

REAL-TIME DOCUMENT READER ASSISTANCE APP

 FOR THE VISUALLY IMPAIRED

BY

DARREN CHOONG YU XUEN

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

FEBRUARY 2025

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

COPYRIGHT STATEMENT

© 2025 Darren Choong Yu Xuen. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the requirements

for the degree of Bachelor of Computer Science (Honours) at Universiti Tunku

Abdul Rahman (UTAR). This Final Year Project report represents the work of the

author, except where due acknowledgment has been made in the text. No part of this

Final Year Project report may be reproduced, stored, or transmitted in any form or

by any means, whether electronic, mechanical, photocopying, recording, or

otherwise, without the prior written permission of the author or UTAR, in

accordance with UTAR's Intellectual Property Policy.

Example

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisors, Ts Dr Saw Seow

Hui and my moderator, Prof. Leung Kar Hang who has given me this bright opportunity to

engage in a mobile assistive application development for contributing to visually impaired. It

is my first step to establish a career in mobile application development, computer vision and

machine learning field. A million thanks to you.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

ABSTRACT

Due to the fast-paced lifestyle today, blind people find it hard to access documents

independently and efficiently. The growing demand for accessible technology has brought

attention to the challenges faced by visually impaired individuals when accessing and reading

physical and digital documents. Furthermore, most assistive technology requires a subscription

plan, therefore leading to financial difficulty for visually impaired individuals. To tackle these

problems, a real-time document reader assistance application using Flutter is developed for free

to use. It will be developed on both the iOS and Android platforms. It will also be focused more

on the targeted audience, which is the visually impaired individuals. Hence, the proposed

solution will integrate OCR text recognition techniques for text extraction using Google ML

Kit. Additionally, a transfer learning on pre-trained model (YOLOv8n) will be used to detect

documents in the camera preview. Moreover, Text-to-Speech (TTS) will be implemented for

real-time audio feedback. Furthermore, an AI chatbot will be implemented to aid users in

further clarification of the recognized text from the document. Speech-to-Text (STT) will also

be implemented to convert audio from the user into text when questioning the AI chatbot

assistance without typing. This project development process follows the Agile methodology,

which involves several phases such as planning, analysis, design, implementation, and testing,

with continuous iterations. The result of this project will serve as an innovative tool that

improves the accessibility of information for visually impaired users and contributes to the

MAHAL application. In conclusion, this project will provide a significant contribution to

enhancing the independence and accessibility of visually impaired users.

Area of Study (Minimum 1 and Maximum 2): Mobile App Development, Artificial Intelligence

Keywords (Minimum 5 and Maximum 10):Text Recognition, Document Detection, Yolov8n,

STT, Ambient Light Sensor, Google ML Kit, TTS, Chatbot

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

TABLE OF CONTENTS

TITLE PAGE i

COPYRIGHT STATEMENT ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES viii

LIST OF TABLES xii

LIST OF SYMBOLS xiii

LIST OF ABBREVIATIONS xiv

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 2

1.2 Research Objectives 3

1.3 Project Scope and Direction 4

1.4 Contributions 5

1.5 Report Organization 6

CHAPTER 2 LITERATURE REVIEW 7

2.1 Previous work on document reader assistance app for visually

impaired

7

 2.1.1 Seeing AI

2.1.2 Be My Eyes

2.1.3 Envision AI

2.1.4 Supersense

2.1.5 Google Lookout

7

11

14

17

20

2.2 Comparison of previous works

2.3 Technical Review of Related Work

 2.3.1 Text Detection and Recognition Using OCR

 2.3.2 Image based Text Translation using Firebase ML Kit

 2.3.3 Stamp Detection using different Yolo Model

23

24

24

24

24

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH 25

3.1 Methodology

3.2 Technology Involved

3.3 System Requirement

25

27

28

3.3.1 Hardware

3.3.2 Software

 3.3.2.1 Coding Language

28

29

30

 3.4 Ghantt Chart

 3.4.1 Ghantt Chart of FYP1

 3.4.2 Ghantt Chart of FYP2

30

30

31

CHAPTER 4 SYSTEM DESIGN

32

 4.1 User Storyboard 33

 4.2 Overall System Flowchart

4.2.1 Tutorial Page

4.2.2 Scanning Interface

4.2.4 Document Detection

4.2.5 Scanned Text Page

4.2.6 Chatbot Assistance

4.3 Overall System Architecture Design

4.3.1 Yolov8n System Architecture Diagram

4.3.2 Google ML Kit Text Recognition Architecture Diagram

34

34

35

36

37

38

39

40

41

4.4 Use-Case Diagram

4.5 Activity Diagram

4.6 User Interface Design

 4.6.1 Wireframes Prototype Design

4.6.2 Low-Fidelity Prototype Design

4.6.3 High Fidelity Prototype Design

42

43

44

44

45

46

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

CHAPTER 5 SYSTEM IMPLEMENTATION 47

5.1 Setting Up

 5.1.1 Software

5.1.2 Hardware

5.2 Pub dev Flutter Plugins

5.2.1 Camera and flashlight

5.2.2 Ambient Light Sensor

 4.2.3 Google ML Kit Text Recognition

4.2.4 TTS

5.3 Data Collection

5.4 Data Annotation

5.5 Data Augmentation

5.6 Data Splitting

5.7 Data Exploration

5.8 Model Training

5.9 Model Evaluation

5.10 Model Exportation

5.11 Text Alignment Sorting Algorithm

5.12 Multilingual Text Recognition

5.13 Chatbot

 5.13.1 STT

47

47

49

50

50

51

52

53

53

54

55

56

57

58

60

63

65

68

69

69

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 71

6.1 Black Box Testing 71

6.2 Objectives Evaluation

6.3 Error Analysis on Document Detection

76

78

CHAPTER 7 CONCLUSION AND RECOMMENDATION

82

7.1 Conclusion 82

7.2 Recommendation 83

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

REFERENCES

APPENDIX

POSTER

84

86

92

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

LIST OF FIGURES

Figure Number Title Page

Figure 1.4.1 MAHAL Logo 5

Figure 2.1.1.1

Figure 2.1.1.2

Figure 2.1.1.3

Figure 2.1.2.1

Figure 2.1.2.2

Figure 2.1.2.3

Figure 2.1.2.4

Figure 2.1.3.1

Figure 2.1.3.2

Figure 2.1.3.3

Figure 2.1.4.1

Figure 2.1.4.2

Figure 2.1.4.3

Figure 2.1.5.1

Figure 2.1.5.2

Figure 2.1.5.3

Figure 3.1.1

Figure 3.3.2.1

Figure 3.3.2.2

Figure 3.3.2.3

Figure 3.3.2.4

Figure 3.4.1

Figure 3.4.2

Figure 4.1.1

Figure 3.4.3

Figure 4.1.3

Seeing AI Logo

Document reader interface (Seeing AI)

Demo for reading a receipt (Seeing AI)

Be My Eyes Logo

Image capture interface (Be My Eyes)

Demo for reading a letter (Be My Eyes)

Demo for reading a letter (Be My Eyes)

Envision AI Logo

Document reader interface (Envision AI)

Speech-to-text feature (Strength of Envision AI)

Supersense Logo

Interface (Supersense)

Require of subscription plan (Limitations of

Supersense)

Google Lookout Logo

Document reader interface (Google Lookout)

Autosave the document in app (Strength of Google

Lookout)

