
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR i

BLOCKCHAIN-BAESD INTRUSION DETECTION SYSTEM WITH

ARTIFICIAL INTELLIGENCE

BY

SOH WEN KAI

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

JANUARY 2025

Copyright Statement

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR ii

COPYRIGHT STATEMENT

© 2025 Soh Wen Kai. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the requirements for

the degree of Bachelor of Computer Science (Honours) at Universiti Tunku Abdul

Rahman (UTAR). This Final Year Project report represents the work of the author,

except where due acknowledgment has been made in the text. No part of this Final Year

Project report may be reproduced, stored, or transmitted in any form or by any means,

whether electronic, mechanical, photocopying, recording, or otherwise, without the

prior written permission of the author or UTAR, in accordance with UTAR’s

Intellectual Property Policy.

Acknowledgement

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR iii

ACKNOWLEDGEMENT

I would like to express my heartfelt gratitude to my supervisor, Ts Dr Gan Ming Lee,

for offering me the incredible opportunity to develop my first cybersecurity and

blockchain project. His continuous motivation, valuable thoughts, and constructive

advice have been invaluable throughout this journey.

Abstract

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR iv

ABSTRACT

This project presents the development of a Blockchain-Based Intrusion Detection

System with Artificial Intelligence, designed to address the limitations of traditional

intrusion detection frameworks that lack contextual awareness, secure alert storage, and

automated response. The system integrates a rule-based signature engine with a large

language model to detect both known and previously unseen network threats through

real-time traffic analysis. Signature-based detection matches flows against predefined

patterns, while the LLM performs context-aware reasoning to identify complex or

ambiguous behaviours, producing alerts with human-readable explanations and

severity levels. To ensure alert integrity and traceability, all detection events are logged

to a private Ethereum blockchain using smart contracts, providing a decentralised and

tamper-resistant audit trail. Simultaneously, off-chain logging is enabled to ensure

efficient notification of intrusion events. A web-based dashboard offers live monitoring

of packet capture, active flows, alert statistics, and blockchain synchronisation. The

system was designed for modularity, with configurable components for flow

processing, AI analysis, and on-chain logging. It achieved a detection accuracy of

93.95% and a false positive rate of 5.00%, confirming the effectiveness of its hybrid

detection approach. This prototype demonstrates the feasibility of combining AI and

blockchain technologies to build an IDS that is not only accurate but also transparent,

explainable, and resistant to tampering, thus making it a promising foundation for

modern, resilient cybersecurity systems.

Area of Study:

Cybersecurity, Blockchain

Keywords:

Intrusion Detection System (IDS), Blockchain, Large Language Model (LLM),

Tamper-Proof Logging, AI Explainability

Table of Contents

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR v

TABLE OF CONTENTS

TITLE I

COPYRIGHT STATEMENT II

ACKNOWLEDGEMENT III

ABSTRACT IV

TABLE OF CONTENTS V

LIST OF FIGURES XI

LIST OF TABLES XIII

LIST OF SYMBOLS XIV

LIST OF ABBREVIATIONS XV

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement 1

1.1.1 Absence of an Integrated IDS for Detection and Contextual Analysis 1

1.1.2 Limited Automation and Decentralisation in Threat Response 2

1.1.3 Vulnerability of Alerts to Tampering and Unauthorised Access 3

1.2 Motivations 4

1.2.1 Addressing the Growing Complexity of Cyber Threats 4

1.2.2 Ensuring Integrity and Trust in Security Alerts 4

1.2.3 Enhancing Explainability in AI-Based Intrusion Detection Systems 5

1.3 Project Objective 6

1.3.1 To Develop a Unified IDS for Detection and Contextual Analysis 6

1.3.2 To Automate and Decentralise Threat Response via Smart Contracts 6

Table of Contents

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR vi

1.3.3 To Enable Secure and Verifiable Access to Alert Records 7

1.4 Project Scope 8

1.5 Impact, Significance, and Contribution 10

1.6 Background Information 11

1.7 Report Organisation 13

CHAPTER 2 LITERATURE REVIEW 14

2.1 Review of Relevant Technologies 14

2.1.1 Blockchain 14

2.1.2 Large Language Model 16

2.1.3 Intrusion Detection System 17

2.2 Review of Current Integrations 20

2.2.1 Integration of AI in Intrusion Detection Systems 20

2.2.2 Integration of Blockchain in Cybersecurity 21

2.2.3 Integration of AI and Blockchain in Intrusion Detection Systems 23

2.3 Review of Current Applications 25

2.3.1 Snort 25

2.3.2 Suricata 26

2.4 Summary and Research Gaps 28

CHAPTER 3 SYSTEM METHODOLOGY 30

3.1 Development Methodology 30

3.2 System Architecture Overview 33

3.2.1 System Architecture Diagram 33

3.2.2 Use Case Diagram and Description 35

3.2.3 Activity Diagram 44

3.3 Design Specifications 51

Table of Contents

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR vii

3.3.1 Software Requirements 51

3.3.2 Hardware Requirements 53

3.3.3 Functional Requirements 55

3.3.4 Non-Functional Requirements 56

3.3.5 Design Constraints 57

3.4 Development Timeline 59

CHAPTER 4 SYSTEM DESIGN 61

4.1 System Architecture 61

4.1.1 High-Level System Flow 61

4.1.2 System Block Diagram and Data Flow 63

4.2 Component-Level Design 67

4.2.1 Packet Capture Module 67

4.2.2 LLM-Based Detection Module 69

4.2.3 Signature-Based Detection Module 72

4.2.4 Alert Logger Module 74

4.2.5 Blockchain Logger Module 76

4.2.6 Frontend GUI Module 79

4.3 Database and Storage Design 81

4.3.1 Network Flow Data Handling 81

4.3.2 Alert Database and File-Based Log 81

4.3.3 Blockchain-Based Immutable Storage 83

4.3.4 Temporary Queues and Runtime Storage 83

4.4 Smart Contract Design 84

4.5 Communication Interface Design 86

4.6 Compilation and Setup Design 89

CHAPTER 5 SYSTEM IMPLEMENTATION 91

5.1 Environment and Tools Setup 91

Table of Contents

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR viii

5.1.1 Hardware Setup 91

5.1.2 Software Setup 93

5.2 Blockchain Implementation 96

5.2.1 Installing and Running Ganache 96

5.2.2 Setting Up the Python Environment 99

5.2.3 Installing and Configuring the Solidity Compiler 99

5.2.4 Compiling and Deploying the Smart Contract 100

5.2.5 Saving Contract Metadata 101

5.2.6 Initialising the System with Blockchain Support 101

5.3 LLM Implementation 102

5.3.1 Installing Ollama 102

5.3.2 Pulling the Required Model 103

5.3.3 Configuring the Environment for LLM 103

5.3.4 Initialising the LLM Detection Engine 104

5.3.5 Implementing the RAG Mechanism 104

5.3.6 Formatting and Sending Network Flow Data 105

5.3.7 Handling and Logging AI-Generated Alerts 105

5.4 Backend Services Implementation 107

5.4.1 Setting Up the Flask Web Framework 107

5.4.2 Setting Up the Flask Web Framework 107

5.4.3 Initialising Packet Capture with Scapy 107

5.4.4 Configuring the Packet Processing Queue 108

5.4.5 Implementing Flow-Based Traffic Analysis 108

5.4.6 Integrating the Signature-Based Detection Engine 109

5.4.7 Managing Alerts and Local Storage 109

5.4.8 Configuring the Environment for Backend Services 110

5.4.9 Enabling Cross-Origin Requests and Frontend Communication 110

5.5 Frontend and UI Implementation 111

5.5.1 Setting Up the Project Structure 111

5.5.2 Designing the User Interface with HTML 111

5.5.3 Styling the Interface with CSS 112

Table of Contents

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR ix

5.5.4 Enabling Interactivity with JavaScript 112

5.5.5 Creating Real-Time Data Visualisation and Feedback 113

5.5.6 Managing Responsive Design and Browser Compatibility 113

5.5.7 Linking Frontend to Backend Services 113

5.6 System Operation 115

5.6.1 System Launch and Dashboard Overview 115

5.6.2 Network Interface Selection and Packet Capture Start 117

5.6.3 Active Network Flows Monitoring 120

5.6.4 Intrusion Alerts List 122

5.6.5 Signatures List 123

5.6.6 Blockchain Status and Synced Alerts 125

5.6.7 System Status 128

5.6.8 System Settings 129

5.6.9 Shutdown Status 131

5.7 Implementation Challenges and Solutions 133

5.7.1 Managing Real-Time Network Traffic 133

5.7.2 Flow Assembly and Analysis 133

5.7.3 Blockchain Integration 134

5.7.4 LLM Integration 134

5.7.5 Real-Time Frontend Components 134

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 135

6.1 Testing Methodology 135

6.1.1 Objectives of Testing 135

6.1.2 Test Setup 137

6.1.3 Test Procedures 139

6.2 System Testing 142

6.2.1 Functional Testing 142

6.2.2 Non-Functional Testing 143

6.3 Discussion 146

6.3.1 Interpretation of Results 146

Table of Contents

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR x

6.3.2 Limitations Observed 147

6.3.3 Validity of the Evaluation 148

CHAPTER 7 CONCLUSION AND RECOMMENDATION 150

7.1 Conclusion 150

7.2 Recommendation 152

REFERENCES 153

APPENDICES A-1

POSTER A-2

List of Figures

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR xi

LIST OF FIGURES

Figure No. Title Page

Figure 3.1.1 System Prototyping Methodology 30

Figure 3.2.1 System Architecture Diagram 33

Figure 3.2.2 Use Case Diagram 35

Figure 3.2.3 Activity Diagram: Start Packet Capture 44

Figure 3.2.4 Activity Diagram: Stop Packet Capture 45

Figure 3.2.5 Activity Diagram: View Real-Time Network Flows 46

Figure 3.2.6 Activity Diagram: View Intrusion Alerts 47

Figure 3.2.7 Activity Diagram: View Intrusion Signatures 48

Figure 3.2.8 Activity Diagram: View System Status 49

Figure 3.2.9 Activity Diagram: View System Settings 50

Figure 3.4.1 Project Development Timeline 59

Figure 4.1.1 High Level System Flow 62

Figure 4.1.2 System Block Diagram 64

Figure 4.6.1 Folder Structure 90

Figure 5.1.1 Laptop Specifications 92

Figure 5.2.1 Ganache Workspace Configuration 97

Figure 5.2.2 Ganache Server Configuration 98

Figure 5.2.3 Ganache Environment 98

Figure 5.2.4 Smart Contract Deployment 100

Figure 5.2.5 Contract Creation on Blockchain 101

Figure 5.3.1 Ollama Local Server 102

Figure 5.3.2 Running LLM Hosted via Ollama 103

Figure 5.3.3 Interaction with LLM via HTTP 103

Figure 5.6.1 System Logs Showing Successful System Launch 116

Figure 5.6.2 Idle System Dashboard 117

Figure 5.6.3 Network Interface Selection 118

Figure 5.6.4 Configured Packet Capture Settings 119

Figure 5.6.5 Dashboard View During Active Capture Session 120

Figure 5.6.6 Active Network Flow Interface 122

Figure 5.6.7 Intrusion Detection Alerts Table 123

List of Figures

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR xii

Figure 5.6.8 Attack Signatures Table 125

Figure 5.6.9 Ganache Blockchain Dashboard 126

Figure 5.6.10 Syncing of Historical Blockchain Alert Logs 127

Figure 5.6.11 Final Blockchain Status 127

Figure 5.6.12 System Status Dashboard 128

Figure 5.6.13 System Settings Interface 131

Figure 5.6.14 Console Output During System Shutdown 132

Figure 6.2.1 Confusion Matrix 145

List of Tables

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR xiii

LIST OF TABLES

Table No. Title Page

Table 3.2.1 UC001: Start Packet Capture 37

Table 3.2.2 UC002: Stop Packet Capture 38

Table 3.2.3 UC003: View Real-Time Network Flows 39

Table 3.2.4 UC004: View Intrusion Alerts 40

Table 3.2.5 UC005: View Intrusion Signatures 41

Table 3.2.6 UC006: View System Status 42

Table 3.2.7 UC007: Manage System Settings 43

Table 3.3.1 Software Requirements 52

Table 3.3.2 Hardware Requirements 54

Table 3.3.3 Functional Requirements 56

Table 3.3.4 Non-Functional Requirements 57

Table 3.4.1 Phased Breakdown of the Development Plan 60

Table 4.3.1 Database Schema for Alert Storage 82

Table 5.1.1 Programming Language Requirements 93

Table 5.1.2 Library and Framework Requirements 94

Table 5.1.3 Tool and Platform Requirements 95

Table 5.1.4 Operating System Requirements 95

Table 6.1.1 Component Specification for Test Setup 137

Table 6.1.2 System Performance Metrics 139

Table 6.2.1 Functional Testing Result 143

Table 6.2.2 Non-Functional Test Result 144

List of Symbols

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR xiv

LIST OF SYMBOLS

≈ Approximately equal

List of Abbreviations

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR xv

LIST OF ABBREVIATIONS

ABI Application Binary Interface

AI Artificial Intelligence

API Application Programming Interface

Bi-GRU Bidirectional Gated Recurrent Unit

BPF Berkeley Packet Filter

CLI Command-Line Interface

CNN Convolutional Neural Network

CPU Central Processing Unit

CSS Cascading Style Sheets

CVE Common Vulnerabilities and Exposures

DDoS Distributed Denial of Service

DoS Denial of Service

ETH Ether (Ethereum’s native cryptocurrency)

GAN Generative Adversarial Network

GPU Graphics Processing Unit

GUI Graphical User Interface

HIDS Host-Based Intrusion Detection System

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

JS JavaScript

JSON JavaScript Object Notation

LAN Local Area Network

LLM Large Language Model

LSTM Long Short-Term Memory

NIC Network Interface Card

NIDS Network-Based Intrusion Detection System

PBFT Practical Byzantine Fault Tolerance

PoA Proof of Authority

PoW Proof of Work

List of Abbreviations

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR xvi

RAG Retrieval-Augmented Generation

RAM Random Access Memory

REST Representational State Transfer

RNN Recurrent Neural Network

SDK Software Development Kit

SIEM Security Information and Event Management

SQL Structured Query Language

SSD Solid-State Drive

TCP Transmission Control Protocol

UDP User Datagram Protocol

UI User Interface

VPN Virtual Private Network

WAN Wide Area Network

XSS Cross-Site Scripting

Chapter 1 Introduction

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 1

CHAPTER 1 INTRODUCTION

This chapter provides an overview of the project titled Blockchain-Based Intrusion

Detection System with Artificial Intelligence (hereinafter referred to as “the project”),

laying the foundation for the work undertaken. It begins by presenting the background

and context of the project, highlighting the current challenges in intrusion detection and

the motivation behind the proposed solution. The chapter then outlines the specific

objectives that guide the project’s development and defines the scope to clarify the

boundaries and focus areas. Furthermore, it summarises the key contributions made

through this project and explains how they address existing limitations in the field.

Finally, the chapter concludes with an outline of the report structure to help in

understanding the flow and organisation of the subsequent chapters.

1.1 Problem Statement

This section outlines the issues to address, including current challenges that need

remediation and areas for potential optimisation and improvement.

1.1.1 Absence of an Integrated IDS for Detection and Contextual Analysis

Intrusion Detection Systems (IDSs) are essential components in modern network

security. Yet, in the current cybersecurity landscape, IDSs often operate in isolated

environments with limited ability to contextualise threats or correlate them across

multiple sources in real time. Traditional IDSs typically rely on either signature-based

or anomaly-based mechanisms, but they rarely integrate advanced AI analysis and

immutable logging to provide comprehensive insight. This siloed architecture restricts

the system’s ability to adapt and understand evolving attack patterns, especially in

dynamic networks. As highlighted by Alshamrani et al., existing IDS frameworks

frequently fail to provide adequate context for detected threats, resulting in high false

positive rates and inadequate incident response capabilities [1]. Furthermore, many IDS

frameworks are constrained by their inability to analyse high-dimensional network data

in real time and adapt to sophisticated attacks through contextual correlation. Similarly,

Khenwar and Nawal highlight that traditional IDS architectures do not incorporate

Chapter 1 Introduction

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 2

advanced analytical capabilities needed for meaningful threat classification, especially

in heterogeneous network environments [2]. This demonstrates a critical gap: the

absence of a unified, intelligent, and context-aware intrusion detection mechanism

capable of providing comprehensive and accurate threat insight in real time. A potential

solution involves an IDS framework enhanced with Artificial Intelligence (AI) like

Large Language Models (LLMs) with contextual analysis capabilities that integrates

with existing networks.

1.1.2 Limited Automation and Decentralisation in Threat Response

Despite advances in intrusion detection technologies, most systems still depend heavily

on manual processes for threat response, which can delay mitigation and increase the

risk of damage during fast-moving attacks. The lack of automation in threat handling

limits the scalability and effectiveness of security operations, especially in

environments where threats evolve rapidly. Furthermore, centralised control

mechanisms present a single point of failure, making the response process vulnerable

to disruption or manipulation. As stated by Zuech et al., conventional IDS frameworks

lack real-time automated capabilities that can adapt dynamically to detected threats

without human intervention [3]. In addition, the absence of decentralised decision-

making or action-sharing among distributed nodes hampers resilience and

responsiveness in large or segmented networks. Research by Dorri et al. has highlighted

the potential of decentralised architectures in improving the robustness and fault-

tolerance of cybersecurity systems, yet such models remain underutilised in current IDS

implementations [4]. This underlines the need for intrusion detection systems that

incorporate both automated response mechanisms and decentralised control to enable

faster, more reliable threat mitigation. The problem can be addressed by implementing

smart contract-driven alerts, which automate the detection and response workflows

based on predefined conditions, reducing reliance on human intervention.

Chapter 1 Introduction

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 3

1.1.3 Vulnerability of Alerts to Tampering and Unauthorised Access

In many existing intrusion detection systems, the alerts generated during detection

processes are stored in centralised databases or log files that are susceptible to

tampering, deletion, or unauthorised access. This poses a serious threat to the integrity

and trustworthiness of forensic data, which is essential for post-incident analysis,

compliance audits, and legal investigations. Without secure and verifiable alert storage,

attackers who gain access to the system may alter or erase evidence of their intrusion

to avoid detection and accountability. According to Diana et al., the lack of immutable

logging mechanisms in conventional IDS architectures significantly weakens the

overall security posture by enabling the manipulation of historical data [5].

Additionally, centralised systems often lack transparency and verifiability, which

undermines confidence in the recorded security events and their traceability in

distributed environments. These limitations highlight the pressing need for IDS

frameworks that secure alert data against tampering through verifiable, decentralised

storage mechanisms. Fortunately, this problem in IDS can be potentially mitigated

using blockchain technology’s decentralised and immutable ledger to securely store

logs, alerts, network, and intrusion information.

Chapter 1 Introduction

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 4

1.2 Motivations

This section provides a comprehensive overview of the underlying reasons and broader

context that drive the need for the project. It explores the practical challenges,

technological gaps, and industry trends that have inspired the project’s conception. By

examining these motivating factors, the section establishes the relevance and

significance of the proposed work within its intended application domain.

1.2.1 Addressing the Growing Complexity of Cyber Threats

In the modern digital ecosystem, cyber threats have become increasingly complex,

frequent, and stealthy through advanced evasion techniques, automation, and even AI

to bypass traditional defence mechanisms. This surge in sophistication places immense

pressure on conventional IDSs, which often rely on static rules or signature-based

models that are ill-equipped to handle novel or polymorphic attacks. Moreover, as

critical infrastructures, financial systems, healthcare networks, and national services

grow more interconnected, the consequences of a successful cyberattack have become

far-reaching, affecting safety, economic stability, and public trust. The reactive nature

and limited intelligence of most IDS result in delayed threat response and poor

adaptability, especially in high-speed or large-scale network environments. This project

is motivated by the urgent need to bridge this gap by enhancing IDS capabilities through

automation, intelligence, and trust. By integrating artificial intelligence for dynamic

threat detection and blockchain for tamper-proof alert verification, this project aims to

deliver a forward-looking IDS architecture, one that is not only reactive but predictive,

decentralised, and resilient in the face of today’s and tomorrow’s cyber threats.

1.2.2 Ensuring Integrity and Trust in Security Alerts

In the context of cybersecurity, the integrity and trustworthiness of security alerts are

essential, particularly for post-incident analysis, automated response, and compliance

reporting. However, many existing IDS frameworks store alerts in centralised systems

that are vulnerable to manipulation, unauthorised modification, or deletion, hence

threatening the credibility of the entire detection process. In environments where

decisions must be made quickly and evidence must be auditable, any compromise in

Chapter 1 Introduction

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 5

alert integrity weakens both operational confidence and forensic accuracy. This project

is driven by the critical need to ensure that once an alert is generated, it remains

immutable and verifiable. By incorporating blockchain technology as a decentralised

and tamper-resistant ledger, the system can guarantee that all alerts are securely

recorded, traceable, and immune to unauthorised alterations. This enhances not only

technical reliability but also stakeholder trust, enabling organisations to rely on their

IDS data with greater confidence for decision-making, auditing, and legal validation.

1.2.3 Enhancing Explainability in AI-Based Intrusion Detection Systems

As artificial intelligence becomes more prevalent in IDSs, a key challenge that emerges

is the lack of explainability in how AI models detect and classify threats. Many AI-

based systems operate as black boxes, providing alerts without clear reasoning or

context, which can reduce trust in their outputs and make it difficult for security analysts

to validate or act upon them effectively. This issue is especially critical in environments

where accountability, transparency, and quick decision-making are essential. Without

understandable justifications, even accurate alerts may be disregarded or

misinterpreted. This project is motivated by the need to improve the interpretability of

AI-driven IDS by incorporating mechanisms that provide contextual explanations for

each alert. By integrating natural language generation and structured metadata into the

detection process, the system will offer more transparent and human-readable insights,

empowering analysts to make faster, more confident decisions and contributing to

greater trust in AI-assisted cybersecurity operations.

Chapter 1 Introduction

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 6

1.3 Project Objective

This section defines the overall aim of the project by clearly stating what it seeks to

achieve. It outlines the intended outcomes at a high level and serves as a guiding

reference for the development process. The objectives presented here help establish the

direction of the work and provide measurable goals against which the project’s success

can be evaluated.

1.3.1 To Develop a Unified IDS for Detection and Contextual Analysis

The primary objective of this project is to develop a unified IDS that combines real-

time threat detection with contextual analysis to enhance the accuracy and relevance of

alerts. Unlike traditional IDS that rely solely on signature matching or basic anomaly

detection, this system will integrate multiple detection techniques, including rule-based

methods and LLM-driven models, to analyse network flows holistically. The system

will be designed to process at least 100 packets per second and detect threats with a

minimum target accuracy of 90%, verified through labelled test datasets. By correlating

traffic patterns, protocol behaviours, and flow statistics, the system aims to generate

alerts that are not only precise but also enriched with meaningful context, thus

providing explainability. This approach is intended to reduce false positives, improve

threat interpretation, and support more informed and timely responses by security

analysts.

1.3.2 To Automate and Decentralise Threat Response via Smart Contracts

This project aims to automate and decentralise the threat response process by

integrating smart contracts into the IDS architecture. Traditional intrusion detection

systems often require manual intervention to respond to threats, which can delay

mitigation efforts and increase exposure to ongoing attacks. By leveraging blockchain-

based smart contracts, the system will enable predefined, automated response actions

such as on-chain alert logging, triggered within 5 seconds upon detection of an

intrusion. The smart contract will be deployed and tested on a private blockchain

network and will record 100% of the alerts generated by the IDS, ensuring traceability

as well as accountability. This decentralised approach ensures that response

Chapter 1 Introduction

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 7

mechanisms are executed consistently and without dependence on a central authority,

thereby enhancing system resilience, reducing response time, and eliminating single

points of failure.

1.3.3 To Enable Secure and Verifiable Access to Alert Records

This project seeks to enable secure and verifiable access to intrusion alert records by

integrating a blockchain-based logging mechanism within the IDS framework.

Conventional systems often store alerts in centralised or unsecured databases, making

them susceptible to tampering, deletion, or unauthorised access. To address this, the

proposed system will log 100% of generated alerts onto a private blockchain, ensuring

that each record is immutable, timestamped, and transparently verifiable. Access to

alert records will be verified through an API interface that retrieves and validates on-

chain entries, with a response accuracy of 100% for successfully logged events. This

will allow authorised users, such as security analysts or auditors, to access trustworthy

alert data for incident response, forensic analysis, and compliance reporting. By

providing a decentralised and tamper-resistant record of security events, the system

aims to strengthen the overall credibility and reliability of intrusion detection outputs.

Chapter 1 Introduction

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 8

1.4 Project Scope

This project will focus on developing a prototype of a “Blockchain-Based Intrusion

Detection System with Artificial Intelligence”, tailored for use in organisational

network environments. The primary deliverable will be a fully functional prototype that

demonstrates the feasibility of integrating blockchain and AI to enhance network

security. This prototype will act as a proof of concept, showcasing real-time threat

detection, contextual analysis, and automated response via smart contracts. While

functionally complete for demonstration purposes, the system will not be developed as

a market-ready or production-level product.

The project will involve the development of several core components that work together

to form a functional prototype of the proposed system. These include AI-based

detection modules that combine rule-based techniques with LLM-driven analysis to

detect both known and unknown threats in real time. A blockchain logging module will

be implemented using smart contracts to ensure the immutability, decentralisation, and

automated response of security alerts. The backend system will manage data flow

operations, including traffic capture, packet processing, and flow analysis. A user

interface will be developed to allow users to monitor system status, view alerts, and

control IDS operations in a clear and accessible manner. Finally, integration modules

will ensure seamless communication between the detection engine, blockchain layer,

and frontend interface, enabling the system to operate as a cohesive and responsive

intrusion detection framework.

The project will also include functional as well as non-functional testing using

controlled datasets and simulated traffic to verify the performance and functionalities

of the system. However, the project will intentionally exclude several areas that fall

outside the scope of a prototype-focused development effort. These include full-scale

UI/UX refinement beyond essential usability and basic navigation, as the emphasis is

on functionality rather than visual design or user experience optimisation. Scalability

testing under extreme network loads or deployment across distributed infrastructures

will not be conducted, as the system is intended for demonstration in a controlled

environment. Integration with enterprise-grade systems such as Security Information

and Event Management (SIEM) tools or external APIs is also beyond the scope, as the

Chapter 1 Introduction

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 9

project is not aimed at production-level interoperability. Additionally, long-term

system maintenance, such as regular update cycles, patch management, and ongoing

user support will not be covered, given the academic and proof-of-concept nature of the

work.

To summarise, the overall goal is to deliver a working prototype that validates the core

ideas of automation, contextual detection, and tamper-proof alert storage using

blockchain and AI, within a controlled development environment.

