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ABSTRACT 

 

This project presents the development of a Blockchain-Based Intrusion Detection 

System with Artificial Intelligence, designed to address the limitations of traditional 

intrusion detection frameworks that lack contextual awareness, secure alert storage, and 

automated response. The system integrates a rule-based signature engine with a large 

language model to detect both known and previously unseen network threats through 

real-time traffic analysis. Signature-based detection matches flows against predefined 

patterns, while the LLM performs context-aware reasoning to identify complex or 

ambiguous behaviours, producing alerts with human-readable explanations and 

severity levels. To ensure alert integrity and traceability, all detection events are logged 

to a private Ethereum blockchain using smart contracts, providing a decentralised and 

tamper-resistant audit trail. Simultaneously, off-chain logging is enabled to ensure 

efficient notification of intrusion events. A web-based dashboard offers live monitoring 

of packet capture, active flows, alert statistics, and blockchain synchronisation. The 

system was designed for modularity, with configurable components for flow 

processing, AI analysis, and on-chain logging. It achieved a detection accuracy of 

93.95% and a false positive rate of 5.00%, confirming the effectiveness of its hybrid 

detection approach. This prototype demonstrates the feasibility of combining AI and 

blockchain technologies to build an IDS that is not only accurate but also transparent, 

explainable, and resistant to tampering, thus making it a promising foundation for 

modern, resilient cybersecurity systems.  
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CHAPTER 1 INTRODUCTION 

 

This chapter provides an overview of the project titled Blockchain-Based Intrusion 

Detection System with Artificial Intelligence (hereinafter referred to as “the project”), 

laying the foundation for the work undertaken. It begins by presenting the background 

and context of the project, highlighting the current challenges in intrusion detection and 

the motivation behind the proposed solution. The chapter then outlines the specific 

objectives that guide the project’s development and defines the scope to clarify the 

boundaries and focus areas. Furthermore, it summarises the key contributions made 

through this project and explains how they address existing limitations in the field. 

Finally, the chapter concludes with an outline of the report structure to help in 

understanding the flow and organisation of the subsequent chapters.  

 

1.1 Problem Statement 

 

This section outlines the issues to address, including current challenges that need 

remediation and areas for potential optimisation and improvement. 

 

1.1.1 Absence of an Integrated IDS for Detection and Contextual Analysis 

 

Intrusion Detection Systems (IDSs) are essential components in modern network 

security. Yet, in the current cybersecurity landscape, IDSs often operate in isolated 

environments with limited ability to contextualise threats or correlate them across 

multiple sources in real time. Traditional IDSs typically rely on either signature-based 

or anomaly-based mechanisms, but they rarely integrate advanced AI analysis and 

immutable logging to provide comprehensive insight. This siloed architecture restricts 

the system’s ability to adapt and understand evolving attack patterns, especially in 

dynamic networks. As highlighted by Alshamrani et al., existing IDS frameworks 

frequently fail to provide adequate context for detected threats, resulting in high false 

positive rates and inadequate incident response capabilities [1]. Furthermore, many IDS 

frameworks are constrained by their inability to analyse high-dimensional network data 

in real time and adapt to sophisticated attacks through contextual correlation. Similarly, 

Khenwar and Nawal highlight that traditional IDS architectures do not incorporate 
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advanced analytical capabilities needed for meaningful threat classification, especially 

in heterogeneous network environments [2]. This demonstrates a critical gap: the 

absence of a unified, intelligent, and context-aware intrusion detection mechanism 

capable of providing comprehensive and accurate threat insight in real time. A potential 

solution involves an IDS framework enhanced with Artificial Intelligence (AI) like 

Large Language Models (LLMs) with contextual analysis capabilities that integrates 

with existing networks. 

 

1.1.2 Limited Automation and Decentralisation in Threat Response 

 

Despite advances in intrusion detection technologies, most systems still depend heavily 

on manual processes for threat response, which can delay mitigation and increase the 

risk of damage during fast-moving attacks. The lack of automation in threat handling 

limits the scalability and effectiveness of security operations, especially in 

environments where threats evolve rapidly. Furthermore, centralised control 

mechanisms present a single point of failure, making the response process vulnerable 

to disruption or manipulation. As stated by Zuech et al., conventional IDS frameworks 

lack real-time automated capabilities that can adapt dynamically to detected threats 

without human intervention [3]. In addition, the absence of decentralised decision-

making or action-sharing among distributed nodes hampers resilience and 

responsiveness in large or segmented networks. Research by Dorri et al. has highlighted 

the potential of decentralised architectures in improving the robustness and fault-

tolerance of cybersecurity systems, yet such models remain underutilised in current IDS 

implementations [4]. This underlines the need for intrusion detection systems that 

incorporate both automated response mechanisms and decentralised control to enable 

faster, more reliable threat mitigation. The problem can be addressed by implementing 

smart contract-driven alerts, which automate the detection and response workflows 

based on predefined conditions, reducing reliance on human intervention. 
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1.1.3 Vulnerability of Alerts to Tampering and Unauthorised Access 

 

In many existing intrusion detection systems, the alerts generated during detection 

processes are stored in centralised databases or log files that are susceptible to 

tampering, deletion, or unauthorised access. This poses a serious threat to the integrity 

and trustworthiness of forensic data, which is essential for post-incident analysis, 

compliance audits, and legal investigations. Without secure and verifiable alert storage, 

attackers who gain access to the system may alter or erase evidence of their intrusion 

to avoid detection and accountability. According to Diana et al., the lack of immutable 

logging mechanisms in conventional IDS architectures significantly weakens the 

overall security posture by enabling the manipulation of historical data [5]. 

Additionally, centralised systems often lack transparency and verifiability, which 

undermines confidence in the recorded security events and their traceability in 

distributed environments. These limitations highlight the pressing need for IDS 

frameworks that secure alert data against tampering through verifiable, decentralised 

storage mechanisms. Fortunately, this problem in IDS can be potentially mitigated 

using blockchain technology’s decentralised and immutable ledger to securely store 

logs, alerts, network, and intrusion information. 
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1.2 Motivations 

 

This section provides a comprehensive overview of the underlying reasons and broader 

context that drive the need for the project. It explores the practical challenges, 

technological gaps, and industry trends that have inspired the project’s conception. By 

examining these motivating factors, the section establishes the relevance and 

significance of the proposed work within its intended application domain. 

 

1.2.1 Addressing the Growing Complexity of Cyber Threats 

 

In the modern digital ecosystem, cyber threats have become increasingly complex, 

frequent, and stealthy through advanced evasion techniques, automation, and even AI 

to bypass traditional defence mechanisms. This surge in sophistication places immense 

pressure on conventional IDSs, which often rely on static rules or signature-based 

models that are ill-equipped to handle novel or polymorphic attacks. Moreover, as 

critical infrastructures, financial systems, healthcare networks, and national services 

grow more interconnected, the consequences of a successful cyberattack have become 

far-reaching, affecting safety, economic stability, and public trust. The reactive nature 

and limited intelligence of most IDS result in delayed threat response and poor 

adaptability, especially in high-speed or large-scale network environments. This project 

is motivated by the urgent need to bridge this gap by enhancing IDS capabilities through 

automation, intelligence, and trust. By integrating artificial intelligence for dynamic 

threat detection and blockchain for tamper-proof alert verification, this project aims to 

deliver a forward-looking IDS architecture, one that is not only reactive but predictive, 

decentralised, and resilient in the face of today’s and tomorrow’s cyber threats. 

 

1.2.2 Ensuring Integrity and Trust in Security Alerts 

 

In the context of cybersecurity, the integrity and trustworthiness of security alerts are 

essential, particularly for post-incident analysis, automated response, and compliance 

reporting. However, many existing IDS frameworks store alerts in centralised systems 

that are vulnerable to manipulation, unauthorised modification, or deletion, hence 

threatening the credibility of the entire detection process. In environments where 

decisions must be made quickly and evidence must be auditable, any compromise in 
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alert integrity weakens both operational confidence and forensic accuracy. This project 

is driven by the critical need to ensure that once an alert is generated, it remains 

immutable and verifiable. By incorporating blockchain technology as a decentralised 

and tamper-resistant ledger, the system can guarantee that all alerts are securely 

recorded, traceable, and immune to unauthorised alterations. This enhances not only 

technical reliability but also stakeholder trust, enabling organisations to rely on their 

IDS data with greater confidence for decision-making, auditing, and legal validation. 

 

1.2.3 Enhancing Explainability in AI-Based Intrusion Detection Systems 

 

As artificial intelligence becomes more prevalent in IDSs, a key challenge that emerges 

is the lack of explainability in how AI models detect and classify threats. Many AI-

based systems operate as black boxes, providing alerts without clear reasoning or 

context, which can reduce trust in their outputs and make it difficult for security analysts 

to validate or act upon them effectively. This issue is especially critical in environments 

where accountability, transparency, and quick decision-making are essential. Without 

understandable justifications, even accurate alerts may be disregarded or 

misinterpreted. This project is motivated by the need to improve the interpretability of 

AI-driven IDS by incorporating mechanisms that provide contextual explanations for 

each alert. By integrating natural language generation and structured metadata into the 

detection process, the system will offer more transparent and human-readable insights, 

empowering analysts to make faster, more confident decisions and contributing to 

greater trust in AI-assisted cybersecurity operations. 
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1.3 Project Objective 

 

This section defines the overall aim of the project by clearly stating what it seeks to 

achieve. It outlines the intended outcomes at a high level and serves as a guiding 

reference for the development process. The objectives presented here help establish the 

direction of the work and provide measurable goals against which the project’s success 

can be evaluated. 

 

1.3.1 To Develop a Unified IDS for Detection and Contextual Analysis 

 

The primary objective of this project is to develop a unified IDS that combines real-

time threat detection with contextual analysis to enhance the accuracy and relevance of 

alerts. Unlike traditional IDS that rely solely on signature matching or basic anomaly 

detection, this system will integrate multiple detection techniques, including rule-based 

methods and LLM-driven models, to analyse network flows holistically. The system 

will be designed to process at least 100 packets per second and detect threats with a 

minimum target accuracy of 90%, verified through labelled test datasets. By correlating 

traffic patterns, protocol behaviours, and flow statistics, the system aims to generate 

alerts that are not only precise but also enriched with meaningful context, thus 

providing explainability. This approach is intended to reduce false positives, improve 

threat interpretation, and support more informed and timely responses by security 

analysts. 

 

1.3.2 To Automate and Decentralise Threat Response via Smart Contracts 

 

This project aims to automate and decentralise the threat response process by 

integrating smart contracts into the IDS architecture. Traditional intrusion detection 

systems often require manual intervention to respond to threats, which can delay 

mitigation efforts and increase exposure to ongoing attacks. By leveraging blockchain-

based smart contracts, the system will enable predefined, automated response actions 

such as on-chain alert logging, triggered within 5 seconds upon detection of an 

intrusion. The smart contract will be deployed and tested on a private blockchain 

network and will record 100% of the alerts generated by the IDS, ensuring traceability 

as well as accountability. This decentralised approach ensures that response 
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mechanisms are executed consistently and without dependence on a central authority, 

thereby enhancing system resilience, reducing response time, and eliminating single 

points of failure. 

 

1.3.3 To Enable Secure and Verifiable Access to Alert Records 

 

This project seeks to enable secure and verifiable access to intrusion alert records by 

integrating a blockchain-based logging mechanism within the IDS framework. 

Conventional systems often store alerts in centralised or unsecured databases, making 

them susceptible to tampering, deletion, or unauthorised access. To address this, the 

proposed system will log 100% of generated alerts onto a private blockchain, ensuring 

that each record is immutable, timestamped, and transparently verifiable. Access to 

alert records will be verified through an API interface that retrieves and validates on-

chain entries, with a response accuracy of 100% for successfully logged events. This 

will allow authorised users, such as security analysts or auditors, to access trustworthy 

alert data for incident response, forensic analysis, and compliance reporting. By 

providing a decentralised and tamper-resistant record of security events, the system 

aims to strengthen the overall credibility and reliability of intrusion detection outputs. 
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1.4 Project Scope 

 

This project will focus on developing a prototype of a “Blockchain-Based Intrusion 

Detection System with Artificial Intelligence”, tailored for use in organisational 

network environments. The primary deliverable will be a fully functional prototype that 

demonstrates the feasibility of integrating blockchain and AI to enhance network 

security. This prototype will act as a proof of concept, showcasing real-time threat 

detection, contextual analysis, and automated response via smart contracts. While 

functionally complete for demonstration purposes, the system will not be developed as 

a market-ready or production-level product. 

 

The project will involve the development of several core components that work together 

to form a functional prototype of the proposed system. These include AI-based 

detection modules that combine rule-based techniques with LLM-driven analysis to 

detect both known and unknown threats in real time. A blockchain logging module will 

be implemented using smart contracts to ensure the immutability, decentralisation, and 

automated response of security alerts. The backend system will manage data flow 

operations, including traffic capture, packet processing, and flow analysis. A user 

interface will be developed to allow users to monitor system status, view alerts, and 

control IDS operations in a clear and accessible manner. Finally, integration modules 

will ensure seamless communication between the detection engine, blockchain layer, 

and frontend interface, enabling the system to operate as a cohesive and responsive 

intrusion detection framework. 

 

The project will also include functional as well as non-functional testing using 

controlled datasets and simulated traffic to verify the performance and functionalities 

of the system. However, the project will intentionally exclude several areas that fall 

outside the scope of a prototype-focused development effort. These include full-scale 

UI/UX refinement beyond essential usability and basic navigation, as the emphasis is 

on functionality rather than visual design or user experience optimisation. Scalability 

testing under extreme network loads or deployment across distributed infrastructures 

will not be conducted, as the system is intended for demonstration in a controlled 

environment. Integration with enterprise-grade systems such as Security Information 

and Event Management (SIEM) tools or external APIs is also beyond the scope, as the 
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project is not aimed at production-level interoperability. Additionally, long-term 

system maintenance, such as regular update cycles, patch management, and ongoing 

user support will not be covered, given the academic and proof-of-concept nature of the 

work. 

 

To summarise, the overall goal is to deliver a working prototype that validates the core 

ideas of automation, contextual detection, and tamper-proof alert storage using 

blockchain and AI, within a controlled development environment. 
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1.5 Impact, Significance, and Contribution 

 

This project has the potential to significantly influence the future design of intrusion 

detection systems by demonstrating how blockchain and artificial intelligence can be 

synergised to address critical shortcomings in conventional security solutions. By 

combining real-time detection, contextual analysis, and tamper-proof alert logging, the 

system offers a modern approach to network security that aligns with the demands of 

increasingly complex and distributed digital environments, while addressing the critical 

gaps in current organisational cybersecurity frameworks involving IDSs. The outcome 

of this project could lead to improved response times, reduced false positives, and 

enhanced trust in alert data, features that are highly valuable for organisations handling 

sensitive or large-scale network traffic. 

 

The significance of this project lies in its integration of decentralised technologies and 

intelligent analytics into a single, cohesive intrusion detection framework. In contrast 

to traditional IDS models that often operate in isolation with limited interpretability, 

this system introduces an innovative architecture that ensures alert transparency, 

contextual relevance, and automation of response. This project addresses multiple 

pressing cybersecurity challenges, such as threat complexity, alert integrity, and 

operational latency, making it highly relevant to current academic research and 

industrial cybersecurity practices. In the long term, the adoption of such technologies 

could lead to a safer, more secure digital environment, benefiting not just individual 

organisations, but society as a whole. 

 

This project contributes to the field of cybersecurity by delivering a functional 

prototype that proves the feasibility of using blockchain and AI in a unified IDS. The 

novelty of this project lies in the implementation of LLM-based contextual analysis, 

smart contract-driven automation, and verifiable alert logging, all integrated into a 

single system. While blockchain-based security solutions have been primarily focused 

on IoT environments, this project innovatively applies blockchain to the broader and 

more complex context of organisational cybersecurity. The use of smart contracts to 

automate incident response processes is another innovative aspect that sets this project 

apart from traditional approaches with relatively greater dependency on manual 

interventions.  
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1.6 Background Information 

 

In today’s increasingly interconnected digital world, cyber threats have become more 

sophisticated, frequent, and coordinated, largely driven by the rapid advancement of 

technologies and the growing use of artificial intelligence, including generative models. 

This evolution poses serious challenges to conventional cybersecurity strategies, 

particularly in the areas of threat prevention, detection, and response. Studies have 

shown that individuals and organisations alike remain highly vulnerable to a wide range 

of attacks such as Denial of Service (DoS), Distributed Denial of Service (DDoS), 

phishing, ransomware, malware, SQL injection, and zero-day exploits [6]. Traditional 

security tools, including firewalls and standalone IDS, often lack the intelligence and 

adaptability required to identify these modern threats, especially those that do not match 

known attack signatures. 

 

Intrusion, as defined by Khraisat et al. [7], refers to unauthorised activities that 

compromise the Confidentiality, Integrity, or Availability (CIA) of an information 

system. IDSs, whether hardware- or software-based, are designed to monitor network 

traffic and system behaviour to detect such malicious actions. These systems generally 

fall into two main categories: Signature-Based Intrusion Detection Systems (SIDSs), 

which identify known threats by matching patterns from a database, and Anomaly-

Based Intrusion Detection Systems (AIDSs), which use statistical or behavioural 

models to detect deviations from normal network activity [7], [8]. However, both 

models suffer from limitations: SIDS cannot detect novel or obfuscated attacks, while 

AIDS often generates high false positive rates and struggles with adaptability. 

 

To overcome these limitations, recent developments have turned to artificial 

intelligence, particularly machine learning (ML) and deep learning (DL) models. As 

detailed by Kaur et al. [9], AI plays several key roles in cybersecurity, including 

automating tasks, identifying threats, preventing attacks, detecting vulnerabilities, 

responding to incidents, and aiding in recovery efforts. To expand on this, AI 

algorithms excel at analysing large volumes of data, such as network traffic, to reveal 

potential threats and vulnerabilities. By detecting patterns and identifying subtle 

anomalies, AI can reveal new forms of cyber threats that traditional, signature-based 

systems might miss. Also, these AI systems are able to continuously adapt to emerging 
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threats through learning algorithms, which not only improve predictive accuracy but 

also reduce false positives, providing stronger protection against increasingly 

sophisticated cyberattacks [10]. However, it is important to note that AI-based systems 

often require significant computational resources. 

 

On a related note, LLMs have emerged as a powerful enhancement to cybersecurity 

frameworks due to their ability in contextual understanding and text generation. Trained 

on vast cybersecurity datasets, LLMs can identify contextual patterns and correlations 

that traditional AI models may overlook due to their limited feature sets. Their ability 

to understand unstructured or semi-structured flow data allows them to generate more 

accurate and context-aware threat classifications. Furthermore, LLMs can provide 

human-readable explanations for each detection decision, delivering natural language 

insights that increase the transparency, interpretability, and usability of alerts. This level 

of explainability not only improves the analysts’ trust in the system but also supports 

faster and more confident incident response. 

 

Parallel to AI advancements, blockchain technology has gained attention for its ability 

to enhance data integrity and trust in distributed systems. Originally developed for 

cryptocurrencies, blockchain functions as a decentralised, tamper-resistant ledger that 

records transactions or events immutably across a peer-to-peer network [11]. In the 

context of cybersecurity, blockchain can be used to log security alerts in a way that 

prevents deletion or alteration, ensuring forensic traceability. Additionally, the use of 

smart contracts, which are essentially self-executing scripts triggered by defined 

conditions, enables automation of key security operations such as real-time alert 

validation and response without relying on a central authority [12], [13]. 

 

The integration of AI, LLMs, and blockchain into IDS design represents a promising 

new direction in cybersecurity research and practice. As highlighted by recent works 

[14], combining these technologies can significantly improve detection accuracy, 

reduce response time, and establish a transparent, decentralised trust layer for security 

operations. This project aims to build upon these concepts by developing a prototype 

system that unifies LLM-based contextual detection with blockchain-backed alert 

logging and smart contract-driven automation, tailored specifically for organisational 

network environments.  
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1.7 Report Organisation 

 

This report is structured into seven chapters, each logically progressing from the 

project’s background to its evaluation and conclusions. Chapter 1 introduces the project 

by outlining its background, motivation, problem statement, objectives, scope, and 

overall structure of the report. Chapter 2 reviews the existing literature, covering IDSs, 

AI-based threat analysis, blockchain applications in cybersecurity, and related works 

that informed the system design. Chapter 3 focuses on the methodology adopted, 

detailing the tools, frameworks, datasets, system architecture, and design principles that 

guided the development process. 

 

Chapter 4 presents the system implementation in a modular format, describing key 

components such as packet capture, flow assembly, signature detection, LLM-based 

reasoning, blockchain integration, and the web interface. Each subsection highlights the 

core logic and design considerations for its respective module. Chapter 5 explains the 

system’s integration and deployment process, including interface interactions, smart 

contract deployment, and operational workflow from packet capture to blockchain 

logging. 

 

Chapter 6 evaluates the system through both functional and non-functional testing. It 

includes detailed test results, interpretation, limitations encountered during 

development and testing, and a validity analysis of the evaluation approach. Finally, 

Chapter 7 concludes the report by summarising the project’s achievements, 

highlighting contributions, and offering recommendations for future improvements. 
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CHAPTER 2 LITERATURE REVIEW 

 

2.1 Review of Relevant Technologies 

 

This section explores the core technologies that are relevant to The Project, including 

their functionalities, advantages, and limitations. It provides a foundational 

understanding of the tools, frameworks, and methodologies employed, establishing the 

technical context for the system’s design and implementation. 

 

2.1.1 Blockchain 

 

Blockchain is a decentralised, append-only ledger system that facilitates transparent 

and tamper-evident record-keeping across multiple untrusted nodes. First introduced 

through the Bitcoin whitepaper in 2008 by Nakamoto, the technology has since evolved 

into a general-purpose framework supporting various applications beyond digital 

currencies, including supply chain tracking, identity verification, voting systems, and 

decentralised finance [15], [16]. 

 

At its core, blockchain ensures data integrity and distributed trust through cryptographic 

linking of blocks, consensus mechanisms, and decentralised replication. Each block 

contains a list of transactions, a timestamp, and a hash of the previous block, forming 

an immutable chain. Once added, data in a block cannot be altered without modifying 

all subsequent blocks across the network, a task that becomes computationally 

infeasible in properly decentralised systems [15]. 

 

Recent academic literature has examined the taxonomy of blockchain systems, 

categorising them into public, private, and consortium blockchains. Public blockchains, 

such as Bitcoin and Ethereum, offer full decentralisation and openness, but suffer from 

performance bottlenecks due to computationally expensive consensus protocols like 

Proof-of-Work (PoW). In contrast, private and consortium blockchains operate within 

restricted access groups and adopt lighter consensus mechanisms such as Proof-of-

Authority (PoA) or Practical Byzantine Fault Tolerance (PBFT), enabling higher 

throughput and reduced latency [11], [17]. 
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Several studies have also analysed scalability and performance issues within blockchain 

systems. According to Xu et al. [18], traditional blockchains face the “blockchain 

trilemma”, where decentralisation, scalability, and security cannot all be maximised 

simultaneously. Research efforts have since focused on innovations such as sharding, 

off-chain computation, and layer-2 protocols to address these constraints. For instance, 

projects like Lightning Network and Ethereum’s rollups aim to improve transaction 

throughput without compromising trust-lessness. 

 

Another significant thread in blockchain research involves security and attack surfaces. 

While blockchain offers immutability, it is not inherently secure from all forms of 

attack. Smart contracts, for example, have introduced vulnerabilities such as re-

entrancy and integer overflow bugs, leading to high-profile exploits. At the protocol 

level, threats such as 51% attacks and selfish mining highlight potential weaknesses in 

consensus integrity. Research by Prashanth et al. [19] surveys these vulnerabilities and 

proposes formal verification tools and hybrid consensus models as partial remedies. 

 

Furthermore, scholars have explored blockchain’s interdisciplinary integration with 

fields such as Internet of Things (IoT), edge computing, and artificial intelligence (AI). 

In these domains, blockchain serves as a trust layer for distributed entities lacking 

central control. For example, in IoT systems, blockchain is used to manage identities, 

validate sensor data, and audit device behaviour without relying on central gateways 

[17], [20]. These studies demonstrate the extensibility of blockchain beyond finance, 

encouraging innovation in domains that require decentralised coordination. 

 

Despite these advances, the integration of blockchain into real-world systems remains 

an ongoing challenge, particularly in contexts requiring real-time response, lightweight 

computation, and seamless interoperability. These limitations create opportunities for 

novel contributions, such as streamlined blockchain integration within high-

performance computing environments or time-sensitive systems like intrusion 

detection. 
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2.1.2 Large Language Model 

 

Large Language Models (LLMs) represent a significant advancement in the field of 

natural language processing (NLP) and machine learning. These models are 

characterised by their massive number of parameters which are often in the billions, as 

well as their ability to generate, summarise, translate, and understand human language 

with high fluency and coherence. LLMs such as OpenAI’s GPT series, Google’s 

Gemini, Meta’s LLaMA, and Anthropic’s Claude are built upon the Transformer 

architecture proposed by Vaswani et al. in 2017, which introduced the concept of self-

attention and revolutionised sequence modelling [21]. 

