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ABSTRACT 

Efficient feeding management is a cornerstone of sustainable aquaculture, directly 

influencing fish growth, health, and resource utilization. Traditional feeding methods, 

which rely on manual observation to determine satiety, are labour-intensive, subjective, 

and prone to human error—often resulting in overfeeding and operational 

inefficiencies. This project presents a novel approach for monitoring fish feeding status 

by leveraging ArUco marker tracking. Pose estimations of floating markers are 

analysed to extract movement intensity, which is then interpreted using a time-series 

LSTM classification model to detect fish activity and infer satiety levels. The system 

was developed using a combination of Python, Keras, and OpenCV, and deployed in a 

real aquaculture setting using red hybrid tilapia (Oreochromis sp.). A web-based 

interface provides real-time pose data, fish activity classification, feeding 

recommendations, and status tracking. Model performance was validated through 

cross-validation and real-world testing, achieving high accuracy and practical 

reliability. Beyond monitoring fish feeding status, the system also detects air pump 

operation and tracks water level variations, offering a broader view of tank conditions. 

It supports multi-tank monitoring using a single camera, making the solution cost-

effective, scalable, and non-invasive. The results affirm the system’s potential to 

improve feed management, reduce labour dependency, and support more intelligent and 

sustainable aquaculture practices. 

 

Area of Study: Internet of Things, Computer Vision 

 

Keywords: Precision Aquaculture, Internet of Things, Monitoring, ArUco Markers, 

Fish Feeding Monitoring, Non-Invasive Tracking, Scalable Aquaculture System, Pose 

Estimation 
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CHAPTER 1 INTRODUCTION 

1.1 Project Background 

Aquaculture, serving as the vital component of the global food industry, does provide 

a sustainable and continuous source of protein through fish farming. Historically, the 

core of optimizing aquaculture practices is the effective and optimal monitoring of fish 

feeding behaviour. Accurate monitoring of fish feeding behaviour and managing 

feeding times are crucial, as these factors directly influences the growth rates, health of 

the fish populations, as well as impacts the resource management such as feed. 

Traditionally, fish feeding behaviour has depended on visual observation. Precisely, 

fish farmers tend to provide feed to fish in tanks until the fish stop consuming the feed, 

to ensure that the fish are fully satiated. Yet, such feeding approach has its drawbacks. 

It is labour-intensive, subjective as well as intrusive. More importantly, reliance on 

human observation greatly possesses human errors which potentially leads to 

overfeeding–problem that can interfere with the sustainability and profitability of 

aquaculture operations. 

Our project proposes an innovative solution by exploring the potential of using ArUco 

markers to monitor fish feeding status. Instead of proprietary and specialized sensors, 

we aim to capture data that reflects the activity status of fish within the water using 

ArUco marker system, which are indicative of fish feeding activities. By analysing the 

pose estimations of ArUco markers affixed to floats on the water’s surface, we can gain 

insights into the fish’s activity levels and feeding patterns. This novel approach not only 

enhances the accuracy of monitoring fish feeding status but also strives to improve the 

overall efficiency of aquaculture operations.  

Beyond monitoring fish feeding status, the system also classifies air pump operation 

based on surface motion patterns and tracks water level fluctuations through vertical 

marker displacement. These extended features offer a broader understanding of tank 

conditions and improve environmental monitoring. Furthermore, the system supports 

multi-tank monitoring using a single overhead camera, significantly reducing hardware 

requirements and making the solution scalable for larger aquaculture facilities. 

Together, these capabilities form a comprehensive, non-invasive, and intelligent 
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monitoring platform designed to promote sustainability and productivity in modern fish 

farming.  

Leveraging advanced computer vision technology and data analytics, our project seeks 

to establish a low-cost, non-invasive, and reliable method for monitoring fish feeding 

status. This method can reduce dependency on human observation, optimizing feeding 

schedules and preventing overfeeding. Ultimately, our solution aims to improve the 

health and growth rates of fish populations, contributing to more sustainable and 

profitable aquaculture practices. 

1.2 Motivation 

Fish farmers aim to increase the size and enhance the value of their fish by continuously 

feeding them, as this is the quickest and most straightforward method to promote 

growth of the fish. However, farmers feed the fish continuously until the fish stop 

consuming the feed to ensure that the fish are fully satiated. Consequently, the excessive 

amounts of uneaten feed remain in the fish tanks, leading to issues of feed waste and a 

polluted environment in the fish tanks. This scenario underscores a need for more 

precise and controlled feeding methods that can prevent overfeeding, reduce waste, and 

maintain optimal water quality. Therefore, addressing this need motivates our 

exploration into the use of ArUco marker as a novel approach to monitor fish feeding 

status more accurately and non-invasively. 
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1.3 Problem Statements 

We aim to address and solve two primary problem statements as follows: 

1. Lack of effective and non-invasive method to capture data to monitor fish 

feeding status. 

This problem statement highlights the difficulty of capturing accurate data to 

monitor fish feeding status without being affected by the environmental factors 

of fish tanks and without disrupting the natural behaviours of the fish during 

feeding activity. It is important as an effective and non-invasive method to 

capture data not only preserves the nature of the aquatic system in the fish tank 

but also enhances the accuracy of the captured data. 

2. Uncertainty in interpreting movement intensity to assess fish satiety level. 

This problem statement highlights the difficulty in analysing activity status of 

fish to draw meaningful conclusions about the satiety levels of fish. In addition, 

it highlights the challenge in determining fish satiety level using an effective 

and non-invasive method. It is important as determining fish satiety level helps 

optimize feed usage, preventing fish farmers from providing excessive feeds to 

the fish during feeding activities. 

1.4 Objectives 

We aim to achieve two primary objectives in this project to address the problem 

statements. Two primary project objectives are as follows: 

1. To capture movement intensity data that reflects fish feeding status. 

2. To interpret movement intensity data to indicate the fish satiety levels. 
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1.5 Project Scope 

This project explores the potential of using ArUco markers to monitor fish feeding 

status by capturing and analysing the movement intensity of fish within a tank through 

an ArUco marker-based vision system. Specifically, it investigates the feasibility of 

affixing ArUco markers to floating objects on the water surface to indirectly measure 

feeding activity based on changes in marker pose during fish feeding periods. 

The feasibility of this approach was initially assessed in Project I, where preliminary 

tests validated the accuracy and reliability of pose estimations obtained from ArUco 

markers in controlled environments. Building upon this foundation, Project II focuses 

on developing a functional monitoring system capable of capturing real-time pose 

estimations data and interpreting it to infer fish feeding status. The aim is to determine 

whether feeding should be continued or stopped based on movement intensity of the 

marker, contributing to more efficient and responsive feed management. 

In this project, all experiments are conducted using red hybrid tilapia (Oreochromis 

sp.), with a total sample size of around 80 individuals. The testing is carried out at the 

campus aquaculture facility, where the fish are maintained under standard rearing 

conditions by students specializing in aquaculture. This environment closely reflects 

real-world farming practices, making it a suitable setting for evaluating the practical 

effectiveness of the proposed monitoring system. 

Beyond feeding status detection, the project also explores the potential to extend the 

system’s functionality to monitor additional tank conditions, such as air pump status 

and water level fluctuations, using similar visual indicators. The final deliverable 

includes a user-accessible interface that allows fish farmers to view real-time data for 

multiple tanks. This includes actionable insights such as whether to continue feeding, 

and alerts related to water level and aeration status. Notably, the system is designed for 

multi-tank monitoring using a single camera, significantly reducing hardware costs 

while enhancing scalability and ease of deployment in commercial aquaculture settings. 
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1.6 Contributions 

Our project offers a meaningful contribution to the aquaculture field globally by 

introducing a novel, computer vision–based approach for monitoring fish feeding status 

using ArUco markers. Through the analysis of pose estimations from floating markers, 

the system provides real-time insights into fish activity levels, allowing for accurate 

detection of feeding behaviour and satiety. This enables fish farmers to optimize feed 

usage, prevent overfeeding, and maintain healthier fish populations—ultimately 

leading to improved growth performance and reduced feed waste, which is one of the 

largest operational costs in aquaculture. 

Beyond individual tank monitoring, the system is designed with multi-tank scalability 

in mind. By dividing the camera frame into predefined regions and associating each 

with a different ArUco marker, a single overhead camera can simultaneously monitor 

multiple tanks. This dramatically reduces hardware requirements and installation 

complexity, making the system cost-effective for both small-scale and large-scale 

aquaculture facilities. 

Furthermore, the project deliverables lay the groundwork for future automation. The 

ability to classify feeding activity and generate feeding recommendations can be 

extended to trigger automated feeding mechanisms, forming the foundation for a fully 

automated smart feeding system. Such a system would not only streamline daily 

operations but also minimize labour dependency and reduce human error—two 

common challenges in traditional fish farming. In the long term, adopting this 

intelligent monitoring and automation approach promotes more efficient, scalable, and 

sustainable aquaculture practices, supporting food security and responsible resource use 

across the industry. 
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1.7 Report Organization 

This report is organized into seven chapters, each structured to reflect the development 

process and outcomes of the project as follows: 

• Chapter 1 introduces the background, problem statements, project objectives, 

scope, and significance of the study. 

• Chapter 2 presents a literature review of relevant research, including fish 

feeding behaviour, movement analysis techniques, and ArUco marker-based 

tracking systems. 

• Chapter 3 outlines the system methodology, including use case, system 

architecture, and activity diagrams that illustrate the overall workflow of the 

system. 

• Chapter 4 details the system design, covering hardware and software 

specifications, model training, data preprocessing, and the interaction between 

system components. 

• Chapter 5 describes the implementation process, including the deployment 

environment, training pipeline, and operation of the system in real time. 

• Chapter 6 presents the system evaluation, including model performance metrics, 

real-world testing results, challenges faced, and how each objective was 

evaluated. 

• Chapter 7 concludes the report by summarizing the project outcomes and 

proposing potential improvements and future work. 
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CHAPTER 2 LITERATURE REVIEW 

This chapter reviews existing literature to establish the importance of monitoring fish 

feeding status, with particular attention to the implications of overfeeding in 

aquaculture. It begins by discussing the biological behaviour of fish during feeding 

activities, followed by a critical evaluation of existing technological solutions, 

including deep learning, computer vision, acoustic, and vibrational methods. The 

chapter also explores the use of ArUco marker-based tracking across various fields to 

highlight its potential as a novel, non-invasive approach for fish feeding status 

monitoring. Finally, the chapter concludes by summarizing key insights and justifying 

the relevance of the proposed method in this project. 

2.1 Necessity to Monitor Fish Feeding Status 

Inappropriate feeding methods, such as feeding the fish until they stop consuming the 

feed to ensure that they are fully satiated, can lead to overfeeding. Overfeeding not only 

decreases the efficiency of the feed but also causes feed waste, bacterial growth, and 

environmental degradation in the fish tank [1], [2]. According to [1], when excessive 

amounts of nutrients are released into the aquatic system of the fish tank, particularly 

in a continuous timeline, it promotes the growth of algae, leading to a phenomenon 

known as algal blooms. This phenomenon threatens the life of the fish in the fish tank. 

Typically, the algae might consume a higher amount of oxygen compared to the amount 

they produce during photosynthesis, leading to oxygen depletion in the aquatic system 

of the fish tank. Consequently, without sufficient oxygen in the fish tank, the fish face 

the risk of death. 

