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ABSTRACT 

 

This proposal discusses the techniques of optimizing and deploying machine learning 

algorithms on embedded devices for manufacturing applications; We investigate 

problems of printed circuit board (PCB) defects and artificial intelligence in embedded 

system. PCB defects detection had been an essential problem to solve in manufacturing 

environments, whether it is quality assurance or the needs for PCB inspection had been 

ramping since decades ago. Fundamental limitation of human-based judgement of 

inspection engineers is the primary cause of faulty products including PCB defects 

exiting the manufacturing environment. On the other hand, artificial intelligence had 

been ways to enhances embedded system by enabling real-time, accurate detection and 

management of PCB defects through advanced pattern recognition and automated 

inspection methods. However, embedded system often been having limited computing 

power, small memory storage and relies on battery capacity. Not to say the difficulty in 

deploying either artificial intelligence or deep learning in embedded environments due 

to significant parameters size and computational complexity. In recent studies, we seen 

developers and researchers proposing solutions on deep learning algorithms like 

YOLO, EfficientNet, CNN, MobileNet etc. On the other hand, network compression 

and acceleration techniques such as pruning and quantization also been the focus of the 

studies for light-weight algorithms in embedded system. While in our studies, we 

primarily focusing on the deployment and fine-tuning of deep learning model which is 

YOLOv5 for PCB defects detection. We aim to levitate the baseline YOLOv5 into a 

state-of-the-art version that focus on lightweight performance, called the LW-

YOLOv5, which can been deploy seamlessly into embedded systems for manufacturing 

applications. As we conduction evaluation experiment on our model using openly 

accessible datasets like PKU-Market-PCB and perform comparative studies with the 

latest proposed solutions.  

 

Area of Study: Embedded System, Artificial Intelligence 

 

Keywords: Printed Circuit Boards, Machine Learning, YOLOv5, Microcontroller, 

Lightweight 
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Chapter 1 

 

Introduction 

Printed Circuit Boards (PCBs) are the basic fundamental of almost all the functioning 

electronics devices around us, the primary purpose serving as the base that support 

essential components like chips, capacitors and transistors. PCBs must be produced 

with the utmost standard of quality with minimal defects to make sure they work all the 

times. Traditional methods of defect detection during manufacturing like can cause 

inefficiency and increase error margins as they are not able to keep up with the 

emerging demands of modern production environment [1]. 

 

When talk about their application, PCBs had played a crucial role in 

measurement, detection, identification and positioning, particularly when using 

intelligent vision technology. PCBs defect detection generally falls under the type of 

object detection which can conclude in a two-step procedure. The first being 

identification tasks of potential spot within video or image, while the second being 

categorizing detected objects using the cropped image to further confirms their 

significant components within a board [18]. 

 

To ensure perfect PCBs manufacturing, manufacturers need to identify the 

important of preserving its reliability and safety for the cause. There are many ways for 

PCB inspections, whereas the most common ones come in as Automatic Optical 

Inspection (AOI) and manual checks by inspection engineers that had extension training 

on this topic. These traditional methods are both error-prone and resource intensive. As 

the goal is to deliver defects-free products to the baseline of the consumers whenever it 

is needed, these methods are definitely not solving the problem. Furthermore, recent 

studies that had shown that traditional machine-based classifications and feature 

extraction algorithms are not enough to outdoes deep learning methods that had faster 

and more precise than these traditional methods. [3]. Not to mention, impact of various 

degradation factors, such as defect detection methods, data quality and fault image need 

to be taken consideration when it comes to training of deep learning model for PCB 

defect detection [11]. 
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Therefore, topics on various deep learning approaches that had been used to 

tackle similar area of problems shall be discussed, whether it is PCBs defect detection, 

railway defects detection or object detection capabilities. Here, this study presents the 

visualization of reviews on PCB defects detection and application of deep learning on 

embedded environments in figure 1.1.1. 

 

 

Figure 1.1.1 Venn Diagram of Recent Studies Reviews. 

Recent studies had shown multiple research that had done to prove that deep 

learning methods like Convolutional Neural Network (CNNs), You-Only-Look-Once 

(YOLOs) and YOLO-CNN hybrid approaches had been a feasible way to tackle this 

problem all along. Firstly, the usage of CNNs under the problem of PCBs defects 

detection, both papers use structure of CNNs as their primary building blocks. In [6], 

this paper proposes a Skip-Connected Convolutional Autoencoder for PCB defects with 

the autoencoder being designed to learn flattened representation for non-defective 

images, further perform evaluation to the actual defective images for defects 

identifications. Whereas to tackle the degradation problem, it utilizes skip connections 

between the encoder and decoder layers which gained more detailed features during 

decoding process. It able to achieve a detection rate (DR) of 98% and a false pass rate 

below 1.7%. Other than that, [14] shown a good comparative study between two CNN-

based models for PCB defect detection which is SSD ResNet50v1 and EfficientDet D1. 

The paper shows how them utilize model’s backbone to identifying and classifying 
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PCB defects. From the result, the studies shown that SSD ResNet50v1 model achieved 

an accuracy of 81.68% while it utilizes backbone of ResNet50, coupled with Single 

Shot Detector (SSD) head, allowing a better real-time object detection than EfficientDet 

D1. 

 

Other studies then further explore the possibility of deep learning model like 

YOLO architecture for PCB defects detection. YOLO is also the main focus as it is a 

popular CNN-based object detection model known for real-time processing and 

accuracy capabilities. In [1], the paper focuses on an enhanced version of YOLOv3 

which is made for PCB defects detection. It utilizes integration of dual attention 

mechanism for better capturing features related to PCB defects and refinement of the 

anchor box selection for better localization accuracy. As its results compare to the 

baseline YOLOv3, which able to achieve higher mean Average Precision (mAP) and 

faster processing speed. Besides in [12], YOLOv4 architecture had also been 

implemented on similar topics on detecting integrated circuits (ICs) on PCB which 

conclude a critical task for PCBs defect detection. The proposed model utilizes 

CSPDarknet-53 as the backbone with the EfficientNetv2-L architecture in baseline 

YOLOv4. The model is designed to detect defects in PCBs in identifying variations and 

inconsistencies in placement and condition of ICs. It had done great results on F1-score 

and prediction speed, making it ideal for real-time inspection in manufacturing 

environment. 

 

Various studies also been circulating around the model of YOLOv5 due to its 

efficiency, accuracy and speed that outperforms the previous YOLO models. In [4], this 

paper proposed YOLOv5 model for PCB defect detection, splitting it into three 

respective model variants, which is small, medium and large. While all the results 

surpass the accuracy percentage of 97.52% using the optimized YOLOv5 model 

variants. A method called the YOLO-MHC introduced in [10] also utilize YOLOv5 but 

it introduces a hybrid multi-channel feature extraction approach with the combination 

of spatial pyramid pooling (SPP) and attention mechanisms. This particular study 

emphasizes on detection minor and complex PCB defects compared with the baseline 

YOLO models, achieving mean Average Precision (mAP) of 99.37%. Rather than that, 

one studies had been done on YOLOv5 architecture also, which is the YOLO-pdd. We 
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see YOLO-pdd modified the YOLOv5 architecture with the Res2Net by integration of 

multi-scale feature fusion techniques to improve detection precision across numerous 

defect sizes and types on PCBs. This model also employs a novel loss function designed 

to balance precision and recall, focusing on small defects and low-contrast regions [13]. 

Now, another hybrid approach of using YOLO model but with an advanced CNN 

architecture is used in [3], this paper employs Tiny-YOLOv2 model, design to perform 

fast detection with reduced number of convolutional layers. The architecture of Tiny-

YOLO-v2 model includes convolutional layers, activation functions like Leaky ReLU 

and pooling layers. This particular lightweight architecture allows for fast inference 

speeds and small model size of less than 50 MB make it suitable for implementation on 

embedded systems. 

 

After reviewing recent studies about how deep learning algorithms tackle the 

problem of PCB defects detection, now we switch over to the topic of application of 

deep learning models in embedded system environments. As deep learning becomes 

closer into our daily life via technology’s devices, there is a growing need to make these 

models more efficient for mobile devices and embedded system. These devices like 

smartphones, tablets, microcontroller and Iot gadgets, often having limited amount of 

processing power, memory and battery lifetime. Slow performance and high energy 

consumption are often the backbone of the problem for running large neural networks 

on such platforms. Researchers had been finding ways to compress these models, 

prioritizing limiting their size and making them runs more efficiently on those resource-

limited devices. 

 

As for the topics discussed, we truly interested of finding out techniques like 

pruning and quantization for deep learning models. Essentially, key purpose for pruning 

is that it can compress neural network architecture down to a good size by pruning out 

unessential and inefficient parameters [5]. Meanwhile, the size of the model can be 

reduced without losing much in terms of performance wise. On the other side, 

Quantization, simplifies the model even further by reducing the precision of the data it 

uses, for instance converting 32-bit numbers to 8-bit numbers. This approach generally 

helps in saving memory consumption and quicker processing speed [2], [7]. 
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To have better understanding on the topics, numerous studies had been showing their 

efforts on tackling the problem of pruning and quantization on deep learning 

algorithms. In [2], pruning can be categorized as two mode, static and dynamic, 

performing at offline mode will be consider as static and run-time will be considered 

as the other way around. Besides that, this paper discussed different granularities of 

pruning, such as elementwise, filter-wise and layer-wise pruning, each targeting 

different levels of network structure. Besides, the paper also categorizes quantization 

techniques as, post-training quantization (PTQ) and quantization-aware training (QAT) 

which both had their advantages and disadvantages from the tradeoff of computational 

resources and accuracy wise. 

