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ABSTRACT 

 

Urbanisation significantly alters land surface characteristics, leading to the 

intensification of the urban heat island (UHI) effect, which may influence the 

short-duration extreme rainfall. This study investigates the relationship 

between UHI intensity and short-duration extreme rainfall in Kuala Lumpur 

through an integrated remote sensing, machine learning and statistical 

approach. Landsat imagery from 2007, 2015 and 2023 was used to analyse 

spatiotemporal changes in land use and land cover (LULC) and to estimate 

land surface temperature (LST). LULC classification was performed using 

Support Vector Machine (SVM) and Random Forest (RF) algorithms, while 

LST was estimated using the Single Channel (SC) algorithm and surface urban 

heat island intensity (SUHII) was subsequently derived from the LST data. 

Hourly rainfall data exceeding the 99th percentile from 2007 to 2023 were 

used to assess spatiotemporal variation, diurnal distribution and trends. 

Statistical relationships between SUHII and hourly extreme rainfall were 

examined using the coefficient of determination (R²) and Kendall’s Tau (τ). 

Results show that SVM consistently outperformed RF in terms of overall 

accuracy and kappa coefficient across all study years. Built-up areas and 

SUHII both exhibited a net increase, particularly in northern Kuala Lumpur, 

likely due to intense urbanisation and industrial activities. The number of 

hourly extreme rainfall events also increased, especially during late afternoon 

and evening hours. However, the mean intensity of extreme rainfall events 

remained relatively stable. Correlation analysis identified moderate, 

statistically significant relationships between the annual SUHII and the annual 

total number of hourly extreme rainfall events at four of nine stations (R² = 

0.2530 - 0.3088; τ = 0.3616 - 0.4593; p < 0.05). These findings suggest that 

urban-induced heating may contribute to enhanced localised convective 

rainfall. It is recommended that UHI mitigation measures, such as green 

infrastructure and climate-sensitive urban planning, be prioritised to manage 

future rainfall-related flood risks in urban environments. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Urbanisation has contributed significantly to improving quality of life and 

reducing social inequalities by enhancing access to employment, education, 

and essential services. However, rapid and often unplanned urban growth also 

accelerates land use and land cover (LULC) changes, particularly in 

previously undeveloped areas. Such changes can lead to significant 

environmental consequences, notably the urban heat island (UHI) effect, 

where urban regions experience higher temperatures than their surrounding 

rural regions (Huang et al., 2023). This localised warming not only increases 

energy demand for cooling but also degrades air quality, raising the risk of 

respiratory and other health issues (Li, Zha, & Wang, 2020). 

The severity of the UHI effect largely depends on urban composition 

and population density. Urban development typically replaces natural 

landscapes like water bodies and vegetation with buildings and infrastructure. 

These impervious surfaces, which have high thermal capacity and low albedo, 

absorb and store more heat, especially in city centres (Qin et al., 2024; Rao, 

Tassinari, & Torreggiani, 2023). Additionally, as urban populations increase, 

so do anthropogenic heat emissions from sources such as transportation, 

combustion processes, and electrical appliances (Mirabi & Davies, 2022). To 

mitigate UHI effects, a range of strategies have been proposed. For example, 

the use of smart appliances and highly reflective building materials can 

enhance energy efficiency in buildings. Additionally, incorporating green 

spaces and green roofs helps reduce urban heat stress and supports sustainable 

urban planning (Qin et al., 2024; Tahooni, Kakroodi and Kiavarz, 2023).  

 According to the Clausius-Clapeyron scaling, the intensity of extreme 

rainfall is anticipated to enhance by roughly 7% for every 1 °C rise in 

temperature. Numerous studies have identified the UHI effect as a contributing 

factor to increased convective rainfall, particularly during the late afternoon. 

During the daytime, heated air rises into the atmosphere, while cooler air 

moves to the urban areas and is heated again by the urban surfaces. In humid 
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tropical climates, this rising air condenses and releases latent heat, warming 

the atmosphere further and strengthening low-level convergence, ultimately 

enhancing precipitation (Li et al., 2020; Whitford et al., 2023; Siswato, Schrier 

and Hurk, 2022).  

 This study investigates the role of the UHI effect in amplifying short-

duration extreme rainfall, focusing on rapidly urbanising areas such as Kuala 

Lumpur. Accelerated urbanisation alters LULC, elevates surface temperatures 

and influences local microclimates. This research integrated machine learning 

and remote sensing to classify LULC and employed detailed computations to 

estimate land surface temperature (LST), a key parameter for assessing surface 

urban heat island intensity (SUHII). Ground-based rainfall data were also 

utilised to analyse extreme rainfall patterns. By examining the relationship 

between UHI and short-duration extreme precipitation, this research aims to 

provide insights that are valuable for both scientific understanding and urban 

disaster risk management. 

 

1.2 Importance of the Study 

This research is critically important across several domains, including urban 

flood risk mitigation, sustainable urban planning and scientific contribution to 

UHI-rainfall dynamics. Understanding how the UHI effect contributes to 

short-duration extreme rainfall is essential for improving flood risk 

management in rapidly urbanising cities like Kuala Lumpur. Intense, short-

duration rainfall events can quickly overwhelm urban drainage systems, 

resulting in flash floods. This study helps identify areas affected by UHI that 

may be more susceptible to such events. Furthermore, by quantifying changes 

in LULC, LST and SUHII, this research provides data-driven insights to 

support climate-responsive urban planning. Planners and policymakers can use 

these findings to implement climate-sensitive zoning, promote green 

infrastructure and regulate land conversion to minimise UHI impacts. Finally, 

there is still limited empirical research directly linking SUHII to extreme 

rainfall, especially using statistical tools like Kendall’s Tau correlation () and 

coefficient of determination (R2) in tropical urban settings. This study adds to 

the scientific literature by applying robust analytical methods to explore the 

relationship between UHI and precipitation extremes. 
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1.3 Problem Statement 

Over the past two decades, natural disasters have impacted more than four 

billion people worldwide and caused substantial economic losses. These 

problems are particularly severe in the developing world, where hundreds of 

thousands of lives are lost each year, due to insufficient funding, low public 

awareness and insufficient advanced disaster preparedness and control systems 

(Mizutori and Guha-Sapir, 2020; Watson, Gayer and Connolly, 2007). Among 

all natural hazards, floods are the most frequent, accounting for 3254 recorded 

events, approximately 44% of global disasters between 2000 and 2019. Asia 

has been disproportionately affected, with 41% of its landmass experiencing 

floods and 93% of the world’s flood victims residing in the region (Mizutori 

and Guha-Sapir, 2020).  

In Malaysia, urban centres like Kuala Lumpur are increasingly facing 

more intense and frequent flood events (Sapawi et al., 2023). Emerging studies 

suggest that this trend is closely linked to the UHI effect, which is exacerbated 

by rapid LULC changes due to urbanisation. These changes lead to elevated 

land surface temperatures and altered microclimatic conditions, potentially 

intensifying convective activity and extreme rainfall events.  

Despite this, there is limited research that quantitatively investigates 

the relationship between SUHII and the short-duration extreme rainfall, 

particularly in tropical urban environments. Existing studies often lack high-

resolution spatial and temporal analysis and underuse advanced tools such as 

machine learning, remote sensing and robust statistical methods. 

 This gap necessitates investigating the relationship between the UHI 

effect and short-duration extreme rainfall to support effective flood 

management and sustainable urban development strategies in Kuala Lumpur. 

Therefore, this study aims to examine this relationship by leveraging advanced 

machine learning, remote sensing and statistical methods. 

 

1.4 Aim and Objectives 

The primary aim of this research is to analyse the impacts of the UHI effect on 

the short-duration extreme rainfall in Kuala Lumpur. To effectively achieve 

this aim, several objectives are provided in the following: 
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1. To assess spatiotemporal variation in land use and land cover (LULC) 

through the analysis of Landsat satellite imagery, utilising Support 

Vector Machine (SVM) and Random Forest (RF) classifiers. 

2. To estimate surface urban heat island intensity (SUHII) by quantifying 

land surface temperature (LST) derived from Landsat thermal imagery. 

3. To analyse the spatiotemporal variation, diurnal distribution and trends 

in hourly extreme rainfall. 

4. To examine the relationship between SUHII and hourly extreme 

rainfall using coefficient of determination (R²) and 

Kendall’s Tau correlation ().  

 

1.5 Scope and Limitation of the Study 

This study investigates the relationship between the UHI effect and short-

duration extreme rainfall in Kuala Lumpur from 2007 to 2023. It utilises 

Landsat satellite imagery (2007, 2015, 2023) for LULC and LST analysis. 

Machine learning algorithms, including RF and SVM, are applied for 

supervised classification and the accuracy is evaluated using the Kappa 

coefficient and standard accuracy metrics. LST is quantified using established 

retrieval algorithms, while SUHII is derived from LST data. Ground-based 

rainfall data recorded at 15-minute intervals are obtained and processed to 

extract the 99th percentile threshold for identifying hourly extreme rainfall 

events. Missing rainfall values are interpolated using the inverse distance 

weighting (IDW) method and the Theissen polygons are generated to delineate 

rainfall station influence zones. Rainfall metrics, including the total number of 

hourly extreme rainfall events, the total of hourly extreme rainfall, and the 

mean of hourly extreme rainfall, are analysed for spatiotemporal variation, 

diurnal distribution, and trend patterns. The statistical relationship between 

SUHII and hourly extreme rainfall is evaluated using the coefficient of 

determination (R²) and Kendall’s Tau correlation (τ).  

Several limitations are present in this research. Firstly, Landsat 

satellite imagery is susceptible to data gaps caused by heavy cloud cover, 

restricting the LULC, LST and SUHII analyses to only three years: 2007, 2015 

and 2023. Secondly, cloud contamination in satellite images may affect the 

accuracy of LULC classification using machine learning algorithms. 
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Additionally, the performance of these algorithms is highly sensitive to 

parameter selection and data quality, potentially introducing uncertainty into 

the classification results. Moreover, although the rainfall dataset spans 17 

years, missing data are filled using the IDW interpolation method, which may 

introduce spatial uncertainty. The limited availability of rainfall stations within 

the Kuala Lumpur region also constrains the spatial scope and resolution of the 

analysis. Finally, the correlation analysis focuses solely on surface temperature 

and rainfall intensity, without incorporating other atmospheric variables that 

could also influence precipitation behaviour. 

 

1.6 Contribution of the Study 

This study makes several important contributions to the fields of urban 

climatology, hydrology and sustainable urban planning. Firstly, it enhances the 

understanding of UHI–rainfall dynamics in tropical cities by analysing the 

relationship between SUHII and hourly extreme rainfall in a rapidly urbanising 

tropical environment. This addresses a critical knowledge gap, as few 

empirical studies have explored this relationship using long-term, high-

resolution satellite imagery and ground-based rainfall data in Southeast Asia. 

Secondly, the study integrates machine learning algorithms (RF and SVM), 

remote sensing techniques and geostatistical methods to generate accurate and 

detailed LULC and LST maps. This comprehensive approach enhances the 

spatiotemporal precision of SUHII estimation. Thirdly, by identifying areas 

susceptible to intensified rainfall associated with UHI effects, the study offers 

practical insights to support urban flood mitigation strategies. The findings 

contribute to the development of climate-sensitive infrastructure planning and 

land use regulations that strengthen urban resilience. Lastly, this research 

presents a robust analytical framework for linking satellite-derived surface 

temperature metrics with high-frequency rainfall data using both Kendall’s 

Tau and the coefficient of determination. This dual-method approach improves 

the reliability and interpretability of results for future climate impact 

assessments. 
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1.7 Outline of the Report 

The structure of this report is organised into five comprehensive chapters, each 

detailing a critical component of the research: 

Chapter 1 introduces the study by providing a general overview of 

urbanisation, the UHI effect and short-duration extreme rainfall. It also clearly 

defines the aim and objectives, the scope and limitations and potential 

contributions of the study.  

Chapter 2 presents an in-depth literature review based on credible and 

up-to-date sources. It covers key areas such as satellite imagery, LULC 

classification using machine learning algorithms, LST and SUHII estimation, 

statistical analyses for rainfall and the relationship between UHI and short-

duration extreme rainfall, and other relevant topics, ensuring a solid 

foundation for innovative and impactful research. 

Chapter 3 details the research methodology and workflow. This 

includes a flowchart of the study framework, a description of the study area, 

data acquisition methods, and procedures for data processing and analysis, 

encompassing both remote sensing and statistical techniques. 

Chapter 4 presents the results and provides a comprehensive 

discussion supported by appropriate justifications. Visual aids such as figures 

and tables are incorporated to enhance clarity and facilitate understanding of 

key findings. 

Chapter 5 concludes the report by summarising the key findings, 

assessing the achievement of the research objectives and providing practical 

recommendations for future studies and potential real-world applications. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

A comprehensive literature review is conducted to examine current trends and 

relevant methodologies for investigating the impact of the UHI effect on short-

duration extreme rainfall. The review is based on a systematic search using 

keywords such as “urban heat island,” “land surface temperature,” “land use 

land cover classification,” “remote sensing,” “machine learning,” “short-

duration extreme rainfall,” “rainfall analysis,” “statistical method,” 

“relationship,” and so on. The literature encompasses a wide range of 

approaches adopted by researchers, including satellite image acquisition and 

processing, LULC classification, LST and SUHII estimation, rainfall data 

collection and processing, rainfall trend analysis, and the evaluation of UHI's 

influence on short-duration extreme rainfall. 

 

2.2 Remote Sensing for LULC and LST Data 

Remote sensing is an advanced data collection technique that captures the 

energy radiated from matters on the Earth’s surface using satellites. In the 

study of UHI, LST is crucial for illustrating the heat exchange between the 

Earth and the air just above it, owing to the consistent dynamics of LST and 

air temperature (Reiners, Sobrino and Kuenzer, 2023). The importance of 

LULCC in UHI research is highlighted by Phan et al. (2024), suggesting that 

the urban thermal environment is affected by landscape metrics including the 

configuration, size, complexity and shape of LULC. Remote sensing of LST 

and LULCC offers multiple benefits such as efficient and continuous 

monitoring of spatiotemporal information (Gyimah, 2023), long-term data 

storage, dynamic observations of climate changes, and high temporal and 

spatial resolutions, which are not typically provided by weather stations (Shi et 

al., 2021).    

 Remote sensing captures LST and LULCC imagery via sensors 

mounted on satellites. Over the decades, numerous sensors with varying 

resolutions have been launched for Earth observation missions, including 
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Landsat’s Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), 

and Operational Land Imager (OLI); the Advanced Very High Resolution 

Radiometer (AVHRR); the Visible Infrared Imaging Radiometer Suite; Along 

Track Scanning Radiometers; the Advanced Spaceborne Thermal Emission 

and Reflection Radiometer (ASTER); and the Moderate Resolution Imaging 

Spectroradiometer (MODIS). Since Landsat and AVHRR were launched in the 

1980s, they offer longer time series information compared to other satellites 

(Reiners, Sobrino and Kuenzer, 2023). According to Phan et al. (2024), 

satellite data from MODIS and Landsat are preferred by the majority of 

researchers, while other sensors, due to their shortages in temporal or spatial 

resolutions, serve as complementary data sources to address limitations faced 

by the primary sensors.  

 The quality of remotely sensed imagery is susceptible to several 

factors, including sensor angle, complexity of LULC pixels, variation in urban 

surface and atmospheric attenuation or cloud cover. The first three limitations 

can be effectively tackled by using high spatial resolutions satellites like 

Landsat to produce finer images (Shi et al., 2021). The cloud cover issue is 

usually mitigated by either adopting Passive-Microwave-derived-LST or 

regressing on-site LST with inputs like the elevation, albedo and land use 

indices. The temporal aggregation method can be employed for polar-orbiting 

satellites that possess a consistent revisit period. It is not recommended to use 

cloud-free images for LST measurement as they can lead to ambiguous results 

when comparing to cloudy scenarios (Reiners, Sobrino and Kuenzer, 2023).  

 

2.2.1 Landsat 

The Landsat series comprises eight satellites operating in sun-synchronous 

orbits, each equipped with high spatial resolution sensors. For instance, 

Landsat 4 and 5 are equipped with 120 m TM sensors, Landsat 7 with 60 m 

ETM+ sensors, and Landsat 8 and 9 with 100 m Thermal Infrared (TIR) 

sensors. Although Landsat series has a comparatively long revisit period of 16 

days, the demand for its data has increased due to the complexity of urban 

landscapes. Landsat's high spatial resolution sensors are effective in 

identifying LST in both urban and non-urban regions (Reiners, Sobrino, and 

Kuenzer, 2023). 
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 In the UHI research conducted by Huang et al. (2023), Landsat 8 

satellite images on 16 November 2013 and 24 December 2021 were obtained 

from the United States Geological Survey (USGS) Earth Explorer online 

platform. These dates represent the oldest and the newest data captured by 

Landsat 8 for the KL area during the study period. Landsat 8 imagery was 

processed using QGIS to obtain LST and comparisons between urban LST and 

the reference area LST were made to identify the UHI impacts. 

 Rao, Tassinari and Torreggiani (2023) extracted the temporal data 

during the summer months from Landsat 5 (1991-2011) and Landsat 8 (2013-

2021) to compute LULC indices and LST for both urban and non-urban 

regions. Over the 31-year period, data from 1992, 2000, 2006 and 2012 were 

missing due to problems like extreme weather, cloudy conditions and data 

unavailability. Google Earth Engine (GEE) was selected to analyse the 

abundant satellite images using a cloud platform in conjunction with spectral 

bands and proper algorithm combinations.  

 Satellite data remotely sensed by the 30 m OLI and TIR sensors on 

Landsat 8 for every July from 2014 to 2021 were used by Rendana et al. (2023) 

to compute LST and classify land use in the Hulu Langat area. The data were 

retrieved from the USGS Earth Explorer online platform and processed using 

ArcGIS Ver.10. 

 Remote sensing images from 2006 to 2021 were gathered by Tanoori, 

Soltani and Modiri (2024) from the Landsat series to construct land use maps 

and produce LST for analysing the effect of LULCC on LST. ArcGIS 10.2.1, 

ENVI 5.3.1 and Fragstats were applied for managing the satellite data whilst 

Python was used for data manipulation and modelling. Radiometric calibration 

and FLAASH atmospheric correction were performed to reduce light and 

atmospheric influences on the image quality, ensuring accurate LST 

estimations. 

 In the study by Al-Taei, Alesheikh and Boloorani (2023), the data 

collection was carried out by retrieving Landsat 7 (2000-2012) and Landsat 8 

(2013-2022) imagery. Annual satellite imagery was then processed to acquire 

necessary variables, such as spectral bands, land use indices, and textural 

features. To ensure high quality analysis, the median image with less than 50% 
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cloud cover between April and September of each year was chosen. Data lost 

in Landsat 7 imagery were amended before extracting features. 

 

2.2.2 MODIS 

The MODIS sensors are onboard polar-orbiting satellites, offering outstanding 

daily temporal resolution by compromising on spatial resolution (1 km). 

Compared to Landsat, MODIS is more suitable for time series studies on both 

local and global scales due to its large swath width and high temporal 

resolution (Reiners, Sobrino and Kuenzer, 2023).     

 According to the methodology applied by Li, Zha and Wang (2020), 

global LST data with temporal coverage at 8-day intervals and a spatial 

resolution of 1 km were collected from the MODIS V6 MYD11A2 product, 

including imagery captured both during the day and at night from 2003 to 

2013.   

 In the study by Zhou et al. (2014), satellite data from 2003 to 2011 

were acquired from the Aqua MODIS V5 MYD11A2 product, which offered 

8-day temporal coverage and a spatial resolution of 1 km. By applying the 

generalised split-window algorithm, these data were obtained from cloud-free 

observations with 99% confidence that captured at 1:30 and 13:30 local solar 

time. Notably, MODIS V5 offered higher accuracy in LST analysis in most 

cases.  

LST data from the Terra MODIS MOD11A2 product were retrieved 

by Moazzam, Kim and Lee (2024), for the period from 2003 to 2020, observed 

daily at 10.30 am and 10.30 pm. The 8-day MODIS LST product was 

preferred over the daily LST product to mitigate the impact of data loss due to 

heavy cloud cover and to minimise the computational workload for data 

processing. The generalised split-window algorithm was also employed in the 

LST retrieval process, such as cloud removal and adjustments for radiation, 

water vapor and temperature, improving the accuracy of LST analysis. 

 MODIS LST data spanning from 2008 to 2018 were obtained by 

Tang et al. (2022) from the MOD11A1 dataset. Similar to the datasets 

mentioned above, the MODIS MOD11A1 product offers the same spatial and 

temporal resolution. Data processing was carried out using the MODIS 
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Reprojection Tool, which involved raster clipping, projection conversion to 

WGS-84 and data conversion to TIFF format. 

