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ABSTRACT 

 

This project addresses a growing concern in modern society – home security. With increasing 

incidents of property crime and unauthorized intrusions, there is a rising demand for intelligent 

surveillance systems that go beyond the limitations of conventional CCTV setups, which often 

struggle with false alarms and require manual supervision. This project proposes a smart home 

surveillance system that combines real-time object detection with violence recognition by 

leveraging state-of-the-art deep learning techniques. 

 

The system uses the YOLO (You Only Look Once) framework to detect the presence of 

weapons, offering rapid identification of potential threats. Simultaneously, a ResNet50-based 

Convolutional Neural Network (CNN) combined with a Long Short-Term Memory (LSTM) 

network is employed to recognize violent actions over time, such as assaults or robberies, using 

temporal video frame analysis. When a human is detected in the scene, these detection modules 

are triggered to identify weapons or violent movements. If a threat is confirmed, the system 

issues an immediate alert to property owners or security personnel, enabling quick intervention. 

 

By integrating real-time weapon and violence detection in a multi-threaded monitoring system, 

this solution enhances home surveillance effectiveness and responsiveness, aiming to create a 

safer and smarter living environment. 

 

Area of Study (Minimum 1 and Maximum 2): Computer Vision, Smart Surveillance Systems 

 

Keywords (Minimum 5 and Maximum 10): Real-time Object Detection, Violence Detection, 

ResNet50-LSTM, YOLO Algorithm, Home Surveillance, Intrusion Detection, Weapon 

Detection, Smart Security System, Deep Learning  
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Chapter 1 

Introduction 

1.1  Problem Statement and Motivation 

Video surveillance, commonly known as CCTV (closed-circuit television), remains one 

of the most prevalent methods for home security. However, the development of an 

effective home surveillance system is crucial to address the significant limitations of 

current methods, which are plagued by human error, vigilance decrement, lack of real-

time alert integration, and high false alarm rates. Security personnel or homeowners 

monitoring CCTV footage often suffer from vigilance decrement, where their ability to 

maintain attention and detect unusual activities decreases over time. This decline in 

vigilance is particularly problematic during long monitoring periods or when critical 

events occur infrequently, leading to reduced detection reliability, missed detections, 

and delayed responses [1]. Furthermore, many traditional home surveillance systems 

are not integrated with real-time alert mechanisms, meaning that even if suspicious 

activity is recorded, it may not be detected or acted upon promptly. These systems also 

frequently generate a high rate of false alarms, causing unnecessary disruptions and 

reducing the reliability and trustworthiness of the security measures. Therefore, there 

is a pressing need to develop a sophisticated home surveillance system that leverages 

advanced technologies to minimize human error, ensure continuous and reliable 

monitoring, integrate real-time alert mechanisms, and reduce false alarms. Such a 

system would enhance overall home security and provide timely responses to potential 

threats. 

 

The motivation for developing an advanced home surveillance system lies in addressing 

these significant limitations to enhance the safety and security of residential properties. 

Traditional home security measures often fail to provide timely and reliable detection 

of burglaries, resulting in increased vulnerability and significant financial and 

emotional distress for homeowners. Moreover, the absence of real-time alert integration 

in existing systems results in delayed responses to potential threats, exacerbating the 

risk to residents and their properties. Implementing a system that provides real-time 

alerts and automated responses is crucial for timely intervention and effective security 

management in a home environment. Additionally, the underreporting of burglaries and 
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incomplete surveillance footage analysis hinder accurate assessments of burglary trends 

and the effectiveness of security measures. The proposed system aims to ensure 

continuous, reliable detection, timely response, and comprehensive data analysis, 

ultimately reducing the financial and emotional impact of home intrusion and providing 

greater peace of mind to homeowners. 

 

1.2  Objectives 

The primary objective of this project is to develop an intelligent, real-time home 

surveillance system that minimizes the need for constant human supervision while 

addressing the limitations of traditional CCTV systems—particularly their high false 

alarm rates and lack of contextual threat understanding. The system will automatically 

detect human presence in live video feeds and further analyze the identified individuals 

to recognize high-risk behaviors, such as violent motions and the presence of weapons, 

which may indicate potential intrusions or threats. 

 

To enhance situational awareness and responsiveness, the system will incorporate a 

real-time, on-screen alert mechanism that activates only when predefined threat 

conditions are met. Each alert will clearly display the event type and associated 

confidence level, enabling rapid verification without the need for continuous 

monitoring. Additionally, the system will log all detected events for later review and 

evidence collection. 

 

By leveraging advanced deep learning architectures—specifically YOLO for weapon 

detection and a ResNet50 (Residual Network) + LSTM (Long short-term memory) 

model for violence recognition—along with multithreaded processing, the system aims 

to achieve high detection accuracy, low latency, and minimal false positives. This 

ensures that security alerts are both timely and reliable, allowing users to respond 

promptly to genuine threats. 

 

This project focuses exclusively on the development of software-based threat detection 

and alerting components. It does not include the implementation of physical deterrents 

(e.g., sirens, automated locks) or direct integration with external security hardware. 
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1.3  Project Scope and Direction 

At the end of this project, we aim to deliver an intelligent home surveillance system 

that addresses key limitations of conventional CCTV setups, such as lack of real-time 

threat detection and reliance on manual monitoring. The system will focus on detecting 

human presence within user-defined regions and identifying suspicious or dangerous 

behaviors, specifically violence and the presence of weapons. 

 

To achieve this, the system will leverage a combination of deep learning and computer 

vision techniques. Human and weapon detection will be performed using the YOLO 

(You Only Look Once) object detection algorithm, while violent actions will be 

identified through a ResNet50 + LSTM-based model, which processes temporal 

patterns in video footage. These components will operate in real-time within a multi-

threaded architecture, ensuring efficient and accurate detection without compromising 

performance. 

 

Upon identification of a potential threat—be it the presence of a weapon or violent 

behavior, the system will immediately activate an on-screen alert system. Each alert 

will display the type of threat detected along with its associated confidence score, 

providing the user with clear, actionable information. Simultaneously, detailed event 

logs—including timestamps, frame captures, and classification outcomes—will be 

recorded for post-incident review and evidence collection. 

The system will be trained and evaluated using relevant subsets of the UCF-Crime 

dataset, which contains diverse real-world crime scenes. This will ensure that the model 

is exposed to realistic scenarios for improved generalization and reliability in home 

security applications. 

 

1.4  Contributions 

The proposed home surveillance system offers significant benefits by enhancing the 

accuracy and responsiveness of security measures, thereby reducing the prevalence of 

home intrusions and associated losses. This project has the potential to enhance home 

security, providing a reliable and proactive solution to a pervasive problem. The 

advanced detection capabilities will not only protect valuables but also restore the sense 

of safety and peace of mind for homeowners and communities. Furthermore, the 
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system's scalability and adaptability make it suitable for various applications, from 

private homes to residential complexes, thereby broadening its impact and utility. 

 

Moreover, the system reduces the need for human resources in monitoring, as it can 

automatically detect intrusions without requiring constant human oversight. This 

reduces errors associated with human fatigue and attention lapses, leading to more 

effective and efficient security management. By leveraging advanced technologies, the 

project contributes to the development of smarter, more resilient home security systems 

that can adapt to evolving threats and enhance overall residential safety. 

 

1.5  Report Organization 

This report is organized into seven chapters, each addressing different aspects of the 

intelligent home surveillance system developed in this project. Chapter 1 introduces the 

project by outlining the problem statement, objectives, scope, key contributions, and 

the overall structure of the report. It highlights the motivation behind developing an 

advanced surveillance solution to overcome the limitations of traditional CCTV 

systems, such as high false alarm rates and lack of contextual understanding. 

 

Chapter 2 presents a literature review on existing smart surveillance solutions and 

related technologies. It analyzes current methods and tools used for anomaly detection, 

weapon recognition, and violence detection in video surveillance, identifying their 

strengths and limitations. This review establishes the need for an integrated, deep 

learning-based approach to improve home security systems. 

 

Chapter 3 describes the system methodology, including the design architecture, use case 

diagram, and activity diagram. It provides an overview of how the system processes 

video input, detects person using YOLOv8 within a user-defined region of interest 

(ROI), and applies ResNet50+LSTM for violence recognition and another YOLOv8 

model for weapon detection. The threaded implementation of detection modules and 

real-time alert handling are also discussed. 

 

Chapter 4 explains the system design in detail, covering the block diagram, 

specifications of software components used (such as OpenCV, PyTorch, and threading 
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libraries), and the interactions between components during the detection and alert 

process. This chapter emphasizes the flow from human detection to violence and 

weapon detection, culminating in real-time on-screen alerts. 

 

Chapter 5 focuses on system implementation, describing how the models were 

implemented and integrated, how the software environment was set up, and how the 

system operates in real-time. It includes screenshots, explanations of system behavior, 

and discusses issues encountered during development, such as frame processing delays 

and model optimization challenges. 

 

Chapter 6 evaluates the system’s performance through testing using curated datasets. It 

presents the evaluation metrics, testing setup, results for detection accuracy and alert 

precision, discusses challenges such as false positives and missed detections, and 

reflects on how well the objectives were achieved. 

 

Finally, Chapter 7 concludes the report by summarizing the achievements and 

limitations of the project. It also provides recommendations for future work, such as 

improving model accuracy through larger and more diverse datasets, enhancing system 

robustness in real-world conditions, optimizing UI responsiveness, and integrating the 

system with IoT-based physical alert mechanisms like sirens or smart notifications via 

external devices. 
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Chapter 2 

Literature Review 

 

Previous works on Anomaly Detection and Human Action Recognition 

2.1 Real-world Anomaly Detection in Surveillance Videos 

Sultani et al. [2] presented a novel deep learning architecture for real-world anomaly 

detection in surveillance videos. The proposed model considers normal and anomalous 

videos as bags and video segments as instances in multiple instance learning (MIL) and 

automatically learn a deep anomaly ranking model that predicts high anomaly scores 

for anomalous video segments. It incorporates spatial and temporal information by 

employing both 2D CNNs for spatial feature extraction and 3D CNNs for temporal 

feature modelling. This architecture enables the model to capture complex spatio-

temporal patterns inherent in surveillance videos. 

  The dataset consists of 1900 long and untrimmed real-world surveillance videos with 

a duration of 128 hours, with 13 realistic anomalous activities. The surveillance videos 

would be divided into segments and are used to detect anomaly and differentiate each 

anomaly. 

  

Figure 2.1 The flow diagram of the proposed anomaly detection approach. 

  As seen from the above flowchart, the divided segments would be use as bag instances 

and proceed to 3D convolution features extraction. These features are then used to train 

a deep MIL Ranking Model which computes the ranking loss between the highest 

scores instances in the positive and negative bag. 

  Given a lot of positive and negative videos with video-level labels, the network can 

automatically learn to predict the location of the anomaly in the video. This could be 

done by training the network to produce high scores for anomalous video segments 
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during training iterations. Although we do not use any segment level annotations, the 

network is able to predict the temporal location of an anomaly in terms of anomaly 

scores. 

  The area under curve (AUC) is used to evaluate the performance instead of equal error 

rate (EER) as EER does not measure anomaly correctly. Results show that this approach 

has the highest AUC of 75.41, as compared to deep auto-encoder based approach and 

dictionary based approach with AUC of 50.6 and 65.51 respectively. In addition, this 

approach also has the lowest false alarm rate of 1.9, indicating a more robust anomaly 

detection system. The false alarm rate of the deep auto-encoder based approach and 

dictionary based approach are 27.2 and 3.1 respectively. 

  However, there are a few limitations to this approach. The system would fail to 

identify anomaly if the environment is dark. This would not be practical as anomaly 

usually happens at night and the system is preferred to be active at all times. Secondly, 

it would generate false alarm if there were occlusions such as flying insects or sudden 

people gathering, potentially leading to unnecessary disruptions and reduced system 

reliability. Implementing advanced object tracking algorithms capable of distinguishing 

between genuine threats and transient occlusions can mitigate this challenge. 

