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ABSTRACT

Urbanisation significantly alters land surface characteristics, leading to the
intensification of the urban heat island (UHI) effect, which may influence the
short-duration extreme rainfall. This study investigates the relationship
between UHI intensity and short-duration extreme rainfall in Kuala Lumpur
through an integrated remote sensing, machine learning and statistical
approach. Landsat imagery from 2007, 2015 and 2023 was used to analyse
spatiotemporal changes in land use and land cover (LULC) and to estimate
land surface temperature (LST). LULC classification was performed using
Support Vector Machine (SVM) and Random Forest (RF) algorithms, while
LST was estimated using the Single Channel (SC) algorithm and surface urban
heat island intensity (SUHII) was subsequently derived from the LST data.
Hourly rainfall data exceeding the 99th percentile from 2007 to 2023 were
used to assess spatiotemporal variation, diurnal distribution and trends.
Statistical relationships between SUHII and hourly extreme rainfall were
examined using the coefficient of determination (R?) and Kendall’s Tau (t).
Results show that SVM consistently outperformed RF in terms of overall
accuracy and kappa coefficient across all study years. Built-up areas and
SUHII both exhibited a net increase, particularly in northern Kuala Lumpur,
likely due to intense urbanisation and industrial activities. The number of
hourly extreme rainfall events also increased, especially during late afternoon
and evening hours. However, the mean intensity of extreme rainfall events
remained relatively stable. Correlation analysis identified moderate,
statistically significant relationships between the annual SUHII and the annual
total number of hourly extreme rainfall events at four of nine stations (R? =
0.2530 - 0.3088; T = 0.3616 - 0.4593; p < 0.05). These findings suggest that
urban-induced heating may contribute to enhanced localised convective
rainfall. 1t is recommended that UHI mitigation measures, such as green
infrastructure and climate-sensitive urban planning, be prioritised to manage

future rainfall-related flood risks in urban environments.
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CHAPTER 1

INTRODUCTION

1.1 General Introduction

Urbanisation has contributed significantly to improving quality of life and
reducing social inequalities by enhancing access to employment, education,
and essential services. However, rapid and often unplanned urban growth also
accelerates land use and land cover (LULC) changes, particularly in
previously undeveloped areas. Such changes can lead to significant
environmental consequences, notably the urban heat island (UHI) effect,
where urban regions experience higher temperatures than their surrounding
rural regions (Huang et al., 2023). This localised warming not only increases
energy demand for cooling but also degrades air quality, raising the risk of
respiratory and other health issues (Li, Zha, & Wang, 2020).

The severity of the UHI effect largely depends on urban composition
and population density. Urban development typically replaces natural
landscapes like water bodies and vegetation with buildings and infrastructure.
These impervious surfaces, which have high thermal capacity and low albedo,
absorb and store more heat, especially in city centres (Qin et al., 2024; Rao,
Tassinari, & Torreggiani, 2023). Additionally, as urban populations increase,
so do anthropogenic heat emissions from sources such as transportation,
combustion processes, and electrical appliances (Mirabi & Davies, 2022). To
mitigate UHI effects, a range of strategies have been proposed. For example,
the use of smart appliances and highly reflective building materials can
enhance energy efficiency in buildings. Additionally, incorporating green
spaces and green roofs helps reduce urban heat stress and supports sustainable
urban planning (Qin et al., 2024; Tahooni, Kakroodi and Kiavarz, 2023).

According to the Clausius-Clapeyron scaling, the intensity of extreme
rainfall is anticipated to enhance by roughly 7% for every 1 °C rise in
temperature. Numerous studies have identified the UHI effect as a contributing
factor to increased convective rainfall, particularly during the late afternoon.
During the daytime, heated air rises into the atmosphere, while cooler air

moves to the urban areas and is heated again by the urban surfaces. In humid



tropical climates, this rising air condenses and releases latent heat, warming
the atmosphere further and strengthening low-level convergence, ultimately
enhancing precipitation (Li et al., 2020; Whitford et al., 2023; Siswato, Schrier
and Hurk, 2022).

This study investigates the role of the UHI effect in amplifying short-
duration extreme rainfall, focusing on rapidly urbanising areas such as Kuala
Lumpur. Accelerated urbanisation alters LULC, elevates surface temperatures
and influences local microclimates. This research integrated machine learning
and remote sensing to classify LULC and employed detailed computations to
estimate land surface temperature (LST), a key parameter for assessing surface
urban heat island intensity (SUHII). Ground-based rainfall data were also
utilised to analyse extreme rainfall patterns. By examining the relationship
between UHI and short-duration extreme precipitation, this research aims to
provide insights that are valuable for both scientific understanding and urban

disaster risk management.

1.2 Importance of the Study

This research is critically important across several domains, including urban
flood risk mitigation, sustainable urban planning and scientific contribution to
UHI-rainfall dynamics. Understanding how the UHI effect contributes to
short-duration extreme rainfall is essential for improving flood risk
management in rapidly urbanising cities like Kuala Lumpur. Intense, short-
duration rainfall events can quickly overwhelm urban drainage systems,
resulting in flash floods. This study helps identify areas affected by UHI that
may be more susceptible to such events. Furthermore, by quantifying changes
in LULC, LST and SUHII, this research provides data-driven insights to
support climate-responsive urban planning. Planners and policymakers can use
these findings to implement climate-sensitive zoning, promote green
infrastructure and regulate land conversion to minimise UHI impacts. Finally,
there is still limited empirical research directly linking SUHII to extreme
rainfall, especially using statistical tools like Kendall’s Tau correlation (t) and
coefficient of determination (R?) in tropical urban settings. This study adds to
the scientific literature by applying robust analytical methods to explore the
relationship between UHI and precipitation extremes.



1.3 Problem Statement

Over the past two decades, natural disasters have impacted more than four
billion people worldwide and caused substantial economic losses. These
problems are particularly severe in the developing world, where hundreds of
thousands of lives are lost each year, due to insufficient funding, low public
awareness and insufficient advanced disaster preparedness and control systems
(Mizutori and Guha-Sapir, 2020; Watson, Gayer and Connolly, 2007). Among
all natural hazards, floods are the most frequent, accounting for 3254 recorded
events, approximately 44% of global disasters between 2000 and 2019. Asia
has been disproportionately affected, with 41% of its landmass experiencing
floods and 93% of the world’s flood victims residing in the region (Mizutori
and Guha-Sapir, 2020).

In Malaysia, urban centres like Kuala Lumpur are increasingly facing
more intense and frequent flood events (Sapawi et al., 2023). Emerging studies
suggest that this trend is closely linked to the UHI effect, which is exacerbated
by rapid LULC changes due to urbanisation. These changes lead to elevated
land surface temperatures and altered microclimatic conditions, potentially
intensifying convective activity and extreme rainfall events.

Despite this, there is limited research that quantitatively investigates
the relationship between SUHII and the short-duration extreme rainfall,
particularly in tropical urban environments. Existing studies often lack high-
resolution spatial and temporal analysis and underuse advanced tools such as
machine learning, remote sensing and robust statistical methods.

This gap necessitates investigating the relationship between the UHI
effect and short-duration extreme rainfall to support effective flood
management and sustainable urban development strategies in Kuala Lumpur.
Therefore, this study aims to examine this relationship by leveraging advanced

machine learning, remote sensing and statistical methods.

1.4 Aim and Objectives

The primary aim of this research is to analyse the impacts of the UHI effect on
the short-duration extreme rainfall in Kuala Lumpur. To effectively achieve
this aim, several objectives are provided in the following:



1. To assess spatiotemporal variation in land use and land cover (LULC)
through the analysis of Landsat satellite imagery, utilising Support
Vector Machine (SVM) and Random Forest (RF) classifiers.

2. To estimate surface urban heat island intensity (SUHII) by quantifying
land surface temperature (LST) derived from Landsat thermal imagery.

3. To analyse the spatiotemporal variation, diurnal distribution and trends
in hourly extreme rainfall.

4. To examine the relationship between SUHII and hourly extreme
rainfall ~ using  coefficient of  determination (R? and

Kendall’s Tau correlation (t).

15 Scope and Limitation of the Study

This study investigates the relationship between the UHI effect and short-
duration extreme rainfall in Kuala Lumpur from 2007 to 2023. It utilises
Landsat satellite imagery (2007, 2015, 2023) for LULC and LST analysis.
Machine learning algorithms, including RF and SVM, are applied for
supervised classification and the accuracy is evaluated using the Kappa
coefficient and standard accuracy metrics. LST is quantified using established
retrieval algorithms, while SUHII is derived from LST data. Ground-based
rainfall data recorded at 15-minute intervals are obtained and processed to
extract the 99th percentile threshold for identifying hourly extreme rainfall
events. Missing rainfall values are interpolated using the inverse distance
weighting (IDW) method and the Theissen polygons are generated to delineate
rainfall station influence zones. Rainfall metrics, including the total number of
hourly extreme rainfall events, the total of hourly extreme rainfall, and the
mean of hourly extreme rainfall, are analysed for spatiotemporal variation,
diurnal distribution, and trend patterns. The statistical relationship between
SUHII and hourly extreme rainfall is evaluated using the coefficient of
determination (R?) and Kendall’s Tau correlation (t).

Several limitations are present in this research. Firstly, Landsat
satellite imagery is susceptible to data gaps caused by heavy cloud cover,
restricting the LULC, LST and SUHII analyses to only three years: 2007, 2015
and 2023. Secondly, cloud contamination in satellite images may affect the
accuracy of LULC classification using machine learning algorithms.



Additionally, the performance of these algorithms is highly sensitive to
parameter selection and data quality, potentially introducing uncertainty into
the classification results. Moreover, although the rainfall dataset spans 17
years, missing data are filled using the IDW interpolation method, which may
introduce spatial uncertainty. The limited availability of rainfall stations within
the Kuala Lumpur region also constrains the spatial scope and resolution of the
analysis. Finally, the correlation analysis focuses solely on surface temperature
and rainfall intensity, without incorporating other atmospheric variables that

could also influence precipitation behaviour.

1.6 Contribution of the Study

This study makes several important contributions to the fields of urban
climatology, hydrology and sustainable urban planning. Firstly, it enhances the
understanding of UHI-rainfall dynamics in tropical cities by analysing the
relationship between SUHII and hourly extreme rainfall in a rapidly urbanising
tropical environment. This addresses a critical knowledge gap, as few
empirical studies have explored this relationship using long-term, high-
resolution satellite imagery and ground-based rainfall data in Southeast Asia.
Secondly, the study integrates machine learning algorithms (RF and SVM),
remote sensing techniques and geostatistical methods to generate accurate and
detailed LULC and LST maps. This comprehensive approach enhances the
spatiotemporal precision of SUHII estimation. Thirdly, by identifying areas
susceptible to intensified rainfall associated with UHI effects, the study offers
practical insights to support urban flood mitigation strategies. The findings
contribute to the development of climate-sensitive infrastructure planning and
land use regulations that strengthen urban resilience. Lastly, this research
presents a robust analytical framework for linking satellite-derived surface
temperature metrics with high-frequency rainfall data using both Kendall’s
Tau and the coefficient of determination. This dual-method approach improves
the reliability and interpretability of results for future climate impact

assessments.



1.7 Outline of the Report
The structure of this report is organised into five comprehensive chapters, each
detailing a critical component of the research:

Chapter 1 introduces the study by providing a general overview of
urbanisation, the UHI effect and short-duration extreme rainfall. It also clearly
defines the aim and objectives, the scope and limitations and potential
contributions of the study.

Chapter 2 presents an in-depth literature review based on credible and
up-to-date sources. It covers key areas such as satellite imagery, LULC
classification using machine learning algorithms, LST and SUHII estimation,
statistical analyses for rainfall and the relationship between UHI and short-
duration extreme rainfall, and other relevant topics, ensuring a solid
foundation for innovative and impactful research.

Chapter 3 details the research methodology and workflow. This
includes a flowchart of the study framework, a description of the study area,
data acquisition methods, and procedures for data processing and analysis,
encompassing both remote sensing and statistical techniques.

Chapter 4 presents the results and provides a comprehensive
discussion supported by appropriate justifications. Visual aids such as figures
and tables are incorporated to enhance clarity and facilitate understanding of
key findings.

Chapter 5 concludes the report by summarising the key findings,
assessing the achievement of the research objectives and providing practical

recommendations for future studies and potential real-world applications.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

A comprehensive literature review is conducted to examine current trends and
relevant methodologies for investigating the impact of the UHI effect on short-
duration extreme rainfall. The review is based on a systematic search using

keywords such as “urban heat island,” “land surface temperature,” “land use
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land cover classification,” “remote sensing,” “machine learning,” “short-
duration extreme rainfall,” “rainfall analysis,” “statistical method,”
“relationship,” and so on. The literature encompasses a wide range of
approaches adopted by researchers, including satellite image acquisition and
processing, LULC classification, LST and SUHII estimation, rainfall data
collection and processing, rainfall trend analysis, and the evaluation of UHI's

influence on short-duration extreme rainfall.

2.2 Remote Sensing for LULC and LST Data
Remote sensing is an advanced data collection technique that captures the
energy radiated from matters on the Earth’s surface using satellites. In the
study of UHI, LST is crucial for illustrating the heat exchange between the
Earth and the air just above it, owing to the consistent dynamics of LST and
air temperature (Reiners, Sobrino and Kuenzer, 2023). The importance of
LULCC in UHI research is highlighted by Phan et al. (2024), suggesting that
the urban thermal environment is affected by landscape metrics including the
configuration, size, complexity and shape of LULC. Remote sensing of LST
and LULCC offers multiple benefits such as efficient and continuous
monitoring of spatiotemporal information (Gyimah, 2023), long-term data
storage, dynamic observations of climate changes, and high temporal and
spatial resolutions, which are not typically provided by weather stations (Shi et
al., 2021).

Remote sensing captures LST and LULCC imagery via sensors
mounted on satellites. Over the decades, numerous sensors with varying

resolutions have been launched for Earth observation missions, including



Landsat’s Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+),
and Operational Land Imager (OLI); the Advanced Very High Resolution
Radiometer (AVHRR); the Visible Infrared Imaging Radiometer Suite; Along
Track Scanning Radiometers; the Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER); and the Moderate Resolution Imaging
Spectroradiometer (MODIS). Since Landsat and AVHRR were launched in the
1980s, they offer longer time series information compared to other satellites
(Reiners, Sobrino and Kuenzer, 2023). According to Phan et al. (2024),
satellite data from MODIS and Landsat are preferred by the majority of
researchers, while other sensors, due to their shortages in temporal or spatial
resolutions, serve as complementary data sources to address limitations faced
by the primary sensors.

The quality of remotely sensed imagery is susceptible to several
factors, including sensor angle, complexity of LULC pixels, variation in urban
surface and atmospheric attenuation or cloud cover. The first three limitations
can be effectively tackled by using high spatial resolutions satellites like
Landsat to produce finer images (Shi et al., 2021). The cloud cover issue is
usually mitigated by either adopting Passive-Microwave-derived-LST or
regressing on-site LST with inputs like the elevation, albedo and land use
indices. The temporal aggregation method can be employed for polar-orbiting
satellites that possess a consistent revisit period. It is not recommended to use
cloud-free images for LST measurement as they can lead to ambiguous results

when comparing to cloudy scenarios (Reiners, Sobrino and Kuenzer, 2023).

2.21 Landsat

The Landsat series comprises eight satellites operating in sun-synchronous
orbits, each equipped with high spatial resolution sensors. For instance,
Landsat 4 and 5 are equipped with 120 m TM sensors, Landsat 7 with 60 m
ETM+ sensors, and Landsat 8 and 9 with 100 m Thermal Infrared (TIR)
sensors. Although Landsat series has a comparatively long revisit period of 16
days, the demand for its data has increased due to the complexity of urban
landscapes. Landsat's high spatial resolution sensors are effective in
identifying LST in both urban and non-urban regions (Reiners, Sobrino, and
Kuenzer, 2023).



In the UHI research conducted by Huang et al. (2023), Landsat 8
satellite images on 16 November 2013 and 24 December 2021 were obtained
from the United States Geological Survey (USGS) Earth Explorer online
platform. These dates represent the oldest and the newest data captured by
Landsat 8 for the KL area during the study period. Landsat 8 imagery was
processed using QGIS to obtain LST and comparisons between urban LST and
the reference area LST were made to identify the UHI impacts.

Rao, Tassinari and Torreggiani (2023) extracted the temporal data
during the summer months from Landsat 5 (1991-2011) and Landsat 8 (2013-
2021) to compute LULC indices and LST for both urban and non-urban
regions. Over the 31-year period, data from 1992, 2000, 2006 and 2012 were
missing due to problems like extreme weather, cloudy conditions and data
unavailability. Google Earth Engine (GEE) was selected to analyse the
abundant satellite images using a cloud platform in conjunction with spectral
bands and proper algorithm combinations.

Satellite data remotely sensed by the 30 m OLI and TIR sensors on
Landsat 8 for every July from 2014 to 2021 were used by Rendana et al. (2023)
to compute LST and classify land use in the Hulu Langat area. The data were
retrieved from the USGS Earth Explorer online platform and processed using
ArcGIS Ver.10.

Remote sensing images from 2006 to 2021 were gathered by Tanoori,
Soltani and Modiri (2024) from the Landsat series to construct land use maps
and produce LST for analysing the effect of LULCC on LST. ArcGIS 10.2.1,
ENVI 5.3.1 and Fragstats were applied for managing the satellite data whilst
Python was used for data manipulation and modelling. Radiometric calibration
and FLAASH atmospheric correction were performed to reduce light and
atmospheric influences on the image quality, ensuring accurate LST
estimations.

In the study by Al-Taei, Alesheikh and Boloorani (2023), the data
collection was carried out by retrieving Landsat 7 (2000-2012) and Landsat 8
(2013-2022) imagery. Annual satellite imagery was then processed to acquire
necessary variables, such as spectral bands, land use indices, and textural
features. To ensure high quality analysis, the median image with less than 50%
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cloud cover between April and September of each year was chosen. Data lost
in Landsat 7 imagery were amended before extracting features.

22.2 MODIS

The MODIS sensors are onboard polar-orbiting satellites, offering outstanding
daily temporal resolution by compromising on spatial resolution (1 km).
Compared to Landsat, MODIS is more suitable for time series studies on both
local and global scales due to its large swath width and high temporal
resolution (Reiners, Sobrino and Kuenzer, 2023).

According to the methodology applied by Li, Zha and Wang (2020),
global LST data with temporal coverage at 8-day intervals and a spatial
resolution of 1 km were collected from the MODIS V6 MYD11A2 product,
including imagery captured both during the day and at night from 2003 to
2013.

In the study by Zhou et al. (2014), satellite data from 2003 to 2011
were acquired from the Aqua MODIS V5 MYD11A2 product, which offered
8-day temporal coverage and a spatial resolution of 1 km. By applying the
generalised split-window algorithm, these data were obtained from cloud-free
observations with 99% confidence that captured at 1:30 and 13:30 local solar
time. Notably, MODIS V5 offered higher accuracy in LST analysis in most
cases.