 Additionally, daily LST satellite imagery with a 1200m spatial 

resolution from 2000 to 2022 was acquired by Rees, Baidy and Belenok (2024) 

from the MODIS V6.1 MOD11A1 product. These data were collected during 

the day and night with surface temperature bands and quality control 

assessments. The split-window algorithm was utilised to produce cloud-free 

LST pixel values. In areas with overlapping pixels, values are averaged with 

appropriate weights applied to the overlaps. A script was created using GEE 

and the study area shapefile with the relevant period was filtered from the 

MODIS/006/MOD11A1 LST_Day_1km dataset to compute LST values. 

 

2.3 LULC Classification Using Machine Learning Algorithms 

In the LULC classification, various land use indices and machine learning 

algorithms are utilised to improve both efficiency and accuracy. This section 

commences with a discovery of commonly applied land use indices, such as 

the Normalised Difference Built-up Index (NDBI), Normalised Difference 

Bare Soil Index (NDBSI), Normalised Difference Water Index (NDWI) and 

Normalised Difference Vegetation Index (NDVI). These indices highlight 

specific land features through the use of multi-spectral bands. Multiple 

machine learning algorithms, including K-Nearest Neighbour (KNN), 

Decision Tree (DT), SVM, and RF, have been proven effective in classifying 

LULC. The application and performance of these algorithms are clarified by 

case studies, providing strong justifications for selecting appropriate methods 

for this research.   

 Machine learning is a derivative of artificial intelligence, leveraging 

input data and statistical algorithms to emulate human learning processes and 

execute sophisticated missions without explicit orders. Machine learning can 

be categorised into four main learning methods, with supervised and 

unsupervised learning being the most commonly applied in UHI studies. In 

supervised learning, the training process requires labelled datasets, consisting 

of both input data and corresponding output data, to analyse and recognise 

relationships between them. The finalised model can be utilised to address 

classification and regression problems. Conversely, unsupervised learning 
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excels in data aggregation and clustering which do not require the labelled data 

for training. It can organise unlabelled datasets into distinct groups via the 

identification of patterns, similarities and structures among variables (Ahorloo 

et al., 2024).  

 The process of LULC classification follows a structured methodology 

that typically involves seven distinct stages as identified by Lu and Weng 

(2007): choosing the appropriate remotely sensed data, defining the 

classification system and selecting training samples, pre-processing the data, 

extracting and selecting pertinent features, applying the classification method, 

executing post-classification processing and assessing accuracy. This 

methodical sequence guarantees consistency and enhances the reliability of 

land cover information derived from satellite imagery. 

 

2.3.1 Normalised Difference Vegetation Index (NDVI) 

NDVI is a common indicator of green vegetation cover and relies on data 

captured by remote sensing. The concept of NDVI is based on the absorption 

of sunlight in the photosynthetically active radiation range and the reflection 

of near-infrared radiation. NDVI is computed by dividing the difference 

between the near-infrared (NIR) band and red (R) band by their sum (Vilcins 

et al., 2022). NDVI values represent green vegetation density, where a value of 

1 indicates the densest vegetation and -1 represents extreme bareness with 

only water, rock and sand. Values between 0.2-0.3 correspond to grassland 

while 0.6-0.8 represent rainforests (Gascon et al., 2016). 

 Several shortcomings of NDVI have limited the accuracy of detecting 

green cover. NDVI is only capable of detecting the presence of green 

vegetation rather than distinguishing between different flora species. In 

addition, it cannot precisely measure the coverage area of withered plants and 

bare land. The discrepancies between the spatial resolution of NDVI and study 

area may lead to inaccuracies. Lastly, NDVI cannot provide information on 

whether the vegetation locates in public or private areas (Vilcins et al., 2022). 

 

2.3.2 Normalised Difference Built-up Index (NDBI) 

By using satellite data, NDBI detects the density of built-up areas based on 

their distinct spectral response. Built-up surfaces reflect more shortwave 
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infrared (SWIR) radiation than NIR. NDBI is computed as the ratio of the 

difference between SWIR and NIR bands to the sum of these two bands. 

NDBI values range between -1 and 1, where positive values typically represent 

built-up areas, while negative values correspond to non-built-up regions. 

(Dammayatri, Susantoro and Wikantika, 2023).  

 

2.3.3 Normalised Difference Water Index (NDWI) 

NDWI is applied to indicate the presence of open water bodies in the satellite 

data. It distinguishes water bodies by leveraging the characteristic of water that 

tends to strongly absorb NIR compared to other materials such as vegetation 

and soil. In other words, water bodies can be detected by satellite sensors due 

to its low NIR reflectance. NDWI is formulated as the ratio of the difference 

between GREEN and NIR bands to the sum of these two bands. GREEN band 

is used to capture reflected green light from water bodies, enhancing water 

feature detection. NIR band can easily detect and exclude both soil and 

vegetation, highlighting the water feature in the satellite imagery. The 

presence of water bodies results in the positive NDWI value with the 

maximum of 1 while values from 0 to -1 indicate that the area is occupied by 

vegetation and soil. Even though NDWI is widely utilised in the investigation 

of water quality, it can barely differentiate between chlorophyll α and 

suspended solids in water bodies (McFeeters, 1996). 

 

2.3.4 Normalised Difference Bare Soil Index (NDBSI) 

NDBSI is a measure of the bareness of an area, taking advantage of RED, 

BLUE, NIR and SWIR wavelengths captured by remote sensing. It was firstly 

designed for the forest management to inspect forest density. The NIR and 

BLUE bands are selected to detect vegetation cover while the RED and SWIR 

bands distinguish the soil mineral from other matters. When the NDBSI value 

is closer to 1, a larger scale of bare soil and impervious layers exist in the 

study area. Conversely, the density of vegetation and pervious layers increases 

with a NDBSI value closer to -1 (Polovina et al., 2024). 
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2.3.5 Supervised and Unsupervised Classification 

Supervised classification represents an analyst-directed approach to LULC 

mapping where human expertise plays a central role in defining spectral 

signatures for land cover classes. This technique employs a three-phase 

process: training (identification of representative pixel samples), signature 

extraction (statistical characterisation of spectral values) and classification 

(assignment of all pixels to defined classes). Through this methodology, the 

analyst maintains control over category definition and classification outcomes. 

Several algorithms have been developed for supervised classification, each 

with distinct mathematical foundations, such as SVM, DT and maximum 

likelihood classification (Madariya, Pandey and Sharma, 2022). 

Unsupervised classification represents an automated approach to 

image segmentation where algorithms identify natural spectral groupings 

without prior definition of land cover categories. This process involves 

spectral clustering using statistical techniques, followed by analyst 

interpretation to assign meaningful land cover labels to the resulting clusters. 

This approach operates independently of training data, relying instead on the 

spectral properties of image pixels to determine class boundaries. Two primary 

algorithms dominate unsupervised classification applications, including 

Iterative Self-Organizing Data Analysis Technique and K-means (Madariya, 

Pandey and Sharma, 2022). 

In the study by Mohd Hasmadi, Pakhriazad and Shahrin (2009) in 

Selangor, Malaysia, supervised classification achieved an overall accuracy of 

90.28% with a Kappa coefficient of 0.86, indicating strong agreement between 

the classified map and ground truth data. In contrast, unsupervised 

classification, which clusters image pixels based solely on their spectral 

properties without prior training, yielded lower overall accuracy at 80.56% and 

a Kappa of 0.73. The higher performance of the supervised method is 

attributed to its ability to incorporate prior knowledge and carefully selected 

training samples, which help the classifier distinguish between classes that 

may have overlapping spectral signatures. 

A second case study from Afghanistan compared both classification 

approaches over multiple time periods (2000, 2013, and 2020) using Landsat 

imagery. The supervised model, implemented with advanced machine learning 
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techniques such as SVM, consistently achieved higher overall accuracies of 

94.23%, 90.09%, and 88.18% for the respective years, compared to 

unsupervised methods, which reported accuracies around 89%, 82.5%, and 

84.26%. These differences underscore that supervised classification tends to 

be more reliable, particularly in heterogeneous and complex landscapes, 

because it leverages expert knowledge and carefully delineated training areas 

(Doost and Yaseen, 2023). 

 

2.3.6 Support Vector Machine (SVM) 

As noted by Awad and Khanna (2015), SVM is a commonly employed 

supervised machine learning model for applications like weather forecasting 

and image classification, due to its powerful generalisation capability and 

ability to achieve optimal global solutions. SVM operates on a simple 

principle: it determines an optimal hyperplane that perfectly separates different 

classes with maximum margins in a n-dimensional space. For problems 

involving non-linearly separable data, kernel functions are applied to obtain 

higher-dimensional data, facilitating the classification process of a linear 

separator between each class.  

 According to Al Kafy et al. (2021), LULC classification of Landsat 

satellite data from 1999, 2009, and 2019 was conducted using a SVM 

algorithm embedded in ENVI 5.3. The classification focused on four major 

LULC categories: urban areas, bare soils, vegetation cover, and water bodies. 

The SWM algorithm adopted the kernel type of radial basis function with 

certain parameters, including a penalty parameter of 120, a gamma value of 

0.07, a classification probability threshold of 0.05 and a pyramid level that 

remained zero. Areal and spectral profiles of the imagery were analysed to 

acquire additional training data and background information. LULC maps 

were produced by taking approximately 45 samples for each year’s LULC 

category. The performance of the SVM-based LULC classification was 

evaluated based on four metrics: kappa statistics, overall accuracy, user 

accuracy and producer accuracy. These evaluations were based on 200 and 

150 randomly selected ground data and Google Earth (GE) images for each 

map. Consequently, the results indicated that the SVM algorithm was highly 
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effective in LULC classification, achieving overall accuracy rates of 86.04%, 

84.82% and 87.23% for the three years, respectively.  

 Similar procedures were adopted by Edan, Maarouf and Hasson 

(2021) to classify LULC using satellite images from 2000, 2010 and 2020. 

Prior to the LULC classification, Landsat 8 OLI images (bands 1 to 7) and 

Landsat 5 TM images (bands 1 to 5 and 7) were processed through band 

composition. LULC maps were generated by collecting roughly 200 signatures 

for each LULC class in each year. To assess the performance of the SVM 

algorithm, the four assessments metrics were adopted, alongside 300 ground-

truthing data obtained from global positioning systems and GE. As a result, the 

SVM algorithm demonstrated high accuracy in LULC classification, attaining 

a kappa coefficient above 0.83 and an overall accuracy exceeding 0.94 across 

all studied years.  

 

2.3.7 K-Nearest Neighbours (KNN) 

KNN is a simple and flexible supervised algorithm suitable for both regression 

and classification tasks. In contrast to conventional regression models that 

define relationships between input and output variables using mathematical 

formulae, KNN simplifies this process due to its non-parametric characteristic. 

It finds the “k” nearest data points or neighbours considering criteria such as 

Euclidean distances to make a prediction. The average values of nearest 

neighbours are computed to predict the new data point in regression models 

while the classification of the new data point is based on the majority class 

among its neighbours (Ran et al., 2024; Verma et al., 2023). 

 In the study by Athukorala and Murayama (2021), the KNN 

algorithm was used to perform LULC classification in R software. Landsat 5 

(bands 2-4) and Landsat 8 (bands 3-5) imagery were prepared as inputs for 

LULC map analysis. The classification was based on four LULC groups 

including bare land, water, green space and impervious surface. Automatic 

sampling with 400 points per year facilitated the production of high quality 

LULC maps. After the initial classification, amendments for classified LULC 

maps were conducted, such as the hybrid classification method and majority 

filter, to rectify random misclassifications like the salt and pepper noise. KNN-

classified LULC maps were observed to be the most accurate among other 
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algorithms, including ANN, SVM, and RF, achieving an accuracy score of 90% 

or higher. 

 

2.3.8 Decision Tree (DT) 

DT is a non-parametric supervised learning model that made up of edges and 

nodes, systematically and continuously sorting data into different classes based 

on certain criteria. The operational process commences from the root node 

splitting data into edges based on the computation of entropy and information 

gain or the Gini index. Subsequent test nodes receive incoming edges (input) 

from previous nodes and continue this splitting process until reaching the 

leaves node which provides the final decision. One of the advantages of DT is 

its ability to process large datasets for classification and regression models 

within a short period of time, obtaining high accuracy results. DT is also a 

flexible solution used to address linear or non-linear models with little to no 

data normalization needed. Lastly, DT has a simple structure that can be 

interpreted easily compared to other algorithms like Artificial Neural 

Networks (ANN). However, DT tends to overfit when dealing with complex 

relationships between features and attenuation of DT performance could also 

result from variations in the dataset (Talekar and Agrawal, 2020). 

 Four LULC groups, such as built-up, vegetation, cropland and water 

were used by Mohammad et al. (2022) for LULC classification spanning from 

1995 to 2020 at five-year intervals. The Classification and Regression Tree 

(CART), a subset of the DT algorithm, was used to create LULC maps via 

GEE while multiple Landsat imagery bands were applied as nodes for 

classification. To identify the four LULC features, various band combinations 

of Landsat imagery were acquired from over 200 training samples for the 

respective features. The background GE images were employed as reference 

data to examine the training points. The obtained sample points were separated 

into training sets (70%) and validation sets (30%) using random sampling 

approaches. Two reliable image classification assessment methods, including 

the confusion matrix and Kappa statistics, were applied to measure the CART 

performance. The results indicated that the CART algorithm was highly 

accurate for LULC classification, with a mean accuracy score of 0.91 over the 

study periods. 
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2.3.9 Random Forest (RF) 

According to Fawagreh, Gaber and Elyan (2014), RF is an ensemble learning 

algorithm that integrates multiple DT using the random selection of features 

and Breiman’s bagging sampling method. Each DT is generated from 

repetitively chosen samples of a training set, which helps minimize variance in 

the dataset. The predictions for the class label of a given instance are 

simultaneously executed and a vote is cast for the predicted class label by each 

DT. The final output is determined by selecting the class label that obtains the 

highest votes among all trees. RF is a popular choice for both classification 

and regression due to its superior performance in handling intricate 

relationships between variables and capability against overfitting. In addition, 

RF is relatively simpler, faster and more precise compared to other boosting or 

bagging models.  

 The LULC classification of Landsat data into different land use types 

was executed using the RF algorithm through the GEE platform. The land use 

types included dense vegetation, bare land, water, sparse vegetation and urban 

areas. The image pixels were carefully digitised for each class to train the RF 

algorithm. A minimum of 50 training samples per class were created, resulting 

in a total of 1045 training samples proportionally allocated based on the 

frequency of occurrence of each LULC category in the study area. 100 

decision trees were employed to form the RF model and 376 more samples 

were generated to examine the RF performance. The classification process did 

not rely simply on the spectral bands from Landsat imagery, but also leveraged 

various land use indices, such as Band Ratio for Built-up Area, Index-Based 

Built-up Index, Normalised Difference Water Index and so on, to precisely 

distinguish between similar classes. The Kappa coefficient, overall accuracy, 

producer’s accuracy and user’s accuracy were used to assess the LULC maps 

(Rees, Baidy and Belenok, 2024).  

 The RF algorithm was also adopted by Liu, An and Ming (2024) to 

classify LULC maps. By using GEE, the surface reflectance data were 

retrieved from Landsat imagery. A median algorithm was used, combining all 

images into a single composite and calculating the median value for each pixel. 

Additional layers, such as NDBI, NDVI, Normalised Difference Bareness 
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Index and Digital Elevation Model (DEM), were mosaicked to add details and 

texture to the classification. A total of 796 training data were gathered to train 

the RF model in classifying the land use into five categories, encompassing 

bare land, water bodies, forests, built-up areas and cropland. To examine its 

performance, a random sampling approach was applied to collect 200 samples 

for each LULC group. Consequently, the RF model demonstrated high 

accuracy in LULC classification, achieving an overall accuracy of more than 

0.86 and Kappa coefficients exceeding 0.83. 

 

2.4 LST Estimation 

LST is a fundamental parameter for understanding surface and atmosphere 

interactions, urban heat island effects and various climatic processes. 

Retrieving LST from thermal infrared satellite data has evolved into a vital 

research area, with several algorithms developed to meet diverse 

environmental conditions and sensor specifications. Two prominent methods 

include the Single Channel (SC) and the Split Window (SW) algorithms. 

 

2.4.1 SC Algorithm 

The SC method has emerged as a practical and efficient approach for 

retrieving LST from thermal infrared satellite data, particularly Landsat-8 

TIRS Band 10. Unlike the SW techniques, the SC method requires fewer input 

parameters, primarily the land surface emissivity, the effective band 

wavelength and atmospheric water vapor content. This reduced dependency 

simplifies the retrieval process, especially in areas where detailed atmospheric 

profiles are unavailable (Garcia and Díaz, 2021; Cristóbal et al., 2018). 

García and Díaz (2021) compared several LST algorithms and found 

that the SC approach delivered robust and reliable LST estimates in a highly 

polluted urban environment in Granada, Spain. Their findings highlighted that 

SC algorithms are particularly effective in urban settings, offering consistent 

performance across multiple temporal scales. 

Building on this, an improved single-channel method was proposed 

by Cristóbal et al. (2018), which incorporated not only water vapor content but 

also near-surface air temperature into the retrieval process. By integrating 

near-surface air temperature, the improved SC method reduced uncertainties 
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inherent in atmospheric correction, yielding an overall error of approximately 

1 K and a bias of -0.5 K when compared to on-site observations. This 

enhancement demonstrated a significant performance improvement over 

earlier models that relied solely on water vapor. 

Furthermore, Maithani et al. (2022) applied the SC algorithm to 

Landsat thermal datasets for the years 2000, 2010 and 2019 in an urban 

context in India. Their approach, which served as a precursor to machine 

learning simulations of future urban temperature patterns, yielded an average 

root mean square error (RMSE) of 1.9 °C during summer and 1.9 °C during 

winter when validated against downscaled MODIS LST products. These 

results underscore the SC method’s operational reliability and its suitability for 

long-term urban climate studies. 

 

2.4.2 SW Algorithm 

The SW algorithm is a widely used approach for retrieving LST from remote 

sensing data, particularly by leveraging two adjacent thermal infrared channels. 

One key feature is its ability to mitigate atmospheric effects, especially water 

vapor absorption, by using a nonlinear combination of brightness temperatures 

measured at wavelengths around 11 and 12 µm. For instance, in a notable case 

study using Landsat 8 TIRS data, the algorithm was developed using an 

extensive simulation dataset (over 350,000 scenarios) that varied atmospheric 

conditions, land surface emissivity and true LST. The study divided column 

water vapor into several sub-ranges and derived tailored coefficients for each 

range, resulting in an LST RMSE of less than 1.0 K (Du et al., 2015). 

The radiance-based split-window algorithm (RBSWA) used with 

MODIS data demonstrated notable improvements over conventional 

brightness temperature-based methods. Simulation analyses reported an RMSE 

of only 0.5 K with an improvement of about 0.3 K compared to traditional 

methods. When applied to real MODIS data covering the continental United 

States, the RBSWA produced a mean RMSE of 1.33 K and validation against 

Surface Radiation Budget and ASTER LST products further confirmed its 

reliability (Wang et al., 2019).  
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An investigation of SW algorithms for Landsat 9 TIRS-2 data further 

highlights that while different candidate methods exist, those that incorporate 

adjustments for atmospheric water vapor and land surface emissivity tend to 

reduce overall bias and error by up to 1.30 K and 1.0 K, respectively (Su, 

Meng and Sun, 2024). 

 

2.5 SUHII Estimation 

The SUHII was used to measure the magnitude of UHI by subtracting the 

average urban LST with the average rural LST (Li, Zha and Wang, 2020; Sun 

et al., 2018). Several steps were taken by Zhou et al. (2014) to define the urban 

and rural areas. Firstly, a 1 km x 1 km moving window approach was applied 

to create a built-up intensity (BI) map, which was classified into high-BI and 

low-BI regions using a 50% threshold. Then, the high-BI regions were 

combined and surrounded by a 2 km buffer zone that encompassed the nearest 

and scattered high-BI patches within the urban boundary. The area inside the 

buffer zone was treated as an urban area while the buffer zone with an 

equivalent area to the urban area, excluding waterbodies, was designated as a 

rural area. 

According to Huang et al. (2023) and Rendana et al. (2023), the UHI 

estimation was performed by calculating the ratio of the difference in LST 

between urban and reference areas to the LST of the reference area. The study 

areas were then classified into five different classes based on the UHI value, 

including very weak UHI effect (< 0.07), weak UHI effect (0.08 - 0.12), 

moderate UHI effect (0.13 - 0.17), strong UHI effect (0.18 - 0.20) and very 

strong UHI effect (> 0.21) (Huang et al., 2023).   