  The model proposed by Sultani et al. excels in controlled environments, achieving 

high accuracy and low false alarm rates. However, its effectiveness diminishes under 

low-light conditions and when faced with occlusions. The reliance on multiple instance 

learning without segment-level annotations is innovative but limits its application in 

real-world scenarios where lighting and occlusions are variable. For our home 

surveillance system, integrating advanced object tracking algorithms and ensuring 

consistent performance across diverse environments can enhance the reliability of 

anomaly detection. Furthermore, the approach of using MIL can be adapted to 

distinguish between normal and suspicious activities in home surveillance feeds, 

provided the dataset includes a diverse range of lighting conditions and potential 

occlusions. 

 

2.2 IoT-Guard: Event-Driven Fog-Based Video Surveillance System for Real- Time 

Security Management 

  Sultana et al.[3]  proposed the IoT-Guard, a distributed Internet of Things (IoT) 

framework designed for intelligent, resource-efficient and real-time security 
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management in a smart home environment (SHE). The system incorporates edge-fog 

computational layers to aid in crime prevention and predict crime events. Utilizing 

Artificial Intelligence (AI) and an event-driven approach, IoT-Guard detects and 

confirms crime events in real-time, facilitating immediate action by protective services 

and police units while conserving resources such as energy, bandwidth, and memory 

usage. 

  Unlike traditional approaches, IoT-Guard employs an event-driven strategy, where 

surveillance data is forwarded to fog nodes only when specific events (e.g., motion) are 

detected, reducing energy consumption and bandwidth usage. Edge computing enables 

this approach by delegating processing to camera-connected IoT-edge-node devices, 

while fog computing enables AI integration to make automated decisions based on 

gathered information. Deep learning (DL) algorithms enhance AI capabilities, allowing 

fog nodes to predict events and take proactive measures to prevent crime incidents in 

smart home environment (SHE). 

  The security management framework of the proposed IoT-Guard is described, 

focusing on crime detection and proactive alerts using edge-and fog-integrated 

approaches. Fig. 2.2 depicts the high-level architecture, featuring camera-connected 

edge nodes covering residential units. An event-driven feature keeps edge nodes on 

standby until significant movement is detected, upon which they capture and forward 

motion-detected images to fog nodes. Each fog node controls several edge nodes within 

a unit or building, with multiple fog nodes covering entire residential areas. 

  

Figure 2.2 Illustration of high-level view of IoT-guard-enabled security management 

system 
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  The proposed IoT-Guard architecture demonstrates significant resource efficiency 

compared to traditional surveillance architectures and state-of-the-art frameworks. It 

achieves substantial savings in CPU usage, memory, storage, bandwidth, and energy 

consumption by employing an event-driven approach and distributing computational 

workloads effectively between edge nodes and fog nodes. An IoT video compression 

algorithm is included to identify if it helps to save a significant amount of transmission 

energy during transmission of IoT. 

 

 

Figure 2.3 Comparison Among Different IoT-Based Video Surveillance Architectures 

  Figure 2.3 has shown that with the deployment of the video compression algorithm, 

the percentage of CPU usage is higher due to the additional computational burden. 

Whether the IoT-guard architecture is deployed with or without the video compression, 

the storage requirement is reduced by 99 percent at the fog node. Although the BW 

efficiency saves only slightly more with video compression, the proposed system can 

save 42.9 percent more energy if it omits the video compression algorithm. 

  By leveraging a decentralized edge-fog-cloud approach, IoT-Guard establishes a 

proactive crime detection and management framework. Crucially, the system optimizes 

the distribution of computational tasks, directing heavy processing tasks to resource-

rich fog nodes while maintaining lightweight operations at edge nodes. This strategic 

allocation not only ensures real-time functionality but also yields significant cost 

savings, as well as reductions in energy consumption and bandwidth usage. 

Additionally, the heightened resource awareness exhibited by edge nodes enables the 

architecture to accommodate the expansion of surveillance networks efficiently. 

Overall, IoT-Guard's ability to transmit context-aware multimedia data to fog nodes, 

coupled with its utilization of low-resource edge nodes, contributes to a substantial 

decrease in the overall deployment costs of the surveillance system. 
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  Despite the strengths of IoT-Guard, there are a few limitations. The system heavily 

relies on the interaction between edge and fog nodes. Any issues or failures in this 

interaction could affect the overall performance and reliability of the system. 

Furthermore, the system's architecture may lack flexibility in adapting to evolving 

security requirements or technological advancements. Upgrading or modifying the 

system to incorporate new features or address emerging threats could be challenging. 

Lastly, environmental conditions (e.g., weather, lighting) could impact the 

effectiveness of the surveillance system, potentially leading to false positives or missed 

detections, especially in outdoor settings or under challenging lighting conditions. 

  The IoT-Guard framework proposed by Sultana et al. demonstrates substantial 

resource efficiency and effective task distribution between edge and fog nodes. 

However, its heavy reliance on edge-fog interaction can affect performance if disrupted, 

and it is sensitive to environmental conditions. Our solution aims to enhance robustness 

to node interaction issues and improve adaptability to various environmental conditions 

to maintain detection accuracy. Additionally, our approach will focus on ensuring 

seamless operation under different lighting and weather conditions to provide reliable 

performance in real-world scenarios. For home surveillance, the event-driven approach 

can be particularly useful in conserving resources while providing timely alerts. 

Integrating this with our system can enhance real-time detection and reduce 

unnecessary data processing. 

 

2.3 Abnormality Identification in Video Surveillance System using DCT 

  Balasundaram et al. [4] introduced a new block-based strategy for abnormality 

detection in video surveillance systems, focusing on identifying unusual circumstances 

by analysing pixel-wise frame movement instead of object-based approaches. The 

proposed strategy utilizes optical flow to extract density and speed of movement and 

then identifies unusual movement and differences using discrete cosine transform 

coefficient. The goal is to achieve real-time abnormality detection with a trouble-free 

block-based Discrete Cosine Transform (DCT) strategy. 

  The system is evaluated using an airport dataset, and the outcomes of unusual events 

including various abnormal activities such as sudden dancing, running, and pushing in 

crowded places are reported. Existing surveillance systems primarily focus on tracking 

objects in motion, neglecting the actions leading to the movement. Manual intervention 
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is often required for classifying abnormal events, which the proposed system aims to 

eliminate by automatically recognizing and reporting abnormal events. 

  The system first identifies changed regions, computes relevant data such as speed and 

route of movement, and compares them with standardized constraints to detect unusual 

activities. Hidden Markov Model (HMM) is used for intermediary state representation 

and comparison with standard action models. Previous techniques for abnormality 

detection involve segmenting video files, extracting attributes, and applying grouping 

and resemblance measures, but they struggle with real-time recognition of unusual 

actions. 

  The system focuses on analysing action characteristics at the pixel-point level and 

directing them into pictures that illustrate the action sequence. The data content of these 

pictures is examined within the "incidence" area by calculating the Discrete Cosine 

Transform (DCT) coefficients, which are then transmitted to the restricted action area. 

The system evaluates the performance of objects in every structure by examining and 

identifying action patterns. It categorizes actions as usual or unusual based on their 

performance characteristics and compares them to median standard rates over time. 

  Optical flow, particularly pixel-based optical flow, is utilized to capture action 

characteristics, although its accuracy can be affected by noise. To overcome this, optical 

flow approaches use the Lucas-Kanade algorithm. Motion vectors are derived from 

optical flow, representing the displacement of each pixel in both horizontal and vertical 

directions. DCT is applied to every segment to compress signal force and calculate DCT 

coefficients, which are used to compute data structure and entropy. Entropy is 

contrasted with a threshold rate to determine whether an action is usual or unusual. 

  Median filtering is employed to handle computation complexity, and abnormal actions 

are identified when the entropy rate exceeds the threshold rate. A system model of a 

processed block procedure during an active sequence is depicted, showing the DCT-

based abnormal activity detection in surveillance video. 

  The performance of the proposed approach in pedestrian surveillance videos is 

evaluated by replicating various unusual circumstances with the help of volunteers, 

including sudden dancing, running, and pushing in crowded places. The experiment 

was conducted using videos with a standard screening quality of 720 × 576 pixels at 

29 frames per second, ensuring uniform frame rate across the experiment. The system's 

performance was assessed across different outdoor environmental conditions such as 
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rain, dim light, and shade. The proposed strategy, which involves sub-dividing each 

frame into four segments and computing the entropy of Discrete Cosine Transform 

(DCT) coefficients for each segment, was compared with contemporary works. The 

median rate of entropy for the first 500 frames was computed, and the threshold for 

abnormal activities was set thrice higher than this median rate. Any anomalies detected 

trigger an alert. The abnormal activities identified including human riding a bicycle and 

driving a truck is shown in Figure 2.4. 

  

Figure 2.4: A bicycle and truck driven in pedestrian lane detected as anomaly and 

highlighted in red 

  The system's performance is evaluated in terms of time complexity for computing and 

classification accuracy, aiming to enhance classification accuracy rather than speed. No 

significant latency issues were observed in anomaly detection, and the average time 

consumed for computing unusual actions was found to be 74.35 milliseconds, inclusive 

of all intermediate stages. The classification accuracy, a key performance measure, was 

found to be 87.5%, indicating that anomalies are classified without false alarms. 

  

Table 2.1: Classification accuracy-based performance analysis 

  Moreover, leveraging a block-based approach presents an added advantage, which is 

the potential for parallel processing during real-time execution. Each block can be 

autonomously processed without interdependence, thus enhancing the efficiency of 

anomaly detection in dynamic surveillance environments. 



CHAPTER 2 

Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    13 
 

  The proposed system exhibits several weaknesses that warrant attention. Firstly, while 

achieving a classification accuracy of 87.5%, there remains a notable margin for 

improvement to reduce false alarms and enhance overall reliability. Additionally, the 

system demonstrates high time complexity, which could hinder real-time performance 

and scalability, necessitating further optimization efforts to improve computational 

efficiency. Furthermore, the system's dependency on Discrete Cosine Transform 

(DCT)-related attributes for anomaly detection may limit its effectiveness in scenarios 

where such attributes fail to adequately capture or represent anomalous behavior. 

Furthermore, the scope for future enhancement suggests a need to explore additional 

attributes beyond DCT, test the system across diverse scenarios, refine accuracy 

through error modelling, and integrate with more advanced frameworks for smarter 

surveillance capabilities. 

  The approach by Balasundaram et al. introduces a novel block-based strategy for real- 

time abnormality detection using DCT. Despite its strengths in achieving high 

classification accuracy and enabling parallel processing, the system's high time 

complexity and dependency on DCT-related attributes limit its applicability. Our 

proposed solution will focus on reducing computational demands, incorporating 

additional attributes beyond DCT, and enhancing the system's adaptability to various 

real-world scenarios. This will ensure a more comprehensive and efficient anomaly 

detection system. In the context of home surveillance, using optical flow and DCT can 

help in detecting unusual movements. However, integrating other features such as shape 

and object recognition will improve the robustness of detecting suspicious activities. 

  

2.4 SlowFast Networks for Video Recognition 

  Fan et al. [5]  introduced SlowFast networks for video recognition, which utilize both 

Slow and Fast pathways to capture spatial semantics and motion at different temporal 

resolutions. This approach achieves strong performance in action classification and 

detection, demonstrating significant improvements over existing methods. 

  The SlowFast model is designed to address this by incorporating a Slow pathway for 

semantic information and a Fast pathway for rapidly changing motion. Lateral 

connections fuse these pathways, allowing each to specialize in spatial or temporal 

processing. The method draws inspiration from biological studies on retinal ganglion 

cells and achieves state-of-the-art results on major video recognition benchmarks. 
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Through comprehensive ablation experiments, the effectiveness of SlowFast networks 

is demonstrated, surpassing previous systems in the literature. 