LST data from the Terra MODIS MOD11A2 product were retrieved
by Moazzam, Kim and Lee (2024), for the period from 2003 to 2020, observed
daily at 10.30 am and 10.30 pm. The 8-day MODIS LST product was
preferred over the daily LST product to mitigate the impact of data loss due to
heavy cloud cover and to minimise the computational workload for data
processing. The generalised split-window algorithm was also employed in the
LST retrieval process, such as cloud removal and adjustments for radiation,
water vapor and temperature, improving the accuracy of LST analysis.

MODIS LST data spanning from 2008 to 2018 were obtained by
Tang et al. (2022) from the MOD11Al dataset. Similar to the datasets
mentioned above, the MODIS MOD11A1 product offers the same spatial and
temporal resolution. Data processing was carried out using the MODIS
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Reprojection Tool, which involved raster clipping, projection conversion to
WGS-84 and data conversion to TIFF format.

Additionally, daily LST satellite imagery with a 1200m spatial
resolution from 2000 to 2022 was acquired by Rees, Baidy and Belenok (2024)
from the MODIS V6.1 MOD11A1 product. These data were collected during
the day and night with surface temperature bands and quality control
assessments. The split-window algorithm was utilised to produce cloud-free
LST pixel values. In areas with overlapping pixels, values are averaged with
appropriate weights applied to the overlaps. A script was created using GEE
and the study area shapefile with the relevant period was filtered from the
MODIS/006/MOD11A1 LST_Day_1km dataset to compute LST values.

2.3 LULC Classification Using Machine Learning Algorithms

In the LULC classification, various land use indices and machine learning
algorithms are utilised to improve both efficiency and accuracy. This section
commences with a discovery of commonly applied land use indices, such as
the Normalised Difference Built-up Index (NDBI), Normalised Difference
Bare Soil Index (NDBSI), Normalised Difference Water Index (NDWI) and
Normalised Difference Vegetation Index (NDVI). These indices highlight
specific land features through the use of multi-spectral bands. Multiple
machine learning algorithms, including K-Nearest Neighbour (KNN),
Decision Tree (DT), SVM, and RF, have been proven effective in classifying
LULC. The application and performance of these algorithms are clarified by
case studies, providing strong justifications for selecting appropriate methods
for this research.

Machine learning is a derivative of artificial intelligence, leveraging
input data and statistical algorithms to emulate human learning processes and
execute sophisticated missions without explicit orders. Machine learning can
be categorised into four main learning methods, with supervised and
unsupervised learning being the most commonly applied in UHI studies. In
supervised learning, the training process requires labelled datasets, consisting
of both input data and corresponding output data, to analyse and recognise
relationships between them. The finalised model can be utilised to address

classification and regression problems. Conversely, unsupervised learning
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excels in data aggregation and clustering which do not require the labelled data
for training. It can organise unlabelled datasets into distinct groups via the
identification of patterns, similarities and structures among variables (Ahorloo
etal., 2024).

The process of LULC classification follows a structured methodology
that typically involves seven distinct stages as identified by Lu and Weng
(2007): choosing the appropriate remotely sensed data, defining the
classification system and selecting training samples, pre-processing the data,
extracting and selecting pertinent features, applying the classification method,
executing post-classification processing and assessing accuracy. This
methodical sequence guarantees consistency and enhances the reliability of

land cover information derived from satellite imagery.

2.3.1  Normalised Difference Vegetation Index (NDVI)

NDVI is a common indicator of green vegetation cover and relies on data
captured by remote sensing. The concept of NDVI is based on the absorption
of sunlight in the photosynthetically active radiation range and the reflection
of near-infrared radiation. NDVI is computed by dividing the difference
between the near-infrared (NIR) band and red (R) band by their sum (Vilcins
et al., 2022). NDVI values represent green vegetation density, where a value of
1 indicates the densest vegetation and -1 represents extreme bareness with
only water, rock and sand. Values between 0.2-0.3 correspond to grassland
while 0.6-0.8 represent rainforests (Gascon et al., 2016).

Several shortcomings of NDVI have limited the accuracy of detecting
green cover. NDVI is only capable of detecting the presence of green
vegetation rather than distinguishing between different flora species. In
addition, it cannot precisely measure the coverage area of withered plants and
bare land. The discrepancies between the spatial resolution of NDVI and study
area may lead to inaccuracies. Lastly, NDVI cannot provide information on

whether the vegetation locates in public or private areas (Vilcins et al., 2022).

2.3.2  Normalised Difference Built-up Index (NDBI)
By using satellite data, NDBI detects the density of built-up areas based on

their distinct spectral response. Built-up surfaces reflect more shortwave
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infrared (SWIR) radiation than NIR. NDBI is computed as the ratio of the
difference between SWIR and NIR bands to the sum of these two bands.
NDBI values range between -1 and 1, where positive values typically represent
built-up areas, while negative values correspond to non-built-up regions.

(Dammayatri, Susantoro and Wikantika, 2023).

2.3.3  Normalised Difference Water Index (NDWI)

NDW!I is applied to indicate the presence of open water bodies in the satellite
data. It distinguishes water bodies by leveraging the characteristic of water that
tends to strongly absorb NIR compared to other materials such as vegetation
and soil. In other words, water bodies can be detected by satellite sensors due
to its low NIR reflectance. NDWI is formulated as the ratio of the difference
between GREEN and NIR bands to the sum of these two bands. GREEN band
is used to capture reflected green light from water bodies, enhancing water
feature detection. NIR band can easily detect and exclude both soil and
vegetation, highlighting the water feature in the satellite imagery. The
presence of water bodies results in the positive NDWI value with the
maximum of 1 while values from 0 to -1 indicate that the area is occupied by
vegetation and soil. Even though NDWI is widely utilised in the investigation
of water quality, it can barely differentiate between chlorophyll o and

suspended solids in water bodies (McFeeters, 1996).

2.3.4  Normalised Difference Bare Soil Index (NDBSI)

NDBSI is a measure of the bareness of an area, taking advantage of RED,
BLUE, NIR and SWIR wavelengths captured by remote sensing. It was firstly
designed for the forest management to inspect forest density. The NIR and
BLUE bands are selected to detect vegetation cover while the RED and SWIR
bands distinguish the soil mineral from other matters. When the NDBSI value
is closer to 1, a larger scale of bare soil and impervious layers exist in the
study area. Conversely, the density of vegetation and pervious layers increases
with a NDBSI value closer to -1 (Polovina et al., 2024).
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2.3.5  Supervised and Unsupervised Classification

Supervised classification represents an analyst-directed approach to LULC
mapping where human expertise plays a central role in defining spectral
signatures for land cover classes. This technique employs a three-phase
process: training (identification of representative pixel samples), signature
extraction (statistical characterisation of spectral values) and classification
(assignment of all pixels to defined classes). Through this methodology, the
analyst maintains control over category definition and classification outcomes.
Several algorithms have been developed for supervised classification, each
with distinct mathematical foundations, such as SVM, DT and maximum
likelihood classification (Madariya, Pandey and Sharma, 2022).

Unsupervised classification represents an automated approach to
image segmentation where algorithms identify natural spectral groupings
without prior definition of land cover categories. This process involves
spectral clustering using statistical techniques, followed by analyst
interpretation to assign meaningful land cover labels to the resulting clusters.
This approach operates independently of training data, relying instead on the
spectral properties of image pixels to determine class boundaries. Two primary
algorithms dominate unsupervised classification applications, including
Iterative Self-Organizing Data Analysis Technique and K-means (Madariya,
Pandey and Sharma, 2022).

In the study by Mohd Hasmadi, Pakhriazad and Shahrin (2009) in
Selangor, Malaysia, supervised classification achieved an overall accuracy of
90.28% with a Kappa coefficient of 0.86, indicating strong agreement between
the classified map and ground truth data. In contrast, unsupervised
classification, which clusters image pixels based solely on their spectral
properties without prior training, yielded lower overall accuracy at 80.56% and
a Kappa of 0.73. The higher performance of the supervised method is
attributed to its ability to incorporate prior knowledge and carefully selected
training samples, which help the classifier distinguish between classes that
may have overlapping spectral signatures.

A second case study from Afghanistan compared both classification
approaches over multiple time periods (2000, 2013, and 2020) using Landsat

imagery. The supervised model, implemented with advanced machine learning
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techniques such as SVM, consistently achieved higher overall accuracies of
94.23%, 90.09%, and 88.18% for the respective years, compared to
unsupervised methods, which reported accuracies around 89%, 82.5%, and
84.26%. These differences underscore that supervised classification tends to
be more reliable, particularly in heterogeneous and complex landscapes,
because it leverages expert knowledge and carefully delineated training areas
(Doost and Yaseen, 2023).

2.3.6  Support Vector Machine (SVM)

As noted by Awad and Khanna (2015), SVM is a commonly employed
supervised machine learning model for applications like weather forecasting
and image classification, due to its powerful generalisation capability and
ability to achieve optimal global solutions. SVM operates on a simple
principle: it determines an optimal hyperplane that perfectly separates different
classes with maximum margins in a n-dimensional space. For problems
involving non-linearly separable data, kernel functions are applied to obtain
higher-dimensional data, facilitating the classification process of a linear
separator between each class.

According to Al Kafy et al. (2021), LULC classification of Landsat
satellite data from 1999, 2009, and 2019 was conducted using a SVM
algorithm embedded in ENVI 5.3. The classification focused on four major
LULC categories: urban areas, bare soils, vegetation cover, and water bodies.
The SWM algorithm adopted the kernel type of radial basis function with
certain parameters, including a penalty parameter of 120, a gamma value of
0.07, a classification probability threshold of 0.05 and a pyramid level that
remained zero. Areal and spectral profiles of the imagery were analysed to
acquire additional training data and background information. LULC maps
were produced by taking approximately 45 samples for each year’s LULC
category. The performance of the SVM-based LULC classification was
evaluated based on four metrics: kappa statistics, overall accuracy, user
accuracy and producer accuracy. These evaluations were based on 200 and
150 randomly selected ground data and Google Earth (GE) images for each
map. Consequently, the results indicated that the SVM algorithm was highly
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effective in LULC classification, achieving overall accuracy rates of 86.04%,
84.82% and 87.23% for the three years, respectively.

Similar procedures were adopted by Edan, Maarouf and Hasson
(2021) to classify LULC using satellite images from 2000, 2010 and 2020.
Prior to the LULC classification, Landsat 8 OLI images (bands 1 to 7) and
Landsat 5 TM images (bands 1 to 5 and 7) were processed through band
composition. LULC maps were generated by collecting roughly 200 signatures
for each LULC class in each year. To assess the performance of the SVM
algorithm, the four assessments metrics were adopted, alongside 300 ground-
truthing data obtained from global positioning systems and GE. As a result, the
SVM algorithm demonstrated high accuracy in LULC classification, attaining
a kappa coefficient above 0.83 and an overall accuracy exceeding 0.94 across

all studied years.

2.3.7  K-Nearest Neighbours (KNN)

KNN is a simple and flexible supervised algorithm suitable for both regression
and classification tasks. In contrast to conventional regression models that
define relationships between input and output variables using mathematical
formulae, KNN simplifies this process due to its non-parametric characteristic.
It finds the “k” nearest data points or neighbours considering criteria such as
Euclidean distances to make a prediction. The average values of nearest
neighbours are computed to predict the new data point in regression models
while the classification of the new data point is based on the majority class
among its neighbours (Ran et al., 2024; Verma et al., 2023).

In the study by Athukorala and Murayama (2021), the KNN
algorithm was used to perform LULC classification in R software. Landsat 5
(bands 2-4) and Landsat 8 (bands 3-5) imagery were prepared as inputs for
LULC map analysis. The classification was based on four LULC groups
including bare land, water, green space and impervious surface. Automatic
sampling with 400 points per year facilitated the production of high quality
LULC maps. After the initial classification, amendments for classified LULC
maps were conducted, such as the hybrid classification method and majority
filter, to rectify random misclassifications like the salt and pepper noise. KNN-

classified LULC maps were observed to be the most accurate among other
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algorithms, including ANN, SVM, and RF, achieving an accuracy score of 90%
or higher.

2.3.8  Decision Tree (DT)

DT is a non-parametric supervised learning model that made up of edges and
nodes, systematically and continuously sorting data into different classes based
on certain criteria. The operational process commences from the root node
splitting data into edges based on the computation of entropy and information
gain or the Gini index. Subsequent test nodes receive incoming edges (input)
from previous nodes and continue this splitting process until reaching the
leaves node which provides the final decision. One of the advantages of DT is
its ability to process large datasets for classification and regression models
within a short period of time, obtaining high accuracy results. DT is also a
flexible solution used to address linear or non-linear models with little to no
data normalization needed. Lastly, DT has a simple structure that can be
interpreted easily compared to other algorithms like Artificial Neural
Networks (ANN). However, DT tends to overfit when dealing with complex
relationships between features and attenuation of DT performance could also
result from variations in the dataset (Talekar and Agrawal, 2020).

Four LULC groups, such as built-up, vegetation, cropland and water
were used by Mohammad et al. (2022) for LULC classification spanning from
1995 to 2020 at five-year intervals. The Classification and Regression Tree
(CART), a subset of the DT algorithm, was used to create LULC maps via
GEE while multiple Landsat imagery bands were applied as nodes for
classification. To identify the four LULC features, various band combinations
of Landsat imagery were acquired from over 200 training samples for the
respective features. The background GE images were employed as reference
data to examine the training points. The obtained sample points were separated
into training sets (70%) and validation sets (30%) using random sampling
approaches. Two reliable image classification assessment methods, including
the confusion matrix and Kappa statistics, were applied to measure the CART
performance. The results indicated that the CART algorithm was highly
accurate for LULC classification, with a mean accuracy score of 0.91 over the

study periods.
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2.3.9 Random Forest (RF)

According to Fawagreh, Gaber and Elyan (2014), RF is an ensemble learning
algorithm that integrates multiple DT using the random selection of features
and Breiman’s bagging sampling method. Each DT is generated from
repetitively chosen samples of a training set, which helps minimize variance in
the dataset. The predictions for the class label of a given instance are
simultaneously executed and a vote is cast for the predicted class label by each
DT. The final output is determined by selecting the class label that obtains the
highest votes among all trees. RF is a popular choice for both classification
and regression due to its superior performance in handling intricate
relationships between variables and capability against overfitting. In addition,
RF is relatively simpler, faster and more precise compared to other boosting or
bagging models.

The LULC classification of Landsat data into different land use types
was executed using the RF algorithm through the GEE platform. The land use
types included dense vegetation, bare land, water, sparse vegetation and urban
areas. The image pixels were carefully digitised for each class to train the RF
algorithm. A minimum of 50 training samples per class were created, resulting
in a total of 1045 training samples proportionally allocated based on the
frequency of occurrence of each LULC category in the study area. 100
decision trees were employed to form the RF model and 376 more samples
were generated to examine the RF performance. The classification process did
not rely simply on the spectral bands from Landsat imagery, but also leveraged
various land use indices, such as Band Ratio for Built-up Area, Index-Based
Built-up Index, Normalised Difference Water Index and so on, to precisely
distinguish between similar classes. The Kappa coefficient, overall accuracy,
producer’s accuracy and user’s accuracy were used to assess the LULC maps
(Rees, Baidy and Belenok, 2024).

The RF algorithm was also adopted by Liu, An and Ming (2024) to
classify LULC maps. By using GEE, the surface reflectance data were
retrieved from Landsat imagery. A median algorithm was used, combining all
images into a single composite and calculating the median value for each pixel.
Additional layers, such as NDBI, NDVI, Normalised Difference Bareness
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Index and Digital Elevation Model (DEM), were mosaicked to add details and
texture to the classification. A total of 796 training data were gathered to train
the RF model in classifying the land use into five categories, encompassing
bare land, water bodies, forests, built-up areas and cropland. To examine its
performance, a random sampling approach was applied to collect 200 samples
for each LULC group. Consequently, the RF model demonstrated high
accuracy in LULC classification, achieving an overall accuracy of more than

0.86 and Kappa coefficients exceeding 0.83.

2.4 LST Estimation

LST is a fundamental parameter for understanding surface and atmosphere
interactions, urban heat island effects and various climatic processes.
Retrieving LST from thermal infrared satellite data has evolved into a vital
research area, with several algorithms developed to meet diverse
environmental conditions and sensor specifications. Two prominent methods
include the Single Channel (SC) and the Split Window (SW) algorithms.

241  SC Algorithm

The SC method has emerged as a practical and efficient approach for
retrieving LST from thermal infrared satellite data, particularly Landsat-8
TIRS Band 10. Unlike the SW techniques, the SC method requires fewer input
parameters, primarily the land surface emissivity, the effective band
wavelength and atmospheric water vapor content. This reduced dependency
simplifies the retrieval process, especially in areas where detailed atmospheric
profiles are unavailable (Garcia and Diaz, 2021; Cristdbal et al., 2018).

Garcia and Diaz (2021) compared several LST algorithms and found
that the SC approach delivered robust and reliable LST estimates in a highly
polluted urban environment in Granada, Spain. Their findings highlighted that
SC algorithms are particularly effective in urban settings, offering consistent
performance across multiple temporal scales.

Building on this, an improved single-channel method was proposed
by Cristobal et al. (2018), which incorporated not only water vapor content but
also near-surface air temperature into the retrieval process. By integrating

near-surface air temperature, the improved SC method reduced uncertainties
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inherent in atmospheric correction, yielding an overall error of approximately
1 K and a bias of -0.5 K when compared to on-site observations. This
enhancement demonstrated a significant performance improvement over
earlier models that relied solely on water vapor.

Furthermore, Maithani et al. (2022) applied the SC algorithm to
Landsat thermal datasets for the years 2000, 2010 and 2019 in an urban
context in India. Their approach, which served as a precursor to machine
learning simulations of future urban temperature patterns, yielded an average
root mean square error (RMSE) of 1.9 °C during summer and 1.9 °C during
winter when validated against downscaled MODIS LST products. These
results underscore the SC method’s operational reliability and its suitability for

long-term urban climate studies.

2.4.2  SW Algorithm
The SW algorithm is a widely used approach for retrieving LST from remote
sensing data, particularly by leveraging two adjacent thermal infrared channels.
One key feature is its ability to mitigate atmospheric effects, especially water
vapor absorption, by using a nonlinear combination of brightness temperatures
measured at wavelengths around 11 and 12 um. For instance, in a notable case
study using Landsat 8 TIRS data, the algorithm was developed using an
extensive simulation dataset (over 350,000 scenarios) that varied atmospheric
conditions, land surface emissivity and true LST. The study divided column
water vapor into several sub-ranges and derived tailored coefficients for each
range, resulting in an LST RMSE of less than 1.0 K (Du et al., 2015).

The radiance-based split-window algorithm (RBSWA) used with
MODIS data demonstrated notable improvements over conventional
brightness temperature-based methods. Simulation analyses reported an RMSE
of only 0.5 K with an improvement of about 0.3 K compared to traditional
methods. When applied to real MODIS data covering the continental United
States, the RBSWA produced a mean RMSE of 1.33 K and validation against
Surface Radiation Budget and ASTER LST products further confirmed its
reliability (Wang et al., 2019).
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An investigation of SW algorithms for Landsat 9 TIRS-2 data further
highlights that while different candidate methods exist, those that incorporate
adjustments for atmospheric water vapor and land surface emissivity tend to
reduce overall bias and error by up to 1.30 K and 1.0 K, respectively (Su,
Meng and Sun, 2024).