 

While on the other hand, [5] proposed that pruning can be classified as non-

structured and structured pruning. Non-structured pruning eliminates individual 

weights, indicating sparse networks that can be difficult to optimize on hardware due 

to irregular memory access patterns. In contrast, structured pruning deletes entire 

neurons, filters, or channels, which results in more consistent, hardware-optimized 

network architectures. As for quantization techniques, the paper discussed two types of 

quantization techniques which involve, linear quantization and non-linear quantization. 

Both type of techniques, for examples, like non-linear quantization, uses techniques 

like k-means clustering to reduce the number of unique weight values. 

 

As for quantization techniques used to optimize deep neural networks (DNNs) 

for deployment on low-power microcontrollers. In [7], the paper utilizes a residual 

neural network (ResNet) architecture for deployment. The approaches used include 

both post-training quantization (PAT) and quantization-aware training (QAT) that we 

previously discussed in [2]. The authors also developed a framework called the 

MicronAI to help with the complete process of training, quantization and utilization of 

DNNs on microcontrollers. The relevant results shown that the models had been 

quantized to 16-bit fixed-point precision generally maintained similar accuracy levels 

while the 8-bit precision quantized model experienced a slight drop in accuracy. 

 

Rather than development of framework on relevant topics, several models 

targeting different problem such as object detection and railway track damage detection 
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had also been discussed on recent research while adapting techniques for model 

compression. In [8], the paper had used the YOLOv5 model by applying pruning at the 

Batch Normalization (BN) layer to reduce the number of parameters. It was then 

followed by quantization process using the OpenVINO toolkit to transform model’s 

weight from 32-bit floating point to 80bit integer format. The improved YOLOv5 is 

able to achieve a 36.6 reduction in parameter count and a 35% reduction in weight 

storage file size compared to the baseline. 

 

In [9], the paper introduces YOLOv5-LITE as a lighter weight version for the 

baseline YOLOv5 version for lower-power devices. Here, the paper utilizes different 

techniques and method to reduce model’s operational efficiency and memory footprint 

by using Fused Mobile Inverted Bottleneck Convolution (BF_MBConv) to minimize 

parameters and floating-point. Also, the paper uses similar mechanism like which is 

Squeeze-and-Excitation (SE) functions to enhance feature importance. Additionally, 

DropBlock, Shuffle convolution and Focal-EloU Loss function had been used to create 

the ultimate YOLOv5-LITE model which achieved over a mean Average Precision 

(mAP)@0.5 of 94.4%, an 8% more than the original YOLOv5 model. 

 

1.1  Problem Statement and Motivation  

One of the most important components from the fundamental aspect of almost 

all electronic devices, spanning industries like computing, telecommunications, 

aerospace and industrial system is printed circuit boards (PCBs) [1]. Since the advance 

of technology began, the needs for smaller and lighter electronic devices have never 

been appearing like never before. However, the more compact the PCBs design is going 

to be, the more challenging it is going to be for implement, develop or construct to reach 

such requirements. Defects that lie within PCBs can be missing holes, mouse bites, 

open circuits, shorts, spurs and spurious copper. On a rare occasion, incident like board 

overheating or catastrophic failures can occur if those defects were to leave undetected 

[11]. Tracing back to the traditional PCB defect detection methods can be Automatic 

Optical Inspection (AOI), Manual inspection and a more advanced techniques of 

electrical testing. These methods pose different difficulty and limitations in term of 

manpower and operational costs like expensive tools and complex circuits for electrical 

testing [20]. AOI systems, which primarily depend on rule-based algorithms, often 
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struggle to handle issues like corrupted PCB images, varying component layouts, and 

irregular component sizes [12][13]. These limitations highlight the need for more 

flexible and reliable methods for detecting defects. 

 

With those advancements in artificial intelligence, deep learning has emerged 

as a promising alternative for PCB defect detection. Deep learning models were often 

the best choice for handling complex image classification and object detection tasks, as 

their learning speed and solid deductive computation [6]. However, deploying these 

large, computationally intensive models on embedded devices introduces typical  

challenges that is similar to mobile phone. Embedded systems are usually equipped 

with limited memory (often less than 1 MiB), constrained processing power and low 

energy consumption. They often struggle to run the deep learning algorithms that is 

resource-hungry which are commonly used for defect detection [7]. Most deep learning 

models are designed to run on powerful systems with high-performance GPUs and 

CPUs. Besides, not to mention their huge memory consumption and further 

complicating deployment on embedded platforms [2]. As such, these hardware 

constraints limit the potential of traditional deep learning models in embedded 

environments, prompting the need for better novelty and advancements to be made. 

 

The motivation for addressing PCB defect detection stems from the growing 

reliance on PCBs in devices like smartphones, drones, and wearables, where ensuring 

quality, safety, and functionality is paramount. Traditional inspection methods are 

increasingly having insufficient capability for smaller and more intricate PCB designs. 

In that case, there are more demand for an efficient detection technique [1][11]. Defects 

in PCBs not only lead to costly recalls but also damage a company’s reputation in 

manufacturing them. This has fueled the requirement for innovative solutions, 

particularly those leveraging artificial intelligence and embedded systems. These 

requirements allow more works to emerged and competed against to enhance 

algorithm’s detection accuracy and efficiency. On the other hand, with their ability to 

learn from large datasets and adapt to new defect types, deep learning models can offer 

a compelling alternative to rule-based inspection methods [2][6]. 
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While deep learning holds promising outcomes and solutions, the challenge lies 

in tailoring these models for deployment on embedded systems. Embedded 

environments impose strict constraints on computational resources. Therefore, the 

industry needs to come out with requiring novel approaches to reduce model size and 

computational demands without sacrificing accuracy [7]. As to address the problem 

stated, pruning and quantization, as highlighted by [2], are among the techniques used 

to compress deep neural networks for faster inference on resource-constraint devices. 

The development of optimized lightweight deep learning models could pave the way 

for real-time defect detection and be transforming the PCB inspection landscape. 

 

In conclusion, the continued evolution of PCB designs and manufacturing 

demands calls for an intersection of artificial intelligence and embedded systems to 

address limitations in traditional inspection methods. By leveraging the capability of 

deep learning and addressing the hardware limitations of embedded devices. It is 

definitely achievable to create robust and efficient solutions for PCB defect detection. 

Such advancements promise to enhance quality assurance, reduce production costs and 

meet the growing demand for high-performing electronic devices across industries. 

This research thus seeks to bridge the gap between cutting-edge AI algorithms and 

practical, real-world applications in PCB manufacturing. 

 

1.2  Research Objectives  

This research aims to enhance the field of PCB defect detection by optimizing 

and deploying deep learning algorithms on embedded devices for manufacturing 

applications. The specific objectives of this work are as follows:  

 

1.  Development of a LW-YOLOv5 for Embedded Systems:  

We introduce a novel, lightweight version of YOLOv5 model, called the LW-

YOLOv5 model, optimized for real-time PCB defect detection on embedded 

environment with the memory consumption of less than 100MB. We emphasize on 

using baseline YOLOv5 from the YOLOs, specifically the YOLOv5-nano version,  

then slowly converging to a more improved version specifically focusing on lighter 

model’s weight and higher accuracy and precisions for detections. We aimed for better 
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optimized performance in term of mean Average Precision (mAP), params size (M) and 

model size (MB). 

 

 

2.  Comparative Analysis and Ablation Studies of LW-YOLOv5 Against 

State-of-the-art Models  

 Conduct comparative analysis and ablation studies by Q4 2026 to evaluate LW-

YOLOv5 against state-of-the-art models (e.g., MSD-YOLO [18], YOLO-LFPD [20], 

ARMA-based YOLO [46]) for PCB defect detection. Implement and test at least four 

optimization techniques (e.g., optimized anchor boxes, Normalized Wasserstein 

Distance [44], Space-to-Depth Convolution [43], Mixed Local Channel Attention [49]) 

to achieve a mAP@0.5 of 0.90 or higher and reduce computational complexity by 20% 

compared to YOLOv5n, ensuring suitability for embedded systems. 

 

3.  Deployment of LW-YOLOv5 on NVIDIA Jetson Orin Nano 

 Deploy the LW-YOLOv5 model on the NVIDIA Jetson Orin Nano [51], 

achieving an inference speed of at least 30 FPS at 640x640 resolution using FP16 

ONNX format, with average power consumption below 7W and memory usage under 

4GB. Ensure thermal stability (CPU/GPU temperatures below 60°C) and evaluate 

performance for offline quality audits, targeting a mAP@0.5 above 0.90 for real-time 

PCB defect detection. 

 

4.  Comprehensive Analysis on LW-YOLOv5 on Resource-Constrained 

Platforms  

Evaluate LW-YOLOv5’s performance on resource-constrained platforms, 

including the NVIDIA Jetson Orin Nano [51]. Achieve a mAP@0.5 above 0.90, 

inference speed of at least 30 FPS, and memory usage below 100MB using TensorFlow 

Lite Micro. Improve detection of small defects (e.g., mouse bites) and resolve class 

ambiguities (e.g., spur vs. spurious copper) through targeted data augmentation, aiming 

for a 10% reduction in false positives and negatives. 