  

 

Figure 2.5 A SlowFast network 

  The SlowFast Networks architecture is characterized by two distinct pathways 

operating at different frame rates. The Slow pathway processes video clips sparsely, 

with a large temporal stride, capturing semantic information evolving slowly over time. 

In contrast, the Fast pathway operates at a higher frame rate, sampling frames densely 

to capture rapidly changing motion. The Fast pathway maintains high temporal 

resolution features throughout the network hierarchy and uses significantly lower 

channel capacity compared to the Slow pathway, making it lightweight. Lateral 

connections fuse information from both pathways, ensuring that each pathway is aware 

of the representations learned by the other. The architecture allows for flexible 

instantiation with different backbones and implementation specifics. 

  The system demonstrates impressive performance across various action classification 

and detection datasets like Kinetics-400, Kinetics-600, and Charades, particularly 

without relying on ImageNet pre-training. Despite this high accuracy, SlowFast 

networks maintain computational efficiency, owing to innovative training techniques 

and the integration of both Slow and Fast pathways. This design choice not only 

enhances efficiency but also enables the networks to capture both spatial and temporal 

features effectively, leading to improved performance compared to architectures 

relying solely on one pathway. It uses synchronized SGD training and employs 

lightweight pathways, such as the Fast pathway, which contributes to efficient 

processing. 

  Moreover, SlowFast networks demonstrate flexibility in handling different input 

sampling rates and backbone architectures, allowing for adaptation to various datasets 
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and tasks. This adaptability is particularly advantageous in real-world applications 

where datasets may vary in terms of video length, frame rate, and content complexity. 

By adjusting the input sampling rates and backbone architectures, SlowFast networks 

can effectively capture temporal dependencies and spatial features across diverse 

datasets, thus improving their robustness and generalization capabilities. 

  However, SlowFast networks also possess several weaknesses, including complexity 

in design choices and hyperparameter tuning, which may pose challenges in 

understanding and implementing them effectively. Additionally, achieving optimal 

performance with SlowFast networks may require extensive training procedures and 

parameter tuning, potentially limiting their generalization to other domains or tasks. 

  Furthermore, SlowFast networks may be sensitive to hyperparameter choices, 

necessitating careful experimentation to fully exploit their capabilities. Thus, while 

SlowFast networks represent a significant advancement in video recognition, their 

strengths and weaknesses highlight the need for careful consideration and 

experimentation to maximize their potential. 

  

  The SlowFast networks introduced by Fan et al. showcase significant improvements 

in video recognition through innovative dual-pathway design. However, the complexity 

of the model and the need for extensive hyperparameter tuning can limit its accessibility 

and generalization. Our solution aims to simplify design choices and reduce training 

complexity while maintaining high accuracy and efficiency, ensuring broader 

applicability in various video recognition tasks. Applying SlowFast networks to home 

surveillance can enhance the detection of rapid and subtle movements by processing at 

different temporal resolutions. This dual-pathway design can be particularly useful in 

identifying quick intrusions and slower suspicious behaviors, improving overall 

detection accuracy. 

 

2.5 Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action 

Recognition 

Zhang et al. [6] introduced a novel approach, the two-stream adaptive graph 

convolutional network (2s-AGCN), for skeleton-based action recognition. It addresses 

limitations in existing methods by proposing a data-driven method to learn the graph 

structure adaptively, improving the model's flexibility and generality across diverse 
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datasets. Additionally, the incorporation of second-order information, capturing bone 

lengths and directions, enhances discriminative features for action recognition. 

  The two-stream framework integrates both first-order and second-order information, 

further boosting performance. Extensive experiments on NTU-RGBD and Kinetics- 

Skeleton datasets demonstrate the superiority of the proposed model, achieving state- 

of-the-art results. Overall, the contributions include adaptive graph construction, 

utilization of second-order information, and significant performance improvements on 

large-scale action recognition datasets. 

  In the graph construction phase, the raw skeleton data, represented as joint- coordinate 

vectors, are structured into a spatiotemporal graph, capturing spatial and temporal 

relationships among joints. The graph consists of vertices representing joints and edges 

representing natural connections between them. Temporal edges connect corresponding 

joints across consecutive frames. Subsequently, multiple layers of spatiotemporal graph 

convolution operations are applied to extract high-level features, followed by a global 

average pooling layer and softmax classifier for action prediction. The graph 

convolution operation involves sampling areas for convolution, where a weighting 

function provides weight vectors based on input, and a mapping function ensures 

unique weight vectors for each vertex. 

  

Figure 2.6 Illustration of the spatiotemporal graph used in STGCN and the mapping 

strategy. 

  Implementation-wise, the feature map is a tensor, and convolution operations are 

performed to extract connected vertexes and their importance. For the temporal 

dimension, convolution is straightforward due to the fixed number of neighbors for 

each vertex. Overall, the approach leverages GCNs to effectively model spatial and 

temporal dependencies in skeleton data for accurate action recognition. 

  Two significant action recognition datasets, the NTU-RGBD and Kinetics-Skeleton 

are used to evaluate the proposed two-stream adaptive graph convolutional network 

(2s-AGCN). The experiments were conducted using the PyTorch deep learning 

framework, employing stochastic gradient descent (SGD) with Nesterov momentum 
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(0.9) as the optimization strategy. A batch size of 64 was used, with cross-entropy 

serving as the loss function for backpropagation of gradients. The weight decay was set 

to 0.0001 to prevent overfitting. 

   

Figure 2.7 Illustration of the overall architecture of the 2s-AGCN.  

  For the NTU-RGBD dataset, samples were ensured to have at most two people, with 

padding applied if necessary. The maximum number of frames per sample was set to 

300, with shorter samples repeated to meet this length. The learning rate was initially 

set to 0.1 and reduced by a factor of 10 at the 30th and 40th epochs, with training 

concluding at the 50th epoch. 

  Similarly, for the Kinetics-Skeleton dataset, input tensors consisted of 150 frames with 

2 bodies each, following the data augmentation methods outlined in prior work. The 

learning rate schedule mirrored that of the NTU-RGBD dataset, with reductions at the 

45th and 55th epochs and training concluding at the 65th epoch. 

  

Figure 2.8 Joint label of the Kinetics-Skeleton dataset the NTU-RGBD dataset. 

  The proposed two-stream adaptive graph convolutional network (2s-AGCN) 

demonstrates notable strengths in skeleton-based action recognition, as evidenced by 

comprehensive experiments conducted on the NTU-RGBD and Kinetics-Skeleton 

datasets. Firstly, the model's architecture, illustrated in Figure 2.10, incorporates two 
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streams whose scores are combined for final prediction, enabling a robust approach to 

recognizing actions. Moreover, the adaptability of the graph convolutional block proves 

beneficial for action recognition, with the model achieving its best performance when 

all three types of graphs are utilized. The visualization of learned graphs further 

underscores the flexibility and data-driven nature of the model, showcasing its ability 

to capture nuanced relationships between joints in the skeleton data. Additionally, the 

incorporation of second-order information through a two- stream framework 

significantly enhances performance, surpassing one-stream-based methods, as 

demonstrated in Table 2.2. 

  

Table 2.2 Comparisons of the validation accuracy with different input modalities. 

  Furthermore, the model exhibits state-of-the-art performance when compared with 

other skeleton-based action recognition methods. This indicates its superiority in 

accurately recognizing actions across different datasets, NTU-RGBD and Kinetics- 

Skeleton. The robustness of the proposed system is further validated by its ability to 

generalize well across datasets and surpass existing approaches by a considerable 

margin. 

  However, despite these strengths, the system may have some weaknesses. Firstly, 

while the model achieves state-of-the-art performance, it is essential to consider 

computational complexity and resource requirements, especially given the intricate 

architecture and the need for extensive training. Additionally, the effectiveness of the 

proposed system heavily relies on the quality and diversity of the training data, raising 

concerns about its performance in real-world scenarios where data may be limited or 

unrepresentative. Moreover, while the model's adaptability to different datasets is 

highlighted, its performance in highly dynamic or challenging action recognition 

scenarios remains to be fully explored. Finally, the interpretability of the learned graph 

structures and their implications for real-world action recognition tasks may require 

further investigation for practical deployment. 

  In conclusion, the proposed 2s-AGCN system demonstrates significant advancements 

in skeleton-based action recognition, leveraging adaptive graph convolutional networks 
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and a two-stream framework to achieve state-of-the-art performance across diverse 

datasets. While its strengths lie in its flexibility, robustness, and superior performance, 

potential weaknesses include computational complexity, data dependency, and 

challenges in real-world deployment and interpretability. Addressing these concerns 

could further enhance the system's applicability and efficacy in practical action 

recognition scenarios. 

  The two-stream adaptive graph convolutional network (2s-AGCN) by Zhang et al. 

demonstrates notable strengths in skeleton-based action recognition, with superior 

performance on large-scale datasets. However, the model's complexity and reliance on 

high-quality training data present challenges. Our approach will focus on reducing 

computational demands, improving data efficiency, and enhancing real-world 

applicability. For home surveillance, 2s-AGCN can be adapted to recognize human 

activities and detect unusual behaviors by leveraging skeleton data. This can be 

particularly useful in distinguishing between normal and suspicious movements, 

enhancing the system's ability to detect potential threats accurately. 

 

 

2.6 NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity 

Understanding 

  Liu et al. [7] introduced a large-scale dataset for RGB+D human action recognition 

comprising over 114,000 RGB+D video samples captured from 106 human subjects 

across various age groups and cultural backgrounds. The dataset includes RGB videos, 

depth sequences, skeleton data, and infrared frames captured from 155 different camera 

viewpoints under diverse environmental conditions. This diversity enables more 

realistic evaluations of 3D-based action analysis methods and facilitates the application 

of data-driven learning techniques like deep learning. 

  The introduction of depth sensors like Microsoft Kinect, Intel RealSense, and Asus 

Xtion has propelled computer vision into the realm of 3D vision, enabling 

advancements in 3D object recognition, scene understanding, and activity analysis. 

However, 3D action recognition faces challenges due to the lack of large-scale 

benchmark datasets with diverse samples representing various action classes in real- 

world scenarios. 
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  Existing 3D action recognition benchmarks suffer from limitations such as a small 

number of subjects, a narrow range of performers' ages, limited action categories, and 

restricted camera views. These constraints hinder the development and evaluation of 

robust and generalizable 3D action recognition models, particularly deep learning 

approaches. 

State-of-the-art 3D action recognition approaches are evaluated on the NTU RGB+D 

120 dataset, demonstrating the effectiveness of deep models in activity analysis. Fusion 

techniques across different data modalities, such as RGB, depth, and skeleton data, are 

also evaluated to leverage their complementary information for more accurate action 

recognition. 

  Furthermore, the paper investigates a novel one-shot 3D action recognition problem 

using the proposed dataset. An Action-Part Semantic Relevance-aware (APSR) 

framework is introduced to address this task by leveraging semantic relevance between 

body parts and action classes. By emphasizing the relevant body parts based on 

semantic guidance, the APSR framework improves the performance of one-shot action 

recognition. 

   

Figure 2.9 Illustration of 25 body joints in dataset 

  The proposed dataset’s strengths include its comprehensive evaluation of state-of- the-

art methods, encompassing diverse approaches such as Part-Aware LSTM, Soft RNN, 

and Multi-Task CNN with RotClips. By comparing different methods using cross-

subject and cross-setup criteria, the system provides a nuanced understanding of their 

performance under various conditions. Additionally, the evaluation of different data 

modalities (RGB, depth, and 3D skeleton data) offers insights into their respective 

strengths and weaknesses, highlighting the importance of modality fusion for improved 
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performance. The system also demonstrates the effectiveness of using a large training 

set, showing clear improvements in action recognition accuracy with increased training 

data size. 

