

Vehicle Speed Detection Using Machine Vision on a Single-Board Computer

By

Goh Jin Yu

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

FEBRUARY 2025

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

COPYRIGHT STATEMENT

© 2025 Goh Jin Yu. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the requirements

for the degree of Bachelor of Computer Science (Honours) at Universiti Tunku

Abdul Rahman (UTAR). This Final Year Project report represents the work of the

author, except where due acknowledgment has been made in the text. No part of this

Final Year Project report may be reproduced, stored, or transmitted in any form or

by any means, whether electronic, mechanical, photocopying, recording, or

otherwise, without the prior written permission of the author or UTAR, in

accordance with UTAR's Intellectual Property Policy.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

ACKNOWLEDGEMENTS

I would like to extend my heartfelt gratitude to my supervisor, Ts. Wong Chee Siang, for

providing me with the opportunity to work on the single-board computer (SBC) project. This

experience marks the beginning of my journey towards a career in SBC development, and I am

truly thankful for your guidance and support. Additionally, I want to express my appreciation

to my parents and family for their unwavering love, support, and encouragement throughout

this journey. Your belief in me has been invaluable. Thank you all immensely.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

ABSTRACT

This proposal project is about to develop a real time speed tracking system in UTAR. In this

era, more and more students drive to school, and many of them drive very fast. Although their

speed cap and road bumps in school area, but many of them still unrealise that they exceed the

speed limit. One of the methods to remind student how fast they drive, is to make a sign board

where it can detect how fast they drive and show it on the sign board with a large 7segment

LCD. This not only reminds the driver how fast they drive, but also other students around that

area could also see the sign board.

This project leverages a single-board computer such as Raspberry Pi 4B and Star Five Vision

Five v2 to monitor vehicle speed using a camera-based detection system. The captured data is

processed to determine the speed, which is subsequently displayed on a 2-digit 7-segment

display. The integration of real-time image processing with the simplicity of the display offers

an efficient solution for speed detection applications. The system's design, implementation, and

performance evaluation are discussed, highlighting its potential use in traffic monitoring and

management systems. The platform architecture will be based on ARM and RISC-V.

Area of Study (Minimum 1 and Maximum 2): Single Board Computer, Computer Vision

Keywords (Minimum 5 and Maximum 10): RISC-V architecture, ARM architecture, Python,

OpenCV, YouOnlyLookOnce(YOLO)

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

TABLE OF CONTENTS

TITLE PAGE i

COPYRIGHT STATEMENT ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES viii

LIST OF TABLES ix

LIST OF SYMBOLS x

LIST OF ABBREVIATIONS xi

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 1-2

1.2 Objectives 2

1.3 Project Scope and Direction 2-3

1.4 Contributions 3-4

1.5 Report Organization 4

CHAPTER 2 LITERATURE REVIEW 5

2.1 Previous Works on Speed Detection System

2.1.1 Radar and LIDAR-Based Systems

2.1.2 Inductive Loop Sensors

 2.1.3 Video Based Speed Detection System

5-7

2.2 Limitation of Existing Systems

2.2.1 Limitation of Radar and LIDAR-Based Systems

 2.2.2 Limitation of Inductive Loop Sensors

2.2.3 Limitation of Video Based Speed Detection System

8

2.3 Summary of Strength and Limitation 9

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH 10-11

3.1 System Design Diagram/Equation 11

3.1.1 System Architecture Diagram 11-14

3.1.2 Use Case Diagram and Description 15-17

3.1.3 Activity Diagram

3.1.4 Timeline

18-19

19-20

CHAPTER 4 SYSTEM DESIGN 21

 4.1 System Block Diagram 21

 4.2 System Components Specifications 22-23

 4.3 Circuits and Components Design 23-25

 4.4 System Components Interaction Operations 26-27

CHAPTER 5 SYSTEM IMPLEMENTATION 28

 5.1 Hardware Setup 28-30

5.2 Software Setup 30-41

5.3 Setting and Configuration 41

5.4 System Operation (with Screenshot) 41-50

5.5 Implementation Issues and Challenges 50-53

5.6 Concluding Remark 54-55

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 56

6.1 System Testing and Performance Metrics

56-57

6.2 Testing Setup and Result 58-72

6.3 Project Challenges 72-75

6.4 Objectives Evaluation 75-76

6.5 Concluding Remark 77

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

CHAPTER 7 CONCLUSION AND RECOMMENDATION 78

7.1 Conclusion 78-79

7.2 Recommendation 79-80

REFERENCES 81-82

 APPENDIX

 POSTER 83

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

LIST OF FIGURES

Figure Number Title Page

Figure 2.1 LIDAR speed detection 5

Figure 2.2 Inductive loop sensor 6

Figure 2.3 Video based speed detection system 7

Figure 3.1 Waterfall Model 10

Figure 3.2 System Block Diagram 11

Figure 3.3

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.9.1

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Camera Mounting Point 1

Use case Diagram for Vehicle Speed Detection System

Activity Diagram for Speed Detection System

Gantt Chart FYP1

Gantt Chart FYP2

Block Diagram of Speed Detection System

General Work Procedure

Circuit and Component design for Raspi 4B

GPIO diagram for Raspi 4B

Circuit and Component design for VFv2

GPIO diagram for Vision Five v2

System Components Interaction Operation for Raspi 4B

System Components Interaction Operation for VFv2

13

15

18

19

20

21

22

23

24

24

25

26

27

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.9.1

Example of System Setup

Example of System Setup 2

Official download page of Raspi

Main page of Raspi Imager

Selecting OS

Select Storage device

Installation Complete

Inserting microSD card into Raspi 4B

PI connect

VFv2 OS download page

29

30

30

31

31

32

32

33

34

34

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

Figure 5.9.2

Figure 5.9.3

Figure 5.9.4

Figure 5.9.5

Figure 5.9.6

Figure 5.9.7

Figure 5.9.8

Figure 5.9.9

Figure 5.9.9.1

Figure 5.9.9.2

Figure 5.9.9.3

Figure 5.9.9.4

Figure 5.9.9.5

Figure 5.9.9.6

Figure 5.9.9.7

Figure 5.9.9.8

Figure 5.9.9.9

Figure 5.9.9.9.1

Figure 5.9.9.9.2

Figure 5.9.9.9.3

Figure 5.9.9.9.4

Figure 5.9.9.9.5

Figure 5.9.9.9.6

Figure 5.9.9.9.7

Figure 5.9.9.9.8

Figure 5.9.9.9.9

Figure 5.9.9.9.9.1

Figure 5.9.9.9.9.2

Figure 5.9.9.9.9.3

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Disk Imager

Connecting all the peripherals to VFv2

Attached heatsink on the CPU of VFv2

TP-link router setup user interface

Selecting wireless network

Setting up password

Git Hub repository

Download coconames from Git Hub

Terminal of Debian OS

The system is detecting speed of a toy car

The marking on the table

Measure the marking on the table

Shows the coding to edit meter per pixel

Shows the coding to edit width and height

Shows the coding to edit FPS

Shows the coding to edit source of camera

Shows the coding to edit smoothing factor

Shows the coding to edit vehicle counting timer

Shows the terminal of VFv2

Shows the OpenCV windows in VFv2

Shows the table with marking

Measure the marking distance

Show code to modify meter per pixel

Show code to modify resolution of the camera

Show code to modify FPS of the camera

Show code to modify resolution of the camera

Show code to modify smoothing factor

Show high cpu usage and program not responding

Vision Five v2 running Yolo with low fps

Testing location is at the housing area

Example of the testing setup

Shows the capture image of Raspi 4B

Shows the capture image of Raspi 4B detecting vehicle

35

36

36

37

37

38

39

39

41

42

42

43

43

43

44

44

45

45

46

46

47

47

48

48

49

49

50

52

55

58

58

60

60

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Figure 6.9.1

Figure 6.9.2

Figure 6.9.3

Figure 6.9.4

Figure 6.9.5

Figure 6.9.6

Figure 6.9.7

Figure 6.9.8

Figure 6.9.9

Figure 6.9.9.1

Figure 6.9.9.2

Figure 6.9.9.3

Figure 6.9.9.4

Figure 6.9.9.5

Figure 6.9.9.6

Figure 6.9.9.7

Figure 6.9.9.7

Figure 7.1

Shows VFv2 detects the autogate and show speed

Shows VFv2 detects dry leaves and show speed

Shows VFv2 detects human movement and show speed

Shows VFv2 detects ant movement and show speed

False speed detected of the moving vehicle when auto gate

moving

FPS captured in bright environment on Raspi

FPS captured in bright environment on VFv2

FPS captured in dark environment on Raspi

FPS captured in dark environment on VFv2

Shows the system tested in daytime with Raspi 4B

Shows the system tested in during night time with Raspi 4B

Shows the system tested in during day time with VFv2

Shows the system tested in during night time with VFv2

Shows the system unable to detect vehicle if obstacle

blocking using Raspi 4B

Shows the system able to detect different type of vehicle

using Raspi 4B

Shows the system able to detect two vehicle while calculate

speed using Raspi 4B

Shows the system unable to detect speed of truck and van

using Raspi4B

Shows the system overheating and skip frame on Raspi 4B

Shows any vehicle speed using VFv2 without Yolo

Shows the system unable to detect speed when 2 vehicle go

different direction

Price tag for both SBCs

Image distortion when perform recording on VFv2

Raspberry PI AI HAT+

61

61

61

61

61

62

63

63

63

65

65

66

67

68

68

69

70

70

71

71

72

74

79

LIST OF TABLES

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xi

Table Number Title Page

Table 2.1

Table 3.1

Strengths and limitations of the existing speed detection

systems

Use case Description

 9

16-17

Table 5.1

Table 5.2

Table 6.1

Table 6.2

Table 6.3

Table 6.4

Specification for Raspi 4B system

Specification for VFv2 system

Verification for Procedure 1

Verification for Procedure 2

Verification for Procedure 3

Evaluation table between two SBCs

28

28

56

57

57

76

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xii

LIST OF SYMBOLS

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiii

LIST OF ABBREVIATIONS

API Application Programming Interface

CPU Central Processing Unit

GPIO General Purpose Input Output

IOT Internet of Things

RAM

RaspPi

SBC

VFv2

LIDAR

YOLO

Webcam

Random Access Memory

Raspberry Pi

Single board computer

Vision Five v2

Light Detection and Ranging

You Only Look Once

Web camera

CHAPTER 1

1
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 1

Introduction
 Nowadays, more and more university students prefer driving to school or riding

a bike instead of using public transportation. With the increased use of personal vehicles,

over speeding has also become a common issue. To address this, a real-time speed

tracking system has been developed to remind drivers when they exceed the speed limit.

Using a camera equipped with an algorithm to calculate and predict vehicle speed,

along with a large 7-segment LCD display on a signboard, the system informs drivers

of their speed as they pass through a specific road section. The main objective of this

project is to design and develop a vehicle speed tracking system that operates along the

roadside.