 

1.3  Project Scope and Direction  
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This study focuses on optimizing and deploying machine learning algorithms 

on embedded devices, specifically the NVIDIA Jetson Orin Nano [51], for real-time 

printed circuit board (PCB) defect detection in manufacturing environments. The 

project addresses the critical challenge of ensuring high-quality PCB production by 

developing a novel, lightweight deep learning model, LW-YOLOv5, derived from the 

YOLOv5-nano architecture. The primary deliverable is a compact model with a size 

under 1MB, optimized for high accuracy (mAP@0.5 ≥ 0.90) and real-time inference (≥ 

30 FPS) on the Jetson Orin Nano, targeting defects such as missing holes, shorts, open 

circuits, spurs, spurious copper, and mouse bites. 

 

The scope encompasses modifying the YOLOv5-nano architecture by 

integrating lightweight components (e.g., Space-to-Depth Convolution (SPD-Conv) 

[43] and Mixed Local Channel Attention (MLCA) [49]). The model will be trained and 

evaluated using the PKU-Market-PCB, with data augmentation techniques (e.g., 

horizontal/vertical flips, motion blur, brightness adjustments) to enhance robustness. 

Limitations include the Jetson Orin Nano’s constrained computational power, memory 

(<1GB target), and power consumption (<7W target), which necessitate a balance 

between model size, accuracy, and inference speed. Traditional methods like manual 

inspection and automated optical inspection (AOI) suffer from lower accuracy and 

adaptability, justifying the need for a lightweight deep learning solution. 

 

The workflow involves improving the YOLOv5 backbone and neck, optimizing 

anchor boxes via K-means clustering, and conducting comparative studies against state-

of-the-art models (e.g., MSD-YOLO [18], YOLO-LFPD [20], ARMA-based YOLO 

[46]). Ablation experiments will quantify the impact of each optimization on model 

size, detection accuracy, and computational cost. The project aims to deploy LW-

YOLOv5 on the Jetson Orin Nano, achieving thermal stability (CPU/GPU temperatures 

<60°C) and enabling applications in offline quality audits or low-volume inspection 

tasks, with potential for future inline automated optical inspection. 

 

1.4  Contributions 

This research significantly enhances PCB defect detection by developing a 

novel, lightweight deep learning model, LW-YOLOv5, optimized for real-time 
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performance on embedded systems, specifically the NVIDIA Jetson Orin Nano. The 

first major contribution is the creation of LW-YOLOv5, derived from the YOLOv5-

nano baseline, designed to achieve a model size under 1MB and a parameter count of 

approximately 1.18M while delivering high accuracy for defects like missing holes, 

shorts, open circuits, spurs, spurious copper, and mouse bites. By integrating 

lightweight architectural optimizations such as Space-to-Depth Convolution (SPD-

Conv) [43], Normalized Wasserstein Distance (NWD) [44], and Mixed Local Channel 

Attention (MLCA) [49], the model targets a mean Average Precision (mAP@0.5) of 

0.90 or higher on the PKU-Market-PCB [15]. This development ensures that LW-

YOLOv5 operates efficiently within the memory and computational constraints of 

embedded environments, providing a robust solution for manufacturing quality control. 

 

The second contribution lies in conducting comprehensive comparative analysis 

and ablation studies to evaluate LW-YOLOv5 against state-of-the-art models, including 

MSD-YOLO, YOLO-LFPD, and ARMA-based YOLO, for PCB defect detection. The 

research implements and tests at least four optimization techniques, optimized anchor 

boxes via K-means clustering, NWD [44], SPD-Conv [43], and MLCA [49]to achieve 

a mAP@0.5 of 0.90 or higher and reduce computational complexity by 20% compared 

to YOLOv5n. These studies demonstrate LW-YOLOv5’s superior performance, with a 

precision of 0.97 and recall of 0.914, highlighting its suitability for embedded systems. 

The ablation experiments quantify the impact of each optimization, offering insights 

into their contributions to improved accuracy and efficiency, which are critical for 

resource-constrained platforms like the Jetson Orin Nano. 

 

A third key contribution is the successful deployment of LW-YOLOv5 on the 

NVIDIA Jetson Orin Nano, achieving an inference speed of at least 10 FPS at 640x640 

resolution using FP16 ONNX format, with average power consumption below 7W and 

memory usage under 4GB. The deployment ensures thermal stability, maintaining CPU 

and GPU temperatures below 60°C, and targets a mAP@0.5 above 0.90 for real-time 

PCB defect detection. This enables practical applications in offline quality audits, 

addressing the need for reliable, high-speed inspection in manufacturing environments. 

The use of CUDA-enabled ONNX Runtime and fused convolutional operations further 
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optimizes performance, making LW-YOLOv5 a viable solution for embedded 

deployment in industrial settings. 

 

The final contribution involves a comprehensive analysis of LW-YOLOv5’s 

performance on resource-constrained platforms, specifically the NVIDIA Jetson Orin 

Nano, achieving a mAP@0.5 above 0.90, inference speed of at least 10 FPS, and 

memory usage below 1GB using ONNX Runtime. The research improves detection of 

small defects, such as mouse bites, and resolves class ambiguities (e.g., spur vs. 

spurious copper) through targeted data augmentation techniques, including 

horizontal/vertical flips, brightness adjustments, and motion blur. These efforts result 

in a 10% reduction in false positives and negatives, enhancing the model’s robustness 

and reliability. By addressing these challenges, the research provides a scalable 

framework for deploying lightweight deep learning models in manufacturing, paving 

the way for future advancements in AI-driven quality control. 

 

1.5  Report Organizations  

The details of this research are discussed in this section. In Chapter 2, a 

comprehensive review of existing literature on PCB defect detection is conducted, 

focusing on four selected studies that utilize state-of-the-art methods. This includes an 

analysis of their strengths, weaknesses, and applicability to real-world scenarios. 

Additionally, three studies related to PASCAL VOC [16][17] object detection are 

discussed to highlight advancements in object detection methodologies. A comparative 

analysis between the selected papers is presented to identify research gaps and 

opportunities for improvement, which inform the direction of this study. 

 

Chapter 3 explains the end-to-end methodology used to build a lightweight 

PCB-defect detector that runs on embedded hardware. It begins by describing the six 

defect classes in the PKU synthetic PCB dataset and outlines how an eighteen-fold 

augmentation schedule—flips, brightness-contrast shifts, rotation, motion-blur and 

resize—expands the modest training set into a richly varied corpus. The chapter then 

introduces the LW-YOLOv5 architecture, showing how the YOLOv5-nano backbone 

is progressively replaced with space-to-depth down-samplers, reparametrized attention 

blocks, Ghost-based dynamic convolutions, mixed-local channel attention, and cross-
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resolution fusion to retain fine detail while holding the model to about 1.2 million 

parameters. Anchor boxes are re-clustered with K-means and the Normalised 

Wasserstein Distance loss is adopted to stabilise training on tiny features. The section 

closes with a timeline that maps data preparation, model design, training, ablation and 

deployment tasks onto a 20-week schedule, ensuring each stage directly supports the 

project’s SMART objectives. 

 

In Chapter 4, This chapter translates the methodology into an executable 

blueprint. It opens with a high-level block diagram that maps the eight workflow 

phases—from raw-image acquisition through comparative analysis—and then expands 

each phase inside a detailed component diagram. The hardware subsection specifies the 

development laptop and the Jetson Orin Nano target, while the software subsection lists 

the Python-Colab tool-chain, machine-learning frameworks and deployment utilities. 

Data-flow narratives describe how images are split, augmented eighteen-fold and 

funnelled through the pipeline; how the LW-YOLOv5 configuration replaces standard 

YOLOv5-nano layers with SPD-Conv, RCSOSA, GhostDynamic, MLCA and CRFM 

modules; and how K-means anchors and a Wasserstein loss are prepared. A concise 

table summarises hyper-parameter selections and their rationale. The chapter closes by 

previewing the training, evaluation and deployment tasks that will be executed in later 

chapters. 

 

In Chapter 5, Implementation details show how the design is realised in both 

hardware and software. The hardware section documents physical set-ups: a Ryzen-

RTX3050 laptop for model development and the Jetson Orin Nano for embedded 

deployment, each accompanied by a specification table. The software section reviews 

development tools, libraries and frameworks, followed by step-by-step configuration 

on Google Colab and Ubuntu 22.04 LTS. Screenshots illustrate package installation, 

dataset download, augmentation scripts, anchor re-clustering and YAML generation. 

Subsequent sections walk through model training with tuned hyper-parameters, 

validation with TensorBoard and export to PyTorch and ONNX artefacts. Operational 

screenshots demonstrate three execution modes—FP32 PyTorch, FP16 PyTorch and 

CPU-only ONNX—and log their latencies, power draw and memory footprints. 

Implementation issues such as quantisation failures, TensorRT incompatibilities and 
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script patching are summarised, and the chapter ends with a brief remark that LW-

YOLOv5 reaches the edge device intact but still resists aggressive compression. 

 

In Chapter 6, Evaluation begins by defining detection-quality and 

computational-cost metrics, then reports results for the baseline YOLOv5-nano, the 

augmented baseline and the proposed LW-YOLOv5. Training and validation curves 

confirm stable convergence, and class-level plots highlight residual weakness on spur 

and spurious-copper defects. Jetson profiling shows that the FP16-ONNX build runs at 

21 FPS with 6 W average power—suitable for offline audits but below the 60 FPS inline 

AOI goal. A comparative study ranks LW-YOLOv5 ahead of other compact detectors 

on accuracy-per-parameter, while ablation tables attribute most gains to SPD-Conv, 

NWD and MLCA. Error analysis identifies three failure modes—class ambiguity, low-

contrast misses and lighting-induced false positives—and proposes targeted remedies. 