2.2 Fish Behavioural Patterns Related to Feeding Activity 

Fish exhibit distinct changes in swimming behaviour before, during, and after feeding 

events. When hungry, fish typically display increased locomotor activity characterized 

by higher swimming speeds and broader movement ranges as they actively search for 

food. Following feeding, their movement becomes more restrained; well-fed fish tend 

to swim slower and within a smaller spatial range, indicating a state of satiety. These 

behavioural shifts are strongly linked to feeding motivation and can serve as useful 

indicators for assessing the overall feeding status of a fish group [3].  
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2.3 Existing Solutions on Monitoring Fish Feeding Status 

Numerous technological solutions have been developed to monitor fish feeding status, 

aiming to improve feed efficiency, reduce waste, and support sustainable aquaculture 

practices. These solutions range from advanced artificial intelligence techniques to 

sensor-based and computer vision methods. Each approach offers unique advantages 

but also faces limitations related to cost, accuracy, scalability, or environmental 

dependency. This section presents a review of the most prominent methods currently 

used in the field, including the application of deep learning, computer vision, acoustic 

analysis, and vibrational pattern recognition, with a focus on their effectiveness and 

practicality for real-world aquaculture environments. 

2.3.1 Application of Deep Learning 

Overview of Deep Learning Application 

To address the challenge associated with inaccurately assessing fish hunger and satiety 

levels during feeding, deep learning techniques has been integrated into automatic fish 

feeding systems. Deep learning frameworks—like deep neural networks—have been 

utilized to analyse the video footage from aquaculture environments. These deep 

learning models process images to detect and interpret the feeding behaviours of fish. 

More precisely, they recognise the size of the waves caused by fish eating to decide 

whether to continue feeding or not [4]. 

In addition to recognising wave size, deep CNN models have been integrated into 

automatic fish feeding systems to determine the fish feeding intensity levels. According 

to [5], two CNNs have been combined to expedite evaluation of fish feeding intensity 

levels. These networks analyse both the optical flow of fish in the water and the water 

movement intensity to accurately assess feeding levels, surpassing the accuracy of 

human observations. Similarly, as demonstrated in [6] and [7], neural networks are 

widely adopted in automatic fish feeding systems to predict both feeding and non-

feeding behaviours. 
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Capabilities of Deep Learning Application 

The application of artificial intelligence in determining fish feeding behaviours 

achieves high levels of accuracy. For instance, the use of a deep neural network has 

been shown to determine fish feeding behaviours with an accuracy of 93.2% [4]. 

Moreover, employing CNNs to analyse the optical flow in video inputs has reached 

accuracy of 95% [5]. The process of evaluating fish feeding intensity levels has been 

accelerated by using a combination of two CNNs. According to [6] and [7], the 

accuracy of using various neural networks to decide whether to continue or stop feeding 

fish also exceeds 80%. In brief, applying deep learning techniques ensures not only 

high accuracy in determining fish feeding behaviours but also a faster evaluation 

process. 

Limitations of Deep Learning Application 

However, applying deep learning techniques in automatic feeding systems requires 

high computational costs, necessitating high performance level GPUs and large 

amounts of memory spaces. This need increases as more feature combinations are 

considered with larger input sizes into the models [8]. Consequently, performance in 

evaluating fish feeding behaviours may decline if the system lacks these robust 

capabilities. 

Moreover, the accuracy of deep learning models is sometimes questioned due to the 

“black box” nature of these systems, as outlined in [9]. Researchers understand the input 

features and the output but lack visibility into the internal processes that evaluate fish 

feeding behaviours. This lack of transparency can lead to doubts about the 

interpretability of the models, potentially undermining trust in the accuracy of the 

results produced by the deep learning models. 
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2.3.2 Application of Computer Vision 

Overview of Computer Vision Application 

Computer vision techniques have been applied in previous works to monitor fish 

feeding behaviour. This technology involves installing cameras to capture videos of 

fish activity, which are then analysed to determine their feeding behaviours [10], [11]. 

Different computer vision algorithms are implemented to perform analysis work on the 

captured data [12]. The primary goal is to capture the movement and motion of fish 

using image processing methods during feeding activities. 

According to [10], a camera is mounted above the fish tank to record the fish’s 

movements during feeding times. The data from these recordings are analysed by 

subtracting consecutive video frames to identify the intensity of movements, 

highlighting areas of motion, and thus determining the level of fish activity. 

Furthermore, researchers have enhanced the accuracy of these measurements by 

introducing an overlap coefficient, which helps correct calculation errors caused by the 

overlapping of fish in the video frames. 

Capabilities of Computer Vision Application 

Integrating computer vision technology into automatic fish feeding systems offers 

advantages such as low computational costs and high effectiveness and accuracy in 

identifying fish feeding behaviours. The relatively low computational demand of 

computer vision addresses some limitations of deep learning models used for similar 

purposes. Additionally, as noted in [10], there is a high correlation between indices 

derived from computer vision-based feeding activity and those observed manually, 

underscoring the effectiveness of this method. 
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Limitations of Computer Vision Application 

The effectiveness of the computer vision technique depends heavily on clear visibility 

of the captured video. As mentioned in [10], while a camera mounted above the tank 

does capture fish movements, the visibility of these videos can be affected by various 

factors such as water quality, the colour of the tank glass, ambient lighting conditions 

and size of fish targets. For instance, if the fish and the tank glass are similarly coloured, 

particularly if both are dark, it can reduce the visibility of the fish’s movements. 

Additionally, low light conditions surrounding the tank can further reduce video clarity. 

The density of the fish population also plays a role; in densely populated tanks, it 

becomes challenging to capture and accurately analyse the movement of individual fish. 
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2.3.3 Application of Acoustic Techniques 

Overview of Applying Acoustic Techniques 

Acoustic techniques are also implemented to monitor fish feeding behaviour. Fish 

produce sound as acoustic signals while consuming feed during feeding activities [13], 

[14], [15]. These acoustic signals could aid in monitoring fish feeding behaviour. Hence, 

a hydrophone is installed in the water to capture these acoustic signals for data 

processing purposes to determine fish feeding behaviours. Peixoto, Soares and Allen 

Davis in [13] have discovered that the acoustic signal variances are directly 

proportional to the amount of feed consumed by the fish. These findings suggest that 

acoustic signals can be utilized as indicators to monitor the hunger and satiety levels of 

fish [13]. 

Capabilities of Applying Acoustic Techniques 

Applying acoustic techniques to monitor fish feeding behaviour addresses some 

challenges encountered with the use computer vision. Acoustic techniques allow 

automatic fish feeding systems to work smoothly and effectively in fish tanks with low 

water quality and high fish density. The reason is acoustic techniques rely solely on the 

acoustic signals produced by the fish during feeding Importantly, such technique can 

be applied effectively in dark environments or in fish tanks with unclear water [16]. 

Limitations of Applying Acoustic Techniques 

However, there are challenges associated with applying acoustic techniques to 

determine fish feeding behaviour. A primary weakness is the disturbance caused by 

surrounding noise in the water. For instance, oxygen supplies in fish tanks often 

produce micro bubbles that can weaken the transmission of acoustic signals to the 

hydrophone, hence reducing the effectiveness of this technique. Moreover, the presence 

of surrounding noise indicates that acoustic techniques are most effective in quieter 

settings such as external ponds or rearing cages in water, where noise sources are 

minimal [13]. 
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2.3.4 Application of Vibrational Pattern Analysis 

Overview of Applying Vibrational Pattern Analysis 

Previous studies have explored the use of vibration data to monitor fish feeding 

behaviour, focusing particularly on the vibrational patterns of the fish rather than the 

water. According to [17], an accelerometer is attached to the fish to capture the 

movements of the fish during feeding activities. The captured accelerometer data is then 

encoded using an 8-directional Chain Code algorithm to discover the direction and 

magnitude of the fish movements. Discrete Fourier Transform and Fourier Descriptors 

are implemented to analyse and summarise the vibrational patterns into a form that is 

easily classified. As a result, fish feeding behaviours can be monitored and automated 

based on the vibration analysis and classification results [17]. 

Capabilities of Applying Vibrational Pattern Analysis 

Utilizing accelerometer data to capture the fish movements for analysis purposes 

provides robust results. This method directly measures the physical activities of the fish, 

which provides an accurate and immediate reflection of the fish’s movements during 

feeding activities. Furthermore, the application of the Chain Code algorithm and 

Discrete Fourier Transform allows for advanced processing and complex analysis of 

movement data in detail. Hence, specific behavioural patterns performed by the fish 

during feeding activities can be identified precisely. 

Limitations of Applying Vibrational Pattern Analysis 

One potential weakness of the vibrational analysis system that relies on accelerometers 

for monitoring fish feeding behaviour is the requirement to physically attach the 

accelerometer devices to the fish. Attaching accelerometers directly to the fish is an 

invasive procedure that may cause stress or harm to the fish. This stress can potentially 

alter their natural behaviours, including feeding, swimming, and interaction with the 

environment and other fish, which in turn could lead to skewed data. In addition. the 

extra weight and presence of the device might affect the natural movements and 

behaviours of the fish. 
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2.4 Existing Solutions on ArUco Marker-Based Tracking 

While ArUco marker-based tracking has not been widely applied in aquaculture, it has 

gained significant traction in various other fields due to its accuracy, low cost, and ease 

of implementation. These markers have been extensively used for real-time pose 

estimation and object tracking in robotics, augmented reality, and drone navigation 

systems. This section explores the core technology behind ArUco markers and reviews 

their applications in different domains to highlight their effectiveness. By examining 

these existing solutions, the potential of adapting ArUco marker-based tracking for fish 

feeding status monitoring is evaluated as a promising direction for this project. 

2.4.1 Overview of ArUco Marker 

ArUco markers are a type of binary square fiducial marker widely used in computer 

vision applications for object detection and pose estimation. Each marker contains a 

unique ID encoded in a black-and-white grid pattern, allowing it to be identified and 

distinguished from others in a camera frame. These markers are particularly known for 

enabling six degrees of freedom (6-DoF) pose estimation, which includes three 

translational and three rotational parameters relative to a calibrated camera. With the 

aid of computer vision libraries such as OpenCV, ArUco markers can be detected and 

processed in real time with high accuracy and minimal computational requirements [18], 

[19].  
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2.4.2 Applications in Robotics and Automation 

In the domain of robotics, ArUco markers play a crucial role in enabling spatial 

awareness and precise control. They are commonly employed in mobile robotics for 

tasks such as localization and navigation, where the robot uses markers placed in the 

environment to determine its position and orientation. This allows autonomous robots 

to traverse indoor environments and interact with their surroundings with greater 

accuracy. In robotic arms and manipulators, ArUco markers are often attached to tools 

or target objects to facilitate alignment and calibration processes. This ensures that 

robotic systems can perform actions such as picking, placing, or assembling with high 

precision [20], [21]. These applications demonstrate the ArUco marker’s capability in 

precise real-time pose estimation and spatial tracking under dynamic conditions, which 

is directly applicable to this project’s goal of monitoring fish movement and surface 

activity. The robustness and accuracy in robotic calibration align well with tracking 

floating markers to infer fish behaviour, especially when subtle movements are 

involved. 

2.4.3 Applications in Augmented Reality and Virtual Environments 

ArUco markers have also found extensive use in augmented reality (AR) systems, 

where they function as visual anchors that link digital content to physical spaces. When 

a marker is detected by a device’s camera, the system computes its pose and uses that 

information to accurately position and render virtual elements, such as 3D models, 

labels, or animations, within the user’s view. This allows for seamless integration of 

virtual content into the real world, maintaining correct scale and orientation relative to 

the marker [22]. ArUco markers are particularly valuable in mobile AR applications 

and head-mounted display systems, where they provide fast, stable tracking even in 

suboptimal lighting or partially occluded conditions [23]. Their efficiency and 

reliability make them ideal for interactive educational tools, museum exhibits, design 

visualization, and other immersive applications that depend on precise visual alignment 

between digital and real-world objects. AR applications showcase ArUco markers’ 

strengths in pose estimation with varying viewpoints and lighting conditions, which is 

essential for this project, where markers may move unpredictably on the water surface. 

