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ABSTRACT 

Large Language Models (LLMs) have unlocked new opportunities in processing 

unstructured information, which is increasingly prevalent in industries such as logistics, 

healthcare, and finance. To address this growing need despite the inherent inconsistency 

of LLM , this project presents a data extraction framework that could reliably integrate 

LLMs into data processing pipelines to extract structured information from 

unstructured data sources, particularly images containing handwriting. The 

methodology involved the development of a data processing pipeline that incorporate 

LLMs to automate data extraction while addressing the unpredictability of LLM 

outputs. A novel “Sieve Methodology” was introduced to enhance output reliability 

through multiple iterations of validation, comparison, and refinement of the data 

extracted by the LLMs. This approach was prominent in making sure that the outputs 

were suitable for downstream processing while optimizing batch processing efficiency. 

The system also features support for concurrency, confidence scoring and automated 

template matching with cropping to improve responsiveness and scalability in real-

world deployment scenarios. The framework was rigorously tested on handwritten 

parcel data with printed text, checkbox and signature, which is a common challenge in 

the logistics industry. The results were significant: the project achieved up to 96.93% 

of accuracy,  a reduction in processing time of up to 89.46%, and a 37.70% 

reduction in token usage compared to baseline method where images are directly fed 

into LLM for processing. These outcomes clearly demonstrate the effectiveness of the 

proposed framework in enhancing the efficiency and reliability of data extraction 

processes. In the end, this project successfully developed a dual-functionality system 

that allows the integration of LLMs as both a standalone tool with GUI and an 

intermediate module (web API) within automated workflows, highlighting its practical 

applicability and contribution to the advancement of intelligent data extraction systems. 

Area of Study: Distributed System, Large Language Model (LLM) 

 

Keywords: Data Processing Framework, Automation, Data Pipeline Optimization, 

Token Efficiency, Data Extraction 
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CHAPTER 1   INTRODUCTION 

In this chapter, we present the background, problem statements and motivations of our 

project, objectives to be achieved, project scope and direction, our contributions to the 

field of large language models and distribution system, as well as the outline of the 

thesis. 

1.1 Project Background 

In today’s increasingly data-driven environment, organizations rely heavily on 

unstructured information, such as images, handwritten notes, and other non-

standardized formats, for critical decision-making and operational efficiency. However, 

converting this unstructured data into meaningful, structured information remains a 

challenging and labour-intensive task. This challenge is especially pronounced in 

sectors such as logistics, healthcare, education, and finance, where speed and accuracy 

are essential. Established approaches often depend on manual data entry or 

conventional Optical Character Recognition (OCR) technologies, which frequently 

struggle with complex layouts or low-quality inputs, resulting in limited accuracy. 

In fact, Large Language Models (LLMs) such as BERT, BLOOM, GPT, LLAMA, 

RoBERTa, or T5, as in [1] and [2],  have fundamentally transformed how unstructured 

data is processed and interpreted. Their recent advancements showcase remarkable 

capabilities in understanding and generating human-like language, enabling the 

automation of complex data extraction tasks, even when information is implied rather 

than explicitly stated in the input (e.g., from images). 

Although the idea is simple, its implementation is not. Despite their potential, 

integrating LLMs into existing applications has proven hard due to their non-

deterministic nature, which in turn undermines the reliability of downstream processes 

depending on structured and accurate data. For example, LLM might generate different 

outputs even when given the same input prompt multiple times, or they might 

hallucinate throughout the process if the prompt is unclear and return the inaccurate 

result. 

From our literature review, there is a lack of well-defined application integration 

framework for LLM system that detailed this problem. Despite the rise of frameworks 
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such as LangChain and Haystack that support the integration of LLMs into broader 

systems, there remains a critical gap in building pipelines that extract structured data 

from unstructured, image-based content with high accuracy, consistency, and efficiency. 

Hence, to address this, this project “Large Language Model Application Integration for 

Extracting Unstructured Data” was conceived in light of these challenges of 

unstructured data extraction. By developing a system with framework that embed 

LLMs within conventional data processing systems, this project aims to bridge the gap 

between cutting-edge AI capabilities and the practical needs of industries dealing with 

unstructured data. This proposed framework will include new mechanisms for filtering, 

validating, and optimizing LLM outputs to provide high-quality, accurate, and 

consistent data extraction. 

One of the key applications of this project is in the logistics industry, where handwritten 

parcel data must be digitized accurately and efficiently. Currently, manual data entry is 

time-consuming and error-prone, leading to inefficiencies and increased operational 

costs. Through automation by means of LLMs, time and resources will be saved with 

regards to processing parcel information, and eventually, there will be an enhancement 

in the accuracy of data fed into the systems. This project aims to unlock new levels of 

efficiency and accuracy for industries that rely on timely and precise information.   
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1.2 Problem Statement 

Lack of Solidly Established Image-to-Structured Pipelines Framework with 

LLMs Integration 

While powerful LLMs and CV/OCR models exist individually, they are not purpose-

built for integrating LLMs into workflows that involve image-based unstructured data. 

There is no standardized or production-grade framework that unifies them into a 

cohesive pipeline. These workflows demand tight coordination between preprocessing, 

LLM prompting, and post-processing logic. There is no well-established design pattern 

or end-to-end framework to address this integration in an industrially reliable way.  

Inconsistency and Inaccuracy in Data Extraction by LLMs 

LLMs, by design, are probabilistic. The non-deterministic nature of LLMs results in 

varying outputs even when the same input is provided multiple times. This randomness 

complicates the determination of the correct output. For example, when extracting 

information from handwritten text in the image, LLMs might mistakenly interpret a 

character as either the number “1” or the letter “l,”. This issue becomes particularly 

pronounced in contexts that require high accuracy and consistency, such as logistics, 

healthcare, and finance. When extracting handwritten data from parcels, inconsistencies 

in interpreting postcodes, can lead to errors in shipment processing, and potential 

financial losses. Current solutions lack effective and thorough strategies for enforcing 

deterministic behavior, schema alignment, and error correction. 

Inefficient Resource Utilisation in LLM-based Data Extraction 

Current approaches to data extraction using LLMs, particularly from images, are 

compute-intensive and involving significant resource consumption. Each analysis 

performed by the LLM consumes tokens, which directly translates into higher 

operational costs. Frameworks tend to focus on LLM orchestration but overlook 

optimizations such as minimal-token prompting, and hybrid use of classical models 

(e.g., regex, rules) with LLMs to reduce cost and latency. Furthermore, the time 

required to process each image, particularly when dealing with large datasets, can be 

substantial. It makes the widespread adoption of LLMs in data-intensive industries less 

feasible, as the costs can quickly escalate, especially when accuracy is also a priority.  
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1.3 Motivation 

The motivation for this project stems from the growing demand for automated 

systems that can efficiently handle and process unstructured data. The widespread 

generation of unstructured data in sectors such as logistics, healthcare, and finance, 

where information often exists in complex forms like handwritten notes and non-

standard documents. These limitations in existing system create bottlenecks in data 

processing pipelines, highlighting the need for more effective and intelligent systems 

capable of understanding context and extracting meaningful information from 

challenging inputs. Automating the extraction and structuring of this data is critical to 

meet the increasing demands for speed, accuracy, and efficiency in data processing 

workflows. 

While LLMs offer strong capabilities in recognizing patterns and extracting implicit 

information, their practical integration requires careful design to ensure consistent and 

accurate results. The motivation lies in creating a framework that overcomes LLM 

limitations to unlock its full potential, such as inefficiencies in token usage and 

processing delays, by optimizing system performance for real-time, scalable 

applications. 

Besides, this project is driven by the initiative to develop techniques that enable 

businesses to reduce operational costs, minimize errors, and scale efficiently. By 

improving batch processing of image data and reducing token consumption, the system 

aims to make LLM-based solutions not only more effective but also economically 

viable for large-scale deployment. 
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1.4 Project Scope and Direction  

The “Large Language Model Application Integration for Extracting Unstructured Data” 

project focuses on creating an inclusive system with a framework that leverages the 

power of Large Language Models (LLMs) to accurately extract and process 

unstructured data, such as handwritten parcel information, from images. The scope of 

the project includes the design, development, and deployment of LLMs integration 

framework into a system. This section will outline the components that will be delivered 

as part of the project, as well as those that are outside the project’s scope. 

1.4.1 Project Deliverables 

The project will design and implement an innovative framework and data pipeline, 

including Sieve methodology that allows existing applications to seamlessly 

integrate LLMs. This proposed framework will address the inherent non-deterministic 

nature of LLMs, ensuring that the data extracted from images is consistent, accurate, 

and structured in a usable format. This framework will involve multiple iterations of 

validation, comparison, and refinement of the data extracted by LLMs, ensuring 

consistency and accuracy. 

Besides, an image processing pipeline will be developed to automate the extraction 

of data from images, particularly focusing on data that includes handwritten elements. 

The pipeline will incorporate techniques such as image processing, image quality 

checking, template matching, image cropping, batch processing, and validation using 

sieve approach to improve the accuracy and efficiency of data extraction. This process 

will reduce the need for manual data entry, especially in scenarios where the 

handwritten data needs to be converted into digital formats for storage in databases. 

The focus will be on creating a dual-functionality system capable of operating both as 

a standalone tool for direct user interaction and as an intermediate module within 

automated workflows. The project will  deliver a user-friendly graphical user 

interface (GUI), particularly a desktop application that enables users to interact with 

the system intuitively. At the same time, the software will also function as an 

intermediate module (web API) that can be integrated into larger automated 

workflows, receiving and processing images before passing the extracted data to 

subsequent modules. 
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In the end, the project will produce a fully functional system that integrates LLMs into 

existing applications, facilitating the accurate extraction of unstructured data from 

images. This system will enhance data processing workflows, reduce manual entry 

efforts, and provide a scalable solution for industries dealing with large volumes of 

unstructured data. Providing this, organizations will have a powerful tool that simplifies 

the integration of LLMs into their existing workflows, thus improving operational 

efficiency and reducing manual labour. 

1.4.2 Project Out of Scope 

• The project will use pre-existing or pre-trained LLMs (e.g., GPT models) and 

will not involve the development or training of new language models from 

scratch; it will focus solely on integrating existing LLMs into the proposed 

framework.  

• It will not address the extraction of data from non-image-based unstructured 

data sources, such as audio or video. 

• It will not address the accurate extraction of data from images with overly poor 

quality. 

• The system will not support extraction from image types or data formats that 

are not predefined or specified during the requirement gathering phase. For 

example, specialized image formats like DICOM (medical imaging) or 

extremely low-resolution images are out of scope. 

• The system will not include advanced image recognition features beyond basic 

LLM-based text extraction, barcode scanning, and metadata extraction. 

Complex tasks such as object detection, facial recognition, or scene analysis are 

out of scope. 

• It will not address the extraction of certain data from images such as 

watermarks, hidden text, stamps, seals and signatures. 
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1.5 Objectives 

The primary objective of this project is to develop a solution that ensure consistent and 

accurate data extraction by providing more reliable outputs that can be seamlessly 

integrated into existing systems. It brings to a scalable framework that can harness the 

strengths of LLMs while mitigating their weaknesses, particularly in high-stakes 

environments like logistics and data processing.  

The main objective can be divided into few sub-objectives as follows: 

• Facilitate reliable integration of LLMs into existing applications by 

designing a framework to reduce the variability of LLMs responses. It aims 

to ensure that the outputs conform to required formats and are suitable for 

downstream processing in various industry-specific solutions. By transforming 

unstructured data, such as text from images or handwritten notes, into precise, 

structured formats, the framework will enable applications to effectively utilize 

the extracted information. 

• Ensure consistent data extraction from unstructured sources using LLMs and 

achieve at least a 10% improvement in accuracy over existing methods with 

automated validation and correction mechanisms. It aims to guarantee that the 

extracted data meets predefined quality standards across a range of test cases. 

This accuracy will be measured by comparing the extracted data against 

manually verified results from a diverse set of 100 test images. 

• Optimize efficiency of LLM-based data extraction pipeline by reducing 

processing time and resource consumption by at least 25%. This can be 

achieved via the implementation of batch processing techniques, image 

cropping technique and optimized data submission algorithm in Sieve 

Methodology within the framework to streamline the handling of large volumes 

of data. By minimizing token usage and decreasing processing time, the project 

aims to make the integration of LLMs more time-effective and scalable.   
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1.6 Contributions 

This project tackles the critical issue of manual data entry in industries such as logistics 

by automating the extraction of handwritten information using Large Language 

Models (LLMs). By replacing time-intensive and error-prone manual processes, the 

solution significantly reduces operational costs and improves accuracy. Its 

successful deployment in GDEX Berhad Sdn. Bhd’s parcel processing pipeline 

underscores its real-world efficacy and potential for broader adoption across industries 

like healthcare and finance. 

Notably, the solution has been successfully integrated into the parcel information 

processing pipeline of GDEX Berhad Sdn. Bhd, demonstrating its real-world 

applicability and value to the industry. Hence, by integrating LLMs into existing 

workflows, the project can indeed enhance data reliability. More than just an 

improvement, it represents a transformative leap forward for industries. It provides a 

chance to transform the industries with automation and accuracy. The impact extends 

beyond logistics, with applications in healthcare, finance, and beyond. 

The project does not just stop at automating data extraction; it offers a scalable and 

user-friendly solution that organizations of any size can adopt. The development of 

a Graphical User Interface (GUI) allows users to easily interact with the system, making 

the technology accessible even to those without technical expertise. This 

democratization of advanced Artificial Intelligence (AI) tools means that small and 

medium-sized enterprises can benefit from the same efficiency and accuracy as large 

corporations, levelling the playing field and fostering innovation across industries. 

On a broader scale, the significance of this project lies in empowering people and 

organizations to achieve more with less effort. By reducing the need for manual data 

entry, it frees up human resources for more strategic and creative tasks. It can lead to 

higher job satisfaction and productivity. In fields like healthcare, in which accurate data 

can mean the difference between life and death, this project’s impact could be profound. 

Via ensuring that data is processed accurately and quickly, the project can support better 

decision-making, thus improving patient outcomes and saving lives. As AI continues 

to evolve, the ability to integrate these models into everyday applications will be the 

key for staying competitive.   
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1.7 Report Organization 

This report is structured into several chapters to present the development, 

implementation, and evaluation of the proposed LLM integration framework for 

unstructured data extraction. 

Chapter 1 introduces the project by outlining its background, problem statement, 

motivation, scope, and specific objectives. It also discusses the project contributions 

and provides an overview of the entire report structure. 

Chapter 2 offers a comprehensive literature review covering existing technologies and 

methodologies relevant to data extraction, Optical Character Recognition (OCR), and 

LLM-based systems. It explores the strengths and limitations of current solutions and 

sets the foundation for the framework by identifying research gaps and opportunities. 

Chapter 3 details the system methodology, including the overall solution architecture 

and  user requirements. This chapter also presents use case diagrams and activity 

diagrams to describe the intended system behaviour and user interaction. 

Chapter 4 tunnels into the system design by presenting flowcharts, architectural 

models, and detailed explanations of each component within the data extraction 

framework. It highlights how LLMs are integrated and explains the core Sieve 

Methodology used to enhance output reliability. 

Chapter 5 discusses the implementation process, providing technical insights into the 

developed system. This includes GUI functionality, integration details, and software 

distribution methods. It also outlines how the system operates in real-world scenarios. 

Chapter 6 focuses on system evaluation, where performance, accuracy, and efficiency 

of the implemented framework are assessed through functional and non-functional 

testing. The results are analyzed to validate the system’s effectiveness in meeting the 

predefined objectives. 

Finally, Chapter 7 concludes the report with a summary of key achievements, 

reflections on project limitations, and potential areas for future enhancement. This 

chapter wraps up the project by emphasizing its contributions and applicability to real-

world problems in logistics and other domains.
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CHAPTER 2    LITERATURE REVIEW 

This section reviews relevant literature and existing technologies related to Optical 

Character Recognition (OCR) systems, serving as a comparative foundation for 

evaluating the text extraction capabilities of Large Language Models (LLMs). It also 

examines various aspects of LLMs, including their architecture, applications in data 

extraction, and the challenges associated with their integration. Additionally, both 

traditional data extraction systems and LLM-based data extraction solutions are 

analyzed to provide a comprehensive understanding of the current technological 

landscape. 

2.1 Practices in Extracting Unstructured Data from Documents 

Optical Character Recognition (OCR) is a widely adopted technology in the field of 

data extraction, particularly for converting different types of documents, including 

scanned paper documents, images of documents, and image-only PDFs, into editable 

and searchable data formats [3]. OCR has become an integral part of text-based image 

retrieval systems, enabling the extraction of text from images which can then be 

indexed and searched efficiently. OCR can convert text from images or scanned 

documents into machine-readable formats, which is essential for applications such as 

document analysis, scene text recognition, and information retrieval from images [4].  

OCR systems work by analysing the structure of the document image, segmenting it 

into text blocks, paragraphs, words, and characters. The paper [4] highlights several 

popular OCR libraries, including Tesseract, Keras, Easy OCR, and Paddle OCR, 

evaluating their performance on diverse datasets encompassing different text types, 

languages, and image qualities. The studies also illustrate the breakthrough of OCR 

technology by integrating deep learning approaches with traditional OCR engines [4]. 

It has resulted in improved accuracy and versatility, particularly in text detection and 

classification tasks. The study demonstrates how the combination enables more 

accurate recognition of complex and varied text types, including those found in noisy 

or low-quality images.  

Besides, the integration of SAST for detection and TransformerOCR for recognition 

also represents a significant advancement in OCR capabilities, particularly in dealing 
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with complex and variable text layouts [5]. This combination allows the system to 

accurately detect and recognize text even in challenging scenarios, such as when text is 

multi-directional or embedded in intricate design elements on the book cover. 

Despite its widespread use and its advancement, OCR technology has several 

limitations. Conventional OCR systems are highly dependent on the quality of the input 

image and are prone to errors when dealing with poor quality scans, images with low 

contrast, or handwritten text, which is mentioned in several studies including[3] [4] and 

[5]. Even if there is paper introduces OCR-Diff framework, which integrates a 

generative diffusion model with deep learning techniques to improve the recognition 

accuracy of text from low-resolution images[6], still, OCR systems are generally 

limited to recognizing text and cannot interpret the meaning or context behind the text. 

This limitation is significant in industries where understanding the context of the 

extracted data is crucial, such as in logistic, legal or medical fields. 

While OCR has traditionally been limited to recognizing and converting text from 

simple, well-structured documents, this work pushes the boundaries by using LLMs to 

handle more complex, unstructured data. LLMs offer a level of understanding and 

context [7] , in which the traditional OCR systems lack, enabling more accurate data 

extraction from images that contain handwritten notes, irregular fonts, or text embedded 

in complex graphical layouts. The integration of LLMs into the data processing pipeline 

represents a significant breakthrough, allowing for the extraction of not just text, but 

also the underlying meaning and context from images. 

2.2 Previous works on LLM-integrated Systems and their Framework 

Given the limitations of traditional OCR systems illustrated in Section 2.1, particularly 

in handling complex, unstructured data, the project adopts LLMs as a more advanced 

alternative. LLMs provide a deeper level of understanding and are capable of 

processing and extracting meaningful data from images that OCR systems would 

struggle with. It can go beyond simple text extraction, so that the extracted data is both 

meaningful and contextually relevant. Thus, this project focuses on the framework that 

can support integration of LLMs into the existing applications, especially for extracting 

unstructured data. 
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Numerous studies have explored the integration of Large Language Models (LLMs) 

within various system architectures. In general, these implementations fall into two 

categories based on the role of the LLM: as a terminal module or as an intermediate 

module. When used as a terminal module, the LLM functions as the final stage in the 

data processing pipeline, and its output, typically in textual form, is delivered directly 

to the user without further processing, as illustrated in Figure 2.2.1[8].  

 

Figure 2.2.1 LLM as the terminal module 

Source: Adopted from [8] 

Conversely, when used as an intermediate module (Figure 2.2.2), the LLM’s output is 

passed along to subsequent modules for additional processing. In this setup, the LLM 

serves as a bridge rather than an endpoint, with its output forming part of a more 

complex data pipeline[8]. 

 

Figure 2.2.2 LLM as the intermediate module 

Source: Adopted from [8] 

Despite the widespread use of LLMs in both roles, many studies, as noted in [8], fail to 

thoroughly explain how LLMs are integrated into system pipelines. A significant 

challenge remains the non-deterministic behavior of LLMs. This stochastic nature is 

well-documented by providers like OpenAI, whose API documentation highlights the 

inherent variability in output, even when parameters like seed and temperature are fixed 

[9]. Although advances such as prompt engineering and structured outputs (e.g., JSON) 
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might suggest that LLM integration is straightforward, results often vary slightly with 

each call. This inconsistency poses a major obstacle for applications that depend on 

predictable, structured outputs for further processing. Minor variations in content, 

format, or structure can break downstream systems, limiting the reliability of LLMs in 

structured data workflows. Moreover, developers have limited control over 

hallucinations, outdated facts, or fabricated content, all of which are exacerbated by the 

LLM’s dependence on static training data [10]. Fine-tuning LLMs to avoid such issues 

is possible but often cost-prohibitive for simple tasks. 

Several factors contribute to this unpredictability. LLMs are probabilistic by design, 

generating outputs based on learned distributions of language patterns. Even with 

identical inputs, the use of probability introduces natural variation. Additionally, the 

transformer architecture, which underpins most modern LLMs, relies on self-attention 

mechanisms to capture relationships between words. Models are typically trained on 

massive text corpora and further refined through reinforcement learning based on 

human feedback. This iterative training process, while improving overall quality, also 

introduces additional randomness, reinforcing the inherently stochastic nature of LLM 

outputs [10].  

2.3 Application Integration Framework for LLMs in Image Data Extraction 

and Processing 

The relevant work identified involves applying LLMs in the domain of image data 

extraction and processing to perform text-to-SQL conversion, specifically in converting 

structured forms into relational databases without relying on pre-defined templates[11]. 

In this study, Anbarasi et al. [11]propose a pipeline that extracts semantic relationships 

from forms and converts the extracted data into SQL queries. The proposed pipeline 

employs FUDGE, which uses graph-based representation and dynamic graph editing to 

comprehend the form’s structure, PaddleOCR to extract text from the identified form 

elements, and finally, an LLM to convert the text into SQL queries. For the text-to-SQL 

conversion, GPT-3 demonstrated superior performance compared to other models, 

especially in handling complex queries[11].  

Additionally, the integration of LLMs in image data extraction and processing, as 

demonstrated in another study[12], involves a multi-stage pipeline combining web 
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scraping, OCR, and semantic data extraction techniques. The process begins with 

scraping scanned procurement documents using Scrapy and Beautiful Soup, followed 

by converting PDFs to images and applying PaddleOCR for text recognition. 

Preprocessing steps such as skew correction, noise removal, and binarization are 

employed to enhance OCR accuracy. Extracted text is then passed through a Retrieval-

Augmented Generation (RAG) pipeline using the Mistral LLM, where the text is 

chunked, embedded into a vector database, and queried to extract structured data such 

as bidder names and financial offers[12]. This synergistic use of PaddleOCR and LLMs 

like Mistral allows for accurate and scalable transformation of unstructured image-

based documents into structured formats suitable for analysis. 

Despite its overall effectiveness, the methodology presents several limitations. The 

OCR system, though generally reliable, performs poorly on low-resolution or degraded 

scans, resulting in inaccurate text extraction even after applying preprocessing 

techniques. Furthermore, the approach faces challenges in handling multilingual 

documents, especially Arabic, due to insufficient support within the OCR model. 

Additionally, the paper lacks a clear explanation of how to utilize LLMs in a consistent 

and dependable manner, particularly in the context of data extraction pipelines where 

stability and predictability are crucial. 

2.4 Reviews on Existing AI-enhanced Data Extraction System 

This section reviews several notable AI-enhanced image data extraction systems, 

including Google Document AI, and Amazon Textract. Each of these systems brings 

unique approaches and capabilities to the table, catering to different use cases and levels 

of complexity. These tools combine OCR (Optical Character Recognition) with natural 

language processing (NLP) to extract structured information from various types of 

documents such as invoices, forms, and receipts. 

2.4.1 Google Document AI 

Google Document AI is a cloud-based solution that employ Google’s AI and machine 

learning infrastructure to parse and understand scanned documents. It combines state-

of-the-art OCR with pre-trained models for layout analysis, entity extraction, and 

semantic classification[13]. The tool offers specialized parsers for documents such as 

invoices, tax forms, and identity cards, making it particularly useful for enterprises 
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dealing with large volumes of standardized paperwork. One of the strengths of 

Document AI lies in its ability to maintain the structural and semantic integrity of 

documents through layout-aware models, enabling more accurate interpretation of 

tables, fields, and hierarchical content. Advanced features include handwriting 

recognition, font-style detection, and extraction of selection marks like checkboxes and 

radio buttons.  

Document AI employs deep learning models, including convolutional neural networks 

(CNNs) and transformer-based architectures, to comprehend the semantic context of 

documents[14]. These models enable the system to classify documents, extract entities, 

and understand relationships between different elements within a document. By 

combining computer vision with NLP[13], Document AI can interpret complex 

documents, such as contracts and invoices, with high accuracy[14]. The Document AI 

Workbench allows users to build custom processors tailored to specific document types 

and business needs. Powered by generative AI, it enables users to fine-tune models with 

as few as 10 documents, facilitating rapid deployment of customized solutions[15].  