Flowchart of Prototyping Model Methodology

Visual Studio Code Logo

Google Colab Logo

Roboflow Logo

TensorFlow Lite Logo

Ghant Chart of FYP1

GhanT Chart of FYP2

User Story 1

User Story 2

User Story 3

7

8

8

11

11

12

12

14

15

16

17

18

19

20

20

21

25

29

29

29

23

30

31

32

32

32

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

Figure 4.2.1

Figure 4.2.1.1

Figure 4.2.2.1

Figure 4.2.3.1

Figure 4.2.4.1

Figure 4.2.5.1

Figure 4.3.1

Figure 4.3.1.1

Figure 4.3.2.1

Figure 4.4.1

Figure 4.5.1

Figure 4.6.1.1

Figure 4.6.2.1

Figure 4.6.3.1

Figure 5.1.1.1

Figure 5.1.1.2

Figure 5.1.1.3

Figure 5.1.1.4

Figure 5.1.1.5

Figure 5.1.1.6

Figure 5.1.2.1

Figure 5.2.1.1

Figure 5.2.1.2

Figure 5.2.1.3

Figure 5.2.2.1

Figure 5.2.3.1

Figure 5.2.3.2

Figure 5.2.4.1

Figure 5.3.1

Figure 5.3.2

Figure 5.4.1

Overall System Flowchart

Sub-Flowcharts of Tutorial Page

Sub-Flowcharts of Scanning Interface

Sub-Flowcharts of Document Detection

Sub-Flowcharts of Scanned Text Page

Sub-Flowcharts of Chatbot Assistance

Overall System Architecture Diagram

Yolov8n Object Detection System Architecture

Diagram

Google ML Kit Text Recognition Architecture

Diagram

Use-Case Diagram

Activity Diagram

Wireframe Prototype Design

Low-fidelity Prototype Design

High-fidelity Prototype Design

Installation Page of VS Code

Installation Page of Android Studio

Installation Page of Flutter

Installation Page of Java-jdk-17

Setup in Android Studio

Packages and Tools Verification in VS Code

Setup on real devices

Pub.dev official website

Pub.dev camera plugin

Scanning Interface with camera preview

Pub.dev ambient light sensor plugin

Pub.dev google ml kit text recognition plugin

Scanned text using google ml kit text recognition

Pub.dev flutter TTS plugin

Data collection of white background document

Object Detection Project

Data annotation of document

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

47

48

48

48

49

49

50

50

51

51

52

52

53

53

54

54

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xi

Figure 5.4.2

Figure 5.5.1

Figure 5.6.1

Figure 5.6.2

Figure 5.6.3

Figure 5.7.1

Figure 5.7.2

Figure 5.8.1

Figure 5.8.2

Figure 5.8.3

Figure 5.8.4

Figure 5.8.5

Figure 5.9.1

Figure 5.9.2

Figure 5.9.3

Figure 5.9.4

Figure 5.9.5

Figure 5.10.1

Figure 5.10.2

Figure 5.10.3

Figure 5.10.4

Figure 5.11.1

Figure 5.11.2

Figure 5.11.3

Figure 5.12.1

Figure 5.12.2

Figure 5.13.1.1

Figure 5.13.1.2

Figure 5.13.1.2

Annotated Document

Data Augmentation

Training set data

Validation set data

Test set data

Zip File of Yolo input format

Code Snippet of dataset

Data Extraction Process

Extracted Folder

Import YOLO library

Code for training model with 50 epoch using

YOLOv8n

Result with 50 epoch using YOLOv8n

Result with 100 epoch using YOLOv8n

Document Prediction using Test Set

Confusion Matrix

Accuracy of document detection

F1-Confidence Curve

Model Exportation Code

Pub.dev flutter vision plugin

Assets Folder

Implemented Real-Time Document Detection in

mobile devices

Text alignment issue on extracting text from receipt

Example of text alignment sorting algorithm

Precise and accurate text alignment during text

extraction from receipt

Google ML Kit text recognition-Chinese 16.0.0

Result of multilingual text extraction

Pub.dev google ml kit text recognition plugin

Chatbot interface with STT feature

Example of chatbot returning total amount of receipt

back to user

55

55

56

56

56

57

57

58

58

59

59

59

60

60

61

61

62

62

63

63

63

64

64

65

66

67

68

68

69

69

70

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xii

LIST OF TABLES

Table Number Title Page

Table 2.1.1.1

Table 2.1.1.2

Table 2.1.2.1

Table 2.1.2.2

Table 2.1.3.1

Table 2.1.3.2

Table 2.1.4.1

Table 2.1.4.2

Table 2.1.5.1

Table 2.1.5.1

Table 2.2.1

Table 3.3.1.1

Table 3.3.1.2

Table 3.3.1.3

Table 6.1.1

Table 6.1.2

Table 6.1.3

Table 6.1.4

Table 6.1.5

Table 6.3.1

Strength and Weakness (Seeing AI)

Recommended solution to resolve weakness (Seeing AI)

Strength and Weakness (Be My Eyes)

Recommended solution to resolve weakness (Be My Eyes)

Strength and Weakness (Envision AI)

Recommended solution to resolve weakness (Envision AI)

Strength and Weakness (Supersense)

Recommended solution to resolve weakness (Supersense)

Strength and Weakness (Google Lookout)

Recommended solution to resolve weakness (Google

Lookout)

Comparison Table of Previous Works

Specifications of laptop

Specifications of mobile device (Android)

Specifications of mobile device (IOS)

Test case T01

Test case T02

Test case T03

Test case T04

Test case T05

Error analysis on document detection

10

10

14

14

17

17

19

20

22

22

23

28

28

28

71

72

73

73

75

78

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiii

LIST OF SYMBOLS

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiv

LIST OF ABBREVIATIONS

WHO

MAHAL

World Health Organization

Malaysian Assistive Hub for Advanced Livelihood

MAB

TTS

STT

ML

SDK

YOLO

Malaysian Association of the Blind

Text-to-Speech

Speech-to-text

Machine Learning

Software Development Kit

You Only Live Once

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

CHAPTER 1

Project Background

This chapter will present the background and motivation of our research, the specific problem

addressed by this project, the objectives that this project aims to achieve, and the contributions

to the field of assistive technology for the visually impaired.

Introduction

In today's fast-paced world, highly individuals need to have access to the information

they require in case this information is needed, including individuals who have vision

problems. Though there have been profound pressures in technology, the visually impaired

group struggles to read regular and digital information conveniently and efficiently in real-

time. In the past, there have been some forms of methods for the vision disabled such as Braille

and audiobooks. Although they have some functionality, they are not as convenient and

versatile in various situations.

 The ability to read and understand documents independently is a fundamental aspect of

daily life from accessing educational materials or other documents. For the visually impaired,

this task is often facing significant barriers and might lead to a reliance on other aid from

people, and sometimes even paying for costly technology assistance. This dependency might

impact on their daily lives in education, social interaction, and personal growth. Moreover,

many existing solutions require extensive training or are not adaptable to different types of

documents, making them less practical in real-world situations.

 Thus, the development of a Real-Time Document Reader Assistance App is specifically

developed for the visually impaired. It acts as an assistant to empower visually impaired

individuals to independently read and understand a variety of documents in real-time and

enhance their participation and personal growth on social activities in their daily life. This

proposal aims to develop mobile applications on both IOS and Android Platform for visually

impaired individuals. The project is using Flutter to develop both Android and IOS.

Additionally, it will be using Google ML Kit (Machine Learning) Kit to develop real-time

processing text recognition from documents. Additionally, YOLOv8n will be used to detect

any document in the camera preview. Furthermore, a Flutter TTS (text-to-speech) is used to

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

allow the app to read out the text after real-time processing. Moreover, Flutter STT (speech-

to-text) is also integrated to convert user spoken audio into text. Also, chatbot is integrated to

response back to user based on their question. Besides, TensorFlow Lite will be used to convert

the trained YOLOv8n model into a mobile friendly format.

1.1 Problem Statement and Motivation

i) Visual Impaired individuals faced significant barriers in accessing, reading

and understanding documents independently.

As stated by WHO [1], as of 2019, at least 2.2 billion people are facing a near or

distance vision impairment globally. According to [2], most of the people who are

visually impaired, whether they are blind or have low vision, often face significant

challenges in their daily life. For instance, many visually impaired individuals find

it difficult to interpret the details in the receipt during payment transaction or to read

and understand documents. Furthermore, these challenges not only impact their

independence and quality of life but can also affect their psychological well-being,

leading to increased feelings of frustration, stress, and isolation. Therefore, to tackle

this issue, developing an effective document reader that is accurate, and accessible

information is crucial for the visually impaired.

ii) Time consuming to process document and text recognition

Nowadays, most mobile applications are not integrating real-time features for

processing the images. Instead, most of the apps are using the standard method to

process the images where the visually impaired user uses the camera from their

mobile device and captures the images. Then, the images are processed and

analyzed by the application algorithms later. Hence, it is time consuming and not

efficient where the user is not able to obtain immediate feedback from the

application and the user needed to press a button in the middle to capture the

images for processing the recognition. Sometimes, this delay might cause

inconvenience when the user is in an urgent situation or in a fast-paced

environment. Therefore, to address this issue, a real-time feature is needed to

implement to allow them to have immediate feedback and reducing waiting time.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

iii) Absence of document detection functionality

Some of the assistive applications although having text recognition capabilities,

however it still brought difficulties to user where user might not be able to locate

documents within the camera's frame, making it difficult for users to position the

camera correctly. To address this issue, a document detection model will need to

implement to detect any document exist in the camera preview and provide

immediate feedback to user.

The aim of the thesis is to propose a real-time document reader assistance app to

enhance their ability to perform daily tasks and improve their quality of life. By providing a

solution that empowers visually impaired users and integrates seamlessly into their daily

routines, the app addresses a significant need for accessible technology. Besides that,

integrating the real-time features in the app could reduce the time when processing the image

and provides immediate feedback. Lastly, in this thesis, free-to-use features is proposed as one

of the crucial parts where the visually impaired user can access essential functionalities without

concerning financial difficulties.

1.2 Research Objectives

i) To develop free to use real-time document reader assistance on mobile

application

The main objective of this project is to develop a real-time document reader mobile

application that allows visually impaired individuals to independently access, read,

and understand both printed and digital documents. By developing this project, it

will be able to enhance their ability to perform daily task more efficiently and

improve their quality of life.

ii) To reduce the time when processing text recognition

A key sub-objective of this project is to optimize the efficiency of the text

recognition process and duration. By integrating the real-time image capturing and

real-time audio feedback features, it can ensure that visually impaired users can

receive immediate feedback more efficiently and seamlessly.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

iii) To provide a real-time document detection for visually impaired

Another critical sub-objective of this project is to develop a model to enable the

application to detect document and notify user if document detected. This capability

minimizes user errors and enhances the overall usability of the application for

visually impaired individuals.

1.3 Project Scope and Direction

The purpose of this project is to develop a real-time document reader assistance application

using Flutter for the visually impaired which could allow visually impaired users to access and

read documents including text independently. The development and design of mobile

applications specifically focus on the target audience which is the visually impaired users.

Therefore, the app will use OCR text recognition to extract the text from document. The OCR

can perform text extraction in either Chinese or English language. Furthermore, it will use

transfer learning on pretrained model (Yolov8n) with custom dataset of document in white-

based background to detect objects that appear in the camera preview. The model able to detect

most type of the document, but compulsory needed in white-based background. Additionally,

the app will have a user-friendly interface where it can enhance the user accessibility including

flashlight with ambient light sensor, clear audio feedback, and tutorial to guide the user on how

to operate this application. Besides, the app will also utilize Flutter (TTS) to convert the text

information into audio and voice out to user. Furthermore, an AI chatbot will be developed to

assist users after the text recognition has been completed. A Flutter Speech-To-Text feature

will also be integrated for users to use voice command to seek for AI assistance instead of

keyboard typing. The chatbot is mainly developed to interpret document data on receipt and

can only process static questions and does not support dynamic responses or generate outputs

in natural, conversational formats like GPT-based models. This project aims to provide a

comprehensive, accessible, and user-friendly application for visually impaired individuals

which can significantly enhance their ability to interact with various types of documents

independently. In the end of the project, a real-time document reader assistance app for the

visually impaired will be developed and delivered to the visually impaired users and contribute

to MAHAL.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

1.4 Contributions

This project will end up contributing to the MAHAL (Malaysian Assistive Hub for

Advanced Livelihood) where it represents as an application for MAB (Malaysian Association

of the Blind) as well as to public users that are visually impaired and developers that are

working towards the field of visually impaired.