A challenges section reflects on model-compression roadblocks and tool-chain quirks, 

and an objectives-evaluation section scores each SMART objective: lightweight design 

and comparative superiority achieved; real-time speed and micro-controller 

deployment partially met. The chapter concludes that LW-YOLOv5 delivers high-

accuracy, low-power PCB inspection on edge hardware, but further optimisation is 

needed for high-speed production lines. 

 

In Chapter 7, The closing chapter distils the project’s outcomes and charts the 

next steps. It opens with a concise conclusion that revisits each SMART objective and 

records the final scorecard: LW-YOLOv5 meets the lightweight-design goal (≈1 MB, 

1.18 M parameters) and surpasses the 0.90 mAP threshold, outperforms compact state-

of-the-art detectors on accuracy-per-compute, and runs efficiently on the Jetson Orin 

Nano while maintaining sub-7 W power and safe thermals. Two objectives remain 

partially satisfied—real-time 30 FPS throughput and full TensorFlow-Lite-Micro 

portability—owing to ONNX-Runtime CPU fall-backs and operator-compatibility gaps. 

The discussion highlights key contributions: a validated framework for embedded PCB 

inspection, architectural insights that lift small-defect recall, and a data-augmentation 

recipe that trims false detections by roughly ten percent. 
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Chapter 2 

 

Literature Review 

2.1  Previous Works of YOLOs on PCB defect dataset from Peking University 

2.1.1  Lightweight PCB defect detection algorithm based on MSD-YOLO  

 This paper [18] discusses the problem of low accuracy and slow detection rate 

(DR) of existing target detection algorithms for PCB defect detections. Then, it 

explained details of the structure architecture of the baseline YOLOv5 and summarized 

out its current limitations. For further discussions, it highlighted one of the problems 

within baseline YOLOv5, which its default anchor box is built to be more favorable for 

the public available datasets, COCO. Besides, multiple weaknesses from YOLOv5 

were also discussed, from the perspective of its feature extraction accuracy, 

computational efficiency and large amount of information loss. In a more specific 

views, the paper discussed YOLOv5’s backbone network, which is the CSPDarknet53, 

and the SPP module. It was mentioned that this particular backbone network, 

CSPDarknet53, fails to obtain non-redundant information despite it having a good 

extraction accuracy. Other than that, SPP module’s maxpooling operation was 

underscored to discuss its large amount of information loss thus failing to get both local 

and global information. In conclusions, the paper made clear that baseline YOLOv5 

was not built for its efficiency for intense computational and small object’s feature 

representations [25] [26]. The improved structure architecture of the baseline YOLOv5, 

called the MSD-YOLO can be illustrated in figure 2.1.1.1 

 

Figure 2.1.1.1 Improved Network Structure based on baseline YOLOv5. 
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 After that, the paper discussed about its improved structure of its YOLOv5, 

aimed to solve all the weaknesses aforementioned exists on baseline YOLOv5. Start 

off with the improvement, the paper replaces the CSPDarknet53 network with the latest 

combined version of MobileNet-v1 and MobileNet-v2 networks in term of their 

strengths, which is called the MobileNet_Block module in MobileNet-v3 [27] as the 

backbone network. It also utilizes a lighter weight SE attention mechanism [28] and 

new-found activation functions. Other than that, the paper places CSPDarknet53 om 

the first and second layers of the network then incorporates it with MobileNet_Block 

module in deeper layers. However, other limitations were spotted in usage of the new 

MobileNet_Block module, which decreases the model accuracy while it is reducing the 

model’s parameter through convolution operations. The paper then proposed a new 

method by introducing the inverted residual structure which to alleviate the training 

errors caused by multiple layers stacked together. Visualization of the 

MobileNet_Block is shown in figure 2.1.1.2 

 

Figure 2.1.1.2 MobileNet_Block structure. 

 Besides that, the paper stated that depth-wise separable convolution had 

outrageous advantages over normal convolution in terms of their model size and 

computational load. The proposed method by the paper, mentioned that two steps 

operations for the methods. First, deep convolution is performed, where the convolution 

kernel is separated into single channels, and each channel is convolved individually as 

the operation is visualized in figure 2.1.1.3. This process then produces an output 

feature map with the same number of channels as the input feature map. Secondly, a 

pointwise convolution is applied using a 1x1 convolution kernel. This step combines 

the feature maps from the previous layer by weighting them and merging them along 

the depth dimension to create a new feature map. 
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Figure 2.1.1.3 Depth-separable convolution illustration. 

 Then, the paper further discussed about a new activation function, h-swish 

activation function and the SE attention mechanism. This activation function was used 

because of its good performance compared to regular ReLU function and its 

characteristics of solving the saturation problem in neural net. The paper stated that as 

the network becomes deeper, the cost of using nonlinear activation functions decreases, 

which can help reduce the overall parameter size. On the other hand, the SE attention 

mechanism is used to allocate computational resources more effectively by focusing on 

the most informative parts of an image, which enhances the detection of objects of 

interest while minimizing background noise. Thus, it made up a great improvement for 

the proposed model. 

 Finally, a decoupled detection head is proposed to deal with the problem of high 

coupling between class and positional information in features channel. This adjustment 

made the head able to isolate and discover information separately. However, decoupled 

head led to another problem which is specific classification and localizations 

misalignment. The paper then proposed a good method like add in IOU for the 

regression branch and separately trained it with other two branches. From the data pre-

processing steps, the paper suggests data augmentation techniques to process the 

images from PKU-Market PCB dataset [15]. Hence, the paper concluded that their 

detection rate (DR) had improved after using the new backbone, MobileNetv3. 

However, their attribute extraction abilities were weakened as well. A tabular forms 

view was constructed to made clear of the adjustment and modifications made that 

helped with the results of mean Average Precision (mAP), recall, frame per second (fps) 

and parameters (M) in figure 2.1.1.4. 
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Figure 2.1.1.4 Ablation experiments on tabular forms for model comparison. 

 

2.1.2  Optimized Lightweight PCB Real-Time Defect Detection Algorithm  

 In this research, the paper [19] did a similar approach like [18] that using 

baseline YOLOv5 then slowly converging and doing various modification towards a 

more improved version. Firstly, the paper proposed a similar backbone structure that 

used MobileNetv3 and include a different sub-module of attention mechanism to 

prevent downfall of accuracy in its own models. Then, the paper utilized a fast 

normalized bidirectional feature pyramid and same decoupled head concept for the 

similar reason. As for the novelty of this approach, the paper utilized pruning techniques 

as one of their final step processes for the lightweight model. On behalf of the data pre-

processing steps, common data pre-processing techniques are used. These techniques 

included common data augmentation techniques such as grayscale transformation, 

colour enhancement and others. Also, enlargement of dataset size, prevention of 

overfitting model, acceleration of training time and enhancement of detection 

performance were made along the way. 

 Starting off with the structure backbone of the improved lightweight YOLOv5, 

the paper incorporated MobilenetV3-small in the first 12 layers as attribution 

extraction. Then, fusion of local and global features was performed using SPPF. Not to 

mention, MobileNetv3 model had selected 11 inverted residual modules based off 

different convolutions. Adopting [29] research, two activation function were directly 

applied, which is ReLU and H-Swish, while the first three being the ReLU. Structural 

layers of the MobileNetV3 are shown in figure 2.1.2.1. Besides that, the paper first 

mentioned about limitation of potential accuracy loss, then further proposed the usage 

of convolutional attention module [30] (CBAM). In short, the paper also introduced a 

novel attention sub-module called C3AM by combination of CBAM and Bottleneck 

structures. The uses of the new attention sub-module allowed the baseline YOLOv5 to 

further hold and combine information.  
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Figure 2.1.2.1 Structural Layers of MobileNetV3. 

 From the neck structure of the baseline YOLOv5, the original FPN and PANet 

structure accumulated information from numerous levels of the network. Here, the 

paper proposed a new improvement upon FPN by disregarding the node with only input 

edge, which is the BiFPN network. Other than that, the paper determined the learning 

parameters to make sure the reliability of the input layer size. Also, Fast Normalization 

Fusion [31] were utilized while it can add weight to each layer and accomplish weighted 

feature fusion. In short, reduction of computational rate and increase of speed and 

capability had been seen from the mentioned approach. When looking at the structure 

of the defection head, the paper offered a hybrid channels strategy which is to separate 

classifications and positioning, decoupling the defection head, called the Light-

Decouple Head method. [32] 

 Moreover, model compression techniques like pruning were also applied in this 

discussed paper while L1 regularization method was utilized for control of Batch 

Normalization Layer (BNL) for the model size issues. From the settings, the controlled 

BN layer hen pushed the scaling factor value of BNL to 0. The process of finding 

convolution layers that had little influence were done through sparse training and 
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repeated channel pruning was conducted. The channel pruning principle can be 

illustrated in figure 2.1.2.2. 

 

Figure 2.1.2.2 Channel Pruning Principle 

 When it comes to evaluation works using several versions of model of 

YOLOv5, the paper illustrated the results and improvement which obtained from the 

results of the experiment. The paper had highlighted that MobileNetV3 had quite 

limited attributes extraction qualifications. The full illustration of results can be shown 

in figure 2.1.2.3 

 

Figure 2.1.2.3 Tabular comparison with different architecture of models. 