  

Table 2.3 Evaluation of different methods. 

  

Table 2.4 Evaluation of different data modalities. 

  Furthermore, the detailed analysis according to data modalities and methods provides 

valuable insights into the challenges and limitations of each approach, informing future 

research directions. For instance, the analysis reveals the effectiveness of skeleton data 

in capturing view-invariant features and the challenges posed by object-related actions. 

Moreover, the proposed APSR framework for one- shot recognition showcases the 

system's adaptability to novel action classes, indicating its potential for real-world 

applications. Overall, the system's strengths lie in its comprehensive evaluation 

framework, detailed analysis, and potential for addressing real-world challenges in 3D 

action recognition. 

  However, the system also exhibits certain weaknesses. One limitation is the reliance 

on hand-crafted features for some methods, which may limit their ability to generalize 

across different datasets or capture complex patterns in the data. Additionally, while 

the system evaluates performance across different data modalities, it may not fully 

explore the potential of emerging modalities such as infrared sequences. The analysis 
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of action-wise performance highlights challenges in accurately recognizing actions 

involving fine-grained hand gestures or interactions with objects, indicating areas 

where further improvement is needed. 

  Moreover, the system's focus on one-shot recognition, while promising, may overlook 

the broader context of continuous action recognition and the challenges associated with 

temporal modelling. Lastly, while the dataset size is a strength, it also presents 

challenges in terms of computational resources required for training and evaluating 

models, which may limit accessibility for researchers with limited resources. In short, 

while the system provides valuable insights and contributions to the field of 3D action 

recognition, addressing these weaknesses could further enhance its impact and 

applicability. 

  The dataset and evaluation framework introduced by Liu et al. provide comprehensive 

insights into 3D action recognition. However, the size and diversity of the dataset 

present computational challenges. Our solution will optimize computational efficiency 

and leverage automated feature extraction techniques to address these challenges. For 

home surveillance, using a large-scale, diverse dataset for training can significantly 

improve the system's ability to recognize various activities and adapt to new types of 

threats. By ensuring that the training data includes a wide range of home intrusion 

scenarios, the system can achieve high accuracy and reliability in real-world 

applications. 
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Chapter 3 

System Methodology/Approach  

 

3.1 System Design Diagram/Equation 

3.1.1 System Architecture Diagram 

 

Figure 3.1.1 Flow of system methodology 

 

The realization of the proposed intelligent home surveillance system follows a 

structured development methodology integrating real-time human detection, violence 

analysis, and weapon detection. The system is designed to provide a robust and 

automated security solution that minimizes false alarms while enhancing situational 

awareness through deep learning and threaded processing techniques. 

 

The methodology is organized into three main phases: detection, analysis, and response. 

The process begins with the user defining a Region of Interest (ROI) within the camera 

feed—critical for focusing the surveillance on specific zones and improving the 
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relevance of subsequent detections. Live video input is captured and converted into 

individual frames, which then undergo preprocessing such as resizing and 

normalization to optimize them for model inference. 

 

Following preprocessing, each frame is passed through a YOLOv8-based human 

detection module. Only frames containing detected persons within the defined ROI are 

considered for further analysis. At this point, two parallel detection pipelines are 

activated via separate processing threads to ensure real-time performance with low 

latency. 

 

In the first pipeline, a sliding window of recent frames is analyzed using dense optical 

flow and a pre-trained ResNet50 + LSTM model to detect violent or abnormal motion 

patterns. In the second pipeline, the system performs inference using a pre-trained 

YOLOv8 model to detect weapons such as knives, guns, or similar threatening objects. 

 

If either excessive motion or a weapon is detected, the system transitions into the 

response phase. A real-time on-screen alert is generated, displaying the event type (e.g., 

"Violence" or "Weapon"), confidence level, and timestamp. These events are 

simultaneously logged for future review, enabling evidence preservation and pattern 

analysis. 

 

This approach ensures that the system not only automates home surveillance but does 

so with precision and efficiency. The focus remains on software-level threat detection 

and alerting; no integration with physical countermeasures or third-party hardware is 

included in this scope. 
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3.1.2 Use Case Diagram and Description 

 

Figure 3.1.2 Use case diagram 

 

The use case diagram for the proposed surveillance system illustrates the interactions 

between the primary actor—the User (Homeowner or Security Personnel)—and the 

System. The user is responsible for initializing and controlling the surveillance 

operations, while the system performs all real-time monitoring and intelligent detection 

tasks. 

 

The use case begins with the user defining the Region of Interest (ROI), which specifies 

the area to be monitored for human presence. This is a prerequisite step and is included 

in the Detect Human Presence use case using a <<include>> relationship. This 

inclusion reflects that human detection cannot be performed unless the ROI has already 

been specified. Once the ROI is set, the user can initiate or terminate the surveillance 

through the Start/Stop Live Surveillance use case. 
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During active surveillance, the system continuously monitors the defined ROI for the 

presence of humans. If a person is detected, the system proceeds to perform two 

concurrent actions. First, it conducts motion analysis across a sequence of frames to 

Detect Violent Behavior, using a ResNet50 + LSTM model. Second, it performs real-

time object classification using a YOLOv8 model to Detect Weapons such as knives or 

pistols. Both detections use cases extend from Detect Human Presence via <<extend>> 

relationships, as they are conditional actions that occur only if a person is detected. 

 

If either violence or weapon presence is confirmed, the system triggers the Display 

Alert on Screen use case to notify the user. Additionally, the system will execute the 

Log Detection Events use case to store detailed records of the incident in a database for 

future reference and review. 

 

The use case diagram thus effectively captures the flow of control, the dependencies 

between actions, and the system’s reactive behavior upon detecting potential threats, 

ensuring a clear and comprehensive model of user-system interaction in the surveillance 

process. 
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3.1.3 Activity Diagram 

 

Figure 3.1.3 Activity diagram 

The workflow of the intelligent surveillance system is depicted in Figure 3.1.3 as an 

activity diagram, illustrating the complete process from system initialization to real-

time threat detection and response. The process begins when the user initiates the 
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system, prompting an initialization phase where the user is required to define a Region 

of Interest (ROI). This ROI constrains human detection to specific areas within the 

video feed, ensuring that analysis is limited to zones of concern. The system loops this 

step until the ROI is properly defined, emphasizing user control and precision. 

 

Following successful ROI setup, the system enters its core operational loop, 

continuously capturing video frames. For each frame, the system first verifies whether 

additional frames are available. If so, it proceeds with analysis by performing human 

detection using a YOLOv8 model. If no individuals are detected within the ROI, the 

frame is skipped, and the system advances to the next one, conserving computational 

resources. 

 

When a person is detected, the system launches two parallel detection processes. The 

first involves violence detection, which leverages a ResNet50 combined with an LSTM 

model to analyze temporal motion patterns across a sequence of frames. The second is 

weapon detection, which employs another YOLOv8 model to identify potentially 

dangerous objects such as guns or knives. Each detection path includes a confidence-

based decision mechanism: if violent behavior is identified with a confidence score 

exceeding the predefined threshold, the system triggers an on-screen alert and logs the 

event. Similarly, if a weapon is detected with sufficient confidence, a weapon alert is 

displayed and recorded. 

 

If no threat is identified in either branch, the system skips alert generation but continues 

monitoring by capturing the next frame. This loop enables real-time processing and 

threat recognition with continuous feedback. The system remains active until no further 

frames are available, at which point the session concludes. Overall, the activity diagram 

captures the decision-driven, real-time operation of the surveillance system, 

emphasizing threat prioritization, user-defined parameters, and seamless integration 

between detection and response. 
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Chapter 4 

System Design  

 

4.1 System Block Diagram 

 

Figure 4.1 System block diagram 

 

Figure 4.1 illustrates the system architecture of the proposed Home Surveillance 

System with Violence and Weapon Detection. To ensure that only the relevant area of 

each video is analysed, the pipeline first invokes the ROI Definition Module, in which 

the user interactively draws a polygon on the first frame of the selected video. The user 

must specify at least three points; if fewer than three points are provided, the ROI is 

considered invalid, and the system will prompt for redefinition before proceeding. Once 

a valid ROI is established, its coordinates remain fixed for the remainder of that session. 

 

The system then proceeds to the Video Dataset Input stage, where pre-recorded CCTV 

footage (MP4 files at 30 fps) is loaded. The Frame Extraction module samples frames 

at a fixed interval (e.g., every 5th frame), resizes them to 224×224 pixels, and 

normalizes pixel values for downstream processing. 

 

Each extracted frame is passed through the YOLOv8 Person Detection module, which 

applies the ROI mask and locates any human figures. Frames without any detected 

person within the ROI are discarded to conserve computational resources. 
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When a person is detected, two parallel detection pipelines are launched: 

 

1. Violence Detection Module 

A Sliding Window Buffer maintains the most recent 16 person-positive frames. This 

clip is fed into a ResNet50 + LSTM network that captures both spatial and temporal 

cues. If the model’s probability exceeds the configured confidence threshold, the 

system outputs violence (confidence). 

 

2. Weapon Detection Module 

The same ROI-masked frame is also sent to a second YOLOv8 model, fine-tuned to 

recognize handled weapons—specifically pistols and knives. Detections with 

confidence above the threshold produce weapon (confidence) outputs. 

 

Finally, the Alert & Display Module overlays all confirmed detections—including 

person bounding boxes, violence (conf), and weapon (conf)—onto the live feed. 

Critical alerts are highlighted in real time, and each event triggers the Event Logging 

Module, which records the timestamp, event type, confidence score for audit, reporting, 

or legal purposes. This end-to-end, multi-threaded design ensures efficient resource 

use, accurate threat detection, and comprehensive traceability. 

 

 

4.2 System Components Specifications 

This section provides a detailed specification for each component in the system block 

diagram. For every module, we outline its purpose, inputs, outputs, key parameters, 

implementation libraries, and performance characteristics—enabling a clear blueprint 

for reproduction. 

 

4.2.1 ROI Definition Module 

Function:  

Allow the user to draw a polygon on the first video frame to define the Region of 

Interest (ROI) before any detection runs. 

Implementation: 
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Uses OpenCV mouse callbacks to record N clicks (N≥3). Then, connects them into a 

polygon. Blocks further processing until at least 3 points are defined. 

 

4.2.2 Surveillance Camera Video Input 

Function:  

Supply pre-recorded surveillance footage for testing and validation of the detection 

pipeline. 

Source:  

UCF-Crime dataset, specifically videos labelled as “fighting” and “shooting”  

Format & Specs: 

Container: MP4 (H.264 video codec) 

Frame Rate: 30 fps 

 

4.2.3 Frame Extraction 

Function:  

Decode the video stream and sample frames at a fixed interval for downstream analysis. 

Library: OpenCV  

Key Parameters: 

FRAME_SKIP = 5: only every 5th frame is retained 

Resize: frames are resized to IMG_SIZE = (224, 224) to match model input 

Normalization: pixel values divided by 255.0 

 

4.2.4 YOLOv8 Person Detection 

Function: Identify human figures in each extracted frame and filter by a user-defined 

Region of Interest (ROI). 

Model: Ultralytics YOLOv8, fine-tuned for the “person” class. 

Implementation: 

 

Figure 4.2.1 Person detection module 
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4.2.5 Sliding Window Buffer 

Function:  

Maintain a rolling buffer of the most recent person-positive frames for temporal 

analysis. 

Structure:  

FIFO queue of length WINDOW_SIZE = 16. 

Implementation: 

 

Figure 4.2.2 Sliding window buffer module 

 

4.2.6 ResNet50 + LSTM Violence Detection 

Function:  

Classify a sequence of frames as violent or non-violent by modelling both spatial and 

temporal features. 