Figure 1.4.1 MAHAL Logo

MAHAL is an application which designed to provide a range of services and tools to

support the blind people in all aspects of their lives. The development of real-time document

reader assistance features in this project can helps in contributing as essential features and

resources for MAHAL to help the users navigate the challenges of living with visual

impairment. Furthermore, by integrating this feature, this project would foster greater

independence and improve the overall quality of life for visually impaired individuals in public.

Furthermore, this project will serve as a valuable reference for developers that are

working in the field of assistive technology for the visually impaired. By developing real-time

document reader assistance, it can offer insights and innovative approaches which could inspire

further research and development in assistive technology of visually impaired for other

developers.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

1.5 Report Organization

The details of this research are shown in the following chapters. Chapter 1 provides a

brief overview of problem statements, objectives, scope and contribution in this project. In

Chapter 2, it involves technical review on related studies and reviewing, comparing the

advantages and disadvantages of application in the visually impaired field. Chapter 3 describes

the methodology, suggested approach and system requirement of hardware and software, and

the timeline that involves this project. Chapter 4 provides details of the system design which

involves flowcharts and detailed architecture of this development project. Chapter 5 provides

details of the project's implementation work to achieve the complete development of this

project. Chapter 6 includes system evaluation, test cases and objectives evaluation to identify

whether the objectives have been achieved. Lastly, Chapter 7 provides a summary of the project

which includes conclusion and future recommendations.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

Chapter 2

Literature Review

2.1 Previous Works on Document Reader Assistance Application for Visually

Impaired

2.1.1 Seeing AI

Figure 2.1.1.1 Seeing AI Logo

Seeing AI is an artificial intelligence application developed by Microsoft on iOS and

Android platform [3]. This app is specifically designed for the blind and low vision community.

Furthermore, it includes a wide variety of features that are essential for visually impaired

individuals such as short text, documents, products, scenes, people, currency, handwriting,

light and images in other apps. Moreover, these features are free-to-use without any

subscription plan by users [3].

Furthermore, it includes 20 languages where the user can choose to choose the relevant

languages that best suit their needs. It also includes a wide range of voice spoken that user can

select based on their own personal preferences. In this app, it also allows users to adjust the

paces of spoken languages from 0% up to 100%. Besides, it also includes a feature where

Seeing AI will automatically adjust the camera flash or torch based on the lightning conditions

[3].

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 8

Figure 2.1.1.2 Document reader interface (Seeing AI)

A demonstration is provided on reading a receipt, and then the image is processed in

real-time into text and output in another interface provided by Seeing AI. Then, questions and

answer are performed on the document to the seeing AI. Although there is a capture button in

the middle bottom of the document reader interface, it also can support real-time features where

user no need to manually press the capture button to capture the receipt.

Figure 2.1.1.3 Demo for reading a receipt (Seeing AI)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 9

Strength of Seeing AI:

In the application, it includes real-time automatic capture and processing image

features. In this case, users have no need to press any button when capturing the images.

Instead, it will automatically capture and process the images and deliver voice feedback

immediately to the user within a few seconds. This real-time feature is important because it

enhances the user’s experience without any manual intervention. Furthermore, visual impaired

users could also quickly identify and understand the document without any delay of time.

Additionally, it allows users to perform questions that are open-ended without

restriction, providing users with the flexibility to ask questions and provide comprehensive

responses. This indicates that visually impaired users are not limited to predefined or specific

types of questions. Instead, they can ask about a specific detail of the recognized document in

the AI chat assistance. This capability greatly enhances the user experience and ensures that

visually impaired users can obtain a detailed answer.

Furthermore, Seeing AI also provides a button where the user can add additional pages

for capturing multiple documents at the same time. This functionality is user friendly where it

involves tasks where users need to scan multi-page documents such as reading a long-text

document or making comparison in different document. Whether it is comparing the details

across different receipts, reviewing a multi-page document, or reading through a lengthy

document, this user-friendly feature provides efficiency and convenience to user. By enabling

users to capture multiple pages in a single session, Seeing AI enhances the usability and

practicality of the app, which solves the needs of users in handling multiple tasks.

Weakness of Seeing AI:

While Seeing AI offer numerous of advantages, it also having some of the drawbacks.

Notably in document reader, it does not support the recognition and voice out of other text

languages other than English. This limitation restricts its usability for users who need to scan

and process documents in different languages. As a result, visually impaired individuals who

encounter texts in non-English languages may find it challenging to use the app effectively.

Such limitations might bring frustration and anxiety for user in encountering Multilanguage

environment, thus affecting their daily live.

Furthermore, the next limitation of Seeing AI is the absence of speech-to-text features

when user is questioning AI chat. This indicates that visually impaired users cannot speak their

questions or commands directly to the app and instead must rely on typing them out using a

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 10

keyboard. For visually impaired users, this can be particularly challenging and inconvenient,

as typing can be more difficult for them to perform their task.

 Seeing AI can recognize and voice out the document in a very short period. However,

its performance is mostly dependent on the mobile camera quality. Users with older

smartphone or low-end of devices might experience lower accuracy and longer processing time

in recognizing the document. This dependency might bring issue to visually impaired users

where they needed to purchase a high-end device with clear mobile camera quality for a high

accuracy and shorter processing time of document recognition.

Table 2.1.1.1 Strength and Weakness (Seeing AI)

Strength Weaknesses

• Real-time automatic capture and

processing image

• Allow user perform question that

are open-ended

• Able to add additional pages for

capturing multiple documents at

the same time

• Unable to recognize and voice out

other text languages other than

English

• Absence of speech-to-text feature

when user is questioning the AI

• Dependency on mobile camera

quality

Table 2.1.1.2 Recommended solution to resolve weakness (Seeing AI)

Weaknesses Recommended Solution

Unable to recognize and voice out other

text languages other than English

Integrate Multilanguage TTS and OCR

Absence of speech-to-text feature when

user is questioning the AI

Integrate speech-to-text technology

Dependency on mobile camera quality Implement image enhancement

algorithm to address low-resolution

image.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 11

2.1.2 Be My Eyes

Figure 2.1.2.1 Be My Eyes Logo

Be my eyes is a mobile application that develop by Hans Jørgen Wiberg and Christian

Erfurt in 2015 [4]. It is developed on both IOS and Android platform [4]. The aim is to help

blind people to recognize objects and text within their daily lives. Furthermore, it had a unique

feature where users can connect with sighted volunteers via live video calls [4]. These features

allow users to obtain assistive support such as reading, identifying objects, or navigating

through their surroundings from people. Besides, it also can capture photos and process the

image to obtain the text information from the images and display it out [4].

Figure 2.1.2.2 Image capture interface (Be My Eyes)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 12

A demonstration is presented on reading a receipt and a letter. Be My Eyes can interpret the

type of receipt and display it back to the user.

Figure 2.1.2.3 Demo for reading a letter (Be My Eyes)

Figure 2.1.2.4 Demo for reading a receipt (Be My Eyes)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 13

Strength of Be My Eyes:

In Be My Eyes, after the user captures an image of a document, it can recognize the

type of document based on the content and structure of the document. This app extracts and

interprets the text, then categorizes and determines the type of document accurately. It benefits

user where it able to interpret and display the type of document which helps user to understand

the document without manual effort.

Another strength of Be My Eyes is where it able to organize the data extracted from

document to user. Rather than simply displaying all the recognized data in a raw format back

to the user, the app processes and structures the information in a user-friendly manner. This

feature ensures that users can easily access the information they need without being

overwhelmed by unstructured text.

Furthermore, Be My Eyes also included a build in feature that able to call a volunteer

for assistance after the data is structured. If the visually impaired user is unclear about the

information from the document, they can easily call and connect with a volunteer and seek

assistance. This feature ensures that users have access to real-time human assistance for further

clarification or guidance.

Weakness of Be My Eyes:

While Be My Eyes contains a lot of unique features, it was found out that this app relies

on network connectivity. It cannot access any of the features in this app where it does not have

any internet connections. This might bring inconvenience to the user where it potentially

impedes the user from performing tasks and feeling anxiety.

The second limitation of Be My Eyes is it does not support audio feedback. The lack of

audio feedback means the app does not voice out back to the visual impaired users.

Furthermore, audio feedback is crucial for the visual impaired users as most of them are relying

on hearing. It is challenging and difficult for the visually impaired user to interpret the content

of the document without audio feedback. This shortcoming highlights the need for

implementing audio feedback for visually impaired users.

The following drawback of Be My Eyes is the absence of speech-to-text feature when

user is questioning the AI chat. . This limitation requires visually impaired users to manually

type their questions, which can be inconvenient and time-consuming. For users who rely on

voice input due to its own sight difficulties when typing, the lack of a speech-to-text option can

be a major inconvenience for them.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 14

Table 2.1.2.1 Strength and Weakness (Be My Eyes)

Strength Weaknesses

• Able to recognize the type of

document

• Able to organize the data of

document for user

• Build in feature that able to call

a volunteer for assistance

• Rely on network connectivity

• Does not support audio feedback

• Absence of speech-to-text feature

when user is questioning the AI

chat

Table 2.1.2.2 Recommended solution to resolve weakness (Be My Eyes)

Weaknesses Recommended Solution

Rely on network connectivity

Develop offline capabilities and local

storage processing

Does not support real-time audio

feedback

Integrate text-to-speech for converting

text into real-time audio

Absence of speech-to-text feature when

user is questioning the AI

Integrate speech-to-text functionalities

2.1.3 Envision AI

Figure 2.1.3.1 Envision AI Logo

Envision AI is a free visual assistance app that was developed by Karthik Mahadevan

and Karthik Kannan in late 2017 [5]. Envision AI is supported on both Android and iOS [5].

The purpose of this app is to offer multiple accessibility features, including speech-to-text,

magnifier, and other accessibility features that make it easier for visually assistance people to

get the information they need [5].