The stable tracking ensures consistent pose readings, which are critical for accurately 

calculating fish movement intensity from the floating markers.  
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2.4.4 Applications in Drone Navigation and Control 

ArUco markers have proven highly effective in drone navigation systems, especially in 

environments where GPS signals are unreliable or unavailable, such as indoors or in 

densely built areas. By using onboard cameras, drones can detect ArUco markers 

strategically placed in the environment to estimate their relative position and orientation 

in real time. This visual-based localization enables drones to perform complex 

autonomous maneuvers with precision, such as navigating through pre-defined 

waypoints, maintaining stable hovering near targets, or adjusting their orientation to 

align with a landing pad. One of the most notable applications is precision landing, 

where the marker serves as a visual beacon to guide the drone during descent and ensure 

accurate placement [24]. Additionally, marker tracking supports tasks like inspection, 

package delivery, and spatial mapping by enhancing positional awareness. The real-

time detection, combined with low hardware requirements and high reliability, makes 

ArUco markers an accessible and effective solution for enabling intelligent control in 

modern aerial robotics [25]. Drone navigation emphasizes the use of ArUco markers in 

unpredictable, real-time environments, similar to the aquatic setting of this project. Just 

as drones rely on visual markers for precise descent and orientation, this system uses 

marker movement to determine feeding activity and environmental status. The proven 

success in drones also highlights ArUco markers’ effectiveness in GPS-denied, camera-

only systems, which parallels the single-camera, marker-based setup used for multi-

tank fish monitoring. 
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2.4.5 Summary of Advantages of ArUco Marker-Based Tracking 

ArUco marker-based tracking systems offer a combination of simplicity, reliability, and 

cost-effectiveness that makes them attractive for a wide range of real-time monitoring 

applications. These systems require only standard camera equipment and printed 

markers, eliminating the need for expensive or specialized hardware. Despite their 

simplicity, they deliver high accuracy in pose estimation, capturing both spatial position 

and orientation with precision sufficient for many engineering and research applications. 

A major advantage of ArUco systems is their scalability; multiple unique markers can 

be tracked simultaneously within a single camera frame, allowing for the monitoring of 

several objects or environments concurrently. Their detection remains robust even 

under changing lighting conditions or when markers are partially occluded or viewed 

from oblique angles. Moreover, the widespread availability of open-source libraries, 

such as those offered by OpenCV, facilitates easy integration and implementation 

without licensing costs. ArUco tracking is also non-intrusive, relying solely on visual 

input, which makes it ideal for applications where minimal interference is essential, 

such as biological observation or sensitive manufacturing processes. These 

characteristics collectively position ArUco marker-based tracking as a versatile and 

practical solution for real-time monitoring across diverse fields. In the context of this 

project, their reliability, low cost, and non-intrusiveness make them particularly well-

suited for fish feeding status detection and multi-tank monitoring in aquaculture 

environments. 
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2.5 Literature Review Summary and Project Justification 

The literature reviewed in this chapter has highlighted the critical importance of 

accurately monitoring fish feeding status in aquaculture settings. It is well-established 

that fish exhibit observable changes in movement patterns during feeding, and these 

behaviours can serve as valuable indicators for optimizing feed management and 

improving overall fish welfare. 

Existing monitoring solutions — including deep learning algorithms, computer vision 

techniques, acoustic systems, and vibrational analysis — demonstrate promising results 

but also present notable limitations. Deep learning and optical flow-based methods 

often require significant computational resources and can be affected by environmental 

noise, such as lighting changes or water turbidity. Acoustic and vibration-based 

approaches, while suitable for low-visibility conditions, can be invasive or unreliable 

in noisy aquatic environments. Furthermore, many of these methods struggle with 

scalability and cost-effectiveness, especially when applied across multiple tanks or 

large-scale fish farms. 

In parallel, ArUco marker-based tracking systems have shown considerable success in 

other technical fields such as robotics, augmented reality, and drone navigation. These 

systems provide accurate pose estimation using simple, low-cost hardware and offer 

real-time performance with minimal computational overhead. Their use in tracking 

movement and orientation makes them a compelling candidate for aquatic behaviour 

monitoring. 

Based on the limitations of existing approaches and the proven capabilities of marker-

based tracking, this project proposes a novel application of ArUco markers for 

monitoring fish feeding status. By attaching markers to floating objects and analysing 

their pose changes caused by surface disturbances during feeding, the system aims to 

deliver a non-invasive, scalable, and cost-efficient monitoring solution. The literature 

supports both the need for improved feeding monitoring techniques and the technical 

feasibility of the proposed approach, thereby forming a strong foundation for our 

solution. 
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CHAPTER 3 SYSTEM METHODOLOGY 

This chapter outlines the system methodology by presenting an overview of the system, 

along with the use case diagram, system architecture diagram, and activity diagram. 

These visual models collectively describe how the system operates, from user 

interaction to backend processing and final output generation. 

3.1 Overview of the System 

The proposed system is designed to monitor fish feeding status in multiple aquaculture 

tanks by analysing water surface movement using ArUco marker tracking combined 

with machine learning-based classification. ArUco markers are affixed to floating 

objects, and their motion patterns reflect the water disturbances caused by fish activity 

during feeding. By tracking pose changes over time, the system can determine whether 

the fish are actively feeding or have reached satiety. 

The system architecture includes four main components: a camera, a backend server, a 

trained deep learning model, and a web-based frontend interface. The camera captures 

live video of multiple tanks. The backend processes each frame to detect ArUco 

markers and estimate their pose in the form of Euler angles (yaw, pitch, and roll) and 

translation values (x, y, z). These pose values and translation values are collected in a 

sliding time window and passed to an LSTM model, which classifies fish activity as 

active or inactive. Based on the duration of the activity state, the system generates a 

feeding recommendation — to continue or stop feeding. 

Beyond monitoring feeding behaviour, the system also detects air pump status by 

analysing specific marker movement patterns generated by water turbulence from the 

pump. In addition, the system is capable of tracking water level changes by analysing 

the vertical position of the marker in the camera view, allowing users to detect abnormal 

drops or rises in water level. 

All predictive outputs — including fish activity status, duration of fish activity status, 

feeding recommendation, air pump status, and water level — are sent to a React-based 

frontend interface where users can monitor multiple tanks in real time. The system is 

scalable and operates using a single camera, offering a cost-effective, non-invasive 

solution to support intelligent decision-making in aquaculture management.  
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3.2 Use Case Diagram 

This section presents the use case diagram, which illustrates the interactions between 

the user and the system, including key functionalities such as monitoring fish activity 

status, monitoring duration of fish activity status, receiving feeding recommendations, 

monitoring air pump status, monitoring water level and accessing real-time tank data. 

Figure 3.2.1 below shows the use case diagram. 

 

Figure 3.2.1. Use case diagram of the ArUco marker-based fish feeding status 

monitoring system 
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Figure 3.2.1 above presents the use case diagram, which models the interaction between 

the primary actor (user) and the system. The user, typically a fish farm operator, 

interacts with the system through a web-based frontend that communicates with a 

Python-based backend, where real-time data processing and classification take place. 

The system is designed around key use cases that represent the external functionalities 

experienced by the user, while also implying complex internal operations handled 

autonomously by the system: 

• Monitor fish activity status 

The user is able to view whether fish in a tank are active or inactive. This status 

is derived from the movement of floating ArUco markers, whose pose (Euler 

angles and translation values) is estimated in real time. The backend processes 

these pose values in a sliding window and applies a trained LSTM model to 

classify fish activity status. 

• Monitor duration of fish activity status 

The system continuously tracks the duration of each detected activity state 

(active or inactive). This temporal tracking is a key step toward feeding 

decision-making and is not directly controlled by the user. It is included as an 

internal component of the higher-level feeding recommendation process. 

• Receive feeding recommendation 

Based on the classification results and the duration of fish activity states, the 

system infers whether fish are still feeding or have reached satiety. Once the 

predefined threshold is met, the system generates a recommendation to stop or 

continue feeding. This output is then made visible to the user via the frontend. 
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• Monitor air pump status 

The system evaluates movement patterns specific to surface turbulence caused 

by air pump activity. The motion of the ArUco marker, influenced by water 

agitation, is tracked and converted into pose data. These pose sequences are 

buffered into a sliding window and passed into an LSTM model trained 

specifically to classify air pump status. The model predicts whether the air pump 

is switched on or off based on the temporal patterns of marker movement. The 

result is displayed to the user alongside other real-time tank data via the frontend 

interface. 

• Monitor water level 

The vertical position of the ArUco marker in the camera frame is used to 

passively monitor the water level in each tank. As the marker floats on the water 

surface, its position reflects changes in water height. The system continuously 

tracks this vertical position and displays the real-time water level to the user 

through the frontend interface. Unlike fish activity and air pump status, this 

feature does not rely on predefined thresholds or classification but instead 

provides live positional data to support manual observation and decision-

making. 

• Access real-time tank data 

All predictions and raw values – Euler angles, activity status, duration of fish 

activity status, water level – are made available through a centralized frontend 

interface. This allows the user to monitor multiple tanks simultaneously and 

make informed management decisions. 

Also, Figure 3.2.1 illustrates internal dependencies using <<include>> relationships, 

notably between “Receive feeding recommendation”, “Monitor duration of fish activity 

status”, and “Monitor fish activity status”. These inclusions reflect the layered 

processing pipeline in the backend system. While the user does not initiate or control 

these processes directly, they benefit from their outputs through a seamless frontend 

interface. 
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3.3 System Architecture Diagram 

This section presents the system architecture of the ArUco marker-based fish feeding 

status monitoring system. The architecture outlines how the hardware and software 

components interact to enable real-time monitoring of fish feeding status, air pump 

operation, and water level. Figure 3.3.1 below shows the system architecture diagram. 

 

Figure 3.3.1. System architecture diagram of ArUco marker-based fish feeding status 

monitoring system 

As shown in Figure 3.3.1, the system comprises four major components: 

• Camera sensor 

• Server with deployed model 

• Frontend user interface 

• User 

The camera is mounted above the tanks and is responsible for capturing continuous 

video footage that includes floating ArUco markers placed in each tank. These markers 

are affixed to floating objects that move in response to fish activity, air pump turbulence, 

or water level changes. 

  



CHAPTER 3 SYSTEM METHODOLOGY 

24 
Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 

The server receives the video stream and performs several processing steps: 

1. Marker detection and pose estimation. 

2. Conversion of marker orientation into Euler angles (yaw, pitch, roll) and 

translation values (x, y, z). 

3. Buffering of pose data into sliding windows for time-series modelling 

4. Classification using LSTM models to predict both fish activity status and air 

pump status based on temporal motion patterns. 

5. Analysis of duration of fish activity status using a predefined threshold to 

recommend stop feeding or continue feeding. 

In parallel, the vertical position of the marker in the camera frame is tracked to calculate 

real-time water level readings. 

Once predictions and pose data are generated, they are sent to the frontend user interface, 

developed using React. The frontend displays all relevant tank metrics, including: 

• Fish activity status (Active/Inactive) 

• Duration of fish activity status 

• Feeding recommendation (Continue feeding/Stop feeding) 

• Air pump status (On/Off) 

• Real-time water level 

• Euler angles from pose estimation 

The user accesses this data through the interface to make informed management 

decisions. The system supports multi-tank monitoring using a single camera, reducing 

hardware cost and improving scalability for commercial aquaculture environments. 
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3.4 Activity Diagram 

This section presents the activity diagram of the ArUco marker-based fish feeding 

status monitoring system. The diagram illustrates the sequential flow of operations 

carried out by the system; from the moment a video frame is captured to the point where 

monitoring results are displayed to the user. The system handles both fish activity 

detection and air pump status classification using the same input data pipeline, while 

also monitoring water level as a continuous visual metric. Figure 3.4.1 below shows the 

activity diagram. 