Despite its advanced features and robust infrastructure, it faces several limitations. One 

key constraint is its reliance on predefined parsers for common document types such as 

invoices and tax forms, which is implied in the section in Google Cloud’s 

documentation[16]. While effective for standardized inputs, this can limit the tool’s 

adaptability to more specialized or unconventional documents without significant 

customization. Although the Document AI Workbench supports low-code model 

training, creating high-accuracy custom models for unique business needs may still 

demand technical expertise. The cloud-based nature of the system also introduces 

potential privacy and compliance concerns for organizations with strict data residency 

or security policies. Furthermore, its performance may be less optimal for non-English 

or multilingual documents, particularly those involving diverse handwriting styles or 

region-specific formatting, potentially affecting global usability. 

2.4.2 Amazon Textract 

Amazon Textract offers a highly scalable and flexible service for document data 

extraction, designed to work within the AWS ecosystem. It extracts printed and 

handwritten text from scanned documents and provides key-value pair recognition, 
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table extraction, and form analysis[17]. Textract’s OCR capabilities are enhanced by 

deep learning models that can recognize printed and handwritten text in various fonts 

and styles, even handling noisy or distorted text[18]. This allows for accurate extraction 

of information from diverse document types, including forms and tables. 

Unlike traditional OCR tools, Textract is optimized for semi-structured data and 

supports downstream integration with AWS services such as Comprehend and Lambda. 

Textract is designed to integrate seamlessly with other AWS services, such as Amazon 

Comprehend for natural language processing and Amazon SageMaker for building 

custom ML models. This integration enables the development of comprehensive 

document processing solutions tailored to specific business needs. Its API-based design 

makes it well-suited for automated pipelines in finance, healthcare, and insurance 

industries.  

However, Textract’s performance is often sensitive to document layout and structure. 

It tends to struggle with documents that deviate from standard formatting, reducing 

extraction accuracy without careful pre- or post-processing. While its integration with 

AWS services like Comprehend and SageMaker is a strength, this reliance can increase 

implementation complexity and introduce a degree of vendor lock-in, potentially 

limiting flexibility for organizations outside the AWS ecosystem. Additionally, 

Textract lacks strong built-in semantic analysis, meaning it may misinterpret context or 

relationships in complex documents unless combined with external NLP services. 

These limitations can necessitate additional development work to achieve accurate, 

domain-specific document understanding. 

2.5 Reviews on Existing LLM-based Data Extraction System 

This section reviews several prominent LLM-based data extraction systems, 

Unstructured, LlamaIndex, Unstract, and Extracta.ai, with a focus on their architecture, 

technological components, and relevance to modern data processing workflows. Unlike 

traditional rule-based or template-driven extraction tools, LLM-based systems 

demonstrate the capacity to interpret context, handle ambiguous structures, and extract 

data from a wide range of document types without extensive customization. 
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2.5.1 Unstructured 

Unstructured is an open-source Python library designed to convert unstructured 

documents, such as PDFs, HTML files, Word documents, and images, into structured 

formats suitable for downstream processing with Large Language Models (LLMs) and 

other AI applications [19]. It serves as a critical preprocessing layer in Retrieval-

Augmented Generation (RAG) pipelines, enabling organizations to extract meaningful 

insights from complex document repositories.  

The core architecture of Unstructured is built on a modular system referred to as 

“bricks,” which consists of partitioning, cleaning, and staging components. Partitioning 

bricks are responsible for dissecting raw content into logical units such as titles, 

paragraphs, tables, and metadata blocks. Cleaning bricks apply filters to remove noise, 

boilerplate text, and fragmented content that may degrade model performance. Staging 

bricks then prepare the refined data for specific tasks such as information extraction, 

summarization, or indexing. This modular pipeline ensures flexibility and adaptability 

to a wide range of document types and processing goals. Moreover, Unstructured uses 

advanced parsing strategies to preserve layout, hierarchy, and context, ensuring fidelity 

in the transformation from raw to structured data. 

From a technological standpoint, Unstructured supports seamless integration with 

modern LLM stacks such as LangChain, LlamaIndex, and Retrieval-Augmented 

Generation (RAG) systems. It also provides connectors for ingesting data from 

common cloud platforms like AWS S3 and Google Cloud Storage, facilitating scalable 

deployment. An available API allows users to access partitioning and enrichment 

functions without hosting the infrastructure themselves, enhancing usability for 

production systems. 

Unstructured, while powerful in preprocessing diverse document types, primarily 

focuses on transforming raw data into structured segments without applying deeper 

semantic understanding or reasoning. It acts more as a utility layer than a complete 

extraction solution. This reliance on downstream models (e.g., LLMs via LangChain or 

LlamaIndex) means its effectiveness is heavily dependent on integration with other 

tools. Additionally, the partitioning logic may not generalize well across highly non-
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standard documents such as handwritten notes, noisy scans, or multilingual content, 

limiting its reliability in such edge cases. 

2.5.2 Unstract 

Unstract is a modern, low-code platform designed to enable structured data extraction 

from unstructured documents using large language models (LLMs). Developed to 

simplify the deployment of AI-powered data extraction pipelines, Unstract provides an 

intuitive interface for building custom workflows that automate the conversion of raw 

documents, such as invoices, contracts, and reports, into clean, structured outputs. The 

platform’s primary appeal lies in its ability to leverage LLMs for semantic 

understanding without requiring users to write extensive code, making advanced 

document intelligence more accessible to non-technical users and domain experts. 

One of the core innovations in Unstract is its Prompt Studio, as noted in [19], a built-in 

feature that allows users to design, test, and optimize prompts that guide the LLM in 

extracting relevant fields. This approach puts the focus on human-in-the-loop prompt 

engineering, enabling iterative refinement of the extraction logic based on specific 

business needs. Behind the scenes, Unstract utilizes pre-trained transformer-based 

LLMs capable of zero-shot or few-shot learning, which allows the system to perform 

reliably even with minimal labeled training data. This drastically reduces the 

development cycle typically required in traditional ML pipelines. 

Unstract also offers workflow deployment capabilities, allowing users to export their 

extraction logic as callable APIs. This facilitates seamless integration with external 

systems such as CRMs, ERPs, or automation platforms like Zapier or Make. 

Additionally, Unstract supports document ingestion from various sources and formats 

(e.g., PDF, DOCX, image-based files), automatically preprocessing them for LLM 

consumption. This level of abstraction over typical OCR and parsing tasks allows users 

to focus on defining what data they need, rather than how to get it. It addresses one of 

the key barriers in real-world LLM adoption: operationalization. By allowing users to 

build AI-powered data extraction pipelines without deep ML knowledge, Unstract 

lowers the entry point for organizations and researchers alike [19].  

While lowering the barrier to entry with its no-code and low-code environment, 

Unstract trades off some level of control and adaptability. Its reliance on prompt-based 
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logic, although powerful, can become brittle in cases of ambiguous or overlapping 

document fields. There is also limited transparency and control over the underlying 

LLM’s decision-making, making debugging difficult when results are inconsistent. 

Furthermore, performance heavily depends on the quality of the input prompts, and 

users may struggle to achieve optimal results without iterative refinement, which can 

be time-consuming. 

2.5.3 LlamaIndex 

LlamaIndex (formerly known as GPT Index) is an open-source framework designed to 

facilitate the integration of large language models (LLMs) with external, unstructured 

data sources for tasks such as information retrieval, document understanding, and data 

extraction[20]. It plays a critical role in the development of Retrieval-Augmented 

Generation (RAG) systems, where the goal is to enhance the performance of LLMs by 

grounding their outputs in domain-specific or user-provided knowledge[21]. 

LlamaIndex achieves this by offering a data indexing layer that transforms raw 

documents into formats that are easily queryable by language models. 

At its core, LlamaIndex utilizes vector-based semantic indexing, where documents are 

chunked into smaller passages and embedded into high-dimensional vector space using 

sentence transformers or other pre-trained embedding models. These vectors are then 

stored in vector databases such as FAISS, Pinecone, or Chroma, enabling efficient 

similarity search [21]. This architecture ensures that when a query is issued, the most 

relevant pieces of context are retrieved and passed to the LLM, enhancing the quality 

and accuracy of responses. This retrieval mechanism is especially vital for data 

extraction tasks where specific facts or values need to be extracted from long or 

heterogeneous documents. 

In terms of data structuring, LlamaIndex supports schema-guided extraction through 

integration with Pydantic models. Developers can define data structures or schemas, 

and the LLM is instructed, via prompt templates, to extract information from documents 

into these structured formats [22]. This allows for precise and consistent extraction of 

fields such as names, dates, invoice numbers, or contract terms across multiple 

documents. Furthermore, LlamaIndex includes tools for chunking strategies, metadata 
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enrichment, and document filtering, which enhance the control and granularity of data 

that is passed to the LLM. 

LlamaIndex, although rich in functionality for retrieval-augmented generation (RAG) 

and schema-based extraction, has notable complexity in setup and usage. The need for 

embedding models, vector stores, chunking strategies, and careful prompt engineering 

can be overwhelming for non-technical users. Moreover, its performance hinges on the 

relevance of retrieved chunks and the prompt alignment with the extraction schema. If 

documents are noisy, poorly chunked, or semantically dense, the retrieval component 

may fail to capture sufficient context for accurate extraction. It is also largely optimized 

for English-language documents, which presents challenges for multilingual 

deployments. 

2.5.4 Extracta.ai 

Extracta.ai is a modern, AI-powered data extraction platform designed to automatically 

convert unstructured content from documents and images into structured data [23]. At 

the core of Extracta.ai’s technology is the integration of Optical Character Recognition 

(OCR) and Large Language Models (LLMs) to perform intelligent data parsing without 

the need for rigid, pre-defined templates.  

The system begins with advanced OCR processing to convert images and scanned 

documents into machine-readable text. Unlike traditional OCR tools that stop at text 

recognition, Extracta.ai feeds this textual data into an LLM-backed extraction engine 

[23]. The LLM, trained on a wide range of document types and extraction tasks, applies 

natural language understanding (NLU) to interpret the context of the text. This allows 

it to accurately identify and extract user-specified fields (such as invoice numbers, 

totals, names, or dates) even when the structure or formatting varies significantly 

between documents. 

A notable feature of Extracta.ai’s architecture is its template-free data extraction 

mechanism. Users simply define the fields they want to extract through a user interface 

or API, and the LLM infers the logic required to locate and retrieve this data. This is 

facilitated by few-shot learning, where the model can perform extraction tasks with 

minimal prior examples, drastically reducing the need for training data [23]. 

Additionally, the system provides built-in confidence scoring to evaluate the reliability 
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of its predictions, and it can flag low-confidence results for human review, enabling a 

semi-automated human-in-the-loop workflow when needed. From a systems 

integration standpoint, Extracta.ai exposes its functionalities through a RESTful API, 

supporting automated document pipelines in enterprise systems.  

Extracta.ai, though effective in template-free and rapid extraction, operates largely as a 

black-box system. Its proprietary nature means limited visibility into its underlying 

models and customization options, which may be critical for organizations with 

domain-specific compliance or interpretability requirements. While the platform 

supports a range of formats and integrates OCR with LLMs, it may not offer granular 

tuning for unusual document types, and the quality of extraction can degrade in low-

quality scans or documents with non-standard layouts. Also, the platform’s dependency 

on internet-based APIs raises concerns for organizations needing offline or on-premise 

deployments. 

2.6 Concluding Remark 

The literature review highlights significant advancements in the field of unstructured 

data extraction, particularly with the integration of Optical Character Recognition 

(OCR) and Large Language Models (LLMs). Traditional OCR systems have evolved 

to incorporate deep learning and Transformer-based architectures, achieving notable 

gains in accuracy and versatility. However, these systems remain limited in their 

capacity to extract contextual meaning, interpret complex layouts, or handle poor-

quality or multilingual documents reliably. Even with the emergence of AI-enhanced 

tools such as Google Document AI and Amazon Textract, limitations persist in 

adaptability, semantic understanding, and reliance on rigid, predefined templates. 

In general, a key limitation shared by all the systems is the lack of handling framework 

for domain-specific documents that require contextual nuance or industry expertise. 

LLM-integrated data extraction platforms, such as LlamaIndex, Unstructured, Unstract, 

and Extracta.ai, have demonstrated greater flexibility and contextual awareness. Yet, 

each comes with its own set of constraints. Many of these systems either function as 

black boxes with minimal customizability (e.g., Extracta.ai) or require substantial 

technical expertise to implement and fine-tune (e.g., LlamaIndex).  
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Moreover, challenges related to prompt engineering, multilingual support, and 

integration consistency, especially under the probabilistic nature of LLM outputs, 

remain largely unresolved. While LLMs are powerful, they are prone to hallucination 

and may return confidently incorrect results if not constrained appropriately. These 

issues limit the reliability and accessibility of existing solutions in real-world 

deployments, particularly in industries where interpretability, precision, and 

adaptability are paramount. 

Despite the growing adoption of Large Language Models (LLMs) in data extraction 

tasks, there remains a critical gap in the current landscape: no comprehensive 

framework effectively addresses the inherent limitations of LLMs while enabling 

their seamless integration into existing data extraction pipelines. Most existing 

solutions either embed LLMs as isolated components, focusing solely on final output 

generation, or rely on ad hoc integrations that lack stability, transparency, and 

interoperability.  

These approaches often fail to mitigate issues such as non-deterministic outputs, poor 

performance on edge-case documents, and the complexity of configuring embeddings, 

vector stores, and prompts. Furthermore, the absence of a standardized architecture for 

incorporating LLMs into end-to-end pipelines hampers consistency and scalability, 

making it difficult for organizations to operationalize these models within their existing 

infrastructure. This void underscores the need for a modular framework that can both 

harness the strengths of LLMs and systematically manage their weaknesses within 

practical, real-world data workflows. 

Against this backdrop, this project proposes a novel, multimodal framework that 

integrates LLMs with image and document understanding in a more holistic and 

structured manner. By introducing a methodology that incorporates multimodal inputs 

including text, layout, and visual cues, the framework aims to overcome current 

limitations in unstructured data processing.  
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CHAPTER 3    SYSTEM METHODOLOGY / APPROACH 

In this section, we provide an overview of the proposed solution such as system 

architecture diagrams, user requirements, use case diagram, use case description and 

activity diagrams  to give a broad understanding of the project’s approach. The section 

also covers development methodologies and timeline for project completion. 

3.1 Overview of Solution 

The proposed solution is centred around developing a flexible, efficient, and user-

friendly system for data extraction from images by integration integrating Large 

Language Models (LLMs) into the process of extracting unstructured data. The solution 

involves a dual-functionality system that can be used both as a terminal module for 

direct user interaction (a standalone application) and as an intermediate module 

integrated into larger automated workflows by serving as API endpoint.  

The system architecture supports image processing through a desktop application. 

Users interact with the system through a graphical interface that enables template-based 

extraction, where custom templates can be created, edited, and managed to define 

Regions of Interest (ROI), regular expressions, and field mappings. These templates act 

as blueprints that guide the extraction of data such as text, barcodes, and tabular content 

from uploaded or sourced images. 

The integration of LLMs is central to enhancing the system’s ability to handle 

extraction of various data types from images, which is a primary focus of the project. 

Key features of the proposed solution include an image processing pipeline that handles 

different image formats and ensures high-quality inputs through processing techniques. 

The data extraction phase utilizes advanced techniques like LLM integration, image 

processing, template creation and matching with cropping approaches and Sieve 

approach, with a focus on accurately identifying and processing data from images. A 

notable innovation in the solution is the “Sieve Approach”, which addresses the non-

deterministic nature of LLMs by validating, comparing, and refining extracted data 

across multiple iterations.   
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3.2 System Architecture Diagram 

The system architecture diagram in Figure 3.2.1 illustrates the dual functionality of the 

project, showcasing both terminal module and intermediate module pipelines. It 

highlights how the system can be utilized by end-users directly through a desktop 

application interface, as well as how it integrates into existing automated workflows as 

an intermediate processing module via API. 

 

Figure 3.2.1 System Architecture Diagram 

This architecture diagram represents the full data flow and modular design of the LLM 

Data Extraction System, structured into Frontend, Backend, Input Sources, and 

External Interfaces. It illustrates how documents move from various sources, through a 

GUI or API interface, into a processing pipeline that leverages LLMs for intelligent 

document understanding and finally outputs structured data. 

Frontend Layer for Terminal Module as Standalone Tool 

The system offers a desktop application (PySide6 GUI) for end-users, serving as the 

primary interface for interacting with the system. Users can upload or select image files 
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from various external input sources ,  such as cloud servers, local folders, scanner 

devices, webcams, or WebDAV-connected folders. The GUI allows users to select 

templates and models, initiate document processing, and then receive structured results 

like extracted text, confidence scores, and quality scores. The system also 

communicates with a FastAPI Server for REST API-based access, enabling external 

systems to interact with the extraction engine via HTTP POST requests. 

Backend Layer 

The backend is composed of two main components: Template and Model Config 

Manager and the most important part in our project – Document Processing Engine 

and Pipeline. Both components interface with a central database that stores 

configuration data, saved templates, model definitions, and extracted outputs.  

Template and Model Config Manager is responsible for managing templates, ROI 

mappings, field configurations, and AI model credentials. It provides necessary config 

data to both the GUI and the processing engine. 

On the other hand, Document Processing Engine and Pipeline is the core processor that 

handles the actual document transformation. It performs quality checks, invokes OCR 

LLM-based inference (via both custom-trained models and external LLM APIs) to 

perform advanced text extraction, applies regex validations via Sieve approach, and 

computes confidence scores. The processing engine receives configuration data and 

returns output to the GUI or API client in structured format (JSON, XLSX, etc.). 

External Interfaces and Integration 

The system is extensible and interoperable. External API clients can submit document 

processing requests directly to the FastAPI server, which forwards these to the backend 

engine and returns JSON-formatted output. Similarly, external LLM services (or local 

fine-tuned models) are used for document understanding via HTTP requests. 

This architecture effectively ensures clear separation of concerns: the GUI handles 

interaction, the backend performs computation, and the data is stored in an accessible, 

persistent format. This setup supports both real-time GUI usage and remote automation 

via API, making it suitable for enterprise-level intelligent document processing.  
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3.3 User Requirements  

The user requirements define what the end-users expect from the system in terms of 

functionality, performance, and usability. These requirements guide the development 

process to ensure that the final product aligns with user needs and enhances the 

workflows. The requirements are divided into functional requirements and non-

functional requirements. 

3.3.1 Functional Requirements (FR) 

FR1: Template Management 

• FR1.1: The system shall allow users to create new extraction templates with 

ROIs and regex. The system shall provide tools for users to define specific areas 

of an image for data extraction, including the ability to specify data types and 

apply constraints (e.g., limiting postcodes to 5 digits). 

• FR1.2: The system shall allow users to view, edit, and delete existing templates. 

• FR1.3: The system shall allow users to export templates to a .zip file (containing 

.json and .png). 

• FR1.4: The system shall allow users to import templates from a .zip file. 

• FR1.5: The system shall display templates in a dropdown list on the Data 

Extraction screen. 

• The system shall support sorting existing templates by name, number of ROIs. 

FR2: AI Model Management 

• FR2.1: The system shall allow users to add new AI models, including public 

and custom models. 

• FR2.2: The system shall allow users to view, edit, delete, and copy AI model 

configurations. 

• FR2.3: The system shall enable users to set an AI model as default. 

• FR2.4: The system shall support searching and sorting AI models by name and 

visibility (public/private). 

• FR2.5: The system shall display available AI models in a dropdown list on the 

Data Extraction screen. 
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FR3: Input Source Management 

• FR3.1: The system shall allow users to add and configure various image sources 

(e.g., scanner, webcam, local folder, Google Drive). 

• FR3.2: The system shall allow users to test connection to image sources before 

saving. 

• FR3.3: The system shall allow users to delete image sources. 

• FR3.4: Configured image sources shall be visible and selectable in the Data 

Extraction screen. 

FR4: Data Extraction 

• FR4.1: The system shall allow users to upload sample images via a GUI. 

• FR4.2: The system shall allow users to choose image source, model to be used, 

template and type of output file before conducting data extraction. 

• FR4.3: The system shall enable users to define the format of the extracted data 

(e.g., JSON, plain text, CSV) and select the file type for download. 

• The system shall extract barcode data using barcode scanning techniques. 

• FR4.4: The system shall allow users to extract data from a single image file. 

• FR4.5: The system shall allow users to batch process multiple image files. 

• FR4.6: The system shall perform image format conversion to standardized 

format (e.g., PNG). 

• FR4.7: The system shall conduct image quality checks before processing. 

• FR4.8: The system shall provide clear error messages, such as notifying users 

when an image’s quality does not meet the threshold for processing. 

• FR4.9: The system shall perform template detection and utilize saved templates 

to instruct how to process future images, including determining what to crop, 

scan barcodes and produce dynamic prompt. 

• FR4.10: The system shall process cropped areas with an LLM integration to 

extract relevant text data and return the output in JSON format. 

• FR4.11: The system shall perform confidence scoring. 

• FR4.12: The system shall display extraction results in a data grid, downloadable 

file, or return API response to external API clients. 

• FR4.13: The system shall format extracted data according to user specifications. 
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• FR4.14: The system shall provide the final formatted data for download through 

the desktop application interface if the module is terminal. 

• FR4.15: The system shall support resuming interrupted jobs, including auto-

retry and manual resume. 

FR5: Output Document Management 

• FR5.1: The system shall provide a view of past output documents, including 

file names, types, and creation dates. 

• FR5.2: The system shall allow users to search, sort, download, and delete output 

files. 

FR6: API Endpoint Serving 

• FR6.1: The system shall provide a local API endpoint for external access to the 

extraction service. 

• FR6.2: The system shall display example requests/responses and local IP 

address for API integration. 

• FR6.3: The system shall allow users to start the server to serve the API 

endpoint. 

• FR6.3: The system shall display server status and allow user to disconnect it at 

any time.  

3.3.2 NON-FUNCTIONAL REQUIREMENTS (NFR) 

NFR1: Usability 

• NFR1.1: The system shall have an intuitive GUI with accessible controls 

(buttons, dropdowns, tabs). 

• NFR1.2: The system shall provide tooltips or help messages where appropriate. 

• NFR1.3: The system shall support integration with existing enterprise software 

via APIs, ensuring that extracted data can be seamlessly transferred to other 

platforms for further processing or storage. 

NFR2: Performance 
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• NFR2.1: The system shall process a single image extraction job in under 5 

seconds, under normal conditions. 

• NFR2.2: The batch processing feature shall display progress percentage and 

estimated completion time. 

• NFR2.3: The system shall handle batch processing without significant 

performance degradation, maintaining processing efficiency for large datasets. 

NFR3: Reliability 

• NFR3.1: The system shall retry interrupted jobs up to 3 times automatically. 

• NFR3.2: If a job fails, users shall be able to manually resume from where it left 

off. 

• NFR3.3: The system shall reliably save and apply templates for future use 

without data loss or corruption. 

• NFR3.4: The system shall ensure consistent data extraction results by 

accurately applying user-defined templates and processing criteria. 

NFR4: Portability 

• NFR4.1: The system shall be deployable on Windows and Linux machines with 

minimal configuration. 

NFR5: Compatibility 

• NFR6.1: The system shall support integration with cloud sources such as 

Google Drive, Dropbox, OneDrive. 

NFR6: Maintainability 

• NFR7.1: The system shall separate configuration files (models, templates) in a 

modular format (.json, .png, .zip) for easy management and updates. 

• NFR7.2: The system shall be designed for easy updates and maintenance, 

allowing for quick implementation of new data types, extraction methods, or 

system enhancements. 
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3.4 Use Case Diagram and Use Case Description 

This section outlines the interactions between the GUI user, API client, LLM-based 

data extraction system.  

3.4.1 Use Case Diagram 

This diagram in Figure 3.4.1.1  illustrates the different ways the actors, including user, 

input source or scanner, external API devices can interact with the LLM Data 

Extraction System. It outlines the functionalities (use cases) that the system provides 

and how these actors utilize them. 

Actors: 

• User (GUI): This actor interacts with the graphical user interface to perform 

most of the functions. 

• Input Source/ Scanner: This represents a hardware device (like a scanner) or 

an external system that provides image data to the system. 

• External API Devices (Application): This represents external devices or 

software that interacts with the system programmatically through the API 

endpoint in the system. 

The diagram illustrates six main generalized use cases: UC01 – Manage Template, 

UC02 – Manage AI Model, UC03 – Manage Input Source, UC04 – Process Image and 

Extract Data, UC05 – View Past Output Documents and Results, and UC06 – Serve 

API Endpoint. Among these, the system primarily centers on UC04 – Process Image 

and Extract Data, as it integrates the proposed processing pipeline, which will be 

discussed in detail in Chapter 4. 
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Figure 3.4.1.1 Use Case Diagram 
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3.4.2 Key Use Case Description 

This section provides detailed descriptions of the six primary use cases, which serve as 

the foundation for use case testing discussed in Chapter 6.3. Use case descriptions help 

define system functionality from the user’s perspective, ensuring that development 

aligns with user needs and expectations. Among these, UC04 – Process Image and 

Extract Data stands out for its unique functionality, representing the project’s most 

innovative and impactful feature. 

UC01 Manage Template 

Field Value 

ID UC01 

Purpose To create, edit, delete, view, export, and import extraction templates for 

data extraction. 

Primary Actor(s) User 

Trigger User selects Template Manager from the navigation sidebar. 

Sub-Functions • Create Template 

• View Template 

• Edit Template 

• Delete Template 

• Export Template 

• Import Template 

Pre-conditions • System is On and Idle. 
 

Scenario Name Step Action 

Main Flow 1 User launches Template Manager screen. 

2 User clicks one of the buttons on Template Hub. 

Alternate Flow –

Create Template 

2.1.1 User clicks (+) button. 

2.1.2 User fills in template details, uploads image, creates ROIs, saves 

template. 