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 15

Figure 2.1.3.2 Document reader interface (Envision AI)

Strength of Envision AI:

 Envision AI provides a feature that supports speech-to-text when visually impaired user

is interacting with the chat. This feature will benefit the user as it allows them to use voice

messages to ask questions of the recognized document, rather than typing out from keyboard.

It further enhances the accessibility of the app and improves the overall user experience when

interacting with Envision AI chat.

 Furthermore, another significant advantage of Envision AI is its ability to recognize

and voice out other text languages other than English. This multilingual support enhances the

app accessibility and usability for the visually impaired user in their daily life. In fact,

sometimes the visually impaired user encounters situations where the text is in other languages

such as Mandarin. Therefore, users can swap for recognition and voice out in different

languages.

 In addition, Envision AI also includes a user-friendly interface. Users can easily switch

in different language recognition, modify the magnifier, and apply a color inversion filter

without going to setting for adjustment. These customizable options provide visually impaired

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 16

user with greater control, allowing them to make adjustment easily based on their specific

needs.

Figure 2.1.3.3 Speech-to-text feature (Strength of Envision AI)

Weakness of Envision AI:

 However, a significant limitation of Envision AI is due to its inaccurate document and

text recognition. Sometimes, the AI might misinterpret the details of documents and thus

provide wrong information to users. Such inaccuracies might lead to confusion to the visually

impaired user, and they might be struggling especially in a situation where precise information

is crucial for them to make decisions.

 While Envision AI contains a lot of user-friendly features, it was found out that its

inability of real-time automatic capture and process image. The absence of this feature implies

that users must manually take pictures and wait for the app to process the images. This

drawback can cause inconvenience, particularly for visually impaired users who may rely from

a more hands-free experience.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 17

Table 2.1.3.1 Strength and Weakness (Envision AI)

Strength Weaknesses

• Support speech-to-text feature

• Ability to recognize and voice

out other text languages other

than English

• User friendly interface

• Inaccurate document and text

recognition

• Inability of real-time automatic

capture and process image

Table 2.1.3.2 Recommended solution to resolve weakness (Envision AI)

Weaknesses Recommended Solution

Inaccurate document and text

recognition

Enhance the apps machine learning

model by using a more diverse dataset

of document

Inability of real-time automatic capture

and processing image

Implement real-time features on

capturing and processing image

2.1.4 Supersense

Figure 2.1.4.1 Supersense Logo

Supersense is a mobile application to assist visual impaired and developed by Mediate [6].

Supersense was available on both IOS and Android platforms. This application can work in

offline mode without relying on network connectivity, Furthermore, the features are

differentiated into free plan and premium plan. In free plan, visually impaired users have

unlimited access to quick read mode, import, read history and magnifier [6]. In premium plan,

it had additional features such as smart scanner, currency recognition, scene description and

other specific features [6]. However, visually impaired users need to perform subscription to

have full access to this application.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 18

Figure 2.1.4.2 Interface (Supersense)

Strength of Supersense:

 Supersenses provide a strength where it does not rely on network connectivity. This

feature indicates that users can access and utilize the app without requiring an internet

connection. As a result, Supersense offers significant flexibility and usability in areas which

are poor or no network access.

 In addition, Supersense also offers real-time audio feedback in quick-read mode. This

feature allows us to receive immediate feedback without delay. Thus, Supersense enhances

efficiency on reading documents, without having visually impaired users to wait for processing

recognition.

Weaknesses of Supersense:

 However, a significant limitation is where it requires subscription plan to access full

features of the app. Users needed to subscribe to the premium plan to unlock and utilize its

comprehensive capabilities. This subscription plan might cause difficulties for users,

particularly those who may not be able to afford the extra cost. As a result, users with limited

financial resources might find themselves unable to access all the features that could enhance

their experience of this application.

 Another drawback is where it does not include AI chat for assistance. This absence means

that visually impaired users cannot interact with a virtual AI assistant through text or voice

chat. The lack of an AI chat can limit the app’s ability to provide additional assistance and

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 19

clarification to answer user questions. Without this feature, it might potentially impact on the

overall experience of visually impaired users.

 |

Figure 2.1.4.3 Require of subscription plan (Limitations of Supersense) [7]

Table 2.1.4.1 Strength and Weakness (Supersense)

Strength Weaknesses

• Does not rely on network

connectivity

• Real-time audio feedback

• Require Subscription Plan

• Does not include AI chat for

assistance

Table 2.1.4.2 Recommended solution to resolve weakness (Supersense)

Weaknesses Recommended Solution

Require subscription plan Develop for free-to-use purposes

Does not include AI chat for assistance Implement an AI chatbot to assist user

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 20

2.1.5 Google Lookout

Figure 2.1.5.1 Google Lookout Logo

 Google Lookout is a visual assistance app to help people with vision loss in the world

[8]. Google Lookout is available on Android platforms. The purpose of this app is to make it

easier to get information about the world around us and do daily task more efficiently like

reading text and documents [8]. It is also an apps that build in collaboration with the blind and

low-level vision community.

Figure 2.1.5.2 Document reader interface (Google Lookout)

Strength of Google Lookout:

 Google Lookout provides a strength where is has real-time automatic capture and

processing image . In this case, visually impaired users do not need to press any buttons to take

a picture, as the app captures and processes the images automatically, and able to provide voice

feedback within seconds. This real-time ability significantly improves the user experience by

eliminating the need for manual actions to capture documents.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 21

 In addition, Google Lookout also offers a user-friendly interface. In the interface the

user can simply adjust the language for document and text recognition in the document

interface needed to navigate through the setting menu. Furthermore, when user captures a

document, it able to change the font setting such as enlarging or line spacing depending on

their personal needs. This flexibility enhances accessibility and usability for the visually

impaired.

 Another advantage of Google Lookout is that it able to autosave the document in an

app when the user reads a document. It had an additional interface where visually impaired

users were able to locate their previous recognized document in the ‘recent’ interface.

Therefore, it is a convenient and flexible way to revisit important files without the need for

manual saving for visually impaired users.

Figure 2.1.5.3 Autosave the document in app (Strength of Google Lookout)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 22

Weaknesses of Google Lookout:

 However, a significant limitation is where it only can be downloaded on android

platform. This limitation restricts access for users who rely on IOS operating systems. For

visually impaired individuals who use iPhones, the inability to access this app may hinder their

access to efficient document reading and recognition tools. Therefore, this shortcoming

highlights the need for expanding compatibility to other platforms to enhance the app

accessibility and usability for a broader range of visually impaired users.

 A notable drawback is the absence of an AI chat feature for assistance. This limitation

indicates that visually impaired users cannot engage with a virtual AI assistant via text or voice

message. This deficiency of AI chat reduces the application ability to provide extra support and

assistance to visually impaired users to clarify their queries, thus negatively affect the overall

experience for visually impaired users.

Table 2.1.5.1 Strength and Weakness (Google Lookout)

Strength Weaknesses

• Real-time automatic capture and

processing image

• User-friendly interface

• Autosave the document in app

when user read a document

• Only can be downloaded on

android platform

• Does not include AI chat

assistance

Table 2.1.5.2 Recommended solution to resolve weakness (Google Lookout)

Weaknesses Recommended Solution

Only can be downloaded on android

platform

Develop on both IOS and Android

platform

Does not include AI chat assistance Implement an AI chatbot to assist user

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 23

2.2 Comparison of Previous Works

Table 2.2.1 Comparison Table of Previous Works

 Applications

Features

Seeing

AI

Be My Eyes Envision AI Supersense Google

Lookout

Proposed

Solution

Platform Compatibility iOS &

Android

iOS &

Android

iOS &

Android

iOS &

Android

Android iOS &

Android

Required Subscription ✔️

Offline ✔️ ✔️ ✔️ ✔️ ✔️

Voice Capturing Assistance ✔️ ✔️ ✔️ ✔️ ✔️ ✔️

Real-time automatic capture ✔️ ✔️ ✔️

Real-time audio feedback ✔️ ✔️ ✔️ ✔️ ✔️

AI chat for assistance ✔️ ✔️ ✔️ ✔️

Support Speech-To-Text ✔️ ✔️

Display and Voice Out the

text/document recognized

✔️ ✔️ ✔️ ✔️ ✔️

Friendly user interface ✔️ ✔️ ✔️

Recognize and voice out text

languages other than English

 ✔️ ✔️ ✔️

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 24

2.3 Technical Review of Related Work

2.3.1 Text Detection and Recognition Using OCR

Previous work from Y. He [14]:

In the study of "Research on Text Detection and Recognition Based on OCR Recognition

Technology" [14], the authors investigate the application of Optical Character Recognition

(OCR) for automated text extraction from document images. The paper evaluates traditional

OCR techniques, Tesseract alongside deep learning-based approaches, emphasizing

improvements in accuracy and robustness for complex layouts. A hybrid method

combining connected-component analysis for text detection and CNN-LSTM networks for

recognition achieved 96.2% accuracy on a dataset of scanned documents.

2.3.2 Image based Text Translation using Firebase ML Kit

Previous work from V. Bagal et.al [15]:

The paper titled "Image Based Text Translation using Firebase ML Kit" presents a mobile

application that utilizes Google's ML Kit for real-time text recognition and translation.

Specifically, it employs the ML Kit Text Recognition API to extract textual information from

images, including printed and handwritten text, across various backgrounds. This

implementation showcases the robustness of Google ML Kit in handling diverse real-world

scenarios, reinforcing its value in mobile-based OCR solutions.

2.3.3 Stamp Detection using different Yolo (You Only Look Once) model

Previous work from J. Bento et.al [16]:

In the study of “Performance Evaluation of YOLOv8, YOLOv9, YOLOv10, and YOLOv11 for

Stamp Detection in Scanned Documents”, the studies indicates that YOLOv9s achieved the

highest performance with a mean Average Precision (mAP) of 98.7% and a precision and recall

of 97.6%. In terms of computational efficiency, YOLOv11s stood out for its lower

computational cost and shorter inference time. These results suggest that while YOLOv8s

performs adequately, newer versions like YOLOv9s and YOLOv11s offer improvements in

accuracy and efficiency for stamp detection tasks.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 25

Chapter 3

System Methodology

3.1 Methodology

The methodology that will be used in this project is Prototyping Model. Prototyping Model is

a software development model in which prototype is built, tested, and reworked until an

acceptable prototype is achieved [9]. The phases are divided into 6 phases which are

requirements gathering and analysis, quick design, build prototype, initial user evaluation,

refining prototype and implementation and maintain. The phase of user evaluation and refining

prototype can loop back as needed based on feedback and evolving requirements from users

[10].