1.1 Problem Statement and Motivation

 Students exceeding speed limits, both inside and outside school zones, pose

significant safety risks to pedestrians, cyclists, bike riders, and other road users.

Despite existing speed regulations and law enforcement efforts, many students

continue to drive over the limit, leading to an increased number of accidents and

injuries. Some incidents occur within school areas where students drive too fast and

fail to stop in time. Therefore, an effective monitoring system is needed to accurately

detect and display vehicle speeds in these zones to reduce over speeding and enhance

safety.

This project addresses the issue by developing a camera-based speed detection system

that utilizes a single-board computer (SBC) to monitor and display vehicle speeds in

real-time on a large 2-digit 7-segment display. The motivation behind this project is to

create a cost-effective speed tracking system using image recognition technology with

SBCs. Compared to existing traffic speed detection methods such as LIDAR-based

systems (such as AES/AWAS speed cameras used on highways), SBCs offer a more

affordable alternative. Given the large size of school zones, implementing

AES/AWAS cameras across multiple areas would be costly. Additionally, school

zones typically have multiple speed bumps and a speed limit of 30 km/h, while most

over speeding vehicles in these areas travel between 30 km/h and 60 km/h. This

CHAPTER 1

2
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

system serves as a practical alternative for detecting moderate vehicle speeds in

school zones.

1.2 Objectives

 The objective of this project is to analyze the current state of vehicle speed

detection systems and explore the use of computer vision on single-board computers.

The project will progress through the design and implementation phases, where the

system will be developed using OpenCV and deployed on the Vision Five v2 and

Raspberry Pi 4B platforms.

A significant part of the project will focus on optimizing system performance to

ensure efficient operation within the resource constraints of the selected single-board

computers. Additionally, a comparative analysis of the RISC-V and ARM

architectures will be conducted to evaluate their respective strengths and weaknesses

in handling machine vision tasks.

Extensive real-world testing will be carried out to validate the system’s reliability and

accuracy. The project will conclude with an assessment of its feasibility for broader

deployment, considering factors such as cost, scalability, and integration with existing

traffic monitoring infrastructure.

1.3 Project Scope and Direction

 This project aims to design, develop, and evaluate a vehicle speed detection

system using computer vision on two types of single-board computers: the VisionFive

(RISC-V architecture) and Raspberry Pi (ARM architecture). The system will utilize

OpenCV, an open-source computer vision library, for image detection and processing.

The key objectives of the project are as follows:

1. System Development – Implement a vehicle speed detection algorithm using

OpenCV, deploy and optimize the algorithm for both single-board computers,

and integrate cameras to capture real-time video footage of vehicles.

2. Performance Optimization – Enhance machine vision algorithms to operate

efficiently within the hardware constraints of the VisionFive and Raspberry Pi.

Additionally, compare the processing capabilities and speed detection

accuracy between the RISC-V and ARM architectures.

CHAPTER 1

3
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3. Validation and Testing – Conduct extensive testing under various

environmental conditions, including different lighting, weather, and traffic

densities. Validate the accuracy of the speed detection system by comparing

its results with standard speed measurement tools. Furthermore, analyze the

system’s real-time performance, including frame rates, detection accuracy, and

processing latency.

4. System Evaluation – Assess the effectiveness, cost-efficiency, and scalability

of the system for potential deployment in traffic monitoring. Evaluate the

advantages and limitations of using Vision Five (RISC-V) versus Raspberry Pi

(ARM) for this application.

1.4 Contributions

 The development of a vehicle speed detection system using machine vision on

single-board computers like Vision Five v2 (RISC-V) and Raspberry Pi (ARM) has

the potential to revolutionize traffic monitoring. This low-cost, portable, and efficient

solution for speed detection could significantly enhance road safety, reduce speeding-

related accidents, and improve traffic law enforcement in both urban and rural areas.

The affordability and accessibility of single-board computers make this system highly

scalable and deployable, even in regions with limited resources such as electricity. As

a result, it offers a practical and cost-effective alternative to traditional speed

detection systems, which are often expensive to implement and maintain.

 This project holds substantial value in the fields of computer vision, embedded

systems, and transportation technology. It contributes to ongoing research on machine

vision applications in resource-limited environments, particularly on emerging

architectures like RISC-V. Additionally, by utilizing open-source tools such as

OpenCV in real-time applications, the project showcases the capability of affordable

hardware platforms to handle complex tasks like vehicle speed detection.

Furthermore, by comparing the performance of Vision Five v2 and Raspberry Pi 4B,

this study provides valuable insights into the suitability of different architectures for

machine vision tasks, guiding future developments in this area.

 A key contribution of this project is the comparison of RISC-V and ARM

architectures in the context of vehicle speed detection. Benchmarking their

performance will generate useful data for future research and development efforts in

CHAPTER 1

4
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

embedded machine vision. The project's findings and system prototype could serve as

a foundation for the deployment of low-cost, scalable speed detection systems in real-

world environments.

Additionally, this project serves as an important case study for students and

researchers in computer vision, embedded systems, and transportation technology. By

demonstrating the practical application of theoretical concepts in a real-world

scenario, it provides valuable insights for researchers and developers looking to

optimize their systems for specific hardware platforms.

1.5 Report Organization

The information about Vehicle Speed Detection System are shown in the following

chapters. In Chapter 2, previous work and project backgrounds are reviewed. Then,

method and approach are presented in Chapter 3, which also include the calculation and

formula for this project. Next, Chapter 4 describes system block diagram and the

component hardware use for the project. Chapter 5 shows the proper setup for the speed

detection system and software configuration. Chapter 6 shows the overall system

evaluation and result discussion. Finally, Chapter 7 reports the conclusion and summary

of this project.

CHAPTER 2

5
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 2

Literature Review

2.1 Previous works on Speed Detection System

 In the research of speed detection system, numerous methods have been

found. This section shows review of three current systems that has been

implement commonly at the highway such as LIDAR detection system,

Inductive loop sensors system, and video-based speed detection system.

 2.1.1 Radar and LIDAR-Based Systems

 One of the earliest methods for speed detection involves the use of radar and

LIDAR (Light Detection and Ranging) technology use laser beams to precisely

measure distances and determine vehicle speeds [4]. It has been widely used due to

their ability to accurately measure the speed of vehicles from a long distance without

direct contact. It can even target specific vehicles in dense traffic. However, the

systems are often expensive and require manual operation, making them less suitable

for continuous monitoring in school zones where most of the car driving with medium

speed.

Figure 2.1 LIDAR speed detection

CHAPTER 2

6
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 2.1.2 Inductive Loop Sensors

 Inductive loop sensors, this systems consist of wire loops embedded in the road

surfaces, are another traditional method used for vehicle speed detection. These

sensors measure the speed of vehicles by detecting the time it takes for a vehicle to

pass over two or more loops placed at known distances apart [6]. Although inductive

loop sensors provide accurate speed measurements and are reliable, their installation

and maintenance costs are high, Moreover, this method also face drawbacks including

complex installation, high maintenance expenses, and potential damage to road

surfaces over time. Additionally, they are typically restricted to monitoring vehicles at

fixed locations, which may not provide comprehensive traffic data. They are not

suitable to be deploy in temporary or changing environments like school zones.

Figure 2.2 Inductive loop sensor

CHAPTER 2

7
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.1.3 Video-Based Speed Detection Systems

 Video-based speed detection systems uses camera and image processing

technique to monitor vehicle speed. These systems capture video footage and analyze

it to identify vehicles, track their movement, and calculate speed based on the distance

travel over time [7].

 Video-based systems are advantageous because they can monitor multiple lanes

of traffic simultaneously and provide visual evidence of speeding violations . This

method are also flexible than inductive loops and can be easily integrated with

existing traffic cameras. However, challenges such as varying lighting conditions and

the need for accurate calibration can impact their performance.

Figure 2.3 Video based speed detection system

CHAPTER 2

8
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2 Limitation of Existing Systems

 2.2.1 Limitation on Radar and LIDAR-Based Systems

High cost, the purchase and maintenance of these systems are quite expensive, which

is not possible to massively implement it in school zones. Radar guns need manual

operation by law enforcement, limiting their utility for continuous monitoring [6].

Coverage is limited, the systems can only monitor one lane or vehicle at a time, which

may not be sufficient for multi-lane roads and during crowded sessions.

2.2.2 Limitation on Inductive Loop Sensors

 The installation requires roadwork, and maintenance can be challenging,

especially in areas with frequent traffic or environmental wear. Permanent location,

once installed, these sensors are fixed in place and cannot be easily relocated or

adjusted, reducing their flexibility. The installation also requires significant amount of

time, it will cause traffic jam especially in school area during installation.

The sensor are ineffective for off-road surface, such as bicycle riding zones and the

sideway of the road.

2.2.3 Limitation on Video Based Speed Detection System

 Video-based systems can be affected by different light conditions, weather, and

camera positioning, which may reduce accuracy. For example, lowlight or raining

conditions which might cause false positive detection. To ensure accurate speed

detection, careful calibration of the camera angle, frame rate, and distance is needed,

which can be technically challenging. Real-time video processing requires great

amount of computational resources, weaker hardware might not be able to process the

video in real time and cause delay.

CHAPTER 2

9
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.3 Comparison Of Previous Works

Application Strengths Limitations

Radar and
LIDAR-Based
Systems

- High accuracy

- Proven technology

- Real-time Monitoring

- Long range

- High Cost

- Manual Operation

- Limited Coverage

Inductive Loop
Sensors

- Accurate Measurements

- Low False Positives

- Reliable

- High Installation and Maintenance
Costs

- Long installation time

- Damage road surface when deploy

- Fixed Location

- Limited to Road Surface

Video-Based
Speed Detection
Systems

- Flexible Deployment

- Multiple Lane Monitoring

- Visual Evidence

- Utilize existing camera infrastructure

- Environmental Sensitivity

- Complex Calibration

- Processing Power Requirements

Table 2.1 Strengths and limitations of the existing speed detection systems

Table 2.1 provides summary of the strengths and limitations of

three existing speed detection systems. In conclusion, each method of

speed detection has its own strengths and weaknesses, making the

choice of method dependent on the specific requirements of the

application. For school zones, where cost, flexibility, and real-time

monitoring are an important factor, video-based systems offers a more

promising balance of features.

10
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

Chapter 3 System Methodology/Approach

System Development Methodology
For this project, the Waterfall Model was used as the system development methodology. The

Waterfall Model follows a linear and sequential approach, where each phase is completed

before moving to the next. This method was chosen due to its structured approach, which

ensures that all requirements, design, and implementation steps are carefully planned and

executed. Waterfall model was chosen because I have a clear scope and fixed requirements

which is to detect the vehicle’s speed.

Figure 3.1 Waterfall model

In the first phase, the requirement is analyzed by deciding how the system should be built.

