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ABSTRACT 

This research will be focusing on developing a Parallel Metaheuristic Algorithm for 

Route Planning using CUDA to improve the efficiency and performance of route 

planning. The increasing demand for more efficient route planning approaches, which 

includes several factors such as cost savings, timely deliveries and reduced carbon 

emissions, has led to a surge in demand for more advanced route planning algorithms 

in search of more efficient solutions. 

The problem that this research will be tackling is the Travelling Salesman Problem 

(TSP), which is a specific type of route planning problem where the main objective of 

it is to find out the optimal set of routes for a given number of vehicles to transport 

goods to a defined set of destinations. TSPs are known to be NP-hard problems[1] 

where an increase in the number of vehicles and destinations will significantly increase 

the computational time required to obtain an optimal solution. Existing works that 

utilized metaheuristic algorithms have shown their flexibility in solving multiple TSP 

variants and their capabilities in obtaining near-optimal solutions within a reasonable 

amount of time. However, due to the limitations of CPUs in terms of parallelization, 

these algorithms do not perform well as they are highly iterative. 

The proposed approach will be utilizing the Compute Unified Device Architecture 

(CUDA) to enhance the performance and efficiency of metaheuristic algorithms in 

finding optimal solutions for the TSP by leveraging the parallel processing capabilities 

of Nvidia Graphics Processing Units (GPUs). This research aims to significantly speed 

up solution searching for the TSP by using GPUs compared to CPUs. Besides, this 

research strives to provide a foundation for future research on parallel metaheuristic 

algorithms, and to further encourage their implementations in real-world instances of 

route planning. 

Area of Study: Massively Parallel Computing, Combinatorial Optimization 

Keywords: Parallel Metaheuristic Algorithm, Travelling Salesman Problem, CUDA, 

GPU, Genetic Algorithm 
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CHAPTER 1  

Introduction 

In this chapter, we will present the background, problem and motivation of our 

research, our contributions to the field, and the outline of the thesis.  

 The research will be further introduced in this chapter, where the problem 

definition, research objectives, scope and directions, and contributions to the fields of 

computational optimization, parallel metaheuristic algorithms, and logistics will be 

described in the following parts. 

 

1.1 Problem Statement and Motivation 

The Travelling Salesman Problem (TSP) is a well-known problem that falls 

under the combinatorial optimization category, whereby the objective is to search for 

the most efficient routes, which is the minimal total distance for a traveler to visit each 

node exactly once. However, TSPs are infamous NP-hard problems[1], where 

computational demands such as time and power are substantially increased as the 

number of vehicles and destinations increase, to find an optimal solution for the given 

scenario. Due to the complex nature of these problems, they require more advanced and 

sophisticated optimization techniques that are highly efficient to obtain optimal 

solutions within a reasonable timeframe. Therefore, it is necessary to tackle these 

challenges to optimally handle an extensive amount of data and complex constraints 

that are generated from the problems. 

The motivation of this research stems from the vital need to develop route 

planning solutions that are efficient, well-performing and scalable. These solutions 

must be able to meet the demands of the world today. With the development of logistics 

networks each day and the growth of the e-commerce sector [2], route planning will get 

more tedious and complex, and we cannot simply rely only on humans to plan routes 

as humans tend to have biases and are not efficient enough to obtain solutions that are 

near-optimal all the time. Additionally, as businesses, organizations and even in a larger 

scale, countries, take the initiative to transition towards being carbon-neutral [3], 

efficient route planning becomes even more crucial because it is a step forward towards 



CHAPTER 1 Introduction 

Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR  
2 

less carbon emission. Not only that, but it is also possible for a significant room for 

cost, time and fuel savings. 

Furthermore, acknowledging the fact that the GPU architecture is designed for 

parallel processing [4], it has given us much motivation for the implementation of our 

proposed method. GPUs offer thousands of cores that work in parallel, which provides 

them with the capability to handle a large number of tasks simultaneously. Furthermore, 

GPUs also have higher memory bandwidth compared to CPUs, which paves way for 

quicker data transfer and access. This offers several advantages over CPUs when it 

comes to parallel computing as GPUs are able to perform parallel computations much 

quicker compared to CPUs with a limited number of cores. Besides, these strengths also 

improve their capability in handling complex calculations and high-throughput 

computations. This allows GPUs to have a high efficiency in performing metaheuristic 

algorithms as their design is well-suited for the parallelizable components of the 

algorithms. The existence of CUDA which allows the use of Nvidia GPUs for general-

purpose computing provides developers like us with more accessibility in utilizing 

GPUs effectively and efficiently. 

Therefore, we see that leveraging CUDA to utilize GPUs for the implementation 

of parallel metaheuristic algorithms is another big step forward towards a significant 

improvement of the efficiency of metaheuristic algorithms on solving the TSP, as there 

is much potential to improve computational speed and scalability of the algorithms, 

which can also lead to improvements in solution quality. This research seeks to develop 

a robust framework that has the capabilities to solve complex route planning problems, 

ultimately contributing to the improvement of logistics and transportation systems.  

 

1.2 Research Objectives 

The primary objective of this research is to demonstrate the capability of 

parallelized metaheuristic algorithms in significantly increasing the efficiency and 

performance of these algorithms in solving the TSP. This research aims to obtain 

significant improvements in efficiency, computation time, scalability and solution 

quality for the TSP by leveraging CUDA. The specific objectives of the project will be 

further discussed below. 
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Throughout this research, we aim to design and implement a massively parallel 

GA that is highly efficient. The design and implementation of the proposed algorithm 

will be focused on parallelizing the key components of GA to maximize GPU utilization 

and performance. By this, we strive not to waste any available resources and to reduce 

time efficiencies. We will be looking deeper into the components of the GA and the 

architecture of the GPU to ensure maximum and efficient parallelization of the GA 

components wherever possible. This is also important to reduce overhead caused by 

communication and synchronization of information between the GPU and the CPU, 

and also between threads. 

This research also aims to achieve a significant speedup in solving TSP 

instances using the parallelized GA strategies, as we look forward to reducing the 

overall computation time compared to CPU-based implementations. As multiple 

components of the GA are highly parallelizable, it becomes less efficient to run the GA 

sequentially as the number of loops will significantly increase as the TSP instance gets 

larger due to its iterative nature.  

Furthermore, we would also like to ensure substantial improvements in terms 

of the scalability of the developed algorithm to improve its capability in handling large-

scale TSP instances. As demands in real-life scenarios continue to increase, it is crucial 

for the algorithm to have the ability to perform optimization for large instances of the 

TSP, as it better reflects the scale of demands in real-life applications. The 

improvements in terms of scalability will help us to demonstrate the practical 

applicability of the algorithm in real-world logistics and transportation systems. 

 Another objective of this research is to present a detailed comparison between 

single-threaded CPU, multi-threaded CPU and GPU-based implementations of the GA 

to highlight the effectiveness of our proposed algorithm that is achieved through GPU 

acceleration. Comprehensive benchmarking and performance analysis will be 

conducted to assess the different implementations in terms of efficiency, scalability and 

solution quality to properly evaluate the algorithm’s effectiveness. 

 One more objective of this research is to be able to contribute towards a 

massively parallel implementation of metaheuristic algorithm on GPUs to solve the TSP. 

This field of research is very much underexplored; therefore, we look forward to 
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providing more examples and demonstrations of this implementation to further 

encourage research in this field and the application of it in real-life scenarios. 

 

1.3 Research Scope and Direction  

The aim of this research is to develop and evaluate a parallelized metaheuristic 

algorithm to solve the TSP by using CUDA. The scope of this project encompasses a 

few key areas which are stated below. 