Figure 3.1.1 Flowchart of Prototyping Model Methodology [10].

The real-time document reader assistance app for visually impaired will be developed starting

from:

1. Requirement gathering and analysis phase

Identify the scope and primary goal of this mobile application, and the purpose

is to assist visually impaired users by providing real-time document reading

capabilities, enabling visually impaired users to access and interact with various types

of documents without significant barriers. Additionally, requirements are gathered on

how this app should perform and the essential features. Then, a proposal will be

prepared to outline the project scope, features and specifications on this mobile

application.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 26

2. Quick Design phase

At this point, a basic outline of the system is developed. A wireframe is designed

to construct a visual representation of the app's layout and structure to map out the user

interface and interactions. It is not a full design but to give users and supervisors a

general understanding of the system.

3. Prototype Building

In this phase, an actual prototype is designed based on the information gathered

from quick design such as the User Interface and some button.

4. Initial User Evaluation

In this stage, the proposed system is presented to the user and supervisor for an

initial evaluation. It helps to find out the strengths and weaknesses of the development

application. Comment and suggestions are recorded for further improvement.

5. Refining Prototype

After gathering the suggested improvement, the protype is refines according to the

 user feedback. Once the user is satisfied with the developed prototype, a final system is

 then developed.

6. Implementation and maintain

Once the final system is developed based on the final prototype, it is thoroughly

tested and deployed for public to use, and maintenance is performed such as version

updates of the packages in application.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 27

3.2 Technology Involved

• Flutter framework

Flutter is an open-source framework that used for developing the mobile application for

both iOS and Android platforms. It provides a cross-platform UI toolkit that enables

the applications from a single codebase. It also provides functionality such as accessing

mobile camera devices to manipulate on and off the flashlight.

• Google ML Kit

Google ML kit is a mobile SDK that brings Google's machine learning expertise to

Android and iOS application. It provides wide range of recognizing text, detecting faces

scanning barcodes, labelling images, and identifying the language of text.

• Roboflow

Roboflow is a powerful platform designed to help developers create, manage, and

deploy computer vision models efficiently. It streamlines the process of plotting data

annotation, training machine learning models, and allows them to deploy into

embedded devices.

• YOLOv8n (You Only Look Once) model

YOLOv8n is a real-time pretrained model that can be used for document detection in

real-time and deploy in lightweight format and integrate into flutter application.

• Language Translation API

An API which used for translating into multiple languages from a single languages text.

• Flutter (TTS) (Text-to-Speech) Library

A plugin which used to provide real-time audio feedback and to convert the text into

audio and voice out back to the user.

• Flutter (STT) (Speech-to-text) Library

A plugin to convert user audio input and display into text for questioning to the AI

chatbot assistance.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 28

3.3 System Requirement

3.3.1 Hardware

The hardware involved in this project is a computer and two different platforms of mobile

devices, Android & IOS. Computers are written and develop codes for the document reader

application for Android and IOS. The mobile devices are used for testing the application real-

time document and text recognition capabilities in different across various environments.

Table 3.3.1.1 Specifications of laptop

Description Specifications

Model VivoBook_ASUSLaptop X515DA_M515DA

Processor AMD Ryzen 5 3500U with Radeon Vega Mobile Gfx

Operating System Windows 11

Graphic AMD Radeon (TM) Vega 8 Graphics

Memory 16GB

Storage 512 GB

Table 3.3.1.2 Specifications of mobile device (Android)

Description Specifications

Model CPH2121

Processor Octa-core

Operating System Android Version 12

Graphic V12.1

Memory 8 GB

Storage 128 GB

Table 3.3.1.3 Specifications of mobile device (IOS)

Description Specifications

Model iPhone 13

Processor A15 Bionic chip

Operating System iOS 17.6.1

Graphic Apple-designed 4-core GPU

Memory 4GB

Storage 256 GB

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 29

3.3.2 Software

The software and technology that will be used for this project is Visual Studio Code

and Google Colab.

Visual Studio Code

Figure 3.3.2.1 Visual Studio Code Logo

Visual Studio Code is a flexible code editor that seamlessly combines simplicity with powerful

developer tools for code completion and debugging [11]. Furthermore, it is also used to code

and integrate the trained model into the app. The usage of Visual Studio Code in this project is

for the flutter development in Dart Languages.

Google Colab

Figure 3.3.2.2 Google Colab Logo

Colab is a hosted Jupyter Notebook service that requires no setup to use and provides free

access to computing resources, including GPUs and TPUs. It can be used to develop in

Python programming languages to train model.

Roboflow

Figure 3.3.2.3 Roboflow

Roboflow is a comprehensive platform designed to simplify the process of data annotation,

training and deploying models.

TensorFlow Lite

Figure 3.3.2.4 TensorFlow Lite

TensorFlow Lite is a lightweight, open-source framework designed to run machine learning

models on mobile and embedded devices [13].

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 30

3.3.2.1 Coding Language

• Python

Python is a language that is used to develop and train machine learning models such as

YOLOv8n in Google Colab for document detection.

• Dart

Dart is a programming language used with Flutter to develop mobile applications

including the user interface, camera access, flashlight, user interaction and Pub.dev

plugins.

3.4 Ghant Chart

3.4.1 Ghantt Chart of FYP1

Figure 3.4.1 Ghant Chart of FYP1 Timeline

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 31

3.4.2 Ghantt Chart of FYP2

Figure 3.4.2 Ghant Chart of FYP2 Timeline

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 32

Chapter 4

System Design

4.1 User Storyboard

Scenario: An app to allow users to access various types of documents independently.

4.1.1 User Story 1

Figure 4.1.1 User Story 1

4.1.2 User Story 2

Figure 4.1.2 User Story 2

4.1.3 User Story 3

Figure 4.1.3 User Story 3

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 33

4.2 Overall System Flowchart

Figure 4.2.1 Overall System Flowchart

Figure 4.2.1 above outlines the overall system functionality of the real-time document

reader mobile application. Initially, when the user starts the application, it will ask for the

camera permission to access the application. Upon successful granted permission, a tutorial

page will be explained on this application and how it works. After that, users will enter the

scanning interface which is the main interface of the application. In this interface, users can

adjust the setting upon pressing a button and adjust based on their personal preferences. Next,

user can place any document to scan and perform text extraction. Simultaneously, a real-time

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 34

document detection will be assisting users to detect any document that are present in the

camera. If a document exists, it will auto capture after a few seconds of delay to ensure the

documents are completely focused. If user wants to scan some short text but is not likely to be

a document, user can also manually capture without relying on the auto-capture feature Then,

a text recognition will be used to extract the text from images, and the text will be display and

voice out to user in the scanned text page. If the user has any questions to ask or needs

clarification about the scanned text of its content, user can interact with the chatbot assistance

to obtain the information about the scanned text.

Sub-Flowcharts

4.2.1 Tutorial Page

Figure 4.2.1.1 Sub-Flowcharts of Tutorial Page

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 35

4.2.2 Scanning Interface

Figure 4.2.2.1 Sub-Flowcharts of Scanning Interface

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 36

4.2.3 Document Detection

Figure 4.2.3.1 Sub-Flowcharts of Document Detection

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 37

4.2.4 Scanned Text Page

Figure 4.2.4.1 Sub-Flowcharts of Scanned Text Page

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 38

4.2.5 Chatbot Assistance

Figure 4.2.5.1 Sub-Flowcharts of Chatbot Assistance

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 39

4.3 Overall System Architecture Diagram

Figure 4.3.1 Overall System Architecture Diagram

Figure 4.3.1 shows the overall system architecture. Where the user acts as the primary

interaction with the system. Users can interact with the application through scanning screens.

Tutorial screen, display screen and chatbot screen. In the scanning screen. It interacts with the

TensorFlow Lite for initiating document detection using a pre-trained YOLOv8n model that

exported from Google Colab. Furthermore, it also interacts with Google ML Kit Text

Recognition to extract text data from the detected document. It will pass the image data that

capture using the document detection model to process the text recognition, and a recognized

text data will be returned to user. Then, a chatbot will be assisting user where user provide a

question to the chatbot and the chatbot will search the keyword and return to the user.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 40

 4.3.1 Yolov8n System Architecture Diagram

Figure 4.3.1.1 Yolov8n Object Detection System Architecture Diagram

Figure 4.3.1.1 above shows the Yolov8n Object Detection System Architecture in five

stages, which is the input, backbone, beck, prediction and output. Initially at the input stage,

this stage receives an input image such as a photo or a frame from video. The image size is

resized to a fixed resolution such as (640x640) to standardize the input dimensions.

Next, in the second stage, the backbone will extract the features from the input images

where it will be divided into multiple blocks. The first one is the convolutional layer where

basic convolutional layers are used to detect low-level features such as edges and textures. Next

is the C2f blocks will split into two parts, the first part is where a portion of the input bypasses

the main computation and the second part will be sent through a series of transformations such

as convolutional layers, batch normalization and activation functions. Lastly, the processes

features will be concatenated with the bypassed feature from the first part which combines the

low-level and high-level feature to enhance the feature map. Then, it will pass to the

convolutional layer to refine the combined feature map and optimize it for the next stage.

In the last stage of the backbone, an SPPF will act as a bottleneck that outputs the

compressed feature representation before passing it to the neck for further processing. In the

neck stage, it involves sampling up the handle fine-grained details for small objects and a

concatenation to merge feature maps from different levels. Furthermore, the C2f blocks, and

convolutional layers are used to refine aggregated features to capture object at different scale

such as small, medium and large.

