUZZ.STATS"

 fi

 echo "======================"

} >> "$LOG_FILE"

echo "Honggfuzz fuzzing completed! Check report at: $LOG_FILE"

kill -9 $HONGGFUZZ_PID

APPENDIX

A-101
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

run_parallel.sh

#!/bin/bash

Check if both parameters exist

if [$# -ne 2]; then

 echo "Usage: $0 <duration_in_minutes> <target_program>"

 echo "Example: $0 30 testsleep"

 exit 1

fi

DURATION=$1

TARGET_PROGRAM=$2

TIMESTAMP=$(date +%Y-%m-%d_%H-%M-%S)

AFL_OUTPUT_DIR="/home/einjun/AFLplusplus/output1_${TIMESTAMP}"

HONGGFUZZ_OUTPUT_DIR="/home/einjun/Desktop/outputhonggfuzz/outputhonggfuzz_${TIMES

TAMP}"

HONGGFUZZ_CRASH_DIR="/home/einjun/Desktop/outputhonggfuzz"

Set input directory based on target program

if ["$TARGET_PROGRAM" = "testkeyword"]; then

 INPUT_DIR="/home/einjun/AFLplusplus/inputkeyword"

elif ["$TARGET_PROGRAM" = "testsleep"]; then

 INPUT_DIR="/home/einjun/AFLplusplus/input1"

elif ["$TARGET_PROGRAM" = "testbuffer"]; then

 INPUT_DIR="/home/einjun/AFLplusplus/input1"

elif ["$TARGET_PROGRAM" = "testdivision"]; then

 INPUT_DIR="/home/einjun/AFLplusplus/inputdivision"

elif ["$TARGET_PROGRAM" = "testsigill"]; then

 INPUT_DIR="/home/einjun/AFLplusplus/inputsigill"

elif ["$TARGET_PROGRAM" = "testalrm"]; then

 INPUT_DIR="/home/einjun/AFLplusplus/inputalrm"

elif ["$TARGET_PROGRAM" = "testabort"]; then

 INPUT_DIR="/home/einjun/AFLplusplus/inputabort"

elif ["$TARGET_PROGRAM" = "testdisk"]; then

 INPUT_DIR="/home/einjun/AFLplusplus/inputdisk"

elif ["$TARGET_PROGRAM" = "testfile"]; then

 INPUT_DIR="/home/einjun/AFLplusplus/inputdisk"

else

 INPUT_DIR="/home/einjun/AFLplusplus/input"

fi

TARGET="/home/einjun/AFLplusplus/${TARGET_PROGRAM}"

LOG_DIR="/home/einjun/AFLplusplus/logs"

LOG_FILE="${LOG_DIR}/parallel_fuzzing_${TIMESTAMP}_report.txt"

mkdir -p "$LOG_DIR"

chmod 777 "$LOG_DIR"

chmod 777 "$HONGGFUZZ_CRASH_DIR"

Create log file and start logging

{

 echo "Parallel Fuzzing Report (AFL++ and Honggfuzz)"

 echo "==="

 echo "Start Time: $(date '+%Y-%m-%d %H:%M:%S')"

 echo "Duration: $DURATION minutes"

 echo "Target Program: $TARGET_PROGRAM"

 echo "AFL++ Output Directory: $AFL_OUTPUT_DIR"

 echo "Honggfuzz Output Directory: $HONGGFUZZ_OUTPUT_DIR"

APPENDIX

A-102
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 echo "==="

 echo

 echo "AFL++ Configuration:"

 echo "-------------------"

 echo "Input Directory: $INPUT_DIR"

 echo "Output Directory: $AFL_OUTPUT_DIR"

 echo "Command: afl-fuzz -Q -i $INPUT_DIR -o $AFL_OUTPUT_DIR -t 5000+ -- $TARGET"

 echo

 echo "Honggfuzz Configuration:"

 echo "-----------------------"

 echo "Input Directory: $INPUT_DIR"

 echo "Output Directory: $HONGGFUZZ_OUTPUT_DIR"

 echo "Command: honggfuzz -i $INPUT_DIR -o $HONGGFUZZ_OUTPUT_DIR -t 5 -s --

$TARGET"

 echo "======================"

 echo

} > "$LOG_FILE"