Two different methods were applied by Rao, Tassinari and Torreggiani 

(2023) to measure UHI. The SUHII Type 1 method, also employed by Rees, 

Baidy and Belenok (2024), computed the difference between the LST of the 

research area and the mean LST of green spaces. The Type 2 method 

calculated the difference between the study area LST and predefined UHI 

threshold. Unlike the Type 1 method, a threshold value was defined in the 

Type 2 method to identify UHI and non-UHI regions without considering the 

influence of LULC on temperature changes across the study area. Positive 

SUHII values indicated UHI presence, with categories ranging from low 
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SUHII (0 - 2.0), moderate SUHII (2.0 - 4.0), high SUHII (4.0 - 6.0), very high 

SUHII (6.0 - 8.0) to extremely high SUHII (> 8). Statistical comparisons, 

including standard deviation, RMSE and mean absolute error (MAE), showed 

that Type 1 was more precise for the estimation of SUHII in areas with 

noticeable anthropogenic activities as it emphasised distinguishing land use, 

while Type 2 provided a broader but less precise estimation. 

Due to varying weather conditions throughout the year, the comparison 

of several satellite images within the same year to assess a region’s thermal 

properties may yield inaccurate results. Thus, a normalised method was 

employed to quantify the UHI across different seasons within the same year, 

accounting for atmospheric fluctuations by finding a ratio of the difference 

between LST and mean LST to the standard deviation (Al Kafy et al., 2021; 

Rahaman et al., 2022). 

 

2.6 Acquisition and Pre-Processing of Short-Duration Extreme 

Rainfall Data 

High-resolution hourly rainfall data from 1960 to 2020 were collected by Yan 

et al. (2024) from various sources to analyse rainfall patterns in the Great Bay 

Area. For instance, Integrated Multi-satellite Retrievals for Global 

Precipitation Measurement Mission Final Run Version 07, Multi‐Source 

Weighted‐Ensemble Precipitation product, ERA5-Land reanalysis data of the 

European Centre for Medium‐Range Weather Forecast and local weather 

stations. Despite adjustments made to merge data from different sources, 

discrepancies were still detected when comparing gridded rainfall data to 

actual hourly rainfall observations. This problem was addressed by applying a 

Random Forest-based Merging Procedure to enhance data accuracy. Then, 

maximum rainfall intensities over multiple time durations were retrieved for 

each year. “Rainfall extremes” were considered as heavy rainfall with 

intensities exceeding the 98.75th and 99.7th percentiles.  

 In addition, temperature and precipitation data from 1998 to 2015 

were acquired by Oh et al. (2022) from the Asian Precipitation Highly 

Resolved Observational Data Integration Towards Evaluation of water 

resource (APHRODITE) project. This data was captured by approximately 

5000 to 12000 weather stations that provide daily high-resolution (0.25°) 
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climate information across Asia. It has been widely recognised that 

APHRODITE data is well-suited for understanding Asian monsoon rainfall 

variability and performing rainfall forecasting. Rainfall estimates at 3-hour 

intervals were also extracted from the Tropical Rainfall Measuring Mission 

(TRMM) products to evaluate precipitation changes.  

 A Malaysian hourly rainfall dataset, combined and checked for 

quality as part of the Global Sub-Daily Rainfall dataset was employed. 

Rainfall data from 1981 to 2011 were extracted from rain gauge stations 

around Kuala Lumpur with over 80% data availability. To ensure the 

independence of precipitation events, only the highest hourly rainfall intensity 

for each day was selected. Hourly rainfall intensities were added up to obtain 

daily rainfall intensities. Instead of using wet-hour/day data, the top 5% (95th 

percentile) average hourly/daily rainfall intensities were identified for trend 

analysis, as increases in rainfall intensity do not strongly correlate with 

increases in wet-day percentiles (Li, et al., 2020). 

To explore the relationship between urbanisation and extreme rainfall 

in Paris and Shanghai, the top 1% (99th percentile) and top 0.28% (99.72nd 

percentile) of hourly and daily rainfall throughout the year were analysed. The 

most extreme 1% of hours or days were represented by the 99th percentile, 

while the most extreme 24 hours in a year were represented by the 99.72nd 

percentile. The intensity, frequency and total amount of rainfall exceeding 

these percentiles were observed (Steensen et al., 2022). 

 In the study by Li, Zha and Wang (2020), rainfall data from global 

megacities with daily precipitation greater than 50 mm were excluded from the 

correlation estimation. This is because such heavy rainfall events generally 

result from extreme weather conditions like low vortex, typhoons and cyclones, 

hampering the observation of UHI impacts on precipitation. Mamun, Salleh, 

and Noor (2018) defined short-duration rainfall in Klang Valley, Malaysia, as 

precipitation lasting between 15 minutes and 18 hours, but not exceeding 24 

hours.  

 

2.7 Inverse Distance Weighting (IDW) 

IDW is one of the most widely applied spatial interpolation techniques in 

hydrology and meteorology, particularly for estimating rainfall at ungauged 
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locations. Introduced by Robertson (1967), IDW operates on the principle that 

points nearer to the prediction location exert a stronger influence on the 

estimated value than those farther away. This method computes a weighted 

average of observed values, with weights inversely proportional to a power of 

the distance from the target location (Tiwari, Jha and Sivakumar, 2019; 

Benmoshe, 2025). 

Despite its simplicity, IDW continues to demonstrate strong 

performance in real-world applications. For example, Wimala et al. (2025) 

evaluated multiple interpolation methods using rainfall data from 20 automatic 

telemetering stations and found that IDW produced the lowest MAE and 

RMSE, making it the most accurate method in their study region. While 

Kriging and Co-Kriging captured spatial variability more effectively in theory, 

they introduced greater estimation errors when data were limited, highlighting 

their reliance on a denser station network. Mremi et al. (2025) also utilised 

IDW in GIS to model spatial rainfall distribution, affirming its practical utility 

in data-scarce environments. Similarly, Fung et al. (2022) evaluated IDW as a 

univariate spatial interpolation method in Peninsular Malaysia and found that 

IDW with a power of two (p = 2) outperformed Ordinary Kriging, yielding a 

lower MAE (67.8), RMSE (91.2), and higher R² (0.540). However, the study 

also noted that IDW was outperformed by the multivariate Multi-scale 

Geographical Weighted Regression method, which accounted for additional 

variables like elevation and location, offering better spatial accuracy by 

adjusting spatial bandwidths. 

 

2.8 Rainfall Analysis 

Rainfall analysis plays a crucial role in understanding climate variability, 

especially in hydroclimatic studies. Among various statistical methods 

available, the Mann-Kendall (MK) and Modified Mann-Kendall (MMK) test, 

Sen’s slope estimator, Innovative Trend Analysis (ITA) and spatiotemporal 

comparative analysis are widely used due to their robustness and effectiveness. 

These methods enable researchers to assess the presence, direction and 

magnitude of long-term trends in rainfall data across various temporal and 

spatial scales. 
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2.8.1 Mann-Kendall (MK) and Modified Mann-Kendall (MMK) Tests 

The MK test is widely adopted non-parametric approach to assess monotonic 

trends in time series data without requiring the data to follow a specific 

distribution. Its non-parametric nature makes it particularly suitable for 

analysing climate extremes, as it can handle missing data and is less sensitive 

to outliers. However, the original MK test can be significantly influenced by 

autocorrelation in the data, which may lead to overestimation of trend 

significance. To address this limitation, the MMK test, proposed by Hamed 

and Ramachandra Rao (1998), incorporates adjustments to account for serial 

correlation by modifying the variance of the test statistic. This is achieved 

through techniques such as pre-whitening, block bootstrapping and variance 

correction. The test compares the null hypothesis (H0), which posits no trend, 

against the alternative hypothesis (H1), suggesting a significant increasing or 

decreasing trend. Statistical significance is typically evaluated at a 95% 

confidence level (α = 0.05). A trend is considered significant when the p-value 

is less than 0.05. The Kendall rank correlation coefficient (τ), which ranges 

from -1 to +1, indicates the direction and strength of the trend. Positive values 

suggest an increasing trend, while negative values indicate a decreasing trend. 

Nevertheless, recent studies emphasise that even modified versions of the MK 

test may not fully eliminate the impact of long-term autocorrelation, 

highlighting the importance of careful methodological choice when 

interpreting trend significance (Sharma et al., 2024; Ng et al., 2024; Mekuria, 

Demissie and Feyessa, 2025; Miniandi et al., 2024). 

 

2.8.2 Sen’s Slope Estimator 

In addition to the MK test, the Sen’s slope estimator (Sen, 1968) is commonly 

used to quantify the magnitude of a trend. It is a non-parametric method that 

calculates the median of all pairwise slope values in the dataset, providing a 

robust estimate that is less sensitive to outliers. Sen’s slope is typically applied 

in conjunction with the MK test, as it offers a more precise measure of trend 

magnitude once a significant trend has been identified. This combined 

approach has been adopted in various recent studies, such as Kenabatho (2025), 

Sharma et al. (2024), Ng et al. (2024), Mekuria, Demissie and Feyessa (2025), 

and Miniandi et al. (2024). While other trend detection methods, such as 
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Spearman’s Rho, linear regression, and wavelet analysis, are also utilised in 

the literature, the MK test coupled with Sen’s slope estimator remains the 

preferred choice in hydroclimatic studies due to its robustness, minimal data 

assumptions and effectiveness in handling non-normally distributed or 

incomplete data (Mekuria, Demissie, and Feyessa, 2025). 

 

2.8.3 Innovative Trend Analysis (ITA) 

Sen (2012) suggested the ITA approach to measure trends in hydro-

meteorological time series data, including precipitation and temperature. ITA 

visualises data trends based on graphical and non-parametric method, 

comparing two halves of the dataset. This method was adopted by Ahmed et al. 

(2022), Doiphode and Swami (2024), Wang et al. (2020) and Deopa et al. 

(2024) for the temporal rainfall study. Precipitation data were separated into 

two equal halves and assigned to both horizontal and vertical axes in 

ascending order. The time series shows an increasing trend when the majority 

of data points fall above the 1:1 line and vice versa. No significant trend is 

expected if data points are evenly scattered along the 1:1 line.  

In the case of without a clear monotonic trend, Wang et al. (2020) 

categorised the data into low, medium and high rainfall classes, utilising 10th 

and 90th percentiles as boundary lines. The results of the ITA are assessed by 

both the MK test and the Theil-Sen Approach (TSA). The MK test detects the 

sign and significance of trends, while the TSA investigates the magnitude of 

trends and is more resilient to outliers. The presence of the serial correlation in 

a time series could interfere with the trend test results. Hence, lag-1 serial 

correlation (r1) was computed for the time series data. The series is pre-

whitened before employing trend analysis methods, only if r1 is significant. 

 

2.8.4 Spatiotemporal Comparative Analysis 

To evaluate temporal and spatial changes in extreme rainfall, Miniandi et al. 

(2024) divided the analysis into two periods: 2000-2010 (early period) and 

2013-2022 (recent period). Spatial distribution maps were generated for both 

percentiles across the two time periods, revealing a noticeable expansion in the 

coverage and intensity of extreme rainfall across Kuala Lumpur. These 



27 

comparisons demonstrated a spatial shift and intensification of rainfall 

extremes in tandem with urban expansion over time. 

Lee et al. (2023) conducted a spatiotemporal analysis of probability 

precipitation in South Korea across four periods (1981-2020, 1991-2020, 

2001-2020, 2011-2020) using data from 61 rainfall stations, focusing on 

probability rainfall, intensity and duration for 10-, 20-, 50-, and 100-year 

return periods and 1-, 2-, 6-, and 24-hour durations. Spatial distributions, 

mapped via kriging interpolation in ArcGIS, revealed that the southeast inland 

area consistently exhibited lower probability precipitation and intensity 

anomalies, while the northeast, northwest and south coast regions showed 

higher values. Decadal rainfall analysis, focusing on nine representative 

stations in the northern (Ganghwa, Daegwallyeong and Seoul), southwest 

inland (Jeongeup, Gwangju and Namwon) and southeast inland (Miryang, 

Daegu and Yeongcheon) regions, showed that the 2011-2020 decade had 

notably lower annual rainfall in the southwest and northern inland areas 

(absolute differences > 115 mm) compared to 2001-2010 but stable 

precipitation in the southeast inland area (differences ≤ 15 mm). These 

findings, supported by box plots and anomaly maps, highlight a strong 

correlation between annual precipitation trends and spatiotemporal variations 

in probability rainfall factors. 

The rainfall analysis in the Ceyhan River basin, Türkiye, by Darabi et 

al. (2023), spanning 1975-2014. This study utilised data from 15 

meteorological stations to compare rainfall patterns across different periods of 

the year, segmented into four decades (1975-1984, 1985-1994, 1995-2004, 

2005-2014) and analysed over annual and monthly scenarios. The findings 

highlight significant intra-annual and decadal variability, with pronounced 

regional differences and notable drought events in 1992-1996 and 2007-2010 

impacting the basin’s water resources. 

 

2.9 Statistical Methods for Analysing the Relationship between the 

UHI Effect and Short-Duration Extreme Rainfall 

Research examining the relationship between the UHI effect and short-

duration extreme rainfall remains limited. To address this gap, this section 

reviews key statistical methods that have been used in related studies to 
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analyse associations between climatic and environmental variables. By 

referring to existing literature involving comparable parameters, such as LST, 

precipitation intensity and urban characteristics, this section highlights suitable 

correlation and regression techniques for investigating the UHI–rainfall 

relationship. 

    

2.9.1 Pearson’s Correlation Coefficient (r) 

Pearson’s correlation coefficient is a statistical method used to assess the 

direction and strength of a linear relationship between two consecutive 

variables. Spanning from -1 to +1, values closer to the extremes indicate 

stronger relationships, and r = 0 represents no linear correlation. The strength 

of the association increases as the scatter of data points decreases, approaching 

a straight line as the coefficient nears ±1. However, proper inference requires 

that the data meet several assumptions: both variables should be continuous, 

jointly normally distributed and drawn from a representative sample. 

Additionally, there should be no extreme outliers, as these can significantly 

distort the correlation results (Schober, Boer, and Schwarte, 2018; Berman, 

2016). 

In environmental and urban climate studies, Pearson’s correlation has 

been widely applied to assess the relationships between the SUHII and climate 

variables such as air temperature, precipitation and vegetation activity. The 

standard deviation (STD) of SUHII over time was used as a metric for its 

stability, with a lower STD indicating stronger resilience to climatic drivers. 

Moreover, spatial correlations between SUHII variability (STD) and 

precipitation were analysed across 145 cities to assess regional sensitivity (Li, 

Zha, and Wang, 2020). 

Further extending its application, Xu (2025) used Pearson’s 

correlation alongside a random forest model to capture both linear and 

nonlinear relationships between green space morphological characteristics and 

UHI intensity across different seasons.  

 

2.9.2 Kendall’s Tau Correlation Coefficient (τ) 

Kendall’s Tau (τ) is a classic non-parametric statistical method, introduced by 

Kendall (1938), that evaluates the monotonic relationship between two 
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variables using ranked data. Its values range from -1 to +1, where a value of 0 

indicates no correlation, positive values signify a direct relationship and 

negative values indicate an inverse relationship (Cheng et al., 2021). Unlike 

Pearson’s correlation coefficient, Kendall’s Tau does not require assumptions 

of linearity or normally distributed data, making it particularly suitable for 

non-linear or non-normally distributed datasets. Its main advantages include 

distribution independence, sensitivity to monotonic trends and resilience to 

outliers (Miniandi, 2024). This robustness is supported by simulation studies 

from Puth, Neuhäuser, and Ruxton (2015), which found that while both 

Kendall’s Tau and Spearman’s Rho perform similarly to Pearson’s correlation 

in non-normal distributions, Kendall’s Tau tends to produce narrower 

confidence intervals, especially when there are no tied values, making it 

statistically preferable in such cases. However, Spearman’s Rho may 

outperform Kendall’s Tau in terms of coverage accuracy when ties are present. 

Comparative efficiency studies, such as those by Croux and Dehon 

(2010), also show that Kendall’s Tau exhibits greater robustness to extreme 

and correlation outliers, with lower mean squared error (MSE) across a variety 

of data contamination scenarios compared to both Spearman’s Rho and 

Pearson’s correlation. In practical applications, Kendall’s Tau has been widely 

used in climate and environmental studies. For instance, Nath et al. (2023) 

used it to analyse the relationship between summer temperature and monsoon 

rainfall, while Omer et al. (2020) applied it to examine the statistical 

dependence between water scarcity indicators and hydroclimatic variables. 

Similarly, Miniandi (2024) employed Kendall’s Tau to assess the association 

between LST and extreme rainfall, emphasising its utility in urban climate 

research. Overall, Kendall’s Tau remains a reliable and robust method for 

evaluating correlations in complex, real-world environmental datasets. 

 

2.9.3 Spearman’s Rho Correlation Coefficient (ρ) 

Spearman’s rank correlation coefficient, commonly referred to as Spearman’s 

Rho (ρ), is a non-parametric method employed to evaluate the direction and 

strength of a monotonic relationship between two variables. This method is 

useful when the data do not meet the assumptions required for Pearson’s 

correlation, such as normality or linearity. Unlike Pearson’s product-moment 
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correlation coefficient, Spearman’s Rho does not require a linear relationship 

or interval-level measurement; it can be applied to ordinal data and is robust in 

situations where the association is monotonic but non-linear. It spans from -1 

to +1, with values near ±1 indicating stronger associations, while a value of 0 

suggests no correlation. While a significant Spearman’s coefficient indicates a 

statistically detectable monotonic relationship, it should be interpreted 

cautiously, as significance does not always imply a strong or meaningful 

relationship, especially in the practical or linear sense (Jan and Toasz, 2011; 

Cheng et al., 2021). 

In applied research, Spearman’s Rho has been used across various 

environmental and climate-related studies. For instance, Aucahuasi-Almidon, 

Cabrera-Carranza, and Garate-Quispe (2024) employed it to analyse the 

relationship between deforestation and climate variables in the southern 

Peruvian Amazon. Similarly, Sharma et al. (2016) used Spearman’s Rho to 

examine the correlation between rainfall and temperature in the eastern region 

of India, demonstrating its utility in assessing hydroclimatic interactions where 

non-linearities and ordinal data are present.  

 

2.9.4 Coefficient of Determination (R2) 

The coefficient of determination (R²) is a commonly applied statistical metric 

that quantifies the goodness-of-fit of regression models by indicating how well 

the predicted values match the observed data. Ranging from 0 to 1, an R² value 

of 1 represents a perfect fit, whereas a value of 0 implies that the model fails to 

account for any variation in the dependent variable (Motegaonkar and Kashid, 

2024). The concept of the coefficient of determination as the proportion of 

"variance explained" by the independent variables makes it an intuitive and 

unitless measure, allowing for easy comparison across models and studies, 

similar to standardised effect size metrics (Nakagawa and Schielzeth, 2012). 

In environmental and UHI-related research, the coefficient of 

determination has been extensively employed to assess the strength of 

predictive relationships between climatic or surface parameters and urban heat 

metrics. For example, Pande et al. (2024) performed linear regression analysis 

using mean values of rainfall, NDVI and LST to determine R² values that 

reflected the strength of associations between these environmental factors. 
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Similarly, Fetene (2025) developed regression models using variables such as 

NDVI, NDBI, temperature, rainfall, relative humidity and wind speed to 

predict LST and UHI intensity, with R² used to assess model fit and p-values 

(threshold 0.05) used to test statistical significance. Additionally, Hussien et al. 

(2023) applied the coefficient of determination to evaluate the seasonal and 

annual relationships between NDVI and various climatic variables over a 26-

year period, highlighting its utility in long-term trend analysis and 

environmental monitoring. 

 

2.10 Classification Metrics 

Classification metrics are important tools for assessing the performance of 

machine learning algorithms in LULC classification. Among these, the Kappa 

coefficient, overall accuracy, producer’s accuracy and user’s accuracy are 

widely employed. 

 

2.10.1 Kappa Coefficient 

The Kappa coefficient measures the level of agreement between a 

classification outcome and a reference dataset, while accounting for chance 

agreement. It is computed using the confusion matrix, which tabulates the 

classified outputs against the actual ground-truth observations. A Kappa value 

of 1 signifies perfect agreement, whereas values close to 0 indicate agreement 

comparable to random chance. Kappa values are categorised as follows: 0.81 - 

1.00 represents almost perfect agreement; 0.61 - 0.80 indicates substantial 

agreement; 0.41 - 0.60 suggests moderate agreement; 0.21 - 0.40 corresponds 

to fair agreement; 0.00 - 0.20 implies slight agreement; and values below 0.00 

indicate poor agreement. A study achieving 81.7% overall accuracy with a 

Kappa of 0.722 demonstrated substantial agreement, though individual classes 

like barren land showed high omission errors (73.3%). This highlights Kappa's 

utility in identifying systemic classification weaknesses (Rwanga and 

Ndambuki, 2017). The recent incorporation of machine learning techniques 

with Landsat imagery has further enhanced classification accuracy. In one 

study from Brahmani-Dwarka Interfluve, five classifiers, including RF, SVM, 

CART, Gradient Boosted Trees and Minimum Distance, were compared, 
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demonstrating Kappa’s relevance even within sophisticated classification 

frameworks (Mandal, 2024). 