The system needs to detect vehicles, estimate the speed and then display results on LCD

display. SBCs which is cost effective had been chosen. Challenges such as low processing

power, software limitations were considered. An open-source Speed Detection program is

downloaded online to test the effectiveness and analyze the pro’s and con’s of the system.

On the system design phase, because the result given by the open-source Speed detection

system is not satisfying due to lack of object detection, I have decided to make a Speed

Detection System based on YOLO tiny, where it can be configured to only capture vehicle

object. Multithreaded is also being implemented to improve FPS and real time performance.

11
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

GPIO integration was designed for TM1637 7-segment display to output speed. The system

uses pixel movement and time difference to do calculations for the vehicle speed.

During the implementation phase, the video processing pipeline was developed. I integrate

some functions such as background subtraction to increase accuracy, multithreaded video

capture class was implemented to optimize real time performance. The TM1637 display

module was integrated using RPI GPIO to show detected speed. Speed estimation function

was fine tuned to convert pixel movement into real world speed.

For Vision Five v2, the TM1637 display module is integrated with GPIOD because RPI

GPIO only supports Raspi SBC.

Next, the testing and debugging phase where I test the system under different lighting

conditions, vehicle speeds and distances. Issue such as false detection when vehicle is idling

in the detection range caused by noise, low FPS issues were fixed.

On Vision Five v2, due to CPU performance issue, the YOLO object detection is being

removed to get an acceptable frame rate. Background subtraction and motion tracking is used

so that the SBCs could at least give some working results.

Finally, the last phase which is deployment and evaluation. The final system was deployed

and real world tests were conducted. The system will be tested with toy car and real car.

Limitation of the SBCs were analyzed.

3.1 System Design Diagram/Equation

3.1.1 System Architecture Diagram

Figure 3.2 System Block Diagram

12
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

The overall system developed consists of two parts, hardware and software. The hardware used

in this system will be Raspberry Pi that connects USB webcam and 7segment LCD to support

the solution. In this report, the detailed system design will only cover the system deployment.

For the first step we will need to set up the system by connecting the peripheral to the Raspberry

Pi and switch it on. After entering the OS, we would need to tune the intrusion lines, users

would need to enter distance per pixel in meter. The speed will be calculated when the vehicle

passes through.

The camera will capture the video data at resolution of 320x240 at 30fps to match the load of

the CPU. Higher resolution will reduce the framerate which will increase processing time and

reduce the accuracy, it can also reduce the detection rate.

Then, we launch OpenCV to perform movement pattern detection, and by using mathematical

model implements inside the code, the Raspberry PI should be able to calculate the actual speed

of the vehicle when the vehicle pass through the intrusion lines.

Finally, the result of the speed calculated will be output to the 7segment display LCD to show

the speed of the driver.

Input : the real time raw video data collect from the webcam

Output : the speed of the vehicle data

Camera mounting point is an important factor which needs to be configured carefully in order

to get an accurate speed reading of the vehicle.

Camera Mounting Position

Below is the scientific equation for the vehicle Speed Calculation with OpenCV when the

camera is mounted at the side of the road and is 90degree towards the incoming vehicle. This

method of mounting provides an easy calculation to the system. But due to the hardware we

use which only support up to 30fps and only 78degree FOV, if the vehicle passing through the

detection range is travelling at a very fast speed, the system could miss the object detection.

For example, if the vehicle travels too fast, the camera manages to capture a single frame of

the vehicle, but unable to capture the second frame of the vehicle, it will not output a speed

result. The calculation is shown below :

13
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

Figure 3.3 Camera Mounting Point 1

Variables and Assumptions:

• Vehicle Length (L): 4366 mm (4.366 m) real car, toy car 13.5cm

• Webcam Field of View (FOV): 78 degrees

• Frame Rate per second (fps): 30fps

• Pixel width = 800

• Pixel height = 240

First, we need to divide meter by pixel to know how long it is for each pixel. We get the scaling

result.

Meter per pixel :

Meter / pixel = scale

78°

14
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

Next, we calculate distance by calculating the coordinate of the object every 2frame, and

multiply the scale of the pixel.

Distance calculation :

(x1,y1) and (x2,y2) are the coordinates of the object's position in pixels at two different frames.

Scale is the conversion factor of pixel distance to meter (meter per pixel)

Formula is distance (m) = sqrt[(x2-x1)^2 + (y2-y1)^2]*scale

Formula is shown below :

𝑑𝑑 = �(𝑥𝑥2 − 𝑥𝑥1)2 + (𝑦𝑦2 − 𝑦𝑦1)2 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

Next, we calculate time taken for the system to capture the object. We find the different

between the 2 frame and divide by frame captured per second.

Time calculation :

n1, n2 = number of frame between two position

f = fps

time = |n2-n1| / fps

formula is shown below :

𝑡𝑡＝
|𝑛𝑛2 − 𝑛𝑛1|

𝑓𝑓

Finally, we calculate predicted speed using formula

Speed = distance / time

V = speed velocity

V = (sqrt[(x2-x1)^2 + (y2-y1)^2]*scale) / (|n2-n1| / fps)

𝑣𝑣 =
�(𝑥𝑥2 − 𝑥𝑥1)2 + (𝑦𝑦2 − 𝑦𝑦1)2 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

|𝑛𝑛2 − 𝑛𝑛1|
𝑓𝑓

Lastly, we convert the meter per second to kilometer per hour :

Speed km/h = speed m/s * 3.6

15
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

3.1.2 Use Case Diagram and Description

The use case diagram for this system include 3 actor which is user, system and vehicle that

pass through. User can make configuration for the system by setting the meter per pixel of the

detection range, the fps of the detection system, resolution of the camera for video input. User

can adjust the smoothing factor to match lighting conditions to improve accuracy. User can

input the source of the camera to capture video data. User can exit the program by pressing q.

The SBCs is responsible to detect vehicle movement and calculate speed, then output the result

to the 7-segment display. The vehicle that travels through the detection range will be detected.

Figure 3.7 Use case diagram for Vehicle Speed Detection System

16
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

Use case description

Use case name Vehicle Speed Detection System Using SBC

Use case description How the system detects and calculates the speed of vehicles

passing through a monitored area (e.g., school zones) using a

camera mounted on different angle. The system captures real-time

video, processes vehicle movement, calculates speed, and displays

the detected speed on a 2-digit 7-segment display.

Actor Operator

Precondition The camera and SBC must be properly set up and calibrated.

The system must be powered on and running the detection

software.

The camera’s field of view should cover the target road area.

Main Flow 1 Start session

1.1 Operator power up the SBC.

1.2 Operator calibrates the system by entering the meter per

pixel of the detection range.

1.3 Operator enter the command into terminal to launch the

program.

2 Operation process, image capturing

2.1 The camera captures a continuous video feed of the road.

2.2 The system applies motion detection and object tracking to

identify moving vehicles.

2.3 The system detects a vehicle and tracks its displacement

between two frames.

2.4 The system will record video of the vehicle that passes

through. (VFv2 only)

2.5 The system will count the vehicle that passes through the

detection (Raspi 4B only)

3 Calculation process, data processing

3.1 Using pixel displacement and time interval, the system

calculates the real-world speed.

3.2 The computed speed is converted into km/h.

4 Display Result

17
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

4.1 The speed is displayed on the 2-digit 7-segment display for

driver awareness.

5 Reset Display Result

5.1 The system will reset the display result after the vehicle

leaves the detection range.

5.2 The system will stop recording after the vehicle leaves the

detection range.

Alternative Flow

(Edge cases & error)

1. Vehicle partially visible - The system waits for the vehicle

to be fully in view before measuring speed.

2. Multiple vehicles detected - The system applies object

tracking to focus on the primary moving vehicle in the lane.

3. Low light conditions - Image enhancement techniques are

applied to improve detection.

4. Camera shake or misalignment - Operator has to perform

periodic recalibration for the camera using reference

markers.

Post Conditions - The vehicle’s speed is successfully measured and displayed.

- The system will automatically perform recording when it detects

vehicle that pass through.

- The system will stop recording after the car leaves the detection

zone and continues monitoring the next vehicle.

- The system will count the vehicle that pass through

Exception - If the system fails to detect moving objects, it will not display any

speed and will not perform recording.

- If the system fails to detect moving objects, it will not count it as

a vehicle.

- If the camera is removed from the system, the program will not

launch and will give error.

- The operator should use Q to terminate the program.

Author Goh Jin Yu

Table 3.1 Use Case Description

18
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

3.1.3 Activity Diagram

Figure 3.8 Activity Diagram of Speed Detection System

First, the user would need to provide distance per pixel in meter and enter into the code

before launching the application. When launching the application, OpenCV and Yolo v4 tiny

will execute. The webcam will capture and output the video data for detection. First, the

system will average position over few frames, this is to solve the false speed detection issue

19
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

due to noise on low light condition. The pixel positions due to minor fluctuations of noise

which lead to low detection accuracy. This causes an unmoving toy car to show speed results.

Implementing this algorithm enhances the result by averaging positions over a few frames.

Next, Yolo v4 tiny will capture vehicle object based on trained dataset. It will only detect

vehicles such as cars, buses, bikes, trucks and bicycles. This further enhances the precision

compared to OpenCV based detection where it will give false speed detection when

conditions such as multiple vehicles pass by or when human walks beside the sideroad and

one vehicle pass by. Yolo v4 tiny will only track the object when it detects that the object is a

vehicle before performing speed calculations. After performing calculations from the above

formula, it will output the speed result on the 7segment display.

3.2 Timeline

FYP1 timeline

Figure 3.9 Gantt Chart FYP1

In Week 1, I have installed the Linux Book Worm OS for the raspberry PI and tested the pre-

written software from GitHub with real life testing and understand the current development

and issue faced by the project. On week 2, I perform research to find the best methods and tools

that can solve the issue such as false detection and algorithm that can perform accurate vehicle

detection and do a literature review. In week 3, block diagram are drawn for rough idea of the

method that show how the system works and compile all the documentation and report. In week

4, I start to have better understanding of the vehicle speed detection implementation method

and start to perform coding. The code works and it is able to detect the speed of a toy car with

some minor issue. In week 5, I spend time to optimize the code to make it run more efficiently

and smoothly, I also added 7segment display support for the system to display speed of the

object. During week 6, I continue to prepare the report and slide for presentation and also

continue to research more method to optimize the system. By week 7, the report will be

finalized for submission and for the presentation.

20
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

FYP2 timeline

Figure 3.9.1 Gantt Chart FYP2

In Week 1, I carried out research for the Vision Five V2, which include surfing the forum for

more info and finally decide to use Debian which is officially provided by StarFive, and

understand the current development and issue faced by the project when using openCV. The

whole week 2, I perform an installation of the Debian OS, and internet set up for the VF2. In

week 3, I try to install required software for the VF2 which is needed to run the Speed Detection

Program. In week 4, I start to modify the code in order to make it run on VF2. The code face a

massive amount on incompatibility issue. On week5, the code is able to work after going

through lots of troubleshooting and code fixing. In week 6, I spend time to optimize the code

to make it run more efficiently and smoothly, VF2 runs very slow when using Yolo Object

Detection. During week 7, I continue to add more functions into the system. On week 8, I

perform system testing on toy car. On week9, I perform system testing on real vehicles around

my housing area. During week 10, I am preparing the report and continuing to optimize the

system for improvement. On week11, I checked the report format before finalizing. By week

12, the report will be finalized for submission and start preparing for the presentation.