 This research will encompass algorithm design and development. We will be 

implementing GAs with multiple approaches, including a sequential and parallel GA 

on the CPU, and two parallel GAs on the GPU. The main focus of this research will be 

on the parallel algorithm, as we would like to demonstrate the effectiveness of 

parallelism in enhancing the performance of GAs in solving the TSP. For the proposed 

algorithms, parallel strategies will be designed to leverage CUDA to accelerate the GA 

using GPU, which include components of the GA such as fitness evaluation, elitism, 

crossover and mutation operations. Not only that, as every generation of the GA has 

multiple instances, these instances will also be parallelized instead of being processed 

sequentially. Then, the parallel GAs will be developed using CUDA C++ and kernel 

functions will be optimized to maximize GPU utilization and performance. 

Furthermore, we will also be optimizing the parallelization strategy to reduce 

communication and information synchronization overhead between parallel threads, 

and also between CPU and GPU memory. 

 Furthermore, our research will also be benchmarking the performance of the 

proposed algorithms against CPU implementations of GA. Multiple performance 

metrics such as computation time, speedup, scalability and solution quality will be 

defined to assess the effectiveness, efficiency and performance of our proposed 

algorithm. A comparative analysis will be conducted between the proposed algorithms 

and the CPU-based implementations to identify the improvements in terms of efficiency, 

performance and scalability. 
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1.4 Significance and Contributions 

This research titled “Parallel Metaheuristic Algorithm for Route Planning using 

CUDA” aims to make several substantial contributions to the field of computational 

optimization, parallel metaheuristic algorithms and logistics. Our experiments and 

analysis have confirmed the feasibility of our proposed method in improving the 

efficiency and performance of route planning. The primary significance and 

contributions of this study will be explained below. 

 We hope that our research could help and impact the development of parallel 

metaheuristic frameworks for solving route planning problems so that this field of 

research could be utilized optimally in the future. In this research, we will design and 

implement GAs that run in parallel on a GPU to solve the TSP by using CUDA. This 

framework is expected to significantly reduce computation time while also improving 

the scalability of metaheuristic algorithms. We aim to optimize the process of the 

metaheuristic algorithms running on the GPU to reduce inefficiencies such as overhead 

due to communication and information synchronization between parallel threads, and 

between CPU and GPU memory. With proper optimization, the program will be able to 

run efficiently, which will ensure its performance, showing a greater potential in real-

world applications.  

 This research will also bring forward a thorough benchmarking and 

performance analysis in order to compare the proposed implementation of parallel 

metaheuristic algorithms using GPU against traditional CPU-based implementations. 

This research will be providing insights into the improvements in computing time, 

scalability and solution quality accomplished through GPU acceleration. From the 

benchmarks, we also aim to assess the practical applicability of the proposed 

implementation to bridge the gap between theoretical research and real-world 

implementation in logistics and transportation systems. 

 Last but not least, this research aims to develop a foundation for future research 

on the field of computational optimization, parallel metaheuristic algorithms and 

logistics. Our research will address the computational challenges and difficulties related 

to TSPs and demonstrate the effectiveness of leveraging CUDA to enhance 

metaheuristic algorithms. We aim for this research to lay the groundwork for future 

studies on this topic. We believe that our research will open new avenues for exploring 
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parallel computing techniques that utilize CUDA in optimization problems other than 

route planning. 

 We expect to advance the latest developments and improvements in route 

planning by proposing our research on this topic to further contribute to the related 

fields. The outcomes of this research have immense potential in developing and 

transforming logistics and transportation systems, which could provide various benefits 

that are practical in terms of cost and time efficiency and environmental sustainability. 

1.5 Report Organization 

This report is organized into 6 chapters: Chapter 1 Introduction, Chapter 2 

Literature Review, Chapter 3 System Model, Chapter 4 Experiment, Chapter 5 System 

Evaluation and Discussion, and Chapter 6 Conclusion. The first chapter is the 

introduction of this research which includes the problem statement, objectives, scope, 

direction, significance and contributions, and also report organization. The second 

chapter covers the literature review carried out on past works on solving routing 

problems to evaluate the strengths and weaknesses of each approach, and also regarding 

genetic algorithm and the CUDA architecture. In the third chapter, we will discuss about 

the system models in this research. The fourth chapter will cover the experiment setup. 

The fifth chapter reports the results obtained from the experiment, and discussions 

about the results obtained. The sixth chapter will be our conclusion and 

recommendations for further research. 

 

  



CHAPTER 2 Literature Review 

Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR  
7 

CHAPTER 2  

Literature Review 

2.1 An efficient parallel genetic algorithm solution for vehicle routing problem in 

cloud implementation of the intelligent transportation systems [5] 

 This paper presents a parallelization method for GAs to accelerate the algorithm 

in finding solutions for the VRP [5]. The authors experimented the parallel GA on the 

Travelling Salesman Problem (TSP) to showcase how effective the proposed method is 

in solving equivalent problems such as the TSP. The authors have done the experiments 

on multi-core and many-core systems [5]. Furthermore, the authors also proposed to 

integrate the system with vehicular cloud computing, where participating vehicles 

communicate with the cloud service to provide vehicle position and obtain routing 

information and optimum routes for the vehicles. 

 The authors utilized CUDA to parallelize the GA on a GPU. They organized 

three different kernels to parallelize three different components of GA. The three 

kernels will calculate the primary population’s fitness, perform crossover, mutation and 

fitness functions, and the selection process, respectively. Since the computation results 

are stored in the GPU’s global memory, there is no data switching between the host and 

the device while the kernel is switched. Therefore, there is very little overhead in terms 

of kernel-switching time. 

 The proposed method is tested with 3 sets of data that is derived from VLSI data 

for TSP implementation, each having 380, 737 and 984 cities, and is compared against 

sequential CPU implementation and Threading Building Blocks (TBB) multi-core CPU 

implementations. It is found that the CUDA implementation yielded the best results 

when the population size is large due to CUDA enabling many threads to be defined 

but falls short to the TBB implementations in smaller populations. Therefore, this 

showed that the CUDA implementation can significantly speedup GA operations for 

medium to large instances of the TSP, provided that a maximum number of threads and 

a large population size is defined. 

 The effectiveness of the implementation and its improvements of the parallel 

GA does not necessarily reflect the exact scale of improvements when it comes to the 

VRP, as the TSP and VRP have their differences. However, since the paper discussed 
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the effectiveness of a parallel GA on the TSP using CUDA, it serves as another 

confirmation towards our direction of research. 

2.2 Parallel Implementation of Ant Colony Optimization for Travelling Salesman 

Problem [6] 

 This paper presents a parallel ant colony optimization (ACO) algorithm for the 

TSP. The authors leveraged a Message Passing Interface (MPI) framework to 

parallelize the algorithm.  

 The authors noted multiple characteristics of sequential algorithms that can be 

effectively parallelized with MPI, including the ability of the algorithms to run in cycles, 

and that the work should be able to be divided between several processing units. 

Furthermore, the architecture of the machine is also crucial as it determines how 

efficient the parallel implementation can be. 

 The way this MPI works follows a master-slave architecture, where the master 

obtains the problem instance and broadcasts it to all slaves, and then passes control to 

the slaves for them to work on the algorithm. Then the master waits for them to update 

the data. Every individual slave will be working on an independent instance of the 

sequential algorithm. 

 To implement the MPI framework with the ACO, the authors decided that it is 

necessary for each slave or ant to have a local copy of pheromone matrix that is 

synchronised with the master’s global pheromone matrix after every ant cycle 

completes. 

 The parallel implementation is successful that the authors were able to achieve 

a linear speedup for up to 26 processors, and there is degrading beyond this number of 

processes which the authors believe that it is due to communication overhead and idle 

time of the processors. 

 This work shows that there is significant room for metaheuristic algorithms to 

be parallelized, as many metaheuristic algorithms work for many cycles, and at most 

times, each instance is independent from the other instances, where most of the 

communications occur only after each iteration is completed. 