Check if target program exists

if [! -f "$TARGET"]; then

 echo "Error: Target program $TARGET does not exist!" >> "$LOG_FILE"

 exit 1

fi

Get detailed stack trace

get_detailed_stack_trace() {

 local crash_file=$1

 local target=$2

 local output=""

 # Create GDB commands file

 cat > /tmp/gdb_commands <<EOF

set pagination off

set logging on

run < "${crash_file}"

bt full

info registers

x/16i \$pc

print \$_siginfo

info locals

info frame

info threads

EOF

 # Run GDB with commands and capture output

 output=$(gdb -q -batch -x /tmp/gdb_commands "$target" 2>&1)

 rm /tmp/gdb_commands

 echo "$output"

}

check_crashes() {

 local crash_detected=false

 local crash_source=""

 local crash_details=""

 # Check AFL++ crashes

 if [-d "$AFL_OUTPUT_DIR/default/crashes"] && ["$(ls -A

$AFL_OUTPUT_DIR/default/crashes)"]; then

 crash_detected=true

APPENDIX

A-103
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 crash_source="AFL++"

 crash_details+="=====================================\n"

 crash_details+="AFL++ Crash Information\n"

 crash_details+="=====================================\n"

 crash_details+="Time of Detection: $(date '+%Y-%m-%d %H:%M:%S')\n\n"

 # Add AFL++ crash files details

 crash_details+="Crash Files Found:\n"

 crash_details+="------------------\n"

 for crash_file in "$AFL_OUTPUT_DIR/default/crashes"/*; do

 if [-f "$crash_file"] && ["$(basename "$crash_file")" != "README.txt"]; then

 crash_details+="File: $(basename "$crash_file")\n"

 crash_details+="Size: $(ls -l "$crash_file" | awk '{print $5}') bytes\n"

 crash_details+="SHA256: $(sha256sum "$crash_file" | cut -d' ' -f1)\n"

 crash_details+="Hexdump:\n"

 crash_details+="$(xxd "$crash_file")\n"

 # Get stack trace

 if command -v gdb &> /dev/null; then

 crash_details+="Stack Trace:\n"

 crash_details+="$(echo -e "run < $crash_file\nbt\nquit" | gdb -q "$TARGET" 2>&1)\n"

 fi

 crash_details+="------------------\n"

 fi

 done

 if [-f "$AFL_OUTPUT_DIR/default/fuzzer_stats"]; then

 crash_details+="\nAFL++ Fuzzer Statistics:\n"

 crash_details+="----------------------\n"

 crash_details+="$(cat "$AFL_OUTPUT_DIR/default/fuzzer_stats")\n"

 fi

 fi

 # Check Honggfuzz crashes

 if [-d "$HONGGFUZZ_OUTPUT_DIR"]; then

 local honggfuzz_crashes=(

 "$HONGGFUZZ_CRASH_DIR"/HONGGFUZZ.REPORT.*

 "$HONGGFUZZ_CRASH_DIR"/SIGABRT.*

 "$HONGGFUZZ_CRASH_DIR"/SIGSEGV.*

 "$HONGGFUZZ_CRASH_DIR"/*.fuzz

)

 for pattern in "${honggfuzz_crashes[@]}"; do

 if ls $pattern 1> /dev/null 2>&1; then

 crash_detected=true

 [-z "$crash_source"] && crash_source="Honggfuzz" || crash_source="Both Fuzzers"

 crash_details+="\n=====================================\n"

 crash_details+="Honggfuzz Crash Information\n"

 crash_details+="=====================================\n"

 crash_details+="Time of Detection: $(date '+%Y-%m-%d %H:%M:%S')\n\n"

 for crash_file in $pattern; do

 if [-f "$crash_file"]; then

 crash_details+="File: $(basename "$crash_file")\n"

 crash_details+="Size: $(ls -l "$crash_file" | awk '{print $5}') bytes\n"

 crash_details+="SHA256: $(sha256sum "$crash_file" | cut -d' ' -f1)\n"