CHAPTER 4

21
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4 System Design
4.1 System Block Diagram

Figure 4.1 Block Diagram of Speed Detection System

To address the disadvantage of existing speed detection systems, this project proposes an

innovative and cost-effective solution that aim to enhances traffic speed monitoring in sensitive

areas such as school zones. The system is designed to utilize the adaptability of video-based

detection, integrated with real-time processing on a single-board computer, to address the

specific challenges of student over speeding in and around school areas.

CHAPTER 4

22
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.2 General Work Procedure

4.2 System Components Specifications
1. Web Camera or Camera Module is used to continuously captures video of the roadway,

providing the raw data needed for vehicle detection and speed analysis. The placement and

orientation of the camera are important to ensure a clear view of the vehicles. A camera module

or USB webcam is used for video capture input. These cameras are selected due to cost

effective consumer hardware and good compatibility with the selected SBC and their ability to

capture high-resolution images at sufficient frame rates. The system can be configured to

capture video at different resolutions depending on the required detection accuracy and

available processing power.

2. Single-Board Computer for Real-Time Processing. For this project we uses a single-board

computer (SBC), such as the Raspberry Pi and VisionFive v2 to perform on-site processing of

the camera feed. The SBC handles all computational tasks, including object detection, tracking,

and speed calculation[8], without relying on external processing such as servers or cloud-based

services. This decentralized approach ensures that the system is both cost-effective and

scalable. SBC is chosen due to its affordability, low power consumption, and sufficient

processing capabilities. The SBC also connected with other peripheral devices like webcam or

camera module and the 7-segment display.

3. OpenCV, which is an Open-Source Software and allow Scalability, the system is built using

open-source software and open source OS, this is to ensure that it can be easily customized,

extended, and scaled. The use of open-source libraries like OpenCV allows for ongoing

development and community contributions, making it possible to adapt the system for different

use cases or integrate it with other traffic monitoring solutions [2]. OpenCV, form the core of

the software stack. The system architecture is designed to be modular, allowing for the addition

of new features or integration with larger monitoring systems. The scalability of the solution is

CHAPTER 4

23
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

achieved through the ease of replication and deployment across multiple locations, with

minimal setup requirements.

4. Calculate speed, user would need to provide the approximate distance(m) per pixel of the

camera’s field of view, so that the system could calculate the speed of the vehicle travelling

through the detection range. User could also change the resolution and fps in the setting based

on the camera model’s specification they use.

5. Display speed using 2-Digit 7-Segment Display. After calculating the vehicle's speed, the

system displays the result on a large 2-digit 7-segment display. This instant feedback serves as

an alert for speeding drivers by making them aware of their current speed. The display is simple

yet effective, providing real-time information in a highly visible format. The 7-segment display

is connected through GPIO pins of the SBC.

4.3 Circuits and Components Design

Figure 4.3 Circuit and Component design for Raspi 4B

CHAPTER 4

24
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.4 GPIO diagram for Raspberry Pi 4B

The GPIO pin connected to the Raspberry PI 4b is pin2, pin9, pin11 and pin12.

Pin2 is 5v power and pin9 is ground pin used to power up the TM1637. While the pin11

(GPIO17) and pin12 (GPIO16) is the clock pin to control the LED of the TM1637.

Figure 4.5 Circuit and Component design for Vision Five V2

CHAPTER 4

25
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.6 GPIO diagram for Vision Five v2

The GPIO pin connected to the Vision Five v2 is pin2, pin9, pin11 and pin12. The GPIO pin

out diagram is actually same as the Raspberry PI GPIO layout. But the configuration of the

GPIO ID is different. Pin2 is 5v power and pin9 is ground pin used to power up the TM1637.

While the pin11 (GPIO42) and pin12 (GPIO38) is the clock pin, where it generate signal to

control the LED of the TM1637.

CHAPTER 4

26
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.4 System Components Interaction Operations

Figure 4.7 System Components Interaction Operations for raspberry PI

In this project, power bank is used to power up the SBCs so that we can mount the speed

detection system more flexible without need to rely on power socket. Webcam is an image

sensor and is used to capture real time image information to the SBCs in order to process the

data. It is being connected via USB2.0 interface. The micro SD card is to store OS needed

for the SBCs to boot and operate, and also to allow SBC to store data. Last but not least, the

TM1637 is configured to show speed of the vehicle that pass through the detection line.

CHAPTER 4

27
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.8 System Components Interaction Operations for Vision Five v2

For Vision Five v2, most of the setup is almost identical like the Raspberry Pi 4b, but due to

no WiFi hardware build into the SBCs itself, we need an external wireless portable router to

access to internet, which is the TP-link MR3020. This portable router also need an external

power to run, we will need to connect the power input to the power bank to operate.

CHAPTER 5

28
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

System Implementation
5.1 Hardware Setup

The Raspberry Pi 4B and Vision Five v2, the main hardware involved in this project is a single

board computer (SBC). This system will leverage OpenCV, an open-source computer vision

library, for real time image detection and processing. It is used for testing and deploying the

traffic speed detection system.

Description Specifications

Model Raspberry PI 4 Model B

Processor Broadcom BCM2711 4Core Cortex A72@1.8Ghz (ARM v8)

Operating System Linux Debian Book Worm OS

Web Camera Logitech Webcam C615 (1080p30fps 78degree FOV)

Memory 8GB LPDDR4-3200 SDRAM

Storage 16GB C10 Samsung Evo micro SD card

7 Segment Display TM1637 4digit 7segment display 0.36inch

Power Remax 65w 40000Mah Power Bank

Table 5.1 Specifications of Raspi 4B system

Description Specifications

Model Vision Five v2

Processor Star Five JH7110 64Bit SoC with RV64GC @1.5Ghz Quad

Core

Operating System Debian OS

Network TP-Link MR3020 Portable 3G 4G Wireless N Router

Web Camera Logitech Webcam C615 (1080p30fps 78degree FOV)

Memory 8GB LPDDR4 SDRAM

Storage 256GB C10 UHS-I SanDisk Extreme Micro SD card

7 Segment Display TM1637 4digit 7segment display 0.36inch

Power Remax 65w 40000Mah Power Bank

Table 5.2 Specifications of VFv2 system

CHAPTER 5

29
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Hardware Setup

We will need to config the hardware, first we connect the hardware to the SBC. The Logitech

c615 is connected to the SBC using USB interface. Next, we connect the 7segment display

TM1637 through GPIO port, it has 4pins which is VCC, GND, CLK, DIO connected to pin2(5v

power), pin 9(ground), pin12, pin11. After connecting all the peripherals, we then connect the

raspberry PI to power source and it will boot up automatically. Both SBC, RaspberryPi and

VisionFive v2 share the same GPIO pinout configurations.

Example of Hardware setup :

Figure 5.1 Example of system setup

CHAPTER 5

30
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.2 Example of system setup2

5.2 Software Setup (Raspberry Pi)

First, we use Raspberry Pi Imager on our laptop to install Raspberry Pi OS into a microSD

card. Raspberry Pi OS was selected as the operating system due to its compatibility with the

Raspberry Pi hardware and its extensive community support. The OS is lightweight,

optimized for ARM architecture, and includes pre-installed tools for Python programming,

and remote access. The Raspberry PI imager can be downloaded from this link :

https://www.raspberrypi.com/software/

Figure 5.3 Official download page of Raspberry Pi

https://www.raspberrypi.com/software/

CHAPTER 5

31
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

After downloading the software, we connect an SD card reader to the laptop and launch the

Raspi Imager :

Figure 5.4 Main page of Raspi Imager

We click choose OS, then choose Raspberry PI OS

Figure 5.5 Selecting OS

Next, we choose storage and select our microSD card

CHAPTER 5

32
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.6 Select storage device

We then click on the write button to install Raspi OS onto the SD card.

Figure 5.7 Installation complete

After the OS install successfully, we then remove the microSD card from the laptop and insert

into the Raspberry Pi and boot up by connecting the PI to a power source.

CHAPTER 5

33
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.8 Inserting micro SD into Raspi 4B

We can first setup the PI Connect so that later we can use laptop to remotely access the PI

within the same network environment without any monitor and other peripherals like mouse

and keyboard connect to the Raspi. The PI Connect also supports copy and paste function from

different platform, for example copy the code from the laptop to the PI directly and vice versa,

which is a very convenient function during coding sessions.

CHAPTER 5

34
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.9 Pi connect

5.2 Software Setup (VF v2)

Star Five Debian OS can be download from this onedrive link :

https://onedrive.live.com/?authkey=%21AAAs7oQT2992Eg8&id=8DAB77C937089CE9%2

1316442&cid=8DAB77C937089CE9

Since we are using SD card as storage for VFv2, we choose the latest release, and click the sd

folder and download the image file.

Figure 5.9.1 VFv2 OS download page

https://onedrive.live.com/?authkey=%21AAAs7oQT2992Eg8&id=8DAB77C937089CE9%21316442&cid=8DAB77C937089CE9
https://onedrive.live.com/?authkey=%21AAAs7oQT2992Eg8&id=8DAB77C937089CE9%21316442&cid=8DAB77C937089CE9

CHAPTER 5

35
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Next, We use Win32Disk Imager on our laptop to install Debian OS into a microSD card.

Figure 5.9.2 Disk Imager

Debian OS was selected as the operating system due to its official support with the Vision Five

v2 hardware and its community support from RISCV forum. The OS is lightweight, optimized

for RISCV architecture, and includes pre-installed tools such as Mozilla Firefox browser and

Python. After the OS install successfully, we then remove the microSD card from the laptop

and insert into the VisionFive v2 and boot up. We need to connect Vision Five v2 to an external

monitor to continue the setup process because it does not have any remote access functionality

build into the OS, we also need to connect other peripherals like keyboard and mouse to setup

the system. I strongly recommend to stick a heatsink to the VFv2’s processor to reduce the

temperature, because the CPU runs hot during heavy loads. During testing, a heatsink is

attached for prolong period of testing.

CHAPTER 5

36
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.9.3 Connecting all the peripherals to the VFv2

Figure 5.9.4 Attached heatsink on the CPU of VFv2

Vision Five v2 does not have any WiFi chipset prebuild, so a USB WiFi dongle or LAN is

needed in order to connect to the internet. We would need to connect and set up the TPLINK

portable WiFi router using a browser. First, we adjust the router’s physical switch to WISP

mode, we enter the IP address of the portable router into the browser which is 192.168.0.254,

we enter the username and password provided from the router’s sticker. After logging in, we

navigate inside the user interface of the portable wifi router to connect WiFi.