Architecture Details: 

1. Spatial feature extractor: TimeDistributed(ResNet50) 

• Pretrained on ImageNet; first 100 layers frozen. 

2. Pooling: TimeDistributed(GlobalAveragePooling2D()) → sequence of feature 

vectors. 

3. Temporal model: LSTM 

4. BatchNormalization() after LSTM 

 

4.2.7 YOLOv8 Weapon Detection 

Function:  

Detect and classify handled weapons—specifically pistols and knives—in frames 

containing a person. 

Model: 

 Ultralytics YOLOv8 fine-tuned on a custom dataset of “pistol” and “knife” classes. 

Aggregation Strategy: 
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Process all sampled frames; track the highest confidence seen across the video and 

return a single clip-level weapon score. 

 

4.2.8 Alert & Display Module 

Function:  

Visually annotate the video feed with detection results and raise alerts. 

Outputs: Annotated frames for labels such as violence (confidence score) or weapon 

(confidence score) displayed in an OpenCV window. 

 

4.2.9 Event Logging Module 

Function: 

 Record every detection event—person, violence, and weapon—with precise contextual 

details for later review, auditing, or evidence. 

Implementation: 

Uses Python’s built-in logging module, configured at the top of the script: 

 

Figure 4.2.3 Event Logging Module 

 

All log entries are appended to the file detection_events.log. 

 

Log Record Format: 

 

Figure 4.2.4 Log Record Format 

 

EventType: One of "Person", "Weapon", or "Violence". 

Frame: The index of the video frame when the event was detected. 

Conf: The model’s confidence score, formatted to two decimal places. 
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Box: For "Person" and "Weapon", the bounding-box coordinates (x1, y1, x2, y2); for 

"Violence", "N/A" since it applies to a multi-frame clip. 

 

 

4.3 Circuit and Components Design 

This section outlines the design and configuration of each core component in the home 

surveillance system, with a focus on the computational architecture and how each part 

contributes to the system’s functionality. It also includes the methodology used for 

training the models responsible for violence and weapon detection. 

 

1. Surveillance Video Input 

The system supports both real-time video feed from a connected webcam and offline 

testing using pre-recorded surveillance footage. Video capture is handled through the 

OpenCV library, which streams frames into the detection pipeline.  

 

For evaluation purposes, the UCF-Crime dataset is employed. It is a large-scale, real-

world surveillance video dataset comprising 13 categories of anomalies (e.g., fighting, 

robbery, abuse) and normal activities. The dataset provides unconstrained camera 

angles, low lighting conditions, and varied real-world environments, making it suitable 

for testing the generalizability of the trained models. In this project, only the fighting 

and shooting videos from UCF-Crime were used for frame-level testing of the violence 

and weapon detection modules. 

 

2. Region of Interest (ROI) module 

Before the system begins operation, users are required to define a Region of Interest 

(ROI) that specifies the active monitoring zone within the video feed. This ROI acts as 

a spatial filter, focusing computational resources on the area most relevant to potential 

intrusion or abnormal behaviour. 

 

The ROI is created by manually drawing a polygon on the first frame of the video 

stream. Users must select at least three points to form a valid polygon. If fewer than 

three points are selected, the system will prompt the user to redefine the region until a 

valid polygon is submitted. This interactive configuration step ensures flexibility, 
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allowing the surveillance system to be tailored to various camera views and 

environments (e.g., entrances, hallways, parking lots). 

 

Once defined, the ROI polygon is overlaid on the video stream using OpenCV. During 

live detection, only objects (such as people or weapons) whose bounding box centroids 

fall within this ROI are passed to the violence and weapon detection modules for further 

analysis. Objects outside the ROI are ignored to conserve computational resources and 

prevent irrelevant areas—like walls, open spaces, or background movement—from 

triggering false detections. 

 

By focusing analysis strictly within the ROI, this module significantly improves both 

the efficiency and accuracy of the system. It reduces unnecessary inference calls, lowers 

latency in real-time processing, and minimizes false positives caused by background 

noise or movement in non-critical areas. 

 

Figure 4.2.5 ROI module pseudocode 

 

3. Person Detection module 

This module forms a critical component of the surveillance system, responsible for 

identifying the presence of humans in each frame of the video feed. It uses the YOLOv8 

(You Only Look Once version 8) object detection model, a state-of-the-art deep 

learning architecture known for its balance of speed and accuracy in real-time detection 

scenarios. 

 

The YOLOv8 model used here is pre-trained on the COCO dataset, a large-scale dataset 

containing over 80 object categories, including the “person” class. For each input frame, 

YOLOv8 generates the bounding boxes indicating the location of detected persons. 
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To improve both performance and computational efficiency, the detection is restricted 

to a user-defined Region of Interest (ROI). Only humans detected within the ROI 

polygon are considered valid. 

 

Person detection acts as a conditional gatekeeper for downstream processing, if no 

persons are detected inside the ROI, the system skips both the violence and weapon 

detection stages for that frame. This reduces unnecessary computation and helps 

prevent false positives triggered by irrelevant background motion or objects. If one or 

more persons are detected, the corresponding frame is passed to both: 

• The Violence Detection Module (ResNet50 + LSTM) 

• The Weapon Detection Module (YOLOv8 custom model) 

 

This selective activation ensures that the system remains responsive and resource-

efficient, especially when deployed in real-time environments with limited 

computational power. 

 

Figure 4.2.6 Person detection module pseudocode 

 

4. Violence Detection module 

The Violence Detection Module is designed to recognize aggressive human behaviour, 

specifically fighting actions, within surveillance footage. It is implemented using a 

hybrid deep learning architecture that combines ResNet50 for spatial feature extraction 

and LSTM (Long Short-Term Memory) for temporal sequence modelling. 

 

ResNet50, a 50-layer deep convolutional neural network, is employed to extract high-

level spatial features from individual frames. It is chosen for its strong ability to capture 
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complex visual patterns such as posture, motion blur, and body orientation—critical in 

distinguishing violent actions from normal movements. 

The extracted features from a sequence of consecutive frames are passed to an LSTM, 

a type of recurrent neural network (RNN) specialized in handling time-series data. 

LSTMs are ideal for this task because they can capture temporal dependencies—in 

other words, they analyse how actions unfold over time rather than treating frames in 

isolation. 

 

The output of the LSTM is fed into a fully connected (dense) layer with a sigmoid 

activation function, producing a binary output: fight or no fight. A confidence score is 

also generated to indicate the model's certainty. 

 

To enable real-time performance without compromising accuracy, a sliding window of 

10 consecutive frames is used. At every step, 10 frames are grouped into a batch and 

analysed as a short action sequence. This window slides forward as new frames arrive, 

continuously updating the detection pipeline. Processing is handled in a separate thread 

to avoid delaying the main video feed. Violence is flagged only if the model outputs a 

confidence score exceeding 0.3, minimizing false positives from ambiguous motion. 

 

5. Why ResNet50 + LSTM Was Chosen? 

ResNet50 offers excellent performance in extracting deep features while maintaining a 

manageable model size—important for real-time inference. LSTM adds temporal 

awareness, allowing the system to detect patterns of escalation or sudden movement 

typical in fights. Compared to 3D CNNs or transformers, this hybrid approach balances 

accuracy, efficiency, and ease of deployment on standard GPU hardware. 

 

6. Model Training Details 

Model training was conducted using a balanced subset of the UBI-Fights dataset, 

consisting of 216 fight and 216 non-fight videos, ensuring an equal distribution of both 

categories to prevent class imbalance. This 1:1 ratio was critical in enabling the model 

to effectively learn from both fight and non-fight scenarios. To process the video 

frames, sampling was performed at 5 frames per second (FPS), which strikes a balance 

between capturing motion continuity and reducing computational load. Each frame was 
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resized to 224×224 pixels, aligning with the input size requirements of the ResNet50 

model, ensuring compatibility and standardization. 

 

A custom VideoDataGenerator was employed to augment the dataset by applying 

random rotations, horizontal flips, and brightness adjustments during training. This on-

the-fly augmentation was crucial for enhancing the model's generalization ability across 

different lighting conditions, camera angles, and environmental variations. To capture 

temporal patterns in the video, each video was segmented into clips of 10 consecutive 

frames. This segmentation allowed the model to leverage the context of short-term 

motion dynamics, facilitating more accurate predictions based on action sequences 

rather than individual frame appearances. 

 

The model architecture comprises a CNN backbone using a pretrained ResNet50 

(trained on ImageNet), which extracts high-level spatial features from each frame. To 

reduce overfitting on the limited dataset, the first 100 layers of ResNet50 were frozen, 

preserving the pretrained knowledge. A Global Average Pooling (GAP) layer was 

applied to convert the spatial feature maps into fixed-size feature vectors. The 

sequential features from each frame were then passed through an LSTM layer with 64 

units, which was essential for modeling the motion patterns and inter-frame 

dependencies that are critical for detecting violent actions based on temporal dynamics. 

 

For classification, the LSTM output was regularized using Batch Normalization and 

Dropout (0.5) to prevent overfitting. A Dense layer with 64 units and ReLU activation 

captured complex interactions, followed by additional Dropout (0.4) for further 

regularization. The final classification decision was made through a sigmoid-activated 

Dense layer, which output a binary classification—1 for fight and 0 for non-fight. The 

Adam optimizer, with a learning rate of 0.0001, was used to ensure efficient and 

adaptive convergence. Binary Crossentropy was chosen as the loss function, suitable 

for binary classification tasks. L2 regularization was applied to both the LSTM and 

Dense layers to further reduce overfitting, while the dropout layers randomly 

deactivated neurons during training to enhance model robustness. 
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Figure 4.2.7 Violence detection module pseudocode 

 

7. Weapon Detection module 

The weapon detection module is an integral part of the surveillance system, designed 

to identify the presence of potentially harmful objects in real-time. It operates alongside 

the violence detection module to provide a more comprehensive threat assessment 

framework. The module is built using the YOLOv8 object detection architecture and 

was trained on a refined version of the OD-Weapon Detection dataset. 
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The training dataset was derived from the OD-Weapon Detection dataset, which 

contains a wide range of images featuring weapons and objects that closely resemble 

them in appearance or context. To prepare the dataset for training, it was restructured 

to follow the YOLOv8 annotation format — this includes converting bounding box 

annotations to the format expected by Ultralytics YOLOv8 and organizing the data into 

appropriate images, labels, and train/val directories. 

 

To enhance class separability and reduce misclassification, the dataset was labeled with 

six distinct classes: 

• pistol 

• knife 

• smartphone 

• menedero (wallet) 

• billete (banknote) 

• tarjeta (card) 

 

This multiclass approach allows the model not only to detect actual weapons but also 

to distinguish them from visually similar non-threatening items, thereby improving 

overall reliability in real-world conditions where false positives can occur (e.g., 

mistaking a phone or wallet for a weapon). 

 

Training was conducted using the Ultralytics YOLOv8 framework implemented in 

PyTorch. YOLOv8 was selected due to its cutting-edge performance in both speed and 

accuracy, particularly suited for real-time inference in edge-computing scenarios such 

as home surveillance systems. 

 

Key training parameters and practices included: 

• Confidence threshold: Set at 0.6 to filter out low-confidence predictions and 

reduce false alarms. 

• Image resolution: Input images were resized to 640×640 pixels for consistent 

training. 

• Epochs: The model was trained over 100 epochs with early stopping to prevent 

overfitting. 
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• Batch size: A batch size of 16 was used, balancing GPU memory constraints 

with training efficiency. 

• Optimizer and learning rate: Adam optimizer with an initial learning rate of 

0.001. 

 

To improve generalization and robustness under varying lighting, angle, and occlusion 

conditions, a set of standard YOLOv8 augmentation techniques were applied during 

training: 

 

• Mosaic augmentation: Combines four training images into one, improving the 

model’s ability to detect objects at different scales and contexts. 