 

A defining characteristic of LLMs is their ability to generalise across diverse tasks 

without task-specific training, a property often referred to as zero-shot or few-shot 

learning. This capability has been attributed to the scale of training data and model 

parameters. Brown et al. [22] demonstrated that scaling up both leads to emergent 

behaviours, where LLMs perform competitively on tasks ranging from arithmetic 

reasoning to code generation, without being explicitly programmed for them. 

 

From a research standpoint, LLMs are seen as more than just predictive models—they 

are increasingly regarded as probabilistic knowledge bases. Studies have shown that 

LLMs encode factual information within their parameters, albeit with varying accuracy 

and robustness. Petroni et al. [23] introduced the concept of “language models as 

knowledge bases” by probing LLMs for factual recall using cloze-style prompts. 

Although effective for well-represented knowledge, the models struggle with niche or 

rarely seen information, revealing the limitations of statistical pattern matching in 

replacing structured reasoning. 

 

Despite their impressive performance, LLMs face several well-documented limitations. 

One concern is hallucination, where the model generates factually incorrect but 

plausible-sounding text. This behaviour poses risks in applications requiring high 

reliability, such as medical diagnostics, legal advice, or security-sensitive systems. 

Another challenge is the lack of interpretability, making it difficult to understand or 

audit the decision-making process behind a given output. Furthermore, the enormous 
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computational resources required for training and inference raise questions about 

environmental impact, accessibility, and fairness [24]. 

 

Recent research has focused on controlling, fine-tuning, and safely deploying LLMs. 

Techniques like reinforcement learning with human feedback (RLHF), prompt 

engineering, and instruction tuning aim to align model outputs with human expectations 

and ethical standards. These efforts are particularly relevant in domains where the 

model acts as a decision-support tool or interacts directly with end-users. 

 

In recent years, the application of LLMs in cybersecurity has gained increasing 

attention, particularly in the areas of threat intelligence analysis, anomaly detection, and 

automated incident response. LLMs are capable of parsing vast volumes of unstructured 

security data such as logs, alerts, and technical reports to identify patterns and generate 

contextual insights [25]. Researchers have explored their potential to assist in tasks like 

phishing detection, malware description generation, and vulnerability summarisation, 

due to their strong language understanding capabilities. However, the use of LLMs in 

real-time or adversarial cybersecurity environments remains limited, primarily due to 

concerns about accuracy, explainability, and the risk of model manipulation. This gap 

highlights the need for further research on how LLMs can be safely and reliably 

integrated into operational security systems. 

 

2.1.3 Intrusion Detection System 

 

Intrusion Detection Systems (IDSs) are a fundamental component in the defence-in-

depth approach to cybersecurity. They are designed to monitor network traffic or 

system activities for signs of malicious behaviour or policy violations. Traditionally, 

IDS are classified into two primary categories: signature-based and anomaly-based 

detection systems. Signature-based IDS operate by comparing observed events against 

a database of known attack patterns or signatures. While efficient and accurate for 

recognising well-known threats, they are ineffective against novel or zero-day attacks. 

In contrast, anomaly-based IDS use statistical, behavioural, or machine learning 

techniques to model normal activity and flag deviations as potential intrusions. This 

approach is more flexible but also prone to high false positive rates due to the dynamic 

nature of network behaviour [7], [8].
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Over the years, IDS research has evolved significantly to address growing cybersecurity 

challenges, such as increasing attack sophistication and the proliferation of encrypted 

traffic. A wide range of algorithms have been employed for detection tasks, including 

decision trees, support vector machines, clustering techniques, and deep learning 

models. For example, Moustafa et al. [26] introduced UNSW-NB15, a benchmark 

dataset and IDS model using statistical flow features, which demonstrated improved 

accuracy in identifying various attack types compared to older datasets like KDD99. 

Similarly, deep learning approaches such as convolutional and recurrent neural 

networks have been adopted to extract temporal and spatial features from traffic flows, 

showing promising detection rates in controlled settings. 

 

Another stream of research has focused on the deployment environments of IDS. These 

include Host-Based Intrusion Detection Systems (HIDS), which monitor individual 

machines, and Network-Based Intrusion Detection Systems (NIDS), which analyse 

network traffic. NIDS have garnered more attention in recent years due to the shift 

towards cloud-native and distributed infrastructures. However, the scalability and real-

time performance of IDS remain major challenges. High-speed networks, encrypted 

protocols, and large volumes of traffic necessitate lightweight, efficient, and adaptive 

detection mechanisms. Researchers have proposed techniques such as feature selection, 

sampling, and parallelisation to improve processing efficiency [27]. 

 

Despite significant progress, several limitations remain in IDS research. First, the 

quality and availability of realistic datasets continue to hinder reproducibility and 

generalisability. Many public datasets are outdated, synthetically generated, or fail to 

represent modern attack techniques. Second, the issue of adversarial attacks against IDS 

models, particularly those using machine learning, has raised concerns about the 

robustness of such systems. Attackers may intentionally craft inputs to evade detection 

or poison training data to mislead the system. Third, IDS often suffer from a lack of 

interpretability, making it difficult for analysts to understand the rationale behind alerts 

and to distinguish true positives from benign anomalies [7]. 
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In response to these limitations, recent efforts have begun to explore hybrid and 

context-aware IDS, combining multiple detection techniques and incorporating 

external knowledge such as threat intelligence feeds. There is also growing interest in 

integrating IDS with other security tools like SIEM (Security Information and Event 

Management) systems, firewalls, and threat hunting platforms to enable a more 

cohesive security ecosystem [8]. However, achieving seamless integration while 

maintaining performance, scalability, and reliability remains an open research 

challenge. 
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2.2 Review of Current Integrations 

 

This section explores existing attempts to integrate various technologies, such as 

blockchain, AI, and traditional IDSs to enhance cybersecurity mechanisms. The review 

focuses on how researchers and developers have combined these components to 

improve the accuracy, transparency, and reliability of threat detection and response. 

 

2.2.1 Integration of AI in Intrusion Detection Systems 

 

The integration of Artificial Intelligence (AI) into Intrusion Detection Systems (IDSs) 

has become a major focus in modern cybersecurity research. Traditional IDSs, which 

rely on static rules and predefined signatures, are increasingly challenged by evolving 

attack vectors and complex network behaviours. AI techniques, particularly those 

involving machine learning (ML) and deep learning (DL), offer adaptive and data-

driven solutions that can enhance detection accuracy, generalise to unseen threats, and 

reduce false positives. 

 

Kim et al. [28] introduced an innovative AI-based IDS tailored for real-time web 

environments. Their hybrid model combined Convolutional Neural Networks (CNN) 

and Long Short-Term Memory (LSTM) networks to detect malicious HTTP traffic. 

CNN was employed to extract spatial features from request data, while LSTM captured 

temporal patterns in request sequences. A notable feature of their approach was the use 

of normalised UTF-8 character encoding, which facilitated efficient data processing 

without the computational cost of entropy calculations. The system was implemented 

using Docker containers, making it scalable for large-scale deployments. 

 

In a different line of research, Park et al. [29] addressed the common issue of class 

imbalance in network intrusion datasets, a problem that frequently decreases the 

performance of ML-based IDSs. They proposed a novel framework that integrates 

Generative Adversarial Networks (GANs), specifically using the Wasserstein distance, 

to generate synthetic samples of underrepresented attack types. This synthetic 

augmentation, coupled with autoencoder-based feature learning, significantly improved 

detection rates for rare and low-frequency threats. The modular design of the system, 

comprising data preprocessing, GAN training, autoencoder learning, and predictive 
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modelling, demonstrated a comprehensive pipeline for building more inclusive and 

robust IDSs. 

 

Focusing on Internet of Things (IoT) environments, Medjek et al. [30] presented a fault-

tolerant IDS aimed at securing RPL (Routing Protocol for Low-Power and Lossy 

Networks). Their approach involved training lightweight machine learning models such 

as decision trees, random forests, and k-nearest neighbours on features extracted from 

simulated RPL-based attacks. While these traditional models achieved high detection 

accuracy, the study also emphasised the trade-off between performance and 

computational cost, which is an important consideration for resource-constrained IoT 

devices. Their work highlighted the need for optimisation strategies to balance 

detection efficacy with energy and processing limitations. 

 

Across these studies, AI integration in IDSs shows clear promise, particularly in 

enabling adaptive learning, improving detection of novel threats, and addressing data-

related challenges like imbalance and noise. However, common challenges persist, 

including the need for high-quality labelled datasets, computational overhead in real-

time systems, and the risk of adversarial manipulation. These concerns have encouraged 

further research into hybrid models, feature engineering techniques, and resource-

efficient learning algorithms tailored to specific deployment contexts. 

 

2.2.2 Integration of Blockchain in Cybersecurity 

 

Blockchain technology has emerged as a transformative tool in the field of 

cybersecurity, offering new approaches to securing data, enhancing transparency, and 

decentralising trust. Unlike traditional centralised systems, blockchain operates on a 

distributed ledger framework where all transactions are cryptographically linked and 

stored across multiple nodes. This structure inherently reduces the risk of single points 

of failure, unauthorised data manipulation, and centralised attacks, making it a 

promising foundation for secure digital infrastructures. 

 

Kshetri [31] presented a detailed analysis of blockchain’s role in strengthening 

cybersecurity frameworks, particularly in comparison to conventional cloud-based 

models. The study emphasised that blockchain’s decentralised nature eliminates the 
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dependency on central authorities, thereby reducing susceptibility to data tampering 

and privilege abuse. Through robust encryption and consensus mechanisms, blockchain 

ensures secure and verifiable communication between entities. These features are 

especially beneficial in dynamic and distributed environments like the Internet of 

Things (IoT), where traditional models often struggle with scalability, trust 

management, and vulnerability to large-scale attacks. 

 

Extending blockchain’s application into intrusion detection, Abubakar et al. [32] 

proposed a hybrid system that integrates blockchain with multiple IDS algorithms to 

improve detection accuracy and reduce false positives. Their system employed a 

weighted voting mechanism to fuse outputs from different AI-based detectors, with 

blockchain serving as an immutable ledger to store and share alert data. Tested using 

DARPA 99 and MIT Lincoln Labs datasets, the system demonstrated higher precision 

in detecting complex intrusion patterns, showcasing blockchain’s potential in 

supporting collaborative and transparent threat intelligence. 

 

Similarly, Babu et al. [33] explored the use of blockchain in securing IoT networks 

against Distributed Denial of Service (DDoS) attacks. Their approach utilised a 

permissioned blockchain to facilitate secure device authentication and decentralised 

alert sharing. A key innovation in their system was the integration of Physically 

Unclonable Functions (PUFs) to generate tamper-proof cryptographic keys, further 

enhancing the integrity of device communications. Coupled with ensemble machine 

learning for intrusion detection, the system significantly reduced false positives while 

maintaining high detection performance. The decentralised nature of the blockchain 

allowed alert propagation across all nodes, enabling timely and coordinated response 

to threats. 

 

While these studies highlight the advantages of blockchain in strengthening 

cybersecurity systems, several challenges remain. Issues such as network latency, 

storage scalability, and consensus overhead can hinder the performance of blockchain 

in high-throughput or real-time environments. Moreover, the integration of blockchain 

with AI and existing security architectures requires careful consideration of 

compatibility, privacy, and resource constraints. 
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2.2.3 Integration of AI and Blockchain in Intrusion Detection Systems 

 

The convergence of AI and blockchain technology in the domain of IDSs has opened 

new avenues for building intelligent, secure, and decentralised cybersecurity solutions. 

While AI contributes adaptability and learning capability to detect novel or evolving 

threats, blockchain introduces transparency, data integrity, and decentralised trust. 

Combined, these technologies aim to overcome the shortcomings of conventional IDSs, 

such as limited scalability, susceptibility to tampering, and high false positive rates. 

 

Mishra [34] proposed a hybrid security model known as the Hybrid Intrusion Detection 

Tree (HIDT), which integrates a decision tree algorithm with blockchain to protect 

smart network environments. The IDS component utilises decision tree classification 

to detect anomalies in network traffic, while the blockchain layer provides a secure, 

decentralised reputation system. This system filters and verifies the integrity of 

incoming data, encrypts verified data using blockchain nodes, and stores them in 

immutable blocks. The dual-layered approach ensures that compromised devices are 

identified promptly and that recorded alerts are tamper-proof and verifiable across the 

network. 

 

In another study, Saveetha and Maragatham [35] introduced a hybrid architecture that 

leverages DL and blockchain to build a robust and intelligent IDS. Their system 

combines LSTM networks with Recurrent Neural Networks (RNN) and Convolutional 

Neural Networks (CNN) to detect and classify anomalies in network traffic. The 

blockchain component is employed to record threat detection events in a decentralised 

ledger, ensuring that once an anomaly is detected and verified, it cannot be altered or 

deleted. This provides a verifiable audit trail of security incidents, accessible to all 

participating nodes, and enhances the trustworthiness of the system’s response to 

intrusions. 

 

Expanding this approach to consumer IoT ecosystems, Kumar et al. [36] proposed an 

integrated framework that combines blockchain-based authentication with an 

explainable AI (XAI) intrusion detection mechanism. The system addresses 

vulnerabilities in smart city IoT networks by securing communication channels 

between IoT devices, fog nodes, and cloud servers using a Proof of Authority (PoA) 
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blockchain. Simultaneously, a Bidirectional Gated Recurrent Unit (Bi-GRU) model 

with an attention mechanism and a SoftMax classifier forms the IDS layer, enabling 

real-time threat detection with interpretable outputs. The inclusion of explainable AI is 

particularly noteworthy, as it addresses one of the key limitations of black-box deep 

learning systems by making detection decisions more transparent to security analysts. 

 

These hybrid models illustrate the growing trend of integrating AI and blockchain in 

IDS design to capitalise on the strengths of both technologies. AI enhances detection 

capabilities through data-driven learning and adaptability, while blockchain ensures 

that detection outcomes and critical events are securely recorded and shared without 

centralised control. However, challenges remain in balancing computational efficiency 

with security guarantees, particularly in resource-constrained or latency-sensitive 

environments such as IoT. 
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2.3 Review of Current Applications 

 

This section reviews existing real-world systems and applications that are similar in 

scope or function to the proposed project. It evaluates their features, performance, and 

shortcomings, offering insights into best practices and areas where improvements or 

innovations are needed. 

 

2.3.1 Snort 

 

Snort is one of the most widely adopted open-source Network Intrusion Detection 

Systems (NIDS), originally developed by Martin Roesch in 1998. It combines the 

functionalities of a packet sniffer, protocol analyser, and intrusion detection engine into 

a lightweight, rule-driven framework. Over the years, it has evolved into a mature and 

flexible tool, widely deployed in both research and production environments due to its 

open-source nature, large community support, and regular updates from Cisco Talos 

[37], [38]. 

 

At its core, Snort uses a signature-based detection approach, where predefined rules are 

used to match specific patterns of malicious traffic. These rules describe various aspects 

of packets—including source/destination IP addresses, ports, payload content, and 

protocol fields, to flag known attack signatures. The rules are organised using a 

structured format and grouped by threat category (e.g., malware, exploits, denial-of-

service), allowing for systematic analysis and response. Snort’s modular architecture 

also includes pre-processors for protocol decoding, stream reassembly, and traffic 

normalisation, enhancing its capability to handle complex and evasive traffic patterns 

[37], [38]. 

 

From a performance and deployment standpoint, Snort is valued for its portability and 

scalability. It can be run on multiple operating systems and integrated into network 

monitoring pipelines via tools such as Barnyard2, PulledPork, or SIEM platforms like 

Splunk. However, Snort’s performance is highly dependent on hardware resources and 

the complexity of its rule sets. As the volume of monitored traffic increases, so does 

the potential for performance degradation, especially when inspecting deep packet 

payloads in high-speed networks. This has led to the emergence of high-performance 
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variants and hardware-accelerated solutions like Snort Inline and Suricata, which offer 

multithreading support and GPU-based enhancements [39]. 

 

While Snort is highly effective against known threats, its primary limitation lies in its 

inability to detect zero-day attacks or novel intrusion patterns not covered by existing 

signatures. This results in a reactive security model, where defence is dependent on 

prior knowledge of the threat landscape. To address this, researchers have experimented 

with combining Snort’s rule-based detection with anomaly-based and machine learning 

approaches. For example, Gómez et al. [40] discussed the potential of hybrid IDS 

configurations where anomaly detection modules operate as the first layer of defence 

for identifying previously unseen patterns, followed by Snort operates as the second 

layer for detecting known attacks. However, these integrations are not native to Snort 

and often require external systems and extensive tuning. 

 

2.3.2 Suricata 

 

Suricata is a high-performance, open-source Network Intrusion Detection and 

Prevention System (NIDPS) developed by the Open Information Security Foundation 

(OISF). Designed to address the limitations of traditional rule-based IDS, Suricata 

incorporates multi-threading, deep packet inspection (DPI), and flow-based anomaly 

detection, allowing it to function not only as an IDS but also as an inline IPS and 

network security monitoring (NSM) tool. Since its release, it has been recognised for 

its scalability, flexibility, and modern protocol analysis features. 

 

A key distinction between Suricata and earlier systems like Snort lies in its native 

support for multi-threaded processing. By taking advantage of multi-core architectures, 

Suricata can process packets in parallel, enabling it to handle high-bandwidth traffic 

more efficiently. This architectural design has been widely acknowledged as a 

significant enhancement for real-time analysis in enterprise environments [39]. In 

performance evaluations conducted by Gupta and Sharma [41], Suricata consistently 

outperformed Snort in terms of throughput and detection speed under identical traffic 

loads. 
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Despite these advantages, Suricata is not without limitations. One major challenge is 

its resource consumption. While its performance scales well with hardware, Suricata 

demands significantly more memory and CPU resources than single-threaded systems, 

especially in environments with high connection rates or large rule sets. Gupta and 

Sharma [41] noted that while Suricata’s architecture is ideal for large-scale networks, 

its deployment in constrained or embedded environments requires optimisation. 

 

Another limitation lies in its dependence on signature-based detection for many threat 

types. Although Suricata supports some anomaly-based detection through statistical 

flow analysis, this capability remains underdeveloped compared to purpose-built 

machine learning IDS. Furthermore, similar to other IDS platforms, Suricata struggles 

with encrypted traffic analysis, relying primarily on metadata inspection and limited 

TLS fingerprinting, which reduces its visibility into modern HTTPS-based attacks [41]. 
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2.4 Summary and Research Gaps 

 

This chapter has presented a detailed review of the core technologies and 

methodologies relevant to modern Intrusion Detection Systems (IDSs), with a focus on 

blockchain, large language models (LLMs), artificial intelligence (AI), and widely 

adopted IDS tools such as Snort and Suricata. The review has also examined the 

integration of these technologies to enhance detection accuracy, scalability, and system 

trustworthiness. While many of these technologies have demonstrated strong individual 

capabilities, their integration into cohesive, real-world systems remains limited and 

underexplored. 

 

Blockchain technology has proven to be highly effective in ensuring data integrity, 

decentralisation, and tamper resistance. Its cryptographic and consensus-driven 

mechanisms provide secure alternatives to centralised logging systems, particularly in 

distributed environments like IoT. However, existing implementations often suffer 

from latency, limited scalability, and integration overhead when applied to high-speed 

or real-time cybersecurity contexts. Similarly, LLMs have shown great promise in 

semantic analysis, threat interpretation, and contextual understanding. Yet, their real-

time adoption in IDS environments is limited due to challenges such as high 

computational requirements, lack of explainability, and vulnerability to generating 

inaccurate outputs (hallucinations). 

 

In contrast, traditional IDSs like Snort and Suricata rely on well-established rule-based 

detection and have maintained popularity due to their open-source nature and 

community support. Nevertheless, their dependency on predefined signatures makes 

them ineffective against unknown or evolving threats. AI-based IDSs offer a more 

adaptive approach through machine learning and deep learning models, but they are 

often hindered by false positives, unbalanced datasets, and the computational 

complexity of deployment. While some recent works have explored the integration of 

AI and blockchain to enhance IDSs, most of these focus on limited aspects such as 

static dataset evaluation or alert logging, without delivering a complete, real-time, and 

decentralised detection framework. 
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From the literature reviewed, several research gaps have been identified. First, there is 

a noticeable absence of IDS frameworks that incorporate large language models for 

real-time, flow-level traffic analysis and behavioural detection. While LLMs offer 

substantial reasoning and contextual capabilities, they have not been effectively 

embedded into operational IDS pipelines. Second, although blockchain is used in some 

IDSs to store alerts, it is rarely employed for full lifecycle alert management, including 

verification, traceability, and decentralised consensus across detection components. IN 

addition, blockchain-based IDSs are proposed for IoT environments, leaving the 

implementation of such systems in organisational networks unstudied. Third, existing 

systems typically focus on one detection paradigm, often signature- or anomaly-based. 

There is limited exploration into unified hybrid frameworks that merge rule-based 

detection, AI-driven anomaly identification, and LLM-based context analysis into a 

single platform. Finally, many of the proposed AI and blockchain-based IDS 

architectures are theoretical or tested only in lab environments. Real-world 

applicability, scalability through containerisation, and robust integration with live 

network traffic remain largely unaddressed. 
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CHAPTER 3 SYSTEM METHODOLOGY 

 

This chapter outlines the structured approach taken in the development of the project. 

It begins by presenting the system architecture and progresses through each stage of the 

design process. The chapter includes various diagrams such as the system architecture 

diagram, use case diagram, and activity diagram to visually represent the system’s 

structure and user interactions. These visual models help clarify the logical flow of data 

and processes across the different modules in the system. The methodology adopted 

ensures that each component of the system is well-defined, interoperable, and aligned 

with the project’s objectives. The content of this chapter lays the groundwork for the 

subsequent design and implementation stages. 

 

3.1 Development Methodology 

 

To develop the Blockchain-Based Intrusion Detection System with Artificial 

Intelligence, this project adopts the System Prototyping methodology (as shown in 

Figure 3.1.1), a development model under the broader Rapid Application Development 

(RAD) framework [42]. This approach is particularly well-suited for projects involving 

emerging technologies such as blockchain and LLM, where system requirements are 

often dynamic and integration is complex. System Prototyping emphasises the creation 

of an early functional model, iterative refinement, and regular stakeholder feedback, 

which represent qualities that are crucial in ensuring the practical success of this 

innovative system. 

 

 

Figure 3.1.1 System Prototyping Methodology 
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The main advantage of using System Prototyping in this context lies in its capacity to 

produce a tangible and working version of the system early in the development cycle. 

This allows for testing of the core modules, including real-time packet capture, 

signature-based and LLM-based intrusion detection, as well as blockchain-based alert 

logging before full-scale integration. It enables rapid identification of issues such as 

detection inconsistencies or performance bottlenecks, which can then be resolved 

incrementally. 

 

Another reason for adopting this methodology is its support for iterative validation. 

Each module in the system, for instance, the LLM detection engine, blockchain logger, 

and frontend dashboard is initially developed independently and tested in isolation. 

These components are gradually combined into an integrated prototype, allowing for 

controlled evaluation and adjustment. This approach helps mitigate the risks of module 

incompatibility or unforeseen system behaviours during integration. 

 

Furthermore, System Prototyping accommodates evolving requirements, which are 

expected due to the novel nature of combining blockchain and AI technologies. As the 

system is tested and user feedback is gathered, requirements and configurations, such 

as the AI model’s thresholds or the blockchain’s logging frequency, can be modified 

without requiring a complete redesign. This flexibility ensures the system remains 

adaptable and functional even as new security threats and detection standards emerge. 

 

The development lifecycle within this methodology involves several overlapping and 

interactive phases. During the planning phase, the project objectives, scope, and 

deliverables are defined. The technology stack is selected based on suitability for real-

time processing, scalability, and integration, this includes Python, Flask, Solidity, 

Web3.py, and JavaScript. The planning phase also outlines hardware and network 

prerequisites to support packet analysis and blockchain operations, along with a 

timeline and milestone plan. 

 

In the analysis phase, detailed functional and non-functional requirements are gathered. 

This includes specifying the attack types to be detected, identifying the data elements 

to be stored on-chain, and determining performance metrics such as detection accuracy 
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and response time. This phase also evaluates the challenges of deploying AI and 

blockchain in a real-time intrusion detection setting. 

 

The design phase follows with the creation of system architecture and module 

interactions. It includes the design of AI modules for traffic anomaly detection, the 

structure of the smart contract used for immutable alert logging, and the user interface 

for presenting insights. Design artefacts such as system block diagrams, use case 

diagrams, and data flow diagrams are produced to guide implementation. 

 

During the implementation phase, each module is built according to its design. The 

signature-based detection engine, large language model (LLM) detector, blockchain 

logging handler, and web interface are developed as discrete components. These 

modules are then gradually integrated, tested, and refined in successive prototypes. 

Testing is performed throughout the development cycle to ensure each addition does 

not break existing functionalities and that all modules communicate effectively. 

 

The prototype undergoes multiple iterations of testing and evaluation, where 

performance, usability, and system robustness are examined. Based on the outcomes of 

each cycle, the system is fine-tuned to improve efficiency, detection accuracy, and data 

consistency across components. Eventually, a complete and stable version is deployed. 

The deployment phase includes setting up the LLM engine for live monitoring, 

deploying the blockchain across a test network, and launching the user interface for 

real-time visualisation of alerts and system metrics. 