 



CHAPTER 2 Literature Review 

Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR  
9 

2.3 CUDA-Based Genetic Algorithm on Traveling Salesman Problem [7] 

 In this piece of work, the authors designed a genetic algorithm that can run on 

CUDA to leverage the many processing units offered by GPUs. The authors parallelized 

the crossover and mutation processes as each thread’s process does not interfere with 

other threads. However, they noted that the population cannot be directly replaced by 

the new population as it will overwrite the information of the old population that were 

being used to generate the new population. Therefore, the authors have to make another 

temporary copy of the target chromosome to work on. 

 The authors also noted other challenges of a parallel implementation of GA like 

this. At the time of this implementation, CUDA does not provide random number 

generation methods yet, therefore the authors have to simulate a pseudo random number 

generator for the use of GA. They generated random seeds from the CPU for every 

thread of the GPU so that each thread can have a local random number generator 

function that does not interfere with each other. 

 Furthermore, due to the limits of shared memory, the authors also did not use a 

distance table but instead used coordinate arrays as they are small enough to fit in the 

shared memory of the GPU. 

 The authors ran the experiment on only one streaming multiprocessor (SM) by 

generating only one block, which they noted that they only used about 1/16 of the 

computing resource on their GPU as their GPU has 16 SMs. From this experiment, they 

are still able to obtain around 50% of speed up compared to CPU. 

 As we can see that with only one SM active, the GPU can already beat CPU in 

terms of speed, this poses a big opportunity to further speed up GAs when the whole 

GPU is being utilized.  

2.4 A Genetic Algorithm for the Split Delivery Vehicle Routing Problem [8] 

 The authors of this paper propose two hybrid genetic algorithms to solve the 

split delivery vehicle routing problem (SDVRP) [8], where in this variant of VRP, 

customers are able to be visited more than once. The authors propose the hybrid genetic 

algorithms to allow genetic global search procedure and guarantees feasibility because 

a pure genetic algorithm implementation is unable to guarantee feasible solutions. 
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 The two hybrid GAs each utilize a different fitness approach. The first fitness 

approach is based on the shortest route. The feasible routes are sorted based on travel 

distance, from the shortest to the longest, and each route has a fixed probability of being 

added to the current solution. The shorter routes that meet a certain capacity threshold 

has a higher chance to be selected compared to longer routes. If no other routes are 

feasible, the solution is completed with a construction heuristic to ensure feasibility. On 

the other hand, the second approach is quite similar to the first approach but is based 

on the ratio of demand unit versus distance unit. The larger the ratio, the route will be 

sorted in front, therefore having a larger probability of being selected. 

 From the results, it is shown that both hybrid GAs have significantly reduced 

computation times compared to Chen et al’s two-phase method. and Jin et al’s column 

generation method in most instances, but the solution quality does not always match 

the two compared methods. The authors found that neither approach is faster than the 

other, but the second approach yields better improvement in most cases. 

 This paper has shown the effectiveness of implementing a hybrid GA to solve 

the SDVRP as it has achieved significant speedup in obtaining near-optimal solutions, 

and in larger instances of the problem, the algorithm is also able to find better solutions. 

Therefore, this paper showcased that GA is versatile enough to handle route 

optimization problems other than the TSP and is able to combine with other heuristics 

to form hybrid metaheuristics that could potentially perform better. 

2.5 Genetic Algorithm [9] 

 In this paper, the author goes in depth about the genetic algorithm (GA). The 

author mentions that GAs have been applied to solve a broad range of problems. GAs 

follow the concept of natural selection as the algorithm evolves into more successful 

chromosomes. The fitness function determines the fitness of each chromosome, which 

guides the search process by determining the quality of solutions. Chromosomes with 

better fitness will have a higher chance of being selected for reproduction. 

 The three main genetic operators are reproduction, crossover and mutation, 

where these genetic operators help to create new solution vectors from current solution 

vectors through selection, combination or alteration. This helps in exploitation and 

exploration of the search space. 
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 Compared with traditional optimization methods, GAs are quite different. The 

nature of GA which uses a string-coding of variables can effectively discretize the 

search space. Furthermore, due to the fact that GAs work with multiple solutions, good 

information from previous generations can be passed down to later generations, which 

helps the algorithm to reach optimal solutions. 

 Therefore, this paper tells us that GAs are versatile as they can be used to 

optimize various types of problems. It is even more powerful when the problem’s search 

space is large and complex, which route optimization problems such as the TSP also 

falls into this category. 

2.6 GPGPU Processing in CUDA Architecture [10] 

 This article highlights the strengths of GPUs in data parallelism when compared 

against CPUs [10] and describes in detail about CUDA, the parallel computing 

architecture developed by Nvidia.  

 It is highlighted that CPUs and GPUs both excel in different kinds of tasks. 

CPUs are optimised for better performance on sequential tasks, while GPUs are 

optimised for parallelizing a greater number of arithmetic operations, especially 

floating point operations. This is due to the different architectures between the CPU and 

the GPU. 

 CPUs typically have high performance on a single thread, and have immensely 

high-speed caches, which are good for data reuse [10]. This allows CPUs to handle 

multiple different processes or threads at a single time, making them more efficient in 

tackling operating system tasks including memory management and job scheduling. 

 GPUs consist of a large number of math units [10], which gave GPUs the ability 

to have high throughput when it comes to performing operations in parallel. The GPU 

architecture allows low access times to onboard memory, and programs were run 

independently on each compute unit within the GPU. Therefore, the GPU has been used 

to parallelize complex mathematical operations, and this use of GPU for non-graphical 

workloads is known as General Purpose GPU (GPGPU). This can be done by using 

CUDA, which is Nvidia’s GPU architecture for general purpose computing using GPUs. 

 The CUDA architecture splits the GPU into grids, blocks and threads 

hierarchically [10]. Grids are made up of blocks, and blocks are made up of threads. 
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Not only that, but there are also different memory types for different purposes and with 

different memory access times, such as global, shared, local, texture and constant 

memory. 

 The author highlighted that application development for CUDA can be done 

easily by using programming languages such as C, C++, Java, Python and more [10]. 

This allows developers to harness the computing capabilities of the GPU. The compiled 

code can be run directly on the device. There are also fully GPU accelerated libraries 

that are currently available for developers to use, and one can easily analyze the GPU’s 

performance with CUDA’s visual profiler [11]. Therefore, CUDA programming is not 

complex to perform. However, there are also limitations on CUDA, such as the latency 

of communication between the CPU and GPU, and CUDA support is only limited for 

Nvidia GPUs.  

2.7 Parallelizing a Genetic Operator for GPUs [12] 

 The authors proposed a method to parallelize a genetic operator, which is the 

order crossover (OX) operator on the GPU. In the proposed method, the authors want 

to parallelize the process of OX operator by allowing one whole thread block to process 

one individual. This is done by randomly selecting a segment from one parent and 

copying the elements to the child in parallel. Then, the generalized prefix-sums were 

computed in parallel. This result is converted to the destination indices in parallel, and 

according to the indices, segments from the other parent are copied into the child in 

parallel. In this model, only one child is generated from two parents. 

 The proposed method is able to achieve significant speedup compared to 

sequential CPU implementation when implemented in GA. Initially, when the process 

is directly ported onto the GPU, it fails to run faster in certain cases. However, the 

parallelized OX operator turned things around, making the GA faster on GPU than the 

CPU by more than an order of magnitude. Therefore, this approach has proven to be 

effective on CUDA architecture. This shows that there is room of optimization for 

genetic operators within the GA itself.  
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CHAPTER 3 

System Model 

3.1 Equations 

The TSP seeks to determine the most efficient route for a single traveller visiting 

a set of cities before returning to the starting point. The TSP is focused on a single tour 

that covers all cities with minimal costs (distance). 