2.5 SUHII Estimation

The SUHII was used to measure the magnitude of UHI by subtracting the
average urban LST with the average rural LST (Li, Zha and Wang, 2020; Sun
et al., 2018). Several steps were taken by Zhou et al. (2014) to define the urban
and rural areas. Firstly, a 1 km x 1 km moving window approach was applied
to create a built-up intensity (BI) map, which was classified into high-Bl and
low-Bl regions using a 50% threshold. Then, the high-Bl regions were
combined and surrounded by a 2 km buffer zone that encompassed the nearest
and scattered high-BI patches within the urban boundary. The area inside the
buffer zone was treated as an urban area while the buffer zone with an
equivalent area to the urban area, excluding waterbodies, was designated as a
rural area.

According to Huang et al. (2023) and Rendana et al. (2023), the UHI
estimation was performed by calculating the ratio of the difference in LST
between urban and reference areas to the LST of the reference area. The study
areas were then classified into five different classes based on the UHI value,
including very weak UHI effect (< 0.07), weak UHI effect (0.08 - 0.12),
moderate UHI effect (0.13 - 0.17), strong UHI effect (0.18 - 0.20) and very
strong UHI effect (> 0.21) (Huang et al., 2023).

Two different methods were applied by Rao, Tassinari and Torreggiani
(2023) to measure UHI. The SUHII Type 1 method, also employed by Rees,
Baidy and Belenok (2024), computed the difference between the LST of the
research area and the mean LST of green spaces. The Type 2 method
calculated the difference between the study area LST and predefined UHI
threshold. Unlike the Type 1 method, a threshold value was defined in the
Type 2 method to identify UHI and non-UHI regions without considering the
influence of LULC on temperature changes across the study area. Positive

SUHII values indicated UHI presence, with categories ranging from low
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SUHII (0 - 2.0), moderate SUHII (2.0 - 4.0), high SUHII (4.0 - 6.0), very high
SUHII (6.0 - 8.0) to extremely high SUHII (> 8). Statistical comparisons,
including standard deviation, RMSE and mean absolute error (MAE), showed
that Type 1 was more precise for the estimation of SUHII in areas with
noticeable anthropogenic activities as it emphasised distinguishing land use,
while Type 2 provided a broader but less precise estimation.

Due to varying weather conditions throughout the year, the comparison
of several satellite images within the same year to assess a region’s thermal
properties may yield inaccurate results. Thus, a normalised method was
employed to quantify the UHI across different seasons within the same year,
accounting for atmospheric fluctuations by finding a ratio of the difference
between LST and mean LST to the standard deviation (Al Kafy et al., 2021;
Rahaman et al., 2022).

2.6 Acquisition and Pre-Processing of Short-Duration Extreme

Rainfall Data
High-resolution hourly rainfall data from 1960 to 2020 were collected by Yan
et al. (2024) from various sources to analyse rainfall patterns in the Great Bay
Area. For instance, Integrated Multi-satellite Retrievals for Global
Precipitation Measurement Mission Final Run Version 07, Multi-Source
Weighted-Ensemble Precipitation product, ERAS5-Land reanalysis data of the
European Centre for Medium-Range Weather Forecast and local weather
stations. Despite adjustments made to merge data from different sources,
discrepancies were still detected when comparing gridded rainfall data to
actual hourly rainfall observations. This problem was addressed by applying a
Random Forest-based Merging Procedure to enhance data accuracy. Then,
maximum rainfall intensities over multiple time durations were retrieved for
each year. “Rainfall extremes” were considered as heavy rainfall with
intensities exceeding the 98.75" and 99.7™" percentiles.

In addition, temperature and precipitation data from 1998 to 2015
were acquired by Oh et al. (2022) from the Asian Precipitation Highly
Resolved Observational Data Integration Towards Evaluation of water
resource (APHRODITE) project. This data was captured by approximately
5000 to 12000 weather stations that provide daily high-resolution (0.25°)
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climate information across Asia. It has been widely recognised that
APHRODITE data is well-suited for understanding Asian monsoon rainfall
variability and performing rainfall forecasting. Rainfall estimates at 3-hour
intervals were also extracted from the Tropical Rainfall Measuring Mission
(TRMM) products to evaluate precipitation changes.

A Malaysian hourly rainfall dataset, combined and checked for
quality as part of the Global Sub-Daily Rainfall dataset was employed.
Rainfall data from 1981 to 2011 were extracted from rain gauge stations
around Kuala Lumpur with over 80% data availability. To ensure the
independence of precipitation events, only the highest hourly rainfall intensity
for each day was selected. Hourly rainfall intensities were added up to obtain
daily rainfall intensities. Instead of using wet-hour/day data, the top 5% (95%
percentile) average hourly/daily rainfall intensities were identified for trend
analysis, as increases in rainfall intensity do not strongly correlate with
increases in wet-day percentiles (Li, et al., 2020).

To explore the relationship between urbanisation and extreme rainfall
in Paris and Shanghai, the top 1% (99th percentile) and top 0.28% (99.72nd
percentile) of hourly and daily rainfall throughout the year were analysed. The
most extreme 1% of hours or days were represented by the 99" percentile,
while the most extreme 24 hours in a year were represented by the 99.72™
percentile. The intensity, frequency and total amount of rainfall exceeding
these percentiles were observed (Steensen et al., 2022).

In the study by Li, Zha and Wang (2020), rainfall data from global
megacities with daily precipitation greater than 50 mm were excluded from the
correlation estimation. This is because such heavy rainfall events generally
result from extreme weather conditions like low vortex, typhoons and cyclones,
hampering the observation of UHI impacts on precipitation. Mamun, Salleh,
and Noor (2018) defined short-duration rainfall in Klang Valley, Malaysia, as
precipitation lasting between 15 minutes and 18 hours, but not exceeding 24

hours.

2.7 Inverse Distance Weighting (IDW)
IDW is one of the most widely applied spatial interpolation techniques in

hydrology and meteorology, particularly for estimating rainfall at ungauged
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locations. Introduced by Robertson (1967), IDW operates on the principle that
points nearer to the prediction location exert a stronger influence on the
estimated value than those farther away. This method computes a weighted
average of observed values, with weights inversely proportional to a power of
the distance from the target location (Tiwari, Jha and Sivakumar, 2019;
Benmoshe, 2025).

Despite its simplicity, IDW continues to demonstrate strong
performance in real-world applications. For example, Wimala et al. (2025)
evaluated multiple interpolation methods using rainfall data from 20 automatic
telemetering stations and found that IDW produced the lowest MAE and
RMSE, making it the most accurate method in their study region. While
Kriging and Co-Kriging captured spatial variability more effectively in theory,
they introduced greater estimation errors when data were limited, highlighting
their reliance on a denser station network. Mremi et al. (2025) also utilised
IDW in GIS to model spatial rainfall distribution, affirming its practical utility
in data-scarce environments. Similarly, Fung et al. (2022) evaluated IDW as a
univariate spatial interpolation method in Peninsular Malaysia and found that
IDW with a power of two (p = 2) outperformed Ordinary Kriging, yielding a
lower MAE (67.8), RMSE (91.2), and higher R? (0.540). However, the study
also noted that IDW was outperformed by the multivariate Multi-scale
Geographical Weighted Regression method, which accounted for additional
variables like elevation and location, offering better spatial accuracy by

adjusting spatial bandwidths.

2.8 Rainfall Analysis

Rainfall analysis plays a crucial role in understanding climate variability,
especially in hydroclimatic studies. Among various statistical methods
available, the Mann-Kendall (MK) and Modified Mann-Kendall (MMK) test,
Sen’s slope estimator, Innovative Trend Analysis (ITA) and spatiotemporal
comparative analysis are widely used due to their robustness and effectiveness.
These methods enable researchers to assess the presence, direction and
magnitude of long-term trends in rainfall data across various temporal and

spatial scales.
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2.8.1 Mann-Kendall (MK) and Modified Mann-Kendall (MMK) Tests
The MK test is widely adopted non-parametric approach to assess monotonic
trends in time series data without requiring the data to follow a specific
distribution. Its non-parametric nature makes it particularly suitable for
analysing climate extremes, as it can handle missing data and is less sensitive
to outliers. However, the original MK test can be significantly influenced by
autocorrelation in the data, which may lead to overestimation of trend
significance. To address this limitation, the MMK test, proposed by Hamed
and Ramachandra Rao (1998), incorporates adjustments to account for serial
correlation by modifying the variance of the test statistic. This is achieved
through techniques such as pre-whitening, block bootstrapping and variance
correction. The test compares the null hypothesis (Ho), which posits no trend,
against the alternative hypothesis (H1), suggesting a significant increasing or
decreasing trend. Statistical significance is typically evaluated at a 95%
confidence level (oo = 0.05). A trend is considered significant when the p-value
is less than 0.05. The Kendall rank correlation coefficient (t), which ranges
from -1 to +1, indicates the direction and strength of the trend. Positive values
suggest an increasing trend, while negative values indicate a decreasing trend.
Nevertheless, recent studies emphasise that even modified versions of the MK
test may not fully eliminate the impact of long-term autocorrelation,
highlighting the importance of careful methodological choice when
interpreting trend significance (Sharma et al., 2024; Ng et al., 2024; Mekuria,
Demissie and Feyessa, 2025; Miniandi et al., 2024).

2.8.2  Sen’s Slope Estimator

In addition to the MK test, the Sen’s slope estimator (Sen, 1968) is commonly
used to quantify the magnitude of a trend. It is a non-parametric method that
calculates the median of all pairwise slope values in the dataset, providing a
robust estimate that is less sensitive to outliers. Sen’s slope is typically applied
in conjunction with the MK test, as it offers a more precise measure of trend
magnitude once a significant trend has been identified. This combined
approach has been adopted in various recent studies, such as Kenabatho (2025),
Sharma et al. (2024), Ng et al. (2024), Mekuria, Demissie and Feyessa (2025),
and Miniandi et al. (2024). While other trend detection methods, such as
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Spearman’s Rho, linear regression, and wavelet analysis, are also utilised in
the literature, the MK test coupled with Sen’s slope estimator remains the
preferred choice in hydroclimatic studies due to its robustness, minimal data
assumptions and effectiveness in handling non-normally distributed or

incomplete data (Mekuria, Demissie, and Feyessa, 2025).

2.8.3  Innovative Trend Analysis (ITA)

Sen (2012) suggested the ITA approach to measure trends in hydro-
meteorological time series data, including precipitation and temperature. ITA
visualises data trends based on graphical and non-parametric method,
comparing two halves of the dataset. This method was adopted by Ahmed et al.
(2022), Doiphode and Swami (2024), Wang et al. (2020) and Deopa et al.
(2024) for the temporal rainfall study. Precipitation data were separated into
two equal halves and assigned to both horizontal and vertical axes in
ascending order. The time series shows an increasing trend when the majority
of data points fall above the 1:1 line and vice versa. No significant trend is
expected if data points are evenly scattered along the 1:1 line.

In the case of without a clear monotonic trend, Wang et al. (2020)
categorised the data into low, medium and high rainfall classes, utilising 10"
and 90" percentiles as boundary lines. The results of the ITA are assessed by
both the MK test and the Theil-Sen Approach (TSA). The MK test detects the
sign and significance of trends, while the TSA investigates the magnitude of
trends and is more resilient to outliers. The presence of the serial correlation in
a time series could interfere with the trend test results. Hence, lag-1 serial
correlation (r1) was computed for the time series data. The series is pre-

whitened before employing trend analysis methods, only if ry is significant.

2.8.4  Spatiotemporal Comparative Analysis

To evaluate temporal and spatial changes in extreme rainfall, Miniandi et al.
(2024) divided the analysis into two periods: 2000-2010 (early period) and
2013-2022 (recent period). Spatial distribution maps were generated for both
percentiles across the two time periods, revealing a noticeable expansion in the
coverage and intensity of extreme rainfall across Kuala Lumpur. These
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comparisons demonstrated a spatial shift and intensification of rainfall
extremes in tandem with urban expansion over time.

Lee et al. (2023) conducted a spatiotemporal analysis of probability
precipitation in South Korea across four periods (1981-2020, 1991-2020,
2001-2020, 2011-2020) using data from 61 rainfall stations, focusing on
probability rainfall, intensity and duration for 10-, 20-, 50-, and 100-year
return periods and 1-, 2-, 6-, and 24-hour durations. Spatial distributions,
mapped via kriging interpolation in ArcGIS, revealed that the southeast inland
area consistently exhibited lower probability precipitation and intensity
anomalies, while the northeast, northwest and south coast regions showed
higher values. Decadal rainfall analysis, focusing on nine representative
stations in the northern (Ganghwa, Daegwallyeong and Seoul), southwest
inland (Jeongeup, Gwangju and Namwon) and southeast inland (Miryang,
Daegu and Yeongcheon) regions, showed that the 2011-2020 decade had
notably lower annual rainfall in the southwest and northern inland areas
(absolute differences > 115 mm) compared to 2001-2010 but stable
precipitation in the southeast inland area (differences < 15 mm). These
findings, supported by box plots and anomaly maps, highlight a strong
correlation between annual precipitation trends and spatiotemporal variations
in probability rainfall factors.

The rainfall analysis in the Ceyhan River basin, Turkiye, by Darabi et
al. (2023), spanning 1975-2014. This study utilised data from 15
meteorological stations to compare rainfall patterns across different periods of
the year, segmented into four decades (1975-1984, 1985-1994, 1995-2004,
2005-2014) and analysed over annual and monthly scenarios. The findings
highlight significant intra-annual and decadal variability, with pronounced
regional differences and notable drought events in 1992-1996 and 2007-2010

impacting the basin’s water resources.

2.9 Statistical Methods for Analysing the Relationship between the
UHI Effect and Short-Duration Extreme Rainfall

Research examining the relationship between the UHI effect and short-

duration extreme rainfall remains limited. To address this gap, this section

reviews key statistical methods that have been used in related studies to
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analyse associations between climatic and environmental variables. By
referring to existing literature involving comparable parameters, such as LST,
precipitation intensity and urban characteristics, this section highlights suitable
correlation and regression techniques for investigating the UHI-rainfall

relationship.

2.9.1 Pearson’s Correlation Coefficient (r)

Pearson’s correlation coefficient is a statistical method used to assess the
direction and strength of a linear relationship between two consecutive
variables. Spanning from -1 to +1, values closer to the extremes indicate
stronger relationships, and r = 0 represents no linear correlation. The strength
of the association increases as the scatter of data points decreases, approaching
a straight line as the coefficient nears 1. However, proper inference requires
that the data meet several assumptions: both variables should be continuous,
jointly normally distributed and drawn from a representative sample.
Additionally, there should be no extreme outliers, as these can significantly
distort the correlation results (Schober, Boer, and Schwarte, 2018; Berman,
2016).

In environmental and urban climate studies, Pearson’s correlation has
been widely applied to assess the relationships between the SUHII and climate
variables such as air temperature, precipitation and vegetation activity. The
standard deviation (STD) of SUHII over time was used as a metric for its
stability, with a lower STD indicating stronger resilience to climatic drivers.
Moreover, spatial correlations between SUHII variability (STD) and
precipitation were analysed across 145 cities to assess regional sensitivity (Li,
Zha, and Wang, 2020).

Further extending its application, Xu (2025) used Pearson’s
correlation alongside a random forest model to capture both linear and
nonlinear relationships between green space morphological characteristics and

UHI intensity across different seasons.

2.9.2 Kendall’s Tau Correlation Coefficient (1)
Kendall’s Tau (7) is a classic non-parametric statistical method, introduced by

Kendall (1938), that evaluates the monotonic relationship between two
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variables using ranked data. Its values range from -1 to +1, where a value of 0
indicates no correlation, positive values signify a direct relationship and
negative values indicate an inverse relationship (Cheng et al., 2021). Unlike
Pearson’s correlation coefficient, Kendall’s Tau does not require assumptions
of linearity or normally distributed data, making it particularly suitable for
non-linear or non-normally distributed datasets. Its main advantages include
distribution independence, sensitivity to monotonic trends and resilience to
outliers (Miniandi, 2024). This robustness is supported by simulation studies
from Puth, Neuhduser, and Ruxton (2015), which found that while both
Kendall’s Tau and Spearman’s Rho perform similarly to Pearson’s correlation
in non-normal distributions, Kendall’s Tau tends to produce narrower
confidence intervals, especially when there are no tied values, making it
statistically preferable in such cases. However, Spearman’s Rho may
outperform Kendall’s Tau in terms of coverage accuracy when ties are present.

Comparative efficiency studies, such as those by Croux and Dehon
(2010), also show that Kendall’s Tau exhibits greater robustness to extreme
and correlation outliers, with lower mean squared error (MSE) across a variety
of data contamination scenarios compared to both Spearman’s Rho and
Pearson’s correlation. In practical applications, Kendall’s Tau has been widely
used in climate and environmental studies. For instance, Nath et al. (2023)
used it to analyse the relationship between summer temperature and monsoon
rainfall, while Omer et al. (2020) applied it to examine the statistical
dependence between water scarcity indicators and hydroclimatic variables.
Similarly, Miniandi (2024) employed Kendall’s Tau to assess the association
between LST and extreme rainfall, emphasising its utility in urban climate
research. Overall, Kendall’s Tau remains a reliable and robust method for

evaluating correlations in complex, real-world environmental datasets.

2.9.3 Spearman’s Rho Correlation Coefficient (p)

Spearman’s rank correlation coefficient, commonly referred to as Spearman’s
Rho (p), is a non-parametric method employed to evaluate the direction and
strength of a monotonic relationship between two variables. This method is
useful when the data do not meet the assumptions required for Pearson’s

correlation, such as normality or linearity. Unlike Pearson’s product-moment
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correlation coefficient, Spearman’s Rho does not require a linear relationship
or interval-level measurement; it can be applied to ordinal data and is robust in
situations where the association is monotonic but non-linear. It spans from -1
to +1, with values near +1 indicating stronger associations, while a value of 0
suggests no correlation. While a significant Spearman’s coefficient indicates a
statistically detectable monotonic relationship, it should be interpreted
cautiously, as significance does not always imply a strong or meaningful
relationship, especially in the practical or linear sense (Jan and Toasz, 2011,
Cheng et al., 2021).

In applied research, Spearman’s Rho has been used across various
environmental and climate-related studies. For instance, Aucahuasi-Almidon,
Cabrera-Carranza, and Garate-Quispe (2024) employed it to analyse the
relationship between deforestation and climate variables in the southern
Peruvian Amazon. Similarly, Sharma et al. (2016) used Spearman’s Rho to
examine the correlation between rainfall and temperature in the eastern region
of India, demonstrating its utility in assessing hydroclimatic interactions where

non-linearities and ordinal data are present.

2.9.4  Coefficient of Determination (R?)

The coefficient of determination (R2?) is a commonly applied statistical metric
that quantifies the goodness-of-fit of regression models by indicating how well
the predicted values match the observed data. Ranging from 0 to 1, an R? value
of 1 represents a perfect fit, whereas a value of 0 implies that the model fails to
account for any variation in the dependent variable (Motegaonkar and Kashid,
2024). The concept of the coefficient of determination as the proportion of
"variance explained" by the independent variables makes it an intuitive and
unitless measure, allowing for easy comparison across models and studies,
similar to standardised effect size metrics (Nakagawa and Schielzeth, 2012).