 

In summary, the System Prototyping methodology is a strategic choice for this project. 

It supports the rapid development and continuous improvement of the project in a 

flexible and controlled environment. This approach ensures that both the blockchain 

and AI technologies are implemented efficiently, tested thoroughly, and adapted 

dynamically to produce a functional, secure, and innovative intrusion detection system. 
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3.2 System Architecture Overview 

 

This section presents a high-level overview of the system’s architecture, illustrating 

how the various components interact to support the intrusion detection and alert logging 

processes. It includes visual models to describe the system’s structure, user interactions, 

and workflow. The goal of this section is to provide a clear understanding of the overall 

system design before delving into the specific technical details in later sections. 

 

3.2.1 System Architecture Diagram 

 

 

Figure 3.2.1 System Architecture Diagram 

 

The overall system architecture of the proposed Blockchain-Based Intrusion Detection 

System with Artificial Intelligence is designed to support secure, decentralised, and 

intelligent threat detection across multiple networked sites. As shown in Figure 3.1, the 

architecture is composed of two interconnected network environments, Site A and Site 

B, each equipped with standard network infrastructure and its own dedicated Intrusion 

Detection System (IDS). Both sites are connected to a shared private blockchain 

network, which acts as a decentralised and immutable ledger for logging security alerts. 

This setup is designed to simulate an organisational network distributed across multiple 

geographical locations, interconnected via a Wide Area Network (WAN) or Virtual 

Private Network (VPN). 
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At each site, the network is protected at the perimeter by a firewall. This component is 

responsible for enforcing security policies, filtering traffic, and preventing unauthorised 

access from external sources. Immediately after the firewall, a router manages the 

routing of internal traffic and connects the firewall to various edge devices or 

potentially a demilitarised zone (DMZ) within the local network. These edge devices 

may include user computers, IoT devices, or internal servers that generate and receive 

network traffic as part of regular operations. 

 

The IDS is strategically positioned within the internal network, connected in such a way 

that it can observe and analyse network traffic without interfering with the data flow. 

This is typically achieved through port mirroring or the use of a network tap, enabling 

the IDS to operate in a passive and non-intrusive manner. The purpose of the IDS is to 

monitor the internal traffic continuously and identify suspicious behaviours or known 

attack patterns that may indicate an intrusion. 

 

A defining feature of this architecture is the integration of a shared private blockchain 

network that connects the IDS nodes at both sites. This blockchain acts as a 

decentralised and tamper-proof logging mechanism. When either IDS detects a threat 

or abnormal network activity, it generates an alert and submits it to the blockchain. 

Each alert is stored as a transaction on the distributed ledger, ensuring that the event is 

permanently recorded and cannot be altered or deleted. 

 

The use of blockchain in this context brings several critical advantages. Firstly, it 

guarantees data integrity by ensuring that recorded alerts are immutable and 

cryptographically verifiable. Secondly, it decentralises trust by eliminating the need for 

a centralised database or storage server, which could become a single point of failure 

or a target for attackers. Thirdly, it promotes transparency and coordination across 

multiple sites by providing each IDS with access to a common set of verified alerts, 

allowing for cross-site threat correlation and response. 

 

The modular nature of this architecture supports scalability and adaptability. Additional 

sites can be integrated into the system by deploying new IDS nodes and linking them 

to the shared blockchain network. This ensures that the solution can grow in parallel 

with the organisation’s infrastructure without compromising performance or security. 
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Moreover, the decentralised design enhances resilience by ensuring that the failure or 

compromise of a single node does not impact the overall system. In such environments, 

the unused processing capacity of internal edge devices, such as desktop machines or 

lightweight servers, can be utilised to support blockchain operations. These devices 

may be registered as blockchain nodes, contributing to transaction validation, ledger 

synchronisation, and distributed consensus without the need for dedicated blockchain 

hardware. This approach not only enhances decentralisation but also improves resource 

efficiency by utilising existing infrastructure. 

 

In short, the architecture provides a robust foundation for real-time intrusion detection 

and verifiable alert logging in a multi-site environment. By combining traditional 

perimeter security with passive traffic monitoring and blockchain-based alert storage, 

the system ensures both operational effectiveness and long-term data integrity. The 

architectural design reflects a forward-thinking approach to modern cybersecurity 

challenges, particularly in distributed or large-scale environments. 

 

3.2.2 Use Case Diagram and Description 

 

 

Figure 3.2.2 Use Case Diagram  
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Figure 3.2.2 illustrates the use case diagram of the Blockchain-Based Intrusion 

Detection System with Artificial Intelligence. It shows how the primary actor, the user, 

interacts with the core functionalities of the system from a high-level perspective such 

as initiating packet capture, stopping packet capture, viewing alerts, monitoring flows, 

managing configurations, monitoring system status, and view signatures. These actions 

are supported by various internal operations like intrusion identification, system status 

updates, alert handling, and blockchain synchronisation. The use case model helps to 

visualise both the functional scope and the modular responsibilities of each component, 

including how different tasks are interconnected through “include” and “extend” 

relationships from a use case point of view. 

 

The following use case description tables (Table 3.2.1 to Table 3.2.7) present detailed 

descriptions of each use case identified in the diagram above. Each use case is 

documented using a standardised table. 
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Use Case ID UC001 Version 1.0 

Use Case Start packet capture 

Use Case Type Primary 

Stakeholder User 

Purpose To initiate packet capturing on a selected network interface for analysis and 

intrusion detection. 

Actor User 

Trigger User selects an interface and clicks the “Start Capture” button. 

Trigger Type External 

Relationship Association:  

User 

Include:  

Update dashboard, Update network flow table, Identify intrusions, Update 

system status, Update alerts database, Update alerts table, Synchronise alerts 

to blockchain 

Precondition System must be idle and at least one network interface must be available. 

System must be connected to a network. 

Scenario Name Step Action 

Main Flow 1 User selects a network interface from the dropdown list. 

 2 User clicks the “Start Capture” button. 

 3 System begins capturing packets on the selected interface. 

 4 System updates the network flow table with live traffic. 

 5 System updates the dashboard with real-time stats. 

 6 Intrusion detection processes (signature-based and AI-based) are 

started. 

 7 Detected intrusions are stored in the alerts database. 

 8 Alerts are synchronised to the blockchain. 

Alternate Flow: No 

interface specified 

2.1 System displays an error message. 

Alternate Flow: 

Packet capturing 

already started 

3.1 System notifies the user and does not reinitiate capture. 

 

Table 3.2.1 UC001: Start Packet Capture 
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Use Case ID UC002 Version 1.0 

Use Case Stop packet capture 

Use Case Type Primary 

Stakeholder User 

Purpose To terminate the ongoing packet capture process and halt intrusion detection. 

Actor User 

Trigger User clicks the “Stop Capture” button. 

Trigger Type External 

Relationship Association:  

User 

Include:  

Update system status, Stop identifying intrusions 

Precondition Packet capture process must be currently running. 

Scenario Name Step Action 

Main Flow 1 User clicks the “Stop Capture” button. 

 2 System halts packet capturing on the selected interface. 

 3 Intrusion detection processes are stopped. 

 4 System updates the dashboard and system status. 

Alternate Flow: 

Packet capture is idle 

2.1 System displays an error message indicating no active session. 

 

Table 3.2.2 UC002: Stop Packet Capture 
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Use Case ID UC003 Version 1.0 

Use Case View real-time network flows 

Use Case Type Primary 

Stakeholder User 

Purpose To allow the user to monitor active network flows with up-to-date statistics. 

Actor User 

Trigger User navigates to the “Active Flows” section in the interface. 

Trigger Type External 

Relationship Association:  

User 

Precondition Packet capture must be active, and flows must be available. 

Scenario Name Step Action 

Main Flow 1 User opens the “Active Flows” tab. 

 2 System fetches the latest flow data from memory or cache. 

 3 Active network flows are displayed with source/destination, 

protocol, port, and statistics. 

 4 Flow table is updated continuously or at fixed intervals. 

 5 User may click “Details” on a flow to view in-depth information. 

 6 User may filter or search for specific flows. 

Alternate Flow: 

Packet capture is idle 

2.1 System displays an empty table with a message indicating that 

packet capture is not started. 

Alternate Flow: No 

active flows 

3.1 System displays an empty table with a message indicating that there 

are no active flows. 

 

Table 3.2.3 UC003: View Real-Time Network Flows 
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Use Case ID UC004 Version 1.0 

Use Case View intrusion alerts 

Use Case Type Primary 

Stakeholder User 

Purpose To enable the user to review alerts generated by the intrusion detection 

engines. 

Actor User 

Trigger User navigates to the “Alerts” section in the interface, or to the dashboard in 

the interface. 

Trigger Type External 

Relationship Association:  

User 

Include:  

Load alerts from database, Synchronise alerts from blockchain 

Precondition System must be started and accessed via a browser. 

Scenario Name Step Action 

Main Flow 1 User accesses the “Alerts” tab or the alerts table in the dashboard. 

 2 System loads alerts from the local alert database. 

 3 System synchronises additional alerts from the blockchain. 

 4 Alerts are displayed with severity level, timestamp, 

source/destination, and detection type. 

 5 User may filter, search, or sort alerts as needed. 

Alternate Flow: 

Empty database 

2.1.1 System displays a message, indicating there are no alerts generated. 

Alternate Flow: 

Missing database 

2.2.1 System creates a database directory and a database file. 

2.2.2 System displays a message, indicating there are no alerts generated. 

Alternate Flow: 

Failed blockchain 

connection 

3.1 System shows only the local alerts with an error message indicating 

the failed connection to blockchain. 

 

Table 3.2.4 UC004: View Intrusion Alerts 
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Use Case ID UC005 Version 1.0 

Use Case View intrusion signatures 

Use Case Type Primary 

Stakeholder User 

Purpose To allow the user to view the list of loaded intrusion detection signatures. 

Actor User 

Trigger User selects the “Intrusion Signatures” section from the dashboard. 

Trigger Type External 

Relationship Association:  

User 

Include:  

Load signatures from database 

Precondition Signature file must be successfully loaded during system initialisation. 

Scenario Name Step Action 

Main Flow 1 User navigates to the “Intrusion Signatures” tab. 

 2 System loads the list of signatures from memory or from the local 

database. 

 3 The signatures are displayed, including fields like name, pattern, 

protocol, and detection criteria. 

 4 User can filter or search for specific signatures. 

Alternate Flow: 

Signature file 

corrupts or missing 

2.1 System displays an error message. 

Alternate Flow: 

Empty signature file 

3.1 System displays a message indicating no signatures are available. 

 

Table 3.2.5 UC005: View Intrusion Signatures 
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Use Case ID UC006 Version 1.0 

Use Case View system status 

Use Case Type Primary 

Stakeholder User 

Purpose To allow the user to monitor the current operational state of the system 

components. 

Actor User 

Trigger User opens the system status section in the interface. 

Trigger Type External 

Relationship Association:  

User 

Precondition The backend services must be running and able to return status data. 

Scenario Name Step Action 

Main Flow 1 User accesses the “System Status” tab. 

 2 System fetches the status of packet capture, LLM detection engine, 

blockchain, and system resources. 

 3 Real-time statistics for each component are displayed. 

 4 System health indicators (e.g. running/stopped, 

connected/disconnected) are updated periodically. 

Alternate Flow: 

System fails 

2.1 System displays an error message. 

 

Table 3.2.6 UC006: View System Status 
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Use Case ID UC007 Version 1.0 

Use Case Manage system settings 

Use Case Type Primary 

Stakeholder User 

Purpose To allow the user to configure and update system parameters for detection, 

AI models, and blockchain. 

Actor User 

Trigger User opens the settings or configuration panel in the web interface. 

Trigger Type External 

Relationship Association:  

User 

Extend:  

View system settings, Modify packet capture settings, Modify LLM-based 

detection settings, Modify blockchain settings, Modify UI settings 

Precondition System must be running and accessed from a browser. 

Scenario Name Step Action 

Main Flow 1 User navigates to the “Settings” tab. 

 2 User adjusts available options, such as: 

Network interface, BPF filter, Packet log file, LLM model, LLM 

analysis batch size, Start/stop LLM, Test LLM, Blockchain URL, 

Contract address, Sync Interval, Force sync, Theme, Data refresh 

interval. 

 3 System validates and applies new settings. 

 4 System confirms changes with a success message. 

Alternate Flow: 

Invalid input 

3.1 System displays an error message and does not apply the change. 

 

Table 3.2.7 UC007: Manage System Settings 
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3.2.3 Activity Diagram 

 

This section presents the activity diagrams for selected use cases to visualise the flow 

of actions within the system. Each diagram (Figure 3.2.3 to Figure 3.2.9) illustrates the 

step-by-step process involved in carrying out a use case, highlighting the decision 

points, actions performed by the user, and system responses, as detailed in the use case 

descriptions in the previous section. These diagrams help to clarify the logic and 

sequence of operations within the system. 

 

 

Figure 3.2.3 Activity Diagram: Start Packet Capture  
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Figure 3.2.4 Activity Diagram: Stop Packet Capture 
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Figure 3.2.5 Activity Diagram: View Real-Time Network Flows 
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Figure 3.2.6 Activity Diagram: View Intrusion Alerts 
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Figure 3.2.7 Activity Diagram: View Intrusion Signatures 
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Figure 3.2.8 Activity Diagram: View System Status 
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Figure 3.2.9 Activity Diagram: View System Settings 
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3.3 Design Specifications 

 

This section defines the essential technical and operational requirements needed to 

develop and deploy the system effectively. It outlines the software and hardware 

components necessary to support system functionality. The section also details the 

functional and non-functional requirements that describe what the system must do and 

how it should perform under various conditions. Additionally, it highlights any design 

constraints that influence the implementation, such as technical limitations, 

compatibility concerns, or performance boundaries. 

 

3.3.1 Software Requirements 

 

The software requirements were carefully selected to support the functionality of real-

time packet capture, flow analysis, signature-based and AI-based intrusion detection, 

blockchain logging, and a responsive web-based user interface. This section focuses on 

the conceptual and development-time software dependencies. Table 3.3.1 summarises 

the software requirements for the project. 

 

Component Purpose Type 

Programming Languages 

Python 3.10+ Main programming language for backend 

services and detection engines 

Backend Technologies 

HTML, CSS, 

JavaScript 

Structure and behaviour of the web-based 

frontend 

Frontend Technologies 

Solidity Language used to develop the smart contract Smart Contract Language 

Frameworks and Libraries 

Flask Lightweight web server framework for serving 

API endpoints 

Python Framework 

scapy Packet manipulation and network traffic parsing. Python Library 

threading, queue, 

time 

Standard libraries for concurrency and packet 

processing queues 

Python Built-in Modules 

dotenv Environment configuration management Python Utility Module 

Web3.py Interacts with Ethereum blockchain to store 

alerts 

Blockchain SDK 

Node.js + npm Supports frontend asset bundling and library 

management 

JavaScript Runtime 
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Chart.js / Recharts Visualisation of alert distribution and network 

activity 

JavaScript Library 

FontAwesome Icons for user interface design UI Library 

Requests Python HTTP library used for REST API 

communication 

Python Library 

psutil To monitor system resource usage such as CPU 

and memory 

Python Library 

LLM Software 

Ollama A local LLM model runtime for serving and 

managing Gemma 3B:1 with minimal resource 

overhead 

LLM Hosting Runtime 

Gemma3:1b A 1-billion parameter language model used to 

analyse and classify network flows 

AI Detection Model 

 

Blockchain Tools 

Ganache Local Ethereum blockchain emulator for testing 

blockchain transactions 

Blockchain Emulator 

Database / Storage 

SQLite Lightweight database for temporary alert storage 

before blockchain sync 

Local Database 

JSON Data format for configuration files and inter-

process communication 

Data Format 

Development Tools 

Git Version control system for collaborative 

development 

Version Control Tool 

VS Code / PyCharm IDEs used to write and manage Python and 

JavaScript code 

Development 

Environment 

Chrome Web-browser for viewing and testing the 

frontend dashboard 

Testing Tool / UI Layer 

 

OS and Runtime 

Windows 11 (64-

bit) 

Operating system used to host this system Operating System 

 

Table 3.3.1 Software Requirements 
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The project is developed and tested on Windows 11 (64-bit). All software components, 

including Python, Flask, Scapy, and Ollama, are compatible with the Windows 

environment. However, certain libraries such as scapy and psutil may require elevated 

permissions or administrative access to interact with network interfaces and system-

level resources. 

 

To ensure smooth operation of the system on Windows 11 (64-bit), it is recommended 

to run Windows PowerShell or Command Prompt with administrator privileges when 

performing packet capture. Python virtual environments should be used to avoid 

conflicts with system packages. The Ollama runtime and the Gemma 3B:1 model can 

be executed locally, provided the system has at least 8GB of RAM and preferably a 

dedicated GPU such as an NVIDIA card to accelerate inference. Ganache must be 

installed and run either as a standalone application or through the command line to 

emulate the local Ethereum blockchain. 

 

3.3.2 Hardware Requirements 

 

This section outlines the essential hardware specifications needed to support the 

development, execution, and evaluation of the project. The hardware requirements here 

refer to the minimum and recommended capabilities of a development machine or 

deployment server. They are identified based on the system’s need to perform real-time 

packet capture, process network flow data, analyse traffic using a local LLM, and 

synchronise alerts with the blockchain. Table 3.3.2 summarises the hardware 

requirements for this project. 
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Component Minimum 

Requirement 

Recommended 

Specification 

Purpose 

Processor (CPU) Intel Core i5 (4 cores) Intel Core i7 / AMD 

Ryzen 7 (6+ cores) 

Handles flow analysis, 

API requests, LLM pre-

processing 

Memory (RAM) 8 GB 16 GB or more Required for LLM 

inference, blockchain 

sync, and buffers 

Storage 256 GB SSD 512 GB SSD or more Stores packet logs, 

alerts, contract data, and 

models 

Graphics (GPU) Integrated GPU NVIDIA GPU (4 GB 

VRAM or more, e.g. 

GTX 1650 or better) 

Accelerates LLM 

inference for faster flow 

analysis 

Network Interface 

Card 

Standard Ethernet or 

Wi-Fi (Monitor Mode 

optional) 

Gigabit Ethernet or USB 

NIC with monitor mode 

support 

Captures live traffic and 

supports flow-level 

inspection 

Display & 

Peripherals 

Basic HD display, 

mouse, keyboard 

Dual monitor setup for 

parallel monitoring 

Supports debugging, 

dashboard interaction 

Power Supply 65W 90W+ Ensures stable power 

during model inference 

or capture 

Cooling System Standard Enhanced cooling 

(especially if using GPU 

inference) 

Prevents overheating 

during sustained 

processing loads 

 

Table 3.3.2 Hardware Requirements 

 

These hardware resources are critical to ensuring that the system functions efficiently. 

Real-time packet capture must be continuous and lossless to avoid missing malicious 

activity. Signature-based and AI-based detections must operate concurrently to detect 

known and novel threats in real time. Additionally, blockchain logging of alerts must 

occur promptly to maintain the integrity and traceability of security events. Lastly, the 

frontend dashboard should remain responsive, enabling seamless interaction for 

monitoring and administrative tasks. 
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Among all components, CPU, RAM, and disk I/O performance have the most direct 

impact on real-time detection and data processing. The inclusion of a dedicated GPU is 

especially important for accelerating LLM inference, particularly when running a 

model like Gemma3:1b locally, as it significantly reduces analysis latency. 

 

Although the system can run on lower-end hardware by reducing packet processing 

rates or disabling GPU inference, this compromises responsiveness and detection 

speed. Therefore, for development, evaluation, and production-like testing, the use of 

the recommended hardware specifications is strongly encouraged. 

 

3.3.3 Functional Requirements 

 

Functional requirements for this project define the essential capabilities that the system 

must possess to effectively detect and respond to security threats. These requirements 

outline the specific actions the system must perform, hence ensuring the system meets 

its core objectives. The functional requirements of this system are outlined in Table 

3.3.3 according to the requirement category. 

 

Category Requirement ID Requirement Description 

Packet Capture FR1 The system shall capture live network packets from a 

specified interface. 

FR2 The system shall allow users to select a network interface 

and apply optional filters. 

Flow Analysis FR3 The system shall process captured packets into network 

flows. 

FR4 The system shall compute flow statistics including packet 

count, byte size, and duration. 

Signature 

Detection 

FR5 The system shall match flows against predefined attack 

signatures stored in a JSON file. 

FR6 The system shall generate alerts when a flow matches a 

known signature. 

AI Detection 

(LLM) 

FR7 The system shall analyse suspicious flows using a local 

LLM hosted via Ollama. 

FR8 The system shall generate AI-based alerts with severity 

levels based on LLM output. 
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Blockchain 

Logging 

FR9 The system shall log alerts to the Ethereum blockchain via 

a smart contract. 

FR10 The system shall synchronise unsent alerts in batches to the 

blockchain. 

Web Dashboard FR11 The system shall provide a web interface to view active 

flows, alerts, and system status. 

FR12 The system shall allow users to view detailed information 

for each alert and flow. 

FR13 The system shall provide controls to start and stop packet 

capture. 

System Status & 

Control 

FR14 The system shall display real-time statistics such as packet 

rate, flow count, and alerts. 

 

Table 3.3.3 Functional Requirements 

 

3.3.4 Non-Functional Requirements 

 

Non-functional requirements define the quality attributes and operational constraints of 

the project. Non-functional requirements describe how the system should perform 

under various conditions. These include performance expectations, reliability, usability, 

scalability, and security standards that ensure the system remains effective, efficient, 

and user-friendly throughout its lifecycle. The non-functional requirements of this 

system are outlined in Table 3.3.3 according to the requirement category. 
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Category Requirement ID Requirement Description 

Performance NFR1 The system shall process and analyse network packets in 

real time with minimal latency of not more than 5 seconds. 

NFR2 The system shall support concurrent detection using both 

signature and AI-based engines. 

NFR3 The system shall capture and process packets efficiently 

with a maximum 2% rate of dropping packets. 

NFR4 The system shall initialise all components and become 

ready for use within 10 seconds. 

NFR5 The dashboard shall update displayed data (flows, alerts, 

stats) every 1–5 seconds in real time. 

NFR6 The system shall batch and synchronise alerts to the 

blockchain every 60 seconds or less. 

Usability NFR7 The system shall provide a user-friendly web interface with 

clear visual indicators. 

NFR8 The system shall display meaningful messages for errors 

and alerts. 

Maintainability  NFR9 The system shall match flows against predefined attack 

signatures stored in a JSON file. 

Accuracy NFR10 The system shall have a detection accuracy of at least 90%. 

NFR11 The system should have a false positive rate of less than or 

equals 5%. 

  

Table 3.3.4 Non-Functional Requirements 

 

3.3.5 Design Constraints 

 

Before the development of the project, several design-stage constraints shaped how the 

system could be conceptualised, structured, and planned. These constraints influenced 

architectural decisions, technology choices, and the balance between functional 

requirements and practical feasibility. This section outlines the key limitations 

identified during the design phase. 

 

Firstly, the requirement for near real-time intrusion detection imposed a constraint on 

the design of data flow and processing mechanisms. The system had to be capable of 

handling large volumes of traffic quickly, which ruled out complex or computationally 
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expensive preprocessing during initial capture. Therefore, the architecture was 

designed to prioritise lightweight filtering and staged analysis. 

 

To ensure maintainability and future scalability, a modular design was preferred. 

However, modularity often introduces performance overhead, particularly in inter-

process communication and data handoff between detection components. This required 

early design compromises. Some tightly coupled functions (e.g. packet parsing and 

flow analysis) were grouped within the same module to reduce latency. 

 

The design of the user interface was bound by the need to display dynamic data such 

as packet counts, flow tables, and alert logs. This required a frontend architecture that 

could refresh frequently without degrading browser performance. It led to the decision 

to use polling-based updates (via JavaScript fetch APIs) rather than real-time 

websockets, which simplified frontend design at the cost of minor update delay. 

 

Because the system was expected to run on standard user machines or student lab 

computers, design assumptions had to account for limited CPU, RAM, and storage. 

This meant avoiding heavyweight detection frameworks, such as full deep learning 

models or stream processing engines. Lightweight, rule-based filtering and statistical 

detection methods were prioritised in the early architecture. 

 

Furthermore, the system required access to network interfaces for packet capture, which 

is restricted on some operating systems without administrator or root privileges. This 

constraint influenced the design by limiting the supported platforms and requiring 

fallbacks in case access to packet capture was denied. 

 

Artificial Intelligence components were intended to detect complex or evolving threats, 

but during the design phase, the availability of realistic and diverse network traffic 

datasets was identified as a major constraint. This limited the ability to design and fine-

tune models from scratch. As a result, the LLM integration was scoped to use zero-shot 

or few-shot detection techniques rather than fully fine-tuned models. 
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3.4 Development Timeline 

 

The timeline for the “Blockchain-Based Intrusion Detection System with Artificial 

Intelligence” is structured to ensure a systematic and efficient development process, 

following the system prototyping methodology. This approach allows for iterative 

feedback and refinement, ensuring that each phase of the project aligns with user 

requirements and technical objectives over the span of 28 weeks (2 trimesters). 

 

 

Figure 3.4.1 Project Development Timeline 

 

Figure 3.5.1 shows the Gantt Chart outlining the project development timeline. The 

development process is broken down into 12 phases, each with its distinct activities and 

milestones to achieve. The phased breakdown of the development plan is shown in 

Table 3.5.1 below. 