The related equations are as follows: 

Let: 

𝑁 be the number of cities (or locations to be visited),  

𝑋 be the set of 𝑁 cities, where 𝑋 = { 𝑥𝑖  | 𝑖 =  1, … , 𝑁 } 

𝑙𝑖 be the location of city 𝑥𝑖, 

𝑑𝑖𝑗 be the cost (distance) of going from city 𝑥𝑖 to 𝑥𝑗, and, 

𝑥𝑖𝑗  be a binary decision variable, where its value is 1 if travel occurs from city 

𝑥𝑖 to 𝑥𝑗, and 0 otherwise. 

The objective of solving the TSP is to minimize the total cost, which in this case, 

the total travelling distance, while ensuring that every city is visited once and only once 

before returning to the origin city, which is the starting city. This objective can be 

denoted by the equation below: 

𝑚𝑖𝑛 ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗

𝑁

𝑗=1,𝑗≠𝑖

𝑁

𝑖=1

 

 

There are a few constraints to solving the TSP, which are shown below: 

(a) Each city must be visited exactly once: 

∑ 𝑥1𝑗 = 1

𝑁

𝑗=2

 

This ensures that each city is visited once and only once, preventing duplicate visits. 
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(b) The route starts with the first city: 

∑ 𝑥1𝑗 = 1

𝑁

𝑗=2

 

This ensures that travel initiates from the first city. 

(c) The route must return to the first city: 

∑ 𝑥𝑖1
𝑘 = 1

𝑁

𝑖=2

 

This ensures that the final city visited will be linked back to the starting city. 

(d) If a city is entered, it must be exited: 

∑ 𝑥𝑖𝑗 = ∑ 𝑥𝑗𝑖 = 1,

𝑁

𝑗=1

∀ 𝑖 = 1

𝑁

𝑖=1

, … , 𝑁 

This ensures that the tour is a valid closed loop. 

We will be working on the Symmetric TSP, so 𝑑𝑖𝑗 = 𝑑𝑗𝑖. 

Therefore, the process of solution searching for the TSP must minimize the total 

distance travelled while adhering to the constraints listed above. 

 

3.2 System Architecture and Design 

The research will consider three distinct approaches for implementing the GA: 

(a) A sequential, single-threaded implementation on CPU,  

(b) A parallel, multi-threaded implementation on CPU, and 

(c) A massively parallel, many-core implementation on the GPU.  

This allows us to benchmark and compare the implementations in terms of 

scalability and overall computational performance. 

3.2.1 Sequential Single-threaded CPU Implementation 

The sequential, single-threaded CPU implementation of the GA will be used to 

reflect the operations of GA without parallelization, as it is the most fundamental and 
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straightforward approach. In the sequential implementation, all operations within a 

single iteration are repeated on every single chromosome in the population. This forms 

two nested loops that are repeated, which is highly inefficient and redundant, especially 

for large population sizes. Due to sequential execution, the runtime is heavily 

constrained by the processor's clock speed and instruction execution efficiency. 

This sequential approach serves as a baseline for comparison and provides a 

clear understanding of how GA functions at its fundamental level before leveraging 

parallel computing techniques. 

3.2.2 Parallel Multi-threaded CPU Implementation 

The parallel, multi-threaded implementation on CPU will show the utilization 

of hardware based on today’s specifications, as CPUs these days are designed with 

multi-core architectures, it is proper to demonstrate the GA implementation which fully 

utilizes CPUs available today to better reflect the performance of GAs on the CPU.  

3.2.3 Parallel Multi-threaded GPU Implementation 

On the other hand, the GPU implementations of the GA will be massively 

parallel implementations across thousands of cores within the GPU, where 

parallelization happens on a large scale, and it is to demonstrate the effectiveness and 

efficiency of an implementation like this on today’s GPUs. Furthermore, GPUs are 

optimized for high-throughput parallel computation, making them ideal for handling 

large-scale optimization problems. 

In the parallel implementations, multiple threads perform repeated operations 

on different chromosomes within the population, as the tasks are being spread out to 

multiple different processing units. This approach ensures better utilisation of available 

computational resources. Therefore, this reduces the number of loops to go through 

each chromosome, which theoretically will significantly reduce the amount of 

computation time. 

We will be implementing two different approaches for the GPU implementation. 

These two approaches differ in the sorting and elitism approach. This will be discussed 

later in section 3.5.2 (c). 
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3.3 Nvidia GPU Architecture 

To fully leverage the massive parallelism offered by GPUs, components of the 

GA were restructured for more efficient execution on the GPUs. It is important to 

understand the GPU architecture to properly optimize algorithms for the GPU.  

An Nvidia GPU is typically composed of multiple streaming multiprocessors 

(SM). The following is a diagram from [13] that describes Nvidia’s Ampere SM 

architecture, which is the architecture our GPU, the RTX 3080 is built on: 

 

Figure 3.1: Nvidia’s Ampere SM Architecture 
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As we see from the diagram above, each SM consists of multiple CUDA cores. 

These cores execute Single Instruction, Multiple Data (SIMD) operations, meaning 

multiple cores process the same instruction simultaneously. Within each SM, there are 

4 warp schedulers, which manages 32 threads each. All 32 threads managed by the warp 

scheduler will process the same instruction. For every block spawned, it will be 

distributed to one SM, where the threads in the block will be scheduled by the warps. 

Nvidia GPUs also have a memory hierarchy as described in [14] which is shown 

in the figure below: 

 

Figure 3.2: Memory Hierarchy in Nvidia GPUs 

The following is a breakdown of the memory hierarchy shown above: 

(a) Registers 

The fastest memory available to a GPU thread with instantaneous access, where 

they store temporary variables used during computation. 

(b) L1 Cache/Shared Memory (SMEM) 

This is a fast, small on-chip memory located inside a SM, where it is shared 

within the same block with all threads. 

(c) Read-only Memory 

Consists of multiple components such as constant memory, texture memory, 

instruction cache and read-only cache, and these are read-only to kernel code. 

(d) L2 Cache 
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Slower than L1 cache, but faster than global memory. Every SM can access it, 

which means that all threads across different blocks can access the data in it. 

(e) Global Memory 

The largest memory available, which is the VRAM of the GPU. Has the slowest 

memory access speeds due to access requiring going off-chip. 

When a GPU kernel is launched, each kernel is executed as an array of threads 

[15] A grid consists of multiple blocks, and each block is made up of multiple threads 

that are guaranteed to execute instructions simultaneously. Below is a diagram of the 

CUDA thread architecture described in [15]. 

 

Figure 3.3: Nvidia CUDA Thread Architecture [15] 
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3.4 Genetic Algorithm Design 

The proposed system implements the GA to solve the TSP. The following 

diagram presents the general flow of our GA, which is similar to [16]: 

 

Figure 3.4: General Flow of Genetic Algorithm [16] 

The details of the operations across the population are described below. 

3.4.1 Chromosome Representation 

Each individual in the population, known as a chromosome, represents a 

possible TSP tour. The chromosome is implemented as a permutation of city indices 

stored in an array. The order of these indices represents the path taken to visit each city 

once and only once, and then return to the origin. Additionally, a fitness value is 
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associated with each chromosome which corresponds to the total tour distance 

computed during the evaluation phase. 

3.4.2 Evolution 

Evolution refers to the process of generating the next generation of the 

population. There will be a predefined number of chromosomes in the population. In 

our GA, each individual evolution process will generate one new chromosome for the 

next generation based on genetic operations. For the evolution process, the population 

will be divided into several groups to perform different roles. The roles are described 

as follows: 

(a) Elitism 

In this group, 12.5% of the population with the best fitness will be directly 

selected to be placed in the new population. This ensures that the best solutions 

are retained across generations. 