APPENDIX

A-104
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 if [["$crash_file" == *"REPORT"*]]; then

 crash_details+="Report Content:\n"

 crash_details+="$(tail -n 30 "$crash_file")\n"

 else

 crash_details+="Hexdump:\n"

 crash_details+="$(xxd "$crash_file")\n"

 crash_details+="Crash Reproduction:\n"

 crash_details+="$($TARGET < "$crash_file" 2>&1)\n"

 # Get stack trace using GDB

 if command -v gdb &> /dev/null; then

 crash_details+="Stack Trace:\n"

 crash_details+="$(echo -e "run < $crash_file\nbt\nquit" | gdb -q "$TARGET"

2>&1)\n"

 fi

 fi

 crash_details+="-------------------\n"

 fi

 done

 # Add Honggfuzz statistics

 if [-f "$HONGGFUZZ_OUTPUT_DIR/HONGGFUZZ.STATS.txt"]; then

 crash_details+="\nHonggfuzz Statistics:\n"

 crash_details+="--------------------\n"

 crash_details+="$(cat "$HONGGFUZZ_OUTPUT_DIR/HONGGFUZZ.STATS.txt")\n"

 fi

 break

 fi

 done

 fi

 if ["$crash_detected" = true]; then

 {

 echo "====================================="

 echo "Combined Fuzzing Crash Report"

 echo "====================================="

 echo "Crash Source: $crash_source"

 echo "Target Program: $TARGET_PROGRAM"

 echo "Total Runtime: ${ELAPSED_SECONDS} seconds"

 echo "Report Generated: $(date '+%Y-%m-%d %H:%M:%S')"

 echo

 echo -e "$crash_details"

 echo "====================================="

 echo "End of Report"

 echo "====================================="

 return 0

 } >> "$LOG_FILE"

 echo "Crash found at $(date)" > "/home/einjun/AFLplusplus/crash_found.flag"

 chmod 777 "/home/einjun/AFLplusplus/crash_found.flag"

 return 0

 fi

 return 1

}

Start AFL++

APPENDIX

A-105
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

echo "Starting AFL++ at $(date '+%Y-%m-%d %H:%M:%S')" >> "$LOG_FILE"

/home/einjun/AFLplusplus/afl-fuzz -Q -i "$INPUT_DIR" -o "$AFL_OUTPUT_DIR" -t 5000+ --

"$TARGET" &

AFL_PID=$!

echo "AFL++ process started with PID: $AFL_PID" >> "$LOG_FILE"

Start Honggfuzz

echo "Starting Honggfuzz at $(date '+%Y-%m-%d %H:%M:%S')" >> "$LOG_FILE"

cd /home/einjun/Desktop/outputhonggfuzz

honggfuzz -i "$INPUT_DIR" -o "$HONGGFUZZ_OUTPUT_DIR" -t 5 -s -- "$TARGET" &

HONGGFUZZ_PID=$!

echo "Honggfuzz process started with PID: $HONGGFUZZ_PID" >> "$LOG_FILE"

TOTAL_SECONDS=$((DURATION * 60))

ELAPSED_SECONDS=0

while [$ELAPSED_SECONDS -lt $TOTAL_SECONDS]; do

 sleep 3

 ((ELAPSED_SECONDS+=3))

 if [$ELAPSED_SECONDS -ge 5]; then

 # Check for crashes

 if check_crashes; then

 echo "Crashes found! Check report at: $LOG_FILE" | tee -a "$LOG_FILE"

 {

 echo "Terminating fuzzers due to crash detection"

 echo "AFL++ PID: $AFL_PID"

 echo "Honggfuzz PID: $HONGGFUZZ_PID"

 } >> "$LOG_FILE"

 kill -9 $AFL_PID

 kill -9 $HONGGFUZZ_PID

 exit 0

 fi

 fi

 ELAPSED_MINUTES=$((ELAPSED_SECONDS / 60))