 

Figure 3.4.1. Activity diagram of ArUco marker-based fish feeding status monitoring 

system 
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The process begins when the user initiates the feeding process. The camera sensor 

captures video frames of the fish tanks, which include floating ArUco markers. These 

frames are transmitted to the backend server, where pose estimation is performed using 

computer vision techniques.  

If a marker is successfully detected in a frame, its 6-DoF pose is estimated. The pose is 

then converted from quaternion format into Euler angles (yaw, pitch, roll), and the 

translation values (x, y, z) are extracted. The Z-distance specifically corresponds to the 

marker’s vertical position relative to the camera, which is used to monitor the water 

level in real time. 

The Euler angles and Z-distance are then transmitted back to the frontend for real-time 

display. At the same time, the Euler angels and the translation values are buffered into 

a sliding window on the server side. When the buffer is filled, the sequence is passed 

into a trained LSTM model, which generates predictions for both fish activity status 

(Active/Inactive) and air pump status (On/Off) based on the motion patterns captured 

in the time-series data.  

The output fish activity status is analysed to track how long the fish have remained 

inactive or active. If the duration exceeds a predefined threshold, the system 

recommends stopping feeding or continuing feeding. Both the predicted statuses and 

the feeding recommendation are sent to the frontend. 

Finally, the frontend interface presents all relevant data to the user, including: 

• Real-time Euler angles and Z- distance to represent water level 

• Fish activity status 

• Air pump status 

• Duration of fish activity status 

• Feeding recommendation 

This process runs continuously in a loop, enabling real-time monitoring and intelligent 

feeding decision support during aquaculture operations. 
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CHAPTER 4 SYSTEM DESIGN 

This chapter presents the detailed system design of the ArUco marker-based fish 

feeding status monitoring system. It describes the hardware and software components 

used, how they are integrated, and the overall architecture of the system. Key 

subsystems — including pose estimation, data preprocessing, and time-series 

classification using an LSTM model — are explained in depth. Special design 

considerations such as throttling, quaternion-to-Euler angle conversion, and sliding 

window buffering are also discussed, as they play critical roles in ensuring accurate and 

efficient predictions. The interaction between the backend and frontend is outlined to 

illustrate how real-time data is processed and delivered to the user interface. This 

chapter aims to provide the necessary design insights to replicate or extend the system 

in similar applications. 

4.1 Hardware and Software Components 

This section outlines the hardware and software components used to implement the 

ArUco marker-based fish feeding status monitoring system. The system combines 

video capture, computer vision, deep learning, and a web-based user interface to 

provide real-time monitoring of fish feeding status, air pump operation, and water level 

in multiple aquaculture tanks. 
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4.1.1 Hardware Components 

To implement the system, three main hardware components are required as follows: 

• Camera sensor with mounting setup 

A smartphone is mounted above the fish tanks and acts as the primary video 

capture device. The phone uses the DroidCam application to stream live video 

to the backend server over the local network. This setup provides a stable top-

down view of the tank, suitable for consistent ArUco marker detection and pose 

estimation. The video stream is accessed in real time, with resolution and frame 

rate balanced for clarity and performance. 

• Floating ArUco markers 

ArUco markers are printed and affixed to lightweight floating objects made of 

foam. These floats are designed to remain on the water surface and respond 

naturally to disturbances caused by fish movement, aeration from the air pump, 

and changes in water level. The motion of the marker serves as the observable 

input for determining fish behaviour and tank conditions. 

• Local server 

A personal computer is used to host the backend system. It runs the pose 

estimation algorithm, buffers time-series data, and executes the LSTM 

classification model to predict fish activity and air pump status. The server also 

handles real-time communication with the frontend via WebSocket. The 

machine requires moderate processing capabilities to support live video frame 

analysis and continuous inference without performance bottlenecks. 
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4.1.2 Software Components 

The software architecture of the system consists of multiple modules that handle video 

processing, pose estimation, time-series classification, real-time communication, and 

frontend visualization. The system is primarily developed using Python for backend 

processing and React for the user interface. The software components and modules that 

are included are as follows: 

• React (Frontend user interface) 

The frontend is built using the React JavaScript framework. The interface is 

designed for clarity and usability, enabling the user to quickly assess tank 

conditions and make informed decisions. It receives real-time data from the 

backend and dynamically renders: 

o Euler angles (yaw, pitch, roll) 

o Z-distance (water level) 

o Fish activity status 

o Air pump status 

o Duration of current fish activity status 

o Feeding recommendation 

• Python (Backend) 

Python serves as the core backend language. It manages video frame handling, 

ArUco marker detection, pose estimation, data buffering, LSTM model 

inference, and real-time communication with the frontend. Python’s extensive 

ecosystem enables rapid development and integration of computer vision and 

machine learning modules. 
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• OpenCV 

OpenCV is used for ArUco marker detection and pose estimation. The module 

identifies the marker in each video frame and computes its pose, which includes 

both rotation (as a rotation vector or quaternion) and translation (x, y, z position) 

relative to the camera. In this system, rotation data is initially obtained in 

quaternion format, a four-dimensional representation of orientation. 

Quaternions are preferred over Euler angles or rotation matrices in the pose 

estimation stage because they are mathematically stable, do not suffer from 

gimbal lock, and can smoothly interpolate rotations. This makes them highly 

suitable for tracking orientation changes over time, especially when working 

with small but continuous rotational movements — as seen with floating ArUco 

markers on water. Once obtained, the quaternions are converted into Euler 

angles (yaw, pitch, and roll) for easier interpretation, display, and input into the 

classification model. Additionally, the Z-distance component of the translation 

vector is extracted and used to estimate water level, as it directly reflects the 

vertical displacement of the marker within the camera’s coordinate system. 

• NumPy & SciPy 

These libraries are used for numerical operations, matrix manipulation, and 

sliding window buffering of pose data sequences. They provide efficient tools 

for preparing model input and post-processing model output. 

• LSTM Model (Keras with TensorFlow Backend) 

The system uses a Long Short-Term Memory (LSTM) model developed using 

Keras, a high-level neural networks API running on top of TensorFlow. The 

model is trained on time-series pose data to classify two outputs: fish activity 

status (Active/Inactive) and air pump status (On/Off). Keras provides a 

streamlined interface for defining, training, and evaluating deep learning models, 

making it well-suited for rapid development and experimentation. 
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• Throttling Logic 

A throttling mechanism is implemented in the backend to control the frequency 

of model predictions. Instead of performing inference on every frame, the 

system triggers prediction only at fixed intervals to reduce computational load 

and avoid redundant processing. 

• WebSocket Communication 

A WebSocket protocol is used for efficient, real-time communication between 

the backend and frontend. It streams a continuous feed of pose data (Euler 

angles and Z-distance), classification results, and feeding recommendations to 

the user interface. 
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4.2 System Block Diagram 

This section presents the system block diagram of the ArUco marker-based fish feeding 

status monitoring system. The system captures and processes real-time motion data 

from ArUco markers floating on the tank surface to determine fish activity status, air 

pump operation, and feeding recommendations. It consists of several modular 

components, each performing a specific task within the data processing and monitoring 

pipeline. Figure 4.2.1 below illustrates the system block diagram of the ArUco marker-

based fish feeding status monitoring system. 

 

Figure 4.2.1. System block diagram of ArUco marker-based fish feeding status 

monitoring system 

Based on Figure 4.2.1, the process begins with a camera sensor, which continuously 

captures video frames of the water surface. These frames are processed by the Pose 

Estimation Module, which detects ArUco markers and estimates their 6-DoF pose. The 

pose is calculated using the quaternion method to ensure rotational stability, and is then 

converted to Euler angles (yaw, pitch, roll) and translation values (x, y, z) for feature 

extraction. The Z-axis translation is also extracted from the pose data to represent the 

vertical distance, which reflects the water level. 

The Euler angles and translation values are sent along two paths: 

• Directly to the Frontend User Interface via WebSocket, allowing users to 

observe live movement and water level. 

• Simultaneously to the Data Buffering Module, where the data is accumulated in 

a sliding window format. 

  



CHAPTER 4 SYSTEM DESIGN 

33 
Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 

Once the buffer reaches a sufficient length, it is passed into the trained LSTM 

Classification Model, which predicts: 

• Fish activity status (Active or Inactive) 

• Air pump status (On or Off) 

To reduce computational load and noise, a throttling strategy is implemented, where 

predictions are only triggered at fixed intervals rather than on every frame. 

The predicted fish activity status is further processed by the Feeding Recommendation 

Module, which monitors the duration of fish activity status and determines whether 

feeding should be continued or stopped based on predefined thresholds. This logic helps 

prevent overfeeding based on sustained behavioural trends. 

The WebSocket serves as the central communication channel between the backend and 

frontend. It transmits all relevant outputs — Euler angles, vertical distance, predicted 

statuses, duration of fish activity status, and feeding recommendations — as a combined 

data stream to the Frontend User Interface. The frontend presents these metrics in real 

time, enabling the user to monitor and manage multiple tanks efficiently. 

This architecture enables reliable, real-time monitoring of fish behaviour and tank 

conditions using only a single camera, making it suitable for scalable deployment in 

commercial aquaculture environments. 
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4.2.1 Breakdown of System Block Diagram 

To better understand how each component functions within the system, the key 

processing modules are summarized below: 

• Camera Sensor 

A smartphone camera, mounted directly above the fish tanks, is used as the 

primary video capture device. It streams live video to the backend server using 

the DroidCam application over a local network. This setup provides a stable, 

top-down perspective of the tank surface, ensuring consistent visibility of the 

floating ArUco markers. The use of DroidCam enables a cost-effective and 

easily deployable alternative to conventional IP or USB cameras. 

• Pose Estimation Module 

The video stream from the camera is processed frame by frame by the pose 

estimation module. This module detects ArUco markers using OpenCV and 

computes their full 6-DoF pose, which includes both rotation and translation 

vectors. The rotation is initially calculated in quaternion form to ensure 

numerical stability and avoid issues like gimbal lock. It is then converted into 

Euler angles — yaw, pitch, and roll — for further analysis and interpretability. 

In addition to orientation, the module extracts translation values (x, y, z), where 

the Z-distance (vertical displacement) is specifically used to monitor water level. 

• Data Buffering Module 

To prepare time-series data for classification, a fixed-length sliding window is 

used to buffer sequences of pose data — specifically the Euler angles and 

translation values. This module ensures that only structured, temporal input is 

passed into the classification model. The use of buffering helps capture 

movement trends over time, rather than analysing isolated frames. 
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• LSTM Classification Model 

The buffered sequences are fed into a deep learning model based on Long Short-

Term Memory (LSTM) architecture, developed using Keras. The model is 

trained to predict two classification outputs: fish activity status (Active or 

Inactive) and air pump status (On or Off). To avoid excessive computation, a 

throttling mechanism is applied so that predictions are only made at defined 

frame intervals, rather than continuously on every frame. This improves 

efficiency while preserving temporal accuracy. 

• Feeding Recommendation Module 

Once fish activity predictions are obtained from the classification model, they 

are passed to the Feeding Recommendation Module, which operates based on 

time-based behavioural analysis. This module continuously monitors the 

duration of the predicted activity status and compares it to a predefined 

threshold. If the active state persists beyond the threshold, the system 

automatically recommends continuing the feeding process. Conversely, if the 

inactive state persists for longer than the threshold, a recommendation to stop 

feeding is issued. This decision-making logic helps reduce the risk of 

overfeeding by aligning feed delivery with real-time fish behaviour, thus 

enabling more efficient and responsive feed management. 