In environmental and UHI-related research, the coefficient of
determination has been extensively employed to assess the strength of
predictive relationships between climatic or surface parameters and urban heat
metrics. For example, Pande et al. (2024) performed linear regression analysis
using mean values of rainfall, NDVI and LST to determine RZ? values that

reflected the strength of associations between these environmental factors.
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Similarly, Fetene (2025) developed regression models using variables such as
NDVI, NDBI, temperature, rainfall, relative humidity and wind speed to
predict LST and UHI intensity, with R2 used to assess model fit and p-values
(threshold 0.05) used to test statistical significance. Additionally, Hussien et al.
(2023) applied the coefficient of determination to evaluate the seasonal and
annual relationships between NDVI and various climatic variables over a 26-
year period, highlighting its utility in long-term trend analysis and

environmental monitoring.

2.10  Classification Metrics

Classification metrics are important tools for assessing the performance of
machine learning algorithms in LULC classification. Among these, the Kappa
coefficient, overall accuracy, producer’s accuracy and user’s accuracy are

widely employed.

2.10.1 Kappa Coefficient

The Kappa coefficient measures the level of agreement between a
classification outcome and a reference dataset, while accounting for chance
agreement. It is computed using the confusion matrix, which tabulates the
classified outputs against the actual ground-truth observations. A Kappa value
of 1 signifies perfect agreement, whereas values close to 0 indicate agreement
comparable to random chance. Kappa values are categorised as follows: 0.81 -
1.00 represents almost perfect agreement; 0.61 - 0.80 indicates substantial
agreement; 0.41 - 0.60 suggests moderate agreement; 0.21 - 0.40 corresponds
to fair agreement; 0.00 - 0.20 implies slight agreement; and values below 0.00
indicate poor agreement. A study achieving 81.7% overall accuracy with a
Kappa of 0.722 demonstrated substantial agreement, though individual classes
like barren land showed high omission errors (73.3%). This highlights Kappa's
utility in identifying systemic classification weaknesses (Rwanga and
Ndambuki, 2017). The recent incorporation of machine learning techniques
with Landsat imagery has further enhanced classification accuracy. In one
study from Brahmani-Dwarka Interfluve, five classifiers, including RF, SVM,
CART, Gradient Boosted Trees and Minimum Distance, were compared,
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demonstrating Kappa’s relevance even within sophisticated classification
frameworks (Mandal, 2024).

While overall accuracy measures raw correctness, it often fails to
account for class imbalances. For example, a hypothetical 90% accuracy might
mask poor performance in rare classes if common classes dominate. Kappa
improves on this by discounting chance agreement, making it particularly
useful in heterogeneous landscapes. However, some critics argue that the
“chance correction” provided by Kappa is unnecessary since overall accuracy
already reflects observable agreement. They point out that Kappa’s reliance on
prevalence distributions can hinder cross-study comparisons, as it assumes
independent class distributions between the classified and reference data, a
condition rarely met in practice. Consequently, when rare classes are present,
the inflated expected chance agreement can lower the Kappa value even if the
classification is largely accurate. For instance, a class that covers only 1% of
an area would need nearly flawless classification to achieve a high Kappa,
potentially skewing the results. Additionally, Kappa does not differentiate
between systematic errors and random noise, which can limit its diagnostic
usefulness (Rwanga and Ndambuki, 2017; Foody, 2020).

2.10.2 Accuracy Metrics

The confusion matrix, also known as the error matrix, forms the basis for
accuracy metrics by comparing classified pixels with ground reference data. In
this matrix, the diagonal elements indicate correct classifications, while the
off-diagonal values represent errors: commission errors (pixels incorrectly
assigned to a class) are found in the rows, and omission errors (pixels that
truly belong to a class but were not classified as such) are found in the
columns (Dash et al., 2023).

Overall accuracy gives a broad snapshot of performance, yet it can
conceal significant class-specific problems. For example, a Nigerian LULC
study reported an overall accuracy of 81.7%, but this figure masked a severe
73.3% omission error for barren land. This case illustrates how overall
accuracy may be misleading in imbalanced landscapes, where dominant
classes, such as agriculture covering 65% of the area, can disproportionately
skew the results (Rwanga and Ndambuki, 2017).
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Producer's accuracy measures the probability that a reference sample
is correctly classified, thereby highlighting omission errors, while user's
accuracy assesses the likelihood that a classified sample truly matches the

reference data, pinpointing commission errors (Rwanga and Ndambuki, 2017).

2.11 Regression Metrics

Regression metrics are commonly used to evaluate the predictive accuracy and
reliability of statistical models. A summary of these metrics, compiled by the
author based on information from Tanoori, Soltani, and Modiri (2024),
Mohammad et al. (2022), and Jedox (2025), is presented in Table 2.1.

Table 2.1: The Summary of Regression Metrics.

Type Descriptions

Root Mean Squared Error

It is commonly applied in regression
(RMSE) models by measuring the average
difference between the estimated
values generated by a model and the
observed values obtained from a
sensor.
e Squaring residuals amplifies the
impact of large errors, making
RMSE ideal for applications where
catastrophic ~ failures must be
avoided.
e Models with higher accuracy result
in lower RMSE value.

Concordance Index (CI) It is typically employed in tasks

involving ranking systems.

e It evaluates a model’s capability to
precisely rank the predicted values.

e A 90% CI of [0.72, 0.78] for R?

indicates the model explains 72 -
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78% of wvariance with 90%

confidence.

Average Absolute Percent
Relative Error (AAPRE)

It evaluates a model’s predictive
performance.

It expresses the average difference
between the observed and estimated
values in percentage form.

Models with higher accuracy result
in lower AAPRE percentage.

R-squared (R?)

It assesses the model’s fit by
measuring how much of the
variation in the outcome can be
explained by the input variables.

A high R-squared value implies a
strong association between the
inputs and the predicted outcome.

Mean Absolute Error (MAE)

It assesses the mean of the absolute
errors between the estimated and
observed values.

It is less sensitive to outliers than
RMSE, making it preferable for
datasets with heavy-tailed error
distributions.

Models with greater accuracy result

in lower MAE value.
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212 Summary

In summary, this literature review evaluates and compares various research
methods to identify the most appropriate approaches for investigating the
relationship between the UHI effect and short-duration extreme rainfall. The
review highlights the characteristics and applications of Landsat and MODIS
imagery in LULC and LST analysis. It also covers the concepts and case
studies of LULC classification using machine learning algorithms, such as
SVM, KNN, DT and RF, along with the role of various land use indices in
improving classification accuracy. For LST estimation, two algorithm types,
SC and SW, are discussed, while multiple formulae adopted by other
researchers are presented for SUHII estimation. Methods for extracting short-
duration extreme rainfall are also reviewed, including diverse data sources and
definitions of extreme events. Among spatial interpolation methods, IDW
stands out for its balance between performance and simplicity, outperforming
more complex methods in many cases. In terms of rainfall analysis, methods
such as the MMK test, Sen’s slope, ITA and spatiotemporal comparative
analysis are reviewed for their suitability to different analytical objectives. For
relationship analysis, four key statistical approaches, Pearson’s correlation,
Kendall’s Tau, Spearman’s rho, and coefficient of determination, are evaluated.
Kendall’s Tau shows the highest resilience to outliers, while the coefficient of
determination combined with linear regression enables both prediction and
assessment of relationship strength. Finally, the review examines classification
metrics and regression metrics, which are essential for evaluating the
performance of machine learning models and the reliability of statistical

analyses.
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CHAPTER 3

METHODOLOGY AND WORK PLAN

3.1 Introduction

This study employed a structured methodology to ensure analytical rigor and
reliability. Kuala Lumpur, Malaysia, was selected as the study area due to its
dense urbanisation and susceptibility to the UHI effect. Satellite imagery from
Landsat 5 (2007) and Landsat 8 (2015 and 2023) was used, along with ground-
based rainfall data from 2007 to 2023 acquired from the Department of
Irrigation and Drainage (DID) Malaysia.

LULC classification was conducted using SVM and RF algorithms,
categorising land into built-up areas, water bodies, vegetation, and bare soil.
Classification accuracy was assessed using Kappa coefficients and accuracy
metrics. LST was estimated using the SC algorithm for both satellite datasets.
SUHII was calculated by subtracting the mean LST of vegetated areas from
the LST of each pixel.

Rainfall data were pre-processed to extract the 99th percentile of
hourly extreme rainfall from the original 15-minute records. Missing data were
interpolated using the IDW method and Theissen polygons were generated
based on rainfall station locations. Analyses were performed to assess the
spatiotemporal variation, diurnal distribution and trends in three rainfall
metrics: the total number of hourly extreme rainfall events, the total of hourly
extreme rainfall and the mean of hourly extreme rainfall.

To explore the relationship between SUHII and rainfall extremes,
both the coefficient of determination (R?) and Kendall’s Tau correlation (7)
were applied. SUHII values for 2007, 2015 and 2023 were interpolated to
derive annual estimates for each station from 2007 to 2023. Rainfall metrics
were aggregated annually to maintain consistency in statistical analysis. The

overall methodological workflow is illustrated in Figure 3.1.
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Objective 1 Objective 3

Satellite Imagery
Landsat 5 TM C2L1 (2003)
Landsat 8 OLI/TIRS C2L1
(2015 and 2023)

Month: March-May
Resolution: 30m
Cloud Cover: <30%
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Figure 3.1: The Flowchart of Methodology.

3.2 Study Area

Kuala Lumpur, the capital of Malaysia, spans roughly 243 km? and features
densely urbanised metropolitan areas distributed across the city.
Geographically, it is located in the central part of the west coast of Peninsular
Malaysia and forms part of the Klang Valley conurbation. Kuala Lumpur
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serves as the country's economic hub, supporting a population of around 1.8
million and hosting numerous commercial activities. The city’s economy is
driven by diverse sectors including finance, construction, commerce, science
and technology, transportation, and manufacturing, contributing approximately
15.9% to Malaysia’s gross domestic product in 2023.

Situated near the equator, Kuala Lumpur experiences a tropical
climate characterised by high humidity, frequent rainfall and minimal seasonal
temperature variation throughout the year. Average temperatures range from
about 33.0 °C during the day to 24.6 °C at night, with the months from March
to August typically being the hottest. Kuala Lumpur receives significant daily
rainfall, ranging from 5.29 mm to a peak of 12.24 mm. The city also maintains
a high average relative humidity of 83% throughout the year (WorldData.info,
2024). Rapid urbanisation since the 1980s has intensified the UHI effect in
Kuala Lumpur, making afternoon thunderstorms and flash floods prevalent.

Figure 3.2 shows the location of Kuala Lumpur in Malaysia.
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Figure 3.2: The Location of Kuala Lumpur in Malaysia.
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3.3 Data Collection

Before beginning the analysis, data collection is essential to acquire the most
representative  datasets from reliable sources, thereby minimising
computational costs and uncertainties in the results. A study period from 2007
to 2023 with an 8-year interval was purposely selected to observe the effects
of urbanisation on the UHI phenomenon and to provide a longer period for

analysing short-duration extreme rainfall events.

3.3.1  Satellite Imagery

Three satellite images from Landsat 5 (2007) and Landsat 8 (2015 and 2023)
were downloaded from the USGS Earth Explorer website. The satellite data
were selected from the months of March to August, as these represent the
hottest period of the year. Images with less than 30% cloud cover were chosen
to minimise the impact of weather conditions on LULC classification and LST
estimation. The spatial resolution of the multi-spectral bands used was 30 m,
while the thermal bands were resampled from 120 m to 30 m to ensure both
types of bands are compatible with each other. The satellite imagery served as
training data for machine learning algorithms in QGIS to classify LULC. The

specifications of the extracted satellite imagery are outlined in Table 3.1.

Table 3.1: The Specifications of the Extracted Satellite Imagery.

Date ) Cloud
Product ID Sensor Resolution
Captured Cover
LTO5 L1TP 127058 2
B - - Landsat 5
0070524 20200830_02 24-05-2007
TMC2 L1
T1
LC08 L1TP 127058 2 Landsat 8
0150327_20200909 02 27-03-2015 OLI/TIRS 30m <30%
T1 C2 L1
LC08 L1TP 127058 2 Landsat 8

0230317_20230324 02  17-03-2023  OLI/TIRS
T1 c2L1
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3.3.2 Rainfall Data

15-minute local rain gauge measurements from 2007 to 2023 were obtained
from the DID Malaysia. Site-measured rainfall data were selected for their
higher precision. Owing to data availability constraints, only nine stations
located within or near the study area were included in this research. Table 3.2
lists the selected rainfall stations, while Figure 3.3 illustrates their locations.

Table 3.2: Rainfall Stations.

No. Station Latitude Longitude

1 Kolam Takungan Batu (0231391RF) 3.2185 101.6819
Taman Ehsan At Kepong W. Persekutuan

2 3.21822 101.6313
(0231441RF)
Pusat Penyelidekan At Jps Ampang Selangor

3 3.15489 101.7487
(0231351RF)

4 Km 10 Ulu Kelang At Uk Height (0231401RF) 3.18228 101.7597
Ibu Bekalan Km. 11 At Gombak W. Persekutuan

5 3.23856 101.7122
(0230721RF)
Empangan Genting Klang At W. Persekutuan

6 3.2361 101.7528
(0230631RF)
I/pejabat Jps Malaysia At W. Persekutuan

7 3.15567 101.6818
(0230641RF)

8 JIn. Sg. Udang At Segambut (0231381RF) 3.19331 101.658
Ldg. Edinburgh Site 2 At W. Persekutuan

9 3.1833 101.6333

(0230651RF)
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Figure 3.3: Locations of Rainfall Stations.

3.4 LULC Classification

In this section, two different machine learning algorithms, including SVM and
RF, were adopted to classify the Landsat imagery in 2007, 2015 and 2023 into
different LULC types using QGIS. Based on accuracy assessment, the LULC

maps with the higher accuracy were selected for subsequent analyses.

3.4.1 Georeferencing

Georeferenced maps were created using high-resolution satellite images of the
study area in 2007, 2015 and 2023, obtained via Google Earth Pro. A total of
50 ground control points were uniformly distributed across the images to
ensure accurate georeferencing. A transformation type of “Polynomial 3 and
a target coordinate reference system of “EPSG:32647 — WGS84 / UTM zone
47N” were used.

3.4.2 Land Use Indices
Various land use indices, such as NDVI (Equation 3.1), NDBI (Equation 3.2),
NDW!I (Equation 3.3) and NDBSI (Equation 3.4), were used to improve

classification accuracy.
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NIR — RED

- 3.1

NDVI NIR + RED (3.1)

NDEBI — SWIR1 — NIR 2

" SWIR1 + NIR (3.2)
GREEN — NIR

- 3.3

NDWI GREEN + NIR 33)

(RED + SWIR1) — (BLUE + NIR)
NDBSI = (3.4)
(RED + SWIR1) + (BLUE + NIR)

where

NDVI = Normalised Difference Vegetation Index

NDBI = Normalised Difference Built-up Index

NDW!I = Normalised Difference Water Index

NDBSI = Normalised Difference Bare Soil Index

NIR = Near-infrared (Band 4 for Landsat 5 and Band 5 for Landsat 8)
RED = Red (Band 3 for Landsat 5 and Band 4 for Landsat 8)

SWIR1 = Shortwave Infrared 1 (Band 5 for Landsat 5 and Band 6 for Landsat
8)

GREEN = Green (Band 2 for Landsat 5 and Band 3 for Landsat 8)
BLUE = Blue (Band 1 for Landsat 5 and Band 2 for Landsat 8)

3.4.3 Classification of LULC Maps with SVM and RF

The Landsat raster images were clipped to the study area and classified using
SVM and RF models into four categories, encompassing built-up areas (roads,
commercial, residential and industrial areas) water bodies (lakes, rivers, seas
and canals), vegetation (forests, agriculture areas, green lands and green plants)
and bare land (sand, fallow and vacant land). This classification was executed
using the Semi-Automatic Classification Plugin in QGIS. Image pixels were
properly labelled for each class to train the algorithms for supervised

classification. A total of 30 training samples per class were generated for each
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year, with all samples proportionally distributed based on the occurrence rate
of the LULC classes.

For the SVM model, a radial basis function kernel with a
regularisation parameter of 8.0 was employed.

The RF model, consisting of 100 decision trees, was utilised for the

classification process, with the minimum number to split set to three.

3.4.4  Accuracy Assessment

To evaluate the accuracy of SVM- and RF-based LULC maps, producer’s
accuracy (PA), user’s accuracy (UA), overall accuracy (OA) and the Kappa
statistic were calculated, as shown in Equations 3.5 to 3.8. The assessment
used 30 randomly selected ground-truth data points for each category, derived

from the georeferenced maps.

Producer’s Accuracy

_ Correctly Classified Pixels of a Category

= 100 3.5
Total Reference Pixels for that Category (35)
User’s Accuracy
Correctly Classified Pixels of a Categor
_ y 01y 100 (3.6)

Total Classified Pixels for that Category

Total Correctly Classified Pixels
Overall Accuracy = Total Picls x 100 (3.7)

Po — Pe
1_pe

Kappa Coefficient = (3.8)

where

Total Correctly Classified Pixels
Total Pixels

po = Observed Agreement =

Z Column Total x Row Total

p. = Expected Agreement = Total Picels
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3.5 LST Estimation

The LST estimation was performed in QGIS by analysing thermal radiance
values associated with different LULC types using specific formulae. The SC
algorithm was applied to the thermal bands of both Landsat 5 and Landsat 8
imagery.

3.5.1 Extraction of LST Data from Landsat 5

The first step involved converting the digital number (DN) of Band 6 to Top of
Atmosphere (TOA) spectral radiance, standardising the radiometric scale
across all satellite images using Equation 3.9. Input parameters were obtained
from the MTL file of the satellite image.

LMAX, — LMIN,
A= ( ) (Qcal — Qcal min) + LMINy (3.9)

Qcal max ~ Qcal min

where

L, = TOA spectral radiance, W/(m? - sr - um)

LMAX,, = spectral radiance that is scaled t0 Q.4 max » W/(M? - sr - um)

LMIN,, = spectral radiance that is scaled t0 Q.4 min » W/(M? - SI - pm)

Qa1 = quantised calibrated pixel value in DNs

Qcal max = Maximum quantised calibrated pixel value corresponding to LMAX;

Qcal min = Minimum quantised calibrated pixel value corresponding to LMIN,,

Secondly, the TOA spectral radiance was converted to the TOA

brightness temperature using Equation 3.10.

BT = (K‘j—2> —273.15 (3.10)
1n< )

g-l'l

where

BT = TOA brightness temperature, °C

L, = TOA spectral radiance, W/(m? - sr - um)

K= A constant value for Band 6 / Band 10 thermal conversion
(K1_CONSTANT_BAND_6/ K1 _CONSTANT_BAND_10)
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K,= A constant value for Band 10 thermal conversion
(K2_CONSTANT_BAND_10/K2_CONSTANT_BAND _10)

3.5.2  Extraction of LST Data from Landsat 8

Firstly, the Band 10 DN was converted into the TOA spectral radiance by
applying Equation 3.11. The radiance scaling factors were retrieved from the
MTL file of the satellite image.

