FINANCIAL DISTRESS DETECTION USING ENSEMBLE LEARNING
BY
PHOEBE WONG HUI LEI

A REPORT
SUBMITTED TO
Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of
BACHELOR OF COMPUTER SCIENCE (HONOURYS)
Faculty of Information and Communication Technology

(Kampar Campus)

FEB 2025

COPYRIGHT STATEMENT

© 2025 Phoebe Wong Hui Lei. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the requirements
for the degree of Bachelor of Computer Science (Honours) at Universiti Tunku
Abdul Rahman (UTAR). This Final Year Project report represents the work of the
author, except where due acknowledgment has been made in the text. No part of this
Final Year Project report may be reproduced, stored, or transmitted in any form or
by any means, whether electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the author or UTAR, in

accordance with UTAR's Intellectual Property Policy.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

I would like to express thanks and appreciation to my supervisor, Dr Tong Dong Ling who has
given me this bright opportunity to engage research in financial distress detection using
ensemble learning. Besides that, she has given me a lot of guidance in order to complete this
project. When | was facing problems in this project, the advice from them always assists me in

overcoming the problems. Again, a million thanks to my supervisor.

ii
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

Financial distress prediction is a crucial role, as an “early warning” for a company to address
with the financial risk including restructuring the financial strategies and managing the
operating costs effectively. Over time, several approaches have been developed for financial
distress predictions, which are methods based on the financial ratios, single classification
model and ensemble learning. However, few challenges have been found out from the previous
approaches such as the imbalance datasets, limitations on the financial ratios and the auditor
biases on selecting financial ratios. In this thesis focuses on ensemble learning are known to
capture large and complex datasets and provide more robust result. The aim of the project is to

identify the optimal ensemble learning technique in detecting financial distress risk.

Area of Study: Financial distress detection, ensemble learning
Keywords: Financial distress detection, ensemble learning, financial ratios, bagging, stacking,

boosting

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

TABLE OF CONTENTS

TITLE PAGE [
COPYRIGHT STATEMENT I
ACKNOWLEDGEMENTS i
ABSTRACT iv
TABLE OF CONTENTS Y
LIST OF FIGURES viil
LIST OF TABLES IX
LIST OF SYMBOLS X
LIST OF ABBREVIATIONS Xi
CHAPTER 1 INTRODUCTION 1
1.1 Problem Statement and Motivation 1
1.2 Objectives 2
1.3 Project Scope and Direction 2
1.4 Contributions 2
1.5 Report Organization 3
CHAPTER 2 LITERATURE REVIEW 4
2.1 Traditional approach 4
2.2 Machine learning approach 7
2.3 Ensemble learning approach 8
CHAPTER 3 SYSTEM MODEL (FOR RESEARCH-BASED 12
PROJECT)
3.1 System Design Diagram 12
3.2 Timeline for FYP 2 20
CHAPTER 4 SYSTEM DESIGN
4.1 System Block Diagram 21
4.2 Hardware and Software Specifications 22

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.3 Weak Learners Architecture
4.3.1 Logistic Regression
4.3.2 Decision Tree

CHAPTER 5 EXPERIMENT/SIMULATION (FOR RESEARCH-

BASED PROJECT)

5.1 Hardware Setup

5.2 Software Setup

5.3 Setting and Configuration

5.4 System Operation (with Screenshot)

5.5 Implementation Issues and Challenges

5.6 Concluding Remark

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

6.1 System Testing and Performance Metrics
6.2 Testing Setup and Result

6.3 Project Challenges

6.4 Objectives Evaluation

6.5 Concluding Remark

CHAPTER 7 CONCLUSION AND RECOMMENDATION
7.1 Conclusion

7.2 Recommendation

REFERENCES
APPENDIX
POSTER

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

23
24

26
26
27
28
56
56

57

64
74
74
75

76

76

77

81
103

Vi

Figure Number

Figure 2.2.1
Figure 2.2.2

Figure 2.3.1
Figure 2.3.2
Figure 2.3.3

Figure 2.3.4

Figure 3.1.1
Figure 3.1.2
Figure 3.1.3

Figure 3.1.4
Figure 3.1.5
Figure 3.1.6

Figure 3.1.7
Figure 3.2.1
Figure 4.1

Figure 4.3.1.1
Figure 4.3.1.2

Figure 4.3.2
Figure 5.4.1
Figure 5.4.2
Figure 5.4.3
Figure 5.4.4
Figure 5.4.5
Figure 5.4.6

LIST OF FIGURES

Title

Comparison between machine learning models

Comparison of auc score between machine learning models

and z score models

Prediction Error Rate of SVM and logistic regression
Flow chart of cost-sensitive stacking ensemble learning

Prediction performance CSStacking after feature selection

for time periods t-m

Prediction performance CSStacking without feature

selection for time periods t-m
Flow of the system methodology

Comparison of Decision Tree and Naive Bayes

Comparison of machine learning models in financial

distress prediction

Comparison of Logistics Regression and ANN

Sample architecture of bagging ensemble learning
Sample architecture of adaboosting (adaptive boosting)

ensemble learning

Sample architecture of stacking ensemble learning

Timeline for FYP2

System Block Diagram

Sigmoid function

Equation of logistic regression

Architecture of decision tree

Checking for dtype for the variables

Checking for data distribution on X94 and X85
Checking for missing or null values

Remove insignificant features

Imbalance datasets

Feature selection

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Page

10

12
14

15
16
17

18
20
21
23
23
24
28
30
30
31
31
32

vii

Figure 5.4.7.1(a)

Figure 5.4.7.1(b)

Figure 5.4.7.1©

Figure 5.4.7.1(d)

Figure 5.4.7.2(a)

Figure 5.4.7.2(b)

Figure 5.4.7.2(C)

Figure 5.4.7.2(d)

Figure 5.4.7.3(a)
Figure 5.4.7.3(b)

Figure 5.4.7.3©

Figure 5.4.7.3(d)

Figure 5.4.8.1(a)
Figure 5.4.8.1(b)

Figure 5.4.8.2

Figure 5.4.8.3

Figure 5.4.8.4

Modeling in bagging ensemble learning environment
(decision tree)

Output from modeling in bagging ensemble learning
environment (decision tree)

Output from testing in bagging ensemble learning
environment (decision tree)

Output from extracting significant feature via permutation
importance and z-score

Modeling in adaboosting ensemble learning environment
(decision tree)

Output from modeling in adaboosting ensemble learning
environment (decision tree)

Output from testing in adaboosting ensemble learning
environment (decision tree)

Output from extracting significant feature via permutation
importance and z-score

Modeling in stacking ensemble learning environment
Output from modeling in stacking ensemble learning
environment

Output from testing in stacking ensemble learning
environment (decision tree)

Output from extracting significant feature via permutation
importance and z-score

Extracting overlapping significant feature

Combining significant features within a particular base
learner

Modeling SVM classifier in training and testing with a
variety of combinations of significant features

Output of modeling SVM classifier in testing with a variety
combination of significant features

Visualization of output of modeling SVM classifier in

testing

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

37

37

38

39

41

41

42

43

44
45

46

47

48
48

49

52

viii

Figure 5.4.9.1

Figure 5.4.9.2

Figure 5.4.9.3

Figure 6.1.1

Figure 6.1.2

Modeling Random Forest classifier in training and testing 53
with a variety of combinations of significant features

Output of modeling Random Forest classifier in testing with 54
a variety combination of significant features

Visualization of output of modeling Random Forest 55
classifier in testing

Visualization of result of applying SVM in training on 60
variety combination of significant features

Visualization of result of applying Random Forest in 63

training on variety combination of significant features

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table Number

Table 4.2.1

Table 5.4.1

Table 5.4.2

Table 6.1.1

Table 6.1.2

Table 6.1.3

Table 6.1.4

Table 6.2.1

Table 6.2.2

Table 6.2.3

Table 6.2.4

Table 6.2.5
Table 6.2.6

Table 6.2.7

LIST OF TABLES

Title

Specifications of laptop

Features that are selected by t-test

Description of combined significant features

Result of applying logistic regression as base learner in
three ensemble learning environment

Result of applying decision tree as base learner in three
ensemble learning environment

Result of applying SVM in training on variety combination
of significant features

Result of applying Random Forest in training on variety
combination of significant features

Financial Indicators from Literature Review
Categorization of features into respective categories
Overlap indicators selected using t-test and the financial
indicator categories identified

Overlap indicators selected using t-test and the general
financial indicator

Significant features from bagging environment

Overlap indicators selected from bagging ensemble learning
framework and the financial indicator categories identified
Overlap indicators selected using bagging ensemble

framework and the general financial indicator

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Page
22
32
49
57

57

59

62

64

65

66

69

CHAPTER 1

Chapter 1

Introduction

Financial distress is a scenario in which an individual or a company fails to generate
the revenues to cover their financial responsibilities. There are few signs of financial
distress, including declining sales which may be due to the low production quality, cash
flow issue due to unresolve debts, increasing of operating costs and more [1]. When a
company involves in financial stress, it could end up lead to bankruptcy and damage
the creditworthiness. Hence, financial distress prediction acts as an “early warning” to
the top management, stakeholders to control expenses effectively and perform
strategies to improve the cash flow and reduce costs to maintain the financial stability.
In the previous decades, the proposed approach for financial distress prediction have
evolved into two main categories, market-based models and accounting-based models.
Market based models depends on the stock market price to reflect the information exists
in accounting statements and those not in the accounting statement. These marketing
variables unlikely to be affected by the firm accounting policies. Accounting ratio-
based models rely on a large number of accounting ratios with the ratio weightings
determined by analyzing on a sample of failed and non-failed firms. Due the
distribution of accounting ratios changes over time, it is recommended that such models
be redeveloped periodically. The limitation of this approach, including information on
accounting statements present past performance of a firm could be and could not be
informative in predicting the future, and accounting numbers are subject to

manipulation by management.[2]

7.2 Problem Statement and Motivation

Nowadays, it is increasingly common for companies, even well managed ones, to
encounter a financial crisis or loses, which the worst case of might lead to bankruptcy.
There are few causes contributed to these financial difficulties including poor economy,
weak financial management, unexpected expenses or loss of revenues or income.
However, previous approaches of financial distress predictions have struggled with

issues like imbalanced data distribution, auditors’ lack of experience leading to the

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

selection of incorrect financial ratios, and the limitations of single classification models,
making accurate predictions difficult. To address these challenges, researchers have
turned to machine learning approaches. In this thesis, ensemble learning as a method
for classifying financial distress, which is expected to provide higher accuracy rate and

handle the large datasets. [3]

1.2 Objectives

The aim of the project is to identify the optimal ensemble learning technique in
detecting financial distress risk. To achieve the aim, there are 3 objectives that have
been set as below:

1) Familiarize the architecture ensemble learning techniques

2) Compare and contrast three ensemble learning techniques (stacking, bagging and
boosting) using classifiers like logistic regression and decision tree in classifying
financial status of companies

3) Relate the findings to interpret business implications of financial distress

1.3 Project Scope and Direction

The scope of the project is conducting study on ensemble learning

techniques which are bagging, boosting, stacking applied to financial

distress classification problem. Additionally, it also studies how these ensemble
methods can address the challenges from traditional approach such as manual auditing

or calculating the Altman z-score, and the interpretation business implications.

1.4 Contributions

The project highlights how ensemble learning techniques improve the accuracy and
robustness in detecting the financial risk compared to traditional approaches such as
manual auditing or statistical computation. For example, manual auditing produce
inconsistency results since it is depending on the auditors’ knowledge, thoroughness
and materiality levels applied. Additionally, both auditing or statistical computation

process are time consuming. With the help of the ensemble learning, it mitigates the

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

challenges by improving time efficiency, consistency result and better quality on

detecting the financial risk.

1.5 Report Organization

This report is 3rganizat into 6 chapters: Chapter 1 Introduction, Chapter 2 Literature
Review, Chapter 3 System Design, Chapter 4 System Implementation and Testing,
Chapter 5 System Outcome and Discussion, Chapter 6 Conclusion. The first chapter is
the introduction of this project which includes problem statement, project background
and motivation, project scope, project objectives, project contribution, highlights of
project achievements, and report 3rganization. The second chapter is the literature
review carried out on financial distress detection on the traditional approach, machine
learning approach and ensemble learning approach. The third chapter is a proposed
methodology of ensemble learning environment like bagging, stacking and boosting is
presented . The fourth chapter is regarding the details on how to implement the design
of the ensemble learning system. Furthermore, the fifth chapter reports the outcome of
implementation of the ensemble learning system on detecting the financial distress

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

Chapter 2

Literature Review

2.1 Traditional approach

Traditional bankruptcy prediction models often rely on the manual computation of
financial ratios to assess a company’s financial condition and determine whether it is in
a stable state or facing financial distress. Notable examples of these models include the
Altman Z-Score, Springate S-Score, Zmijewski X-Score, and Grover G-Score. Each of

these models utilizes different financial ratios to evaluate the likelihood of bankruptcy.

Altman Z-score formula is developed in 1967 by NYU Stern Finance Professor Edward
Altman and was published in 1968. The model utilizes five financial ratios that can be
obtained from a company’s annual 10-K report, including profitability, leverage,
liquidity, solvency, and activity to forecast the probability of an analyzed company
under financial distress. The formula for the Altman Z-score is as follows:

Altman Z-Score =1.2A + 1.4B + 3.3C + 0.6D + 1.0E
Where:

« A =working capital / total assets

B = retained earnings / total assets

C = earnings before interest and tax / total assets

D = market value of equity / total liabilities

E = sales / total assets

If the ratio obtained is below 1.8, the analyzed company classified as likely under
financial distress, and the score obtained is more than 3, indicating the company not

likely going bankrupt [4].

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

The Springate score is a bankruptcy prediction model derived from the Altman model.
Initially, it considered 19 financial ratios, but ultimately only utilize four selected
coefficients. The formula for the Springate score is as follows:
Springate score = 1.03A + 3.07B + .66C + .4D
Definitions:
A = Working capital / Total assets
B = EBIT / Total assets
C = Profit before tax / Current liabilities

D = Revenue / Total assets

If the score obtained is greater than 0.862, the analyzed company is in a safe state,

otherwise it is classified as being in financial distress [5].

The Zmijewski score is another bankruptcy prediction model based on performance,
leverage, and financial liquidity. Its formula is
Zmijewski score = -4.336 — 4.513 * (Net income / Total assets) + 5.679 * (Total

liabilities / Total assets) + 0.004 * (Current assets/ Current liabilities)

In this model, a higher ratio obtained indicating a higher likelihood of the analyzed

company to face bankruptcy [6].

Grover model is a model created by readapting Altman-Z score model. It consists of
X1 and X3 variables from Altman Z Score and incorporate with profitability ratios
indicated as ROA. The formula of the Grover model is:

G = 1.650X1 + 3.404X2 — 0.016ROA + 0.057

Description:

X1 = Working capital or Total assets

X2 = Earnings before interest and taxes or total assets

ROA = net income or total assets

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

If the score obtained is greater than 0.01 indicating the analyzed company is in a safe

state, while score below of this threshold shows that it is under financial distress [7].

Apart from that, traditional approach for financial distress prediction is auditing.
Few processes done by the auditor to access the fraud detection, including utilization
of forensic techniques, integration of data analytics, professional judgement and
skepticism, regulatory reforms and oversight mechanisms, collaborative efforts with
regulatory authorities. By leveraging forensic techniques and data analytics to detect
financial distress, auditors enhance their ability to identify underlying trends and
unusual transactions that may indicate potential fraud [8]. A survey has conducted with
the aim to study the purpose of hiring a financial auditor, the respondents agreed that
25% applied financial auditor as a desire to identify and prevent financial fraud or abuse

[9]. It highlighted the usage of auditing in detecting the financial distress risk.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

2.2 Machine Learning approach

Algorithms Hyper-Parameter AUC Accuracy Precision Recall F1 Score
Extreme Gradient) . }
1 Boosting booster = “gbtree”, n_estimator = 100, max_depth = 1, random_state = 42 0.9702 0.9566 0.8726 0.8354 0.8536
2 Random Forest max_depth = 14,n_estimators = 100, random_state = 42 0.9788 0.9529 0.8535 0.8272 0.8401
3 Logistic Regression random_state = 42 0.9303 0.8623 0.8854 0.5148 0.6511
4 Artificial Neural Network n_hidden = 2, max_iter = 200, activations = relu, Optimizer = adam 0.9034 0.9168 0.8025 0.6811 0.7368
5 Decision Trees Criterion = “gini”, max_depth = 14, random_state = 42 0.8848 0.9251 0.828 0.7065 0.7625
. Kernel = “rbf", probability = True, class_weight = “balanced”, random_state =
6 Support Vector Machine 42 0.7889 0.8789 0.9427 0.4022 0.5815
Figure 2.2.1 Comparison between machine learning models
Table 11
AUC Results of the Financial Distress Prediction Models (16 Variables).
Panel A: The AUC Results
Test Years ‘Train Periods Train Samples Test Samples ST in Test Samples (%) Non-ST in Test Samples (%) Machine Learning Models Z-Score Models
CART AdaBoost CUSBoost AZM SVIM SM ZMN
2018 2012-2017 881 157 1.91 % 98.09 % 0.669 0.716 0.733 0.452 0.522 0.587 0.567
2019 2012-2018 1038 151 2.65 % 97.35 % 0.729 0.745 0.763 0.284 0.299 0.253 0.628
2020 2012-2019 1189 166 3.01 % 96.99 % 0.736 0.788 0.825 0.050 0.055 0.212 0.655
2021 2012-2020 1355 157 4.46 % 95.54 % 0.776 0.813 0.846 0.296 0.287 0.313 0.599
Average AUC 0.728 0.766 0.792 0.271 0.291 0.341 0.612
Panel B: The AUPR Results
Test Years Train Periods Train Samples Test Samples ST in Test Samples (%) Non-ST in Test Samples (%) Machine Learning Models Z-Score Models
CART AdaBoost CUSBoost AZM SVIM SM ZMN
2018 2012-2017 881 157 191 % 98.09 % 0.139 0.157 0.184 0.026 0.035 0.047 0.032
2019 2012-2018 1038 151 2.65 % 97.35 % 0.145 0.165 0.197 0.022 0.023 0.024 0.044
2020 2012-2019 1189 166 3,01 % 96.99 % 0.181 0.197 0.203 0.019 0.019 0.022 0.080
2021 2012-2020 1355 157 4.46 % 95.54 % 0.197 0.219 0.247 0.073 0.072 0.055 0.087
Average AUPR 0.166 0.185 0.208 0.035 0.037 0.037 0.061

Figure 2.2.2 Comparison of auc score between machine learning models and z- score

models

Due to the limitations of traditional approaches like linear relationships, homogeneity
of variances and independence assumptions, machine learning methods have been
introduced to mitigate the challenges. According to a study, it has applied six algorithms
in predicting financial distress, which are extreme gradient boosting, random forest,
logistic regression, ANN, decision tree and support vector machine, and make a
comparison of performance as shown in figure 2.2.1. Extreme gradient boosting and
random forest have outperformed than others with higher accuracy of 0.9566 and
0.9529 respectively. Besides that, F1 score for extreme gradient boosting is the highest
F1 score of 0.8536, indicating that a good balance between precision and recall, have

the capability to identify positive instances while minimizing false positives and false

7
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

negatives [10]. In addition, a study has conducted a comparison between machine
learning models and z- score models. Based on what has shown in figure 2.2.2, machine
learning models have outperformed the Z-score model in both AUC and APR result,

indicating that it has better capabilities in detecting financial distress risk [11].

2.3 Ensemble Learning approach

Due to the limitations of machine learning methodology, people have switched from
machine learning to ensemble learning approach with the aim of providing a better
accuracy in detecting the financial distress. Ensemble learning is a combination of
multiple learners with the aim to improve prediction performance than a single learner.
The advantage of ensemble learning is bias variance tradeoff. Bias is referring to the
difference between predicted and true values, whereas variance is referring to the
differences between in predictions across multiple versions of a given model. If
variance and bias increases, the more likely the model has lower accuracy. Thus, these
two variables are closely related to the accuracy of the model on training and testing
data. With the concept of aggregating two or more models, ensemble learning reduces
the overall error rate and remains each model’s own complexities and advantages.
Parallel and sequential are the main categories in ensemble learning methods, and each
of it have its differences. Parallel methods train each basic learner independently and
parallelly. In contrast, sequential methods focus on training a new base learner to learn
from the previous model and reducing the error made. Bagging, stacking and boosting

are the most popular ensemble learning methods [12].

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

TABLE L. COMPARISON OF PREDICTION ERROR RATES (LOGISTIC
REGRESSION AS BASIC CLASSIFIER)
method mean error rate (%) std. (%) paired-t test”
single classifier 15.94 3.98 o’
ensemble 15.11 2.93 0.079
TABLE II. COMPARISON OF PREDICTION ERROR RATES (SVM AS BASIC
CLASSIFIER)
method mean error rate (%) std. (%) paired-r test
single classifier 28.33 9.97 -
0.00
ensemble 19.67 4.66 ()

@ Tand " indicates a statistically significant difference at the 0.1 and 0.05 level, respectively.

Figure 2.3.1 Prediction Error Rate of SVM and Logistic Regression

According to a study published, it has performed comparisons on the prediction error
rate for single classifier and ensemble learning as shown in figure 2.3.1. It shows that
the mean error rate for both SVM and logistic regression as basic classifier in ensemble
method have lower mean error rate of 19.67% and 15.11% respectively than the single
classifier method. Thus, it has proven that ensemble learning has better predicting

performance specifically on logistics regression as the basic classifier.

Besides that, there is another study conducted using cost-sensitive stacking ensemble
learning, with the aim of minimize total misclassification costs. Extreme Gradient
Boosting (XGBoost) has been applied to remove the irrelevant features and remain
ones. If the information obtained above the threshold of O, retain the features, and
otherwise eliminate it. Later, the data will be arranged in decreasing order of
information gain score. Later, sequential forward selection technique (SFS) as wrapper
method is applied to select the optimal feature subset with the highest balance accuracy
(BACC). SFS generates candidate feature subsets by iteratively adding the feature with
the highest information gain.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

Input data
Training data Testing set
T'raining set Validation set
l l v
Delete unnecessary
Delete unnecessary

Feature selection features

|

Generate optimal
feature subset

features

v

— - Testing set
- . | " predicted probability
[CStR csDT SXCGRoost

Training set Validation sct
predicted probability predicted probability
Parameter
l l optimization
T'ake predicted probability Take predicted probability
and optimal feature subset and optimal feature subset T
as new features as new features

Validation set
prediction results
Validate T

Y

le | Take predicted probability

and optimal feature subset
as new features

Final prediction results ——» L mpare Witk — Significance test
5 edic esults pnificance tes!
P benchmark models =

Figure 2.3.2 Flow chart of cost-sensitive stacking ensemble learning

Data Year TP FN ™ FP ACC Recall F-measure AUC G-mean Type I Type IT
-2 109 11 550 15 0.9620 0.9083 0.8934 0.9409 0.9403 0.0265 0.0917
3 122 6 523 34 0.9416 0.9531 0.8592 0.9460 0.9460 0.0610 0.0469
=4 118 10 521 36 0.9328 0.9219 0.8369 0.9286 0.9286 0.0646 0.0781
=5 115 13 528 29 0.9387 0.8984 0.8456 0.9232 0.9229 0.0521 0.1016

Figure 2.3.3 Prediction performance CSStacking after feature selection for time

periods t-m
Data Year TP FN ™ Fp ACC Recall F-measure AUC G-mean Type I Type 11
=2 87 36 447 115 0.7796 0.7073 0.5354 0.7513 0.7501 0.2046 0.2927
+3 112 11 409 153 0.7606 0.9106 0.5773 0.8192 0.8140 0.2722 0.0894
-4 98 25 492 70 0.8613 0.7967 0.6735 0.8361 0.8352 0.1246 0.2033
t5 107 16 482 80 0.8599 0.8699 0.6903 0.8638 0.8638 0.1423 0.1301

Figure 2.3.4 Prediction performance CSStacking without feature selection for time

periods t-m

10
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

Data Year P FN TN FP ACC Recall F-measure AUC G-mean Type 1 Type II
t-2 108 15 517 45 0.9124 0.8780 0.7826 0.8990 0.8987 0.0801 0.1220
t-3 109 9 537 30 0.9431 0.9237 0.8482 0.9354 0.9353 0.0529 0.0763
t-4 107 21 532 25 0.9328 0.8359 0.8231 0.8955 0.8935 0.0449 0.1641
t-5 86 15 537 47 0.9095 0.8515 0.7350 0.8855 0.8848 0.0805 0.1485

Figure 2.3.5 Prediction performance of Stacking after feature selection for time

periods t-m

By comparing the result of CSStacking and Stacking after performed feature selection
in between figure 2.3.3 and 2.3.5, it can be observed that CSStacking model has higher
F measure, AUC, G- mean and Type Il error than other model, indicating that
combining Stacking and cost-sensitive learning can improve the model’s predictive

performance

11

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

Chapter 3 System Methodology/Approach OR

System Model

3.1 System Block Design

Business
understanding

Data Understanding

Data Preparation

Combined feature and model performance

(6599: Normal, 299 - Remove redundant Balance datasets Featutre fmfﬁ'“"
> Distress) > features using SMOTE-ENN ESBQ{N- B3 }| 6258
(6599 Normal, 299 .| (6599 Normal 5258 | Normal,
95 features Distress) Distress) Distress)
04 features 94 features 62 fealures
Train (70%) Test (30%)
-8999 records -3858 records
82 features 82 features
¥
Modeling
5 Fold 5 Fold 5 Fold
Cross Cross Cross
Validation Validation Validation P
Bagiging B l i :
0051INg Stacking
8999 records 8999 records 8999 records
82 features 82 features 82 features
| |
e |

|

SVM

Classifier Model

Random Forest

Ensemble model
performance result

Figure 3.1.1 Flow of the system methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Feature selection
result

12

CHAPTER 3

Business understanding

Before performing the project, some research studies have been conducted in the areas of
financial distress, financial ratios including how the ratio is being derived, ensemble learning,

basic classifier.

Data understanding

Dataset applied in this project is Taiwanese Bankruptcy Prediction dataset [10], which were
collected from the Taiwan Economic Journal for the years 1999 to 2009 from financial ratios
and corporate governance indicators, and the bankruptcy was defined according to business

regulations of the Taiwan Stock Exchange. There are 6819 records with 95 features.