(b) Elitism with Swap Mutation 

In this group, chromosome from the elite subset is selected, and swap mutation 

is performed on each chromosome. This makes up another 12.5% of the new 

population. 

(c) Elitism with 2-opt Mutation 

In this group, chromosome from the elite subset is selected, and 2-opt mutation 

is performed on each chromosome. This makes up another 12.5% of the new 

population. 

(d) Order Crossover (OX) with Chance of Swap Mutation or 2-opt Mutation 

This section implements the OX which generates one new child. After crossover, 

a mutation, either swap or 2-opt mutation, is applied to each offspring based on 

a predefined mutation rate. 

3.4.3 Elitism 

The whole population will be sorted in ascending order based on their fitness. 

12.5% of the population with the best fitness, which has the lowest cost, will be the 

elite population. 

The sorting process will be done globally on the CPU implementations, 

however on the GPU side, we defined two approaches to the sorting and elitism process, 
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which is the block-level sorting and elitism, and sorting with Thrust library. These two 

approaches on the GPU will be further discussed in section 3.4.2 later. 

3.4.4 Selection 

The selection process is very straightforward, where two parents are randomly 

selected from the elite population. 

In the GPU implementations however, since there are two strategies for sorting 

and elitism, the locations of the elite population will be different in the global memory, 

which requires a slightly more sophisticated selection clause. This will be further 

discussed in section 3.5.2 (c). 

3.4.5 Crossover 

The crossover method used is Order Crossover (OX). This crossover works as 

described below: 

1. Two parents are randomly selected from the elite population. 

2. Random subsequence from one parent is preserved in its original position. 

3. The remaining genes are filled from the second parent in order, skipping 

already used cities to ensure a valid permutation. 

This maintains the relative order and precedence of genes, which is beneficial 

for TSP problems. This enables the exploitation of good sub paths from one parent, and 

at the same time explores alternative city orders from the other parent. 

3.4.6 Mutation 

Two types of mutation are employed to diversify the search: 

(a) Swap Mutation: Randomly selects 2 positions and swaps the cities. 

(b) 2-opt Mutation: Chooses a random segment and reverses it to create a 

shorter route. 

By incorporating two different mutations strategies in the algorithm, we can 

balance out exploration and exploitation because swap mutation is a simple, random 

change that makes small changes, while 2-opt mutation is a structured local search, 

which could potentially greatly optimize existing routes. This not only allows us to 

discover new areas of the search space, but also fine tune existing good solutions. 
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3.4.7 Fitness Evaluation 

The fitness of each chromosome is evaluated after the initialization of each 

chromosome and also after each iteration of genetic operations. Starting from the first 

customer, the distances between each successive city are computed. After reaching the 

final city the return distance to the starting note is added to complete the tour. Then, the 

total distance is stored in the fitness field of the chromosome. 

 

3.5 Parallel Optimizations for the Genetic Algorithm 

This subsection outlines the parallelization strategies applied to both multi-

threaded CPU and GPU implementations of the GA. 

3.5.1 CPU-side Optimizations 

To accelerate preprocessing and CPU bound tasks, OpenMP is used for 

lightweight multi-threading on the CPU. Listed below are a few key areas of the GA 

that is being optimized: 

(a) Genetic Operations: Since the whole chain of genetic operations (selection, 

crossover, mutation) is embarrassingly parallel, the tasks are divided equally 

to each logical thread of the CPU to be processed in parallel. 

(b) Fitness Evaluation: The process of evaluating chromosome fitness is the 

same for every chromosome. Therefore, this process is also parallelized. 

3.5.2 GPU-side Optimizations 

Certain components of the GA were restructured for more efficient execution on the 

GPUs. Multiple strategies were employed to ensure that the GPU could effectively 

handle the large population and chromosome sizes while minimizing latency and 

maximizing throughput.  

(a) Genetic Operations: 

The whole chain of genetic operations is contained within a kernel. In this kernel, 

each thread will be handling the operations of generating a new child. This 

kernel will fully populate all cores of the GPU to prevent underutilization. 

As we described before that different groups of threads will perform different 

operations to generate the new population, the processes are grouped in a way 
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such that all threads within a warp perform the same set of instructions. This is 

why we set our block size to 256 and the groups to be 1/8 or 12.5% in size, as 

12.5% of 256 is 32, which is exactly the number of threads a warp scheduler 

manages. This prevents warp divergence where threads within a warp perform 

different instructions, causing certain threads to wait for divergent paths to 

complete. 

(b) Fitness Evaluation:  

The process of fitness evaluation is contained within another kernel, where 

every thread spawned will be calculating the fitness for one chromosome.  

Instead of computing the distances between each node to form a distance matrix, 

we decided to compute the distances every single iteration. This is mainly due 

to the limited amount of shared memory, which is not enough to store large 

distance matrices. Therefore, instead of storing the distance matrix, the kernel 

only stores the coordinates of each city in the shared memory, which could at 

least help to reduce global memory traffic and latency. 

(c) Sorting and Elitism: 

We implemented two approaches for sorting and elitism to test out their 

feasibility and effectiveness: 

(i) Per-block sorting and elitism 

Sorting a huge population is an extremely time-consuming task, as the time 

taken to sort scales with the number of items to sort. Therefore, instead of 

sorting the whole population, this approach only sorts the chromosomes within 

each block. This process is done by obtaining the fitness values of each 

chromosome in the block and putting them into a new temporary array, 

generating another array of indices, and then sort the indices according to how 

the fitness values are sorted. This is done primarily to minimize global memory 

accesses, as moving around chromosomes can be very memory intensive due to 

the size of the chromosome structure. Then, the whole block of chromosomes 

is rearranged according to the order of the indices. 

Therefore, in this approach, the elite population will be located at the first 12.5% 

of chromosomes for every block of chromosomes, which is then replicated 

across the whole population. This is to make the selection process slightly more 

efficient as parents can be randomly selected across the global population 

without the need for conditional operators to limit the selection scope. 
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(ii) Sorting using the Thrust library and obtain the best 12.5% of population 

for elitism 

The Thrust library provides a high-level interface for parallel algorithms such 

as sorting, reducing and copying, and data structures such as host vectors and 

device vectors. These implementations are highly optimized for the GPU as they 

can be very tricky to implement and optimized for GPU usage. 

By leveraging thrust, we will be using device vectors to store our chromosomes. 

For sorting, we utilize the thrust::sort_by_key function as it is expensive 

to directly move large chromosomes around, which means that we will be 

creating a list of indices, and then sort the fitness values obtained together with 

the indices. After the sorting process is done, the chromosomes will then be 

arranged according to the arrangement of the indices by using 

thrust::gather. Then, the best 12.5% of the population is chosen for elitism. 

Therefore, in this approach, the global elites will be placed at the first 12.5% of 

the global population. Then, during the selection process, the parents will be 

randomly selected from this group only. 

 These two approaches have their own benefits and shortcomings: 

(i) Per-block sorting and elitism: 

This greatly reduces the number of chromosomes to be sorted in one whole 

operation by perform parallel sorting within each block. This approach will 

theoretically be faster than global sorting. 

However, the quality of the elite population might be compromised, as it is 

uncertain that the best 12.5% of the chromosomes in each block are among the 

best 12.5% of chromosomes globally. This could potentially affect the 

convergence quality of the algorithm. 

(ii) Sorting using the Thrust library and obtain the best 12.5% of population 

for elitism 

This approach will fare better in terms of the quality of the elite population as it 

can ensure that the global best 12.5% of chromosomes are chosen as the elites. 