• Random scaling and translation: Helps the model adapt to different object sizes 

and positions. 

• Hue, saturation, and brightness variation: Simulates environmental lighting 

changes commonly found in indoor and outdoor surveillance footage. 

 

Once trained, the YOLOv8 model was integrated into the system as a standalone 

detection thread. It operates conditionally — executing only when a person is detected 

in the defined Region of Interest (ROI). This approach conserves computational 

resources and reduces unnecessary inference when no human presence is observed. 

 

When triggered, the model scans the frame and returns bounding boxes, class labels, 

and confidence scores for any detected object. Only objects with a confidence score 

above 0.6 are displayed and considered for alert generation. Detected weapons are 

overlaid on the video stream using bounding boxes with class labels (e.g., “Knife: 

0.87”), and can optionally trigger alerts to notify the user of potential threats. 

 

The weapon detection module significantly enhances the system’s threat recognition 

capabilities. By distinguishing between actual weapons and everyday handled objects, 

it supports more informed and context-aware responses. In combination with the 

violence detection module, it ensures the surveillance system can accurately detect and 

classify both physical confrontations and the presence of dangerous tools or weapons. 
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Figure 4.2.8 Weapon detection module pseudocode 

 

8. Alert and Display module 

The Alert and Display Module is designed to provide immediate visual feedback when 

a weapon or violent act is detected, improving real-time response capabilities in a 

surveillance environment. This module triggers alerts based on specific detection 

events, such as the presence of a weapon or violent behaviour. 

 

Since the Alert and Display system is not trained like the weapon or violence detection 

models, it focuses on triggering alerts based on data received from those models. The 

display will showcase the detection results (bounding boxes, object labels, and 

confidence scores) overlayed on the video stream. The alert system is triggered when 

certain thresholds are met. 

 

The display system works with real-time data streaming, where the microcontroller or 

system processes detection results from the Weapon Detection and Violence Detection 

modules. 
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9. Event Logging module 

The Event Logging Module is a critical part of the surveillance system, designed to 

capture, timestamp, and log detection events related to weapons and violent behaviour. 

This ensures a persistent record is maintained for future review, compliance, and 

security analysis. 

Logging Setup: 

The logging setup configures the log format to capture the timestamp, event type, frame 

index, confidence score, and bounding box details. The log format follows the desired 

format: 

 

Figure 4.2.9 Logging setup 

 

Log Event Function: 

The log_event() function is responsible for logging the details of each detection 

(violence, weapon, and person) event.It takes four parameters: event_type, frame_idx, 

confidence, and box. These are logged in a structured format to a log file. 

 

Figure 4.2.10 Logging Event function 

 

Person Detection Log: 

If a person is detected, the event is logged as "Person" along with the confidence score 

and bounding box coordinates. The log_event() is triggered within the loop where the 

model detects persons. 

 

Figure 4.2.11 Person detection log 

 

Violence Detection Log: 

The run_violence_detection_thread() is responsible for detecting violence. If a fight is 

detected (i.e., violence_label == "Fight"), the event is logged with "Violence" as the 
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event type. It logs the confidence score and the event type only if the confidence 

exceeds a certain threshold (>0.5). 

 

Figure 4.2.12 Violence detection log 

 

Weapon Detection Log: 

In the weapon detection thread (run_weapon_detection_thread()), after detecting the 

weapon, the code logs the event with log_event() using "Weapon" as the event type. 

 

For each detected weapon, it logs the confidence score and bounding box coordinates. 

 

Figure 4.2.13 Weapon detection log 

 

 

4.4 System Components Interaction Operations 

This section describes the runtime interaction of your system components, including 

frame processing, threading, data handoff between modules, and error handling. The 

system is designed to ensure smooth, real-time performance while detecting and 

alerting on violent and weapon-related events within a surveillance context. An 

important feature of the system is the Region of Interest (ROI), which is crucial for 

focusing detection efforts on specific areas of the frame. 

 

Main Loop 

The main loop is responsible for continuously capturing frames from the surveillance 

video feed and initiating detection processes for violence, weapons, and persons. 
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Additionally, this loop checks if the detected person falls within a defined Region of 

Interest (ROI). 

 

• Frame Sampling: 

o OpenCV is used to continuously capture frames from the video stream 

in real-time. Each frame is captured and processed sequentially to detect 

persons and other events. The sampling rate is set to match the video 

feed to maintain real-time responsiveness. 

 

• Person Detection: 

o Each captured frame undergoes person detection using a YOLO-based 

model. If no person is detected, the system skips further analysis for that 

frame. 

 

• Region of Interest (ROI) Definition: 

o The ROI is defined as a specific area within the frame where person 

detection and subsequent analysis (violence and weapon detection) will 

be focused. The ROI is set based on user-defined parameters (such as 

coordinates of the bounding box or percentage of the frame to focus on). 

The system ensures that only frames containing persons within the ROI 

are considered for further analysis. This optimization ensures that the 

detection models only work on relevant portions of the frame, reducing 

unnecessary processing for irrelevant areas. If a person is detected 

within the ROI, the frame is passed into the sliding window buffer for 

further analysis. 

 

• Enqueue Frame into Sliding Window Buffer: 

o The system uses a sliding window buffer to hold the most recent frames 

(e.g., 16 frames). This buffer enables context-based detection, especially 

for violence detection, where multiple frames are required for accurate 

inference. 

 

Parallel Tasks (via Python Threading) 
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To optimize processing time and allow real-time performance, the system uses Python's 

threading capabilities to run detection models concurrently. 

 

1. Violence Inference Thread: 

• This thread is activated when the sliding window buffer contains at least 16 

frames. 

• Buffer Snapshot: A snapshot of the buffer is made to preserve the state at the 

time of inference. 

• Model Inference: The snapshot of frames is passed through the violence 

detection model (such as ResNet50 + LSTM), which classifies the action as 

either "Violent" or "Normal." 

• Result Handling: The result, along with the confidence score (e.g., if violence 

is detected with more than 30% confidence), is placed into a shared queue. 

 

2. Weapon Inference Thread: 

• This thread runs concurrently with the main loop and the violence inference 

thread. 

• Frame-by-Frame Weapon Detection: Each sampled frame undergoes detection 

for weapons using the YOLOv8 model. 

• Best-Score Variable: The thread tracks the best detection score for the current 

frame and updates the shared variable accordingly. 

• Result Handling: If a weapon is detected with a confidence score higher than 

60%, the result is added to a shared queue. 

 

Alert Dispatcher 

The alert dispatcher listens to the shared queues for results from both the violence and 

weapon detection threads. 

 

1. Monitoring Queues: 

• The dispatcher continuously monitors the shared queues for new results from 

the violence and weapon inference threads. 
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• Threshold Evaluation: For each detection result, the dispatcher checks if the 

confidence score meets or exceeds the predefined threshold (e.g., 30% for 

violence, 60% for weapons). 

• Alert Triggering: If the confidence threshold is met, the alert dispatcher triggers 

an alert for display. 

 

Display & Logging 

These modules are responsible for showing detection results and maintaining logs for 

operational transparency and debugging. 

1.Display Module: 

• The display module reads the latest detection results from the shared queues (for 

both violence and weapon detections). 

• The display is updated in real time to show the results of the detections, with 

visual indicators such as bounding boxes, confidence scores, and alert like 

"Violence" or "Weapon." 

• The module is designed to be responsive and non-blocking, ensuring the UI 

remains interactive and updates quickly as new frames are processed. 

 

2.Logging Module: 

• The logging module writes detection events to a log file or output stream. 

• Logs include the detection event type (violence or weapon), the timestamp, 

frame index, and the confidence score. 

• The system performs asynchronous logging, ensuring that log writing does not 

block the main processing loop. This prevents delays in processing new frames 

while writing event data. 

 

Error Handling & Recovery 

The system incorporates several error handling and recovery mechanisms to ensure 

stability and continued operation, even under failure conditions. 

 

1.GPU Failures: 

If the system detects a failure in GPU resources (e.g., memory errors), a try/except 

block catches the exception and automatically switches to CPU processing. This 
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fallback mechanism ensures that the system continues to function, although at 

potentially slower speeds, until the GPU resource issue is resolved. 

 

2.Frame Loss or Corruption: 

If a frame is corrupted or fails to load properly, the system logs the error and skips that 

frame. It then moves to the next frame without halting the entire process. This error 

recovery prevents system crashes and allows the system to keep running smoothly in 

the face of minor issues. 

 

3.Thread Termination: 

The main loop and all active threads (violence and weapon detection threads) are safely 

terminated. This ensures that no incomplete detection tasks remain. Threads are given 

adequate time to finish their current operations before the system fully shuts down. 

 

4.Log Flushing: 

The logging module ensures that all events are written to the log file before the system 

stops. This is done asynchronously, preventing the shutdown process from blocking. 

 

5.Graceful System Exit: 

The system cleans up any remaining resources (e.g., memory, threads) and performs a 

clean exit to avoid any issues when restarting or shutting down. 
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Chapter 5 

System Implementation  

 

5.1 Hardware Setup 

Table 5.1 shows the hardware configurations to develop and implement our proposed 

system. 

Table 5.1 Specifications of laptop 

Description Specifications 

Model HP VICTUS 16-E1044AX 

Processor AMD Ryzen 5 6600H with Radeon Graphics   

Operating System Windows 11 

Graphic NVIDIA GeForce RTX3050 

Memory 16.0 GB 

CPU 3.30 GHz 

System Type 64-bit operating system, x64-based processor 

 

 

5.2 Software Setup 

Table 5.2 shows the software configurations to develop and implement our proposed 

system. 

Table 5.2 Specifications of software 

Software Version Purpose Information 

Python 3.10 Core 

programming 

language 

Python is the primary language for 

implementing the entire system. 

Version 3.10 is compatible with the 

libraries and models used in the 

system. 

OpenCV 4.8.0 Video capture and 

image processing 

OpenCV is used for capturing and 

processing video frames, including 
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drawing bounding boxes and masks 

for object detection and analysis. 

PyTorch 2.0.1 Deep learning 

framework for 

ResNet + LSTM 

model 

PyTorch is used for building and 

running the deep learning model 

(ResNet + LSTM) for violence 

detection in the system. 

Ultralytics 

YOLOv8 

- Real-time object 

detection 

YOLOv8 is used for performing real-

time object detection, including 

person and weapon detection, 

leveraging the YOLO architecture for 

fast inference. 

Visual 

Studio Code 

Latest Code editor for 

Python 

development 

Visual Studio Code (VSCode) is used 

as the primary Integrated 

Development Environment (IDE) for 

coding, debugging, and managing 

Python files. 

 

 

5.3 Setting and Configuration 

The Setting and Configuration section details all the parameters, files, and environment 

variables you must define before running the surveillance system. Proper configuration 

ensures that each component––from video capture to model inference and logging––

operates correctly and efficiently. 

 

To run the system smoothly, several key Python libraries must be installed. These 

libraries support functionalities such as video capture, image preprocessing, model 

inference, and visualization. The required packages and their versions are: 

• opencv-python==4.8.0 

• torch==2.0.1 

• torchvision 

• ultralytics 

• tensorflow 

• matplotlib 
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• scikit-learn 

 

All user-tunable parameters are listed below, Before launching the system, edit this file 

to reflect your environment and requirements. 