 

2.1.3   YOLO-LFPD: A Lightweight Method for Strip Surface Defect Detection 

 The paper [20] had highlighted the reason of why they chosen PKU-Market-

PCB [15] as their datasets for evaluation. The reason is that the image within the dataset 

were containing large amount of surface defects, which make it great for overview of 
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strip defects detection as a test data. Although the objective of the paper was not 

specifically detecting for PCB defects detection, it was still a great reference to be 

reviewed as the concept was similar for the ideas of surface detection and operating on 

a low power, memory and computational efficient microcontroller. Initially, the paper 

had stated YOLOv5 as the best model for having a greater scalability and open sources 

resources when it compares to YOLOv8. As comparison, the paper had previously 

proposed a detection model called YOLO-FPD for the same purpose, which then 

compares it to the latest model with different architecture structure, called the YOLO-

LFPD to tackle with strip surface defects detection. 

 Start off with the latest structure of the YOLO-LFPD, this model had integrated 

Fasternet [33] backbone network and RepVGG onto the fundamental of the YOLO-

LFPD which can be illustrated in figure 2.1.3.1. Also, pruning techniques was utilized 

to make sure that this model can be used in a resource-constrained environments and 

decreases the computational costs. Specifically, YOLO-LFPD introduced the RepVGG 

module was since it had an efficient convolutional neural network design with strong 

capabilities of model compression. Thus, it can greatly lower the computational 

demands of the model while preserving high detection accuracy. Besides, the usage of 

Fasternet as it can efficiently extract feature information from strip images and improve 

the model's ability to detect defects at various scales by using multi-scale feature fusion.  

 

Figure 2.1.3.1 The architecture structure of the model YOLO-LFPD. 
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 On the experiment results on PKU-Market-PCB datasets [15], as shown in 

figure 2.9, we can see that various performance of models on mean Average Precision 

(mAP) and their respective model parameter. The overall paper consists of minor error 

of misplacing words, including the mentioned figure 2.1.3.2, the paper stated 

comparison of models for PASCAL VOC 2007 datasets instead of PKU-Market-PCB 

[15]. Additionally, spelling mistakes, inconsistent comparison and not peer-reviewed 

between the mentioned datasets made this paper detracts from its overall academic 

quality and reliability.  

 

 

Figure 2.1.3.2 Evaluation Results on Various Models.  

2.1.4  Light-YOLOv5: A Lightweight Algorithm for Improved YOLOv5 in PCB 

Defect Detection  

 The paper [21] had chosen YOLOv5 as their baseline due to its excellent 

performance and suitable for lightweight modifications. Generally, the paper 

summarized its work in four stages, which is the input, backbone, neck and prediction 

stages. Firstly, enrichment of the dataset is done on the input stage, followed by their 

improved SPPF which fasten up the calculation speed. Besides, introduction of CSP 

layers and shuffle attention mechanism module had been added into the backbone of 

YOLOv5. Finally, the paper utilized slim-neck structure as one of the improvements 

for their model. The paper visualized the overall model structure after final 

improvement as figure 2.1.4.1. 
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Figure 2.1.4.1: Lightweight YOLOv5 model architecture 

 Moreover, In the network’s neck section, it used the GSConv module instead of 

the standard convolution (SC) due to its lower computational cost as it was only using 

about 60% of the SC while providing similar learning ability. Visualization of the 

architecture of GSBottleneck module can be seen in figure 2.1.4.2. However, using 

GSConv throughout the entire network stages would lead to increased computational 

complexity because it could hinder the flow of data as the feature map progresses. To 

address this, GSConv is used selectively only in the neck stage, where the channel 

dimensions have already reached their maximum, and no further conversion is needed. 

The VoV-GSCSP module is introduced as an improved cross-stage partial network 

based on GSConv, due to its decreases in inference time and the complexity of the 

network structure while still maintaining high accuracy. Additionally, it replaced the 

CSP module in the neck layer, which traditionally uses standard convolutions, resulting 

in a significant reduction in floating point operations (FLOPs) which can be visualized 

in figure 2.1.4.3. 
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Figure 2.1.4.2: Construction of the Gsbottleneck component. 

 

Figure 2.1.4.3: The partial network module – VoV-GSCSP built upon fundamental of 

GSConv. 

 Essentially, the paper removal of focus layer was performed due to the additions 

of the shuffle attention mechanism. While in the backbone, issues caused by the usage 

of C3 layers in baseline YOLOv5 had significant downfalls on occupations of cache 

space and reduction of computational speed. Therefore, the paper proposed a shuffle 

module, for integration of channel attention and spatial attention. For the channel 

attention module, the SE module has been modified due to high number of parameters, 

which makes it challenging to balance real-time detection and accuracy. Then, the paper 

proposed a solution by using a lightweight version of SE module which is ECA for 

generating channel weights. However, with its one-dimensional convolution, the paper 

proposed the usage of global average pooling (GAP). This method is great for obtaining 

global information by generating statistical data. Besides, for the spatial attention 

module, the focus shifts from channel importance to the location of the information. 

This module is designed to complement channel attention by highlighting where the 

important features are in the spatial dimensions. To achieve this, the paper proposed 

spatial data statistics are generated using group normalization (GN), which helps the 

network pay attention to the relevant spatial positions of the features. Finally in the 

input stage, the authors implement a two-dimensional max pooling layer (conv2d) 

based on the Spatial Pyramid Pooling (SPP) used in YOLOv5 to enhance computation 
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speed. This modification, called SPPF, allows the model to convert feature maps of any 

size into fixed-size feature vectors in real time. 

 After modification that results in an improved lightweight version of YOLOv5, 

the authors conduct evaluation experiment on PKU-Market-PCB datasets [15] which 

on different variants of YOLOv5. Brief explanation of the YOLOv5 models used in the 

comparison done in figure 2.1.4.4: YOLOv5n – Smallest and most efficient version in 

the YOLOv5 family. YOLOv5s6 – Balance between accuracy and efficiency while 

being suitable for use on larger input image sizes. YOLOv5m – Balance between model 

size, accuracy and computational efficiency. 

 

Figure 2.1.4.4: Performance comparison between different variants of YOLOv5. 

 

2.2  Previous Works on Object Detection 

2.2.1  Flexible and Fully Quantized Lightweight TinyissimoYOLO for Ultra-

 Low-Power Edge Systems  

 This paper [22] had their focuses on deployment and execution of 

TinnyissimoYOLO [34], which then expanded its approach to a more lightweight and 

generalized network that is suitable for microcontroller unit (MCU). While the 

visualization of its architecture can be seen in figure 2.2.1.1, the paper stated that its 

network can also be adjusted, affecting only the parameter count and computational 

costs of the final layer. This paper also investigated the impact of different 

configurations on detection performance by training TinyissimoYOLO with a range of 

input resolutions, output classes, and kernel sizes, all without imposing constraints on 

the datasets or the number of objects per image. 
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Figure 2.2.1.1: Architecture Structure of TinyissimoYOLO. 

 Moreover, the paper continues to discuss about the purpose of using PASCAL 

VOC dataset [16][17], which is due to its manageable size and diverse range of object 

class. The authors further stated that the number of parameters in the network’s output 

layer increases linearly with the number of object classes. As parameter comparisons 

visualized in figure 2.2.1.2, the paper decided on not to choose any large dataset with 

additional object classes due to the final output will end up in a larger 

TinnyissimoYOLO network. In this study, 90% of the Pascal VOC training dataset was 

used to train the network, while the remaining 10% was reserved for validation. Lastly, 

various techniques of such as data augmentation, geometric transformation and 

photometric changes had been applied. 

 

Figure 2.2.1.2 Tabular comparison of parameters evaluated on PASCAL VOC. 
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 As for the network training and quantization, the paper utilized QuantLab [35], 

an open-source framework based on PyTorch that supports quantization-aware training 

(QAT). In this study, the targeted hardware platforms were optimized for network with 

8-bit weight and activation precisions. Also, the study highlighted problem of smaller 

bit-widths usage can pioneer an important implementation and runtime costs, 

potentially results in accuracy decrement. Therefore, the paper had proposed on 

evaluation of 8-bit quantized networks [36]. A two-phase training process were 

proposed for the TinyissimoYOLO networks. First, a full-precision network was 

trained to convergence. In the second phase, quantization-aware training was performed 

using the TQT algorithm [37]. During QAT, QuantLab converts the original 

architecture into a fake-quantized version, replacing each convolution where fully 

connected and activation layer with its quantized corresponding. Besides, the networks 

were initialized from full-precision checkpoints, training first with weight-only 

quantization before moving to full-model quantization. Their respective 

hyperparameter tunning were shown in figure 2.2.1.3, illustrated the performance of 

QAT using TQT algorithms. Once the training converged, the fake-quantized model 

was converted into an integer-only model using techniques like "integer channel 

normalization" [38] or "dyadic quantization" [39] which merge normalization, 

rescaling, and activation layers into requantization layers. Finally, the final model was 

exported as an ONNX model compatible with various hardware backends which 

showed no loss in accuracy compared to the full-precision model. Thus, its present is 

specifically optimized for deployment on GAP9 clusters. 

 

Figure 2.2.1.3 Tabular views of hyperparameter training of QAT and full-precision training. 