However, due to global sorting, this approach will be slower than the block-

level sorting approach but can still perform better than custom kernels for 

sorting due to the amount of optimizations done in the Thrust library.  
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CHAPTER 4 

Experiment 

4.1 Hardware Setup 

The hardware involved in this research is a personal computer. This computer 

will have an NVIDIA GPU installed for the implementation of GA for TSP using 

CUDA. Specifications of the computer is listed below: 

Description Specifications 

Processor Intel ® Core ™ i7-13700K CPU @ 5.40GHz, 16 Cores, 

30MB Cache 

Operating System Windows® 11 

Graphics NVIDIA® GeForce RTX 3080 10GB GDDR6X 

Memory 64GB 6400MT/s DDR5 RAM 

Storage 3x 2TB PCIe NVMe M.2 SSD 

Table 4.1: Specifications of Personal Computer 

An Nvidia GPU is required for this research as only Nvidia GPUs are CUDA-enabled. 

 

4.2 Software Setup 

The following software components were installed: 

1. Visual Studio 2022 Enterprise Edition v17.12.3 

2. Nvidia Graphics Driver version 566.36 (Required to install and run CUDA 

Toolkit) 

3. CUDA Toolkit 12.6 

In Visual Studio, the option for OpenMP support is turned on to allow the use 

of OpenMP 2.0 language extensions. 

 

4.3 Settings and Configurations 

There are four different approaches to the implementation of the GA for the 

multi-vehicle TSP, which are single-threaded CPU, multi-threaded CPU and two GPU 
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implementations. We will be implementing all four approaches to study the feasibility 

and effectiveness of using parallel methods to speed up the GA processes. 

4.3.1 Parameters for Genetic Algorithm 

For all three implementations, the parameters of the program are set as follows: 

• Population size: 34816 

• Mutation rate: 0.10 

• The algorithm ends after 500 iterations without solution improvement. 

For the GPU implementation, there exists block size and grid size. 

• Block size (Threads per block): 256 

• Grid size: Population size/Block size = 34816/256 = 136 

The grid size is set to 136, which is double the number of SMs of the GPU, 

where the Nvidia GeForce RTX 3080 has 68 SMs. This way, we allow overlapping 

execution to occur, which can ensure that each SM in the GPU is utilized, and the 

workload is evenly balanced across each block. Furthermore, this allows the GPU to 

execute other warps when some are stalled due to memory access or synchronization 

points, which helps to maximize GPU usage by preventing cores from being idle. 

By setting a block size that is a multiple of 32 (size of a warp), it ensures optimal 

computing efficiency as it prevents under-populated warps which can waste 

computation [11]. And in this case, we set a block size of 256, where each of the 128 

cores in a SM will be handling 2 threads. 

Therefore, with a block size of 256 and a grid size of 136, we get a total number 

of 34816 threads, which resembles the population size, meaning that each chromosome 

has its own dedicated processing thread on the GPU. 

 

4.4 Test Set 

We obtained our problem instances from TSPLIB, which is a library of sample 

problems for the TSP from multiple sources and of various types [17]. We will be 

selecting a few problems from the whole set of symmetric TSP problems to use in our 

experiments. 
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4.5 Implementation Issues and Challenges 

There are multiple issues and challenges that can arise when implementing the 

different approaches of the GA. 

The crossover method of the GA, which is OX, is quite a sequential task due to 

the way it requires checking used values within the new child. Therefore, this might 

limit the amount of optimization we can perform on the GA as the GPU prefers parallel 

tasks compared to sequential ones.  

Furthermore, optimizing memory access on the GPU is also a challenging task 

as the GPU memory hierarchy consists of multiple memory layers with different 

memory access times and memory sizes. This can increase the complexity of optimizing 

memory accesses, as we have to wisely manage memory accesses on the GPU. 

An issue on GPU memory access is that each SM of the GPU has a limited 

amount of shared memory. Shared memory is crucial for efficient memory access as 

the GPU cores can communicate directly with the shared memory with very low latency, 

compared to accessing the global memory which typically requires hundreds of cycles 

per access. Due to our scale of operations in terms of population size and city count, 

our algorithm is unable to fully harness the benefits of shared memory, which further 

limits the amount of optimization we can perform. 

Besides, synchronization might also lead to overheads, which can reduce the 

efficiency of the algorithms. These issues have to be taken care of to produce a more 

efficient algorithm. 

One issue we face is the instability of Nvidia's graphics driver. At the time of 

writing, Nvidia has updated their graphics driver to version 576.28, and CUDA Toolkit 

also received its update to version 12.9. However, we noticed instability of the graphics 

driver beyond version 566.36, which caused random stuttering and crashing during 

daily use, although not frequent, but it impacted our process of developing the program 

for a few times. Therefore, we decided to roll back our driver to version 566.36, and to 

maintain the CUDA Toolkit version at 12.6 due to the later versions being not supported 

by the driver. 

Another issue we face hardware related, which is having malfunctioned cores 

in our CPU. Intel’s microcode bug which caused the cores to draw too much power and 
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kill themselves has unfortunately handicapped certain cores of our CPU, resulting it to 

only have 5 performance, hyper-threading enabled cores and 8 efficient cores remaining, 

totalling to 18 logical processors. 

 

4.6 System Operation 

This section presents the sample output window for each implementation. 

4.6.1 Single-threaded CPU Implementation 

 

Figure 4.1: Single-threaded CPU Implementation 

4.6.2 Multi-threaded CPU Implementation 

 

Figure 4.2: Multi-threaded CPU Implementation 
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4.6.3 Block-level Sorting and Elitism – GPU Implementation 

 

Figure 4.3: Block-level Sorting and Elitism – GPU Implementation 

4.6.4 Sorting with Thrust Library – GPU Implementation 

 

Figure 4.4: Sorting with Thrust Library – GPU Implementation 

4.7 Concluding Remarks 

Despite all the challenges and issues mentioned above, the project still presents 

substantial opportunity for success in optimizing parallel GAs to solve the TSP. These 

challenges are significant in driving forward the development of more efficient and 

optimized parallel algorithms to harness the power of CUDA in accelerating parallel 

tasks. 
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CHAPTER 5  

System Evaluation and Discussion 

5.1 System Testing and Performance Metrics 

There are multiple metrics that we will be measuring to benchmark and compare the 

different implementations. These metrics are shown as follows: 

(a) Execution Time: 

The time taken to reach the best route generated. 

(b) Iteration Count:  

The number of iterations the algorithm takes to reach the best route generated. 

(c) Speedup:  

The increase in convergence speed compared to sequential CPU implementation.  

This can be defined in two ways: 

- Iteration speedup: Measures the reduction in computation time per iteration 

- Effective speedup: Measures the reduction in total execution time to reach 

convergence 

(d) Solution Quality:  

How close the generated solution is to the known optimal solution 

 

5.2 Experimental Results 

The results calculated in this section adhere to the rounding function and computations 

described in the documentation provided by TSPLIB as follows [17]: 

Rounding function: nint(x) = (int)(x + 0.5) 

The distance between two points i and j is computed as follows: 

Let x[i], y[i], and z[i] be the coordinates of node i. 

xd = x[i]- x[j] 

yd = y[i]- y[j] 

dij = nint(sqrt(xd*xd + yd*yd)) 

For each of the implementations, their abbreviations are as follows: 
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(a) Single-threaded CPU Implementation (ST-CPU) 

(b) Multi-threaded CPU Implementation (MT-CPU) 

(c) Block-level Sorting and Elitism - GPU Implementation (BLOCK-GPU) 

(d) Sorting with Thrust Library - GPU Implementation (THRUST-GPU) 

5.2.1 Results of Various Implementations Across Multiple Problems 

This section shows the results of each implementation across five chosen problems, 

which are berlin52, pr107, pr152, pr264 and pr439. The numbers in the problem name 

denotes how many cities are there in the problem. The optimal cost of each problem is 

obtained from [17]. 

For each problem instance and implementation pair, we ran 51 tests to obtain the 

average values. This is due to the nature of GA where it tries to find near-optimal 

solutions, and we might get a slightly different solution every iteration. 