Data preparation

The redundant feature, “Net Income Flag” has been removed since it does not contribute much
to the target value. In the dataset, there is an imbalance data distribution of two classes, which
6599 as non-bankrupt and 220 as the distressed one. It has utilized SMOTE — ENN to solve the
problem. SMOTE verifies k nearest neighbours, and then generate the synthetic samples to
reach the same size as the majority class [11]. After resampling, dataset contains a total of
12857 companies, which 6258 companies with bankruptcy status and 6599 companies with

non-bankruptcy status.

Feature selection

T-test is applied for feature selection, since the target value is in binary form (0 and 1), and
evaluating the relationship between means of the numerical features between the target value
[18]. Variables with p value that is less than 0.05 will be selected. At the end, there is a total of

82 features being selected.

Data splitting
The data is initially split into 70% for training and 30% for testing. The training dataset contains

8,999 records with 82 features, while the test dataset contains 3,858 records, also with 82

features

13
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

Modeling
In the project, Logistic Regression and Decision Tree have been selected to apply in three

ensemble learning environments, which are bagging, stacking and adaboosting (adaptive

boosting).

Basic classifier selection

Q) Decision Tree

Hasil: precision recall fi1-score support S5~ precision recall fil-score support
CUKUP SEHAT 0.57 0.67 0.62 12 2 0.36 0.33 0.35 12
DISTRESS 0.69 9.71 0.70 35 1 0.81 0.63 0.71 35
KURANG SEHAT 0.75 0.72 0.74 54 2 0.68 0.80 0.74 54
SANGAT SEHAT 0.99 0.96 0.97 172 3 0.95 0.90 0.92 172
SEHAT 0.87 0.95 0.91 a2 4 0.65 0.81 0.72 42
accuracy 0.88 315 accuracy 0.82 315
macro avg 0.77 .80 0.79 315 macro avg 0.69 0.69 0.69 315
weighted avg 0.88 0.88 0.88 315 weighted avg 0.83 0.82 0.82 315
(a) Decision Tree f1-score accuracy results (b) Naive Bayes f1-score accuracy results
Figure 3.1.2 Comparison of Decision Tree and Naive Bayes
LR RF oT SVM MEB kMM
T T2 T3 711 12 -3 1 72 T-3 71 T2 T3 111 T2 T3 T1 T2 T3
Accuracy 87 80 81 89 96 94 90 97 94 84 B89 92 B2 B85 97 87 89 92
Precision 87 80 82 89 96 94 91 97 94 84 90 92 82 85 9% 87 89 89
Sensitivity 87 79 81 88 97 94 90 97 94 84 89 92 82 B85 97 87 89 88
F-measure 87 80 81 89 95 94 90 97 94 B84 B9 92 82 85 97 87 89 87

Figure 3.1.3 Comparison of machine learning models in financial distress prediction

Classifier that has been selected for this project is decision tree. According to research, it has
made a comparison on the performance result in financial distress prediction at Rural Banks in
Indonesia between decision tree and naive bayes. Based on the result shown in figure 3.2.4.2,
decision tree achieves a slightly better accuracy of 0.88 than naive bayes with 0.82, indicating
that it has the capability in predicting financial status of companies in different classes. The
macro average precision for all classes in decision tree is 0.77 which is notably higher than
naive bayes with only 0.66. This shows the decision tree demonstrates better performance in
classifying financial status including the minority class “Cukup Sehat” [15]. Apart from that,
there is also another conducted in comparing the machine learning performance in financial

14

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

distress prediction on SME in Turkey in different time regions (t-1, t-2 and t-3). As a general
overview, decision tree has a consistent performance in accuracy, precision, sensitivity and f-
measure, by maintaining above 90% [24]. It indicates the robustness of the model by predicting
distress and non-distress company in three-time regions. Therefore, it showed that decision tree

has a better performance in financial distress detection.

(i) Logistic Regression

Metric Logit Results ANN Results Difference

Accuracy 98.00% 82.50% 15.00%
Sensitivity 94 20% 84,00% 10,50%
Specificity 99.30% 82.00% 17.00%

Figure 3.1.4 Comparison of Logistics Regression and ANN

Another basic classifier chosen for this project is logistic regression. According to a study
published, it has performed comparisons on the prediction error rate for single classifier and
ensemble learning on the logistics regression and SVM, it has displayed that applying logistic
regression as the base classifier in the ensemble learning has lower error rate of 15.11% as
compared to SVM with 19.67% as show in figure 2.3.1[6]. In addition, a study has conducted
to compare the performance result from Artificial Neural Networks (ANN) and logistic
regression methodologies in financial distress prediction. Based on figure 3.4.1, it is observed
that logistics regression has outperformed, achieving accuracy of 98% than ANN with 82.5%.
Sensitivity has particularly emphasized, because it proves that logistic regression can classify
94.2% of the distress (positive) company than ANN with only 84% [14]. Therefore, it showed

that logistic regression has a better performance in financial distress detection.

15

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

Ensemble Learning Environment

Train Data

Val Data

Q) Baggin
Test Data
5 fold cross
validation Modeling - Bagging
Ty .
S 10 estimators

Estimator -1

Estimator -2

— Estimator -3
Final model

I / (Majority Voting)
Estimator -9 g

Estimator -10

Average of
validation
results
across

folds
E——

E—
Prediction

of test
data

Figure 3.1.5 Sample architecture of bagging ensemble learning

Avg Validation Result

Test Result

Bagging is an ensemble learning method, with a combination of weak learners and become a

strong learner. Each base model is trained independently on subset data and the predictions are

aggregated through major voting to obtain the final prediction [19]. In this project, ten

estimators were employed and trained using 5-fold cross-validation. For each fold’s training

samples, models are trained through bootstrap sampling method. After completing model

training on one-fold, majority voting will apply to generate prediction on test and validation

result. Upon finishing all 5 folds, evaluation was conducted by evaluation will be made by

averaging the performance metrics across the folds. Finally, the model was fitted on the entire

training set and tested on the test dataset to assess its generalization performance.In figure

3.1.5. has visualized the architecture of bagging environment.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

16

CHAPTER 3

(i) Adaboosting

Test Data

5 fold cross

validation Modeling - Adaboosting
P ** weight - greater focus on
S 10 estimators misclassified samples Q_‘;?Eﬁ?nﬁf
Train Data Estimator -1) resulis
Weight-1
Estimator -2 ° a;)flgssﬁ Avg Validation Result
— Estimator -3 ; Weight-2 - 9
C ' Weignt10 Final model
/) (Weighted Voting)
Val Data Estimator -9 < e P
Estimator -10 : Weight:9 Prediction Test Result
Sees szt of test
‘ data

Figure 3.1.6: Sample architecture of adaboosting (adaptive boosting) ensemble learning

Boosting is an ensemble learning method that transforms multiple weak models into a single
strong learner. It primarily focuses on sequential model training by gradually increasing the
weights of misclassified instances until the errors are minimized and to achieve better accuracy
performance [20]. In this project, AdaBoost was selected for its efficiency in handling financial
distress detection. Ten estimators were employed and trained using 5-fold cross-validation. For
each fold, models were trained through weighted sampling: after each model was trained, the
weights of misclassified samples were increased, while those of correctly classified samples
decreased. After completing model training on one-fold, weighted voting was applied to
generate predictions for the validation set. Upon finishing all 5 folds, evaluation was conducted
by averaging the performance metrics across the folds. Finally, the model was fitted on the
entire training set and tested on the test dataset to assess its general performance. In figure 3.1.6

has visualized the architecture of adaboosting environment.

17

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

(iii) Stacking

5 Fold Cross Validation

Train Data

Val Data

Modeling

10 Base Learners

Base Learner - 1
Base Learner - 2

Base Learner - 3

Base Learner - 10

Predictions
from base
learners

Test Data

Meta Leamner(Logistic
Regression)

Figure 3.1.7 Sample architecture of stacking ensemble learning

Average of
validation
results
across
folds

e
Prediction
of test
data

Avg Validation Result

Test Result

Stacking is an ensemble learning method which new model is stacked up on top of the others.

It emphasizes training multiple base models (level 0 models) parallelly and according to the

combination of outputs to build a new model, known as meta model (level 1 model). The input

of the meta model is the prediction from the individual base models [21]. For training samples,

models are trained with datasets. Once completed trained, the results are stacked to form a new

dataset and fed to the meta model to make the final predictions.

Performance Evaluation of Test Result

After training the base learners (logistic regression and decision tree) in three ensemble

learning environments, evaluation has been performed on the test result and the computational

time. The evaluation prioritized the false negative rate, as misclassifying financially distressed

companies as healthy poses significant risk. Besides that, computational time was recorded

with two conditions, either the model has been looping 300 times, or the model converged early

by maintaining a constant result for consecutive 5 times.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

18

CHAPTER 3

Performance Evaluation of Model Performance

Apart from that, significant features for each base learner in every ensemble learning
environment have been identified by applying Permutation Importance Calculation and z-test.
Features with a p-value below the threshold of 0.05 were considered statistically significant,
with the purpose of exploring which features truly contribute to the model’s predictive
performance. Besides that, it also serves the purpose of proving whether the features selected
from recommend ensemble learning techniques are robust across different classifiers by

demonstrating strong predictive performance.

Model Training on Significant Feature

Two classifiers—Support Vector Machine (SVM) and Random Forest (RF)—were used to
train models with significant features selected from both logistic regression and decision tree.
In this process, various combinations of these features have been studied, including combined
significant features from same base learner, overlapping features from same base learners and
the combine features from recommended ensemble learning techniques. It is aimed at
evaluating whether the selected features retain their predictive strength across different

classifiers.

19

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

3.2 Timeline for FYP 2

= Chapter 2 Literature Review
21 Traditional Approach
2.2 Machine Learning Approach
2.3 Ensemble Learning Approach

= Chapter 3 System Model
31 System Design Diagram
3.2 Timeline

= Chapter 4 System Design
4.1 System Block Diagram
4.2 Hardware and Software Specifications
4.3 Weak Learners Architecture

= Chapter 5 Experiment/Stimulation
51 Hardware Setup
5.2 Sofware Setup
5.3 Setting and Configuration
5.4 System Operation (with Screenshot)
5.5 Implementation Issues and Challenges
56 Concluding Remark

= Chapter 6 System Evaluation and Recomme...
611 System Testing and Performance Metr...
6.2 Testing Setup and Result
6.3 Project Challenges
6.4 Objectives Evaluation
6.5 Concluding Remark

= Chapter 7 Conclusion and Recommendation
71 Conclusion
7.2 Recommendation

Report Writing
Review

Presentaton

12/02/2025
12/02/2025
12/02/2025
14/02/2025
17/02/2025
17/02/2025
18/02/2025.
04/03/2025
04/03/2025
07/03/2025
10/03/2025
12/03/2025
12/03/2025
12/03/2025
13/03/2025
18/04/2025
22/04/2025
23/04/2025
24/04/2025
24/04/2025
28/04/2025
01/05/2025.
02/05/2025
02/05/2025
02/05/2025
02/05/2025
02/05/2025
25/04/2025
06/05/2025
07/05/2025

14/02/2025 f——

12/02/2025
12/02/2025
14/02/2025
19/02/2025
18/02/2025
19/02/2025
10/03/202%
06/03/2025
07/03/2028
10/03/2025
23/04/202¢
12/03/2025
12/03/2025
13/03/2025
18/04/2025
22/04/2025
23/04/2025
02/05/202¢
24/04/2025
28/04/2025
02/05/2025
02/05/2025
02/05/2025
02/05/202¢
02/05/2025
02/05/2025
05/05/2025
07/05/2025
07/05/2025

|
|
|

HE]

Figure 3.2.1 Timeline for FYP2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

& 1Bi04s2025

O 28412025

o

< 280472025

20

IIBIII

< 25104/
u

CHAPTER 4

Chapter 4 SYSTEM DESIGN

4.1 System Block Diagram

Software Hardware

Python GPU RAM

Data Pipeline

Dataset Loading

Diata Preprocessing

Feature Selection (T-test)

Weak Learners

Logistic Regression

Decision Tree

l

Model Training

Ensemble Learning Methods

SVM

Bagging Significant Feature Selection
(Permutation Importance | Z-score)

Random Forest

Stacking

Boosting (AdaBoosting)

Y

Evaluation

Evaluation

Feature selection result

Ensemble Learning

Performance

Business Implications

Figure 4.1 System Block Diagram

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

21

CHAPTER 4

Figure 4.1 has presented an overview of the proposed financial distress detection framework.
It visualizes the major components including hardware and software setup, data pipeline, weak
learners, ensemble learning methods, and evaluation modules. The process begins with data
loading and data preprocessing, followed by significant feature selection using t test. Later,
weak learners such as logistic regression and decision tree are then fit into ensemble learning
techniques like bagging, boosting, and stacking to evaluate which techniques has the best
performance in financial distress detection. Significant features are extracted using permutation
importance and z-score analysis and subsequently used to train final classifiers (SVM and
Random Forest). Evaluation of the result not only based on the model performance but also

relate to the business implications.

4.2 Hardware and Software Specifications

The hardware involved in this project is the computer. A computer issued for the purpose of
training and testing the base model in different ensembles learning method in detecting
financial distress. In table 4.2.1, it shows the specification of a laptop.

Table 4.2.1 Specifications of laptop

Description Specifications

Model MateBook 13

Processor AMD Ryzen 5 3500U with Radeon Vega Mobile Gfx 2.10 GHz
Operating System Windows 10

Graphic NVIDIA GeForce GT 930MX 2GB DDR3

Memory 16GB DDR4 RAM

Storage 461GB SATA HDD

There are three software involved in the project. Python is the programming language used for
developing an ensemble learning environment and perform performance evaluation. Google
Colab served as the IDE for writing and executing the Python code. Excel is used as a

preliminary in understanding on the datasets.

22

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

4.3 Weak Learners Architecture

4.3.1 Logistic Regression

Sigmoid function

Figure 4.3.1.1 Sigmoid function

p(z)

5z =€

Applying natural log on odd. then log odd will be:

o L p(;f()x)] -

log L p(;‘)x)] —w-X +b

p(z) — wX+b
1 p(=)
p(z) =" (1 - p(z))
pla) = X X p(a)
p(:ﬂ) | eu:—X—b p ZC)) — eu.'-X—o—b
p(iﬁ)(l | e-u—X+b) _ eu.'-X-HJ

lL3u:-X+b
P) = T e

then the final logistic regression equation will be:

--- Exponentiate both sides

wX b :
p(X; b, ’LU) = = 3 l«‘-_\' B

e
1+ewX b 1+e

Figure 4.3.1.2 Equation of logistic regression

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

23

CHAPTER 4

Logistic regression is a supervised machine learning algorithm primarily used for binary
classification task. It studies the linear relationship between independent variables and the log
odds of the dependent variable. Sigmoid function that takes combination of input as
independent variables and produces a probability value between 0 and 1. The sigmoid function
converts the input variable into probability value ranging between 0 and 1. This enables the
model to classify inputs into one of two classes. Figure 4.3.1.1 demonstrates how sigmoid
function mapped continuous input data into the probabilistic space required for classification.
In addition, Figure 4.3.1.2 shows how a logistic regression equation is structured, highlighting
the relationship between input features, model weights, bias, and the final output probability
[25]. Logistic regression is not only easy to implement and interpret as well as efficient in
training but also interpretable—allowing model coefficients to be viewed as indicators of

feature importance [26].
4.3.2 Decision Tree

Decision Tree

Root Node

| |

Internal Node Internal Node

| |
| | | l

Leaf Node Leaf Node Leaf Node Leaf Node

Decision Tree Structure
Figure 4.3.2 Architecture of decision tree
Decision Tree follows a hierarchical tree structure, beginning with one root node which is the
starting point for decision making. From there, data is split through a sequence of conditions.
Each decision node branches into further nodes, and the dataset continues to divide into smaller
and more specific groups. This process breaks until further useful splits can be made or meets
the predefined condition, can be referred to figure 4.3.2. There are two types of decisions tree

which are classification trees used for predicting categorical outcomes prediction and

24

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

regression trees for predicting continuous variables like numerical values. One key advantage
of Decision Trees is that they do not require feature scaling during the training process. In
addition, it also demonstrates the ability to handle non-linear relationships, making them

effective in capturing complex patterns between input features and target variables [27].

25

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Chapter 5
EXPERIMENT/SIMULATION

5.1 Hardware Setup
The hardware involved in this project is the computer. A computer issued for the purpose of
training and testing the base model in different ensembles learning method in detecting

financial distress

5.2 Software Setup
e Programming language and environment
o Python Version: Python 3.10 (default version)

o Notebook environment: Google Colab

e Several Python libraries from the scikit-learn package and other standard libraries were
utilized to implement the models and evaluate their performance:
o sklearn.preprocessing:
= StandardScaler : used to standardize the features for easier model
training
o sklearn.tree:
= DecisionTreeClassifier: the base learner used in certain ensemble
techniques.
o sklearn.linear_model:
= LogisticRegression: the base learner used in certain ensemble
techniques.
o sklearn.ensemble module:
= AdaBoostClassifier: used to implement adaboosting ensemble
technique.
= StackingClassifier : used to implement stacking ensemble technique.
= BaggingClassifier: used to implement bagging ensemble technique.
o sklearn.metrics:
= confusion_matrix,precision_score,recall_score,f1_score,accuracy_scor

e:used for comprehensive evaluation of model performance.

26

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

time module: used to record the computational time of a base learner within the
ensemble learning framework
scipy.stats:
= stats: used to derive p value with the z score
sklearn.inspection:
= permutation_importance: used to derive the feature importance within
an emsemble learning framework
sklearn.model_selection:
= GridSearchCV: used for hyperparameter tuning and model optimization

= StratifiedKFold: perform cross validation

5.3 Setting and Configuration

This section outlines the configuration setup for conducting the ensemble learning experiments:

e Logistic Regression:

o

o

o

o

Ibfgs solver
max_iter=200
class_weight = balance

random_state=42 was used to ensure reproducibility of results.

e Decision Tree (optimized using grid search)

o

o

o

o

criterion="entropy’
max_depth=7
min_samples_leaf=4

random_state=42 was used to ensure reproducibility of results.

e google.colab

©)

drive.mount: used to mount the previous stored dataset

27

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

5.4 System Operation (with Screenshot)

Business Understanding

In this project, the scope of the dataset is focused on financial perspectives in terms of the

financial indicators related to financial distress.

Data Understanding

O

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

print(df.info()) #numeric data -> in float, no categorical data

<class 'pandas.core.frame.DataFrame’>
RangeIndex: 6819 entries, @ to 6818
Data columns (total 96 columns):

Column

Bankrupt?

ROA(C) before interest and depreciation before interest

ROA(A) before interest and % after tax

ROA(B) before interest and depreciation after tax

Operating Gross Margin
Realized Sales Gross Margin
Operating Profit Rate
Pre-tax net Interest Rate
After-tax net Interest Rate

Non-industry income and expenditure/revenue

Continuous interest rate (after tax)
Operating Expense Rate

Research and development expense rate
Cash flow rate

Interest-bearing debt interest rate
Tax rate (A)

Net Value Per Share (B)

Net Value Per Share (A)

Net Value Per Share (C)

Persistent EPS in the Last Four Seasons
Cash Flow Per Share

Revenue Per Share (Yuan ¥)

Operating Profit Per Share (Yuan ¥)

Per Share Net profit before tax (Yuan ¥)
Realized Sales Gross Profit Growth Rate
Operating Profit Growth Rate

After-tax Net Profit Growth Rate
Regular Net Profit Growth Rate
Continuous Net Profit Growth Rate
Total Asset Growth Rate

Net Value Growth Rate

Total Asset Return Growth Rate Ratio
Cash Reinvestment %

Current Ratio

Quick Ratio

Interest Expense Ratio

Non-Null Count

6819
6819
6819
6819
6819
6819
6819

non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null

Dtype

inte4

float64
floatesd
float64
floated
float64
floated
float64
floated
float64
floate4
float6d
float6d
floated
floate4
floated
float64
floatesd
float64
floated
float64
floated
float64
floated
float64
floated
float6d
float6d
float6d
floate4
float6d
float64
floated
float64
floatesd
float64

28

CHAPTER 5

print(df.info()) #numeric data -> in float, no categorical data

O

<class 'pandas.core.frame.DataFrame’>
RangeIndex: 6819 entries, 0 to 6818
Data columns (total 96 columns):

Column Non-Null Count Dtype

© Bankrupt? 6819 non-null inté4

1 ROA(C) before interest and depreciation before interest 6819 non-null floate4

2 ROA(A) before interest and % after tax 6819 non-null float64

3 ROA(B) before interest and depreciation after tax 6819 non-null float64

4 Operating Gross Margin 6819 non-null float64

5 Realized Sales Gross Margin 6819 non-null floate4

6 Operating Profit Rate 6819 non-null float64

7 Pre-tax net Interest Rate 6819 non-null floate4

8 After-tax net Interest Rate 6819 non-null float64

9 Non-industry income and expenditure/revenue 6819 non-null floate4

10 Continuous interest rate (after tax) 6819 non-null float6a

11 Operating Expense Rate 6819 non-null floate4

12 Research and development expense rate 6819 non-null float6a

13 Cash flow rate 6819 non-null float64

14 Interest-bearing debt interest rate 6819 non-null float6a

15 Tax rate (A) 6819 non-null float64d

16 Net Value Per Share (B) 6819 non-null float64

17 Net Value Per Share (A) 6819 non-null float64

18 Net Value Per Share (C) 6819 non-null floate4

19 Persistent EPS in the Last Four Seasons 6819 non-null float64

20 Cash Flow Per Share 6819 non-null floate4

21 Revenue Per Share (Yuan ¥) 6819 non-null float64

22 Operating Profit Per Share (Yuan ¥) 6819 non-null floate4d

23 Per Share Net profit before tax (Yuan ¥) 6819 non-null float64

24 Realized Sales Gross Profit Growth Rate 6819 non-null floate4

25 Operating Profit Growth Rate 6819 non-null float64

26 After-tax Net Profit Growth Rate 6819 non-null floate4

27 Regular Net Profit Growth Rate 6819 non-null float6a

28 Continuous Net Profit Growth Rate 6819 non-null floate4

29 Total Asset Growth Rate 6819 non-null float64

30 Net Value Growth Rate 6819 non-null float6d

31 Total Asset Return Growth Rate Ratio 6819 non-null float64

32 Cash Reinvestment % 6819 non-null float64

33 Current Ratio 6819 non-null floate4

34 Quick Ratio 6819 non-null float6d

35 Interest Expense Ratio 6819 non-null floaté64
72 Quick Asset Turnover Rate 6819 non-null floatea
73 Working capitcal Turnover Rate 6819 non-null floatéd
74 Cash Turnover Rate 6819 non-null float64
75 Cash Flow to Sales 6819 non-null floate4
76 Fixed Assets to Assets 6819 non-null floate4
77 Current Liability to Liability 6819 non-null floate4
78 Current Liability to Equity 6819 non-null floated
79 Equity to Long-term Liability 6819 non-null float64
80 Cash Flow to Total Assets 6819 non-null float64
81 Cash Flow to Liability 6819 non-null floatéd
82 CFO to Assets 6819 non-null float64
83 Cash Flow to Equity 6819 non-null float64
84 Current Liability to Current Assets 6819 non-null float64
85 Liability-Assets Flag 6819 non-null int64
86 Net Income to Total Assets 6819 non-null float64
87 Total assets to GNP price 6819 non-null floated
88 No-credit Interval 6819 non-null floated
89 Gross Profit to Sales 6819 non-null floated
90 Net Income to Stockholder's Equity 6819 non-null floated
91 Liability to Equity 6819 non-null float64
92 Degree of Financial Leverage (DFL) 6819 non-null floaté4d
93 Interest Coverage Ratio (Interest expense to EBIT) 6819 non-null floatéd
94 Net Income Flag 6819 non-null int64
95 Equity to Liability 6819 non-null floated

dtypes: floate4(93), inte4(3)
memory usage: 5.9 MB
None

Figure 5.4.1 Checking for dtype for the variables

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

° print(df[" Net Income Flag'].value_counts())

5> Net Income Flag
1 6819
Name: count, dtype: int64

° brint(df[' Liability-Assets Flag'].value counts())

5> Liability-Assets Flag
Q 6811
1 8
Name: count, dtype: int64

Figure 5.4.2 Checking for data distribution on X94 and X85

In figure 5.4.1, it shows that there are two integer data types (X94 and X85) and X0 are the
target variables, further investigation on the data distribution has been done as shown in figure
5.4.2. In Figure 5.4.2, feature X94, which represents the Net Income Flag, is observed to have
a constant value of 1 across all records. This lack of variability indicates that it does not
contribute any influence on the prediction and can be considered a redundant variable. For X85
which denoted as Liability-Assets Flag, there are two classes, 0 and 1, which may consider as

variables that have significant to the target variable.

Data Preparation

Remove redundant features

[1 df[' Net Income Flag'].value_counts() #remove redundant value

()

count
Net Income Flag

1 6819
dtype: int64

[1 X = df.drop(columns=['Bankrupt?',’ Net Income Flag'])
y = df['Bankrupt?"’]

Figure 5.4.3 Remove redundant features

In figure 5.4.3, it has shown that there is a constant feature, “Net Income Flag”. Since it is not

significant to the target variable, hence it is dropped.

30

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Balance the datasets

O

©

4)

print(df['Bankrupt?'].value counts()) #imbalance data

Bankrupt?
2] 6599
1 220
Name: count, dtype: inte4

Figure 5.4.4 Imbalance datasets

from imblearn.combine import SMOTEENN

from imblearn.over_sampling import SMOTE

from imblearn.under_sampling import EditedNearestNeighbours

smote_enn = SMOTEENM(sampling strategy='auto',
smote=SMOTE (random_state=42), # Fix random_state for SMOTE
enn=EditedNearestNeighbours(), # Default settings for ENN
random_state=42) # Fix random state for SMOTEENN

X_resampled, y_resampled = smote_enn.fit_resample(X, y)
y_resampled.value counts()

count
Bankrupt?
0 6599
1 6258
dtype: int64

Figure 5.4.5 Balance the datasets

In figure 5.4.4, it shows that there is an imbalance distribution between 0 and 1, hence SMOTE-

ENN to balance the dataset. In figure 5.4.5, it shown the process of balancing the datasets

through SMOTE-ENN, and the latest dataset contains 6599 companies with normal status and

6258 companies with distress status.