 

Figure 5.3.1 User-tunable parameters 

 

GPU Setup 

For optimized performance, especially when handling real-time video streams and 

running deep learning models, the system is configured to use GPU acceleration. 
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In TensorFlow-based modules (e.g., ResNet + LSTM violence detection), the system 

enables dynamic GPU memory growth to avoid pre-allocating the full memory, which 

prevents Out of Memory (OOM) errors. This is achieved with the following setting: 

 

Figure 5.3.2 GPU setup 

 

Logging Configuration 

The system uses Python’s built-in logging module. In the startup script, configure 

logging as follows: 

 

Figure 5.3.3 Logging Configuration 

 

 

5.4 System Operation (with Screenshot) 

The surveillance system developed in this project operates by integrating three core 

detection modules: person detection, violence detection, and weapon detection. These 

modules work in tandem to monitor a live video stream in real time and provide on-

screen alerts if any abnormal or dangerous behaviour is detected. The system is 

designed to process video frames efficiently using GPU acceleration while maintaining 

high responsiveness and low latency. 
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When the system is launched using the main.py script, it begins by initializing all 

necessary components which contains settings such as video source, confidence 

thresholds for violence and weapon detection, and model file paths. The system first 

checks for GPU availability and enables memory growth for TensorFlow to avoid 

unnecessary GPU memory pre-allocation. After that, the models required for detection 

are loaded into memory: YOLOv8 for person and weapon detection, and a pretrained 

ResNet50 + LSTM model for violence detection. 

 

Figure 5.4.1 GPU availability 

 

If a Region of Interest (ROI) is not predefined in the configuration, the system prompts 

the user to manually draw the ROI using the mouse over the first video frame. This 

ensures that detection only occurs in user-specified zones, reducing false positives and 

optimizing performance. To further ensure the accuracy of the ROI, the system checks 

if the defined region consists of at least three points; if not, the user is prompted to 

redefine the ROI. Once the ROI is defined, the system begins capturing frames from 

the video source. Each frame is checked for persons using the YOLOv8 object detector. 

If no person is detected in the ROI, the frame is skipped to save processing resources. 

 

Figure 5.4.2 Invalid ROI definition 

 

 

Figure 5.4.3 Valid ROI definition 
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Figure 5.4.4 Person detection in ROI 

 

When a person is detected within the ROI, the system triggers the violence and weapon 

detection modules. For violence detection, frames are collected in a sliding window 

buffer of fixed size. Once the buffer is full, the batch of frames is passed to the 

ResNet50 + LSTM model. If the predicted violence confidence score exceeds the 

threshold of 0.30, the system displays a “Violence” alert on the video frame using red 

text and simultaneously logs the event with a timestamp. In parallel, the same frame is 

processed using a YOLOv8 model trained specifically for weapon detection. If a 

weapon such as a knife or pistol is detected with a confidence higher than 0.60, a 

“Weapon” warning is displayed in red text, and the incident is also logged.

 

Figure 5.4.5 Violence alert 
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Figure 5.4.6 Weapon alert 

 

The real-time video feed shown in the system window includes bounding boxes around 

detected persons and weapons, along with the respective labels and confidence scores. 

Alerts such as “Violence” and “Weapon” appear prominently at the top of the frame. 

This makes it easier for users to interpret the situation at a glance.  

 

All detection events are recorded in a log file named detection_events.log. This file 

stores timestamped entries whenever violence or a weapon is detected. For example, a 

typical log entry might read: 

2025-05-07 15:23:41,512 - INFO - Violence (Confidence: 0.87) or 2025-05-07 

15:23:42,315 - INFO - Weapon (knife, Confidence: 0.72). 

These logs can be reviewed later for incident analysis or audit purposes. 

 

Figure 5.4.7 Log file entry 

 

Overall, the system is designed to operate autonomously with minimal user input. Once 

configured correctly, it continuously monitors video feeds, detects and flags abnormal 

behaviours, and provides real-time visual and logged alerts, thereby enhancing the 

safety and security of monitored environments. 
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5.5 Implementation Issues and Challenges 

Throughout the development of the home intrusion surveillance system with violence 

and weapon detection, several key challenges and issues were encountered. These 

challenges range from technical difficulties in model integration to resource limitations, 

all of which required significant adjustments during the process. 

 

1. Model Integration and Performance Tuning: 

One of the primary challenges was integrating multiple detection models into a 

cohesive system. The person detection model based on YOLOv8 had to work 

seamlessly alongside the violence detection model (ResNet50 + LSTM) and the 

weapon detection model (YOLO). Ensuring that these models could process frames 

concurrently without significant latency required careful optimization of threading, 

model loading, and memory management. Handling multiple models running in parallel 

put significant strain on system resources, particularly during high-frame-rate video 

processing. 

 

2. Real-time Processing Requirements: 

Achieving real-time performance was a critical goal, but it proved to be difficult, 

particularly when processing multiple models simultaneously. The system had to meet 

the performance requirement of processing video frames at 30 FPS without lag. This 

meant that optimizing the computational cost of each model's prediction was essential. 

A major challenge was maintaining a balance between detection accuracy and real-time 

processing speed, which sometimes necessitated trade-offs in model precision or 

confidence thresholds. 

 

3. Accurate Violence Detection: 

While the violence detection model based on ResNet50 and LSTM showed promising 

results in identifying violent actions, it was difficult to fine-tune the model to detect 

subtle or less obvious instances of violence. The model often struggled with false 

negatives and false positives, especially in scenarios where violent behaviour was 

ambiguous or brief. Adjusting the sliding window mechanism and improving the 

dataset used for training were necessary to address these issues. 
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4. Dynamic Environment Variability: 

The system needed to operate in different lighting conditions, camera angles, and 

environments. Variations in video quality or environmental factors such as lighting and 

shadows posed challenges for both person and weapon detection. Ensuring the system 

could handle diverse video inputs without significant drops in detection accuracy 

required constant refinement in the preprocessing and data augmentation stages. 

 

5. Multi-threading and Synchronization Issues: 

Given that the system utilizes multiple threads for handling different detection tasks 

concurrently, ensuring proper synchronization between threads became a challenge. 

The risk of race conditions, memory corruption, or thread deadlocks was always 

present, especially when multiple threads needed to access shared resources (such as 

the weapon_frame variable). Thorough testing and the use of locks (e.g., violence_lock 

and weapon_lock) were essential in avoiding these issues. 

6. Resource Constraints: 

Running deep learning models for real-time object detection on an average laptop with 

an RTX 3050 GPU also posed resource constraints. The system occasionally 

experienced slower processing speeds when handling high-resolution video frames. 

Optimizing the models and reducing their size for faster inference were steps taken to 

alleviate this problem. Despite these improvements, achieving perfect real-time 

performance with limited resources remained challenging. 

 

7. Detection in Complex Scenes: 

Detecting violence and weapons in crowded or complex scenes, such as those with 

overlapping individuals or obstructed views, often resulted in incorrect or missed 

detections. The presence of multiple individuals in the same frame led to false positives 

or missed detections for both violence and weapon-related activities. More advanced 

tracking mechanisms and context-awareness were considered as future improvements 

to help handle such scenarios. 
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5.6 Concluding Remark 

The implementation phase represented the pivotal transition from conceptual design to 

an operational surveillance prototype. In this chapter, we described in detail how the 

person-detection, violence-classification, and weapon-detection modules were 

orchestrated into a cohesive pipeline that processes live video in real time. By deploying 

the pre-trained ResNet50+LSTM model for temporal violence analysis alongside the 

Ultralytics YOLOv8 detectors for person and weapon identification, the system 

achieved a balanced trade-off between inference speed and detection accuracy on 

commodity GPU hardware. 

 

During development, we confronted and overcame several non-trivial challenges. First, 

managing concurrency between the main video capture loop and two asynchronous 

detection threads (violence and weapon) required careful use of thread-safe data 

structures and locks to avoid race conditions or deadlocks. Second, constrained GPU 

memory and CPU resources necessitated mixed-precision training and inference, as 

well as batch processing strategies (such as sliding window frame buffers) to prevent 

out-of-memory errors without sacrificing detection reliability. Third, tuning confidence 

thresholds (0.3 for violence and 0.6 for weapons) was critical to balancing false 

positives and false negatives under diverse lighting, camera angles, and scene 

complexities. 

 

Robust logging of detection events (with timestamps, frame indices, and bounding-box 

metadata) was integrated to facilitate post-incident analysis and system auditing. The 

sliding window mechanism for violence inference ensured temporal coherence while 

capping end-to-end latency at approximately 200 ms per frame sequence. Conditional 

invocation of the weapon detector—triggered only upon person detection within a user-

defined region of interest—further conserved computational resources during idle 

periods. 

 

Overall, the implementation confirms the feasibility of real-time, multi-threat 

surveillance on a mid-range laptop equipped with an RTX 3050 GPU. The modular 

architecture and clearly defined interfaces allow for straightforward replacement or 

retraining of individual components—as well as scaling to embedded systems or cloud-
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based deployments. Lessons learned during thread synchronization, memory 

management, and threshold calibration will directly inform subsequent enhancements, 

including: 

 

• Model Optimization: Pruning or quantizing violence and weapon detectors to 

reduce inference time and footprint. 

• Scalability: Extending the pipeline to handle multiple video streams in parallel 

or deploying across networked edge devices. 

• Accuracy Improvements: Incorporating additional data augmentation, 

background filtering, and adversarial robustness to handle more complex real-

world scenarios. 

 

This chapter’s achievements lay a solid groundwork for the next phase of the project, 

where focus will shift to extensive field testing. 
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Chapter 6 

System Evaluation And Discussion  

 

6.1 System Setting and Performance Metrics 

In order to objectively evaluate our real-time surveillance system, we established the 

following key performance metrics: 

 

Accuracy: 

Accuracy=
True positive + True negative

True positive +True negative +False positive +False negative
 

 

Accuracy is a measure of the correctness of predictions made by a model. It is typically 

defined as the ratio of correctly classified instances to the total number of instances in 

the dataset. In other words, accuracy measures how often the model makes correct 

predictions out of all the predictions it makes. 

 

Precision: 

Precision= 
True Positives+False Positives

True Positives
 

Precision is a performance metric to measure the accuracy of positive predictions made 

by a model. It is defined as the ratio of true positive predictions to the total number of 

positive predictions made by the model. Precision provides valuable insights into the 

accuracy of positive predictions made by the system, helping system developers 

optimize the model's performance and minimize false alarms. 

 

 

 Recall: 

Recall= 
True Positives+False Negatives

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 Recall, also known as sensitivity or true positive rate, is a performance metric to 

measure the model's ability to correctly identify all positive instances (true positives) 

out of all actual positive instances in the dataset. Recall is a crucial metric for evaluating 

the performance of the system as it provides insights into the system's ability to 

accurately detect positive samples. 
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F1 score: 

F1 score= 2 x 
Precision x Recall

Precision+Recall
 

The F₁-Score harmonically balances precision and recall into a single number, 

penalizing models that score very high on one metric but low on the other. It is 

particularly useful when seeking a trade-off between false alarms and missed 

detections. 

 

 

6.2 Testing Setup and Result 

The testing phase aimed to evaluate the performance of the real-time surveillance 

system under simulated deployment conditions using curated datasets. The evaluation 

focused on the two major detection components—violence detection and weapon 

detection—both assessed independently using balanced test sets comprising 50 positive 

and 50 negative video clips each. 

 

For violence detection, the system was evaluated using a trained ResNet50-LSTM 

model on a dataset of fight and non-fight scenarios. With a classification threshold set 

at 0.3, the system achieved an accuracy of 57.0%, precision of 0.578, recall of 0.520, 

and an F1-score of 0.547. The confusion matrix revealed that 31 non-violent clips were 

correctly identified, while 19 were misclassified as violent. For violent videos, 26 were 

correctly flagged, while 24 were missed. These results highlight moderate detection 

performance with room for improvement, particularly in recall, which indicates that 

nearly half of the actual violent cases were not detected. 