 ELAPSED_SECONDS_MOD=$((ELAPSED_SECONDS % 60))

 echo "$(date '+%Y-%m-%d %H:%M:%S') - Fuzzing for ${ELAPSED_MINUTES}m

${ELAPSED_SECONDS_MOD}s out of ${DURATION}m" >> "$LOG_FILE"

done

{

 echo

 echo "Fuzzing completed (time limit reached)"

 echo "====================================="

 echo "Total runtime: $DURATION minutes"

 echo "End Time: $(date '+%Y-%m-%d %H:%M:%S')"

 echo "No crashes found"

 if [-f "$AFL_OUTPUT_DIR/default/fuzzer_stats"]; then

 echo

 echo "Final AFL++ Statistics:"

 cat "$AFL_OUTPUT_DIR/default/fuzzer_stats"

 fi

 if [-f "$HONGGFUZZ_OUTPUT_DIR/HONGGFUZZ.STATS"]; then

 echo

 echo "Final Honggfuzz Statistics:"

 cat "$HONGGFUZZ_OUTPUT_DIR/HONGGFUZZ.STATS"

APPENDIX

A-106
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 fi

 echo "======================"

} >> "$LOG_FILE"

echo "Parallel fuzzing completed! Check report at: $LOG_FILE"

kill -9 $AFL_PID

kill -9 $HONGGFUZZ_PID

APPENDIX

A-107
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

stop_fuzzing.sh

#!/bin/bash

LOG_FILE="/home/einjun/stopscript/fuzzing_stop_$(date +%Y-%m-%d_%H-%M-%S).log"

{

 echo "Stopping Fuzzing Processes"

 echo "========================="

 echo "Time: $(date '+%Y-%m-%d %H:%M:%S')"

 echo

 kill_processes() {

 local process_name=$1

 local pids=$(pgrep -f "$process_name")

 if [-n "$pids"]; then

 echo "Found $process_name processes:"

 ps -fp $pids

 echo "Killing $process_name processes..."

 kill -9 $pids 2>/dev/null

 if [$? -eq 0]; then

 echo "Successfully killed $process_name processes"

 else

 echo "Error killing some $process_name processes"

 fi

 else

 echo "No $process_name processes found"

 fi

 echo

 }

 # Stop AFL++ processes

 echo "Stopping AFL++ processes..."

 kill_processes "afl-fuzz"

 # Stop Honggfuzz processes

 echo "Stopping Honggfuzz processes..."

 kill_processes "honggfuzz"

 echo "========================="

 echo "Stop operation completed"

 echo "Time: $(date '+%Y-%m-%d %H:%M:%S')"

} | tee "$LOG_FILE"

echo "All fuzzing processes have been stopped. Check log at: $LOG_FILE"

APPENDIX

A-108
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Mitigation Script

mitigate_disk_flood_attack.sh

#!/bin/bash

set -e

echo "=="

echo "Starting Disk Flood Attack Mitigation Tool"

echo "=="

echo "Scanning for large files in /tmp..."

FILE="/tmp/fuzz_test"

echo "--"

echo "Disk space before operation:"

df -h /tmp

echo "--"

if [-f "$FILE"]; then

 echo "Setting permissions and ownership for safe deletion..."

 if ! sudo chmod 666 "$FILE" 2>/dev/null; then

 echo "Sudo failed, trying direct command..."

 chmod 666 "$FILE" || echo "Failed to set permissions"

 fi

 if ! sudo chown daemon:daemon "$FILE" 2>/dev/null; then

 echo "Sudo ownership change failed, continuing anyway..."

 fi

 echo "--"

 echo "Removing $FILE to free up space..."

 if rm -f "$FILE" 2>/dev/null; then

 echo "Success: Disk space has been freed!"

 else

 echo "Warning: Failed to remove file. Trying alternative method..."

 echo "<?php unlink('$FILE'); echo 'PHP unlink result: ' . (file_exists('$FILE') ? 'Failed' :

'Success'); ?>" > /tmp/remove_file.php

 php /tmp/remove_file.php

 rm -f /tmp/remove_file.php

 fi

else

 echo "Status: No large files found."

fi

echo "--"

echo "Disk space after operation:"

df -h /tmp

echo "--"

echo "=="

echo "Disk Flood Attack Mitigation Complete"

echo "=="

APPENDIX

A-109
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

mitigate_inodes_exhaustion.sh

#!/bin/bash

TARGET_DIR="/tmp/inode_flood/"

echo "Checking inode usage before mitigation..."

stat -f /tmp

echo ""

echo "Removing excessive files to free inodes..."

rm -rf ${TARGET_DIR}

echo ""

echo "Checking inode usage after mitigation..."

stat -f /tmp

echo ""

echo "Mitigation complete."