Univariate Feature Selection

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

31

CHAPTER 5

from scipy.stats import ttest_ind

Initialize a list to store p-values
p_values = []

Loop through each feature to apply T-test

for feature in X_resampled.columns:
Split data into two groups based on the target
group_® = X_resampled[y resampled == @][feature]
group_1 = X _resampled[y _resampled == 1][feature]

Perform T-test between the two groups
_, p_value = ttest_ind(group_@, group 1)

Append the p-value for each feature
p_values.append(p_value)

Convert p-values into a DataFrame for better viewing
p_values df = pd.DataFrame({

'Feature': X resampled.columns,

'P-Value': p_values
1).sort_values(by="P-Value', ascending=True)

print(p_values_df)

Select features with p-value less than the significance level (e.g., ©.85)

selected_features = p_values_df[p_values_df['P-Value'] < 8.85]
print("Selected Features based on T-test (p-value < ©.85):")
print(selected_features)

Figure 5.4.6 Feature selection

Table 5.4.1: Features that are selected by t-test

Feature P-Value

ROAI Dbefore interest and depreciation before | 0
X0 interest
X41 Operating profit/Paid-in capital 0
X22 Per Share Net profit before tax (Yuan A¥) 0
X21 Operating Profit Per Share (Yuan A¥) 0
X42 Net profit before tax/Paid-in capital 0
X18 Persistent EPS in the Last Four Seasons 0
X17 Net Value Per Share | 0
X16 Net Value Per Share (A) 0
X15 Net Value Per Share (B) 0
X14 Tax rate (A) 0
X53 Working Capital to Total Assets 0
X37 Net worth/Assets 0
X56 Cash/Total Assets 0

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

32

CHAPTER 5

X67 Retained Earnings to Total Assets 0

X81 CFO to Assets 0

X83 Current Liability to Current Assets 0

X85 Net Income to Total Assets 0

X88 Gross Profit to Sales 0

X4 Realized Sales Gross Margin 0

X3 Operating Gross Margin 0

X2 ROA(B) before interest and depreciation after tax | 0

X1 ROA(A) before interest and % after tax 0

X59 Current Liability to Assets 0

X36 Debt ratio % 0

X51 Operating profit per person 2.39E-285
X69 Total expense/Assets 6.49E-217
X93 | Equity to Liability 1.69E-209
X60 Operating Funds to Liability 1.09E-188
X54 Quick Assets/Total Assets 1.28E-187
X12 Cash flow rate 1.66E-186
X19 Cash Flow Per Share 2.46E-186
X79 Cash Flow to Total Assets 1.30E-134
X44 Total Asset Turnover 1.71E-122
X39 Borrowing dependency 4.03E-121
X90 Liability to Equity 2.35E-97
X89 Net Income to Stockholder’s Equity 4.42E-87
X65 Current Liabilities/Equity 1.41E-82
X717 Current Liability to Equity 1.41E-82
X78 Equity to Long-term Liability 1.89E-77
X48 Fixed Assets Turnover Frequency 1.81E-73
X64 Working Capital/Equity 1.68E-69
X43 Inventory and accounts receivable/Net value 7.23E-57
X28 Total Asset Growth Rate 1.58E-55
X80 Cash Flow to Liability 8.75E-47
X58 Cash/Current Liability 3.96E-41

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

33

CHAPTER 5

X11 Research and development expense rate 9.00E-38
X25 After-tax Net Profit Growth Rate 2.88E-37
X26 Regular Net Profit Growth Rate 4.66E-36
X55 Current Assets/Total Assets 2.38E-35
X82 Cash Flow to Equity 2.61E-35
X73 Cash Turnover Rate 1.09E-23
X13 Interest-bearing debt interest rate 1.29E-22
X31 Cash Reinvestment % 1.44E-21
X71 Quick Asset Turnover Rate 1.06E-16
X30 Total Asset Return Growth Rate Ratio 2.80E-13
X49 Net Worth Turnover Rate (times) 5.17E-12
X40 Contingent liabilities/Net worth 1.05E-11
X24 Operating Profit Growth Rate 3.07E-09

X8 Non-industry income and expenditure/revenue 1.77E-08
X76 Current Liability to Liability 1.35E-06
X63 Current Liabilities/Liability 1.35E-06
X75 Fixed Assets to Assets 3.85E-06
X86 Total assets to GNP price 6.20E-06
X50 Revenue per person 4.24E-05
X47 Inventory Turnover Rate (times) 4.32E-05
X70 Current Asset Turnover Rate 8.03E-05
X29 Net Value Growth Rate 0.00013445
X10 Operating Expense Rate 0.000151196
X27 Continuous Net Profit Growth Rate 0.0003026
X68 Total income/Total expense 0.001690591
X6 Pre-tax net Interest Rate 0.002332457
X9 Continuous interest rate (after tax) 0.002671253
X46 Average Collection Days 0.002845449
X7 After-tax net Interest Rate 0.003861377
X66 Long-term Liability to Current Assets 0.004469414
X45 Accounts Receivable Turnover 0.004822885
X33 Quick Ratio 0.005165048

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

34

CHAPTER 5

X91 Degree of Financial Leverage (DFL) 0.012887153
X35 Total debt/Total net worth 0.015892463
X20 Revenue Per Share (Yuan AY¥) 0.038817475
X87 No-credit Interval 0.043919515
X34 Interest Expense Ratio 0.048736981

In figure 5.4.6, it has shown the process of deriving the significant features by performing t —
test. In table 5.4.1 has displayed 82 features that have been selected, with a threshold of p values
must be less than 0.05.

35
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Modeling
Bagqging

BBagging
fron sklearn.model selection import StratifiedKFold

accuracies, precisions, recalls, f1_scores, awes = [], [1. [1. [1. L[]
type_I_errors, type_II errors = [],[]

skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
start_time = time.time() # start time

decision_tree = DecisionTreeClassifier{criterion = “entropy”,max_depth = 7,min_samples_split = 2Z,min_samples_leaf=4, random_state = 42)
model = Baggingflassifier({estimator=decision_tree, n_estimators=18, n_jobs=-1,random_state=42}

for § im range(l, 381):
fold_accuracies, fold_precisions, fold_recalls, fold fis, Fold_auwes = [], [1. [J. [1. L]
fold_type_I_errors, fold_type II_errors = [[. []

for train_index, val_index in skf.split(X_traln, y_train}):
X _train_fold, X val fold = X_train.iloc[train_index], X train.iloc[val index]
¥_train_fold, y_wval fold = y_train.iloc[train_index], y_train.iloc[val_ index]

scaler = StandardScalerd)
¥_train_sealed = scaler.fit_transform(X_train_fold)
% _val scaled = scaler.transform{X_val fold)

model FIL(X_train_scaled, y_train_fold)
y_val_pred = model.predict(X_val_scaled)
y_val_prob = model.predict_proba(¥_val_scaled)[:, 1]

BECUracy = acduracy_scere(y_wval_fold, y_wal_pred)

precision = precision_score(y_wval_fold, y_wal_pred, pos_label=1)
recall = recall score(y_val feld, y_val_pred, pos_label=1)

f1 = ¥1_score(y_val_fold, y_val_pred, pos_label=1)

auc = metricsi.roc_auc_score(y_val fold, y wal prob)

cm = confusion matrix(y wal fold, y wval pred}

FF, TN, FN, TP = em[@8][1], cm[@][8], em[1][@], em[1][1]
type I error = FP f (FP + TN} if (FP + TN} != 8 else @
type IT error = FN F (FM + TP} if (FM + TP} '= @ else @

I Append fold metrics
fold_accuracies.append(accuracy)
fold_precisions.append(precision)
fold_recalls.append(recall)
fold_fls.append(f1)

fold_aucs. append|auc)

fold_type I errors.append(type I_eérror)
fold_type II errors.append(type_II error)

avg_ace = sum(fold_accuracies) [len(fold_accuracies)
avg_precizion = sum{fold precisions) [len{fold precisions)
avg_recall = sun(fold recalls) [len(fold_recalls)

avg_f1 = sum{fold_f1s) f len(fold_f1s)

avg_aucs = sum(fold_aucs) / len(fold_aucs)

avg_typel = sum(fold_type I errors) / len{fold_type_I errors)

avg_typell = sunm(fold type II errors) f len{fold_type II errors)

36

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

print(">>Fold”,1)
print("AUC:",avg_acc)
print("Recall:",avg_recall)
print("Type II:",avg_typell)

Average over 5 folds
accuracies.append(round(avg_acc, 4))
precisions.append(round(avg_precision, 4))
recalls.append(round(avg_recall, 4))
f1_scores.append(round{avg_f1, 4))
aucs.append(round(avg_aucs, 4))
type_I_errors.append(round(avg_typel, 4))
type_II_errors.append(round(avg_typelIl, 4))

Early stopping logic

if len(accuracies) »= 5 and len(set(accuracies[-5:])) == 1:
print(f"Early stopping at iteration {i} because accuracy hasn't changed for 5 iterations.™)
break

elif len(recalls) »= 5 and len(set(recalls[-5:])) == 1:
print(f"Early stopping at iteration {i} because recall hasn't changed for 5 iterations.™)
break

end_time = time.time()
duration = round(end_time - start_time, 2)

»>»Fold 1

AUC: @.9453277129269347
Recall: 8.973689718466181
Type 11: 8.8263168289533899668
»>Fold 2

AUC: @.9453277129269347
Recall: 8.873689718466181
Type II: 8.826316289533800668
>>Fold 3

AUC: @.9453277129269347
Recall: @.973689718466101
Type II: ©.826316289533890668
»>Fold 4

AUC: @.9453277129269347
Recall: @.973689718466101
Type II: 8.62631@289533800668
»>Fold 5

AUC: 8.9453277129269347
Recall: 8.873689718466181
Type II: 8.826316289533800668
Early stopping at iteration 5 because accuracy hasn't changed for 5 iterations.

Figure 5.4.7.1(a) Modeling in bagging ensemble learning environment (decision

tree)

print(f"Final Accuracy: {accuracies[-1]}")
print(f"Final Precision: {precisions[-1]}")
print(f"Final Recall: {recalls[-1]}")
print(f"Final F1 Score: {f1_scores[-1]}")
print(f"Final AUC: {aucs[-1]}")

print(f"Final Type I Error: {type I errors[-1]}"}
print(f"Final Type II Error: {type_II errors[-1]}")
print(f"Total training time: {duration} seconds.™)

Final Accuracy: 8.9453

Final Precision: ©.9195

Final Recall: @.9737

Final F1 Score: ©.9458

Final AUC: @.986

Final Type I Error: 8.8819

Final Type II Error: ©.8263

Total training time: 89.46 seconds.

Figure 5.4.7.1(b) Output from modeling in bagging ensemble learning environment

(decision tree)

37

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Make sure test data is scaled with the same scaler used on training data
X_test_scaled = scaler.transform(X_test)

Predict once
y_test_pred = model.predict(X_test_scaled)
y_test_prob = model.predict_proba(X_test_scaled)[:, 1]

Evaluate

accuracy = accuracy_score(y_test, y_test_pred)
precision = precision_score(y_test, y_test pred, pos_label=1)
recall = recall_score(y_test, y_test_pred, pos_label=1)
f1 = f1_score(y_test, y_test_pred, pos_label=1)

auc = metrics.roc_auc_score(y_test, y test prob)

cm = confusion_matrix(y_test, y_test_pred)

FP, TN, FN, TP = cm[8][1], cm[@][@], em[1][8], cm[1][1]
type_I _error = FP / (FP + TN) if (FP + TN) != @ else @
type_IT error = FN / (FN + TP) if (FN + TP) != @ else @
Print final test performance

print(f"Final Accuracy: {accuracy:.4f}")

print(f"Final Precision: {precision:.4f}")
print(f"Final Recall: {recall:.4f}")

print(f"Final F1 Score: {f1:.4f}")

print(f"Final AUC: {auc:.4f}")

print(f"Final Type I Error: {type_I_error:.4f}")
print(f"Final Type II Error: {type_ II error:.4f}")
Final Accuracy: 8.9463

Final Precision: ©.9193

Final Recall: 8.9735

Final F1 Score: 8.9456

Final AUC: ©.9876

Final Type I Error: ©.0786

Final Type II Error: ©.8265

Figure 5.4.7.1(c) Output from testing in bagging ensemble learning environment

(decision tree)

In figure 5.4.7.1(a) has shown the implementation of base learner, Decision Tree within the
bagging ensemble learning framework. Initially, 5-fold cross-validation is applied, where the
dataset is scaled and fitted to the model for each fold. The performance result from each fold
is stored in a list, and the average performance across all folds is then computed to evaluate
overall effectiveness. During the training process, a loop is employed to determine early
convergence — this is defined either by the model producing consistent results for five
consecutive iterations or reaching a maximum of 300 iterations. Additionally, the
computational time required for model training is recorded for further evaluation. Figure
5.4.7.1(b) showed the outcome obtained from the model training. In the outcome, it displayed
the validation result including the accuracy, precision, recall, Fl score, auc score, type | error
and type Il error and the training time. Lastly the model trained is used for predicting on the

test data and result as shown in Figure 5.4.7.1(c).

38

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

from sklearn.inspection import permutation_importance
import scipy.stats as stats

Compute permutation importance
perm_importance = permutation_importance(model, X _test_scaled, y_test, n_repeats=18, random_state=42)

Compute p-values using a permutation test

p_values = np.array([
stats.norm.sf(abs(mean) / std) * 2 if std > 1e-10 else 1.8 # Normalized by standard deviation
for mean, std in zip(perm_importance.importances_mean, perm_importance.importances_std)

1

importance_df = pd.DataFrame({
"Feature’: X_train.columns,
'Importance’: perm_importance.importances_mean,
'P-Value': p_values

1)
Filter significant features (p-wvalue < @.85)
significant_features = importance_df[importance_df['P-Value'] < 8.85]

print(len(significant_features))

26

significant_features.to_excel("DT_Bagging significant_features.xlsx", index=False)
print(f"Significant features saved to 'DT_Bagging significant_features.xlsx'.")

Significant features saved to 'DT_Bagging_ significant_features.xlsx".

Figure 5.4.7.1(d) Output from extracting significant feature via permutation

importance and z-score

Figure 5.4.7.1(d) displays the output from extracting significant features using permutation

importance and z-score analysis. Features with a p-value below the threshold of 0.05 are

considered statistically significant and are selected for further analysis. The selected

significant features are then recorded and saved into an Excel (.xIsx) file for subsequent

model training.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

39

CHAPTER 5

AdaBoosting

HAdzBoost ing
fron sklearn.model_selection import StratifiedkFold

accuracies, precisions, recalls, f1_scores, aucs = [], [1, [). [1. []
type_I_errors, type IT errors = [],[]

skf = StratifiedkFold(n_splits=5, shuffle=True, random_state=42)
start_time = time.time() ¥ start time

decision_tree = DecisionTreellassifier{criterion = "entropy”, max_depth = 7. min_samples_split = Z,min_samples_leaf=4 random_state = 42}
model = AdaBoostClassifier(estimator=decision_tree,n_estinators=18, learning_rate=8.5)

for 4 in range(1, 381):

fold_accuracies, fold_precisions; fold_recalls, feld_fls, fold_aues = [}, [1: []s []: L[]
fold_type_I_errors, fold_type II_errors = [, []

for traln_index, val_index in sk#.split(X_train, y_train}:
X_train_fold, X _val_fold = X_train.iloc[train_index], X_train.iloc|val_index)
y_train_fold, y_val_feld = y_train.iloc[train_index], y_train.ilec[val_index]

scaler = StandardScaler()
X_train_scaled = scaler.fit_transform{X_train_fold)
¥_val_scaled = scaler.transform{X_val_fold)

model. Fit{X_train_scaled, y_train_fold)
y_val_pred = model predict(X_val_sealed)
y_val_prob = model.prediet_proba(X_val_sealed)[:, 1]

accuracy = accuracy_score(y_val_fold, y_val_pred)

precision = precision_score(y_val fold, y_val_pred, pos_label=1)
recall = recall_seore(y_val_fold, y_val_pred, pos_label=1}

f1 = f1_score(y_val_fold, y_val_pred, pos_label=1)

auc = metrics.roc_suc_score(y_wval_fold, y_val_prob}

cm = confusion matrix(y_wal fold, y_wval_pred)

FP, TH, FN, TP = ca[@][1], em[@][], em[1][2], ea[1][1]
type_I_error = FP [(FP + TN) if (FP + TN} 1= @ else @
type_IT_error = FN / (FM + TP} 1f (FN + TP) != 8 else @

I Append fold metrics
Fold_accuracies. append(accuracy)
fold_precisions. append (precision)
fold_recalls. append(recall)

Fold_fls. append(fi)

Fold_aucs . append{aue)

fold_type I_errors.append(type_I_error)
fold_type_II_errors.append(type II_error)

avg_ace = sum{fold_accuracies) f len{fold_accuracies)
avg_precision = sum(fold_precisions) / len(fold_precisions)
avg_recall = sunm(fold_recalls) / len(fold_recalls)

avg_f1 = sum(fold_fis) / len(fold fis)

avg_aucs = sum{fold_aucs}) / len{fold_aucs)

avg_typel = sum(fold_type I errors) [len{fold_type I_errors)
avg_typeIl = sunifold_type IT_errors) f len{fold_type_II_errors)

print(">>Fold",1i)
print("AUC:",avg_acc)
print(“Recall:",avg_recall)
print("Type II:",avg_typell)

Average over 5 folds
accuracies.append(round(avg_acc, 4))
precisions.append(round(avg_precision, 4))
recalls.append(round(avg_recall, 4})
f1_scores.append(round(avg_f1, 4))
aucs.append(round(avg_aucs, 4))
type_I_errors.append(round(avg_typeI, 4))
type_II_errors.append(round(avg_typeII, 4))

Early stopping logic

if len(accuracies) »= 5 and len(set(accuracies[-5:])) == 1:
print(f"Early stopping at iteration {i} because accuracy hasn't changed for 5 iterations.™)
break

elif len(recalls) >= 5 and len(set(recalls[-5:])) == 1:
print(f"Early stopping at iteration {i} because recall hasn't changed for 5 iterations.™)
break

end_time = time.time()
duration = round(end_time - start_time, 2)

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Recall: @.9773191153116562
Type II: ©.922680884688343745
>>Fold 287

AUC: @.9626628373787908
Recall: ©.9807212480142078
Type II: 6.91927875198589218
»>Fold 288

AUC: @.9646635785312828
Recall: @.98117502014084814
Type II: ©.818824979859518535
>>Fold 289

AUC: @.9625511784@33185
Recall: @.9793586447064637
Type II: ©.020641355293536258
»>>Fold 298

AUC: @.9617740182526096
Recall: @.9770926153283863
Type II: ©.82299738467161363
>»Fold 291

AUC: @.9627741955487325
Recall: @.9786799169156881
Type II: ©.021320083684312044
>>Fold 292

AUC: @.9631072818232351
Recall: @.083807138121234
Type 1I: 8.0161082861878765883
»»Fold 293

AUC: @.9601062936199124
Recall: @.9727881871241966
Type II: ©.827219892875883363
>>Fold 294

AUC: @.96344685533938608
Recall: @.9791329168822278
Type 1I: 6.82086708311777227
»»Fold 295

AUC: @.9625525201828794
Recall: @.9887225349466309
Type II: ©.91927746505336906
>>Fold 296

AUC: @.9614468084446915
Recall: @.9798152480818283
Type II: 8.0208184751918171734
»>Fold 297

AUC: @.9689062324748317
Recall: @.9758510263428219
Type II: ©.82494897315717812
>>Fold 298

AUC: @.9627748728153172
Recall: @.9823085496022094
Type II: ©.817691450397798597
>>Fold 299

AUC: @.9597736396763634
Recall: @.9755060859001187
Type 1I: 8.02449391489938135
>»Fold 3ee

AUC: @.9617734543882482
Recall: @.98@8394315879967
Type II: 8.019960568412003468

Figure 5.4.7.2(a) Modeling in adaboosting ensemble learning environment

(decision tree)

print(f"Final Accuracy: {accuracies[-1]}")
print(f"Final Precision: {precisions[-1]}")
print(f"Final Recall: {recalls[-1]}")
print(f"Final F1 Score: {fl1_scores[-1]}")
print{f"Final AUC: {aucs[-1]}")

print(f"Final
print(f"Final
print{f"Total

Final
Final
Final
Final
Final
Final
Final
Total

Accuracy: ©.9618

Precision: ©.9441

Recall: @.98

F1 Score: 8.9617

AUC: @.9921

Type I Error: 8.8558

Type II Error: ©.82

training time: 9713.48 seconds.

Type I Error: {type I errors[-1]}")
Type II Error: {type II errors[-1]}")
training time: {duration} seconds.™)

Figure 5.4.7.2(b) Output from modeling in adaboosting ensemble learning

environment (decision tree)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

41

CHAPTER 5

Make sure test data is scaled with the same scaler used on training data
X_test_scaled = scaler.transform(X_test)

Predict once
y_test_pred = model.predict(X_test_scaled)
y_test_prob = model.predict_proba(X_test_scaled)[:, 1]

Evaluate

accuracy = accuracy_score(y_test, y test pred)

precision = precision_score(y_test, y_test_pred, pos_label=1)
recall = recall_score(y_test, y_test pred, pos_label=1)

f1 = f1_score(y_test, y test pred, pos_label=1)

auc = metrics.roc_auc_score(y_test, y_test_prob)

cm = confusion_matrix(y_test, y_test pred)

FP, TN, FN, TP = cm[@][1], cm[@][@], cm[1][8], cm[1][1]
type_I_error = FP / (FP + TN) if (FP + TN) != @ else @

type_II_error = FN / (FN + TP) if (FN + TP) != 8 else @

Print final test performance

print(f"Final Accuracy: {accuracy:.4f}")

print(f"Final Precision: {precision:.4f}")

print(f"Final Recall: {recall:.4f}")

print(f"Final F1 Score: {f1:.4f}")

print(f"Final AUC: {auc:.4f}")

print(f"Final Type I Error: {type_I_error:.4f}")
t(f

"Final Type II Error: {type_II_error:.4f}")

+ Test Accuracy: @.9648
Test Precision: ©.9435
Test Recall: 8.93838
Test F1 Score: 8.9632
Test AUC: @8.9918
Test Type I Error: 8.8543
Test Type II Error: 8.6162

Figure 5.4.7.2(c) Output from testing in adaboosting ensemble learning

environment (decision tree)

In figure 5.4.7.1(a) has shown the implementation of base learner, Decision Tree within the
adaboosting ensemble learning framework. Initially, 5-fold cross-validation is applied, where
the dataset is scaled and fitted to the model for each fold. The performance result from each
fold is stored in a list, and the average performance across all folds is then computed to evaluate
overall effectiveness. During the training process, a loop is employed to determine early
convergence — this is defined either by the model producing consistent results for five
consecutive iterations or reaching a maximum of 300 iterations. Additionally, the
computational time required for model training is recorded for further evaluation. Figure
5.4.7.2(b) showed the outcome obtained from the model training. In the outcome, it displayed

the validation result including the accuracy, precision, recall, Fl score, auc score, type | error

42

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

and type Il error and the training time. Lastly the model trained is used for predicting on the

test data and result as shown in Figure 5.4.7.2(c).

©

53

from sklearn.inspection import permutation_importance
import scipy.stats as stats

Compute permutation importance
perm_importance = permutation_importance(model, X val_scaled, y_wal_fold, n_repeats=18, random state=42)

Compute p-values using a permutation test

p_values = np.array([
stats.norm.sf(abs(mean) f std) * 2 if std > 1e-10 else 1.8 # Normalized by standard deviation
for mean, std in zip(perm_importance.importances_mean, perm_importance.importances_std)

1)
importance df = pd.DataFrame({
‘Feature': X_train.columns,
‘Importance’: perm_importance.importances_mean,

‘P-value': p_values
H
Filter significant features (p-value < 8.85)
significant_features = importance_df[importance_df['P-value'] < 8.85]

print(len(significant_features))

24

significant_features.to_excel("DT_Adaboosting significant_ features.x1lsx", index=False)
print(f"Significant features saved to 'DT_Adaboosting_significant_features.xlsx'.")

Significant features saved to "DT_Adaboosting significant_ features.xlsx'.

Figure 5.4.7.2(d)Output from extracting significant feature via permutation

importance and z-score

Figure 5.4.7.2(d) displays the output from extracting significant features using permutation

importance and z-score analysis. Features with a p-value below the threshold of 0.05 are

considered statistically significant and are selected for further analysis. The selected

significant features are then recorded and saved into an Excel (xIsx) file for subsequent

model training.