• WebSocket Communication Layer 

To enable real-time interaction between the backend and frontend, the system 

uses a WebSocket protocol, which operates over TCP. This communication 

layer streams all relevant outputs — including Euler angles, Z-distance, 

prediction results, duration of fish feeding status and feeding recommendations 

— as a continuous data stream to the frontend interface. WebSocket ensures 

low-latency, bidirectional communication, allowing the user to monitor tank 

status without delay. 
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• Frontend User Interface (Real-Time Display) 

The frontend, developed using React, receives Euler angles, Z-distance, 

classification results, duration of fish activity status and feeding 

recommendation from the backend via WebSocket. It displays real-time values 

for marker orientation and water level, as well as system predictions including 

fish activity status, air pump status, and feeding recommendations. The interface 

also visually tracks and displays the duration of the current fish activity state, 

providing users with contextual insight into the system’s decision-making logic. 
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4.3 LSTM Model Development 

This section details the development process of the classification model used to detect 

fish activity status and air pump status. It begins with data collection, where pose 

information is extracted from floating ArUco markers during real feeding sessions. The 

data is then labelled, pre-processed, and formatted into time-series sequences using a 

sliding window technique. These sequences are used to train a deep learning model 

based on Long Short-Term Memory (LSTM) architecture, which is well-suited for 

temporal behaviour recognition. The section also discusses model architecture, training 

configurations, and evaluation strategies, culminating in the selection of the most 

accurate and efficient model for real-time deployment in the system. 

4.3.1 Data Collection and Labelling 

To train the classification model, two types of behaviour were targeted: fish feeding 

activity and air pump operation status. Each was collected and processed separately 

using the same data acquisition pipeline, which extracted pose information from a 

floating ArUco marker in the tank. The recorded data includes Euler angles (yaw, pitch, 

roll) and translation values (x, y, z), derived through a quaternion-based pose estimation 

process using OpenCV. 

Fish feeding data was collected by initiating a controlled feeding session. A batch script 

(.bat file) was executed to start real-time collection of pose data (Euler angles and 

translation vectors) immediately before, during, and after the feeding process. This 

ensured that the dataset captured the full behavioural transition from active feeding to 

post-feeding inactivity. 

The movement of the floating ArUco marker, caused by fish surfacing or swimming 

near the surface during feeding, was reflected in the recorded pose values. The resulting 

time-series data served as a proxy for fish activity levels during feeding events. 

For air pump activity, data collection followed a similar approach. Pose data was 

collected while the air pump was manually turned on and off at controlled intervals. 

When the pump was running, the resulting turbulence on the water surface caused 

distinctive movement patterns in the floating marker, which were captured as 

fluctuations in Euler angles and translation values. In contrast, the stillness during 

pump-off periods produced noticeably stable marker motion. 
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4.3.2 Manual Data Labelling 

The collected pose data was then manually labelled based on synchronized observation 

of the recorded video footage. During review, the elapsed time in the pose data was 

matched with the corresponding timestamps in the video. Binary labels were then 

assigned as follows: 

• Fish Activity Status 

o 1 for Active (during observable feeding behaviour) 

o 0 for Inactive (before or after feeding when fish were calm) 

• Air Pump Status 

o 1 for On (when pump was operating) 

o 0 for Off (when pump was not operating) 

This labelling method ensured that each window of pose data used in model training 

had an accurate and consistent ground truth label derived from visual validation. 
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4.3.3 Data Preprocessing 

To prepare the collected pose data for time-series classification, a sliding window 

approach was applied. Rather than analysing individual frames in isolation, this method 

groups consecutive pose data points into fixed-length sequences, enabling the model to 

capture temporal dependencies and learn motion dynamics over time. This temporal 

structuring is essential for modelling real-world behaviour, where feeding activity and 

aeration patterns unfold gradually rather than appearing in isolated snapshots. 

Each window contains a sequence of consecutive pose samples — specifically the Euler 

angles (yaw, pitch, roll) and the translation values (x, y, z) — collected at consistent 

intervals. These sequences serve as input features to the LSTM model, which is 

designed to process sequential data by retaining memory of previous time steps. This 

allows the model to identify patterns of change and movement trends, rather than 

relying solely on individual frame characteristics. 

The window advances by a predefined step size to create overlapping segments, 

ensuring continuity between sequences and improving training diversity. The following 

hyperparameters were used: 

• Window size: The number of consecutive frames (time steps) per sequence. 

• Step size: The number of frames the window shifts forward to form the next 

sequence. 

These parameters were tuned experimentally. A larger window captures more context, 

allowing the model to detect longer behavioural trends, while a smaller window 

increases responsiveness but may be more sensitive to noise. The selected configuration 

represents an optimal balance between accuracy and real-time prediction. 

Each sequence was labelled according to the status of the final frame (either fish activity 

or air pump state), preserving temporal alignment between inputs and observed ground 

truth. Through this process, raw continuous pose data was transformed into structured, 

labelled time-series sequences. After normalization, these were used to train and 

evaluate the LSTM model, allowing it to effectively learn motion patterns and 

behaviour transitions over time. 
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4.3.4 Model Architecture and Training 

The classification model used in this project is based on a Long Short-Term Memory 

(LSTM) architecture, implemented using the Keras API on top of TensorFlow. The 

model is designed to classify short sequences of pose data — specifically Euler angles 

and translation vectors — into binary states representing either fish activity status 

(Active/Inactive) or air pump status (On/Off), using time-series motion patterns. 

The final LSTM model consists of the following layers: 

• Masking Layer: Masks padded values in input sequences to prevent them from 

influencing learning. 

• First LSTM Layer: 64 units, configured to return sequences for deeper temporal 

representation. 

• Second LSTM Layer: 32 units, used to extract higher-level temporal features. 

• Dense Layer: 16 neurons with ReLU activation to learn abstract representations. 

• Output Layer: A single neuron with a sigmoid activation function to produce 

binary classification output. 

The model was compiled with configurations tailored for binary classification. Binary 

cross-entropy was used as the loss function, which is appropriate for tasks involving 

two output classes, such as distinguishing between active and inactive fish behaviour 

or air pump On and Off states. The Adam optimizer was selected for its adaptive 

learning rate capabilities and efficient convergence properties, making it well-suited for 

training deep learning models on time-series data.  

Model training was then performed using 5-fold Stratified Cross-Validation to ensure 

balanced representation of both classes in each fold. For each fold: 

• The model was trained for 100 epochs with a batch size of 32. 

• Validation performance was evaluated after training. 

• Predictions were thresholded at 0.5 to convert probabilities into binary class 

labels. 
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4.3.5 Model Evaluation 

For each fold after training, the following evaluation metrics were recorded: 

• Accuracy 

• Precision 

• Recall 

• F1-Score 

• Confusion Matrix 

• ROC Curve and AUC Score 

The model that achieved the highest accuracy across all folds was selected as the final 

model for deployment. A confusion matrix and ROC curve were generated using 

predictions aggregated across all folds to visualize classification performance and error 

distribution. 

Prior to training, class distributions were visualized using bar plots to ensure that the 

dataset was sufficiently balanced between the binary classes for both fish activity status 

and air pump status. This step was crucial to avoid training a biased model and to ensure 

fair evaluation metrics. 

To identify the optimal temporal window for classification, the model was trained and 

evaluated using several combinations of window size (in seconds) and step size (in 

number of frames). These hyperparameters control how many frames are included in 

each time-series input and how much overlap exists between consecutive samples. 

Separate sets of combinations were used for each classification task: 

• Fish Activity Status: 

o (30, 30), (30, 15), (15, 30), (15, 15), (10, 30), and (10, 15) 

• Air Pump Status: 

o (30, 30), (30, 15), (15, 30), and (15, 15) 
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These combinations were chosen to evaluate the impact of both longer and shorter 

sequences on the model’s performance. Larger windows provide more context and are 

expected to improve classification accuracy for subtle patterns such as gradual slowing 

down of feeding, while smaller windows offer faster responsiveness, which is important 

for real-time prediction. Likewise, smaller step sizes introduce greater overlap between 

sequences, which increases the data volume and potentially improves generalization, 

while larger steps reduce redundancy and speed up inference. By comparing 

performance across these combinations, the most suitable configuration for each 

classification task was identified and used in the final deployed model. 

4.3.6 Model Deployment 

Once the optimal LSTM model was selected through cross-validation, it was saved and 

integrated into the backend system for real-time deployment. The final model was 

stored in .keras format, while the corresponding data scaler used for feature 

standardization was saved separately using joblib to ensure consistent preprocessing 

during inference. 

At runtime, the backend continuously collects pose data from the pose estimation 

module in real time. The Euler angles and translation values are buffered using a sliding 

window mechanism. Once the window is filled with sufficient data points, the sequence 

is reshaped and normalized using the saved StandardScaler, ensuring that the live input 

matches the format of the training data. The normalized sequence is then passed into 

the deployed LSTM model to generate predictions. The model outputs a probability 

between 0 and 1, which is thresholded at 0.5 to determine the final binary classification 

as follows: 

• Fish activity status: Active (1) or Inactive (0) 

• Air pump status: On (1) or Off (0) 
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Predictions are made at predefined intervals according to the throttling strategy 

implemented in the backend, which controls how frequently inference is triggered to 

maintain system efficiency. 

The predicted status is transmitted to the frontend interface via WebSocket, along with 

the corresponding pose data and water level reading. This enables the user to monitor 

classification results in real time and receive timely feeding recommendations based on 

the inferred fish behaviour. 

This deployment approach ensures that the system remains lightweight, responsive, and 

consistent with the training environment, while supporting live decision-making in 

aquaculture management. 
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4.4 System Components Interaction Flow 

This section explains how the hardware and software components interact within the 

complete system pipeline after the trained LSTM model has been finalized and 

deployed. Each component plays a defined role in facilitating real-time monitoring of 

fish feeding activity, air pump operation, and tank conditions. 

 

Figure 4.4.1. System flowchart of ArUco marker-based fish feeding status monitoring 

system 
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Referring to Figure 4.4.1, The system begins with a smartphone mounted above the 

tanks, which functions as the camera sensor. Using the DroidCam application, the 

smartphone streams live video frames to the backend server. Upon receiving the video 

stream, the pose estimation module processes each frame using OpenCV to detect 

ArUco markers and estimate their 6-DoF pose. The orientation is initially calculated in 

quaternion format for rotational stability and then converted to Euler angles (yaw, pitch, 

roll), along with translation values (x, y, z). The Z-axis translation specifically serves 

as a proxy for estimating water level. These pose values are sent via WebSocket to the 

frontend user interface, built using React, which displays real-time marker orientation 

and water level data. 

Simultaneously, the pose data is routed to the data buffering module, where sequences 

are accumulated in a fixed length sliding window. Once the buffer is filled, the sequence 

is normalized using the previously saved scaler and passed into the LSTM classification 

model, developed using Keras. This model predicts the fish activity status (Active or 

Inactive) and air pump status (On or Off) based on temporal motion patterns. To ensure 

computational efficiency, a throttling mechanism is implemented to control the 

prediction frequency. 

The predicted fish activity status is further processed by the feeding recommendation 

module, which tracks the duration of fish activity status and generates an output 

indicating whether feeding should continue or stop. All relevant outputs — including 

Euler angles, Z-distance, predicted statuses, duration of fish activity status and feeding 

recommendation — are packaged into a unified data stream and transmitted back to the 

frontend interface via WebSocket, enabling the user to observe tank behaviour and 

receive actionable insights in real time. 

This interaction flow ensures tight coordination between modules, supporting a scalable, 

lightweight, and responsive solution for aquaculture tank monitoring using a single 

camera. 
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CHAPTER 5 SYSTEM IMPLEMENTATION 

This chapter outlines the practical implementation of the ArUco marker-based fish 

feeding status monitoring system. It provides a detailed account of the hardware and 

software configurations required to develop and deploy the system, including camera 

positioning, data acquisition, and backend integration. The chapter begins by describing 

the setup of both the model training environment and the real-time monitoring system. 

It then covers the full pipeline for training and evaluating the LSTM classification 

model — from manual data labelling to preprocessing, training, and visualization of 

performance metrics. 