2.1.3 User uploads template image 

2.1.4 User creates ROIs on the template with fields and regex. 

2.1.5 User saves template. 

Alternate Flow –Edit 

Template 

2.2.1 User clicks edit button on a template. 

2.2.2 User modifies uploaded image and fields. 

2.2.3 User saves template. 

Alternate Flow –

Delete Template 

2.3.1 User clicks delete button on a template. 

2.3.2 System prompts confirmation. 
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 2.3.3 If confirmed, system deletes the template. 

Alternate Flow –

View Template 

2.4.1 User clicks view button on a template. 

2.4.2 System displays template details with sorting. 

Alternate Flow – 

Export Template 

2.5.1 User clicks export button. 

2.5.2 System prompts for the location to download the template. 

2.5.3 User chooses file location and save exported template. 

Alternate Flow – 

Import Template 

2.6.1 User clicks import button. 

2.6.2 User selects template and image files to upload. 

2.6.3 System imports and displays the new template. 

Post-conditions Template is added, edited, deleted, viewed, exported, or imported 

successfully and appears in the Template Hub. 

Table 3.4.2.1 UC01 Manage Template Use Case Description 

 

UC02 Manage AI Model 

Field Value 

ID UC02 

Purpose To create, edit, delete AI models for document processing. 

Primary Actor(s) User 

Trigger User selects AI Model Config from the navigation sidebar. 

Sub-Functions • Add AI Model 

• Edit AI Model 

• Delete AI Model 

Pre-conditions • System is On and Idle. 
 

Scenario Name Step Action 

Main Flow 1 User launches AI Model Config screen. 

2 User clicks one of the buttons on AI Model Config. 

Alternate Flow –Add 

AI Mode 

2.1.1 User clicks (+) button. 

2.1.2 User chooses public/custom model 

2.1.3 User fills in API key and AI model details. 

2.1.4 User toggles default option. 

2.1.5 User saves AI model. 

Alternate Flow –

View AI Model 

2.2.1 User clicks view button on a AI model. 

2.2.3 User can sort or search based on model name. 
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2.2.3 System displays template details including API key with sorting 

and searching results. 

Alternate Flow –Edit 

AI Model 

2.3.1 User clicks edit button on an AI model. 

2.3.2 User modifies existing AI details. 

2.3.3 User saves template. 

2.3.4 User saves AI model details. 

Alternate Flow –

Delete Template 

 

2.4.1 User clicks delete button on an AI model. 

2.4.2 System prompts confirmation. 

2.4.3 If confirmed, system deletes the AI model. 

Post-conditions AI Model is created, edited, deleted, viewed, or copied and shown in the 

Model and API Manager list. 

Table 3.4.2.2 UC02 Manage AI Model Use Case Description 

 

UC03  Manage Input Source 

Field Value 

ID UC03 

Purpose To add, connect, and delete input sources for input file acquisition. 

Primary Actor(s) User, Input Source/Scanner 

Trigger User selects Input Source Setup from the navigation sidebar. 

Sub-Functions • Add Input Source 

• Connect Input Source 

• Delete Input Source 

Pre-conditions • System is On and Idle. 
 

Scenario Name Step Action 

Main Flow 1 User launches Input Source Setup screen. 

2 User clicks one of the buttons on AI Model Config. 

Alternate Flow –Add 

Input Source 

2.1.1 User clicks (+) button. 

2.1.2 User selects source (scanner, webcam, cloud storage). 

2.1.3 User fills in input source details. 

2.1.4 User test connection. 

2.1.5 User saves input source. 

Alternate Flow –

Connect Input source 

2.2.1 User clicks connect button on a template. 

2.2.3 System connects to the input source. 

2.2.3 System displays input source connection status. 

2.3.1 User clicks delete button on an input source. 
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Alternate Flow –

Delete Input Source 

2.3.2 System prompts confirmation. 

2.3.3 If confirmed, system deletes the input source. 

Post-conditions Input source is added, connected, or deleted, and displayed in the Input 

Source/Scanner Setup screen. 

Table 3.4.2.3 UC03 Manage Input Source Use Case Description 

UC04  Process Image and Extract Data 

Field Value 

ID UC04 

Purpose To allow a user extract data from uploaded/connected images and receive 

structured results. 

Primary Actor(s) User, External API Client 

Trigger User navigates to Data Extraction screen clicks (+) button in the GUI 

(Image Processing & Extraction Hub screen) or API Client sends POST 

/process. 

Pre-conditions • System is On and Idle. 

• At least one template exists or template-less mode is enabled. 

• At least one API model exists. 

Scenario Name Step Action 

Main Flow 1 User launches Data Extraction screen  

2 User uploads image(s) or select input source dropdown. 

3 User selects AI model, template, and output type. 

4 User clicks “Extract Data” button. 

5 System converts input files to standardized format - PNG (if 

needed). 

6 System performs Image Quality Check. 

7 If pass, the system detects template (barcode/ML). 

8 System preprocess, analyses the image and extracts structured data 

(ROI extraction, text recognition, validation, Sieve Approach, 

Challenger, Referee). 

9 System calculates confidence. 

10 System returns data grid, summary table (GUI), output files to be 

downloaded or JSON (API). 

Alternate Flow –

Template not found 

1.1.1 System prompts user to create template by displaying “Template 

Not Found” message. 

1.1.2 System displays button to navigate to template creation screen. 
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Alternate Flow –API 

Model not found 

1.2.1 System prompts user to create template by displaying “API Model 

Not Found” message. 

1.2.2 System Display button to navigate to API model manager screen. 

Alternate Flow –Low 

Image Quality 

6.1  System performs image rectification process. 

6.2 Repeat Step 4 

Alternate Flow –Low 

Image Quality 

Persists 

6.2.1 System rejects the image and skips data extraction. 

Alternate Flow –No 

Template Matched 

7.1 System uses fall back features (use default template or skip 

processing and return null or stop processing and notify user) to 

process the image 

Alternate Flow – Job 

Interrupted 

8.1 System automatically resumes processing for 3 tries. 

8.2 System prompts the user to manually resume processing. 

Post-conditions • Process entry visible in Image Processing and Extraction Manager. 

• Data extracted and available for download. 

• Output files can be accessed in Output Documents Screen. 

Table 3.4.2.4 UC04 Process Image and Extract Data Use Case Description 

 

 

UC05  Access Past Output Documents & Results 

Field Value 

ID UC05 

Purpose To view, search, sort, download, and delete past output documents and 

results. 

Primary Actor(s) User 

Trigger User selects Output Documents from the navigation sidebar. 

Pre-conditions • System is On and Idle. 

• Data extraction must have been performed previously. 

Scenario Name Step Action 

Main Flow 1 User launches Output Documents screen  

2 User views file names, types, creation times. 

3 User searches or sorts files. 

4 User downloads or deletes files as needed. 

Alternate Flow –File 

not found 

4.1 System prompt error message. 
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Post-conditions • Selected documents are downloaded or deleted, and the list updates 

accordingly. 

Table 3.4.2.5 UC05 Access Past Output Documents Use Case Description 

UC06  Serve API Endpoint 

Field Value 

ID UC06 

Purpose To serve data extraction functionality via an API endpoint for external 

clients. 

Primary Actor(s) User, External API Client 

Trigger User selects Serve API Endpoint from the navigation sidebar. 

Pre-conditions • System is On and Idle. 

Scenario Name Step Action 

Main Flow 1 User launches Serve API Endpoint screen  

2 User copies example request/response formats and local IP 

address for establishing connection purpose. 

3 User clicks Start Server to begin serving API. 

4 System starts serving API endpoint. 

5 System display API endpoint serving status. 

Alternate Flow –

Server failure 

3.1 System shows error with possible troubleshooting steps. 

Post-conditions • Server is running. 

• External API clients can interact with the endpoint. 

Table 3.4.2.6 UC06  Serve API Endpoint Use Case Description 
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3.5 Activity Diagram 

This section presents six activity diagrams representing key flow of use cases of the 

project. Among these, the most significant is UC04 – Process Image and Extract Data 

Activity Diagram, which embodies the core innovation and adds the greatest value to 

the project. 

UC01 – Manage Template 

 

Figure 3.5.1 UC01 Manage Template Activity Diagram 
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UC02 – Manage AI Model 

 

Figure 3.5.2 UC02 Manage AI Model Activity Diagram  
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UC03 – Manage Input Source 

 

Figure 3.5.3 UC03 Manage Input Source Activity Diagram 
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UC04 -  Process Image and Extract Data (Main Use Case) 

 

Figure 3.5.4 UC04 Process Image and Extract Data Activity Diagram 
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UC05 – View Past Output Documents & Result 

 

Figure 3.5.5 UC05 View Past Output Documents & Results Activity Diagram 

 

  



CHAPTER 3 

Bachelor of Computer Science (Honours)  43 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 

UC06 – Serve API Endpoint 

 

Figure 3.5.6 UC06  Serve API Endpoint Activity Diagram 
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3.6 General Development Methodologies and General Work Procedures 

Figure 3.6.1 shows a rapid application development (RAD) model that is used in this 

project.  

 

Figure 3.6.1 Rapid Application Development (RAD) Model 

Rapid Application Development (RAD) methodology, with its emphasis on quick and 

iterative development cycles are used in this project. There are few stages in this 

methodology, including requirement planning, user design and prototyping, 

construction (development) and cutover (testing and implementation). 

First, in requirement planning, requirements such as the goals, scope, and user 

requirements are clearly defined. For this project, this phase would involve gathering 

all necessary information about the specific needs of integrating LLMs for unstructured 

data extraction, including understanding the challenges with current methods, desired 

outcomes, and user requirements for the final system. The outcome of this phase will 

be a clear set of requirements that guide the subsequent development stages. 

Moving on comes a prototype cycle. In this stage, the initial prototypes of the system 

are developed based on the requirements gathered. For this project, the prototypes 

would include early versions of the LLM integration framework, the data extraction 

processes, and the user interface. A basic version of the framework and interface is 

created, focusing on the core functionalities such as LLM integration, data extraction 

accuracy, and efficiency optimization. The developed prototype is demonstrated to 

stakeholders and end-users to gather feedback. Based on the feedback received during 

the demonstration, the prototype is refined to address any issues or incorporate 
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suggested improvements. This iterative process ensures the final product is aligned with 

user needs. 

Once the prototype has gone through sufficient iterations and refinements, it moves into 

the testing phase. This is where the system is thoroughly tested to ensure it meets all 

functional and non-functional requirements, such as performance, accuracy, and user-

friendliness. Extensive testing of the framework will be conducted across different 

datasets, scenarios, and edge cases to ensure reliability. Any bugs or issues identified 

will be addressed before moving to the final implementation phase. 

After successful testing, the final system is implemented in the real-world environment. 

The final, refined framework will be deployed into the target environment, such as a 

logistics operation.  

The RAD model’s iterative approach allows this project to rapidly develop and refine 

a framework for LLM integration in data extraction, ensuring that the final product is 

well-aligned with user needs and can be implemented efficiently. By continuously 

incorporating user feedback and refining the system through multiple prototype cycles, 

the project minimizes risks and maximizes the chances of delivering a high-quality, 

user-friendly solution that meets all defined requirements. 

3.7 Timeline and Gantt Chart 

Figure 3.7.1 below illustrates a Gantt Chart for this project in Project 1 and Project II.  

 

Figure 3.7.1 Gantt Chart 

The Gantt Chart provides an estimated timeline for the project’s deliverables and 

milestones, spanning a year. This project is to  be finished by May 2025.  
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CHAPTER 4    SYSTEM DESIGN 

 

In this chapter, we present the system design via system flowchart, system block 

diagram and details about our proposed application integration pipeline for LLM. 

4.1 System Flowchart 

The system flowchart  in the Figure 4.1.1 outlines a high-level process involved in the 

project, illustrating how data is processed from initial input to final output, whether 

used as a terminal or intermediate module within a larger system. 

 

Figure 4.1.1 System Flowchart 



CHAPTER 4 

Bachelor of Computer Science (Honours)  47 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 

Figure 4.1.1 illustrates the high-level operational flow of the proposed LLM-enhanced 

image data extraction system. The process begins with three core configuration steps: 

adding AI models, creating custom templates, and modifying system settings. These 

preparatory actions are essential for tailoring the system to specific use cases. Adding 

an AI model allows the integration of pre-trained language models or custom APIs for 

advanced text recognition. Custom templates define extraction rules by specifying 

regions of interest (ROI), expected field types, and regex patterns. Modifying system 

settings enables users to configure advanced features such as template matching 

strategies (e.g., barcode-based, content-based or manual selection), select default 

templates or models, and determine pipeline behaviour, including whether to activate 

the LLM Challenger and Referee mechanism. 

Following configuration, the system determines the mode of operation, either as a 

Terminal Module (for standalone desktop use) or an Intermediate Module (serving as 

an API endpoint). In terminal mode, users proceed by setting up or connecting to input 

sources such as scanners, webcams, local folders, or cloud storage platforms. In API 

mode, the system instead begins processing upon receiving external POST requests 

from integrated systems. Subsequently, the system spawns multiple threads to handle 

parallel processing tasks. This multithreaded design supports efficient execution, 

particularly during batch processing or when performing complex pipelines involving 

OCR, validation, and scoring concurrently. 

The core functionality takes place in the data extraction pipeline, which includes several 

sequential stages such as image pre-processing, format normalization, quality 

verification, template detection, and data extraction via LLMs. Advanced techniques 

such as the Sieve Approach, and the LLM Challenger and Referee mechanism are used 

during post-processing to validate, compare, and refine extracted outputs, addressing 

the non-deterministic nature of language models. 

Finally, the system handles the output based on the selected module. In terminal mode, 

the extracted data and its associated metadata (e.g., confidence levels, timestamps, 

template IDs) are stored in local files and then displayed in a user-accessible output 

screen. In API mode, the system returns the formatted response, ready for integration 

into downstream systems.   
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4.2 LLM Application Integration Framework for Unstructured Data Extraction 

This section presents the data extraction framework and provides a detailed overview 

of the application pipeline designed for integrating LLMs. The framework and pipeline 

constitute a central contribution of this project, enabling effective and scalable 

processing of unstructured data through LLM integration. 

4.2.1 Data Extraction Framework  

The data extraction framework is shown in Figure 4.2.1.1. below, which represents a 

structured approach to extract image data in the project, leveraging various techniques 

and components, including a LLM, for comprehensive data extraction. Besides, the 

Sieve methodology that is illustrated in the diagram below will be mainly introduced in 

the Chapter 4.4.3. Data Post-Processing Phase, as it is the main contribution of this 

work. 

 

Figure 4.2.1.1 Data Extraction Framework 

The process begins with Data Preparation, where input images undergo several steps, 

including preprocessing, quality checking, enhancement, and template matching. This 

stage ensures that the input data is clean and structured enough for downstream 

analysis. The selected template guides the system in cropping specific regions of 

interest from the document, which are essential for focused data extraction. 

Following preparation, the cropped data is sent to the LLM component, which 

integrates with LangChain for advanced language model capabilities. This component 

dynamically generates prompts based on the content and structure of the input regions 

and uses them to extract raw data. To ensure reliability, the LLM process includes 
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elements such as a “Challenger” to allow the use of 2 LLMs to process the data and 

compare the output, and a “Referee” to arbitrate between conflicting outputs when 

necessary. Concurrently, barcode information, if present, is extracted and used to guide 

template selection or validation. 

The extracted data then enters the Data Post-Processing stage, specifically the Sieve 

Methodology, which plays a critical role in validating, refining, and finalizing the 

results. This step includes an Optimizer and a Circuit Breaker to manage errors or flag 

major inconsistencies. Confidence Scoring is also applied, providing a metric for 

assessing the reliability of the extracted information. If validation fails at any point, the 

system can loop back, allowing for re-processing or optimization of the data before 

final output. 

In the end, the framework produces structured output data, either directly or after going 

through post-processing validation cycles. This architecture emphasizes accuracy, 

adaptability, and error handling, making it suitable for complex document processing 

tasks in real-world applications. 
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4.2.2 Application Pipeline Design for LLM Integration  

The application pipeline that is designed for LLM integration is illustrated across the 

three flowchart diagrams in Figure 4.2.2.1, Figure 4.2.2.2, Figure 4.2.2.3, presents a 

comprehensive and modular design for the project. This pipeline serves as a critical 

foundation and blueprint for the proposed solution, highlighting key strategies and 

components involved in integrating LLMs effectively. It introduces the core concepts 

and methodologies that underpin the system’s functionality, which will be further 

elaborated in the Chapter 4.3. 

 

Figure 4.2.2.1 System Pipeline Design Part 1 
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Figure 4.2.2.2 System Pipeline Design Part 2 
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Figure 4.2.2.3 System Pipeline Design Part 3 
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Data Preparation and Template Matching (Pipeline Part 1) 

The process begins with the preprocessing and conditioning of files, which leads to 

standardization of the image file format, followed by an image quality check. If the 

image quality fails, a rectification mechanism is triggered. Should the quality still be 

insufficient after rectification, the image is rejected or handled based on fallback logic 

defined by the user, options include using a default template, skipping processing, or 

halting execution. 

Next, the system performs template matching, which may be automatic (barcode-based 

or content-based) or manual. If matching is successful, the system retrieves the relevant 

template data and initiates image preprocessing. This includes cropping the image 

according to template-defined ROIs (Regions of Interest) and generating dynamic 

prompts for the LLM based on the template structure and detected fields. If matching 

fails, fallback behavior (default template, skip, or stop) is executed based on user 

settings. 

Sieve Methodology - Validation, LLM Challenger and Referee (Pipeline Part 2 & 

3) 

The second stage of the pipeline centers around LLM-based analysis and decision 

validation through a structured control flow. Depending on the system configuration, 

the image is either processed through a single LLM or handled by a dual-LLM 

challenger framework. 

In the standard configuration, the extracted results from the LLM are routed into the 

Sieve Methodology, which performs a series of structured validations based on the 

document’s associated template. This methodology checks for correctness, 

completeness, and conformance to required formats, ensuring data integrity before final 

output. If the validation passes, the results are formatted and outputted. However, if 

validation fails, the system enters a controlled retry loop. During this phase, dynamic 

prompts are generated, and larger or refined image regions (ROIs) are utilized to give 

the LLM better context for correcting the failed extractions. This process is repeated 

with a maximum retry threshold enforced by a Circuit Breaker, preventing infinite 

loops and gracefully terminating extraction attempts in persistent failure scenarios. 

Detailed mechanics of this retry process are elaborated in Section 4.4.3. 
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In the enhanced Challenger Mode, the system makes use of two separate LLMs to 

independently analyze the same image in parallel. Their outputs are then passed through 

the Sieve validation process. If both outputs pass, they are compared for consistency. 

If no discrepancies are found, the result is accepted and the system continues with its 

standard processing flow. However, if discrepancies arise between the two valid 

outputs, the system evaluates whether a Referee module is enabled. If it is, the Referee 

performs arbitration by reprocessing the disputed fields to determine the most accurate 

result. If the Referee is not enabled, both outputs are flagged for manual review. 

If both LLM challengers fail validation, the system recognizes this as a critical failure 

and immediately flags the input as invalid, resulting in a null or error-marked output. 

In the case where only one challenger fails, the system attempts recovery by 

reprocessing the failed challenger using updated prompts and expanded image regions 

to improve contextual understanding. If the number of failed fields is within a threshold 

(e.g., ≤2), the corrected output is validated and returned alongside the previous passed 

result for manual review. If the threshold is exceeded, the system bypasses further 

arbitration and flags one of the passed results for review to avoid excessive computation 

or ambiguous decision paths.This recovery path may also invoke the Referee module if 

enabled, offering an additional layer of verification. 

The Referee process is particularly nuanced. If the arbitration is required (either after 

failure or discrepancy), it triggers a refined re-extraction process. The Referee is given 

dynamic prompts and broader context via expanded image regions. It performs an fresh 

independent extraction, which is validated using the Sieve Methodology. If the 

Referee’s result passes, it is compared to the previously passed challenger output. If 

both results match, the system returns the agreed-upon result. If they do not align, both 

outputs are returned and flagged for manual inspection, though the Referee’s version 

may be provisionally favoured based on system rules or configuration.If the Referee’s 

attempt fails validation altogether, the system reverts to the previous passed result and 

flags it as uncertain. 

It is important to note that while the Challenger and Referee modules significantly 

enhance accuracy, they also introduce increased computational overhead and 

latency. Their use is most beneficial in high-stakes environments where precision 

outweighs performance concerns, such as legal, financial, or regulatory document 
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processing. Due to their resource intensity and conditional effectiveness, these modules 

are recommended only when maximum accuracy is essential. For this reason, their 

detailed specifications are omitted from Section 4.4’s core component descriptions, as 

their behaviour and value are better explained in this contextual discussion. 

Final Formatting, Scoring, and Storage (Pipeline Part 3 end) 

Once validated data is ready, the system formats all extracted outputs into structured 

forms (e.g., JSON, CSV, or table format). It then calculates metadata such as processing 

time, token usage, and estimated cost, followed by the generation of a confidence score 

based on validation metrics and LLM feedback. The final output, along with metadata, 

is stored securely in a designated file system or database. 

The pipeline concludes with a clean handoff, either to the user interface for display in 

a terminal module, or as a formatted API response for integration into external 

workflows. This modular yet fault-tolerant design ensures high reliability even in 

uncertain or low-quality data scenarios. 

This multi-phase pipeline, with fallback options, iterative LLM validation (Sieve, 

Challenger, Referee), and structured output, demonstrates a production-grade approach 

to intelligent data extraction from images. It balances automation, accuracy, and human 

oversight, making it suitable for real-world document processing environments.  
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4.3 System Block Diagram 

The system block diagram in Figure 4.3.1 presents a high-level overview of a modular 

architecture designed for data extraction with LLM integration. Each component within 

the diagram will be further detailed in Chapter 4.4, including an explanation of how 

they interconnect to form the complete system. 

       

 Figure 4.3.1 System Block Diagram 

The workflow begins with various Input Sources, including local folders, cloud 

storage, scanners, and APIs, enabling the system to ingest images from both manual 

and automated sources. These images are funneled into a comprehensive Data 

Preparation phase where they are preprocessed, quality-checked, enhanced, matched to 
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templates, and cropped to extract regions of interest. This ensures the input data is clean, 

standardized, and ready for detailed analysis. 

The Data Extraction and Analysis module plays a central role in the system, utilizing 

advanced methods such as barcode scanning and dynamic prompt generation to extract 

and interpret data from segmented images. One of its key features is the integration of 

large language models (LLMs) via frameworks like LangChain, enabling sophisticated 

analysis and understanding of document content. After extraction, the Post-Processing 

stage applies multiple validation techniques, including confidence scoring, cross-model 

comparison, and referee-based arbitration, to ensure the accuracy and reliability of the 

results. 

The system features a user-friendly Graphical User Interface (GUI), allowing users to 

manage input sources, templates, models, and system settings. This interface plays a 

critical role in system configuration, monitoring, and real-time control. Meanwhile, the 

Data Storage and Output segment handles the persistence of configuration files and 

extracted data, and ensures that outputs are made available either through the GUI or 

via APIs for integration with other systems. 

Finally, the API Model Management block provides administrative control over AI 

models, supporting both public and custom-trained models to meet diverse processing 

needs. Overall, this architecture is designed to be highly modular, scalable, and 

integrative, capable of automating complex document processing workflows across 

various domains. 
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4.4 Key Components Specification and Approaches for Data Processing Pipeline 

In this section, we will introduce the newly proposed pipeline, which consists of an 

image preparation phase and a data extraction phase. A key methodology employed in 

this project is known as the sieve methodology in data extraction and validation phase, 

along with Challenger and Referee. This approach is our main contribution in 

integrating LLMs into the existing data extraction solution while mitigating the 

associated non-deterministic risks. 

4.4.1 Data Preparation Component 

After the images are obtained from input source including local folder, cloud storage, 

scanners or API input as source from the previous module, there are several types of 

approaches are proposed to preprocess image, including: 

• Image preprocessing and conditioning 

• Image quality check 

• Image quality enhancement 

• Template matching 

Image Preprocessing and Conditioning 

After system receives files from input source, the system identifies its current format 

and uses Python libraries including Pillow, pdf2image and OpenCV to convert the 

image to .png. This ensures that regardless of the original format, the image processing 

pipeline can handle the images consistently without worrying about format-specific 

quirks. The system is designed to support a variety of image formats, including .tif, .tiff, 

.bmp, .jpg, .jpeg, .png, .webp, .gif, .heic, .pdf, and .ico. 

The image conditioning involves using powerful libraries such as Python Imaging 

Library (Pillow), OpenCV, and Scikit-image to enhance the quality and extract 

meaningful features from the images. These steps include converting the image to 

grayscale to simplify the data, resizing it to a standard size to ensure consistency, and 

applying filters, Gaussian blurring to reduce noise and enhance edges. The image will 

be resized to match the standard dimensions specified in the template width and length 

provided by the user. Additionally, techniques such as adaptive thresholding and 
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histogram equalization are used to enhance contrast and improve the visibility of 

features like text or barcodes.  

Image Quality Checking 

The purpose of this step is to prevent low-quality images, those that are too blurry, 

noisy, or have poor contrast, from degrading the accuracy of the subsequent processing 

tasks. This project assesses various image quality metrics, such as brightness, contrast, 

sharpness, noise, blurriness, edge density, and resolution.  