43

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Stacking

I Stacking
From sklearn.model selection import StratifiedkKFold

aceuracies, precisions, recalls, f1_scores, aues = [), []. [1, [1. []
type_I_errors, type_II errors = [],[]

skf = StratifiedkFold(n_splits=5, shuffle=True, random_state=42)

start_time = time.time() # start time
base_estimators =| (f'DecisionTree{i}’,DecisionTreeClassifier(criterion = "entropy”, max_depth = 7,min_samples split = 2,min_samples_leaf=4,random_state = 42)) for 1 in range (18)]
model = StackingClassifier(estimators=base_estimators,final_sstimator=LogisticRegression())

for § in range(l, 381):
fold_accuracies, fold_precisions, fold_recalls, fold fis, fold_aucs = [], []. [1. [1. []
fold_type_I_errors, fold_type II_errors = [], []

for train_index, val_index in skf.split(X_train, y_train):
¥_train_fold, ¥_val_feld = X_train.iloc[train_index], X_train.ilee[val_index]
y_train_fold, y_val_feld = y_train.iloc[train_index], y_train.iloc[val_index]

scaler = StandardScaler()
¥_train_scaled = sealer.fit_transform(X_train_fold)
¥_val_scaled = scaler.transform{X_val_fold)

model. F1t(X_train_sealed, y_train_fold)
y_val_pred = model.predict(X_val_ scaled)
y_val_prob = model.predict_proba(X_wval_scaled)[:, 1]

accuracy = accuracy_score(y_val_fold, y_wal_pred)

precision = precision_score(y_val fold, y_val_pred, pos_label=1)
recall = recall _score(y_val_fold, y_val_pred, pos_label=1)

1 = f1_score(y_val_feld, y_val pred, pos_label=1)

auc = metrics.roc_auc_score(y_val_fold, y_wal prob)

8 = confusion matrix(y_val fold, y_val_pred)

FP, TH, FN, TP = em[@][1], em[@][], cm[1][2], em[1][1]
type_I_error = FP f (FP + TN) if (FP + TN} != @ else &
type II _error = FN / (FN + TP} if (FN + TP} != @ else @

i Append fold metrics
fold_accuracies.append (aceuracy)
Fold_precisions.append (precision)
fold_recalls. append(recall)

fold_f1s. append(f1)

fold_aucs.append(auc)
fold_type_I_errors.append(type_T_error)
Fold_type IT_errors.append(type_II_error)

avg_ace = sum(fold_accuracies) 7 len{fold_accuracies)
avg_precision = sum{fold_precisions) / len{fold precisions)
avg_recall = sun(fold_recalls) § len{fold_recalls)

avg_f1 = sum{fold_fls) / len(fold_f1s)

avg_aucs = sum(fold_aucs) / len(fold_aucs)

avg_typel = sun(fold_type_I_errors) J/ len(fold_type_I_errors)

avg_typeIl = sun(fold_type_II_errors) J/ len(fold_type_II_errors)

44
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

print(">>Fold",i)
print("AUC:",avg_acc)
print("Recall:",avg_recall)
print("Type II:",avg_typell)

Average over 5 folds
accuracies.append(round(avg_acc, 4))
precisions.append(round(avg_precision, 4))
recalls.append(round(avg_recall, 4))
f1_scores.append(round(avg_f1, 4))
aucs.append(round(avg_aucs, 4))
type_I_errors.append(round(avg_typeI, 4))
type_II errors.append(round(avg_typeII, 4))

Early stopping logic

if len(accuracies) »= 5 and len(set(accuracies[-5:])) ==
print(f"Early stopping at iteration {i} because accuracy hasn't changed for 5 iterations.")
break

elif len(recalls) >= 5 and len(set(recalls[-5:])) ==
print(f"Early stopping at iteration {i} because recall hasn't changed for 5 iterations.")

break
end_time = time.time()
duration = round(end_time - start_time, 2)
¥¥ >>Fold 1

AUC: @.9167682663287956
Recall: ©.9319547728715224
Type II: 8.863884522792847748
»»Fold 2

AUC: @.9167682663207956
Recall: ©.9319547728715224
Type II: ©.86884522702847748
»>Fold 3

AUC: @.9167682663207956
Recall: ©.9318547728715224
Type II: ©.86884522702847748
»>Fold 4

AUC: @.9167682663287956
Recall: ©.8319547728715224
Type II: ©.86884522702847748
»»Fold 5

AUC: @.9167682663287956
Recall: ©.9319547728715224
Type II: 8.863884522792847748
Early stopping at iteration 5 because accuracy hasn't changed for 5 iterations

Figure 5.4.7.3(a) Modeling in stacking ensemble learning environment (decision tree)

print(f"Final Accuracy: {accuracies[-1]}")
print(f"Final Precision: {precisions[-1]}")
print(f"Final Recall: {recalls[-1]}")
print(f"Final F1 Score: {fl1 scores[-1]}")
print(f"Final AUC: {aucs[-1]}")

print(f"Final Type I Error: {type I errors[-1]}"}
print(f"Final Type II Error: {type_II errors[-1]}")
print(f"Total training time: {duration} seconds.™)

Final Accuracy: 8.9168

Final Precision: @.9816

Final Recall: @.932

Final F1 Score: ©.9164

Final AUC: ©.9578

Final Type I Error: 8.0978

Final Type II Error: ©.868

Total training time: 783.41 seconds.

Figure 5.4.7.3(b) Output from modeling in adaboosting ensemble learning environment

(decision tree)

45

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Make sure test data is scaled with the same scaler used on training data
X_test_scaled = scaler.transform(X_test)

Predict once
y_test_pred = model.predict(X_test_scaled)
y_test_prob = model.predict_proba(X_test_scaled)[:, 1]

Evaluate

accuracy = accuracy score(y_test, y test pred)
precision = precision_score(y_test, y_test_pred, pos_label=1)
recall = recall_score(y test, y_test pred, pos_label=1)
f1 = f1_score(y_test, y_test_pred, pos_label=1)

auc = metrics.roc_auc_score(y_test, y_test prob)

cm = confusion matrix(y_test, y_test pred)

FP, TN, FN, TP = cm[@][1], cm[8][@], cm[1][@], em[1][1]
type_I_error = FP / (FP + TN) if (FP + TN) != @ else @
type_II error = FN / (FN + TP) if (FN + TP) != @ else @
Print final test performance

print(f"Test Accuracy: {accuracy:.4f}")

print(f"Test Precision: {precision:.4f}")

print(f"Test Recall: {recall:.4f}")

print(f"Test F1 Score: {fl:.4f}")

print(f"Test AUC: {auc:.4f}")

print(f"Test Type I Error: {type I error:.4f}")
print(f"Test Type II Error: {type II_error:.4f}")

Test Accuracy: ©.9147

Test Precision: ©.8946

Test Recall: ©.9319

Test F1 Score: @.9128

Test AUC: ©.9671

Test Type I Error: 8.181@

Test Type II Error: 0.8681

Figure 5.4.7.31 Output from testing in adaboosting ensemble learning environment

(decision tree)

In figure 5.4.7.3(a) has shown the implementation of base learner, Decision Tree within the
adaboosting ensemble learning framework. Initially, 5-fold cross-validation is applied, where
the dataset is scaled and fitted to the model for each fold. The performance result from each
fold is stored in a list, and the average performance across all folds is then computed to evaluate
overall effectiveness. During the training process, a loop is employed to determine early
convergence — this is defined either by the model producing consistent results for five
consecutive iterations or reaching a maximum of 300 iterations. Additionally, the
computational time required for model training is recorded for further evaluation. Figure
5.4.9.2 showed the outcome obtained from the model training. In the outcome, it displayed the
validation result including the accuracy, precision, recall, Fl score, auc score, type | error and
type Il error and the training time. Lastly the model trained is used for predicting on the test

data and result as shown in Figure 5.4.7.3(c).

46

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

from sklearn.inspection import permutation_importance
import scipy.stats as stats

Compute permutation importance
perm_importance = permutation_importance(model,X_test_scaled, y_test, n_repeats=18, random_state=42)

Compute p-values using a permutation test

p_values = np.array([
stats.norm.sf(abs(mean) / std) * 2 if std > le-18 else 1.8 # MNormalized by standard deviatien
for mean, std in zip(perm_importance.importances_mean, perm_importance.importances_std)

1)
importance_df = pd.DataFrame({
'Feature': X_train.columns,
‘Importance’: perm_importance.importances_mean,

'P-Value': p_values
1)
Filter significant features (p-value < ©.85)

significant_features = importance_df[importance_df['P-Value'] < 8.85]
print(len(significant_features))

29

significant_features.to_excel("DT_Stacking significant_features.xlsx”, index=False)
print(f"Significant features saved to 'DT_Stacking significant_features.xlsx".™)

Significant features saved to 'DT_Stacking significant_features.xlsx'.

Figure 5.4.7.3(d) Output from extracting significant feature via permutation

importance and z-score

Figure 5.4.7.3(d) displays the output from extracting significant features using permutation
importance and z-score analysis. Features with a p-value below the threshold of 0.05 are
considered statistically significant and are selected for further analysis. The selected
significant features are then recorded and saved into an Excel (xIsx) file for subsequent

model training.

47

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Ada_Boosting_df = pd.read_excel("/content/DT_Adaboosting_significant features.xlsx")
Stacking_df = pd.read_excel("/content/DT_Stacking significant_features.xlsx")
Bagging_df = pd.read_excel(”/content/DT_Bagging significant_features.xlsx")

top_features_adaBoosting = Ada_Boosting_df['Feature’].tolist()
top_features_stacking = Stacking_df['Feature'].tolist()
top_features_bagging = Bagging_df['Feature’].tolist()

exact_matches = set(top_features_adaBoosting) & set(top_features_stacking) & set(top_features_bagging)
num_exact_matches = len(exact_matches)

Display the matched features

print(f"Number of exact matches: {num_exact_matches}")
print("Matched features:™)

print(list(exact_matches))

Number of exact matches: 18
Matched features:
[Contingent liabilities/Net worth', ' Net Income to Total Assets’, ' Retained Earnings to Total Assets', ' Borrow

- ___|

write the exact matches into a txt file
exact_matches_list = list(exact_matches)
with open(“"duplicates_decision_tree.txt"”, "w") as file:
for item in exact_matches_list:
file.write(item + "\n")

Figure 5.4.8.1(a) Extracting overlapping significant feature

(v

dt_combined_features = list(set(top_features_adaBoosting + top_features_stacking + top_features_bagging))
print(len(dt_combined_features))

!

46

—

with open('combine_decision_tree.txt’, 'w') as f:
text=f.write(str(dt_combined features))

Figure 5.4.8.1(b) Combining significant features within a particular base learner

Figure 5.4.8.1(a) displays the output of the overlapping significant feature which is then
recorded and saved into a text file for subsequent model training Following that, Figure
5.4.8.1(b) illustrates the combination of significant features within a specific base learner

to further enhance the feature set used in training.

48

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Model training with significant features selected from ensemble learning technigues

SVM (Support Vector Machine)

from sklearn import svm

datasets = {

"base”: (X_resampled train, y _resampled train, X resampled test, y resampled test),
“selected”: (X resample selected train, y resample selected train, X resample selected test,
"dt_similar”: (X_resampled selected dt similar train, y resampled selected dt similar train,

y_resample_selected_test),
X_resampled selected dt similar test, y resampled selected dt_similar test),

"1r_similar”: (X_resampled selected lr similar train, y resampled selected 1r similar train, X resampled selected lr similar test, y resampled selected 1r similar test),
"dt_combined”: (X_combined features dt train, y combined festures dt train, X combined features dt test, y_combined features dt test),
“1r_combined”: (X _combined features lr train, y combined features lr train, X combined features lr test, y_combined features lr test),

"dt_stacking”: (X _resampled selected dt_stacking train, y resampled selected dt_stacking train, X _resampled selected dt stacking test, y resampled selected dt_stacking test),

"dt_bagging"
"dt_adaboostin

(X_resampled_selected dt_bagging_train, y resampled selected dt bagging train,
: (X_resampled_selected dt_adaboosting train, y resampled selected dt adaboosting train, X_resampled selected dt adaboosting test, y_resampled_selected dt adaboosting_test),

X_resampled_selected dt_bagging_test, y resampled selected dt_bagging test),

"1r_stacking”: (X _resampled selected Ir_stacking train, y resampled selected lr stacking train, X resampled selected lr stacking test, y resampled selected lr stacking test),

"1r_bagging”: (X resampled selected lr bagging_train, y resampled selected lr bagging train,

"1r_adaboostin

X_resampled_selected 1r_bagging_test, y resampled selected lr bagging test),

"combine bagging”:(X_resampled combine bagging_train, y resampled combine bagging_train, X resampled combine bagging test, y resampled combine bagging_ test)

H

Store trained models and predictions
svm_models = {}
svm_predictions = {}

Train and predict for each dataset
for name, (X_train, y train, X_test,y_test) in datasets.items():
model = svm.SVC(probability=True)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
y_prob = model.predict_proba(X_test)[:, 1]

accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y pred, pos_label-1)
recall = recall score(y_test, y pred, pos label-1)

F1 = 1_score(y_test, y pred, pos_label-1)

auc = metrics.roc_auc_score(y_test, y_prob)

Confusion Matrix Calculation

cm = confusion matrix(y_test, y_pred)

FP, TN, FN, TP = cm[@][1], cm[@][@], cm[1][B], cm[1][1]
type_I_error = FP / (FP + TN) if (FP + TN) != @ else @
type II error = FN / (FN + TP) if (FN + TP) 1= @ else @

svm_models[name] = model
svm_predictions[name] = {
"y_pred”: y_pred,
"accuracy™: accuracy,
“precision”: precision,
"recall”: recall,
"f1_score”: f1,
"auc”: auc,
“type_I_error”: type_I_error,
“type_II_error”: type_IL error

print(f"{name} SVM model trained and predicted.”)

: (X_resampled_selected lr adaboosting train, y resampled selected lr adaboosting train, X _resampled selected lr adaboosting test, y _resampled_selected lr adaboosting_test),

Figure 5.4.8.2 Modeling SVM classifier in training and testing with a variety of

combinations of significant features

Table 5.4.2: Description of combined significant features

Combination of significant features

Description

base

All features (94)

selected

Features selected under t-test

dt_similar

environment

Overlapping features within

decision tree ensemble learning

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

49

CHAPTER 5

Ir_similar

Overlapping features within
logistic regression ensemble

learning environment

dt_combine

Combination of features within
decision tree ensemble learning

environment

Ir_combine

Combination of features within
logistic regression ensemble

learning environment

dt_stacking

Significant ~ features from
decision tree in stacking
ensemble learning

environment

dt_bagging

Significant ~ features from
decision tree in bagging
ensemble learning

environment

dt_adaboosting

Significant ~ features from
decision tree in adaboosting
ensemble learning

environment

Ir_stacking Significant features from
logistic regression in stacking
ensemble learning
environment

Ir_bagging Significant features from

logistic regression in bagging
ensemble learning

environment

Ir_adaboosting

Significant features from

logistic regression in

Bachelor of Computer Science (Honours)

50

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

adaboosting ensemble learning

environment

combine_bagging Significant features in bagging
ensemble learning

environment

© for name, metrics in svm_predictions.items():
print(f"Model: {name}")
print(f* Accuracy: {metrics[’accuracy’]:.4f}")
print(f" Recall: {metrics['recall’]:.af}")
print(f* AUC: {metrics['auc’]:.4f}")
print(f" False Negative: {metrics[’type_II_error']:.4f}")
print("------")

5% Recall: @.e103
- Auc: ©.8752
False Negative: ©.9897
Model: dt_combined
Accuracy: 0.7867
Recall: @.8201
AuC: @.8693
False Negative: ©.1709
Model: 1r_combined
Accuracy: ©.7149
Recall: 8.7182
AUC: 8.79e5
False Negative: ©.2818
Model: dt_stacking
Accuracy: .6923
Recall: 8.6912
Auc: e.7748
False Negative: ©.3088
Model: dt_bagging
Accuracy: 8.7118
Recall: @.7112
AUC: 8.7920
False Negative: ©.2388
Model: dt_adaboosting
Accuracy: 0.7618
Recall: 8.7637
Auc: @.8483
False Negative: ©.2363
Model: 1r_stacking
Accuracy: 0.7058
Recall: ©.6814
AuC: @.7755
False Negative: ©.3186
Model: 1r_bagging
Accuracy: 8.5866
Recall: 8.3856
AUC: ©.6442
False Negative: ©.6144
Model: 1r_adaboosting
Accuracy: 8.5915
Recall: 6.3126
Auc: @.6952
False Negative: ©.6874
Model: combine bagging
Accuracy: 8.7258
Recall: @.7312

Figure 5.4.8.3 Output of modeling SVM classifier in testing with a variety of
combinations of significant feature

51
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

D import matplotlib.pyplot as plt
import numpy as np

datasets= ["base(94)","selected(82)","dt_overlap(18)”,"1r overlap(7)","dt_combined(46)","1r _combined(48)","dt stacking(29)","dt bagging(26)
"1r_stacking(32)","1r_bagging(29)","1r_adaboosting(14)", "combine_bagging(7)"]
fnr_values = [0.1401,6.1439,6.3661,0.0807,8.1780,0.2818,0.3088,0.2888,0.2363,0.3186,0.6144,8.6874,0.2688]

X = np.arange(len(datasets))
plt.plot(x, fr_values, marker='o', linestyle='-', color='steelblue’, linewidth-2, markersize=6)

Add data point labels
for i, val in enumerate(fnr_values):
plt.text(x[i], val, '{val:.3f}%’, ha='center’, fontsize=g8)

plt.xticks(x, datasets, rotation=45, ha='right")

plt.title('False Negative Rate Trend Across Feature Combinations with SVM classifier’)
plt.ylabel('False Negative Rate (%))

plt.ylim(8, 1.0)

plt.grid(True, linestyle='--", alpha=8.6)

plt.tight_layout()|

plt.show()

14

Iiao\se Negative Rate Trend Across Feature Combinations with SVM classifier

False Negative Rate (%)

0.0 T T T T T T
A » O O S
LTS LELL LSS
T A AR R & S &
P U AR € NPT P L

& & & & S &

o s o
¢ & &S S O
& N & & S $ &
& % L A Y g
A

Figure 5.4.8.4 Visualization of output of modeling SVM classifier

", "dt_adaboosting(26)",

in testing

Figure 5.4.8.2 illustrates the implementation of code used to load the SVM classifier and train

it with various combinations of significant features. The descriptions of these combined
significant features are detailed in Table 5.4.2. Model evaluation focuses on three primary

performance metrics including accuracy, recall and auc score. Test results are presented in

figure 5.4.8.3 with a graph visualization shown in figure 5.4.8.4.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

52

CHAPTER 5

Random Forest

from sklearn.ensemble import RandomForestClassifier

datasets = {

“base”: (X_resampled train, y resampled train, X_resampled test, y resampled test),

“selected": (X_resample_selected_train, y_resample_selected_train, X_resample_selected_test, y_resample_selected test),

“dt_similar”: (X_resampled selected dt_similar train, y_resampled_selected dt_similar train, X_resampled _selected dt_similar test, y_resampled_selected dt_similar_test),

*1r_similar”: (X_resampled selected lr_similar_train, y resampled_selected lr similar_train, X resampled selected lr_similar_test, y resampled selected lr _similar_test),
(X_combined_features_dt_train, y_combined_features_dt_train, X_combined_features_dt_test, y_combined_features_dt_test),
(X_combined_features_lr_train, y_combined features_lr_train, X_combined features_lr test, y_combined_features_lr test),
(X_resampled_selected_dt_stacking train, y_resampled_selected dt_stacking_train, X_resampled_selected dt_stacking_test, y_resampled_selected dt_stacking_test),
X_resampled_selected dt_bagging train, y resampled selected dt bagging train, X resampled selected dt bagging test, y resampled selected dt_bagging test),
"dt_adaboosting”: (X_resampled_selected_dt_adaboosting_train, y_resampled_selected_dt_adaboosting_train, X_resampled_selected_dt_adaboosting_test, y_resampled_selected_dt_adaboosting_test),
“1r_stacking”: (X_resampled_selected lr_stacking train, y_resampled selected lr_stacking_train, X resampled selected_lr stacking_test, y_resampled_selected_lr stacking_test),
“1r_bagging”: (X_resampled selected lr_bagging train, y resampled_selected lr bagging train, X resampled selected lr_bagging test, y resampled selected lr_bagging_test),
“1r_adaboosting”: (X_resampled_selected lr_adaboosting_train, y_resampled selected_lr_adaboosting_train, X_resampled_selected lr_adaboosting_test, y_resampled selected lr_adaboosting test),
“combine_bagging": (X_resampled_combine_bagging_train, y_resampled_combine_bagging_train, X_resampled_combine_bagging_test, y_resampled_combine_bagging_test)

Store trained models and predictions
RF_models - {}
RF_predictions = {}

Train and predict for each dataset
for name, (X_train, y_train, X_test,y_test) in datasets.items():
model = RandemForestClassifier(criterion = "gini”,max_depth = 5,min_samples_split = 2,min_samples_leaf=1,random_state = 42)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
y_prob = medel.predict_proba(X_test)[:, 1]

accuracy = accuracy_score(y_test, y_pred)
precision - precision_score(y_test, y_pred, pos_label-1)
recall = recall_score(y_test, y_pred, pos_labe
1 = f1_score(y_test, y_pred, pos_label-1)

auc = roc_auc_score(y_test, y_prob)

Confusion Matrix Calculation

em = confusion_matrix(y_test, y pred)

FP, TN, FN, TP = cm[8][1], em[e][e], em[1][€], cm[1][1]
type_I_error = FP / (FP + TN) if (FP + TN) 8 else @
type_II_error = FN / (FN + TP) if (FN + TP) 1= @ else @

RF_models[name] = model
RF_predictions[name] = {
"y_pred”: y_pred,
"accuracy”: accuracy,
“precision”: precision,
“recall”: recall,
"f1_score”™: f1,
"auc": auc,
“type_I_error”: type_I_error,
“type_II_error": type_II_error

print(f"{name} RF model trained and predicted.")

Figure 5.4.9.1 Modeling Random Forest classifier in training and testing with a

variety of combinations of significant features

53
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

combination of significant features

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

for name, metrics in RF_predictions.items():

print(f"Model: {name}")

print(f" Accuracy: {metrics['accuracy’]:.4f}")

print(f" Recall: {metrics['recall’]:.4f}")

print(f" AUC: {metrics['auc']:.4f}")

print(f" False Negative: {metrics['type II error']:.4f}")

print("------)

Recall: 8.9183
AUC: 8.9631

False Negative: 0.€817

Model: dt_combined

Accuracy: 8.9266
Recall: @.94@5
AUC: ©.9785

False Negative: ©.@595

Model: 1r_combined

Accuracy: 8.9209
Recall: @.9308
AUC: @.9752

False Negative: ©.0692

Model: dt_stacking

Accuracy: 8.9251
Recall: 8.9329
AUC: @.9759

False Negative: @.€671

Model: dt_bagging

Accuracy: @.9295
Recall: 8.9448
AUC: @.9786

False Negative: ©.0552

Model: dt_adaboosting

Accuracy: 8.9292
Recall: 8.9529
AUC: @.9775

False Negative: ©.8471

Model: 1r_stacking

Accuracy: 8.9186
Recall: ©.9329
AUC: @.9723

False Negative: 0.0671

Model: 1r_bagging

Accuracy: 8.9173
Recall: @.9297
AUC: @.9786

False Negative: @.6783

Model: 1r_adaboosting

Accuracy: ©.9217
Recall: @.9346
AUC: @.9721

False Negative: @.0654

Model: combine_bagging

Accuracy: ©.9269
Recall: ©.9416

Figure 5.4.9.2 Output of modeling Random Forest classifier in testing with a variety

54

CHAPTER 5

fnr_values_rf = [©.96438,0.8487,0.8498,08.0817,0.0595,0.08692,08.8671,08.8552,0.08471,0.08671,0.8783,08.8654,0.08584]
x = np.arange(len(datasets))
plt.plot(x, fnr_values_rf, marker="o0', linestyle='-', color="red', linewidth=2, markersize=6)

Add data point labels
for i, val in enumerate(fnr_values rf)
plt.text(x[i], val, f'{val:.3f}%', ha='center', fontsize=8)

plt.xticks(x, datasets, rotation=45, ha='right')

plt.title('False Negative Rate Trend Across Feature Combinations with RF classifier')
plt.ylabel('False Hegative Rate (%)')

plt.grid(True, linestyle="--', alpha=8.6)

plt.ylim(@.04, @.885)

plt.tight_layout()

plt.show()

False Negative Rate Trend Across Feature Combinations with RF classifier

0.08 1
g
y 0.07
2z
5
o
v
2
"
T 0.06
w
=
L)
n
T
* 0.051
0.04 T T T T T T T T T : T T
» S D
S O e e DAY
AR O A A U AR
F F R PP LS E SO EF
F L & & & _b& g & ‘a‘}\ & & P
&
& 5&9 N d§> dsﬁ & il 500 & ST zj?
& & ¥ R T &
& N 2 ks @'{)
&7 0

Figure 5.4.9.3 Visualization of output of modeling Random Forest classifier in
testing

Figure 5.4.9.1 illustrates the implementation of code used to load the Random Forest classifier
and train it with various combinations of significant features. Model evaluation focuses on
three primary performance metrics including accuracy, recall and auc score. Test results are

displayed in figure 5.4.9.2, with a graph visualization shown in figure 5.4.9.3

55
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

5.5 Implementation Issues and Challenges

One of the key challenges in this project is the features provided in the dataset not fully aligned
with the variables in the Altman-Z score for financial distress prediction. Due to the absence
of certain variables, the model cannot directly apply the z score equation. As a result, feature
selection was conducted using t-test, only selecting those features with p value less than 0.5 as
the statistical significance and contribute to the financial distress detection. Besides that,
another challenge encountered was the high computational resources requirement when
implementing the ensemble learning technique on base learners like logistic regression and
decision tree. Among the techniques, adaboosting required the most computational time likely
due to its sequential architecture where the weak learners are trained after another with
iteratively weight updates. This limits parallelization and increases overall processing time

with large datasets.

5.6 Concluding Remark

In this chapter, experimental setup and simulation procedures were presented, including
hardware and software configurations, system operation, and implementation details. The
proposed model was evaluated within different ensemble learning environments to assess the
performance of various ensemble techniques. Further analysis was conducted by introducing
two new classifiers to train on the significant features selected by each base learner within each
ensemble framework. Based on the results gained, the degrees of effectiveness of ensemble
learning techniques vary based on the base learner used. The insights gained from the
experimental process serve as a valuable foundation for informed decision-making in

suggesting the best ensemble learning techniques in the financial distress detection.

56
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

Chapter 6
SYSTEM EVALUATION AND DISCUSSION

6.1 System Testing and Performance Metrics

Comparison of Logistic Regression and Decision Tree on three ensemble learning techniques

Logistic Regression

Table 6.1.1: Result of applying logistic regression as base learner in three

ensemble learning environment

Method Bagging Stacking Adaboosting
Test Accuracy 0.9090 0.9069 0.8867

False positive 0.1005 0.0961 0.0971
False Negative 0.0806 0.0898 0.1309
AUC 0.9674 0.9661 0.9488
Precision 0.8938 0.8971 0.8918
Recall 0.9194 0.9102 0.8691

F1 score 0.9064 0.9036 0.8803
Time Processing 59.99 200.09 11.54

Decision Tree
Table 6.1.2: Result of applying decision tree as base learner in three ensemble

learning environment

Method Bagging Stacking Adaboosting
Test Accuracy 0.9463 0.9147 0.9601

False positive 0.0786 0.1010 0.0572
False Negative 0.0265 0.0681 0.0211
AUC 0.9876 0.9671 0.9923
Precision 0.9193 0.8946 0.9425
Recall 0.9735 0.9319 0.9805

F1 score 0.9456 0.9128 0.9611
Time Processing 89.46 783.41 9489.64

57
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

In table 6.1.1 and table 6.1.2 have presented the result of applying logistic regression and
decision tree as base learners in three ensemble learning environment respectively. Based on
table 6.1.1, bagging demonstrated the best performance in logistic regression, achieving the
lowest false negative rate of 8.06%. This indicates only 8.06% of distressed companies were
misclassified as non-distressed. Besides, it recorded the highest AUC score of 96.74%,
reflecting that the model’s strong ability to distinguish between normal and distressed
companies. The model required approximately 1 minute to converge during training,
highlighting its efficiency. In contrast, Table 6.1.2 shows that Adaboosting with decision tree
achieved the best performance of lowest false negative rate of 2.11% and highest AUC score
0f 99.23%. On the other hand, it is computationally expensive since it required 9489.64 seconds
and yet to fully converging. In contrast, bagging produced a comparable false negative rate of
2.65% but with significantly lower computational cost, making it the recommended ensemble

technique for financial distress detection due to its balanced performance and efficiency.