Ly =ML Qca + Ay (3.11)

where

L, = TOA spectral radiance, W/(m? - sr - um)

M;, = Radiance multiplicative scaling factor for Band 10
(RADIANCE_MULT_BAND_10)

Qa1 = Level 1 pixel value in DN

A;, = Radiance additive scaling factor for Band 10
(RADIANCE_ADD_BAND_10)

Similar to Landsat 5, the TOA brightness temperature was calculated
in the second step by using Equation 3.10. An emissivity correction was
conducted in the following step, involving the NDVI approach. The method
used was the same as Equation 3.1, which required both near-infrared (NIR)
and red (R) DN values.

Then, the proportion of vegetation (Pv) was computed from Equation
3.12, using the DN values from the NDVI image and their maximum and

minimum values.

( NDVI — NDVI,;, )2
V =

(3.12)
NDVI,,.x — NDVIip

Subsequently, the Py value and a correction value of 0.986 were

applied in Equation 3.13 to calculate the land surface emissivity.
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€ =0.004 x P, + 0.986 (3.13)

Lastly, the LST of Landsat 8 for Bands 10 was computed using
Equations 3.14 and 3.15.

(3.14)

0=h< (3.15)

where

LST = Land surface temperature, °C

BT = TOA brightness temperature, °C

€ = Land surface emissivity

A = Wavelength of emitted radiance = 10.985 x 10°m
¢ = Velocity of light = 2.998 x 108 m/s

h = Planck’s constant = 6.626 x 103* Js

o = Boltzmann constant = 1.38 x 1022 J/K

p =1.438 x 102 mK

3.6 SUHII Estimation

To measure the UHI effect within the study area, the SUHII formula was
calculated using Equation 3.16, which determines the difference between the
LST at each pixel and the mean LST of vegetation-covered areas. Table 3.3
summarises the categories of UHI based on SUHII values, ranging from none
(SUHII < 0), low (0 < SUHII < 2.0), moderate (2.0 < SUHII < 4.0), high (4.0 <
SUHII < 6.0), very high (6.0 < SUHII < 8.0) to extremely high intensity
(SUHII > 8.0). This approach effectively captures UHI by accounting for the
impact of different land use types on LST.

SUHII = LST; — LSTyegetation (3.16)

where
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SUHII = Surface urban heat island intensity
LST; = Land surface temperature at any pixel, °C

LSTyegetation = Mean land surface temperature of vegetation covers, °C

Table 3.3: The Categories of UHI Based on SUHII values.

SUHII Value Range Category
SUHII <0 None
0<SUHII<2.0 Low UHI
2.0<SUHII<4.0 Moderate UHI
4.0<SUHII<6.0 High UHI
6.0 <SUHII<8.0 Very high UHI
SUHII > 8.0 Extremely high UHI

3.7 Rainfall Analysis
A detailed rainfall analysis was carried out using Python and QGIS to examine
variations in rainfall patterns from 2007 to 2023. Rainfall data from nine

selected stations were retrieved and pre-processed prior to analyses.

3.7.1  Pre-Processing

Data pre-processing was essential to facilitate the analytical process and
enhance the reliability of the results. The IDW interpolation method, shown in
Equation 3.17, was employed to estimate missing values based on rainfall
measurements from nearby stations within the same period. As there is no

theoretical basis for selecting the power parameter, a value of t = 2 was used in

most cases.
n 1
x=1|5 t X Px
P, = I[dx . ] (3.17)
x=1d_xt
where

P, = The rainfall estimates at the station i
P, = Rainfall measurement at neighbouring station x

d, = The distance between the station i to the station x
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n = The number of neighbouring stations
t = The power parameter that influences the weight of neighbouring

measurements = 2

To enhance interpretability and computational efficiency, the original
15-minute data were aggregated into hourly rainfall data. The 99th percentile
threshold was applied to differentiate extreme rainfall events from others. To
analyse the spatial distribution of rainfall impacts, Thiessen polygons (VVoronoi
polygons) were generated, defining distinct impact areas for each station and

establishing nine study areas.

3.7.2  Spatiotemporal Variation of Hourly Extreme Rainfall
Due to the high variability in Malaysia’s annual rainfall patterns, the dataset
was divided into two study periods: 2007-01-01 to 2015-07-01 and 2015-07-
01 to 2023-12-31 (hereinafter referred to as 2007-2015 and 2015-2023) to
enable comparative analyses of hourly extreme rainfall. Three rainfall
parameters were included, such as the total number of hourly extreme rainfall
events, the total of hourly extreme rainfall and the mean of hourly extreme
rainfall. This comparison aimed to highlight changes in the actual values of
these parameters at the nine selected stations across the two periods.

The spatial distribution of rainfall characteristics was visualised using
the IDW interpolation method, with a distance coefficient of 2 and a pixel size
of 0.00027¢ in both the x and y directions.

3.7.3  Diurnal Distribution of Hourly Extreme Rainfall

To further examine variations in hourly rainfall patterns, a diurnal distribution
analysis was conducted on the total number of hourly extreme rainfall events
across the nine stations for the periods 2007-2015 and 2015-2023. Rainfall
data were categorised by hour of the day and clustered column charts were
generated for each station. This analysis provided clearer insights into the
timing of extreme rainfall occurrences, supporting the investigation of UHI

impacts on short-duration extreme rainfall.
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3.7.4 MMK Test and Sen’s Slope Estimator
The MMK test and Sen’s slope estimator were employed to analyse the trend
and rate of change in hourly extreme rainfall from 2007 to 2023. The hourly
extreme rainfall data were grouped on an annual basis. The MMK test was
selected for its ability to handle non-normally distributed time series and its
robustness against the effects of autocorrelation.

The MK test statistic S was computed using Equation 3.18, which

assesses the difference in ranks between sequential data points.

N
S = Z sgn(x; — x;) (3.18)

N indicates the sample size, while xjand x; represent consecutive data
points within the time series. Equation 3.19 was applied to obtain the statistic

sgn(x; - Xi).

1lf(X] _Xi) >0
sgn(xj - xi) =< 0if (x]- - xi) =0 (3.19)
-1 if(xj —Xi) <0

Since the rainfall dataset is assumed to be independently and
identically distributed, the mean of S is equal to zero. The variance of S,

denoted as, Var(S), was computed using Equation 3.20.

n

Var(S) = % N(N —1)(2N +5) — Z t(tr — 1) 2t + 5)
k=1

(3.20)

In this context, n refers to the number of tied groups and tx indicates
the number of ties within the k™ group. Equation 3.21 presents the

standardised test statistic Z, which accounts for the presence of tied data.
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r S—1

JVar(S)

7= 0ifS=0 (3.21)

ifS>0

S+1

\Var(S)

ifS<O0

A positive Z value indicates an upward trend, while a negative Z
value suggests a downward trend. A trend is considered statistically significant
at the 0.05 level if the absolute value of Z exceeds 1.96. In the MMK test, the
Hurst coefficient h and the autocorrelation function were incorporated to
correct for autocorrelation effects on the variance of S, as shown in Equations
3.22 and 3.23.

Cy(h) = [p)j—i] fori=1:N;j = 1: N (3.22)

1
pr =5 L+ 112 = 2012 + |1 = 112%) (3.23)

The degree of self-similarity in a time series is quantified by h, while
the autocorrelation function of lag [ for a specified h is represented by p;. The
value of h was determined using the maximum likelihood estimation method.
Its significance was evaluated by comparing it to the expected mean and
standard deviation under the assumption of h = 0.5, following a normal
distribution. If h is deemed significant, the variance of S is adjusted using a
bias-corrected estimate based on the specified h, as presented in Equation 3.24,

replacing the original Var(S) in Equation 3.21.

Var(S)"

=ZZ—sin'1<pU = pli— U= plj = Kl + pli |> (3.24)
s J@2=2pli—jD2-2]k—1])

i<j k<l

The Sen’s slope estimator was then utilised following the MMK test

to assess the rate of change. The slopes T; for all consecutive pairs of data
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were calculated using Equation 3.25 and the Sen’s slope Q was derived as the
median of these slopes, determined by Equation 3.26.

x._
T, =2 "k i=123..N, >k (3.25)

Tn+1if Nis odd
2

1 (3.26)
E(TQ + Tw) if Niseven

3.8 Relationships between UHI and Short-Duration Extreme Rainfall
Both the coefficient of determination (R?) and Kendall’s Tau correlation (1)
were employed to evaluate the relationships between SUHII and rainfall
parameters. The coefficient of determination assumes a linear relationship,
aligning with the Clausius-Clapeyron scaling, which suggests a proportional
increase in rainfall with rising temperature. In contrast, Kendall’s Tau assumes
a monotonic relationship and is better-suited for environmental data, which
often violate the assumptions of normality and linearity. Moreover, Kendall’s
Tau is robust to outliers, enhancing its reliability in real-world climatic
datasets. The combined use of the coefficient of determination and Kendall’s
Tau enables a more comprehensive analysis by capturing both linear and
consistent directional associations, regardless of data distribution. This dual
approach enhances the reliability and interpretability of the findings.

Both datasets were pre-processed prior to the relationship analysis to
ensure consistency in the statistical analysis. SUHII data for the years 2007,
2015 and 2023 were interpolated to estimate annual SUHII values from 2007
to 2023 at each station, while hourly extreme rainfall data were aggregated on

an annual basis.

3.8.1  Coefficient of Determination (R?)

The coefficient of determination is a statistical approach used to evaluate how
well a regression model explains the variation in a dependent variable based
on the independent variable. R? spans from 0 to 1, where R? = 0 denotes no

linear relationship and R? = 1 represents a perfect fit.
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Equation 3.27 presents the formula for the coefficient of
determination, while Equation 3.28 shows the Fisher’s Z-transformation (z-

score) utilised to evaluate the statistical significance of the coefficient.

RZ=1- SSres (3.27)
SStot
where
SSres = 2(vi — 91)? = Residual sum of squares
SStor = X(yi — ¥)? = Total sum of squares
y; = Observed values
y; = Predicted values
y = Mean of observed values
1 1+r
Zscore = Eln (1 — I‘) *vn—3 (3.28)

where
n = Sample size

r=vR2

By comparing to the z-score to the standard normal distribution, the
null hypothesis of no significant relationship is rejected if |zgcore| > 1.96,
implying that the relationship is statistically significant at the 0.05 significance

level.

3.8.2 Kendall’s Tau Correlation (1)

Kendall’s Tau is a non-parametric statistic that measures the direction and
strength of association between two ranked variables, ranging from -1 to +1. A
value of -1 suggests perfect disagreement, +1 represents perfect agreement and
zero indicates no correlation. Equation 3.29 shows the formula for Kendall’s

Tau correlation.
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g ) (3.29)
nn—1)

where

C = Number of concordant pairs

D = Number of discordant pairs

n = Total number of observations

A concordant pair occurs when observations (Xi, yi) and (X;j, Vj)
maintain a consistent order, such that x;>x; and yi >vyj, or xi<x; and yi<yj. A
discordant pair occurs when the observations follow a different order.

Equation 3.30 presents the formula for the z-score.

Jnn-—1)
=371 —— 3.30
Zscore 3T (—z(zn + 5) ( )

Similarly, the statistical significance of the correlation is determined
by comparing the z-score to the standard normal distribution; if |zs.qpe| > 1.96,
the null hypothesis of no significant relationship is rejected at the 0.05

significance level.
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3.9 Summary

A systematic methodology was adopted to achieve the objectives of this study.
Landsat satellite imagery (Landsat 5 for 2007 and Landsat 8 for 2015 and
2023) and 15-minute rainfall data from 2007 to 2023, sourced from the DID
Malaysia, formed the core datasets. LULC classification was performed using
SVM and RF algorithms, and accuracy was evaluated using Kappa
coefficients and accuracy metrics. LST was estimated via the SC algorithm,
and SUHII was derived by subtracting the mean LST of vegetated areas from
the LST of each pixel.

Rainfall data were processed to extract the 99th percentile of hourly
extreme rainfall from 15-minute records. Missing values were interpolated
using the IDW method, and Theissen polygons were generated to define
station influence zones. Three rainfall metrics were analysed: the total number
of hourly extreme rainfall events, the total of hourly extreme rainfall and the
mean of hourly extreme rainfall. These metrics were assessed in terms of the
spatiotemporal variation, diurnal distribution and trends.

Both the coefficient of determination (R?) and Kendall’s Tau (1)
correlation were applied to assess the relationship between SUHII and short-
duration extreme rainfall. SUHII data for 2007, 2015, and 2023 were
interpolated to produce annual estimates across the study period, while rainfall

metrics were aggregated annually to ensure consistency in statistical analysis.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, the comprehensive results of the research are presented and
critically discussed with appropriate justifications. The first section outlines
the spatiotemporal variations in historical LULC maps (2007, 2015 and 2023)
across Kuala Lumpur, classified using SVM and RF algorithms. The
performance of the classifications is evaluated through Kappa coefficients and
accuracy metrics. The second section examines the historical variation of LST
across Kuala Lumpur during the same period, supported by detailed analyses
of LST changes. The third section presents the evolution of historical SUHII
across major townships, accompanied by multiple statistical assessments.
Subsequently, the chapter discusses the findings of various rainfall analyses,
including the spatiotemporal variation, diurnal distributions and trends of
hourly extreme rainfall events. Finally, the relationships between UHI and
short-duration extreme rainfall are explored using the coefficient of

determination (R?) and Kendall’s Tau correlation (t).

4.2 Mapping Historical LULC

Landsat 5 and Landsat 8 imagery from 2007, 2015 and 2023 were processed
using SVM and RF classification algorithms in QGIS to generate LULC maps
for Kuala Lumpur. Each LULC class was trained with 30 sample points, and
classification accuracy was evaluated using OA and kappa coefficients based
on 120 ground-truth points. Figures 4.1 and 4.2 illustrate the LULC maps
generated by SVM and RF for the respective years.

Tables 4.1 and 4.2 summarise the accuracy assessment of LULC
classification using SVM and RF. The diagonal values in the confusion matrix
represent the proportion of correctly classified pixels. Across all three study
years, SVM consistently outperformed RF in terms of OA and kappa
coefficient, achieving accuracy scores of 94.86%, 93.54% and 94.04%, with
corresponding kappa coefficients of 0.9128, 0.8620 and 0.8766. In contrast,
RF recorded slightly lower accuracies of 94.64%, 90.57% and 93.53%, with
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kappa values of 0.9081, 0.7946 and 0.8758. Given its higher classification
accuracy, the SVM-based LULC maps were selected for the subsequent areal
change analysis.

Despite the overall high accuracy, water bodies and bare soil
exhibited the lowest PA, ranging from 45.39% to 81.31%. This variability is
likely due to the presence of cloud cover and shadows in the satellite imagery,
which compound the challenges faced by machine learning algorithms in
distinguishing these classes from built-up areas. Additionally, the limited
spatial resolution of the satellite imagery increases the likelihood of human
errors in creating training samples for the supervised classification. In 2023,
the UA for bare soil fell below 60% due to misclassification, with portions of

bare soil incorrectly identified as built-up areas and vegetation.



3.20°N

3.40°N

101.64°E

SVM_2007 SVM_2015 SVM_2023

£ s

F o . o4
& S
[an] o
= =

L é_ L ?9,
ps; -

101.71°E 101.64°E 101.71°E 101.64°E 101.71°E

Figure 4.1: Classification of LULC in Kuala Lumpur Using SVM Algorithm in 2007, 2015 and 2023.
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Figure 4.2: Classification of LULC in Kuala Lumpur Using RF Algorithm in 2007, 2015 and 2023.
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Table 4.1: Accuracy Assessment of SVM-Based LULC Classification in 2007,

2015 and 2023.
SVM - 2007
Water  Built-up . Bare UA
LULC Class ) Vegetation ) Total
Bodies  Areas Soil (%)

Water Bodies ~ 0.0384  0.0004 0.0004 0.0002 0.0394  97.6077

Built-up Areas  0.0268  0.4964 0.0067 0.0067 0.5366  92.5000

Vegetation 0.0000  0.0027 0.3603 0.0054 0.3684  97.8022

Bare Soil 0.0011  0.0011 0.0000 0.0535 0.0557  96.1538
Total 0.0663  0.5006 0.3673 0.0658 1.0000
PA (%) 57.9172 99.1720 98.0713  81.3098
OA (%) 94.8573
Kappa 0.9128
SVM - 2015
LULC Class Water  Built-up Vegetation Bare Total A
Bodies  Areas Soil (%)

Water Bodies ~ 0.0142  0.0000 0.0000 0.0000 0.0142  99.7015

Built-up Areas  0.0082  0.6656 0.0192 0.0192 0.7122  93.4615

Vegetation 0.0007  0.0011 0.1963 0.0011 0.1992  98.5619

Bare Soil 0.0000  0.0092 0.0059 0.0593 0.0744  79.6610
Total 0.0231  0.6759 0.2214 0.0796 1.0000
PA (%) 61.5403 98.4693 88.6827  74.4647
OA (%) 93.5400
Kappa 0.8620
SVM - 2023
LULC Class Wat-er Built-up Vegetation Bal-’e Total uA
Bodies  Areas Soail (%)

Water Bodies  0.0131  0.0006 0.0000 0.0000 0.0137  95.6386
Built-up Areas  0.0062  0.6484 0.0082 0.0103 0.6731  96.3303
Vegetation 0.0005  0.0037 0.2413 0.0041 0.2496  96.6972

Bare Soil 0.0007 00137 00116  0.0377 00637 59.1398
Total 0.0204 06664 02612  0.0521  1.0000

PA (%) 64.1150 97.3053  92.3887  72.3267

OA (%) 94.0435

Kappa 0.8766
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Table 4.2:  Accuracy Assessment of RF-Based LULC Classification in 2007,

2015 and 2023.
RF - 2007
Water  Built-up ) Bare UA
LULC Class ) Vegetation . Total
Bodies Areas Soil (%)

Water Bodies 0.0309  0.0000 0.0003 0.0001 0.0313 98.5714
Built-up Areas  0.0065  0.4923 0.0194 0.0194 0.5376 91.5663
Vegetation 0.0000  0.0028 0.3673 0.0028 0.3729 98.5130

Bare Soil 0.0011  0.0011 0.0000 0.0559 0.0581 96.1538
Total 0.0385 0.4962 0.3870 0.0782  1.0000
PA (%) 80.2809 99.2161 94.9015 71.4267
OA (%) 94.6427
Kappa 0.9081
RF - 2015
LULC Class Wat_er Built-up Vegetation Bal-’e Total A
Bodies Areas Soil (%)

Water Bodies 0.0159 0.0000 0.0001 0.0001 0.0161 98.8131
Built-up Areas  0.0106 0.6599 0.0452 0.0266 0.7423 88.8889
Vegetation 0.0006 0.0012 0.1748 0.0010 0.1776 98.4462

Bare Soil 0.0000  0.0064 0.0024 0.0551 0.0639 86.1635
Total 0.0271  0.6675 0.2225 0.0828  1.0000

PA (%) 58.5487 98.8585 78.5451  66.5635

OA (%) 90.5708

Kappa 0.7946

RF - 2023
Land Use Class Wat_er Built-up Vegetation Bal_’e Total UA (%)
Bodies Areas Soail

Water Bodies 0.0137 0.0005 0.0000 0.0000 0.0142 96.1415
Built-up Areas  0.0114  0.6102 0.0000 0.0095 0.6311 96.6767
Vegetation 0.0015 0.0030 0.2634 0.0049 0.2728 96.5580

Bare Soil 00036 0.0169 00133  0.0480 0.0818 58.6957
Total 00302 06306 02767  0.0625 1.0000

PA (%) 453926 96.7643  95.1807  76.8316

OA (%) 93.5303

Kappa 0.8758
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Table 4.3 presents the areal changes in LULC classes based on SVM
classification. Over the 16-year period, water bodies shrank by 2.57%,
reducing from 9.56 kmz2 to 3.32 km2. Built-up areas and bare soil expanded
significantly between 2007 and 2015 but experienced contraction from 2015 to
2023, leading to net increases of 13.64% and 0.81%, respectively. Meanwhile,
vegetation cover saw a sharp decline of 41.11 km? from 2007 to 2015 but
partially recovered by 12.22 km2 over the subsequent eight years, resulting in a
total loss of 11.88%.