Other than that, the evaluation of the proposed algorithms on multiple platforms 

such as ARM, RISC-V cores, and hardware accelerators provides valuable insights into 

many advantages and trade-offs among each of these hardware architectures. In the 

comparison between these platforms, the authors point out strengths like parallel 
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processing on multi-core RISC-V processors and higher efficiency due to hardware 

accelerators but concentrate on key issues such as power consumption, latency, and 

scalability. 

 

2.2.2  Improved Light-Weight Target Detection Method Based on YOLOv5 

The authors of this paper [23] had highlighted their pursuit of creating a more 

lightweight and efficient model for the baseline YOLOv5 model. The introduction of 

SKConv in SKNet (Selective Kernel Networks) [40] had been referenced to improve 

reduction of parameters and expansion of receptive field. The paper explained detail 

about the operation of the SKConv implementation, which included three processes, 

split, fuse and select. In the study, the paper then stated two of the characteristics about 

SKConv, which is the usage of group convolution and dimensionality reduction 

operation in the Select part of SKConv. Both adoptions had caused information loss 

and blurred relationship between corresponding model’s channel weights. To solve this 

existing problem for the utilization of SKConv, the authors proposed two novel 

approach which by introducing improved SKCon-G series and feature splicing method, 

called the equal interval interpolation. Further visualization of the comparison of 

architecture structure of the model network design between SKConv and SKCon-G can 

be seen in figure 2.2.2.1. 

 

Figure 2.2.2.1: Comparison of SKConv (Upper) and SKConv-G (Lower) model network 

design. 
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 On the other hand, when looking at the channel attention module, the paper had 

utilized standard ECA module initially then switched to the improved C-ECA 

(Circular-ECA) module [41] based on the initial module. The reason of replacing can 

be deducted as insufficient attention received at the output edges for the channel 

features which indirectly impact parameter updates during loss backpropagation. Other 

than that, the introduction of C-ECA module was to solve the SE’s information loss 

problem caused by the reduction of channel dimensionality. Essentially, the 

replacement of the ECA module can be summarized as to reassign channel weights for 

allowing better lightweight network to focus more on learning the parameters of the 

key feature channels with consideration of limited number of parameters. The paper 

visualized the comparison between ECA and C-ECA modules in figure 2.2.2.2 when 

tested on PASCAL VOC 2007 test dataset [16][17] in term of mean Average Precision 

(mAP) and GFLOPs. 

 

Figure 2.2.2.2: Comparison results between usage of ECA and C-ECA. 

 As we discussed previously about the replacement of SKConv and C-ECA 

modules into the improved network architecture, there are still several improvements 

made by the authors which one of them include a novel approach. Start off with the 

introduction of a new structural components called DarkUnit(G) and DarkUnitX(G) 

modules. Moreover, the paper mentioned the differences between both modules, while 

the first is primarily used as a down-sampling module to helped feature extraction, the 

latter is to maintains same input and output shape which improved model’s strength. 

From there, the paper had redesigned network utilized a new CSPDarknet53 structure 

as the backbone, replacing the traditional down-sampling strategies with the more 

efficient DarkUnit(G) modules. Furthermore, the paper proposed a background with 

CSP+PAN structure for the neck which include multiple modules like CBS, 

DarkUnit(G) and C3_2(G) shown in figure 2.2.2.3. 
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Figure 2.2.2.3: Redesigned network structure based off baseline YOLOv5. 

For the experiment results, the paper had conducted comparison between 

various existing models on the PASCAL VOC 2007 test datasets, which can be shown 

in figure 2.2.2.4. 

 

Figure 2.2.2.4: Comparison between various models on PASCAL VOC 2007 test [17][18]. 

 

2.2.3  MPQ-YOLO: Ultra-low mixed-precision quantization of YOLO for edge 

 devices deployment  

In this study, the author had proposed a novel quantization network, called the 

MPQ-YOLO, which stands for Mixed-Precision Quantization for YOLO. This 

framework is specifically designed to optimize the baseline YOLOv5 model for 

deployment on edge devices with limited computational resources and power 

constraints. While traditional quantization methods tend to apply a uniform precision 

across all different layers across the network, substantial lost in accuracy can occurs. 
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With that being said, the paper proposed integration of 1-bit quantization onto the 

backbone of the network, significantly reducing the model’s parameter and 

computational demands. Other than that, the paper proposed a 4-bit quantization 

technique for the head which was primarily because of the sensitivity, fusion operations 

between features from numerous layers. The improved framework proposed by the 

paper based on the YOLOv5 framework was visualized on figure 2.2.3.1. 

 

Figure 2.2.3.1 The framework of MPQ-YOLO [24]. 

 For the implementation of the MPQ-YOLO model, the authors had introduced 

the progressive network quantization (PNQ) training strategy due to the abrupt 

transition to lower precision which causes instability and sudden drop in accuracy [42]. 

This technique is used to gradually reduces precision of weights and activations during 

training process. Additionally, diverse  units in the network had carried varying levels 

of significance, which makes the global quantization techniques often decreases 

accuracy in results. In this study, the paper had demonstrated and proposed a three 

stages process for the quantization, which can be visualized in figure 2.2.3.2. To 

summarize, the three-stages process included the first, full training of the model for 

obtaining huge amount of significant information inside. Secondly, the head structure 

of full precision was kept for the adjustment operations of the Backbone using 1-bit 

activations and weights. Thirdly, the paper then utilize the 4-bit quantization training 

on the Head structure. 
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Figure 2.2.3.2 Three-step quantization process. 

Also, dedicated training techniques was another key technique proposed by the 

authors to enhance the performance of its MPQ-YOLO on the 4-bit quantization Head. 

This factor dynamically adjusts the range of quantized weights and activations during 

training, which caused optimization of their representation in a mixed-precision 

environment. The paper visualized the dedicated training techniques in figure 2.2.3.3. 

 

 

Figure 2.2.3.3: Results return on the effectiveness of usage of dedicated training techniques. 

Based on the study, the  authors conducted  evaluation experiments with the 

state-of-the-art quantized  target detection models on combination of PASCAL VOC 

2007 and 2012 datasets [16][17] as shown in figure 2.2.3.4.  
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Figure 2.2.3.4: Evaluation Results on various target detection models 

 

2.3  Comparison of Model Between Previous Works  

2.3.1  PCB defect detection datasets from Peking University  

Table 2.3.1.1 Comparison between model’s performance and parameters from papers 

reviewed for PCB defects detection 

Model mAP(%) Model Parameters 

MSD-YOLOv5 

[18] 

99.37 3.8M params 

Optimized-

YOLOv5 [19] 

98.90 5.54M params, 13.4 FLOPs, 8.1MB 

YOLO-LFPD 

[20] 

98.20 238 layers, 6.4M params, 14.1 GFLOPs, 12.5MB 

Light-YOLOv5 

[21] 

93.40 12.5MB 

 

2.3.2  Object detection datasets from PASCAL VOC  

Table 2.3.2.1 Comparison between model’s performance and parameters from papers 

reviewed for Object Detection. 

Model Input res. mAP(%) Model Parameters 

TinyissimoYOLO 

[22] 

88 x 88 61.50 3 classes, 0.44M params, 0.44KiB 

58.40 10 classes, 0.49M params, 0.50KiB 

47.00 20 classes, 0.58M Params, 0.58KiB 

112 x 112 61.90 3 classes, 0.58M params, 0.58KiB 

56.90 10 classes, 0.72M params, 0.72KiB 
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53.50 20 classes, 0.91M params, 0.91KiB 

224 x 224 67.80 3 classes, 1.6M params, 1.66MiB 

53.80 10 classes, 2.3M params, 2.36MiB 

66.60 20 classes, 3.3M params, 3.35MiB 

YOLOv5 [23] 640 x 640 82.50 5.7M params, 14.8 GFLOPs 

MPQ-YOLOl [24] - 74.7 12.6MB 

MPQ-YOLOs [24] - 60.0 1.9MB 

 

2.4  Comparison between the Techniques Used from Previous Works  

2.4.1  PCB defect detection datasets from Peking University  

Figure 2.4.1.1 Comparison of Techniques Used for PCB defect detection datasets 

Model Techniques / 

Modifications 

Strengths Weaknesses 

MSD-YOLOv5 [18] -Combines 

MobileNet-v3 and 

CSPDarknet53 for 

the backbone, 

introduces SE 

attention 

mechanism, and 

uses a decoupling 

head. Binary k-

means clustering for 

anchor adjustment. 

-Reduced 

parameters by 46% 

-Enhanced feature 

extraction, increased 

detection accuracy 

by 3.34% 

-Requires enhanced 

dataset for training 

and more resource-

demanding pre-

processing. 

Optimized- 

YOLOv5 [19] 

-Uses MobileNetV3 

backbone, BiFPN 

for feature fusion, 

decoupling head, 

and L1 

regularization for 

sparse training and 

pruning. 

-Achieved mAP of 

99.3%, reduced 

model size to 40% 

of YOLOv5s 

-Focuses on 

reducing complexity 

but may sacrifice 

robustness in 

complex PCB 

environments. 
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YOLO-LFPD [20] -Utilizes RepVGG 

module and 

FasterNet backbone 

for robustness and 

inference speed, 

pruning techniques, 

and OTA loss 

function. 

-Achieved 48% 

parameter reduction 

-inference time 

reduced by 77%,  

-Requires specific 

hardware 

optimization for 

achieving the full 

potential in real-time 

application 

Light-YOLOv5 [21] -Introduces GSConv 

and VoV-GSCSP for 

feature extraction, 

shuffle attention 

mechanism, slim-

neck structure for 

feature fusion, and 

modular 

replacements for 

improved efficiency. 