58
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

SVM
Table 6.1.3: Result of applying SVM in training on variety combination of
significant features
Model Type No of | Accuracy Recall AUC False Negative
Features Rate
Base Feature 94 0.8180 0.8599 0.8959 0.1401
Selected 82 0.8173 0.8561 0.8933 0.1439
Feature(p
value)
Decision Tree | 10 0.7022 0.6939 0.7764 0.3061
Overlap
Logistic 7 0.5254 0.0103 0.8752 0.9897
Regression
Overlap
Decision Tree | 46 0.7867 0.8291 0.8693 0.1709
Combine
Logistic 40 0.7149 0.7182 0.7905 0.2818
Regression
Combine
Bagging 47 0.7258 0.7312 0.8097 0.2688
Combine
Decision Tree | 29 0.6923 0.6912 0.7748 0.3088
Stacking
Decision Tree | 26 0.7110 0.7112 0.7920 0.2888
Bagging
Decision Tree | 26 0.7618 0.7637 0.8483 0.2363
Adaboosting
Logistic 32 0.7058 0.6814 0.7755 0.3186
Regression
Stacking

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

59

CHAPTER 6

Logistic
Regression
Bagging

29

0.5866

0.3856

0.6442

0.6144

Logistic

Regression

Adaboosting

14

0.5915

0.3126

0.6952

0.6874

1.0

False Negative Rate Trend Across Feature Combinations with SVM classifier

0.8

0.6

0.4

False Negative Rate (%)

0.2

combination of significant features

Summary

Based on table 6.1.3, it is clear that feature set derived from the Decision Tree-based selection
has better performance compared to those selected from logistic regression. Specifically, the
Decision Tree combination achieved a lower false negative rate of 17.09% than the rate of
28.18% from logistic regression combination. Besides that, it also suggested decision tree
model under bagging ensemble learning environment has a balance performance which shows
an average performance with a false negative rate of 28.88% and shorter time processing time

compared to Adaboosting environment. This suggested that using Decision Tree as a base

Figure 6.1.1 Visualization of result of applying SVM in training on variety

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

learner in bagging environment could effectively achieve a better performance and optimal
time processing in detecting the financial distress. To further evaluate this, a combination of
features from both weak learners was tested within the Bagging framework. The Bagging
Combine model outperformed the Logistic Regression Combine across all metrics—achieving
higher accuracy, recall, and AUC, as well as a lower false negative rate. However, the Decision
Tree Combine model still recorded better recall and a lower false negative rate than Bagging
Combine. This suggests that while Bagging improves overall model robustness, particularly
when blending features from diverse weak learners, the Decision Tree alone exhibits strong
predictive power. A graphical visualization of these results is presented in Figure 6.1.1, which
provides a clear overview of the model performance across various ensemble learning

configurations.

61
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

Random Forest

Table 6.1.4: Result of applying Random Forest in training on variety combination of
significant features

Model Type No of | Accuracy Recall AUC False Negative
Features Rate

Base Feature 94 0.9339 0.9562 0.9805 0.0438

Selected 82 0.9321 0.9513 0.9797 0.0487

Feature (p

value)

Decision Tree | 10 0.9264 0.9502 0.9754 0.0498

Similar

Logistic 7 0.9080 0.9183 0.9631 0.0817

Regression

Similar

Decision Tree | 46 0.9266 0.9405 0.9785 0.0595

Combine

Logistic 40 0.9209 0.9308 0.9752 0.0692

Regression

Combine

Bagging 47 0.9269 0.9416 0.9776 0.0584

Combine

Decision Tree | 29 0.9251 0.9329 0.9759 0.0671

Stacking

Decision Tree | 26 0.9295 0.9448 0.9786 0.0552

Bagging

Decision Tree | 26 0.9292 0.9529 0.9775 0.0471

Adaboosting

Logistic 32 0.9186 0.9329 0.9723 0.0671

Regression

Stacking

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

62

CHAPTER 6

Logistic 29 0.9173 0.9217 0.9706 0.0703
Regression
Bagging

Logistic 94 0.9217 0.9346 0.9721 0.0654
Regression

Adaboosting

False Negative Rate Trend Across Feature Combinations with RF classifier

0

0.08 1

0.07

0.06 1

False Negative Rate (%)

0.05

Figure 6.1.2 Visualization of result of applying Random Forest in training

on variety combination of significant features

Summary

Based on table 6.1.4, it is clear that the features selected from three ensemble learning
environments, it is observed that feature set derived from the Decision Tree-based selection
has better performance compared to those selected from logistic regression. Specifically, the
Decision Tree combination achieved a lower false negative rate of 5.95% than the rate of 6.92%
from logistic regression combination. Besides that, it also suggested decision tree model under
bagging ensemble learning environment has a balance performance which it shown an average
of performance with a false negative rate of 5.52% and shorter time processing time compared

to adaboosting environment. This suggested that using Decision Tree as a choice as the base

63
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

learner in a bagging environment is a recommended choice to achieve a better performance in
detecting the financial distress. To further validate this, a combination of features from both
weak learners was tested within the Bagging framework. A slightly different trend compared
to when using SVM classifier, the Bagging Combine model achieved higher recall and a lower
false negative rate than the Decision Tree Combine model. This indicates that the choice of
classifier can influence results. As an overview bagging ensemble framework is a

recommended choice in financial distress detection.

6.2 Testing Setup and Result

Financial Implication

Table 6.2.1: Financial Indicators from Literature Review

Category

Description

General Indicator

Liquidity Ratios

It measures a company's
financial health and the ease of
convert assets into cash to pay
off liabilities [22].

Current Ratio, Cash Ratio,
Quick Ratio, Operating
Cash Flow Ratio

Solvency (Debt)

Ratios

It measures amount of
company's assets financed by
debt [22].

Debt to Equity Ratio, Long
Term Debt Ratio, Equity
Ratio, Short Term Debt
Ratio

Profitability Ratios

It measures company’s ability
to generate profit relative to its

sales, assets, and equity. [22].

Margin Ratio:

Gross Profit Margin, Net
Profit Margin, Operating
Profit Margin, Net Profit
Margin

Return Ratio:

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

64

CHAPTER 6

Return on Assets, Return on

Equity

Operational It measures company’s ability
Efficiency Ratios to effectively employ its
resources to produce income
[22].

Inventory Turnover Ratio,
Accounts Payables
Turnover, Account
Receivables Turnover,

Assets Turnover Ratio

Table 6.2.2: Categorization of features into respective categories

Category

Description

Feature from the dataset [33]

Solvency

It measures amount of
company’s assets financed by
debt [22].

X1-X28

Capital structure ratios

It assess company’s long-term
financial stability and the
proportion of debt and equity
in its financing [29]

X29-X37

Others

X38-X50

Profitability

It measures the company’s
ability to generate profit
relative to its sales, assets, and
equity [22].

X51-X69

Turnover ratios

It measures the amount of
assets or liabilities that a
company replaces in relation
to its sales for determining
efficiency in utilizing its
assets.[30]

X70-X82

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

Cash flow ratios It assess company’s ability to
pay dividends to investors by
comparing cash flows to other
elements of an entity’s

financial statements [31]

X83-X87

Growth It assess company’s
performance and predicting
future performance

by expressing the annual
change in a variable as a
percentage. [32]

X88-X95

Table 6.2.3 Overlap indicators selected using t-test and the financial indicator

categories identified

Feature

Category

X0: ROA(C) before interest and depreciation before

interest

Liquidity

X1: ROA(A) before interest and % after tax

X2: ROA(B) before interest and depreciation after tax

X3: Operating Gross Margin

X4: Realized Sales Gross Margin

X6: Pre-tax net Interest Rate

X7: After-tax net Interest Rate

X8: Non-industry income and expenditure/revenue

X9: Continuous interest rate (after tax)

X10: Operating Expense Rate

X11: Research and development expense rate

X12: Cash flow rate

X13: Interest-bearing debt interest rate

X14: Tax rate (A)

X15: Net Value Per Share (B)

X16: Net Value Per Share (A)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

66

CHAPTER 6

X17: Net Value Per Share |

X18: Persistent EPS in the Last Four Seasons

X19: Cash Flow Per Share

X20: Revenue Per Share (Yuan A¥)

X21: Operating Profit Per Share (Yuan A¥)

X22: Per Share Net profit before tax (Yuan A¥)

X24: Operating Profit Growth Rate

X25: After-tax Net Profit Growth Rate

X26: Regular Net Profit Growth Rate

X27: Continuous Net Profit Growth Rate

X28: Total Asset Growth Rate

X29: Net Value Growth Rate

X30: Total Asset Return Growth Rate Ratio

X31: Cash Reinvestment Percentage

X33: Quick Ratio

X34: Interest Expense Ratio

X35: Total debt/Total net worth

X36: Debt ratio %

X37: Net worth/Assets

Capital structure ratios

X39: Borrowing dependency

X40: Contingent liabilities/Net worth

X41: Operating profit/Paid-in capital

X42: Net profit before tax/Paid-in capital

X43: Inventory and accounts receivable/Net value

X44: Total Asset Turnover

X45: Accounts Receivable Turnover

X46: Average Collection Days

X47: Inventory Turnover Rate (times)

X48: Fixed Assets Turnover Frequency

X49: Net Worth Turnover Rate (times)

X50: Revenue per person

Others

X51: Operating profit per person

Profitability

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

67

CHAPTER 6

X53:

Working Capital to Total Assets

X54:

Quick Assets/ Total Assets

X55:

Current Assets/Total Assets

X56:

Cash/Total Assets

X58:

Cash/Current Liability

X59:

Current Liability to Assets

X60:

Operating Funds to Liability

X63:

Current Liabilities/Liability

X64:

Working Capital/Equity

X65:

Current Liabilities/Equity

X66:

Long-term Liability to Current Assets

X67:

Retained Earnings to Total Assets

X68:

Total income/Total expense

X69:

Total expense/Assets

X70:

Current Asset Turnover Rate

XT71:

Quick Asset Turnover Rate

X73:

Cash Turnover Rate

XT75:

Fixed Assets to Assets

X76:

Current Liability to Liability

XT7T:

Current Liability to Equity

X78:

Equity to Long-term Liability

X79:

Cash Flow to Total Assets

X80:

Cash Flow to Liability

X81:

CFO to Assets

X82:

Cash Flow to Equity

Turnover Ratios

X83:

Current Liability to Current Assets

X85:

Net Income to Total Assets

X86:

Total assets to GNP price

X87:

No-credit Interval

Cash Flow Ratios

X88:

Gross Profit to Sales

X89:

Net Income to Stockholder’s Equity

X90:

Liability to Equity

Growth

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

68

CHAPTER 6

X91: Degree of Financial Leverage (DFL)
X93: Net Income Flag

Table 6.2.4 Overlap indicators selected using t-test and the general financial indicator

No Features

X33: Quick Ratio

X36: Debt Ratio

X85: Net Income to Total Assets

X89: Net Income to Stockholder's Equity
X44: Total Asset Turnover

X47: Inventory Turnover Rate

~N| o o1 B W N B

X45: Accounts Receivable Turnover

In general, to assess the financial position of a company whether it is distress or non-distress,
there are a few key financial indicator categories including liquidity analysis, operational
efficiency (efficacy) analysis, debt (solvency) analysis and profitability analysis [23] as iutlined
in Table 6.2.1. Based on table 6.2.2, it has displayed the features that have been mapped to
these categories like solvency, capital structure ratios, profitability, turnover ratios, cash flow
ratios, growth and others. In table 6.2.3, it has highlighted an overlap between statistically
selected features (via t-test) and financial indicator categories identified. Specifically, the
selected features include 27 from solvency ratios, 8 from capital structure ratios, 15 from
profitability ratios, 11 from turnover ratios, 4 from cash flow ratios, 5 from growth indicators,
and 12 from other categories. It suggests that the solvency category features display a
significant importance in financial distress as evidenced by their frequent selection through the
t-test. In table 6.2.4, there are a total of 7 features overlapping with the general indicators,
reinforcing the model’s practical relevance and its effectiveness in identifying distress through

features widely supported in financial literature.

69

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

Table 6.2.5 Significant features from bagging environment

Feature Name

X0: ROAI before interest and depreciation before interest

X1: ROA(A) before interest and % after tax

X6: Pre-tax net Interest Rate

X8: Non-industry income and expenditure/revenue

X9: Continuous interest rate (after tax)

X10: Operating Expense Rate

X11: Research and development expense rate

X12: Cash flow rate

X14: Tax rate (A)

X15: Net Value Per Share (B)

X16: Net Value Per Share (A)

X17: Net Value Per Share |

X18: Persistent EPS in the Last Four Seasons

X22: Per Share Net profit before tax (Yuan ¥)

X25: After-tax Net Profit Growth Rate

X26: Regular Net Profit Growth Rate

X27: Continuous Net Profit Growth Rate

X34: Interest Expense Ratio

X35: Total debt/Total net worth

X36: Debt ratio %

X37: Net worth/Assets

X39: Borrowing dependency

X40: Contingent liabilities/Net worth

X41: Operating profit/Paid-in capital

X43: Inventory and accounts receivable/Net value

X44: Total Asset Turnover

X45: Accounts Receivable Turnover

X46: Average Collection Days

X48: Fixed Assets Turnover Frequency

X49: Net Worth Turnover Rate (times)

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

70

CHAPTER 6

X51: Operating profit per person

X54: Quick Assets/Total Assets

X56: Cash/Total Assets

X59: Current Liability to Assets

X60: Operating Funds to Liability

X67: Retained Earnings to Total Assets

X71: Quick Asset Turnover Rate

X73: Cash Turnover Rate

X76: Current Liability to Liability

X78: Equity to Long-term Liability

X80: Cash Flow to Liability

X82: Cash Flow to Equity

X85: Net Income to Total Assets

X89: Net Income to Stockholder’s Equity

X90: Liability to Equity

X91: Degree of Financial Leverage (DFL)

X93: Equity to Liability

Table 6.2.6 Overlap indicators selected from bagging ensemble learning framework and

the financial indicator categories identified.

Feature Category

X0:ROAI before interest and depreciation Solvency
before interest
X1:ROA(A) before interest and % after tax

X6:Pre-tax net Interest Rate

X8:Non-industry income and

expenditure/revenue

X9: Continuous interest rate (after tax)

X10: Operating Expense Rate

X11: Research and development expense rate
X12: Cash flow rate
X14: Tax rate (A)

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

71

CHAPTER 6

X15:

Net Value Per Share (B)

X16:

Net Value Per Share (A)

X17:

Net Value Per Share |

X18:

Persistent EPS in the Last Four Seasons

X22:

Per Share Net profit before tax (Yuan ¥)

X25:

After-tax Net Profit Growth Rate

X26:

Regular Net Profit Growth Rate

X27:

Continuous Net Profit Growth Rate

X34:

Interest Expense Ratio

X35:

Total debt/Total net worth

X36:

Debt ratio %

X37:

Net worth/Assets

Capital Structure Ratios

X39:

Borrowing dependency

X40:

Contingent liabilities/Net worth

X41:

Operating profit/Paid-in capital

X43: Inventory and accounts receivable/Net

value

X44:

Total Asset Turnover

X45:

Accounts Receivable Turnover

X46:

Average Collection Days

X48:

Fixed Assets Turnover Frequency

X49:

Net Worth Turnover Rate (times)

Others

X51:

Operating profit per person

X54:

Quick Assets/Total Assets

X56:

Cash/Total Assets

X59:

Current Liability to Assets

X60:

Operating Funds to Liability

X67:

Retained Earnings to Total Assets

Profitability

XT71:

Quick Asset Turnover Rate

X73:

Cash Turnover Rate

X76:

Current Liability to Liability

X78:

Equity to Long-term Liability

Turnover Ratios

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

72

CHAPTER 6

X80: Cash Flow to Liability
X82: Cash Flow to Equity
X85: Net Income to Total Assets Cash Flow Ratios
X89: Net Income to Stockholder’s Equity Growth

X90: Liability to Equity

X91: Degree of Financial Leverage (DFL)
X93: Equity to Liability

Table 6.2.7 Overlap indicators selected using bagging ensemble framework and the general

financial indicator

No Features

1 X45: Accounts Receivable Turnover

2 X36: Debt Ratio

3 X85: Net Income to Total Assets

4 X89: Net Income to Stockholder's Equity

In table 6.2.5, it has shown a total of 47 significant features selected by bagging ensemble
environment from both logistic regression and decision tree. As shown in Table 6.2.6, the
selected features include 17 from solvency ratios, 4 from capital structure ratios, 6 from
profitability ratios, 1 from cash flow ratios, 6 from turnover ratios, 4 from growth indicators,
and 9 from other categories. Solvency category features dominated both ensemble learning
techniques and statistical method highlighting their critical importance in detecting financial
distress. In table 6.2.7 shows that a total of 4 features overlapping from bagging ensemble
framework with the general indicators, suggesting that bagging ensemble framework’s
capability relevant and theoretically supported indicators. By narrowing the scope to key
features, the ensemble approach enhances both the efficiency and practical relevance of the

predictive model.

73
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

6.3 Project Challenges

One of the key challenges encountered in this project was the limited availability of
computational resources, particularly when training resource-intensive models such as
AdaBoosting. AdaBoosting involves iterative training where weights are updated subsequently
in each iteration to focus on correcting the errors made by previous models. This architecture
increases computational demand. Since the project was implemented using Google Colab,
which has restricted memory and disk space, it posed a limitation on executing large-scale
model training. As a result, the ability to conduct extensive hyperparameter tuning and explore
deeper model configurations was constrained, potentially impacting model optimization.
Additionally, when evaluating model performance, it is crucial to select performance metrics
that reflect real-world concerns. For example, greater emphasis was placed on the false
negative rate because misclassifying a financially distressed company as normal could have
severe consequences. This focus ensured that the evaluation process prioritized the detection

of financial distress accurately.

6.4 Objectives Evaluation

Obijective 1: Familiarize the architecture ensemble learning techniques

Evaluation: The objective has been achieved. Two weak learners such as logistic regression
and decision tree, have been implemented into three ensemble learning environments which
are bagging, stacking and adaboosting. Each of ensemble learning techniques has its own
uniqueness, for example, bagging focuses on training multiple models on different subsets of
data and aggregating predictions through major voting. For adaboosting, the techniques focus
on optimizing overall performance by allocating higher weight on misclassified classes to let
the model make more focuses on wrongly classified ones. For stacking, it involves training
multiple base models parallelly and according to the combination of outputs as input to the

meta model, which learns from the intermediate predictions the same target.

Obijective 2: Compare and contrast three ensemble learning technigues (stacking, bagging and

boosting) using classifiers like logistic regression and decision tree in classifying financial

status of companies

Evaluation: The objective has been achieved. According to the result obtained using Logistic
Regression as the weak learner in three ensemble learning environment, bagging demonstrated

the best performance with the lowest negative rate of 8.06%, compared to 8.98% from stacking

74
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

and 13.09% from adaboosting. In contrast, when applying decision tree as weak learner,
adaboosting outperformed with the lowest false negative rate, indicating its strength in
detecting the financial distress. However, it required significantly more computational time,
making it less efficient. Bagging achieved slightly lower performance than adaboosting,
offered a balance by maintaining competitive performance with lower computational cost,
proving to be more efficient choice in detecting the financial distress.

Furthermore, the features selected from decision tree and logistic regression in three ensemble
learning environments have been applied on new classification models like SVM and Random
Forest to further evaluate the performance of each ensemble learning techniques. Results have

further proven bagging ensemble learning

Obijective 3: Relate the findings to interpret the business implications of financial distress

Evaluation: The objective has been achieved. The features selected from t-test with p value less
than 0.05 have been compared against financial indicators identified in literature. It confirms
that statistically significant features are aligned with financial indicators used in real world
financial distress analysis. This also further reinforces its practical relevance in the financial
distress detection in business contexts. Additionally, the significant features selected from
bagging were also compared with literature-based indicators. The findings provide further
evidence that applying machine learning techniques in financial distress detection not only
captures features aligned with established financial guidelines but also has the potential to

uncover underling significant features.

6.5 Concluding Remark

This chapter has presented the system testing procedures and performance metrics used to
evaluate which proposed ensemble learning technique works the best with the base learner.
Further evaluation is recorded under the testing up and result but more emphasis on the business
respective like the overlapping features within the literature-based indicators and the indicators
selected from ensemble learning framework. The challenges encountered during
implementation has been discussed and should be considered for improvement in future
work.Lastly, the project objectives were evaluated to check whether it is aligned with

throughout the project process.

75
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 7

Chapter 7 Conclusion and Recommendation

7.1 Conclusion

In these findings has demonstrated that Bagging is the recommended ensemble learning
techniques for financial distress detection. It delivers outstanding performance with the lowest
false negative rate and maintains a reasonable computational time, making it both accurate and
efficient. In contrast, Adaboosting requires significantly more computational resources to
achieve a higher precision while applying decision tree as the basic learner. However, when
using logistic regression, it converged the fastest but resulted in the lowest validation loss.
Similarly, Stacking shows inconsistent performance, sometimes required longer time to
converge and occasionally yielding results that are either the lowest or average among the three
methods. These observations highlight Bagging’s robustness in financial distress detection.
Moreover, across the ensemble environments, logistic regression generally showed lower
predictive performance compared to decision tree, suggesting that decision tree might be a

more suitable weak learner in this scenario.

7.2 Recommendation

The dataset used in this study for financial distress detection primarily consists of financial
ratios and corporate governance indicators. For practical deployment, it is recommended to
evaluate ensemble learning technigques on datasets that incorporate more diverse features, such
as macroeconomic indicators or industry-specific factors, to better assess the model’s
generalizability. Additionally, this project tested only two classifiers (Logistic Regression and
Decision Tree) within the ensemble frameworks. It is recommended to explore and compare a
broader range of base classifiers, such as Support Vector Machines (SVM), Random Forests,
or Gradient Boosting Machines, within the Bagging framework. This will help further validate
the robustness and adaptability of Bagging as an ensemble method across different types of

base learners.

76
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES

REFERENCES

Article:
[1] A. Hayes, “Financial distress: Definition, signs, and remedies,” Investopedia, Apr. 18,

2021. https://www.investopedia.com/terms/f/financial_distress.asp

[2] V. Agarwal and R. Taffler, “Comparing the performance of market-based and accounting-

based bankruptcy prediction models,” Journal of Banking & Finance, vol. 32, no. 8, pp. 1541—
1551, https://doi.org/10.1016/j.jbankfin.2007.07.014.

[3] R. S. H, “Ensemble Models in Machine Learning — Intuitive Tutorials,” Intuitive
Tutorials, May 12, 2023. https://intuitivetutorial.com/2023/05/12/ensemble-models-in

machine-learning/ (accessed Sep. 05, 2024).

[4] W. Kenton, “Altman Z-Score,” Investopedia, Jun. 21, 2022.
https://www.investopedia.com/terms/a/altman.asp

[5] TradingView, “Springate score,” TradingView, 2024.
https://www.tradingview.com/support/solutions/43000597848-springate-score/

[6] TradingView, “Zmijewski score,” TradingView.

https://www.tradingview.com/support/solutions/43000597850-zmijewski-score/

[7] M. Arora and C. Jiyani, “GAP iNTERDISCIPLINARITIES A Global Journal of
Interdisciplinary Studies AN ANALSIS OF EFFICACY OF FINANCIAL DISTRESS
PREDICTION SPRINGATE AND GROVER MODEL,” 2022. Accessed: Nov. 29, 2024.
[Online]. Available: https://www.gapinterdisciplinarities.org/res/articles/(74-
77)%20AN%20ANALSIS%200F%20EFFICACY %200F%20FINANCIAL%20DISTRESS
%20PREDICTION%20SPRINGATE%20AND%20GROVER%20MODEL.pdf

[8] Muhtar Sapiri, “A Qualitative Analysis on the Role of Auditors in Preventing Financial
Crises,” Golden Ratio Of Auditing Research, vol. 4, no. 2, pp. 89-106, Mar. 2024, doi:
https://doi.org/10.52970/grar.v4i2.393.

77

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

https://doi.org/10.1016/j.jbankfin.2007.07.014
https://intuitivetutorial.com/2023/05/12/ensemble-models-in
https://www.investopedia.com/terms/a/altman.asp
https://www.tradingview.com/support/solutions/43000597848-springate-score/
https://www.tradingview.com/support/solutions/43000597850-zmijewski-score/
https://www.gapinterdisciplinarities.org/res/articles/(74-77)%20AN%20ANALSIS%20OF%20EFFICACY%20OF%20FINANCIAL%20DISTRESS%20PREDICTION%20SPRINGATE%20AND%20GROVER%20MODEL.pdf
https://www.gapinterdisciplinarities.org/res/articles/(74-77)%20AN%20ANALSIS%20OF%20EFFICACY%20OF%20FINANCIAL%20DISTRESS%20PREDICTION%20SPRINGATE%20AND%20GROVER%20MODEL.pdf
https://www.gapinterdisciplinarities.org/res/articles/(74-77)%20AN%20ANALSIS%20OF%20EFFICACY%20OF%20FINANCIAL%20DISTRESS%20PREDICTION%20SPRINGATE%20AND%20GROVER%20MODEL.pdf
https://doi.org/10.52970/grar.v4i2.393

REFERENCES

[9] Cristina Maria Voinea, V. State, Dan Marius Coman, and Ana-Maria Dascalu, “The Role
and Importance of the Financial Audit Report in the Decision-Making Process in Audited
Companies,” Valahian Journal of Economic Studies, vol. 15, no. 1, pp. 87-94, Jun. 2024, doi:
https://doi.org/10.2478/vjes-2024-0007.