Chapter 1 Introduction

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 10

1.5 Impact, Significance, and Contribution

This project has the potential to significantly influence the future design of intrusion

detection systems by demonstrating how blockchain and artificial intelligence can be

synergised to address critical shortcomings in conventional security solutions. By

combining real-time detection, contextual analysis, and tamper-proof alert logging, the

system offers a modern approach to network security that aligns with the demands of

increasingly complex and distributed digital environments, while addressing the critical

gaps in current organisational cybersecurity frameworks involving IDSs. The outcome

of this project could lead to improved response times, reduced false positives, and

enhanced trust in alert data, features that are highly valuable for organisations handling

sensitive or large-scale network traffic.

The significance of this project lies in its integration of decentralised technologies and

intelligent analytics into a single, cohesive intrusion detection framework. In contrast

to traditional IDS models that often operate in isolation with limited interpretability,

this system introduces an innovative architecture that ensures alert transparency,

contextual relevance, and automation of response. This project addresses multiple

pressing cybersecurity challenges, such as threat complexity, alert integrity, and

operational latency, making it highly relevant to current academic research and

industrial cybersecurity practices. In the long term, the adoption of such technologies

could lead to a safer, more secure digital environment, benefiting not just individual

organisations, but society as a whole.

This project contributes to the field of cybersecurity by delivering a functional

prototype that proves the feasibility of using blockchain and AI in a unified IDS. The

novelty of this project lies in the implementation of LLM-based contextual analysis,

smart contract-driven automation, and verifiable alert logging, all integrated into a

single system. While blockchain-based security solutions have been primarily focused

on IoT environments, this project innovatively applies blockchain to the broader and

more complex context of organisational cybersecurity. The use of smart contracts to

automate incident response processes is another innovative aspect that sets this project

apart from traditional approaches with relatively greater dependency on manual

interventions.

Chapter 1 Introduction

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 11

1.6 Background Information

In today’s increasingly interconnected digital world, cyber threats have become more

sophisticated, frequent, and coordinated, largely driven by the rapid advancement of

technologies and the growing use of artificial intelligence, including generative models.

This evolution poses serious challenges to conventional cybersecurity strategies,

particularly in the areas of threat prevention, detection, and response. Studies have

shown that individuals and organisations alike remain highly vulnerable to a wide range

of attacks such as Denial of Service (DoS), Distributed Denial of Service (DDoS),

phishing, ransomware, malware, SQL injection, and zero-day exploits [6]. Traditional

security tools, including firewalls and standalone IDS, often lack the intelligence and

adaptability required to identify these modern threats, especially those that do not match

known attack signatures.

Intrusion, as defined by Khraisat et al. [7], refers to unauthorised activities that

compromise the Confidentiality, Integrity, or Availability (CIA) of an information

system. IDSs, whether hardware- or software-based, are designed to monitor network

traffic and system behaviour to detect such malicious actions. These systems generally

fall into two main categories: Signature-Based Intrusion Detection Systems (SIDSs),

which identify known threats by matching patterns from a database, and Anomaly-

Based Intrusion Detection Systems (AIDSs), which use statistical or behavioural

models to detect deviations from normal network activity [7], [8]. However, both

models suffer from limitations: SIDS cannot detect novel or obfuscated attacks, while

AIDS often generates high false positive rates and struggles with adaptability.

To overcome these limitations, recent developments have turned to artificial

intelligence, particularly machine learning (ML) and deep learning (DL) models. As

detailed by Kaur et al. [9], AI plays several key roles in cybersecurity, including

automating tasks, identifying threats, preventing attacks, detecting vulnerabilities,

responding to incidents, and aiding in recovery efforts. To expand on this, AI

algorithms excel at analysing large volumes of data, such as network traffic, to reveal

potential threats and vulnerabilities. By detecting patterns and identifying subtle

anomalies, AI can reveal new forms of cyber threats that traditional, signature-based

systems might miss. Also, these AI systems are able to continuously adapt to emerging

Chapter 1 Introduction

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 12

threats through learning algorithms, which not only improve predictive accuracy but

also reduce false positives, providing stronger protection against increasingly

sophisticated cyberattacks [10]. However, it is important to note that AI-based systems

often require significant computational resources.

On a related note, LLMs have emerged as a powerful enhancement to cybersecurity

frameworks due to their ability in contextual understanding and text generation. Trained

on vast cybersecurity datasets, LLMs can identify contextual patterns and correlations

that traditional AI models may overlook due to their limited feature sets. Their ability

to understand unstructured or semi-structured flow data allows them to generate more

accurate and context-aware threat classifications. Furthermore, LLMs can provide

human-readable explanations for each detection decision, delivering natural language

insights that increase the transparency, interpretability, and usability of alerts. This level

of explainability not only improves the analysts’ trust in the system but also supports

faster and more confident incident response.

Parallel to AI advancements, blockchain technology has gained attention for its ability

to enhance data integrity and trust in distributed systems. Originally developed for

cryptocurrencies, blockchain functions as a decentralised, tamper-resistant ledger that

records transactions or events immutably across a peer-to-peer network [11]. In the

context of cybersecurity, blockchain can be used to log security alerts in a way that

prevents deletion or alteration, ensuring forensic traceability. Additionally, the use of

smart contracts, which are essentially self-executing scripts triggered by defined

conditions, enables automation of key security operations such as real-time alert

validation and response without relying on a central authority [12], [13].

The integration of AI, LLMs, and blockchain into IDS design represents a promising

new direction in cybersecurity research and practice. As highlighted by recent works

[14], combining these technologies can significantly improve detection accuracy,

reduce response time, and establish a transparent, decentralised trust layer for security

operations. This project aims to build upon these concepts by developing a prototype

system that unifies LLM-based contextual detection with blockchain-backed alert

logging and smart contract-driven automation, tailored specifically for organisational

network environments.

Chapter 1 Introduction

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 13

1.7 Report Organisation

This report is structured into seven chapters, each logically progressing from the

project’s background to its evaluation and conclusions. Chapter 1 introduces the project

by outlining its background, motivation, problem statement, objectives, scope, and

overall structure of the report. Chapter 2 reviews the existing literature, covering IDSs,

AI-based threat analysis, blockchain applications in cybersecurity, and related works

that informed the system design. Chapter 3 focuses on the methodology adopted,

detailing the tools, frameworks, datasets, system architecture, and design principles that

guided the development process.

Chapter 4 presents the system implementation in a modular format, describing key

components such as packet capture, flow assembly, signature detection, LLM-based

reasoning, blockchain integration, and the web interface. Each subsection highlights the

core logic and design considerations for its respective module. Chapter 5 explains the

system’s integration and deployment process, including interface interactions, smart

contract deployment, and operational workflow from packet capture to blockchain

logging.

Chapter 6 evaluates the system through both functional and non-functional testing. It

includes detailed test results, interpretation, limitations encountered during

development and testing, and a validity analysis of the evaluation approach. Finally,

Chapter 7 concludes the report by summarising the project’s achievements,

highlighting contributions, and offering recommendations for future improvements.

Chapter 2 Literature Review

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 14

CHAPTER 2 LITERATURE REVIEW

2.1 Review of Relevant Technologies

This section explores the core technologies that are relevant to The Project, including

their functionalities, advantages, and limitations. It provides a foundational

understanding of the tools, frameworks, and methodologies employed, establishing the

technical context for the system’s design and implementation.

2.1.1 Blockchain

Blockchain is a decentralised, append-only ledger system that facilitates transparent

and tamper-evident record-keeping across multiple untrusted nodes. First introduced

through the Bitcoin whitepaper in 2008 by Nakamoto, the technology has since evolved

into a general-purpose framework supporting various applications beyond digital

currencies, including supply chain tracking, identity verification, voting systems, and

decentralised finance [15], [16].

At its core, blockchain ensures data integrity and distributed trust through cryptographic

linking of blocks, consensus mechanisms, and decentralised replication. Each block

contains a list of transactions, a timestamp, and a hash of the previous block, forming

an immutable chain. Once added, data in a block cannot be altered without modifying

all subsequent blocks across the network, a task that becomes computationally

infeasible in properly decentralised systems [15].

Recent academic literature has examined the taxonomy of blockchain systems,

categorising them into public, private, and consortium blockchains. Public blockchains,

such as Bitcoin and Ethereum, offer full decentralisation and openness, but suffer from

performance bottlenecks due to computationally expensive consensus protocols like

Proof-of-Work (PoW). In contrast, private and consortium blockchains operate within

restricted access groups and adopt lighter consensus mechanisms such as Proof-of-

Authority (PoA) or Practical Byzantine Fault Tolerance (PBFT), enabling higher

throughput and reduced latency [11], [17].

Chapter 2 Literature Review

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 15

Several studies have also analysed scalability and performance issues within blockchain

systems. According to Xu et al. [18], traditional blockchains face the “blockchain

trilemma”, where decentralisation, scalability, and security cannot all be maximised

simultaneously. Research efforts have since focused on innovations such as sharding,

off-chain computation, and layer-2 protocols to address these constraints. For instance,

projects like Lightning Network and Ethereum’s rollups aim to improve transaction

throughput without compromising trust-lessness.

Another significant thread in blockchain research involves security and attack surfaces.

While blockchain offers immutability, it is not inherently secure from all forms of

attack. Smart contracts, for example, have introduced vulnerabilities such as re-

entrancy and integer overflow bugs, leading to high-profile exploits. At the protocol

level, threats such as 51% attacks and selfish mining highlight potential weaknesses in

consensus integrity. Research by Prashanth et al. [19] surveys these vulnerabilities and

proposes formal verification tools and hybrid consensus models as partial remedies.

Furthermore, scholars have explored blockchain’s interdisciplinary integration with

fields such as Internet of Things (IoT), edge computing, and artificial intelligence (AI).

In these domains, blockchain serves as a trust layer for distributed entities lacking

central control. For example, in IoT systems, blockchain is used to manage identities,

validate sensor data, and audit device behaviour without relying on central gateways

[17], [20]. These studies demonstrate the extensibility of blockchain beyond finance,

encouraging innovation in domains that require decentralised coordination.

Despite these advances, the integration of blockchain into real-world systems remains

an ongoing challenge, particularly in contexts requiring real-time response, lightweight

computation, and seamless interoperability. These limitations create opportunities for

novel contributions, such as streamlined blockchain integration within high-

performance computing environments or time-sensitive systems like intrusion

detection.

Chapter 2 Literature Review

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 16

2.1.2 Large Language Model

Large Language Models (LLMs) represent a significant advancement in the field of

natural language processing (NLP) and machine learning. These models are

characterised by their massive number of parameters which are often in the billions, as

well as their ability to generate, summarise, translate, and understand human language

with high fluency and coherence. LLMs such as OpenAI’s GPT series, Google’s

Gemini, Meta’s LLaMA, and Anthropic’s Claude are built upon the Transformer

architecture proposed by Vaswani et al. in 2017, which introduced the concept of self-

attention and revolutionised sequence modelling [21].

A defining characteristic of LLMs is their ability to generalise across diverse tasks

without task-specific training, a property often referred to as zero-shot or few-shot

learning. This capability has been attributed to the scale of training data and model

parameters. Brown et al. [22] demonstrated that scaling up both leads to emergent

behaviours, where LLMs perform competitively on tasks ranging from arithmetic

reasoning to code generation, without being explicitly programmed for them.

From a research standpoint, LLMs are seen as more than just predictive models—they

are increasingly regarded as probabilistic knowledge bases. Studies have shown that

LLMs encode factual information within their parameters, albeit with varying accuracy

and robustness. Petroni et al. [23] introduced the concept of “language models as

knowledge bases” by probing LLMs for factual recall using cloze-style prompts.

Although effective for well-represented knowledge, the models struggle with niche or

rarely seen information, revealing the limitations of statistical pattern matching in

replacing structured reasoning.

Despite their impressive performance, LLMs face several well-documented limitations.

One concern is hallucination, where the model generates factually incorrect but

plausible-sounding text. This behaviour poses risks in applications requiring high

reliability, such as medical diagnostics, legal advice, or security-sensitive systems.

Another challenge is the lack of interpretability, making it difficult to understand or

audit the decision-making process behind a given output. Furthermore, the enormous

Chapter 2 Literature Review

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 17

computational resources required for training and inference raise questions about

environmental impact, accessibility, and fairness [24].

Recent research has focused on controlling, fine-tuning, and safely deploying LLMs.

Techniques like reinforcement learning with human feedback (RLHF), prompt

engineering, and instruction tuning aim to align model outputs with human expectations

and ethical standards. These efforts are particularly relevant in domains where the

model acts as a decision-support tool or interacts directly with end-users.

In recent years, the application of LLMs in cybersecurity has gained increasing

attention, particularly in the areas of threat intelligence analysis, anomaly detection, and

automated incident response. LLMs are capable of parsing vast volumes of unstructured

security data such as logs, alerts, and technical reports to identify patterns and generate

contextual insights [25]. Researchers have explored their potential to assist in tasks like

phishing detection, malware description generation, and vulnerability summarisation,

due to their strong language understanding capabilities. However, the use of LLMs in

real-time or adversarial cybersecurity environments remains limited, primarily due to

concerns about accuracy, explainability, and the risk of model manipulation. This gap

highlights the need for further research on how LLMs can be safely and reliably

integrated into operational security systems.

2.1.3 Intrusion Detection System

Intrusion Detection Systems (IDSs) are a fundamental component in the defence-in-

depth approach to cybersecurity. They are designed to monitor network traffic or

system activities for signs of malicious behaviour or policy violations. Traditionally,

IDS are classified into two primary categories: signature-based and anomaly-based

detection systems. Signature-based IDS operate by comparing observed events against

a database of known attack patterns or signatures. While efficient and accurate for

recognising well-known threats, they are ineffective against novel or zero-day attacks.

In contrast, anomaly-based IDS use statistical, behavioural, or machine learning

techniques to model normal activity and flag deviations as potential intrusions. This

approach is more flexible but also prone to high false positive rates due to the dynamic

nature of network behaviour [7], [8].

Chapter 2 Literature Review

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 18

Over the years, IDS research has evolved significantly to address growing cybersecurity

challenges, such as increasing attack sophistication and the proliferation of encrypted

traffic. A wide range of algorithms have been employed for detection tasks, including

decision trees, support vector machines, clustering techniques, and deep learning

models. For example, Moustafa et al. [26] introduced UNSW-NB15, a benchmark

dataset and IDS model using statistical flow features, which demonstrated improved

accuracy in identifying various attack types compared to older datasets like KDD99.

Similarly, deep learning approaches such as convolutional and recurrent neural

networks have been adopted to extract temporal and spatial features from traffic flows,

showing promising detection rates in controlled settings.

Another stream of research has focused on the deployment environments of IDS. These

include Host-Based Intrusion Detection Systems (HIDS), which monitor individual

machines, and Network-Based Intrusion Detection Systems (NIDS), which analyse

network traffic. NIDS have garnered more attention in recent years due to the shift

towards cloud-native and distributed infrastructures. However, the scalability and real-

time performance of IDS remain major challenges. High-speed networks, encrypted

protocols, and large volumes of traffic necessitate lightweight, efficient, and adaptive

detection mechanisms. Researchers have proposed techniques such as feature selection,

sampling, and parallelisation to improve processing efficiency [27].

Despite significant progress, several limitations remain in IDS research. First, the

quality and availability of realistic datasets continue to hinder reproducibility and

generalisability. Many public datasets are outdated, synthetically generated, or fail to

represent modern attack techniques. Second, the issue of adversarial attacks against IDS

models, particularly those using machine learning, has raised concerns about the

robustness of such systems. Attackers may intentionally craft inputs to evade detection

or poison training data to mislead the system. Third, IDS often suffer from a lack of

interpretability, making it difficult for analysts to understand the rationale behind alerts

and to distinguish true positives from benign anomalies [7].

Chapter 2 Literature Review

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 19

In response to these limitations, recent efforts have begun to explore hybrid and

context-aware IDS, combining multiple detection techniques and incorporating

external knowledge such as threat intelligence feeds. There is also growing interest in

integrating IDS with other security tools like SIEM (Security Information and Event

Management) systems, firewalls, and threat hunting platforms to enable a more

cohesive security ecosystem [8]. However, achieving seamless integration while

maintaining performance, scalability, and reliability remains an open research

challenge.

Chapter 2 Literature Review

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 20

2.2 Review of Current Integrations

This section explores existing attempts to integrate various technologies, such as

blockchain, AI, and traditional IDSs to enhance cybersecurity mechanisms. The review

focuses on how researchers and developers have combined these components to

improve the accuracy, transparency, and reliability of threat detection and response.

2.2.1 Integration of AI in Intrusion Detection Systems

The integration of Artificial Intelligence (AI) into Intrusion Detection Systems (IDSs)

has become a major focus in modern cybersecurity research. Traditional IDSs, which

rely on static rules and predefined signatures, are increasingly challenged by evolving

attack vectors and complex network behaviours. AI techniques, particularly those

involving machine learning (ML) and deep learning (DL), offer adaptive and data-

driven solutions that can enhance detection accuracy, generalise to unseen threats, and

reduce false positives.

Kim et al. [28] introduced an innovative AI-based IDS tailored for real-time web

environments. Their hybrid model combined Convolutional Neural Networks (CNN)

and Long Short-Term Memory (LSTM) networks to detect malicious HTTP traffic.

CNN was employed to extract spatial features from request data, while LSTM captured

temporal patterns in request sequences. A notable feature of their approach was the use

of normalised UTF-8 character encoding, which facilitated efficient data processing

without the computational cost of entropy calculations. The system was implemented

using Docker containers, making it scalable for large-scale deployments.

In a different line of research, Park et al. [29] addressed the common issue of class

imbalance in network intrusion datasets, a problem that frequently decreases the

performance of ML-based IDSs. They proposed a novel framework that integrates

Generative Adversarial Networks (GANs), specifically using the Wasserstein distance,

to generate synthetic samples of underrepresented attack types. This synthetic

augmentation, coupled with autoencoder-based feature learning, significantly improved

detection rates for rare and low-frequency threats. The modular design of the system,

comprising data preprocessing, GAN training, autoencoder learning, and predictive

Chapter 2 Literature Review

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 21

modelling, demonstrated a comprehensive pipeline for building more inclusive and

robust IDSs.

Focusing on Internet of Things (IoT) environments, Medjek et al. [30] presented a fault-

tolerant IDS aimed at securing RPL (Routing Protocol for Low-Power and Lossy

Networks). Their approach involved training lightweight machine learning models such

as decision trees, random forests, and k-nearest neighbours on features extracted from

simulated RPL-based attacks. While these traditional models achieved high detection

accuracy, the study also emphasised the trade-off between performance and

computational cost, which is an important consideration for resource-constrained IoT

devices. Their work highlighted the need for optimisation strategies to balance

detection efficacy with energy and processing limitations.

Across these studies, AI integration in IDSs shows clear promise, particularly in

enabling adaptive learning, improving detection of novel threats, and addressing data-

related challenges like imbalance and noise. However, common challenges persist,

including the need for high-quality labelled datasets, computational overhead in real-

time systems, and the risk of adversarial manipulation. These concerns have encouraged

further research into hybrid models, feature engineering techniques, and resource-

efficient learning algorithms tailored to specific deployment contexts.

2.2.2 Integration of Blockchain in Cybersecurity

Blockchain technology has emerged as a transformative tool in the field of

cybersecurity, offering new approaches to securing data, enhancing transparency, and

decentralising trust. Unlike traditional centralised systems, blockchain operates on a

distributed ledger framework where all transactions are cryptographically linked and

stored across multiple nodes. This structure inherently reduces the risk of single points

of failure, unauthorised data manipulation, and centralised attacks, making it a

promising foundation for secure digital infrastructures.

Kshetri [31] presented a detailed analysis of blockchain’s role in strengthening

cybersecurity frameworks, particularly in comparison to conventional cloud-based

models. The study emphasised that blockchain’s decentralised nature eliminates the

Chapter 2 Literature Review

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 22

dependency on central authorities, thereby reducing susceptibility to data tampering

and privilege abuse. Through robust encryption and consensus mechanisms, blockchain

ensures secure and verifiable communication between entities. These features are

especially beneficial in dynamic and distributed environments like the Internet of

Things (IoT), where traditional models often struggle with scalability, trust

management, and vulnerability to large-scale attacks.

Extending blockchain’s application into intrusion detection, Abubakar et al. [32]

proposed a hybrid system that integrates blockchain with multiple IDS algorithms to

improve detection accuracy and reduce false positives. Their system employed a

weighted voting mechanism to fuse outputs from different AI-based detectors, with

blockchain serving as an immutable ledger to store and share alert data. Tested using

DARPA 99 and MIT Lincoln Labs datasets, the system demonstrated higher precision

in detecting complex intrusion patterns, showcasing blockchain’s potential in

supporting collaborative and transparent threat intelligence.

Similarly, Babu et al. [33] explored the use of blockchain in securing IoT networks

against Distributed Denial of Service (DDoS) attacks. Their approach utilised a

permissioned blockchain to facilitate secure device authentication and decentralised

alert sharing. A key innovation in their system was the integration of Physically

Unclonable Functions (PUFs) to generate tamper-proof cryptographic keys, further

enhancing the integrity of device communications. Coupled with ensemble machine

learning for intrusion detection, the system significantly reduced false positives while

maintaining high detection performance. The decentralised nature of the blockchain

allowed alert propagation across all nodes, enabling timely and coordinated response

to threats.

While these studies highlight the advantages of blockchain in strengthening

cybersecurity systems, several challenges remain. Issues such as network latency,

storage scalability, and consensus overhead can hinder the performance of blockchain

in high-throughput or real-time environments. Moreover, the integration of blockchain

with AI and existing security architectures requires careful consideration of

compatibility, privacy, and resource constraints.

Chapter 2 Literature Review

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 23

2.2.3 Integration of AI and Blockchain in Intrusion Detection Systems

The convergence of AI and blockchain technology in the domain of IDSs has opened

new avenues for building intelligent, secure, and decentralised cybersecurity solutions.

While AI contributes adaptability and learning capability to detect novel or evolving

threats, blockchain introduces transparency, data integrity, and decentralised trust.

Combined, these technologies aim to overcome the shortcomings of conventional IDSs,

such as limited scalability, susceptibility to tampering, and high false positive rates.

Mishra [34] proposed a hybrid security model known as the Hybrid Intrusion Detection

Tree (HIDT), which integrates a decision tree algorithm with blockchain to protect

smart network environments. The IDS component utilises decision tree classification

to detect anomalies in network traffic, while the blockchain layer provides a secure,

decentralised reputation system. This system filters and verifies the integrity of

incoming data, encrypts verified data using blockchain nodes, and stores them in

immutable blocks. The dual-layered approach ensures that compromised devices are

identified promptly and that recorded alerts are tamper-proof and verifiable across the

network.

In another study, Saveetha and Maragatham [35] introduced a hybrid architecture that

leverages DL and blockchain to build a robust and intelligent IDS. Their system

combines LSTM networks with Recurrent Neural Networks (RNN) and Convolutional

Neural Networks (CNN) to detect and classify anomalies in network traffic. The

blockchain component is employed to record threat detection events in a decentralised

ledger, ensuring that once an anomaly is detected and verified, it cannot be altered or

deleted. This provides a verifiable audit trail of security incidents, accessible to all

participating nodes, and enhances the trustworthiness of the system’s response to

intrusions.

Expanding this approach to consumer IoT ecosystems, Kumar et al. [36] proposed an

integrated framework that combines blockchain-based authentication with an

explainable AI (XAI) intrusion detection mechanism. The system addresses

vulnerabilities in smart city IoT networks by securing communication channels

between IoT devices, fog nodes, and cloud servers using a Proof of Authority (PoA)

Chapter 2 Literature Review

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 24

blockchain. Simultaneously, a Bidirectional Gated Recurrent Unit (Bi-GRU) model

with an attention mechanism and a SoftMax classifier forms the IDS layer, enabling

real-time threat detection with interpretable outputs. The inclusion of explainable AI is

particularly noteworthy, as it addresses one of the key limitations of black-box deep

learning systems by making detection decisions more transparent to security analysts.

These hybrid models illustrate the growing trend of integrating AI and blockchain in

IDS design to capitalise on the strengths of both technologies. AI enhances detection

capabilities through data-driven learning and adaptability, while blockchain ensures

that detection outcomes and critical events are securely recorded and shared without

centralised control. However, challenges remain in balancing computational efficiency

with security guarantees, particularly in resource-constrained or latency-sensitive

environments such as IoT.

Chapter 2 Literature Review

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 25

2.3 Review of Current Applications

This section reviews existing real-world systems and applications that are similar in

scope or function to the proposed project. It evaluates their features, performance, and

shortcomings, offering insights into best practices and areas where improvements or

innovations are needed.

2.3.1 Snort

Snort is one of the most widely adopted open-source Network Intrusion Detection

Systems (NIDS), originally developed by Martin Roesch in 1998. It combines the

functionalities of a packet sniffer, protocol analyser, and intrusion detection engine into

a lightweight, rule-driven framework. Over the years, it has evolved into a mature and

flexible tool, widely deployed in both research and production environments due to its

open-source nature, large community support, and regular updates from Cisco Talos

[37], [38].

At its core, Snort uses a signature-based detection approach, where predefined rules are

used to match specific patterns of malicious traffic. These rules describe various aspects

of packets—including source/destination IP addresses, ports, payload content, and

protocol fields, to flag known attack signatures. The rules are organised using a

structured format and grouped by threat category (e.g., malware, exploits, denial-of-

service), allowing for systematic analysis and response. Snort’s modular architecture

also includes pre-processors for protocol decoding, stream reassembly, and traffic

normalisation, enhancing its capability to handle complex and evasive traffic patterns

[37], [38].

From a performance and deployment standpoint, Snort is valued for its portability and

scalability. It can be run on multiple operating systems and integrated into network

monitoring pipelines via tools such as Barnyard2, PulledPork, or SIEM platforms like

Splunk. However, Snort’s performance is highly dependent on hardware resources and

the complexity of its rule sets. As the volume of monitored traffic increases, so does

the potential for performance degradation, especially when inspecting deep packet

payloads in high-speed networks. This has led to the emergence of high-performance

Chapter 2 Literature Review

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 26

variants and hardware-accelerated solutions like Snort Inline and Suricata, which offer

multithreading support and GPU-based enhancements [39].

While Snort is highly effective against known threats, its primary limitation lies in its

inability to detect zero-day attacks or novel intrusion patterns not covered by existing

signatures. This results in a reactive security model, where defence is dependent on

prior knowledge of the threat landscape. To address this, researchers have experimented

with combining Snort’s rule-based detection with anomaly-based and machine learning

approaches. For example, Gómez et al. [40] discussed the potential of hybrid IDS

configurations where anomaly detection modules operate as the first layer of defence

for identifying previously unseen patterns, followed by Snort operates as the second

layer for detecting known attacks. However, these integrations are not native to Snort

and often require external systems and extensive tuning.

2.3.2 Suricata

Suricata is a high-performance, open-source Network Intrusion Detection and

Prevention System (NIDPS) developed by the Open Information Security Foundation

(OISF). Designed to address the limitations of traditional rule-based IDS, Suricata

incorporates multi-threading, deep packet inspection (DPI), and flow-based anomaly

detection, allowing it to function not only as an IDS but also as an inline IPS and

network security monitoring (NSM) tool. Since its release, it has been recognised for

its scalability, flexibility, and modern protocol analysis features.