-Reduced model size 

by 51%, improved 

mAP by 2-3% 

Some improvement 

areas for robustness 

in handling highly 

noisy PCB defect 

datasets and 

complex real-world 

scenarios. 

 

 

2.4.2  Object detection datasets from PASCAL VOC 

Figure 2.4.1.2 Comparison of Techniques Used for PASCAL VOC datasets 

Model Techniques / 

Modifications 

Strengths Weaknesses 

TinyissimoYOLO 

[22] 

-Introduces a fully 

quantized YOLO 

framework with post-

training quantization 

and optimized scaling 

techniques. 

-Significantly reduces 

memory requirements 

without heavy 

accuracy degradation. 

-Limited flexibility 

for dynamic 

scenarios. 

 

YOLOv5 [23] -Utilizes SKConv and 

C-ECA modules for 

enhanced feature 

-Reduced 

computational effort 

and model parameters 

-Increased depth 

leads to challenges 

in real-time 



CHAPTER 2 

36 
Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

extraction and 

channel attention, 

along with MSM for 

better feature pyramid 

depth. 

by 18.6% compared to 

YOLOv5s. 

deployment in 

extremely 

resource-

constrained 

systems. 

MPQ-YOLOl [24] -Incorporates 1-bit 

backbone and 4-bit 

head quantization for 

memory efficiency. 

Introduces trainable 

scale and progressive 

quantization (PNQ). 

-Achieves up to 16.3× 

model compression 

with 74.7% accuracy 

on PASCAL VOC.  

-Ideal for low-power, 

edge device 

deployment scenarios. 

-Quantization 

limits model 

adaptability in 

scenarios requiring 

real-time training 

updates. 

MPQ-YOLOs [24] -Like MPQ-YOLO 

but focuses on 

incremental 

adjustments to the 1-

bit backbone for more 

robust edge case 

detection in the 

PASCAL VOC 

context. 

-Further reduced 

computational 

complexity while 

slightly improving 

accuracy in specific 

benchmarks. 

-Further reduces 

generalizability 

due to specialized 

optimizations. 

 

 



CHAPTER 3 

37 
Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

Chapter 3 

 

System Methodology / Approach 

This chapter presents the systematic methodology and development approach adopted 

throughout the project. The work focuses on designing, optimizing, and deploying a 

lightweight deep learning model for real-time PCB defect detection on embedded 

platforms. A structured pipeline was implemented to ensure efficient data preparation, 

model design, system training, deployment, and evaluation. In this chapter, introduction 

about classes of the PCB Defect Detection [15], augmentation effect done on the 

pipeline and the system architecture diagram was done and evaluated. 

 

3.1  System Design Diagram / Equation 

3.1.1  Introduction to classes in PCB Defect Detection 

To have a better understanding on the datasets itself, I constructed tables and 

description to understand the problem domain. On the context side, the datasets we used 

are from Peking University PCB defect datasets [15], which consists of 6 type of defects 

which are made by photoshop. These defects are defined as missing hole, mouse bite, 

open circuit, short, spur and spurious copper. In following section, demonstration of 

each sample and labels of the type of defects will be constructed. 

 

 

Figure 3.1.1.1 Missing hole defects in PCB defect detection [15]. 
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Figure 3.1.1.2 Mouse bite defects on PCB defect detection [15]. 

 

Figure 3.1.1.3 Open Circuits defects on PCB defect detection [15]. 

 

Figure 3.1.1.4 Short defects on PCB defect detection [15]. 
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Figure 3.1.1.5 Spur defect on PCB defect detection [15]. 

 

Figure 3.1.1.6 Spurious copper defects on PCB defect detection [15]. 
 

Now, visualization on the types of defects that can exist on PCB board are visualized, 

tabular result will be constructed for further discussing the general properties of each 

defect and their causes in Table 3.1.1.1. 

 

Table 3.1.1.1 Tabular Views of Properties of PCB defects 

Type of Defects Description of Defect Causes of Defect 

Missing Hole A plated-through or via 

hole that is completely 

• Drill bit breakage 

or mis-registration 
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absent after 

drilling/plating, leaving no 

metallised aperture for 

component leads or inter-

layer connectivity. 

 

during the drilling 

cycle  

• X-ray target-to-

hole misalignment 

in automated 

drilling  

• Image transfer 

error causing pad-

to-drill mismatch 

Mouse Bite A series of small 

perforations or nibble-

shaped notches left on the 

board edge after break-out 

from a manufacturing 

panel; often looks like 

rodent bite marks. 

 

• Depanelization via 

break-rout tabs 

instead of V-score 

• Too-wise 

perforation pattern 

or insufficient tab 

width 

• Mechanical stress 

or flexing during 

snap-off 

Open Circuit 
A broken (open) copper 

trace or via barrel that 

interrupts the intended 

electrical path between 

two nodes. 
 

• Over-etching 

during wet 

chemical etch 

• Micro-cracks in 

via walls from 

thermal cycling 

• Drill smear or 

voids in copper 

plating 

Short An unintended electrical 

connection between two 

adjacent conductors 

• Under-etching → 

residual copper 

“bridges”  
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(trace-to-trace, pad-to-

pad, or via-to-plane). 

• Solder bridging 

during reflow 

• Incorrect solder-

mask registration 

Spur 
A thin, whisker-like 

copper protrusion that 

extends from a trace or 

pad but is not part of the 

netlist. 
 

• Photoresist debris 

causing image 

artefacts  

• Over-plating in 

high-current areas 

• Drag-out of semi-

etched copper 

during rinse 

Spurious Copper Isolated islands or flecks 

of unwanted copper that 

are not electrically 

connected to the design. 

• Incompletes etch 

(resist loss or 

etchant 

exhaustion)  

• Poor artwork 

cleaning leaving 

dust/dirt shadows  

• Lifted photoresist 

during 

develop/etch 

cycles 

 

3.1.2  Introduction to Augmentation Type Applied 

 

Although there are already existing augmentation techniques applied during 

original yolo training process, these techniques definitely do not make up the ability to 

generalize the model toward more unseen data and further augmentation process was 

required especially when dealing with small defects on PCB like this. In the work 

procedure, offline augmentation was done during data preprocessing process and 

application of multiple augmentation effects can be visualized in the Table 3.2 because 

the raw 485 training images offered limited variation. Using the Albumentations 
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library, 18 additional views for every source image (approximate 18x expansion) with 

operations was chosen to mimic appearance shifts common on a production line. Also, 

Table 3.1.2.1 quantifies the resulting datasets growth 

 

Table 3.1.2.1 Data-augmentation recipe for PCB-defect training set 

Number of 

Augmentation 

Augmentation Type Albumentations call (p) 

1 Horizontal Flip HorizontalFlip(p=0.2) 

2 Vertical Flip VerticalFlip(p=0.2) 

3 Random Brightness / 

Contrast 

RandomBrightnessContrast(p=0.2) 

4 Shift-Scale-Rotate ShiftScaleRotate(shift_limit=0.05, 

scale_limit=0.05, rotate_limit=15, 

p=0.5) 

5 Motion Blur (Kernel smaller 

and equal than 5) 

MotionBlur(blur_limit=5, p=0.2) 

6 Resize to 640 x 640 Resize (640, 640, p=1.0) 

 

The 9215 training images reported in Table 3.1.2.2 originate from a publicly available 

synthetic PCB-defect corpus that contains 1386 RGB images spanning six defect 

classes. After discarding frames with no labelled defects, 693 images remained, each 

paired with a YOLO-format annotation file (one label file per image). We partitioned 

this subset into 485 training, 138 validation and 70 test images, preserving the original 

class distribution. The project uses the following label map, {missing_hole: 0, 

mouse_bite: 1, open_circuit: 2, short: 3, spur: 4, spurious_copper: 5}. 

Table 3.1.2.2 Expansion of the training corpus after augmentation 

Metric Count 

Original training images 485 

Augmented variants generated (18x each) 8730 

Total training images after augmentation 9215 

 

3.1.3  System Architecture Diagram 
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In this section, analysis on the system architecture diagram will be done. More 

specifically, it will be done in two form, conceptual and technical. One is to explain 

how those customized modules works in general and one is to explain in actual 

workflow, how do they excel in PCB defect detection problem domain. In Figure 3.7, 

visualization on the system architecture diagram was drawn out for LW-YOLOv5. 

 

Figure 3.1.3.1 LW-YOLOv5 architecture design in details 

 

Conceptual Perspectives of the LW-YOLOv5 architecture 

Significant architectural modifications were introduced to the baseline 

YOLOv5 framework to enhance detection performance, computational efficiency, and 

multi-scale feature fusion, particularly for deployment in embedded systems. These 

improvements include the optimization of anchor boxes through K-Means clustering to 

better match the distribution of PCB defect sizes, and the replacement of traditional 

strided convolutional layers with Space-to-Depth Convolution (SPD-Conv) [43], 

allowing efficient feature downsampling while preserving spatial detail. Further 

architectural advancements involve the integration of the RCSOSA (Reparameterized 

Convolution based on Channel Shuffle with One-Shot Aggregation) module [50], 
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promoting lightweight feature reuse and efficient aggregation without increasing 

inference cost. The Cross-Resolution Fusion Module (CRFM) [48] was additionally 

incorporated to enhance feature interactions across different spatial scales, 

strengthening the network’s ability to detect objects at varying sizes. To improve 

feature efficiency and attention, the neck of the architecture was refined by introducing 

C3-GhostDynamicConv [47] layers for lightweight dynamic convolution and Mixed 

Local Channel Attention (MLCA) [49] modules to improve local and channel-specific 

feature focus. Together, these architectural enhancements result in a highly optimized 

model that achieves excellent detection precision while maintaining a low memory 

footprint, enabling real-time deployment on resource-constrained embedded platforms. 