The image is first loaded, and various filters and statistical measures are then applied 

to assess the quality metrics: brightness and contrast are derived from the grayscale 

image’s statistical properties, sharpness is evaluated by detecting edges, and noise is 

estimated by comparing the original image with a filtered version. Blurriness is 

measured using the variance of the Laplacian, while edge density is determined by 

detecting edges with the Canny algorithm. Finally, the image’s resolution is checked to 

ensure it meets the minimum acceptable standards. 

It then calculates a composite quality score based on the aforementioned metrics. The 

quality score is a weighted sum of these metrics, each normalized to a 0-100 scale. This 

score represents the overall quality of the image, with higher scores indicating better 

quality. If the quality score meets or exceeds a predefined threshold (e.g., 70), the image 

is considered acceptable for further processing; Otherwise, it is passed through an 

image enhancement module. However, should the image still fail to meet the quality 

criteria after enhancement, it is rejected, flagged as unsuitable, and the user is notified 

that it does not meet the required standards. 

Image Enhancement 

If image quality still fails validation after the initial preprocessing steps, additional and 

more advanced image enhancement techniques may be required to further refine the 

data for successful extraction. These next-level improvements aim to address more 

complex issues such as extreme blurriness, uneven lighting, compression artifacts, or 

poorly contrasted features that are not resolved by standard grayscale conversion, 

blurring, and thresholding. 
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Our approach is to apply deblurring or sharpening filters, such as the unsharp mask or 

Wiener filter, which can help recover edge detail lost in blurry or low-resolution scans. 

These methods enhance the clarity of boundaries between regions, which is particularly 

important for extracting text or structured data. In cases of uneven illumination, 

applying illumination correction or background subtraction help normalize brightness 

levels across the image, ensuring that lighter or darker areas don’t obscure important 

features.  

Template Matching 

In this project, template matching serves as a fundamental mechanism for automating 

document classification and data extraction. It enables the system to intelligently 

identify the correct template to apply for each incoming document image, accommodate 

a wide range of document types and workflows., thereby streamlining the extraction of 

structured data. The system incorporates two primary approaches for template matching: 

Content-based Matching and Barcode-based Matching, both of which can be 

configured based on the use case or the nature of the documents being processed. 

Content-based Matching relies on the visual and spatial features of the document. In 

this approach, the system first applies Optical Character Recognition (OCR) using 

PaddleOCR to both the input image and the candidate templates to extract “blocks” of 

text. Each block includes not only the textual content but also its Region of Interest 

(ROI) along with spatial metadata, which captures its location and dimensions within 

the image. Then, each text block from the input image is compared to the text blocks 

from every available template using a multi-faceted scoring system. The system 

compares each block in the input image to every block in each template based on two 

criteria: text content and spatial alignment.  

For the content comparison, it uses a combination of exact label matching and fuzzy 

string matching (via the FuzzyWuzzy library) to accommodate textual variations or 

OCR inaccuracies. For spatial comparison, it calculates the Intersection over Union 

(IoU) between the ROIs to evaluate how well blocks align in terms of position and size. 

It conducted this by evaluating the degree of overlap between corresponding regions. 

Next, a weighted score is computed for each pair of blocks, and the average of the best 

matches is used to derive an aggregate similarity score for each template. The template 
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with the highest overall similarity score is then selected for data extraction. However, 

if all templates score below the predefined threshold, a fallback mechanism is triggered, 

either defaulting to a predefined template or skipping processing entirely and notifying 

the user. This behaviour is configurable based on user preferences. 

On the other hand, Barcode-based Matching leverages the structured information or 

encoded identifiers embedded in barcodes for template identification. This method is 

especially effective in environments where documents are systematically tagged with 

unique barcodes. The system first scans and decodes the barcode(s) present in the image. 

Using user-defined settings such as start position and number of characters, it extracts 

a specific substring from the barcode value. This substring is then compared against 

template names. If a match is found, the corresponding template is chosen. This 

approach provides a high degree of precision and is suitable for use cases involving 

standardized forms or documents with consistent barcode formats and identifiers, such 

as shipping labels, invoices, or medical forms. 

These two approaches are integrated into the system in a configurable and user-centric 

manner. Through the GUI, users can select either “Content-based” or “Barcode-based” 

matching as their default mode. During the data extraction process, if the “Auto” 

template matching setting is enabled, the system automatically applies the selected 

approach to identify the correct template for each image. If barcode-based matching is 

enabled, the system adheres to the configured substring settings for parsing barcode 

values. Furthermore, in the case where a match cannot be found using the chosen 

method, the system follows a predefined fallback behaviour, such as defaulting to a 

specific template or alerting the user, to ensure robust handling of exceptions. 

Image Cropping 

The cropping approach in this project is designed to extract specific regions of interest 

(ROIs) from an image, which are defined either by user interaction through the web 

application for predefined coordinates. This approach is crucial for isolating relevant 

parts of an image, such as a postcode information, so that only the relevant sections of 

an image are processed further and avoid interference of extraneous information. By 

extracting these areas, the system can apply specialized LLM processing techniques 

tailored to each region. 
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Before cropping, the image undergoes a conditional resizing step that maintains high 

resolution and visual clarity. The resizing logic checks if the image’s dimensions 

significantly differ from the expected template size. If the difference exceeds a defined 

threshold, the image is resized accordingly using LANCZOS4 interpolation for 

upscaling and INTER_AREA interpolation for downscaling. This selective and 

quality-aware resizing ensures consistency across diverse inputs without degrading 

image quality, which is crucial for accurate ROI extraction. 

ROIs are defined either manually by users or programmatically through template data 

defined by the user. The system also merges overlapping ROIs when multiple fields 

share the same coordinates, allowing efficient grouping and labelling of fields. To 

account for potential field detection issues, such as format mismatches or blank regions, 

the system offers a recovery mechanism. Specific ROIs can be re-cropped with 

expanded padding. These larger ROIs are saved and can be recombined into a new 

image, ensuring the extraction process is resilient even when expected data is partially 

missing or misaligned. 

Once ROIs are successfully cropped, each segment is labelled using metadata derived 

from the ROI template. These labelled crops are then combined into a single image for 

easier consumption by downstream systems or LLMs. The combination logic is layout-

aware and optimized to reduce whitespace and minimize token usage. This involves 

several steps: 

1. The system calculates each cropped image’s width and height, as well as the 

width of its associated text label. 

2. The images are sorted by width in descending order to define the maximum 

width of the combined image canvas. 

3. Images are arranged into rows, fitting as many as possible per row without 

exceeding the canvas width. Row height is dynamically tracked to ensure 

consistent vertical alignment. 

4. The total height of the combined image is computed by summing the row 

heights and adding padding for labels. 

5. Finally, a blank canvas is generated, and all images are placed in their calculated 

positions with centered alignment and labels rendered above each crop. 
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This results in a compact, neatly arranged final image that reduces redundant space, 

maximizes visual clarity, and aligns well with LLM input constraints. All the input 

images and their labels, with each image centered and aligned to avoid any excess white 

space or misalignment enables LLM to recognize and process while reducing token 

usage. The inclusion of fallback and retry mechanisms, conditional resizing, and 

metadata-based labelling adds adaptability to the cropping pipeline.  

4.4.2 Data Extraction and Analysis Component 

There are many types of data to be detected and extracted from images with predefined 

formats (such as parcel data, documents, checks, invoices, contracts, prescriptions, 

reports, and records etc.) as in Table 4.4.2.1. 

Data to be Extracted Methods to Extract Data 

Printed Text Proposed Pipeline of LLM Integration 

Typed Text Proposed Pipeline of LLM Integration 

Handwritten Text Proposed Pipeline of LLM Integration 

1D Barcode Barcode Scanning Approach 

2D Barcode Barcode Scanning Approach 

Checkboxes and Form Elements Proposed Pipeline of LLM Integration 

Labels and Tag Proposed Pipeline of LLM Integration 

Symbols Proposed Pipeline of LLM Integration 

Existence of Signature Proposed Pipeline of LLM Integration 

Existence of Stamp/ Chop Proposed Pipeline of LLM Integration 

Value of character-based Stamp Proposed Pipeline of LLM Integration 

Short description of picture content Proposed Pipeline of LLM Integration 

Table 4.4.2.1 Types of Methods to Extract Data 

In this phase, there are several types of approaches are proposed to extract different 

types of data, including: 

• Barcode scanning approach 

• Proposed pipeline of LLM Integration for data extraction, which is the main 

focus of this project, where in this section we will focus on: 

o Dynamic Prompt Generation 

o LangChain Integration  

o Prompt engineering of LLM 
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Barcode Scanning Approach 

The barcode scanning approach in this project is designed to automatically detect and 

decode barcodes from images uploaded by users, a critical functionality for extracting 

structured data embedded within images such as tracking numbers, product codes or 

inventory details. The process is straightforward: it is implemented using OpenCV and 

the Pyzbar library, facilitates this process by first loading the image and then identifying 

any barcodes present within it. Then, it retrieves the decoded barcode data as a string, 

which can be used in subsequent processing steps or exported for further use. 

The supported 1D barcodes include EAN-13, UPC-A, Code 128, Code 39, Interleaved 

2 of 5 (I2/5), Codabar and EAN-8, while 2D barcodes include QR Code, Data Matrix, 

PDF417 and Aztec Code. 

Dynamic Prompt Generation 

Dynamic prompting in this system is a methodical approach that adapts prompt 

generation for the Large Language Model (LLM) based on the specific characteristics 

of each document and the extraction goals defined in associated templates. Rather than 

using a static prompt, which can be too generic and error-prone, the system constructs 

highly tailored prompts that instruct the LLM with precision, improving both the 

accuracy and reliability of the extracted data. 

The process begins with template-driven prompt generation. Each document is 

associated with a template that defines metadata such as the type of document (e.g., 

invoice, shipping label), the language it’s written in, the fields to extract, and whether 

it contains structured data like tables. This template guides the construction of the base 

prompt using the generate_dynamic_prompt function. For instance, if the document is 

multilingual or contains tabular data, the prompt explicitly tells the LLM to account for 

those conditions. By incorporating the document type and field-level descriptions 

directly into the prompt, the system provides the LLM with rich context, allowing it to 

“understand” the nature and structure of the document it’s analyzing. 

To further control the output format and ensure structured responses, the system 

generates a JSON schema using the generate_schema_properties function. This schema 

outlines the expected fields, data types, and constraints (like expected character length 
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or example values), and is embedded in the LLM prompt. The LLM is instructed not 

only to extract specific values but to return them in a JSON object that matches this 

schema, significantly reducing the need for post-processing or manual validation. 

In cases where the initial extraction fails, due to format mismatches, OCR errors, or 

ambiguous field values, the system employs retry prompting through the 

generate_retry_prompt function. These retry prompts are specifically crafted to target 

the problematic fields and provide the LLM with feedback from the previous attempt, 

including the erroneous values and the type of error encountered. The retry prompt may 

also restate constraints or expected formats, effectively guiding the LLM to correct its 

output. This iterative refinement ensures durability and boosts the system’s ability to 

handle noisy or inconsistent inputs. 

In essence, dynamic prompting in this pipeline is a feedback-aware, context-rich 

orchestration that leverages template metadata and structured schemas to guide LLMs 

toward precise and schema-compliant outputs. It balances flexibility and structure, 

enabling general-purpose language models to perform highly specialized extraction 

tasks with minimal manual intervention. 

LangChain Integration 

LangChain is integrated into the system as a foundational framework that brings 

structure, modularity, and resilience to the way Large Language Models (LLMs) are 

accessed and used. Rather than making direct API calls to LLM providers like OpenAI 

or Google, the system relies on LangChain’s abstraction layers and tooling to streamline 

model interaction, prompt construction, and output validation. It abstracts model APIs, 

standardizes prompt structures, enforces output schemas, and provides a scalable 

framework for future enhancements. This integration allows the system to scale, adapt, 

and maintain LLM functionalities with significantly less effort and risk of inconsistency. 

The system introduces a LangChain factory which encapsulates the logic for 

instantiating different LLMs. Whether the system uses OpenAI’s ChatOpenAI or 

Google’s ChatGoogleGenerativeAI, the LangChain provides a centralized and 

extensible interface for switching or adding models without changing downstream logic. 

The system further uses this factory to select and initialize the appropriate model. This 
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separation of concerns ensures that the business logic for image analysis and data 

extraction remains clean and decoupled from the underlying LLM implementations. 

LangChain’s prompt management tools, such as ChatPromptTemplate, 

SystemMessage, and HumanMessage are used to construct well-structured messages 

that guide the LLM in generating reliable outputs. In particular, the system uses a 

SystemMessage to define the LLM’s role (e.g., an expert in data extraction) and a 

HumanMessage that includes both the image content (base64-encoded) and a dynamic 

prompt. This structured communication format helps the LLM better understand the 

task context, leading to improved accuracy and consistency in the responses. 

To ensure the output from the LLM is usable and properly formatted, the system uses 

LangChain’s JsonOutputParser. This parser works in tandem with schema definitions 

to validate that the LLM’s response matches the expected structure, such as a JSON 

object with specific fields and types. This parsing layer is essential for automated 

downstream processing and reduces the risk of runtime errors due to malformed data. 

Finally, the system simplifies image analysis workflows through the use of the a 

wrapper around the LangChain-enhanced model abstraction. They will invoke 

LangChain-enabled processes while hiding the complexity of message construction, 

schema enforcement, and model selection from higher-level code. This results in a 

clean and maintainable interface for document analysis tasks. 

Prompt Engineering of LLM 

In this project, prompt engineering has been of central importance in guiding a large 

language model (LLM) to accurately extract data from images, particularly in scenarios 

where the images contain structured information such as parcel details. The purpose of 

this approach is to leverage the powerful natural language processing capabilities of the 

LLM to interpret and extract specific data points from images, and to return the results 

in a well-defined JSON format that can be easily processed further. 

The prompt is constructed with specific instructions, asking the model to extract data 

from the image and return it in a structured JSON format. To enhance the LLM’s 

understanding, the prompt includes several techniques of prompt engineering including: 
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Role Assignment and Context Setting 

In the payload, the role of the LLM is explicitly defined in the messages field under the 

role key. The system message is used to establish the role of the LLM and context as 

“an expert in data extraction.” This is important as it informs the LLM to focus on tasks 

related to this domain, potentially enhancing the relevance and accuracy of the 

responses. 

Prompt Design 

The prompt variable provides a clear and concise instruction: “Extract data from the 

image below and return in JSON.” This direct instruction helps the LLM understand 

the task it needs to perform and specifying the type of data expected. The prompt 

combines text and image processing by providing a base64-encoded image within the 

conversation. This is done through the base64 library function and then embedding it 

within the user’s message in a specific format that the model can process. 

Schema Enforcement 

It specifies the desired data schema, which outlines the structure and type of each 

expected data field. The json_schema in the response_format payload defines the 

exact structure of the output, including required fields, data types, and descriptions 

according to template defined. By setting a strict mode with strict: True within the 

json_schema, the LLM is explicitly instructed to follow the schema rigidly, reducing 

the likelihood of deviations in the output structure. This schema acts as a strict guideline 

for the LLM to follow, which is critical for ensuring that the output is well-formed and 

adheres to the desired format. 

Parameter Tuning 

The temperature parameter is set to 0, indicating that the model should generate 

deterministic and focused responses. A lower temperature is useful when the goal is to 

achieve precision and consistency, especially in tasks that involve structured data 

extraction. 
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The max_tokens parameter is set to 300, which limits the length of the response and 

token. This constraint helps in managing the cost associated with the API call and 

ensures the response remains concise and within expected limits. 

Cost and Performance monitoring 

The system calculates the number of tokens used in the prompt and the completion, 

then estimates the cost based on token usage. This is crucial for understanding and 

optimizing the cost-efficiency of using the LLM, particularly for tasks that might 

involve high volumes of data or frequent API calls. The code also measures the 

processing time for each API call, which is important for assessing the performance of 

the LLM and optimizing the workflow in real-time applications. 

Error Handling 

The code includes thorough error handling for API responses, checking for status codes 

and attempting to decode the JSON response. It also raises specific exceptions if the 

response is not as expected. This is important in production environments where 

stability and reliability are crucial. The system is designed to handle potential errors 

like JSONDecodeError or KeyError, ensuring that the system can gracefully manage 

unexpected outputs or issues without crashing. 

Token Estimation 

The system also estimates the number of tokens an image might consume based on its 

dimensions. This is a unique aspect of prompt engineering for image-based LLM tasks, 

ensuring the images are processed in a way that optimizes token usage and adheres to 

model limits. 

All in all, the payload sent to the LLM API includes this prompt, the image, and a 

detailed JSON schema that describes the expected output structure.  The API response 

is processed to extract and validate the JSON content, ensuring that it conforms to the 

specified schema. Additionally, the prompt engineering includes managing token usage 

efficiently by setting constraints on the number of tokens, temperature (which controls 

the randomness of the output), and the maximum allowed tokens, ensuring that the 

model’s response is both cost-effective and aligned with the task’s requirements.  
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4.4.3 Data Post Processing Component 

In this section, Sieve Methodology, shown in Figure 4.5..1., is a main contribution in 

this project proposed to ensure the accurate and reliable extraction of data from images 

using LLM. This is part of the pipeline extracted from Figure 4.2.2.2 in Section 4.2.2. 

 

Figure 4.4.3.1 Simplified Sieve Methodology Flowchart 
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Figure 4.4.3.1 provides an overview flow of how the Sieve approach works. The Sieve 

approach is a systematic method to integrate LLMs into systems, especially given 

unpredictability of LLMs. It involves multiple iterations of validation, comparison, and 

refinement of the results to mitigate the non-deterministic nature of LLMs. It is 

designed to separate the outputs of the LLM that do not conform to the required format 

or criteria.  

This method is vital for integrating LLMs into systems where consistency and precision 

are paramount. The purpose of this module is also to optimize the batch processing 

using Optimizer algorithms. If the inputs are given in batches, this module will track 

the inputs with corresponding outputs by adding a unique ID for each input. 

Step 1: Initial Attempt - Data Validation  

It begins with an initial pass where a single large language model (LLM) is tasked with 

analyzing an image and extracting relevant data fields based on the defined template or 

format expectations. Once the initial extraction is complete, the output is passed 

through a validation layer, which applies predefined rules to check for correctness, 

completeness, and conformance to expected data formats. If the extracted data meets 

all the criteria, it is accepted and processed for final output formatting, indicating a 

successful run on the first attempt. 

Step 2: Subsequent Iterations – Dynamic Reprocessing and Circuit Breaker 

When the extracted data fails to meet validation requirements, the methodology 

activates a built-in retry mechanism. This process acknowledges that extraction errors 

can occur due to issues such as tight image crops, ambiguous prompts, or 

misinterpretation by the LLM. To address this, the system incrementally enhances the 

input to the LLM for better results. Specifically, it enlarges the Regions of Interest 

(ROIs) around failed fields, increasing the context visible to the model. In parallel, the 

system dynamically generates new prompts that are more tailored to the specific 

failures encountered, providing clearer instructions, incorporating hints, or 

emphasizing specific formats expected. These adjustments aim to help the LLM 

produce more accurate outputs on subsequent attempts. 
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The system allows up to three reprocessing cycles for each image. This controlled loop 

ensures that the LLM has multiple opportunities to correct earlier mistakes while 

keeping the process efficient and avoiding infinite repetition. After each iteration, the 

updated outputs are revalidated using the same Sieve criteria. If the data still fails to 

meet the validation checks after three retries, the methodology initiates a mechanism 

referred to as a “Circuit Breaker.” This mechanism halts further attempts and flags the 

document for alternative handling, whether that means sending it for manual review, 

storing it with warnings, or returning it with an error status. 

At the conclusion of this process, whether the data passed validation initially or after 

one or more retries, the final step involves formatting the output. This ensures 

consistency and readiness for downstream consumption, whether the data is exported 

to a system, stored in a database, or returned through an API. In essence, the Sieve 

Methodology balances intelligent automation with reliable error handling, significantly 

enhancing the reliability of document processing workflows while minimizing the need 

for manual intervention. 

Step 3: Optimizing the Process - Optimizer  

Even with a circuit breaker in place, the system may still risk excessive looping and 

wasting computational power, particularly in situations where consistent results are 

unattainable. To address this, the Sieve approach incorporates an Optimizer. It serves 

to further refine the process by addressing two critical aspects of the system: managing 

the number of inputs processed by the Large Language Model (LLM) per batch and 

limiting the number of reprocessing loops for each image. 

Dynamic Batch Size Optimization 

The first function of the Optimizer focuses on dynamically optimizing the number of 

submissions (inputs) in each batch sent to the LLM. LLM prompts inherently carry 

overhead, as each submission requires a prompt that consumes tokens, adding to the 

overall processing cost. The overhead can be reduced by having more inputs in a batch; 

such a batch processing approach will also improve the overall processing time. This 

dynamic adjustment ensures that the system can handle larger data volumes efficiently 

when conditions are favourable while reducing the batch size when more precise and 

careful analysis is required. 
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In this work, the optimizer algorithm uses a “doubling and trimming” strategy: double 

the inputs per batch if there are no errors, reduce the inputs according to the number of 

correct outputs from the LLM. In other words, when there are no errors in the outputs 

from the LLM, the Optimizer doubles the number of inputs processed in the next batch. 

However, if errors are detected in the outputs, the Optimizer reduces the number of 

inputs in subsequent batches. The reduction is proportional to the number of correct 

outputs, allowing the system to focus more precisely on problematic areas that may need 

more granular attention. Hence, it can dynamically optimize the number of submissions 

per batch provided to the LLM. 

Optimization of Loop Count 

The second function of the Optimizer is to manage the maximum number of 

reprocessing loops allowed for each image. The Optimizer fine-tunes maximum of 

attempts to extract and validate data from an image by identifying the most efficient 

loop count that balances thoroughness with efficiency. 

The Optimizer algorithm evaluates the average number of submissions needed to 

achieve consistent and accurate results across multiple images. It then sets this average 

as the optimized maximum number of loops for future image processing tasks. Once 

reached, it instructs the Circuit Breaker to break the loop. In practice of our experiment, 

this often results in this specific system being capped at a maximum of five loops, which 

the Optimizer has determined to be the most effective limit. Thus, we decide it as our 

maximum number of loops, which is to allow reanalysis for at most five attempts. In 

this case, if after five attempts some values still have not been validated and recorded 

in correct result, the system will adopt a fallback strategy to handle the stubborn cases 

as illustrated in the last step. 

By optimizing the loop count, the system avoids unnecessary repetitions that would 

otherwise waste computational resources and increase processing time. This approach 

ensures that the system exits the loop once diminishing returns are identified, where 

additional loops no longer contribute significantly to improving the results. 

Step 4: Final Output - Fallback Strategy to Handle Stubborn Cases 
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Once the Circuit Breaker is triggered before all outputs get validated result, the system 

will automatically fill in the remaining missing values with NULL value. In a data 

extraction system using a LLM), returning a NULL value is a prudent approach when 

the model is uncertain, or the extracted data fails validation checks. This ensures the 

integrity and reliability of the output by clearly indicating that a valid answer could not 

be confidently determined. Rather than risking the inclusion of incorrect or misleading 

data, which can compromise downstream applications or analytics, a NULL value acts 

as a transparent placeholder for missing or unverifiable information. It also facilitates 

easier error handling, auditing, and future reprocessing, either by retraining the model, 

refining the prompt, or introducing a human-in-the-loop review process. The final 

results are then organized into a specific format, ensuring that they match the expected 

structure for further use or storage. 

The Sieve methodology, including Circuit Breaker and Optimizer successfully 

integrates LLMs into existing systems by addressing the inherent unpredictability of 

LLM outputs. Through a structured process of validation, comparison, and iterative 

refinement, it ensures that only the most reliable data is ultimately recorded and used. 

This method not only improves the accuracy of data extraction but also enhances the 

overall effectiveness and reliability of the system, making it suitable for integration into 

applications where precision is critical. 

Confidence Scoring 

Confidence scoring in this system is a vital quality assurance layer, enabling the 

application to evaluate the reliability of the extracted data before it is used downstream. 

After the data is extracted from a document, the system analyzes multiple indicators 

that reflect extraction consistency, accuracy, and overall reliability. These indicators 

include structural elements such as how many fields were successfully extracted, how 

many failed validation (e.g., regex checks), how often the system had to retry 

extractions, and whether field values changed during retries, where each of which 

suggests instability or uncertainty. Additionally, where supported, the system leverages 

deeper model-level indicators like average log-probability and entropy derived from 

the language model’s prediction outputs. Lower entropy and higher log-probabilities 

suggest higher confidence in the generated text. 
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To quantify this, the system uses two pre-trained predictive models. If advanced LLM 

metrics (logprob and entropy) are available, model1 is used for greater precision. If 

these values are missing, model2, which is a simplified version that excludes LLM-

specific metrics is employed. These models loaded will process the collected features 

to produce a final confidence score, typically normalized between 0 and 1. This score 

is then stored alongside the extracted data and used throughout the application to guide 

decision-making. For instance, data with low confidence scores might be flagged for 

manual verification, while high-confidence entries can be processed automatically.  

4.5 Components Specification and Approaches for Supporting System 

This section provides a detailed explanation of the supporting components of the system, 

including the input source, data storage and output modules, as well as the template 

management component. 

4.5.1 Input Source Component 

The Input Source component in this project serves as the entry point for acquiring 

images that will be processed by the system. It is designed with flexibility in mind, 

supporting multiple methods for input, including local folders, cloud storage services, 

USB scanners, and remote WebDAV-based document scanners. This component is 

managed through a user interface that allows users to add, configure, and manage these 

sources seamlessly. Internally, it maintains a set of active connection handlers that 

manage real-time interaction with each input source, enabling the system to monitor 

multiple channels in parallel. Through this interface, users can establish connections, 

initiate scanning, or select folders, ensuring smooth and customizable integration with 

diverse environments. 