 

Phase Description Duration 

Phase 1: Planning Identify user requirements, define project 

scope, gather initial functional and non-

functional requirements. 

Week 1 to Week 2 

Phase 2: Analysis Perform analysis on the existing systems and 

establish project foundations.  

Week 3 to Week 4 

Phase 3: First Prototype 

Design 

Design basic system architecture, draft initial 

diagrams, and outline core components. 

Week 5 to Week 6 

Phase 4: First Prototype 

Implementation 

Develop basic versions of key components, 

including the data preprocessing for datasets, 

initial AI model training, network traffic 

capturing, and blockchain network 

configuration. 

Week 7 to Week 10 

Phase 5: Testing and 

Refinement 

Conduct initial tests on the first prototype. 

Refine requirements based on the testing 

results. 

Week 11 to Week 12 
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Phase 6: Second Prototype 

Design 

Design detailed system architecture and refine 

the system diagrams based on the testing 

results and the refined requirements. 

Week 13 to Week 14 

Phase 7: Second Prototype 

Implementation 

Develop enhanced versions of key 

components. Optimise the performance of the 

components and fix issues. 

Week 15 to Week 18 

Phase 8: Testing and 

Refinement 

Conduct unit, integration, performance and 

user acceptance tests to evaluate the prototype. 

Refine the scope and requirements based on the 

results. 

Week 19 to Week 20 

Phase 9: Final Prototype 

Design 

Design the final versions of the modules with 

fully functional components. 

Week 21 to Week 22 

Phase 10: Final Prototype 

Implementation 

Develop final versions of the modules with 

LLM, enhanced blockchain logging, and full 

functionality for real-time alerts and response 

automation. 

Week 23 to Week 26 

Phase 11: Final Testing 

and Refinement 

Conduct unit, integration, performance and 

user acceptance tests to evaluate the 

performance metrics of the prototype. Fix final 

issues if they were to emerge. 

Week 27 

Phase 12: Deployment Deploy the system and ensure the system is 

able to function optimally. 

Week 28 

 

Table 3.4.1 Phased Breakdown of the Development Plan 
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CHAPTER 4 SYSTEM DESIGN 

 

4.1 System Architecture 

 

This chapter presents the detailed design of the proposed system. It begins by outlining 

the overall system architecture, including the high-level system flow, block diagram, 

and data flow representation. The chapter then breaks down the design into individual 

components, covering their interactions, internal logic, and how they contribute to the 

system as a whole. It also discusses the structure of the database and storage 

mechanisms, the design of the smart contract used for alert logging on the blockchain, 

and the interfaces facilitating communication between modules. Additionally, the 

chapter describes the compilation and setup process, including required tools, 

dependencies, and project configuration, ensuring the system can be reliably built and 

deployed. 

 

4.1.1 High-Level System Flow 

 

The high-level system flow illustrates the sequential process by which the Blockchain-

Based Intrusion Detection System with Artificial Intelligence captures, analyses, and 

responds to network traffic. This flow provides an overview of how data moves through 

various subsystems, from initial packet capture to final alert storage on the blockchain. 

Figure 4.1.1 outlines the high-level system flow for this project. 
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Figure 4.1.1 High Level System Flow 

 

The process begins with network traffic capture, where the system listens to a selected 

network interface using the scapy packet manipulation library. Users can define 

optional Berkeley Packet Filter (BPF) rules to refine the captured data. Incoming 

packets are collected and added to a queue for subsequent processing, ensuring they are 

not lost even under high traffic volume. 

 

Next, the packets are processed through flow assembly and preprocessing. At this stage, 

packets are grouped into flows based on attributes such as source and destination IP 

addresses, ports, and protocol types. The system calculates important statistical features 

for each flow, including packet count, byte size, duration, and TCP flag patterns. These 

features are necessary for both signature-based and AI-based threat evaluation. 

 

The signature-based detection engine inspects each flow against a library of predefined 

attack signatures stored in a structured JSON file. If a match is detected, an alert is 

generated and queued for blockchain logging. This method is effective for identifying 

known threats with well-defined patterns. 

 

For threats that do not match any known signature but still appear anomalous, the 

system employs AI-based detection using a local Large Language Model (LLM). 

Suspicious flows are passed to the Gemma3:1b model via the Ollama runtime. The 

LLM performs zero-shot classification and returns an output indicating whether the 



Chapter 4 System Design 

Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 63 

flow is benign or malicious, along with a severity rating. AI-generated alerts are also 

added to the system’s alert history. 

 

Following detection, alerts, whether signature-based or LLM-derived, are handled by 

the alert logging and blockchain storage module. Alerts are first stored temporarily in 

a local SQLite database. At defined intervals or in real-time (as defined by the user), 

they are batched and sent to the Ethereum blockchain (emulated by Ganache) using 

Web3.py. This ensures that alerts are securely stored, time-stamped, and tamper-proof. 

 

Finally, the frontend dashboard provides users with a real-time interface to monitor 

system activity. The dashboard displays live traffic flows, alerts, system status, and 

blockchain synchronisation logs. Users can also control packet capture, view detailed 

flow and alert information, and toggle both the AI engine and blockchain logger as 

needed. 

 

4.1.2 System Block Diagram and Data Flow 

 

The system block diagram provides a high-level overview of the core components in 

the Blockchain-Based Intrusion Detection System with Artificial Intelligence and 

illustrates how data flows between these components. However, it presents a more 

detailed view of the entire system as compared to the high-level system flow in the 

previous section. In this diagram, each block represents a modular subsystem 

responsible for a specific task in the process of intrusion detection and alert 

management. The system block diagram for this project is depicted in Figure 4.1.2 

below. 
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Figure 4.1.2 System Block Diagram 

 

Packet Capture Module 

The process begins at the Packet Capture Module, which is responsible for real-time 

monitoring of network traffic. The Network Interface listens to incoming and outgoing 

packets on the system. These packets are intercepted by the Packet Sniffer, which 

captures raw packet data. The data is then processed by the Flow Assembler and 

Preprocessor, where packets are grouped into flows based on common attributes (such 

as IP addresses, ports, and protocols). These flows are enriched with statistical features 

and metadata before being forwarded simultaneously to both the LLM-Based Detection 

Module and the Signature-Based Detection Module which run on separate threads for 

optimisation. 
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LLM-Based Detection Module 

The flows from the packet capture module are ingested into the LLM-based detection 

engine, which implements a Retrieval-Augmented Generation (RAG) framework. This 

module performs semantic analysis using AI. Initially, a Knowledge Base provides 

context, consisting of network security documentation, threat reports, and other domain 

knowledge. This content is divided using a Document Loader and Text Splitter, then 

encoded into numerical vectors using an Embedding Generation Model. These vectors 

are stored in a Vector Database for fast retrieval. 

 

When a new flow arrives, it is converted into a structured query by the Prompt Handler. 

This query is used to retrieve relevant knowledge chunks from the vector database. 

These retrieved chunks, combined with the live flow data, are passed to the Large 

Language Model (LLM). The LLM evaluates the flow in context and decides if it is 

malicious. If an anomaly is detected, the LLM generates an alert, which is passed to the 

Alert Logger Module for further processing. 

 

Signature-Based Detection Module 

In parallel with the LLM analysis, the Signature-Based Detection Module applies a 

deterministic approach. The module receives the same pre-processed flow from the 

Packet Capture Module. It checks this data against a Signature Database using the 

Signature-Based Detector. The Signature Manager maintains the database by handling 

retrieval operations for attack patterns and updating the system with new threat 

signatures. If a match is found, an alert is immediately generated and passed to the Alert 

Logger Module. 

 

Alert Logger Module 

Both detection modules feed alerts into the Alert Logger Module, where the Alert 

Handler standardises the alert data. Each alert is enriched with metadata such as 

timestamp, source, severity level, detection method (LLM or signature), and relevant 

flow details. The processed alerts are saved in the Alert Database. This ensures 

persistence, supports retrospective analysis, and facilitates interaction with both the 

blockchain logger and the frontend interface. 
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Blockchain Logger Module 

To ensure integrity and auditability, alerts are further processed by the Blockchain 

Logger Module. The Alert Handler forwards validated alerts to the Blockchain Handler, 

which transforms alert metadata into a structured format suitable for on-chain storage. 

A Smart Contract deployed on the blockchain receives the alert hash and relevant 

metadata. This ensures that the detection record is immutable and verifiable. This 

module periodically synchronises with the local database, batching alerts and updating 

on-chain state to reduce cost and congestion. 

 

Frontend GUI Module 

Finally, the Frontend GUI Module serves as the main interface for system users. It 

connects to all backend modules through a central Controller and displays data using 

the Dashboard and Interface. Users can monitor: 

 

• Real-time packet capture status. 

• Ongoing flow analysis and statistics. 

• Alerts from both LLM and signature detectors. 

• All loaded signatures. 

• System health and status 

• Blockchain sync state and transactions. 

 

Users can also interact with the system by toggling detection engines, adjusting capture 

filters, syncing alerts to blockchain manually, and viewing flow-level detail. The 

interface promotes transparency, usability, and control in a single web-based 

dashboard, accessible by any authorised node within the network due to its hosted 

backend services. 
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4.2 Component-Level Design 

 

This section provides a detailed breakdown of each major component within the system, 

describing their specific roles, internal structures, and interactions with other modules. 

It explains how the components are designed to perform their tasks from a technical 

and low-level point of view, as compared to the previous section. This section also 

outlines the design principles behind each module. 

 

4.2.1 Packet Capture Module 

 

Overview 

The Packet Capture Module is the foundational component responsible for acquiring 

real-time network traffic data, transforming it into structured flows, and forwarding it 

for threat analysis. Implemented in Python using the Scapy library, this module features 

multithreaded execution, configurable filtering, and integrated alert logging. It serves 

as the critical entry point for the entire detection pipeline, dictating the quality and 

granularity of data available to the detection engines. 

 

Configurable Capture Options 

This module operates by first configuring a network interface for live packet capture. 

The selected interface may be dynamically obtained through environment variables or 

set manually by the user via the system’s graphical interface. To accommodate diverse 

monitoring requirements, the module supports the use of Berkeley Packet Filter (BPF) 

syntax. This allows users to define highly specific capture rules, such as tcp port 80 or 

not port 53, thereby reducing processing load and narrowing the focus to relevant 

traffic. The sniffing process itself is designed for robustness and responsiveness, using 

a time-bounded polling loop with a two-second sniffing timeout (configurable in the 

environment variables in .env) to prevent indefinite blocking. 

 

Robust Packet Statistics Tracking 

Captured packets are handed off to a central processing routine 

(process_captured_packet) which updates multiple runtime statistics. These include 

packet count, byte count, dropped packets, and packet timestamps. The module 
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intelligently calculates packet size using a tiered strategy, falling back from Scapy’s 

len() method to raw layer estimates and minimum frame assumptions when necessary. 

This redundancy ensures accuracy in environments with incomplete packet metadata. 

 

Asynchronous Analysis 

To support asynchronous analysis, packets are inserted into a bounded FIFO queue for 

batch processing. The queue is carefully monitored to avoid overflow; once it reaches 

90% of its maximum capacity, packet capture is automatically throttled to prevent 

system instability. In scenarios where the queue is full, packets are dropped, and a 

running count of such events is maintained to evaluate packet loss during high-volume 

sessions. 

 

Network Flow Assembly 

The packet processing thread consumes packets in configurable batches, defaulting to 

around 50 at a time, which balances throughput and responsiveness. For each packet, it 

invokes the Traffic Analyser, a separate component responsible for flow assembly, 

payload extraction, and protocol dissection. The analyser returns flow-level summaries 

that are then used for statistical updates and alert generation. Alerts, if generated, are 

stored with timestamps and packet summaries for later retrieval and can be logged in a 

separate alert log file. 

 

Configurable Network Data Logging 

Logging functionality is embedded and configurable. When enabled, the module 

records packet summaries and flow analysis results into structured log files. It also 

generates a secondary alert log, isolating intrusion-relevant data for quicker review. The 

logging mechanism respects disk space limitations by using buffered writes and 

optional file rotation mechanisms. 

 

DoS Tracking Subsystem 

To improve detection of distributed or fragmented attacks, the module includes a 

lightweight DoS Tracker. This subsystem monitors flow volume per IP address over 

configurable time windows and evaluates protocol-specific thresholds. If a host exceeds 

traffic thresholds within the defined interval, it is flagged as suspicious, and a high-

confidence alert is generated even before reaching the LLM stage. This helps ensure 
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responsiveness to flooding attacks and rate-based anomalies that may otherwise go 

undetected. 

 

Runtime Control and Visibility 

The component further exposes interfaces for runtime control, including methods to 

start or stop packet capture, enable or disable logging, and query active capture 

statistics. These statistics include packets per second, bytes per second, dropped packet 

count, and queue utilisation rate—all of which are computed with high-resolution 

timestamps and running counters. This diagnostic data is not only useful for system 

tuning but also provides valuable context during system evaluation and performance 

benchmarking. 

 

Design Principles 

From a software engineering perspective, the Packet Capture Module demonstrates 

modularity, concurrency control, and resiliency. Its thread-safe design ensures 

continuous packet ingestion and processing under variable traffic loads. It features 

exception-safe operations at every critical point, from packet dissection to queue 

operations, to maintain robustness even under malformed or unexpected traffic 

conditions. 

 

4.2.2 LLM-Based Detection Module 

 

Overview 

The LLM-Based Detection Module provides advanced, context-aware intrusion 

detection using a locally hosted large language model (LLM). It integrates with the 

Ollama framework to perform semantic analysis of network flows that may not trigger 

conventional signature-based alerts. This module enhances the system’s ability to 

detect complex, evolving, or zero-day threats by reasoning overflow-level metadata in 

natural language format. It operates asynchronously to ensure system responsiveness 

and scalability, even under high throughput conditions. 
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Architecture and Integration 

At its core, the detection engine is implemented as a Python class that runs in a 

dedicated processing thread, separate from the main packet capture and analysis 

pipeline. Incoming flow data is added to a bounded queue and processed either 

periodically or whenever a batch size threshold is met. The component connects to the 

Ollama server via REST API, using endpoints to verify server availability, list 

supported models, and submit prompt-based queries for real-time analysis. 

 

Before processing flows, the system ensures the specified LLM model (e.g., mistral, 

llama, gemma) is available on the server. The module dynamically checks the health 

and capabilities of the Ollama instance at runtime and gracefully degrades if resources 

are unavailable. These operational checks allow the system to function autonomously 

in both online and offline modes, ensuring fault tolerance. 

 

Flow Analysis Workflow 

The LLM Detection Engine continuously collects and batches flow records from the 

real-time traffic analyser. Each flow record includes protocol-level details such as 

source/destination IPs, ports, packet and byte counts, duration, and, for TCP flows – 

flag statistics. These records are formatted into a structured prompt, which is sent to the 

LLM for evaluation. 

 

The prompt instructs the LLM to focus on identifying explicit malicious patterns such 

as DoS attempts, port scanning, brute-force login trials, and suspicious payload 

anomalies. The LLM is instructed to ignore benign anomalies and to only return alerts 

with high confidence (≥ 0.7). This strict filtering reduces false positives and aligns the 

module with practical security response needs. 

 

RAG Integration 

RAG enhances this module by retrieving contextual information, such as CVE 

descriptions, historical attack reports, and threat intelligence feeds from a vector store 

or knowledge base prior to LLM evaluation. This retrieved data would be appended to 

the prompt dynamically, allowing the LLM to reason over both the live flow data and 

relevant background knowledge. Such integration would enable more informed, 
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context-sensitive decisions, particularly for zero-day or polymorphic threats that lack 

signatures. 

 

Alert Generation and Post-Processing 

Upon receiving the LLM’s response, the system parses the returned data into structured 

alert objects. Each alert includes a unique signature ID (≥ 9000), the protocol involved, 

a threat description, severity level, confidence score, and metadata about the implicated 

flow. Alerts that fall below the confidence threshold are automatically discarded. All 

validated alerts are dispatched to registered callback functions, which forward them to 

the Alert Logger and Blockchain Logger for persistent storage and verification. 

 

Additionally, the LLM Detection Module contributes to system statistics, maintaining 

counters for flows analysed, API calls made, alerts generated, and errors encountered. 

These metrics are accessible via the system’s web dashboard and are essential for 

monitoring the health and efficiency of the AI pipeline. 

 

Design Principles 

The design of this module is guided by several key software engineering principles: 

modularity, asynchronous processing, fault tolerance, and context-awareness. 

Modularity ensures the component operates independently from the rest of the system, 

allowing for easy updates, testing, and future integration with alternative LLM 

providers or Retrieval-Augmented Generation (RAG) backends. Asynchronous 

processing is achieved through multithreaded execution and queue-based batch 

handling, enabling the system to analyse traffic in near real time without bottlenecking 

the main detection pipeline. Fault tolerance is embedded through regular health checks, 

dynamic model verification, and robust error handling for API communication, 

ensuring the module can gracefully degrade during failures. Finally, context-awareness 

is a core design goal, with prompts structured to encourage the LLM to evaluate patterns 

based on semantic relationships, flow statistics, and potential threat intelligence, hence 

making it capable of detecting sophisticated, low-signature attacks that traditional 

engines may overlook. 

  



Chapter 4 System Design 

Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 72 

4.2.3 Signature-Based Detection Module 

 

Overview 

The Signature-Based Detection Module is a rule-driven engine responsible for 

identifying known attack patterns within network flows. It complements the LLM-

Based Detection Module by providing deterministic and fast detection capabilities 

using predefined signatures. This dual-layered detection approach ensures that the 

system can detect both conventional threats with high precision and novel or ambiguous 

ones through AI-based reasoning. The signature engine is particularly effective in 

recognising attacks such as SQL injection, cross-site scripting (XSS), brute-force 

logins, and port scans, where known payload characteristics or behavioural patterns are 

present. 

 

Architecture and Implementation 

The core of the signature engine is built around a modular detection pipeline consisting 

of three major components: the Signature Manager, the Signature Database, and the 

Detection Engine. The Signature Manager is responsible for loading, parsing, updating, 

and maintaining the rule set stored in a JSON-formatted signature database 

(signatures.json). Each rule includes attributes such as a unique signature id, protocol, 

matching conditions (e.g., port number, TCP flags, rate limit, time window, or payload 

keywords), threat category, severity level, CVEs list, action, and metadata. 

 

During packet processing, flows extracted from the traffic analyser are passed through 

the Detection Engine. Each flow is compared against the active rule set in real time. 

Matching conditions are evaluated using both packet metadata and decoded payloads 

when available. The matching process is optimised to run within milliseconds per flow, 

ensuring minimal performance overhead even when dealing with hundreds of 

concurrent flows. 

 

The signature matching algorithm is implemented as a conditional matcher that inspects 

various components of each flow, including source and destination ports, IP addresses, 

protocol types, and embedded payload content. Payload matching supports both exact 

string comparisons and substring detection, enabling flexible rule definitions. For 
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example, a rule may trigger if a TCP packet on port 80 contains the string 

“/admin/login”, indicating a possible brute-force login attempt. 

 

In addition to simple pattern matching, the engine supports compound conditions, such 

as flag combinations (e.g., SYN without ACK for SYN floods) and flow statistics (e.g., 

packet frequency or byte size thresholds). These conditions are combined using logical 

conjunctions to define richer detection criteria. The design ensures that rule evaluation 

remains both transparent and explainable, which is important for forensic analysis and 

threat validation. 

 

Alert Generation and Formatting 

Upon detecting a signature match, the module generates an alert object containing 

structured metadata. This includes the signature ID, a descriptive name, threat category 

(e.g., intrusion, reconnaissance, malware), severity rating, protocol type, CVEs list, 

action, and metadata. The alert also includes contextual flow information such as IP 

addresses, ports, and timestamps. Alerts are then forwarded to the Alert Logger and 

Blockchain Logger modules for storage and immutability. This standardised format 

allows seamless integration with the rest of the system, including the GUI dashboard 

and blockchain contract for audit logging. 

 

Each alert is also assigned a human-readable description to aid in incident response. 

For instance, a rule that matches excessive failed SSH login attempts would produce an 

alert with the message: “Multiple SSH login failures from a single source detected 

within a short time frame”, as defined in the description of the rule. Such contextual 

tagging helps administrators understand the nature of the threat quickly and take 

appropriate actions. 

 

Rule Management and Extensibility 

The Signature Manager offers an interface for dynamically updating rules without 

restarting the system. New signatures can be added at runtime, and outdated ones can 

be removed or modified via the GUI or backend API. The signature database is 

structured for readability and extensibility, allowing administrators or researchers to 

define new rules using clear JSON fields. 
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To maintain performance, the engine enforces constraints such as rule indexing and 

protocol-based filtering prior to evaluation. This reduces the number of comparisons 

required per packet, especially in high-throughput scenarios. Additionally, built-in 

validation ensures that malformed rules are rejected during loading, maintaining system 

stability. 

 

Design Principles 

The design of the Signature-Based Detection Module is also guided by the principles 

of efficiency, modularity, clarity, and extensibility. Efficiency is achieved through fast, 

rule-based matching that enables real-time detection without introducing system lag, 

making it suitable for high-throughput environments. The module is developed in a 

modular manner, separating rule management, detection logic, and alert handling, 

which simplifies maintenance and allows independent upgrades. Clarity is prioritised 

in the rule definition format, which uses readable JSON structures to ensure that 

signatures are understandable and easy to audit. Finally, extensibility is embedded into 

the architecture by allowing dynamic rule updates at runtime and supporting a wide 

range of match conditions, including payload strings, port numbers, and protocol-

specific flags, thus making it adaptable to evolving threat patterns and new network 

protocols. 

 

4.2.4 Alert Logger Module 

 

Overview 

The Alert Logger Module is responsible for the structured recording of all security 

alerts generated by the detection components, namely the Signature-Based Detection 

Module and the LLM-Based Detection Module. It acts as a centralised repository for 

security events, ensuring that every detected anomaly is documented with detailed 

metadata for further analysis, auditing, and forensic investigation. This module plays a 

critical role in maintaining visibility into system activity and acts as the bridge between 

detection engines and persistent or immutable storage such as the blockchain. 
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Architecture and Functionality 

The module is designed to operate as an event-driven component within the intrusion 

detection system. Alerts are passed to it in real time via callback functions or direct 

method invocations from the detection modules. Each alert is expected to follow a 

structured format containing a signature ID, description, category, severity level, 

confidence score (for LLM alerts), protocol type, and flow-related metadata 

(source/destination IP, ports, timestamps). Upon receiving an alert, the module 

serialises the data into JSON format and appends it to an in-memory or file-based alert 

log. 

 

The logging system is extensible to support multiple output formats. Currently, alerts 

are logged to structured .log files, and optionally, printed to the console for debugging 

or real-time monitoring. Logs are timestamped and include identifiers that facilitate 

filtering and cross-referencing. This ensures that alerts can later be analysed 

individually or in aggregate, enabling pattern recognition, incident correlation, and 

historical trend analysis. 

 

Alert Classification and Management 

The Alert Logger distinguishes between alerts based on their source (LLM vs 

Signature) and category (e.g., reconnaissance, intrusion, DoS, anomaly). This 

classification allows alerts to be grouped and prioritised. The module also tracks alert 

statistics, such as the number of alerts received per source and category, which can be 

visualised via the GUI dashboard. 

 

To prevent duplicate logging, the module includes basic de-duplication logic based on 

timestamp, signature ID, and flow metadata. Additionally, log rotation or size-based 

splitting can be implemented to avoid excessive disk usage, especially during high alert 

volumes. This ensures the system remains performant and storage-efficient over 

extended monitoring periods. 

 

Interoperability with Other Modules 

The Alert Logger interfaces directly with both the Blockchain Logger Module and the 

Frontend GUI Module. It provides the blockchain component with verified and 

formatted alerts ready for hashing and on-chain submission. Simultaneously, it pushes 
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alert data to the GUI controller to enable real-time display and user notifications. These 

interactions are handled using lightweight message passing or shared memory 

structures, ensuring minimal latency and maximum responsiveness. 

 

The module is also designed to be compatible with future extensions, such as sending 

alerts to an external SIEM (Security Information and Event Management) system, 

exporting to CSV for offline analysis, or triggering automated incident response scripts. 

Its core structure provides a flexible foundation for integration into larger security 

infrastructures. 

 

Design Principles 

The design of the Alert Logger Module is grounded in the principles of reliability, 

transparency, interoperability, and scalability. Reliability is ensured through structured 

data handling, fault-tolerant writing operations, and fallback mechanisms. 

Transparency is reflected in the readable and standardised alert format, which supports 

traceability and auditability. Interoperability is achieved by adhering to common data 

exchange formats and exposing well-defined interfaces for external modules like the 

blockchain handler and frontend controller. Lastly, the module is built for scalability, 

capable of handling high alert volumes through queuing mechanisms and batch 

processing if required. 