Following model development, the deployment process is discussed, highlighting how 

the trained model was integrated into the live monitoring system and connected to the 

frontend interface. System operation procedures are described, including how feeding 

sessions are initiated and monitored using the interface. Screenshots and descriptions 

of the user interface are included to demonstrate how users interact with the system and 

view predictions in real time. Finally, this chapter addresses key implementation 

challenges encountered during development and the strategies employed to overcome 

them. 

5.1 Hardware Setup 

This section presents the physical setup of the hardware to implement the ArUco 

marker-based fish feeding status monitoring system. The physical setup of the system 

is designed to be simple, low-cost, and practical for real aquaculture environments. The 

key hardware components include a smartphone camera, floating ArUco markers, and 

a controlled tank environment located at the campus aquaculture facility. 
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Figure 5.1.1. Mounted smartphone above fish tank 

As shown in Figure 5.1.1, a smartphone is mounted directly above the tanks to function 

as the camera sensor. The phone is positioned at a fixed height to provide a consistent, 

top-down view of the water surface. This positioning ensures that the floating ArUco 

markers always remain within the camera’s field of view, even as they move due to fish 

activity or aeration. The smartphone uses the DroidCam application to stream live video 

frames to the backend system over the local network. This method provides a reliable 

and cost-effective alternative to conventional webcams or surveillance cameras, 

requiring no special hardware interfaces. 
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Figure 5.1.2. Printed ArUco marker affixed to float placed on water surface 

As shown in Figure 5.1.2, to detect fish activity and surface movement, printed ArUco 

markers are affixed to lightweight foam floats and placed on the surface of each tank. 

These markers move in response to surface agitation caused by either feeding behaviour 

or aeration, allowing the system to indirectly interpret environmental changes through 

marker motion. 
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Figure 5.1.3. Environment of controlled aquaculture facility 

As illustrated in Figure 5.1.3, the tanks themselves are part of a controlled aquaculture 

facility and house red hybrid tilapia (Oreochromis sp.), selected for their commercial 

relevance and consistent behaviour. Lighting conditions are kept stable to minimize 

detection errors, and the system is calibrated to operate reliably under normal daytime 

illumination. 
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5.2 Software Setup 

This section describes the software environments used for both training the LSTM 

classification model and deploying it within the real-time monitoring system. The 

implementation was divided into two stages: model development and system 

integration. 

5.2.1 Model Training Environment Setup 

 

Figure 5.2.1.1. Jupyter Notebook environment hosted on Kaggle Notebook 

As shown in Figure 5.2.1.1, the model training was performed using Python 3.10 in a 

Jupyter Notebook environment hosted on Kaggle Notebooks. This platform was chosen 

for its free GPU support and ease of experimentation. The following major libraries 

were used: 

• Pandas and NumPy for data handling and transformation 

• scikit-learn for preprocessing such as standardization and evaluation metrics 

• Matplotlib and Seaborn for data visualization and metric plotting 

• TensorFlow/Keras for defining, training, and saving the LSTM classification 

models 

• Joblib for saving the scaler used in data normalization 
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The data pipeline involved loading raw pose data (Euler angles and translation vectors), 

applying a sliding window to generate time-series samples, standardizing the input 

features, training the LSTM model, and evaluating its performance using 5-fold 

stratified cross-validation. Metrics such as accuracy, precision, recall, F1-score, and 

AUC were computed and visualized to select the best-performing configuration. Both 

the trained model and the fitted scaler were saved to disk in .keras and .pkl formats 

respectively, for later use in the deployment phase. 

5.2.2 Model Deployment Environment Setup 

After training, the model was deployed in a real-time backend system written in Python. 

The backend runs on a local machine and handles live video input, pose estimation, 

prediction, and communication with the user interface. 

Key software components used in the deployment environment include: 

• OpenCV for detecting ArUco markers and estimating 6-DoF pose 

• NumPy for buffering and formatting pose data in real time 

• Keras for loading and executing the trained LSTM model 

• Joblib for loading the saved data scaler 

• WebSocket for real-time communication with the frontend 

• React.js for rendering the user interface dynamically in the browser 

The pose estimation module extracts Euler angles and translation values from each 

video frame. These values are streamed to the frontend for live visualization and 

simultaneously sent to a buffering module for classification. Once the buffer is full, 

data is normalized using the saved scaler and passed to the LSTM model for inference. 

The predicted statuses and feeding recommendation are then sent back to the frontend. 

This modular deployment architecture allows the system to be scalable, efficient, and 

responsive for real-time aquaculture monitoring. 
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5.3 Model Training and Evaluation Pipeline 

This section details the training pipeline used to develop the LSTM classification model, 

including data preparation, training configuration, and performance evaluation. The 

goal of the pipeline was to build a robust model capable of accurately classifying both 

fish activity status and air pump status from time-series pose data collected from ArUco 

markers. 

5.3.1 Data Collection 

To implement the data acquisition process, a batch script (.bat file) was created to 

initiate pose data logging during each test session. This script activated real-time 

capture of Euler angles and translation vectors from the floating ArUco marker, using 

the system's pose estimation module. A total of 5 datasets were collected — including 

feeding sessions (capturing pre-, during-, and post-feeding activity) and air pump 

sessions (covering controlled On/Off cycles). These sessions were conducted in the 

actual aquaculture test tanks. Each pose data log was synchronized with a video 

recording to support later manual labelling. The recorded pose data reflected the 

movement intensity of the marker caused by either fish behaviour or aeration. This raw 

time-series data was stored in CSV format and used in subsequent preprocessing and 

training stages. 

5.3.2 Manual Data Labelling 

Before training, all collected pose data was manually labelled by reviewing 

synchronized video recordings of the feeding sessions and air pump operation. During 

data collection, pose data (Euler angles and translation vectors) was saved with 

timestamps, while video recordings were used to observe fish behaviour and water 

surface turbulence. Each pose sample was manually assigned a binary label based on 

visual observation and time alignment as follows: 

• Fish activity status: labelled as 1 (Active) when fish were observed splashing or 

swimming actively near the surface, and 0 (Inactive) when the fish were calm 

or little to no surface activity was present. 

• Air pump status: labelled as 1 (On) when the pump was operating, and the water 

surface is rippling or bubbling, and 0 (Off) when the pump was not operating, 

and the water surface was calm. 
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This manual labelling process ensured that the ground truth was accurately captured, 

even in the absence of automated sensors. 

5.3.3 Data Input and Preprocessing 

The labelled dataset, stored in CSV format, was loaded and sorted chronologically. 

Feature columns included yaw, pitch, roll, x, y, z, and distance, extracted from the pose 

estimation process. A sliding window technique was used to convert the continuous 

data stream into fixed-length time-series sequences, each representing a short temporal 

snapshot of marker motion. Each window was padded with zeros if needed and 

reshaped to match the expected input format for LSTM. The data was then standardized 

using StandardScaler from scikit-learn. 

5.3.4 Model Training 

The model was built using Keras with the following architecture: 

• A masking layer to ignore padded values 

• Two LSTM layers (64 and 32 units) 

• A dense layer with 16 ReLU-activated neurons 

• A sigmoid output layer for binary classification 

The model was trained using 5-fold Stratified Cross-Validation to ensure class balance. 

Each fold was trained for 100 epochs with a batch size of 32, and predictions were 

thresholded at 0.5. 

To determine the most effective input structure for classification, multiple 

combinations of window size and step size were tested. For fish activity classification, 

six configurations were evaluated: (30s, 30), (30s, 15), (15s, 30), (15s, 15), (10s, 30), 

and (10s, 15). For air pump classification, four configurations were used: (30s, 30), (30s, 

15), (15s, 30), and (15s, 15). Each combination was trained using the same model 

pipeline, and the results of each setup were recorded for comparison. Detailed 

performance metrics for all configurations are presented in Chapter 6. 
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5.3.5 Evaluation Metrics and Visualizations 

After training, performance was evaluated using: 

• Accuracy 

• Precision 

• Recall 

• F1-score 

• Confusion matrix 

• ROC curve and AUC score 

Visualization tools such as Matplotlib and Seaborn were used to generate performance 

graphs. An initial class distribution plot was created to verify that the dataset was not 

imbalanced, helping avoid biased training. 

5.3.6 Artifacts Saving 

The pipeline saved the following outputs: 

• The best model (.keras) 

• The scaler (.pkl) 

• Plots of confusion matrix, ROC curve, and class distribution (.png) 

These were later used during model evaluation and selection, as well as system 

deployment to ensure consistency and maintain inference quality. 
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5.4 Model Deployment in Live Monitoring System 

Once the best-performing LSTM model and corresponding scaler were selected through 

cross-validation, they were exported and integrated into the real-time backend system 

for live inference. This section outlines how the trained model was deployed, how it 

operates in real time, and how its predictions support feeding decisions and system 

monitoring. 

The trained model was saved in .keras format, and the StandardScaler used during 

training was saved as a .pkl file using joblib. These files were loaded into the backend 

system during initialization to ensure consistent preprocessing and inference. The 

deployment code was written in Python, using the Keras API for model loading and 

prediction, and NumPy for real-time data buffering and reshaping. 

During system operation, pose data (Euler angles and translation vectors) is 

continuously extracted from incoming video frames using OpenCV’s ArUco marker 

detection. Each new data point is appended to a sliding window buffer. When the buffer 

reaches the required length, the data is reshaped and standardized using the saved scaler 

from the training phase. 

The normalized sequence is then passed to the LSTM model for classification. The 

model outputs a probability between 0 and 1, which is thresholded at 0.5 to determine 

the final class: 

• 1 for Active fish or Pump On 

• 0 for Inactive fish or Pump Off 

To optimize performance, a throttling mechanism is implemented to trigger inference 

only at fixed intervals – every 15 frames – rather than on every frame. This reduces 

computational load and avoids redundant predictions while maintaining timely updates. 

The predicted fish activity status is then passed to the Feeding Recommendation 

Module, which tracks the duration of the fish activity status. If the duration of active 

status exceeds 3 seconds, the system generates a recommendation to continue feeding. 

Else, if the duration of inactive status exceeds 5 seconds, the system generates a 

recommendation to stop feeding, helping prevent overfeeding and waste. 
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All outputs — including pose data, prediction results, duration of fish activity status 

and feeding recommendations — are sent to the frontend interface via a WebSocket 

communication layer. The React-based UI displays these results in real time, allowing 

users to observe marker motion, track tank conditions, and make informed decisions. 

This lightweight deployment pipeline enables efficient multi-tank monitoring using 

only a single camera and ensures that the system responds accurately and consistently 

to real-world conditions. 
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5.5 System Operation and User Interface 

This section describes how the system is operated in real time and how users interact 

with the monitoring interface. 

Once the system is initialized, the camera begins streaming live video to the backend. 

The user initiates the feeding session through the interface, after which pose estimation 

and model inference start automatically. The backend continuously processes incoming 

frames to extract Euler angles and translation data from the floating ArUco marker. 

This data is then sent to the frontend interface via WebSocket in real time. 

 

Figure 5.5.1. User interface of ArUco marker-based fish feeding status monitoring 

system 

  



CHAPTER 5 SYSTEM IMPLEMENTATION 

58 
Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 

As presented in Figure 5.5.1, the frontend user interface, developed in React, displays 

the following information: 

• Euler angles: yaw, pitch, roll 

• Z-axis translation: used as a proxy for water level 

• Fish activity status: Active or Inactive 

• Air pump status: On or Off 

• Duration of current fish activity status 

• Feeding recommendation: Continue or Stop Feeding 

These values are updated live and allow users to monitor behavioural trends over time.  

 

Figure 5.5.2. Multi-tank monitoring user interface of ArUco marker-based fish 

feeding status monitoring system 
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On the other hand, as shown in Figure 5.5.2, the interface also supports multi-tank 

monitoring, allowing data from multiple ArUco markers to be tracked and interpreted 

using a single camera view. To distinguish between tanks, the video frame is cropped 

using predefined coordinate boundaries, with each region mapped to a specific marker 

representing a different tank. This approach enables parallel tracking of multiple tanks 

without the need for additional cameras, significantly improving scalability while 

minimizing hardware requirements and system complexity. 
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5.6 Implementation Issues and Challenges 

This section discusses the issues and challenges met during implementation phase. 