Each specific input source is implemented as a separate module, ensuring modularity 

and scalability. Local folder input is handled using the watchdog library for real-time 

file monitoring, while cloud storage connections use official APIs to fetch and 

periodically poll for new image files. Scanning input is handled via the WIA API for 

USB scanners and the webdav3 library for remote OSS scanners. The architecture is 

threaded to support asynchronous operation, ensuring the application remains 

responsive during long-running tasks like scanning or large file downloads.  
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4.5.2 Data Storage and Output Component 

The Data Storage and Output component in this project helps in managing how 

extracted data is preserved and presented to users or external systems. It supports saving 

data in multiple formats such as Excel, CSV, JSON, XML, Markdown, and plain text. 

This flexibility ensures compatibility with a wide range of use cases, from simple text-

based exports to structured datasets suitable for further analysis or reporting. The 

system can either create new output files or append to existing ones, and it intelligently 

organizes data, for example, by supporting multiple Excel sheets when required. It also 

ensures that output directories exist and are properly structured. The module 

encapsulates the file-writing logic necessary for each format, handling tasks like 

delimiter formatting for CSVs or schema conformity in XML. 

In addition to file-based storage, the system supports data delivery through both its API 

and GUI. The API endpoint allows programmatic access to the extracted data, typically 

delivered as JSON for easy integration with other software systems. On the GUI side, 

the screen provides a user-friendly interface to view, browse, search, and download 

output files.  

4.5.3 Template Management Component 

Templates act as blueprints that instruct the system where to look for specific data 

within a document and how to interpret it. Without these templates, the system would 

lack context about the structure or layout of various document types. This component 

supports both manual and automated methods for template creation, and provides 

reliable tools for storing, editing, and organizing templates for reuse. 

Template creation begins with a user-driven process through the graphical interface. 

Users initiate this by supplying key details such as the template name, description, and 

the language used in the document. A sample image of the document is then uploaded, 

and the user defines specific Regions of Interest (ROIs), these are visual selections over 

the document that correspond to data fields to be extracted. For each ROI, the user 

specifies metadata like the field name, expected data type (e.g., number, date, text), and 

optional validation rules. This GUI-guided process, managed by screens such as 

basic_details_screen.py and roi_selection_screen.py, ensures that even users with 

limited technical expertise can effectively define templates. 
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To streamline the template creation process, the system also supports automatic 

template generation using OCR and LLM technologies. The module 

(lib/templateCreation.py) begins by using PaddleOCR to extract both the text and its 

layout coordinates from the sample document. Then, a language model such as GPT-

4o or Gemini is invoked to intelligently infer which text segments represent key-value 

pairs, and to map those relationships to likely ROIs. The output is a draft template 

containing suggested field names and regions, which the user can review and refine. 

This feature is particularly useful for accelerating onboarding of new document types 

or handling complex layouts that might be time-consuming to annotate manually. Once 

created, templates are stored in a structured JSON format, with associated sample 

images saved as PNG files. 

4.6 System Optimization Design 

This section will focus on system optimisation design, in which the system incorporates 

a thoughtful set of optimization strategies across its architecture to ensure high 

performance, responsiveness, and reliability, particularly under concurrent workloads. 

4.6.1 Thread Management 

Thread management allows critical operations to run independently without freezing or 

slowing down the main application. For example, the API server, built using FastAPI 

and Uvicorn, is launched in its own thread, allowing it to serve external requests without 

interfering with the GUI’s responsiveness. Likewise, input monitoring for local 

directories and remote WebDAV sources is performed in dedicated threads, ensuring 

that these blocking I/O operations do not hinder the system’s core workflow. To 

maintain data integrity in such a multithreaded environment, thread locks are used when 

accessing shared resources such as output files, thus preventing race conditions and 

corruption. 

 

4.6.2 Asynchronous Operations 

Another important optimization layer is asynchronous operations, particularly around 

file I/O. By leveraging asynchronous libraries like aiofiles, the system allows API 

endpoints to handle multiple file uploads concurrently. This means that the server can 

accept a new request while previous files are still being saved, dramatically improving 
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throughput and response time during heavy usage. Complementing this is the system’s 

efficient file handling approach, which includes lazy loading mechanisms that process 

files only when necessary, and clean, error-resistant file path management using best 

practices like os.path.join. 

 

4.6.3 Memory and Resource Management 

One key technique used for memory and resource management is the explicit 

invocation of garbage collection immediately after intensive image processing tasks. 

Image handling, such as loading large files, performing transformations, or generating 

Regions of Interest (ROIs), can consume significant memory. By calling Python’s 

garbage collector explicitly at strategic points in the image processing pipeline, the 

system forces the cleanup of unused objects and memory, maintaining a lean memory 

footprint even during continuous or batch processing scenarios. 

In parallel, the system exhibits disciplined handling of temporary files, particularly 

during API-based operations. To avoid the intermediate results clutter filesystem and 

degrade I/O performance, the system ensures that temporary files are only created when 

absolutely necessary and are tracked meticulously. Once their role is complete, they are 

deleted immediately. This not only prevents long-term accumulation of unused files but 

also supports faster and more predictable disk access times. 
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CHAPTER 5    SYSTEM IMPLEMENTATION 

This section presents the design specifications, including hardware specification, 

software specification, user requirements, system performance criteria, and the 

project’s verification plan to ensure the project meets its objectives. 

5.1 Hardware Setup  

This section specifically focuses on the design and components of the hardware system 

being developed or utilized as part of the project. This project involves several hardware 

components, including a processing unit (laptop) and high-resolution webcam.  

Processing Unit 

A computer or a dedicated processing unit or laptop receives data from the input sources 

and runs the modules to analyse the images. As shown in the Table 5.1.1, a laptop Yoga 

Slim 7 Pro 14ACH5 with 16GB RAM is used in this case for executing the software 

and algorithms that integrate LLM for data extraction from unstructured data sources, 

such as images. It then conveys the results back to the desktop applications for the 

user’s reference or be used in the subsequent pipeline. enable higher processor power 

for data processing, smooth multitasking, and real-time operations. 

Description Specifications 

Model Yoga Slim 7 Pro 14ACH5 

Processor (CPU) AMD Ryzen™ 7 5800H 

Operating System Windows 11 

Graphic Integrated AMD Radeon™ Graphics 

Memory 16GB Soldered DDR4-3200 

Storage 512GB SSD 

Table 5.1.1 Specification of Processing Unit 
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5.2 Software Setup  

This section outlines the software setup process, covering the development 

environment (IDE), software specifications, application architecture, database and file 

operations configuration, as well as the setup and functionality of the API server. 

5.2.1 Integrated Development Environment (IDE) and Languages 

The system proposed can be broken down into several key modules, each responsible 

for specific functionalities within the overall architecture. Below are the software 

specifications of the projects, including the Integrated Development Environment (IDE) 

and programming languages in Table 5.2.1. and Table 5.2.2. Before starting the project 

development, two software programs need to be installed and downloaded onto the 

laptop, which are Visual Studio Code (VS Code) and Git, as shown in Table 5.2.1. 

Visual 

Studio Code 

Version 1.92.2 (user setup) 

OS Windows_NT x64 10.0.22631 

Software dependences and 

external libraries 

Refer to Software Specifications section in Chapter 

5.2.2. 

Python SDK Version 3.12.3. 

Purpose For main development and testing platform 

Git  

 

Version 2.46.0 

Purpose For version control, branching for testing and 

merging to handle projects efficiently. 

Table 5.2.1.1 IDE and Git 

Python serves as the primary programming language for the entire system, chosen for 

its versatility, readability, and strong ecosystem of libraries suited for data processing 

and machine learning tasks. For the development of the graphical user interface (GUI), 

the project utilizes the PySide6 library, Qt for Python, which supports the creation of 

modern, responsive, and cross-platform desktop applications. PySide6 enables efficient 

integration between the user interface and the system’s core logic, ensuring a seamless 

and interactive user experience across different operating systems.  
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5.2.2 Software Specification 

Table 5.2.2.1 illustrates most of the key libraries and dependencies that are used in this 

project, where they define the core application logic for image processing, API, data 

handling, system integration and GUI management. 

Libraries and 

Dependencies 

Version Description 

API and Web Framework 

To create the web API, handle requests, and communicate with other services. 

uvicorn 
0.34.2 

A fast ASGI (Asynchronous Server Gateway Interface) 

server, used to run the FastAPI application. 

requests 2.32.3 A library for making HTTP requests (used for communication 

with external APIs). 

base64 Standard To encode image into text format to be passed via HTTP 

requests. 

fastapi 0.115.12 A modern, fast (high-performance), web framework for 

building APIs with Python. 

urllib3 2.4.0 A powerful and user-friendly HTTP client library to make 

HTTP requests. 

langchain 0.3.25 To provide tools for prompt management and LLM 

interaction. 

GUI 

To create the graphical user interface. 

PySide6 6.9.0 To create GUI and provide core GUI functionality. 

lazy_loader 0.4 A library for lazily loading Python modules. 

Image Processing 

For image manipulation, conversion, and analysis. 

cv2 (OpenCV) 4.11.0.86 A library for computer vision tasks (e.g., image reading, 

writing, processing). 

 

scikit-image 
0.25.2 

 

Library for image processing. 

Pillow (PIL) 11.2.1 Python Imaging Library for working with images. 

pdf2image 1.17.0 Library to convert PDF pages to images. 

paddleocr/paddlepaddle 
2.10.0/ 

3.0.0 

 

For text detection and recognition with coordinates. 
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fuzzywuzzy 0.18.0 To calculate string similarity and differences, enabling fuzzy 

string matching. 

Data Handling 

To work with Excel files, JSON data, and other data formats. 

json Standard For encoding and decoding JSON data (used for API 

communication, data storage, and configuration files). 

openpyxl 
3.1.5 

A library for working with Excel files (reading and writing). 

tifffile 2025.3.30 A library for reading and writing TIFF files, which are a 

common image format. 

xml.etree.ElementTree Standard Python library to parse and create XML documents. 

pyzbar 0.1.9 A library for reading barcodes and QR codes from images. 

python-dotenv 1.1.0 Library to read key-value pairs from a .env file and set them 

as environment variables. 

Data Analysis 

To analyse and manipulate data. 

pandas 2.2.3 A powerful library for data analysis and manipulation. It 

provides data structures like DataFrames and Series. 

numpy 2.2.5 The fundamental package for numerical computation in 

Python. It provides support for arrays, matrices, and 

mathematical functions. 

File System Interaction 

To manage files and directories, perform asynchronous file operations, and monitor file system 

changes. 

aiofiles 24.1.0 Asynchronous file operations for aiohttp 

watchdog 6.0.0 A library to monitor file system events. 

os Standard Provides functions for interacting with the operating system 

(e.g., file path manipulation, directory creation). 

sys Standard Provides access to system-specific parameters and functions 

(e.g., modifying the Python path). 

shutil Standard To enable high-level file operations such as copying, moving, 

archiving, and removing files and directories 

pywin32 310 Used to interact with Windows Image Acquisition (WIA) for 

scanner control. 

Data Validation 

To validate data formats and ensure data integrity. 

email_validator 2.2.0 Library to validate email addresses. 

re Standard Regular expression operations for pattern matching in strings 

(e.g., data validation, string manipulation). 

Machine Learning 
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To load pre-trained machine learning models. 

joblib 1.4.2 Tools for saving and loading Python objects efficiently. 

scikit-learn 1.6.1 A machine learning library that provides tools for 

classification, regression, clustering, and other machine 

learning tasks. 

Concurrency 

To handle multiple tasks concurrently, improving performance. 

asyncio Standard Library for writing concurrent code using the async/await 

syntax (used for asynchronous file operations in the API). 

threading Standard Support for creating and managing threads, enabling 

concurrent execution (used for running the API server in a 

separate thread). 

threadpoolctl 3.6.0 A library to limit the number of threads used by other 

libraries. 

General Utility Operation 

numpy 2.2.5 The fundamental package for numerical computation in 

Python. It provides support for arrays, matrices, and 

mathematical functions. 

datetime Standard For manipulation, formatting, and calculations involving 

temporal data.  

typing Standard Support for type hints to improve code readability and help 

with static analysis. 

pyinstaller 6.13.0 To bundle Python applications and their dependencies into 

standalone executables. This is a key tool for distributing the 

application, making it run without requiring a Python 

installation on the user’s system. 

uv pip 0.6.14 A package manager to manage python package 

File Optimization 

gc Standard Enable automatic garbage collection for process optimisation. 

tempfile Standard To provide generic, low- and high-level interfaces for 

creating temporary files and directories. 

Table 5.2.2.1 External Libraries/ Packages 

Aside from the libraires and frameworks shown in Table 5.2.2.1, this project mainly 

leverages many LLMs, specifically gemini-2.0-flash, gpt-4o-2024-08-06, gpt-4.1-

2025-04-14, qwen-vl-max and qwen-vl-plus, as a critical component in the data 

extraction process. These models have been used for their multimodal advanced 

capabilities in understanding and processing complex language tasks, making them 
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well-suited for the nuanced challenges of extracting unstructured data from images, 

including handwritten information. They can also understand context, allowing it to 

extract unstructured information that is inferred but not explicitly written on the image.  

5.2.3 Input Source Setup 

Setting up an input source in this system is designed to accommodate a variety of image 

sources such as local folders, cloud storage services, USB scanners, and networked 

WebDAV scanners. Available input sources are listed in Table 5.2.3.1.  

Input Source Configuration 

Local Folder Connect the folder directly in the application. 

Google Drive 1. In Google Developer Console (https://console.developers.google.com/), 

create a new project. 

2. Enable Google Drive API. 

3. Create credentials via OAuth client ID. 

One Drive 1. In Azure Portal,  

(https://www.google.com/search?q=https://portal.azure.com/), register an 

application. 

2. Obtain a credentials. 

Dropbox 1. In Dropbox App Console (https://www.dropbox.com/developers/apps), create 

a new app.  

2. Choose Dropbox API and access type as App Folder.   

3. Obtain access token. 

Webcam 1. Use webcam or download “Droid Cam” app on phone and computer device. 

2. Connect the webcam to the device.   

USB Scanner 1. Connect USB scanner physically to the computer and turn on. 

2. Install any necessary drivers for scanner. 

Networked 

WebDAV 

Scanner 

1. (Optional) Download “OSS Document Scanner” from the mobile app store. 

2. Create a WebDAV account ‘https://infini-cloud.net/en/’or any other provider. 

3. Connect the OSS Document Scanner and WebDAV. 

4. Obtain hostname, username, WebDAV path and password. 

Table 5.2.3.1 Input Sources 

Users can add a new input source by selecting the desired source type (e.g., “Local 

Folder”, “Google Drive”, or “USB Scanner”) and entering relevant details such as a 

folder path or authentication credentials. Once configured, each source is listed with 

options to connect, disconnect, or remove the configuration, providing a centralized 
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hub for managing image inputs. For example, connecting to a local folder or cloud 

storage can either monitor a folder for new images in real time or periodically poll cloud 

directories for new files.  

5.2.4 Database and File Operation Setup 

This application employs a strategic approach to data storage and file operations, 

balancing the need for efficient access to application resources with the requirements 

for persistent, user-specific data. The file structure is organized to distinguish between 

application-critical, read-only resources and user-configurable, modifiable data. 

The use of a dedicated resources directory, kept read-only during execution, ensures 

that all critical static files such as icons, animations, and AI models remain untouched 

and are consistently available regardless of the user’s system configuration. This 

includes the inclusion of pre-trained models and metadata files. For data that varies per 

user (user configuration and modifiable data), such as API credentials, scanner 

configurations, and extraction templates, the application uses separate JSON files saved 

in user-specific directories like AppData.  

In this project, storing configuration data such as API keys, template definitions, and 

image source settings in JSON files is preferred due to the lightweight, local, and read-

heavy nature of the application. The data structures are relatively small, static, and do 

not require complex querying or relational integrity, making a full-scale database like 

PostgreSQL unnecessary and overly complex.  

Temporary data created during the image analysis process, such as intermediate 

images, such as cropped images or format conversions,  is stored in short-lived 

directories using the tempfile module. File operations are managed using standard 

Python libraries like os and tempfile, which enable the application to create and clean 

up temporary data with specific garbage collector features. This ensures that memory 

usage is optimized, and leftover files do not clutter the user’s system or risk data 

persistence where it is not needed.  

Finally, the application outputs user-relevant results into a dedicated and easily 

accessible location, typically within the user’s “Documents” directory. Extracted data 

is written to output files in Documents, while user-defined configurations are saved to 
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AppData, as mentioned. This strategy ensures data persistence and traceability of 

extracted results while maintaining a clear separation between configuration data and 

output artifacts. 

5.2.5 API Server Setup 

In this project, an API server is set up using the FastAPI framework to enable external 

applications to interact with the data extraction pipeline. FastAPI is chosen as the 

framework for its speed, simplicity, and native support for asynchronous operations. 

This server plays a critical role in bridging the backend processing with potential 

frontend interfaces or third-party integrations, allowing image data to be submitted, 

processed, and returned through a structured and scalable approach. 

The core functionality is encapsulated in a class that manages the entire API lifecycle, 

from setting up routes to managing the server status. The server exposes a key endpoint, 

/extract_data/, which accepts image files along with model selection and template 

details. This endpoint is designed to be flexible: it can work with predefined templates 

or accept custom template configurations directly. Once the images are uploaded, they 

are temporarily saved, processed through the application’s image processing pipeline, 

and the extracted results are sent back as a structured JSON response. 

A major strength of this setup is its modular and user-friendly design. The server can 

be started and stopped independently, with internal logic to manage it in a separate 

thread. This prevents it from interfering with other parts of the application, especially 

the GUI, which may be running concurrently. The asynchronous nature of file handling 

using aiofiles ensures that large uploads or multiple requests don’t cause slowdowns. 

From a practical setup perspective, once FastAPI is installed and the server class is 

initialized in the code, the server can be started with a method call, which internally 

launches Uvicorn, a lightweight ASGI server that powers FastAPI. Developers or 

testers can then access the API by sending POST requests to the defined endpoint using 

tools like Postman or any HTTP client. The clear separation between the API interface 

and the core processing logic also means that the system is easy to maintain, debug, and 

expand upon.  
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5.3 Settings and Configuration 

This section outlines the technical settings, packaging methods, and deployment 

configuration used in the development and delivery of the EXTSCAN+ desktop 

application, which is the main application for illustrating the image processing pipeline 

using LLM. 

5.3.1 Installation and Setup Steps 

The installation process for the application differs based on the user type, developers 

involved in further development and testing, and end users utilizing the packaged 

software. Due to the nature of this project being developed under sponsorship from 

GDEX Berhad, public access to the source code and software is currently restricted 

(as of 9th May 2025). 

These instructions are intended for end users who will install and use the compiled 

desktop application. 

1. Download the Installer or Executable File 

The application installer can be provided directly to stakeholders via secure 

links such as: 

o https://github.com/wthislifehuh/extscan/releases/tag/v1.0.0 (Access 

restricted to authorized parties) 

o https://drive.google.com/drive/folders/1su_c9mBQujQSCkbRRq8_yJi

GQLyPaSdW (Access restricted to authorized parties) 

2. Run the Installer (.exe File) 

o Double-click the .exe file to initiate the installation process 

(extscan_installer.exe). 

o Follow the on-screen prompts to complete the installation, including 

selecting the installation directory and optionally creating a desktop 

shortcut, as illustrated in Figure 5.3.1.1, Figure 5.3.1.2, Figure 5.3.1.3, 

Figure 5.3.1.4, Figure 5.3.1.5, and Figure 5.3.1.6. 
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Figure 5.3.1.1 Installer Destination Location Setup 

 

Figure 5.3.1.2 Start Menu Folder Setup 

 

Figure 5.3.1.3 Additional Tasks Setup 



CHAPTER 5 

Bachelor of Computer Science (Honours)  88 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 

 

Figure 5.3.1.4 Installation Permission 

 

Figure 5.3.1.5 Installing Application 

 

Figure 5.3.1.6 Installation Completed 
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3. Launch the Application 

After installation, EXTSCAN+ (application of this project) can be launched: 

o From the Start Menu or desktop shortcut (if created), as illustrated in 

Figure 5.3.1.7 and Figure 5.3.1.8. 

o Or by navigating to the installed directory and running extscan.exe 

 

Figure 5.3.1.7 App in Start Menu 

 

Figure 5.3.1.8 Desktop Shortcut in Window Home Page 
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To uninstall the application: 

1. Go to Settings 

o Click on Apps > Installed apps > Search “EXTSCAN”  

o Click uninstall button, as shown in Figure 5.3.1.9, Figure 5.3.1.10, 

Figure 5.3.1.11 and Figure 5.3.1.12. 

 

Figure 5.3.1.9 App in Installed Apps settings 

 

Figure 5.3.1.10 Uninstall App 

 

Figure 5.3.1.11 Permission dialog box to remove application 
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Figure 5.3.1.12 Uninstallation completed 

5.3.2 Deployment Details 

Packaging Tool Used 

The application was packaged into a standalone executable using PyInstaller, a widely 

used tool for converting Python applications into distributable .exe files. The following 

command was used: pyinstaller --noconfirm --clean main.spec. 

This command rebuilds the application using a clean slate, with instructions from 

main.spec, and doesn’t prompt for user confirmation when overwriting files. The output 

will be in dist/main.exe. This file served as the base for installer creation. 

Installer Creation Tool 

To provide a professional and user-friendly installation experience, Inno Setup was 

used to create a GUI-based installer. The installer includes a custom installation path, a 

desktop shortcut creation, embedded application icon and license file. 

This configuration script (.iss) is compiled to generate an installer file (.exe). This 

configuration ensures that users receive a seamless installation experience with options 

to create desktop shortcuts and immediately run the application upon completion. 

5.3.3 Distribution Method 

The final .exe and installer files were distributed privately via GitHub Releases (Private 

Repository) and Google Drive (Restricted Access). 

This project was developed in partnership with GDEX Berhad as part of a sponsored 

Final Year Project. As of 9th May 2025, the software is not publicly accessible and is 

restricted for internal evaluation and academic assessment only. 
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5.3.4 License 

This software was developed under an academic-industry collaboration with GDEX 

Berhad Sdn. Bhd. All intellectual property, including source code, design, and 

branding, is owned by GDEX Berhad Sdn. Bhd. Use of the software is granted solely 

for academic evaluation purposes. Redistribution or reuse of this software in any form 

is prohibited without written consent from GDEX Berhad. 

5.3.5 Versioning 

The project follows Semantic Versioning, using the format: MAJOR.MINOR.PATCH 

Current version: v1.0.0 

This version indicates the first complete, stable release of the EXTSCAN+ application, 

ready for internal deployment and review. 
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5.4 System Operations as Graphical User Interface 

This section describes the system’s operational aspects regarding the graphical user 

interface (GUI) design, and the functionality of various screens. It details how the 

interface responds to user input and how different components interact to generate the 

corresponding output.  

5.4.1 System Navigation 

The collapsible sidebar in the interface, as depicted in Figure 5.4.1.1, serves as the 

primary navigation mechanism, allowing users to switch between the application’s 

main functional areas such as “Extract Data,” “Output Documents,” “Template 

Manager,” “AI Model Manager,” and “System Settings.” When collapsed, the sidebar 

conserves valuable screen space, which is particularly beneficial on smaller displays or 

when users need to focus on detailed content in the central workspace, such as during 

data extraction or template configuration.  

 

Figure 5.4.1.1 Collapsed Navigation Sidebar 
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5.4.2 Template Manager 

The template management interface, as shown in Figure 5.4.2.1, allows users to view, 

edit, and organize templates efficiently. They can update ROI definitions, add or 

remove fields, and change metadata as needed. Templates can also be exported for 

backup or sharing with other users or imported into another system instance. The user 

interface presents a list of templates with relevant metadata like names and last edited 

dates, making it easy to locate and manage existing templates.  

 

 

Figure 5.4.2.1 Template Manager Screen 

To create a new template, user click on the “+” button at the bottom right of the screen. 

Figure 5.4.2.2 shows the starting point for template creation. Users input essential 

metadata for the template, including the template name, a short description, and the 

primary language of the document. Additional checkboxes let users indicate whether 

the template will include tables, barcodes, or checkboxes. These settings help the 

system prepare for more advanced extraction logic based on document structure. This 

information will help in LLM prompting and validation, where will be directly 

contributing to the overall accuracy of system. 
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Figure 5.4.2.2 Template Manager Screen - Create New Extraction Template 

After providing the template metadata, the user is prompted to upload a sample 

document image, as shown in 5.4.2.3. which becomes the reference layout. 

 

Figure 5.4.2.3 Template Manager Screen – Upload Template Image 
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Figure 5.4.2.4 shows an interactive interface displays the uploaded document and 

allows users to draw rectangular boxes over specific areas to define ROIs. Each box 

corresponds to a data field the user wants to extract. Users can zoom in and drag around 

the image for precision while defining ROIs. This visual mapping aligns the template 

with the actual document layout, enabling precise and structured data extraction. 

 

Figure 5.4.2.4 Template Manager Screen – Define Template Data and ROIs 

Once an ROI is created, users define its properties in a pop-up form, as shown in Figure 

5.4.2.5. These fields serve as guideline for LLM prompting and validation in Sieve  

Methodology. Fields include: 

• Field Key: A unique identifier (no spaces allowed). 

• Data Type: Such as string, number, or date. 

• Input Field Type: Optional classification (e.g., barcode, checkbox). This is 

important for regex check in Sieve methodology. 

• Validation Rules: Constraints like character count. 