Lastly, the refined features from the neck are processed into the prediction head stage

which involves detect block for making the final detections such as outline bounding boxes,

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 41

classes prediction and confidence score. Finally, the predicted result will be shown in the output

stage.

4.3.2 Google ML Kit Text Recognition Architecture Diagram

Figure 4.3.2.1 Google ML Kit Text Recognition Architecture Diagram

From Figure 4.3.2.1 above, initially flutter app acts as the front-end UI and user interaction

layer. This flutter app uses a methodChannel to communicate with the native code.

Furthermore, the method Channel is a two-way communication bridge between the flutter

application and the native host code. For example, the flutter app will send the request such as

“process camera image” to the platform layer via the methodChannel. Then, the platform layer

will process the request using native API’s and sends the result back to the flutter app. The

activity component acts as the entry point for the native code. Then, the android platform API’s

and 3rd party API’s handle the camera frame and process the text recognition using google ML

Kit text recognition. Finally, the recognized text is sent back to the Flutter App through the

Method Channel.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 42

4.4 Use-Case Diagram

Figure 4.4.1 Use-Case Diagram

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 43

4.5 Activity Diagram

Figure 4.5.1 Activity Diagram

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 44

4.6 User Interface Design

4.6.1 Wireframes Prototype Design

Figure 4.6.1.1 Wireframe Prototype Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 45

4.6.2 Low-Fidelity Prototype Design

Figure 4.6.2.1 Low-fidelity Prototype Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 46

4.6.3 High Fidelity Prototype Design

Figure 4.6.3.1 High-fidelity Prototype Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 47

Chapter 5

System Implementation

5.1 Setting Up

5.1.1 Software

Before starting the development of real time document reader, there are three main software

needed to be installed and downloaded in my laptop:

1. Visual Studio Code

2. Android Studio

3. Flutter

Figure 5.1.1.1 Installation Page of VS Code

Figure 5.1.1.2 Installation Page of Android Studio

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 48

Figure 5.1.1.3 Installation Page of Flutter

After finishing installation of these 3 software, we need to download java-jdk-17 to be running

in my laptop environment because Android toolchain in Flutter relies on the Java Development

Kit (JDK) for android development, Gradle dependency and ensure compatibility and stability.

After unzipping the files, we created a JAVA_HOME path directory and set up jdk-17 in our

local PC environment.

Figure 5.1.1.4 Installation Page of Java-jdk-17

After finishing setup up the environment, we need to setup the emulator and the android SDK

Command-line Tool for for building, testing, and debugging Android applications.

Figure 5.1.1.5 Setup in Android Studio

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 49

After successful setting up in the android studio, we will be verifying the environment in VS

Code. We use a command “flutter doctor” to check the necessary packages and tools had

installed in our environment.

Figure 5.1.1.6 Packages and Tools Verification in VS Code

If it returns no issue found, that means our setup using flutter in VS Code had successfully

completed and we can proceed to the development of application.

5.1.2 Hardware

After setting up in software, we need to perform some setting in our hardware which is the

mobile devices to debug in real devices.

Figure 5.1.2.1 Setup on real devices

We go to Setting > About Devices > Version > and tap the Build number 7 times to enable

developer mode to debug in real hardware mobile devices. After successful enabling, we turn

on the USB debugging in the developer options in our setting, and it is successful.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 50

5.2. Pub dev Flutter Plugins

5.2.1 Camera and flashlight

The first major feature that we want to implement is the camera. We go to Pub.dev and search

for a camera plugin.

Figure 5.2.1.1 Pub.dev official website

Then, we search the camera plugin and implement in our code.

Figure 5.2.1.2 Pub.dev camera plugin

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 51

Figure 5.2.1.3 Scanning Interface with camera preview

5.2.2 Ambient Light Sensor

After successful implementing the camera preview in our code and we able to see the camera

preview, we then proceed to implement the ambient light sensor. Our purpose is to allow the

flashlight to turn on automatically whenever the light level (lux) is < 20 using the

implementation of this sensor. Therefore, users can scan documents even in a dark

environment.

Figure 452.2.1 Pub.dev ambient light sensor plugin

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 52

5.2.3 Google ML Kit Text Recognition

Following next, we implement an OCR google ml kit text recognition from pub dev to extract

the text when user capture and display out.

Figure 5.2.3.1 Pub.dev google ml kit text recognition plugin

After successful implementation we were able to recognize the text and display to user.

Figure 5.2.3.2 Scanned text using google ml kit text recognition

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 53

5.2.4 TTS

Upon successful recognition of text based on document, we implement a flutter TTS to voice

out the recognized text to the visually impaired user.

Figure 5.2.4.1 Pub.dev flutter TTS plugin

5.3 Data Collection

After implementing the necessary plugin, we then proceed to implement the document

detection model in our mobile application. Initially we collect the receipt that the text is in a

white background as the data to train our model. We capture every receipt in different angles,

light intensity and background environment to avoid our model overfitting.

Figure 5.3.1 Data collection of white background documents

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 54

After collecting all the datasets, we create a new project in Roboflow and select object detection

as our aim is for document detection.

Figure 5.3.2 Object Detection Project

5.4 Data Annotation

After creating an object detection project, we insert all our dataset into Roboflow and use it to

annotate our dataset and label all document in a ‘document’ class.

Figure 5.4.1 Data annotation of document

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 55

Figure 5.4.2 Annotated Document

5.5 Data Augmentation

Figure 5.5.1 Data Augmentation

After successful data annotation, we perform few data augmentation such as applying the

brightness and exposure adjustments to make the model more robust to real-world scenarios.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 56

5.6 Data Splitting

After finishing data augmentation, we split the data into train(0.7), valid(0.2) and test (0.1)

set using Roboflow.

Figure 5.6.1 Training set data

Figure 5.6.2 Valid set data

Figure 5.6.3 Test set data

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 57

5.7 Data Exportation

After finishing data annotating, we export our dataset from Roboflow. Roboflow are user

friendly where it can export in a yolo format which include these files organized where user do

not need to upload the zip file data to google drive and mount the data from google drive into

Google Colab and unzip for training further.

Figure 5.7.1 Zip File of Yolo input format

Besides, the second approach is where we can directly copy the code snippet from Roboflow

instead of downloading the zip folder and uploading it to google drive. It is much simpler where

we only use the API key that stored all our data sets in the Roboflow cloud services. It used the

API key that contains the private key of our user Roboflow account to connect to the Roboflow

cloud services and extract the dataset for further training.

Figure 5.7.2 Code Snippet of dataset

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 58

5.8 Model Training

Next, we copy the code snippet previously and paste it into Google Colab and Run to extract

the data from Roboflow into Google Colab.

Figure 5.8.1 Data Extraction Process

Figure 5.8.2 Extracted Folder

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 59

After that, our dataset was successfully extracted and import to Google Colab. Then we install

‘ultralytics’ and ‘yolo’ library to train our model.

Figure 5.8.3 Import YOLO library

After successful import, we trained our model using a yolov8n pretrained model as it is

lightweighted that designed for resource-constrained environments and suitable to deploy in

mobile devices to enhance performance. We trained the model with 50 epoch and image size

of 640 as the default image size.

Figure 5.8.4 Code for training model with 50 epoch using YOLOv8n

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 60

Figure 5.8.5 Result with 50 epoch using YOLOv8n

After that, we found out that the best mAP (50-95) result it reach for 50 Epoch is 0.87.

5.9 Model Evaluation

We try to improve see whether the mAP (50-95) can reach 0.90 above by setting the epoch to

100.

Figure 5.9.1 Result with 100 epoch using YOLOv8n

From figure 4.8.2 above, we identify that map (50-95) with 100 epoch is > 50 epoch, where it

had achieved 0.908. Therefore, we selected this trained model with training on 100 epoch

because higher mAP means a better performance in object detection tasks.

Next, we then proceed to visualize the predicted data using our test set data.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 61

Figure 5.9.2 Document Prediction using Test Set

We can visualize that the model is working well where it can detect all the document with a

confidence level of 0.9. Next, we visualize the confusion matrix to identify whether there is

any misclassification document.

Figure 5.9.3 Confusion Matrix

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 62

From Figure 5.9.3 above, we can visualize that there are total 21 documents that are correctly

predicted as true positive, and only 1 document is wrongly predicted as false positive.

Figure 5.9.4 Accuracy of document detection

Then, we can calculate the accuracy which is 95.45% using the information from Figure 4.9.3.

Furthermore, we proceed to visualize the F1 curve to evaluate our model performance.

Figure 5.9.5 F1-Confidence Curve

The F1-Confidence curve indicates that the model achieves consistently high performance

across a wide range of confidence thresholds, with an F1 score close to 1.0. At a confidence

threshold of 0.876, the model reaches an optimal F1 score of 1.00, indicating a perfect balance

between precision and recall for all classes.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 63

5.10 Model Exportation

After model evaluation, we proceed to export the model which is the best.pt and convert it into

tflite as it is lightweight and able to implement into our mobile devices.

Figure 5.10.1 Model Exportation Code

After successfully exporting our model and converting it into tflite, we started to implement

the model in our codes as a document detection. We will be using a ‘flutter vision’ plugin

where it supports object detection model in tflite format for us to code the object detection

function.

Figure 5.10.2 Pub.dev flutter vision plugin

Then, we will need to create a folder called assets which include two major components, the

first one is the exported model.tflite file, and the other is labels.txt which includes the class.

Figure 5.10.3 Assets Folder

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 64

After creating the folder, we will proceed to coding to call the model to perform document

detection. Additionally, we will also be creating a bounding box to plot the document in real-

time. Furthermore, a TTS feature will also be implemented to assist users in whether the

document is detected in the camera preview.

Figure 5.10.4 Implemented Real-Time Document Detection in mobile devices

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 65

5.11 Text Alignment Sorting Algorithm

After successful implementing document detection functionalities, some issues had been

noticed when scanning document in receipt format. When there exist an empty space or gap

between text in document, Google ML Kit default will identify there are no text after and then

insert a line break, thus causing an output alignment issue in Figure 5.11.1 below.