A key distinction between Suricata and earlier systems like Snort lies in its native

support for multi-threaded processing. By taking advantage of multi-core architectures,

Suricata can process packets in parallel, enabling it to handle high-bandwidth traffic

more efficiently. This architectural design has been widely acknowledged as a

significant enhancement for real-time analysis in enterprise environments [39]. In

performance evaluations conducted by Gupta and Sharma [41], Suricata consistently

outperformed Snort in terms of throughput and detection speed under identical traffic

loads.

Chapter 2 Literature Review

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 27

Despite these advantages, Suricata is not without limitations. One major challenge is

its resource consumption. While its performance scales well with hardware, Suricata

demands significantly more memory and CPU resources than single-threaded systems,

especially in environments with high connection rates or large rule sets. Gupta and

Sharma [41] noted that while Suricata’s architecture is ideal for large-scale networks,

its deployment in constrained or embedded environments requires optimisation.

Another limitation lies in its dependence on signature-based detection for many threat

types. Although Suricata supports some anomaly-based detection through statistical

flow analysis, this capability remains underdeveloped compared to purpose-built

machine learning IDS. Furthermore, similar to other IDS platforms, Suricata struggles

with encrypted traffic analysis, relying primarily on metadata inspection and limited

TLS fingerprinting, which reduces its visibility into modern HTTPS-based attacks [41].

Chapter 2 Literature Review

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 28

2.4 Summary and Research Gaps

This chapter has presented a detailed review of the core technologies and

methodologies relevant to modern Intrusion Detection Systems (IDSs), with a focus on

blockchain, large language models (LLMs), artificial intelligence (AI), and widely

adopted IDS tools such as Snort and Suricata. The review has also examined the

integration of these technologies to enhance detection accuracy, scalability, and system

trustworthiness. While many of these technologies have demonstrated strong individual

capabilities, their integration into cohesive, real-world systems remains limited and

underexplored.

Blockchain technology has proven to be highly effective in ensuring data integrity,

decentralisation, and tamper resistance. Its cryptographic and consensus-driven

mechanisms provide secure alternatives to centralised logging systems, particularly in

distributed environments like IoT. However, existing implementations often suffer

from latency, limited scalability, and integration overhead when applied to high-speed

or real-time cybersecurity contexts. Similarly, LLMs have shown great promise in

semantic analysis, threat interpretation, and contextual understanding. Yet, their real-

time adoption in IDS environments is limited due to challenges such as high

computational requirements, lack of explainability, and vulnerability to generating

inaccurate outputs (hallucinations).

In contrast, traditional IDSs like Snort and Suricata rely on well-established rule-based

detection and have maintained popularity due to their open-source nature and

community support. Nevertheless, their dependency on predefined signatures makes

them ineffective against unknown or evolving threats. AI-based IDSs offer a more

adaptive approach through machine learning and deep learning models, but they are

often hindered by false positives, unbalanced datasets, and the computational

complexity of deployment. While some recent works have explored the integration of

AI and blockchain to enhance IDSs, most of these focus on limited aspects such as

static dataset evaluation or alert logging, without delivering a complete, real-time, and

decentralised detection framework.

Chapter 2 Literature Review

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 29

From the literature reviewed, several research gaps have been identified. First, there is

a noticeable absence of IDS frameworks that incorporate large language models for

real-time, flow-level traffic analysis and behavioural detection. While LLMs offer

substantial reasoning and contextual capabilities, they have not been effectively

embedded into operational IDS pipelines. Second, although blockchain is used in some

IDSs to store alerts, it is rarely employed for full lifecycle alert management, including

verification, traceability, and decentralised consensus across detection components. IN

addition, blockchain-based IDSs are proposed for IoT environments, leaving the

implementation of such systems in organisational networks unstudied. Third, existing

systems typically focus on one detection paradigm, often signature- or anomaly-based.

There is limited exploration into unified hybrid frameworks that merge rule-based

detection, AI-driven anomaly identification, and LLM-based context analysis into a

single platform. Finally, many of the proposed AI and blockchain-based IDS

architectures are theoretical or tested only in lab environments. Real-world

applicability, scalability through containerisation, and robust integration with live

network traffic remain largely unaddressed.

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 30

CHAPTER 3 SYSTEM METHODOLOGY

This chapter outlines the structured approach taken in the development of the project.

It begins by presenting the system architecture and progresses through each stage of the

design process. The chapter includes various diagrams such as the system architecture

diagram, use case diagram, and activity diagram to visually represent the system’s

structure and user interactions. These visual models help clarify the logical flow of data

and processes across the different modules in the system. The methodology adopted

ensures that each component of the system is well-defined, interoperable, and aligned

with the project’s objectives. The content of this chapter lays the groundwork for the

subsequent design and implementation stages.

3.1 Development Methodology

To develop the Blockchain-Based Intrusion Detection System with Artificial

Intelligence, this project adopts the System Prototyping methodology (as shown in

Figure 3.1.1), a development model under the broader Rapid Application Development

(RAD) framework [42]. This approach is particularly well-suited for projects involving

emerging technologies such as blockchain and LLM, where system requirements are

often dynamic and integration is complex. System Prototyping emphasises the creation

of an early functional model, iterative refinement, and regular stakeholder feedback,

which represent qualities that are crucial in ensuring the practical success of this

innovative system.

Figure 3.1.1 System Prototyping Methodology

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 31

The main advantage of using System Prototyping in this context lies in its capacity to

produce a tangible and working version of the system early in the development cycle.

This allows for testing of the core modules, including real-time packet capture,

signature-based and LLM-based intrusion detection, as well as blockchain-based alert

logging before full-scale integration. It enables rapid identification of issues such as

detection inconsistencies or performance bottlenecks, which can then be resolved

incrementally.

Another reason for adopting this methodology is its support for iterative validation.

Each module in the system, for instance, the LLM detection engine, blockchain logger,

and frontend dashboard is initially developed independently and tested in isolation.

These components are gradually combined into an integrated prototype, allowing for

controlled evaluation and adjustment. This approach helps mitigate the risks of module

incompatibility or unforeseen system behaviours during integration.

Furthermore, System Prototyping accommodates evolving requirements, which are

expected due to the novel nature of combining blockchain and AI technologies. As the

system is tested and user feedback is gathered, requirements and configurations, such

as the AI model’s thresholds or the blockchain’s logging frequency, can be modified

without requiring a complete redesign. This flexibility ensures the system remains

adaptable and functional even as new security threats and detection standards emerge.

The development lifecycle within this methodology involves several overlapping and

interactive phases. During the planning phase, the project objectives, scope, and

deliverables are defined. The technology stack is selected based on suitability for real-

time processing, scalability, and integration, this includes Python, Flask, Solidity,

Web3.py, and JavaScript. The planning phase also outlines hardware and network

prerequisites to support packet analysis and blockchain operations, along with a

timeline and milestone plan.

In the analysis phase, detailed functional and non-functional requirements are gathered.

This includes specifying the attack types to be detected, identifying the data elements

to be stored on-chain, and determining performance metrics such as detection accuracy

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 32

and response time. This phase also evaluates the challenges of deploying AI and

blockchain in a real-time intrusion detection setting.

The design phase follows with the creation of system architecture and module

interactions. It includes the design of AI modules for traffic anomaly detection, the

structure of the smart contract used for immutable alert logging, and the user interface

for presenting insights. Design artefacts such as system block diagrams, use case

diagrams, and data flow diagrams are produced to guide implementation.

During the implementation phase, each module is built according to its design. The

signature-based detection engine, large language model (LLM) detector, blockchain

logging handler, and web interface are developed as discrete components. These

modules are then gradually integrated, tested, and refined in successive prototypes.

Testing is performed throughout the development cycle to ensure each addition does

not break existing functionalities and that all modules communicate effectively.

The prototype undergoes multiple iterations of testing and evaluation, where

performance, usability, and system robustness are examined. Based on the outcomes of

each cycle, the system is fine-tuned to improve efficiency, detection accuracy, and data

consistency across components. Eventually, a complete and stable version is deployed.

The deployment phase includes setting up the LLM engine for live monitoring,

deploying the blockchain across a test network, and launching the user interface for

real-time visualisation of alerts and system metrics.

In summary, the System Prototyping methodology is a strategic choice for this project.

It supports the rapid development and continuous improvement of the project in a

flexible and controlled environment. This approach ensures that both the blockchain

and AI technologies are implemented efficiently, tested thoroughly, and adapted

dynamically to produce a functional, secure, and innovative intrusion detection system.

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 33

3.2 System Architecture Overview

This section presents a high-level overview of the system’s architecture, illustrating

how the various components interact to support the intrusion detection and alert logging

processes. It includes visual models to describe the system’s structure, user interactions,

and workflow. The goal of this section is to provide a clear understanding of the overall

system design before delving into the specific technical details in later sections.

3.2.1 System Architecture Diagram

Figure 3.2.1 System Architecture Diagram

The overall system architecture of the proposed Blockchain-Based Intrusion Detection

System with Artificial Intelligence is designed to support secure, decentralised, and

intelligent threat detection across multiple networked sites. As shown in Figure 3.1, the

architecture is composed of two interconnected network environments, Site A and Site

B, each equipped with standard network infrastructure and its own dedicated Intrusion

Detection System (IDS). Both sites are connected to a shared private blockchain

network, which acts as a decentralised and immutable ledger for logging security alerts.

This setup is designed to simulate an organisational network distributed across multiple

geographical locations, interconnected via a Wide Area Network (WAN) or Virtual

Private Network (VPN).

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 34

At each site, the network is protected at the perimeter by a firewall. This component is

responsible for enforcing security policies, filtering traffic, and preventing unauthorised

access from external sources. Immediately after the firewall, a router manages the

routing of internal traffic and connects the firewall to various edge devices or

potentially a demilitarised zone (DMZ) within the local network. These edge devices

may include user computers, IoT devices, or internal servers that generate and receive

network traffic as part of regular operations.

The IDS is strategically positioned within the internal network, connected in such a way

that it can observe and analyse network traffic without interfering with the data flow.

This is typically achieved through port mirroring or the use of a network tap, enabling

the IDS to operate in a passive and non-intrusive manner. The purpose of the IDS is to

monitor the internal traffic continuously and identify suspicious behaviours or known

attack patterns that may indicate an intrusion.

A defining feature of this architecture is the integration of a shared private blockchain

network that connects the IDS nodes at both sites. This blockchain acts as a

decentralised and tamper-proof logging mechanism. When either IDS detects a threat

or abnormal network activity, it generates an alert and submits it to the blockchain.

Each alert is stored as a transaction on the distributed ledger, ensuring that the event is

permanently recorded and cannot be altered or deleted.

The use of blockchain in this context brings several critical advantages. Firstly, it

guarantees data integrity by ensuring that recorded alerts are immutable and

cryptographically verifiable. Secondly, it decentralises trust by eliminating the need for

a centralised database or storage server, which could become a single point of failure

or a target for attackers. Thirdly, it promotes transparency and coordination across

multiple sites by providing each IDS with access to a common set of verified alerts,

allowing for cross-site threat correlation and response.

The modular nature of this architecture supports scalability and adaptability. Additional

sites can be integrated into the system by deploying new IDS nodes and linking them

to the shared blockchain network. This ensures that the solution can grow in parallel

with the organisation’s infrastructure without compromising performance or security.

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 35

Moreover, the decentralised design enhances resilience by ensuring that the failure or

compromise of a single node does not impact the overall system. In such environments,

the unused processing capacity of internal edge devices, such as desktop machines or

lightweight servers, can be utilised to support blockchain operations. These devices

may be registered as blockchain nodes, contributing to transaction validation, ledger

synchronisation, and distributed consensus without the need for dedicated blockchain

hardware. This approach not only enhances decentralisation but also improves resource

efficiency by utilising existing infrastructure.

In short, the architecture provides a robust foundation for real-time intrusion detection

and verifiable alert logging in a multi-site environment. By combining traditional

perimeter security with passive traffic monitoring and blockchain-based alert storage,

the system ensures both operational effectiveness and long-term data integrity. The

architectural design reflects a forward-thinking approach to modern cybersecurity

challenges, particularly in distributed or large-scale environments.

3.2.2 Use Case Diagram and Description

Figure 3.2.2 Use Case Diagram

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 36

Figure 3.2.2 illustrates the use case diagram of the Blockchain-Based Intrusion

Detection System with Artificial Intelligence. It shows how the primary actor, the user,

interacts with the core functionalities of the system from a high-level perspective such

as initiating packet capture, stopping packet capture, viewing alerts, monitoring flows,

managing configurations, monitoring system status, and view signatures. These actions

are supported by various internal operations like intrusion identification, system status

updates, alert handling, and blockchain synchronisation. The use case model helps to

visualise both the functional scope and the modular responsibilities of each component,

including how different tasks are interconnected through “include” and “extend”

relationships from a use case point of view.

The following use case description tables (Table 3.2.1 to Table 3.2.7) present detailed

descriptions of each use case identified in the diagram above. Each use case is

documented using a standardised table.

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 37

Use Case ID UC001 Version 1.0

Use Case Start packet capture

Use Case Type Primary

Stakeholder User

Purpose To initiate packet capturing on a selected network interface for analysis and

intrusion detection.

Actor User

Trigger User selects an interface and clicks the “Start Capture” button.

Trigger Type External

Relationship Association:

User

Include:

Update dashboard, Update network flow table, Identify intrusions, Update

system status, Update alerts database, Update alerts table, Synchronise alerts

to blockchain

Precondition System must be idle and at least one network interface must be available.

System must be connected to a network.

Scenario Name Step Action

Main Flow 1 User selects a network interface from the dropdown list.

 2 User clicks the “Start Capture” button.

 3 System begins capturing packets on the selected interface.

 4 System updates the network flow table with live traffic.

 5 System updates the dashboard with real-time stats.

 6 Intrusion detection processes (signature-based and AI-based) are

started.

 7 Detected intrusions are stored in the alerts database.

 8 Alerts are synchronised to the blockchain.

Alternate Flow: No

interface specified

2.1 System displays an error message.

Alternate Flow:

Packet capturing

already started

3.1 System notifies the user and does not reinitiate capture.

Table 3.2.1 UC001: Start Packet Capture

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 38

Use Case ID UC002 Version 1.0

Use Case Stop packet capture

Use Case Type Primary

Stakeholder User

Purpose To terminate the ongoing packet capture process and halt intrusion detection.

Actor User

Trigger User clicks the “Stop Capture” button.

Trigger Type External

Relationship Association:

User

Include:

Update system status, Stop identifying intrusions

Precondition Packet capture process must be currently running.

Scenario Name Step Action

Main Flow 1 User clicks the “Stop Capture” button.

 2 System halts packet capturing on the selected interface.

 3 Intrusion detection processes are stopped.

 4 System updates the dashboard and system status.

Alternate Flow:

Packet capture is idle

2.1 System displays an error message indicating no active session.

Table 3.2.2 UC002: Stop Packet Capture

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 39

Use Case ID UC003 Version 1.0

Use Case View real-time network flows

Use Case Type Primary

Stakeholder User

Purpose To allow the user to monitor active network flows with up-to-date statistics.

Actor User

Trigger User navigates to the “Active Flows” section in the interface.

Trigger Type External

Relationship Association:

User

Precondition Packet capture must be active, and flows must be available.

Scenario Name Step Action

Main Flow 1 User opens the “Active Flows” tab.

 2 System fetches the latest flow data from memory or cache.

 3 Active network flows are displayed with source/destination,

protocol, port, and statistics.

 4 Flow table is updated continuously or at fixed intervals.

 5 User may click “Details” on a flow to view in-depth information.

 6 User may filter or search for specific flows.

Alternate Flow:

Packet capture is idle

2.1 System displays an empty table with a message indicating that

packet capture is not started.

Alternate Flow: No

active flows

3.1 System displays an empty table with a message indicating that there

are no active flows.

Table 3.2.3 UC003: View Real-Time Network Flows

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 40

Use Case ID UC004 Version 1.0

Use Case View intrusion alerts

Use Case Type Primary

Stakeholder User

Purpose To enable the user to review alerts generated by the intrusion detection

engines.

Actor User

Trigger User navigates to the “Alerts” section in the interface, or to the dashboard in

the interface.

Trigger Type External

Relationship Association:

User

Include:

Load alerts from database, Synchronise alerts from blockchain

Precondition System must be started and accessed via a browser.

Scenario Name Step Action

Main Flow 1 User accesses the “Alerts” tab or the alerts table in the dashboard.

 2 System loads alerts from the local alert database.

 3 System synchronises additional alerts from the blockchain.

 4 Alerts are displayed with severity level, timestamp,

source/destination, and detection type.

 5 User may filter, search, or sort alerts as needed.

Alternate Flow:

Empty database

2.1.1 System displays a message, indicating there are no alerts generated.

Alternate Flow:

Missing database

2.2.1 System creates a database directory and a database file.

2.2.2 System displays a message, indicating there are no alerts generated.

Alternate Flow:

Failed blockchain

connection

3.1 System shows only the local alerts with an error message indicating

the failed connection to blockchain.

Table 3.2.4 UC004: View Intrusion Alerts

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 41

Use Case ID UC005 Version 1.0

Use Case View intrusion signatures

Use Case Type Primary

Stakeholder User

Purpose To allow the user to view the list of loaded intrusion detection signatures.

Actor User

Trigger User selects the “Intrusion Signatures” section from the dashboard.

Trigger Type External

Relationship Association:

User

Include:

Load signatures from database

Precondition Signature file must be successfully loaded during system initialisation.

Scenario Name Step Action

Main Flow 1 User navigates to the “Intrusion Signatures” tab.

 2 System loads the list of signatures from memory or from the local

database.

 3 The signatures are displayed, including fields like name, pattern,

protocol, and detection criteria.

 4 User can filter or search for specific signatures.

Alternate Flow:

Signature file

corrupts or missing

2.1 System displays an error message.

Alternate Flow:

Empty signature file

3.1 System displays a message indicating no signatures are available.

Table 3.2.5 UC005: View Intrusion Signatures

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 42

Use Case ID UC006 Version 1.0

Use Case View system status

Use Case Type Primary

Stakeholder User

Purpose To allow the user to monitor the current operational state of the system

components.

Actor User

Trigger User opens the system status section in the interface.

Trigger Type External

Relationship Association:

User

Precondition The backend services must be running and able to return status data.

Scenario Name Step Action

Main Flow 1 User accesses the “System Status” tab.

 2 System fetches the status of packet capture, LLM detection engine,

blockchain, and system resources.

 3 Real-time statistics for each component are displayed.

 4 System health indicators (e.g. running/stopped,

connected/disconnected) are updated periodically.

Alternate Flow:

System fails

2.1 System displays an error message.

Table 3.2.6 UC006: View System Status

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 43

Use Case ID UC007 Version 1.0

Use Case Manage system settings

Use Case Type Primary

Stakeholder User

Purpose To allow the user to configure and update system parameters for detection,

AI models, and blockchain.

Actor User

Trigger User opens the settings or configuration panel in the web interface.

Trigger Type External

Relationship Association:

User

Extend:

View system settings, Modify packet capture settings, Modify LLM-based

detection settings, Modify blockchain settings, Modify UI settings

Precondition System must be running and accessed from a browser.

Scenario Name Step Action

Main Flow 1 User navigates to the “Settings” tab.

 2 User adjusts available options, such as:

Network interface, BPF filter, Packet log file, LLM model, LLM

analysis batch size, Start/stop LLM, Test LLM, Blockchain URL,

Contract address, Sync Interval, Force sync, Theme, Data refresh

interval.

 3 System validates and applies new settings.

 4 System confirms changes with a success message.

Alternate Flow:

Invalid input

3.1 System displays an error message and does not apply the change.

Table 3.2.7 UC007: Manage System Settings

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 44

3.2.3 Activity Diagram

This section presents the activity diagrams for selected use cases to visualise the flow

of actions within the system. Each diagram (Figure 3.2.3 to Figure 3.2.9) illustrates the

step-by-step process involved in carrying out a use case, highlighting the decision

points, actions performed by the user, and system responses, as detailed in the use case

descriptions in the previous section. These diagrams help to clarify the logic and

sequence of operations within the system.

Figure 3.2.3 Activity Diagram: Start Packet Capture

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 45

Figure 3.2.4 Activity Diagram: Stop Packet Capture

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 46

Figure 3.2.5 Activity Diagram: View Real-Time Network Flows

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 47

Figure 3.2.6 Activity Diagram: View Intrusion Alerts

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 48

Figure 3.2.7 Activity Diagram: View Intrusion Signatures

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 49

Figure 3.2.8 Activity Diagram: View System Status

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 50

Figure 3.2.9 Activity Diagram: View System Settings

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 51

3.3 Design Specifications

This section defines the essential technical and operational requirements needed to

develop and deploy the system effectively. It outlines the software and hardware

components necessary to support system functionality. The section also details the

functional and non-functional requirements that describe what the system must do and

how it should perform under various conditions. Additionally, it highlights any design

constraints that influence the implementation, such as technical limitations,

compatibility concerns, or performance boundaries.

3.3.1 Software Requirements

The software requirements were carefully selected to support the functionality of real-

time packet capture, flow analysis, signature-based and AI-based intrusion detection,

blockchain logging, and a responsive web-based user interface. This section focuses on

the conceptual and development-time software dependencies. Table 3.3.1 summarises

the software requirements for the project.

Component Purpose Type

Programming Languages

Python 3.10+ Main programming language for backend

services and detection engines

Backend Technologies

HTML, CSS,

JavaScript

Structure and behaviour of the web-based

frontend

Frontend Technologies

Solidity Language used to develop the smart contract Smart Contract Language

Frameworks and Libraries

Flask Lightweight web server framework for serving

API endpoints

Python Framework

scapy Packet manipulation and network traffic parsing. Python Library

threading, queue,

time

Standard libraries for concurrency and packet

processing queues

Python Built-in Modules

dotenv Environment configuration management Python Utility Module

Web3.py Interacts with Ethereum blockchain to store

alerts

Blockchain SDK

Node.js + npm Supports frontend asset bundling and library

management

JavaScript Runtime

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 52

Chart.js / Recharts Visualisation of alert distribution and network

activity

JavaScript Library

FontAwesome Icons for user interface design UI Library

Requests Python HTTP library used for REST API

communication

Python Library

psutil To monitor system resource usage such as CPU

and memory

Python Library

LLM Software

Ollama A local LLM model runtime for serving and

managing Gemma 3B:1 with minimal resource

overhead

LLM Hosting Runtime

Gemma3:1b A 1-billion parameter language model used to

analyse and classify network flows

AI Detection Model

Blockchain Tools

Ganache Local Ethereum blockchain emulator for testing

blockchain transactions

Blockchain Emulator

Database / Storage

SQLite Lightweight database for temporary alert storage

before blockchain sync

Local Database

JSON Data format for configuration files and inter-

process communication

Data Format

Development Tools

Git Version control system for collaborative

development

Version Control Tool

VS Code / PyCharm IDEs used to write and manage Python and

JavaScript code

Development

Environment

Chrome Web-browser for viewing and testing the

frontend dashboard

Testing Tool / UI Layer

OS and Runtime

Windows 11 (64-

bit)

Operating system used to host this system Operating System

Table 3.3.1 Software Requirements

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 53

The project is developed and tested on Windows 11 (64-bit). All software components,

including Python, Flask, Scapy, and Ollama, are compatible with the Windows

environment. However, certain libraries such as scapy and psutil may require elevated

permissions or administrative access to interact with network interfaces and system-

level resources.

To ensure smooth operation of the system on Windows 11 (64-bit), it is recommended

to run Windows PowerShell or Command Prompt with administrator privileges when

performing packet capture. Python virtual environments should be used to avoid

conflicts with system packages. The Ollama runtime and the Gemma 3B:1 model can

be executed locally, provided the system has at least 8GB of RAM and preferably a

dedicated GPU such as an NVIDIA card to accelerate inference. Ganache must be

installed and run either as a standalone application or through the command line to

emulate the local Ethereum blockchain.

3.3.2 Hardware Requirements

This section outlines the essential hardware specifications needed to support the

development, execution, and evaluation of the project. The hardware requirements here

refer to the minimum and recommended capabilities of a development machine or

deployment server. They are identified based on the system’s need to perform real-time

packet capture, process network flow data, analyse traffic using a local LLM, and

synchronise alerts with the blockchain. Table 3.3.2 summarises the hardware

requirements for this project.

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 54

Component Minimum

Requirement

Recommended

Specification

Purpose

Processor (CPU) Intel Core i5 (4 cores) Intel Core i7 / AMD

Ryzen 7 (6+ cores)

Handles flow analysis,

API requests, LLM pre-

processing

Memory (RAM) 8 GB 16 GB or more Required for LLM

inference, blockchain

sync, and buffers

Storage 256 GB SSD 512 GB SSD or more Stores packet logs,

alerts, contract data, and

models

Graphics (GPU) Integrated GPU NVIDIA GPU (4 GB

VRAM or more, e.g.

GTX 1650 or better)

Accelerates LLM

inference for faster flow

analysis

Network Interface

Card

Standard Ethernet or

Wi-Fi (Monitor Mode

optional)

Gigabit Ethernet or USB

NIC with monitor mode

support

Captures live traffic and

supports flow-level

inspection

Display &

Peripherals

Basic HD display,

mouse, keyboard

Dual monitor setup for

parallel monitoring

Supports debugging,

dashboard interaction

Power Supply 65W 90W+ Ensures stable power

during model inference

or capture

Cooling System Standard Enhanced cooling

(especially if using GPU

inference)

Prevents overheating

during sustained

processing loads

Table 3.3.2 Hardware Requirements

These hardware resources are critical to ensuring that the system functions efficiently.

Real-time packet capture must be continuous and lossless to avoid missing malicious

activity. Signature-based and AI-based detections must operate concurrently to detect

known and novel threats in real time. Additionally, blockchain logging of alerts must

occur promptly to maintain the integrity and traceability of security events. Lastly, the

frontend dashboard should remain responsive, enabling seamless interaction for

monitoring and administrative tasks.

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 55

Among all components, CPU, RAM, and disk I/O performance have the most direct

impact on real-time detection and data processing. The inclusion of a dedicated GPU is

especially important for accelerating LLM inference, particularly when running a

model like Gemma3:1b locally, as it significantly reduces analysis latency.

Although the system can run on lower-end hardware by reducing packet processing

rates or disabling GPU inference, this compromises responsiveness and detection

speed. Therefore, for development, evaluation, and production-like testing, the use of

the recommended hardware specifications is strongly encouraged.

3.3.3 Functional Requirements

Functional requirements for this project define the essential capabilities that the system

must possess to effectively detect and respond to security threats. These requirements

outline the specific actions the system must perform, hence ensuring the system meets

its core objectives. The functional requirements of this system are outlined in Table

3.3.3 according to the requirement category.

Category Requirement ID Requirement Description

Packet Capture FR1 The system shall capture live network packets from a

specified interface.

FR2 The system shall allow users to select a network interface

and apply optional filters.

Flow Analysis FR3 The system shall process captured packets into network

flows.

FR4 The system shall compute flow statistics including packet

count, byte size, and duration.

Signature

Detection

FR5 The system shall match flows against predefined attack

signatures stored in a JSON file.

FR6 The system shall generate alerts when a flow matches a

known signature.