• Description and Example: Optional notes to clarify field purpose. 
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This metadata enhances both validation and downstream processing accuracy. The user 

can choose to create more fields within the same ROI. For example, user can create 

postcode and country, which can be inferred from address, in the address ROI.  

 

Figure 5.4.2.5 Template Manager Screen – Define Field Properties 

If users input an invalid field key, such as one with spaces, they are immediately alerted, 

as showcased in Figure 5.4.2.6. 

 

Figure 5.4.2.6 Template Manager Screen – Error Message 
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Figure 5.4.2.7 shows a document image with ROIs fully defined and labelled. Edit icons 

(pencil-like icon) allow users to modify or delete any ROI. This final review step 

ensures all required fields are covered before saving the template. 

 

Figure 5.4.2.7 Template Manager Screen – Defined ROIs and Edit Buttons 

For efficiency, the system supports automatic template generation. Here, OCR and a 

large language model work together to extract text and intelligently identify ROIs 

without user input. This reduces setup time significantly and is especially useful for 

recurring or standardized forms. An example is shown in Figure 5.4.2.8, note that 

sensitive data has been covered by red box. 

 

Figure 5.4.2.8 Template Manager Screen – Auto Template Creation 
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The last screen in Figure 5.4.2.9 confirms that the template has been saved and is ready 

for use. It shows a visual preview of the mapped ROIs and offers navigation options: 

return to the template list or proceed directly to data extraction using the new template.  

 

Figure 5.4.2.9 Template Manager Screen – Successfully Created Template 

5.4.3 AI Model Manager 

The screen shown in Figure 5.4.3.1 is displayed when no AI models have been added 

to the system. It shows an empty model list and a red warning message prompting the 

user to add a model and API key before proceeding. 

 

Figure 5.4.3.1 AI Model Manager Screen – No API Key found 



CHAPTER 5 

Bachelor of Computer Science (Honours)  100 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 

Once models are added, the Model and API Manager screen lists them in a clean, 

scrollable format, such as in Figure 5.4.3.2. Each model entry displays its name, type 

(“Public” or “Custom”), and a hidden API key. The three-dot menu (toggle menu) next 

to each model allows users to interact with that model via options such as View API 

Key, Copy API Key, Edit, or Delete. This design promotes organized management of 

multiple models and offers quick actions for maintenance. 

 

Figure 5.4.3.2 AI Model Manager Screen – Toggle Menu Option 

This screen in Figure 5.4.3.3. appears when the user clicks the “+” button to add a new 

model and chooses the “Public Model” tab. The interface allows users to select a pre-

listed public model (e.g., GPT-4.1 or Gemini), enter an associated API key, and 

optionally set it as the default model. The default model is used for extraction if no 

other model is specified in a particular template or extraction task. Other model 

configuration for extraction task, for example, choice of model for fallback setting, can 

be managed through system settings. 
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Figure 5.4.3.3 AI Model Manager Screen – Add Public Model 

Figure 5.4.3.4 displays a screen that is for users who want to add a Custom Model, such 

as a private model hosted on Hugging Face, OpenRouter, or a proprietary endpoint. It 

includes fields for the model’s name, provider name, custom API URL, and an API 

key. Like the public model setup, users can also set a custom model as the default.  

 

Figure 5.4.3.4 AI Model Manager Screen – Add Custom Model 
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5.4.4 Input Source Setup 

The screen in Figure 5.4.4.1 serves as the central hub for managing all image input 

sources and scanner devices. It allows users to add, configure, and manage multiple 

types of sources such as Local Folder, Google Drive, OneDrive, Dropbox, Webcam, 

Scanner Device, and OSS Document Scanners (via WebDAV). When no input sources 

are configured, the list is empty and users are prompted to click the “+” button to add 

a new source. A dropdown menu appears, listing all supported source types.  

 

Figure 5.4.4.1 Input Source Setup Screen 

When a user selects a source type such as OSS Document Scanner, the screen 

transitions to a configuration form specific to that input type, just as in Figure 5.4.4.2. 

In this case, users are instructed to configure a connection by entering details such as 

Host URL, Username, Password, and Remote Directory. Additional instructional text 

provides step-by-step guidance, including how to set up the source and sync scanned 

documents with the system.  
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Figure 5.4.4.2 Input Source Setup Screen – Example Configuration 

Once input sources have been added, they are listed in a table format showing their 

name (e.g., “Google Storage”, “OSS Scanner”), last updated timestamp, connection 

status, and available actions. Example screen is shown in Figure 5.4.4.3. Users can click 

“Connect” to activate a source or “Delete” to remove it from the system. This 

overview provides users with immediate insight into which sources are available and 

which ones need attention (e.g., disconnected status).  

 

Figure 5.4.4.3 Input Source Setup Screen – Populated Source 
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5.4.5 System Settings 

The System Settings Screen as in Figure 5.4.5.1 provides users with centralized control 

over key system behaviours related to data extraction, template handling, model 

selection, and logging. They can manage the default auto-template matching mode, 

either is content-based which uses OCR and LLM for template detection, or barcode-

based which is more suitable for large volume of input with barcode value. They can 

also configure the fallback behaviour of the system when no template is match, and 

enable LLM Challenger and Referee mode. This screen is primarily used to configure 

how the system behaves when processing documents, ensuring consistent operation 

aligned with user preferences or organizational policies.  

 

Figure 5.4.5.1 System Settings Screen 

5.4.6 Data Processing 

Figure 5.4.6.1 shows the central dashboard for managing all ongoing or queued data 

extraction tasks. Each process is listed with details such as time created, the AI model 

selected, current progress, estimated time to completion, and overall status. Users can 

view the process details or delete a process. The interface supports parallel processing 

of up to four subprocesses, allowing efficient batch operations across multiple 

document sets. 
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Figure 5.4.6.1 Image Processing and Extraction Hub 

In Figure 5.4.6.2, a screen is displayed to allow users to initiate a new data extraction 

process. Images can be uploaded via drag-and-drop, and users configure the extraction 

by selecting an AI model (e.g., gemini-2.0-flash), choosing a template (manual or 

Auto), and choosing an output format (e.g., Excel .xlsx). The interface also shows 

warnings for low-quality images, readiness status, and estimated processing time. 

 

Figure 5.4.6.2 Data Extraction Screen 
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Once the extraction begins, the screen shown in Figure 5.4.6.3 displays real-time 

progress of the task. It shows how many images have been processed so far, a progress 

bar with percentage completed and estimated time remaining for the batch.  

 

Figure 5.4.6.3 Data Extraction Screen – Start Processing 

Once extraction is complete, this result screen depicted in Figure 5.4.6.4 shows a 

summary of the process, including the number of images processed, total processing 

time and the model used for extraction. A toggle labeled “Show Extracted Data” allows 

users to view the actual data within the interface. 

 

Figure 5.4.6.4 Data Extraction Screen – Result Screen 
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When the Show Extracted Data toggle is enabled, a table displays the extracted content 

in a structured format. An example is shown in Figure 5.4.6.6. Each row corresponds 

to a processed document, and columns represent extracted fields. This preview helps 

users verify results before downloading the final output file. 

 

Figure 5.4.6.5 Data Extraction Screen – Display Output 

This screen returns to the central hub after processes have completed, just as in Figure 

5.4.6.7. It now shows completed processes (with 100% progress) and any leftovers 

(unprocessed files). Users can resume interrupted jobs or review completed ones using 

the “Resume” and “View” buttons respectively. The hub simplifies task management 

by giving users control over pending, completed, or failed extractions. 
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Figure 5.4.6.6 Image Processing and Extraction Hub – Manage Process 

5.4.7 Past Output Documents 

The Output Documents section of the system provides a streamlined interface for 

managing files generated from the data extraction process. It allows users to view, 

search, sort, download, and delete past output files. The system supports multiple file 

formats such as XLSX, JSON, CSV, XML, TXT, and MD. As shown in Figure 5.4.7.1, 

the interface populates a table with metadata including the file name, type, timestamp, 

and actions for downloading or deleting. There are also filter dropdown for user to filter 

the file by latest file creation time, file type and file name. These features improve 

navigability, especially when dealing with extensive archives of output files. 
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Figure 5.4.7.1 Files populated in Output Documents Screen 

In Figure 5.4.7.2, the search bar is used to filter files by filename. Matching files are 

displayed instantly. 

 

Figure 5.4.7.2 Past Output Document Screen – File Search 
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When user click on view file button, the content of the file will be displayed in table 

form, as shown in Figure 5.4.7.3. 

 

Figure 5.4.7.3 Past Output Document Screen – View File Content 

5.4.8 System Output as Subsequent Input of Data Pipeline (API) 

The API Endpoint screen in this application enables the system to function as a service-

oriented component within a broader data pipeline. This interface allows users to start 

and stop an internal API server that listens for HTTP requests and responds with 

processed data extracted from images. This functionality is crucial for integrating this 

application into automated workflows, where output from the system can be used as 

input for other services or data processing stages, such as data validation, storage, 

analytics, or visualization platforms. 

The guideline, example request, example response format is displayed in the screen, as 

shown in Figure 5.4.8.1 and Figure 5.4.8.2. The system also displays the local IP 

(Internet Protocol) address and port (typically http://192.168.x.x:8000) through which 

the API is accessible for easier establishment of API connection. 
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Figure 5.4.8.1 API Endpoint Screen – Guideline Part I 

The “How to Access from Other Devices” section in the API Endpoint screen as 

illustrated in Figure 5.4.8.2 provides instructions for enabling external devices on the 

same local network to interact with the API. To make the API accessible beyond the 

local network, for example, to allow cloud services, remote developers, or external 

systems to send data, additional configuration is required.  

 

Figure 5.4.8.2 API Endpoint Screen – Guideline Part II 
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To use the API Endpoint feature, the user first initiates the server by clicking “Start 

Server”. Once active, the system will show a success message to inform the user. The 

user can then submit a POST request to the /extract_data/ endpoint with multipart/form-

data that includes a selected AI model, a predefined or custom template, and one or 

more image files. The server then processes the images using the specified parameters 

and returns the structured output in JSON format, which can be automatically 

forwarded or consumed by another component in the pipeline.  

 

Figure 5.4.8.3 Start API Endpoint Connection 

When the server is no longer needed, it can be cleanly shut down using the “Stop 

Server” button, as shown in Figure 5.4.8.4.  

 

Figure 5.4.8.4 Stop API Server 
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5.5 Implementation Issues and Challenges 

One of the core technical challenges in this project lies in efficiently managing 

concurrency through threads and asynchronous operations. The system is designed to 

handle multiple image input sources simultaneously while remaining responsive 

through a GUI and managing different threads for different image processing processes. 

This requires various background threads to monitor sources and process image in real-

time. However, concurrency can introduce complications such as race conditions, 

thread contention, and data corruption, especially when shared resources like output 

files or logs are accessed concurrently. To mitigate this, thread locks are employed, but 

their improper use can lead to bottlenecks or deadlocks, potentially degrading 

performance and responsiveness.  

Another significant challenge is maintaining high data accuracy and reliability, 

particularly when working with noisy or low-quality document images. Input images 

often vary in lighting, skew, resolution, or contain artifacts such as handwriting, stamps, 

or shadows. These inconsistencies can significantly affect the results of OCR and 

downstream LLM-based analysis. Moreover, due to the layered nature of the pipeline, 

where each component (preprocessing, template matching, prompt generation, etc.) 

influences the final outcome, evaluating the true accuracy against ground truth becomes 

complex. Even small tweaks to a single stage can ripple across the system, altering 

outputs and making it difficult to isolate which part of the pipeline caused an 

improvement or degradation in performance. This presents a challenge for testing and 

validation, as continuous tuning is required without guaranteed reproducibility of 

results. 

Finally, building a data extraction pipeline that is flexible enough to support diverse 

document types and dynamic input is inherently complex. Different forms, such as 

invoices, waybills, and forms, have varied layouts, field structures, and content types. 

Ensuring this flexibility without overcomplicating the architecture demands a modular 

design, where components can be extended or swapped with minimal disruption. 

However, this extensibility must be balanced with maintaining consistency in output 

format and behavior, which can be particularly challenging as new document types or 

data structures are introduced into the system. 
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5.6 Concluding Remark 

The system implementation outlined in this chapter reflects a well-structured and 

thoughtfully engineered solution, meticulously developed to meet the project’s 

performance, usability, and integration goals. From hardware provisioning and 

software architecture to modular API design and GUI responsiveness, the 

implementation demonstrates a strong alignment with practical deployment 

considerations. Key strengths include the extensibility of the template and model 

management systems, the seamless setup of diverse input sources, and the intelligent 

use of multimodal LLMs for robust data extraction. The integration of image 

preprocessing, concurrent task handling, and structured data output has positioned the 

system as both flexible and production ready. While implementation challenges, 

particularly around concurrency and input variability, posed complexity, these were 

met with sound design practices and iterative refinement. 

All in all, this implementation serves as a solid foundation for enterprise-level 

automation in document processing. It demonstrates the viability of combining classical 

software engineering principles with advanced AI models to deliver a user-friendly, 

high-performing, and scalable solution tailored for real-world use cases. 
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CHAPTER 6  SYSTEM EVALUATION AND DISCUSSION 

In this chapter, we present a comprehensive evaluation of the system, detailing the 

verification and validation strategies employed. It covers functional and non-functional 

testing, presents a general discussion on how the system performed during testing, 

highlighting major achievements, benchmarks, and areas of concern. The chapter 

culminates in an overall performance evaluation and a discussion of project challenges. 

This section  

6.1 System Verification and Validation Strategy Overview 

For this project, a system developed to automate structured data extraction from 

document images, verification and validation were carried out. Verification focuses on 

ensuring the system is developed according to specifications, while validation confirms 

that the final product fulfils its intended purpose and meets user needs. This system 

processes sensitive and variable data, making accuracy, reliability, and usability 

essential. The chosen V&V strategy ensures both technical soundness and real-world 

applicability of the solution. 

The verification and validation approach for this project comprises a comprehensive 

mix of: 

• Functional Testing: To ensure the core features work as intended under various 

conditions. It includes use case testing and input handling testing. 

• Non-Functional Testing: To assess performance, reliability, usability, and 

effectiveness, especially for image processing and data extraction accuracy. 

• Acceptance Testing: To validate the system against user expectations and real-

world usage scenarios involving diverse document types and formats. 

These validation efforts confirmed that this project delivers meaningful value and 

performs reliably in its target environments.  
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6.2 System Performance Metrics 

The system performance for this project will be defined by a set of key metrics that 

target improvements in areas such as accuracy, processing speed, efficiency, and 

usability. These metrics shown in Table 3.3.4.1 ensure that the system meets the 

operational needs of the users and performs reliably in various use cases, including 

high-volume processing scenarios. This project has been tested for deployment at 

GDEX Berhad from February 2025, during which user feedback will be collected to 

evaluate the system’s performance. 

Metrics Measurement Goal 

Data Extraction Accuracy  

The system shall achieve a data 

extraction accuracy of at least 

95% for all supported data types, 

including handwritten text, 

barcodes, and metadata. 

 

Accuracy will be measured by 

comparing 200 extracted data 

against a ground truth dataset 

(provided by GDEX sdn bhd), 

assessing the percentage of 

correctly extracted 

information (e.g., correct text 

recognition for postcode, 

correct barcode values). 

Continuous improvement to 

exceed 98% accuracy by 

preprocessing techniques and 

incorporating user feedback 

for error correction. 

Single Image Processing Time  

The system shall process 

individual images in less than 5 

seconds, from upload to final data 

output, including all 

preprocessing, quality checks, and 

data extraction steps. 

Time will be measured from 

the moment an image is 

uploaded until the processed 

data is available for download 

or passed to the next module. 

Reduce the processing time to 

3 seconds per image by 

optimizing algorithms, 

improving server-side 

processing power, and 

streamlining data flow. 

Batch Processing Speed 

The system shall process a batch 

of 1,000 images within 10 

minutes, ensuring consistent 

performance even under high 

load. 

Total processing time will be 

measured from the start of the 

batch upload to the completion 

of data extraction and output 

for the entire batch. 

Enhance parallel processing 

capabilities and optimize the 

distribution of workload across 

servers to achieve a target of 

processing 1,000 images in 

under 8 minutes 

Token Usage in LLM 

Operations 

The system shall minimize token 

usage during LLM operations, 

keeping the average token count 

Token usage will be monitored 

per text extraction task, with 

adjustments made to the 

processing algorithms to stay 

within target limits. 

Further optimize LLM 

operations to reduce token 

usage by 10-15%, contributing 

to cost savings in processing. 
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per processed text extraction 

under 1,000 tokens. 

Error Handling and Recovery 

The system shall automatically 

detect and recover from errors, 

with less than 1% of processing 

tasks requiring manual 

intervention. 

The frequency and type of 

errors encountered during 

processing will be tracked, 

with a focus on automated 

recovery procedures. 

Enhance error detection 

algorithms and recovery 

protocols to reduce manual 

intervention to below 0.5%. 

User Interface Responsiveness 

The web application interface 

shall respond to user inputs (e.g., 

image uploads, data extraction 

criteria selection) in under 1 

second. 

Interface responsiveness will 

be tested across different 

devices and network 

conditions, ensuring consistent 

performance. 

Optimize front-end 

performance to reduce latency, 

achieving a target response 

time of under 0.5 seconds for 

most user actions. 

Table 6.2.1 System Performance Metrics 

By defining and targeting these performance improvements, the system will not only 

meet current user requirements but also adapt to future needs, ensuring long-term 

usability and efficiency. 
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6.3 Functional Testing Setup and Result 

This section presents detailed breakdown of dynamic testing procedures and outcomes. 

Functional testing is a type of dynamic software testing that validates the system against 

its functional requirements. It is used in this project to ensure that the application 

behaves as expected by testing each feature and function based on input and output. 

The goal is to confirm that the software performs the intended operations correctly and 

consistently. Most of the test cases will be performed on GDEX’s CN billing copy, as 

in Figure 6.3.1. 

 

Figure 6.3.1 GDEX Berhad CN Billing Copy Template 

6.3.1 Use Case Testing 

In this section, it depicts how use case testing was carried out to validate system 

behaviour against predefined use cases to ensure coverage of functional requirements. 

The tests cover the end-to-end system workflow, giving confidence that this project can 

behave correctly across its major user journeys. The use cases selected for testing are 

based on those defined in Chapter 3.4. 

Use Case Test 01 

Test Design Item TD01 – Manage Template Testing 

Related Use Case ID UC01  

Objective To ensure all functionalities of the Template Manager work correctly 

,  including creating, viewing, editing, deleting, importing, and 
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exporting. This test ensures that templates can be managed effectively 

for data extraction. 

Test Coverage and Outcome 

Test Case 

ID 

Test Condition/ Data Expected Result Actual Result Pass/ 

Fail 

TC-01-

001 

Main Flow –  

Launch Template Manager screen 

and clicks on (+) button 

System navigates to 

respective sections. 

System navigates 

correctly. 

Pass 

TC-01-

002 

Alternative Flow – 

Create Template  

User clicks (+), fills details, 

uploads image, creates ROIs, 

saves. 

Template is saved 

and appears in hub 

Template saved 

and displayed 

Pass 

TC-01-

003 

Alternate Flow – 

Edit Template 

User clicks edit, modifies fields, 

and saves 

Template updated 

and saved 

Changes 

reflected in hub 

Pass 

TC-01-

004 

Alternate Flow – 

Delete Template 

User clicks delete and confirms 

System deletes 

template 

Template 

removed from 

list 

Pass 

TC-01-

005 

Alternate Flow – 

View Template 

User clicks view button 

System displays 

template with 

sorting 

Details shown 

with sorting 

options 

Pass 

TC-01-

006 

Alternate Flow –  

Export Template 

User clicks export, chooses 

location 

System saves file to 

location 

Exported file 

found in location 

Pass 

TC-01-

007 

Alternate Flow –  

Import Template 

User uploads template and image 

Template imported 

and displayed 

New template 

appears in hub 

Pass 

Table 6.3.1.1 Use Case Test 01 

Use Case Test 02 

Test Design Item TD02 – Manage AI Model Testing 

Related Use Case ID UC02 

Objective To verify the system’s ability to correctly create, view, edit, and delete 

AI models used for document processing. It confirms that AI models 

can be configured and managed in compliance with operational needs. 

Test Coverage and Outcome 
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Test Case 

ID 

Test Condition/ Data Expected Result Actual Result Pass/ 

Fail 

TC-02-

001 

Main Flow –  

Launch AI Model Config 

User launches AI Model Config and 

clicks a button 

System navigates 

to section 

Section displayed Pass 

TC-02-

002 

Alternate Flow – 

Add AI Model  

User clicks (+), fills details, selects 

model, toggles default, saves 

AI model is saved Model appears in 

list 

Pass 

TC-02-

003 

Alternate Flow – 

View AI Model  

User clicks view, searches/sorts 

System displays 

sorted/search 

results 

Correct results 

shown 

Pass 

TC-02-

004 

Alternate Flow – 

Edit AI Model  

User edits and saves AI model 

Updated AI model 

is saved 

Changes 

reflected in list 

Pass 

TC-02-

005 

Alternate Flow – 

Delete AI Model  

User deletes a model and confirms 

Model is removed Deleted model no 

longer in list 

Pass 

Table 6.3.1.2 Use Case Test 02 

Use Case Test 03 

Test Design Item TD03 – Manage Input Source Testing 

Related Use Case ID UC02 

Objective To validate the system’s capability to add, connect, and delete various 

input sources such as scanners, webcams, or cloud storage. It ensures 

seamless integration and availability of input sources for document 

ingestion. 

Test Coverage and Outcome 

Test Case 

ID 

Test Condition/ Data Expected Result Actual Result Pass/ 

Fail 

TC-03-

001 

Main Flow –  

Launch Input Source Setup  

User opens Input Source Setup 

System displays 

Input Source Setup 

screen 

Screen displayed Pass 

TC-03-

002 

Alternate Flow –  

Add Input Source  

User adds source, tests connection, 

and saves 

Input source is saved Source appears in 

list 

Pass 
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TC-03-

003 

Alternate Flow – 

Connect Input Source 

User clicks connect 

System connects and 

shows status 

Status shown 

correctly 

Pass 

TC-03-

004 

Alternate Flow – 

Delete Input Source  

User deletes source and confirms 

Source is removed Source no longer 

in list 

Pass 

Table 6.3.1.3 Use Case Test 03 

Use Case Test 04 

Test Design Item TD04 – Process Image and Extract Data Testing 

Related Use Case ID UC04 

Objective To test the complete image processing and data extraction pipeline, 

including template and model selection, image pre-processing, data 

recognition, sieve approach, challenger, referee and structured output. 

It ensures accurate and reliable data extraction from images. 

Test Coverage and Outcome 

Test Case 

ID 

Test Condition/ Data Expected Result Actual Result Pass/ 

Fail 

TC-04-

001 

Main Flow – 

Extract Data  

User uploads image, selects 

model/template, clicks extract 

Data extracted and 

displayed 

Output shown 

with data 

Pass 

TC-04-

002 

Alternate Flow – 

Template Not Found  

Prompt and button to 

create template 

Message and 

button shown 

Pass 

TC-04-

003 

Alternate Flow – 

API Model Not Found  

Prompt and button to 

create model 

Message and 

button shown 

Pass 

TC-04-

004 

Alternate Flow  

Low Image Quality  

Image quality fails 

Image processed by 

system after retry 

Rectified and 

reprocessed 

Pass 

TC-04-

005 

Alternate Flow – 

Low Quality Persists  

Image rejected Rejected with 

error 

Pass 

TC-04-

006 

Alternate Flow – 

No Template Matched  

System uses fallback 

or returns null 

Fallback 

triggered or 

skipped 

Pass 

TC-04-

007 

Alternate Flow – 

 Job interrupted 

System retries, 

prompts resume 

Auto retry or 

manual resume 

Pass 

Table 6.3.1.4 Use Case Test 04 
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Use Case Test 05 

Test Design Item TD05 – Access Past Output Documents & Results Testing 

Related Use Case ID UC05 

Objective To ensure users can effectively access, search, sort, download, and 

delete previously extracted output documents and results. This 

supports audit trails, result review, and data management. 

Test Coverage and Outcome 

Test Case 

ID 

Test Condition/ Data Expected Result Actual Result Pass/ 

Fail 

TC-05-

001 

Main Flow –  

View Output Documents User 

views, sorts, and downloads files 

Files displayed, 

sorted, and 

downloaded 

Files listed and 

downloadable 

Pass 

TC-05-

002 

Alternate Flow – 

File Not Found  

File missing 

Error message 

shown 

Proper error 

displayed 

Pass 

Table 6.3.1.5 Use Case Test 05 

Use Case Test 06 

Test Design Item TD06 – Serve API Endpoint Testing 

Related Use Case ID UC06 

Objective To verify that the API server for external clients is correctly initialized, 

serves data extraction requests, and handles server failures gracefully. 

This ensures interoperability with third-party systems via the API. 

Test Coverage and Outcome 

Test Case 

ID 

Test Condition/ Data Expected Result Actual Result Pass/ 

Fail 

TC-06-

001 

Main Flow – 

Start API Server  

User launches screen and clicks 

Start Server 

API endpoint is 

active 

Server running 

and status shown 

Pass 

TC-06-

002 

Alternate Flow – 

Server Failure  

Error and 

troubleshooting 

shown 

Error displayed 

correctly 

Pass 

Table 6.3.1.6 Use Case Test 06 
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6.3.2 Input Validation Testing 

This section demonstrates how various types of input are validated to assess the 

system’s capability to accurately process and extract meaningful data from each format. 