The observed trends align with Malaysia’s economic and urban
development trajectory. In the 2000s and 2010s, the Malaysian government
pursued extensive residential and infrastructure projects, including the Kuala
Lumpur Structure Plan 2020, to drive economic growth. This development led
to the rapid expansion of built-up areas and bare soil, often at the expense of
natural landscapes. However, after 2015, urban expansion slowed due to
development saturation and the economic impacts of the COVID-19 pandemic.
Consequently, vegetation cover began to recover significantly under multiple
urban afforestation initiatives, including the Taman Tugu Urban Forest Park,
the Greening KL Program and the Wangsa Maju Zero-Carbon Township

Initiative.

Table 4.3: Changes in LULC Areas in Kuala Lumpur Based on SVM
Classification from 2007 to 2023.

Changes in
LULC Class Area in Different Year (km?) Area from
(SVM) 2007 to 2023
2007 2015 2023 %)
Water Bodies 9.56 3.46 3.32 -2.57
Built-up Areas 130.44 173.09 163.60 13.64
Vegetation 89.53 48.42 60.64 -11.88

Bare Soil 13.52 18.08 15.48 0.81
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4.3 Variation of Historical LST
LST across Kuala Lumpur was retrieved from the thermal bands of Landsat 5
and Landsat 8 for 2007, 2015 and 2023. The DN values were converted to
temperature in Celsius through detailed calculations in QGIS. The variation in
LST for these years is visualised in Figure 4.3. From 2007 to 2015, most areas
of Kuala Lumpur experienced significant warming. Between 2015 and 2023,
the northern region continued to heat up, while the central and southern
regions exhibited signs of cooling.

Table 4.4 presents the changes in LST across Kuala Lumpur from
2007 to 2023. Over this period, both minimum and maximum LST increased
by 43.71% (from 16.10 °C to 23.14 °C) and 10.10% (from 32.46 °C to
35.73 °C), respectively. The mean LST rose sharply from 26.60 °C in 2007 to
28.74 °C in 2015, followed by a slight decrease to 28.72 °C in 2023, resulting
in a net increase of 7.99% over the study period.

Table 4.4: Changes in LST Across Kuala Lumpur from 2007 to 2023.

LST (°C)

Year — i
Minimum Maximum Mean
2007 16.10 32.46 26.60
2015 19.78 35.06 28.74
2023 23.14 35.73 28.72

Changes in LST from 2007 to
43.71 10.10 7.99
2023 (%)

Table 4.5 summarises the distribution of different LST ranges across
Kuala Lumpur. In all three study years, the LST range covering the largest
area was between 25 °C and 30 °C, though its coverage declined from 78.90%
(191.76 km?) in 2007 to 67.94% (165.12 km?) in 2023. The area experiencing
temperatures above 30 °C expanded significantly, from just 1.16% (2.83 km?)
in 2007 to 27.60% (67.08 km?) in 2015, and slightly further to 27.85% (67.68
km?2) in 2023. This highlights a rapid warming trend, particularly between
2007 and 2015. Meanwhile, the proportion of the area with LST < 20 °C
decreased from 0.54% (1.32 km?) in 2007 to zero in both 2015 and 2023,

indicating a substantial reduction in cooler zones.
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Table 4.5: Distribution of Different LST Ranges Across Kuala Lumpur in
2007, 2015 and 2023.
LST Ranges in °C

LST <20 20<LST<25 25<LST<30 LST > 30
Area Area Area  Area Area Area  Area  Area

(km?) (%) (km?) (%) (km’) (%) (km’) (%)
2007 132 054 4714 1939 19176 78.90 2.83 1.16
2015 0.00 0.00 9.55 3.93 166.41 68.47 67.08 27.60
2023 0.00 0.00 10.24 4.22 165.12 6794 67.68 27.85

Year

As discussed in the previous section, large areas of water bodies and
vegetation were replaced by impervious built-up surfaces and bare soil
between 2007 and 2015. The clustering of these artificial land uses intensified
heat retention and contributed to a widespread rise in LST, affecting most
areas, especially developed ones. However, between 2015 and 2023, some
central and southern regions experienced an increase in vegetation cover,
which helped mitigate urban heating, leading to a slight reduction in mean
LST. The areas with LST above 30 °C were predominantly concentrated in the
northern regions, where industrial and commercial activity was extensive.
Notably, light industrial and commercial zones such as Kepong Entrepreneurs
Park, Kepong Industrial Park, MARA Industrial Area, Setapak Industrial Area,

and The Parc Factory Outlets contributed significantly to localised warming.
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To evaluate the impact of LULC on LST, the mean LST for different
LULC classes is illustrated in Figure 4.4. Throughout the study period, water
bodies and vegetation consistently recorded the lowest and second-lowest
mean LST values, increasing only slightly from 24.29 °C to 25.20 °C and from
25.64 °C to 26.74 °C, respectively. In contrast, built-up areas experienced a
sharp rise in mean LST, increasing from 27.54 °C in 2007 to 29.49 °C in 2015
and peaking at 29.58 °C in 2023. Similarly, bare soil exhibited a notable
temperature increase, rising from 25.75 °C in 2007 to 28.10 °C in 2015 and
reaching 28.14 °C in 2023, making it the second hottest land cover type.
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30.00 2754 74 28.10 28.14
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Figure 4.4: Mean LST for Different LULC Classes in 2007, 2015 and 2023.

These observations suggest that LST variation is primarily driven by
the biophysical interactions between LULC types and surface thermal
properties. LULC alterations directly disrupt the surface energy balance by
changing how solar radiation is absorbed, reflected and released. Built-up
areas, characterised by impervious materials such as asphalt and concrete,
possess high thermal capacity and low albedo, resulting in greater heat
absorption and retention. This absorbed heat is subsequently re-emitted,
raising LST. Additionally, built-up areas are associated with anthropogenic
heat sources from residential, commercial, and industrial activities, further

amplifying urban temperatures (Patel, Indraganti, and Jawarneh, 2024;
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Tahooni, Kakroodi, and Kiavarz, 2023). Due to their low moisture content and
lack of vegetation, bare soil areas exhibit similar thermal properties to built-up
areas, efficiently absorbing and storing heat over extended periods (Mahata et
al., 2024; Agrawal, Pandey, and Tiwari, 2023). Conversely, water bodies and
vegetated areas provide significant cooling effects through evapotranspiration
and shading, contributing to the cool island effect (Jia et al., 2024; Wu et al.,
2021; Tahooni, Kakroodi, and Kiavarz, 2023).

4.4 Variation of Historical SUHII

The SUHII indicator was used to assess the impact of UHI in Kuala Lumpur
by subtracting the mean LST of vegetated areas from the LST of individual
pixels. SUHII values for 2007, 2015 and 2023 were calculated using QGIS and
the results are illustrated in Figure 4.5. In 2007, most urban areas in Kuala
Lumpur experienced low (yellow) to moderate (gold) UHI, while early signs
of high (orange) UHI were observed in northern regions such as Kepong and
Segambut. By 2015, rapid urban expansion and population growth caused
significant UHI intensification, with multiple locations, including Kepong,
Segambut, Sentul, Semarak, Bukit Bintang, Pudu, Bangsar, Cheras, Taman
OUG and Sri Petaling, experiencing high (orange) to very high (red) UHI over
large areas. In 2023, UHI impacts in the central and southern regions were
partially mitigated by urban afforestation initiatives, reducing UHI levels to
low (yellow) and moderate (gold). However, commercial and industrial
growth in the northern region led to continued UHI intensification, with
expansions of high (orange) and very high (red) UHI areas. Throughout the
study period, locations with water bodies and dense vegetation, such as Bukit
Kiara, Taman Tugu, and the Sungai Besi Forest Reserve, consistently
exhibited none (blue/light green) UHI due to their strong cooling effects. Bukit
Jalil was the only township in Kuala Lumpur that consistently exhibited
minimal or no UHI impact.

Table 4.6 presents the statistical changes in SUHII across Kuala
Lumpur from 2007 to 2023. The minimum SUHII remained negative but
increased by 62.29% from -9.54 to -3.60, reflecting a decline in the cooling
effect of vegetated and water-covered areas due to urbanisation. The
maximum SUHII increased by 31.99%, rising from 6.82 to 9.00 over the 16-
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year period, primarily due to industrial expansion in the northern region.
Meanwhile, the mean SUHII rose by 107.37%, from 0.96 in 2007 to 2.18 in
2015, before slightly declining to 1.98 in 2023. This scenario suggests that
while urbanisation remains a dominant factor in UHI intensification, recent
mitigation efforts have had some positive impact.

Table 4.7 summarises the spatial distribution of different SUHII
levels across Kuala Lumpur. In 2007, areas with none and low UHI were the
most dominant, but by 2015, there was a significant reduction in these
categories, accompanied by an increase in moderate and high UHI. The none
UHI category decreased drastically from 66.34 km? (27.31%) in 2007 to 33.77
km2 (13.90%) in 2015, before slightly recovering to 40.66 km2 (16.74%) in
2023. Similarly, low UHI declined from 110.15 km?2 (45.35%) to 71.49 km?2
(29.43%) over the same period, before increasing slightly to 76.42 km?
(31.46%) in 2023. Conversely, moderate and high UHI peaked in 2015, with
moderate UHI expanding from 63.63 km2 (26.19%) in 2007 to 93.47 km?
(38.48%) in 2015, before declining to 87.10 km? (35.86%) in 2023. High UHI
increased sharply from 2.81 km? (1.16%) in 2007 to 42.18 km? (17.37%) in
2015, before contracting to 35.97 km? (14.81%) in 2023. Although very high
UHI remained relatively small in coverage, it showed a gradual increase, from
0.02 km2 (0.01%) in 2007 to 1.97 km2 (0.81%) in 2015, and further to 2.81
km2 (1.16%) in 2023. The extremely high UHI category was absent in 2007
and exhibited only minor increases, expanding by 0.01 km? every eight years.

The overall trend from 2007 to 2015 shows a significant increase in
UHI levels across all categories except none and low UHI, reinforcing the
dominant role of urbanisation in UHI intensification. However, between 2015
and 2023, a divergent trend emerged, where all UHI levels increased in
coverage except for moderate and high UHI. This shift can be attributed to the
success of urban landscaping and afforestation efforts in the central and
southern regions, which helped mitigate UHI impacts. In contrast, the northern
region continued to experience UHI intensification, driven by rapid

commercial and industrial expansion.
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Figure 4.5: Variation of SUHII Across Kuala Lumpur in 2007, 2015 and 2023.
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Table 4.7: Distribution of Different SUHII Ranges Across Kuala Lumpur in 2007, 2015 and 2023.

Table 4.6: Changes in SUHII Across Kuala Lumpur from 2007 to 2023.

SUHII
Year -

Minimum Maximum Mean
-9.54 6.82 0.96
-6.77 8.50 2.18
-3.60 9.00 1.98

Change in SUHII from 2007 to

62.29 31.99 107.37

2023 (%)

SUHII Ranges

None Low Moderate High Very High Extremely High

Year SUHII <0 0<SUHII£20 2.0<SUHII <40 4.0 <SUHII<£6.0 6.0 <SUHII <£8.0 SUHII > 8.0
Area Area Area Area Area Area Area Area Area Area Area Area
(km?) (%) (km?) (%) (km?) (%) (km?) (%) (km?) (%) (km?) (%)
2007 66.34 27.31 110.15 45.35 63.62 26.19 2.81 1.16 0.02 0.01 0.00 0.00
2015 33.77 13.90 71.49 29.43 93.47 38.48 42.18 17.37 1.97 0.81 0.01 0.01
2023 40.66 16.74 76.42 31.46 87.10 35.86 35.97 14.81 2.81 1.16 0.02 0.01
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4.5 Rainfall Analysis

Rainfall data from nine selected stations covering the period 2007-2023 were
processed using Python and QGIS to conduct a comprehensive rainfall
analysis. The IDW interpolation method was applied to address missing data
by estimating values based on rainfall measurements from nearby stations
within the same period. The original 15-minute data were aggregated into
hourly rainfall data. Extreme rainfall events were identified using the 99th
percentile threshold, with the corresponding threshold values provided in
Appendix A. Thiessen polygons were created to define the spatial extent of
influence for each rainfall station, resulting in the delineation of nine distinct
study areas.

Multiple analyses were conducted, focusing on the spatiotemporal
variation, diurnal distribution and trends of hourly extreme rainfall to explore
variations in rainfall patterns, including the total number of hourly extreme
rainfall events, the total of hourly extreme rainfall and the mean of hourly

extreme rainfall during the study period.

45.1  Spatiotemporal Variation of Hourly Extreme Rainfall

Given the high variability in Malaysia’s annual rainfall patterns, the dataset
was segmented into two study periods (2007 - 2015 and 2015 - 2023) to
facilitate comparative analyses of hourly extreme rainfall.

Table 4.8 and Figure 4.6 show the total number of hourly extreme
rainfall events across the study areas, revealing a notable increase at all
stations. The Kolam Takungan Batu Station recorded the lowest increase, with
an additional 83 events (11.81%), while the Pusat Penyelidekan At Jps
Ampang Selangor Station experienced the highest rise, with 152 more hourly
extreme rainfall events (22.72%). Other stations also exhibited significant
increases, with the Ldg. Edinburgh Site 2 At W. Persekutuan Station recording
142 additional events (21.07%) and the Km 10 Ulu Kelang At UK Height

Station observing an increase of 118 events (17.28%).



Table 4.8: Total Number of Hourly Extreme Rainfall Events at Selected
Stations for the Periods 2007-2015 and 2015-2023.
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Total Number of Hourly

) ] Change
No. Station Extreme Rainfall Events %)
0
2007-2015 2015-2023

Kolam Takungan Batu

1 703 786 11.81
(0231391RF)
Taman Ehsan At Kepong W.

2 680 783 15.15
Persekutuan (0231441RF)
Pusat Penyelidekan At Jps

3 Ampang Selangor 669 821 22.72
(0231351RF)
Km 10 Ulu Kelang At Uk

4 ) 683 801 17.28
Height (0231401RF)
Ibu Bekalan Km. 11 At

5 Gombak W. Persekutuan 688 797 15.84
(0230721RF)
Empangan Genting Klang At

6 bang J J 703 787 11.95
W. Persekutuan (0230631RF)
I/pejabat Jps Malaysia At W.

7 685 784 14.45
Persekutuan (0230641RF)
Jin. Sg. Udang At Segambut

8 702 787 12.11
(0231381RF)
Ldg. Edinburgh Site 2 At W.

9 674 816 21.07

Persekutuan (0230651RF)
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Figure 4.6: Total Number of Hourly Extreme Rainfall Events at Selected
Stations for the Periods 2007-2015 and 2015-2023.

The spatial distribution for the total number of hourly extreme rainfall
events, depicted in Figure 4.7, further supports this shift. The deepening of
colour tones in the 2015 - 2023 map suggests a widespread intensification of
hourly extreme rainfall occurrences across all study areas. During the 2007 -
2015 period, the total number of hourly extreme rainfall events ranged from
669 at the Pusat Penyelidekan At Jps Ampang Selangor Station to 703 at both
the Kolam Takungan Batu and Empangan Genting Klang At W. Persekutuan
Stations. During the 2015 - 2023 period, all study areas recorded an increase in
the total number of events, ranging from 783 events at the Taman Ehsan At
Kepong W. Persekutuan Station to 821 events at the Pusat Penyelidekan At
Jps Ampang Selangor Station.
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Figure 4.7: Spatial Distribution for the Total Number of Hourly Extreme
Rainfall Events Across the Study Areas for the Periods 2007-2015
and 2015-2023.

The total of hourly extreme rainfall for both study periods at different
stations is summarised in Table 4.9 and Figure 4.8. A consistent increase was
observed at all stations, with increments ranging from 880.7 mm (6.10%) at
the Empangan Genting Klang At W. Persekutuan Station to 3579.88 mm
(23.90%) at the Pusat Penyelidekan at JPS Ampang Selangor Station. Notably,
four stations, including Taman Ehsan At Kepong W. Persekutuan, Pusat
Penyelidekan At Jps Ampang Selangor, Km 10 Ulu Kelang At Uk Height and
Ldg. Edinburgh Site 2 At W. Persekutuan, experienced substantial increases of
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at least 2514.18 mm (18.06%), while the remaining stations showed moderate

increases of up to 2307.52 mm (14.68%).

Table 4.9: Total of Hourly Extreme Rainfall (mm) at Selected Stations for the
Periods 2007-2015 and 2015-2023.

Total of Hourly Extreme

) ] Change
No. Station Rainfall (mm) %)
0
2007-2015  2015-2023

Kolam Takungan Batu

1 15104.73 17290.30 14.47
(0231391RF)
Taman Ehsan At Kepong W.

2 13918.48 16432.66 18.06
Persekutuan (0231441RF)
Pusat Penyelidekan At Jps

3 14978.92 18558.80 23.90
Ampang Selangor (0231351RF)
Km 10 Ulu Kelang At Uk

4 ) 15195.40 18338.30 20.68
Height (0231401RF)
Ibu Bekalan Km. 11 At

5 Gombak W. Persekutuan 14590.20 16159.90 10.76
(0230721RF)
Empangan Genting Klang At

6 14446.20 15326.90 6.10
W. Persekutuan (0230631RF)
I/pejabat Jps Malaysia At W.

7 15718.74 18026.26 14.68
Persekutuan (0230641RF)
Jin. Sg. Udang At Segambut

8 15450.87 17498.90 13.26
(0231381RF)
Ldg. Edinburgh Site 2 At W.

9 15674.92 19157.95 22.22

Persekutuan (0230651RF)
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Figure 4.8: Total of Hourly Extreme Rainfall (mm) at Selected Stations for the
Periods 2007-2015 and 2015-2023.

The spatial distribution for the total of hourly extreme rainfall,
illustrated in Figure 4.9, highlights a steady increase across all study areas.
During the 2007-2015 period, the total of hourly extreme rainfall ranged from
13952.83 mm to 15718.72 mm, with the I/Pejabat Jps Malaysia At W.
Persekutuan Station recording the highest value, followed by the Ldg.
Edinburgh Site 2 At W. Persekutuan and JIn. Sg. Udang At Segambut Stations.
In the second study period (2015 - 2023), rainfall increased substantially,
ranging from 15727.89 mm to 19157.95 mm, with the Ldg. Edinburgh Site 2
At W. Persekutuan Station experiencing the highest total of hourly extreme
rainfall, followed by the Pusat Penyelidekan At JPS Ampang Selangor and Km
10 Ulu Kelang At Uk Height Stations.
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Figure 4.9: Spatial Distribution for the Total of Hourly Extreme Rainfall (mm)
across the Study Areas for the Periods 2007-2015 and 2015-2023.