During the system development and deployment process, several technical and 

operational challenges were encountered. Each issue required iterative testing, 

debugging, or creative workarounds to ensure the system could function reliably in a 

real aquaculture environment as follows: 

• Inconsistent Pose Estimation due to Marker Detection Fluctuations 

The accuracy of pose estimation was initially affected by unstable rotation 

measurements, particularly when markers were tilted or partially occluded. This 

was addressed by applying the quaternion-based rotation method, which 

provided a more stable and robust representation of orientation compared to 

traditional rotation vectors or Euler angles directly. Quaternion data was then 

converted to Euler angles after stabilization, improving consistency in motion 

tracking across frames. 

• Real-Time System Synchronization 

Initially, syncing live pose data, predictions, and frontend rendering caused 

occasional delays or mismatched updates. The implementation of a WebSocket-

based communication layer helped enable low-latency, bidirectional data 

transfer. A throttling mechanism was added to limit prediction frequency and 

ensure smooth frontend updates. 

• Model Overhead and Prediction Frequency 

Frequent calls to the LSTM model caused processing delays and added load on 

the backend. This was addressed by introducing a throttling strategy where 

predictions were triggered only after a set number of frames, reducing 

computational overhead while maintaining real-time responsiveness. 
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• Multi-Tank Region Mapping 

In the multi-tank setup, the frame had to be divided into predefined regions to 

track separate ArUco markers accurately. This required calibration of cropping 

coordinates and testing with multiple markers to ensure the system correctly 

associated each marker with its corresponding tank. Static region coordinates 

were defined based on pixel boundaries. 

These challenges helped refine the system architecture, improve its resilience in real-

world conditions, and enhance its overall performance and usability. 
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CHAPTER 6 SYSTEM EVALUATION 

This chapter presents a comprehensive preliminary analysis, evaluation of the system’s 

performance, covering both the classification model and the live deployment 

environment. The first part focuses on the preliminary analysis, analysis of class 

distribution, and performance of the LSTM model using standard machine learning 

metrics such as accuracy, precision, recall, F1-score, and AUC, based on cross-

validation results. Visualizations such as confusion matrices and ROC curves are also 

analysed to highlight the model’s classification capabilities. 

The second part discusses the system’s real-time behaviour during actual usage. This 

includes validation of prediction accuracy during feeding sessions and air pump 

operation, as well as how well the system’s feeding recommendations matched 

observed fish behaviour. The discussion also considers the system’s responsiveness, 

reliability, and practical effectiveness in an aquaculture setting. 

Finally, this chapter reflects on challenges faced during evaluation and examines 

whether the project successfully achieved its stated objectives. 

6.1 Preliminary Analysis 

This section presents the preliminary analysis of the collected dataset before training 

the classification model. Before training the classification model, an exploratory 

analysis was conducted to examine whether measurable differences existed in motion 

patterns between behavioural states. To quantify surface activity, a movement intensity 

metric was defined by summing the absolute changes in yaw, pitch, and roll across 

frames. Specifically, a new feature called Total Tilt Change (°) was computed as the 

sum of absolute frame-to-frame differences in yaw, pitch, and roll. A rolling mean was 

then applied to smooth out short-term fluctuations, resulting in the final movement 

intensity. 
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Figure 6.1.1. Plot of changes in marker movement intensity over time during feeding 

activities 

As shown in Figure 6.1.1, movement intensity sharply increases during the active 

feeding period, which begins at approximately 80 seconds and peaks around 90 seconds, 

followed by a gradual decline as fish become satiated. The intervals before and after 

this peak, where intensity remains low and stable, correspond to inactive feeding states. 

This clear distinction between phases validates the use of motion intensity for inferring 

fish feeding status. 
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Figure 6.1.2. Plot of changes in marker movement intensity over time during air pump 

operation 

Similarly, Figure 6.1.2 depicts movement intensity during air pump operation. The 

pump is powered on during the intervals 0s–120s, 200s–300s, and 400s–500s, which 

correspond to higher and consistent motion intensity caused by aeration-induced 

surface turbulence. In contrast, during 120s–200s, 300s–400s, and from 500s onward, 

the pump is powered off, resulting in a noticeable drop in motion intensity and a visibly 

calmer water surface. These distinct transitions between On and Off phases are clearly 

reflected in the movement intensity signal, reinforcing the feasibility of using pose-

derived motion patterns to classify air pump status through time-series analysis. 
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6.2 Class Distribution Analysis 

Before training the LSTM classification model, it is essential to understand the 

distribution of classes within the dataset, as class imbalance can bias the model’s 

learning process and affect its predictive performance. During preprocessing, the data 

for both fish activity status and air pump status was windowed into fixed-length 

sequences, and each sequence was labelled based on the status of the final frame. This 

transformation was repeated for multiple configurations of window size and step size 

to evaluate which parameters produced the most balanced and effective datasets for 

classification. 

 

Figure 6.2.1. Class distribution of fish activity status for window size 30s and step 

size 30 frames 

 

Figure 6.2.2. Class distribution of fish activity status for window size 30s and step 

size 15 frames 
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Figure 6.2.3. Class distribution of fish activity status for window size 15s and step 

size 30 frames 

 

Figure 6.2.4. Class distribution of fish activity status for window size 15s and step 

size 15 frames 

 

Figure 6.2.5. Class distribution of fish activity status for window size 10s and step 

size 30 frames 
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Figure 6.2.6. Class distribution of fish activity status for window size 10s and step 

size 15 frames 

Figures 6.2.1 to 6.2.6 illustrate the distribution of class labels—Inactive (0) and Active 

(1)—across six different window size and step size configurations: (30s, 30), (30s, 15), 

(15s, 30), (15s, 15), (10s, 30), and (10s, 15). As observed in Figure 6.2.1, the (30s, 30) 

configuration yields a more imbalanced dataset with 176 Inactive samples and 113 

Active samples. This trend continues across other configurations. In Figure 6.2.2, the 

(30s, 15) setting shows 355 Inactive and 223 Active samples. Figures 6.2.3 and 6.2.4 

further highlight the class differences in the (15s, 30) and (15s, 15) configurations, 

where Active labels consistently fall behind Inactive ones. The most noticeable 

imbalance is shown in Figure 6.2.5 for the (10s, 30) configuration, with 176 Inactive 

and only 113 Active samples. 

Despite the skew, the datasets still contain sufficient samples for each class to facilitate 

effective binary classification. Moreover, stratified cross-validation was used during 

training to mitigate the impact of imbalance and ensure fair performance evaluation. 

Understanding these distributions is essential to interpreting the model’s behaviour and 

identifying potential bias in predictive outputs. 
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Figure 6.2.7. Class distribution of air pump status for window size 30s and step size 

30 frames. 

 

Figure 6.2.8. Class distribution of air pump status for window size 30s and step size 

15 frames. 

 

Figure 6.2.9. Class distribution of air pump status for window size 15s and step size 

30 frames. 
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Figure 6.2.10. Class distribution of air pump status for window size 15s and step size 

15 frames. 

Similarly, Figures 6.2.7 to 6.2.10 present the class distributions for air pump status (Off 

= 0, On = 1). Four configurations were tested: (30s, 30), (30s, 15), (15s, 30), and (15s, 

15). In general, the datasets are relatively well-balanced. The (15s, 15) configuration 

yields nearly identical counts for both classes (587 Off vs. 590 On), providing a strong 

foundation for unbiased learning. Slight variations exist across other configurations, 

but the differences are minor (e.g., 280 Off vs. 294 On in the (30s, 30) configuration). 

These distributions validate the suitability of the datasets for binary classification and 

help ensure that high evaluation scores are not merely the result of class majority 

dominance. 

This class distribution analysis provides transparency into the structure of the model 

training data and supports the validity of the evaluation results presented in the 

following sections. 
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6.3 Model Performance Evaluation 

This section presents the evaluation results of the LSTM classification model using 

metrics obtained during the cross-validation phase of training. The objective was to 

assess the model’s ability to accurately classify two types of binary labels: fish activity 

status (Active or Inactive) and air pump status (On or Off). Following the preliminary 

analysis, both classification models were evaluated using a 5-fold stratified cross-

validation approach. The input data was processed using a sliding window technique, 

and each fold involved training on 80% of the data while validating on the remaining 

20%. To assess model performance, several key metrics were recorded across all folds: 

• Accuracy – the proportion of correct predictions 

• Precision – the proportion of true positives among predicted positives 

• Recall – the proportion of true positives among actual positives 

• F1-score – the harmonic mean of precision and recall 

• AUC – area under the ROC curve 

To determine the optimal configuration for time-series classification, several 

combinations of window size and step size were systematically evaluated. The window 

size determines the number of seconds of pose data used in each input sequence, while 

the step size controls how far the window advances between each sample, thereby 

affecting sequence overlap. These parameters were varied to investigate how temporal 

context and sampling frequency influence model performance. The average metrics for 

each configuration are summarized in the tables below. 

Table 6.3.1. Model performance across configurations for fish activity status 

prediction 

Window 

size (s) 

Step size 

(frame) 
Accuracy Precision Recall F1-Score AUC 

30 30 0.87 0.97 0.70 0.81 0.90 

30 15 0.92 0.90 0.90 0.89 0.97 

15 30 0.83 0.96 0.52 0.75 0.89 

15 15 0.85 0.96 0.66 0.78 0.91 

10 30 0.84 0.86 0.76 0.80 0.90 

10 15 0.86 0.91 0.75 0.81 0.93 
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Referring to Table 6.3.1, the model’s performance in classifying fish activity status 

varied across configurations. Notably, the configuration with a 30-second window and 

a 15-frame step size produced the highest scores overall, with an F1-score of 0.89 and 

an AUC of 0.97. These metrics reflect a strong balance between precision and recall, 

making this configuration well-suited for applications where both false positives 

(mistakenly identifying inactive fish as active) and false negatives (failing to detect 

active fish) are critical to avoid. The long temporal window provides sufficient motion 

context for the LSTM to recognize feeding behaviour patterns, while the smaller step 

size ensures better data granularity. 

In contrast, configurations with shorter windows (e.g., 10s) or larger step sizes (e.g., 

30) tended to exhibit slightly lower recall, suggesting reduced sensitivity in capturing 

brief or sporadic feeding activities. 

Table 6.3.2. Model performance across configurations for air pump status prediction 

Window 

size (s) 

Step size 

(frame) 
Accuracy Precision Recall F1-Score AUC 

30 30 0.97 0.98 0.96 0.97 0.98 

30 15 0.99 0.99 0.98 0.99 0.98 

15 30 0.99 0.99 0.98 0.99 0.99 

15 15 0.99 0.99 0.99 0.99 0.99 

 

Based on Table 6.3.2, air pump status classification yielded excellent performance 

across all tested configurations. The 15s window with 15-frame step size achieved near-

perfect results in all metrics, with accuracy, precision, recall, and F1-score of 0.99, and 

an AUC of 0.99. These results demonstrate the LSTM model’s strong ability to 

distinguish aeration-induced surface motion from natural water calmness, aided by the 

clearer and more consistent motion patterns generated by the air pump’s operation. 

To further analyse the model behaviour, confusion matrices and ROC curves for the 

selected configurations are presented in the following figures. 
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Figure 6.3.1. Confusion matrix for fish activity status model 

Figure 6.3.1 presents the average confusion matrix for the selected fish activity model 

(30s window, 15-step). The matrix shows: 

• 66 true negatives (TN): Inactive fish correctly predicted as inactive. 

• 40 true positives (TP): Active fish correctly predicted as active. 