AI Detection

(LLM)

FR7 The system shall analyse suspicious flows using a local

LLM hosted via Ollama.

FR8 The system shall generate AI-based alerts with severity

levels based on LLM output.

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 56

Blockchain

Logging

FR9 The system shall log alerts to the Ethereum blockchain via

a smart contract.

FR10 The system shall synchronise unsent alerts in batches to the

blockchain.

Web Dashboard FR11 The system shall provide a web interface to view active

flows, alerts, and system status.

FR12 The system shall allow users to view detailed information

for each alert and flow.

FR13 The system shall provide controls to start and stop packet

capture.

System Status &

Control

FR14 The system shall display real-time statistics such as packet

rate, flow count, and alerts.

Table 3.3.3 Functional Requirements

3.3.4 Non-Functional Requirements

Non-functional requirements define the quality attributes and operational constraints of

the project. Non-functional requirements describe how the system should perform

under various conditions. These include performance expectations, reliability, usability,

scalability, and security standards that ensure the system remains effective, efficient,

and user-friendly throughout its lifecycle. The non-functional requirements of this

system are outlined in Table 3.3.3 according to the requirement category.

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 57

Category Requirement ID Requirement Description

Performance NFR1 The system shall process and analyse network packets in

real time with minimal latency of not more than 5 seconds.

NFR2 The system shall support concurrent detection using both

signature and AI-based engines.

NFR3 The system shall capture and process packets efficiently

with a maximum 2% rate of dropping packets.

NFR4 The system shall initialise all components and become

ready for use within 10 seconds.

NFR5 The dashboard shall update displayed data (flows, alerts,

stats) every 1–5 seconds in real time.

NFR6 The system shall batch and synchronise alerts to the

blockchain every 60 seconds or less.

Usability NFR7 The system shall provide a user-friendly web interface with

clear visual indicators.

NFR8 The system shall display meaningful messages for errors

and alerts.

Maintainability NFR9 The system shall match flows against predefined attack

signatures stored in a JSON file.

Accuracy NFR10 The system shall have a detection accuracy of at least 90%.

NFR11 The system should have a false positive rate of less than or

equals 5%.

Table 3.3.4 Non-Functional Requirements

3.3.5 Design Constraints

Before the development of the project, several design-stage constraints shaped how the

system could be conceptualised, structured, and planned. These constraints influenced

architectural decisions, technology choices, and the balance between functional

requirements and practical feasibility. This section outlines the key limitations

identified during the design phase.

Firstly, the requirement for near real-time intrusion detection imposed a constraint on

the design of data flow and processing mechanisms. The system had to be capable of

handling large volumes of traffic quickly, which ruled out complex or computationally

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 58

expensive preprocessing during initial capture. Therefore, the architecture was

designed to prioritise lightweight filtering and staged analysis.

To ensure maintainability and future scalability, a modular design was preferred.

However, modularity often introduces performance overhead, particularly in inter-

process communication and data handoff between detection components. This required

early design compromises. Some tightly coupled functions (e.g. packet parsing and

flow analysis) were grouped within the same module to reduce latency.

The design of the user interface was bound by the need to display dynamic data such

as packet counts, flow tables, and alert logs. This required a frontend architecture that

could refresh frequently without degrading browser performance. It led to the decision

to use polling-based updates (via JavaScript fetch APIs) rather than real-time

websockets, which simplified frontend design at the cost of minor update delay.

Because the system was expected to run on standard user machines or student lab

computers, design assumptions had to account for limited CPU, RAM, and storage.

This meant avoiding heavyweight detection frameworks, such as full deep learning

models or stream processing engines. Lightweight, rule-based filtering and statistical

detection methods were prioritised in the early architecture.

Furthermore, the system required access to network interfaces for packet capture, which

is restricted on some operating systems without administrator or root privileges. This

constraint influenced the design by limiting the supported platforms and requiring

fallbacks in case access to packet capture was denied.

Artificial Intelligence components were intended to detect complex or evolving threats,

but during the design phase, the availability of realistic and diverse network traffic

datasets was identified as a major constraint. This limited the ability to design and fine-

tune models from scratch. As a result, the LLM integration was scoped to use zero-shot

or few-shot detection techniques rather than fully fine-tuned models.

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 59

3.4 Development Timeline

The timeline for the “Blockchain-Based Intrusion Detection System with Artificial

Intelligence” is structured to ensure a systematic and efficient development process,

following the system prototyping methodology. This approach allows for iterative

feedback and refinement, ensuring that each phase of the project aligns with user

requirements and technical objectives over the span of 28 weeks (2 trimesters).

Figure 3.4.1 Project Development Timeline

Figure 3.5.1 shows the Gantt Chart outlining the project development timeline. The

development process is broken down into 12 phases, each with its distinct activities and

milestones to achieve. The phased breakdown of the development plan is shown in

Table 3.5.1 below.

Phase Description Duration

Phase 1: Planning Identify user requirements, define project

scope, gather initial functional and non-

functional requirements.

Week 1 to Week 2

Phase 2: Analysis Perform analysis on the existing systems and

establish project foundations.

Week 3 to Week 4

Phase 3: First Prototype

Design

Design basic system architecture, draft initial

diagrams, and outline core components.

Week 5 to Week 6

Phase 4: First Prototype

Implementation

Develop basic versions of key components,

including the data preprocessing for datasets,

initial AI model training, network traffic

capturing, and blockchain network

configuration.

Week 7 to Week 10

Phase 5: Testing and

Refinement

Conduct initial tests on the first prototype.

Refine requirements based on the testing

results.

Week 11 to Week 12

Chapter 3 System Methodology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 60

Phase 6: Second Prototype

Design

Design detailed system architecture and refine

the system diagrams based on the testing

results and the refined requirements.

Week 13 to Week 14

Phase 7: Second Prototype

Implementation

Develop enhanced versions of key

components. Optimise the performance of the

components and fix issues.

Week 15 to Week 18

Phase 8: Testing and

Refinement

Conduct unit, integration, performance and

user acceptance tests to evaluate the prototype.

Refine the scope and requirements based on the

results.

Week 19 to Week 20

Phase 9: Final Prototype

Design

Design the final versions of the modules with

fully functional components.

Week 21 to Week 22

Phase 10: Final Prototype

Implementation

Develop final versions of the modules with

LLM, enhanced blockchain logging, and full

functionality for real-time alerts and response

automation.

Week 23 to Week 26

Phase 11: Final Testing

and Refinement

Conduct unit, integration, performance and

user acceptance tests to evaluate the

performance metrics of the prototype. Fix final

issues if they were to emerge.

Week 27

Phase 12: Deployment Deploy the system and ensure the system is

able to function optimally.

Week 28

Table 3.4.1 Phased Breakdown of the Development Plan

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 61

CHAPTER 4 SYSTEM DESIGN

4.1 System Architecture

This chapter presents the detailed design of the proposed system. It begins by outlining

the overall system architecture, including the high-level system flow, block diagram,

and data flow representation. The chapter then breaks down the design into individual

components, covering their interactions, internal logic, and how they contribute to the

system as a whole. It also discusses the structure of the database and storage

mechanisms, the design of the smart contract used for alert logging on the blockchain,

and the interfaces facilitating communication between modules. Additionally, the

chapter describes the compilation and setup process, including required tools,

dependencies, and project configuration, ensuring the system can be reliably built and

deployed.

4.1.1 High-Level System Flow

The high-level system flow illustrates the sequential process by which the Blockchain-

Based Intrusion Detection System with Artificial Intelligence captures, analyses, and

responds to network traffic. This flow provides an overview of how data moves through

various subsystems, from initial packet capture to final alert storage on the blockchain.

Figure 4.1.1 outlines the high-level system flow for this project.

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 62

Figure 4.1.1 High Level System Flow

The process begins with network traffic capture, where the system listens to a selected

network interface using the scapy packet manipulation library. Users can define

optional Berkeley Packet Filter (BPF) rules to refine the captured data. Incoming

packets are collected and added to a queue for subsequent processing, ensuring they are

not lost even under high traffic volume.

Next, the packets are processed through flow assembly and preprocessing. At this stage,

packets are grouped into flows based on attributes such as source and destination IP

addresses, ports, and protocol types. The system calculates important statistical features

for each flow, including packet count, byte size, duration, and TCP flag patterns. These

features are necessary for both signature-based and AI-based threat evaluation.

The signature-based detection engine inspects each flow against a library of predefined

attack signatures stored in a structured JSON file. If a match is detected, an alert is

generated and queued for blockchain logging. This method is effective for identifying

known threats with well-defined patterns.

For threats that do not match any known signature but still appear anomalous, the

system employs AI-based detection using a local Large Language Model (LLM).

Suspicious flows are passed to the Gemma3:1b model via the Ollama runtime. The

LLM performs zero-shot classification and returns an output indicating whether the

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 63

flow is benign or malicious, along with a severity rating. AI-generated alerts are also

added to the system’s alert history.

Following detection, alerts, whether signature-based or LLM-derived, are handled by

the alert logging and blockchain storage module. Alerts are first stored temporarily in

a local SQLite database. At defined intervals or in real-time (as defined by the user),

they are batched and sent to the Ethereum blockchain (emulated by Ganache) using

Web3.py. This ensures that alerts are securely stored, time-stamped, and tamper-proof.

Finally, the frontend dashboard provides users with a real-time interface to monitor

system activity. The dashboard displays live traffic flows, alerts, system status, and

blockchain synchronisation logs. Users can also control packet capture, view detailed

flow and alert information, and toggle both the AI engine and blockchain logger as

needed.

4.1.2 System Block Diagram and Data Flow

The system block diagram provides a high-level overview of the core components in

the Blockchain-Based Intrusion Detection System with Artificial Intelligence and

illustrates how data flows between these components. However, it presents a more

detailed view of the entire system as compared to the high-level system flow in the

previous section. In this diagram, each block represents a modular subsystem

responsible for a specific task in the process of intrusion detection and alert

management. The system block diagram for this project is depicted in Figure 4.1.2

below.

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 64

Figure 4.1.2 System Block Diagram

Packet Capture Module

The process begins at the Packet Capture Module, which is responsible for real-time

monitoring of network traffic. The Network Interface listens to incoming and outgoing

packets on the system. These packets are intercepted by the Packet Sniffer, which

captures raw packet data. The data is then processed by the Flow Assembler and

Preprocessor, where packets are grouped into flows based on common attributes (such

as IP addresses, ports, and protocols). These flows are enriched with statistical features

and metadata before being forwarded simultaneously to both the LLM-Based Detection

Module and the Signature-Based Detection Module which run on separate threads for

optimisation.

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 65

LLM-Based Detection Module

The flows from the packet capture module are ingested into the LLM-based detection

engine, which implements a Retrieval-Augmented Generation (RAG) framework. This

module performs semantic analysis using AI. Initially, a Knowledge Base provides

context, consisting of network security documentation, threat reports, and other domain

knowledge. This content is divided using a Document Loader and Text Splitter, then

encoded into numerical vectors using an Embedding Generation Model. These vectors

are stored in a Vector Database for fast retrieval.

When a new flow arrives, it is converted into a structured query by the Prompt Handler.

This query is used to retrieve relevant knowledge chunks from the vector database.

These retrieved chunks, combined with the live flow data, are passed to the Large

Language Model (LLM). The LLM evaluates the flow in context and decides if it is

malicious. If an anomaly is detected, the LLM generates an alert, which is passed to the

Alert Logger Module for further processing.

Signature-Based Detection Module

In parallel with the LLM analysis, the Signature-Based Detection Module applies a

deterministic approach. The module receives the same pre-processed flow from the

Packet Capture Module. It checks this data against a Signature Database using the

Signature-Based Detector. The Signature Manager maintains the database by handling

retrieval operations for attack patterns and updating the system with new threat

signatures. If a match is found, an alert is immediately generated and passed to the Alert

Logger Module.

Alert Logger Module

Both detection modules feed alerts into the Alert Logger Module, where the Alert

Handler standardises the alert data. Each alert is enriched with metadata such as

timestamp, source, severity level, detection method (LLM or signature), and relevant

flow details. The processed alerts are saved in the Alert Database. This ensures

persistence, supports retrospective analysis, and facilitates interaction with both the

blockchain logger and the frontend interface.

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 66

Blockchain Logger Module

To ensure integrity and auditability, alerts are further processed by the Blockchain

Logger Module. The Alert Handler forwards validated alerts to the Blockchain Handler,

which transforms alert metadata into a structured format suitable for on-chain storage.

A Smart Contract deployed on the blockchain receives the alert hash and relevant

metadata. This ensures that the detection record is immutable and verifiable. This

module periodically synchronises with the local database, batching alerts and updating

on-chain state to reduce cost and congestion.

Frontend GUI Module

Finally, the Frontend GUI Module serves as the main interface for system users. It

connects to all backend modules through a central Controller and displays data using

the Dashboard and Interface. Users can monitor:

• Real-time packet capture status.

• Ongoing flow analysis and statistics.

• Alerts from both LLM and signature detectors.

• All loaded signatures.

• System health and status

• Blockchain sync state and transactions.

Users can also interact with the system by toggling detection engines, adjusting capture

filters, syncing alerts to blockchain manually, and viewing flow-level detail. The

interface promotes transparency, usability, and control in a single web-based

dashboard, accessible by any authorised node within the network due to its hosted

backend services.

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 67

4.2 Component-Level Design

This section provides a detailed breakdown of each major component within the system,

describing their specific roles, internal structures, and interactions with other modules.

It explains how the components are designed to perform their tasks from a technical

and low-level point of view, as compared to the previous section. This section also

outlines the design principles behind each module.

4.2.1 Packet Capture Module

Overview

The Packet Capture Module is the foundational component responsible for acquiring

real-time network traffic data, transforming it into structured flows, and forwarding it

for threat analysis. Implemented in Python using the Scapy library, this module features

multithreaded execution, configurable filtering, and integrated alert logging. It serves

as the critical entry point for the entire detection pipeline, dictating the quality and

granularity of data available to the detection engines.

Configurable Capture Options

This module operates by first configuring a network interface for live packet capture.

The selected interface may be dynamically obtained through environment variables or

set manually by the user via the system’s graphical interface. To accommodate diverse

monitoring requirements, the module supports the use of Berkeley Packet Filter (BPF)

syntax. This allows users to define highly specific capture rules, such as tcp port 80 or

not port 53, thereby reducing processing load and narrowing the focus to relevant

traffic. The sniffing process itself is designed for robustness and responsiveness, using

a time-bounded polling loop with a two-second sniffing timeout (configurable in the

environment variables in .env) to prevent indefinite blocking.

Robust Packet Statistics Tracking

Captured packets are handed off to a central processing routine

(process_captured_packet) which updates multiple runtime statistics. These include

packet count, byte count, dropped packets, and packet timestamps. The module

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 68

intelligently calculates packet size using a tiered strategy, falling back from Scapy’s

len() method to raw layer estimates and minimum frame assumptions when necessary.

This redundancy ensures accuracy in environments with incomplete packet metadata.

Asynchronous Analysis

To support asynchronous analysis, packets are inserted into a bounded FIFO queue for

batch processing. The queue is carefully monitored to avoid overflow; once it reaches

90% of its maximum capacity, packet capture is automatically throttled to prevent

system instability. In scenarios where the queue is full, packets are dropped, and a

running count of such events is maintained to evaluate packet loss during high-volume

sessions.

Network Flow Assembly

The packet processing thread consumes packets in configurable batches, defaulting to

around 50 at a time, which balances throughput and responsiveness. For each packet, it

invokes the Traffic Analyser, a separate component responsible for flow assembly,

payload extraction, and protocol dissection. The analyser returns flow-level summaries

that are then used for statistical updates and alert generation. Alerts, if generated, are

stored with timestamps and packet summaries for later retrieval and can be logged in a

separate alert log file.

Configurable Network Data Logging

Logging functionality is embedded and configurable. When enabled, the module

records packet summaries and flow analysis results into structured log files. It also

generates a secondary alert log, isolating intrusion-relevant data for quicker review. The

logging mechanism respects disk space limitations by using buffered writes and

optional file rotation mechanisms.

DoS Tracking Subsystem

To improve detection of distributed or fragmented attacks, the module includes a

lightweight DoS Tracker. This subsystem monitors flow volume per IP address over

configurable time windows and evaluates protocol-specific thresholds. If a host exceeds

traffic thresholds within the defined interval, it is flagged as suspicious, and a high-

confidence alert is generated even before reaching the LLM stage. This helps ensure

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 69

responsiveness to flooding attacks and rate-based anomalies that may otherwise go

undetected.

Runtime Control and Visibility

The component further exposes interfaces for runtime control, including methods to

start or stop packet capture, enable or disable logging, and query active capture

statistics. These statistics include packets per second, bytes per second, dropped packet

count, and queue utilisation rate—all of which are computed with high-resolution

timestamps and running counters. This diagnostic data is not only useful for system

tuning but also provides valuable context during system evaluation and performance

benchmarking.

Design Principles

From a software engineering perspective, the Packet Capture Module demonstrates

modularity, concurrency control, and resiliency. Its thread-safe design ensures

continuous packet ingestion and processing under variable traffic loads. It features

exception-safe operations at every critical point, from packet dissection to queue

operations, to maintain robustness even under malformed or unexpected traffic

conditions.

4.2.2 LLM-Based Detection Module

Overview

The LLM-Based Detection Module provides advanced, context-aware intrusion

detection using a locally hosted large language model (LLM). It integrates with the

Ollama framework to perform semantic analysis of network flows that may not trigger

conventional signature-based alerts. This module enhances the system’s ability to

detect complex, evolving, or zero-day threats by reasoning overflow-level metadata in

natural language format. It operates asynchronously to ensure system responsiveness

and scalability, even under high throughput conditions.

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 70

Architecture and Integration

At its core, the detection engine is implemented as a Python class that runs in a

dedicated processing thread, separate from the main packet capture and analysis

pipeline. Incoming flow data is added to a bounded queue and processed either

periodically or whenever a batch size threshold is met. The component connects to the

Ollama server via REST API, using endpoints to verify server availability, list

supported models, and submit prompt-based queries for real-time analysis.

Before processing flows, the system ensures the specified LLM model (e.g., mistral,

llama, gemma) is available on the server. The module dynamically checks the health

and capabilities of the Ollama instance at runtime and gracefully degrades if resources

are unavailable. These operational checks allow the system to function autonomously

in both online and offline modes, ensuring fault tolerance.

Flow Analysis Workflow

The LLM Detection Engine continuously collects and batches flow records from the

real-time traffic analyser. Each flow record includes protocol-level details such as

source/destination IPs, ports, packet and byte counts, duration, and, for TCP flows –

flag statistics. These records are formatted into a structured prompt, which is sent to the

LLM for evaluation.

The prompt instructs the LLM to focus on identifying explicit malicious patterns such

as DoS attempts, port scanning, brute-force login trials, and suspicious payload

anomalies. The LLM is instructed to ignore benign anomalies and to only return alerts

with high confidence (≥ 0.7). This strict filtering reduces false positives and aligns the

module with practical security response needs.

RAG Integration

RAG enhances this module by retrieving contextual information, such as CVE

descriptions, historical attack reports, and threat intelligence feeds from a vector store

or knowledge base prior to LLM evaluation. This retrieved data would be appended to

the prompt dynamically, allowing the LLM to reason over both the live flow data and

relevant background knowledge. Such integration would enable more informed,

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 71

context-sensitive decisions, particularly for zero-day or polymorphic threats that lack

signatures.

Alert Generation and Post-Processing

Upon receiving the LLM’s response, the system parses the returned data into structured

alert objects. Each alert includes a unique signature ID (≥ 9000), the protocol involved,

a threat description, severity level, confidence score, and metadata about the implicated

flow. Alerts that fall below the confidence threshold are automatically discarded. All

validated alerts are dispatched to registered callback functions, which forward them to

the Alert Logger and Blockchain Logger for persistent storage and verification.

Additionally, the LLM Detection Module contributes to system statistics, maintaining

counters for flows analysed, API calls made, alerts generated, and errors encountered.

These metrics are accessible via the system’s web dashboard and are essential for

monitoring the health and efficiency of the AI pipeline.

Design Principles

The design of this module is guided by several key software engineering principles:

modularity, asynchronous processing, fault tolerance, and context-awareness.

Modularity ensures the component operates independently from the rest of the system,

allowing for easy updates, testing, and future integration with alternative LLM

providers or Retrieval-Augmented Generation (RAG) backends. Asynchronous

processing is achieved through multithreaded execution and queue-based batch

handling, enabling the system to analyse traffic in near real time without bottlenecking

the main detection pipeline. Fault tolerance is embedded through regular health checks,

dynamic model verification, and robust error handling for API communication,

ensuring the module can gracefully degrade during failures. Finally, context-awareness

is a core design goal, with prompts structured to encourage the LLM to evaluate patterns

based on semantic relationships, flow statistics, and potential threat intelligence, hence

making it capable of detecting sophisticated, low-signature attacks that traditional

engines may overlook.

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 72

4.2.3 Signature-Based Detection Module

Overview

The Signature-Based Detection Module is a rule-driven engine responsible for

identifying known attack patterns within network flows. It complements the LLM-

Based Detection Module by providing deterministic and fast detection capabilities

using predefined signatures. This dual-layered detection approach ensures that the

system can detect both conventional threats with high precision and novel or ambiguous

ones through AI-based reasoning. The signature engine is particularly effective in

recognising attacks such as SQL injection, cross-site scripting (XSS), brute-force

logins, and port scans, where known payload characteristics or behavioural patterns are

present.

Architecture and Implementation

The core of the signature engine is built around a modular detection pipeline consisting

of three major components: the Signature Manager, the Signature Database, and the

Detection Engine. The Signature Manager is responsible for loading, parsing, updating,

and maintaining the rule set stored in a JSON-formatted signature database

(signatures.json). Each rule includes attributes such as a unique signature id, protocol,

matching conditions (e.g., port number, TCP flags, rate limit, time window, or payload

keywords), threat category, severity level, CVEs list, action, and metadata.

During packet processing, flows extracted from the traffic analyser are passed through

the Detection Engine. Each flow is compared against the active rule set in real time.

Matching conditions are evaluated using both packet metadata and decoded payloads

when available. The matching process is optimised to run within milliseconds per flow,

ensuring minimal performance overhead even when dealing with hundreds of

concurrent flows.

The signature matching algorithm is implemented as a conditional matcher that inspects

various components of each flow, including source and destination ports, IP addresses,

protocol types, and embedded payload content. Payload matching supports both exact

string comparisons and substring detection, enabling flexible rule definitions. For

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 73

example, a rule may trigger if a TCP packet on port 80 contains the string

“/admin/login”, indicating a possible brute-force login attempt.

In addition to simple pattern matching, the engine supports compound conditions, such

as flag combinations (e.g., SYN without ACK for SYN floods) and flow statistics (e.g.,

packet frequency or byte size thresholds). These conditions are combined using logical

conjunctions to define richer detection criteria. The design ensures that rule evaluation

remains both transparent and explainable, which is important for forensic analysis and

threat validation.

Alert Generation and Formatting

Upon detecting a signature match, the module generates an alert object containing

structured metadata. This includes the signature ID, a descriptive name, threat category

(e.g., intrusion, reconnaissance, malware), severity rating, protocol type, CVEs list,

action, and metadata. The alert also includes contextual flow information such as IP

addresses, ports, and timestamps. Alerts are then forwarded to the Alert Logger and

Blockchain Logger modules for storage and immutability. This standardised format

allows seamless integration with the rest of the system, including the GUI dashboard

and blockchain contract for audit logging.

Each alert is also assigned a human-readable description to aid in incident response.

For instance, a rule that matches excessive failed SSH login attempts would produce an

alert with the message: “Multiple SSH login failures from a single source detected

within a short time frame”, as defined in the description of the rule. Such contextual

tagging helps administrators understand the nature of the threat quickly and take

appropriate actions.

Rule Management and Extensibility

The Signature Manager offers an interface for dynamically updating rules without

restarting the system. New signatures can be added at runtime, and outdated ones can

be removed or modified via the GUI or backend API. The signature database is

structured for readability and extensibility, allowing administrators or researchers to

define new rules using clear JSON fields.

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 74

To maintain performance, the engine enforces constraints such as rule indexing and

protocol-based filtering prior to evaluation. This reduces the number of comparisons

required per packet, especially in high-throughput scenarios. Additionally, built-in

validation ensures that malformed rules are rejected during loading, maintaining system

stability.

Design Principles

The design of the Signature-Based Detection Module is also guided by the principles

of efficiency, modularity, clarity, and extensibility. Efficiency is achieved through fast,

rule-based matching that enables real-time detection without introducing system lag,

making it suitable for high-throughput environments. The module is developed in a

modular manner, separating rule management, detection logic, and alert handling,

which simplifies maintenance and allows independent upgrades. Clarity is prioritised

in the rule definition format, which uses readable JSON structures to ensure that

signatures are understandable and easy to audit. Finally, extensibility is embedded into

the architecture by allowing dynamic rule updates at runtime and supporting a wide

range of match conditions, including payload strings, port numbers, and protocol-

specific flags, thus making it adaptable to evolving threat patterns and new network

protocols.

4.2.4 Alert Logger Module

Overview

The Alert Logger Module is responsible for the structured recording of all security

alerts generated by the detection components, namely the Signature-Based Detection

Module and the LLM-Based Detection Module. It acts as a centralised repository for

security events, ensuring that every detected anomaly is documented with detailed

metadata for further analysis, auditing, and forensic investigation. This module plays a

critical role in maintaining visibility into system activity and acts as the bridge between

detection engines and persistent or immutable storage such as the blockchain.

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 75

Architecture and Functionality

The module is designed to operate as an event-driven component within the intrusion

detection system. Alerts are passed to it in real time via callback functions or direct

method invocations from the detection modules. Each alert is expected to follow a

structured format containing a signature ID, description, category, severity level,

confidence score (for LLM alerts), protocol type, and flow-related metadata

(source/destination IP, ports, timestamps). Upon receiving an alert, the module

serialises the data into JSON format and appends it to an in-memory or file-based alert

log.

The logging system is extensible to support multiple output formats. Currently, alerts

are logged to structured .log files, and optionally, printed to the console for debugging

or real-time monitoring. Logs are timestamped and include identifiers that facilitate

filtering and cross-referencing. This ensures that alerts can later be analysed

individually or in aggregate, enabling pattern recognition, incident correlation, and

historical trend analysis.

Alert Classification and Management

The Alert Logger distinguishes between alerts based on their source (LLM vs

Signature) and category (e.g., reconnaissance, intrusion, DoS, anomaly). This

classification allows alerts to be grouped and prioritised. The module also tracks alert

statistics, such as the number of alerts received per source and category, which can be

visualised via the GUI dashboard.

To prevent duplicate logging, the module includes basic de-duplication logic based on

timestamp, signature ID, and flow metadata. Additionally, log rotation or size-based

splitting can be implemented to avoid excessive disk usage, especially during high alert

volumes. This ensures the system remains performant and storage-efficient over

extended monitoring periods.