(a) Single-threaded CPU Implementation (ST-CPU) 

Problem Optimal 

Cost 

Best Cost Average Results 

Cost Time (s) Cost Time(s) 

berlin52 7542 7542 0.4548 7775.13 0.5749 

pr107 44303 45030 1.6814 48733.12 2.3140 

pr152 73682 78576 4.8815 87588.31 5.6841 

pr264 49135 65081 23.9938 73724.12 25.4448 

pr439 107217 153848 126.1347 175716.4 123.2664 

Table 5.1: Results of Single-threaded CPU Implementation 

(b) Multi-threaded CPU Implementation (MT-CPU) 

Problem Optimal 

Cost 

Best Cost Average Results 

Cost Time (s) Cost Time(s) 

berlin52 7542 7542 0.1989 7666.39 0.2534 

pr107 44303 44347 0.8164 45614.41 0.9239 

pr152 73682 75359 4.0483 77760.86 2.7716 

pr264 49135 54895 9.7706 57972.51 9.4200 

pr439 107217 122686 30.7701 134694.5 27.5964 

Table 5.2: Results of Multi-threaded CPU Implementation 
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(c) Block-level Sorting and Elitism - GPU Implementation (BLOCK-GPU) 

Problem Optimal 

Cost 

Best Cost Average Results 

Cost Time (s) Cost Time(s) 

berlin52 7542 7542 0.0289 7841.92 0.0330 

pr107 44303 44581 0.1381 46093.88 0.1915 

pr152 73682 73898 0.6147 76360.63 0.5196 

pr264 49135 51544 2.1575 54174.02 2.1163 

pr439 107217 112928 9.4270 117527.9 9.2499 

Table 5.3: Results of Block-level Sorting and Elitism - GPU Implementation 

(d) Sorting with Thrust Library - GPU Implementation (THRUST-GPU) 

Problem Optimal 

Cost 

Best Cost Average Results 

Cost Time (s) Cost Time(s) 

berlin52 7542 7542 0.0519 7704.22 0.0722 

pr107 44303 44474 0.1499 45558.9 0.2120 

pr152 73682 74508 0.3820 76080.86 0.4473 

pr264 49135 50813 2.4515 53738.24 1.6995 

pr439 107217 112463 5.8458 117756.1 5.7646 

Table 5.4: Results of Sorting with Thrust Library - GPU Implementation 

5.2.2 Average Speedup of Parallel Implementations on Each Problem 

This section shows the speedup of each parallel implementation on each problem 

computed against the sequential implementation on CPU.  

(a) Problem: berlin52 

Implementation Average 

Iteration 

Count 

Average 

Time(s) 

Average 

Iteration 

Speed (/s) 

Average 

Iteration 

Speedup 

Average 

Effective 

Speedup 

ST-CPU 60.41 0.5749 105.08 1.00x 1.00x 

MT-CPU 61.53 0.2534 242.82 2.31x 2.27x 

BLOCK-GPU 157.27 0.0330 4765.75 45.35x 17.42x 

THRUST-GPU 73.98 0.0722 1024.65 9.75x 7.96x 

Table 5.5: Average Speedup of Parallel Implementations on berlin52  
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(b) Problem: pr107 

Implementation Average 

Iteration 

Count 

Average 

Time(s) 

Average 

Iteration 

Speed (/s) 

Average 

Iteration 

Speedup 

Average 

Effective 

Speedup 

ST-CPU 131.6863 2.3140 56.91 1.00x 1.00x 

MT-CPU 129.9608 0.9239 140.67 2.47x 2.50x 

BLOCK-GPU 338.0392 0.1915 1765.22 31.02x 12.08x 

THRUST-GPU 153.4706 0.2120 723.92 12.72x 10.92x 

Table 5.6: Average Speedup of Parallel Implementations on pr107 

(c) Problem: pr152 

Implementation Average 

Iteration 

Count 

Average 

Time(s) 

Average 

Iteration 

Speed (/s) 

Average 

Iteration 

Speedup 

Average 

Effective 

Speedup 

ST-CPU 231.12 5.6841 40.66 1.00x 1.00x 

MT-CPU 281.37 2.7716 101.52 2.50x 2.05x 

BLOCK-GPU 568.17 0.5196 1093.48 26.89x 10.94x 

THRUST-GPU 235.16 0.4473 525.73 12.93x 12.71x 

Table 5.7: Average Speedup of Parallel Implementations on pr152 

(d) Problem: pr264 

Implementation Average 

Iteration 

Count 

Average 

Time(s) 

Average 

Iteration 

Speed (/s) 

Average 

Iteration 

Speedup 

Average 

Effective 

Speedup 

ST-CPU 625.27 25.4448 24.57 1.00x 1.00x 

MT-CPU 548.92 9.4200 58.27 2.37x 2.70x 

BLOCK-GPU 1161.51 2.1163 548.84 22.33x 12.02x 

THRUST-GPU 601.78 1.6995 354.09 14.41x 14.97x 

Table 5.8: Average Speedup of Parallel Implementations on pr264 
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(e) Problem: pr439 

Implementation Average 

Iteration 

Count 

Average 

Time(s) 

Average 

Iteration 

Speed (/s) 

Average 

Iteration 

Speedup 

Average 

Effective 

Speedup 

ST-CPU 2004.69 123.2664 16.26 1.00x 1.00x 

MT-CPU 1110.843 27.5964 40.25 2.48x 4.47x 

BLOCK-GPU 2503.549 9.2499 270.66 16.64x 13.33x 

THRUST-GPU 1236.02 5.7646 214.42 13.18x 21.38x 

Table 5.9: Average Speedup of Parallel Implementations on pr439 

5.2.3 Comparison of Average Solution Quality against Average Speedup 

This section compares the average solution quality of each parallel implementation on 

each problem computed against the sequential implementation on CPU. Then, the 

average gap from known optimal cost to the average cost in percent is computed. 

(a) Problem: berlin52, Optimal Cost: 7542 

Implementation Average 

Cost 

Average 

Time(s) 

Average 

Gap 

Average Effective 

Speedup 

ST-CPU 7775.13 0.5749 3.09% 1.00x 

MT-CPU 7666.39 0.2534 1.65% 2.27x 

BLOCK-GPU 7841.92 0.0330 3.98% 17.42x 

THRUST-GPU 7704.22 0.0722 2.15% 7.96x 

Table 5.10: Comparison of Average Solution Quality against Average Speedup of 

Parallel Implementations on berlin52  

(b) Problem: pr107, Optimal Cost: 44303 

Implementation Average 

Cost 

Average 

Time(s) 

Average 

Gap 

Average Effective 

Speedup 

ST-CPU 48733.12 2.3140 10.00% 1.00x 

MT-CPU 45614.41 0.9239 2.96% 2.50x 

BLOCK-GPU 46093.88 0.1915 4.04% 12.08x 

THRUST-GPU 45558.9 0.2120 2.83% 10.92x 
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Table 5.11: Comparison of Average Solution Quality against Average Speedup of 

Parallel Implementations on pr107 

(c) Problem: pr152, Optimal Cost: 73682 

Implementation Average 

Cost 

Average 

Time(s) 

Average 

Gap 

Average Effective 

Speedup 

ST-CPU 87588.31 5.6841 18.87% 1.00x 

MT-CPU 77760.86 2.7716 5.54% 2.05x 

BLOCK-GPU 76360.63 0.5196 3.64% 10.94x 

THRUST-GPU 76080.86 0.4473 3.26% 12.71x 

Table 5.12: Comparison of Average Solution Quality against Average Speedup of 

Parallel Implementations on pr152 

(d) Problem: pr264, Optimal Cost: 49135 

Implementation Average 

Cost 

Average 

Time(s) 