[10] K. L. Tran, H. A. Le, T. H. Nguyen, and D. T. Nguyen, “Explainable Machine Learning
for Financial Distress Prediction: Evidence from Vietnam,” Data, vol. 7, no. 11, p. 160, Nov.
2022, doi: https://doi.org/10.3390/data7110160.

[11] M. J. Rahman and H. Zhu, “Predicting financial distress using machine learning
approaches: Evidence China,” Journal of Contemporary Accounting & Economics, vol. 20, no.
1, p. 100403, Feb. 2024, doi: https://doi.org/10.1016/j.jcae.2024.100403.

[12] “What is ensemble learning? | IBM,” www.ibm.com, Feb. 09, 2024.

https://www.ibm.com/topics/ensemble-learning

[13] S. Wang and G. Chi, “Cost-sensitive stacking ensemble learning for company financial
distress prediction,” Expert Systems With Applications, vol. 255, p. 124525, Dec. 2024, doi:
10.1016/j.eswa.2024.124525.

[14] F. T. Kristanti and V. Dhaniswara, “The accuracy of artificial neural networks and logit
models in predicting the companies’ financial distress,” Journal of technology management &
innovation, vol. 18, no. 3, pp. 42-50, 2023, doi: https://doi.org/10.4067/s0718-
27242023000300042.

[15] “The Journal of Informatics Development,” E-ISSN: 2963-0568, P-ISSN: 2963-055X.
Available online: https://ejournal.itbwigalumajang.ac.id/index.php/jid. Accessed: [Insert Date
of Access].

[16] “UCI Machine Learning Repository,” archive.ics.uci.edu.

https://archive.ics.uci.edu/dataset/572/taiwanese+bankruptcy+prediction

78
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

https://doi.org/10.2478/vjes-2024-0007
https://doi.org/10.3390/data7110160
https://doi.org/10.1016/j.jcae.2024.100403
https://www.ibm.com/topics/ensemble-learning
https://doi.org/10.4067/s0718-27242023000300042
https://doi.org/10.4067/s0718-27242023000300042
https://archive.ics.uci.edu/dataset/572/taiwanese+bankruptcy+prediction

REFERENCES

[17] R. A. A. Viadinugroho, “Imbalanced Classification in Python: SMOTE-ENN Method,”
Medium, Sep. 30, 2021. https://towardsdatascience.com/imbalanced-classification-in-python-
smote-enn-method-db5db06b8d50

[18] “T-tests vs Chi-Square Tests: Statistical Testing in Practice,” Dataheadhunters.com, Jan.

05, 2024. https://dataheadhunters.com/academy/t-tests-vs-chi-square-tests-statistical-testing-

in-practice/

[19] Abid Ali Awan, “What is Bagging in Machine Learning? A Guide With
Examples,” Datacamp.com, Nov. 20, 2023. https://www.datacamp.com/tutorial/what-

bagging-in-machine-learning-a-guide-with-examples

[20] “What is Boosting in Machine Learning?,” Enterprise Al.

https://www.techtarget.com/searchenterpriseai/feature/What-is-boosting-in-machine-learning

[21] “Stacking in Machine Learning — Javatpoint,” www.javatpoint.com.

https://www.javatpoint.com/stacking-in-machine-learning

[22] T. Tamplin, “Liquidity Ratio | Definition, Types, Applications, and Limitations,” Finance

Strategist, Jun. 27, 2023. https://www.financestrategists.com/wealth-management/accounting-

ratios/liquidity-ratio/

[23] I. Emerling, “KEY FINANCIAL RATIOS TO ASSESS THE RISK OF BANKRUPTCY
BASED ON SELECTED PUBLICLY TRADED COMPANIES,” SGEM International
Multidisciplinary Scientific Conferences on Social Sciences and Arts, Sep. 2014, doi:
https://doi.org/10.5593/sgemsocial2014/b22/s6.049.

[24] Y. AKER and A. KARAVARDAR, “Using Machine Learning Methods in Financial
Distress Prediction: Sample of Small and Medium Sized Enterprises Operating in Turkey,” Ege
Akademik Bakis (Ege Academic Review), Jan. 2023, doi:
https://doi.org/10.21121/eab.1027084.

79

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

https://towardsdatascience.com/imbalanced-classification-in-python-smote-enn-method-db5db06b8d50
https://towardsdatascience.com/imbalanced-classification-in-python-smote-enn-method-db5db06b8d50
https://dataheadhunters.com/academy/t-tests-vs-chi-square-tests-statistical-testing-in-practice/
https://dataheadhunters.com/academy/t-tests-vs-chi-square-tests-statistical-testing-in-practice/
https://www.datacamp.com/tutorial/what-bagging-in-machine-learning-a-guide-with-examples
https://www.datacamp.com/tutorial/what-bagging-in-machine-learning-a-guide-with-examples
https://www.techtarget.com/searchenterpriseai/feature/What-is-boosting-in-machine-learning
https://www.javatpoint.com/stacking-in-machine-learning
https://www.financestrategists.com/wealth-management/accounting-ratios/liquidity-ratio/
https://www.financestrategists.com/wealth-management/accounting-ratios/liquidity-ratio/
https://doi.org/10.5593/sgemsocial2014/b22/s6.049
https://doi.org/10.21121/eab.1027084

REFERENCES

[25] geeksforgeeks, “Understanding Logistic Regression,” GeeksforGeeks, May 09, 2024.

https://www.geeksforgeeks.org/understanding-logistic-regression/

[26] A. R. Rout, “Advantages and Disadvantages of Logistic Regression,” GeeksforGeeks, Jan.

10, 2023. https://www.geeksforgeeks.org/advantages-and-disadvantages-of-logistic-

regression/

[27] GeeksForGeeks, “Decision tree — gecksforgeeks,” GeeksforGeeks, May 17, 2024.

https://www.geeksforgeeks.org/decision-tree/

[28] CFI Team, “Financial ratios,” Corporate Finance Institute, 2023.

https://corporatefinanceinstitute.com/resources/accounting/financial-ratios/

[29] https://www.facebook.com/rajmauryaS1, “What are capital structure ratios in
accounting?,” Fundamentals of Accounting, Nov. 23, 2020.
https://fundamentalsofaccounting.org/what-are-capital-structure-ratios/#google_vignette
(accessed May 07, 2025).

[30] S. Bragg, “AccountingTools,” AccountingTools, Mar. 217, 2018.

https://www.accountingtools.com/articles/what-is-a-turnover-ratio.html

[31] S. Bragg, “AccountingTools,” AccountingTools, Apr. 02, 2018.

https://www.accountingtools.com/articles/cash-flow-ratios.html

[32] J. Chen, “Growth Rates,” Investopedia, Mar. 31, 2023.

https://www.investopedia.com/terms/g/growthrates.asp

[33] D. Liang, C.-C. Lu, C.-F. Tsai, and G.-A. Shih, “Financial ratios and corporate governance
indicators in bankruptcy prediction: A comprehensive study,” European Journal of
Operational Research, vol. 252, no. 2, pp. 561-572, Jul. 2016.

80

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

https://www.geeksforgeeks.org/understanding-logistic-regression/
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-logistic-regression/
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-logistic-regression/
https://www.geeksforgeeks.org/decision-tree/
https://corporatefinanceinstitute.com/resources/accounting/financial-ratios/
https://www.accountingtools.com/articles/what-is-a-turnover-ratio.html
https://www.accountingtools.com/articles/cash-flow-ratios.html
https://www.investopedia.com/terms/g/growthrates.asp

APPENDICES

Appendix

& Edited_Preliminary_FYPipynb v ¢J saving..

File Edit View Insert Runtime Tools Help

Q Commands + Code + Text

<>

{x}

[1 !pip install -q kaggle

[1 from google.colab import files

files.upload()

S+ No file chosen Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving kaggle.json to kaggle.json
{'kaggle.json': b"{"username”:"phoebeB3”, "key":"f7c294f72f45b7d1b3d@ec25a4f4bade"}"}

[1 !mkdir ~/.kaggle

Icp kaggle.json ~/.kaggle

[1 !chmod 688 ~/.kaggle/kaggle.json

[1 'kaggle datasets download -d fedesoriano/company-bankruptcy-prediction

#Taiwan Economic Journal for the years 1999 to 2009

S+ Dataset URL: https://www.kapgle.com/datasets/fedesoriano/company-bankruptcy-prediction

License(s): copyright-authors

[1 !unzip fcontent/company-bankruptcy-prediction.zip -d /content/company bankruptcy pred.dataset

3% Archive: /content/company-bankruptcy-prediction.zip

inflating: /content/company_bankruptcy_pred.dataset/data.csv

[1 import os

import cv2 as cv

import pandas as pd

import matplotlib.pyplot as plt
import numpy as np

[1 df = pd.read_csv("/content/company_bankruptcy pred.dataset/data.csv")

print(df.shape[@])

=+ 6818

1 print(df.columns)

2> Show hidden output

1 print(df.info()) #numeric data -> in float, no categorical data

2> Show hidden output

] print(df[" Net Income Flag'].value counts())

3% show hidden output

1 print(df[’ Liability-Assets Flag'].value_counts())

3+ show hidden output

[1

print(df['Bankrupt2"].value_counts()) #imbalance data

print(df.isnull().sun()) #no missing value

Show hidden output

df[" Net Income Flag'].value_counts() #remove redundant value

Show hidden output

X = df.drop(columns=['Bankrupt?'," Net Income Flag'])
y = df['Bankrupt?']

print(X.colums.value_counts())

Show hidden output

from imblearn.combine import SMOTEENN

from imblearn.over_sampling import SMOTE

from imblearn.under_sampling import EditedNearestNeighbours

smote_enn - SMOTEENN(sampling_strategy='auto’,
smote=SMOTE(random_state=42), # Fix random_state for SMOTE
enn=EditedNearestNeighbours(), # Default settings for ENN
random_state=42) # Fix random_state for SMOTEENN

X_resampled, y_resampled - smote_enn.fit_resample(X, y)
y_resampled.value_counts()

Show hidden output

missing_data = X_resampled.isnull().sun()
print(missing_data)

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

81

APPENDICES

141

1

1

141

from scipy.stats import ttest_ind

Initialize a list to store p-values
p_values = []

Loop through each feature to apply T-test

for feature in X_resampled.columns:
split data into two groups based on the target
group_8 = X_resampled[y_resampled == 8][feature]
group_1 = X_resampled[y_resampled 1][feature]

Perform T-test between the two groups
_» p_value = ttest_ind(group @, group 1)

Append the p-value for each feature
p_values.append(p_value)

Convert p-values into a DataFrame for better viewing
p_values_df = pd.DataFrame({

‘Feature’: X_resampled.columns,

‘P-Value': p_values
})-sort_values(by="P-Value', ascending=True)

print(p_values_df)

Show hidden output

Select features with p-value less than the significance level (e.g.,
selected features = p_values_df[p_values_df['P-Value'] < 8.05]
print("Selected Features based on T-test (p-value < ©.85):")
print(selected_features)

Show hidden output

sorted_features = sorted(selected_features)
for index, row in selected_features.iterrows():
print(f"Feature: {row['Feature']}, P-value: {row['P-value']}")

Show hidden output

selected_columns= selected_features['Feature’].tolist()

columns_to_drop = [col for col in X resampled.columns if col not in sell
X_resampled_selected = X_resampled.drop(columns=columns_to_drop)

print(X_resampled_selected.shape)

Show hidden output

from sklearn.model_selection import train_test_split
#70% train 36% test

X_resampled _selected train , X _resampled_selected_test , y resampled train ,
X_resampled_selected_train = X_resampled_selected_train.reset_index(drop=True)
y_resampled_train = y_resampled_train.reset_index(drop=True)

from google.colab import drive
drive.mount (" /content/drive*)

Show hidden output

train data = pd.DataFrame(X_resampled_selected train)
train_data['label’'] = y_resampled train

test_data = pd.DataFrame(X_resampled_selected_test)
test_data['label'] = y_resampled_test

train_csv_path = ‘/content/drive/My Drive/train_data.csv’
test_csv_path = '/content/drive/My Drive/test_data.csv’

train_data.to_csv(train_csv_path, index=False)
test_data.to_csv(test_csv_path, index=False)
print("Data saved successfully to Google Drive.")

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

0.05)

ected columns]

y_resampled_test = train_test_split(X resampled_selected,y resampled,test size=e.3,random_state=42)

82

APPENDICES

, & Latest_Decision Tree - AdaBoosting.ipynb ¥ &

File Edit View Insert Runtime Tools Help

mmands + Code + Text

[1 import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion_matrix
from sklearn.metrics import precision_score, recall_score, fl1_score
from sklearn import metrics
import time
import pandas as pd

from google.colab import drive
drive.mount (' /content/drive’)

2> Show hidden output

[1 from pathlib import Path

Specify the file path
train_csv_path = ‘/content/drive/My Drive/train_data.csv
test_csv_path = “/content/drive/My Drive/test data.csv’

Check if the file exists using pathlib
train_file = Path({train_csv_path)
test_file = Path(test_csv_path)

if train_file.exists():
print("train_data.csv exists.")

else:
print("train_data.csv does not exist.”)

if test_file.exists():
print("test_data.csv exists.")

else:
print("test_data.csv does not exist.™)

b]

train_data.csv exists.
test_data.csv exists.

[1 import pandas as pd
test_data = pd.read_csv(test_csv_path)
train_data = pd.read_csv(train_csv_path)

print("test:",test _data["label’].value_counts())
print("train:",train_data[label’].value_counts())

3% show hidden output

[1 print(train_data.shape)

3~ show hidden output

[1 X train = train_data.drop(columns=["label’])
y_train = train_data['label’]

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDICES

[1 X train = train_data.drop(columns=['label’])
y_train = train_data[label’]

X_test - test_data.drop(columns=['label®])
y_test - test_data['label’]

© print(X_train.shape)
print(X_test.shape)

3% Show hidden output
[1 #AdaBoosting

from sklearn.model_selection import StratifiedkFold

accuracies, precisions, recalls, f1 scores, aucs = [1, [1, [1, [1, []
‘type I errors, type II errors = [],[]

skf = StratifiedkFold(n_splits=5, shuffle=True, random state=42)
start_time = time.time() # start time

decision_tree - DecisionTreeclassifier(criterion = "entropy”, max_depth - 7,min_samples_split = 2,min_samples_leaf-4,random_state - 42)
model - AdaBoostClassifier(estimator-decision_tree,n_estimators-1e,learning_rate-a.5)

for i in range(1, 361):

fold_accuracies, fold_precisions, fold_recalls, fold_fis, fold_aucs = [1, []. [1, [], []
fold_type_I_errors, fold_type II errors = [], []

For train_index, val_index in skf.split(X_train, y_train):
X_train_fold, X_val_fold = X_train.iloc[train_index], X_train.iloc[val_index]
y_train_fold, y_val_fold = y_train.iloc[train_index], y_train.iloc[val_index]

scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train_fold)
X_val_scaled = scaler.transform(x_val_fold)

model.fit(X_train_scaled, y_train_fold)
y_val_pred = model.predict(X_val_scaled)
y_val_prob = model.predict_proba(X_val_scaled)[:, 1]

accuracy = accuracy_score(y_val_fold, y_val_pred)
precision = precision_score(y_val_fold, y_val_pred, pos_label-1)
recall - recall_score(y_val fold, y val_pred, pos_label-1)

1 = f1_score(y_val_fold, y_val_pred, pos_label-1)

auc = metrics.roc_auc_score(y_val_fold, y_val_prob)

cm = confusion_matrix(y_val_fold, y_val_pred)

FP, TN, FN, TP = cm[e][1], cm[@][e], cm[1][e], em[1][1]
type_I_error = FP / (FP + TN) if (FP + TN) != 8 else @
type_II_error = FN / (FN + TP) if (FN + TP) != 8 else &

Append fold metrics
fold_accuracies.append(accuracy)
fold_precizions.append(precision)
fold recalls.aopend(recall)

+010_recalls.appena(recall)
fold_f1s.append(f1)

fold_aucs.append(auc)
fold_type_I_errors.append(type_I_error)
fold_type_IT_errors.append(type_II_error)

avg_acc = sum(fold_accuracies) / len(fold_accuracies)
avg_precision = sum(fold_precisions) / len(fold precisions)
avg_recall = sum(fold_recalls) / len(fold_recalls)

avg_f1 = sum(fold_f1s) / len(fold fis)

avg_aucs = sum(fold_aucs) / len(fold_aucs)

avg_typel = sun(fold_type_I_errors) / len(fold_type_I_errors)
avg_typell = sum(fold_type_II_errors) / len(fold_type II_errors)

print(">>Fold",i)
print("AUC:",avg_acc)

print("Recall:”,avg recall)
print("Type II:",avg_typeII)

Average over 5 folds
accuracies.append(round(avg_acc, 4))
precisions.append(round(avg_precision, 4))
recalls.append(round(avg_recall, 4))
f1_scores.append(round(avg_f1, 4))

aucs. append(round(avg_aucs,
‘type_TI_errors.append(round(avg_typel, 4))
type_II_errors.append(round(avg_typeIl, 4))

Early stopping logic

if len(accuracies) >= 5 and len(set(accuracies[-5:])) == 1:
print(f"Early stopping at iteration {i} because accuracy hasn't changed for 5 iterations.")
break

elif len(recalls) >= 5 and len(set(recalls[-5:])) == L:
print(f"Early stopping at iteration {i} because recall hasn't changed for 5 iterations.")
break

end_time = time.time()
duration - round(end_time - start_time, 2)

2> Show hidden output

© rprint(fFinal Accuracy: {accuracies[-1]}")
print(f"Final Precision: {precisions[-1]}
print(f"Final Recall: {recalls[-1]}")
print(f"Final F1 Score: {f1_scores[-1]}")
print(f"Final AuC: {aucs[-1]}")
print(f"Final Type I Error: {type_I_errors[-1]}")
print(f"Final Type IT Error: {type II errors[-1]}")
print(f"Total training time: {duration} seconds.")

2~ show hidden output

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

84

APPENDICES

from sklearn.inspection import permutation_importance
import scipy.stats as stats

Compute permutation importance
perm_importance = permutation_importance(model, X val_scaled, y_val fold, n_repeats=18, random state=42)

Compute p-values using a permutation test

p_values = np.array([
stats.norm.sf(abs(mean) / std) * 2 if std > 1e-1@ else 1.8 # Normalized by standard deviation
for mean, std in zip(perm_importance.importances_mean, perm_importance.importances_std)

n

importance_df = pd.DataFrame({
'Feature’: X_train.columns,
‘Importance’: perm_importance.importances_mean,
‘P-Value': p_walues
i}
Filter significant features (p-value < 8.85)
significant_features = importance_df[importance_df['P-Value'] < 8.85]

print(len(significant_features))

Show hidden output

significant_features.to_excel("DT_Adaboosting significant_features.xlsx", index=False)

print(f"Significant features saved to 'DT_Adaboosting significant features.xlsx'.")
Show hidden output
Ada_Boosting df = pd.read excel("/content/DT_Adaboosting significant features.xlsx")

Stacking_df = pd.read_excel("/content/DT Stacking significant_features.xlsx")
Bagging df = pd.read_excel("/content/DT_Bagging significant_features.xlsx")

top_features_adaBoosting = Ada_Boosting df['Feature’].tolist()
top_features_stacking = Stacking_df['Feature’].tolist()
top_features_bagging = Bagging df['Feature’].tolist()

exact_matches = set(top_features_adaBoosting) & set(top_features_stacking) & set(top_features_bagging)
num_exact_matches = len{exact_matches)

Display the matched features

print(f"Number of exact matches: {num_exact_matches}")
print("Matched features:")

print(list(exact_matches))

Show hidden output

[1 # write the exact matches into a txt file
exact_matches_list = list(exact_matches)
with open(“"duplicates_decision_tree.txt”, "w") as file:
for item in exact_matches_list:
file.write(item + "\n")

[1 dt_combined features = list(set(top_features_adaBoosting + top features_stacking + top_features_bagging))

print(len(dt_combined_features))

5 4
[1] with open('combine_decision_tree.txt’, "w') as f:

text=f.write(str(dt_combined features})

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

85

APPENDICES

& Latest_Decision Tree - Bagging.ipynb ¥ &

File Edit View Insert Runtime Tools Help

ommands + Code + Text

[1 dimport numpy as np
from sklearn.model selection import KFold
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy score
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion_matrix
from sklearn.metrics import precision_score, recall score, f1_score
from sklearn import metrics
import time

from google.colab import drive
drive.mount('/content/drive")

i)

Show hidden output

from pathlib import Path

Specify the file path
train_csv_path = '/content/drive/My Drive/train_data.csv’
test_csv_path = '/content/drive/My Drive/test data.csv'

Check if the file exists using pathlib
train_file = Path(train_csv_path)
test_file = Path(test_csv_path)

if train_file.exists():
print("train_data.csv exists.")

else:
print("train_data.csv does not exist.”)

if test_file.exists():
print("test_data.csv exists.")

else:
print("test_data.csv does not exist.")

i

Show hidden output

import pandas as pd
test_data = pd.read csv(test _csv_path)
train_data = pd.read_csv(train_csv_path)

print(“test
print("train:

test_data['label’].value_counts())
,train_data['label’].value_counts())

2 show hidden output

i_train = train_data.drop(columns=[label”]})
y_train = train_data[*label®]

i_test = test_data.drop{columns=[" labal’])
y_test = test_data[‘Llabel’]

print(X_train.shape)
print{X_test.shape)

Show hidden outpun

from sklearn.model_selection import Gridsearchoy
paraa_grid = |
‘criterdon”: ["ginl’, ‘entropy’],
‘max_depth®: [3, 5;
‘mim_samples_split’: [
‘min_samples_leaf': [1, 2, 4)

grid_search = GridSearchiv
estimator=DecislonTreeClassiflier|random_statesd4l),
param_grid-paras grid,
scorings"roc_suc”,
w=3,
n_jobs=-1

)

grid_search.fit{x_train, y_train)
print{"Best parass:”, grid_search.best_params)

Show hidden outpun

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

86

APPENDICES

#Bogging
from sklearn.model_selection import StratifiedkFold

accuracies, precisions, recalls, f1_scores, aucs = [], l. (L, 11, 1]
type_I_errors, type II erroes = [],[])

skf = StratifiedkFold(n_splitses, shuffle«True, random_state=42)
start_time « time.time() # start time

decision_tree « DecisionTreeClassifier(criterion « “entropy”,max_depth « 7,min_samples_split « 2,min_sasples_leafsd,random_state « 42)
model - BaggingClassifier(estimator=decision_tree, n_estimators=18, n_jobs=-1,random_state=42)

for 1 In range(1, 301):
fold_accuracies, fold_precisions, fold_recalls, fold fis, fold awcs = [], [}, (1. (). (]
fold_type_I_errors, fold_type Il erroes « [], []

for train_index, val_index in skf.split(X_train, y_train):
X_train_fold, X _val_fold « X_train.iloc[train_index], X_train,.floc[val_index)
y_train_fold, y_val_fold = y train.iloc[train_index}, y_train.iloc[val_index)

scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train_fold)
X_val_scaled = scaler.transform(X_val_fold)

model. fit(X_train_scaled, y_train_fold)
y_val_pred = model.predict(X_wal_scaled)
y_val prob = model.predict proba(X wval scaled)[:, 1]

accuracy = accuracy score(y val fold, y val pred)

precision = precision_score(y_val_fold, y_val_pred, pos_label=1)
recall = recall score(y_val fold, y_val pred, pos_label=1)

f1 = f1_score(y_val_fold, y_val_pred, pos_label=1)

auc = metrics.roc_auc_score(y_val fold, y val prob)

em = confusion matrix(y val fold, y val pred)

FP, TN, FN, TP = cm[@][1], cm[@][e], cm[1][@], cm[1][1]
type_I_error = FP / (FP + TN) if (FP + TN) != @ else @

type_II_error = FN / (FN + TP) if (FN + TP) != @ else @

Append fold metrics
fold_accuracies.append(accuracy)

fold precisions.append(precision)
fold_recalls.append(recall}

fold fis.append(f1)

fold_aucs.append(auc)

fold type I errors.append(type I_error)
fold_type_II_errors.append(type_II_error)

avg_acc = sum(fold accuracies) / len({fold_accuracies)

avg precision = sum(fold_precisions) / len(fold precisions)
avg_recall = sum(fold_recalls) / len{fold_recalls)

avg f1 = sum(fold_f1s) / len(fold_f1s)

avg_aucs = sum(fold_aucs) / len(fold_aucs)

avg_typel = sum(fold type I errors) / len{fold_type I _errors)
avg_typell = sum(fold_type_II_errors) / len(fold_type_II_errors)

print("»>Fold",i)
print("AUC:",avg_acc)
print("Recall:",avg recall)
print("Type II:",avg_typell)

Average over 5 folds
accuracies.append(round(avg_acc, 4))
precisions.append({round(avg_precision, 4))
recalls.append(round(avg_recall, 4))
f1_scores.append(round(avg_f1, 4))
aucs.append(round(avg_aucs, 4))
type_I_errors.append(round(avg_typel, 4))
type_II_errors.append(round(avg_typeII, 4))

Early stopping logic

if len(accuracies) »= 5 and len(set(accuracies[-5:])) == 1:
print(f"Early stopping at iteration {i} because accuracy hasn't changed for 5 iterations.”)
break

elif len(recalls) »>= 5 and len(set(recalls[-5:])) == 1:
print(f"Early stopping at iteration {i} because recall hasn't changed for 5 iterations.™)
break

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

87

APPENDICES

end_time « time.time()
Qration = rousd(end_tise - start_tise, 7)

Show hidden ouput

print(frisal Accuracy: [(sccuracies]-1
print(f~Firal Precist {precisions| .
print(f Fimal secall: (recallis[-1])"
print (€ Final 51 Score: (f1_scores[1)
peint (€ Final AX: (sucs[-1))")

print (Frinal Tyge I Erroe: (Rype_Terrors[-1])")
print(fFinal Type IT Error: (type_IT_ervors[.l
print(fTtotal traiaing tise: [duration) seconds.”)