 While overall accuracy measures raw correctness, it often fails to 

account for class imbalances. For example, a hypothetical 90% accuracy might 

mask poor performance in rare classes if common classes dominate. Kappa 

improves on this by discounting chance agreement, making it particularly 

useful in heterogeneous landscapes. However, some critics argue that the 

“chance correction” provided by Kappa is unnecessary since overall accuracy 

already reflects observable agreement. They point out that Kappa’s reliance on 

prevalence distributions can hinder cross-study comparisons, as it assumes 

independent class distributions between the classified and reference data, a 

condition rarely met in practice. Consequently, when rare classes are present, 

the inflated expected chance agreement can lower the Kappa value even if the 

classification is largely accurate. For instance, a class that covers only 1% of 

an area would need nearly flawless classification to achieve a high Kappa, 

potentially skewing the results. Additionally, Kappa does not differentiate 

between systematic errors and random noise, which can limit its diagnostic 

usefulness (Rwanga and Ndambuki, 2017; Foody, 2020). 

 

2.10.2 Accuracy Metrics 

The confusion matrix, also known as the error matrix, forms the basis for 

accuracy metrics by comparing classified pixels with ground reference data. In 

this matrix, the diagonal elements indicate correct classifications, while the 

off-diagonal values represent errors: commission errors (pixels incorrectly 

assigned to a class) are found in the rows, and omission errors (pixels that 

truly belong to a class but were not classified as such) are found in the 

columns (Dash et al., 2023). 

Overall accuracy gives a broad snapshot of performance, yet it can 

conceal significant class-specific problems. For example, a Nigerian LULC 

study reported an overall accuracy of 81.7%, but this figure masked a severe 

73.3% omission error for barren land. This case illustrates how overall 

accuracy may be misleading in imbalanced landscapes, where dominant 

classes, such as agriculture covering 65% of the area, can disproportionately 

skew the results (Rwanga and Ndambuki, 2017).  
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Producer's accuracy measures the probability that a reference sample 

is correctly classified, thereby highlighting omission errors, while user's 

accuracy assesses the likelihood that a classified sample truly matches the 

reference data, pinpointing commission errors (Rwanga and Ndambuki, 2017). 

 

2.11 Regression Metrics 

Regression metrics are commonly used to evaluate the predictive accuracy and 

reliability of statistical models. A summary of these metrics, compiled by the 

author based on information from Tanoori, Soltani, and Modiri (2024), 

Mohammad et al. (2022), and Jedox (2025), is presented in Table 2.1. 

 

Table 2.1:   The Summary of Regression Metrics. 

Type Descriptions 

Root Mean Squared Error 

(RMSE) 

• It is commonly applied in regression 

models by measuring the average 

difference between the estimated 

values generated by a model and the 

observed values obtained from a 

sensor. 

• Squaring residuals amplifies the 

impact of large errors, making 

RMSE ideal for applications where 

catastrophic failures must be 

avoided. 

• Models with higher accuracy result 

in lower RMSE value. 

 

Concordance Index (CI) • It is typically employed in tasks 

involving ranking systems. 

• It evaluates a model’s capability to 

precisely rank the predicted values. 

• A 90% CI of [0.72, 0.78] for R² 

indicates the model explains 72 -  
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Table 2.1 (Continued)  

 78% of variance with 90% 

confidence. 

Average Absolute Percent 

Relative Error (AAPRE) 

• It evaluates a model’s predictive 

performance. 

• It expresses the average difference 

between the observed and estimated 

values in percentage form. 

• Models with higher accuracy result 

in lower AAPRE percentage.  

 

R-squared (R2) • It assesses the model’s fit by 

measuring how much of the 

variation in the outcome can be 

explained by the input variables. 

• A high R-squared value implies a 

strong association between the 

inputs and the predicted outcome. 

 

Mean Absolute Error (MAE) • It assesses the mean of the absolute 

errors between the estimated and 

observed values. 

• It is less sensitive to outliers than 

RMSE, making it preferable for 

datasets with heavy-tailed error 

distributions. 

• Models with greater accuracy result 

in lower MAE value.  
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2.12 Summary 

In summary, this literature review evaluates and compares various research 

methods to identify the most appropriate approaches for investigating the 

relationship between the UHI effect and short-duration extreme rainfall. The 

review highlights the characteristics and applications of Landsat and MODIS 

imagery in LULC and LST analysis. It also covers the concepts and case 

studies of LULC classification using machine learning algorithms, such as 

SVM, KNN, DT and RF, along with the role of various land use indices in 

improving classification accuracy. For LST estimation, two algorithm types, 

SC and SW, are discussed, while multiple formulae adopted by other 

researchers are presented for SUHII estimation. Methods for extracting short-

duration extreme rainfall are also reviewed, including diverse data sources and 

definitions of extreme events. Among spatial interpolation methods, IDW 

stands out for its balance between performance and simplicity, outperforming 

more complex methods in many cases. In terms of rainfall analysis, methods 

such as the MMK test, Sen’s slope, ITA and spatiotemporal comparative 

analysis are reviewed for their suitability to different analytical objectives. For 

relationship analysis, four key statistical approaches, Pearson’s correlation, 

Kendall’s Tau, Spearman’s rho, and coefficient of determination, are evaluated. 

Kendall’s Tau shows the highest resilience to outliers, while the coefficient of 

determination combined with linear regression enables both prediction and 

assessment of relationship strength. Finally, the review examines classification 

metrics and regression metrics, which are essential for evaluating the 

performance of machine learning models and the reliability of statistical 

analyses.  
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

This study employed a structured methodology to ensure analytical rigor and 

reliability. Kuala Lumpur, Malaysia, was selected as the study area due to its 

dense urbanisation and susceptibility to the UHI effect. Satellite imagery from 

Landsat 5 (2007) and Landsat 8 (2015 and 2023) was used, along with ground-

based rainfall data from 2007 to 2023 acquired from the Department of 

Irrigation and Drainage (DID) Malaysia. 

LULC classification was conducted using SVM and RF algorithms, 

categorising land into built-up areas, water bodies, vegetation, and bare soil. 

Classification accuracy was assessed using Kappa coefficients and accuracy 

metrics. LST was estimated using the SC algorithm for both satellite datasets. 

SUHII was calculated by subtracting the mean LST of vegetated areas from 

the LST of each pixel. 

Rainfall data were pre-processed to extract the 99th percentile of 

hourly extreme rainfall from the original 15-minute records. Missing data were 

interpolated using the IDW method and Theissen polygons were generated 

based on rainfall station locations. Analyses were performed to assess the 

spatiotemporal variation, diurnal distribution and trends in three rainfall 

metrics: the total number of hourly extreme rainfall events, the total of hourly 

extreme rainfall and the mean of hourly extreme rainfall. 

To explore the relationship between SUHII and rainfall extremes, 

both the coefficient of determination (R²) and Kendall’s Tau correlation (τ) 

were applied. SUHII values for 2007, 2015 and 2023 were interpolated to 

derive annual estimates for each station from 2007 to 2023. Rainfall metrics 

were aggregated annually to maintain consistency in statistical analysis. The 

overall methodological workflow is illustrated in Figure 3.1. 
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Figure 3.1: The Flowchart of Methodology. 

 

3.2 Study Area 

Kuala Lumpur, the capital of Malaysia, spans roughly 243 km² and features 

densely urbanised metropolitan areas distributed across the city. 

Geographically, it is located in the central part of the west coast of Peninsular 

Malaysia and forms part of the Klang Valley conurbation. Kuala Lumpur 
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serves as the country's economic hub, supporting a population of around 1.8 

million and hosting numerous commercial activities. The city’s economy is 

driven by diverse sectors including finance, construction, commerce, science 

and technology, transportation, and manufacturing, contributing approximately 

15.9% to Malaysia’s gross domestic product in 2023. 

Situated near the equator, Kuala Lumpur experiences a tropical 

climate characterised by high humidity, frequent rainfall and minimal seasonal 

temperature variation throughout the year. Average temperatures range from 

about 33.0 °C during the day to 24.6 °C at night, with the months from March 

to August typically being the hottest. Kuala Lumpur receives significant daily 

rainfall, ranging from 5.29 mm to a peak of 12.24 mm. The city also maintains 

a high average relative humidity of 83% throughout the year (WorldData.info, 

2024). Rapid urbanisation since the 1980s has intensified the UHI effect in 

Kuala Lumpur, making afternoon thunderstorms and flash floods prevalent. 

Figure 3.2 shows the location of Kuala Lumpur in Malaysia. 

 

  

Figure 3.2: The Location of Kuala Lumpur in Malaysia. 
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3.3 Data Collection 

Before beginning the analysis, data collection is essential to acquire the most 

representative datasets from reliable sources, thereby minimising 

computational costs and uncertainties in the results. A study period from 2007 

to 2023 with an 8-year interval was purposely selected to observe the effects 

of urbanisation on the UHI phenomenon and to provide a longer period for 

analysing short-duration extreme rainfall events. 

 

3.3.1 Satellite Imagery 

Three satellite images from Landsat 5 (2007) and Landsat 8 (2015 and 2023) 

were downloaded from the USGS Earth Explorer website. The satellite data 

were selected from the months of March to August, as these represent the 

hottest period of the year. Images with less than 30% cloud cover were chosen 

to minimise the impact of weather conditions on LULC classification and LST 

estimation. The spatial resolution of the multi-spectral bands used was 30 m, 

while the thermal bands were resampled from 120 m to 30 m to ensure both 

types of bands are compatible with each other. The satellite imagery served as 

training data for machine learning algorithms in QGIS to classify LULC. The 

specifications of the extracted satellite imagery are outlined in Table 3.1. 

 

Table 3.1: The Specifications of the Extracted Satellite Imagery. 

Product ID 
Date 

Captured 
Sensor Resolution 

Cloud 

Cover 

LT05_L1TP_127058_2

0070524_20200830_02

_T1 

24-05-2007 
Landsat 5 

TM C2 L1 

30 m <30% 

LC08_L1TP_127058_2

0150327_20200909_02

_T1 

27-03-2015 

Landsat 8 

OLI/TIRS 

C2 L1 

LC08_L1TP_127058_2

0230317_20230324_02

_T1 

17-03-2023 

Landsat 8 

OLI/TIRS 

C2 L1 
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3.3.2 Rainfall Data 

15-minute local rain gauge measurements from 2007 to 2023 were obtained 

from the DID Malaysia. Site-measured rainfall data were selected for their 

higher precision. Owing to data availability constraints, only nine stations 

located within or near the study area were included in this research. Table 3.2 

lists the selected rainfall stations, while Figure 3.3 illustrates their locations. 

 

Table 3.2: Rainfall Stations. 

No. Station Latitude Longitude 

1 Kolam Takungan Batu (0231391RF) 3.2185 101.6819 

2 
Taman Ehsan At Kepong W. Persekutuan 

(0231441RF) 
3.21822 101.6313 

3 
Pusat Penyelidekan At Jps Ampang Selangor 

(0231351RF) 
3.15489 101.7487 

4 Km 10 Ulu Kelang At Uk Height (0231401RF) 3.18228 101.7597 

5 
Ibu Bekalan Km. 11 At Gombak W. Persekutuan 

(0230721RF) 
3.23856 101.7122 

6 
Empangan Genting Klang At W. Persekutuan 

(0230631RF) 
3.2361 101.7528 

7 
I/pejabat Jps Malaysia At W. Persekutuan 

(0230641RF) 
3.15567 101.6818 

8 Jln. Sg. Udang At Segambut (0231381RF) 3.19331 101.658 

9 
Ldg. Edinburgh Site 2 At W. Persekutuan 

(0230651RF) 
3.1833 101.6333 
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Figure 3.3: Locations of Rainfall Stations. 

 

3.4 LULC Classification 

In this section, two different machine learning algorithms, including SVM and 

RF, were adopted to classify the Landsat imagery in 2007, 2015 and 2023 into 

different LULC types using QGIS. Based on accuracy assessment, the LULC 

maps with the higher accuracy were selected for subsequent analyses. 

 

3.4.1 Georeferencing 

Georeferenced maps were created using high-resolution satellite images of the 

study area in 2007, 2015 and 2023, obtained via Google Earth Pro. A total of 

50 ground control points were uniformly distributed across the images to 

ensure accurate georeferencing. A transformation type of “Polynomial 3” and 

a target coordinate reference system of “EPSG:32647 – WGS84 / UTM zone 

47N” were used.  

 

3.4.2 Land Use Indices 

Various land use indices, such as NDVI (Equation 3.1), NDBI (Equation 3.2), 

NDWI (Equation 3.3) and NDBSI (Equation 3.4), were used to improve 

classification accuracy. 
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NDVI =
NIR − RED

NIR + RED
 

 

NDBI =
SWIR1 − NIR

SWIR1 + NIR
 

 

NDWI =
GREEN − NIR

GREEN + NIR
 

 

NDBSI =
(RED + SWIR1) − (BLUE + NIR)

(RED + SWIR1) + (BLUE + NIR)
 

 

where 

NDVI = Normalised Difference Vegetation Index 

NDBI = Normalised Difference Built-up Index 

NDWI = Normalised Difference Water Index 

NDBSI = Normalised Difference Bare Soil Index 

NIR = Near-infrared (Band 4 for Landsat 5 and Band 5 for Landsat 8) 

RED = Red (Band 3 for Landsat 5 and Band 4 for Landsat 8) 

SWIR1 = Shortwave Infrared 1 (Band 5 for Landsat 5 and Band 6 for Landsat 

8) 

GREEN = Green (Band 2 for Landsat 5 and Band 3 for Landsat 8) 

BLUE = Blue (Band 1 for Landsat 5 and Band 2 for Landsat 8) 

 

3.4.3 Classification of LULC Maps with SVM and RF  

The Landsat raster images were clipped to the study area and classified using 

SVM and RF models into four categories, encompassing built-up areas (roads, 

commercial, residential and industrial areas) water bodies (lakes, rivers, seas 

and canals), vegetation (forests, agriculture areas, green lands and green plants) 

and bare land (sand, fallow and vacant land). This classification was executed 

using the Semi-Automatic Classification Plugin in QGIS. Image pixels were 

properly labelled for each class to train the algorithms for supervised 

classification. A total of 30 training samples per class were generated for each 

(3.1) 

(3.2) 

(3.3) 

(3.4) 
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year, with all samples proportionally distributed based on the occurrence rate 

of the LULC classes. 

For the SVM model, a radial basis function kernel with a 

regularisation parameter of 8.0 was employed. 

The RF model, consisting of 100 decision trees, was utilised for the 

classification process, with the minimum number to split set to three.  

 

3.4.4 Accuracy Assessment 

To evaluate the accuracy of SVM- and RF-based LULC maps, producer’s 

accuracy (PA), user’s accuracy (UA), overall accuracy (OA) and the Kappa 

statistic were calculated, as shown in Equations 3.5 to 3.8. The assessment 

used 30 randomly selected ground-truth data points for each category, derived 

from the georeferenced maps. 

 

Producer′s Accuracy 

= 
Correctly Classified Pixels of a Category

Total Reference Pixels for that Category
 × 100 

 

User′s Accuracy 

= 
Correctly Classified Pixels of a Category

Total Classified Pixels for that Category
 × 100 

 

Overall Accuracy =  
Total Correctly Classified Pixels

Total Pixels
 × 100 

 

Kappa Coefficient =
p0 − p𝑒
1 − p𝑒

 

 

where 

p0 =  Observed Agreement =  
Total Correctly Classified Pixels

Total Pixels
  

p𝑒 =  Expected Agreement =  ∑
Column Total x Row Total

Total Pixels
  

 

(3.6) 

(3.7) 

(3.8) 

(3.5) 
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3.5 LST Estimation  

The LST estimation was performed in QGIS by analysing thermal radiance 

values associated with different LULC types using specific formulae. The SC 

algorithm was applied to the thermal bands of both Landsat 5 and Landsat 8 

imagery. 

 

3.5.1 Extraction of LST Data from Landsat 5  

The first step involved converting the digital number (DN) of Band 6 to Top of 

Atmosphere (TOA) spectral radiance, standardising the radiometric scale 

across all satellite images using Equation 3.9. Input parameters were obtained 

from the MTL file of the satellite image. 

 

Lλ = (
LMAXλ − LMINλ
Qcal max − Qcal min

) (Qcal − Qcal min) + LMINλ 

 

where 

Lλ = TOA spectral radiance, W/(m2 ⋅ sr ⋅ μm) 

LMAXλ = spectral radiance that is scaled to Qcal max , W/(m2 ⋅ sr ⋅ μm) 

LMINλ = spectral radiance that is scaled to Qcal min , W/(m2 ⋅ sr ⋅ μm) 

Qcal = quantised calibrated pixel value in DNs 

Qcal max = maximum quantised calibrated pixel value corresponding to LMAXλ                       

Qcal min = minimum quantised calibrated pixel value corresponding to LMINλ 

 

 Secondly, the TOA spectral radiance was converted to the TOA 

brightness temperature using Equation 3.10. 

 

BT = (
K2

ln(
K1
Lλ
 + 1)

) − 273.15  

 

where 

BT = TOA brightness temperature, °C 

Lλ = TOA spectral radiance, W/(m2 ⋅ sr ⋅ μm) 

K1= A constant value for Band 6 / Band 10 thermal conversion   

       (K1_CONSTANT_BAND_6 / K1_CONSTANT_BAND_10) 

(3.9) 

(3.10) 
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K2= A constant value for Band 10 thermal conversion  

       (K2_CONSTANT_BAND_10 / K2_CONSTANT_BAND_10) 

 

3.5.2 Extraction of LST Data from Landsat 8 

Firstly, the Band 10 DN was converted into the TOA spectral radiance by 

applying Equation 3.11. The radiance scaling factors were retrieved from the 

MTL file of the satellite image. 

 

Lλ = ML ⋅  Qcal + AL 

 

where 

Lλ = TOA spectral radiance, W/(m2 ⋅ sr ⋅ μm) 

ML = Radiance multiplicative scaling factor for Band 10  

(RADIANCE_MULT_BAND_10) 

Qcal = Level 1 pixel value in DN 

AL = Radiance additive scaling factor for Band 10 

(RADIANCE_ADD_BAND_10) 

 

 Similar to Landsat 5, the TOA brightness temperature was calculated 

in the second step by using Equation 3.10. An emissivity correction was 

conducted in the following step, involving the NDVI approach. The method 

used was the same as Equation 3.1, which required both near-infrared (NIR) 

and red (R) DN values. 

 

 Then, the proportion of vegetation (PV) was computed from Equation 

3.12, using the DN values from the NDVI image and their maximum and 

minimum values. 

 

PV = (
NDVI − NDVImin

NDVImax −  NDVImin
)
2

    

 

 Subsequently, the PV value and a correction value of 0.986 were 

applied in Equation 3.13 to calculate the land surface emissivity.  

 

(3.11) 

(3.12) 
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∈ = 0.004 ×  PV + 0.986 

  

 Lastly, the LST of Landsat 8 for Bands 10 was computed using 

Equations 3.14 and 3.15. 

 

LST =
BT

{1 + [
λBT

ρ
] ln ∈}

  

 

ρ = h
c

σ
 

 

where 

LST = Land surface temperature, °C 

BT = TOA brightness temperature, °C 

∈ = Land surface emissivity 

𝜆 = Wavelength of emitted radiance = 10.985 x 10-6 m 

𝑐 = Velocity of light = 2.998 x 108 m/s 

ℎ = Planck’s constant = 6.626 x 10-34 Js 

σ = Boltzmann constant = 1.38 x 10-23 J/K 

ρ = 1.438 x 10-2 mK 

 

3.6 SUHII Estimation 

To measure the UHI effect within the study area, the SUHII formula was 

calculated using Equation 3.16, which determines the difference between the 

LST at each pixel and the mean LST of vegetation-covered areas. Table 3.3 

summarises the categories of UHI based on SUHII values, ranging from none 

(SUHII ≤ 0), low (0 < SUHII ≤ 2.0), moderate (2.0 < SUHII ≤ 4.0), high (4.0 < 

SUHII ≤ 6.0), very high (6.0 < SUHII ≤ 8.0) to extremely high intensity 

(SUHII > 8.0). This approach effectively captures UHI by accounting for the 

impact of different land use types on LST. 

 

SUHII = LSTi − LSTvegetation 

 

where 

(3.13) 

(3.14) 

(3.15) 

(3.16) 
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SUHII = Surface urban heat island intensity 

LSTi = Land surface temperature at any pixel, °C 

LSTvegetation = Mean land surface temperature of vegetation covers, °C 

 

Table 3.3: The Categories of UHI Based on SUHII values. 