Average 

Gap 

Average Effective 

Speedup 

ST-CPU 73724.12 25.4448 50.04% 1.00x 

MT-CPU 57972.51 9.4200 17.99% 2.70x 

BLOCK-GPU 54174.02 2.1163 10.26% 12.02x 

THRUST-GPU 53738.24 1.6995 9.37% 14.97x 

Table 5.13: Comparison of Average Solution Quality against Average Speedup of 

Parallel Implementations on pr264 

(e) Problem: pr439, Optimal Cost: 107217 

Implementation Average 

Cost 

Average 

Time(s) 

Average 

Gap 

Average Effective 

Speedup 

ST-CPU 175716.4 123.2664 63.89% 1.00x 

MT-CPU 134694.5 27.5964 25.63% 4.47x 

BLOCK-GPU 117527.9 9.2499 9.62% 13.33x 

THRUST-GPU 117756.1 5.7646 9.83% 21.38x 

Table 5.14: Comparison of Average Solution Quality against Average Speedup of 

Parallel Implementations on pr439 
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5.3 Result Analysis 

 From Section 5.2.2 above, we can see that our GPU implementations are able 

to converge faster compared to both CPU implementations across all five TSP instances 

chosen. It is shown that the BLOCK-GPU approach yields faster convergence in 

smaller problems, while the THRUST-GPU approach catches up and outperforms 

BLOCK-GPU in larger TSP instances. Starting from the 107-city instance, both GPU 

implementations are able to converge faster than the sequential CPU implementation 

by over an order of magnitude. 

 Furthermore, we observed that in terms of iteration count, BLOCK-GPU takes 

a lot more iterations to converge compared to other approaches. This might be due to 

the local nature of elite selection in the algorithm design. As we determine the elites by 

sorting the population locally within a block, therefore there is always chance for less 

fit chromosomes to be included within the elite population when we look at it globally, 

since there is no communication between blocks to synchronize and verify the elite 

population. As a result, less fit individuals from one block may be selected as elites, 

while globally superior individuals in other blocks may be discarded. This might cause 

beneficial traits to take longer to propagate through the population, and even the loss of 

certain potentially good solutions over time, which leads to slower convergence in 

terms of number of iterations.  

It is important to note, however, that the raw speed of each iteration does not 

directly translate to faster overall convergence. The quality of convergence, that is, how 

effectively the algorithm moves toward an optimal or near-optimal solution, plays a 

critical role. Therefore, despite a faster iteration speed on the GPU, the BLOCK-GPU 

implementation may require more iterations to reach comparable solution quality, 

especially in more complex problems, due to its limited view of the global population 

structure. 
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Figure 5.1: Graph of Algorithm Speedup Across Multiple Implementations against 

Multiple Problem Instances 

Figure 5.1 above describes the average algorithm speedup across multiple 

implementations against the problem instances we chose. As we can see from the graph, 

BLOCK-GPU emerges as an efficient approach in smaller instances of the TSP as it 

begins with a high speedup on smaller problems such as the berlin52 problem. This is 

most likely due to its nature of block-level processing where no global synchronization 

is required, and that the sorting process involves a lot less individuals, which means 

that there is little overhead to perform the operations. Therefore, in smaller instances of 

problems where a smaller number of computations is required to reach convergence, 

this approach could appear quite efficient, even surpassing the THRUST-GPU approach. 

However, BLOCK-GPU starts to lag behind THRUST-GPU from problem 

pr152 onwards. This situation will most likely be due to poorer convergence quality 

because of the massively increased problem complexity and lower quality of the elite 

population. Although during crossover, the algorithm picks parents randomly from the 

global elite population, the fact that there is no global best guarantee has negatively 

impacted the convergence speed of this algorithm.   

 The THRUST-GPU approach might appear slower in smaller instances of the 

TSP due to the fact we implement full global sorting using thrust::sort_by_key 

and thrust::gather. This approach, while precise and accurate for elitism, incurs 

more overhead – especially when the population is small. This is because we also need 

to take into consideration the costs of launching Thrust kernels, managing temporary 
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buffers, and performing global memory operations since the implementation of Thrust 

library is through a high-level interface[18]. These costs might dominate when there is 

little computational work to “hide” these costs, which in turn, outweigh the benefits of 

exact elitism, making the algorithm appear slower. 

 While the high-level abstraction of the Thrust library may carry some initial 

cost, as the problem size increases, the amount of computations eventually dominates 

over the costs. This is where the THRUST-GPU approach begins to demonstrate its full 

potential. As the overhead of kernel launches and Thrust functions gets “hidden”, the 

cost becomes less impactful on overall performance. Not only that, as the full global 

sort provided by thrust::sort_by_key ensures the preservation of the true global 

best individuals, this leads to better convergence quality, which in turn also speeds up 

convergence. As a result, THRUST-GPU not only maintains robust convergence 

behaviour, but also becomes increasingly competitive or even superior in terms of 

solution quality and total runtime as the complexity of the problem grows. This can be 

seen from the results obtained above, where starting from problem pr152 with 152 cities, 

THRUST-GPU began to outperform BLOCK-GPU, and in more complex problems, 

proceeds to widen its performance gap with BLOCK-GPU. Therefore, THRUST-GPU 

has clearly demonstrated the best scalability and performance, with speedup increasing 

consistently across all problem instances. 

 Furthermore, it is important to note that both of our CUDA-accelerated 

implementations are not only able to be significantly faster than the CPU 

implementations but are also able to compete with the CPU implementations in terms 

of solution quality, and surprisingly, converge a lot better in larger TSP instances. This 

shows that our parallel implementations of the GA on the GPU have successfully 

leveraged the benefits of CUDA in an effective manner. Not only that, but the results 

also proved that our GPU implementations are very much scalable for larger instances 

of the TSP.  
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CHAPTER 6  

Conclusion 

This project explored the application of genetic algorithms (GAs) to solve the 

travelling salesman problem (TSP) with a particular focus on leveraging GPU 

parallelism to improve performance and scalability. By addressing the algorithmic 

complexity and highly iterative nature of GAs and the immense computational demands 

of the TSP, we demonstrated how modern GPU architectures can be utilized not only 

to accelerate genetic operators but also to enhance solution quality in large-scale 

optimization problems. Furthermore, we have also demonstrated that a CUDA-

accelerated GA is able to achieve a performance of over an order of magnitude, as 

shown from the results we obtained from the best-performing approach, THRUST-GPU. 

Through comparative analysis between the four strategies, namely single-

threaded CPU, multi-threaded CPU, block-level sorting and elitism on GPU (BLOCK-

GPU) and sorting with Thrust on GPU (THRUST-GPU), we identified the tradeoffs 

between raw performance and solution quality. While BLOCK-GPU excels in smaller 

problem instances due to minimal overhead, THRUST-GPU shines in larger problem 

instances with its ability to preserve elite solutions more effectively. 

 The results obtained from the experiment affirm that as GPUs become more 

accessible, integrating them into evolutionary algorithms such as GA is not only 

feasible but also highly beneficial for solving complex combinatorial problems such as 

the TSP as it is proven to be performant and scalable. Furthermore, with consistent 

development of the CUDA architecture, and its use for general purpose computing on 

GPUs, developing problem-solving methods to be applied on the GPU has become a 

lot less intimidating, and it is wise to leverage and utilize its benefits. This project 

reinforces the importance of thorough understanding of hardware architecture on 

algorithm design and opens pathways for extending such optimizations to brother 

classes of optimization problems such as routing, scheduling and logistics. 

 While this project demonstrates the significant benefits of GPU-accelerated 

GAs for solving the TSP, there are several promising avenues for further development, 

including global elitism enhancements that can combine the low-overhead advantage 

of BLOCK-GPU and the high throughput of THRUST-GPU, warp-level optimization 
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such as leveraging warp-level primitives for genetic operators, and also the integration 

of metaheuristics with local search to further refine solutions. 
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