Figure 5.11.1 Example of text alignment issue on extracting text from receipt

Noticed that the output text is not logical to interpret by user and struggles when TTS is voicing

out the text. Therefore, a text alignment sorting algorithm is implemented mainly to tackle this

issue.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 66

Figure 5.11.2 Example of text alignment sorting algorithm

From Figure 5.11.2 above, a text alignment sorting algorithm is implemented. The text

alignment sorting algorithm works by first gathering all the detected lines of text from the

scanned document. It then arranges these lines from top to bottom based on their vertical

position, ensuring the natural reading order is preserved. Once sorted vertically, the algorithm

groups lines that are close to each other in height, assuming they belong to the same row.

Within each row, the lines are further sorted from left to right based on their horizontal position.

Finally, the text from each row is combined into a single string, and all rows are joined together

with line breaks to form a well-structured and readable output that closely matches the original

layout of the document. After successful implementation, the output will look like this:

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 67

Figure 5.11.3 Precise and accurate text alignment during text extraction from receipt

After implementing the sorting algorithm, our output will look cleaner and able to perform

TTS logically.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 68

5.12 Multilingual Text Recognition

Next, a multilingual text recognition is implemented to recognize Chinese text.

Figure 5.12.1 Google ML Kit text recognition-Chinese 16.0.0

The dependencies were added on the build.gradle in the flutter project, then, the packages

were implemented for the text extraction.

Figure 5.12.2 Result of multilingual text extraction

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 69

5.13 Chatbot

After that, a chatbot UI page was implemented as the chatbot.dart. It is used for users to perform

QnA on the receipt.

5.13.1 STT

Figure 5.13.1.1 Pub.dev google ml kit text recognition plugin

In the chatbot interface, a STT feature was implemented on the bottom right corner. When the

user presses and holds, it will start listening to user questions until the user releases the button,

then it will convert the speech to text and automatically send as the question to the AI.

Figure 5.13.1.2 Chatbot interface with STT feature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 70

Then, when user perform question such as “what the total price of the receipt” , the AI will

search the keyword from the recognized text previously in the display interface and return to

user.

Figure 5.13.1.3 Example of chatbot returning total amount of receipt back to user

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 71

Chapter 6

System Evaluation and Discussion

6.1 Black Box Testing

Black box testing is selected to test and evaluate the functionality of and responsiveness of

the mobile application. There are a total of 5 test cases which are successful document

detection, successful automatically flashlight, successful text extraction, successful text

alignment when document in receipt format, and successful respond to the total amount of the

receipt from chatbot.

Table 6.1.1 Test case T01

Test Case ID T01 Test Case Name Successful Document

Detection

Test Case

Description

To test that the application can successfully detect a white-based

document using YoLov8n model

Pre-condition Granted Camera Permission

Steps 1. Launch the application

2. Place a white based document in front of the device back

camera

3. Detect the document in the frame

4. Voice out to user if detected

Expected Result Voice out “Document Detected, Hold Still”

Actual Result Voice out “Document Detected, Hold Still”

Status Pass

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 72

Table 6.1.2 Test case T02

Test Case ID T02 Test Case Name T02

Test Case

Description

To test that the application can automatically turn on the flashlight in

the dark environment.

Pre-condition Granted Camera Permission

Steps 1. Launch the application.

2. Initiate the ambient light sensor.

3. Automatically turn on the flashlight if lux value <20.

Expected Result Flashlight turned on.

Actual Result Flashlight turned on.

Status Pass

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 73

Table 6.1.3 Test case T03

Test Case ID T03 Test Case Name T03

Test Case

Description

To test that the application can successfully extract the text from the

camera and return to user using Google ML Kit OCR Recognition

Pre-condition Granted Camera Permission and heard document detected voice out

(optional)

Steps 1. Launch the application.

2. Capture an image that containing text using device camera by

clicking on the middle bottom of ‘Camera’ button.

3. Extract the text from the camera.

4. Display and voice out to user.

Expected Result The extracted text is displayed and voice out to user.

Actual Result The extracted text is displayed and voice out to user.

Status Pass

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 74

Table 6.1.4 Test case T04

Test Case ID T04 Test Case Name T04

precisely To verify that the application can successfully display text alignment

precisely and accurately when the document is in receipt format.

Pre-condition Captured a receipt document using the device camera.

Steps 1. Capture an image that containing text using device camera by

clicking on the middle bottom of ‘Camera’ button.

2. Extract the text from the camera.

3. Use a sorting algorithm to sort the receipt format.

4. Display and voice out to user.

Expected Result The extracted text from receipt is displayed precisely and accurately

to the user, and STT voice out logically and fluently.

Actual Result The extracted text from receipt is displayed precisely and accurately

to the user voice out logically and fluently.

Status Pass

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 75

Table 6.1.5 Test case T05

Test Case ID T05 Test Case Name T05

precisely To verify that the application chatbot can respond to the total amount

of the receipt.

Pre-condition Text is extracted and displayed successfully to user.

Steps 1. Clicking on the right corner of ‘AI’ button in display screen.

2. Initiate the chatbot.

3. User perform questions using STT.

4. Search for the keyword “total” from the receipt.

5. Return the total amount of the receipt and voice out to the

user.

Expected Result The total amount is display and voice out to user.

Actual Result The total amount is display and voice out to user.

Status Pass

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 76

6.2 Objective Evaluation

1ST Objective: To develop a free to use real-time document reader assistance on mobile

application

Evaluation: The development of the mobile application was centered on creating a free-to-use,

seamless, and intuitive experience for individuals with visual impairments. By incorporating

technologies such as OCR Text Recognition, Document Detection, ambient light sensor, STT

and TTS feature, text alignment sorting algorithm and chatbot, the application aims to provide

comprehensive support and accessibility by ensuring that individuals with visual impairments

can navigate and interact with the world around them with ease. It also could enhance daily

tasks of the visually impaired individuals such as reading and accessing documents

independently.

Achievement: Achieved

2ND Objective: To reduce the time when processing text recognition

Evaluation: This development of project has implemented a Real-Time OCR Text

Recognition using Google ML Kit's Text Recognition. The integration of this tool allowed for

faster document processing by leveraging its high-performance machine learning models

optimized for mobile devices. The use of Google ML Kit also contributed to maintaining high

accuracy while minimizing the computational resources required for processing, ensuring that

the application could deliver efficient performance even on resource-constrained devices.

Furthermore, users can capture the image and process the recognized text without manually

selecting a captured image from gallery and uploading to other text recognition mobile

applications.

Achievement: Achieved

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 77

3RD Objective: To provide a real-time document detection for visually impaired

Evaluation: The project successfully implemented a YOLOv8n model, a real-time document

detection model. This model was specifically designed to detect and identify documents in a

white-based background. By leveraging the power of YOLOv8n, the system was able to

perform real-time, accurate document detection with high efficiency. This implementation

ensured that the document detection process was both fast and reliable, and formed the

foundation for further text extraction and processing within the application.

Achievement: Achieved

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 78

6.3 Error Analysis on Document Detection

Table 6.3.1 Error analysis on document detection

Document Type Output Accuracy Detection

Outcome

Receipt

95.95% Successful

Examination Paper

95.39% Successful

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 79

Digital Letter

95.62% Successful

Phone holder

packaging

93.92% Successful

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 80

Probiotics

94.39% Successful

Book content

92.95% Successful

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 81

Book cover with high

concentration of red

background

0% Unable to

detect

Brochure in yellow

background

0% Unable to

detect

From the error analysis above, we can visualize that it can detect most types of documents in

white background and voice out to user that detected, but unable to detect document other

than white-based background such as document in red or yellow color.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 82

Chapter 7

Conclusion and Recommendations

7.1 Conclusion

In conclusion, this project allows visually impaired users to use this mobile application

independently to read and access various types of documents independently. The progress had

completed the development on user interface on scanning screen, tutorial screen, display screen

and chatbot screen using Flutter in VS Code. A tutorial page will guide and briefly explain how

this application works Additionally; Google ML Kit Text Recognition are implemented to

recognize text in real-time on scanning screen. Flutter TTS had also implemented it to allow

users to receive real-time audio feedback on the recognized text. Moreover, the recognized text

will be displayed on the display screen and voice out to user. Furthermore, datasets which is

on white based background are collected to develop a document detection function using the

pre-trained model, Yolov8n. these datasets are annotated using Roboflow and trained in Google

Colab. The model had been implemented in the scanning screen to detect documents and voice

out to user if detected. Then, a real-time bounding box is drawn to assist user by highlighting

the detected document. Also, a sorting algorithm is implemented to solve the alignment issue

on document in receipt format. Moreover, multilingual text recognition is implemented to

recognize text in Chinese format. Furthermore, a STT feature is implemented to assist user on

performing questions to the chatbot, without performing typing in keyboard. Lastly, an AI

chatbot functionality has been implemented to assist users on searching the keyword from the

receipt document. With it, this application delivers accessible and efficient document reading

experience, enabling visually impaired users to interact with various documents independently

and efficiently.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 83

7.1 Recommendation

There are a few improvements for further development and enhancement of the Real-Time

Document Reader Assistance App for the Visually Impaired. This could enhance the document

detection model(Yolov8n) to support a wider range of background colors to enhance accuracy

and usability in more diverse real-world scenarios.

Additionally, incorporating intelligent AI models such as GPT into the application could

enhance user interaction by enabling more natural and context-aware responses to improve the

overall user experience.

Moreover, we suggest extending the application's compatibility to additional platforms to

reach a wider user base. This may include creating versions for other mobile operating systems

like iOS and considering web-based or desktop applications to support users across various

devices and environments.