Show hadden cutput

ingort satplotlid.pyplot as plt
Sterations « len(recalls)

plt.plot{rangs(l, iteratiors + 1), type_II errors, markers'0", colore'b’)
plt.title(False Negative vi Tteration®)

plt.xlabel('Iteration (Epoch)’)

plt.ylabel('false negative')

plt.grid(True)

plt.show()

Show Ndden outpat

@ Make sure test dets is scaled with the same scaler used on tralning cdata
X_test_scaled « scaler.transform(X_test)

® Fredict once
Yy tost pred « sofel predict (X _test_scaled)
y_test_prob « model.predict_probe(X_test_scaled)[:, 1)

* Evaluate

BCCUraCcy = accuracy_scorely_test, y_test pred)

precision « precision score(y_test, y_test pred, pos_labelsl)
recall « recall_score(y_test, y_test pred, pos_labelel)

f1 « f1_score(y_test, y_test_pred, pos_labelel)

BC « metrics, roc_auc scoce(y_test, y_test prod)

o » confusion_matrix(y_test, y_test_pred)

P, ™, N, TP « ca[0])[1]), cx{@)[0], ca(1][0], ca{1][1]
type I error w FP / (FP o TH) 3F (FP « TN) v @ else @
TP _II error « BN/ (PN o TP) Lf (PN o TP) la 0 elie @

frint firal test performance

print(Frisal Accuracy: [(atoeracy:.4f)")
print (¢ Final Precisi {precision; .&f}")
print(f Final kecall: (recall:.sf}")
print(fsiml 71 score: (F1:.4F)%)

print(fFimal AC: {auci.ef)")

print(Frinal Type I Brroe: (type I_error:.4f))
print(frisal Type IT Erroc: (type_II_error:.4f)*)

Show Mdden ourput

° from sklearn.inspection import permutation_importance
import scipy.stats as stats

Compute permutation importance
perm_importance = permutation_importance(model, X test scaled, y_test, n_repeats=1e, random_state=22)

Compute p-values using a permutation test

p_values = np.array([
stats.norm.sf({abs (mean) / std) * 2 if skd > 1e-18 else 1.8 # Normalized by standard deviation
for mean, std in zip(perm_importance.importances_mean, perm_importance.importances_std)

)]

importance_df = pd.DataFrame({
"Feature': ¥_train.columns,
"Importance': perm_importance.importances_mean,
'P-value': p_values

1

Filter significant features (p-value < .85}
significant_features = importance_df[importance df['P-Value'] < 8.85]
print({len{significant_features))

3% 26

[1 significant features.to_excel("DT_Bagging_significant features.xlsx", index=False}
print(f"significant features saved to 'DT_Bagging significant_features.xlsx".")

3% significant features saved to 'DT_Bagging_significant_festures.xlsx'.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

88

APPENDICES

& Latest_Decision Tree- Stacking.ipynb ¥ &

File Edit View Insert Runtime Tools Help

nmands + Code + Text

#impert libraries

import numpy as np

from sklearn.model_selection import kFold

from sklearn.preprocessing import Standardscaler
from sklearn.metrics import accuracy_score

from sklearn.tree import DecisionTreeclassifier
from sklearn.linear_model import Logisticregression
from sklearn.metrics import confusion matrix

from sklearn.metrics import precisien_scere, recall score, f1_score
from sklearn import metrics

from sklearn.ensemble import StackingClassifier
import time

from sklearn.model_selection import Gridsearchcv

[1 from google.colab import drive
drive.mount({'/content/drive’}

3% Show hidden output

[1 from pathlib import Path

specify the file path
train_csv_path = °/content/drive/My Drive/train_data.csv'
test_csv_path = '/content/drive/My Drive/test data.csv'

Check if the file exists using pathlib
train_file = Path(train_csv_path)
test_file = Path(test_csv_path)

if train_file.exists():
print("train_data.csv exists.")

else:
print("train_data.csv dees not exist."”)

if test_file.exists():
print("test_data.csv exists."™)

else:
print("test_data.csv does mot exist.”)

®

Show hidden output

[1 import pandas as pd
test_data = pd.read_csv(test_csv_path)
train_data = pd.read_csv(train_csv_path)

print("test
print("tra:

stest_data['label'].value_counts{))
:",train_data['label”].value_counts(}}

3% Show hidden output
Q print(train_data.shape)
3% Show hidden output

[1 X_train = train_data.drop(columns=[' label"])
y_train = train_data['label’]

X¥_test = test data.drop{columns=['label’])
y_test = test data['label']

[1 print(X_train.shape}
print(X_test.shape)

I show hidden output

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDICES

stacking
from sklearn.model_selection import stratifiedkrold

accuracies, precisions, recalls, f1_scores, aucs = [, [1, [1, [1, []
type_I_errors, type II errors = [1,[]

skf = stratifiedkFold(n_splits=5, shuffle=True, random_state=42)

start_time = time.time() # start time
base_estimators =[(f'DecisionTres{i}’,DecisionTreeClassifier(criterion = “entropy"”, max_depth = 7,min_samples_split = 2,min_samples_leaf=4,random_state = 42)) for i in range (1@)]

model = StackingClassifier(estimators=base estinators,final estimator=LogisticRegression())

for i in range(1, 381):
fold_accuracies, fold_precisions, fold_recalls, fold_fis, fold_aucs = [1, [, [1, [1, []
fold_type_I_errors, fold_type_II_errors = [1, []

for train_index, val_index in skf.split(x_train, y_train):
¥_train_fold, X val_fold = X_train.iloc[train_index], X_train.ilac[val_index]
y_train_fold, y_val_fold = y_train.iloc[train_index], y_train.iloc[val_index]

scaler = Standardscaler()
%_train_scaled - scaler.fit_transform(x_train_fold)
%_val_scaled - scaler.transforn(x_val_fold)

medel. fit(x_train_scaled, y_train_fold)
y_val_pred = model.predict(¥_val_scaled)
y_val_prob = model.predict_proba(x_val_scaled)[:, 1]

accuracy = accuracy_score(y_val_fold, y_val_pred)
precision - precision_scere(y_val fold, y_val pred, pos_label-1)
recall - recall score(y_val_fold, y_val pred, pos_label-1)

1 - f1_score(y_val_fold, y_val pred, pos_label-1)

auc - metrics.rec_auc_scere(y_val_fold, y_val prob)

om = confusion_matrix(y_val_fold, y_val_pred)

FP, TN, FN, TP = cm[e][1], cm[e][e], cm[1][e], cm[1][1]
type_I_error = FP / (FP + TN} if (FP + TN} != @ else @
type_IT_error = FN / (FN + TP) if (FN + TP) 1= @ else &

Append fold metrics
fold_accuracies. append(accuracy)
fold_precisions.append(precision)
fold_recalls.append(recall)
fold_fis.append(f1)

fold_aucs.append(auc)

fold_type_I_errors. append(type_I_error)
fold_type_II_errors.append(type_IT_error)

avg acc = sum(fold accuracies) / len{fold_accuracies)
avg_precision = sum(fold_precisions) / len(fold_precisions)
avg_recall = sum(fold_recalls) / len(fold_recalls)

avg f1 = sum({fold_fis) / len{fold_fis)

avg_aucs = sum(fold_aucs) / len(fold aucs)

avg_typel = sum{fold_type_I_errors) / len(fold_type_I_errors)
svg_typell = sum(fold_type_II_errors) / len(fold_type_II_errors)

print(">>Fold",i)
print("AuC:",avg acc)
print("Recall:",avg_recall)
print("Type II:",avg typeII)

Average over 5 folds
accuracies.append(round(avg_acc, 4))
precisions.append(round(avg_precision, 4)})
recalls.append(round(avg_recall, 4))
F1_scores. append(round(avg_f1, 2))
aucs.append(round(avg_aucs, 2))
‘type_I_errors.append(round (ave_typel, 4))
‘type_II_errors.append(round(ave_typell, 2))

Early stopping logic

if len(accuracies) »= 5 and len(set(accuracies[-5:])) == 1
print(f"Early stopping at iteration {i} because accuracy hasn't changed for 5 iterations
break

elif len(recalls) >= 5 and len(set(recalls[-5:])}) == 1:
print(f"Early stopping at iteration {i} because recall hasn't changed for 5 iterations.")
break

end_time = time.time()
duration = round(end_time - start_time, 2)

=~ Show hidden output

° print(f"Final Accuracy: {accuracies[-1]}")
print(f"Final Precisien: {precisions[-1]}")
print(f"Final Recall: {recalls[-1]}")
print(f"Final F1 Score: {f1_scores[-1]}")
print(f"Final AUC: {aucs[-1]}")
print(f"Final Type I Error: {type I errors[-1]}")
print(f"Final Type II Error: {type II errors[-1]}")
print(f"Total training time: {duration} seconds.”)

)

Show hidden output

[1 import matplotlib.pyplot as plt
iterations = len(recalls)

plt.plot(range(1l, iterations + 1), type II errors, marker='o", color="b")
plt.title(False Negative vs Iteration')

plt.xlabel('Iteration (Epoch)')

plt.ylabel('False Negative')

plt.grid(True)

plt.show()

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDICES

Make sure test data is scaled with the same scaler used on training data
X_test_scaled = scaler.transform(X_test)

Predict once
y_test_pred = model.predict(X_test_scaled)
y_test_prob = model.predict_proba(X_test_scaled)[:, 1]

Evaluate

accuracy = accuracy_score(y_test, y_test_pred)

precision = precision_score(y_test, y_test_pred, pos_label=1)
recall = recall_score(y_test, y_test_pred, pos_label=1)

f1 = f1_score(y_test, y test_pred, pos_label=1)

auc = metrics.roc_auc_score(y_test, y_test_prob)

cm = confusion_matrix(y_test, y_test_pred)

FP, TN, FN, TP = cm[@][1], cm[@][e], cm[1][@], cm[1][1]
type_I_error = FP / (FP + TN) if (FP + TN) != @ else @

type_II _error = FN / (FN + TP) if (FN + TP) != @ else @

Print final test performance

print(f"Test Accuracy: {accuracy:.4f}")
print(f"Test Precision: {precision:.4f}")
print(f"Test Recall: {recall:.4f}")

print(f"Test F1 Score: {f1:.4f}")

print(f"Test AUC: {auc:.4f}")

print(f"Test Type I Error: {type_I_error:.4f}")
print(f"Test Type II Error: {type_II error:.4f}")

Show hidden output

from sklearn.inspection import permutation_importance
import scipy.stats as stats

Compute permutation importance
perm_importance = permutation_importance{model,X_test_scaled, y_test, n_repeats=10, random_state=42)

Compute p-values using a permutation test

p_values = np.array([
stats.norm.sf(abs(mean) / std) * 2 if std > 1e-18 else 1.@ # Normalized by standard deviation
for mean, std in zip(perm_importance.importances_mean, perm_importance.importances_std)

n

importance_df = pd.DataFrame({
'Feature’: X_train.columns,
"Importance’: perm_importance.importances_mean,
'P-value': p_values

N

Filter significant features (p-value < 8.85)
significant_features = importance_df[importance_df['P-Value'] < 8.85]
print(len(significant_features))

4]

Show hidden output

(v

significant_features.to_excel("DT_Stacking_significant_features.xlsx", index=False)

print(f"Significant features saved to 'DT_Stacking_significant_features.xlsx'.")

4]

Show hidden output

91
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDICES

& Latest_LR- Stacking.ipynb % &

File Edit View Insert Runtime Tools Help

nmands

+ Code + Text

#import libraries

[1

import numpy as np

from
from
from
from
from
from
from

sklearn.preprocessing import StandardScaler

sklearn.metrics import accuracy score

sklearn.linear_model import LogisticRegression
sklearn.metrics import confusion_matrix

sklearn.metrics import precision_score, recall score, fl_score
sklearn import metrics

sklearn.ensemble import StackingClassifier

import time
from sklearn.model_selection import GridSearchCV

[1 from google.colab impert drive
drive.mount(’/content/drive")

3> show hidden output

[1 from pathlib import Path

Specify the file path
train_csv_path = ‘/content/drive/My Drive/train_data.csv’
test_csv_path = ‘'/content/drive/My Drive/test data.csv’

Check if the file exists using pathlib
train_file = Path(train_csv_path)
test_file = Path(test_csv_path)

if train_file.exists():

else

P

P

rint("train_data.csv exists.”)

rint("train_data.csv does not exist.”)

if test_file.exists():

else

P

P

rint("test_data.csv exists.")

rint("test_data.csv does not exist.")

2> Show hidden output

[1 dimport pandas as pd
test_data = pd.read_csv(test_csv_path)
train_data = pd.read_csv(train_csv_path)

print("test:",test_data['label’].value counts())
print("train:",train_data['label’].value_ counts())

)

o

Show hidden output

print(train_data.shape)

3% Show hidden output

¥_train
y_train

X_test
y_test

= train_data.drop(columns=["label"])
= train_data["label"]

test_data.drop({columns=["label’])
test_data['label’]

print(¥_train.shape)
print(¥_test.shape)

Show hidden output

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

92

APPENDICES

#5tacking
from sklearn.model_selection import StratifiedkFold

accuracies, precisions, recalls, f1_scores, aucs = [], [1, [1, [1, []
type_I_errors, type_II errcrs = [1,[]

skf = stratifiedkreld(n_splits=5, shuffle=True, random_state=42}
base_estimators = [(f'logreg{i}’', LogisticRegression(sclver='lbfgs',max_iter=20@,class_weight="balanced”, random_state=42)) for i in ranmge (1@}]
model = StackingClassifier(estimators=base_estimators,final_estimator=LogisticRegression(}

start_time = time.time(} # start time

for 1 in range(1, 381):
fold_accuracies, fold precisions, fold_recalls, fold fis, fold aucs = [1, [1, [1, [1, []
fold_type I errors, fold type II errors = [1, []

for train_index, val_index in skf.split(X_train, y_train):
¥_train_fold, X _val_fold = X_train.ilec[train_index], X_train.iloc[val_index]
y_train_fold, y val_fold = y_train.ilec[train_index], y_train.ilec[val_index]

scaler = Standardscaler()
¥_train_scaled = scaler.fit_transform(X_train_fold)
¥_val_scaled = scaler.transform(X_val_fold}

medel. fit(x_train_scaled, y_train_fold)
y_val_pred = model.predict(X_val_scaled)
y_val_prob = model.predict_proba(X_val_scaled)[:, 1]

accuracy = accuracy_score(y_val fold, y_val_pred)

precision = precision_score(y_val_fold, y wval_pred, pos_label=1}
recall = recall_score(y_val_fold, y_val_pred, pos_label=1)

f1 = f1_score(y_val_fold, y_val_pred, pos_label-=1)

auc = metrics.roc_auc_score(y_val_fold, y_val_prob)

em = confusion_matrix(y_val_fold, y_wal_pred)

FP, TN, FN, TP = cm[@][1], cm[@][28], cm[1][@], cm[1][1]
type_I_error = FP / (FP + TN} if (FP + TN} != @ else @
type_II_error = FN / (FN + TP} if (FN + TP} != & else @

Append fold metrics
fold_accuracies.append(accuracy)
fold_precisions.append{precision)
fold_recalls.append(recall)
fold_fis.append{f1}

fold_aucs.append(auc)

fold_type_ I errors.append{type_I_error)
fold_type_II_errors.appenditype_II_error)

avg_acc = sum(fold_accuracies) / len(fold_accuracies)
avg_precision = sum{fold_precisions) / len{fold_precisions)
avg_recall = sum{fold_recalls) / len(fold_recalls}

avg_f1 = sum{fold_fis) / len{fold_fis}

avg_aucs = sum(fold_aucs) / len(fold_aucs)

avg_typeIl = sum(fold_type_I_errors) / len(fold_type_I_errors)
avg_typeIl = sum(fold_type_II_errors) / len(fold_type_II_errors}

print("»>»>Fold",i)
print("AUC:",avg_acc)
print("rRecall:",avg_recall)
print("Type II:",avg typeIIl)

Average over 5 folds
accuracies.append(round(avg_acc, 4))
precisions.append(round (avg_precision, 4)}
recalls.append(round(avg_recall, 4))
f1_scores.append{rcund(avg_f1, 4})
gucs.append(round(avg_aucs, £))
type_I_errors.append(round(ave_typeI, 4))
type_II_errors.append(round(avg_typeIIl, 4})

Early stopping logic

if len({accuracies) >= 5 and len{set(accuracies[-5:])) == 1:
print(f"Early stopping at iteration {i} because accuracy hasn't changed for 5 iteraticns.")
break

elif len{recalls) »>= 5 and len{set(recalls[-5:])) == 1:
print(f"Early stopping at iteration {i} because recall hasn't changed for 5 iterations.")
break

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

93

APPENDICES

end_time = time.time()
duration = round{end_time - start_time, 2}

121

Show hidden output

] import matplotlib.pyplet as plt
iterations = len{accuracies)

plt.plet(range(1, iterations + 1}, accuracies, marker='o', coler='b"}
plt.title(Accuracies vs Iteration')

plt.xlabel('Iteration (Epoch)')

plt.ylabel('Acccuracies”)

plt.grid(Trus}

plt.show(})

121

Show hidden output

1 primt(f"Final Accuracy: {accuracies[-1]}"}
primt(f"Final Precision: {precisions[-1]}")
primt(f"Final Recall: {recalls[-1]}"})
primt(f"Final F1 Score: {f1_scores[-1]}"}
primt(f"Final Aauc: {aucs[-1]}")
primt(f"Final Type I Error: {type_I_errors[-1]}")
primt(f"Final Type II Error: {type_II_errors[-1]}"}
primt(f"Total training time: {duration} seconds.")

1%

Show hidden output

Make sure test data is scaled with the same scaler used on training data
¥_test_scaled = scaler.transform({X_test)

Predict once
y_test_pred = model.predict(X_test_scaled)
y_test_prob = model.predict probaiX_test scaled)[:, 1]

Evaluate

accuracy = accuracy_score(y_test, y_test pred)

precision = precision score(y_test, y_test pred, pos_label=1)
recall = recall_score(y_test, y test pred, pos_label=1)

f1 = f1_score(y_test, y_test pred, pos_label-=1)

guc = metrics.roc_auc score(y_test, y_test prob)

cm = confusion_matrix(y_test, v test pred)

FP, TN, FN, TP = cm[@][1], cm[e][e], cm[1][e], cm[1][1]
type_I_error = FP / {(FP + TN} if {(FP + TN} != @ else @
type_II error = FN / (FM + TP) 1f (FN + TP} != 8 else @

Print final test performance
primt(f"Test Accuracy: {accuracy:.4f}"
print(f"Test Precision: {precision:.4f}")
primt(f"Test Recall: {recall:.af}")

print(f“Test F1 Score: {fl1:.4f}"}

primt(f"Test Aauc: {auc:.4f}"}

print(f“Test Type I Error: {type_I_error:.4f}"}
print(f"Test Type II Error: {type_II error:.4f}")

** showhidden output

from sklearn.inspection import permutaticn_importance
import scipy.stats as stats

Compute permutation importance
perm_importance = permutation_importance(model, X_test_scaled, y_test, n_repeats=18, random_state=42)

Compute p-values using a permutation test
p_values = np.array([
stats.norm.sf(abs(mean) / std) * 2 if std > 1e-1@ else 1.8 # Mormalized by standard deviation
for mean, std in zip{perm_importance.importances_mean, perm_importance.importances_std)
1)}
importance_df = pd.DataFrame({
"Feature': ¥_train.columns,
"Importance': perm_importance.importances_mean,
"P-value': p_values
hy)
Filter significant features (p-value < 8.85)
significant_features = importance_df[importance_df['P-value'] < @.85]
primt(len(significant_features))

Show hidden output
significant_features.to_excel{"LR_Stacking_significant_features.xlsx", index=False)

prinmt(f"significant features saved to 'LR- Stacking_significant_features.xlsx'.")

Show hidden output

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

94

APPENDICES

¢ Latest_LR- Baggingipynb ¥ &

le Edit View Insert Runtime Tools Help

nds + Code + Text

] #import libraries

import numpy as np

from sklearn.model_selection import KFold

from sklearn.preprocessing import Standardscaler
from sklearn.metrics import accuracy score

from sklearn.linear model import LogisticRegression
from sklearn.metrics import confusion_matrix

from sklearn.metrics import precisien score, recall score, f1_score
from sklearn import metrics

from sklearn.ensemble import BaggingClassifier
import time

from sklearn.model_selecticn import GridSearchCv

1 from google.colab import drive
drive.mount("/comtent/drive")

* Show hidden output

] from pathlib import Path

Specify the file path
train_csv_path = °/content/drive/My Drive/train data.csv'
test_csv_path = '/comtent/drive/My Drive/test data.csv'

Check if the file exists using pathlib
train_file = Path(train_csv_path}
test_file = pPath({test_csv path)
if train file.exists():
print("train_data.csv exists.")
else:
print("train_data.csv does not exist.")
if test file.exists{):
print(“test_data.csv exists.”™)
else:
print("test data.csv does mot exist.™)
> Show hidden output
1 import pandas as pd
test_data = pd.read_csv({test csv_path}
train_data = pd.read_csv(train_csv_path)

primt("test:",test data['label’'].value counts{})
print("train:",train_data['label’].value_counts{}}

T Showhidden output

1 print(train_data.shape)

T Showhidden output

1 ¥_train = train_data.drop(columns=["label'])
y_train = train data['label"]

¥_test = test_data.drop{columns=["label'])
y_test = test_data["label']

9 print(X_train.shape)
primt (X test.shape)

¥ Show hidden output

1 #Bagging
from sklearn.model_selection import StratifiederFold

accuracies, precisions, recalls, f1_scores, aucs = [1, [1, [1, [1, [1
type_I_errors, type_IT errors = [1,[]

skf = stratifiedkFold(n splits=5, shuffle=True, random_state-=42)}

start_time = time.time(} # start time

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

95

APPENDICES

logreg = LogisticRegression(solver='1bfgs® , max_iter=282,class_weight="balanced",random state=42)
model = BaggingClassifier(estimator=logreg, n_estimators=12,random state=42)

for 1 in range(l, 381):
fold accuracies, fold precisions, fold recalls, fold_fis, feld aucs = [], [1, [1, [1, []
fold type_I_errors, fold_type_II_errors = [1, []

for train_index, val_index in skf.split(X_train, y_train):
¥_train_fold, X val fold = X_train.iloc[train_index], X train.iloc[val_index]
y_train_fold, y val fold = y_train.iloc[train_index], y_train.ilec[val_index]

scaler = Standardscaler()
¥_train_scaled = scaler.fit transform{X_train_fold)
¥_val_scaled = scaler.transform(X_val_fold}

model. fit{X_train_scaled, y_train_fold)
y_wval_pred = model.predict(X_val_scaled)
y_wval_prob = medel.predict_proba(x wal scaled)[:, 1]

accuracy = accuracy_score(y_val_fold, y_val_pred)

precision = precision_score(y_val fold, y_wval_pred, pos_label=1)
recall = recall score{y val fold, y_val pred, pos_label=1)

f1 = f1_score(y_val_fold, y val pred, pos_label=1)

auc = metrics.roc_auc_score(y_val fold, y_wval_prob)

oam = confusion_matrix(y_wval fold, y_val pred)

FP, TN, FN, TP = am[@][1], cm[&][@], cm[1][&], cm[1][1]
type_I_error = FP / {(FP + TN} if (FP + TN} != @ else @
type II error = FN / (FN + TP} if (FN + TP} 1= 8 else &

Append fold metrics
fold_accuracies.append(accuracy)
fold_precisions.append{precision}
fold_recalls.append(recall)
fold_fis.append(f1)

fold_aucs.append{auc)
fold_type_I_errors.append(type_I_error)
fold type II_errors.append(type_II_error)

avg_acc = sum({fold accuracies) / len(fold_accuracies)
avg_precision = sum{fold_precisions) / len(fold_precisions})
avg_recall = sum{fold recalls) / len(fold_recalls)

avg_f1 = sum{fold_fis) / len{fold_fis}

avg_aucs = sum(fold_aucs) / len(fold aucs)

avg_typel = sum{fold_type I errors) / len{fold_type_I_errors)
avg_typeIl = sum(fold_type_II_errors) / len(fold_type II_errors}

print("»>Fold",1)
print("AUC:",avg_acc)
print("Recall:",avg_recall)
print("Type II:",avg typeIl)

Average over 5 folds
accuracies.append(round(avg_acc, 23}
precisions.append(round (avg_precision, 4))
recalls.append(round(avg_recall, 2))
f1_scores.append(round(avg f1, 4))

aucs. append(round (avg_aucs, 4))
type_I_errors.append{round{avg typeI, 4))
type_II_errors.append(round(avg_typell, 41)

Early stopping legic

if len{accuracies) »= 5 and len(set(accuracies[-5:])) == 1:
print(f"early stopping at iteration {i} because accuracy hasn't changed for 5 iterations.”)
break

elif len{recalls) »= 5 and len{set{recalls[-5:])) == 1:
print(f"early stopping at iteration {i} because recall hasn't changed for 5 iterations.")
break

end time = time.time()
duration = round{end_time - start time, 2}

Show hidden output

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDICES

print(f"Final Accuracy: {accuracies[-1]}")
print(f"Final Precision: {precisions[-1]}")
prinmt(f"Final Recall: {recalls[-1]}"}
primt(f"Final F1 Score: {f1_scores[-1]}")
primt(f"Final AUC: {aucs[-1]}")

primt(f"Final Type I Error: {type_I _errors[-1]}")
primt(f"Final Type II Error: {type_II_errors[-1]}"}
primt(f"Total training time: {duration} seconds.")