CHAPTER 5

37
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.9.5 TPlink router setup user interface

After entering the UI, we choose wireless setup, then click the survey button to search for our

WIFI network, we then click connect.

Figure 5.9.6 Selecting wireless network

CHAPTER 5

38
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.9.7 Setting up password

After selecting the wireless network, we input the password and our VFv2 will be connected

to internet.

Next we will need to update and install the following python library, we enter command into

the terminal :

Update command : sudo apt update

Python

The primary programming language for this project.

Controls the logic for motion detection, speed calculation, and display output.

It can Integrates different libraries for real-time processing and manages GPIO interactions for

the 7-segment display.

Install python command : sudo apt install python3 -y

OpenCV

Handles real-time image processing and object detection. It captures video frames from the

camera module and applies background subtraction and motion detection to track vehicles.

It can determine the time taken for a vehicle to pass between two reference points and enhances

image processing speed through optimized functions.

Additional command needed for VFv2 to install CanberraGTK module to display the view of

camera properly.

Install OpenCV command : pip3 install opencv-python

Install OpenCV command for VFv2 : pip install opencv-python-headless

Extra command for VFv2 : sudo apt install -y v4l-utils libv4l-dev libcanberra-gtk3-module

pip install tflite-runtime

CHAPTER 5

39
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

You Only Look Once(YOLO) Tiny

In this process, we use Yolo tiny to further enhance the object detection so that it can eliminate

false detection, for example a human walk into the detection range, and in the same time a

vehicle such as car, bike, bus, or bicycle drive through the detection range, it will detect only

the vehicle’s speed. This model trains massive amount of vehicle object image so that it can

filter out other object like animal and human. This method required to implement Yolo v4 tiny

into OpenCV, we choose this version because it is an optimize version and it can run well on

limited compute resources system such as SBCs. Also we need a COCO dataset which is use

for object detection, segmentation and captioning. File can be downloaded from this link :

https://github.com/AlexeyAB/darknet/releases

Figure 5.9.8 Git Hub repository

https://github.com/kiyoshiiriemon/yolov4_darknet/blob/master/cfg/coco.names

Figure 5.9.9 Download coconames from Git Hub

click download as raw file

https://github.com/AlexeyAB/darknet/releases
https://github.com/kiyoshiiriemon/yolov4_darknet/blob/master/cfg/coco.names

CHAPTER 5

40
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Numpy

Use for numerical computation calculations for image processing. It assists in distance and

speed calculations by handling numerical data efficiently. It supports OpenCV operations that

require fast mathematical computations.

Install numpy command : pip3 install numpy

Install numpy command for VFv2 : pip install numpy\<2

RPi GPIO & GPIOD

The RPi GPIO is used to configure the GPIO pins on the Raspberry Pi to control the 7-segment

display, it works exclusively with Raspberry PI’s GPIO only. Pin assignments were carefully

documented for accuracy and to avoid conflicts with other components. GPIO18 and GPIO17

were used because it provide Clock Signal required for the TM1637 chipset to work. Next, a

suitable display driver is needed in order to control the display to make it function. We found

a driver from GitHub, making some modification of the code and it could finally display

correctly. The GPIOD function is same as RPi GPIO, it works with Vision Five v2. It also

need some modification of the code so that TM1637 could display correctly.

Install RPi GPIO command (raspi only) : pip3 install RPi.GPIO

Install GPIOD command (VFv2 only) : pip3 install gpiod

Imutils

Simplifies common image processing functions for OpenCV. It resizes and adjusts image

frames for optimized processing, and facilitates easier contour detection and motion tracking.

Provides convenient functions such as rotating, cropping, and translating images.

Install imutils command : pip3 install imutils

Python threading library

The performance result when running Yolo v4 Tiny on a single core makes the detection fps

drop massively. By implementing python threading library, it allow the CPU to utilize multi

core to process the frame in parallel while detecting object. This is implemented inside the

code.

Other Python library

Additional command needed for VFv2 to get it working for our system, due to compatibility

issue, multiple python library are needed to be installed :

CHAPTER 5

41
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

pip install opencv-python imutils numpy pillow

pip install tflite-runtime

pip install psutil

pip install matplotlib

5.3 Setting and Configuration

The hardware involved in this project is SBCs and webcam. The SBCs will detect and capture

an object from the camera, it will recognize it as a vehicle, then it will calculate the speed of

the vehicle. A toy car is used for testing and deploying this speed detection system in learning

computer vision.

The following are the steps to set up motion detection :

i. Calibrate the distance between the camera and the road

ii. Activate motion detection algorithm using OpenCV to track vehicles moving through

the camera's field of view.

iii. Contour detection is used to identify moving objects.

iv. OpenCV Tracking the displacement of the vehicle across frames.

5.4 System Operation for Raspberry PI (with screenshot)

• User need to launch the program first by entering in terminal:

source myprojectenv/bin/activate

python3 SpeedDetection3.py

Figure 5.9.9.1 Terminal of Debian OS

• the OpenCV will show the vision of the detection range capture by camera.

CHAPTER 5

42
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.9.9.2 The system is detecting speed of a toy car

• User need to mark down the detection range

Figure 5.9.9.3 The marking on the table

• User need to measure the distance of the detection range

CHAPTER 5

43
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.9.9.4 Measure the marking on the table

• User shall input the distance per pixel (m) into the code

-The default value of the webcam for horizontal is 800, so meter divide by 800s pixel

Figure 5.9.9.5 Shows the coding to edit meter per pixel

• User shall input the detection pixel (width and height resolution) of the camera

 -The default resolution is 800x240, this resolution is chosen because it captures the

image in 16:9 aspect ratio, which is wider compared to 320x320 which is a 4:4 aspect ratio.

Not only that, it provides more pixels for the width in order to perform speed calculations.

Figure 5.9.9.6 Shows the coding to edit width and height

CHAPTER 5

44
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

• User shall input the frame rate of the camera

-The default frame rate is 30fps which is recommended for daytime.

-Frame rate should set to 15fps during low light environments for accurate speed

predictions.

Figure 5.9.9.7 Shows the coding to edit FPS

• User shall input the source of the camera to capture video data

This needs to be adjusted when the user has two or more cameras connected to the SBC

Figure 5.9.9.8 Shows the coding to edit source of camera

• User shall input the smoothing factor by tuning it slightly to match lighting condition

of the environment [user can adjust between 0 to 1], this is important to prevent noise

from affecting the speed prediction result.

CHAPTER 5

45
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.9.9.9 Shows the coding to edit smoothing factor

• User could adjust the vehicle counting timer to prevent duplicate counts of vehicle

Figure 5.9.9.9.1 Shows the coding to edit vehicle counting timer

• User could exit the program by pressing ‘q’

5.4 System Operation for Vision Five v2(with screenshot)

• User need to first enter the password to operate the OS, the password is starfive

• User need to launch the program first by entering in terminal:

source venv/bin/activate (this is to activate the virtual python environment)

sudo chmod 666 /dev/gpiochip0 (this is to allow the virtual environment to have access

to GPIO chip to control the TM1637 display

(it will request user to input password again, password is starfive)

python3 SpeedDetectionVFnoyolo.py (launch the program)

CHAPTER 5

46
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.9.9.9.2 Shows the terminal of VFv2

• the OpenCV will show the vision of the detection range.

Figure 5.9.9.9.3 Shows the OpenCV windows in VFv2

• User need to mark down the detection range

CHAPTER 5

47
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.9.9.9.4 Shows the table with marking

• User need to measure the distance of the detection range

Figure 5.9.9.9.5 Measure the marking distance

• User shall input the distance per pixel (m) into the code

-The default value of the webcam for horizontal is 800, so meter divide by 800 pixel

CHAPTER 5

48
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.9.9.9.6 Show code to modify meter per pixel

• User shall input the detection pixel (width and height resolution) of the camera

 -The default resolution is 800x480

Figure 5.9.9.9.7 Show code to modify resolution of the camera

• User shall input the frame rate of the camera

-set the frame rate to 30fps during great light condition, set to 15fps on low light

condition

CHAPTER 5

49
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.9.9.9.8 Show code to modify FPS of the camera

• User shall input the source of the camera to capture video data

Figure 5.9.9.9.9 Show code to modify resolution of the camera

• User shall input the smoothing factor by tuning it slightly to match lighting condition

of the environment [between 0 to 1]

CHAPTER 5

50
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.9.9.9.9.1 Show code to modify smoothing factor

• User could exit the program by pressing ‘q’ in the program

5.5 Implementation issues and challenges for Raspberry PI 4B

Library Compatibility issue :

Some Python libraries require specific versions to function correctly. Compatibility issues were

resolved by installing alternative versions using pip command.

Camera Angle Configuration :

We need to adjust the camera angle with good lighting conditions. Low light reduces the

accuracy of the detection. The adjustments of camera angle placement and calibration take

longer time and need to be precisely calculated.

Noises causes incorrect result :

Initial tests showed incorrect speed results. It display speed when the toy car is not moving,

this is because of the noise pixel which is causing false detection. Implementing Smoothing

Pixel Movement with Alpha Blending which helps to reduce noise in the speed estimation

calculation when the car is stationary or moving slowly. It helps smooth out small

inconsistencies in detected movements by averaging movements over iterations.

Long Range vehicle undetectable :

This happens when the distance of the toy car and the camera is approximately 85cm, it become

unable to identify and detect the vehicle and speed. This is due to the limitation of compute

resources, we need to limit the resolution of the raspberry Pi 4B in order to reach 30fps for

more accurate speed detection results.

CHAPTER 5

51
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Higher resolution reduce detection rate :

When running max supported resolution of 800x488 as input, due to a heavier processing, the

system missed a few detection due to increased latency. This can be fixed by reducing

resolution which solves the issue, but this introduces another issue such as blurry image, thus

reducing the detection range.

Issue face when implementing TM1637 display :

This module is mainly designed to work with Raspberry Pi Pico and Arduino UNO, which uses

micro python as the driver. Although the pin is compatible with Raspberry Pi, there are not

many resources available online, and most of the information is already outdated. I would need

to modify the driver code with some help of the forum and tune the code in order to be able to

run without issue.

5.5 Implementation issues and challenges for Vision Five v2

Low Performance Compared to ARM SBCs :

The RISC-V architecture is still in early development, leading to poor software optimization

and lower performance than Raspberry Pi 4B. Slower CPU and GPU result in very low FPS

(around 6 frame per minute) when running object detection models like YOLO even with very

low resolution like 320x240. The program also very unstable and frequently freeze and not

responding, when running with Yolo, the CPU usage reach 373% which being monitored using

top command. After removing YOLO, the system runs in acceptable framerate on 640x480

resolution.

CHAPTER 5

52
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.9.9.9.9.2 Show high cpu usage and program not responding

After removing YOLO, the system runs in acceptable framerate on 640x480 resolution.