Interoperability with Other Modules

The Alert Logger interfaces directly with both the Blockchain Logger Module and the

Frontend GUI Module. It provides the blockchain component with verified and

formatted alerts ready for hashing and on-chain submission. Simultaneously, it pushes

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 76

alert data to the GUI controller to enable real-time display and user notifications. These

interactions are handled using lightweight message passing or shared memory

structures, ensuring minimal latency and maximum responsiveness.

The module is also designed to be compatible with future extensions, such as sending

alerts to an external SIEM (Security Information and Event Management) system,

exporting to CSV for offline analysis, or triggering automated incident response scripts.

Its core structure provides a flexible foundation for integration into larger security

infrastructures.

Design Principles

The design of the Alert Logger Module is grounded in the principles of reliability,

transparency, interoperability, and scalability. Reliability is ensured through structured

data handling, fault-tolerant writing operations, and fallback mechanisms.

Transparency is reflected in the readable and standardised alert format, which supports

traceability and auditability. Interoperability is achieved by adhering to common data

exchange formats and exposing well-defined interfaces for external modules like the

blockchain handler and frontend controller. Lastly, the module is built for scalability,

capable of handling high alert volumes through queuing mechanisms and batch

processing if required.

4.2.5 Blockchain Logger Module

Overview

The Blockchain Logger Module is designed to provide tamper-proof, decentralised

storage of critical security alerts generated by the intrusion detection system. By

leveraging smart contracts deployed on a blockchain platform, this module ensures that

high-severity alerts are immutably recorded, enabling transparent auditing, verifiable

logging, and long-term accountability. Its inclusion marks a significant advancement in

IDS architecture, introducing a layer of trust and integrity that conventional storage

methods cannot offer.

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 77

Architecture and Smart Contract Interaction

The module operates as a backend service that interacts with an Ethereum-compatible

blockchain via Web3.py. A smart contract, written in Solidity and deployed to a local

blockchain network (e.g., Ganache or a testnet), defines a public function to store alert

hashes along with associated metadata such as timestamp, severity level, and alert ID.

This contract acts as a distributed ledger, allowing any stakeholder to verify that an alert

was recorded without the possibility of retroactive modification.

Alerts are received from the Alert Logger Module in structured JSON format. Before

submission, each alert is serialised and hashed using a secure hashing algorithm

(typically SHA-256). The hash is then sent to the smart contract along with key fields

like signature id, protocol, and severity. The module uses a configured Ethereum

account and private key to sign and submit transactions, ensuring cryptographic

authenticity. The module also synchronises the local database with the blockchain

network to ensure a reliable storage and sharing of alerts across the WAN of an

organisational network.

Transaction Handling and Error Management

The Blockchain Logger handles blockchain transactions asynchronously to avoid

blocking the main detection flow. It queues incoming alerts and processes them in

batches or on a rolling basis, depending on network load and configuration. Each

transaction includes a gas estimate to ensure successful execution without exceeding

block limits.

To maintain resilience, the module includes comprehensive error handling. If a

transaction fails due to insufficient gas, nonce issues, or network disconnection, the

alert is requeued with exponential backoff. Critical errors are logged with detailed

diagnostics, and alerts that repeatedly fail submission are backed up locally for manual

review. This ensures that no high-priority alert is lost, even in cases of blockchain

failure or instability.

On-Chain Alert Verification

Once an alert hash is stored on-chain, it becomes publicly verifiable. Any party with

access to the contract address and blockchain explorer can confirm the existence, time,

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 78

and content of a submitted alert. This feature provides strong guarantees against data

tampering and supports regulatory compliance in contexts where audit trails and

incident forensics are legally required.

To verify alerts, users can compare the hash of a local alert record with those stored on

the blockchain. If the hashes match, the alert is confirmed to be authentic and

untampered. This mechanism ensures that the blockchain functions as a single source

of truth for critical events, fostering trust between system operators and external

stakeholders.

Integration with Other Modules

The Blockchain Logger integrates seamlessly with the Alert Logger Module via a

standardised interface. It receives alerts that are either flagged as critical or manually

selected by the system operator for on-chain logging. It also interacts with the GUI

Module, exposing on-chain status indicators such as transaction confirmation, gas

usage, and contract sync status. These updates provide users with real-time visibility

into blockchain operations and system integrity.

Moreover, the module is capable of exporting alert hashes to the GUI for verification

purposes. This enhances user trust and transparency, especially in collaborative or

multi-user environments where accountability is vital. Integration with the Web3.py

framework ensures compatibility with a wide range of Ethereum tools and networks,

facilitating future migration to production-grade blockchains.

Design Principles

The Blockchain Logger Module is built on the principles of immutability, trust-

lessness, resilience, and accountability. Immutability is achieved by anchoring alerts to

a blockchain ledger, preventing any form of retroactive alteration. Trust-lessness

removes the need for third-party verification by allowing cryptographic proof of alert

authenticity through on-chain hashes. Resilience is enforced through asynchronous

queuing, retry logic, and local backup of failed submissions, ensuring system reliability

even under network faults. Finally, accountability is embedded through transparent

transaction tracking, hash verification, and contract-based access to alert history.

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 79

4.2.6 Frontend GUI Module

Overview

The Frontend Graphical User Interface (GUI) Module serves as the visual interface for

administrators and users to monitor, interact with, and control the Blockchain-Based

Intrusion Detection System. Designed as a web-based dashboard, it provides real-time

visibility into network activity, detected alerts, system statistics, and blockchain status.

The GUI bridges the gap between complex backend logic and human usability,

allowing even non-technical users to effectively interpret and manage security data.

Architecture and Technologies Used

The frontend is implemented using standard web development technologies – HTML,

CSS, and JavaScript, with additional styling handled via a dedicated stylesheet

(styles.css) for responsive and user-friendly layouts. Dynamic content rendering is

performed by app.js, which handles real-time updates from the Flask backend using

asynchronous HTTP requests (AJAX). This separation of structure (HTML), style

(CSS), and behaviour (JS) follows modern frontend design best practices and supports

maintainability and scalability.

The GUI layout is structured into distinct sections, including a Live Network Traffic

Table, Alerts Feed, Blockchain Status Panel, and System Controls. These areas are

clearly delineated to minimise cognitive load and maximise situational awareness.

Colour-coded severity levels, icons, and tooltips further enhance usability by allowing

quick visual parsing of critical information.

Real-Time Data Visualisation and Interaction

One of the key features of the GUI is its ability to display live traffic flows and alerts

in real time. Using polling mechanisms, the frontend periodically queries the backend

Flask application for updates to active flows, system status, and alerts. These are then

rendered into HTML tables and visual components without requiring a full page reload,

creating a smooth and responsive user experience.

For each flow, the GUI shows protocol type, source and destination IPs and ports,

packet and byte counts, and connection duration. Alert entries include the detection

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 80

method (LLM or signature), severity, threat description, and timestamp. Users can click

on individual entries to expand further details, such as TCP flag history or LLM-

generated explanations, thereby supporting deeper investigation when needed.

System Control Features

Beyond passive monitoring, the GUI offers interactive system control elements. Users

can start or stop packet capture, clear active flows, enable or disable blockchain

logging, and adjust filter settings. These actions are sent to the backend using HTTP

requests and handled securely to prevent unintended system disruption.

Additionally, a dedicated panel displays the status of key subsystems, including the

LLM Detection Engine, Signature Engine, Alert Logger, and Blockchain Logger.

Metrics such as queue sizes, flow counts, active threads, and blockchain sync status are

updated periodically, providing a comprehensive operational overview.

User Experience and Accessibility

Special care has been taken to ensure the GUI is intuitive, responsive, and accessible

across different devices and screen sizes. The design employs a clean, dark-themed

aesthetic to reduce eye strain during prolonged use. Font sizes, spacing, and layout

responsiveness have been optimised using CSS media queries and flexible grid layouts.

Furthermore, rrror messages, system warnings, and success notifications are shown as

toast alerts or embedded banners, improving feedback without interrupting user flow.

Design Principles

The Frontend GUI Module is designed based on the principles of usability, clarity,

responsiveness, and separation of concerns. Usability ensures that all features are easily

accessible and understandable, even to non-expert users. Clarity is achieved through a

clean layout, logical grouping of components, and consistent visual language.

Responsiveness guarantees that the interface adapts fluidly to various devices and

network speeds, maintaining reliability in diverse environments. Finally, the strict

separation of structure (HTML), presentation (CSS), and behaviour (JavaScript)

adheres to best practices in frontend engineering, enabling maintainability, modularity,

and future extensibility. These principles make the GUI an essential, user-friendly

interface that empowers effective monitoring and control of the entire detection system.

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 81

4.3 Database and Storage Design

The database and storage design of the Blockchain-Based Intrusion Detection System

is centred around lightweight, high-performance mechanisms that support real-time

data flow, efficient alert recording, and secure integration with both local and

decentralised storage. Given the system’s hybrid architecture, consisting of live traffic

capture, AI-driven analysis, and blockchain logging, the storage model is designed for

speed, modularity, and extensibility. Other than relying on a traditional relational

database, the system also uses in-memory data structures, flat-file logging, and smart

contract-based blockchain records to manage different categories of data. This section

aims to outline the database and storage design implemented in the system to achieve

such requirements.

4.3.1 Network Flow Data Handling

Network flows, as generated by the Traffic Analyser, are not permanently stored in a

central database. Instead, they are temporarily held in memory using Python

dictionaries and lists. This decision is based on the high throughput and volatile nature

of flow data, which is primarily used for transient processing by detection engines. Flow

objects are indexed using hash-based keys derived from their 5-tuple identifiers (source

IP, destination IP, source port, destination port, protocol). Each flow entry maintains its

own statistical profile, such as byte count, packet frequency, duration, and TCP flag

distribution, stored locally within the NetworkFlowStatistics object. These data

structures are periodically pruned to manage memory usage and flow expiration based

on timeout policies.

4.3.2 Alert Database and File-Based Log

When a detection engine, either signature-based or LLM-based identifies a suspicious

or malicious network flow, the corresponding alert is forwarded to the Alert Logger

Module. This module then performs dual persistence by recording the alert into both a

SQLite relational database and a structured flat .log file. The SQLite database functions

as the primary structured store, designed to support querying, filtering, and future

integration with analytics tools or external dashboards. Each alert entry is stored as a

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 82

row in the database, containing fields such as id, name, category, severity, flow_hash,

timestamp, details, synced_to_chain, tx_hash, created_at (timestamp). The relational

model enables fast retrieval of specific alerts based on criteria like date range, detection

method, or severity level. The database scheme for alert storage is shown in Table 4.3.1

below.

Field Name Data Type Constraints Description

id INTEGER PRIMARY KEY

AUTOINCREMENT

Unique identifier for each alert.

name TEXT NOT NULL Name or title of the alert (e.g., “LLM:

TCP Flood”).

category TEXT NOT NULL Type of detection category (e.g., dos,

intrusion, llm-detection).

severity TEXT NOT NULL Threat level of the alert (e.g., low,

medium, high).

flow_hash TEXT NOT NULL SHA-256 hash of the flow data for

integrity and traceability.

timestamp INTEGER NOT NULL UNIX timestamp (in seconds) indicating

when the alert was generated.

details TEXT NONE Additional JSON-encoded flow or alert

metadata for context (optional).

synced_to_chain INTEGER DEFAULT 0 Indicates whether the alert was synced to

blockchain (0 = no, 1 = yes).

tx_hash TEXT UNIQUE Blockchain transaction hash if the alert

was recorded on-chain.

created_at INTEGER DEFAULT

(strftime(‘%s’,

‘now’))

UNIX timestamp when the record was

created.

Table 4.3.1 Database Schema for Alert Storage

In parallel, alerts are also serialised into human-readable JSON format and appended to

a flat log file using buffered I/O. This secondary file-based logging approach ensures

data redundancy and provides a portable, platform-independent snapshot of system

activity. It is especially useful in scenarios where lightweight external review or quick

diagnostics are needed without database access. These log files preserve chronological

ordering and can be archived, rotated, or exported for audit purposes.

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 83

4.3.3 Blockchain-Based Immutable Storage

the system incorporates blockchain-based storage via the Blockchain Logger Module.

This acts as a secondary, immutable data store, designed to guarantee the integrity and

authenticity of critical security events. Alerts selected for on-chain recording are first

hashed using SHA-256 to produce a fixed-length digest. The hash, along with selected

metadata (e.g., severity, protocol, timestamp), is then submitted to a deployed smart

contract on an Ethereum-compatible blockchain.

This smart contract maintains a verifiable, append-only record of alerts that cannot be

tampered with or erased. Any third party can audit the on-chain data by comparing

locally stored logs with the blockchain entries. This hybrid model combining off-chain

file-based logs and local database (SQLite) for alert storage with on-chain decentralised

hashes ensures both operational efficiency and forensic-grade data integrity.

4.3.4 Temporary Queues and Runtime Storage

In addition to persistent logging, the system employs several in-memory queues and

buffers to coordinate real-time operations. For instance, the LLM Detection Module

uses a thread-safe FIFO queue to batch flow records prior to submission to the LLM.

Similarly, packet capture statistics and DoS tracker data are stored in local runtime

variables and updated continuously. These ephemeral stores are essential for

maintaining low-latency operations but are cleared periodically to avoid memory

saturation.

System configuration data, such as interface selection, threshold values, and model

settings, are loaded from .env files or predefined JSON configuration files. This

approach simplifies deployment and allows non-developers to modify system

parameters without editing source code.

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 84

4.4 Smart Contract Design

Overview

The smart contract design in this system introduces a tamper-proof, decentralised

storage mechanism for critical security alerts, enabling immutable logging on a

blockchain. The smart contract is written in Solidity and deployed on an Ethereum-

compatible blockchain (e.g., Ganache for testing). It forms the core of the Blockchain

Logger Module, which securely logs a cryptographic summary of selected alerts. By

recording high-severity events on-chain, this design ensures data integrity, traceability,

and accountability—key requirements in modern intrusion detection systems where

auditability is critical.

Contract Structure and Key Functions

The smart contract is implemented under the name AlertsContract.sol and manages a

dynamic array of alert records. Each record contains five primary fields: name,

category, severity, flowHash, and timestamp. These fields are submitted by the backend

via a logAlert() function, which is publicly accessible and non-payable, meaning it does

not require Ether to execute.

A corresponding AlertLogged event is emitted each time a new alert is recorded,

allowing external listeners, such as blockchain explorers or backend systems, to

monitor blockchain activity in real time. To retrieve stored alerts, the contract provides

two view functions: getAlertCount() returns the total number of alerts stored, while

getAlert(index) returns the details of a specific alert by index. These functions ensure

transparency and allow verifiers or auditors to independently access stored alerts

without altering the blockchain state.

Functionality and Usage

The logAlert() function is the primary entry point for recording alerts on-chain. It

requires all core alert details to be passed in as arguments. Upon execution, the alert is

appended to the internal array and indexed automatically. The function includes

parameters for:

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 85

• name: A short title for the alert (e.g., “TCP Flood”),

• category: The classification (e.g., “dos”, “intrusion”),

• severity: The assessed threat level (e.g., “high”),

• flowHash: A SHA-256 hash uniquely identifying the flow,

• timestamp: UNIX time when the alert was detected.

Each of these values is stored immutably, ensuring that once written, alerts cannot be

altered or deleted. This guarantees the audit trail’s credibility and creates a permanent

record for compliance, investigation, or legal evidence.

Events and Data Transparency

The AlertLogged event acts as a broadcast mechanism for external observers. It is

triggered every time logAlert() is called and includes indexed fields (name, category,

severity) for fast filtering, along with the flowHash and timestamp. This supports use

cases such as real-time alert tracking, blockchain monitoring dashboards, and

automated threat response systems that react to new on-chain events.

By using events, the contract reduces the need for full on-chain querying and allows

alert data to be streamed efficiently to off-chain components via Web3 interfaces. This

makes the contract practical for integration in both decentralised and hybrid security

systems.

Design Principles

The smart contract design is based on principles of immutability, minimalism,

transparency, and cost-efficiency. Immutability is guaranteed by the append-only

structure of the alert array, where past entries cannot be modified or removed.

Minimalism is maintained by limiting storage to essential fields and avoiding excessive

on-chain data, reducing gas costs and improving performance. Transparency is

achieved through publicly accessible functions and indexed events, allowing any party

to verify the system’s behaviour without needing permission or trust in a central

authority. Finally, cost-efficiency is addressed by avoiding unnecessary state changes

and implementing read-only functions for external use, ensuring the contract remains

practical in both test and production blockchain environments.

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 86

4.5 Communication Interface Design

Overview

The communication interface design of the Blockchain-Based Intrusion Detection

System establishes how data and control signals are exchanged between internal

modules, the frontend GUI, and external systems such as the blockchain network and

LLM server. The system follows a modular, microservice-oriented architecture where

each component communicates through well-defined, loosely coupled interfaces. This

design ensures extensibility, simplifies debugging, and enables real-time data flow

without compromising performance or maintainability.

Internal Module Interactions

Internal communication between system modules is primarily achieved through

function calls, thread-safe queues, and callback mechanisms. For instance, the Packet

Capture Module and Traffic Analyser push structured flow objects into queues

consumed by both the Signature-Based Detection Engine and the LLM Detection

Engine. These engines, in turn, send alerts asynchronously to the Alert Logger via

registered callback functions. This event-driven design allows modules to operate

independently, while ensuring synchronised data processing and responsive behaviour.

The system also employs shared in-memory structures (e.g. Python dictionaries and

counters) for live metric tracking, such as packets processed, alerts generated, and

queue sizes. These shared variables are exposed to the GUI and backend status APIs

for real-time monitoring.

Backend-to-Frontend Communication

The interface between the backend (Flask) and the frontend GUI is handled using

asynchronous HTTP (AJAX) requests. JavaScript scripts periodically poll the backend

through REST-like endpoints (e.g. /get_flows, /get_alerts, /status) to fetch the latest

data. The responses are returned in JSON format, ensuring lightweight transmission

and easy parsing in the browser.

User actions on the frontend, such as starting or stopping packet capture, resetting flow

tables, or toggling blockchain logging are sent to the backend via POST requests. These

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 87

actions are routed through dedicated Flask routes that trigger the corresponding

backend methods. This request-response model ensures a smooth and responsive user

experience while maintaining control integrity.

Backend-to-Blockchain Communication

Communication between the backend and the blockchain is facilitated via the Web3.py

library, which interacts with an Ethereum-compatible node (e.g. Ganache). When an

alert is selected for on-chain logging, the backend constructs a transaction by encoding

the relevant fields—name, category, severity, flowHash, and timestamp—and submits

it to the smart contract via the logAlert() function.

The backend also monitors transaction status, gas usage, and contract state (e.g. total

alert count) using Web3.py’s query functions. Confirmation receipts and transaction

hashes are returned to the Flask application and logged into the SQLite alert database,

linking on-chain records with local logs.

Backend-to-LLM Communication

The LLM Detection Module communicates with a locally hosted Ollama server via

HTTP POST requests. When a batch of flows is ready for analysis, the module

generates a structured prompt and sends it to the Ollama API at the /api/generate

endpoint. The server returns a response containing the LLM’s analysis, which is then

parsed and converted into structured alert objects.

The LLM communication interface is resilient and supports timeout management, error

detection, and retries. If the server is unreachable or a response is malformed, the

detection engine gracefully logs the error and continues processing new flows. This

ensures robustness in unpredictable runtime conditions.

Logging and Monitoring Interfaces

To support observability, the system provides interfaces for log storage (file-based and

SQLite) and status monitoring. Key runtime metrics such as the number of flows

analysed, queue sizes, LLM request count, and blockchain sync status are exposed via

a /status endpoint, which the frontend queries periodically. These metrics allow

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 88

administrators to monitor system health, diagnose performance bottlenecks, and verify

component readiness in real time.

Design Principles

The communication interface design is grounded in the principles of loose coupling,

clarity, scalability, and fault tolerance. Loose coupling ensures that modules remain

independently testable and maintainable, as they interact only through clearly defined

interfaces. Clarity is achieved by using standard protocols (HTTP, JSON) and

consistent API endpoints. Scalability is supported by asynchronous, non-blocking

communication patterns and queue-based buffering between processing components.

Fault tolerance is embedded through retry logic, timeout handling, and structured error

reporting, allowing the system to maintain operational integrity even in the presence of

failures or transient network issues. This communication model enables the system to

function reliably in real-time environments, while remaining modular and extensible

for future upgrades.

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 89

4.6 Compilation and Setup Design

The compilation and setup design of the Blockchain-Based Intrusion Detection System

is structured to promote ease of deployment, clarity of codebase organisation, and

modular component interaction. A clearly defined folder hierarchy and a set of

configuration files govern how the system is installed, initialised, and maintained. This

structure ensures that each part of the system, backend, frontend, AI engine, smart

contract, and storage, can be independently understood, configured, and extended

without introducing ambiguity or dependency conflicts. The folder structure of the

project is shown in Figure 4.6.1 below.

Besides, the system’s configuration is governed by a set of external files that enable

flexibility, portability, and environment-specific customisation. These files define

system behaviour, dependencies, data sources, and external integration settings,

allowing the software to adapt without the need to modify the source code directly. By

separating configuration from logic, the design simplifies deployment and improves

maintainability.

The primary configuration file is the .env file, which contains environment variables

used across the entire system. It defines key operational parameters and URLs for all

the modules. These values are dynamically loaded at runtime using the python-dotenv

package, enabling seamless changes between testing, development, and production

environments.

Another important configuration file is requirements.txt, which lists all Python libraries

required to run the system. This includes modules such as flask, scapy, web3, and

sqlite3. The python virtual environment can be set up easily with a single command,

ensuring consistency across different machines and deployments.

For blockchain integration, contract_abi.json file contains the Application Binary

Interface (ABI) of the deployed smart contract. This ABI defines the functions, events,

and data structures exposed by the contract, allowing the backend to encode

transactions, decode responses, and interact with the blockchain securely and correctly.

Chapter 4 System Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 90

/root-directory/

│

├── __init__.py # Initialisation details

├── app.py # Entry point for the Flask server

├── .env # Environment variable configuration file

├── requirements.txt # Python dependencies list

│

├── /frontend/ # Contains all frontend-related assets

│ ├── index.html # Main HTML file

│ ├── styles.css # Styling definitions

│ └── app.js # JavaScript for dynamic frontend behaviour

│

├── /network_capture/ # Packet capture and traffic processing

│ ├── __init__.py # Initialisation details

│ ├── packet_capture.py # Raw packet sniffer and flow assembler

│ ├── traffic_analyzer.py # Flow-level statistics and protocol analysis

│

├── /rag/ # RAG module for knowledge base, retriever, and generator

│ ├── __init__.py # Initialisation details

│ ├── document_store.py # Vector database interface

│ ├── retriever.py # Embedding & similarity-based retrieval logic

│ ├── generator.py # LLM prompt composition and response generation

│ └── ingest_documents.py # Script to load docs into the vector store

│

├── /detection_engine/ # Signature-based and LLM-based detection engines

│ ├── __init__.py # Initialisation details

│ ├── llm_detection.py # LLM-based detection module

│ ├── alert_logger.py # File-based alert logging module

│ ├── signature_detection.py # Signature-based detection logic

│ └── signature_manager.py # Signature loading and rule evaluation

│

├── /blockchain/ # Blockchain integration components

│ ├── __init__.py # Initialisation details

│ ├── AlertsContract.sol # Solidity smart contract source

│ ├── deploy.py # Script for deploying the smart contract

│ ├── contract_abi.json # ABI definition for contract interaction

│ └── blockchain_logger.py # Python Web3 integration for on-chain logging

│

├── /database/ # Data persistence and alert handling

│ ├── alerts.db # SQLite database file

│

├── /signatures/ # Signature database

│ ├── signatures.json # Signature file

│

├── /venv/ # Python virtual environment

Figure 4.6.1 Folder Structure

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 91

CHAPTER 5 SYSTEM IMPLEMENTATION

This chapter outlines the practical steps taken to build and deploy the Blockchain-Based

Intrusion Detection System. It begins with the setup of the development environment,

covering both hardware and software requirements. The chapter then describes the

implementation of the backend logic, blockchain integration, and frontend interface.

Each section highlights how individual modules were configured to form a fully

functional system. It also explains how the system operates in real time and discusses

the challenges encountered during implementation, along with the solutions applied.

5.1 Environment and Tools Setup

This section describes the initial setup required to support the development and

execution of the system. It covers the hardware and software environments, including

the development platforms, libraries, frameworks, and external tools used. The purpose

is to ensure a stable and compatible environment that supports all components of the

system throughout the implementation phase.

5.1.1 Hardware Setup

The successful development and deployment of the project require a powerful and

adaptable hardware setup that is capable of handling various demanding tasks. In this

project, the entire system will be implemented using a single high-performance laptop.

The laptop will serve multiple critical functions within the system, hosting of both LLM

and blockchain testnet, and multithreaded environments. A detailed overview of the

hardware specifications of the laptop used is shown in Table 5.1.1 below.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 92

Hardware Component Specification

Model Lenovo IdeaPad Gaming 3 82K2

Processor AMD Ryzen 7 5800H with Radeon Graphics 3.20 GHz

Operating System Windows 11 Home

Graphic NVIDIA GeForce GTX 1650

Memory 16GB DDR4 RAM

Hard Drive Samsung MZALQ512HBLU-00BL2 SSD 512GB

Random-Access Memory Samsung M471A1G44AB0-CWE 8GB,

Kingston 9905700-118.A00G 8GB

Network Interface Card MediaTek Wi-Fi 6 MT7921 Wireless LAN Card,

Realtek PCIe GbE Family Controller

Figure 5.1.1 Laptop Specifications

CPU

The AMD Ryzen 7 5800H is an octa-core, 16-thread processor with a base clock speed

of 3.20 GHz. Its multithreaded architecture is crucial for parallel task execution, such

as processing captured network packets while simultaneously running intrusion

detection models and syncing alerts to the blockchain. The high core and thread count

reduces latency in the data pipeline and ensures real-time responsiveness of the system,

particularly under high network traffic loads.

RAM

To support data-heavy operations, the system is equipped with 16GB of DDR4 RAM.

This memory capacity is sufficient for LLM-based detection module and the real-time

signature-matching engine with is memory-intensive. The RAM also accommodates

the simulation of blockchain testnet and the storage of temporary packet buffers,

ensuring smooth multitasking and minimal memory bottlenecks.

Hard Drive

Storage requirements are addressed by a 512GB NVMe SSD, which offers fast

read/write speeds. This is vital for both the persistent storage of alert data and the rapid

read/write of captured packet as well as system logs. The SSD significantly reduces

input/output latency during the preprocessing and batch analysis of network traffic data,

enabling timely decision-making and blockchain syncing of detected alerts.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 93

GPU

Graphical processing requirements for AI-based detection are met using the NVIDIA

GeForce GTX 1650 GPU. This GPU, although entry-level by workstation standards,

features CUDA cores that accelerate computations, hence improving the LLM

performance. The GPU also supports real-time visual analytics rendered through the

web interface, allowing system users to monitor the flow status and alert trends

efficiently.

NIC

Lastly, reliable connectivity is enabled through dual interfaces: MediaTek Wi-Fi 6 and

Realtek PCIe GbE Ethernet. Wi-Fi 6 provides high-speed wireless communication

useful during testing in environments with multiple devices, while the Ethernet port

ensures stable and secure data transmission when syncing alerts across blockchain

nodes or capturing high-throughput packet streams.