 

4.2.5 Blockchain Logger Module 

 

Overview 

The Blockchain Logger Module is designed to provide tamper-proof, decentralised 

storage of critical security alerts generated by the intrusion detection system. By 

leveraging smart contracts deployed on a blockchain platform, this module ensures that 

high-severity alerts are immutably recorded, enabling transparent auditing, verifiable 

logging, and long-term accountability. Its inclusion marks a significant advancement in 

IDS architecture, introducing a layer of trust and integrity that conventional storage 

methods cannot offer. 
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Architecture and Smart Contract Interaction 

The module operates as a backend service that interacts with an Ethereum-compatible 

blockchain via Web3.py. A smart contract, written in Solidity and deployed to a local 

blockchain network (e.g., Ganache or a testnet), defines a public function to store alert 

hashes along with associated metadata such as timestamp, severity level, and alert ID. 

This contract acts as a distributed ledger, allowing any stakeholder to verify that an alert 

was recorded without the possibility of retroactive modification. 

 

Alerts are received from the Alert Logger Module in structured JSON format. Before 

submission, each alert is serialised and hashed using a secure hashing algorithm 

(typically SHA-256). The hash is then sent to the smart contract along with key fields 

like signature id, protocol, and severity. The module uses a configured Ethereum 

account and private key to sign and submit transactions, ensuring cryptographic 

authenticity. The module also synchronises the local database with the blockchain 

network to ensure a reliable storage and sharing of alerts across the WAN of an 

organisational network. 

 

Transaction Handling and Error Management 

The Blockchain Logger handles blockchain transactions asynchronously to avoid 

blocking the main detection flow. It queues incoming alerts and processes them in 

batches or on a rolling basis, depending on network load and configuration. Each 

transaction includes a gas estimate to ensure successful execution without exceeding 

block limits. 

 

To maintain resilience, the module includes comprehensive error handling. If a 

transaction fails due to insufficient gas, nonce issues, or network disconnection, the 

alert is requeued with exponential backoff. Critical errors are logged with detailed 

diagnostics, and alerts that repeatedly fail submission are backed up locally for manual 

review. This ensures that no high-priority alert is lost, even in cases of blockchain 

failure or instability. 

 

On-Chain Alert Verification 

Once an alert hash is stored on-chain, it becomes publicly verifiable. Any party with 

access to the contract address and blockchain explorer can confirm the existence, time, 
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and content of a submitted alert. This feature provides strong guarantees against data 

tampering and supports regulatory compliance in contexts where audit trails and 

incident forensics are legally required. 

 

To verify alerts, users can compare the hash of a local alert record with those stored on 

the blockchain. If the hashes match, the alert is confirmed to be authentic and 

untampered. This mechanism ensures that the blockchain functions as a single source 

of truth for critical events, fostering trust between system operators and external 

stakeholders. 

 

Integration with Other Modules 

The Blockchain Logger integrates seamlessly with the Alert Logger Module via a 

standardised interface. It receives alerts that are either flagged as critical or manually 

selected by the system operator for on-chain logging. It also interacts with the GUI 

Module, exposing on-chain status indicators such as transaction confirmation, gas 

usage, and contract sync status. These updates provide users with real-time visibility 

into blockchain operations and system integrity. 

 

Moreover, the module is capable of exporting alert hashes to the GUI for verification 

purposes. This enhances user trust and transparency, especially in collaborative or 

multi-user environments where accountability is vital. Integration with the Web3.py 

framework ensures compatibility with a wide range of Ethereum tools and networks, 

facilitating future migration to production-grade blockchains. 

 

Design Principles 

The Blockchain Logger Module is built on the principles of immutability, trust-

lessness, resilience, and accountability. Immutability is achieved by anchoring alerts to 

a blockchain ledger, preventing any form of retroactive alteration. Trust-lessness 

removes the need for third-party verification by allowing cryptographic proof of alert 

authenticity through on-chain hashes. Resilience is enforced through asynchronous 

queuing, retry logic, and local backup of failed submissions, ensuring system reliability 

even under network faults. Finally, accountability is embedded through transparent 

transaction tracking, hash verification, and contract-based access to alert history.  
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4.2.6 Frontend GUI Module 

 

Overview 

The Frontend Graphical User Interface (GUI) Module serves as the visual interface for 

administrators and users to monitor, interact with, and control the Blockchain-Based 

Intrusion Detection System. Designed as a web-based dashboard, it provides real-time 

visibility into network activity, detected alerts, system statistics, and blockchain status. 

The GUI bridges the gap between complex backend logic and human usability, 

allowing even non-technical users to effectively interpret and manage security data. 

 

Architecture and Technologies Used 

The frontend is implemented using standard web development technologies – HTML, 

CSS, and JavaScript, with additional styling handled via a dedicated stylesheet 

(styles.css) for responsive and user-friendly layouts. Dynamic content rendering is 

performed by app.js, which handles real-time updates from the Flask backend using 

asynchronous HTTP requests (AJAX). This separation of structure (HTML), style 

(CSS), and behaviour (JS) follows modern frontend design best practices and supports 

maintainability and scalability. 

 

The GUI layout is structured into distinct sections, including a Live Network Traffic 

Table, Alerts Feed, Blockchain Status Panel, and System Controls. These areas are 

clearly delineated to minimise cognitive load and maximise situational awareness. 

Colour-coded severity levels, icons, and tooltips further enhance usability by allowing 

quick visual parsing of critical information. 

 

Real-Time Data Visualisation and Interaction 

One of the key features of the GUI is its ability to display live traffic flows and alerts 

in real time. Using polling mechanisms, the frontend periodically queries the backend 

Flask application for updates to active flows, system status, and alerts. These are then 

rendered into HTML tables and visual components without requiring a full page reload, 

creating a smooth and responsive user experience. 

 

For each flow, the GUI shows protocol type, source and destination IPs and ports, 

packet and byte counts, and connection duration. Alert entries include the detection 
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method (LLM or signature), severity, threat description, and timestamp. Users can click 

on individual entries to expand further details, such as TCP flag history or LLM-

generated explanations, thereby supporting deeper investigation when needed. 

 

System Control Features 

Beyond passive monitoring, the GUI offers interactive system control elements. Users 

can start or stop packet capture, clear active flows, enable or disable blockchain 

logging, and adjust filter settings. These actions are sent to the backend using HTTP 

requests and handled securely to prevent unintended system disruption. 

 

Additionally, a dedicated panel displays the status of key subsystems, including the 

LLM Detection Engine, Signature Engine, Alert Logger, and Blockchain Logger. 

Metrics such as queue sizes, flow counts, active threads, and blockchain sync status are 

updated periodically, providing a comprehensive operational overview. 

 

User Experience and Accessibility 

Special care has been taken to ensure the GUI is intuitive, responsive, and accessible 

across different devices and screen sizes. The design employs a clean, dark-themed 

aesthetic to reduce eye strain during prolonged use. Font sizes, spacing, and layout 

responsiveness have been optimised using CSS media queries and flexible grid layouts. 

Furthermore, rrror messages, system warnings, and success notifications are shown as 

toast alerts or embedded banners, improving feedback without interrupting user flow. 

 

Design Principles 

The Frontend GUI Module is designed based on the principles of usability, clarity, 

responsiveness, and separation of concerns. Usability ensures that all features are easily 

accessible and understandable, even to non-expert users. Clarity is achieved through a 

clean layout, logical grouping of components, and consistent visual language. 

Responsiveness guarantees that the interface adapts fluidly to various devices and 

network speeds, maintaining reliability in diverse environments. Finally, the strict 

separation of structure (HTML), presentation (CSS), and behaviour (JavaScript) 

adheres to best practices in frontend engineering, enabling maintainability, modularity, 

and future extensibility. These principles make the GUI an essential, user-friendly 

interface that empowers effective monitoring and control of the entire detection system.  
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4.3 Database and Storage Design 

 

The database and storage design of the Blockchain-Based Intrusion Detection System 

is centred around lightweight, high-performance mechanisms that support real-time 

data flow, efficient alert recording, and secure integration with both local and 

decentralised storage. Given the system’s hybrid architecture, consisting of live traffic 

capture, AI-driven analysis, and blockchain logging, the storage model is designed for 

speed, modularity, and extensibility. Other than relying on a traditional relational 

database, the system also uses in-memory data structures, flat-file logging, and smart 

contract-based blockchain records to manage different categories of data. This section 

aims to outline the database and storage design implemented in the system to achieve 

such requirements. 

 

4.3.1 Network Flow Data Handling 

 

Network flows, as generated by the Traffic Analyser, are not permanently stored in a 

central database. Instead, they are temporarily held in memory using Python 

dictionaries and lists. This decision is based on the high throughput and volatile nature 

of flow data, which is primarily used for transient processing by detection engines. Flow 

objects are indexed using hash-based keys derived from their 5-tuple identifiers (source 

IP, destination IP, source port, destination port, protocol). Each flow entry maintains its 

own statistical profile, such as byte count, packet frequency, duration, and TCP flag 

distribution, stored locally within the NetworkFlowStatistics object. These data 

structures are periodically pruned to manage memory usage and flow expiration based 

on timeout policies. 

 

4.3.2 Alert Database and File-Based Log 

 

When a detection engine, either signature-based or LLM-based identifies a suspicious 

or malicious network flow, the corresponding alert is forwarded to the Alert Logger 

Module. This module then performs dual persistence by recording the alert into both a 

SQLite relational database and a structured flat .log file. The SQLite database functions 

as the primary structured store, designed to support querying, filtering, and future 

integration with analytics tools or external dashboards. Each alert entry is stored as a 
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row in the database, containing fields such as id, name, category, severity, flow_hash, 

timestamp, details, synced_to_chain, tx_hash, created_at (timestamp). The relational 

model enables fast retrieval of specific alerts based on criteria like date range, detection 

method, or severity level. The database scheme for alert storage is shown in Table 4.3.1 

below. 

 

Field Name Data Type Constraints Description 

id INTEGER PRIMARY KEY 

AUTOINCREMENT 

Unique identifier for each alert. 

name TEXT NOT NULL Name or title of the alert (e.g., “LLM: 

TCP Flood”). 

category TEXT NOT NULL Type of detection category (e.g., dos, 

intrusion, llm-detection). 

severity TEXT NOT NULL Threat level of the alert (e.g., low, 

medium, high). 

flow_hash TEXT NOT NULL SHA-256 hash of the flow data for 

integrity and traceability. 

timestamp INTEGER NOT NULL UNIX timestamp (in seconds) indicating 

when the alert was generated. 

details TEXT NONE Additional JSON-encoded flow or alert 

metadata for context (optional). 

synced_to_chain INTEGER DEFAULT 0 Indicates whether the alert was synced to 

blockchain (0 = no, 1 = yes). 

tx_hash TEXT UNIQUE Blockchain transaction hash if the alert 

was recorded on-chain. 

created_at INTEGER DEFAULT 

(strftime(‘%s’, 

‘now’)) 

UNIX timestamp when the record was 

created. 

 

Table 4.3.1 Database Schema for Alert Storage 

 

In parallel, alerts are also serialised into human-readable JSON format and appended to 

a flat log file using buffered I/O. This secondary file-based logging approach ensures 

data redundancy and provides a portable, platform-independent snapshot of system 

activity. It is especially useful in scenarios where lightweight external review or quick 

diagnostics are needed without database access. These log files preserve chronological 

ordering and can be archived, rotated, or exported for audit purposes.  
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4.3.3 Blockchain-Based Immutable Storage 

 

the system incorporates blockchain-based storage via the Blockchain Logger Module. 

This acts as a secondary, immutable data store, designed to guarantee the integrity and 

authenticity of critical security events. Alerts selected for on-chain recording are first 

hashed using SHA-256 to produce a fixed-length digest. The hash, along with selected 

metadata (e.g., severity, protocol, timestamp), is then submitted to a deployed smart 

contract on an Ethereum-compatible blockchain. 

 

This smart contract maintains a verifiable, append-only record of alerts that cannot be 

tampered with or erased. Any third party can audit the on-chain data by comparing 

locally stored logs with the blockchain entries. This hybrid model combining off-chain 

file-based logs and local database (SQLite) for alert storage with on-chain decentralised 

hashes ensures both operational efficiency and forensic-grade data integrity. 

 

4.3.4 Temporary Queues and Runtime Storage 

In addition to persistent logging, the system employs several in-memory queues and 

buffers to coordinate real-time operations. For instance, the LLM Detection Module 

uses a thread-safe FIFO queue to batch flow records prior to submission to the LLM. 

Similarly, packet capture statistics and DoS tracker data are stored in local runtime 

variables and updated continuously. These ephemeral stores are essential for 

maintaining low-latency operations but are cleared periodically to avoid memory 

saturation. 

 

System configuration data, such as interface selection, threshold values, and model 

settings, are loaded from .env files or predefined JSON configuration files. This 

approach simplifies deployment and allows non-developers to modify system 

parameters without editing source code. 
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4.4 Smart Contract Design 

 

Overview 

The smart contract design in this system introduces a tamper-proof, decentralised 

storage mechanism for critical security alerts, enabling immutable logging on a 

blockchain. The smart contract is written in Solidity and deployed on an Ethereum-

compatible blockchain (e.g., Ganache for testing). It forms the core of the Blockchain 

Logger Module, which securely logs a cryptographic summary of selected alerts. By 

recording high-severity events on-chain, this design ensures data integrity, traceability, 

and accountability—key requirements in modern intrusion detection systems where 

auditability is critical. 

 

Contract Structure and Key Functions 

The smart contract is implemented under the name AlertsContract.sol and manages a 

dynamic array of alert records. Each record contains five primary fields: name, 

category, severity, flowHash, and timestamp. These fields are submitted by the backend 

via a logAlert() function, which is publicly accessible and non-payable, meaning it does 

not require Ether to execute. 

 

A corresponding AlertLogged event is emitted each time a new alert is recorded, 

allowing external listeners, such as blockchain explorers or backend systems, to 

monitor blockchain activity in real time. To retrieve stored alerts, the contract provides 

two view functions: getAlertCount() returns the total number of alerts stored, while 

getAlert(index) returns the details of a specific alert by index. These functions ensure 

transparency and allow verifiers or auditors to independently access stored alerts 

without altering the blockchain state. 

 

Functionality and Usage 

The logAlert() function is the primary entry point for recording alerts on-chain. It 

requires all core alert details to be passed in as arguments. Upon execution, the alert is 

appended to the internal array and indexed automatically. The function includes 

parameters for: 
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• name: A short title for the alert (e.g., “TCP Flood”), 

• category: The classification (e.g., “dos”, “intrusion”), 

• severity: The assessed threat level (e.g., “high”), 

• flowHash: A SHA-256 hash uniquely identifying the flow, 

• timestamp: UNIX time when the alert was detected. 

 

Each of these values is stored immutably, ensuring that once written, alerts cannot be 

altered or deleted. This guarantees the audit trail’s credibility and creates a permanent 

record for compliance, investigation, or legal evidence. 

 

Events and Data Transparency 

The AlertLogged event acts as a broadcast mechanism for external observers. It is 

triggered every time logAlert() is called and includes indexed fields (name, category, 

severity) for fast filtering, along with the flowHash and timestamp. This supports use 

cases such as real-time alert tracking, blockchain monitoring dashboards, and 

automated threat response systems that react to new on-chain events. 

 

By using events, the contract reduces the need for full on-chain querying and allows 

alert data to be streamed efficiently to off-chain components via Web3 interfaces. This 

makes the contract practical for integration in both decentralised and hybrid security 

systems. 

 

Design Principles 

The smart contract design is based on principles of immutability, minimalism, 

transparency, and cost-efficiency. Immutability is guaranteed by the append-only 

structure of the alert array, where past entries cannot be modified or removed. 

Minimalism is maintained by limiting storage to essential fields and avoiding excessive 

on-chain data, reducing gas costs and improving performance. Transparency is 

achieved through publicly accessible functions and indexed events, allowing any party 

to verify the system’s behaviour without needing permission or trust in a central 

authority. Finally, cost-efficiency is addressed by avoiding unnecessary state changes 

and implementing read-only functions for external use, ensuring the contract remains 

practical in both test and production blockchain environments.  
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4.5 Communication Interface Design 

 

Overview 

The communication interface design of the Blockchain-Based Intrusion Detection 

System establishes how data and control signals are exchanged between internal 

modules, the frontend GUI, and external systems such as the blockchain network and 

LLM server. The system follows a modular, microservice-oriented architecture where 

each component communicates through well-defined, loosely coupled interfaces. This 

design ensures extensibility, simplifies debugging, and enables real-time data flow 

without compromising performance or maintainability. 

 

Internal Module Interactions 

Internal communication between system modules is primarily achieved through 

function calls, thread-safe queues, and callback mechanisms. For instance, the Packet 

Capture Module and Traffic Analyser push structured flow objects into queues 

consumed by both the Signature-Based Detection Engine and the LLM Detection 

Engine. These engines, in turn, send alerts asynchronously to the Alert Logger via 

registered callback functions. This event-driven design allows modules to operate 

independently, while ensuring synchronised data processing and responsive behaviour. 

 

The system also employs shared in-memory structures (e.g. Python dictionaries and 

counters) for live metric tracking, such as packets processed, alerts generated, and 

queue sizes. These shared variables are exposed to the GUI and backend status APIs 

for real-time monitoring. 

 

Backend-to-Frontend Communication 

The interface between the backend (Flask) and the frontend GUI is handled using 

asynchronous HTTP (AJAX) requests. JavaScript scripts periodically poll the backend 

through REST-like endpoints (e.g. /get_flows, /get_alerts, /status) to fetch the latest 

data. The responses are returned in JSON format, ensuring lightweight transmission 

and easy parsing in the browser. 

 

User actions on the frontend, such as starting or stopping packet capture, resetting flow 

tables, or toggling blockchain logging are sent to the backend via POST requests. These 
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actions are routed through dedicated Flask routes that trigger the corresponding 

backend methods. This request-response model ensures a smooth and responsive user 

experience while maintaining control integrity. 

 

Backend-to-Blockchain Communication 

Communication between the backend and the blockchain is facilitated via the Web3.py 

library, which interacts with an Ethereum-compatible node (e.g. Ganache). When an 

alert is selected for on-chain logging, the backend constructs a transaction by encoding 

the relevant fields—name, category, severity, flowHash, and timestamp—and submits 

it to the smart contract via the logAlert() function. 

 

The backend also monitors transaction status, gas usage, and contract state (e.g. total 

alert count) using Web3.py’s query functions. Confirmation receipts and transaction 

hashes are returned to the Flask application and logged into the SQLite alert database, 

linking on-chain records with local logs. 

 

Backend-to-LLM Communication 

The LLM Detection Module communicates with a locally hosted Ollama server via 

HTTP POST requests. When a batch of flows is ready for analysis, the module 

generates a structured prompt and sends it to the Ollama API at the /api/generate 

endpoint. The server returns a response containing the LLM’s analysis, which is then 

parsed and converted into structured alert objects. 

 

The LLM communication interface is resilient and supports timeout management, error 

detection, and retries. If the server is unreachable or a response is malformed, the 

detection engine gracefully logs the error and continues processing new flows. This 

ensures robustness in unpredictable runtime conditions. 

 

Logging and Monitoring Interfaces 

To support observability, the system provides interfaces for log storage (file-based and 

SQLite) and status monitoring. Key runtime metrics such as the number of flows 

analysed, queue sizes, LLM request count, and blockchain sync status are exposed via 

a /status endpoint, which the frontend queries periodically. These metrics allow 
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administrators to monitor system health, diagnose performance bottlenecks, and verify 

component readiness in real time. 

 

Design Principles 

The communication interface design is grounded in the principles of loose coupling, 

clarity, scalability, and fault tolerance. Loose coupling ensures that modules remain 

independently testable and maintainable, as they interact only through clearly defined 

interfaces. Clarity is achieved by using standard protocols (HTTP, JSON) and 

consistent API endpoints. Scalability is supported by asynchronous, non-blocking 

communication patterns and queue-based buffering between processing components. 

Fault tolerance is embedded through retry logic, timeout handling, and structured error 

reporting, allowing the system to maintain operational integrity even in the presence of 

failures or transient network issues. This communication model enables the system to 

function reliably in real-time environments, while remaining modular and extensible 

for future upgrades. 
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4.6 Compilation and Setup Design 

 

The compilation and setup design of the Blockchain-Based Intrusion Detection System 

is structured to promote ease of deployment, clarity of codebase organisation, and 

modular component interaction. A clearly defined folder hierarchy and a set of 

configuration files govern how the system is installed, initialised, and maintained. This 

structure ensures that each part of the system, backend, frontend, AI engine, smart 

contract, and storage, can be independently understood, configured, and extended 

without introducing ambiguity or dependency conflicts. The folder structure of the 

project is shown in Figure 4.6.1 below. 

 

Besides, the system’s configuration is governed by a set of external files that enable 

flexibility, portability, and environment-specific customisation. These files define 

system behaviour, dependencies, data sources, and external integration settings, 

allowing the software to adapt without the need to modify the source code directly. By 

separating configuration from logic, the design simplifies deployment and improves 

maintainability. 

 

The primary configuration file is the .env file, which contains environment variables 

used across the entire system. It defines key operational parameters and URLs for all 

the modules. These values are dynamically loaded at runtime using the python-dotenv 

package, enabling seamless changes between testing, development, and production 

environments. 

 

Another important configuration file is requirements.txt, which lists all Python libraries 

required to run the system. This includes modules such as flask, scapy, web3, and 

sqlite3. The python virtual environment can be set up easily with a single command, 

ensuring consistency across different machines and deployments. 

 

For blockchain integration, contract_abi.json file contains the Application Binary 

Interface (ABI) of the deployed smart contract. This ABI defines the functions, events, 

and data structures exposed by the contract, allowing the backend to encode 

transactions, decode responses, and interact with the blockchain securely and correctly. 
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/root-directory/ 

│ 

├── __init__.py   # Initialisation details 

├── app.py   # Entry point for the Flask server 

├── .env   # Environment variable configuration file 

├── requirements.txt  # Python dependencies list 

│ 

├── /frontend/   # Contains all frontend-related assets 

│   ├── index.html  # Main HTML file 

│   ├── styles.css  # Styling definitions 

│   └── app.js   # JavaScript for dynamic frontend behaviour 

│ 

├── /network_capture/  # Packet capture and traffic processing 

│   ├── __init__.py  # Initialisation details 

│   ├── packet_capture.py # Raw packet sniffer and flow assembler 

│   ├── traffic_analyzer.py # Flow-level statistics and protocol analysis 

│ 

├── /rag/   # RAG module for knowledge base, retriever, and generator 

│   ├── __init__.py  # Initialisation details 

│   ├── document_store.py # Vector database interface 

│   ├── retriever.py  # Embedding & similarity-based retrieval logic 

│   ├── generator.py  # LLM prompt composition and response generation 

│   └── ingest_documents.py # Script to load docs into the vector store 

│ 

├── /detection_engine/  # Signature-based and LLM-based detection engines 

│   ├── __init__.py  # Initialisation details 

│   ├── llm_detection.py # LLM-based detection module 

│   ├── alert_logger.py  # File-based alert logging module 

│   ├── signature_detection.py # Signature-based detection logic 

│   └── signature_manager.py # Signature loading and rule evaluation 

│ 

├── /blockchain/  # Blockchain integration components 

│   ├── __init__.py  # Initialisation details 

│   ├── AlertsContract.sol # Solidity smart contract source 

│   ├── deploy.py  # Script for deploying the smart contract 

│   ├── contract_abi.json # ABI definition for contract interaction 

│   └── blockchain_logger.py   # Python Web3 integration for on-chain logging 

│ 

├── /database/                 # Data persistence and alert handling 

│   ├── alerts.db              # SQLite database file 

│ 

├── /signatures/               # Signature database 

│   ├── signatures.json        # Signature file 

│ 

├── /venv/                  # Python virtual environment 

 

Figure 4.6.1 Folder Structure 
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CHAPTER 5 SYSTEM IMPLEMENTATION 

 

This chapter outlines the practical steps taken to build and deploy the Blockchain-Based 

Intrusion Detection System. It begins with the setup of the development environment, 

covering both hardware and software requirements. The chapter then describes the 

implementation of the backend logic, blockchain integration, and frontend interface. 

Each section highlights how individual modules were configured to form a fully 

functional system. It also explains how the system operates in real time and discusses 

the challenges encountered during implementation, along with the solutions applied. 

 

5.1 Environment and Tools Setup 

 

This section describes the initial setup required to support the development and 

execution of the system. It covers the hardware and software environments, including 

the development platforms, libraries, frameworks, and external tools used. The purpose 

is to ensure a stable and compatible environment that supports all components of the 

system throughout the implementation phase. 

 

5.1.1 Hardware Setup 

 

The successful development and deployment of the project require a powerful and 

adaptable hardware setup that is capable of handling various demanding tasks. In this 

project, the entire system will be implemented using a single high-performance laptop. 

The laptop will serve multiple critical functions within the system, hosting of both LLM 

and blockchain testnet, and multithreaded environments. A detailed overview of the 

hardware specifications of the laptop used is shown in Table 5.1.1 below. 
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Hardware Component Specification 

Model Lenovo IdeaPad Gaming 3 82K2 

Processor AMD Ryzen 7 5800H with Radeon Graphics 3.20 GHz 

Operating System Windows 11 Home 

Graphic NVIDIA GeForce GTX 1650 

Memory 16GB DDR4 RAM 

Hard Drive Samsung MZALQ512HBLU-00BL2 SSD 512GB 

Random-Access Memory Samsung M471A1G44AB0-CWE 8GB,  

Kingston 9905700-118.A00G 8GB 

Network Interface Card MediaTek Wi-Fi 6 MT7921 Wireless LAN Card,  

Realtek PCIe GbE Family Controller  

 

Figure 5.1.1 Laptop Specifications 

 

CPU 

The AMD Ryzen 7 5800H is an octa-core, 16-thread processor with a base clock speed 

of 3.20 GHz. Its multithreaded architecture is crucial for parallel task execution, such 

as processing captured network packets while simultaneously running intrusion 

detection models and syncing alerts to the blockchain. The high core and thread count 

reduces latency in the data pipeline and ensures real-time responsiveness of the system, 

particularly under high network traffic loads. 