Limited Software Support for RISCV architecture :

Many precompiled Python libraries such as NumPy, OpenCV are not officially available for

RISC-V. During installation, installing dependencies takes longer and often fails due to missing

packages. The solution is to use precompiled packages when possible instead of building from

source.

OpenCV, Numpy and imutils installation issue :

Directly install numpy and OpenCV fails due to missing dependencies on RISCV. OpenCV

crashes due to missing GUI dependencies. Both issue never happens on RaspberryPi platform.

OpenCV headless version and Libcanberra GTK module is needed in order to display the

camera output and GUI correctly. Numpy and imutils takes very long time to install, this is

because RISCV architecture lacks readily available precompiled python wheels on the PyPI

repository, the system would forced to compile heavy library from source code locally which

leads to long installation time. This issue is overcome by letting the system install the software

overnight.

CHAPTER 5

53
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Driver support from GPU vendor :

GPU vendor such as NVIDIA only provide CUDA and TensorRT support for x86 and ARM

platform. No CUDA support exists for RISC-V, which means there is no way to accelerate

YOLO using external GPU.

Camera Index Change

There was a random issue where the camera index would change unexpectedly after rebooting

or reconnecting devices. This made the system unable to consistently access the intended

camera, causing initialization failures. The solution involved verifying camera device nodes

using v4l2-ctl commands and dynamically selecting the correct video index at runtime.

Unable to access GPIO chip in Virtual Environment

When operating inside a Python virtual environment, the program initially could not access the

GPIO chip due to restricted permissions. This issue was resolved by adding the user to the gpio

group and running the environment with appropriate system permissions.

CHAPTER 5

54
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.6 Concluding Remark (Raspi 4B)
The proposed method for traffic speed detection using a Raspberry Pi 4B, a consumer level

webcam, and OpenCV demonstrates a promising foundation for low-cost and compact traffic

monitoring systems. The use of low-cost hardware (Raspberry Pi and a webcam) makes the

system economically viable and accessible for smaller-scale applications. The integration of

OpenCV for real-time image processing aligns with the system's goal of lightweight and

efficient computation. Real-time detection at a reduced resolution 800x488 ensures stable

frame rates for basic operation.

Although the system struggles significantly in low-light conditions, which limits its usability

at night or in poorly lit areas. It is suitable to be implemented in school zone where less vehicle

will be travel in school area during nighttime. The inability to accurately measure high speeds

restricts its application in realistic traffic scenarios such as highways where vehicles typically

travel much faster. This however can be overcome if the school zones have multiple road

bumps that limit vehicle driving speed.

The computational limitation, the Raspberry Pi's limited resources pose a bottleneck, especially

when advanced models like YOLO are used in the system. The system could only use Yolo v4

tiny which is a lightweight version of YOLO tuned for resources limited system to run

smoothly. By adding preprocessing techniques such as background subtraction or adaptive

thresholding can be implemented within OpenCV, which require minimal additional

computational power. These methods can enhance detection robustness without significant

hardware changes. It could improve low-light detection and assist in maintaining object

recognition consistency. In Long-Term Viability, the proposed method is feasible with

incremental upgrades and adjustments, especially in environments with medium to low vehicle

speed and basic lighting conditions. For broader adoption in real-world traffic monitoring,

additional optimization and hardware scalability will be necessary to meet higher accuracy and

performance demands. If this system needs to detect high speed vehicle on highway, doppler

sensors will be needed for better accuracy.

CHAPTER 5

55
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.6 Concluding Remarks (Vision Five v2)
Implementing a vehicle speed detection system on the VisionFive V2 presents multiple

challenges due to limited software support, lower processing power, and hardware

compatibility issues compared to more established ARM-based SBCs like the Raspberry Pi.

Due to weaker computation power, it gives unacceptable results when running the program

with YOLO. After applying software optimization such as removing YOLO from the code, and

by using background subtraction, multithreading, the system could runs at 800x480 with 30FPS,

thus making real-time speed estimation feasible.

VisionFive V2 is still in its early stages of software maturity, careful optimizations and

workarounds make it possible to develop practical applications. Future improvements in RISC-

V software support and hardware acceleration will further enhance its viability for computer

vision applications. For now, this project successfully demonstrates that a real-time speed

detection system can be adapted and optimized for the VisionFive V2, despite its hardware

limitations.

Figure 5.9.9.9.9.3 Vision Five v2 running YoLo with low fps

After careful troubleshooting, strategic use of system commands, and adjustments to the

development workflow, these challenges were successfully overcome on this platform,

allowing the project to progress smoothly despite the limitations of the platform.

CHAPTER 6

56
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6
6.1 System Testing and Performance Metrics
System testing and performance metrics in this project are defined by the system's ability to

accurately, efficiently, and reliably detect, track, and display vehicle speeds in real-time

within school zones. Detection Accuracy, which is the ability of the system to accurately

identify and track moving vehicles within the camera’s field of view. This includes the

precision of object detection algorithms in correctly identifying vehicles and the accuracy of

speed calculations based on real-time image processing.

Next, the environmental robustness, where we test the system’s capability in maintaining

accuracy and functionality across various environmental conditions, including changes in

lighting (day/night), weather (rain), and occasional blocking object.

6.1.1 Accuracy and functionality

There are a few checks needed to be carried out because there are several factors that can

impact the system’s accuracy :

Situation 1

Test the accuracy of the system, when other object appears in the detection range at the same

time.

Procedure Number P1
Method Testing
Applicable Requirements The system needs to correctly identify the vehicle

speed without being affected by other moving
object such as leaf and human movement

Purpose/Scope To test whether it will give false reading when
vehicle object pass by the detection range

Items Under Test Vehicle passing through the detection range
Precautions The vehicle object needs to be moving
Special Conditions/Limitations The system should filter out other object

movement except vehicle like cars
Equipment/Facilities Raspberry PI/Vision Five v2
Data Recording Yes

Table 6.1 Verification for Procedure 1

CHAPTER 6

57
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Situation 2

The system should be able to identify vehicle during low light condition.

Procedure Number P2
Method Testing
Applicable Requirements The system needs to correctly identify the

vehicle passing through the detection range
during low light condition (night time).

Purpose/Scope To test if the system would be able to work at
night

Items Under Test Car passing through the detection range during
night

Precautions The test needs to be conduct during nighttime
Special Conditions/Limitations The system should be able to detect the vehicle

and give correct speed reading
Equipment/Facilities Raspberry PI/ Vision Five v2
Data Recording Yes
Acceptance Criteria The system able to detect vehicle and give result
Procedures 1. Adjust the smoothing factor, then wait for

vehicle to pass through the detection range
2. Determine the result given

Troubleshooting Refine the parameter tuning
Table 6.2 Verification for Procedure 2

Situation 3

The system should be able to detect all the vehicle that pass through the detection range

Procedure Number P3
Method Testing
Applicable Requirements The system needs to detect all the vehicle that

pass through the detection range
Purpose/Scope To test the rate of detection of the system
Items Under Test Any Vehicle
Precautions The vehicle needs to be moving with various

speeds
Special Conditions/Limitations There are different types of vehicles on the

market, such as motorbike, bicycle, lorry, van
and pickup trucks

Equipment/Facilities Raspberry PI/ Vision Five v2
Data Recording Yes
Acceptance Criteria The system able to recognize it as a car and give

speed readings.
Procedures 1. Adjusting the position of the camera, then let

multiple vehicles pass through the detection
range
2. Determine the result given

Troubleshooting None
Table 6.3 Verification for Procedure 3

CHAPTER 6

58
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2 Testing Setup and Result for both system :
Setting for the testing setup :

Pixel per meter = 0.015

Resolution = 800 x 480

FPS = 30

Smoothing Factor/Alpha = 0.2

Condition : day, noon, and night

Figure 6.1 Testing location is at the housing area in front of my house.

The camera is 90degree angle towards the incoming vehicle

Figure 6.2 Example of the testing setup

CHAPTER 6

59
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

During testing, I found that most of the users do not follow the traffic rules in residential area.

Because vehicle did not travels frequently in residential area, most of them prefer to drive in

the middle of the road even though it is a two way lane. This will cause false reading because

the calculation is different if they travel at different lanes, which is mainly caused by the

angle. The camera mounting method 1 is only suitable for single lane road. However we

could use the middle lane, which is 11.5meter to divide the pixel, to get the average reading,

however it might not get as accurate as using a proper doppler sensor to get the speed

reading.

Also, a vehicle counting function had been implemented for Raspi 4B, this function will

calculate how many vehicles pass through the detection range. There are two methods to

implement this function, first is when the system detects the vehicle, it will count as 1. The

second method is using timer to detect vehicle. Both methods had advantages and

disadvantages. For the first method, if there is an obstacle blocking the vehicle for a second,

it might count the vehicle twice. The second method, if the vehicle stops at the detection

range for an interval eg: 3seconds (can be adjusted in the system), it will be counted twice,

and even more. This means if the vehicle stops at the detection range for too long, the system

will count multiple times.

The second method was chosen because it can reduce the false count due to obstacles, and it

is more suitable to implement in the school area because drivers are not allowed to stop at the

middle of the road. But in the testing condition, please note that there are neighbors that park

their car in houses which cause vehicle counting to be inaccurate.

This function is not implemented for VFv2 because any moving object will be counted not

limited to vehicle, this will cause the counting result to be unmeaningful.

The vehicle counter will show at the top left of the program.

A recording function had been implemented for the VFv2 due to limitation of remote support.

The system will perform recording when detecting motion, and stop recording when there are

no motion detected. This function fails in the end due to bugs of OpenCV where it could not

output files after recording. This function is not implemented on Raspi 4B due to

performance limitations and storage limitations. VFv2 will record the footage using the

screen recorder build into the OS itself, and Raspi 4B will use Pi Connect and laptop for

screen recording. Please note that there’s latency penalty when using Pi Connect during

recording.

CHAPTER 6

60
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Situation1
The system we implement for Raspi 4B should be able to correctly identify the vehicle speed

without being affected by other moving object such as leaf and human movement because of

the object detection algorithm by Yolo. However, the VisionFive v2 couldn’t deliver a good

result when running object detection algorithm, the system can only uses motion detection,

which will be greatly affected by any other moving object.

Raspi 4B result

Figure 6.3 shows the capture image of raspi 4B

The Raspi4B system with object detection will not read other object speed other than vehicle.

Figure 6.4 shows the capture image of raspi 4B detecting vehicle

The speed detected of the moving vehicle remains accurate even when other objects like auto

gate is moving.

CHAPTER 6

61
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

VFv2 result :

Figure 6.5 & 6.6 show VFv2 detects the Auto gate and dry leaves moving and show speed.

Figure 6.7 & 6.8 show VFv2 detects the human movement and ant moving and show speed

The system detects any movement and calculate speed, like humans and ants.

This will greatly affect the accuracy of the system. This is because it detects multiple moving

objects in the same frame while only giving one result. The system will calculate the

movement between the two objects.