SUHII Value Range Category 

SUHII ≤ 0 None 

0 < SUHII ≤ 2.0 Low UHI 

2.0 < SUHII ≤ 4.0 Moderate UHI 

4.0 < SUHII ≤ 6.0 High UHI 

6.0 < SUHII ≤ 8.0 Very high UHI 

SUHII > 8.0 Extremely high UHI 

 

3.7 Rainfall Analysis 

A detailed rainfall analysis was carried out using Python and QGIS to examine 

variations in rainfall patterns from 2007 to 2023. Rainfall data from nine 

selected stations were retrieved and pre-processed prior to analyses. 

 

3.7.1 Pre-Processing 

Data pre-processing was essential to facilitate the analytical process and 

enhance the reliability of the results. The IDW interpolation method, shown in 

Equation 3.17, was employed to estimate missing values based on rainfall 

measurements from nearby stations within the same period. As there is no 

theoretical basis for selecting the power parameter, a value of t = 2 was used in 

most cases. 

 

Pi =
∑ [

1

dx
t × Px]

n
x=1

∑
1

dx
t

n
x=1

 

 

where 

Pi = The rainfall estimates at the station i 

Px = Rainfall measurement at neighbouring station x 

dx = The distance between the station i to the station x 

(3.17) 
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n = The number of neighbouring stations 

t = The power parameter that influences the weight of neighbouring 

measurements = 2 

 

To enhance interpretability and computational efficiency, the original 

15-minute data were aggregated into hourly rainfall data. The 99th percentile 

threshold was applied to differentiate extreme rainfall events from others. To 

analyse the spatial distribution of rainfall impacts, Thiessen polygons (Voronoi 

polygons) were generated, defining distinct impact areas for each station and 

establishing nine study areas.  

  

3.7.2 Spatiotemporal Variation of Hourly Extreme Rainfall  

Due to the high variability in Malaysia’s annual rainfall patterns, the dataset 

was divided into two study periods: 2007-01-01 to 2015-07-01 and 2015-07-

01 to 2023-12-31 (hereinafter referred to as 2007-2015 and 2015-2023) to 

enable comparative analyses of hourly extreme rainfall. Three rainfall 

parameters were included, such as the total number of hourly extreme rainfall 

events, the total of hourly extreme rainfall and the mean of hourly extreme 

rainfall. This comparison aimed to highlight changes in the actual values of 

these parameters at the nine selected stations across the two periods. 

The spatial distribution of rainfall characteristics was visualised using 

the IDW interpolation method, with a distance coefficient of 2 and a pixel size 

of 0.00027° in both the x and y directions. 

 

3.7.3 Diurnal Distribution of Hourly Extreme Rainfall 

To further examine variations in hourly rainfall patterns, a diurnal distribution 

analysis was conducted on the total number of hourly extreme rainfall events 

across the nine stations for the periods 2007-2015 and 2015-2023. Rainfall 

data were categorised by hour of the day and clustered column charts were 

generated for each station. This analysis provided clearer insights into the 

timing of extreme rainfall occurrences, supporting the investigation of UHI 

impacts on short-duration extreme rainfall. 
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3.7.4 MMK Test and Sen’s Slope Estimator 

The MMK test and Sen’s slope estimator were employed to analyse the trend 

and rate of change in hourly extreme rainfall from 2007 to 2023. The hourly 

extreme rainfall data were grouped on an annual basis. The MMK test was 

selected for its ability to handle non-normally distributed time series and its 

robustness against the effects of autocorrelation. 

The MK test statistic S was computed using Equation 3.18, which 

assesses the difference in ranks between sequential data points. 

 

S = ∑ ∑ sgn(xj − xi)

N

j=i+1

N−1

i=1

 

 

 N indicates the sample size, while xj
 and xi represent consecutive data 

points within the time series. Equation 3.19 was applied to obtain the statistic 

sgn(xj
 - xi). 

 

sgn(xj − xi) = {

1 if (xj − xi) > 0

0 if (xj − xi) = 0

−1 if (xj − xi) < 0

 

 

Since the rainfall dataset is assumed to be independently and 

identically distributed, the mean of S is equal to zero. The variance of S, 

denoted as, Var(S), was computed using Equation 3.20.  

 

Var(S) =
1

18
[𝑁(𝑁 − 1)(2𝑁 + 5) −∑𝑡𝑘(𝑡𝑘 − 1)

𝑛

𝑘=1

(2𝑡𝑘 + 5)]  

   

In this context, n refers to the number of tied groups and tk indicates 

the number of ties within the kth group. Equation 3.21 presents the 

standardised test statistic Z, which accounts for the presence of tied data. 

 

 

(3.18) 

(3.19) 

(3.20) 
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Z =

{
  
 

  
 

 

S − 1

√𝑉𝑎𝑟(𝑆)
 if S > 0

 
0 if S = 0

 
S + 1

√𝑉𝑎𝑟(𝑆)
 if S < 0

  

 

  A positive Z value indicates an upward trend, while a negative Z 

value suggests a downward trend. A trend is considered statistically significant 

at the 0.05 level if the absolute value of Z exceeds 1.96. In the MMK test, the 

Hurst coefficient h and the autocorrelation function were incorporated to 

correct for autocorrelation effects on the variance of S, as shown in Equations 

3.22 and 3.23. 

 

C𝑁(ℎ) = [𝜌|𝑗−𝑖|] 𝑓𝑜𝑟 𝑖 = 1: 𝑁; 𝑗 = 1:𝑁  

 

𝜌𝑙 =
1

2
(|𝑙 + 1|2ℎ − 2|𝑙|2ℎ + |𝑙 − 1|2ℎ) 

 

 The degree of self-similarity in a time series is quantified by h, while 

the autocorrelation function of lag 𝑙 for a specified h is represented by 𝜌𝑙. The 

value of h was determined using the maximum likelihood estimation method. 

Its significance was evaluated by comparing it to the expected mean and 

standard deviation under the assumption of h = 0.5, following a normal 

distribution. If h is deemed significant, the variance of S is adjusted using a 

bias-corrected estimate based on the specified h, as presented in Equation 3.24, 

replacing the original Var(S) in Equation 3.21. 

 

Var(S)ℎ
′
 

=∑ ∑
2

𝜋
 sin−1 (

𝜌|𝑗 − 𝑖| − 𝜌|𝑖 − 𝑙| − 𝜌|𝑗 − 𝑘| + 𝜌|𝑖 − 𝑘|

√(2 − 2𝜌|𝑖 − 𝑗|)2 − 2|𝑘 − 𝑙|)
)

𝑘<𝑙𝑖<𝑗

 

 

The Sen’s slope estimator was then utilised following the MMK test 

to assess the rate of change. The slopes Ti for all consecutive pairs of data 

(3.21) 

(3.22) 

(3.23) 

(3.24) 
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were calculated using Equation 3.25 and the Sen’s slope Q was derived as the 

median of these slopes, determined by Equation 3.26. 

 

T𝑖 =
𝑥𝑗 − 𝑥𝑘

𝑗 − 𝑘
, 𝑖 = 1, 2, 3…𝑁, 𝑗 > 𝑘  

  

Q = {

 𝑇𝑁+1
2

 𝑖𝑓 𝑁 𝑖𝑠 𝑜𝑑𝑑

1

2
(𝑇𝑁

2

+ 𝑇𝑁+2
2

) 𝑖𝑓 𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛
 

 

  

3.8 Relationships between UHI and Short-Duration Extreme Rainfall 

Both the coefficient of determination (R²) and Kendall’s Tau correlation (τ) 

were employed to evaluate the relationships between SUHII and rainfall 

parameters. The coefficient of determination assumes a linear relationship, 

aligning with the Clausius-Clapeyron scaling, which suggests a proportional 

increase in rainfall with rising temperature. In contrast, Kendall’s Tau assumes 

a monotonic relationship and is better-suited for environmental data, which 

often violate the assumptions of normality and linearity. Moreover, Kendall’s 

Tau is robust to outliers, enhancing its reliability in real-world climatic 

datasets. The combined use of the coefficient of determination and Kendall’s 

Tau enables a more comprehensive analysis by capturing both linear and 

consistent directional associations, regardless of data distribution. This dual 

approach enhances the reliability and interpretability of the findings. 

Both datasets were pre-processed prior to the relationship analysis to 

ensure consistency in the statistical analysis. SUHII data for the years 2007, 

2015 and 2023 were interpolated to estimate annual SUHII values from 2007 

to 2023 at each station, while hourly extreme rainfall data were aggregated on 

an annual basis. 

 

3.8.1 Coefficient of Determination (R2) 

The coefficient of determination is a statistical approach used to evaluate how 

well a regression model explains the variation in a dependent variable based 

on the independent variable. R2 spans from 0 to 1, where R2 = 0 denotes no 

linear relationship and R2 = 1 represents a perfect fit. 

(3.26) 

(3.25) 
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 Equation 3.27 presents the formula for the coefficient of 

determination, while Equation 3.28 shows the Fisher’s Z-transformation (z-

score) utilised to evaluate the statistical significance of the coefficient.  

 

R2 = 1 −
SSres
SStot

 

 

where 

SSres = ∑(yi − ŷi)
2 = Residual sum of squares 

SStot = ∑(yi − y̅)
2 = Total sum of squares 

𝑦𝑖 = Observed values 

𝑦̂𝑖 = Predicted values 

𝑦̅ = Mean of observed values 

 

zscore =
1

2
ln (

1 + r

1 − r
) ∙ √n − 3 

 

where 

n = Sample size 

r = √R2 

 

 By comparing to the z-score to the standard normal distribution, the 

null hypothesis of no significant relationship is rejected if |zscore|  > 1.96, 

implying that the relationship is statistically significant at the 0.05 significance 

level. 

   

3.8.2 Kendall’s Tau Correlation () 

Kendall’s Tau is a non-parametric statistic that measures the direction and 

strength of association between two ranked variables, ranging from -1 to +1. A 

value of -1 suggests perfect disagreement, +1 represents perfect agreement and 

zero indicates no correlation. Equation 3.29 shows the formula for Kendall’s 

Tau correlation.  

 

(3.27) 

(3.28) 
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𝜏 =
2(𝐶 − 𝐷)

𝑛(𝑛 − 1)
 

 

where 

C = Number of concordant pairs 

D = Number of discordant pairs 

n = Total number of observations 

  

 A concordant pair occurs when observations (xi, yi) and (xj, yj) 

maintain a consistent order, such that xi > xj and yi > yj, or xi < xj and yi < yj. A 

discordant pair occurs when the observations follow a different order. 

Equation 3.30 presents the formula for the z-score. 

 

zscore = 3𝜏 ∙
√𝑛(𝑛 − 1)

√2(2𝑛 + 5)
 

 

 Similarly, the statistical significance of the correlation is determined 

by comparing the z-score to the standard normal distribution; if |zscore| > 1.96, 

the null hypothesis of no significant relationship is rejected at the 0.05 

significance level. 

 

  

(3.29) 

(3.30) 
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3.9 Summary 

A systematic methodology was adopted to achieve the objectives of this study. 

Landsat satellite imagery (Landsat 5 for 2007 and Landsat 8 for 2015 and 

2023) and 15-minute rainfall data from 2007 to 2023, sourced from the DID 

Malaysia, formed the core datasets. LULC classification was performed using 

SVM and RF algorithms, and accuracy was evaluated using Kappa 

coefficients and accuracy metrics. LST was estimated via the SC algorithm, 

and SUHII was derived by subtracting the mean LST of vegetated areas from 

the LST of each pixel. 

 Rainfall data were processed to extract the 99th percentile of hourly 

extreme rainfall from 15-minute records. Missing values were interpolated 

using the IDW method, and Theissen polygons were generated to define 

station influence zones. Three rainfall metrics were analysed: the total number 

of hourly extreme rainfall events, the total of hourly extreme rainfall and the 

mean of hourly extreme rainfall. These metrics were assessed in terms of the 

spatiotemporal variation, diurnal distribution and trends. 

 Both the coefficient of determination (R²) and Kendall’s Tau (τ) 

correlation were applied to assess the relationship between SUHII and short-

duration extreme rainfall. SUHII data for 2007, 2015, and 2023 were 

interpolated to produce annual estimates across the study period, while rainfall 

metrics were aggregated annually to ensure consistency in statistical analysis. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

In this chapter, the comprehensive results of the research are presented and 

critically discussed with appropriate justifications. The first section outlines 

the spatiotemporal variations in historical LULC maps (2007, 2015 and 2023) 

across Kuala Lumpur, classified using SVM and RF algorithms. The 

performance of the classifications is evaluated through Kappa coefficients and 

accuracy metrics. The second section examines the historical variation of LST 

across Kuala Lumpur during the same period, supported by detailed analyses 

of LST changes. The third section presents the evolution of historical SUHII 

across major townships, accompanied by multiple statistical assessments. 

Subsequently, the chapter discusses the findings of various rainfall analyses, 

including the spatiotemporal variation, diurnal distributions and trends of 

hourly extreme rainfall events. Finally, the relationships between UHI and 

short-duration extreme rainfall are explored using the coefficient of 

determination (R²) and Kendall’s Tau correlation (τ). 

 

4.2 Mapping Historical LULC 

Landsat 5 and Landsat 8 imagery from 2007, 2015 and 2023 were processed 

using SVM and RF classification algorithms in QGIS to generate LULC maps 

for Kuala Lumpur. Each LULC class was trained with 30 sample points, and 

classification accuracy was evaluated using OA and kappa coefficients based 

on 120 ground-truth points. Figures 4.1 and 4.2 illustrate the LULC maps 

generated by SVM and RF for the respective years. 

Tables 4.1 and 4.2 summarise the accuracy assessment of LULC 

classification using SVM and RF. The diagonal values in the confusion matrix 

represent the proportion of correctly classified pixels. Across all three study 

years, SVM consistently outperformed RF in terms of OA and kappa 

coefficient, achieving accuracy scores of 94.86%, 93.54% and 94.04%, with 

corresponding kappa coefficients of 0.9128, 0.8620 and 0.8766. In contrast, 

RF recorded slightly lower accuracies of 94.64%, 90.57% and 93.53%, with 
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kappa values of 0.9081, 0.7946 and 0.8758. Given its higher classification 

accuracy, the SVM-based LULC maps were selected for the subsequent areal 

change analysis. 

Despite the overall high accuracy, water bodies and bare soil 

exhibited the lowest PA, ranging from 45.39% to 81.31%. This variability is 

likely due to the presence of cloud cover and shadows in the satellite imagery, 

which compound the challenges faced by machine learning algorithms in 

distinguishing these classes from built-up areas. Additionally, the limited 

spatial resolution of the satellite imagery increases the likelihood of human 

errors in creating training samples for the supervised classification. In 2023, 

the UA for bare soil fell below 60% due to misclassification, with portions of 

bare soil incorrectly identified as built-up areas and vegetation. 
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Figure 4.1: Classification of LULC in Kuala Lumpur Using SVM Algorithm in 2007, 2015 and 2023. 
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Figure 4.2: Classification of LULC in Kuala Lumpur Using RF Algorithm in 2007, 2015 and 2023.
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Table 4.1:  Accuracy Assessment of SVM-Based LULC Classification in 2007, 

2015 and 2023.   

SVM – 2007 

LULC Class 
Water 

Bodies 

Built-up 

Areas 
Vegetation 

Bare 

Soil 
Total 

UA 

(%) 

Water Bodies 0.0384 0.0004 0.0004 0.0002 0.0394 97.6077 

Built-up Areas 0.0268 0.4964 0.0067 0.0067 0.5366 92.5000 

Vegetation 0.0000 0.0027 0.3603 0.0054 0.3684 97.8022 

Bare Soil 0.0011 0.0011 0.0000 0.0535 0.0557 96.1538 

Total 0.0663 0.5006 0.3673 0.0658 1.0000  

PA (%) 57.9172 99.1720 98.0713 81.3098   

OA (%) 94.8573 

Kappa  0.9128 

SVM - 2015 

LULC Class 
Water 

Bodies 

Built-up  

Areas 
Vegetation 

Bare 

Soil 
Total 

UA 

(%) 

Water Bodies 0.0142 0.0000 0.0000 0.0000 0.0142 99.7015 

Built-up Areas 0.0082 0.6656 0.0192 0.0192 0.7122 93.4615 

Vegetation 0.0007 0.0011 0.1963 0.0011 0.1992 98.5619 

Bare Soil 0.0000 0.0092 0.0059 0.0593 0.0744 79.6610 

Total 0.0231 0.6759 0.2214 0.0796 1.0000  

PA (%) 61.5403 98.4693 88.6827 74.4647   

OA (%) 93.5400 

Kappa  0.8620 

SVM - 2023 

LULC Class 
Water 

Bodies 

Built-up  

Areas 
Vegetation 

Bare 

Soil 
Total 

UA 

(%) 

Water Bodies 0.0131 0.0006 0.0000 0.0000 0.0137 95.6386 

Built-up Areas 0.0062 0.6484 0.0082 0.0103 0.6731 96.3303 

Vegetation 0.0005 0.0037 0.2413 0.0041 0.2496 96.6972 

Bare Soil 0.0007 0.0137 0.0116 0.0377 0.0637 59.1398 

Total 0.0204 0.6664 0.2612 0.0521 1.0000  

PA (%) 64.1150 97.3053 92.3887 72.3267   

OA (%) 94.0435 

Kappa  0.8766 
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Table 4.2:   Accuracy Assessment of RF-Based LULC Classification in 2007, 

2015 and 2023.   

RF - 2007 

LULC Class 
Water 

Bodies 

Built-up 

Areas 
Vegetation 

Bare 

Soil 
Total 

UA 

(%) 

Water Bodies 0.0309 0.0000 0.0003 0.0001 0.0313 98.5714 

Built-up Areas 0.0065 0.4923 0.0194 0.0194 0.5376 91.5663 

Vegetation 0.0000 0.0028 0.3673 0.0028 0.3729 98.5130 

Bare Soil 0.0011 0.0011 0.0000 0.0559 0.0581 96.1538 

Total 0.0385 0.4962 0.3870 0.0782 1.0000  

PA (%) 80.2809 99.2161 94.9015 71.4267   

OA (%) 94.6427 

Kappa 0.9081 

RF - 2015 

LULC Class 
Water 

Bodies 

Built-up 

Areas 
Vegetation 

Bare 

Soil 
Total 

UA 

(%) 

Water Bodies 0.0159 0.0000 0.0001 0.0001 0.0161 98.8131 

Built-up Areas 0.0106 0.6599 0.0452 0.0266 0.7423 88.8889 

Vegetation 0.0006 0.0012 0.1748 0.0010 0.1776 98.4462 

Bare Soil 0.0000 0.0064 0.0024 0.0551 0.0639 86.1635 

Total 0.0271 0.6675 0.2225 0.0828 1.0000  

PA (%) 58.5487 98.8585 78.5451 66.5635   

OA (%) 90.5708 

Kappa 0.7946 

RF - 2023 

Land Use Class 
Water 

Bodies 

Built-up 

Areas 
Vegetation 

Bare 

Soil 
Total UA (%) 

Water Bodies 0.0137 0.0005 0.0000 0.0000 0.0142 96.1415 

Built-up Areas 0.0114 0.6102 0.0000 0.0095 0.6311 96.6767 

Vegetation 0.0015 0.0030 0.2634 0.0049 0.2728 96.5580 

Bare Soil 0.0036 0.0169 0.0133 0.0480 0.0818 58.6957 

Total 0.0302 0.6306 0.2767 0.0625 1.0000  

PA (%) 45.3926 96.7643 95.1807 76.8316   

OA (%) 93.5303 

Kappa 0.8758 
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Table 4.3 presents the areal changes in LULC classes based on SVM 

classification. Over the 16-year period, water bodies shrank by 2.57%, 

reducing from 9.56 km² to 3.32 km². Built-up areas and bare soil expanded 

significantly between 2007 and 2015 but experienced contraction from 2015 to 

2023, leading to net increases of 13.64% and 0.81%, respectively. Meanwhile, 

vegetation cover saw a sharp decline of 41.11 km² from 2007 to 2015 but 

partially recovered by 12.22 km² over the subsequent eight years, resulting in a 

total loss of 11.88%.  

The observed trends align with Malaysia’s economic and urban 

development trajectory. In the 2000s and 2010s, the Malaysian government 

pursued extensive residential and infrastructure projects, including the Kuala 

Lumpur Structure Plan 2020, to drive economic growth. This development led 

to the rapid expansion of built-up areas and bare soil, often at the expense of 

natural landscapes. However, after 2015, urban expansion slowed due to 

development saturation and the economic impacts of the COVID-19 pandemic. 

Consequently, vegetation cover began to recover significantly under multiple 

urban afforestation initiatives, including the Taman Tugu Urban Forest Park, 

the Greening KL Program and the Wangsa Maju Zero-Carbon Township 

Initiative. 

 

Table 4.3:  Changes in LULC Areas in Kuala Lumpur Based on SVM 

Classification from 2007 to 2023. 