Show hidden output

Make sure test data is scaled with the same scaler used on training data
¥_test_scaled = scaler.transform{X_test)

Predict once
y_test_pred = model.predict(X_test_scaled)
y_test_prob = model.predict_proba(X_test_scaled)[:, 1]

Evaluate

accuracy = accuracy_score(y_test, y_test pred)

precision = precision_score(y_test, y_test pred, pos_label=1)
recall = recall scere(y_test, y_test pred, pos_label-1}

f1 = f1_score(y_test, y_test pred, pos_label-1)

auc = metrics.roc_auc_score(y_test, y_test prob)

cm = confusion_matrix(y test, y test pred)

FP, TH, FM, TP = cm[@][1], cm[e][e], cm[1][e], cm[1][1]
type_I_error = FP / (FP + TN} if (FP + TN} != @ else @
type_II error = FN / (FN + TP) if (FN + TP) != @ else @

Print final test performance

prinmt(f"Final Accuracy: {accuracy:.4f}")
print(f"Final Precision: {precisiom:.4f}")}
prinmt(f"Final Recall: {recall:.4f}")
prinmt(f"Final F1 Score: {fl:.4f}")

primt(f"Final AUC: {auc:.4f}")

print(f"Final Type I Error: {type_I error:.4f}")
primt(f"Final Type II Error: {type II_error:.4f}")

Final Accuracy: @.9@58
Final Precision: @.8938
Final Recall: @.9194

Final F1 Score: @.9@64
Final AUC: @.9574

Final Type I Error: 8.18as
Final Type II Error: @.8806

from sklearn.inspection impert permutaticn_importance
import scipy.stats as stats

Compute permutation importance
perm_importance = permutation_importance(model, X_test scaled, y_test, n_repeats=18, random_state=42)

Compute p-values using a permutation test
p_values = np.array{[
stats.norm.sf (abs(mean) / std) * 2 if std > le-1@ else 1.8 # Normalized by standard deviation
for mean, std in zip({perm_importance.importances_mean, perm_importance.importances_std)
I
importance_df = pd.DataFrame({
"Feature': X_train.columns,
"Importance': perm_impertance.importances_mean,
"P-value': p_values
D
Filter significant features (p-value < @.e5)
significant features = importance df[importance df['P-value'] < 8.85]
primt(len{significant_features))

Show hidden output
significant_features.to excel{"LR_Bagging significant_features.xlsx", index=False}

primt(f"significant features saved to 'LR- Bagging significamt_features.xlsx".")

Show hidden output

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

97

APPENDICES

& Final training_classfieripynb & &

File Edit View Insert Runtime Tools Help

Tmands + Code + Text

i

]

[

i

[1]

i

Ex

pimport libraries

from sklearn import swm

import pandas as pd

import numpy as np

from imblearn.combine import SMOTEEMM

from imblearn.over_sampling import SMOTE

from imblearn.under_sampling import EditedNearsstMeighbours

from sklearn import metrics

from sklearn.metrics import accuracy_score

from sklearn.linear_model import LogisticRegressicn

from sklearn.metrics import comfusion_matrix

from sklearn.metrics import precision_score, recall_score, f1_score, roc_auc_score

Ipip install -gq kaggle

from google.colab import files
files.upload(}

No file chosen Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.
saving kaggle.json to kaggle.json
{'kaggle.json": b'{"username":"phoebedz”, " key": "f7C294f72f45b7d1b3d@ec25adfabade" }'

Imkdir ~/.kaggle
Icp kaggle.json ~/.kaggle

Ikaggle datasets download -d fedesoriano/company-bankruptcy-prediction
#Taiwan Economic Journal for the years 1999 to 2889

wWarning: Your Kaggle API key is readable by cther users on this system! To fix this, you can run “chmod &8@ /rcot/.kaggle/kaggle.json®
Dataset URL: hitps://wew.kagele.com/datasets/fedesoriano/company-bankruptcy-prediction
License{s}: copyright-authors

lunzip fcontent/company-bankruptcy-prediction.zip -d /content/company_bankruptcy_pred.dataset

Archive: fcontent/company-bankruptcy-prediction.zip
inflating: /content/company bankruptcy pred.dataset/data.csv

bankruptcy_dataset_df = pd.read_csv("/content/company_bankruptcy_pred.dataset/data.csv")
print(bankruptcy_dataset_df.shape[e])

6819

3

= bankruptcy_dataset_df.drop(columns=["Bankrupt?®," Net Income Flag'])
= bankruptcy_dataset_df[’Bankrupt?']

53

smote_enn = SMOTEENN(sampling strategy='auto’,
smote=SMOTE (random_state=42), # Fix random_state for SMOTE
enn=EditednNearestneighbours(), # Default settings for Enn
random_state=42) # Fix random_state for SMOTEENM

X_resampled, y_resampled = smote_enn.fit_resample(x, y)
y_resampled.value_counts()

count
Bankrupt?
o 6599
1 6258
dtype: intg4

Lr_adaboosting_df = pd.read_excel{'/content/LR_AdaBoosting_significant_features.xlsx'}
selected_Lr_adaboosting=Lr_adaboosting df['Feature”].tolist()

columns_to drop = [col for col in X resampled.columns if col not in selected_Lr_adaboosting]
X_resampled selected_lr_adabeosting = X_resampled.drop(columns=columns_to_drop)
primt(x_r led_selected_lr_; ing.shape)

(12357, 14)

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

98

APPENDICES

Lr_stacking df = pd.read excel('/content/LR_Stacking significant features.xlsx'}
selected Lr stacking=Lr stacking df[‘Feature'].teolist()

columns_to drop = [col for col in X resampled.columns if col net in selected_Lr stacking]
¥_resampled selected 1r_stacking = X_resampled.drop{columns=columns_to_drop)
print(X_resampled selected lr stacking.shape)

(12857, 32)

Lr_bagging_df = pd.read_excel('/content/LR_Bagging_significant_features.xlsx")
selected Lr bagging-Lr bagging df['Feature'].tolist()

columns_to_drop = [col for col in X resampled.columns if col mot in selected Lr_bagging]
¥_resampled_selected_lr_bagging = ¥_resampled.drop(columns=columns_to_drop)
print(¥_resampled_selected_lr bagging.shape)

(12857, 29)

with open{'duplicates logistic reg.txt', 'r') as f:
text=F.read()

columns_to drop = [col for col in X resampled.columns if col nmet in text]
¥_resampled selected lr_similar = X resampled.drep{columns=columns_to drop)
print(¥_resampled_selected_1r_similar.shape)

(12857, 7)

with open(‘duplicates_decisiom_tree.txt', 'r') as f:
text2=f.read()

columns_to drop = [col for col in X resampled.columns if col not in textz]
¥_resampled_selected_dt_similar = ¥_resampled.drop(columns=columns_to_drop)
print(X_resampled_selected di_similar.shape)

(12857, 1@)

pt_adaboosting df = pd.read_excel('/content/DT_Adaboosting significant_features.xlsx'}
selected Dt adaboosting=Dt_adaboosting df['Feature’].tolist()

columns_to drop = [col for col in X resampled.columns if col not in selected Dt adabposting]
X_resampled selected di_adaboosting = X_resampled.drop(columns=columns_to_drop)
print(X¥_resampled_selected_di_adabocsting.shape)

(12857, 26)

Dt _bagging df = pd.read_excel('/content/DT_Bagging significant features.xlsx")
selected Dt bagging=Dt bagging df['Feature'].tolist()

columns_to_drop = [col for col in X_resampled.columns if col net in selected_Dt_bagging]
¥_resampled_selected dt_bagging= X resampled.drop{columns=columns_to_drop)
print(X_resampled_selected dt_bagging.shape)

(12857, 26)

pt_stacking df = pd.read_excel("/content/DT_Stacking significant_features.xlsx')
selected_Dt_stacking=Dt_stacking_df[‘Festure'].tolist()

columns_to drop = [col for col in X resampled.columns if col nmot in selected Dt stacking]
¥_resampled_selected_dt_stacking = ¥_resampled.drop(columns=columns_to_drop)
print(¥_resampled_selected_dt_stacking.shape)

(12857, 239)

with open{combine_logistic_reg.txt', 'r") as f:
texta=f.read()

columns_to drop = [col for col in X resampled.columns if col not in text3]
X_resampled selected lr combine = X resampled.drep{columns=columns_to drop)
print(X_resampled_selected_1r_combine.shape)

99
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDICES

ith open(combine_decision_tree.txt’,
textd=Ff.read()

r'y as f:

columns_te_drop = [col for col in X _resampled.columns if col not in text4]
¥_resampled_selected_dt_combine = X_resampled.drop(columns=columns_to_drop)
print(X_resampled_selected_dt_combine.shape)

(12857, 48)

selected_combine_bagging = list(set(X_resampled_selected_dt_bagging + X_resampled_selected_lr_bagging)}
columns_te_drop = [col for col in X _resampled.columns if col not in selected_combine_bagging]
X_resampled_combine_bagging= X_resampled.drop{columns=columns_to_drop)
print(X_resampled_combine_bagging.shape)

(12857, 47)

ith open("combine_bagging.t: "w") as f:
for item in selected_combine_bagging:
f.write(item + }

from sklearn.model selection import train test split

#Full dataset 70% train 3e% test

¥_resampled_train , X_resampled_test , y_resampled_train , y_resampled_test - train_test_split(X_resampled,y_resampled,test_size-8.3,random_state=42)
*_resarpled selected train = x_resampled train.reset_index(drop=True)

y_resampled_train = y_resampled_train.reset_index(drop=True)

#similar dataset (DT)

X_resampled_selected_dt_similar_train, X_resampled_selected_dt_similar_test , y_resampled_selected_dt_similar_train , y_resampled_selected_dt_similar_test - train_test_split(x_resampled_selected_dt_similar,y_resampled,test_:
X_resampled_selected_dt_similar_train = X resampled_selected dt_similar_train.reset_index(drop=True)

y_resampled_selected_dt_similar_train = y_resampled_selected_dt_similar_train.reset_index{drop=True)

-9, 3, random_state=-42)

#similar dataset (LR)

x_resarpled_selected_lr_similar_train, X_resampled_selected lr_similar_test , y_resampled_selected lr_similar_train , y_resampled selected 1r_similar_test = train_test_split(x_resampled_selected 1r_similar,y resampled,test_siz
¥_resampled_selected_lr_similar_train - X_resampled_selected_lr_similar_train.reset_index(drop=True)

y_resanpled_selected_lr_similar_train - y_resampled_selected_lr_similar_train.reset_index(drop=True)

8.3, random_state=42)

#combine feature(dt)

X_combined_features_dt_train , X_combined features_dt test, y_combined_festures dt train , y_combined features dt test = train test_split(x_resampled selected dt combine,y_resampled,test size=a.3,random state=az)
X_combined_features_dt_train = X_combined features_dt train.reset_index(drop=True)

y_combined_features_dt_train - y_combined_features_dt_train.reset_index(drop=True)

#Combine feature(lr)

X_combined_features_lr_train , X_combined_features_lr_test, y_combined_features_lr_train , y_combined_features_lr_test = train_test split(x_resampled selected_lr_combine,y_resampled,test_size-e.2,random_state-42)
X_combined_features_lr_train = X_combined features_lr_train.reset_index{drop=True)

y_combined_features_lr_train = y_combined_features_lr_train.reset_index(drop=True)

DECISION TREE

#76% train 3e% test

¥_resampled_selected_dt_stacking train , X_resampled_selected_dt_stacking test , y_resampled_selected dt_stacking train , y_resampled_selected dt_stacking test - train_test_split(X_resampled_selected_dt_stacking,y_resampled,test_size-.3,random_state=:2)
¥ resampled selected dt_stacking train = X _resampled selected dt stacking train.reset_index(drop=True)

y_resampled selected dt_stacking train = y_resampled selected dt stacking train.reset_index(drop=True)

_resampled_selected_dt_bagzing train , X_resampled _selected gt bagsing test , y resampled selected dt bagzing train , y_resampled selected dt bageing test = train_test split(x_resampled selected dt_bagging,y resampled,test size=s.3,random_state=22)
*_resampled_selected_dt_bagging train- X_resampled_selected_dt_bagging_train.reset_index{drop=True)
y_resampled_selected_dt_bagging train - y_resampled_selected_dt_bagging_train.reset_index(dropTrue)

X_resampled_selected_dt_adaboosting_train , X_resampled_selected_dt_adaboosting_test , y_resampled_selected_dt_adabocosting_train , y_resampled_selected_dt_adaboosting_test = train_test_split(X_resampled_selected_dt_adabcosting,y_resampled,test_siz
X_resampled_selected_dt_adaboosting train= X_resampled_selected_dt_adabcosting train.reset_index(drop=True)
y_resampled_selected_dt_adaboosting train = y_resampled_selected_dt_adaboosting train.reset_index{drop=True)

.2, random_state=42)

Logistic Regression

#76% train 3e% test

x_resampled_selected_1r_stacking train , x_resampled_selected_Ir_stacking test , y_resampled_selected 1r_stacking train , y_resampled selected 1r_stacking test = train_test_split(x_resampled_selected lr_stacking,y_resampled,test_size=a.2,random_state=:z)
¥_resanpled_selected_lr_stacking_train- X_resampled_selected_lr_stacking_train.reset_index(drop=True)

y_resampled selected 1r_stacking train = y_resampled selected Ir stacking train.reset_index(drop=True)

*_resampled_selected_lr_bagging train , X_resampled_selected_lr_bagging test , y_resampled selected lr_bagging train , y_resampled selected lr_bagging_test - train_test_split(
_resampled_selected 1r_bapzing traine X resampled_selected lr_bagging train.reset_index(drop=True)
y_resampled_selected_lr_bagging train - y_resampled_selected_lr bagging_train.reset_index(dropTrue)

resampled_selected_lr_bagging,y_resanpled,test_size-2.3,random_state=22)

X_resampled_selected lr_adaboosting train , X resampled selected lr_adaboosting test , y resampled_selected_lr_adaboosting train , y_resampled selected lr_adaboosting test = train_test split(X_resampled selected_lr adaboosting,y resampled,test s
X_resampled_selected_lr_adaboosting_train= X_resampled_selected_lr_adabeosting_train.reset_index(drop=True)
y_resampled_selected_lr_adaboosting train = y_resampled selected lr_adaboosting train.reset_index{drop=True)

.3,randon_state=42)

#Bagging (Combine)

X_resampled_combine_bagging train , X resampled_combine bagging test , y_resampled_combine bagging train , y_resampled combine bagging test =
X_resampled_combine_bagging_train = X_resampled_combine_bagzing_train.reset_index{drop=Trus)

y_resampled_combine_bagging_train = y_resampled_combine_bagging_train.reset_index(drop=True)

rain_test split(x_resanpled combine bagging,y_resampled,test size=d.3,random state=22)

#selected from p value

from pathlib import Path

from google.colab import drive
drive.mount (' /content/drive’)

Specify the file path
train_csv_path = '/content/drive/My Drive/train_data.csv'
test_csv_path = '/content/drive/My Drive/test data.csv’

train_file = Path(train_csv_path)
test_file = Path(test_csv_path)

test_data - pd.read_csv(test_csv_path)
train_data = pd.read_csv(train_csv_path)

X_resample_selected_train - train_data.drop(columns=[‘label’])
y_resample_selected_train = train_data[‘label']

X_resample_selected_test - test_data.drop(columns=[‘label’])
y_resample_selected_test = test_data[‘label®]

Show hidden output

print(X_resample_selected_train.shape)

Show hidden output

100
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDICES

from sklearn import svm

datasets = {
“base”: (X_resampled_train, y_resampled_train, X_resampled_test, y_resampled_test),
"selected”: (X_resample_selected_train, y_resample_selected_train, X_resample_selected_test, y_resample_selected_test),
"dt_similar": (X_resampled selected dt similar train, y_resampled_selected dt similar train, X resampled selected dt similar test, y_resampled selected dt similar test),
“lr_similar": (X_resampled selected lr similar train, y_resampled_selected 1r similar train, X resampled selected lr similar test, y_resampled selected lr similar test),
“dt_combined": (X_combined features_dt_train, y_combined_features_dt_train, X_combined_festures_dt_test, y_combined features_dt_test),
“Llr_combined": (X_combined_features_lr_train, y_combined_features_lr_train, X_combined_features_lr_test, y_combined_features_lLr_test),
"dt_stacking": (X_resampled_selected dt_stacking train, y_resampled_selected_dt_stacking_train, X_resampled selected_dt stacking test, y_resampled_selected_dt_stacking test),
"dt_bagging": (X_resampled_selected_dt_bagging train, y_resampled_selected_dt bagging train, X_resampled selected_dt_bagging test, y_resampled_selected_dt_bagging test),

“dt_adaboosting”: (X_resampled_selected dt_adaboosting train, y_resampled_selected_dt_adaboosting train, X_resampled_selected_dt_adaboosting test, y_resampled_selected dt_adaboosting_test),

“1r_stacking": (X_resampled_selected_lr_stacking train, y_resampled_selected_lr_stacking_train, X_resampled_selected_lr_stacking_test, y_resampled_selected_lr_stacking test),
"Llr_bagging": (X_resampled_selected_lr_bagging train, y_resampled_selected_lr_bagging train, X_resampled selected_lr_bagging test, y_resampled_selected_lr_bagging_test),

"Llr_adaboosting”: (X_resampled_selected_lr_adaboosting_train, y_resampled_selected_lr_adaboosting train, X_resampled_selected_lr_adaboosting_test, y_resampled_selected_lr_adaboosting_test),

“combine_bagging":(X_resampled_combine_bagging train, y_resampled_ccmbine_bagging train, X _resampled ccmbine bagging test, y_resampled_combine_bagging test)

i

Store trained models and predictions
svm_models = {J
sm_predictions = {}

Train and predict for each dataset
for name, (X_train, y_train, X_test,y_test) in datasets.items():
model = svm.SvC(prebability=True)
model.fit(X_train, y_train)
v_pred = model.predict(X_test)
y_prob = model.predict_proba(X_test)[:, 1]

accuracy = accuracy_score(y_test, y_pred)
precision = precisien_score(y_test, y_pred, pes_label-1)
recall = recall_score(y_test, y_pred, pos_label=1)

f1 = f1_score(y_test, y_pred, pos_label=1)

auc = metrics.roc_auc_score(y_test, y_prob)

Confusion Matrix Calculation

m = confusion_matrix(y_test, y_pred)

FP, TN, FN, TP = am[@][1], cm[e][e], cm[1][e], cm[1][1]
type_I_error = FP / (FP + TN) if (FP + TN} != @ else @
type_II error = FN / (FN + TP) if (FN + TP} 1= @ else @

svm_models[name] = model
svm_predictions[name] = {
"y_pred": y_pred,
"accuracy”: accuracy,
“precision”: precision,
“recall”: recall,
"f1_score": f1,
"auc": auc,
“type_I_error”: type_I_error,
"type_II_error”: type_II_error

¥
print(f*{name} SvM model trained and predicted.”)

Show hidden output

for name, metrics in svm_predictions.items():

print(f"Model: {name}")

accuracy: {metrics['accuracy']:.4f}")

Recall: {metrics['recall']:.sf}"}

AUC: {metrics['auc']:.af}")

False Megative: {metrics['type_IL error']:.4f}")

Show hidden output

from sklearn.ensemble import RandomForestClassifier

datasets
“base”: (X_resampled_train, y_resampled_train, X_resampled_test, y_resampled_test),
“selected”: (X_resample_selected train, y resample_selected_train, X resample_selected_test, y_resample selected test)
“dt_similar": (X_resampled_selected dt_similar_train, y_resampled_selected_gt_similar_train, X_resampled_selected_dt_similar_test, y_resampled_selected_dt_similar_test),
“1r_similar": (X_resampled_selected lr_similar_train, y_resampled_selected lr_similar_train, X_resampled_selected_lr_similar_test, y_resampled_selected_lr_similar_test),
"dt_combined": (X_combined features_dt train, y_combined features dt train, X _combined features dt_test, y_combined features dt test),
“1r_combined": (X_combined_features_lr_train, y_ccebined_features_lr_train, X_combined_features_lr_test, y_combined_features_lr_test),
"dt_stacking": (X_resampled_selected_dt_stacking_train, y_resampled_selected_dt_stacking_train, X_resampled_selected_dt_stacking test, y_resampled_selected dt_stacking test),
“dt_bagging": (X_resampled selected dt bagging train, y_resampled_selected dt bagging train, X _resampled selected dt _bagging test, y_resampled_selected_dt_bagging test),

“dt_sdaboosting™: (X_resampled_selected dt_adaboosting train, y_resampled_selected_dt_adaboosting train, X_resampled_selected_dt_adaboosting test, y_resampled selected dt_sdaboosting_test),

r_stacking": (X_resampled_selected_lr_stacking train, y_resampled_selected_lr_stacking train, X_resampled_selected_lr_stacking test, y_resampled_selected Ir_stacking test),
r_bagging": (¥_resampled_selected 1r_bagging train, y_resampled_selected_lr_bagging_train, X_resampled_selected lr_bagging test, y_resampled_selected_lr_bagging_test),

“1r_adaboosting”
"combine_bagging": (X_resampled_combine_b:

ing_train, y_resampled_combine_bagging_train, X_resampled_combine_bagging_test, y_resampled_combine_bagging_test)

1

store trained models and predictions
RF_models = {}
RF_predictions = {}

Train and predict for each dataset
for name, (X_train, y_train, x_test,y_test) in datasets.items():
model = RandomForestClassifier(criterion = "gini”,max_depth = 5,min_samples_split = 2,min_samples leaf=1,random state = 22)
model.fit(X_train, y_train)
y_pred = model.predict(x_test)
y_prob = medel.predict_proba(X_testi[:, 1]

accuracy = accuracy_score(y_test, y_pred)

precision = precision_scere(y_test, y_pred, pos label=1)
recall = recall_score(y_test, y_pred, pos_label=1)

f1 = f1_score(y_test, y_pred, pos_label=1)

auc = roc_auc_score(y_test, y_prob)

confusion Matrix Calculation

m = confusion_matrix(y_test, y_pred)

FP, TN, FN, TP = m[@][1], cm[e][e], cm[1][e], cm[1][1]
type I error = FP / (FP + TN} if (FP + TN} l=@ clse @
type_II error = FN / (FN + TP) if (FN + TP} != @ else @

RF_models[name] = model
RF_predictions[name] = {

"y_pred": y_pred,

: accuracy,
"precision”: precision,
"recall": recall,

“f1_score™: f1,

"auc": auc,

“type_T_error™: type_I_error,
“type_II_error”: type_II_error

3

print(f"{name} RF model trained and predicted.")

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

(¥_resampled_selected_lr_sdaboosting_train, y_resampled_selected_lr_adaboosting train, X_resampled_selected_lr_adaboosting test, y_resampled selected lr_adaboosting_test),

101

APPENDICES

| for name, metrics in RF_predictions.items():
print(f"Medel: {name}")
print(f" Accuracy: {metrics['accuracy']:.af}"}
print(f" Recall: {metrics['recall’]:.af}")
print(f" auc: {metrics['auc"]:.4f}")
print(f" False Negative: {metrics['type_IT error']:.af}")
print("------ ")

Show hidden output

import matplotlib.pyplet as plt
import numpy as np

datasets= ["base(24)","selected(82)", "dt_overlap(18)","1r_cverlap(7)","dt_combined(45)"," 1r_combined(4e)","dt_stacking(29)","dt_bagging(26)","dt_adaboosting(26)",
"1r_stacking(32)","1r_bagging(23)", "1r_adabcosting{14)","combine_bagging(7)"]
for_values = [8.1481,0.1439,8.3861,8.9897,0.1783,8. 2318, 8. 3858, 8. 2888, 8. 7363, 8.3186,0. 5144, 8. 6574, 8. 2688]

X = np.arange(len(datasets))

plt.plot(x, fnr_values, marker="0', linestyle='-', color="steelblue', linewidth=2, markersize=g)

add data point labels
for i, val in enumerate(fnr_values):
plt.text(x[i], val, f'{val:.3f}X', ha='"center', fontsize=g)

plt.xticks(x, datasets, rotation=45, ha='right')

plt.title("rFalse nNegstive Rate Trend Acress Feature combinations with swM classifier®)
plt.ylabel('False Megative Rate (X)')

plt.ylim(e, 1.8}

plt.grid(True, linestyle='--", alpha=e.c)

plt.tight_layout()

plt.show(}

anlse Negative Rate Trend Across Feature Combinations with SVM classifier

0.8

&

-]

2 06

u

H

&

g

T 0.4

v

3

&

024

0.0 T T T T T T T T
= R o S o ™ n A
A S L S i I g s

@éf"’é‘td‘\@fp&& T
F T AL S o“&qd: ?ﬁq

& f «F 8 8 F i vl @ F
& e ‘9@

for_values_rf = [2.8438,0.8487,0.0498,0.8817,8.0595,0,0692,8. 0571,8.0552,0.8471,8.08671,0, 87032 ,8.0654,8, 8534]
® = np.arange(len(datasets))
plt.plot(x, fnr_values_rf, marker='c", linestyle="-', coler='red', linewidth=2, markersize=5)

Add data point labels
for i, val in enumerate(fnr_values_rf}:
plt.text{x[i], val, f'{val:.3f}X", ha='center’, fontsize=g)

plt.xticks(x, datasets, rotation=45, ha="right')

plt.title('False Negative Rate Trend Across Feature Combinations with RF classifier')
plt.ylabel{'False Megative Rate (%)'}

plt.grid(True, linestyle='--', alpha=8.&)

plt.ylim{@.84, @.885)

plt.tight layout()

plt.show(})

False Negative Rate Trend Across Feature Combinations with RF classifier

0.08 1

g

© 0.07 4

]

'3

w

H

T 0.06

5o

4

o

Kl

-}

= 0.05

0.04 — ety
R N R I R T N S NN
FEF IS EFRFPFFS PSS

F LR L & & ¥ O E OO
& & @qvca?‘g-@o,‘”“dg?‘y

&7 *‘&E. ‘(;0 &-'7 & o 47 s & '@(&I
& % ‘__ae

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

102

APPENDICES

POSTER

R UNIVERSITI TUNKU ABDUL RAHMAN
w4 FACULTY OF INFORMATION COMMUNICATION AND TECHNOLOGY

Financial Distress Detection using Ensemble " ®
Learning

01 INTRODUCTION

e Financial distress is a scenario in which an individual or a company fails to generate the
revenues to cover their financial responsibilities.

¢ Ensemble learning is a combination of multiple individual models

e |t has consistence predicting result, better accuracy and time efficiency than a single
machine learning method and statistical prediction models

02 AIM AND OBJECTIVES

Aim : Identify the optimal ensemble learning technique in detecting financial distress risk.
Objectives :
e Familiarize the architecture ensemble learning techniques
e Compare and contrast three ensemble learning techniques using classifiers like logistic
regression and decision tree in classifying financial status
* Relate the findings to interpret business implications of financial distress

03 PROPOSED METHOD
Business . Modeling
Understanding L » Bagging
» Boosting
Data Test _— (adaboosting)
Understanding * Stacking
Data Preparation Classs\llf':: P Combine feature and
» Remove constant «—— model performance
« Random Forest
value
« Balance imbalance \
data
(Smote- ENN) Feature selection
« Feature selection (t - result
test)
Student: Phoebe Wong Hui Lei Supervisor : Dr Tong Dong Ling

103
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