Figure 6.9 False speed detected of the moving vehicle when the auto gate is moving with VFv2

CHAPTER 6

62
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Conclusion for Situation 1 :
This shows that during daytime, Raspi 4B gives a better overall accuracy using object

detection compare to VFv2 where the accuracy will get affected when other moving object is

around. The moving object can be multiple moving car that exist in the detection range. For

school zones, especially on weekdays, there are many cars travelling on the road, which

makes the VFv2 unsuitable for this application.

Situation 2
Before performing testing on situation 2, I implemented a real time FPS counter, and I found

that the system can capture the frame in 30fps, but in low light conditions, it can only capture

frame in 15fps, the performance drop in half. Not only that, the vehicle detection also become

weaker, as shown in the picture. In bright environments, it recognizes it 84% likely is a

vehicle. But in dark environments, it reduces to 61% likely as a vehicle. This testing is held

where the vehicle is in an idle position without moving.

Figure 6.9.1 FPS captured in bright environment on Raspi

CHAPTER 6

63
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.9.2 FPS captured in bright environment on VFv2

Figure 6.9.3 FPS captured in dark environment on Raspi

Figure 6.9.4 FPS captured in dark environment on VFv2

CHAPTER 6

64
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

The result might appear worse in real world testing if the vehicle is moving. This issue is

likely caused by the Auto Exposure adjustment of the webcam, where it increases exposure to

brighten the image, and more exposure will cause each frame to take more time, thus

reducing the FPS. After disabling the auto exposure, setting a fixed exposure, increasing ISO

gain which can brighten the image, and even reducing the resolution, the FPS still drop to

half. The same real time FPS test was conducted on VFv2, and the result shows the same.

Finally, we can conclude that it is a hardware limitation of the camera module, where this

camera prioritizes capturing more light per frame than maintaining FPS. To perform testing

on low light environment, the setting had to be changed to 15fps to get a correct speed

prediction. During a mild light environment, the camera will be able to capture at 25fps. We

can see that the camera will adjust the FPS input based on light, dim and dark environment.

To make this system more superior and automated, a dynamic FPS function is implemented,

where it will adjust the FPS dynamically based on the lighting conditions, so that user don’t

have to adjust the FPS every time to match the environment factor.

Before the tests are conducted, I use my own vehicle to perform multiple testing to ensure the

system is accurate. The housing area has a lot of road bumps, the highest speed a vehicle can

go is around 30~40km/h. Any speed higher than 60km/h is not possible because there’s a lot

of road bumps on the road and the distance between each road bumps is close.

Raspi 4B result :

CHAPTER 6

65
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.9.5 Shows the system tested in daytime with Raspi 4B

During daytime, the light condition is good, the system able to detect the speed with good

accuracy.

Figure 6.9.6 shows the system tested in during night time with Raspi 4B

CHAPTER 6

66
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Show the result is not very accurate during low light conditions. If the vehicle travel too fast,

the motion blur due to low fps will caused the reading to be inaccurate. Sometimes the

system unable to capture vehicle speed at all during low light even though they are not

travelling at high speed such as bicycle and motorbike.

VFv2 result :

Figure 6.9.7 shows the system tested in during day time with VFv2

VF v2 detection result during day time. The speed is consider accurate.

But at night, the FPS is lower, it can still get some results, but the detection accuracy drops.

CHAPTER 6

67
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.9.8 shows the system tested in during night time with VFv2

The system also detects the moving light spot that comes from the vehicle and calculating

speed. This shows that without object detection, the system works poorly.

Conclusion for situation 2
Based on the observation from both of the system, we can see that Raspi 4B and VFv2

perform great during good lighting conditions. But during night, both of the system fail to

deliver a good result. Raspi 4B system missed some vehicles that travel fast, and give

inaccurate speed due to motion blur. On VFv2 system, we can see that the system can detect

speed of the vehicle without issue but it also detects the moving light spot from the vehicle

and give false reading. Both system did not perform well at low light condition.

Situation 3
For Situation 3, we test the detection rate for both systems. This is used to test the model and

see if all the vehicles can be detected in the range. During this testing, the system is not

calibrated perfectly, we only focus on the detection rate for this section.

CHAPTER 6

68
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Raspi 4b Result :

Figure 6.9.9 shows the system unable to detect vehicle if obstacle blocking using Raspi4B

Based on the result, we can see that the model will be unable to recognize it as car when

object overlap it, such as human and gate

Figure 6.9.9.1 shows the system able to detect different types of vehicle using Raspi4B

CHAPTER 6

69
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Next, when the bike rider stands beside the motorbike, it still can detect it as motorbike.

Other vehicles like bicycle, car and bus can be detect without issue.

Figure 6.9.9.2 shows the system able to detect two vehicle while calculate speed using Raspi4B

Next, this model is able to detect 2 car but only calculate one car speed, which will not mess

up the speed reading of the moving vehicle.

However, this model would not work with certain types of vehicle, for example there is a

pickup truck which detected as car when it first appear, fail to verify as a vehicle when it

fully appear in the detection range, this is cause by the dataset in the Yolo model lack of

training this kind of vehicle.

CHAPTER 6

70
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.9.9.3 shows the system unable to detect speed of truck and van using Raspi4B

The system is unable to verify it as a vehicle, thus unable to predict the speed. The picture

above shows the whole vehicle that entered into the detection range but the system did not

recognize the object as vehicle.

We also found that the system facing frame drop issue due to overheating causes the system

to miss a vehicle. We carry out the test from 11am to 4pm, the weather in the afternoon is

very hot. The temperature on the day is 32degree Celsius.

Figure 6.9.9.4 shows the system overheating and skip frame on Raspi4B

When detecting the truck, the frame drops and it only able to capture the front of the truck,

and the end of the truck, the system couldn’t capture the whole body of the truck, and cannot

recognize it as a vehicle, thus did not give a speed result.

CHAPTER 6

71
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

VFv2 result :

Figure 6.9.9.5 shows any vehicle speed using VFv2 without Yolo

The VFv2 could detect small trucks and the pickup truck’s speed without issue. The system

did not face any frame drop issue even with long period of testing.

Figure 6.9.9.6 shows the system unable to detect speed when 2 vehicle go different direction

When two moving vehicles are inside the detection range with different direction, the VFv2

will not calculate speed.

Conclusion for situation 3
For Raspberry PI 4b, we can conclude that the system will fail to recognize some type of

vehicles like pickup trucks. The overheating issue of the system also reduces the detection

rate, better airflow is needed for the system. Based on the result above, the model shows very

powerful detection for some cars vehicle like Sedan, for example the car that park into

neighbor’s house, even though only the rear of the car is exposed to the camera it could still

detect it as a car. Also, the system holds an advantage where it will only detect one car at a
time, so that it will not give false reading when multiple cars is inside the detection range.

CHAPTER 6

72
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

For VFv2, the system did not face any overheating. Also, the system is able to detect

anything that moves in the detection range. It has a 100% detection rate during daytime with

exchange of higher false detection. But when multiple objects are moving in different

directions, the system will not be able to give speed readings.

6.3 Project Challenges Faced
Implementing an effective vehicle speed detection system using a single-board computer

(SBC) in school zones involves navigating various technical and practical challenges.

Processing Performance of the SBCs

First, Processing Power Limitations. SBCs like Raspberry Pi are cost-effective, price around

75USD but have limited computational power, making real-time video processing for object

detection and speed calculation challenging, especially with deep learning models such as

YOLO. To accommodate this limitation, the system can utilize lightweight or optimized

versions of YOLO such as YOLOv4 tiny. Adjusting frame resolution and capture rates may

also help balance processing demands with accuracy. While Vision Five v2 is slightly more

expensive than the Raspi 4B which is around 100USD, it performs much worse than the

raspberry PI in YOLO and it could only run effectively when YOLO is removed. This RISCV

SBCs is not a good choice for this project due to much weaker processing power and a much

higher price tag.

Figure 6.9.9.7 Price tag for both SBCs

Real-Time Performance issue

Low-latency detection and speed calculation are crucial for providing immediate feedback to

drivers. Although the webcam running at 30fps is able to capture almost all vehicles travelling

in medium to low speed, it will still miss captured vehicle travel at high speed. High frame

CHAPTER 6

73
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

rates are necessary for accurate vehicle tracking. Changing to better Webcam could solve this

issue. During night, the low light environment will cause the camera to capture at 15fps, which

will cause incorrect speed reading or even worse, unable to capture the vehicle. This is a

hardware limitation of the webcam module. This webcam’s sensor focuses on capturing more

light per frame rather than maintaining FPS even though the auto exposure is disabled.

Changing to a better low light performance camera which is design for low light environment,

and dynamic FPS function which adjusts the calculation according to the fps capture by the

camera should work in this case.

Data Calibration and the way of car traveling

The third issue is Data Calibration and Accuracy for Speed Calculation. Due to lacking of

Doppler Speed Radar Sensor for the speed detection system, accurate calibration becomes

important for converting pixel displacement into real-world speed; errors in calibration can

lead to significant discrepancies in measurements. Careful calibration of camera placement,

field of view, and reference distances is crucial. Establishing fixed markers within the camera's

view will aid in accurately converting pixel data into real-world units. Regular recalibration is

also necessary to maintain precision. Also, for the mounting method that we perform testing

results, we saw that some of the vehicles that travel at the slight left, or slightly right at the

road, will give inaccurate readings. The system calibration is set to the middle of the road to

get the average value, which means we cannot get the perfect accurate reading.

Recording Footage for the VFv2

Finally, during the implementation of recording functions on VFv2, bug encountered. It looks

like the bug is due to OpenCV’s error where it could not save the file locally. Many methods

were used to solve this issue including permission issue, changing file format, modifying

resolution, it could finally output the file, but the file was unable to read using media player.

Recording Footage for the VFv2

The build in recording function comes with the OS is used to record vehicle that passes through

to analyze the performance of this device. However, I have faced another issue, where the

recording function will not work without monitor plugged into the SBC, without a monitor

connected, it will only record black screen footage without any information. I would need to

CHAPTER 6

74
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

have a HDMI to VGA adapter to trick the system to think the monitor is still plugged in. Next,

I also found that the video recording will start to get distorted after 10minutes of recording.

Figure 6.9.9.8 Image distortion when perform recording on VFv2

This had been solved by limiting the resolution of the recording, I adjust the recording system

to record only portion of the screen which covers the program’s windows, this can temporary

solve the video distortion issue, but after 7hours of recording, the distortion will reappear again

slowly. This is likely caused by bottleneck of the CPU or memory where it records high

resolution using software-based encoders like x264. It might also be caused by encoding buffer

overflow, where the data entropy and compression load increases after a long period of time.

Recording Footage for Raspi 4b

For Raspi 4B, due to storage space limitation (16GB SD card storage) it could not record for

long period of time, and also to prevent the recording function from competing resources with

the CPU that running Yolo, the build in RaspberryPi Connect software and laptop is used.