Input validation testing plays a critical role in verifying that the system can handle 

diverse input scenarios reliably and maintain data integrity throughout the extraction 

process. To ensure comprehensive coverage and resilience, the system was tested 

against a wide range of input types. Table 6.3.2.1 summarizes the tested input types 

along with their respective outcomes, providing insight into the system’s performance 

across different data conditions, while Table 6.3.2.2 listed all the test data used for the 

testing. 

 

Test Case 

ID and 

Types of 

Inputs 

Test Condition/ Data Expected Output Actual Output Pass/ 

Fail 

IVTC-001 

Printed Text 

Upload a GDEX billing 

copy with printed text – 

Figure 6.3.2.1 

 

Values of detected text – 

“MY35000371293” 

MY35000371293 Pass 

IVTC-002 

Typed Text 

Upload an image with type 

text – Figure 6.3.2.2 

Values of detected text – 

“Test Case ID” 

Test Case ID Pass 

IVTC-003 

Handwritten 

Text 

Upload a GDEX billing 

copy with handwritten 

notes – Figure 6.3.2.3 

Values of detected text - 

“10300” 

10300 Pass 

IVTC-004 

1D Barcode 

Upload a GDEX billing 

copy with a 1D barcode – 

Figure 6.3.2.4 

Values of extracted 

barcode –  

MY35000371293 

MY35000371293 Pass 

IVTC-005 

2D Barcode 

Upload a QR code image – 

Figure 6.3.2.5 

 

Values of extracted 

barcode - 12345678 

12345678 Pass 

IVTC-006 

Checkboxes 

and Form 

Elements 

Upload a GDEX billing 

copy with checkboxes in 

various states (checked, 

unchecked) – 

Figure 6.3.2.6 

Ticked values –  

“NON-DOCUMENT” 

NON-

DOCUMENT 

Pass 
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IVTC-007 

Logos 

Upload a GDEX billing 

copy with GDEX logo– 

Figure 6.3.2.7 

Organization name - 

GDEX 

GDEX  

IVTC-008 

Symbols 

Upload an image with a 

hand and pen symbol – 

Figure 6.3.2.8 

Symbol meaning – “Sign 

here” 

“Sign Here” or 

“Signature 

Required” 

Pass 

IVTC-009 

Existence of 

Signature 

Upload GDEX billing copy 

with several signatures– 

Figure 6.3.2.9 

Presence of signatures – 

Yes, Yes, No 

Yes, Yes, No  Pass 

IVTC-010 

Existence of 

Stamp/ 

Chop 

Upload GDEX billing copy 

with one stamp – 

Figure 6.3.2.10 

Presence of signatures –  

Yes 

Yes Pass 

IVTC-011 

Value of 

character-

based 

Stamp 

Upload GDEX billing copy 

with one stamp – 

Figure 6.3.2.11 

Value of the stamp –  

“DO RETURN  

SILA KEMBALIKAN 

DO SELEPAS 

TANDATANGAN & 

COP” 

DO RETURN  

SILA 

KEMBALIKAN 

DO SELEPAS 

TANDATANGAN 

& COP 

Pass 

IVTC-012 

Short 

description 

of picture 

content 

Upload GDEX billing copy 

– Figure 6.3.2.12 

 

A short description of 

what the document is –  

“GDEX waybill 

document” 

GDex waybill 

document 

Pass 

Table 6.3.2.1 Key Input Validation Test 

Test Case ID Test Data (Image) 

IVTC-001 

Printed Text 
 

Figure 6.3.2.1 Test Data for IVTC-001 

IVTC-002 

Typed Text 

 

Figure 6.3.2.2 Test Data for IVTC-002 
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IVTC-003 

Handwritten 

Text 
 

Figure 6.3.2.3 Test Data for IVTC-003 

IVTC-004 

1D Barcode 

 

Figure 6.3.2.4 Test Data for IVTC-004 

IVTC-005 

2D Barcode 

 

 

Figure 6.3.2.5 Test Data for IVTC-005 

IVTC-006 

Checkboxes and 

Form Elements 
 

Figure 6.3.2.6 Test Data for IVTC-006 

IVTC-007 

Logos 

 

Figure 6.3.2.7 Test Data for IVTC-007 

IVTC-008 

Symbols 
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Figure 6.3.2.8 Test Data for IVTC-008 

IVTC-009 

Existence of 

Signature 

The signature contains sensitive and private information. For confidentiality 

purposes, it has been obscured with boxes in Figure 6.3.2.9 as part of this report. 

 

Figure 6.3.2.9 Test Data for IVTC-009 

IVTC-010 

Existence of 

Stamp/ Chop 

 

Figure 6.3.2.10 Test Data for IVTC-010 

IVTC-011 

Value of 

character-based 

Stamp 

 

Figure 6.3.2.11 Test Data for IVTC-011 

IVTC-012 

Short description 

of picture content 
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Figure 6.3.2.12 Test Data for IVTC-012 

Table 6.3.2.2 Input Validation Test Data 

The input validation test cases listed under IVTC-001 to IVTC-012 in Table 6.3.2.1 

demonstrate the versatility of the system’s image processing and data extraction 

capabilities across a wide range of input types. These tests assess how accurately the 

system interprets and extracts textual, symbolic, and visual elements from documents 

such as GDEX billing copies. Each test case targets a unique type of data, from printed 

and handwritten text to barcodes, checkboxes, stamps, and even visual content 

understanding. 

For instance, the system correctly identified values from various sources like printed 

tracking numbers (IVTC-001), typed text (IVTC-002), and handwritten notes (IVTC-

003). This indicates that the LLM engine is well-calibrated for mixed input quality. 

Furthermore, the successful decoding of 1D and 2D barcodes (IVTC-004 and IVTC-

005) confirms that barcode scanners are integrated and functioning accurately within 

the workflow. 

Tests like IVTC-006 through IVTC-012 demonstrate the system’s advanced 

capabilities beyond basic OCR. It correctly interpreted checkbox states, identified the 

presence and value of stamps and signatures, and could describe the overall document 

content, a feature indicative of higher-level AI tasks such as image classification and 

semantic understanding. The system also showed success in symbol interpretation (e.g., 

recognizing a pen-and-hand icon as a signature prompt), which adds value in 

automating document handling workflows. 

Overall, the test outcomes show that the system achieves a high degree of input 

versatility and content accuracy. Its ability to handle different text types, visual cues, 

and document structures makes it suitable for real-world deployment in logistics, 

business documentation, and compliance workflows, where variability in input format 

is common. The Pass results across nearly all test cases suggest the system is 

performing as intended, enhancing automation and reducing manual review needs. 
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Types of input that cannot be extracted: 

• Watermark 

• Hidden Text 

• Seals 

• Value of Signature 

• Value of Stamp 

While the system demonstrates strong capabilities in extracting structured data from 

various visual and textual inputs, there are still certain types of content that it cannot 

reliably extract. These include watermarks, hidden text, seals, and the actual values of 

signatures and stamps. 

Watermarks, by design, are faint background elements meant to avoid interference with 

the main content; however, this subtlety makes them difficult for OCR engines to detect 

or extract without confusing them with noise. Similarly, hidden text, text embedded 

invisibly within files or obscured in images, falls outside the scope of standard visual 

recognition and cannot be extracted unless made explicitly visible. Seals, often 

embossed or faintly imprinted on paper, present a challenge due to their low contrast 

and absence of clear contours, which standard image processing techniques cannot 

easily decipher. 

Additionally, while the system can detect the presence of a signature or stamp (i.e., 

whether it exists), it lacks the ability to interpret their semantic or textual values. This 

means it can flag that a stamp or signature is present but cannot determine the name 

signed or the message within the stamp. This limitation highlights the challenges of 

extracting detailed information from non-standardized and highly variable visual 

inputs, and it may require advanced AI models or manual review in workflows that 

depend on these elements. 
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6.4 Non-Functional Testing Setup and Result 

In this section, non-functional testing, which is an assessment of system characteristics 

that define quality attributes, was carried out. It was conducted using 200 sample billing 

forms from GDEX Berhad, providing critical insights into the accuracy and 

performance of the system designed to extract unstructured data from images.  

6.4.1 Testing Setup 

To prove the effectiveness of the approach, three LLMs, including qwen-vl-max, 

gemini-2.0-flash and gpt-4.1-2025-04-14 are used. We chose the following three 

multimodal LLMs for their leading performance on vision-language benchmarks and 

broad availability: 

• qwen-2.5-vl: a 2.5 billion-parameter vision-language model known for strong 

numeric and text-layout understanding 

• gemini-2.0-flash: Google’s multimodal model optimized for document tasks 

• gpt-4.1-2025-04-14: the latest GPT-4 variant with enhanced image-

understanding capabilities 

Figure 6.4.1 shows the example billing copy that contains the data field that needs to 

be extracted.  

 

Figure 6.4.1 Data that needs to be extracted from billing copy 
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Table 6.4.1. lists all the types of data extraction and description for each field. Note that 

most of the data is handwritten data. 

Fields Type of Extraction Description 

CN Number Printed Text/ Barcode 13 digits as billing copy ID 

Destination 

Postcode 

Handwritten Text 5 – 9 digits for postcode number 

Country 

Handwritten Text  

(Implied from Address) 

ISO 3166-1 alpha-2 format, e.g. MY 

 

Type 

Checkbox Value that is checked/ ticked for type of 

consignment 

Pieces Handwritten Text Number of pieces of the parcel 

Account Number Blurry printed/ handwritten text 7 digits for account number 

Signature/ Chop Presence of signature/chop Existence of sign/ chop 

Table 6.4.1 Type of data extraction and description for each field 

Note that all non-functional testing described in this chapter was conducted using the 

Sieve Methodology without the inclusion of the LLM Challenger and LLM Referee 

components, due to their high token consumption. These components are intended for 

scenarios where absolute accuracy is prioritized over resource efficiency, making them 

suitable for use cases where cost is not a primary concern. 

6.4.2 Data Extraction Accuracy 

Data extraction accuracy is an evaluation of the correctness and precision of system 

outputs. The system’s accuracy varied significantly depending on the data fields being 

extracted and the methods applied. The tables provided present the accuracy results for 

different data fields when processed through two approaches: directly feeding the 

images into the LLM without processing (direct approach) and passing the images 

through our system (Sieve processing pipeline). The comparison between these two 

approaches highlights the impact of our system framework on data extraction accuracy.  

In the direct approach, the raw sample images were passed straight into each LLM for 

data extraction with prompts requesting seven target fields. No image pre-processing 

(e.g., OCR or layout analysis) was applied. Table 6.4.2.1. depicts the accuracy of 

different data fields if the sample images are directly fed into LLM without processing. 
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        Model Accuracy 

Fields 

Accuracy (%) 

qwen-2.5-vl gemini-2.0-flash gpt-4.1-2025-04-14 

CN Number 91.00 91.00 80.50 

Destination Postcode 77.00 79.00 82.50 

Country 93.50 92.00 89.50 

Type 55.50 81.50 57.00 

Pieces 90.50 57.50 86.50 

Account Number 82.50 86.50 66.00 

Signature 81.50 83.00 80.50 

Average 81.64 81.50 77.50 

Table 6.4.2.1 Accuracy of different data fields with direct approach 

Based on Table 6.4.2.1, the accuracy varies significantly across different fields, with 

some fields like “CN number” and “Country” having relatively high accuracy, while 

others like “Account Number” and “Type” show poor performance. This suggests that 

the direct approach may work well for certain types of information that are consistently 

presented but struggles with others that are more variable or complex. It reveals that 

LLMs alone struggle to consistently extract structured information from raw images, 

particularly when the layout is complex, or the text is not well isolated. 

Additionally, a notable problem is that even when the LLM is prompted with “Return 

output in JSON format,” the output may vary in format or include extra details beyond 

the JSON structure, or the values does not conform to the required output criteria. It 

introduces extra output token usage. Besides, these inconsistencies can cause issues for 

subsequent modules that may not be able to process the non-standard output. This 

potential issue highlights the importance of having to implement strategies to mitigate 

hallucinations, such as incorporating additional validation steps like Sieve Approach. 

Overall, the LLMs – gemini-2.0-flash, qwen-2.5-vl and gpt-4.1-2025-04-14 – perform 

reasonably good in extracting the data from images. 

In this project, which leveraged the full data processing framework, the images 

underwent several processing steps, including image preprocessing, image quality 

checks, barcode scanning, cropping, prompt engineering, and the application of the 

sieve approach after being processed by the LLM.  
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Table 6.4.2.2. shows the accuracy of different data fields passing through our system 

after applying our full approach, with three LLMs.  

        Model Accuracy 

Fields 

Accuracy (%) 

qwen-2.5-vl gemini-2.0-flash gpt-4.1-2025-04-14 

CN Number 100.00 100.00 100.00 

Destination Postcode 92.50 95.50 94.50 

Country 99.50 98.50 99.00 

Type 94.00 95.50 89.00 

Pieces 99.00 97.00 99.00 

Account Number 83.50 94.50 69.50 

Signature 97.00 97.50 95.50 

Average 95.07 96.93 92.36 

Table 6.4.2.2 Accuracy of different data fields using system pipeline 

        Model Accuracy 

Approach 

Average Accuracy (%) 

qwen-2.5-vl gemini-2.0-flash gpt-4.1-2025-04-14 

Direct Approach 81.64 81.50 77.50 

System Pipeline 95.07 96.93 92.36 

Increased Accuracy 13.43 15.43 14.86 

Table 6.4.2.3 Comparison of average increased accuracy for 3 LLMs 

Notably, Table 6.4.2.2 shows that after implementing our system pipeline, the accuracy 

of the data extraction can go up to 96.93% with the use of gemini-2.0-flash. The results 

in Table 6.4.2.3 also highlight the substantial improvement in average data extraction 

accuracy achieved through the implementation of the system pipeline across three 

different LLMs, qwen-2.5-vl, gemini-2.0-flash, and gpt-4.1-2025-04-14.  For the qwen-

2.5-vl model, accuracy increased from 81.64% to 95.07%, resulting in a gain of 13.43 

percentage points. Similarly, gemini-2.0-flash showed an even more pronounced 

improvement, rising from 81.50% to 96.93%, yielding the highest boost of 15.43 

percentage points among the models tested. gpt-4.1-2025-04-14 also saw a significant 

jump, improving from 77.50% to 92.36%, an increase of 14.86 percentage points. These 

figures consistently affirm that the pipeline not only enhances raw LLM output but also 

contributes to the reliability of information extracted from complex document formats.  
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For better visualization, Figure 6.4.2.1 presents a bar chart comparing the model 

accuracy between the direct approach and the proposed system pipeline across three 

different LLMs. 

 

Figure 6.4.2.1 Bar chart to compare accuracy of approaches across 3 LLMs 

Table 6.4.2.4 presents a comparison of the average accuracy achieved by the direct 

approach versus the system pipeline. 

          Model Accuracy 

Fields 

Average Accuracy (%) 

Direct Approach System Pipeline 

CN Number 87.50 100.00 

Destination Postcode 79.50 94.17 

Country 91.67 99.00 

Type 64.67 92.83 

Pieces 78.17 98.33 

Account Number 78.33 82.50 

Signature 81.67 96.67 

Average 80.21 94.79 

Table 6.4.2.4 Average accuracy of different data fields using both approaches 

Most data field accuracies yielded dramatically improved result after applying the full 

approach, according to Table 6.4.2.3 and Table 6.4.2.4. The direct approach had the 

accuracy at 71.54%. After applying the Sieve approach, accuracy further increased 
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to 86.15%. The high initial accuracy highlights that the LLM handled numerical data 

well, and the Sieve approach further refined these results, leading to near-perfect 

accuracy. The average accuracy for fields like “CN Number,” “Country,” and “Pieces” 

reached or neared 100%, while even more challenging fields such as “Type” and 

“Postcode” saw considerable improvements. This suggests that the proposed pipeline 

effectively identified and corrected inaccuracies or ambiguities that the initial 

processing may have missed, thereby enhancing the data extraction process. It is 

especially effective for handwritten data such as postcode. 

The increase in accuracy also indicates that the Sieve approach was successful in 

resolving ambiguities or correcting misinterpretations, such as distinguishing between 

similar data types or improving the accuracy of checkbox selections (type), where the 

accuracy jumped from 64.67% in the direct approach to 92.83% in the processed one. 

Notably, the accuracy for the destination postcode field improved from 79.50% to 

94.17 % after applying the Sieve approach. This improvement suggests that the Sieve 

method fine-tuned the extraction process by verifying numerical data and correcting 

minor errors missed in the initial pass. It also indicates that the combination of layout 

awareness, targeted image regions, and smart validation (retries via the Sieve process) 

greatly enhances the LLMs’ ability to interpret and extract precise field data. 

For better visualization, a bar chart for field-level accuracy comparison between the 

approaches is shown in Figure 6.4.2.2. 

 

Figure 6.4.2.2 Bar chart to compare field-level accuracy of approaches 
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Based on the differences in accuracy illustrated, the increased accuracy and 

performance improvements after applying the system framework is shown in Table 

6.4.2.5. These improvements are calculated using the simple formula provided below: 

Increased Accuracy (Percentage Increase) =  

𝐹𝑖𝑛𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

Fields Average Increased Accuracy (%) 

CN Number 12.50 

Destination Postcode 14.67 

Country 7.33 

Type 28.17 

Pieces 20.17 

Account Number 4.17 

Signature 15.00 

Average 14.57 

Table 6.4.2.5 Overall Accuracy Improvement 

The experimental results from both the direct and processed approaches as shown in 

Table 6.4.2.5 clearly demonstrate the effectiveness of the proposed system pipeline in 

improving data extraction accuracy across various fields. 

The CN number’s accuracy improved from 87.5% to 100% after processing, with 

12.50% increased accuracy. This improvement can be attributed to the implementation 

of the barcode scanning method, which is highly reliable for reading standardized 

barcodes. The direct approach, relying solely on the LLM, likely struggled with image 

noise or inconsistencies, leading to lower accuracy. 

The destination postcode accuracy improved from 79.50% to 94.17%, which has 

14.67% increased accuracy. The preprocessing steps, particularly cropping to focus on 

relevant areas and reducing the complexity of the input, helped the LLM better identify 

and extract the postcode, which is often a critical piece of information. The 

improvement reflects the effectiveness of focusing the LLM’s attention on specific 

image regions. However, there are some cases where the postcode extraction was more 

variable. For postcodes directly presented in the designated field, the cropping approach 

coupled with LLM analysis yielded good results.  
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However, accuracy dropped when postcodes were embedded within larger address 

blocks, especially if more handwriting was involved. Some postcodes were incorrectly 

identified or missed entirely, leading to a drop in accuracy.  

Country is usually implied from the postcode or the address, using LLM context 

understanding ability. It works surprisingly well, where the accuracy has increased from 

91.67% to 99.00%, contributing to a near 100% accuracy. 

The account number’s accuracy saw a marginal improvement from 78.33% to 82.50%. 

The total increased accuracy is 4.17%.  This small increase indicates that while 

preprocessing aids in reducing some errors, the system still faces challenges with this 

field, potentially due to variability or the LLM’s difficulty in distinguishing between 

similar-looking digits. Errors included misreading account numbers, particularly when 

the quality of the image was poor. 

On the other hand, the accuracy of signature recognition improved significantly, 

increasing from 81.67% to 96.67%. This marks a 15.00% gain in accuracy 

improvement. This enhancement is largely attributed to the image preprocessing steps, 

particularly the precise labeling and cropping of signature regions, which enabled the 

LLM to more effectively identify and interpret the presence of signatures within the 

designated areas. 

The extracted fields can be grouped to calculate the average accuracy for different types 

of data extraction. CN number and account number are considered as printed text, while 

postcode, country (derivable), and pieces are handwritten text. Table 6.4.2.6 presents 

the average accuracy for each data type, derived from the detailed results in Table 

6.4.2.4. 

Accuracy Difference (Percentage Increase %) = 

𝐹𝑖𝑛𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

               Model Accuracy 

Type of Data 

Average Accuracy (%) 

Direct Approach System Pipeline Difference 

Printed Text 82.92 91.25 8.33 

Handwritten Text 83.11 97.17 14.06 

Checkbox 64.67 92.83 28.16 
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Presence of Signature 81.67 95.50 13.83 

Table 6.4.2.6 Average accuracy for each type of data for extraction 

For improved clarity and comparison, a bar chart is presented in Figure 6.4.2.3, 

illustrating the average accuracy across different types of data extraction.  

 

Figure 6.4.2.3 Bar Chart of Average Accuracy for Different Types of Data Extraction 

The results presented in Table 6.4.2.5 demonstrate the comparative accuracy 

improvements in extracting various types of data when using the proposed System 

Pipeline versus a Direct Approach. This analysis is crucial in evaluating the system’s 

real-world performance across different content categories, such as printed text, 

handwriting, checkboxes, and signature detection. 

The accuracy improved from 82.92% to 91.25%, a gain of 8.33%. This indicates that 

even for relatively well-structured and machine-friendly data like printed text, the 

pipeline (which includes preprocessing, OCR refinement, and prompt engineering) 

enhances the LLM’s extraction capability by providing cleaner, more context-aware 

inputs. 

Accuracy of handwritten text recognition jumped from 83.11% to 97.17%, showing a 

14.06% improvement. This category is traditionally challenging due to 
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inconsistencies in handwriting, but the system pipeline, likely through better region 

targeting and preprocessing, helps the LLM interpret these fields more reliably. 

The most dramatic gain is observed here: from 64.67% to 92.67%, marking a 28.00% 

improvement. Checkboxes often have subtle visual cues that are not text-based, so 

preprocessing (e.g., ROI cropping, binarization) and specialized classification prompts 

likely made a huge difference in enabling the LLM to distinguish marked versus 

unmarked boxes. 

Accuracy improved from 81.67% to 96.67%, reflecting a 15.00% increase. Signatures 

often appear in specific zones with highly varied visual patterns. The pipeline’s ability 

to segment these areas and apply tailored prompts or detection logic enables the LLM 

to recognize the presence or absence of a signature with much higher precision. 

All in all, the analysis shows that preprocessing steps significantly improve the 

accuracy of data extraction across most fields, particularly for structured data like CN 

numbers, postcodes, and types. It successfully achieves up to 96.93% accuracy and 

increased overall accuracy by approximately 13.43 – 15.43%, depending on the LLMs. 

The improvements underscore the importance of preprocessing in helping the LLM 

focus on relevant parts of the image, reducing noise, and increasing clarity. It might be 

owing to the sieve approach that was introduced to mitigate these issues.  However, 

challenges remain for fields involving complex or ambiguous data particularly with 

handwritten entries and overlapping text, such as account numbers, where further 

refinement is needed. Overall, the results highlight the effectiveness of the current 

system and suggest areas for future development to achieve even higher accuracy and 

reliability. 
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6.4.3 Output Delivery Time 

In this section, testing of output delivery time was conducted for measurement of 

system responsiveness and latency. The output delivery time assessment in the project 

evaluates how long each approach, direct versus pipeline, takes to process and return 

results for a fixed dataset (200 images).   

Table 6.4.3.1 and Table 6.4.3.2 show the system performance efficiency across 

different models and strategies. The difference between the processing time over 3 

models are compared, where the time difference it is calculated as below: 

𝑇𝑖𝑚𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑇𝑖𝑚𝑒 − 𝐷𝑖𝑟𝑒𝑐𝑡 𝑇𝑖𝑚𝑒  

                      Time 

Approach 

Processing Time per image (s) 

qwen-2.5-vl gemini-2.0-flash gpt-4.1-2025-04-14 

Direct Approach 4.36 3.43 5.16 

System Pipeline 3.91 3.82 3.60 

Time Difference (s) -0.45 0.39 -1.56 

Average Time Improvement (%) -10.32 11.37 -30.23 

Table 6.4.3.1 Processing time of 3 LLMs using different approaches 

Approach Average Processing Time (s) 

Direct Approach 4.32 

System Pipeline 3.78 

Time Difference (s) -0.53 

Table 6.4.3.2 Average processing time and difference 

𝑇𝑖𝑚𝑒 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑅𝑎𝑡𝑖𝑜 =  (
𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑇𝑖𝑚𝑒

𝐷𝑖𝑟𝑒𝑐𝑡 𝑇𝑖𝑚𝑒
) ×  100 =

3.83

4.32
 ×  100 = 𝟖𝟖. 𝟔𝟔  

𝑇𝑖𝑚𝑒 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 (%) =  
(𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑇𝑖𝑚𝑒 − 𝐷𝑖𝑟𝑒𝑐𝑡 𝑇𝑖𝑚𝑒)

𝐷𝑖𝑟𝑒𝑐𝑡 𝑇𝑖𝑚𝑒
 ×  100

=
(3.78 − 4.32)

4.32
 ×  100 =  −𝟏𝟐. 𝟓𝟎%  

According to Table 6.4.3.1, the results show mixed performance across the models. 

While models like qwen-2.5-vl and gpt-4.1-2025-04-14 experience significant 

improvements in processing time with the pipeline (time saved: 0.45s and 1.56s 
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respectively), gemini-2.0-flash exhibits a slight increase (0.39s slower in pipeline 

mode). Notably, gpt-4.1-2025-04-14 has achieved a 30.23% reduction in processing 

time relative to the direct execution path, which means it completes tasks significantly 

faster than previous baseline method, despite Sieve Methodology likely takes more time 

to be conducted due to extra reprocessing needed. On average, the system pipeline 

achieves a faster processing time of  3.78 seconds, compared to 4.32 seconds in the 

direct approach. This equates to a time difference of 0.53 seconds saved per 200 images, 

showing that the pipeline improves processing speed overall despite the extra 

processing steps. 