5.1.2 Software Setup

Programming Languages

The development of the project requires multiple programming languages, each chosen

for its unique strengths and suitability to the specific demands of the project. The

programming languages selected and a summary of their roles in this project are

outlined in Table 3.1.3.1 below.

Programming Language Version Role

Python 3.12.5 Powers the backend system

HTML ECMAScript 6+ Structures the web interface

JavaScript 20.10.0, ECMAScript 6+ Handles dynamic frontend behaviour

CSS ECMAScript 6+ Styles the web interface

Solidity 0.8.0 Implements the smart contract

Table 5.1.1 Programming Language Requirements

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 94

Moving on, various libraries and frameworks are used in developing, testing, and

deploying this project. These tools are selected based on their ability to handle specific

tasks within the system. The main libraries selected and a summary of their roles in this

project are outlined in Table 5.1.2 below.

Library/Framework Version Role

Flask 3.1.0 Serves as the backend web framework for building

API endpoints

flask_cor 5.0.1 Enables Cross-Origin Resource Sharing (CORS) to

allow frontend-backend communication

py_solc_x 2.0.3 Compiles and interacts with Solidity smart contracts.

python-dotenv 1.1.0 Loads environment variables from a .env file for

secure configuration

Requests 2.32.3 Handles HTTP requests, mainly used for external API

communication

scapy 2.6.1 Captures and processes raw network packets for

analysis

numpy 2.2.5 Used for packet statistics and data arrays

pandas 2.2.3 Manages structured data like flow logs and alert

histories

seaborn 0.13.2 Creates clean, high-level statistical visualisations

matplotlib 3.10.1 Plots graphs and charts for network activity and flow

analysis

web3 7.11.0 Interfaces with the Ethereum blockchain to read/write

smart contract data

Table 5.1.2 Library and Framework Requirements

Furthermore, the development and deployment of this project involve a range of tools

and platforms that facilitate various stages of the project. These tools and platforms are

selected for their ability to streamline development, ensure efficient deployment, and

achieve the main objectives of the system. The main tools and platforms selected as

well as a summary of their roles in this project are outlined in Table 5.1.3 below.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 95

Tool/Platform Version Role

Ollama 0.6.6 Hosts and serves the LLM locally

Gemma3:1b - A lightweight LLM model

Ganache 2.7.1 Simulates a local Ethereum blockchain

SQLite 3.42.0 Stores intrusion alerts locally

Git 2.45.2.windows.1 Manages version control for source code

VS Code 1.99.3 Provides an integrated development environment

Chrome 135.0.7049.116 (Official

Build) (64-bit)

Used to access and test the web-based user interface

Table 5.1.3 Tool and Platform Requirements

In addition, the operating system plays a fundamental role in supporting the execution

of all development tools, libraries, and runtime environments. This project is developed

and deployed on Windows 11 Home, which provides a stable and user-friendly

environment for multitasking, blockchain simulation, LLM hosting, and network

management. Its compatibility with essential tools, programming languages, and virtual

networking interfaces makes it a practical choice for building and testing an AI-

powered, blockchain-integrated intrusion detection system. The main OS selected for

this project is described in Table 5.1.4 below.

OS Version Role

Windows 11 Home 23H2 Operating system used to host this system

Table 5.1.4 Operating System Requirements

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 96

5.2 Blockchain Implementation

The blockchain component of this system ensures that all intrusion alerts generated by

the detection engines are logged in a tamper-proof, decentralised ledger. This

guarantees the integrity and immutability of critical security events, which is essential

in environments where trust, transparency, and auditability are priorities. To support

this requirement, a smart contract is deployed on a private Ethereum blockchain using

Ganache. The backend system interacts with this smart contract through the Web3.py

and py-solc-x libraries. This section outlines the implementation steps involved in

deploying and integrating the blockchain component with the intrusion detection

system.

5.2.1 Installing and Running Ganache

Ganache is a personal blockchain simulator developed by Truffle, designed for

Ethereum smart contract development. It runs a local blockchain on the user’s machine,

allowing developers to deploy, test, and debug smart contracts in a controlled

environment. Ganache provides complete visibility over blockchain operations,

including blocks, transactions, and account balances, which is ideal for rapid

prototyping and testing without relying on public testnets.

In this project, Ganache is used to simulate a decentralised environment where all

intrusion alerts can be logged securely. This ensures that even during the development

phase, the system can demonstrate blockchain logging and verification functionality.

To begin, the Ganache application is downloaded and installed from the official Truffle

Suite website at https://archive.trufflesuite.com/ganache/. Once launched, the initial

step involves configuring a new workspace. As shown in Figure 5.2.1, the workspace

is named BlockIDS, which serves as a container for managing the project’s smart

contracts and blockchain state. Ganache allows for the addition of Truffle projects

directly into the workspace for better integration and management; however, in this

project, smart contract deployment is managed independently through Python scripts.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 97

Figure 5.2.1 Ganache Workspace Configuration

Next, the blockchain server settings are configured. As shown in Figure 5.2.2, the

hostname is set to 0.0.0.0, representing “All Interfaces”, enabling Ganache to accept

RPC connections from any network interface. The default RPC port is set to 7545,

which is the endpoint used by the backend system to connect to the blockchain. The

network ID is defined as 5777, a common default for local Ethereum networks. Other

options such as “Automine” and “Error on Transaction Failure” are enabled to ensure

that transactions are processed instantly and any issues are explicitly flagged, which

helps with debugging and consistency during smart contract interaction.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 98

Figure 5.2.2 Ganache Server Configuration

After the configuration is complete, the “Start” button is clicked to launch the

blockchain. Once started, Ganache provides a local Ethereum environment with several

pre-funded accounts. These accounts can be used for deploying smart contracts and

initiating transactions without requiring real Ether. The use of Ganache in this project

eliminates the complexities of public network deployment while preserving all core

blockchain features such as transaction signing, contract execution, and block mining.

Figure 5.2.3 shows the running Ganache environment after a successful setup.

Figure 5.2.3 Ganache Environment

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 99

The consistent and user-friendly interface of Ganache simplifies blockchain

management, allowing focus to remain on the development and integration of smart

contract features. With the environment running and properly configured, the system is

ready to compile, deploy, and interact with the smart contract for intrusion alert logging.

5.2.2 Setting Up the Python Environment

To enable Python to interact with the Ethereum blockchain, a set of blockchain-related

libraries must be installed. These include Web3.py, a Python library that allows

communication with Ethereum nodes via JSON-RPC, and py-solc-x, which acts as a

Python interface for compiling Solidity smart contracts. Additionally, python-dotenv is

used to load configuration values, such as RPC URLs and contract addresses, from an

environment file (.env), which simplifies environment management and enhances

security by avoiding hard-coded credentials. This file includes variables such as the

Ganache URL, contract ABI path, database path, and contract address.

Installing these libraries in a virtual environment ensures consistency, isolation, and

easier dependency tracking during development. By separating configuration from

code, the system becomes more maintainable and adaptable to changes. For instance,

switching between test and production environments requires no code modification,

only a change in the .env file. This also enhances security, as sensitive data is not

exposed directly in the source code.

5.2.3 Installing and Configuring the Solidity Compiler

Solidity is the primary programming language for writing smart contracts on the

Ethereum blockchain. To compile the smart contract within the Python environment,

the appropriate version of the Solidity compiler must be installed using py-solc-x. In

this project, version 0.8.0 is selected for compatibility with the contract code. Installing

the compiler ensures that the contract can be compiled locally before deployment,

converting it into a format that can be understood and executed by the Ethereum Virtual

Machine (EVM). This process also generates the ABI (Application Binary Interface),

which acts as a bridge between the contract and the backend system.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 100

5.2.4 Compiling and Deploying the Smart Contract

Once the smart contract is written (refer to Chapter 4.4 Smart Contract Design), it is

compiled within the Python environment using py-solc-x. This step generates the

bytecode and ABI, both of which are required for deployment. The backend connects

to the Ganache blockchain via the RPC endpoint and uses one of the pre-funded test

accounts to deploy the contract. Deployment is performed as a transaction, and the

resulting transaction receipt contains the deployed contract address. This address is then

saved to the .env file and referenced by the backend system whenever it needs to call

the contract. This deployment process ensures the contract is fully registered on the

blockchain and ready to receive alerts. The deployment process and outcomes are

shown in Figure 5.2.4 and Figure 5.2.5 below.

Figure 5.2.4 Smart Contract Deployment

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 101

Figure 5.2.5 Contract Creation on Blockchain

5.2.5 Saving Contract Metadata

The ABI generated during compilation and the address obtained after deployment are

critical for contract interaction. The ABI is stored in a separate JSON file

(contract_abi.json), and the address is recorded in the environment file (.env). These

two elements together allow the backend system to create an interface to the smart

contract, enabling the logging and retrieval of alerts. Managing this metadata externally

ensures that if the contract is redeployed (for example, after modification), only these

references need to be updated, avoiding the need to alter the core logic of the backend

code.

5.2.6 Initialising the System with Blockchain Support

Before launching the intrusion detection system, it is essential to verify that Ganache is

running and accessible. The backend will then load the contract metadata from the

environment and ABI files. If a contract has not yet been deployed, the deployment

script can be run manually to compile and deploy it. Once the system is started via the

main application script, the backend automatically connects to the blockchain,

initialises the logger, and begins syncing alerts. At this stage, the system is fully

operational with end-to-end blockchain integration.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 102

5.3 LLM Implementation

In this project, a lightweight LLM model is hosted locally using Ollama, which serves

as the backend inference engine for AI-driven threat detection. This section describes

the implementation steps required to set up and integrate the LLM component with the

system.

5.3.1 Installing Ollama

Ollama is an open-source platform designed to run large language models locally with

minimal setup. It supports various model architectures, including LLaMA, Mistral, and

Gemma, and offers an HTTP API for interaction. For this system, Ollama hosts the

gemma3:1b model, a compact and efficient LLM optimised for lightweight inferencing

on edge devices or development machines. Its relevance in this project lies in its ability

to analyse sequences of network flows and detect nuanced threats such as stealthy scans

or early-stage intrusions that may not trigger rule-based alerts. By operating entirely

offline, Ollama ensures data privacy and low-latency inference without relying on

cloud-based APIs.

To begin, Ollama is installed on the development machine using its official package for

Windows downloadable at https://ollama.com/.Once installed, the Ollama service can

be started using Command Prompt or Windows Powershell with the “ollama serve”

command. The Ollama server runs as a local server accessible via

http://localhost:11434, as shown in Figure 5.3.1 below.

Figure 5.3.1 Ollama Local Server

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 103

5.3.2 Pulling the Required Model

The next step involves pulling the desired model. In this case, the gemma:1b model is

downloaded using Ollama’s CLI. This model is selected for its balance between

performance and resource usage, making it suitable for real-time traffic analysis in

environments with limited hardware. After installation, the model is loaded into

memory and ready to respond to inference requests sent via HTTP as depicted in Figure

5.3.2 and Figure 5.3.3.

Figure 5.3.2 Running LLM Hosted via Ollama

Figure 5.3.3 Interaction with LLM via HTTP

5.3.3 Configuring the Environment for LLM

To enable smooth integration between the LLM engine and the backend system, several

environment variables must be defined and loaded at runtime. These values are stored

in a .env file located in the project directory, similar to the other modules.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 104

The key variables include:

• LLM_MODEL_NAME: Specifies the model identifier (gemma:1b).

• OLLAMA_BASE_URL: URL of the Ollama server (http://localhost:11434).

• LLM_BATCH_SIZE: Number of flows per analysis batch.

• LLM_MAX_QUEUE_SIZE: Maximum number of flows in the queue.

• LLM_PROCESSING_INTERVAL: Interval (in seconds) for checking and

processing flow batches.

These variables are loaded at application startup using the python-dotenv library.

Proper configuration ensures that the system communicates correctly with the Ollama

server and that flow data is processed efficiently in batches.

5.3.4 Initialising the LLM Detection Engine

The backend includes a module named LLM Detection Engine (defined in

llm_detection.py), which is responsible for managing LLM-related operations. Upon

system startup, this engine is initialised using the values loaded from the .env file. It

creates a queue for incoming flow data, starts a separate processing thread, and

continuously monitors the queue size and timing conditions. When either the batch size

is reached or the interval expires, the engine prepares the data and sends a structured

prompt to the LLM.

5.3.5 Implementing the RAG Mechanism

To improve the model’s factual grounding and decision-making, Retrieval-Augmented

Generation (RAG) is introduced. RAG allows the LLM to retrieve relevant documents

or facts from an external knowledge base before generating a response. In this system,

a lightweight vector store is used to index a curated set of known threat descriptions,

signatures, and tactics (e.g. DoS, brute force, reconnaissance), as well as normal

network behaviours to prevent false positives.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 105

When a batch of flows is submitted for LLM analysis, the system extracts key tokens,

which are used to perform a similarity search against the local knowledge base using

cosine similarity or other embedding techniques. The top-matching documents are

appended to the prompt sent to the LLM. This enriches the context of the query and

guides the model toward more accurate, explainable, and relevant outputs.

5.3.6 Formatting and Sending Network Flow Data

The system captures and summarises network flow data through the traffic analyser

module. This summarised data is then formatted into a natural language prompt, which

includes key flow features such as IP addresses, ports, protocol type, packet count, byte

volume, and duration. This prompt is sent to Ollama via an HTTP POST request to the

/api/generate endpoint. The model analyses the flows in context and returns a JSON-

like list of potential security alerts with confidence scores and descriptions.

5.3.7 Handling and Logging AI-Generated Alerts

The system processes the model’s response, filtering out low-confidence or malformed

entries. Valid alerts are converted into the standard format used across the system and

passed to the alert management pipeline. These alerts are recorded in the local database

and also synchronised to the blockchain via the BlockchainLogger (in

blockchain_logger.py). This ensures that AI-generated detections are traceable, tamper-

proof, and visible to the frontend dashboard.

Similar to the other modules, this module adopts a .env file to store all environment-

specific variables. This approach allows the application to access key configuration

values dynamically without hardcoding them into the source code. Environment

variables related to the LLM include the model name to be used, the base URL of the

Ollama server, the batch size for LLM processing, the maximum size of the flow queue,

the interval for batch processing.

Specifically, the variable LLM_MODEL_NAME is set to define which model Ollama

should serve for inference. In this system, the value is set as gemma:1b, indicating the

use of the lightweight model, which balances accuracy and processing speed. The

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 106

OLLAMA_BASE_URL variable typically points to http://localhost:11434, which is

the default local address where the Ollama server listens for API requests. This ensures

that all LLM operations are performed locally without any external network

dependency, improving both performance and data security.

The LLM_BATCH_SIZE and LLM_MAX_QUEUE_SIZE variables define how many

network flows should be collected before they are sent to the LLM for analysis, and

how many flows can be queued at any time, respectively. These parameters are crucial

for balancing responsiveness with efficiency, especially during periods of high traffic.

The LLM_PROCESSING_INTERVAL defines how often the system checks whether

the queue has enough data to trigger a batch analysis, allowing timely detection without

overwhelming system resources.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 107

5.4 Backend Services Implementation

The backend services form the core logic and orchestration layer of the intrusion

detection system, managing packet capture, flow analysis, signature-based detection,

alert handling, and frontend communication. Built using Python 3.12.5, the backend is

designed to be modular, multi-threaded, and capable of handling real-time network

data. This section details the implementation steps and essential components required

to set up the backend services for the system to operate effectively.

5.4.1 Setting Up the Flask Web Framework

The entire backend is structured around the Flask microframework, a lightweight web

framework written in Python. Flask provides the RESTful API interface that allows the

frontend to interact with the system, including issuing commands like starting or

stopping packet capture, fetching flow and alert data, and monitoring system status.

Flask is selected for its simplicity, scalability, and ease of integration with Python-based

services. It supports modular routing and JSON response handling, which are critical

for maintaining a clean interface between backend logic and the web frontend.

5.4.2 Setting Up the Flask Web Framework

To set up Flask, the application structure is defined in a single entry point (app.py),

where routes are declared, and controllers are mapped to their respective services.

Flask’s built-in development server is sufficient for the system’s local use case, and the

server is configured to run on all network interfaces (0.0.0.0) to support remote frontend

access within a controlled environment.

5.4.3 Initialising Packet Capture with Scapy

At the foundation of the intrusion detection system is the packet capture engine,

responsible for capturing live network traffic from a specified interface. This

functionality is implemented using Scapy, a powerful Python library for packet

manipulation and analysis. Scapy supports low-level packet sniffing with the ability to

filter, dissect, and decode network protocols.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 108

To initialise packet capture, the system first queries all available network interfaces and

allows the user to select one. Once selected, a dedicated thread is started to continuously

sniff packets using Berkeley Packet Filter (BPF) syntax to reduce system load by

capturing only relevant traffic (e.g. TCP, HTTP, or SSH). Each packet is timestamped

and enqueued for further processing. Scapy’s direct access to the data link layer makes

it suitable for real-time, low-latency capture, which is essential for timely intrusion

detection.

5.4.4 Configuring the Packet Processing Queue

To manage the flow of incoming packets, a multi-threaded queuing system is

implemented using Python’s queue and threading modules. Captured packets are added

to a thread-safe queue with a defined maximum size to prevent memory overflow.

Another dedicated thread retrieves packets from the queue in configurable batches and

forwards them to the traffic analyser for further inspection.

This batching mechanism is critical for maintaining system responsiveness, especially

under high traffic conditions. It decouples packet acquisition from processing,

preventing packet loss due to temporary analysis delays. The backend also monitors the

queue status to track dropped packets and logs warnings when the queue approaches its

maximum capacity.

5.4.5 Implementing Flow-Based Traffic Analysis

The traffic analysis engine serves to aggregate individual packets into network flows,

which are groups of packets sharing the same five-tuple: source IP, destination IP,

source port, destination port, and protocol. The flow-based design allows the system to

evaluate behavioural patterns rather than individual packets, increasing detection

accuracy.

The analyser keeps a dictionary of active flows, updating their statistics, such as total

packets, total bytes, session duration, and TCP flag distributions, with each new packet.

It also handles flow timeout logic to remove inactive sessions, maintaining a

manageable memory footprint. This component is essential for supporting both rule-

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 109

based and AI-based detection engines, as they rely on complete flow summaries rather

than isolated packets.

5.4.6 Integrating the Signature-Based Detection Engine

The signature-based engine is responsible for detecting known attack patterns using

predefined rules. This component is implemented through a combination of a Signature

Manager and a Signature Detection module. The rules are stored in a structured JSON

file (signatures.json) and loaded during system initialisation. Each rule specifies

matching criteria such as IP addresses, ports, protocol types, payload content, TCP flag

combinations, and rate limits.

When a new flow is analysed, it is compared against the loaded signatures using the

Signature Detection engine. Matching flows trigger alerts, which are then passed to the

alert management pipeline. This module offers fast and deterministic detection of

common threats like SYN floods, SSH brute force attempts, and SQL injections,

ensuring the system can respond to known vulnerabilities with high confidence.

5.4.7 Managing Alerts and Local Storage

Once an alert is triggered, either by the signature engine or other modules, it is stored

locally in an SQLite database. SQLite is chosen for its simplicity, portability, and

seamless integration with Python. The alert table schema captures all relevant metadata,

including timestamp, severity, category, flow identifier, and detection source. This data

is not only used for blockchain synchronisation but also displayed on the frontend

dashboard for real-time monitoring.

In addition to storing alerts, the system maintains an alert history in memory, enabling

fast access to recent alerts without the overhead of repeated database queries. This

hybrid model of in-memory caching and persistent storage ensures a balance between

performance and durability.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 110

5.4.8 Configuring the Environment for Backend Services

To maintain a clean separation between code and configuration, the system uses the

python-dotenv library to load environment variables from a .env file. This file contains

critical settings such as interface names, logging options, packet filter strings, and

various module-specific parameters. At runtime, these variables are imported and

applied to the relevant system components, allowing flexible reconfiguration without

modifying source files.

5.4.9 Enabling Cross-Origin Requests and Frontend Communication

To allow the web-based frontend to interact with the backend services, Cross-Origin

Resource Sharing (CORS) is enabled using the flask_cors extension. This is necessary

because browsers enforce the same-origin policy, which blocks frontend applications

served from different origins from making requests to the backend API.

By enabling CORS, the frontend, developed using HTML, JavaScript, and CSS, can

securely access backend routes to fetch live flow data, view alerts, and control system

operations such as starting or stopping the capture engine. This forms the bridge

between the backend logic and the user interface, ensuring real-time visibility and

control over the intrusion detection process.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 111

5.5 Frontend and UI Implementation

The frontend of the intrusion detection system provides a visual interface through which

users can interact with backend services, monitor network flows, view intrusion alerts,

and track system health. It is built using standard web technologies: HTML, CSS, and

JavaScript, and rendered in a modern browser such as Google Chrome. The frontend

communicates with the backend via RESTful API calls, allowing real-time data

retrieval and dynamic updates. This section outlines the implementation steps required

to set up and operate the frontend interface, which is an essential part of system usability

and user experience.

5.5.1 Setting Up the Project Structure

The frontend is deployed as a web application and organised into three core files:

index.html, styles.css, and app.js. These files are placed inside the frontend/ directory

of the Flask project, which is automatically served when the Flask application is

running. The index.html file defines the structure of the user interface, including

navigational components, content sections, data tables, and interactive buttons. This file

acts as the entry point for the entire frontend application.

The project structure is designed to separate content (HTML), styling (CSS), and

behaviour (JavaScript), which aligns with standard web development best practices.

This separation makes the interface easier to maintain, extend, and debug.

5.5.2 Designing the User Interface with HTML

HTML (HyperText Markup Language) is used to define the layout and content of the

user interface. The index.html file includes key sections such as the Dashboard, Active

Flows, Alerts, Signatures, System Status, and Settings. Each section is embedded

within its own <section> tag and styled for visibility control using CSS classes.

HTML elements such as tables, buttons, drop-down menus, and sidebars are structured

to provide the user with an intuitive, single-page experience. Each interface element is

linked to specific JavaScript logic that handles data updates, user input, and server

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 112

communication using dedicated IDs. The HTML design also includes a navigation

sidebar that allows users to switch between sections quickly.

5.5.3 Styling the Interface with CSS

CSS (Cascading Style Sheets) is used to style the interface and improve its readability,

accessibility, and overall user experience. The stylesheet styles.css defines the colour

scheme, typography, layout behaviour, and responsive design features of the

application. The system adopts a dark theme, using colours such as dark grey

backgrounds and contrasting light-coloured, neon text and icons to reduce visual strain

and align with modern UI trends.

Styling rules are defined for every major interface component, including summary

cards, alert tables, flow panels, navigation menus, and buttons. Specific styles are also

applied to severity badges, status indicators, and notification banners, providing clear

visual cues about system state and alert criticality. CSS classes like “.status-running”,

“.severity-critical”, and “.alert-detail-content” are used to dynamically reflect the status

of system events and intrusion detections.

5.5.4 Enabling Interactivity with JavaScript

JavaScript is used to handle interactivity, fetch dynamic data, and update the interface

in real-time. The core logic resides in the app.js file, which is responsible for sending

API requests to the backend, processing responses, and updating the DOM (Document

Object Model) accordingly. It uses asynchronous functions to fetch data from endpoints

such as /api/status, /api/flows, and /api/alerts.

JavaScript functions manage key UI features, including starting and stopping packet

capture, rendering real-time statistics, populating flow and alert tables, displaying alert

details, and toggling system modules. The script also includes state management for

runtime tracking of metrics like packet count, active flows, and alert volume, providing

users with immediate feedback on system behaviour. Event listeners are assigned to

buttons and selectors to handle user actions, such as refreshing data, searching flows,

or filtering alerts.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 113

5.5.5 Creating Real-Time Data Visualisation and Feedback

To provide timely insights into system performance, the frontend includes real-time

dashboards with visual elements such as summary cards, alert counters, and activity

graphs. These components are updated through periodic JavaScript polling that calls

backend APIs at regular intervals (possible to be defined to respond within milliseconds

if the system resource suffices).

Additionally, the system includes a notification mechanism that shows temporary alerts

and status updates (e.g., “Packet Capture Started”, “LLM Detection Running”) using

animated banners. These enhance user awareness and improve feedback during system

interaction. The visual design is carefully aligned with backend status responses to

ensure consistency between the system’s state and its UI representation.

5.5.6 Managing Responsive Design and Browser Compatibility

To ensure accessibility across different devices and screen sizes, the frontend is

designed using responsive CSS techniques such as media queries and flexible grid

layouts. This enables the interface to scale and adapt on desktops, laptops, and tablets.

Components such as the navigation menu, data tables, and control panels are optimised

to reposition or resize themselves based on the browser window dimensions.

Additionally, the frontend is tested on modern browsers like Google Chrome, which

fully supports ECMAScript 6 (JavaScript ES6) features used in the app.js script.

Browser compatibility testing ensures consistent behaviour across systems and avoids

rendering issues or JavaScript errors that could impact user interaction.

5.5.7 Linking Frontend to Backend Services

The frontend connects to the backend using a set of predefined API endpoints,

configured in JavaScript as base URLs. These endpoints correspond to Flask routes and

handle operations such as starting/stopping capture, retrieving flow and alert data,

checking system status, and managing settings. All data is exchanged in JSON format

to maintain a lightweight and structured communication pattern.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 114

Each component of the UI is linked to its respective API. For example, the “Start

Capture” button sends a POST request to /api/start, while the “Alerts” tab fetches

updated alerts from /api/alerts. This integration ensures the frontend remains

synchronised with the backend, delivering a real-time and interactive experience.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 115

5.6 System Operation

This section describes how the system functions after successful deployment. It

explains the sequence of operations from packet capture to flow analysis, threat

detection, alert generation, and blockchain logging. The section also highlights how the

system components interact in real time and how users can monitor and manage alerts

through the web-based interface. The aim is to demonstrate the complete operational

workflow of the system in a typical usage scenario.

5.6.1 System Launch and Dashboard Overview

After a successful deployment, the system is initiated through the Flask framework

using the flask run command within the virtual environment. Upon execution, all core

modules, including signature-based detection, LLM-based analysis, and blockchain

logging are automatically loaded and validated. As illustrated in Figure 5.6.1, the

operational workflow proceeds in the following sequential order.

1. Signature Engine Initialisation

The system begins by loading predefined intrusion detection signatures from the

signatures/signatures.json file. These rules are parsed and stored within the signature

manager for real-time use during packet inspection.

2. Database Verification and Setup

A local SQLite database is checked for existence. If already present, it is opened and

verified; otherwise, it is created along with the necessary schema for alert storage.

3. Blockchain Contract Binding

The deployed smart contract is accessed at its designated address on the Ganache

blockchain. The ABI is loaded and parsed to allow secure interactions with the

contract’s logAlert and getAlert functions.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 116

4. Blockchain Sync Check

A backward synchronisation is attempted by reading all historical AlertLogged events

from the blockchain, starting from block 0. If no prior events are found, the system

proceeds with live monitoring.