By focusing on these recommendations and consistently improving the application through

user feedback and emerging technologies, the Real-Time Document Reader Assistance App

can continue to evolve in accessibility and effectiveness for visually impaired users.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 84

REFERENCES

[1] “Vision impairment and blindness,” www.who.int, Aug. 10, 2023. Available:

https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-

impairment#:~:text=Prevalence-. [Accessed: Aug. 20, 2024]

[2] N. Griffin-Shirley et al., “A Survey on the Use of Mobile Applications for People who

Are Visually Impaired,” Journal of Visual Impairment & Blindness, vol. 111, no. 4, pp. 307–

323, Jul. 2017, doi: https://doi.org/10.1177/0145482x1711100402. Available:

https://files.eric.ed.gov/fulltext/EJ1149519.pdf

[3] Microsoft, “Seeing AI,” Microsoft Garage. Available: https://www.microsoft.com/en-

us/garage/wall-of-fame/seeing-ai/

[4] Be My Eyes, “Be My Eyes - Bringing sight to blind and low-vision people,”

Bemyeyes.com, 2019. Available: https://www.bemyeyes.com/

[5] “Envision - enabling vision for visually impaired,” www.letsenvision.com. Available:

https://www.letsenvision.com/

[6] “Supersense from Mediate: A First Look at a New Object and Text Recognition Mobile

App,” The American Foundation for the Blind, 2021. Available:

https://afb.org/aw/22/4/17489. [Accessed: Aug. 24, 2024]

[7] “FAQ,” www.supersense.app. Available: https://www.supersense.app/faq

[8] “Accessible technology: Google Lookout review - Thomas Pocklington Trust,” Thomas

Pocklington Trust, Mar. 12, 2021. Available:

https://www.pocklington.org.uk/health/technology/tech-news-and-views/google-lookout-

review/. [Accessed: Aug. 24, 2024]

[9] S. Lewis, “What is the Prototyping Model?,” SearchCIO, Jun. 2023. Available:

https://www.techtarget.com/searchcio/definition/Prototyping-Model

https://files.eric.ed.gov/fulltext/EJ1149519.pdf
https://www.microsoft.com/en-us/garage/wall-of-fame/seeing-ai/
https://www.microsoft.com/en-us/garage/wall-of-fame/seeing-ai/

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 85

[10] M. Martin, “Prototyping Model in Software Engineering: Methodology, Process,

Approach,” Guru99.com, Oct. 24, 2019. Available: https://www.guru99.com/software-

engineering-prototyping-model.html

[11] Microsoft, “Visual Studio Code,” Visualstudio.com, 2024. Available:

https://code.visualstudio.com/

[12] “Project Jupyter,” Jupyter.org, 2019. Available: https://jupyter.org/

[13] “TensorFlow Lite for Android,” TensorFlow. Available:

https://www.tensorflow.org/lite/android

[14] Y. He, “Research on Text Detection and Recognition Based on OCR Recognition

Technology,” 2020, doi: https://doi.org/10.1109/ICISCAE51034.2020.9236870

[15] V. Bagal and K. Gaykar, “Image based Text Translation using Firebase ML Kit,”

Academia.edu, Feb. 17, 2023. Available:

https://www.academia.edu/download/98777693/20_1_399_404.pdf. [Accessed: May 08,

2025]

[16] J. Bento, T. Paixão, and A. B. Alvarez, “Performance Evaluation of YOLOv8,

YOLOv9, YOLOv10, and YOLOv11 for Stamp Detection in Scanned Documents,” Applied

Sciences, vol. 15, no. 6, p. 3154, Mar. 2025, doi: https://doi.org/10.3390/app15063154

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 86

APPENDIX

Code Sample

Import Library

import 'dart:io';

import 'package:document_readerv2/tutorial.dart';

import 'package:flutter/material.dart';

import 'package:camera/camera.dart';

import 'package:flutter_tts/flutter_tts.dart';

import 'package:google_mlkit_text_recognition/google_mlkit_text_recognition.dart';

import 'package:permission_handler/permission_handler.dart';

import 'package:document_readerv2/display.dart';

import 'package:ambient_light/ambient_light.dart';

import 'package:flutter_vision/flutter_vision.dart';

Camera Initialization

 Future<void> initializeCamera() async {

 cameras = await availableCameras();

 if (cameras.isNotEmpty) {

 _cameraController = CameraController(

 cameras[0], // Use the first available camera

 ResolutionPreset.veryHigh,

);

 await _cameraController!.initialize();

 await _cameraController!.startImageStream((image) {

 if (isDetecting) {

 cameraImage = image;

 _detectDocument(image);

 }

 });

 await _cameraController!

 .setFlashMode(FlashMode.torch); // Initially turn on the flashlight

 setState(() {});

 }

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 87

Ambient Light Sensor

 void _monitorAmbientLight() {

 AmbientLight().ambientLightStream.listen((lightLevel) {

 setState(() {

 _ambientLightLevel = lightLevel;

 if (_ambientLightLevel != null && _ambientLightLevel! < 20) {

 _cameraController

 ?.setFlashMode(FlashMode.torch); // Turn on the flashlight

 } else {

 _cameraController

 ?.setFlashMode(FlashMode.off); // Turn off the flashlight

 }

 });

 });

 }

Google ML Kit Text Recognition

Future<void> _scanImage() async {

 if (_cameraController == null) return;

 final navigator = Navigator.of(context);

 try {

 // Capture the image

 final pictureFile = await _cameraController!.takePicture();

 final file = File(pictureFile.path);

 // Process the image for text recognition

 final inputImage = InputImage.fromFile(file);

 final recognizedText = await _textRecognizer.processImage(inputImage);

 // Navigate to displayscreen to display the recognized text

 await navigator.push(

 MaterialPageRoute(

 builder: (context) => ResultScreen(iniT: recognizedText.text),

),

);

 } catch (e) {

 ScaffoldMessenger.of(context).showSnackBar(

 const SnackBar(content: Text('Error occurred while scanning')),

);

 }

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 88

Document Detection

 Future<void> _initializeVision() async {

 vision = FlutterVision();

 await vision.loadYoloModel(

 labels: 'assets/labels.txt',

 modelPath: 'assets/best_float32.tflite',

 modelVersion: "yolov8",

 numThreads: 1,

 useGpu: true,

);

 setState(() {

 isModelLoaded = true;

 isDetecting = true;

 });

 }

 Future<void> _detectDocument(CameraImage image) async {

 final result = await vision.yoloOnFrame(

 bytesList: image.planes.map((plane) => plane.bytes).toList(),

 imageHeight: image.height,

 imageWidth: image.width,

 iouThreshold: 0.4,

 confThreshold: 0.4,

 classThreshold: 0.5,

);

 if (result.isNotEmpty) {

 setState(() {

 yoloResults = result.where((obj) => obj["box"][4] >= 0.9).toList();

 });

 _speak("Document detected. Hold still.");

 }

 }

 void _speak(String message) {

 DateTime currentTime = DateTime.now();

 if (currentTime.difference(previousSpeechTime) >= repeatDuration) {

 tts.speak(message);

 previousSpeechTime = currentTime;

 }

 }

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 89

Real-time Bounding Box

 // Function to display boxes around recognized objects

 List<Widget> displayBoxesAroundRecognizedObjects(Size screen) {

 if (yoloResults.isEmpty) return [];

 double factorX = screen.width / (cameraImage?.height ?? 1);

 double factorY = screen.height / (cameraImage?.width ?? 1);

 Color colorPick = const Color.fromARGB(255, 240, 240, 13);

 return yoloResults.map((result) {

 double objectX = result["box"][0] * factorX;

 double objectY = result["box"][1] * factorY;

 double objectWidth = (result["box"][2] - result["box"][0]) * factorX;

 double objectHeight = (result["box"][3] - result["box"][1]) * factorY;

 return Positioned(

 left: objectX,

 top: objectY,

 width: objectWidth,

 height: objectHeight,

 child: Container(

 decoration: BoxDecoration(

 borderRadius: const BorderRadius.all(Radius.circular(10.0)),

 border: Border.all(color: Colors.yellowAccent, width: 2.0),

),

 child: Text(

 "${result['tag']} ${((result['box'][4]) * 100).toStringAsFixed(2)}%",

 style: TextStyle(

 background: Paint()..color = colorPick,

 color: const Color.fromARGB(255, 9, 9, 9),

 fontSize: 14.0,

),

),

),

);

 }).toList();

 }

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 90

Text Alignment Sorting Algorithm

String sortingAlgorithm(List<TextBlock> blocks) {

 List<TextLine> allLines = [];

 // Collect all text lines from blocks

 for (TextBlock block in blocks) {

 allLines.addAll(block.lines);

 }

 // Sort lines by their vertical position (boundingBox.top)

 allLines.sort((a, b) => a.boundingBox.top.compareTo(b.boundingBox.top));

 List<List<TextLine>> groupedRows = [];

 for (var line in allLines) {

 bool added = false;

 // Try to add to an existing row if the vertical position is close

 for (var row in groupedRows) {

 if ((line.boundingBox.top - row.last.boundingBox.top).abs() < 22) {

 row.add(line);

 added = true;

 break;

 }

 }

 // If no suitable row found, create a new one

 if (!added) {

 groupedRows.add([line]);

 }

 }

 // Sort each row's lines from left to right before merging

 List<String> mergedRows = groupedRows.map((row) {

 row.sort((a, b) => a.boundingBox.left.compareTo(b.boundingBox.left)); // Sort text left to

right

 return row.map((line) => line.text).join(" "); // Merge text in row

 }).toList();

 return mergedRows.join("\n"); // Return formatted text

}

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 91

Extract total from receipt function

 void _extractTotalFromReceipt(String text) {

 final regex = RegExp(r'\bTOTAL\s*(RM)?\s*(\d+\.\d{2})', caseSensitive: false);

 final match = regex.firstMatch(text);

 if (match != null) {

 String amount = match.group(2)!; // Always the numeric value

 _sendMessageWithResponse("The total amount on the receipt is RM$amount");

 } else {

 _sendMessageWithResponse("I couldn't find the total on the receipt.");

 }

}

 void _sendMessageWithResponse(String message) {

 setState(() {

 _messages.add({'sender': 'bot', 'text': message});

 });

 }

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 92

POSTER