Table 6.4.3.2 further quantifies this finding. The time efficiency ratio is calculated to 

be 88.66%, suggesting that the system pipeline requires only ~89% of the time needed 

by the direct method. However, the time efficiency improvement, computed as a 

percentage decrease in time, stands at -12.50%. This indicates a 12.50% reduction in 

processing time, meaning the system pipeline delivers results faster on average, while 

also offering improvements in accuracy (as shown in previous analyses). 

However, in the system, after we adopted thread management, asynchronous 

processing and rate limit for batch processing, we successfully reduce the time for 

processing 200 images to total 108.87 seconds. Table 6.4.3.3 shows the total average 

processing time and average processing time per image after applying batch processing, 

while Table 6.4.3.4 shows the average processing time per image for different 

approaches. 

Model qwen-

2.5-vl 

gemini-2.0-flash gpt-4.1-2025-04-14 

Total Processing Time (s) 258.24 252.91 108.87 

Average Processing Time per 

image (s) 

1.2912 1.2996 0.5439 

Table 6.4.3.3 Total and average time per image for batch processing 

                               Processing Time 

Approach 

Processing Time per image (s) 

qwen-2.5-vl gemini-2.0-flash gpt-4.1-2025-04-14 

Direct Approach 4.36 3.43 5.16 

System Pipeline 1.29 1.30 0.54 
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Time Difference (s) -3.07 -2.13 -4.62 

Time Efficiency Improvement (%) -70.39 -62.11 -89.46 

Table 6.4.3.4 Average time per image for batch processing for different approaches 

For clearer visualization, Figure 6.4.3.1 presents a bar chart comparing the average 

processing time per image during batch processing between the direct approach and the 

system pipeline across three different LLMs. 

 

Figure 6.4.3.1 Bar chart of processing time for batch processing 

Approach Average Processing Time (s) 

Direct Approach 4.32 

Batch Processing Approach 1.04 

Time Difference -3.28 

Table 6.4.3.5 Average processing time for difference approaches 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑇𝑖𝑚𝑒 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 (%)

=  
(𝐵𝑎𝑡𝑐ℎ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 − 𝐷𝑖𝑟𝑒𝑐𝑡 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ 𝑇𝑖𝑚𝑒)

𝐷𝑖𝑟𝑒𝑐𝑡 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ 𝑇𝑖𝑚𝑒
 ×  100

=
(1.04 − 4.32)

4.32
 ×  100 =  −𝟕𝟓. 𝟗𝟔%  

The results shown in Table 6.4.3.3, Table 6.4.3.4. and Table 6.4.3.5 highlight the 

substantial improvements achieved through the implementation of a batch processing 

technique, specifically involving thread management, asynchronous processing, and 

rate-limiting within the system. These optimizations are designed to process multiple 



REFERENCES 

Bachelor of Computer Science (Honours)  142 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 

images in parallel without overwhelming the system or the LLM API, leading to better 

throughput and more efficient use of compute resources. 

Before batch optimization, the average processing time per image was between 3.60 to 

5.16 seconds depending on the model (as noted in Table 6.4.3.4). After the batch 

enhancements, qwen-2.5-vl achieved an average processing time of 1.2912 seconds per 

image. It is due to rate limitations; it reaches the limit before completing the entire 

processing task. However, it still achieves reduction of 2.13 seconds and time efficiency 

improvements of 62.11% compared to its previous result. 

gemini-2.0-flash reached 1.2996 seconds per image. Similarly, rate constraints prevent 

it from completing processing before the limit is reached. Despite the rate limit, it 

process the image 3.07 seconds faster than the direct approach, with a time efficiency 

improvement of 70.39%. 

gpt-4.1-2025-04-14 significantly outperformed the others with only 0.5439 seconds per 

image, processing 200 images in just 108.87 seconds total. It is because it had a higher 

rate limit in the testing environment, meaning it could handle more concurrent or rapid 

requests without being throttled. This allowed it to complete the task (200 images in 

108.87 seconds) much faster, more in line with its true processing capability. Thus, it 

has the highest time difference of 4.62 seconds with time efficiency improvement of 

89.46%, which is considered very efficient. 

This demonstrates a drastic reduction in processing time, which achieved an average 

of 75.96% time savings compared to its original pipeline runtime (~4.32s per image 

previously). For qwen-2.5-vl and gemini-2.0-flash, their performance is bottlenecked 

not by speed, but by access restrictions. Once they reach a set threshold of allowed 

requests per second or minute (set by the LLM provider), further processing is delayed 

or throttled. So even if the model could process faster, it gets paused or slowed down 

artificially. 

The effectiveness of this batch strategy suggests that concurrent and asynchronous 

execution is critical in high-throughput scenarios. Threading enables the system to 

utilize CPU resources more effectively, while asynchronous calls prevent I/O wait 

times from blocking the pipeline. The use of rate limiting also avoids overloading the 

LLM API and keeps processing within allowable request thresholds.  



REFERENCES 

Bachelor of Computer Science (Honours)  143 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 

6.4.4 Resource Utilization 

The resource utilization evaluation of this project focuses on two key metrics: token 

usage and associated cost. These are critical for understanding the operational 

efficiency when using different LLMs in both a direct approach and a pipeline-based 

approach. Table 6.4.4.1, Table 6.4.4.2 and Table 6.4.4.3 shows the token usage of 3 

LLMs using different approaches. 

                           

Approach  

Token 

Direct Approach System pipeline 

qwen-2.5-vl 
gemini-2.0-

flash 

gpt-4.1-

2025-04-

14 

qwen-

2.5-vl 

gemini-

2.0-flash 

gpt-4.1-

2025-

04-14 

Prompt Token 1359.69 2362.97 1479.13 830.2 1998.99 998.2 

Completion 

Token 

91.97 77.69 77.91 74.23 97.98 42.38 

Total Token 1451.66 2440.66 1557.04 904.43 2096.97 1040.58 

Table 6.4.4.1 Token of 3 LLMs using different approaches 

𝑇𝑜𝑘𝑒𝑛 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑡𝑜𝑘𝑒𝑛𝑠 𝑝𝑒𝑟 𝑖𝑚𝑎𝑔𝑒 − 𝐷𝑖𝑟𝑒𝑐𝑡 𝑡𝑜𝑘𝑒𝑛𝑠 𝑝𝑒𝑟 𝑖𝑚𝑎𝑔𝑒  

 𝑇𝑜𝑘𝑒𝑛 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 (%) =  
(𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑇𝑜𝑘𝑒𝑛 − 𝐷𝑖𝑟𝑒𝑐𝑡 𝑇𝑜𝑘𝑒𝑛)

𝐷𝑖𝑟𝑒𝑐𝑡 𝑇𝑜𝑘𝑒𝑛
 ×  100 

                   Token 

Approach 

Total Token Usage per Image 

qwen-2.5-vl gemini-2.0-flash gpt-4.1-2025-04-14 

Direct Approach 1451.66 2440.66 1557.04 

System Pipeline 904.43 2096.97 1040.58 

Token Difference -547.23 -343.69 -516.46 

Token Efficiency Improvement (%) -37.70% -14.08% -33.17% 

Table 6.4.4.2 Comparison of token usage of 3 LLMs using different approaches 

Approach Average Token Used 

Direct Approach 1816.45 

System Pipeline 1347.33 

Token Difference -469.13 

Table 6.4.4.3 Average total token used for different approaches 

𝑇𝑜𝑘𝑒𝑛 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑅𝑎𝑡𝑖𝑜 =  (
𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑇𝑜𝑘𝑒𝑛𝑠

𝐷𝑖𝑟𝑒𝑐𝑡 𝑇𝑜𝑘𝑒𝑛𝑠
) ×  100 =

1347.33

1816.45
 ×  100 = 𝟕𝟒. 𝟏𝟕  
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Token usage of LLM often comes with a cost. Table 6.4.4.4 shows the cost of different 

models and the reduction after applying the pipeline, and the formula to calculate 

average cost per image and cost difference is also detailed below. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑖𝑚𝑎𝑔𝑒 ($)

= 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑜𝑚𝑝𝑡 𝑡𝑜𝑘𝑒𝑛 × 𝑀𝑜𝑑𝑒𝑙 𝑖𝑛𝑝𝑢𝑡 𝑝𝑟𝑖𝑐𝑒

+ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑡𝑜𝑘𝑒𝑛 ×  𝑀𝑜𝑑𝑒𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑟𝑖𝑐𝑒  

𝐶𝑜𝑠𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑖𝑚𝑎𝑔𝑒 − 𝐷𝑖𝑟𝑒𝑐𝑡 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑖𝑚𝑎𝑔𝑒  

                                  Cost 

Approach 

Average cost per image ($) 

qwen-2.5-vl gemini-2.0-flash gpt-4.1-2025-04-14 

Direct Approach 0.001117 0.000267 0.003582 

System Pipeline 0.000688 0.000239 0.002334 

Cost Difference -0.000429 -0.000028 -0.001248 

Cost Efficiency Improvement (%) -38.43 -10.58 -34.84 

Table 6.4.4.4 Comparison of cost for 3 LLMs using different approaches 

The average cost per image across 3 LLM is illustrated in table 6.4.4.5. 

Approach Average cost per image across 3 models ($) 

Direct Approach 0.001655 

System Pipeline 0.001087 

Token Difference -0.000568 

Table 6.4.4.5 Average total cost used for different approaches 

𝐶𝑜𝑠𝑡 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑅𝑎𝑡𝑖𝑜 =  (
𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝐶𝑜𝑠𝑡

𝐷𝑖𝑟𝑒𝑐𝑡 𝐶𝑜𝑠𝑡
) ×  100 =

0.001087

0.001655
 ×  100 = 𝟔𝟓. 𝟔𝟖 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐶𝑜𝑠𝑡 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 (%) =  
(𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝐶𝑜𝑠𝑡 − 𝐷𝑖𝑟𝑒𝑐𝑡 𝐶𝑜𝑠𝑡)

𝐷𝑖𝑟𝑒𝑐𝑡 𝐶𝑜𝑠𝑡
 ×  100

=
(0.001087 − 0.001655)

0.001655
 ×  100 =  −𝟑𝟒. 𝟑𝟐%  

The comparison in Table 6.4.4.3 between the direct and system pipelinees demonstrates 

that the pipeline strategy significantly reduces total token consumption across all three 

LLMs. When comparing the approaches, the direct approach resulted in the higher 

token usage and, consequently, the highest cost. For example, according to Table 
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6.4.4.1,  in the case of qwen-2.5-vl, the total token count per image dropped from 

1451.66 to 904.43 tokens, indicating a reduction of over 500 tokens. Similarly, gpt-4.1-

2025-04-14 showed a reduction from 1557.04 to 1040.58 tokens. On average, across 

all three models, the direct approach consumed 1816.45 tokens per image, whereas the 

system pipeline used only 1347.33. The direct approach consumes higher token usage 

due to the larger image size and lack of preprocessing, which caused the LLM to process 

more data, thus increasing the total token count.  

Despite variations across models, by using the system, it translates to a token efficiency 

improvement of approximately 37.70% with qwen-2.5-vl model and 34.84% with 

gpt-4.1-2025-04-14 model, as shown in Table 6.4.4.2. This improvement is largely 

attributed to pre-processing mechanisms such as prompt refinement, ROI targeting, and 

intelligent prompt generation, which help limit the context sent to the model and thus 

reduce the prompt size. This substantial decrease highlights the economic benefits of 

the preprocessing and Sieve approach. It is important to note, however, that token usage 

and calculation differ between models. For instance, gemini-2.0-Flash typically 

consumes more tokens when processing images and exhibited a more modest 10.58% 

reduction, which is still notable given its inherently high token usage. 

From a cost perspective, the reductions in token usage naturally led to lower processing 

costs. Table 6.4.4.5 shows that, on average, the cost per image decreased from 

$0.001655 (direct approach) to $0.001087 (system pipeline), yielding an average 

saving of $0.000568 per image. This represents a cost efficiency improvement of 

approximately 34.31% on average, almost directly in line with the token efficiency 

gains. Among the three models, qwen-2.5-vl model benefitted the most in terms of 

absolute cost reduction, due to its higher saving of token usage. In fact, it has a cost 

efficiency improvement of around 38.43%, hence proving that it is especially 

important for LLM that has higher pricing or higher token usage to adopt the measures. 

These savings become substantial when scaled across thousands or millions of images, 

validating the system pipeline as a more resource-conscious strategy. 

In conclusion, the project’s pipeline implementation not only boosts accuracy, as 

demonstrated in earlier tables, but also proves to be far more efficient in terms of 

resource consumption—both in token usage and monetary cost. This efficiency directly 

supports scalability and cost-effectiveness in production environments.  
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6.5 User Acceptance Testing (UAT) 

User Acceptance Testing (UAT) was conducted in collaboration with a logistics 

company to validate the end-to-end integration of the data extraction system into their 

billing and documentation workflow. The testing was designed in two distinct phases, 

aligning with their operational migration strategy from manual data entry to full 

automation, as illustrated in the integration plan in Figure 6.5.1. 

 

Figure 6.5.1 GDEX Berhad Process Flow Map with System Integration 

In Phase 1 (Temporary Plan), the system was deployed in a controlled testing 

environment where the OCR engine extracted data from billing copies returned to the 

HQ Manifest team. The Business Analyst Team was responsible for validating the 

accuracy of the OCR output by cross-referencing it against manually keyed-in data. 

This allowed real-time benchmarking of the automated system’s extraction capabilities 

while collecting feedback on its performance. The goal of this phase was not full 

automation but to verify that the system could reliably extract core data fields and meet 

predefined accuracy thresholds. UAT during this stage revealed critical insights into 

field recognition consistency, especially for handwritten entries and low-resolution 

documents, allowing for targeted refinement of template settings and prompt 

engineering.  
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Phase 1 has been successfully tested, and feedback was gathered from the development 

team. Based on testing with thousands of data samples, the system achieved 

approximately 92–95% accuracy in postcode detection and 99% accuracy in country 

recognition. These results are considered stable and reliable, especially given the 

variability and complexity of handwritten inputs. 

In Phase 2 (Future Plan), following improvements from the initial phase, the system 

entered a broader rollout aimed at operational integration. The system was configured 

to automatically extract data from incoming scanned billing copies and evaluate data 

completeness. If the extracted data met accuracy conditions (i.e., passed validation 

using the Sieve Approach), it will be automatically inserted into the Billing System. 

For any incomplete or questionable outputs, the system routed these to the Billing Team 

for manual verification. This ensures that the automation process did not compromise 

billing integrity. UAT in this phase involved real billing records and live system 

connections, validating the full pipeline, from data ingestion and extraction to billing 

system updates. Additionally, the future plan includes redeploying ~20 HQ Manifest 

staff to other departments, reinforcing the system’s long-term impact in reducing 

manual labor and operational costs.  

Overall, UAT confirmed the system’s readiness for production deployment. It validated 

not only technical accuracy but also usability and integration with existing business 

processes, setting the foundation for full-scale digital transformation of document 

handling in the logistics workflow. 
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6.6 Project Challenges 

Despite the promising results, several challenges and limitations were identified during 

the development and testing phase, including handling handwritten data, balancing 

accuracy and processing time, token usage and cost management and the complexity of 

data structure. 

One of the most significant challenges encountered during the development was 

accurately processing handwritten data, particularly in fields like account numbers. 

Handwriting can be highly variable, with differences in style, legibility, and alignment, 

making it difficult for the LLM and even traditional OCR techniques to interpret 

correctly. Despite the preprocessing and Sieve approach, the accuracy in these fields 

remained relatively low, highlighting the limitations of current methods in dealing with 

unstructured, handwritten inputs. 

Balancing accuracy and processing time was hard in implementing the framework. 

The Sieve approach, while effective in improving accuracy, introduced additional 

processing time due to its iterative nature. This posed a challenge in weighing the need 

for high accuracy with the requirement for timely data processing. In time-sensitive 

applications, this trade-off could become a significant hurdle, potentially limiting the 

system’s effectiveness in scenarios requiring rapid processing. 

Another challenge was managing token usage and associated costs, with risk to 

scalability. The testing showed that while preprocessing reduced token usage, the Sieve 

approach added to the total token count, slightly increasing the cost per image. This 

presents a challenge in scaling the system for large-scale operations, where even small 

increases in cost per image could accumulate into substantial expenses. 

The system struggled with data fields that contained complex or ambiguous 

structures, such as overlapping text or inconsistent data formatting. For example, the 

system had difficulty accurately interpreting account number when the label overlapped 

with column line or when the format varied between images. These complexities 

require more sophisticated parsing and context understanding, which current methods 

may not fully support. 
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6.7 Overall Performance and Objective Evaluation 

The system evaluation in this chapter demonstrates a successful realization of the 

project’s primary and sub-objectives, particularly in ensuring consistent and accurate 

data extraction from unstructured document images. The overarching aim was to 

develop a scalable and reliable LLM-based framework that mitigates the inherent 

variability of language models and enables seamless integration into enterprise-level 

logistics and data processing workflows. The outcomes of the system verification, 

functional and non-functional testing, and real-world user acceptance testing 

collectively affirm the project’s effectiveness in delivering on this promise. 

From a performance perspective, the framework achieved a significant improvement in 

data extraction accuracy. The average accuracy increased from 80.21% using the direct 

LLM approach to 94.79% when processed through the complete pipeline, which 

includes the Sieve methodology. This improvement of approximately 14.57 

percentage points, representing a 34.83% performance gain, aligns well with the 

target of at least a 10% improvement in accuracy. High accuracy was achieved 

particularly for fields such as CN Number (100%), Country (99%), and Signature 

Presence (96.67%), affirming the soundness of the framework in high-stakes scenarios 

where reliability is critical. 

In terms of integration and output consistency, the system successfully addressed the 

variability of LLM outputs. Through mechanisms like prompt engineering, targeted 

cropping, and structured formatting enforcement via the Sieve method, the framework 

ensured that outputs conformed to predefined schemas suitable for downstream 

systems. These safeguards not only mitigated hallucinations and formatting 

inconsistencies but also ensured that the system outputs could be directly consumed by 

applications in logistics without further manual intervention, meeting the goal of 

effortless incorporation of LLM capabilities. 

Efficiency was another area of substantial progress. The system’s average processing 

time per image improved from 4.32 seconds (direct) to just 1.04 seconds with optimized 

batch processing, achieving an average of 75.96% time efficiency improvement and 

highest of 89.46%. This was made possible through innovations like asynchronous 

processing, thread management, and API rate control, which enhanced throughput and 
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scalability, thus fulfilling the objective of reducing processing time and resource 

consumption by at least 25%. Additionally, token usage was reduced by highest of 

37.70% on average across models, resulting in proportional cost savings of 38.43%, 

making the solution more economically viable for enterprise-scale deployment. 

Real-world applicability was confirmed through User Acceptance Testing (UAT) 

conducted in collaboration with a logistics firm. During controlled and operational 

rollout phases, the system consistently delivered high-accuracy outputs (up to 99% for 

certain fields) and supported integration into live billing systems. It facilitated partial 

and then full automation of previously manual workflows, enabling significant 

reductions in human labor and error rates. This not only validated the technical 

capabilities but also confirmed the usability and business value of the system. 

In conclusion, the project met and, in several cases, exceeded its defined objectives. 

The system reliably extracted structured data from complex, variable inputs such as 

handwritten notes and form elements, reduced reliance on manual intervention, and 

optimized efficiency both in processing time and resource consumption. While some 

challenges remain for specific fields (e.g., account number recognition from poorly 

printed text), the framework provides a solid foundation for further refinement.  

6.8 Concluding Remark 

In summary, the system evaluation confirms that the proposed solution successfully 

fulfils its design objectives, demonstrating strong performance in both accuracy and 

efficiency. Through rigorous functional, non-functional, and user acceptance testing, 

the system has proven its ability to reliably extract structured data from a variety of 

unstructured sources, significantly outperforming baseline LLM approaches. The 

implementation of preprocessing techniques, the Sieve methodology, and batch 

optimization collectively contributed to enhanced accuracy, reduced processing time, 

and lower token usage. These advancements establish the framework as a scalable, and 

production-ready solution for real-world integration in logistics and similar data-

intensive domains. Overall, the project represents a compelling blueprint for enterprise-

grade LLM integration, especially in logistics and document-heavy industries. The 

evaluation highlights both the achievements and remaining challenges, offering 

valuable insights for continued refinement and future deployments. 
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CHAPTER 7   CONCLUSION AND RECOMMENDATION 

This section concludes the report by summarizing the key achievements of the project, 

reflecting on its limitations, and identifying opportunities for future improvements. It 

highlights the practical contributions of the system, particularly its applicability to real-

world challenges in the logistics sector and other industries that rely on accurate and 

efficient data extraction from unstructured sources. 

 

7.1 Conclusion 

The project “Large Language Model Application Integration for Extracting 

Unstructured Data” addresses the critical challenge of LLM integration in automating 

the extraction of meaningful and structured information from unstructured data sources, 

particularly images, which are widely used across various industries such as logistics, 

healthcare, and finance. The problem revolves around the difficulty of accurately and 

efficiently extracting meaningful information from unstructured sources via LLM 

integration. This challenge is compounded by the non-deterministic nature of LLMs, 

which can produce inconsistent outputs, making their integration into existing systems 

particularly difficult. Besides, the existing LLM-based data extraction system are often 

resource-heavy, especially when applied to image inputs. 

The motivation behind this project is the need to bridge the gap between the advanced 

capabilities of LLMs and the practical demands of industries that require precise and 

reliable data processing, with lower cost. To achieve this, the project proposed the 

development of a framework that integrates LLMs into traditional data processing 

pipelines, ensuring that the output is both accurate and consistent. 

The proposed solution involves integrating Large Language Models (LLMs) into data 

processing frameworks to enhance the accuracy and consistency of data extraction. The 

methodology includes a full pipeline of data preparation, data extraction and analysis 

and data post-processing. One of the novel contributions of this project is the 

introduction of the “Sieve Methodology,” a new approach designed to address the 

inherent unpredictability of LLMs. This methodology involves multiple iterations of 

validation, comparison, and refinement of the data extracted by LLMs, ensuring that 

outputs are reliable and suitable for downstream processing. This innovation is 



REFERENCES 

Bachelor of Computer Science (Honours)  152 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 

particularly valuable for industries that concern about precision. It allows the 

integration of LLMs within the proposed framework, providing a solution for the 

automated extraction of unstructured data, particularly in high-stakes environments. 

The project achieved significant measurable results. Comprehensive testing and 

evaluation revealed a significant achievement in data extraction accuracy, by up to 

96.93% accuracy, alongside a notable up to 89.46% improvement in processing time 

and 37.70% reduction in token usage compared to baseline method. These results 

demonstrate that the project’s objectives were successfully met, particularly in 

improving efficiency, accuracy, and cost-effectiveness. Besides, these improvements 

also collectively demonstrate the system’s potential for real-world deployment, 

particularly in high-stakes environments such as logistics, billing, and automated record 

management. 

Besides, a key part derived from this project is the dual-functionality system, which 

allows the integration of LLMs as both a standalone tool for direct user interaction and 

as an intermediate module within automated workflows. This flexibility makes the 

system adaptable to a wide range of use cases, offering industries a powerful tool to 

enhance operational efficiency and reduce manual labour. 

Despite its success, the system has some limitations, such as difficulties in handling 

highly illegible handwriting and limited multi-language support. These challenges 

present opportunities for future development, including the integration of advanced 

handwriting recognition models, support for diverse document formats, and 

deployment in broader operational contexts. 

In essence, the project successfully connects AI capabilities with the practical needs of 

industries dealing with unstructured data. The developed system not only meets the 

project’s initial objectives but also sets the stage for broader adoption of AI-driven 

solutions, contributing to a more automated and efficient future across various sectors. 

7.2 Future Considerations and Recommendations 

While the current system has met its primary objectives, there are several areas that 

warrant further exploration to enhance its performance, adaptability, and scalability in 

future iterations. One of the key considerations is the improvement of handwriting 
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recognition accuracy. Although the existing solution performs well on moderately 

legible text, it faces challenges when processing poorly written or stylized handwriting. 

Integrating advanced OCR-LLM trained specifically on diverse handwriting samples 

could significantly enhance recognition reliability across various document types. 

Another important recommendation is to introduce active learning and feedback 

mechanisms. By allowing users to verify and correct extracted outputs within the 

interface, the system could collect valuable real-time data to retrain or fine-tune the 

LLM and validation components. This iterative learning approach would not only 

increase the system’s accuracy over time but also enable better adaptability to document 

variations and evolving use cases in dynamic environments like logistics. 

Looking ahead, one of the most promising avenues for enhancing the current system is 

the integration of Retrieval-Augmented Generation (RAG). RAG combines the 

generative capabilities of LLMs with an external retrieval mechanism, allowing the 

model to ground its responses in relevant documents or datasets. By incorporating 

RAG, the system could dynamically retrieve supporting content, such as templates, 

glossary terms, domain-specific rules, or historical data, from a structured knowledge 

base or database during inference. In the context of document processing and 

information extraction, this hybrid approach could significantly improve both the 

accuracy and contextual relevance of the outputs. 

Expanding the framework’s support for multilingual documents is also a valuable 

direction for future work. Many logistics and enterprise systems operate in multilingual 

contexts, and enabling the extraction of data from documents written in languages other 

than English would significantly broaden the system’s applicability. Incorporating 

translation modules or training language-specific LLM pipelines could address this 

need effectively. 

Lastly, from a deployment perspective, migrating the system to a cloud-based 

infrastructure would greatly enhance its scalability and accessibility. Cloud 

deployment would support real-time document processing at scale, offer integration via 

RESTful APIs, and allow seamless updates and monitoring. It would also enable 

organizations to leverage the system without requiring local setup, making adoption 

faster and more flexible.  
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