 

RAM 

To support data-heavy operations, the system is equipped with 16GB of DDR4 RAM. 

This memory capacity is sufficient for LLM-based detection module and the real-time 

signature-matching engine with is memory-intensive. The RAM also accommodates 

the simulation of blockchain testnet and the storage of temporary packet buffers, 

ensuring smooth multitasking and minimal memory bottlenecks. 

 

Hard Drive 

Storage requirements are addressed by a 512GB NVMe SSD, which offers fast 

read/write speeds. This is vital for both the persistent storage of alert data and the rapid 

read/write of captured packet as well as system logs. The SSD significantly reduces 

input/output latency during the preprocessing and batch analysis of network traffic data, 

enabling timely decision-making and blockchain syncing of detected alerts. 
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GPU 

Graphical processing requirements for AI-based detection are met using the NVIDIA 

GeForce GTX 1650 GPU. This GPU, although entry-level by workstation standards, 

features CUDA cores that accelerate computations, hence improving the LLM 

performance. The GPU also supports real-time visual analytics rendered through the 

web interface, allowing system users to monitor the flow status and alert trends 

efficiently. 

 

NIC 

Lastly, reliable connectivity is enabled through dual interfaces: MediaTek Wi-Fi 6 and 

Realtek PCIe GbE Ethernet. Wi-Fi 6 provides high-speed wireless communication 

useful during testing in environments with multiple devices, while the Ethernet port 

ensures stable and secure data transmission when syncing alerts across blockchain 

nodes or capturing high-throughput packet streams. 

 

5.1.2 Software Setup 

 

Programming Languages 

The development of the project requires multiple programming languages, each chosen 

for its unique strengths and suitability to the specific demands of the project. The 

programming languages selected and a summary of their roles in this project are 

outlined in Table 3.1.3.1 below. 

 

Programming Language Version Role 

Python 3.12.5 Powers the backend system 

HTML ECMAScript 6+ Structures the web interface 

JavaScript 20.10.0, ECMAScript 6+ Handles dynamic frontend behaviour 

CSS ECMAScript 6+ Styles the web interface 

Solidity 0.8.0 Implements the smart contract 

 

Table 5.1.1 Programming Language Requirements 
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Moving on, various libraries and frameworks are used in developing, testing, and 

deploying this project. These tools are selected based on their ability to handle specific 

tasks within the system. The main libraries selected and a summary of their roles in this 

project are outlined in Table 5.1.2 below. 

 

Library/Framework Version Role 

Flask 3.1.0 Serves as the backend web framework for building 

API endpoints 

flask_cor 5.0.1 Enables Cross-Origin Resource Sharing (CORS) to 

allow frontend-backend communication 

py_solc_x 2.0.3 Compiles and interacts with Solidity smart contracts. 

python-dotenv 1.1.0 Loads environment variables from a .env file for 

secure configuration 

Requests 2.32.3 Handles HTTP requests, mainly used for external API 

communication 

scapy 2.6.1 Captures and processes raw network packets for 

analysis 

numpy 2.2.5 Used for packet statistics and data arrays 

pandas 2.2.3 Manages structured data like flow logs and alert 

histories 

seaborn 0.13.2 Creates clean, high-level statistical visualisations 

matplotlib 3.10.1 Plots graphs and charts for network activity and flow 

analysis 

web3 7.11.0 Interfaces with the Ethereum blockchain to read/write 

smart contract data 

 

Table 5.1.2 Library and Framework Requirements 

 

Furthermore, the development and deployment of this project involve a range of tools 

and platforms that facilitate various stages of the project. These tools and platforms are 

selected for their ability to streamline development, ensure efficient deployment, and 

achieve the main objectives of the system. The main tools and platforms selected as 

well as a summary of their roles in this project are outlined in Table 5.1.3 below. 
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Tool/Platform Version Role 

Ollama 0.6.6 Hosts and serves the LLM locally 

Gemma3:1b - A lightweight LLM model 

Ganache 2.7.1 Simulates a local Ethereum blockchain 

SQLite 3.42.0 Stores intrusion alerts locally 

Git 2.45.2.windows.1 Manages version control for source code 

VS Code 1.99.3 Provides an integrated development environment 

Chrome 135.0.7049.116 (Official 

Build) (64-bit) 

Used to access and test the web-based user interface 

 

Table 5.1.3 Tool and Platform Requirements 

 

In addition, the operating system plays a fundamental role in supporting the execution 

of all development tools, libraries, and runtime environments. This project is developed 

and deployed on Windows 11 Home, which provides a stable and user-friendly 

environment for multitasking, blockchain simulation, LLM hosting, and network 

management. Its compatibility with essential tools, programming languages, and virtual 

networking interfaces makes it a practical choice for building and testing an AI-

powered, blockchain-integrated intrusion detection system. The main OS selected for 

this project is described in Table 5.1.4 below. 

 

OS Version Role 

Windows 11 Home 23H2 Operating system used to host this system 

 

Table 5.1.4 Operating System Requirements 
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5.2 Blockchain Implementation 

 

The blockchain component of this system ensures that all intrusion alerts generated by 

the detection engines are logged in a tamper-proof, decentralised ledger. This 

guarantees the integrity and immutability of critical security events, which is essential 

in environments where trust, transparency, and auditability are priorities. To support 

this requirement, a smart contract is deployed on a private Ethereum blockchain using 

Ganache. The backend system interacts with this smart contract through the Web3.py 

and py-solc-x libraries. This section outlines the implementation steps involved in 

deploying and integrating the blockchain component with the intrusion detection 

system. 

 

5.2.1 Installing and Running Ganache 

 

Ganache is a personal blockchain simulator developed by Truffle, designed for 

Ethereum smart contract development. It runs a local blockchain on the user’s machine, 

allowing developers to deploy, test, and debug smart contracts in a controlled 

environment. Ganache provides complete visibility over blockchain operations, 

including blocks, transactions, and account balances, which is ideal for rapid 

prototyping and testing without relying on public testnets. 

 

In this project, Ganache is used to simulate a decentralised environment where all 

intrusion alerts can be logged securely. This ensures that even during the development 

phase, the system can demonstrate blockchain logging and verification functionality. 

 

To begin, the Ganache application is downloaded and installed from the official Truffle 

Suite website at https://archive.trufflesuite.com/ganache/. Once launched, the initial 

step involves configuring a new workspace. As shown in Figure 5.2.1, the workspace 

is named BlockIDS, which serves as a container for managing the project’s smart 

contracts and blockchain state. Ganache allows for the addition of Truffle projects 

directly into the workspace for better integration and management; however, in this 

project, smart contract deployment is managed independently through Python scripts. 
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Figure 5.2.1 Ganache Workspace Configuration 

 

Next, the blockchain server settings are configured. As shown in Figure 5.2.2, the 

hostname is set to 0.0.0.0, representing “All Interfaces”, enabling Ganache to accept 

RPC connections from any network interface. The default RPC port is set to 7545, 

which is the endpoint used by the backend system to connect to the blockchain. The 

network ID is defined as 5777, a common default for local Ethereum networks. Other 

options such as “Automine” and “Error on Transaction Failure” are enabled to ensure 

that transactions are processed instantly and any issues are explicitly flagged, which 

helps with debugging and consistency during smart contract interaction. 
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Figure 5.2.2 Ganache Server Configuration 

 

After the configuration is complete, the “Start” button is clicked to launch the 

blockchain. Once started, Ganache provides a local Ethereum environment with several 

pre-funded accounts. These accounts can be used for deploying smart contracts and 

initiating transactions without requiring real Ether. The use of Ganache in this project 

eliminates the complexities of public network deployment while preserving all core 

blockchain features such as transaction signing, contract execution, and block mining. 

Figure 5.2.3 shows the running Ganache environment after a successful setup. 

 

 

Figure 5.2.3 Ganache Environment 
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The consistent and user-friendly interface of Ganache simplifies blockchain 

management, allowing focus to remain on the development and integration of smart 

contract features. With the environment running and properly configured, the system is 

ready to compile, deploy, and interact with the smart contract for intrusion alert logging. 

 

5.2.2 Setting Up the Python Environment 

 

To enable Python to interact with the Ethereum blockchain, a set of blockchain-related 

libraries must be installed. These include Web3.py, a Python library that allows 

communication with Ethereum nodes via JSON-RPC, and py-solc-x, which acts as a 

Python interface for compiling Solidity smart contracts. Additionally, python-dotenv is 

used to load configuration values, such as RPC URLs and contract addresses, from an  

environment file (.env), which simplifies environment management and enhances 

security by avoiding hard-coded credentials. This file includes variables such as the 

Ganache URL, contract ABI path, database path, and contract address. 

 

Installing these libraries in a virtual environment ensures consistency, isolation, and 

easier dependency tracking during development. By separating configuration from 

code, the system becomes more maintainable and adaptable to changes. For instance, 

switching between test and production environments requires no code modification, 

only a change in the .env file. This also enhances security, as sensitive data is not 

exposed directly in the source code. 

 

5.2.3 Installing and Configuring the Solidity Compiler 

 

Solidity is the primary programming language for writing smart contracts on the 

Ethereum blockchain. To compile the smart contract within the Python environment, 

the appropriate version of the Solidity compiler must be installed using py-solc-x. In 

this project, version 0.8.0 is selected for compatibility with the contract code. Installing 

the compiler ensures that the contract can be compiled locally before deployment, 

converting it into a format that can be understood and executed by the Ethereum Virtual 

Machine (EVM). This process also generates the ABI (Application Binary Interface), 

which acts as a bridge between the contract and the backend system. 
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5.2.4 Compiling and Deploying the Smart Contract 

 

Once the smart contract is written (refer to Chapter 4.4 Smart Contract Design), it is 

compiled within the Python environment using py-solc-x. This step generates the 

bytecode and ABI, both of which are required for deployment. The backend connects 

to the Ganache blockchain via the RPC endpoint and uses one of the pre-funded test 

accounts to deploy the contract. Deployment is performed as a transaction, and the 

resulting transaction receipt contains the deployed contract address. This address is then 

saved to the .env file and referenced by the backend system whenever it needs to call 

the contract. This deployment process ensures the contract is fully registered on the 

blockchain and ready to receive alerts. The deployment process and outcomes are 

shown in Figure 5.2.4 and Figure 5.2.5 below. 

 

 

Figure 5.2.4 Smart Contract Deployment 
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Figure 5.2.5 Contract Creation on Blockchain 

 

5.2.5 Saving Contract Metadata 

 

The ABI generated during compilation and the address obtained after deployment are 

critical for contract interaction. The ABI is stored in a separate JSON file 

(contract_abi.json), and the address is recorded in the environment file (.env). These 

two elements together allow the backend system to create an interface to the smart 

contract, enabling the logging and retrieval of alerts. Managing this metadata externally 

ensures that if the contract is redeployed (for example, after modification), only these 

references need to be updated, avoiding the need to alter the core logic of the backend 

code. 

 

5.2.6 Initialising the System with Blockchain Support 

 

Before launching the intrusion detection system, it is essential to verify that Ganache is 

running and accessible. The backend will then load the contract metadata from the 

environment and ABI files. If a contract has not yet been deployed, the deployment 

script can be run manually to compile and deploy it. Once the system is started via the 

main application script, the backend automatically connects to the blockchain, 

initialises the logger, and begins syncing alerts. At this stage, the system is fully 

operational with end-to-end blockchain integration.  
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5.3 LLM Implementation 

 

In this project, a lightweight LLM model is hosted locally using Ollama, which serves 

as the backend inference engine for AI-driven threat detection. This section describes 

the implementation steps required to set up and integrate the LLM component with the 

system. 

 

5.3.1 Installing Ollama 

 

Ollama is an open-source platform designed to run large language models locally with 

minimal setup. It supports various model architectures, including LLaMA, Mistral, and 

Gemma, and offers an HTTP API for interaction. For this system, Ollama hosts the 

gemma3:1b model, a compact and efficient LLM optimised for lightweight inferencing 

on edge devices or development machines. Its relevance in this project lies in its ability 

to analyse sequences of network flows and detect nuanced threats such as stealthy scans 

or early-stage intrusions that may not trigger rule-based alerts. By operating entirely 

offline, Ollama ensures data privacy and low-latency inference without relying on 

cloud-based APIs. 

 

To begin, Ollama is installed on the development machine using its official package for 

Windows downloadable at https://ollama.com/.Once installed, the Ollama service can 

be started using Command Prompt or Windows Powershell with the “ollama serve” 

command. The Ollama server runs as a local server accessible via 

http://localhost:11434, as shown in Figure 5.3.1 below. 

 

 

Figure 5.3.1 Ollama Local Server 
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5.3.2 Pulling the Required Model 

 

The next step involves pulling the desired model. In this case, the gemma:1b model is 

downloaded using Ollama’s CLI. This model is selected for its balance between 

performance and resource usage, making it suitable for real-time traffic analysis in 

environments with limited hardware. After installation, the model is loaded into 

memory and ready to respond to inference requests sent via HTTP as depicted in Figure 

5.3.2 and Figure 5.3.3. 

 

 

Figure 5.3.2 Running LLM Hosted via Ollama 

 

 

Figure 5.3.3 Interaction with LLM via HTTP 

 

5.3.3 Configuring the Environment for LLM 

 

To enable smooth integration between the LLM engine and the backend system, several 

environment variables must be defined and loaded at runtime. These values are stored 

in a .env file located in the project directory, similar to the other modules.  
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The key variables include: 

 

• LLM_MODEL_NAME: Specifies the model identifier (gemma:1b). 

• OLLAMA_BASE_URL: URL of the Ollama server (http://localhost:11434). 

• LLM_BATCH_SIZE: Number of flows per analysis batch. 

• LLM_MAX_QUEUE_SIZE: Maximum number of flows in the queue. 

• LLM_PROCESSING_INTERVAL: Interval (in seconds) for checking and 

processing flow batches. 

 

These variables are loaded at application startup using the python-dotenv library. 

Proper configuration ensures that the system communicates correctly with the Ollama 

server and that flow data is processed efficiently in batches.  

 

5.3.4 Initialising the LLM Detection Engine 

 

The backend includes a module named LLM Detection Engine (defined in 

llm_detection.py), which is responsible for managing LLM-related operations. Upon 

system startup, this engine is initialised using the values loaded from the .env file. It 

creates a queue for incoming flow data, starts a separate processing thread, and 

continuously monitors the queue size and timing conditions. When either the batch size 

is reached or the interval expires, the engine prepares the data and sends a structured 

prompt to the LLM. 

 

5.3.5 Implementing the RAG Mechanism 

 

To improve the model’s factual grounding and decision-making, Retrieval-Augmented 

Generation (RAG) is introduced. RAG allows the LLM to retrieve relevant documents 

or facts from an external knowledge base before generating a response. In this system, 

a lightweight vector store is used to index a curated set of known threat descriptions, 

signatures, and tactics (e.g. DoS, brute force, reconnaissance), as well as normal 

network behaviours to prevent false positives. 
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When a batch of flows is submitted for LLM analysis, the system extracts key tokens, 

which are used to perform a similarity search against the local knowledge base using 

cosine similarity or other embedding techniques. The top-matching documents are 

appended to the prompt sent to the LLM. This enriches the context of the query and 

guides the model toward more accurate, explainable, and relevant outputs. 

 

5.3.6 Formatting and Sending Network Flow Data 

 

The system captures and summarises network flow data through the traffic analyser 

module. This summarised data is then formatted into a natural language prompt, which 

includes key flow features such as IP addresses, ports, protocol type, packet count, byte 

volume, and duration. This prompt is sent to Ollama via an HTTP POST request to the 

/api/generate endpoint. The model analyses the flows in context and returns a JSON-

like list of potential security alerts with confidence scores and descriptions. 

 

5.3.7 Handling and Logging AI-Generated Alerts 

 

The system processes the model’s response, filtering out low-confidence or malformed 

entries. Valid alerts are converted into the standard format used across the system and 

passed to the alert management pipeline. These alerts are recorded in the local database 

and also synchronised to the blockchain via the BlockchainLogger (in 

blockchain_logger.py). This ensures that AI-generated detections are traceable, tamper-

proof, and visible to the frontend dashboard. 

 

Similar to the other modules, this module adopts a .env file to store all environment-

specific variables. This approach allows the application to access key configuration 

values dynamically without hardcoding them into the source code. Environment 

variables related to the LLM include the model name to be used, the base URL of the 

Ollama server, the batch size for LLM processing, the maximum size of the flow queue, 

the interval for batch processing. 

 

Specifically, the variable LLM_MODEL_NAME is set to define which model Ollama 

should serve for inference. In this system, the value is set as gemma:1b, indicating the 

use of the lightweight model, which balances accuracy and processing speed. The 
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OLLAMA_BASE_URL variable typically points to http://localhost:11434, which is 

the default local address where the Ollama server listens for API requests. This ensures 

that all LLM operations are performed locally without any external network 

dependency, improving both performance and data security. 

 

The LLM_BATCH_SIZE and LLM_MAX_QUEUE_SIZE variables define how many 

network flows should be collected before they are sent to the LLM for analysis, and 

how many flows can be queued at any time, respectively. These parameters are crucial 

for balancing responsiveness with efficiency, especially during periods of high traffic. 

The LLM_PROCESSING_INTERVAL defines how often the system checks whether 

the queue has enough data to trigger a batch analysis, allowing timely detection without 

overwhelming system resources. 
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5.4 Backend Services Implementation 

 

The backend services form the core logic and orchestration layer of the intrusion 

detection system, managing packet capture, flow analysis, signature-based detection, 

alert handling, and frontend communication. Built using Python 3.12.5, the backend is 

designed to be modular, multi-threaded, and capable of handling real-time network 

data. This section details the implementation steps and essential components required 

to set up the backend services for the system to operate effectively. 

 

5.4.1 Setting Up the Flask Web Framework 

 

The entire backend is structured around the Flask microframework, a lightweight web 

framework written in Python. Flask provides the RESTful API interface that allows the 

frontend to interact with the system, including issuing commands like starting or 

stopping packet capture, fetching flow and alert data, and monitoring system status. 

Flask is selected for its simplicity, scalability, and ease of integration with Python-based 

services. It supports modular routing and JSON response handling, which are critical 

for maintaining a clean interface between backend logic and the web frontend. 

 

5.4.2 Setting Up the Flask Web Framework 

 

To set up Flask, the application structure is defined in a single entry point (app.py), 

where routes are declared, and controllers are mapped to their respective services. 

Flask’s built-in development server is sufficient for the system’s local use case, and the 

server is configured to run on all network interfaces (0.0.0.0) to support remote frontend 

access within a controlled environment. 

 

5.4.3 Initialising Packet Capture with Scapy 

 

At the foundation of the intrusion detection system is the packet capture engine, 

responsible for capturing live network traffic from a specified interface. This 

functionality is implemented using Scapy, a powerful Python library for packet 

manipulation and analysis. Scapy supports low-level packet sniffing with the ability to 

filter, dissect, and decode network protocols. 
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To initialise packet capture, the system first queries all available network interfaces and 

allows the user to select one. Once selected, a dedicated thread is started to continuously 

sniff packets using Berkeley Packet Filter (BPF) syntax to reduce system load by 

capturing only relevant traffic (e.g. TCP, HTTP, or SSH). Each packet is timestamped 

and enqueued for further processing. Scapy’s direct access to the data link layer makes 

it suitable for real-time, low-latency capture, which is essential for timely intrusion 

detection. 

 

5.4.4 Configuring the Packet Processing Queue 

 

To manage the flow of incoming packets, a multi-threaded queuing system is 

implemented using Python’s queue and threading modules. Captured packets are added 

to a thread-safe queue with a defined maximum size to prevent memory overflow. 

Another dedicated thread retrieves packets from the queue in configurable batches and 

forwards them to the traffic analyser for further inspection. 

 

This batching mechanism is critical for maintaining system responsiveness, especially 

under high traffic conditions. It decouples packet acquisition from processing, 

preventing packet loss due to temporary analysis delays. The backend also monitors the 

queue status to track dropped packets and logs warnings when the queue approaches its 

maximum capacity. 

 

5.4.5 Implementing Flow-Based Traffic Analysis 

 

The traffic analysis engine serves to aggregate individual packets into network flows, 

which are groups of packets sharing the same five-tuple: source IP, destination IP, 

source port, destination port, and protocol. The flow-based design allows the system to 

evaluate behavioural patterns rather than individual packets, increasing detection 

accuracy. 

 

The analyser keeps a dictionary of active flows, updating their statistics, such as total 

packets, total bytes, session duration, and TCP flag distributions, with each new packet. 

It also handles flow timeout logic to remove inactive sessions, maintaining a 

manageable memory footprint. This component is essential for supporting both rule-



Chapter 5 System Implementation 

Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 109 

based and AI-based detection engines, as they rely on complete flow summaries rather 

than isolated packets. 

 

5.4.6 Integrating the Signature-Based Detection Engine 

 

The signature-based engine is responsible for detecting known attack patterns using 

predefined rules. This component is implemented through a combination of a Signature 

Manager and a Signature Detection module. The rules are stored in a structured JSON 

file (signatures.json) and loaded during system initialisation. Each rule specifies 

matching criteria such as IP addresses, ports, protocol types, payload content, TCP flag 

combinations, and rate limits. 

 

When a new flow is analysed, it is compared against the loaded signatures using the 

Signature Detection engine. Matching flows trigger alerts, which are then passed to the 

alert management pipeline. This module offers fast and deterministic detection of 

common threats like SYN floods, SSH brute force attempts, and SQL injections, 

ensuring the system can respond to known vulnerabilities with high confidence. 

 

5.4.7 Managing Alerts and Local Storage 

 

Once an alert is triggered, either by the signature engine or other modules, it is stored 

locally in an SQLite database. SQLite is chosen for its simplicity, portability, and 

seamless integration with Python. The alert table schema captures all relevant metadata, 

including timestamp, severity, category, flow identifier, and detection source. This data 

is not only used for blockchain synchronisation but also displayed on the frontend 

dashboard for real-time monitoring. 

 

In addition to storing alerts, the system maintains an alert history in memory, enabling 

fast access to recent alerts without the overhead of repeated database queries. This 

hybrid model of in-memory caching and persistent storage ensures a balance between 

performance and durability. 
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5.4.8 Configuring the Environment for Backend Services 

 

To maintain a clean separation between code and configuration, the system uses the 

python-dotenv library to load environment variables from a .env file. This file contains 

critical settings such as interface names, logging options, packet filter strings, and 

various module-specific parameters. At runtime, these variables are imported and 

applied to the relevant system components, allowing flexible reconfiguration without 

modifying source files. 

 

5.4.9 Enabling Cross-Origin Requests and Frontend Communication 

 

To allow the web-based frontend to interact with the backend services, Cross-Origin 

Resource Sharing (CORS) is enabled using the flask_cors extension. This is necessary 

because browsers enforce the same-origin policy, which blocks frontend applications 

served from different origins from making requests to the backend API. 

 

By enabling CORS, the frontend, developed using HTML, JavaScript, and CSS, can 

securely access backend routes to fetch live flow data, view alerts, and control system 

operations such as starting or stopping the capture engine. This forms the bridge 

between the backend logic and the user interface, ensuring real-time visibility and 

control over the intrusion detection process. 
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5.5 Frontend and UI Implementation 

 

The frontend of the intrusion detection system provides a visual interface through which 

users can interact with backend services, monitor network flows, view intrusion alerts, 

and track system health. It is built using standard web technologies: HTML, CSS, and 

JavaScript, and rendered in a modern browser such as Google Chrome. The frontend 

communicates with the backend via RESTful API calls, allowing real-time data 

retrieval and dynamic updates. This section outlines the implementation steps required 

to set up and operate the frontend interface, which is an essential part of system usability 

and user experience. 

 

5.5.1 Setting Up the Project Structure 

 

The frontend is deployed as a web application and organised into three core files: 

index.html, styles.css, and app.js. These files are placed inside the frontend/ directory 

of the Flask project, which is automatically served when the Flask application is 

running. The index.html file defines the structure of the user interface, including 

navigational components, content sections, data tables, and interactive buttons. This file 

acts as the entry point for the entire frontend application. 

 

The project structure is designed to separate content (HTML), styling (CSS), and 

behaviour (JavaScript), which aligns with standard web development best practices. 

This separation makes the interface easier to maintain, extend, and debug. 

 

5.5.2 Designing the User Interface with HTML 

 

HTML (HyperText Markup Language) is used to define the layout and content of the 

user interface. The index.html file includes key sections such as the Dashboard, Active 

Flows, Alerts, Signatures, System Status, and Settings. Each section is embedded 

within its own <section> tag and styled for visibility control using CSS classes. 