Table 4.10 and Figure 4.10 present the mean of hourly extreme

rainfall at different stations for the two time periods. Unlike the total of hourly

extreme rainfall, the mean of hourly extreme rainfall did not exhibit significant

changes across stations. Two stations, Ibu Bekalan Km. 11 At Gombak W.

Persekutuan and Empangan Genting Klang At W. Persekutuan, showed a

slight decrease in the mean of hourly extreme rainfall by 0.98 mm (-4.38%)

and 1.07 mm (-5.21%), respectively, while the other seven stations recorded
slight increases ranging from 0.04 mm (0.17%) to 0.64 mm (2.88%).



Table 4.10: Mean of Hourly Extreme Rainfall (mm) at Selected Stations for
the Periods 2007-2015 and 2015-2023.

Mean of Hourly Extreme

) ] Change
No. Station Rainfall (mm) %)
0
2007-2015  2015-2023

Kolam Takungan Batu
1 21.49 22 2.37

(0231391RF)

Taman Ehsan At Kepong W.
2 20.47 20.99 2.54

Persekutuan (0231441RF)

Pusat Penyelidekan At Jps
3 22.39 22.61 0.98
Ampang Selangor (0231351RF)

Km 10 Ulu Kelang At Uk

4 ) 22.25 22.89 2.88
Height (0231401RF)
Ibu Bekalan Km. 11 At

5 Gombak W. Persekutuan 21.21 20.28 -4.38
(0230721RF)
Empangan Genting Klang At

6 20.55 19.48 -5.21

W. Persekutuan (0230631RF)

I/pejabat Jps Malaysia At W.
7 22.95 22.99 0.17
Persekutuan (0230641RF)

Jin. Sg. Udang At Segambut
8 22.01 22.23 1.00
(0231381RF)

Ldg. Edinburgh Site 2 At W.
9 23.26 23.48 0.95
Persekutuan (0230651RF)
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Figure 4.10: Mean of Hourly Extreme Rainfall (mm) at Selected Stations for
the Periods 2007-2015 and 2015-2023.

The spatial distribution for the mean of hourly extreme rainfall,
illustrated in Figure 4.11, indicates that all stations recorded comparable mean
hourly extreme rainfall during both periods, ranging from 19.48 mm to 23.48
mm.

The observed increases in both the total number of hourly extreme
rainfall events and the total of hourly extreme rainfall, despite minimal
changes in the mean of hourly extreme rainfall, suggest a shift in rainfall
patterns from 2007 to 2023. This shift is characterised by a rise in the
frequency of hourly extreme events, rather than an intensification of individual
events. The relatively stable mean values indicate that the increase in the total
of hourly extreme rainfall was primarily driven by the growing number of
extreme rainfall occurrences, rather than changes in the magnitude of each

event.
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Figure 4.11: Spatial Distribution for the Mean of Hourly Extreme Rainfall
(mm) across the Study Areas for the Periods 2007-2015 and
2015-2023.

45.2 Diurnal Distribution of the Total Number of Hourly Extreme
Rainfall Events

To gain deeper insight into variations in hourly rainfall patterns, the diurnal

distribution for the total number of hourly extreme rainfall events across

various stations for the periods 2007 - 2015 and 2015 - 2023 is illustrated in

Figure 4.12. The peak occurrence of extreme rainfall in both periods was

observed between 16:00 and 16:59, with 988 and 1145 events recorded,

respectively. Generally, extreme rainfall events were concentrated during the
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afternoon and evening hours at all stations, with a notable intensification
observed during the 2015 - 2023 period, particularly between 16:00 and 19:59.
The most significant increase occurred during 17:00 - 17:59, with an
additional 237 events, marking a 27.69% rise compared to the earlier period.

The Kolam Takungan Batu and Ibu Bekalan Km. 11 At Gombak W.
Persekutuan Stations exhibited increases in the number of extreme rainfall
events during 15:00 - 18:59, with increments ranging from 13 to 31 events and
4 to 26 events, respectively. The Pusat Penyelidekan At Jps Ampang Selangor
Station recorded the highest cumulative increase, with 124 events occurring
between 14:00 and 19:59. This was followed closely by I/Pejabat Jps Malaysia
At W. Persekutuan with 123 additional events during 16:00 - 18:59 and Ldg.
Edinburgh Site 2 At W. Persekutuan with 122 additional events during 15:00 -
21:59.

At the Taman Ehsan At Kepong W. Persekutuan Station, the number
of extreme rainfall events rose by 102 events between 15:00 and 19:59, with
the highest single-hour increase of 39 events occurring at 17:00 - 17:59. The
Km 10 Ulu Kelang At UK Heights Station saw increases ranging from 4 to 28
events during the 14:00 - 19:59 window. Empangan Genting Klang At W.
Persekutuan and JIn. Sg. Udang At Segambut Stations recorded the smallest
total increases, both below 100 events, during the critical 16:00 - 19:59 period.

These patterns align with the peak UHI effect, which typically occurs
in the late afternoon, suggesting a possible link between urban heat buildup

and the triggering of convective rainfall (Li et al., 2016).
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Figure 4.12: Diurnal Distribution for the Total Number of Hourly Extreme

Rainfall Events at (d) Km 10 Ulu Kelang At Uk Height Station,

(e) 1bu Bekalan Km. 11 At Gombak W. Persekutuan Station and
(F) Empangan Genting Klang At W. Persekutuan Station for the

Periods 2007-2015 and 2015-2023.
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Figure 4.12: Diurnal Distribution for the Total Number of Hourly Extreme

Rainfall Events at (g) I/pejabat Jps Malaysia At W. Persekutuan
Station, (h) JIn. Sg. Udang At Segambut Station and (i) Ldg.
Edinburgh Site 2 At W. Persekutuan Station for the Periods

2007-2015 and 2015-2023.
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45.3 Trends and Sen’s Slope for the Hourly Extreme Rainfall

Using the MMK test and Sen’s slope estimator, the trends and rates of change
in the annual total number of hourly extreme rainfall events were analysed, as
shown in Table 4.11 and Figure 4.13. Among the nine stations, seven
exhibited statistically significant positive trends in the annual total number of
hourly extreme rainfall events at the 95% confidence level. The station with
the highest statistically significant increase was the Pusat Penyelidekan At Jps
Ampang Selangor, recording a rise of 2.08 events/year, followed by the Km 10
Ulu Kelang At Uk Height with 1.89 events/year, and the Ldg. Edinburgh Site
2 At W. Persekutuan with 1.85 events/year.

JIn. Sg. Udang At Segambut and Kolam Takungan Batu were the
only stations that exhibited non-statistically significant positive trends, with
the lowest magnitudes of 0.82 events/year and 0.95 events/year, respectively,
suggesting more modest increases likely influenced by high interannual
variability.

The widespread presence of statistically significant upward trends in
the annual total number of hourly extreme rainfall events across most stations
reinforces the indication of increasingly frequent extreme rainfall patterns,
particularly in the northern regions of Kuala Lumpur. This phenomenon may

be attributed to increasing urbanisation and the associated UHI effects.
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Table 4.11: Trends and Sen’s Slope for the Annual Total Number of Hourly
Extreme Rainfall Events at Selected Stations from 2007 to 2023.

. Sen’s Slope
No. Station Trend
(events/year)
1 Kolam Takungan Batu (0231391RF) Positive 0.95

Taman Ehsan At Kepong W. -
2 Positive* 1.70
Persekutuan (0231441RF)

Pusat Penyelidekan At Jps Ampang -
3 Positive* 2.08
Selangor (0231351RF)

Km 10 Ulu Kelang At Uk Height -
4 Positive* 1.89
(0231401RF)

Ibu Bekalan Km. 11 At Gombak W. -
5 Positive* 1.46
Persekutuan (0230721RF)

Empangan Genting Klang At W. -
6 Positive* 1.37
Persekutuan (0230631RF)

I/pejabat Jps Malaysia At W. -
7 Positive* 1.72
Persekutuan (0230641RF)

JIn. Sg. Udang At Segambut .
8 Positive 0.82
(0231381RF)

Ldg. Edinburgh Site 2 At W. -
9 Positive* 1.85
Persekutuan (0230651RF)

Note: An asterisk (*) indicates statistical significance at 95% confidence level.
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Similarly, the MMK test and Sen’s slope estimator were applied to
detect trends and rates of change in the annual total of hourly extreme rainfall
at various stations from 2007 to 2023, as presented in Table 4.12 and Figure
4.14. All stations demonstrated positive trends in annual total hourly extreme
rainfall, with increases ranging from 16.87 mm/year at the Empangan Genting
Klang At W. Persekutuan Station to 50.48 mm/year at the Km 10 Ulu Kelang
At Uk Height Station.

Five stations exhibited statistically significant increasing trends at the
95% confidence level, namely Kolam Takungan Batu (29.27 mm/year),
Taman Ehsan At Kepong W. Persekutuan (36.19 mm/year), Km 10 Ulu
Kelang At Uk Height (50.48 mm/year), Empangan Genting Klang At W.
Persekutuan (16.87 mm/year), and I/pejabat Jps Malaysia At W. Persekutuan
(45.10 mm/year).

Although the Ldg. Edinburgh Site 2 At W. Persekutuan and Pusat
Penyelidekan At Jps Ampang Selangor Stations recorded substantial
increasing trends of 46.03 mm/year and 34.71 mm/year, respectively, these
trends were not statistically significant, possibly due to high interannual
variability.

Overall, the consistent presence of positive trends across all stations
suggests a widespread intensification in the annual total of hourly extreme
rainfall, primarily driven by more frequent extreme events, albeit with varying

degrees of statistical confidence.



Table 4.12: Trends and Sen’s Slope for the Annual Total of Hourly Extreme

Rainfall (mm/year) at Selected Stations from 2007 to 2023.
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Sen’s Slope

No. Station Trend
(mm/year)

1 Kolam Takungan Batu (0231391RF) Positive* 29.27
Taman Ehsan At Kepong W. -

2 Positive* 36.19
Persekutuan (0231441RF)
Pusat Penyelidekan At Jps Ampang .

3 Positive 34.71
Selangor (0231351RF)
Km 10 Ulu Kelang At Uk Height -

4 Positive* 50.48
(0231401RF)
Ibu Bekalan Km. 11 At Gombak W. .

5 Positive 19.52
Persekutuan (0230721RF)
Empangan Genting Klang At W. .

6 Positive* 16.87
Persekutuan (0230631RF)
I/pejabat Jps Malaysia At W.

7 Pel P Y Positive* 45.1
Persekutuan (0230641RF)
JIn. Sg. Udang At Segambut .

8 Positive 24.36
(0231381RF)
Ldg. Edinburgh Site 2 At W. .

9 Positive 46.03

Persekutuan (0230651RF)

Note: An asterisk (*) indicates statistical significance at 95% confidence level.
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Figure 4.14: Sen’s Slope for the Annual Total of Hourly Extreme Rainfall
(mm/year) at (a) Kolam Takungan Batu Station, (b) Taman
Ehsan At Kepong W. Persekutuan Station and (c) Pusat
Penyelidekan At Jps Ampang Selangor Station from 2007 to
2023.
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Figure 4.14: Sen’s Slope for the Annual Total of Hourly Extreme Rainfall
(mm/year) at (d) Km 10 Ulu Kelang At Uk Height Station, (e)
Ibu Bekalan Km. 11 At Gombak W. Persekutuan Station and ()
Empangan Genting Klang At W. Persekutuan Station from 2007
to 2023.
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Figure 4.14: Sen’s Slope for the Annual Total of Hourly Extreme Rainfall

(mml/year) at (g) I/pejabat Jps Malaysia At W. Persekutuan
Station, (h) JIn. Sg. Udang At Segambut Station and (i) Ldg.

Edinburgh Site 2 At W. Persekutuan Station from 2007 to 2023.
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Table 4.13 and Figure 4.15 illustrate the trends and Sen’s slope for
the annual mean of hourly extreme rainfall at selected stations from 2007 to
2023. Similar to the comparative analysis, no statistically significant trends
were observed at any of the stations.

Four stations, Taman Ehsan At Kepong W. Persekutuan, Kolam
Takungan Batu, Ldg. Edinburgh Site 2 At W. Persekutuan and Km 10 Ulu
Kelang At Uk Height, exhibited extremely weak upward trends, with Sen’s
slope values ranging from 0.03 mm/year to 0.14 mm/year. Conversely, Jin. Sg.
Udang At Segambut, Ibu Bekalan Km. 11 At Gombak W. Persekutuan and
Empangan Genting Klang At W. Persekutuan Stations displayed extremely
weak downward trends, ranging from -0.04 mm/year to -0.15 mm/year.
Meanwhile, both the Pusat Penyelidekan At Jps Ampang Selangor and
I/pejabat Jps Malaysia At W. Persekutuan Stations showed no observable
trend.

In summary, the annual total number of hourly extreme rainfall
events exhibited the most substantial changes across the study areas from 2007
to 2023, with 77.78% of the stations showing statistically significant trends at
the 95% confidence level. This was followed by the annual total of hourly
extreme rainfall, with 55.56% of stations displaying significant trends. In
contrast, none of the stations showed statistically significant trends in the
annual mean of hourly extreme rainfall. This finding suggests that the annual
mean was relatively insensitive to changes in independent factors such as
SUHII during the study period. It further indicates that no significant
relationship exists between the annual SUHII and the annual mean of hourly
extreme rainfall in the study areas. The relationships between the annual
SUHII and the annual total number of hourly extreme rainfall events, as well
as between the annual SUHII and the annual total of hourly extreme rainfall,

were examined in the next section.
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Table 4.13: Trends and Sen’s Slope for the Annual Mean of Hourly Extreme
Rainfall at Selected Stations from 2007 to 2023.

Sen’s Slope

No. Station Trend
(mm/year)
1 Kolam Takungan Batu (0231391RF) Positive 0.06
Taman Ehsan At Kepong W. .
2 Positive 0.03

Persekutuan (0231441RF)

Pusat Penyelidekan At Jps Ampang
3 No trend 0
Selangor (0231351RF)

Km 10 Ulu Kelang At Uk Height .
4 Positive 0.14
(0231401RF)

Ibu Bekalan Km. 11 At Gombak W. )
5 Negative -0.11
Persekutuan (0230721RF)

Empangan Genting Klang At W. )
6 Negative -0.15
Persekutuan (0230631RF)

I/pejabat Jps Malaysia At W.
7 No trend 0
Persekutuan (0230641RF)

Jin. Sg. Udang At Segambut )
8 Negative -0.04
(0231381RF)

Ldg. Edinburgh Site 2 At W. .
9 Positive 0.09
Persekutuan (0230651RF)

Note: An asterisk (*) indicates statistical significance at 95% confidence level.
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Figure 4.15:

(©)

Sen’s Slope for the Annual Mean of Hourly Extreme Rainfall

(mml/year) at (a) Kolam Takungan Batu Station, (b) Taman

Ehsan At Kepong W. Persekutuan Station and (c) Pusat

Penyelidekan At Jps Ampang Selangor Station from 2007 to

2023.
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Figure 4.15: Sen’s Slope for the Annual Mean of Hourly Extreme Rainfall
(mm/year) at (d) Km 10 Ulu Kelang At Uk Height Station, (e)
Ibu Bekalan Km. 11 At Gombak W. Persekutuan Station and ()
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to 2023.
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4.6 Relationships between UHI and Short-Duration Extreme Rainfall
To study the relationships between the annual SUHII and two key rainfall
parameters, the annual total of hourly extreme rainfall and the annual total
number of hourly extreme rainfall events, both the coefficient of determination
(R?) and Kendall’s Tau correlation (t) were employed. SUHII values from
2007, 2015 and 2023 were interpolated to estimate annual SUHII from 2007 to
2023, while hourly extreme rainfall was grouped by year. Appendix B1-B9
presents the annual SUHII and the annual rainfall for each station.

Table 4.14 and Figure 4.16 present the R2 results, while Table 4.15
summarises the outcomes of the t analysis. Generally, all stations
demonstrated positive relationships between the annual SUHII and both
rainfall parameters, though the strength of these relationships varied

considerably.

4.6.1  Coefficient of Determination (R?)

When analysing the annual total of hourly extreme rainfall as the dependent
variable, the Taman Ehsan At Kepong W. Persekutuan and Km 10 Ulu Kelang
At Uk Height Stations recorded the strongest statistically significant (p < 0.05)
relationships, with R2 values of 0.2629 and 0.2319, respectively. Other stations
such as the Pusat Penyelidekan At Jps Ampang Selangor, Ldg. Edinburgh Site
2 At W. Persekutuan, Kolam Takungan Batu and Ibu Bekalan Km. 11 At
Gombak W. Persekutuan, demonstrated weaker yet still positive relationships,
with R2 values ranging from 0.1237 to 0.2189. In contrast, the Jin. Sg. Udang
At Segambut, Empangan Genting Klang At W. Persekutuan and I/Pejabat Jps
Malaysia At W. Persekutuan Stations showed negligible relationships (R? =
0.0271 to 0.0870), indicating limited sensitivity of total rainfall volume to
SUHII at these locations.

Stronger relationships were observed between the annual SUHII and
the annual total number of hourly extreme rainfall events, suggesting that UHI
effects may have a more direct influence on the frequency rather than the
intensity of extreme rainfall events. Four stations exhibited statistically
significant R2 values at the 95% confidence level, with Ibu Bekalan Km. 11 At
Gombak W. Persekutuan Station recording the highest (R = 0.3088), followed
by Km 10 Ulu Kelang At Uk Height Station (R2 0.3035), Pusat
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Penyelidekan At Jps Ampang Selangor Station (R? = 0.2880) and Taman
Ehsan At Kepong W. Persekutuan Station (R? = 0.2530). The rest of the
stations displayed weaker, non-significant relationships, ranging from 0.0407
at the I/Pejabat Jps Malaysia At W. Persekutuan Station to 0.1728 at the
Empangan Genting Klang At W. Persekutuan Station.

Table 4.14: Coefficient of Determination (R?) between Annual SUHII and
Annual Total of Hourly Extreme Rainfall, and between Annual
SUHII and Annual Total Number of Hourly Extreme Rainfall

Events at Selected Stations.