LULC Class 

(SVM) 

Area in Different Year (km2) 
Changes in 

Area from 

2007 to 2023 

(%) 
2007 2015 2023 

Water Bodies 9.56 3.46 3.32 -2.57 

Built-up Areas 130.44 173.09 163.60 13.64 

Vegetation 89.53 48.42 60.64 -11.88 

Bare Soil 13.52 18.08 15.48 0.81 
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4.3 Variation of Historical LST 

LST across Kuala Lumpur was retrieved from the thermal bands of Landsat 5 

and Landsat 8 for 2007, 2015 and 2023. The DN values were converted to 

temperature in Celsius through detailed calculations in QGIS. The variation in 

LST for these years is visualised in Figure 4.3. From 2007 to 2015, most areas 

of Kuala Lumpur experienced significant warming. Between 2015 and 2023, 

the northern region continued to heat up, while the central and southern 

regions exhibited signs of cooling. 

Table 4.4 presents the changes in LST across Kuala Lumpur from 

2007 to 2023. Over this period, both minimum and maximum LST increased 

by 43.71% (from 16.10 °C to 23.14 °C) and 10.10% (from 32.46 °C to 

35.73 °C), respectively. The mean LST rose sharply from 26.60 °C in 2007 to 

28.74 °C in 2015, followed by a slight decrease to 28.72 °C in 2023, resulting 

in a net increase of 7.99% over the study period. 

 

Table 4.4:  Changes in LST Across Kuala Lumpur from 2007 to 2023. 

Year 
LST (°C) 

Minimum Maximum Mean 

2007 16.10 32.46 26.60 

2015 19.78 35.06 28.74 

2023 23.14 35.73 28.72 

Changes in LST from 2007 to 

2023 (%) 
43.71 10.10 7.99 

 

Table 4.5 summarises the distribution of different LST ranges across 

Kuala Lumpur. In all three study years, the LST range covering the largest 

area was between 25 °C and 30 °C, though its coverage declined from 78.90% 

(191.76 km²) in 2007 to 67.94% (165.12 km²) in 2023. The area experiencing 

temperatures above 30 °C expanded significantly, from just 1.16% (2.83 km²) 

in 2007 to 27.60% (67.08 km²) in 2015, and slightly further to 27.85% (67.68 

km²) in 2023. This highlights a rapid warming trend, particularly between 

2007 and 2015. Meanwhile, the proportion of the area with LST ≤ 20 °C 

decreased from 0.54% (1.32 km²) in 2007 to zero in both 2015 and 2023, 

indicating a substantial reduction in cooler zones. 
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Table 4.5:   Distribution of Different LST Ranges Across Kuala Lumpur in 

2007, 2015 and 2023. 

Year 

LST Ranges in °C 

LST ≤ 20 20 < LST ≤ 25 25 < LST ≤ 30 LST > 30 

Area 

(km2) 

Area 

(%) 

Area 

(km2) 

Area 

(%) 

Area 

(km2) 

Area 

(%) 

Area 

(km2) 

Area 

(%) 

2007 1.32 0.54 47.14 19.39 191.76 78.90 2.83 1.16 

2015 0.00 0.00 9.55 3.93 166.41 68.47 67.08 27.60 

2023 0.00 0.00 10.24 4.22 165.12 67.94 67.68 27.85 

 

As discussed in the previous section, large areas of water bodies and 

vegetation were replaced by impervious built-up surfaces and bare soil 

between 2007 and 2015. The clustering of these artificial land uses intensified 

heat retention and contributed to a widespread rise in LST, affecting most 

areas, especially developed ones. However, between 2015 and 2023, some 

central and southern regions experienced an increase in vegetation cover, 

which helped mitigate urban heating, leading to a slight reduction in mean 

LST. The areas with LST above 30 °C were predominantly concentrated in the 

northern regions, where industrial and commercial activity was extensive. 

Notably, light industrial and commercial zones such as Kepong Entrepreneurs 

Park, Kepong Industrial Park, MARA Industrial Area, Setapak Industrial Area, 

and The Parc Factory Outlets contributed significantly to localised warming. 
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Figure 4.3: Variation of LST Across Kuala Lumpur in 2007, 2015 and 2023. 
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To evaluate the impact of LULC on LST, the mean LST for different 

LULC classes is illustrated in Figure 4.4. Throughout the study period, water 

bodies and vegetation consistently recorded the lowest and second-lowest 

mean LST values, increasing only slightly from 24.29 °C to 25.20 °C and from 

25.64 °C to 26.74 °C, respectively. In contrast, built-up areas experienced a 

sharp rise in mean LST, increasing from 27.54 °C in 2007 to 29.49 °C in 2015 

and peaking at 29.58 °C in 2023. Similarly, bare soil exhibited a notable 

temperature increase, rising from 25.75 °C in 2007 to 28.10 °C in 2015 and 

reaching 28.14 °C in 2023, making it the second hottest land cover type. 

 

 

Figure 4.4: Mean LST for Different LULC Classes in 2007, 2015 and 2023. 

 

These observations suggest that LST variation is primarily driven by 

the biophysical interactions between LULC types and surface thermal 

properties. LULC alterations directly disrupt the surface energy balance by 

changing how solar radiation is absorbed, reflected and released. Built-up 

areas, characterised by impervious materials such as asphalt and concrete, 

possess high thermal capacity and low albedo, resulting in greater heat 

absorption and retention. This absorbed heat is subsequently re-emitted, 

raising LST. Additionally, built-up areas are associated with anthropogenic 

heat sources from residential, commercial, and industrial activities, further 

amplifying urban temperatures (Patel, Indraganti, and Jawarneh, 2024; 
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Tahooni, Kakroodi, and Kiavarz, 2023). Due to their low moisture content and 

lack of vegetation, bare soil areas exhibit similar thermal properties to built-up 

areas, efficiently absorbing and storing heat over extended periods (Mahata et 

al., 2024; Agrawal, Pandey, and Tiwari, 2023). Conversely, water bodies and 

vegetated areas provide significant cooling effects through evapotranspiration 

and shading, contributing to the cool island effect (Jia et al., 2024; Wu et al., 

2021; Tahooni, Kakroodi, and Kiavarz, 2023). 

 

4.4 Variation of Historical SUHII 

The SUHII indicator was used to assess the impact of UHI in Kuala Lumpur 

by subtracting the mean LST of vegetated areas from the LST of individual 

pixels. SUHII values for 2007, 2015 and 2023 were calculated using QGIS and 

the results are illustrated in Figure 4.5. In 2007, most urban areas in Kuala 

Lumpur experienced low (yellow) to moderate (gold) UHI, while early signs 

of high (orange) UHI were observed in northern regions such as Kepong and 

Segambut. By 2015, rapid urban expansion and population growth caused 

significant UHI intensification, with multiple locations, including Kepong, 

Segambut, Sentul, Semarak, Bukit Bintang, Pudu, Bangsar, Cheras, Taman 

OUG and Sri Petaling, experiencing high (orange) to very high (red) UHI over 

large areas. In 2023, UHI impacts in the central and southern regions were 

partially mitigated by urban afforestation initiatives, reducing UHI levels to 

low (yellow) and moderate (gold). However, commercial and industrial 

growth in the northern region led to continued UHI intensification, with 

expansions of high (orange) and very high (red) UHI areas. Throughout the 

study period, locations with water bodies and dense vegetation, such as Bukit 

Kiara, Taman Tugu, and the Sungai Besi Forest Reserve, consistently 

exhibited none (blue/light green) UHI due to their strong cooling effects. Bukit 

Jalil was the only township in Kuala Lumpur that consistently exhibited 

minimal or no UHI impact. 

Table 4.6 presents the statistical changes in SUHII across Kuala 

Lumpur from 2007 to 2023. The minimum SUHII remained negative but 

increased by 62.29% from -9.54 to -3.60, reflecting a decline in the cooling 

effect of vegetated and water-covered areas due to urbanisation. The 

maximum SUHII increased by 31.99%, rising from 6.82 to 9.00 over the 16-
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year period, primarily due to industrial expansion in the northern region. 

Meanwhile, the mean SUHII rose by 107.37%, from 0.96 in 2007 to 2.18 in 

2015, before slightly declining to 1.98 in 2023. This scenario suggests that 

while urbanisation remains a dominant factor in UHI intensification, recent 

mitigation efforts have had some positive impact. 

Table 4.7 summarises the spatial distribution of different SUHII 

levels across Kuala Lumpur. In 2007, areas with none and low UHI were the 

most dominant, but by 2015, there was a significant reduction in these 

categories, accompanied by an increase in moderate and high UHI. The none 

UHI category decreased drastically from 66.34 km² (27.31%) in 2007 to 33.77 

km² (13.90%) in 2015, before slightly recovering to 40.66 km² (16.74%) in 

2023. Similarly, low UHI declined from 110.15 km² (45.35%) to 71.49 km² 

(29.43%) over the same period, before increasing slightly to 76.42 km² 

(31.46%) in 2023. Conversely, moderate and high UHI peaked in 2015, with 

moderate UHI expanding from 63.63 km² (26.19%) in 2007 to 93.47 km² 

(38.48%) in 2015, before declining to 87.10 km² (35.86%) in 2023. High UHI 

increased sharply from 2.81 km² (1.16%) in 2007 to 42.18 km² (17.37%) in 

2015, before contracting to 35.97 km² (14.81%) in 2023. Although very high 

UHI remained relatively small in coverage, it showed a gradual increase, from 

0.02 km² (0.01%) in 2007 to 1.97 km² (0.81%) in 2015, and further to 2.81 

km² (1.16%) in 2023. The extremely high UHI category was absent in 2007 

and exhibited only minor increases, expanding by 0.01 km² every eight years. 

The overall trend from 2007 to 2015 shows a significant increase in 

UHI levels across all categories except none and low UHI, reinforcing the 

dominant role of urbanisation in UHI intensification. However, between 2015 

and 2023, a divergent trend emerged, where all UHI levels increased in 

coverage except for moderate and high UHI. This shift can be attributed to the 

success of urban landscaping and afforestation efforts in the central and 

southern regions, which helped mitigate UHI impacts. In contrast, the northern 

region continued to experience UHI intensification, driven by rapid 

commercial and industrial expansion. 
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Figure 4.5: Variation of SUHII Across Kuala Lumpur in 2007, 2015 and 2023. 
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Table 4.6:  Changes in SUHII Across Kuala Lumpur from 2007 to 2023. 

Year 
SUHII 

Minimum Maximum Mean 

2007 -9.54 6.82 0.96 

2015 -6.77 8.50 2.18 

2023 -3.60 9.00 1.98 

Change in SUHII from 2007 to  

2023 (%) 
62.29 31.99 107.37 

 

Table 4.7:  Distribution of Different SUHII Ranges Across Kuala Lumpur in 2007, 2015 and 2023. 

Year 

SUHII Ranges 

None Low Moderate High Very High Extremely High 

SUHII ≤ 0 0 < SUHII ≤ 2.0 2.0 < SUHII ≤ 4.0 4.0 < SUHII ≤ 6.0 6.0 < SUHII ≤ 8.0 SUHII > 8.0 

Area 

(km2) 

Area 

(%) 

Area 

(km2) 

Area 

(%) 

Area 

(km2) 

Area 

(%) 

Area 

(km2) 

Area 

(%) 

Area 

(km2) 

Area 

(%) 

Area 

(km2) 

Area 

(%) 

2007 66.34 27.31 110.15 45.35 63.62 26.19 2.81 1.16 0.02 0.01 0.00 0.00 

2015 33.77 13.90 71.49 29.43 93.47 38.48 42.18 17.37 1.97 0.81 0.01 0.01 

2023 40.66 16.74 76.42 31.46 87.10 35.86 35.97 14.81 2.81 1.16 0.02 0.01 
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4.5 Rainfall Analysis 

Rainfall data from nine selected stations covering the period 2007-2023 were 

processed using Python and QGIS to conduct a comprehensive rainfall 

analysis. The IDW interpolation method was applied to address missing data 

by estimating values based on rainfall measurements from nearby stations 

within the same period. The original 15-minute data were aggregated into 

hourly rainfall data. Extreme rainfall events were identified using the 99th 

percentile threshold, with the corresponding threshold values provided in 

Appendix A.  Thiessen polygons were created to define the spatial extent of 

influence for each rainfall station, resulting in the delineation of nine distinct 

study areas. 

 Multiple analyses were conducted, focusing on the spatiotemporal 

variation, diurnal distribution and trends of hourly extreme rainfall to explore 

variations in rainfall patterns, including the total number of hourly extreme 

rainfall events, the total of hourly extreme rainfall and the mean of hourly 

extreme rainfall during the study period. 

 

4.5.1 Spatiotemporal Variation of Hourly Extreme Rainfall 

Given the high variability in Malaysia’s annual rainfall patterns, the dataset 

was segmented into two study periods (2007 - 2015 and 2015 - 2023) to 

facilitate comparative analyses of hourly extreme rainfall. 

Table 4.8 and Figure 4.6 show the total number of hourly extreme 

rainfall events across the study areas, revealing a notable increase at all 

stations. The Kolam Takungan Batu Station recorded the lowest increase, with 

an additional 83 events (11.81%), while the Pusat Penyelidekan At Jps 

Ampang Selangor Station experienced the highest rise, with 152 more hourly 

extreme rainfall events (22.72%). Other stations also exhibited significant 

increases, with the Ldg. Edinburgh Site 2 At W. Persekutuan Station recording 

142 additional events (21.07%) and the Km 10 Ulu Kelang At UK Height 

Station observing an increase of 118 events (17.28%). 
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Table 4.8:   Total Number of Hourly Extreme Rainfall Events at Selected 

Stations for the Periods 2007-2015 and 2015-2023. 

No. Station 

Total Number of Hourly 

Extreme Rainfall Events 
 

Change 

(%) 
2007-2015 2015-2023 

1 
Kolam Takungan Batu 

(0231391RF) 
703 786 11.81 

2 
Taman Ehsan At Kepong W. 

Persekutuan (0231441RF) 
680 783 15.15 

3 

Pusat Penyelidekan At Jps 

Ampang Selangor 

(0231351RF) 

669 821 22.72 

4 
Km 10 Ulu Kelang At Uk 

Height (0231401RF) 
683 801 17.28 

5 

Ibu Bekalan Km. 11 At 

Gombak W. Persekutuan 

(0230721RF) 

688 797 15.84 

6 
Empangan Genting Klang At 

W. Persekutuan (0230631RF) 
703 787 11.95 

7 
I/pejabat Jps Malaysia At W. 

Persekutuan (0230641RF) 
685 784 14.45 

8 
Jln. Sg. Udang At Segambut 

(0231381RF) 
702 787 12.11 

9 
Ldg. Edinburgh Site 2 At W. 

Persekutuan (0230651RF) 
674 816 21.07 
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Figure 4.6: Total Number of Hourly Extreme Rainfall Events at Selected 

Stations for the Periods 2007-2015 and 2015-2023. 

 

The spatial distribution for the total number of hourly extreme rainfall 

events, depicted in Figure 4.7, further supports this shift. The deepening of 

colour tones in the 2015 - 2023 map suggests a widespread intensification of 

hourly extreme rainfall occurrences across all study areas. During the 2007 - 

2015 period, the total number of hourly extreme rainfall events ranged from 

669 at the Pusat Penyelidekan At Jps Ampang Selangor Station to 703 at both 

the Kolam Takungan Batu and Empangan Genting Klang At W. Persekutuan 

Stations. During the 2015 - 2023 period, all study areas recorded an increase in 

the total number of events, ranging from 783 events at the Taman Ehsan At 

Kepong W. Persekutuan Station to 821 events at the Pusat Penyelidekan At 

Jps Ampang Selangor Station. 
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Figure 4.7: Spatial Distribution for the Total Number of Hourly Extreme 

Rainfall Events Across the Study Areas for the Periods 2007-2015 

and 2015-2023. 

 

The total of hourly extreme rainfall for both study periods at different 

stations is summarised in Table 4.9 and Figure 4.8. A consistent increase was 

observed at all stations, with increments ranging from 880.7 mm (6.10%) at 

the Empangan Genting Klang At W. Persekutuan Station to 3579.88 mm 

(23.90%) at the Pusat Penyelidekan at JPS Ampang Selangor Station. Notably, 

four stations, including Taman Ehsan At Kepong W. Persekutuan, Pusat 

Penyelidekan At Jps Ampang Selangor, Km 10 Ulu Kelang At Uk Height and 

Ldg. Edinburgh Site 2 At W. Persekutuan, experienced substantial increases of 
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at least 2514.18 mm (18.06%), while the remaining stations showed moderate 

increases of up to 2307.52 mm (14.68%). 

 

Table 4.9:  Total of Hourly Extreme Rainfall (mm) at Selected Stations for the 

Periods 2007-2015 and 2015-2023. 

No. Station 

Total of Hourly Extreme 

Rainfall (mm) 
Change 

(%) 
2007-2015 2015-2023 

1 
Kolam Takungan Batu 

(0231391RF) 
15104.73 17290.30 14.47 

2 
Taman Ehsan At Kepong W. 

Persekutuan (0231441RF) 
13918.48 16432.66 18.06 

3 
Pusat Penyelidekan At Jps 

Ampang Selangor (0231351RF) 
14978.92 18558.80 23.90 

4 
Km 10 Ulu Kelang At Uk 

Height (0231401RF) 
15195.40 18338.30 20.68 

5 

Ibu Bekalan Km. 11 At 

Gombak W. Persekutuan 

(0230721RF) 

14590.20 16159.90 10.76 

6 
Empangan Genting Klang At 

W. Persekutuan (0230631RF) 
14446.20 15326.90 6.10 

7 
I/pejabat Jps Malaysia At W. 

Persekutuan (0230641RF) 
15718.74 18026.26 14.68 

8 
Jln. Sg. Udang At Segambut 

(0231381RF) 
15450.87 17498.90 13.26 

9 
Ldg. Edinburgh Site 2 At W. 

Persekutuan (0230651RF) 
15674.92 19157.95 22.22 
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Figure 4.8: Total of Hourly Extreme Rainfall (mm) at Selected Stations for the 

Periods 2007-2015 and 2015-2023. 

 

The spatial distribution for the total of hourly extreme rainfall, 

illustrated in Figure 4.9, highlights a steady increase across all study areas. 

During the 2007-2015 period, the total of hourly extreme rainfall ranged from 

13952.83 mm to 15718.72 mm, with the I/Pejabat Jps Malaysia At W. 

Persekutuan Station recording the highest value, followed by the Ldg. 

Edinburgh Site 2 At W. Persekutuan and Jln. Sg. Udang At Segambut Stations. 

In the second study period (2015 - 2023), rainfall increased substantially, 

ranging from 15727.89 mm to 19157.95 mm, with the Ldg. Edinburgh Site 2 

At W. Persekutuan Station experiencing the highest total of hourly extreme 

rainfall, followed by the Pusat Penyelidekan At JPS Ampang Selangor and Km 

10 Ulu Kelang At Uk Height Stations. 
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Figure 4.9: Spatial Distribution for the Total of Hourly Extreme Rainfall (mm) 

across the Study Areas for the Periods 2007-2015 and 2015-2023. 

 

Table 4.10 and Figure 4.10 present the mean of hourly extreme 

rainfall at different stations for the two time periods. Unlike the total of hourly 

extreme rainfall, the mean of hourly extreme rainfall did not exhibit significant 

changes across stations. Two stations, Ibu Bekalan Km. 11 At Gombak W. 

Persekutuan and Empangan Genting Klang At W. Persekutuan, showed a 

slight decrease in the mean of hourly extreme rainfall by 0.98 mm (-4.38%) 

and 1.07 mm (-5.21%), respectively, while the other seven stations recorded 

slight increases ranging from 0.04 mm (0.17%) to 0.64 mm (2.88%).  
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Table 4.10: Mean of Hourly Extreme Rainfall (mm) at Selected Stations for 

the Periods 2007-2015 and 2015-2023. 

 

No. Station 

Mean of Hourly Extreme 

Rainfall (mm) 
Change 

(%) 
2007-2015 2015-2023 

1 
Kolam Takungan Batu 

(0231391RF) 
21.49 22 2.37 

2 
Taman Ehsan At Kepong W. 

Persekutuan (0231441RF) 
20.47 20.99 2.54 

3 
Pusat Penyelidekan At Jps 

Ampang Selangor (0231351RF) 
22.39 22.61 0.98 

4 
Km 10 Ulu Kelang At Uk 

Height (0231401RF) 
22.25 22.89 2.88 

5 

Ibu Bekalan Km. 11 At 

Gombak W. Persekutuan 

(0230721RF) 

21.21 20.28 -4.38 

6 
Empangan Genting Klang At 

W. Persekutuan (0230631RF) 
20.55 19.48 -5.21 

7 
I/pejabat Jps Malaysia At W. 

Persekutuan (0230641RF) 
22.95 22.99 0.17 

8 
Jln. Sg. Udang At Segambut 

(0231381RF) 
22.01 22.23 1.00 

9 
Ldg. Edinburgh Site 2 At W. 

Persekutuan (0230651RF) 
23.26 23.48 0.95 
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Figure 4.10:  Mean of Hourly Extreme Rainfall (mm) at Selected Stations for 

the Periods 2007-2015 and 2015-2023. 