install_apparmor.sh

#!/bin/bash

LOG_FILE="/var/log/security_install.log"

log_message() {

 echo "[$(date '+%Y-%m-%d %H:%M:%S')] $1" | tee -a "$LOG_FILE"

}

log_message "Starting AppArmor installation..."

export DEBIAN_FRONTEND=noninteractive

Install AppArmor

log_message "Installing AppArmor packages..."

sudo apt-get update -y

sudo apt-get install -y apparmor apparmor-utils apparmor-profiles

log_message "Enabling AppArmor..."

sudo systemctl enable apparmor

sudo systemctl start apparmor

log_message "Checking AppArmor status..."

sudo mkdir -p /var/log/apparmor

sudo bash -c 'aa-status > /var/log/apparmor/status.txt'

sudo chmod 644 /var/log/apparmor/status.txt

log_message "AppArmor installation completed."

sudo mkdir -p /etc/apparmor

sudo touch /etc/apparmor/installed_flag

exit 0

APPENDIX

A-110
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

install_asan.sh

#!/bin/bash

LOG_FILE="/var/log/security_install.log"

log_message() {

 echo "[$(date '+%Y-%m-%d %H:%M:%S')] $1" | tee -a "$LOG_FILE"

}

log_message "Starting AddressSanitizer installation..."

if ["$EUID" -ne 0]; then

 log_message "Error: Please run as root"

 exit 1

fi

log_message "Installing LLVM and Clang..."

apt-get update

apt-get install -y clang llvm

log_message "Configuring ASan..."

cat > /etc/ld.so.conf.d/asan.conf << EOF

/usr/lib/llvm-11/lib/clang/11.0.0/lib/linux

EOF

ldconfig

log_message "AddressSanitizer installation completed."

touch /usr/lib/llvm/installed_flag

exit 0

install_exploit_mitigations.sh

#!/bin/bash

LOG_FILE="/var/log/security_install.log"

log_message() {

 echo "[$(date '+%Y-%m-%d %H:%M:%S')] $1" | tee -a "$LOG_FILE"

}

log_message "Starting Exploit Mitigations installation..."

if ["$EUID" -ne 0]; then

 log_message "Error: Please run as root"

 exit 1

fi

log_message "Enabling ASLR..."

echo 2 > /proc/sys/kernel/randomize_va_space

echo "kernel.randomize_va_space = 2" >> /etc/sysctl.conf

log_message "Configuring Stack Protection..."

echo "kernel.dmesg_restrict = 1" >> /etc/sysctl.conf

echo "kernel.kptr_restrict = 2" >> /etc/sysctl.conf

echo "kernel.yama.ptrace_scope = 2" >> /etc/sysctl.conf

APPENDIX

A-111
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

log_message "Enabling NX bit..."

apt-get update

apt-get install -y execstack

find /usr/bin -type f -executable -exec execstack -c {} \;

log_message "Configuring additional security settings..."

cat >> /etc/sysctl.conf << EOF

kernel.exec-shield = 2

kernel.core_uses_pid = 1

kernel.sysrq = 0

net.ipv4.tcp_syncookies = 1

EOF

sysctl -p

log_message "Exploit Mitigations installation completed."

touch /etc/security/mitigations_installed_flag

exit 0

install_hardened_malloc.sh

#!/bin/bash

LOG_FILE="/var/log/security_install.log"

log_message() {

 echo "[$(date '+%Y-%m-%d %H:%M:%S')] $1" | tee -a "$LOG_FILE"

}

log_message "Starting HardenedMalloc installation..."

if ["$EUID" -ne 0]; then

 log_message "Error: Please run as root"

 exit 1

fi

log_message "Installing dependencies..."

apt-get update

apt-get install -y git build-essential

Clone and build HardenedMalloc

log_message "Building HardenedMalloc..."

cd /usr/src

git clone https://github.com/GrapheneOS/hardened_malloc.git

cd hardened_malloc

make

log_message "Installing HardenedMalloc..."

cp out/libhardened_malloc.so /usr/lib/

echo "/usr/lib/libhardened_malloc.so" > /etc/ld.so.preload

log_message "HardenedMalloc installation completed."

touch /usr/lib/hardened_malloc/installed_flag

exit 0