R? between R? between
Annual SUHIT  Annual SUHII
) and Annual and Annual
No. Station
Total of Hourly  Total Number
Extreme of Extreme
Rainfall Rainfall Events
Kolam Takungan Batu
1 0.1546 0.1192
(0231391RF)
Taman Ehsan At Kepong W.
2 0.2629* 0.2530*

Persekutuan (0231441RF)

Pusat Penyelidekan At Jps
3 0.2189 0.2880*
Ampang Selangor (0231351RF)

Km 10 Ulu Kelang At Uk Height
4 0.2319* 0.3035*
(0231401RF)

Ibu Bekalan Km. 11 At Gombak
5 0.1237 0.3088*
W. Persekutuan (0230721RF)

Empangan Genting Klang At W.
6 0.0568 0.1728
Persekutuan (0230631RF)

I/pejabat Jps Malaysia At W.
7 0.0271 0.0407
Persekutuan (0230641RF)

Jin. Sg. Udang At Segambut
8 0.0870 0.1478
(0231381RF)

Ldg. Edinburgh Site 2 At W.
9 0.1682 0.1381
Persekutuan (0230651RF)

Note: An asterisk (*) indicates statistical significance at 95% confidence level.
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Annual Total of Hourly Extreme Rainfall, and between Annual

SUHII and Annual Total Number of Hourly Extreme Rainfall

Events at (a) Kolam Takungan Batu Station, (b) Taman Ehsan At

Kepong W. Persekutuan Station and (c) Pusat Penyelidekan At

Jps Ampang Selangor Station.
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Annual Total of Hourly Extreme Rainfall, and between Annual

SUHII and Annual Total Number of Hourly Extreme Rainfall
Events at (d) Km 10 Ulu Kelang At Uk Height Station, (e) lbu
Bekalan Km. 11 At Gombak W. Persekutuan Station and (f)

Empangan Genting Klang At W. Persekutuan Station.
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Site 2 At W. Persekutuan Station.
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4.6.2 Kendall’s Tau Correlation (t)

For the Kendall’s Tau correlation, all stations exhibited varying degrees of
direct association between the annual SUHII and both the annual total of
hourly extreme rainfall and the annual total number of hourly extreme rainfall
events. When the dependent variable was the annual total of hourly extreme
rainfall, the Taman Ehsan At Kepong W. Persekutuan Station showed the
highest statistically significant correlation (1t = 0.4412, p < 0.05) at the 95%
confidence level. Although statistically insignificant, the remaining stations
demonstrated weak to moderate correlations, ranging from 0.1176 at the
Empangan Genting Klang At W. Persekutuan Station to 0.3235 at the Km 10
Ulu Kelang At Uk Height Station.

In contrast, stronger correlations were observed between the annual
SUHII and the annual total number of hourly extreme rainfall events, with
seven stations recording higher t values. Notably, four of these stations
showed statistically significant correlations at the 95% confidence level:
Taman Ehsan At Kepong W. Persekutuan Station (t = 0.4593, p < 0.05), Ibu
Bekalan Km. 11 At Gombak W. Persekutuan Station (t = 0.4238, p < 0.05),
Pusat Penyelidekan At Jps Ampang Selangor Station (t = 0.3941, p < 0.05)
and Km 10 Ulu Kelang At Uk Height Station (t = 0.3616, p < 0.05).
Meanwhile, JIn. Sg. Udang At Segambut and Ldg. Edinburgh Site 2 At W.
Persekutuan Stations exhibited lower correlations of 0.1413 and 0.2222,
respectively, compared to those with the annual total of hourly extreme rainfall.
The remaining stations displayed mild correlations between annual SUHII and
the annual total number of extreme rainfall events, ranging from 0.2388 at the
Empangan Genting Klang At W. Persekutuan Station to 0.3111 at the Kolam
Takungan Batu Station.

The analysis using both the coefficient of determination and
Kendall’s Tau correlation revealed generally positive relationships between
the annual SUHII and both the annual total of hourly extreme rainfall and the
annual total number of hourly extreme rainfall events. Stronger and more
statistically significant correlations were observed for rainfall frequency than
rainfall volume, suggesting that UHI may have a greater influence on the
frequency rather than the intensity of extreme rainfall events. Importantly,

stations like Taman Ehsan At Kepong W. Persekutuan, Pusat Penyelidekan At
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Jps Ampang Selangor, Km 10 Ulu Kelang At Uk Height and Ibu Bekalan Km.
11 At Gombak W. Persekutuan consistently showed stronger associations

across both statistical methods.

Table 4.15: Kendall’s Tau Correlation (t) between Annual SUHII and Annual
Total of Hourly Extreme Rainfall, and between Annual SUHII
and Annual Total Number of Hourly Extreme Rainfall Events at

Selected Stations.

Annual SUHII
Annual SUHII
and Annual
and Annual
) Total Number
No. Station Total of Hourly
of Hourly
Extreme
) Extreme
Rainfall )
Rainfall Events
Kolam Takungan Batu
1 0.2647 0.3111
(0231391RF)
Taman Ehsan At Kepong W.
2 0.4412* 0.4593*

Persekutuan (0231441RF)

Pusat Penyelidekan At Jps
3 0.2794 0.3941*
Ampang Selangor (0231351RF)

Km 10 Ulu Kelang At Uk Height
4 0.3235 0.3616*
(0231401RF)

Ibu Bekalan Km. 11 At Gombak
5 0.2206 0.4238*
W. Persekutuan (0230721RF)

Empangan Genting Klang At W.
6 0.1176 0.2388
Persekutuan (0230631RF)

I/pejabat Jps Malaysia At W.
7 0.2206 0.2583
Persekutuan (0230641RF)

Jin. Sg. Udang At Segambut
8 0.1765 0.1413
(0231381RF)

Ldg. Edinburgh Site 2 At W.
9 0.2500 0.2222
Persekutuan (0230651RF)

Note: An asterisk (*) indicates statistical significance at 95% confidence level.
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4.7 Summary
Urbanisation and LULC changes played a significant role in shaping rainfall
patterns. Rapid development in the northern region of Kuala Lumpur
intensified the UHI effect, which in turn enhanced localised convection and
led to an increase in the total number of hourly extreme rainfall events. The
UHI effect, driven by expanding urbanisation, altered the local climate and
contributed to more frequent intense rainfall events (Li et al., 2020; Whitford
et al., 2023; Siswato, Schrier, & Hurk, 2022; Jiang, Zhang, & Luo, 2023).
Additionally, the spatial variability in rainfall patterns supported the
presence of localised influences. Some stations recorded greater increases in
the total number of hourly extreme rainfall events than others, suggesting that
beyond SUHII, factors such as local topography, wind patterns and LULC
changes were also influential (Huang et al., 2025; Mwanthi et al., 2024; Pen et
al., 2024). These variations highlight the complexity of rainfall dynamics,
where different areas respond uniquely to broader climatic and environmental
changes. Notably, stations such as Taman Ehsan At Kepong W. Persekutuan,
Pusat Penyelidekan At Jps Ampang Selangor, Km 10 Ulu Kelang At Uk
Height and Ibu Bekalan Km. 11 At Gombak W. Persekutuan demonstrated

greater sensitivity to SUHII variation over the study period.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions
This study demonstrates that the UHI effect had a measurable influence on
short-duration extreme rainfall in the northern region of Kuala Lumpur from
2007 to 2023. This conclusion is supported by the successful completion of the
four study objectives.

Firstly, the spatiotemporal variations in LULC were effectively
analysed using Landsat imagery and classified through SVM and RF
algorithms. The results revealed substantial urban expansion between 2007
and 2015, characterised by an increase in built-up areas and a corresponding
decline in vegetation cover and water bodies. Although a slight reduction in
built-up areas was observed in 2023, the overall trend still indicated a net
increase in urban development throughout the study period.

Secondly, the SUHII was estimated through the quantification of LST
derived from thermal bands of Landsat imagery. The findings showed a rising
trend in SUHII, particularly in the northern parts of Kuala Lumpur, reflecting
the impact of dense urbanisation and increasing surface heating over time.

Thirdly, the spatiotemporal variation, diurnal distribution and trend of
hourly extreme rainfall were examined, revealing an increase in the number of
hourly extreme rainfall events, especially during late afternoon and early
evening hours. Trend analysis further confirmed the presence of increasing
short-duration extreme rainfall over the years.

Finally, statistical analyses using the coefficient of determination (R?)
and Kendall’s Tau correlation (t) investigated the relationship between the
SUHII and hourly extreme rainfall. Four out of nine stations exhibited
statistically significant moderate relationships between the annual SUHII and
the annual total number of hourly extreme rainfall events (R = 0.2530 -
0.3088; T =0.3616 - 0.4593; p < 0.05). These results suggest that intensified
urban heating may contribute to the enhancement of localised convective

rainfall in Kuala Lumpur.
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In conclusion, the integration of remote sensing, machine learning
classification, statistical analysis and geospatial techniques provides
meaningful insight into how the urbanisation-driven heat intensification can
influence the occurrence and distribution of extreme rainfall events. These
findings emphasise the importance of incorporating UHI considerations into

urban climate resilience planning and flood management strategies.

5.2 Recommendations

Building on the findings of this research, the following recommendations are
put forth to promote sustainable urban development and guide future research
in urban climate dynamics:

1. Urban planners and policymakers should prioritise the implementation
of green infrastructure, such as green roofs, urban parks and tree-lined
streets, especially in areas exhibiting high SUHII. These measures can
help reduce surface temperatures and potentially mitigate localised
extreme rainfall events driven by urban heat.

2. Given the observed intensification of short-duration extreme rainfall,
local authorities are encouraged to enhance drainage and flood
mitigation infrastructure in rapidly urbanising zones to accommodate
increased surface runoff and minimise flood risk.

3. To overcome the limitations caused by cloud cover in satellite imagery,
future research should utilise data from satellites with higher temporal
resolution, such as MODIS, or apply cloud-masking and gap-filling
techniques to increase the availability and continuity of LULC, LST,
and SUHII analyses across more time points.

4. Considering the sensitivity of machine learning models to data quality
and parameter selection, future studies should explore ensemble
methods or deep learning approaches that are more resilient to noise
and variability. Integrating multi-source data, such as LiDAR or high-
resolution aerial imagery, may further improve the reliability of LULC
classification.

5. To address the limitations posed by sparse rainfall stations and the
uncertainties associated with the IDW interpolation method, future
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research should incorporate radar-based and satellite-derived rainfall
products, such as TRMM. Validation using ground-based observations
is recommended to assess and improve interpolation accuracy.

6. While this study focuses on SUHII and rainfall parameters, future
investigations should include additional atmospheric variables, such as
humidity, wind speed, atmospheric pressure and vertical motion, to
develop a more comprehensive understanding of the physical

mechanisms influencing rainfall under UHI conditions.
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Appendix A: Threshold of 99th Percentile Hourly Extreme Rainfall.

APPENDICES

No. Station Threshold
(mm)

1 Kolam Takungan Batu (0231391RF) 9.34

) Taman Ehsan At Kepong W. 933
Persekutuan (0231441RF)

3 Pusat Penyelidekan At Jps Ampang 10.09
Selangor (0231351RF)

A Km 10 Ulu Kelang At Uk Height 04
(0231401RF)
Ibu Bekalan Km. 11 At Gombak W.

> Persekutuan (0230721RF) 58

6 Empangan Genting Klang At W. 86
Persekutuan (0230631RF)

. I/pejabat Jps Malaysia At W. 105
Persekutuan (0230641RF)

8  JIn. Sg. Udang At Segambut (0231381RF) 9.53

9 Ldg. Edinburgh Site 2 At W. 105

Persekutuan (0230651RF)

122
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Appendix B-1:  Annual SUHII and Annual Rainfall at Kolam Takungan Batu
Station.

Annual Total
Annual Total of
Number of Hourly
Year Annual SUHII  Hourly Extreme )
) Extreme Rainfall
Rainfall (mm)

Events
2007 1.5387702 1087 62
2008 1.664701 2051.5 97
2009 1.790633 1519.104 70
2010 1.916564 2284 98
2011 2.042495 1802.5 92
2012 2.168426 2133.279 101
2013 2.294358 1929.452 80
2014 2.420289 1665.395 76
2015 2.5462202 1932.356 81
2016 2.598028 1367.43 59
2017 2.649835 2192.603 94
2018 2.701643 1420.007 77
2019 2.75345 2296.613 99
2020 2.805258 2464.485 107
2021 2.857065 1913.592 99
2022 2.908873 2181.928 100

2023 2.9606803 2153.788 97
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Appendix B-2:  Annual SUHII and Annual Rainfall at Taman Ehsan At
Kepong W. Persekutuan Station.
Annual Total of Annual Total
Year Annual SUHII  Hourly Extreme Number of Hourly
Rainfall (mm) Extreme Rainfall
Events
2007 1.399024444 1244 65
2008 1.602457926 15145 76
2009 1.805891408 1836 81
2010 2.00932489 1511.723223 72
2011 2.212758372 1381.955653 82
2012 2.416191854 2040.996742 102
2013 2.619625336 2011.200153 96
2014 2.823058818 1572.049518 72
2015 3.0264923 2093.668941 88
2016 3.056046409 1420.239455 69
2017 3.085600518 1702.621839 80
2018 3.115154627 1626.00713 81
2019 3.144708736 1744.237113 83
2020 3.174262845 2210.800228 109
2021 3.203816955 1852.646877 98
2022 3.233371064 1842.308501 91
2023 3.262925173 2746.186276 118




Appendix B-3:
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Annual SUHII and Annual Rainfall at Pusat Penyelidekan At
Jps Ampang Selangor Station.

Annual Total of

Annual Total

Number of Hourly

Year Annual SUHII  Hourly Extreme )
Rainfall (mm) Extreme Rainfall
Events
2007 1.254371701 2081.8 87
2008 1.335658487 2073.3 95
2009 1.416945273 1534 75
2010 1.498232059 1270.397434 58
2011 1.579518845 1557.112432 71
2012 1.660805631 2042.375695 87
2013 1.742092417 1908.411179 76
2014 1.823379203 2031.220355 93
2015 1.904665988 1307.293063 62
2016 1.970535783 1475.42824 67
2017 2.036405578 2247.202797 103
2018 2.102275373 1983.25733 87
2019 2.168145168 2770.501551 107
2020 2.234014963 2783.538226 113
2021 2.299884758 2085.539596 101
2022 2.365754552 2358.94464 117
2023 2.431624347 2027.398054 91
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Annual SUHII and Annual Rainfall at Km 10 Ulu Kelang At
Uk Height Station.

Annual Total of

Annual Total

Number of Hourly

Year Annual SUHII  Hourly Extreme )
Rainfall (mm) Extreme Rainfall
Events
2007 0.919739591 1857 88
2008 0.961661847 1533.5 70
2009 1.003584103 1355.5 64
2010 1.045506359 951 49
2011 1.087428615 1307.5 68
2012 1.129350871 2811.1 107
2013 1.171273127 2061.5 94
2014 1.213195383 2182.7 94
2015 1.255117638 2271 97
2016 1.368438935 1527 66
2017 1.481760232 2155.8 91
2018 1.595081529 2025.7 85
2019 1.708402826 2353 108
2020 1.821724122 2576.7 104
2021 1.935045419 2076.3 95
2022 2.048366716 2541.2 114
2023 2.161688013 1947.2 90
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Appendix B-5:  Annual SUHII and Annual Rainfall at Ibu Bekalan Km. 11
At Gombak W. Persekutuan Station.
Annual Total of Annual Total
Year Annual SUHII  Hourly Extreme Number of H.ourly
Rainfall (mm) Extreme Rainfall
Events
2007 1.465395149 1757 80
2008 1.524280038 1940 91
2009 1.583164926 2098.3 95
2010 1.642049815 1614 81
2011 1.700934703 1377 64
2012 1.759819592 1682.1 84
2013 1.81870448 1893.9 89
2014 1.877589369 1477 69
2015 1.936474257 2005.6 91
2016 2.072637018 1226.3 59
2017 2.208799779 2116.1 99
2018 2.34496254 1570 88
2019 2.481125301 2056.3 96
2020 2.617288062 1876 88
2021 2.753450823 1892.1 102
2022 2.889613584 2069.1 102
2023 3.025776345 2099.3 107




Appendix B-6:

Annual SUHII and Annual Rainfall at Empangan Genting
Klang At W. Persekutuan Station.
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Annual Total of

Annual Total

Number of Hourly

Year Annual SUHII  Hourly Extreme )
Rainfall (mm) Extreme Rainfall
Events
2007 -0.084530554 1431 73
2008 -0.121236422 2026.5 92
2009 -0.157942289 999.5 46
2010 -0.194648156 1848.5 89
2011 -0.231354024 1726 92
2012 -0.268059891 1993.2 98
2013 -0.304765758 1703.3 84
2014 -0.341471626 1634.2 84
2015 -0.378177493 2214 99
2016 -0.232028469 1265.5 65
2017 -0.085879444 1891.3 99
2018 0.06026958 1325.6 77
2019 0.206418604 1806.5 82
2020 0.352567628 2125.5 103
2021 0.498716652 2005.4 98
2022 0.644865676 1918 109
2023 0.791014701 1859.1 100
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Annual SUHII and Annual Rainfall at I/pejabat Jps Malaysia
At W. Persekutuan Station.

Annual Total of

Annual Total

Number of Hourly

Year Annual SUHII  Hourly Extreme )
Rainfall (mm) Extreme Rainfall
Events
2007 0.745248782 1600.8 66
2008 0.920639947 2983.8 127
2009 1.096031111 1439.5 68
2010 1.271422276 1502.5 61
2011 1.44681344 1454 71
2012 1.622204605 1875.397573 83
2013 1.79759577 2221.176367 94
2014 1.972986934 1877.335745 75
2015 2.148378099 1881.553695 91
2016 2.116373114 1779.16392 79
2017 2.084368129 2049.466887 88
2018 2.052363144 2303.6317 102
2019 2.020358159 2391.921028 97
2020 1.988353174 2079.796643 92
2021 1.956348188 1677.591336 73
2022 1.924343203 2341.97777 101
2023 1.892338218 2285.379069 101




Appendix B-8:

Annual SUHII and Annual Rainfall at JIn. Sg. Udang At
Segambut Station.
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Annual Total of

Annual Total

Number of Hourly

Year Annual SUHII  Hourly Extreme )
Rainfall (mm) Extreme Rainfall
Events
2007 2.002210688 1940.5 87
2008 2.222129709 2174 96
2009 2.442048731 1494.696529 67
2010 2.661967753 1269 57
2011 2.881886775 1586 82
2012 3.101805796 2200.44505 92
2013 3.321724818 2355.103075 95
2014 3.54164384 1684.264984 85
2015 3.761562861 1979.37709 90
2016 3.748155641 1800.682812 80
2017 3.734748421 1882.539994 86
2018 3.721341202 2097.066423 95
2019 3.707933982 2573.031511 108
2020 3.694526762 2237.565753 106
2021 3.681119542 1835.403479 84
2022 3.667712322 1941.727278 92
2023 3.654305102 1898.360627 87
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Annual SUHII and Annual Rainfall at Ldg. Edinburgh Site 2
At W. Persekutuan Station.

Annual Total of

Annual Total

Number of Hourly

Year Annual SUHII  Hourly Extreme )
Rainfall (mm) Extreme Rainfall
Events
2007 0.45620937 1909 85
2008 0.613527711 1798.564663 83
2009 0.770846051 1493.5 65
2010 0.928164392 1697 73
2011 1.085482732 1618.5 76
2012 1.242801073 1974.428332 83
2013 1.400119413 2572.618284 98
2014 1.557437754 1430.805937 63
2015 1.714756094 2637.15881 109
2016 1.683358609 1383.220905 59
2017 1.651961123 2111.27459 92
2018 1.620563637 2293.883498 102
2019 1.589166151 2544.476238 109
2020 1.557768665 2284.056933 93
2021 1.52637118 2225.98593 95
2022 1.494973694 2024.644796 94
2023 1.463576208 2833.752027 111