 

The spatial distribution for the mean of hourly extreme rainfall, 

illustrated in Figure 4.11, indicates that all stations recorded comparable mean 

hourly extreme rainfall during both periods, ranging from 19.48 mm to 23.48 

mm. 

The observed increases in both the total number of hourly extreme 

rainfall events and the total of hourly extreme rainfall, despite minimal 

changes in the mean of hourly extreme rainfall, suggest a shift in rainfall 

patterns from 2007 to 2023. This shift is characterised by a rise in the 

frequency of hourly extreme events, rather than an intensification of individual 

events. The relatively stable mean values indicate that the increase in the total 

of hourly extreme rainfall was primarily driven by the growing number of 

extreme rainfall occurrences, rather than changes in the magnitude of each 

event. 
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Figure 4.11:  Spatial Distribution for the Mean of Hourly Extreme Rainfall 

(mm) across the Study Areas for the Periods 2007-2015 and 

2015-2023. 

 

4.5.2 Diurnal Distribution of the Total Number of Hourly Extreme 

Rainfall Events 

To gain deeper insight into variations in hourly rainfall patterns, the diurnal 

distribution for the total number of hourly extreme rainfall events across 

various stations for the periods 2007 - 2015 and 2015 - 2023 is illustrated in 

Figure 4.12. The peak occurrence of extreme rainfall in both periods was 

observed between 16:00 and 16:59, with 988 and 1145 events recorded, 

respectively. Generally, extreme rainfall events were concentrated during the 
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afternoon and evening hours at all stations, with a notable intensification 

observed during the 2015 - 2023 period, particularly between 16:00 and 19:59. 

The most significant increase occurred during 17:00 - 17:59, with an 

additional 237 events, marking a 27.69% rise compared to the earlier period.  

The Kolam Takungan Batu and Ibu Bekalan Km. 11 At Gombak W. 

Persekutuan Stations exhibited increases in the number of extreme rainfall 

events during 15:00 - 18:59, with increments ranging from 13 to 31 events and 

4 to 26 events, respectively. The Pusat Penyelidekan At Jps Ampang Selangor 

Station recorded the highest cumulative increase, with 124 events occurring 

between 14:00 and 19:59. This was followed closely by I/Pejabat Jps Malaysia 

At W. Persekutuan with 123 additional events during 16:00 - 18:59 and Ldg. 

Edinburgh Site 2 At W. Persekutuan with 122 additional events during 15:00 - 

21:59. 

At the Taman Ehsan At Kepong W. Persekutuan Station, the number 

of extreme rainfall events rose by 102 events between 15:00 and 19:59, with 

the highest single-hour increase of 39 events occurring at 17:00 - 17:59. The 

Km 10 Ulu Kelang At UK Heights Station saw increases ranging from 4 to 28 

events during the 14:00 - 19:59 window. Empangan Genting Klang At W. 

Persekutuan and Jln. Sg. Udang At Segambut Stations recorded the smallest 

total increases, both below 100 events, during the critical 16:00 - 19:59 period. 

These patterns align with the peak UHI effect, which typically occurs 

in the late afternoon, suggesting a possible link between urban heat buildup 

and the triggering of convective rainfall (Li et al., 2016). 
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(a)  

 

 
(b) 

 

 
(c) 

 

Figure 4.12:  Diurnal Distribution for the Total Number of Hourly Extreme 

Rainfall Events at (a) Kolam Takungan Batu Station, (b) Taman 

Ehsan At Kepong W. Persekutuan Station and (c) Pusat 

Penyelidekan At Jps Ampang Selangor Station for the Periods 

2007-2015 and 2015-2023. 
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(d)  

 

 
(e) 

 

 
(f) 

 

Figure 4.12:  Diurnal Distribution for the Total Number of Hourly Extreme 

Rainfall Events at (d) Km 10 Ulu Kelang At Uk Height Station, 

(e) Ibu Bekalan Km. 11 At Gombak W. Persekutuan Station and 

(f) Empangan Genting Klang At W. Persekutuan Station for the 

Periods 2007-2015 and 2015-2023. 
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(g)  

 

 
(h) 

 

 
(i) 

 

Figure 4.12:  Diurnal Distribution for the Total Number of Hourly Extreme 

Rainfall Events at (g) I/pejabat Jps Malaysia At W. Persekutuan 

Station, (h) Jln. Sg. Udang At Segambut Station and (i) Ldg. 

Edinburgh Site 2 At W. Persekutuan Station for the Periods 

2007-2015 and 2015-2023. 
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4.5.3 Trends and Sen’s Slope for the Hourly Extreme Rainfall 

Using the MMK test and Sen’s slope estimator, the trends and rates of change 

in the annual total number of hourly extreme rainfall events were analysed, as 

shown in Table 4.11 and Figure 4.13. Among the nine stations, seven 

exhibited statistically significant positive trends in the annual total number of 

hourly extreme rainfall events at the 95% confidence level. The station with 

the highest statistically significant increase was the Pusat Penyelidekan At Jps 

Ampang Selangor, recording a rise of 2.08 events/year, followed by the Km 10 

Ulu Kelang At Uk Height with 1.89 events/year, and the Ldg. Edinburgh Site 

2 At W. Persekutuan with 1.85 events/year. 

Jln. Sg. Udang At Segambut and Kolam Takungan Batu were the 

only stations that exhibited non-statistically significant positive trends, with 

the lowest magnitudes of 0.82 events/year and 0.95 events/year, respectively, 

suggesting more modest increases likely influenced by high interannual 

variability.  

The widespread presence of statistically significant upward trends in 

the annual total number of hourly extreme rainfall events across most stations 

reinforces the indication of increasingly frequent extreme rainfall patterns, 

particularly in the northern regions of Kuala Lumpur. This phenomenon may 

be attributed to increasing urbanisation and the associated UHI effects. 
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Table 4.11: Trends and Sen’s Slope for the Annual Total Number of Hourly 

Extreme Rainfall Events at Selected Stations from 2007 to 2023. 

No. Station Trend  
Sen’s Slope  

(events/year) 

1 Kolam Takungan Batu (0231391RF) Positive 0.95 

2 
Taman Ehsan At Kepong W. 

Persekutuan (0231441RF) 
Positive* 1.70 

3 
Pusat Penyelidekan At Jps Ampang 

Selangor (0231351RF) 
Positive* 2.08 

4 
Km 10 Ulu Kelang At Uk Height 

(0231401RF) 
Positive* 1.89 

5 
Ibu Bekalan Km. 11 At Gombak W. 

Persekutuan (0230721RF) 
Positive* 1.46 

6 
Empangan Genting Klang At W. 

Persekutuan (0230631RF) 
Positive* 1.37 

7 
I/pejabat Jps Malaysia At W. 

Persekutuan (0230641RF) 
Positive* 1.72 

8 
Jln. Sg. Udang At Segambut 

(0231381RF) 
Positive 0.82 

9 
Ldg. Edinburgh Site 2 At W. 

Persekutuan (0230651RF) 
Positive* 1.85 

Note: An asterisk (*) indicates statistical significance at 95% confidence level. 
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(a)  

 

 
(b) 

 

 
(c) 

 

Figure 4.13:  Sen’s Slope for the Annual Total Number of Hourly Extreme 

Rainfall Events (events/year) at (a) Kolam Takungan Batu 

Station, (b) Taman Ehsan At Kepong W. Persekutuan Station and 

(c) Pusat Penyelidekan At Jps Ampang Selangor Station from 

2007 to 2023. 



87 

 
(d)  

 

 
(e) 

 

 
(f) 

 

Figure 4.13:  Sen’s Slope for the Annual Total Number of Hourly Extreme 

Rainfall Events (events/year) at (d) Km 10 Ulu Kelang At Uk 

Height Station, (e) Ibu Bekalan Km. 11 At Gombak W. 

Persekutuan Station and (f) Empangan Genting Klang At W. 

Persekutuan Station from 2007 to 2023. 
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(g)  

 

 
(h) 

 

 
(i) 

 

Figure 4.13:  Sen’s Slope for the Annual Total Number of Hourly Extreme 

Rainfall Events (events/year) at (g) I/pejabat Jps Malaysia At W. 

Persekutuan Station, (h) Jln. Sg. Udang At Segambut Station and 

(i) Ldg. Edinburgh Site 2 At W. Persekutuan Station from 2007 

to 2023. 



89 

Similarly, the MMK test and Sen’s slope estimator were applied to 

detect trends and rates of change in the annual total of hourly extreme rainfall 

at various stations from 2007 to 2023, as presented in Table 4.12 and Figure 

4.14. All stations demonstrated positive trends in annual total hourly extreme 

rainfall, with increases ranging from 16.87 mm/year at the Empangan Genting 

Klang At W. Persekutuan Station to 50.48 mm/year at the Km 10 Ulu Kelang 

At Uk Height Station.  

Five stations exhibited statistically significant increasing trends at the 

95% confidence level, namely Kolam Takungan Batu (29.27 mm/year), 

Taman Ehsan At Kepong W. Persekutuan (36.19 mm/year), Km 10 Ulu 

Kelang At Uk Height (50.48 mm/year), Empangan Genting Klang At W. 

Persekutuan (16.87 mm/year), and I/pejabat Jps Malaysia At W. Persekutuan 

(45.10 mm/year).  

Although the Ldg. Edinburgh Site 2 At W. Persekutuan and Pusat 

Penyelidekan At Jps Ampang Selangor Stations recorded substantial 

increasing trends of 46.03 mm/year and 34.71 mm/year, respectively, these 

trends were not statistically significant, possibly due to high interannual 

variability.  

 Overall, the consistent presence of positive trends across all stations 

suggests a widespread intensification in the annual total of hourly extreme 

rainfall, primarily driven by more frequent extreme events, albeit with varying 

degrees of statistical confidence. 
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Table 4.12: Trends and Sen’s Slope for the Annual Total of Hourly Extreme 

Rainfall (mm/year) at Selected Stations from 2007 to 2023. 

No. Station Trend 
Sen’s Slope 

(mm/year) 

1 Kolam Takungan Batu (0231391RF) Positive* 29.27 

2 
Taman Ehsan At Kepong W. 

Persekutuan (0231441RF) 
Positive* 36.19 

3 
Pusat Penyelidekan At Jps Ampang 

Selangor (0231351RF) 
Positive 34.71 

4 
Km 10 Ulu Kelang At Uk Height 

(0231401RF) 
Positive* 50.48 

5 
Ibu Bekalan Km. 11 At Gombak W. 

Persekutuan (0230721RF) 
Positive 19.52 

6 
Empangan Genting Klang At W. 

Persekutuan (0230631RF) 
Positive* 16.87 

7 
I/pejabat Jps Malaysia At W. 

Persekutuan (0230641RF) 
Positive* 45.1 

8 
Jln. Sg. Udang At Segambut 

(0231381RF) 
Positive 24.36 

9 
Ldg. Edinburgh Site 2 At W. 

Persekutuan (0230651RF) 
Positive 46.03 

Note: An asterisk (*) indicates statistical significance at 95% confidence level. 
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(a)  

 

 
(b) 

 

 
(c) 

 

Figure 4.14:  Sen’s Slope for the Annual Total of Hourly Extreme Rainfall 

(mm/year) at (a) Kolam Takungan Batu Station, (b) Taman 

Ehsan At Kepong W. Persekutuan Station and (c) Pusat 

Penyelidekan At Jps Ampang Selangor Station from 2007 to 

2023. 
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(d)  

 

 
(e) 

 

 
(f) 

 

Figure 4.14:  Sen’s Slope for the Annual Total of Hourly Extreme Rainfall 

(mm/year) at (d) Km 10 Ulu Kelang At Uk Height Station, (e) 

Ibu Bekalan Km. 11 At Gombak W. Persekutuan Station and (f) 

Empangan Genting Klang At W. Persekutuan Station from 2007 

to 2023. 
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(g)  

 

 
(h) 

 

 
(i) 

 

Figure 4.14:  Sen’s Slope for the Annual Total of Hourly Extreme Rainfall 

(mm/year) at (g) I/pejabat Jps Malaysia At W. Persekutuan 

Station, (h) Jln. Sg. Udang At Segambut Station and (i) Ldg. 

Edinburgh Site 2 At W. Persekutuan Station from 2007 to 2023. 
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Table 4.13 and Figure 4.15 illustrate the trends and Sen’s slope for 

the annual mean of hourly extreme rainfall at selected stations from 2007 to 

2023. Similar to the comparative analysis, no statistically significant trends 

were observed at any of the stations.   

Four stations, Taman Ehsan At Kepong W. Persekutuan, Kolam 

Takungan Batu, Ldg. Edinburgh Site 2 At W. Persekutuan and Km 10 Ulu 

Kelang At Uk Height, exhibited extremely weak upward trends, with Sen’s 

slope values ranging from 0.03 mm/year to 0.14 mm/year. Conversely, Jln. Sg. 

Udang At Segambut, Ibu Bekalan Km. 11 At Gombak W. Persekutuan and 

Empangan Genting Klang At W. Persekutuan Stations displayed extremely 

weak downward trends, ranging from -0.04 mm/year to -0.15 mm/year. 

Meanwhile, both the Pusat Penyelidekan At Jps Ampang Selangor and 

I/pejabat Jps Malaysia At W. Persekutuan Stations showed no observable 

trend.  

In summary, the annual total number of hourly extreme rainfall 

events exhibited the most substantial changes across the study areas from 2007 

to 2023, with 77.78% of the stations showing statistically significant trends at 

the 95% confidence level. This was followed by the annual total of hourly 

extreme rainfall, with 55.56% of stations displaying significant trends. In 

contrast, none of the stations showed statistically significant trends in the 

annual mean of hourly extreme rainfall. This finding suggests that the annual 

mean was relatively insensitive to changes in independent factors such as 

SUHII during the study period. It further indicates that no significant 

relationship exists between the annual SUHII and the annual mean of hourly 

extreme rainfall in the study areas. The relationships between the annual 

SUHII and the annual total number of hourly extreme rainfall events, as well 

as between the annual SUHII and the annual total of hourly extreme rainfall, 

were examined in the next section. 
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Table 4.13: Trends and Sen’s Slope for the Annual Mean of Hourly Extreme 

Rainfall at Selected Stations from 2007 to 2023. 

No. Station Trend  
Sen’s Slope  

(mm/year) 

1 Kolam Takungan Batu (0231391RF) Positive 0.06 

2 
Taman Ehsan At Kepong W. 

Persekutuan (0231441RF) 
Positive 0.03 

3 
Pusat Penyelidekan At Jps Ampang 

Selangor (0231351RF) 
No trend 0 

4 
Km 10 Ulu Kelang At Uk Height 

(0231401RF) 
Positive 0.14 

5 
Ibu Bekalan Km. 11 At Gombak W. 

Persekutuan (0230721RF) 
Negative -0.11 

6 
Empangan Genting Klang At W. 

Persekutuan (0230631RF) 
Negative -0.15 

7 
I/pejabat Jps Malaysia At W. 

Persekutuan (0230641RF) 
No trend 0 

8 
Jln. Sg. Udang At Segambut 

(0231381RF) 
Negative -0.04 

9 
Ldg. Edinburgh Site 2 At W. 

Persekutuan (0230651RF) 
Positive 0.09 

Note: An asterisk (*) indicates statistical significance at 95% confidence level. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 4.15:  Sen’s Slope for the Annual Mean of Hourly Extreme Rainfall 

(mm/year) at (a) Kolam Takungan Batu Station, (b) Taman 

Ehsan At Kepong W. Persekutuan Station and (c) Pusat 

Penyelidekan At Jps Ampang Selangor Station from 2007 to 

2023. 
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(d)  

 

 
(e) 

 

 
(f) 

 

Figure 4.15:  Sen’s Slope for the Annual Mean of Hourly Extreme Rainfall 

(mm/year) at (d) Km 10 Ulu Kelang At Uk Height Station, (e) 

Ibu Bekalan Km. 11 At Gombak W. Persekutuan Station and (f) 

Empangan Genting Klang At W. Persekutuan Station from 2007 

to 2023. 
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(g)  

 

 
(h) 

 

 
(i) 

 

Figure 4.15:  Sen’s Slope for the Annual Mean of Hourly Extreme Rainfall 

(mm/year) at (g) I/pejabat Jps Malaysia At W. Persekutuan 

Station, (h) Jln. Sg. Udang At Segambut Station and (i) Ldg. 

Edinburgh Site 2 At W. Persekutuan Station from 2007 to 2023. 
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4.6 Relationships between UHI and Short-Duration Extreme Rainfall 

To study the relationships between the annual SUHII and two key rainfall 

parameters, the annual total of hourly extreme rainfall and the annual total 

number of hourly extreme rainfall events, both the coefficient of determination 

(R²) and Kendall’s Tau correlation (τ) were employed. SUHII values from 

2007, 2015 and 2023 were interpolated to estimate annual SUHII from 2007 to 

2023, while hourly extreme rainfall was grouped by year. Appendix B1–B9 

presents the annual SUHII and the annual rainfall for each station. 

Table 4.14 and Figure 4.16 present the R² results, while Table 4.15 

summarises the outcomes of the τ analysis. Generally, all stations 

demonstrated positive relationships between the annual SUHII and both 

rainfall parameters, though the strength of these relationships varied 

considerably. 

 

4.6.1 Coefficient of Determination (R²) 

When analysing the annual total of hourly extreme rainfall as the dependent 

variable, the Taman Ehsan At Kepong W. Persekutuan and Km 10 Ulu Kelang 

At Uk Height Stations recorded the strongest statistically significant (p < 0.05) 

relationships, with R² values of 0.2629 and 0.2319, respectively. Other stations 

such as the Pusat Penyelidekan At Jps Ampang Selangor, Ldg. Edinburgh Site 

2 At W. Persekutuan, Kolam Takungan Batu and Ibu Bekalan Km. 11 At 

Gombak W. Persekutuan, demonstrated weaker yet still positive relationships, 

with R² values ranging from 0.1237 to 0.2189. In contrast, the Jln. Sg. Udang 

At Segambut, Empangan Genting Klang At W. Persekutuan and I/Pejabat Jps 

Malaysia At W. Persekutuan Stations showed negligible relationships (R² = 

0.0271 to 0.0870), indicating limited sensitivity of total rainfall volume to 

SUHII at these locations.  

Stronger relationships were observed between the annual SUHII and 

the annual total number of hourly extreme rainfall events, suggesting that UHI 

effects may have a more direct influence on the frequency rather than the 

intensity of extreme rainfall events. Four stations exhibited statistically 

significant R² values at the 95% confidence level, with Ibu Bekalan Km. 11 At 

Gombak W. Persekutuan Station recording the highest (R² = 0.3088), followed 

by Km 10 Ulu Kelang At Uk Height Station (R² = 0.3035), Pusat 
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Penyelidekan At Jps Ampang Selangor Station (R² = 0.2880) and Taman 

Ehsan At Kepong W. Persekutuan Station (R² = 0.2530). The rest of the 

stations displayed weaker, non-significant relationships, ranging from 0.0407 

at the I/Pejabat Jps Malaysia At W. Persekutuan Station to 0.1728 at the 

Empangan Genting Klang At W. Persekutuan Station. 

 

Table 4.14: Coefficient of Determination (R²) between Annual SUHII and 

Annual Total of Hourly Extreme Rainfall, and between Annual 

SUHII and Annual Total Number of Hourly Extreme Rainfall 

Events at Selected Stations. 