Laptop will connect remotely to Raspi 4B and perform screen recording to get the result.

CHAPTER 6

75
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Program freezing

Program unresponsive bug also happens on VFv2 when it detects any object faster than the

speed TM1637 could show, the program will become unresponsive, this can be fixed by

setting an upper limit on the speed display to prevent crash if there is false reading when the

detected speed is too high. Limits the max speed shown by the system to 99km/h fix the

issue.

6.4 Objectives Evaluation
Detection Accuracy

Raspberry Pi 4B performs better with YOLO-based object detection consistently identified

vehicles accurately without being affected by background movements (leaves, humans, auto

gate). It was able to maintain speed calculation precision even when multiple objects were

present.

While VisionFive V2 system based on motion detection (due to lack of computational power

for YOLO), detected any moving object including leaves, gates, and even small objects like

ants. This caused significant inaccuracies in speed reading and false triggers. Raspberry Pi 4B

clearly offers higher precision detection and robustness against background noise compared

to VisionFive V2.

This concludes that object detection is crucial in order to achieve better detection accuracy.

Low Light Performance

Raspberry Pi 4B’s detection performance degraded significantly at night. The system

experienced a drop from 30 FPS to 15 FPS, resulting in motion blur and occasional failure to

detect fast-moving vehicles. The system performs inconsistent, where it could not detect

vehicle movement sometimes. However, the YOLO model still partially recognized vehicle

shapes.

VisionFive V2 suffered from the same FPS drop. Detection became worse because the

system detected headlights and light reflections as moving objects, falsely interpreting them

as vehicle movement. Speed reading was often incorrect in dark environments.

Both systems struggle in low-light environments, but Raspberry Pi 4B handles vehicle

distinction slightly better because of object classification, whereas VisionFive V2 struggles

heavily without object filtering.

CHAPTER 6

76
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Vehicle Detection Rate

Raspberry Pi 4B capable of detecting a wide range of vehicles like cars, bicycles, and

motorbikes. However, it sometimes failed to recognize certain pickup trucks due to dataset

limitations in YOLO training. Overheating during long tests caused frame drops, affecting

detection reliability.

VisionFive V2 had achieved 100% detection rate of any movement during daytime but had

no filtering. False positives increased significantly where any motion will be detected and

calculated speed. When multiple moving vehicles appeared, the system often failed to assign

a correct speed reading.

Raspberry Pi 4B provides better selective detection, while VisionFive V2 detects every

movement indiscriminately.

System Stability and Recording Capability

VisionFive V2 screen recording function implemented via the OS could record initially but

suffered distortion after prolonged recording (around 7 hours) due to likely encoder buffer

overflows or cumulative system memory issues. Smaller recording windows mitigated the

issue temporarily.

Raspberry Pi 4B used remote laptop recording via Pi Connect due to limited onboard storage

(16GB) and to prevent CPU overload. However, network-induced latency slightly degraded

the screen recording’s smoothness.

Category Raspberry Pi 4B Vision Five V2

Overheating High, needs better cooling Low, passive cooling

Processing Power Good for YOLO Tiny Poor for YOLO

Recording Capability Remote via Pi Connect Local but unstable for >7h

Object Filtering Accurate Poor , will detects any

movement

Table 6.4 Evaluation table between two SBCs

CHAPTER 6

77
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.5 Concluding Remark
This project aimed to develop a cost-effective and efficient vehicle speed detection system

using a single-board computer (SBC) integrated with a camera and a 2-digit 7-segment display.

The primary objective was to create a solution capable of enhancing road safety in school zones

by identifying and displaying vehicle speeds in real time.

This project offers a practical solution to address over speeding issues in school zones,

leveraging cost-effective hardware and open-source tools. It shows that the balance between

speed and detection accuracy is a trade-off, especially on hardware-limited platforms like the

Raspberry Pi. Fine-tuning the parameters and potentially retraining models of YOLO could

theoretically improve results. Incorporating YOLO and preprocessing techniques can address

most limitations, but real-time performance will still require lightweight models or better

hardware. Raspberry Pi which is ARM platform, benefits from strong software optimization,

better GPU support, it could still provide higher FPS in object detection tasks and more stable

driver support for camera and GPIO. Raspberry Pi 4B remains the better choice for AI-based

applications due to its mature ecosystem.

For Vision Five v2, which uses an emerging platform RISCV, lack of optimized library. The

software compatibility issue and weaker CPU performance lead to very low FPS when running

YOLO. After implementing software optimizations like background subtraction, and multi-

threaded processing, it can still perform real-time speed detection efficiently. But without

YOLO object detection, any moving object including moving leaves will be detected as motion

and will calculate speed which leads to false detection. This platform faces software and

hardware limitations that restrict its capabilities for demanding AI tasks like YOLO-based

object detection.

This project successfully demonstrated the potential for a low-cost, scalable speed detection

system designed for school zones. While challenges remain, the findings lay a solid foundation

for further enhancements, contributing to safer road environments and showcasing the

capabilities of SBC-based solutions in real-world applications.

CHAPTER 7

78
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 7
7.1 Conclusion
The vehicle speed detection system developed in this project achieved the intended objectives

by successfully demonstrating the capability to detect moving vehicles and estimate their

speeds in real time using embedded single-board computers. Both the Raspberry Pi 4B and

Vision Five V2 platforms were explored, designed, and rigorously tested under various

environmental and operational conditions.

The Raspberry Pi 4B, with its higher computational power, enabled the integration of object

detection through the YOLO model, resulting in greater detection accuracy and selective speed

measurement. However, challenges such as overheating and reliance on external systems for

video recording highlighted its limitations for long-duration, standalone deployments.

The Vision Five V2, despite its limited processing capabilities, proved to be a stable and

energy-efficient platform suitable for continuous operation during daytime conditions. The

RISC-V architecture presents challenges such as limited software support, lower processing

power, and lack of GPU acceleration. Its performance was optimized through software

techniques such as resolution reduction, multithreading, and dynamic frame management.

However, its dependence on simple motion detection instead of object classification resulted

in higher false detection rates, particularly in complex or low-light environments. Compared

to the Raspberry Pi 4B, which benefits from better software optimization, higher FPS, and GPU

support, the Vision Five V2 still struggles with real-time AI inference. Despite this, the project

highlights the potential of RISC-V single-board computers for edge computing and lightweight

vision applications, particularly as software support improves over time. While Vision Five V2

is not yet ideal for high-performance AI workloads, this project successfully demonstrated that

real-time speed detection is possible through software optimization. As RISC-V hardware and

software ecosystems mature, we can expect better AI acceleration and improved support for

computer vision applications, making it a viable alternative for future projects.

Throughout the project, valuable engineering skills were developed, including real-time video

processing, hardware-software integration, performance optimization, and system

troubleshooting under constrained resources. The project's findings emphasize the importance

of carefully matching hardware capabilities with application requirements, and the need for

robust system design when operating in diverse real-world conditions.

CHAPTER 7

79
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

In conclusion, this project has successfully delivered a functional prototype capable of real-

time speed detection, and it offers a strong foundation for further research and improvement,

such as upgrading optical sensors, implementing lightweight deep learning models, or adding

dedicated AI accelerators to enhance performance and reliability for future intelligent traffic

monitoring systems.

7.2 Recommendations
To improve the Vehicle Speed Detection System, we can Enhancing Detection Accuracy by

Fine-tune the motion tracking parameters to reduce false detections. This can be done by

experimenting with higher-resolution background models for better object differentiation.

An alternative hardware for AI acceleration, for example the Raspberry PI AI HAT+, can

offload the OpenCV object detection processing to the AI acceleration module and free CPU

resources. The additional CPU resources can be used to increase the input resolution from the

camera and FPS which will help increase the detection rate. However, it only supports

Raspberry Pi 5.

Figure 7.1 Raspberry PI AI HAT+

For VFv2, future research & development of RISCV, implementing RISC-V GPU acceleration

when future software optimizations become available, or implement it on a future Vision Five

SBCs with better CPU performance. There might be a custom AI accelerator module design

for AI workloads that can work with Vision Five V2 in the future which can help accelerate

the YOLO workloads.

CHAPTER 7

80
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Upgrade to Higher-Performance Hardware such as Nvidia Jetson Nano, the system will

benefit from more powerful platforms that include built-in AI acceleration to enable real-time

deep learning-based object detection without significant performance trade-offs.

Implement the system with doppler sensor is still the most cost effective way currently. Doppler

sensors provide more accurate and reliable speed measurements regardless of lighting, weather

conditions, or background complexity. This would significantly reduce false readings caused

by irrelevant motion and enhance the overall robustness of the system, and no calibration

needed for different mounting point like the camera.

Reference

81
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES
[1] Detect speed with a raspberry Pi, camera and OpenCV. (2023, February

16). Core Electronics. https://core-electronics.com.au/guides/detect-

speed-raspberry-pi/

[2] How to make vehicle speed detector system using raspberry Pi.

(2023, September 11). Electronics For

You. https://www.electronicsforu.com/electronics-projects/diy-

vehicle-speed-detection-device-with-raspberry-pi

[3] Vehicle speed detection system utilizing YOLOv8: Enhancing road

safety and traffic management for metropolitan areas. (n.d.).

arXiv.org e-Print archive. https://arxiv.org/html/2406.07710v1

[4] Neuvition. (2023, October 17). Real-time traffic monitoring using

roadside-mounted LiDAR sensors. Neuvition | solid-state lidar, lidar

sensor suppliers, lidar technology, lidar

sensor. https://cdn.neuvition.com/media/blog/real-time-traffic-

monitoring-using-roadside-mounted-lidar-sensors.html

[5] Lindquist, J. (2022, October 27). Police speed guns: Differences

between LIDAR and RADAR? Kustom Signals

Inc. https://kustomsignals.com/blog/radar-vs-lidar-are-there-

any-significant-differences-between-them-to-detect-objects

[6] GceLab. (n.d.). What is inductive loop detector? 8 important

points. Gurukul of Civil engineers- Online Civil Engineering

Courses for Creative

Minds. https://www.gcelab.com/blog/what-is-inductive-loop-

https://core-electronics.com.au/guides/detect-speed-raspberry-pi/
https://core-electronics.com.au/guides/detect-speed-raspberry-pi/
https://www.gcelab.com/blog/what-is-inductive-loop-detector-and-advantages

Reference

82
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

detector-and-advantages

[7] Elsevier. (2018, July 18). Vehicle speed measurement model for video-

based systems.

ScienceDirect. https://www.sciencedirect.com/science/article/pii/S00

45790618317774

[8] How to estimate speed with computer vision. (2024, April 15).

Roboflow Blog. https://blog.roboflow.com/estimate-speed-

computer-vision/

https://www.gcelab.com/blog/what-is-inductive-loop-detector-and-advantages

83
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Appendix

POSTER

	COPYRIGHT STATEMENT
	Table 2.1 Strengths and limitations of the existing speed detection systems