5. LLM Server and Model Validation

The system confirms that the Ollama server is online and that the specified LLM model

(gemma3:1b) is available. The LLM Detection Engine is then activated and set to

continuously analyse batched flows for AI-based threat classification.

6. Component Activation

Finally, the blockchain logger is launched with its scheduled sync interval, and the

system enters standby mode awaiting packet capture activation.

Figure 5.6.1 System Logs Showing Successful System Launch

Users interact with the system primarily through a web-based interface designed with

real-time responsiveness in mind. Upon launching the system and accessing the

dashboard, users can initiate packet capture by selecting a network interface and

clicking the “Start Capture” button. The Dashboard depicted in Figure 5.6.2 provides a

comprehensive overview of packet count, active flows, and alerts detected, blockchain

sync statistics (e.g., number of alerts pushed on-chain), visual analytics such as network

activity and alert distribution. Detailed records of alerts are also shown in the “Recent

Alerts” section, including time, severity, source/destination IP, and blockchain sync

status.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 117

Figure 5.6.2 Idle System Dashboard

Users are also able to access other sections including:

• Active Flows: For viewing ongoing network communications

• Alerts: For reviewing historical and live detections

• Signatures: For managing detection rules

• System Status: For monitoring LLM and blockchain module health

• Settings: To configure operational parameters

5.6.2 Network Interface Selection and Packet Capture Start

Following system initialisation, users are required to configure the packet capture

settings before initiating live network monitoring. This process involves selecting an

appropriate network interface, applying optional filters, and activating the packet

capture engine.

The system provides a list of all available network interfaces detected on the host

machine. These interfaces are presented in a dropdown menu within the “Packet

Capture Settings” section of the System Settings tab. Typical options include wired

connections (e.g., “Ethernet”), wireless interfaces (e.g., “WiFi”), and virtual adapters

(e.g., “VMware Network Adapter”).

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 118

As shown in Figure 5.6.3, users are expected to choose an interface corresponding to

the primary network environment where intrusion detection is intended. This selection

is essential as it defines the source of packet input for the system.

Figure 5.6.3 Network Interface Selection

Once the network interface is selected, users may optionally define a Berkeley Packet

Filter (BPF) expression. This filter allows targeted packet capture based on specific

protocols, ports, or IP addresses (e.g., tcp port 80 or host 192.168.1.1). Filtering reduces

system load by capturing only relevant traffic.

Additionally, users may specify a file path for saving captured packet logs for post-

analysis. This setting is optional and primarily used in audit or research-focused

deployments. The full packet capture settings are shown in Figure 5.6.4.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 119

Figure 5.6.4 Configured Packet Capture Settings

With the configuration complete, users initiate monitoring by clicking the “Start

Capture” button on the top right of the dashboard. This triggers the

NetworkPacketCapture module, which begins sniffing live packets using Scapy.

Captured packets are placed into a queue and processed in real time by the traffic

analyser. The active dashboard view is presented in Figure 5.6.5.

A status indicator at the bottom-left corner updates to “Running”, confirming successful

activation. Simultaneously, dashboard counters begin incrementing, reflecting live

statistics:

• Packet Capture: Number of packets ingested

• Active Flows: Number of unique network flows detected

• Alerts: Number of threats identified

• Blockchain: Number of alerts successfully synced on-chain

Captured data is visualised through two main dashboards:

• Network Activity: Real-time graph of packet and byte rates

• Alert Distribution: Pie chart showing severity breakdown of detected threats

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 120

Figure 5.6.5 Dashboard View During Active Capture Session

5.6.3 Active Network Flows Monitoring

Upon the successful initiation of packet capture, the system begins analysing and

aggregating packets into flow records. These active network flows represent ongoing

communications between source and destination endpoints, including key statistical

and protocol-level insights.

As mentioned in the previous section, the system employs a flow-based traffic analysis

approach, where each flow is identified based on five-tuple parameters:

• Source IP address

• Destination IP address

• Source port

• Destination port

• Protocol (TCP, UDP, ARP, etc.)

As packets are received, they are dissected using Scapy and matched against existing

flows. If a new combination is encountered, a new flow record is created. Each flow is

continuously updated with metadata, including packet count, byte size, duration, TCP

flag history, and protocol-specific metrics.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 121

The Active Network Flows section presents all currently active flows in a structured

and sortable table format. Each row corresponds to a unique flow and includes the

following columns:

• Flow index

• Protocol type (TCP, UDP, ARP)

• Source and destination IP:port pairs

• Inferred service (e.g., HTTPS, TCP, ARP)

• Info summary, including TCP flags such as SYN, ACK, PSH

• Total packets and bytes observed

• Flow duration in seconds

This view updates in near real-time, enabling users to observe live traffic patterns across

the monitored network. The refresh mechanism ensures that stale flows are pruned

based on inactivity thresholds defined in the system configuration.

To support large-volume traffic environments, the flow monitoring table includes

filtering tools:

• Protocol filter (e.g., only show TCP or UDP flows)

• Search bar (filter by IP address or port)

• Refresh button to manually pull the latest updates

These tools ensure users can quickly locate flows of interest without being

overwhelmed by background traffic. The complete active network flows view is

presented in Figure 5.6.6 below.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 122

Figure 5.6.6 Active Network Flow Interface

5.6.4 Intrusion Alerts List

The Intrusion Alerts List serves as the central hub for reviewing all security alerts

generated by the system. These alerts are the direct result of real-time analysis

conducted by both the signature-based engine and the LLM-based detection module.

This section offers security operators and users immediate visibility into ongoing or

historical intrusion attempts.

As presented in Figure 5.6.7, the Alerts tab displays all alerts in a searchable, filterable,

and scrollable table format. Filtering is available through dropdown selectors for

Severity and Source, allowing users to narrow down threats by impact level or origin.

Each row in the alerts table represents one unique alert event, enriched with the

following metadata:

• Time: Timestamp of detection

• Alert Name: Descriptive title of the threat (e.g., “SQL Injection Attempt”)

• Severity: Visual badge denoting threat level (Low, Medium, High, Critical)

• Category: Classification of attack (e.g., web-attack, brute force)

• Source/Destination: IP addresses and optionally ports

• Protocol: Traffic type (TCP, UDP, ICMP)

• Blockchain Status: Icon indicating whether the alert has been synced to the

blockchain

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 123

Alerts are listed in descending chronological order, ensuring the most recent and

potentially relevant threats are always visible at the top. Besides, each alert is colour-

coded by severity to provide immediate prioritisation:

• Red (Critical): Requires immediate investigation (e.g., confirmed exploit attempts)

• Orange (High): Indicative of active probing or brute-force

• Yellow (Medium): Suspicious behaviour, often repetitive or misconfigured traffic

• Blue/Grey (Low): Low-risk anomalies or unknown patterns flagged by LLM

Figure 5.6.7 Intrusion Detection Alerts Table

5.6.5 Signatures List

The Signatures List provides a comprehensive and transparent overview of all active

detection rules used by the Intrusion Detection System. These signatures form the

foundation of the system’s rule-based detection engine, enabling rapid identification of

known attack behaviours in real-time traffic analysis.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 124

Each signature rule is designed to match specific packet or flow characteristics

associated with malicious activity. The detection engine uses these rules to evaluate

incoming traffic against:

• Protocol type (e.g., TCP, UDP, ICMP)

• TCP flag combinations

• Rate thresholds and frequency

• Payload content or regex pattern

• Port targeting or destination address

Each signature entry in the interface includes the following key attributes:

• ID: Unique identifier for tracking and alerting (e.g., 1001)

• Name: Descriptive label of the attack (e.g., “TCP SYN Flood Detection”)

• Category: Classification (e.g., dos, web-attack, bruteforce)

• Severity: Impact level (e.g., HIGH, MEDIUM, CRITICAL)

• Match Type: Mechanism used for detection (e.g., Threshold, Regex, TCP Flags)

• Action: Operation performed when matched (typically an alert)

• Status: Whether the rule is currently active or disabled

The user interface allows filtering by attack category (e.g., DoS, web attack) and

supports keyword-based searching. This helps security operators quickly locate rules

relevant to specific threat types or network environments.

All signatures shown in the interface (Figure 5.6.8) are loaded from the signatures.json

file upon system start-up. This file is parsed by the SignatureManager component,

which indexes rules by protocol and category for fast access during packet inspection.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 125

Figure 5.6.8 Attack Signatures Table

5.6.6 Blockchain Status and Synced Alerts

To ensure integrity, traceability, and tamper resistance of security alerts, the system

integrates a smart contract-based blockchain logging mechanism. This subsystem

records validated alerts on an Ethereum-compatible blockchain (e.g. Ganache) and

displays the status of all sync activities within the user interface.

Upon system launch, the BlockchainLogger module performs the following sequence:

• Smart Contract Binding: The system connects to a local Ganache node using the

configured GANACHE_URL in .env and binds to the deployed smart contract

address.

• Historical Event Sync: It scans from the genesis block (block 0) to retrieve past

AlertLogged events and stores them locally, avoiding duplication during future

syncs.

• Real-Time Logging: As new alerts are generated, either by signature or LLM, they

are queued and periodically pushed to the blockchain at fixed intervals or

immediately.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 126

The details of each transaction are displayed in the Ganache dashboard as shown in

Figure 5.6.9.

Figure 5.6.9 Ganache Blockchain Dashboard

The backend console logs provide continuous status updates. Upon launching the

system, the blockchain logger confirms contract binding, begins syncing from the

blockchain, and reports the total number of events processed. Each synced alert is

shown with its block and transaction hash for reference.

In this example presented in Figure 5.6.10 and Figure 5.6.11, the system successfully

processed and verified 43 historical alert events across multiple blocks.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 127

Figure 5.6.10 Syncing of Historical Blockchain Alert Logs

Figure 5.6.11 Final Blockchain Status

If no new alerts are queued for logging, the system continues monitoring and reports

that there are no alerts to be synchronised to the blockchain network. Similarly, if the

local alerts database is already up to date with the blockchain, the system will proceed

with the next stage of initialisation.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 128

5.6.7 System Status

The System Status page provides a consolidated real-time view of all critical

components in the Blockchain-Based IDS with AI. It allows users to monitor

operational states, component health, traffic activity, resource usage, and historical

system logs from a single interface. The page is divided into several key panels that

report on distinct subsystems, as shown in Figure 5.6.12.

Figure 5.6.12 System Status Dashboard

The packet capture panel presents detailed metadata regarding ongoing traffic

monitoring. It shows the current capture status, including whether the system is actively

sniffing packets. The selected network interface (e.g., WiFi) is displayed, along with

any applied BPF. Users can also view the total number of packets captured and the time

elapsed since the capture session started. This information collectively helps users

confirm that the system is monitoring the correct segment of the network and receiving

continuous traffic.

The LLM Detection panel monitors the state of the AI-enhanced threat detection

engine. It reports whether the engine is running and connected to the Ollama API, and

displays the currently selected model (e.g., gemma3:1b). It also tracks the number of

network flows analysed and the total alerts generated by the LLM module. This section

allows users to verify that AI-based detection is functioning and contributing to the

system’s overall threat visibility.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 129

The blockchain status panel displays the current state of the on-chain alert logging

system. It confirms whether the blockchain logger is active and connected to the local

node (e.g., http://127.0.0.1:7545). It also shows the smart contract address in use and

the number of alerts that have been successfully synchronised to the blockchain. The

timestamp of the most recent sync is also recorded. This panel assures users that alert

events are being stored immutably and can be audited for integrity at any time.

The system resources section is designed to display runtime health metrics such as CPU

usage, memory consumption, and system uptime. They are intended to ensure that the

IDS operates within safe resource thresholds and does not overload the host machine.

At the bottom of the interface, the system logs panel provides real-time access to

backend activity logs. These logs capture key events including packet capture start and

stop commands, alert generation entries with timestamps and descriptions, analysis

results from the signature and LLM engines, and blockchain synchronisation events.

The logs are essential for post-incident analysis, system debugging, and validating

correct operation across all detection layers.

In a practical usage scenario, this dashboard enables operators to identify and resolve

system issues quickly. For example, if packet capture is active but no alerts are being

triggered, the operator can verify whether traffic is being received by observing the

packet count, check that the LLM module is connected and analysing flows, and

confirm that the blockchain logger is running. This unified overview reduces

troubleshooting time and supports more effective system management.

5.6.8 System Settings

The System Settings interface provides a unified control panel for configuring all core

modules of the Blockchain-Based Intrusion Detection System. It allows users to

customise operational parameters across packet capture, LLM detection, blockchain

logging, and user interface behaviour. These settings are designed to enhance flexibility

while ensuring that the system can be adapted to different deployment environments

without modifying the underlying source code.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 130

In the Packet Capture Settings section, users can select the network interface from a list

of all interfaces detected on the host system. This selection defines the entry point for

packet sniffing and is essential for aligning the system with the correct traffic source.

Additionally, users can optionally enter a BPF expression to narrow the scope of

captured traffic. This feature is particularly useful in high-traffic environments where

filtering by port, protocol, or host can significantly reduce processing overhead. An

input field is also provided for specifying a local path to store captured packet logs,

which supports offline forensic analysis or compliance record-keeping.

The LLM Detection Settings panel allows configuration of the AI-based flow analysis

engine. Users can choose from available models registered on the local Ollama server,

such as gemma3:1b, and define the batch size, which determines how many flows are

processed together per inference cycle. Two control buttons allow operators to start or

stop the LLM engine as needed and to execute a test request for verifying the model’s

availability and behaviour prior to live deployment. This modular design ensures the

LLM engine can be calibrated and validated without restarting the entire system.

The Blockchain Settings section provides inputs for managing the secure alert logging

mechanism. Users can view and modify the blockchain node URL, which connects the

system to a local Ethereum blockchain via Ganache. The address of the deployed smart

contract is displayed for transparency, ensuring that all alerts are written to the intended

ledger. Furthermore, the sync interval is configurable, allowing users to define how

frequently alerts are batched and sent to the blockchain in seconds (with 0 indicating

immediate sync). Control buttons also allow users to stop blockchain logging or force

a manual sync, providing administrative flexibility for real-time verification or during

testing scenarios.

Lastly, the User Interface Settings section enables personalisation of the dashboard

appearance and update frequency. Users can toggle between a dark or light theme

depending on their viewing preference and define how frequently the UI refreshes its

data from the backend. This supports both aesthetic comfort and efficient dashboard

performance, particularly when monitoring in real-time. Figure 5.16.13 below shows

the System Settings Interface.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 131

Figure 5.6.13 System Settings Interface

5.6.9 Shutdown Status

The shutdown sequence of the system is designed to ensure a clean and consistent

termination of all active components, while preserving data integrity and completing

any remaining critical operations. When the user initiates shutdown, either by stopping

packet capture or terminating the Flask server, the system triggers a structured series of

actions to gracefully bring all modules offline rather than killing the processes abruptly.

During the shutdown process, the system first checks if there are any remaining alerts

in the local buffer that have not yet been written to the blockchain. If any are found, the

Blockchain Logger initiates an immediate final sync. This is typically triggered when

the batch size threshold is reached or when the shutdown signal is received, prompting

the system to flush outstanding alerts regardless of the scheduled sync interval. Each

alert synced during shutdown is logged with its corresponding transaction hash,

allowing operators to verify on-chain confirmation for every logged event.

In the provided example in Figure 5.16.14, three alerts Alert 81, 82, and 83 were

identified as pending and were successfully recorded on the blockchain. Each

transaction hash is printed in the console log to confirm successful delivery.

Additionally, each alert is also stored in the local database with descriptive labels, such

as “Potential Data Exfiltration” or “Port Scan (TCP)”, indicating the nature of the

detection as classified by the LLM Detection Engine.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 132

Following alert logging, the system ensures that all remaining flow data is processed

by the LLM engine. In this instance, 20 flows were analysed during the final cycle,

yielding five additional alerts that were added to the system’s alert history. This process

ensures that no relevant threat information is lost due to premature termination. Once

the LLM engine completes its final analysis and updates the database, it is shut down

in a controlled manner, followed by the Blockchain Logger, which releases the contract

connection and closes any remaining blockchain-related resources.

Finally, the system outputs a “Cleanup complete” message, signalling that all modules

have been stopped, and all temporary or queued data has been cleared. This marks the

end of the shutdown sequence, after which the user is returned to the command prompt,

confirming that the system is no longer active and has been terminated safely.

Figure 5.6.14 Console Output During System Shutdown

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 133

5.7 Implementation Challenges and Solutions

The development of the project presented several implementation challenges across the

domains of real-time packet processing, flow analysis accuracy, blockchain integration,

and AI model responsiveness. This section outlines the key technical obstacles

encountered during implementation and the solutions adopted to resolve them

effectively.

5.7.1 Managing Real-Time Network Traffic

One of the primary challenges was managing the high throughput of real-time network

traffic without causing packet loss or system overload. Packet capture, if not handled

efficiently, could overwhelm system memory or CPU resources, especially under high-

speed traffic conditions.

To address this, the system adopted a batch-based packet processing model with a

bounded queue. This design helped to balance throughput and responsiveness by

controlling how many packets were processed at once, while also logging queue

overflows to track potential data loss. The processing time was optimised using

dedicated threads for network traffic capturing and analyzing.

5.7.2 Flow Assembly and Analysis

Another challenge was the accurate and efficient extraction of network flows from

diverse and sometimes fragmented packet data. Flow analysis required reliable

dissection of protocol headers and payloads, along with maintaining temporal statistics

such as packet rates and interarrival times.

To resolve this, a custom flow key structure was implemented, which uniquely

identified flows based on source/destination IPs, ports, and protocols. A flow timeout

mechanism was also introduced to prune inactive flows and conserve system memory.

Chapter 5 System Implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 134

5.7.3 Blockchain Integration

Integrating the alert system with a blockchain presented additional complexity.

Logging alerts on-chain involved asynchronous communication with the Ethereum-

compatible node and smart contract interaction via Web3.py. Ensuring that alerts were

not duplicated or lost during transmission required a batching and retry mechanism.

The system addressed this by implementing a dedicated Blockchain Logger module

that maintained a local alert buffer and periodically synced alerts to the smart contract.

Each successful transaction was recorded with its hash, allowing for auditability and

verification.

5.7.4 LLM Integration

The use of a local LLM model introduced further implementation challenges,

particularly around response latency and integration reliability. In earlier iterations, the

AI engine experienced delays when processing large batches of flows or when network

communication with the Ollama server became unstable.

To mitigate this, a smaller, quantised LLM model (gemma3:1b) was selected for faster

inference. Additionally, error handling and connection retries were added to ensure the

system could gracefully recover from temporary communication failures.

5.7.5 Real-Time Frontend Components

From a user interface perspective, designing a web dashboard that could handle real-

time updates without compromising performance was another key concern. Due to the

huge amount of real-time data needed to be updated on the frontend GUI, handling of

the update mechanism became essential and complex at the same time.

This issue was addressed by implementing client-side refresh intervals and modular

API endpoints that only fetched updated sections, reducing unnecessary data transfers.

The UI was also made customisable to support dark/light themes and adjustable refresh

rates, improving usability across different environments.

Chapter 6 System Evaluation and Discussion

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 135

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

This chapter evaluates the performance and effectiveness of the implemented system

through a series of structured tests. It begins by outlining the testing methodology,

including objectives, setup, and procedures. The results of system functionality and

performance testing are then presented and analysed. This is followed by a discussion

on the interpretation of results, limitations encountered, and the validity of the

evaluation. The chapter concludes with an assessment of how well the system meets

the specified requirements, offering insight into the overall success and areas for

improvement.

6.1 Testing Methodology

This section outlines the approach used to test the system’s functionality and

performance. It describes the objectives of testing, the testing environment, and the

procedures followed to verify that each component operates as intended. The

methodology ensures that the system is evaluated in a consistent and controlled manner,

providing reliable results for analysis in subsequent sections.

6.1.1 Objectives of Testing

The primary objective of testing in this project is to systematically evaluate the

performance, functionality, and reliability of the project. The testing phase is essential

not only to verify that each component of the system operates as intended but also to

ensure that the integration of AI and blockchain contributes effectively to the

overarching goals of threat detection, contextual analysis, and immutable alert logging.

Evaluation of Threat Detection Effectiveness

Firstly, the testing process aims to validate the system’s ability to accurately detect

known and unknown cyber threats. This involves assessing the effectiveness of both

the signature-based detection engine and the large language model (LLM) in identifying

various attack patterns. The goal is to confirm that the system can achieve a detection

Chapter 6 System Evaluation and Discussion

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 136

accuracy of at least 90% under simulated attack scenarios, using labelled datasets and

structured ground truth comparisons.

Assessment of Real-Time Processing Performance

Secondly, the testing phase seeks to evaluate the real-time processing capabilities of the

system. This includes measuring packet capture rates, flow analysis throughput, and the

response latency of both detection engines. A key metric involves determining whether

the system can handle a minimum of 1,000 flows per minute without significant

performance degradation or loss of critical packets, especially during high-load

conditions.

Validation of Blockchain Alert Logging

Thirdly, the testing objectives include verifying the integrity and trustworthiness of

alert records stored on the blockchain. This requires checking that all alerts generated

by the system are securely logged into the smart contract with accurate timestamping

and correct metadata, ensuring immutability and tamper resistance. Additionally, tests

will examine whether the system can synchronise alerts within a specified interval (e.g.,

every 5 seconds), meeting the target of 100% on-chain logging reliability.

Integration and Communication Testing

Another important objective is to assess the interoperability and coordination between

system modules, including the backend services, detection engines, blockchain logger,

and frontend interface. The testing ensures that communication across these

components is consistent, and that the frontend reflects real-time system status, alerts,

and analytics without lag or data mismatch.

Chapter 6 System Evaluation and Discussion

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 137

6.1.2 Test Setup

The testing of the Blockchain-Based Intrusion Detection System with Artificial

Intelligence was conducted in a controlled local network environment to simulate real-

world traffic and attack scenarios. The system was deployed on a single machine

running Windows 11 Home 23H2 with the following specifications as outlined in Table

6.1.1.

Component Specification

Processor AMD Ryzen 7 5800H with Radeon Graphics 3.20 GHz

Operating System Windows 11 Home

Graphic NVIDIA GeForce GTX 1650

Memory 16GB DDR4 RAM

Hard Drive Samsung MZALQ512HBLU-00BL2 SSD 512GB

Random-Access Memory Samsung M471A1G44AB0-CWE 8GB,

Kingston 9905700-118.A00G 8GB

Network Interface Card MediaTek Wi-Fi 6 MT7921 Wireless LAN Card,

Realtek PCIe GbE Family Controller

LLM gemma3:1b

LLM Server Ollama 0.6.6

Brower Interface 135.0.7049.116 (Official Build) (64-bit)

Blockchain Ganache 2.7.1 on HTTP://0.0.0.0:7545

Table 6.1.1 Component Specification for Test Setup

The evaluation was guided by several performance metrics, which are summarised in

the following Table 6.1.2 with the relevant functional and non-functional requirements

mapped. However, the detailed evaluation of whether the system meets all the

functional as well as non-functional requirements will be tested and discussed in

Chapter 6.2.

Chapter 6 System Evaluation and Discussion

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 138

Metric Description Target /

Baseline

Mapped

Requirement(s)

Detection Accuracy (%) Percentage of correctly detected

threats compared to total known

attacks

≥ 90% FR5, FR6, FR8,

NFR2, NFR10

False Positive Rate (%) Proportion of benign traffic

incorrectly classified as threats

≤ 5% FR5, FR8, NFR11

Precision Proportion of correctly identified

threats out of all generated alerts

≥ 90% FR6, FR8, NFR10

Recall Proportion of detected threats out

of all actual attack instances

≥ 90% FR6, FR8, NFR10

F1-Score Harmonic mean of precision and

recall, indicating balance between

them

≥ 90% FR6, FR8, NFR10

Packet Processing Rate

(pps)

Number of packets processed per

second without packet loss

≥ 100 pps FR1, NFR1, NFR3

Flow Analysis Rate

(fpm)

Number of flows analysed and

summarised per minute

≥ 1000 fpm FR3, FR4, NFR1

System Initialisation

Time

Time taken for all system

components to become ready for

operation

≤ 10

seconds

NFR4

Alert Response Time (s) Time from flow arrival to alert

generation and logging (LLM or

signature engine)

≤ 5 seconds FR6, FR8, FR9,

NFR1

Blockchain Logging

Accuracy

Percentage of valid alerts

successfully logged onto the

blockchain

100% FR9, FR10, NFR6

Blockchain Sync Interval

(s)

Time interval in which unsent

alerts are synchronised in batches

to the blockchain

≤ 60

seconds

FR10, NFR6

Dashboard Update

Interval (s)

Frequency of refreshing visual

data such as alerts, flows, and stats

1 – 5

seconds

FR11, FR14,

NFR5

System Latency (ms) Delay introduced by the IDS

pipeline from packet capture to

alert generation

≤ 200

milliseconds

NFR1, NFR2

CPU Utilisation (%) Average CPU usage while

handling live traffic

≤ 80% NFR1

Dropped Packets (%) Percentage of packets missed due

to queue overflow or system

overload

≤ 2% NFR3

Chapter 6 System Evaluation and Discussion

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 139

User Interface

Responsiveness

Time for user interface to react to

interactions such as start/stop, alert

inspection, etc.

≤ 1 second FR11, FR13,

NFR7

Error Feedback Quality Clarity and usefulness of system

error or alert messages

Meaningful

and

descriptive

NFR8

Table 6.1.2 System Performance Metrics

The formulas for the evaluation metrics are shown below:

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝑹𝒂𝒕𝒆 (𝑭𝑷𝑹) =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑭𝟏 𝑺𝒄𝒐𝒓𝒆 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
× 2

6.1.3 Test Procedures

To assess the system’s performance under various network conditions, a custom,

synthetic ground truth dataset consisting of 10,000 labelled records was used. This

dataset included benign, abnormal, and malicious traffic. Benign flows represented

everyday network activity such as normal web browsing and DNS queries, while

malicious traffic simulated a wide range of cyber-attacks or anomalies as follows:

1. TCP SYN flood

2. SSH brute force attempt

3. TCP port scan

4. TCP RST flood

Chapter 6 System Evaluation and Discussion

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 140

5. TCP NULL scan

6. TCP FIN scan

7. HTTP directory traversal attempt

8. SQL injection attempt

9. DNS amplification attack

10. ICMP flood

11. Cross-Site Scripting (XSS) attempt

12. Command injection attempt

13. Known exploits

14. Abnormal network traffic

To ensure consistency and fairness across test runs, the captured dataset was replayed

using the traffic_replay.py script. This script injected traffic back into the system

through a physically disconnected Ethernet interface, eliminating interference from

unrelated network activity. This isolation guaranteed that only the traffic explicitly

defined in the dataset was observed and analysed by the intrusion detection system.

Unlike fixed-duration tests, each replay session ran until the entire dataset was fully

processed, ensuring thorough system evaluation across all traffic scenarios.

The system’s detection engine was configured to run both the signature-based module

and the LLM-based module in parallel. During the replay, all alerts were logged using

a unified alert logger that stored data in two formats: (1) a local CSV file for offline

analysis and (2) a smart contract on a local Ethereum blockchain for tamper-proof

auditability. This dual-recording approach provided strong assurance of data integrity

and traceability, particularly for testing blockchain logging functionality.