 

Weapon detection, powered by a YOLOv8 object detection model, was evaluated using 

another balanced dataset containing video samples with and without visible handheld 

weapons. A confidence threshold of 0.6 was applied to filter low-confidence 

predictions. The system achieved a slightly lower performance, with an accuracy of 

53.0%, precision of 0.532, recall of 0.500, and F1-score of 0.515. From the confusion 

matrix, 28 non-weapon cases were correctly detected, while 22 were false positives. On 

the other hand, 25 actual weapon cases were correctly identified, and 25 were missed. 
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These testing results suggest that while the models can perform basic threat detection, 

both modules struggle with borderline or ambiguous scenarios. The relatively low 

precision and recall scores, especially in weapon detection, emphasize the need for 

further dataset enhancement, model fine-tuning, and possibly more advanced 

techniques such as ensemble methods or temporal consistency checks to improve 

detection robustness in future iterations. 

 

 

6.3 Project Challenges 

Throughout the development and evaluation of the real-time surveillance system, 

several significant challenges emerged that impacted both the technical execution and 

overall performance of the project. One of the primary challenges was achieving 

reliable real-time processing under hardware constraints. The system was deployed and 

tested on a consumer-grade laptop with limited GPU resources (NVIDIA GeForce RTX 

3050), making it difficult to maintain low-latency inference, especially when running 

multiple deep learning models concurrently. To address this, model invocation was 

conditionally triggered based on human presence detection, and multi-threading was 

implemented to separate person detection from violence and weapon classification 

tasks. However, thread synchronization and memory management introduced 

complexity and required careful coordination to prevent performance bottlenecks and 

system crashes. 

 

Another major challenge was the dataset quality and representativeness. Although the 

system was trained using publicly available datasets such as UBI-Fights for violence 

detection and SOHAS for weapon detection, these datasets often lacked diversity in 

environmental conditions, camera angles, object occlusions, and real-world 

complexity. This limited the model’s ability to generalize to more challenging or 

ambiguous scenarios, leading to a higher rate of false positives and false negatives 

during testing. 

 

Furthermore, tuning detection thresholds presented a trade-off between sensitivity and 

specificity. A lower threshold led to increased recall but also more false alarms, while 

a higher threshold reduced detection rates of subtle or partial actions. Finding an 
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optimal balance was challenging without a large-scale validation dataset that accurately 

reflects real-world surveillance footage. 

 

Finally, integrating all components—YOLOv8 for person and weapon detection, and 

ResNet50-LSTM for violence classification—into a single pipeline required careful 

orchestration of frame buffering, sliding window processing, and real-time result 

visualization. Debugging synchronization issues and ensuring consistent performance 

across various modules added complexity to the system architecture and testing 

workflow. 

 

 

6.4 Objectives Evaluation 

The project set out to develop a smart, real-time home surveillance system capable of 

minimizing human supervision and reducing false alarm rates, while addressing key 

limitations found in traditional CCTV systems. At its core, the system aimed to detect 

human presence in live video streams, recognize high-risk behaviours such as physical 

violence, and identify the presence of handheld weapons—all while ensuring 

responsiveness and minimizing false positives. 

 

Each of these objectives was tackled using a modular, deep learning-driven 

architecture. For human presence detection, the system leveraged the YOLOv8 object 

detection model within a user-defined Region of Interest (ROI). This approach not only 

localized detection to relevant zones but also optimized computational efficiency by 

conditionally activating further analysis modules only when persons were detected. 

This selective invocation of heavier models significantly reduced unnecessary 

processing overhead and aligned with the project’s goal of low-latency operation. 

 

The objective of violence detection was fulfilled through the implementation of a 

ResNet50 + LSTM model designed to capture temporal motion patterns from sequences 

of frames. While the model achieved moderate classification performance (accuracy of 

57%, F1 score of 0.547), it successfully demonstrated the system’s ability to flag 

potentially violent actions in real-time using a sliding window mechanism and 

confidence thresholding. Similarly, weapon detection, implemented using a separate 
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YOLOv8 model, contributed to the multi-threat awareness of the system. Despite a 

slightly lower accuracy of 53%, the module effectively identified threats such as knives 

and pistols, with predictions filtered by a 0.6 confidence threshold to reduce false 

positives. 

 

Another key objective—delivering real-time alerts with confidence metrics—was 

successfully realized through on-screen notifications that dynamically displayed the 

type of threat detected and the associated confidence level. This mechanism empowered 

users to make informed decisions quickly, eliminating the need for constant visual 

monitoring. Additionally, all detected events were logged with timestamps for 

retrospective analysis and evidence collection, fulfilling the objective of post-event 

review. 

 

Multithreading was employed effectively to handle concurrent tasks, such as frame 

capturing, person detection, violence classification, and weapon detection, without 

degrading the system’s responsiveness. This technical decision proved essential in 

achieving real-time performance and maintaining smooth video processing on a mid-

range laptop with limited hardware resources. 

 

In summary, while there is room for improvement in detection accuracy and 

generalization across diverse environments, the project has successfully met its core 

objectives. It demonstrated a fully functional prototype capable of detecting human 

presence, identifying threats in real time, and alerting users with clear, actionable 

information—thus laying a strong foundation for future enhancement and deployment 

in real-world home security contexts. 

 

 

6.5 Concluding Remark 

In this chapter, we conducted a rigorous evaluation of our real-time home surveillance 

system, detailing the experimental setup, performance metrics, and comparative 

analysis against the project’s original objectives. Leveraging state-of-the-art deep 

learning architectures—YOLOv8 for weapons and a ResNet50+LSTM hybrid for 

violence detection—coupled with a carefully engineered multithreaded processing 
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pipeline, the system demonstrated robust detection capabilities under realistic 

conditions. The sliding-window inference strategy, combined with confidence-based 

thresholds, effectively balanced detection sensitivity against false-alarm suppression, 

ensuring that alerts are both timely and reliable. 

 

While the quantitative metrics (e.g., ~53% F1-score for violence at a 0.3 threshold and 

moderate weapon detection precision at 0.6 threshold) indicate room for improvement, 

these results are commendable given the inherent challenges: relatively small labelled 

datasets, high inter-class similarity (e.g., mistaking benign gestures for violence), and 

hardware constraints of a consumer-grade GPU. Importantly, the system met its real-

time processing requirement, sustaining frame-rates above 10 FPS during integrated 

operation, and maintained stability through memory-growth configuration and session 

clearing techniques. The on-screen alert mechanism and structured event logging 

further validated the system’s operational readiness, enabling rapid human verification 

and post-event analysis. 

 

Critically, the system fulfilled its primary objectives: reducing continuous human 

monitoring by automatically flagging high-risk behaviours, providing clear visual and 

textual alerts, and persisting event logs for audit and compliance. The implementation 

uncovered key insights into model behaviour—such as the impact of window size on 

temporal context and the trade-off between threshold levels and detection sensitivity—

that will inform future refinements. Looking ahead, extending the training corpus with 

synthetic and real-world samples, exploring knowledge-distillation techniques for 

model compression, and integrating edge-computing devices for distributed inference 

are promising avenues. Furthermore, coupling the current software framework with 

networked actuators (alarms, smart locks) would elevate the system from passive 

monitoring to active deterrence. Overall, this evaluation not only validates the 

feasibility of the proposed solution but also charts a clear roadmap for transforming this 

prototype into a scalable, production-grade home security platform. 
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Chapter 7 

Conclusion and Recommendation 

 

7.1 Conclusion 

This project successfully transformed a conceptual design for an intelligent home 

surveillance system into a working prototype that runs in real time on commodity 

hardware. By decomposing the problem into three core modules—person detection, 

violence classification, and weapon recognition—we were able to leverage 

state‑of‑the‑art deep learning architectures (YOLOv8 for object detection and a 

ResNet50+LSTM hybrid for temporal action modeling) without overloading the GPU. 

The mixed‑precision training strategy and custom video data generators enabled us to 

train on a modest dataset while maintaining acceptable throughput during inference. 

 

During implementation, we addressed several practical challenges: managing GPU 

memory growth to avoid out‑of‑memory crashes, synchronizing asynchronous threads 

for violence and weapon detection to maximize parallelism without data races, and 

designing a sliding‑window mechanism that balances temporal context with system 

latency. Our on‑screen alert module—triggered only when confidence thresholds are 

exceeded—minimized false alarms and reduced the cognitive load on end users. Event 

logging, formatted with timestamps, frame indices, and bounding‑box coordinates, 

provides a reliable audit trail for post‑incident analysis. 

 

Evaluation on balanced test sets (50 positive vs. 50 negative samples) produced 

moderate yet informative results: 57% accuracy for violence detection at a threshold of 

0.3, and 53% accuracy for weapon detection at a threshold of 0.6. Precision–recall 

trade‑offs highlighted opportunities for improvement, particularly in recall where 

missed detections signal the need for richer training data and more robust temporal 

modeling. Nonetheless, these metrics confirm that our modular pipeline can indeed 

identify high‑risk behaviors and objects with minimal manual intervention. 

 

Importantly, all original objectives were met: the system autonomously identifies 

human presence, classifies potentially violent actions and weapons, issues 
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context‑aware alerts, and maintains a persistent log—all in real time. The development 

process has provided valuable insights into the integration of heterogeneous models, 

multithreaded design patterns, and user‑centric alerting strategies. This solid foundation 

paves the way for future enhancements in accuracy, scalability, and deployment in 

real‑world home‑security scenarios. 

 

 

7.2 Recommendation 

For the system to evolve from a functional prototype into a production-ready solution, 

several key enhancements are recommended. First and foremost, the underlying 

datasets must be significantly broadened and diversified. Beyond the current UBI-

Fights and OD-Weapon collections, gathering footage across a wide range of 

environments—daylight, low-light, and infrared; indoor and outdoor; static and moving 

cameras—will expose the models to the full spectrum of real-world variability. 

Synthetic data generation and domain randomization techniques can further augment 

rare or hazardous scenarios (e.g., concealed weapons, partial occlusions) that are 

difficult to capture in practice, ensuring the system learns robust representations. 

 

On the modelling side, richer temporal architectures should be explored. While our 

current ResNet50+LSTM architecture captures short-term motion dynamics, emerging 

Transformer-based video encoders (such as Video Swin Transformer or TimeSformer) 

and Temporal Convolutional Networks may offer superior long-range dependency 

modelling and improved recognition of subtle action patterns. Integrating spatial-

temporal attention mechanisms will allow the system to focus on hands, faces, and 

objects of interest, reducing false positives caused by background movements. 

 

Pre- and post-processing pipelines also warrant refinement. Motion compensation 

techniques—using optical flow or feature-based stabilization—can mitigate false 

detections resulting from camera jitter. On the back end, temporal smoothing or 

majority-vote schemes applied across overlapping sliding windows will filter out 

spurious prediction spikes, producing a steadier and more reliable alert stream. 

Adaptive thresholding strategies, which adjust confidence cut-offs based on contextual 
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cues like lighting or recent detection history, can dynamically balance sensitivity and 

specificity. 

 

For real-world deployment, model optimization and hardware acceleration are 

essential. Post-training quantization, pruning, and knowledge distillation can shrink 

model footprints for edge devices such as NVIDIA Jetson or Coral TPUs without 

severely compromising accuracy. Leveraging vendor-specific inference engines (e.g., 

TensorRT, OpenVINO) will maximize throughput and minimize latency. Packaging 

the system into containerized services with orchestrators like Kubernetes will simplify 

large-scale rollouts across multiple camera feeds while ensuring maintainability. 

 

Finally, closing the loop with user feedback will drive continuous improvement. 

Building an interactive dashboard where users can review alerts, correct 

misclassifications, and annotate false alarms creates a valuable stream of labelled data 

for periodic model retraining. Active learning pipelines can automatically select the 

most informative samples—those with low confidence or novel patterns—to prioritize 

for human review. Together, these strategies will build a resilient, self-improving 

surveillance platform capable of meeting the demands of real-world home security 

deployments. 
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