 

HTML elements such as tables, buttons, drop-down menus, and sidebars are structured 

to provide the user with an intuitive, single-page experience. Each interface element is 

linked to specific JavaScript logic that handles data updates, user input, and server 
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communication using dedicated IDs. The HTML design also includes a navigation 

sidebar that allows users to switch between sections quickly. 

 

5.5.3 Styling the Interface with CSS 

 

CSS (Cascading Style Sheets) is used to style the interface and improve its readability, 

accessibility, and overall user experience. The stylesheet styles.css defines the colour 

scheme, typography, layout behaviour, and responsive design features of the 

application. The system adopts a dark theme, using colours such as dark grey 

backgrounds and contrasting light-coloured, neon text and icons to reduce visual strain 

and align with modern UI trends. 

 

Styling rules are defined for every major interface component, including summary 

cards, alert tables, flow panels, navigation menus, and buttons. Specific styles are also 

applied to severity badges, status indicators, and notification banners, providing clear 

visual cues about system state and alert criticality. CSS classes like “.status-running”, 

“.severity-critical”, and “.alert-detail-content” are used to dynamically reflect the status 

of system events and intrusion detections. 

 

5.5.4 Enabling Interactivity with JavaScript 

 

JavaScript is used to handle interactivity, fetch dynamic data, and update the interface 

in real-time. The core logic resides in the app.js file, which is responsible for sending 

API requests to the backend, processing responses, and updating the DOM (Document 

Object Model) accordingly. It uses asynchronous functions to fetch data from endpoints 

such as /api/status, /api/flows, and /api/alerts. 

 

JavaScript functions manage key UI features, including starting and stopping packet 

capture, rendering real-time statistics, populating flow and alert tables, displaying alert 

details, and toggling system modules. The script also includes state management for 

runtime tracking of metrics like packet count, active flows, and alert volume, providing 

users with immediate feedback on system behaviour. Event listeners are assigned to 

buttons and selectors to handle user actions, such as refreshing data, searching flows, 

or filtering alerts. 
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5.5.5 Creating Real-Time Data Visualisation and Feedback 

 

To provide timely insights into system performance, the frontend includes real-time 

dashboards with visual elements such as summary cards, alert counters, and activity 

graphs. These components are updated through periodic JavaScript polling that calls 

backend APIs at regular intervals (possible to be defined to respond within milliseconds 

if the system resource suffices). 

 

Additionally, the system includes a notification mechanism that shows temporary alerts 

and status updates (e.g., “Packet Capture Started”, “LLM Detection Running”) using 

animated banners. These enhance user awareness and improve feedback during system 

interaction. The visual design is carefully aligned with backend status responses to 

ensure consistency between the system’s state and its UI representation. 

 

5.5.6 Managing Responsive Design and Browser Compatibility 

 

To ensure accessibility across different devices and screen sizes, the frontend is 

designed using responsive CSS techniques such as media queries and flexible grid 

layouts. This enables the interface to scale and adapt on desktops, laptops, and tablets. 

Components such as the navigation menu, data tables, and control panels are optimised 

to reposition or resize themselves based on the browser window dimensions. 

 

Additionally, the frontend is tested on modern browsers like Google Chrome, which 

fully supports ECMAScript 6 (JavaScript ES6) features used in the app.js script. 

Browser compatibility testing ensures consistent behaviour across systems and avoids 

rendering issues or JavaScript errors that could impact user interaction. 

 

5.5.7 Linking Frontend to Backend Services 

 

The frontend connects to the backend using a set of predefined API endpoints, 

configured in JavaScript as base URLs. These endpoints correspond to Flask routes and 

handle operations such as starting/stopping capture, retrieving flow and alert data, 

checking system status, and managing settings. All data is exchanged in JSON format 

to maintain a lightweight and structured communication pattern. 
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Each component of the UI is linked to its respective API. For example, the “Start 

Capture” button sends a POST request to /api/start, while the “Alerts” tab fetches 

updated alerts from /api/alerts. This integration ensures the frontend remains 

synchronised with the backend, delivering a real-time and interactive experience. 
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5.6 System Operation 

 

This section describes how the system functions after successful deployment. It 

explains the sequence of operations from packet capture to flow analysis, threat 

detection, alert generation, and blockchain logging. The section also highlights how the 

system components interact in real time and how users can monitor and manage alerts 

through the web-based interface. The aim is to demonstrate the complete operational 

workflow of the system in a typical usage scenario. 

 

5.6.1 System Launch and Dashboard Overview 

 

After a successful deployment, the system is initiated through the Flask framework 

using the flask run command within the virtual environment. Upon execution, all core 

modules, including signature-based detection, LLM-based analysis, and blockchain 

logging are automatically loaded and validated. As illustrated in Figure 5.6.1, the 

operational workflow proceeds in the following sequential order. 

 

1. Signature Engine Initialisation 

The system begins by loading predefined intrusion detection signatures from the 

signatures/signatures.json file. These rules are parsed and stored within the signature 

manager for real-time use during packet inspection. 

 

2. Database Verification and Setup 

A local SQLite database is checked for existence. If already present, it is opened and 

verified; otherwise, it is created along with the necessary schema for alert storage. 

 

3. Blockchain Contract Binding 

The deployed smart contract is accessed at its designated address on the Ganache 

blockchain. The ABI is loaded and parsed to allow secure interactions with the 

contract’s logAlert and getAlert functions. 
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4. Blockchain Sync Check 

A backward synchronisation is attempted by reading all historical AlertLogged events 

from the blockchain, starting from block 0. If no prior events are found, the system 

proceeds with live monitoring. 

 

5. LLM Server and Model Validation 

The system confirms that the Ollama server is online and that the specified LLM model 

(gemma3:1b) is available. The LLM Detection Engine is then activated and set to 

continuously analyse batched flows for AI-based threat classification. 

 

6. Component Activation 

Finally, the blockchain logger is launched with its scheduled sync interval, and the 

system enters standby mode awaiting packet capture activation. 

 

 

Figure 5.6.1 System Logs Showing Successful System Launch 

 

Users interact with the system primarily through a web-based interface designed with 

real-time responsiveness in mind. Upon launching the system and accessing the 

dashboard, users can initiate packet capture by selecting a network interface and 

clicking the “Start Capture” button. The Dashboard depicted in Figure 5.6.2 provides a 

comprehensive overview of packet count, active flows, and alerts detected, blockchain 

sync statistics (e.g., number of alerts pushed on-chain), visual analytics such as network 

activity and alert distribution. Detailed records of alerts are also shown in the “Recent 

Alerts” section, including time, severity, source/destination IP, and blockchain sync 

status. 
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Figure 5.6.2 Idle System Dashboard 

 

Users are also able to access other sections including: 

 

• Active Flows: For viewing ongoing network communications 

• Alerts:  For reviewing historical and live detections 

• Signatures: For managing detection rules 

• System Status: For monitoring LLM and blockchain module health 

• Settings: To configure operational parameters 

 

5.6.2 Network Interface Selection and Packet Capture Start 

 

Following system initialisation, users are required to configure the packet capture 

settings before initiating live network monitoring. This process involves selecting an 

appropriate network interface, applying optional filters, and activating the packet 

capture engine. 

 

The system provides a list of all available network interfaces detected on the host 

machine. These interfaces are presented in a dropdown menu within the “Packet 

Capture Settings” section of the System Settings tab. Typical options include wired 

connections (e.g., “Ethernet”), wireless interfaces (e.g., “WiFi”), and virtual adapters 

(e.g., “VMware Network Adapter”). 
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As shown in Figure 5.6.3, users are expected to choose an interface corresponding to 

the primary network environment where intrusion detection is intended. This selection 

is essential as it defines the source of packet input for the system. 

 

 

Figure 5.6.3 Network Interface Selection 

 

Once the network interface is selected, users may optionally define a Berkeley Packet 

Filter (BPF) expression. This filter allows targeted packet capture based on specific 

protocols, ports, or IP addresses (e.g., tcp port 80 or host 192.168.1.1). Filtering reduces 

system load by capturing only relevant traffic. 

 

Additionally, users may specify a file path for saving captured packet logs for post-

analysis. This setting is optional and primarily used in audit or research-focused 

deployments. The full packet capture settings are shown in Figure 5.6.4. 
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Figure 5.6.4 Configured Packet Capture Settings 

 

With the configuration complete, users initiate monitoring by clicking the “Start 

Capture” button on the top right of the dashboard. This triggers the 

NetworkPacketCapture module, which begins sniffing live packets using Scapy. 

Captured packets are placed into a queue and processed in real time by the traffic 

analyser. The active dashboard view is presented in Figure 5.6.5. 

 

A status indicator at the bottom-left corner updates to “Running”, confirming successful 

activation. Simultaneously, dashboard counters begin incrementing, reflecting live 

statistics: 

 

• Packet Capture: Number of packets ingested 

• Active Flows: Number of unique network flows detected 

• Alerts: Number of threats identified 

• Blockchain: Number of alerts successfully synced on-chain 

 

Captured data is visualised through two main dashboards: 

 

• Network Activity: Real-time graph of packet and byte rates 

• Alert Distribution: Pie chart showing severity breakdown of detected threats 
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Figure 5.6.5 Dashboard View During Active Capture Session 

 

5.6.3 Active Network Flows Monitoring 

 

Upon the successful initiation of packet capture, the system begins analysing and 

aggregating packets into flow records. These active network flows represent ongoing 

communications between source and destination endpoints, including key statistical 

and protocol-level insights. 

 

As mentioned in the previous section, the system employs a flow-based traffic analysis 

approach, where each flow is identified based on five-tuple parameters: 

 

• Source IP address 

• Destination IP address 

• Source port 

• Destination port 

• Protocol (TCP, UDP, ARP, etc.) 

 

As packets are received, they are dissected using Scapy and matched against existing 

flows. If a new combination is encountered, a new flow record is created. Each flow is 

continuously updated with metadata, including packet count, byte size, duration, TCP 

flag history, and protocol-specific metrics. 
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The Active Network Flows section presents all currently active flows in a structured 

and sortable table format. Each row corresponds to a unique flow and includes the 

following columns: 

 

• Flow index 

• Protocol type (TCP, UDP, ARP) 

• Source and destination IP:port pairs 

• Inferred service (e.g., HTTPS, TCP, ARP) 

• Info summary, including TCP flags such as SYN, ACK, PSH 

• Total packets and bytes observed 

• Flow duration in seconds 

 

This view updates in near real-time, enabling users to observe live traffic patterns across 

the monitored network. The refresh mechanism ensures that stale flows are pruned 

based on inactivity thresholds defined in the system configuration.  

 

To support large-volume traffic environments, the flow monitoring table includes 

filtering tools: 

 

• Protocol filter (e.g., only show TCP or UDP flows) 

• Search bar (filter by IP address or port) 

• Refresh button to manually pull the latest updates 

 

These tools ensure users can quickly locate flows of interest without being 

overwhelmed by background traffic. The complete active network flows view is 

presented in Figure 5.6.6 below. 
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Figure 5.6.6 Active Network Flow Interface 

 

5.6.4 Intrusion Alerts List 

 

The Intrusion Alerts List serves as the central hub for reviewing all security alerts 

generated by the system. These alerts are the direct result of real-time analysis 

conducted by both the signature-based engine and the LLM-based detection module. 

This section offers security operators and users immediate visibility into ongoing or 

historical intrusion attempts. 

 

As presented in Figure 5.6.7, the Alerts tab displays all alerts in a searchable, filterable, 

and scrollable table format. Filtering is available through dropdown selectors for 

Severity and Source, allowing users to narrow down threats by impact level or origin. 

Each row in the alerts table represents one unique alert event, enriched with the 

following metadata: 

 

• Time: Timestamp of detection 

• Alert Name: Descriptive title of the threat (e.g., “SQL Injection Attempt”) 

• Severity: Visual badge denoting threat level (Low, Medium, High, Critical) 

• Category: Classification of attack (e.g., web-attack, brute force) 

• Source/Destination: IP addresses and optionally ports 

• Protocol: Traffic type (TCP, UDP, ICMP) 

• Blockchain Status: Icon indicating whether the alert has been synced to the 

blockchain  
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Alerts are listed in descending chronological order, ensuring the most recent and 

potentially relevant threats are always visible at the top. Besides, each alert is colour-

coded by severity to provide immediate prioritisation: 

 

• Red (Critical): Requires immediate investigation (e.g., confirmed exploit attempts) 

• Orange (High): Indicative of active probing or brute-force 

• Yellow (Medium): Suspicious behaviour, often repetitive or misconfigured traffic 

• Blue/Grey (Low): Low-risk anomalies or unknown patterns flagged by LLM 

 

 

Figure 5.6.7 Intrusion Detection Alerts Table 

 

5.6.5 Signatures List 

 

The Signatures List provides a comprehensive and transparent overview of all active 

detection rules used by the Intrusion Detection System. These signatures form the 

foundation of the system’s rule-based detection engine, enabling rapid identification of 

known attack behaviours in real-time traffic analysis. 
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Each signature rule is designed to match specific packet or flow characteristics 

associated with malicious activity. The detection engine uses these rules to evaluate 

incoming traffic against: 

 

• Protocol type (e.g., TCP, UDP, ICMP) 

• TCP flag combinations 

• Rate thresholds and frequency 

• Payload content or regex pattern 

• Port targeting or destination address 

 

Each signature entry in the interface includes the following key attributes: 

 

• ID: Unique identifier for tracking and alerting (e.g., 1001) 

• Name: Descriptive label of the attack (e.g., “TCP SYN Flood Detection”) 

• Category: Classification (e.g., dos, web-attack, bruteforce) 

• Severity: Impact level (e.g., HIGH, MEDIUM, CRITICAL) 

• Match Type: Mechanism used for detection (e.g., Threshold, Regex, TCP Flags) 

• Action: Operation performed when matched (typically an alert) 

• Status: Whether the rule is currently active or disabled 

 

The user interface allows filtering by attack category (e.g., DoS, web attack) and 

supports keyword-based searching. This helps security operators quickly locate rules 

relevant to specific threat types or network environments. 

 

All signatures shown in the interface (Figure 5.6.8) are loaded from the signatures.json 

file upon system start-up. This file is parsed by the SignatureManager component, 

which indexes rules by protocol and category for fast access during packet inspection.  
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Figure 5.6.8 Attack Signatures Table 

 

5.6.6 Blockchain Status and Synced Alerts 

 

To ensure integrity, traceability, and tamper resistance of security alerts, the system 

integrates a smart contract-based blockchain logging mechanism. This subsystem 

records validated alerts on an Ethereum-compatible blockchain (e.g. Ganache) and 

displays the status of all sync activities within the user interface. 

 

Upon system launch, the BlockchainLogger module performs the following sequence: 

 

• Smart Contract Binding: The system connects to a local Ganache node using the 

configured GANACHE_URL in .env and binds to the deployed smart contract 

address. 

• Historical Event Sync: It scans from the genesis block (block 0) to retrieve past 

AlertLogged events and stores them locally, avoiding duplication during future 

syncs. 

• Real-Time Logging: As new alerts are generated, either by signature or LLM, they 

are queued and periodically pushed to the blockchain at fixed intervals or 

immediately. 

  



Chapter 5 System Implementation 

Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 126 

The details of each transaction are displayed in the Ganache dashboard as shown in 

Figure 5.6.9. 

 

 

Figure 5.6.9 Ganache Blockchain Dashboard 

 

The backend console logs provide continuous status updates. Upon launching the 

system, the blockchain logger confirms contract binding, begins syncing from the 

blockchain, and reports the total number of events processed. Each synced alert is 

shown with its block and transaction hash for reference. 

 

In this example presented in Figure 5.6.10 and Figure 5.6.11, the system successfully 

processed and verified 43 historical alert events across multiple blocks. 
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Figure 5.6.10 Syncing of Historical Blockchain Alert Logs 

 

Figure 5.6.11 Final Blockchain Status 

 

If no new alerts are queued for logging, the system continues monitoring and reports 

that there are no alerts to be synchronised to the blockchain network. Similarly, if the 

local alerts database is already up to date with the blockchain, the system will proceed 

with the next stage of initialisation. 
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5.6.7 System Status 

 

The System Status page provides a consolidated real-time view of all critical 

components in the Blockchain-Based IDS with AI. It allows users to monitor 

operational states, component health, traffic activity, resource usage, and historical 

system logs from a single interface. The page is divided into several key panels that 

report on distinct subsystems, as shown in Figure 5.6.12. 

 

 

Figure 5.6.12 System Status Dashboard 

 

The packet capture panel presents detailed metadata regarding ongoing traffic 

monitoring. It shows the current capture status, including whether the system is actively 

sniffing packets. The selected network interface (e.g., WiFi) is displayed, along with 

any applied BPF. Users can also view the total number of packets captured and the time 

elapsed since the capture session started. This information collectively helps users 

confirm that the system is monitoring the correct segment of the network and receiving 

continuous traffic. 

 

The LLM Detection panel monitors the state of the AI-enhanced threat detection 

engine. It reports whether the engine is running and connected to the Ollama API, and 

displays the currently selected model (e.g., gemma3:1b). It also tracks the number of 

network flows analysed and the total alerts generated by the LLM module. This section 

allows users to verify that AI-based detection is functioning and contributing to the 

system’s overall threat visibility. 
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The blockchain status panel displays the current state of the on-chain alert logging 

system. It confirms whether the blockchain logger is active and connected to the local 

node (e.g., http://127.0.0.1:7545). It also shows the smart contract address in use and 

the number of alerts that have been successfully synchronised to the blockchain. The 

timestamp of the most recent sync is also recorded. This panel assures users that alert 

events are being stored immutably and can be audited for integrity at any time. 

 

The system resources section is designed to display runtime health metrics such as CPU 

usage, memory consumption, and system uptime. They are intended to ensure that the 

IDS operates within safe resource thresholds and does not overload the host machine. 

 

At the bottom of the interface, the system logs panel provides real-time access to 

backend activity logs. These logs capture key events including packet capture start and 

stop commands, alert generation entries with timestamps and descriptions, analysis 

results from the signature and LLM engines, and blockchain synchronisation events. 

The logs are essential for post-incident analysis, system debugging, and validating 

correct operation across all detection layers. 

 

In a practical usage scenario, this dashboard enables operators to identify and resolve 

system issues quickly. For example, if packet capture is active but no alerts are being 

triggered, the operator can verify whether traffic is being received by observing the 

packet count, check that the LLM module is connected and analysing flows, and 

confirm that the blockchain logger is running. This unified overview reduces 

troubleshooting time and supports more effective system management. 

 

5.6.8 System Settings 

 

The System Settings interface provides a unified control panel for configuring all core 

modules of the Blockchain-Based Intrusion Detection System. It allows users to 

customise operational parameters across packet capture, LLM detection, blockchain 

logging, and user interface behaviour. These settings are designed to enhance flexibility 

while ensuring that the system can be adapted to different deployment environments 

without modifying the underlying source code. 
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In the Packet Capture Settings section, users can select the network interface from a list 

of all interfaces detected on the host system. This selection defines the entry point for 

packet sniffing and is essential for aligning the system with the correct traffic source. 

Additionally, users can optionally enter a BPF expression to narrow the scope of 

captured traffic. This feature is particularly useful in high-traffic environments where 

filtering by port, protocol, or host can significantly reduce processing overhead. An 

input field is also provided for specifying a local path to store captured packet logs, 

which supports offline forensic analysis or compliance record-keeping. 

 

The LLM Detection Settings panel allows configuration of the AI-based flow analysis 

engine. Users can choose from available models registered on the local Ollama server, 

such as gemma3:1b, and define the batch size, which determines how many flows are 

processed together per inference cycle. Two control buttons allow operators to start or 

stop the LLM engine as needed and to execute a test request for verifying the model’s 

availability and behaviour prior to live deployment. This modular design ensures the 

LLM engine can be calibrated and validated without restarting the entire system. 

 

The Blockchain Settings section provides inputs for managing the secure alert logging 

mechanism. Users can view and modify the blockchain node URL, which connects the 

system to a local Ethereum blockchain via Ganache. The address of the deployed smart 

contract is displayed for transparency, ensuring that all alerts are written to the intended 

ledger. Furthermore, the sync interval is configurable, allowing users to define how 

frequently alerts are batched and sent to the blockchain in seconds (with 0 indicating 

immediate sync). Control buttons also allow users to stop blockchain logging or force 

a manual sync, providing administrative flexibility for real-time verification or during 

testing scenarios. 

 

Lastly, the User Interface Settings section enables personalisation of the dashboard 

appearance and update frequency. Users can toggle between a dark or light theme 

depending on their viewing preference and define how frequently the UI refreshes its 

data from the backend. This supports both aesthetic comfort and efficient dashboard 

performance, particularly when monitoring in real-time. Figure 5.16.13 below shows 

the System Settings Interface. 
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Figure 5.6.13 System Settings Interface 

 

5.6.9 Shutdown Status 

 

The shutdown sequence of the system is designed to ensure a clean and consistent 

termination of all active components, while preserving data integrity and completing 

any remaining critical operations. When the user initiates shutdown, either by stopping 

packet capture or terminating the Flask server, the system triggers a structured series of 

actions to gracefully bring all modules offline rather than killing the processes abruptly. 

 

During the shutdown process, the system first checks if there are any remaining alerts 

in the local buffer that have not yet been written to the blockchain. If any are found, the 

Blockchain Logger initiates an immediate final sync. This is typically triggered when 

the batch size threshold is reached or when the shutdown signal is received, prompting 

the system to flush outstanding alerts regardless of the scheduled sync interval. Each 

alert synced during shutdown is logged with its corresponding transaction hash, 

allowing operators to verify on-chain confirmation for every logged event. 

 

In the provided example in Figure 5.16.14, three alerts Alert 81, 82, and 83 were 

identified as pending and were successfully recorded on the blockchain. Each 

transaction hash is printed in the console log to confirm successful delivery. 

Additionally, each alert is also stored in the local database with descriptive labels, such 

as “Potential Data Exfiltration” or “Port Scan (TCP)”, indicating the nature of the 

detection as classified by the LLM Detection Engine. 
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Following alert logging, the system ensures that all remaining flow data is processed 

by the LLM engine. In this instance, 20 flows were analysed during the final cycle, 

yielding five additional alerts that were added to the system’s alert history. This process 

ensures that no relevant threat information is lost due to premature termination. Once 

the LLM engine completes its final analysis and updates the database, it is shut down 

in a controlled manner, followed by the Blockchain Logger, which releases the contract 

connection and closes any remaining blockchain-related resources. 

 

Finally, the system outputs a “Cleanup complete” message, signalling that all modules 

have been stopped, and all temporary or queued data has been cleared. This marks the 

end of the shutdown sequence, after which the user is returned to the command prompt, 

confirming that the system is no longer active and has been terminated safely. 

 

 

Figure 5.6.14 Console Output During System Shutdown 
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5.7 Implementation Challenges and Solutions 

 

The development of the project presented several implementation challenges across the 

domains of real-time packet processing, flow analysis accuracy, blockchain integration, 

and AI model responsiveness. This section outlines the key technical obstacles 

encountered during implementation and the solutions adopted to resolve them 

effectively. 

 

5.7.1 Managing Real-Time Network Traffic 

 

One of the primary challenges was managing the high throughput of real-time network 

traffic without causing packet loss or system overload. Packet capture, if not handled 

efficiently, could overwhelm system memory or CPU resources, especially under high-

speed traffic conditions. 

 

To address this, the system adopted a batch-based packet processing model with a 

bounded queue. This design helped to balance throughput and responsiveness by 

controlling how many packets were processed at once, while also logging queue 

overflows to track potential data loss. The processing time was optimised using 

dedicated threads for network traffic capturing and analyzing. 

 

5.7.2 Flow Assembly and Analysis 

 

Another challenge was the accurate and efficient extraction of network flows from 

diverse and sometimes fragmented packet data. Flow analysis required reliable 

dissection of protocol headers and payloads, along with maintaining temporal statistics 

such as packet rates and interarrival times.  

 

To resolve this, a custom flow key structure was implemented, which uniquely 

identified flows based on source/destination IPs, ports, and protocols. A flow timeout 

mechanism was also introduced to prune inactive flows and conserve system memory. 
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5.7.3 Blockchain Integration 

 

Integrating the alert system with a blockchain presented additional complexity. 

Logging alerts on-chain involved asynchronous communication with the Ethereum-

compatible node and smart contract interaction via Web3.py. Ensuring that alerts were 

not duplicated or lost during transmission required a batching and retry mechanism. 

 

The system addressed this by implementing a dedicated Blockchain Logger module 

that maintained a local alert buffer and periodically synced alerts to the smart contract. 

Each successful transaction was recorded with its hash, allowing for auditability and 

verification. 

 

5.7.4 LLM Integration 

 

The use of a local LLM model introduced further implementation challenges, 

particularly around response latency and integration reliability. In earlier iterations, the 

AI engine experienced delays when processing large batches of flows or when network 

communication with the Ollama server became unstable.  

 

To mitigate this, a smaller, quantised LLM model (gemma3:1b) was selected for faster 

inference. Additionally, error handling and connection retries were added to ensure the 

system could gracefully recover from temporary communication failures. 

 

5.7.5 Real-Time Frontend Components 

 

From a user interface perspective, designing a web dashboard that could handle real-

time updates without compromising performance was another key concern. Due to the 

huge amount of real-time data needed to be updated on the frontend GUI, handling of 

the update mechanism became essential and complex at the same time. 