• 4 false positives (FP): Inactive fish incorrectly predicted as active. 

• 4 false negatives (FN): Active fish incorrectly predicted as inactive. 

This balanced distribution of correct and incorrect predictions confirms the model’s 

capacity to distinguish feeding states effectively while keeping the error rate low. The 

symmetry in false positive and false negative counts also reinforces the model’s 

reliability. 
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Figure 6.3.2. ROC curve for fish activity status model 

Figure 6.3.2 shows the ROC curve for the same fish activity model. With an AUC of 

0.97, the curve approaches the top-left corner, indicating excellent sensitivity and 

specificity. This suggests the model consistently makes confident and accurate 

predictions, even under varied motion scenarios. 

 

Figure 6.3.3. Confusion matrix for air pump status model 
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Based on Figure 6.3.3, the confusion matrix for the air pump status model, evaluated 

using the optimal configuration (15s window and 15-frame step), demonstrates 

outstanding prediction accuracy. The matrix reveals: 

• 116 true negatives (TN): Periods when the pump was off and correctly predicted 

as off. 

• 116 true positives (TP): Periods when the pump was on and correctly predicted 

as on. 

• 1 false negative (FN): A single instance where the pump was on but predicted 

as off. 

• 0 false positives (FP): No incorrect predictions where the pump was predicted 

on while actually being off. 

This nearly perfect classification result highlights the robustness of the LSTM model 

in recognizing the surface turbulence generated by the air pump. The very low number 

of false negatives and complete absence of false positives indicate the model’s high 

confidence and precision when detecting aeration activity. This is particularly 

beneficial for real-time systems where prompt and reliable detection is required to 

assess aeration status. 

 

Figure 6.3.4. ROC curve for air pump status model 
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Based on Figure 6.3.4, the ROC curve for the air pump model supports the confusion 

matrix findings, with an AUC score of 0.99, approaching the ideal value of 1.0. The 

curve closely hugs the top-left corner of the graph, indicating that the classifier achieves 

high true positive rates while keeping the false positive rate extremely low. This level 

of performance is expected due to the clear distinction between water surface motion 

when the pump is operating versus when it is off. Since the surface turbulence generated 

by aeration is strong and consistent, it allows the time-series model to learn well-

defined patterns for the On and Off states. 

In summary, the LSTM classification models demonstrated strong performance in 

classifying both fish activity status and air pump status using time-series pose data. 

Multiple configurations were tested, and the optimal setups were selected based on F1-

score and AUC. Visual analyses, including confusion matrices and ROC curves, 

confirmed the models’ ability to accurately distinguish behavioural states. These results 

validate the feasibility of using ArUco marker motion data as a reliable input for 

intelligent aquaculture monitoring. 
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6.4 Real-World System Performance Validation 

This section presents the testing methodology and real-world results of the deployed 

ArUco marker-based fish feeding status monitoring system. After training and selecting 

the best-performing models, the system was deployed and tested under actual 

aquaculture conditions to evaluate its effectiveness in practical scenarios. The tests 

were conducted at the UTAR campus aquaculture facility using red hybrid tilapia 

(Oreochromis sp.) as the target species. 

6.4.1 Testing Procedure and Validation Setup 

Two key validation strategies were employed to assess real-time system performance: 

• Fish feeding status validation 

• Air pump status validation 

During scheduled feeding sessions, the system monitored fish behaviour using pose 

data from floating ArUco markers. When the model predicted an active state, the fish 

were visibly responsive and consumed the feed, confirming accurate detection of 

feeding interest. Conversely, when the model predicted an inactive state and 

recommended stopping the feeding process, feed was still manually dispensed to 

observe behavioural response. In most cases, the fish showed little or no interest in the 

additional feed, validating the system’s ability to detect satiety based on motion 

intensity. These tests confirmed that the system can deliver accurate, behaviour-driven 

feeding recommendations in real time. 

To verify air pump classification, the pump was manually toggled on and off at known 

intervals. The system was expected to detect the corresponding changes in surface 

motion caused by aeration. Throughout testing, the predicted pump status consistently 

matched the actual On/Off control state. These results demonstrated that the model 

could reliably classify aeration status from marker movement patterns, even in real-

time operation. 
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6.4.2 Observations and System Behaviour During Testing 

During real-world testing, the system demonstrated consistent and reliable performance 

aligned with expected outcomes. The fish activity classification model accurately 

detected transitions between active and inactive feeding states. When the system 

predicted an active state, the fish were observed responding to feed with visible surface 

movement. Conversely, during predicted inactive states, the fish showed little or no 

interest in additional feed, confirming satiety. These observations validate the 

effectiveness of the feeding recommendation logic. 

The air pump classification model also performed exceptionally well during controlled 

toggling tests. The system was able to detect the presence or absence of surface 

turbulence caused by aeration and consistently predicted the pump’s operational status 

with high accuracy. All predicted statuses matched the actual On/Off states during 

multiple cycles, demonstrating the model’s robustness in distinguishing subtle 

differences in surface motion patterns. 

In terms of user interaction, the frontend interface provided responsive and intuitive 

visual feedback. Real-time pose data, including Euler angles and Z-axis displacement, 

were streamed to the interface along with predicted statuses and feeding 

recommendations. These updates occurred with minimal latency, allowing users to 

monitor tank conditions and system outputs continuously and effectively. 

Additionally, the system’s ability to support multi-tank monitoring was successfully 

validated. By assigning fixed pixel regions within the camera frame to represent 

different tanks, the backend system was able to isolate, and process pose data from 

multiple ArUco markers simultaneously through distinct marker IDs. This approach 

allowed a single camera to monitor multiple tanks in parallel, reducing hardware 

requirements and improving scalability. 

In short, the real-world testing of the system confirmed its practical effectiveness in 

detecting fish feeding behaviour and air pump operation with high accuracy. The 

validation procedures demonstrated that the model predictions aligned closely with 

actual observations, and the frontend interface successfully delivered real-time updates 

and recommendations. The system’s ability to support multi-tank monitoring using a 

single camera further highlights its scalability and applicability in commercial 

aquaculture environments.   
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6.5 Project Challenges 

Throughout the development and testing of the system, several challenges were 

encountered across both the model training and deployment phases. These challenges 

provided valuable learning opportunities and informed refinements that improved the 

final system’s robustness and performance. 

One of the primary challenges was ensuring stable and reliable pose estimation under 

real-world conditions. Water surface reflection, lighting variability, and partial marker 

occlusion occasionally disrupted marker detection. To address this, the quaternion 

method was adopted during pose estimation to enhance rotational stability before 

converting to Euler angles. This significantly reduced noise and improved consistency 

in orientation data across frames. 

In the deployment phase, ensuring smooth real-time synchronization between backend 

predictions and frontend display was initially problematic due to frame processing 

delays and data bursts. To mitigate this, a WebSocket-based communication channel 

was implemented, allowing low-latency, bidirectional streaming. Additionally, a 

throttling mechanism was introduced to trigger predictions at fixed intervals, balancing 

computational load with responsiveness. 

Finally, implementing multi-tank tracking using a single camera introduced complexity 

in isolating pose data from different tanks. This was solved by defining static cropping 

regions within the frame to associate each ArUco marker with a specific tank, allowing 

parallel processing of multiple marker streams. 

Despite these challenges, the project achieved its objectives through iterative testing 

and continuous refinement. The solutions applied contributed to a more robust and 

scalable system, suitable for real-time aquaculture monitoring. 
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6.6 Objectives Evaluation 

This section reviews the outcomes of the project in relation to the two primary 

objectives defined at the outset: 

1. To capture movement intensity data that reflects fish feeding status. 

2. To interpret movement intensity data to indicate the fish satiety levels. 

The first objective was successfully achieved. The system employed a smartphone 

camera and floating ArUco markers to collect real-time pose data from the surface of 

the water. Movement intensity was derived from frame-to-frame changes in yaw, pitch, 

and roll angles, using a total tilt change formula combined with a rolling average. This 

approach enabled the system to quantify surface disturbance caused by fish during 

feeding. The resulting movement intensity signal clearly reflected changes in feeding 

status, as validated through exploratory analysis and real-world observation. 

The second objective was also successfully fulfilled. The derived movement intensity 

data was used as input to a time-series LSTM model, which was trained to classify fish 

activity status as either active or inactive. A feeding recommendation logic was applied 

based on the duration of the predicted activity state. During live testing, when the 

system predicted an active state, the fish consistently responded to feed, indicating 

ongoing feeding interest. Conversely, when the system predicted inactivity and 

recommended stopping the feeding process, the fish showed little or no interest in 

additional feed. These outcomes confirm the system’s ability to infer fish satiety levels 

indirectly through behavioural motion patterns, supporting accurate, real-time feeding 

decisions. 

In conclusion, both objectives were fully met, and the system proved capable of 

monitoring fish feeding status using visual motion data while offering meaningful 

insights for feed management. 
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CHAPTER 7 CONCLUSION AND FUTURE WORKS 

This chapter summarizes the overall outcomes of the project, reflecting on key 

achievements in relation to the original objectives. It also outlines potential directions 

for future enhancements, addressing current limitations and exploring opportunities for 

scaling and improving the system further. The goal is to consolidate what has been 

accomplished and to suggest how the project can be extended or refined in future 

iterations. 

7.1 Conclusion 

This project successfully explored the potential of using ArUco markers to monitor fish 

feeding status through pose-based motion analysis. By capturing real-time movement 

intensity from floating markers, the system was able to distinguish between active and 

inactive feeding states with high reliability. The LSTM-based classification model, 

trained on pose data derived from Euler angles and translation values, demonstrated 

strong performance during both cross-validation and real-world testing. Feeding 

recommendations generated based on predicted status were consistent with observable 

fish behaviour, validating the model’s practical effectiveness in detecting satiety. 

Beyond monitoring fish feeding status, the system also successfully integrated 

additional monitoring features, including air pump status classification and water level 

tracking, all accessible through a responsive web-based interface. Multi-tank 

monitoring was achieved using a single overhead camera, making the system both cost-

efficient and scalable. 

Overall, the project achieved its stated objectives, offering a functional and data-driven 

solution for intelligent aquaculture feed management. 
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7.2 Future Work 

While the current system successfully meets its core objectives, several enhancements 

could be explored to further improve its accuracy, usability, and scalability in real-

world aquaculture applications. One of the key areas for improvement is in the data 

labelling process. The current method relies on manual observation and timestamp 

alignment, which is time-consuming and limits dataset scalability. Future development 

could explore semi-supervised learning methods or video-assisted labelling tools to 

automate and accelerate this process, enabling larger and more diverse training datasets. 

Another area of potential enhancement lies in the feeding recommendation logic. 

Currently, the system uses fixed duration thresholds to determine when to stop feeding 

or continue feeding based on detected fish activity status. This rule-based approach, 

while effective, could be improved by introducing adaptive thresholds that adjust based 

on behavioural trends, tank-specific feeding responses, or historical data. Such 

personalization could lead to more precise and efficient feed management strategies. 

Additionally, integration with IoT-based actuators such as automated feeders and smart 

pump controllers would allow the system to not only provide recommendations but also 

execute actions autonomously. This would close the feedback loop and enable a fully 

automated feeding and monitoring system. Expanding the system to monitor additional 

environmental parameters—such as temperature, pH, and dissolved oxygen—could 

also provide a more holistic view of tank conditions and further refine feeding decisions. 

Lastly, optimizing the system for edge computing would be beneficial for deployment 

in environments with limited infrastructure. Converting the current backend model into 

a lightweight version that can run on low-power hardware such as Raspberry Pi or 

ESP32 would improve portability and reduce the reliance on centralized servers, 

making the system more accessible to small-scale fish farms. 

These future enhancements have the potential to transform the current prototype into a 

comprehensive and scalable smart aquaculture monitoring platform. 
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