No. Station 

R2 between 

Annual SUHII 

and Annual 

Total of Hourly 

Extreme 

Rainfall 
 

R2 between 

Annual SUHII 

and Annual 

Total Number 

of Extreme 

Rainfall Events  

1 
Kolam Takungan Batu 

(0231391RF) 
0.1546 0.1192 

2 
Taman Ehsan At Kepong W. 

Persekutuan (0231441RF) 
0.2629* 0.2530* 

3 
Pusat Penyelidekan At Jps 

Ampang Selangor (0231351RF) 
0.2189 0.2880* 

4 
Km 10 Ulu Kelang At Uk Height 

(0231401RF) 
0.2319* 0.3035* 

5 
Ibu Bekalan Km. 11 At Gombak 

W. Persekutuan (0230721RF) 
0.1237 0.3088* 

6 
Empangan Genting Klang At W. 

Persekutuan (0230631RF) 
0.0568 0.1728 

7 
I/pejabat Jps Malaysia At W. 

Persekutuan (0230641RF) 
0.0271 0.0407 

8 
Jln. Sg. Udang At Segambut 

(0231381RF) 
0.0870 0.1478 

9 
Ldg. Edinburgh Site 2 At W. 

Persekutuan (0230651RF) 
0.1682 0.1381 

Note: An asterisk (*) indicates statistical significance at 95% confidence level. 
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(a)  

 

 
(b) 

 

 
(c) 

 

Figure 4.16:  Coefficient of Determination (R²) between Annual SUHII and 

Annual Total of Hourly Extreme Rainfall, and between Annual 

SUHII and Annual Total Number of Hourly Extreme Rainfall 

Events at (a) Kolam Takungan Batu Station, (b) Taman Ehsan At 

Kepong W. Persekutuan Station and (c) Pusat Penyelidekan At 

Jps Ampang Selangor Station. 
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(d)  

 

 
(e) 

 

 
(f) 

 

Figure 4.16:  Coefficient of Determination (R²) between Annual SUHII and 

Annual Total of Hourly Extreme Rainfall, and between Annual 

SUHII and Annual Total Number of Hourly Extreme Rainfall 

Events at (d) Km 10 Ulu Kelang At Uk Height Station, (e) Ibu 

Bekalan Km. 11 At Gombak W. Persekutuan Station and (f) 

Empangan Genting Klang At W. Persekutuan Station. 
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(h) 

 

 
(i) 

 

Figure 4.16:  Coefficient of Determination (R²) between Annual SUHII and 

Annual Total of Hourly Extreme Rainfall, and between Annual 

SUHII and Annual Total Number of Hourly Extreme Rainfall 

Events at (g) I/pejabat Jps Malaysia At W. Persekutuan Station, 

(h) Jln. Sg. Udang At Segambut Station and (i) Ldg. Edinburgh 

Site 2 At W. Persekutuan Station. 
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4.6.2 Kendall’s Tau Correlation (τ) 

For the Kendall’s Tau correlation, all stations exhibited varying degrees of 

direct association between the annual SUHII and both the annual total of 

hourly extreme rainfall and the annual total number of hourly extreme rainfall 

events. When the dependent variable was the annual total of hourly extreme 

rainfall, the Taman Ehsan At Kepong W. Persekutuan Station showed the 

highest statistically significant correlation (τ = 0.4412, p < 0.05) at the 95% 

confidence level. Although statistically insignificant, the remaining stations 

demonstrated weak to moderate correlations, ranging from 0.1176 at the 

Empangan Genting Klang At W. Persekutuan Station to 0.3235 at the Km 10 

Ulu Kelang At Uk Height Station. 

In contrast, stronger correlations were observed between the annual 

SUHII and the annual total number of hourly extreme rainfall events, with 

seven stations recording higher τ values. Notably, four of these stations 

showed statistically significant correlations at the 95% confidence level: 

Taman Ehsan At Kepong W. Persekutuan Station (τ = 0.4593, p < 0.05), Ibu 

Bekalan Km. 11 At Gombak W. Persekutuan Station (τ = 0.4238, p < 0.05), 

Pusat Penyelidekan At Jps Ampang Selangor Station (τ = 0.3941, p < 0.05) 

and Km 10 Ulu Kelang At Uk Height Station (τ = 0.3616, p < 0.05). 

Meanwhile, Jln. Sg. Udang At Segambut and Ldg. Edinburgh Site 2 At W. 

Persekutuan Stations exhibited lower correlations of 0.1413 and 0.2222, 

respectively, compared to those with the annual total of hourly extreme rainfall. 

The remaining stations displayed mild correlations between annual SUHII and 

the annual total number of extreme rainfall events, ranging from 0.2388 at the 

Empangan Genting Klang At W. Persekutuan Station to 0.3111 at the Kolam 

Takungan Batu Station. 

The analysis using both the coefficient of determination and 

Kendall’s Tau correlation revealed generally positive relationships between 

the annual SUHII and both the annual total of hourly extreme rainfall and the 

annual total number of hourly extreme rainfall events. Stronger and more 

statistically significant correlations were observed for rainfall frequency than 

rainfall volume, suggesting that UHI may have a greater influence on the 

frequency rather than the intensity of extreme rainfall events. Importantly, 

stations like Taman Ehsan At Kepong W. Persekutuan, Pusat Penyelidekan At 
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Jps Ampang Selangor, Km 10 Ulu Kelang At Uk Height and Ibu Bekalan Km. 

11 At Gombak W. Persekutuan consistently showed stronger associations 

across both statistical methods.   

 

Table 4.15: Kendall’s Tau Correlation (τ) between Annual SUHII and Annual 

Total of Hourly Extreme Rainfall, and between Annual SUHII 

and Annual Total Number of Hourly Extreme Rainfall Events at 

Selected Stations. 

No. Station 

Annual SUHII 

and Annual 

Total of Hourly 

Extreme 

Rainfall 

Annual SUHII 

and Annual 

Total Number 

of Hourly 

Extreme 

Rainfall Events 

1 
Kolam Takungan Batu 

(0231391RF) 
0.2647 0.3111 

2 
Taman Ehsan At Kepong W. 

Persekutuan (0231441RF) 
0.4412* 0.4593* 

3 
Pusat Penyelidekan At Jps 

Ampang Selangor (0231351RF) 
0.2794 0.3941* 

4 
Km 10 Ulu Kelang At Uk Height 

(0231401RF) 
0.3235 0.3616* 

5 
Ibu Bekalan Km. 11 At Gombak 

W. Persekutuan (0230721RF) 
0.2206 0.4238* 

6 
Empangan Genting Klang At W. 

Persekutuan (0230631RF) 
0.1176 0.2388 

7 
I/pejabat Jps Malaysia At W. 

Persekutuan (0230641RF) 
0.2206 0.2583 

8 
Jln. Sg. Udang At Segambut 

(0231381RF) 
0.1765 0.1413 

9 
Ldg. Edinburgh Site 2 At W. 

Persekutuan (0230651RF) 
0.2500 0.2222 

Note: An asterisk (*) indicates statistical significance at 95% confidence level. 
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4.7 Summary 

Urbanisation and LULC changes played a significant role in shaping rainfall 

patterns. Rapid development in the northern region of Kuala Lumpur 

intensified the UHI effect, which in turn enhanced localised convection and 

led to an increase in the total number of hourly extreme rainfall events. The 

UHI effect, driven by expanding urbanisation, altered the local climate and 

contributed to more frequent intense rainfall events (Li et al., 2020; Whitford 

et al., 2023; Siswato, Schrier, & Hurk, 2022; Jiang, Zhang, & Luo, 2023). 

 Additionally, the spatial variability in rainfall patterns supported the 

presence of localised influences. Some stations recorded greater increases in 

the total number of hourly extreme rainfall events than others, suggesting that 

beyond SUHII, factors such as local topography, wind patterns and LULC 

changes were also influential (Huang et al., 2025; Mwanthi et al., 2024; Pen et 

al., 2024). These variations highlight the complexity of rainfall dynamics, 

where different areas respond uniquely to broader climatic and environmental 

changes. Notably, stations such as Taman Ehsan At Kepong W. Persekutuan, 

Pusat Penyelidekan At Jps Ampang Selangor, Km 10 Ulu Kelang At Uk 

Height and Ibu Bekalan Km. 11 At Gombak W. Persekutuan demonstrated 

greater sensitivity to SUHII variation over the study period. 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

This study demonstrates that the UHI effect had a measurable influence on 

short-duration extreme rainfall in the northern region of Kuala Lumpur from 

2007 to 2023. This conclusion is supported by the successful completion of the 

four study objectives. 

Firstly, the spatiotemporal variations in LULC were effectively 

analysed using Landsat imagery and classified through SVM and RF 

algorithms. The results revealed substantial urban expansion between 2007 

and 2015, characterised by an increase in built-up areas and a corresponding 

decline in vegetation cover and water bodies. Although a slight reduction in 

built-up areas was observed in 2023, the overall trend still indicated a net 

increase in urban development throughout the study period. 

Secondly, the SUHII was estimated through the quantification of LST 

derived from thermal bands of Landsat imagery. The findings showed a rising 

trend in SUHII, particularly in the northern parts of Kuala Lumpur, reflecting 

the impact of dense urbanisation and increasing surface heating over time. 

Thirdly, the spatiotemporal variation, diurnal distribution and trend of 

hourly extreme rainfall were examined, revealing an increase in the number of 

hourly extreme rainfall events, especially during late afternoon and early 

evening hours. Trend analysis further confirmed the presence of increasing 

short-duration extreme rainfall over the years.  

Finally, statistical analyses using the coefficient of determination (R²) 

and Kendall’s Tau correlation (τ) investigated the relationship between the 

SUHII and hourly extreme rainfall. Four out of nine stations exhibited 

statistically significant moderate relationships between the annual SUHII and 

the annual total number of hourly extreme rainfall events (R² = 0.2530 - 

0.3088; τ = 0.3616 - 0.4593; p < 0.05). These results suggest that intensified 

urban heating may contribute to the enhancement of localised convective 

rainfall in Kuala Lumpur. 
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In conclusion, the integration of remote sensing, machine learning 

classification, statistical analysis and geospatial techniques provides 

meaningful insight into how the urbanisation-driven heat intensification can 

influence the occurrence and distribution of extreme rainfall events. These 

findings emphasise the importance of incorporating UHI considerations into 

urban climate resilience planning and flood management strategies. 

 

5.2 Recommendations  

Building on the findings of this research, the following recommendations are 

put forth to promote sustainable urban development and guide future research 

in urban climate dynamics: 

1. Urban planners and policymakers should prioritise the implementation 

of green infrastructure, such as green roofs, urban parks and tree-lined 

streets, especially in areas exhibiting high SUHII. These measures can 

help reduce surface temperatures and potentially mitigate localised 

extreme rainfall events driven by urban heat. 

2. Given the observed intensification of short-duration extreme rainfall, 

local authorities are encouraged to enhance drainage and flood 

mitigation infrastructure in rapidly urbanising zones to accommodate 

increased surface runoff and minimise flood risk. 

3. To overcome the limitations caused by cloud cover in satellite imagery, 

future research should utilise data from satellites with higher temporal 

resolution, such as MODIS, or apply cloud-masking and gap-filling 

techniques to increase the availability and continuity of LULC, LST, 

and SUHII analyses across more time points. 

4. Considering the sensitivity of machine learning models to data quality 

and parameter selection, future studies should explore ensemble 

methods or deep learning approaches that are more resilient to noise 

and variability. Integrating multi-source data, such as LiDAR or high-

resolution aerial imagery, may further improve the reliability of LULC 

classification. 

5. To address the limitations posed by sparse rainfall stations and the 

uncertainties associated with the IDW interpolation method, future 
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research should incorporate radar-based and satellite-derived rainfall 

products, such as TRMM. Validation using ground-based observations 

is recommended to assess and improve interpolation accuracy. 

6. While this study focuses on SUHII and rainfall parameters, future 

investigations should include additional atmospheric variables, such as 

humidity, wind speed, atmospheric pressure and vertical motion, to 

develop a more comprehensive understanding of the physical 

mechanisms influencing rainfall under UHI conditions. 
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APPENDICES 

 

Appendix A: Threshold of 99th Percentile Hourly Extreme Rainfall. 

No. Station 
Threshold 

(mm) 

1 Kolam Takungan Batu (0231391RF) 9.34 

2 
Taman Ehsan At Kepong W. 

Persekutuan (0231441RF) 
9.38 

3 
Pusat Penyelidekan At Jps Ampang 

Selangor (0231351RF) 
10.09 

4 
Km 10 Ulu Kelang At Uk Height 

(0231401RF) 
9.4 

5 
Ibu Bekalan Km. 11 At Gombak W. 

Persekutuan (0230721RF) 
8.8 

6 
Empangan Genting Klang At W. 

Persekutuan (0230631RF) 
8.6 

7 
I/pejabat Jps Malaysia At W. 

Persekutuan (0230641RF) 
10.5 

8 Jln. Sg. Udang At Segambut (0231381RF) 9.53 

9 
Ldg. Edinburgh Site 2 At W. 

Persekutuan (0230651RF) 
10.5 
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Appendix B-1: Annual SUHII and Annual Rainfall at Kolam Takungan Batu 

Station. 

Year Annual SUHII 

Annual Total of 

Hourly Extreme 

Rainfall (mm) 

Annual Total 

Number of Hourly 

Extreme Rainfall 

Events 

2007 1.5387702 1087 62 

2008 1.664701 2051.5 97 

2009 1.790633 1519.104 70 

2010 1.916564 2284 98 

2011 2.042495 1802.5 92 

2012 2.168426 2133.279 101 

2013 2.294358 1929.452 80 

2014 2.420289 1665.395 76 

2015 2.5462202 1932.356 81 

2016 2.598028 1367.43 59 

2017 2.649835 2192.603 94 

2018 2.701643 1420.007 77 

2019 2.75345 2296.613 99 

2020 2.805258 2464.485 107 

2021 2.857065 1913.592 99 

2022 2.908873 2181.928 100 

2023 2.9606803 2153.788 97 
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Appendix B-2: Annual SUHII and Annual Rainfall at Taman Ehsan At 

Kepong W. Persekutuan Station. 

Year Annual SUHII 

Annual Total of 

Hourly Extreme 

Rainfall (mm) 

Annual Total 

Number of Hourly 

Extreme Rainfall 

Events 

2007 1.399024444 1244 65 

2008 1.602457926 1514.5 76 

2009 1.805891408 1836 81 

2010 2.00932489 1511.723223 72 

2011 2.212758372 1381.955653 82 

2012 2.416191854 2040.996742 102 

2013 2.619625336 2011.200153 96 

2014 2.823058818 1572.049518 72 

2015 3.0264923 2093.668941 88 

2016 3.056046409 1420.239455 69 

2017 3.085600518 1702.621839 80 

2018 3.115154627 1626.00713 81 

2019 3.144708736 1744.237113 83 

2020 3.174262845 2210.800228 109 

2021 3.203816955 1852.646877 98 

2022 3.233371064 1842.308501 91 

2023 3.262925173 2746.186276 118 
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Appendix B-3: Annual SUHII and Annual Rainfall at Pusat Penyelidekan At 

Jps Ampang Selangor Station. 

Year Annual SUHII 

Annual Total of 

Hourly Extreme 

Rainfall (mm) 

Annual Total 

Number of Hourly 

Extreme Rainfall 

Events 

2007 1.254371701 2081.8 87 

2008 1.335658487 2073.3 95 

2009 1.416945273 1534 75 

2010 1.498232059 1270.397434 58 

2011 1.579518845 1557.112432 71 

2012 1.660805631 2042.375695 87 

2013 1.742092417 1908.411179 76 

2014 1.823379203 2031.220355 93 

2015 1.904665988 1307.293063 62 

2016 1.970535783 1475.42824 67 

2017 2.036405578 2247.202797 103 

2018 2.102275373 1983.25733 87 

2019 2.168145168 2770.501551 107 

2020 2.234014963 2783.538226 113 

2021 2.299884758 2085.539596 101 

2022 2.365754552 2358.94464 117 

2023 2.431624347 2027.398054 91 
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Appendix B-4: Annual SUHII and Annual Rainfall at Km 10 Ulu Kelang At 

Uk Height Station. 

Year Annual SUHII 

Annual Total of 

Hourly Extreme 

Rainfall (mm) 

Annual Total 

Number of Hourly 

Extreme Rainfall 

Events 

2007 0.919739591 1857 88 

2008 0.961661847 1533.5 70 

2009 1.003584103 1355.5 64 

2010 1.045506359 951 49 

2011 1.087428615 1307.5 68 

2012 1.129350871 2811.1 107 

2013 1.171273127 2061.5 94 

2014 1.213195383 2182.7 94 

2015 1.255117638 2271 97 

2016 1.368438935 1527 66 

2017 1.481760232 2155.8 91 

2018 1.595081529 2025.7 85 

2019 1.708402826 2353 108 

2020 1.821724122 2576.7 104 

2021 1.935045419 2076.3 95 

2022 2.048366716 2541.2 114 

2023 2.161688013 1947.2 90 
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Appendix B-5: Annual SUHII and Annual Rainfall at Ibu Bekalan Km. 11 

At Gombak W. Persekutuan Station. 

Year Annual SUHII 

Annual Total of 

Hourly Extreme 

Rainfall (mm) 

Annual Total 

Number of Hourly 

Extreme Rainfall 

Events 

2007 1.465395149 1757 80 

2008 1.524280038 1940 91 

2009 1.583164926 2098.3 95 

2010 1.642049815 1614 81 

2011 1.700934703 1377 64 

2012 1.759819592 1682.1 84 

2013 1.81870448 1893.9 89 

2014 1.877589369 1477 69 

2015 1.936474257 2005.6 91 

2016 2.072637018 1226.3 59 

2017 2.208799779 2116.1 99 

2018 2.34496254 1570 88 

2019 2.481125301 2056.3 96 

2020 2.617288062 1876 88 

2021 2.753450823 1892.1 102 

2022 2.889613584 2069.1 102 

2023 3.025776345 2099.3 107 
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Appendix B-6: Annual SUHII and Annual Rainfall at Empangan Genting 

Klang At W. Persekutuan Station. 

Year Annual SUHII 

Annual Total of 

Hourly Extreme 

Rainfall (mm) 

Annual Total 

Number of Hourly 

Extreme Rainfall 

Events 

2007 -0.084530554 1431 73 

2008 -0.121236422 2026.5 92 

2009 -0.157942289 999.5 46 

2010 -0.194648156 1848.5 89 

2011 -0.231354024 1726 92 

2012 -0.268059891 1993.2 98 

2013 -0.304765758 1703.3 84 

2014 -0.341471626 1634.2 84 

2015 -0.378177493 2214 99 

2016 -0.232028469 1265.5 65 

2017 -0.085879444 1891.3 99 

2018 0.06026958 1325.6 77 

2019 0.206418604 1806.5 82 

2020 0.352567628 2125.5 103 

2021 0.498716652 2005.4 98 

2022 0.644865676 1918 109 

2023 0.791014701 1859.1 100 
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Appendix B-7: Annual SUHII and Annual Rainfall at I/pejabat Jps Malaysia 

At W. Persekutuan Station. 

Year Annual SUHII 

Annual Total of 

Hourly Extreme 

Rainfall (mm) 

Annual Total 

Number of Hourly 

Extreme Rainfall 

Events 

2007 0.745248782 1600.8 66 

2008 0.920639947 2983.8 127 

2009 1.096031111 1439.5 68 

2010 1.271422276 1502.5 61 

2011 1.44681344 1454 71 

2012 1.622204605 1875.397573 83 

2013 1.79759577 2221.176367 94 

2014 1.972986934 1877.335745 75 

2015 2.148378099 1881.553695 91 

2016 2.116373114 1779.16392 79 

2017 2.084368129 2049.466887 88 

2018 2.052363144 2303.6317 102 

2019 2.020358159 2391.921028 97 

2020 1.988353174 2079.796643 92 

2021 1.956348188 1677.591336 73 

2022 1.924343203 2341.97777 101 

2023 1.892338218 2285.379069 101 
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Appendix B-8: Annual SUHII and Annual Rainfall at Jln. Sg. Udang At 

Segambut Station. 

Year Annual SUHII 

Annual Total of 

Hourly Extreme 

Rainfall (mm) 

Annual Total 

Number of Hourly 

Extreme Rainfall 

Events 

2007 2.002210688 1940.5 87 

2008 2.222129709 2174 96 

2009 2.442048731 1494.696529 67 

2010 2.661967753 1269 57 

2011 2.881886775 1586 82 

2012 3.101805796 2200.44505 92 

2013 3.321724818 2355.103075 95 

2014 3.54164384 1684.264984 85 

2015 3.761562861 1979.37709 90 

2016 3.748155641 1800.682812 80 

2017 3.734748421 1882.539994 86 

2018 3.721341202 2097.066423 95 

2019 3.707933982 2573.031511 108 

2020 3.694526762 2237.565753 106 

2021 3.681119542 1835.403479 84 

2022 3.667712322 1941.727278 92 

2023 3.654305102 1898.360627 87 
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Appendix B-9: Annual SUHII and Annual Rainfall at Ldg. Edinburgh Site 2 

At W. Persekutuan Station. 

Year Annual SUHII 

Annual Total of 

Hourly Extreme 

Rainfall (mm) 

Annual Total 

Number of Hourly 

Extreme Rainfall 

Events 

2007 0.45620937 1909 85 

2008 0.613527711 1798.564663 83 

2009 0.770846051 1493.5 65 

2010 0.928164392 1697 73 

2011 1.085482732 1618.5 76 

2012 1.242801073 1974.428332 83 

2013 1.400119413 2572.618284 98 

2014 1.557437754 1430.805937 63 

2015 1.714756094 2637.15881 109 

2016 1.683358609 1383.220905 59 

2017 1.651961123 2111.27459 92 

2018 1.620563637 2293.883498 102 

2019 1.589166151 2544.476238 109 

2020 1.557768665 2284.056933 93 

2021 1.52637118 2225.98593 95 

2022 1.494973694 2024.644796 94 

2023 1.463576208 2833.752027 111 

 

 