To validate the effectiveness of the IDS, an evaluation script performs a structured

comparison between the alerts generated by the IDS and a labelled ground truth dataset.

It matches alerts based on timestamp and IP address within a specified time window,

enabling accurate mapping of detected events to their corresponding ground truth

entries. The script then calculates key performance metrics including accuracy,

precision, recall, F1-score, and false positive rate. It also generates a confusion matrix

and visualises detection rates for each attack type.

Chapter 6 System Evaluation and Discussion

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 141

All system activity, including flow count, packets per second, alerts generated, and

blockchain sync status, was monitored in real time through a web-based dashboard.

This dashboard served not only as a visual aid but also as a confirmation tool to verify

the backend processes and identify any performance degradation or missed alerts during

intensive simulations.

Chapter 6 System Evaluation and Discussion

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 142

6.2 System Testing

This section presents the practical testing phase of the project, detailing how the system

was tested against various scenarios to evaluate its functionality and reliability. Using

the test procedures defined in Chapter 6.1.3, this section documents the results of the

testing in simulated network conditions, from both functional and non-functional point

of views.

6.2.1 Functional Testing

Function testing was conducted to validate whether the developed system satisfies the

functional requirements outlined during the design phase. The purpose of this testing is

to ensure that each feature of the project operates correctly and reliably under expected

conditions. Testing was performed in a controlled environment using the test

procedures defined earlier. The result of the functional testing is summarised in Table

6.2.1 below.

Requirement ID Expected Result Actual Result Status

FR1 System captures live packets on

selected interface

Packets were successfully

captured via isolated Ethernet

interface

Passed

FR2 Users can select an interface and

apply BPF filters

Interface dropdown and filter

options worked correctly

Passed

FR3 Captured packets are converted

into flows and updated in real-

time

Active flows were accurately

assembled and displayed

Passed

FR4 Flow statistics (packet count, byte

size, duration) are correctly

computed

Statistics were correctly

calculated and matched ground

truth

Passed

FR5 Known attacks match signatures

stored in JSON (e.g. SYN flood,

port scan, XSS)

Signature engine successfully

detected and matched predefined

attacks

Passed

FR6 Alerts are generated immediately

upon matching a known signature

Signature-based alerts were

consistently triggered and

recorded

Passed

Chapter 6 System Evaluation and Discussion

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 143

FR7 Suspicious flows are analysed by

LLM via Ollama with context-

aware reasoning

LLM processed replayed flows

and generated valid analysis

results

Passed

FR8 AI-generated alerts contain

severity levels and appropriate

classification

LLM alerts included meaningful

severity tags and were

distinguishable from signature

alerts

Passed

FR9 Alerts are logged to the

blockchain smart contract with

correct metadata

Each alert entry was logged on-

chain and visible via contract

event logs

Passed

FR10 Unsent alerts are synchronised in

batches to blockchain

Sync occurred correctly in

periodic batches as configured

Passed

FR11 Web interface displays active

flows, alerts, and real-time system

status

All elements rendered correctly

and updated continuously

Passed

FR12 Detailed flow and alert

information viewable via UI

interactions

Full metadata view was accessible

via expandable rows

Passed

FR13 System starts/stops packet capture

on user command

Start and stop commands worked

with responsive UI feedback

Passed

FR14 Dashboard shows real-time

statistics (e.g., packet rate, alert

count, flow count)

Statistics updated in an interval

specified by the user and matched

backend processing logs

Passed

Table 6.2.1 Functional Testing Result

6.2.2 Non-Functional Testing

Non-functional testing was conducted to evaluate the system’s performance, accuracy,

reliability, usability, and other quality attributes beyond its core functionalities. These

tests were designed to ensure that the system not only performs correctly but also meets

expectations in areas such as accuracy, responsiveness, system stability, resource usage,

and user interface effectiveness. The result of the non-functional test is summarised in

Table 6.2.2 below.

Chapter 6 System Evaluation and Discussion

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 144

Requirement ID Expected Result Actual Result Status

NFR1 System processes and analyses

packets in real-time with ≤ 5

seconds latency

Real-time processing confirmed;

end-to-end alert generation < 2

seconds

Passed

NFR2 Concurrent detection supported

using both signature and AI-based

engines

Signature and LLM detection

modules operated simultaneously

without conflict

Passed

NFR3 Capture ≥ 100 pps with ≤ 2%

packet drop rate

Average: 889.15 pps captured

with 0% drop rate

Passed

NFR4 System initialises and becomes

ready within 10 seconds

Full initialisation completed in an

average of 5.2 seconds

Passed

NFR5 Dashboard updates every 1 to 5

seconds in real time

All visual counters updated every

seconds reliably as defined

Passed

NFR6 Alerts synchronised to blockchain

every ≤ 60 seconds

Batch sync executed every 30

seconds; all alerts successfully

logged

Passed

NFR7 Interface is user-friendly with

clear visual indicators

UI was intuitive, responsive, and

colour-coded with meaningful

icons

Passed

NFR8 System displays meaningful error

and alert messages

Alerts and exceptions shown with

descriptive labels and tooltips

Passed

NFR9 System matches flows against

JSON-defined signatures reliably

All tested signatures were

recognised and triggered correctly

Passed

NFR10 Detection accuracy ≥ 90% Overall accuracy achieved:

93.95%

Passed

NFR11 False positive rate ≤ 5% Measured FPR: 5.00% Passed

Table 6.2.2 Non-Functional Test Result

Chapter 6 System Evaluation and Discussion

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 145

Figure 6.2.1 Confusion Matrix

Besides, the evaluation script analysed the IDS alerts and compared them with ground

truth data to generate a confusion matrix, as depicted in Figure 6.2.1 above. Out of the

10,000 samples, 2850 samples were categorised as True Negatives (TN), 6545 samples

were categorised as True Positives (TP), 150 samples were categorised as False

Positives (FP), and 455 samples were categorised as False Negatives (FN). Based on

the confusion matrix, the following metrics were derived:

• Accuracy = 93.95%

• Precision = 97.759522% ≈ 97.76%

• Recall = 93.50%

• False Positive Rate = 5.00%

• F1-Score = 95.5823294% ≈ 95.58%

Chapter 6 System Evaluation and Discussion

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 146

6.3 Discussion

This section provides an in-depth analysis of the results obtained from system testing.

It interprets the significance of the findings, discusses any limitations encountered

during evaluation, and assesses the reliability and validity of the testing process. The

aim is to reflect critically on the system’s performance, identify areas for improvement,

and evaluate how well the system meets its intended objectives.

6.3.1 Interpretation of Results

The results from both functional and non-functional testing confirm that the

Blockchain-Based Intrusion Detection System with Artificial Intelligence achieved a

high level of performance and reliability in line with its original design goals. From a

functional perspective, all core features operated as expected. The system was able to

successfully capture live network traffic, assemble packets into flows, compute relevant

statistics, and analyse them using both signature-based and AI-driven detection

methods. Every predefined functional requirement, such as interface selection, alert

generation, LLM classification, and blockchain logging, was met without any failures

or discrepancies.

In terms of detection capabilities, the system demonstrated strong accuracy across

multiple attack types. Signature-based detection was highly effective in identifying

well-known threats, while the LLM module provided accurate classification for

ambiguous or previously unseen flow patterns (presented by abnormal flows in the

ground truth dataset). The use of severity levels and descriptive alerts enhanced the

system’s explainability, especially for AI-generated outputs. With a detection accuracy

of 93.95% and a false positive rate of 5.00%, the system performed well within the

defined non-functional thresholds, indicating practical readiness.

Non-functional testing further validated the system’s operational quality. Real-time

performance was upheld under moderate to high traffic volumes, achieving a packet

processing rate of 889.15 packets per second with zero packet loss. Latency from flow

ingestion to alert generation remained under two seconds in all cases, demonstrating

efficiency in both detection pipelines. Additionally, the user interface remained

Chapter 6 System Evaluation and Discussion

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 147

responsive and informative, with refresh intervals of 1 to 5 seconds. The web dashboard

successfully supported intuitive navigation and clear visual indicators, satisfying

usability and responsiveness requirements.

Moreover, the blockchain integration proved reliable and tamper-resistant. All

generated alerts were successfully logged onto the smart contract within a defined

interval of 30 seconds under normal condition, and logged immediately if the forced

sync function or system shutdown was called, hence confirming the effectiveness of

the batch-based synchronisation mechanism. The visibility of alert hashes and metadata

on the blockchain network adds a layer of auditability and integrity not found in

traditional IDS solutions.

In summary, the testing results demonstrate that the system effectively meets its design

objectives. It provides a complete and integrated solution for intrusion detection,

contextual analysis, and secure alert logging. The performance indicators, together with

the success of all test cases, support the conclusion that the system is functionally

complete, operationally stable, and well-suited for its intended role in a secure network

environment.

6.3.2 Limitations Observed

While the system achieved all functional and non-functional requirements during

testing, several limitations were observed that may affect its scalability, adaptability,

and applicability in broader or production-level environments.

One key limitation lies in the resource dependency of the AI-based detection engine.

Although the selected LLM model (gemma3:1b) performed well in a local setup using

Ollama, its processing time and memory usage increased noticeably with larger batches

of flows. As a result, while the system maintained under two seconds of alert generation

latency during tests, this performance could degrade under continuous high-load

conditions or when deployed on machines with limited hardware capabilities. The

dependency on local GPU acceleration for optimal LLM performance restricts

deployment in lightweight or embedded environments. While a more powerful LLM

Chapter 6 System Evaluation and Discussion

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 148

boosts the detection accuracy, it trades off the efficiency of the system due to a higher

demand for computational resources and time.

Another notable limitation of the system is the gradual increase in storage requirements

on the blockchain as more alerts are logged over time. Since each alert is recorded as a

transaction and stored immutably on the blockchain, the data footprint grows with every

detection event. This growth impacts node synchronisation time, disk usage, and query

performance when retrieving historical alerts. Over time, maintaining a full copy of the

blockchain becomes more demanding. As a potential solution, the system could enable

pruning on non-authoritative or observer nodes, while keeping at least one full node for

complete alert history backup because any Ethereum node can reconstruct past states

by replaying the transaction history, it is not necessary to store every historical state

permanently.

Additionally, while the system’s detection accuracy and explainability were strong, the

LLM occasionally generated alerts with vague justifications or low interpretability.

Despite filtering out low-confidence outputs, some AI-generated alerts lacked technical

specificity, which may affect trust among expert users who require detailed reasoning

to take action. This highlights the need for further refinement in prompt engineering

and context retrieval to enhance the relevance and depth of AI responses, especially in

lightweight LLM like gemma3:1b.

In short, although the limitations identified do not critically hinder system functionality,

they point to areas where future work is needed to improve for adoption in real-world

or production environments.

6.3.3 Validity of the Evaluation

The evaluation conducted for this project is considered valid and methodologically

sound, as it was designed to reflect realistic deployment and usage conditions of the

system. All testing activities were guided by the functional and non-functional

requirements established during the design phase, ensuring that the outcomes could be

directly mapped to the system’s objectives. By using a controlled test environment and

replaying a curated dataset of 10,000 labelled network flows containing a mix of benign

Chapter 6 System Evaluation and Discussion

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 149

and malicious traffic, the testing ensured reproducibility, consistency, and fairness

across all runs.

To simulate real-world operational conditions, the system was subjected to various

types of network attacks combined with normal traffic to evaluate detection accuracy,

precision, and responsiveness. The traffic replay method, executed via a physically

isolated Ethernet interface, helped eliminate noise from unrelated background traffic,

thus preserving the integrity of the test inputs. Furthermore, the alerts were matched

against a predefined ground truth file using a strict window-based comparison

approach, which added rigour to the calculation of key evaluation metrics such as

accuracy, precision, recall, F1-score, and false positive rate.

The testing process also incorporated dual-layer verification through local logs and

blockchain logging, which strengthened the credibility of the results. By confirming

that alerts were logged both in the local database and immutably on-chain, the system’s

end-to-end functionality, including decentralised verification, was thoroughly

validated. Non-functional attributes such as interface responsiveness, initialisation

time, and real-time dashboard updates were also monitored and logged consistently,

ensuring that performance-related claims were supported by measurable evidence.

While certain environmental factors, such as reliance on a specific hardware setup or

the use of synthetic test data may limit the generalisability of some results, these choices

were necessary to ensure controlled, repeatable testing. Given these measures, the

evaluation offers a valid and reliable reflection of the system’s real-world capabilities,

supporting the claim that the proposed solution meets its intended objectives.

Chapter 7 Conclusion and Recommendation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 150

CHAPTER 7 Conclusion and Recommendation

This chapter summarises the outcomes of the project and reflects on the objectives that

were achieved. It provides a concise conclusion based on the system’s implementation,

design, and evaluation results. In addition, the chapter offers recommendations for

future improvements, enhancements, or research directions that could extend the

system’s capabilities or address identified limitations.

7.1 Conclusion

This project set out to design, develop, and evaluate a Blockchain-Based Intrusion

Detection System with Artificial Intelligence, combining the strengths of traditional

packet analysis, AI-driven threat detection, and immutable alert logging. The problem

statement stemmed from critical limitations in conventional IDS frameworks, namely

the lack of contextual awareness, secure alert storage, and automated decentralised

response. By integrating rule-based detection with a Large Language Model (LLM) and

securing alerts on a blockchain network via smart contracts, the system aimed to offer

a comprehensive, transparent, and tamper-proof intrusion detection framework.

Through methodical system implementation and rigorous functional and non-functional

testing, the system demonstrated strong performance. It successfully detected a wide

range of threats, including SYN floods, port scans, SSH brute-force, and SQL injection,

and many more with a detection accuracy of 93.95% and a false positive rate of only

5.00%. The signature engine reliably matched known attack patterns, while the LLM

component extended detection capabilities to more ambiguous traffic, providing

meaningful explanations and severity tags. All alerts were synchronised to a private

Ethereum blockchain, ensuring tamper resistance and traceability of security events.

The system was validated using a controlled dataset of 10,000 flows replayed over an

isolated interface, with results verified against a structured ground truth file. Functional

and non-functional testing confirmed that all 14 functional requirements as well as all

11 non-functional requirements were satisfied. These findings reinforce the credibility

and effectiveness of the proposed solution.

Chapter 7 Conclusion and Recommendation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 151

In conclusion, this project has successfully delivered a proof-of-concept prototype that

demonstrates how blockchain and AI can be synergised to improve intrusion detection.

The system contributes to the field by enhancing detection explainability, ensuring data

integrity, and decentralising security operations. While not production-ready, it lays the

groundwork for future research and development into scalable, intelligent, and

trustworthy cybersecurity solutions.

Chapter 7 Conclusion and Recommendation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 152

7.2 Recommendation

Firstly, to reduce the computational overhead introduced by the LLM module, the

system should incorporate model optimisation techniques such as quantisation,

pruning, or switching to lighter transformer-based models designed for edge

computing. Alternatively, offloading LLM analysis to a dedicated microservice with

GPU acceleration or integrating a cloud-based inference endpoint could maintain

analysis quality without overwhelming system resources.

From a detection perspective, future work should focus on refining the LLM prompts

and improving the interpretability of AI-generated alerts. Integrating feedback loops or

reinforcement learning from user-labelled alerts can further increase accuracy and trust

in AI-based decisions. Additionally, expanding the rule-based engine with automatic

signature updates from external threat feeds via LLM processing will ensure the system

remains relevant against evolving attack patterns with minimal human interventions.

As a forward-looking enhancement, it is recommended to explore the integration of

agentic AI capabilities into the system to enable autonomous decision-making and

adaptive threat response. By equipping the LLM module with agent-like behaviours

such as reasoning over multiple flows, maintaining a memory of recent activity, and

executing pre-defined response actions, the system could evolve from passive detection

to active defence. For example, the agent could dynamically adjust signature thresholds,

quarantine suspicious IPs, or trigger smart contract responses based on real-time

context and historical behaviour. This would significantly reduce analyst workload,

accelerate mitigation, and improve the system’s adaptability to emerging threats.

References

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 153

REFERENCES

[1] N. Rani, B. Saha, and S. K. Shukla, ‘A Comprehensive Survey of Advanced

Persistent Threat Attribution: Taxonomy, Methods, Challenges and Open

Research Problems’, IEEE Communications Surveys and Tutorials, vol. 21, no.

2, pp. 1851–1877, Sep. 2024, [Online]. Available:

http://arxiv.org/abs/2409.11415

[2] M. Khenwar and M. Nawal, ‘Challenges and Limitations of IDS: A

Comprehensive Assessment and Future Perspectives’, SKIT Research Journal,

vol. 14, no. 1, pp. 35–39, Jan. 2024, doi: 10.47904/ijskit.14.1.2024.35-39.

[3] R. Zuech, T. M. Khoshgoftaar, and R. Wald, ‘Intrusion detection and Big

Heterogeneous Data: a Survey’, J Big Data, vol. 2, no. 1, Dec. 2015, doi:

10.1186/s40537-015-0013-4.

[4] A. Dorri, S. S. Kanhere, and R. Jurdak, ‘Blockchain in internet of things:

Challenges and Solutions’, Aug. 2016, [Online]. Available:

http://arxiv.org/abs/1608.05187

[5] L. Diana, P. Dini, and D. Paolini, ‘Overview on Intrusion Detection Systems for

Computers Networking Security’, Mar. 01, 2025, Multidisciplinary Digital

Publishing Institute (MDPI). doi: 10.3390/computers14030087.

[6] Ö. Aslan, S. S. Aktuğ, M. Ozkan-Okay, A. A. Yilmaz, and E. Akin, ‘A

Comprehensive Review of Cyber Security Vulnerabilities, Threats, Attacks, and

Solutions’, Electronics (Basel), vol. 12, no. 6, p. 1333, Mar. 2023, doi:

10.3390/electronics12061333.

[7] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, ‘Survey of intrusion

detection systems: techniques, datasets and challenges’, Cybersecurity, vol. 2,

no. 1, Dec. 2019, doi: 10.1186/s42400-019-0038-7.

[8] H. J. Liao, C. H. Richard Lin, Y. C. Lin, and K. Y. Tung, ‘Intrusion detection

system: A comprehensive review’, Jan. 2013. doi: 10.1016/j.jnca.2012.09.004.

[9] R. Kaur, D. Gabrijelčič, and T. Klobučar, ‘Artificial intelligence for

cybersecurity: Literature review and future research directions’, Information

Fusion, vol. 97, Sep. 2023, doi: 10.1016/j.inffus.2023.101804.

[10] S. Ho, S. Al Jufout, K. Dajani, and M. Mozumdar, ‘A Novel Intrusion Detection

Model for Detecting Known and Innovative Cyberattacks Using Convolutional

References

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 154

Neural Network’, IEEE Open Journal of the Computer Society, vol. 2, pp. 14–

25, 2021, doi: 10.1109/OJCS.2021.3050917.

[11] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, ‘An Overview of Blockchain

Technology: Architecture, Consensus, and Future Trends’, in Proceedings -

2017 IEEE 6th International Congress on Big Data, BigData Congress 2017,

Institute of Electrical and Electronics Engineers Inc., Sep. 2017, pp. 557–564.

doi: 10.1109/BigDataCongress.2017.85.

[12] S. N. Khan, F. Loukil, C. Ghedira-Guegan, E. Benkhelifa, and A. Bani-Hani,

‘Blockchain smart contracts: Applications, challenges, and future trends’, Peer

Peer Netw Appl, vol. 14, no. 5, pp. 2901–2925, Sep. 2021, doi: 10.1007/s12083-

021-01127-0.

[13] B. K. Mohanta, S. S. Panda, and D. Jena, ‘An Overview of Smart Contract and

Use Cases in Blockchain Technology’, in 2018 9th International Conference on

Computing, Communication and Networking Technologies (ICCCNT), IEEE,

Jul. 2018, pp. 1–4. doi: 10.1109/ICCCNT.2018.8494045.

[14] R. F. Mansour, ‘Artificial intelligence based optimization with deep learning

model for blockchain enabled intrusion detection in CPS environment’, Sci Rep,

vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598-022-17043-z.

[15] M. Crosby Nachiappan Pradan Pattanayak Sanjeev Verma and V.

Kalyanaraman, ‘BlockChain Technology: Beyond Bitcoin’, 2016. Accessed:

May 06, 2025. [Online]. Available: https://scet.berkeley.edu/wp-

content/uploads/AIR-2016-Blockchain.pdf

[16] G. Tripathi, M. A. Ahad, and G. Casalino, ‘A comprehensive review of

blockchain technology: Underlying principles and historical background with

future challenges’, Dec. 01, 2023, Elsevier Inc. doi:

10.1016/j.dajour.2023.100344.

[17] K. Christidis and M. Devetsikiotis, ‘Blockchains and Smart Contracts for the

Internet of Things’, 2016, Institute of Electrical and Electronics Engineers Inc.

doi: 10.1109/ACCESS.2016.2566339.

[18] X. Xu et al., ‘A Taxonomy of Blockchain-Based Systems for Architecture

Design’, in Proceedings - 2017 IEEE International Conference on Software

Architecture, ICSA 2017, Institute of Electrical and Electronics Engineers Inc.,

May 2017, pp. 243–252. doi: 10.1109/ICSA.2017.33.

References

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 155

[19] A. Prashanth Joshi, M. Han, and Y. Wang, ‘A survey on security and privacy

issues of blockchain technology’, Mathematical Foundations of Computing, vol.

1, no. 2, pp. 121–147, 2018, doi: 10.3934/mfc.2018007.

[20] A. Dorri, S. S. Kanhere, and R. Jurdak, ‘Blockchain in Internet of Things:

Challenges and Solutions’, 2016.

[21] A. Vaswani et al., ‘Attention Is All You Need’, Jun. 2017, [Online]. Available:

http://arxiv.org/abs/1706.03762

[22] T. B. Brown et al., ‘Language Models are Few-Shot Learners’, May 2020,

[Online]. Available: http://arxiv.org/abs/2005.14165

[23] F. Petroni et al., ‘Language Models as Knowledge Bases?’, Sep. 2019, [Online].

Available: http://arxiv.org/abs/1909.01066

[24] J. Kaddour, J. Harris, M. Mozes, H. Bradley, R. Raileanu, and R. McHardy,

‘Challenges and Applications of Large Language Models’, Jul. 2023, [Online].

Available: http://arxiv.org/abs/2307.10169

[25] M. A. Ferrag et al., ‘Generative AI in Cybersecurity: A Comprehensive Review

of LLM Applications and Vulnerabilities’, May 2024.

[26] N. Moustafa and J. Slay, ‘UNSW-NB15: a comprehensive data set for network

intrusion detection systems (UNSW-NB15 network data set)’, in 2015 Military

Communications and Information Systems Conference (MilCIS), IEEE, Nov.

2015, pp. 1–6. doi: 10.1109/MilCIS.2015.7348942.

[27] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, ‘A Deep Learning Approach for

Network Intrusion Detection System’, in Proceedings of the 9th EAI

International Conference on Bio-inspired Information and Communications

Technologies (formerly BIONETICS), ACM, 2016. doi: 10.4108/eai.3-12-

2015.2262516.

[28] A. Kim, M. Park, and D. H. Lee, ‘AI-IDS: Application of Deep Learning to Real-

Time Web Intrusion Detection’, IEEE Access, vol. 8, pp. 70245–70261, 2020,

doi: 10.1109/ACCESS.2020.2986882.

[29] C. Park, J. Lee, Y. Kim, J. G. Park, H. Kim, and D. Hong, ‘An Enhanced AI-

Based Network Intrusion Detection System Using Generative Adversarial

Networks’, IEEE Internet Things J, vol. 10, no. 3, pp. 2330–2345, Feb. 2023,

doi: 10.1109/JIOT.2022.3211346.

[30] F. Medjek, D. Tandjaoui, N. Djedjig, and I. Romdhani, ‘Fault-tolerant AI-driven

Intrusion Detection System for the Internet of Things’, International Journal of

References

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 156

Critical Infrastructure Protection, vol. 34, 2021, doi:

10.1016/j.ijcip.2021.100436.

[31] N. Kshetri, ‘Blockchain’s roles in strengthening cybersecurity and protecting

privacy’, Telecomm Policy, vol. 41, no. 10, pp. 1027–1038, Nov. 2017, doi:

10.1016/j.telpol.2017.09.003.

[32] A. A. Abubakar, J. Liu, and E. Gilliard, ‘An efficient blockchain-based approach

to improve the accuracy of intrusion detection systems’, Electron Lett, vol. 59,

no. 18, Sep. 2023, doi: 10.1049/ell2.12888.

[33] E. S. Babu et al., ‘Blockchain-based Intrusion Detection System of IoT urban

data with device authentication against DDoS attacks’, Computers and Electrical

Engineering, vol. 103, Oct. 2022, doi: 10.1016/j.compeleceng.2022.108287.

[34] S. Mishra, ‘Blockchain and Machine Learning-Based Hybrid IDS to Protect

Smart Networks and Preserve Privacy’, Electronics (Switzerland), vol. 12, no.

16, Aug. 2023, doi: 10.3390/electronics12163524.

[35] D. Saveetha and G. Maragatham, ‘Design of Blockchain enabled intrusion

detection model for detecting security attacks using deep learning’, Pattern

Recognit Lett, vol. 153, pp. 24–28, Jan. 2022, doi: 10.1016/j.patrec.2021.11.023.

[36] R. Kumar, D. Javeed, A. Aljuhani, A. Jolfaei, P. Kumar, and A. K. M. N. Islam,

‘Blockchain-Based Authentication and Explainable AI for Securing Consumer

IoT Applications’, IEEE Transactions on Consumer Electronics, vol. 70, no. 1,

pp. 1145–1154, Feb. 2024, doi: 10.1109/TCE.2023.3320157.

[37] Cisco, ‘Snort: Network Intrusion Detection & Prevention System’,

https://www.snort.org/. Accessed: May 01, 2025. [Online]. Available:

https://www.snort.org/

[38] A. Tasneem, A. Kumar, and S. Sharma, ‘Intrusion Detection Prevention System

using SNORT’, Int J Comput Appl, vol. 181, no. 32, pp. 21–24, Dec. 2018, doi:

10.5120/ijca2018918280.

[39] Open Information Security Foundation (OISF), ‘Suricata’. Accessed: May 01,

2025. [Online]. Available: https://suricata.io/

[40] J. Gómez, C. Gil, N. Padilla, R. Baños, and C. Jiménez, ‘Design of a Snort-Based

Hybrid Intrusion Detection System’, 2009, pp. 515–522. doi: 10.1007/978-3-

642-02481-8_75.

References

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR 157

[41] A. Gupta and L. Sen Sharma, ‘Performance Evaluation of Snort and Suricata

Intrusion Detection Systems on Ubuntu Server’, 2020, pp. 811–821. doi:

10.1007/978-3-030-29407-6_58.

[42] F. Kordon and Luqi, ‘An introduction to rapid system prototyping’, IEEE

Transactions on Software Engineering, vol. 28, no. 9, 2002, doi:

10.1109/TSE.2002.1033222.

Appendices

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR A-1

APPENDICES

Poster

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR A-2

POSTER