 

This issue was addressed by implementing client-side refresh intervals and modular 

API endpoints that only fetched updated sections, reducing unnecessary data transfers. 

The UI was also made customisable to support dark/light themes and adjustable refresh 

rates, improving usability across different environments. 
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CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 

 

This chapter evaluates the performance and effectiveness of the implemented system 

through a series of structured tests. It begins by outlining the testing methodology, 

including objectives, setup, and procedures. The results of system functionality and 

performance testing are then presented and analysed. This is followed by a discussion 

on the interpretation of results, limitations encountered, and the validity of the 

evaluation. The chapter concludes with an assessment of how well the system meets 

the specified requirements, offering insight into the overall success and areas for 

improvement. 

 

6.1 Testing Methodology 

 

This section outlines the approach used to test the system’s functionality and 

performance. It describes the objectives of testing, the testing environment, and the 

procedures followed to verify that each component operates as intended. The 

methodology ensures that the system is evaluated in a consistent and controlled manner, 

providing reliable results for analysis in subsequent sections. 

 

6.1.1 Objectives of Testing 

 

The primary objective of testing in this project is to systematically evaluate the 

performance, functionality, and reliability of the project. The testing phase is essential 

not only to verify that each component of the system operates as intended but also to 

ensure that the integration of AI and blockchain contributes effectively to the 

overarching goals of threat detection, contextual analysis, and immutable alert logging. 

 

Evaluation of Threat Detection Effectiveness 

Firstly, the testing process aims to validate the system’s ability to accurately detect 

known and unknown cyber threats. This involves assessing the effectiveness of both 

the signature-based detection engine and the large language model (LLM) in identifying 

various attack patterns. The goal is to confirm that the system can achieve a detection 
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accuracy of at least 90% under simulated attack scenarios, using labelled datasets and 

structured ground truth comparisons. 

 

Assessment of Real-Time Processing Performance 

Secondly, the testing phase seeks to evaluate the real-time processing capabilities of the 

system. This includes measuring packet capture rates, flow analysis throughput, and the 

response latency of both detection engines. A key metric involves determining whether 

the system can handle a minimum of 1,000 flows per minute without significant 

performance degradation or loss of critical packets, especially during high-load 

conditions. 

 

Validation of Blockchain Alert Logging 

Thirdly, the testing objectives include verifying the integrity and trustworthiness of 

alert records stored on the blockchain. This requires checking that all alerts generated 

by the system are securely logged into the smart contract with accurate timestamping 

and correct metadata, ensuring immutability and tamper resistance. Additionally, tests 

will examine whether the system can synchronise alerts within a specified interval (e.g., 

every 5 seconds), meeting the target of 100% on-chain logging reliability. 

 

Integration and Communication Testing 

Another important objective is to assess the interoperability and coordination between 

system modules, including the backend services, detection engines, blockchain logger, 

and frontend interface. The testing ensures that communication across these 

components is consistent, and that the frontend reflects real-time system status, alerts, 

and analytics without lag or data mismatch. 
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6.1.2 Test Setup 

 

The testing of the Blockchain-Based Intrusion Detection System with Artificial 

Intelligence was conducted in a controlled local network environment to simulate real-

world traffic and attack scenarios. The system was deployed on a single machine 

running Windows 11 Home 23H2 with the following specifications as outlined in Table 

6.1.1. 

 

Component Specification 

Processor AMD Ryzen 7 5800H with Radeon Graphics 3.20 GHz 

Operating System Windows 11 Home 

Graphic NVIDIA GeForce GTX 1650 

Memory 16GB DDR4 RAM 

Hard Drive Samsung MZALQ512HBLU-00BL2 SSD 512GB 

Random-Access Memory Samsung M471A1G44AB0-CWE 8GB,  

Kingston 9905700-118.A00G 8GB 

Network Interface Card MediaTek Wi-Fi 6 MT7921 Wireless LAN Card,  

Realtek PCIe GbE Family Controller  

LLM gemma3:1b 

LLM Server Ollama 0.6.6 

Brower Interface 135.0.7049.116 (Official Build) (64-bit) 

Blockchain Ganache 2.7.1 on HTTP://0.0.0.0:7545 

 

Table 6.1.1 Component Specification for Test Setup 

 

The evaluation was guided by several performance metrics, which are summarised in 

the following Table 6.1.2 with the relevant functional and non-functional requirements 

mapped. However, the detailed evaluation of whether the system meets all the 

functional as well as non-functional requirements will be tested and discussed in 

Chapter 6.2. 
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Metric Description Target / 

Baseline 

Mapped 

Requirement(s) 

Detection Accuracy (%) Percentage of correctly detected 

threats compared to total known 

attacks 

≥ 90% FR5, FR6, FR8, 

NFR2, NFR10 

False Positive Rate (%) Proportion of benign traffic 

incorrectly classified as threats 

≤ 5% FR5, FR8, NFR11 

Precision Proportion of correctly identified 

threats out of all generated alerts 

≥ 90% FR6, FR8, NFR10 

Recall Proportion of detected threats out 

of all actual attack instances 

≥ 90% FR6, FR8, NFR10 

F1-Score Harmonic mean of precision and 

recall, indicating balance between 

them  

≥ 90% FR6, FR8, NFR10 

Packet Processing Rate 

(pps) 

Number of packets processed per 

second without packet loss 

≥ 100 pps FR1, NFR1, NFR3 

Flow Analysis Rate 

(fpm) 

Number of flows analysed and 

summarised per minute 

≥ 1000 fpm FR3, FR4, NFR1 

System Initialisation 

Time 

Time taken for all system 

components to become ready for 

operation 

≤ 10 

seconds 

NFR4 

Alert Response Time (s) Time from flow arrival to alert 

generation and logging (LLM or 

signature engine) 

≤ 5 seconds FR6, FR8, FR9, 

NFR1 

Blockchain Logging 

Accuracy 

Percentage of valid alerts 

successfully logged onto the 

blockchain 

100% FR9, FR10, NFR6 

Blockchain Sync Interval 

(s) 

Time interval in which unsent 

alerts are synchronised in batches 

to the blockchain 

≤ 60 

seconds 

FR10, NFR6 

Dashboard Update 

Interval (s) 

Frequency of refreshing visual 

data such as alerts, flows, and stats 

1 – 5 

seconds 

FR11, FR14, 

NFR5 

System Latency (ms) Delay introduced by the IDS 

pipeline from packet capture to 

alert generation 

≤ 200 

milliseconds 

NFR1, NFR2 

CPU Utilisation (%) Average CPU usage while 

handling live traffic 

≤ 80% NFR1 

Dropped Packets (%) Percentage of packets missed due 

to queue overflow or system 

overload 

≤ 2% NFR3 
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User Interface 

Responsiveness 

Time for user interface to react to 

interactions such as start/stop, alert 

inspection, etc. 

≤ 1 second FR11, FR13, 

NFR7 

Error Feedback Quality Clarity and usefulness of system 

error or alert messages 

Meaningful 

and 

descriptive 

NFR8 

 

Table 6.1.2 System Performance Metrics 

 

The formulas for the evaluation metrics are shown below: 

 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝑹𝒂𝒕𝒆 (𝑭𝑷𝑹) =  
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

𝑹𝒆𝒄𝒂𝒍𝒍 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

𝑭𝟏 𝑺𝒄𝒐𝒓𝒆 =  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
× 2 

 

6.1.3 Test Procedures 

 

To assess the system’s performance under various network conditions, a custom, 

synthetic ground truth dataset consisting of 10,000 labelled records was used. This 

dataset included benign, abnormal, and malicious traffic. Benign flows represented 

everyday network activity such as normal web browsing and DNS queries, while 

malicious traffic simulated a wide range of cyber-attacks or anomalies as follows: 

 

1. TCP SYN flood 

2. SSH brute force attempt 

3. TCP port scan  

4. TCP RST flood 
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5. TCP NULL scan 

6. TCP FIN scan  

7. HTTP directory traversal attempt  

8. SQL injection attempt  

9. DNS amplification attack  

10. ICMP flood  

11. Cross-Site Scripting (XSS) attempt  

12. Command injection attempt  

13. Known exploits 

14. Abnormal network traffic 

 

To ensure consistency and fairness across test runs, the captured dataset was replayed 

using the traffic_replay.py script. This script injected traffic back into the system 

through a physically disconnected Ethernet interface, eliminating interference from 

unrelated network activity. This isolation guaranteed that only the traffic explicitly 

defined in the dataset was observed and analysed by the intrusion detection system. 

Unlike fixed-duration tests, each replay session ran until the entire dataset was fully 

processed, ensuring thorough system evaluation across all traffic scenarios. 

 

The system’s detection engine was configured to run both the signature-based module 

and the LLM-based module in parallel. During the replay, all alerts were logged using 

a unified alert logger that stored data in two formats: (1) a local CSV file for offline 

analysis and (2) a smart contract on a local Ethereum blockchain for tamper-proof 

auditability. This dual-recording approach provided strong assurance of data integrity 

and traceability, particularly for testing blockchain logging functionality. 

 

To validate the effectiveness of the IDS, an evaluation script performs a structured 

comparison between the alerts generated by the IDS and a labelled ground truth dataset. 

It matches alerts based on timestamp and IP address within a specified time window, 

enabling accurate mapping of detected events to their corresponding ground truth 

entries. The script then calculates key performance metrics including accuracy, 

precision, recall, F1-score, and false positive rate. It also generates a confusion matrix 

and visualises detection rates for each attack type. 
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All system activity, including flow count, packets per second, alerts generated, and 

blockchain sync status, was monitored in real time through a web-based dashboard. 

This dashboard served not only as a visual aid but also as a confirmation tool to verify 

the backend processes and identify any performance degradation or missed alerts during 

intensive simulations. 
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6.2 System Testing 

 

This section presents the practical testing phase of the project, detailing how the system 

was tested against various scenarios to evaluate its functionality and reliability. Using 

the test procedures defined in Chapter 6.1.3, this section documents the results of the 

testing in simulated network conditions, from both functional and non-functional point 

of views. 

 

6.2.1 Functional Testing 

 

Function testing was conducted to validate whether the developed system satisfies the 

functional requirements outlined during the design phase. The purpose of this testing is 

to ensure that each feature of the project operates correctly and reliably under expected 

conditions. Testing was performed in a controlled environment using the test 

procedures defined earlier. The result of the functional testing is summarised in Table 

6.2.1 below. 

 

Requirement ID Expected Result Actual Result Status 

FR1 System captures live packets on 

selected interface 

Packets were successfully 

captured via isolated Ethernet 

interface 

Passed 

FR2 Users can select an interface and 

apply BPF filters 

Interface dropdown and filter 

options worked correctly 

Passed 

FR3 Captured packets are converted 

into flows and updated in real-

time 

Active flows were accurately 

assembled and displayed 

Passed 

FR4 Flow statistics (packet count, byte 

size, duration) are correctly 

computed 

Statistics were correctly 

calculated and matched ground 

truth 

Passed 

FR5 Known attacks match signatures 

stored in JSON (e.g. SYN flood, 

port scan, XSS) 

Signature engine successfully 

detected and matched predefined 

attacks 

Passed 

FR6 Alerts are generated immediately 

upon matching a known signature 

Signature-based alerts were 

consistently triggered and 

recorded 

Passed 
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FR7 Suspicious flows are analysed by 

LLM via Ollama with context-

aware reasoning 

LLM processed replayed flows 

and generated valid analysis 

results 

Passed 

FR8 AI-generated alerts contain 

severity levels and appropriate 

classification 

LLM alerts included meaningful 

severity tags and were 

distinguishable from signature 

alerts 

Passed 

FR9 Alerts are logged to the 

blockchain smart contract with 

correct metadata 

Each alert entry was logged on-

chain and visible via contract 

event logs 

Passed 

FR10 Unsent alerts are synchronised in 

batches to blockchain 

Sync occurred correctly in 

periodic batches as configured 

Passed 

FR11 Web interface displays active 

flows, alerts, and real-time system 

status 

All elements rendered correctly 

and updated continuously 

Passed 

FR12 Detailed flow and alert 

information viewable via UI 

interactions 

Full metadata view was accessible 

via expandable rows 

Passed 

FR13 System starts/stops packet capture 

on user command 

Start and stop commands worked 

with responsive UI feedback 

Passed 

FR14 Dashboard shows real-time 

statistics (e.g., packet rate, alert 

count, flow count) 

Statistics updated in an interval 

specified by the user and matched 

backend processing logs 

Passed 

 

Table 6.2.1 Functional Testing Result 

 

6.2.2 Non-Functional Testing 

 

Non-functional testing was conducted to evaluate the system’s performance, accuracy, 

reliability, usability, and other quality attributes beyond its core functionalities. These 

tests were designed to ensure that the system not only performs correctly but also meets 

expectations in areas such as accuracy, responsiveness, system stability, resource usage, 

and user interface effectiveness. The result of the non-functional test is summarised in 

Table 6.2.2 below. 
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Requirement ID Expected Result Actual Result Status 

NFR1 System processes and analyses 

packets in real-time with ≤ 5 

seconds latency 

Real-time processing confirmed; 

end-to-end alert generation < 2 

seconds 

Passed 

NFR2 Concurrent detection supported 

using both signature and AI-based 

engines 

Signature and LLM detection 

modules operated simultaneously 

without conflict 

Passed 

NFR3 Capture ≥ 100 pps with ≤ 2% 

packet drop rate 

Average: 889.15 pps captured 

with 0% drop rate 

Passed 

NFR4 System initialises and becomes 

ready within 10 seconds 

Full initialisation completed in an 

average of 5.2 seconds 

Passed 

NFR5 Dashboard updates every 1 to 5 

seconds in real time 

All visual counters updated every 

seconds reliably as defined 

Passed 

NFR6 Alerts synchronised to blockchain 

every ≤ 60 seconds 

Batch sync executed every 30 

seconds; all alerts successfully 

logged 

Passed 

NFR7 Interface is user-friendly with 

clear visual indicators 

UI was intuitive, responsive, and 

colour-coded with meaningful 

icons 

Passed 

NFR8 System displays meaningful error 

and alert messages 

Alerts and exceptions shown with 

descriptive labels and tooltips 

Passed 

NFR9 System matches flows against 

JSON-defined signatures reliably 

All tested signatures were 

recognised and triggered correctly 

Passed 

NFR10 Detection accuracy ≥ 90% Overall accuracy achieved: 

93.95% 

Passed 

NFR11 False positive rate ≤ 5% Measured FPR: 5.00% Passed 

 

Table 6.2.2 Non-Functional Test Result 
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Figure 6.2.1 Confusion Matrix 

 

Besides, the evaluation script analysed the IDS alerts and compared them with ground 

truth data to generate a confusion matrix, as depicted in Figure 6.2.1 above. Out of the 

10,000 samples, 2850 samples were categorised as True Negatives (TN), 6545 samples 

were categorised as True Positives (TP), 150 samples were categorised as False 

Positives (FP), and 455 samples were categorised as False Negatives (FN). Based on 

the confusion matrix, the following metrics were derived: 

 

• Accuracy = 93.95% 

• Precision = 97.759522% ≈ 97.76% 

• Recall = 93.50% 

• False Positive Rate = 5.00% 

• F1-Score = 95.5823294% ≈ 95.58%  
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6.3 Discussion 

 

This section provides an in-depth analysis of the results obtained from system testing. 

It interprets the significance of the findings, discusses any limitations encountered 

during evaluation, and assesses the reliability and validity of the testing process. The 

aim is to reflect critically on the system’s performance, identify areas for improvement, 

and evaluate how well the system meets its intended objectives. 

 

6.3.1 Interpretation of Results 

 

The results from both functional and non-functional testing confirm that the 

Blockchain-Based Intrusion Detection System with Artificial Intelligence achieved a 

high level of performance and reliability in line with its original design goals. From a 

functional perspective, all core features operated as expected. The system was able to 

successfully capture live network traffic, assemble packets into flows, compute relevant 

statistics, and analyse them using both signature-based and AI-driven detection 

methods. Every predefined functional requirement, such as interface selection, alert 

generation, LLM classification, and blockchain logging, was met without any failures 

or discrepancies. 

 

In terms of detection capabilities, the system demonstrated strong accuracy across 

multiple attack types. Signature-based detection was highly effective in identifying 

well-known threats, while the LLM module provided accurate classification for 

ambiguous or previously unseen flow patterns (presented by abnormal flows in the 

ground truth dataset). The use of severity levels and descriptive alerts enhanced the 

system’s explainability, especially for AI-generated outputs. With a detection accuracy 

of 93.95% and a false positive rate of 5.00%, the system performed well within the 

defined non-functional thresholds, indicating practical readiness. 

 

Non-functional testing further validated the system’s operational quality. Real-time 

performance was upheld under moderate to high traffic volumes, achieving a packet 

processing rate of 889.15 packets per second with zero packet loss. Latency from flow 

ingestion to alert generation remained under two seconds in all cases, demonstrating 

efficiency in both detection pipelines. Additionally, the user interface remained 
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responsive and informative, with refresh intervals of 1 to 5 seconds. The web dashboard 

successfully supported intuitive navigation and clear visual indicators, satisfying 

usability and responsiveness requirements. 

 

Moreover, the blockchain integration proved reliable and tamper-resistant. All 

generated alerts were successfully logged onto the smart contract within a defined 

interval of 30 seconds under normal condition, and logged immediately if the forced 

sync function or system shutdown was called, hence confirming the effectiveness of 

the batch-based synchronisation mechanism. The visibility of alert hashes and metadata 

on the blockchain network adds a layer of auditability and integrity not found in 

traditional IDS solutions. 

 

In summary, the testing results demonstrate that the system effectively meets its design 

objectives. It provides a complete and integrated solution for intrusion detection, 

contextual analysis, and secure alert logging. The performance indicators, together with 

the success of all test cases, support the conclusion that the system is functionally 

complete, operationally stable, and well-suited for its intended role in a secure network 

environment. 

 

6.3.2 Limitations Observed 

 

While the system achieved all functional and non-functional requirements during 

testing, several limitations were observed that may affect its scalability, adaptability, 

and applicability in broader or production-level environments. 

 

One key limitation lies in the resource dependency of the AI-based detection engine. 

Although the selected LLM model (gemma3:1b) performed well in a local setup using 

Ollama, its processing time and memory usage increased noticeably with larger batches 

of flows. As a result, while the system maintained under two seconds of alert generation 

latency during tests, this performance could degrade under continuous high-load 

conditions or when deployed on machines with limited hardware capabilities. The 

dependency on local GPU acceleration for optimal LLM performance restricts 

deployment in lightweight or embedded environments. While a more powerful LLM 
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boosts the detection accuracy, it trades off the efficiency of the system due to a higher 

demand for computational resources and time. 

 

Another notable limitation of the system is the gradual increase in storage requirements 

on the blockchain as more alerts are logged over time. Since each alert is recorded as a 

transaction and stored immutably on the blockchain, the data footprint grows with every 

detection event. This growth impacts node synchronisation time, disk usage, and query 

performance when retrieving historical alerts. Over time, maintaining a full copy of the 

blockchain becomes more demanding. As a potential solution, the system could enable 

pruning on non-authoritative or observer nodes, while keeping at least one full node for 

complete alert history backup because any Ethereum node can reconstruct past states 

by replaying the transaction history, it is not necessary to store every historical state 

permanently. 

 

Additionally, while the system’s detection accuracy and explainability were strong, the 

LLM occasionally generated alerts with vague justifications or low interpretability. 

Despite filtering out low-confidence outputs, some AI-generated alerts lacked technical 

specificity, which may affect trust among expert users who require detailed reasoning 

to take action. This highlights the need for further refinement in prompt engineering 

and context retrieval to enhance the relevance and depth of AI responses, especially in 

lightweight LLM like gemma3:1b. 

 

In short, although the limitations identified do not critically hinder system functionality, 

they point to areas where future work is needed to improve for adoption in real-world 

or production environments. 

 

6.3.3 Validity of the Evaluation 

 

The evaluation conducted for this project is considered valid and methodologically 

sound, as it was designed to reflect realistic deployment and usage conditions of the 

system. All testing activities were guided by the functional and non-functional 

requirements established during the design phase, ensuring that the outcomes could be 

directly mapped to the system’s objectives. By using a controlled test environment and 

replaying a curated dataset of 10,000 labelled network flows containing a mix of benign 
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and malicious traffic, the testing ensured reproducibility, consistency, and fairness 

across all runs. 

 

To simulate real-world operational conditions, the system was subjected to various 

types of network attacks combined with normal traffic to evaluate detection accuracy, 

precision, and responsiveness. The traffic replay method, executed via a physically 

isolated Ethernet interface, helped eliminate noise from unrelated background traffic, 

thus preserving the integrity of the test inputs. Furthermore, the alerts were matched 

against a predefined ground truth file using a strict window-based comparison 

approach, which added rigour to the calculation of key evaluation metrics such as 

accuracy, precision, recall, F1-score, and false positive rate. 

 

The testing process also incorporated dual-layer verification through local logs and 

blockchain logging, which strengthened the credibility of the results. By confirming 

that alerts were logged both in the local database and immutably on-chain, the system’s 

end-to-end functionality, including decentralised verification, was thoroughly 

validated. Non-functional attributes such as interface responsiveness, initialisation 

time, and real-time dashboard updates were also monitored and logged consistently, 

ensuring that performance-related claims were supported by measurable evidence. 

 

While certain environmental factors, such as reliance on a specific hardware setup or 

the use of synthetic test data may limit the generalisability of some results, these choices 

were necessary to ensure controlled, repeatable testing. Given these measures, the 

evaluation offers a valid and reliable reflection of the system’s real-world capabilities, 

supporting the claim that the proposed solution meets its intended objectives. 
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CHAPTER 7 Conclusion and Recommendation 

 

This chapter summarises the outcomes of the project and reflects on the objectives that 

were achieved. It provides a concise conclusion based on the system’s implementation, 

design, and evaluation results. In addition, the chapter offers recommendations for 

future improvements, enhancements, or research directions that could extend the 

system’s capabilities or address identified limitations. 

 

7.1 Conclusion 

 

This project set out to design, develop, and evaluate a Blockchain-Based Intrusion 

Detection System with Artificial Intelligence, combining the strengths of traditional 

packet analysis, AI-driven threat detection, and immutable alert logging. The problem 

statement stemmed from critical limitations in conventional IDS frameworks, namely 

the lack of contextual awareness, secure alert storage, and automated decentralised 

response. By integrating rule-based detection with a Large Language Model (LLM) and 

securing alerts on a blockchain network via smart contracts, the system aimed to offer 

a comprehensive, transparent, and tamper-proof intrusion detection framework. 

 

Through methodical system implementation and rigorous functional and non-functional 

testing, the system demonstrated strong performance. It successfully detected a wide 

range of threats, including SYN floods, port scans, SSH brute-force, and SQL injection, 

and many more with a detection accuracy of 93.95% and a false positive rate of only 

5.00%. The signature engine reliably matched known attack patterns, while the LLM 

component extended detection capabilities to more ambiguous traffic, providing 

meaningful explanations and severity tags. All alerts were synchronised to a private 

Ethereum blockchain, ensuring tamper resistance and traceability of security events. 

 

The system was validated using a controlled dataset of 10,000 flows replayed over an 

isolated interface, with results verified against a structured ground truth file. Functional 

and non-functional testing confirmed that all 14 functional requirements as well as all 

11 non-functional requirements were satisfied. These findings reinforce the credibility 

and effectiveness of the proposed solution. 
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In conclusion, this project has successfully delivered a proof-of-concept prototype that 

demonstrates how blockchain and AI can be synergised to improve intrusion detection. 

The system contributes to the field by enhancing detection explainability, ensuring data 

integrity, and decentralising security operations. While not production-ready, it lays the 

groundwork for future research and development into scalable, intelligent, and 

trustworthy cybersecurity solutions. 

 

  



Chapter 7 Conclusion and Recommendation 

Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 152 

7.2 Recommendation 

 

Firstly, to reduce the computational overhead introduced by the LLM module, the 

system should incorporate model optimisation techniques such as quantisation, 

pruning, or switching to lighter transformer-based models designed for edge 

computing. Alternatively, offloading LLM analysis to a dedicated microservice with 

GPU acceleration or integrating a cloud-based inference endpoint could maintain 

analysis quality without overwhelming system resources. 

 

From a detection perspective, future work should focus on refining the LLM prompts 

and improving the interpretability of AI-generated alerts. Integrating feedback loops or 

reinforcement learning from user-labelled alerts can further increase accuracy and trust 

in AI-based decisions. Additionally, expanding the rule-based engine with automatic 

signature updates from external threat feeds via LLM processing will ensure the system 

remains relevant against evolving attack patterns with minimal human interventions. 

 

As a forward-looking enhancement, it is recommended to explore the integration of 

agentic AI capabilities into the system to enable autonomous decision-making and 

adaptive threat response. By equipping the LLM module with agent-like behaviours 

such as reasoning over multiple flows, maintaining a memory of recent activity, and 

executing pre-defined response actions, the system could evolve from passive detection 

to active defence. For example, the agent could dynamically adjust signature thresholds, 

quarantine suspicious IPs, or trigger smart contract responses based on real-time 

context and historical behaviour. This would significantly reduce analyst workload, 

accelerate mitigation, and improve the system’s adaptability to emerging threats. 
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