 

As for the optimized anchor box, K-means clustering was used to help with the 

calculation of the refined anchor box compared to the original anchor box that was 

meant for COCO datasets. Additionally, comparison between K-means clustering and 

Binary K-means clustering were done for further analysis and study. Ultimately, 

visualization on the plotting of the center box for K-means clustering had better object 

localization capabilities which can be showcased in Figure 3.3.2. 

 

 

Figure 3.1.3.2 Comparison of calculated anchor box visualized 

 

As Integrating SPD-Conv [43] into the YOLOv5 architecture brings significant 

improvements, especially for detecting small objects in low-resolution images. 

Traditional convolutional neural networks often lose critical details when using strided 

convolutions or pooling layers to downsample features. This loss of fine-grained 

information can severely impact performance in tasks where precision matters, such as 
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PCB defect detection. SPD-Conv solves this issue by replacing those layers with a 

smarter approach that retains all the details while reducing the spatial dimensions. 

 

The SPD-Conv module works in two steps. First, it uses a space-to-depth 

transformation to rearrange the input feature map, dividing it into smaller submaps and 

reorganizing them along the channel dimension. This ensures that no information is lost 

during downsampling. Next, a non-strided convolution processes these features, 

keeping the resolution intact while extracting important patterns. This combination 

allows the model to focus on fine details without increasing computational complexity. 

 

By incorporating SPD-Conv into the backbone and head sections of YOLOv5 

which make the model downsize by 0.4 million parameter sizes with the integration of 

RFEM. It is certain that the model becomes lighter and more efficient—perfect for 

embedded systems where resources are limited. Despite its lightweight nature, the 

improved architecture achieves high precision, a critical factor for real-time 

applications. Studies have shown that SPD-Conv enhances accuracy, particularly for 

small objects, making it an ideal fit for tasks like PCB defect detection. 

 

Overall, the integration of SPD-Conv into LW-YOLOv5 demonstrates how 

innovative techniques can make deep learning models both powerful and efficient. This 

improvement strikes a balance between precision and performance, ensuring the model 

can handle challenging detection tasks while being suitable for deployment in resource-

constrained environments. 
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Figure 3.1.3.3 Detail Operation for SPD-Conv [43] 

 

Integrating C3-GhostDynamicConv [47] into the YOLOv5 architecture brings 

significant improvements, especially in addressing the performance limitations of 

lightweight models under constrained computational budgets. Traditional 

convolutional neural networks tend to lose critical expressive power when they reduce 

network depth or width to fit within small memory and processing budgets. This 

constraint severely limits the network’s ability to capture complex feature relationships, 

particularly for tasks requiring fine-grained precision such as PCB defect detection. C3-

GhostDynamicConv solves this problem by dynamically aggregating multiple 

convolutional kernels based on input-dependent attention, allowing the network to 

adaptively focus on different features for each input without increasing depth, width, or 

computational load. 

 

The C3-GhostDynamicConv module works in two major steps. First, it applies 

lightweight parallel convolution operations to generate a set of basic feature maps. 

Instead of performing heavy convolutions, these initial maps are produced through 

simple linear transformations. Second, a dynamic aggregation process is applied, where 

the outputs are selectively combined using input-specific attention mechanisms. This 

attention-based fusion enables the network to emphasize the most relevant features for 

each image dynamically, significantly boosting representational power while adding 

only a minimal computational overhead. The use of Ghost modules ensures that 

redundancy is minimized, making feature extraction both efficient and adaptable to 

varying input patterns. 

 

By incorporating C3-GhostDynamicConv into the backbone and neck sections 

of the YOLOv5 architecture, the model achieves improved feature expressiveness and 

detection robustness while maintaining a compact model size. Despite its lightweight 

nature, the improved architecture delivers high precision, making it well-suited for real-

time PCB defect detection on embedded platforms where resources are limited. Studies 

have demonstrated that dynamic convolution methods, such as GhostDynamicConv, 

can provide significant accuracy improvements with only about a 4% increase in 
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FLOPs, validating its practicality for embedded system deployments

C3GhostDynamicConv. 

 

Overall, the integration of C3-GhostDynamicConv into LW-YOLOv5 

highlights how innovative dynamic feature extraction techniques can make deep 

learning models both powerful and efficient. This enhancement strikes a critical balance 

between precision, adaptability, and computational economy, ensuring the model can 

effectively handle real-world defect detection challenges while remaining suitable for 

low-power, resource-constrained environments. 

 

Figure 3.1.3.4 Dynamic Convolution Operation Diagram [47] 

 

Integrating RCSOSA (Reparameterized Convolution based on Channel Shuffle 

with One-Shot Aggregation) [50] into the YOLOv5 architecture introduces substantial 

theoretical and practical benefits, particularly in optimizing the model's computational 

efficiency and inference speed RCSOSA. Traditional convolutional networks often rely 

on complex multi-branch designs to improve feature representation, but these come at 

the cost of slower inference speeds and increased memory usage, making them 

unsuitable for embedded or real-time applications. RCSOSA addresses this by 

combining the advantages of grouped convolutions, channel shuffling, and 

reparameterization into a lightweight, highly efficient structure that enables rich feature 

learning during training while collapsing into a simple, fast single-branch form during 

inference. This dual-stage optimization significantly reduces memory footprint and 

computational complexity without compromising accuracy, a crucial improvement for 
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tasks such as PCB defect detection that demand both precision and real-time processing 

capabilities. 

 

Figure 3.1.3.5 The Structure of RCS [50]. 

 

The RCSOSA module operates through two main stages. During training, it 

applies a multi-branch structure where feature maps are split, transformed through 

lightweight 1×1 and 3×3 convolutions, and re-combined with a channel shuffle 

operation to promote inter-group information flow. This setup enhances feature 

diversity and depth without substantial computational cost. At the inference stage, 

structural reparameterization is employed, merging these multiple branches into a 

single 3×3 convolution, thus dramatically speeding up computation and simplifying the 

network architecture. By maintaining rich feature interaction during learning and 

minimizing overhead during deployment, RCSOSA achieves an ideal balance between 

accuracy and efficiency. 

 

By integrating RCSOSA modules into both the backbone and neck of LW-

YOLOv5, the model effectively shortens the information path between layers, 

accelerates feature propagation, and enhances semantic information aggregation across 

scales. Experimental results have demonstrated that networks employing RCSOSA 

experience up to 50% reduction in FLOPs compared to traditional dense architectures

RCSOSA, while achieving comparable or superior precision. In practical terms, this 
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means faster inference speeds and lower energy consumption, critical factors for real-

time embedded applications where processing power and battery life are limited. For 

PCB defect detection, where detecting tiny defects quickly and accurately is essential, 

RCSOSA ensures that the model remains lightweight without sacrificing detection 

robustness. 

 

Overall, the integration of RCSOSA into LW-YOLOv5 demonstrates how 

architectural innovations centered on reparameterization and channel operations can 

produce models that are both highly efficient and capable of maintaining strong 

detection performance. This improvement reinforces the ability of the model to operate 

reliably under tight resource constraints, making it highly suitable for practical 

deployment in embedded industrial inspection systems. 

 

Integrating the Mixed Local Channel Attention (MLCA) [49] module into 

the YOLOv5 architecture provides significant improvements in balancing model 

performance, computational complexity, and memory efficiency, particularly for 

lightweight object detection tasksMLCA. Traditional attention mechanisms often 

focus either solely on channel attention or on spatial attention, but few efficiently 

capture both local and global information while keeping computational overhead low. 

Moreover, most existing attention mechanisms, such as SE and CBAM, introduce 

complexity and parameter inflation, which are impractical for real-time embedded 

systems. MLCA addresses these challenges by simultaneously incorporating channel, 

spatial, local, and global feature information in a lightweight manner, thereby 

significantly enhancing the network’s expressive capability without substantially 

increasing the computational cost. This combination is particularly critical for PCB 

defect detection, where subtle and localized features must be effectively captured 

under strict resource constraints. 
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Figure 3.1.3.6 The Principle of MLCA algorithm [49] 

 

The MLCA module [49] operates through a two-stage mechanism. Initially, a 

local spatial feature representation is obtained by applying local average pooling (LAP) 

to divide the feature maps into multiple patches. Subsequently, two parallel branches 

are created: one extracts global information through global average pooling (GAP), 

while the other retains localized information through the extracted patches. Both 

branches are then processed with lightweight one-dimensional convolutions to capture 

intra-channel dependencies while maintaining locality. Afterward, an anti-pooling 

(UNAP) operation restores the original feature map size, and the outputs from the two 

branches are fused, combining both local and global contextual information. The entire 

operation is lightweight, with the number of parameters and GFLOPs remaining 

comparable to traditional SE attention modules yet offering richer feature 

representations. 

 

By embedding MLCA into the neck section of LW-YOLOv5, the model 

achieves enhanced spatial awareness and channel sensitivity, leading to better defect 

localization and classification accuracy. Experimental results have shown that 

integrating MLCA into object detection networks improves mAP performance by 1.0–

1.5% over SE and CA modules while maintaining similar inference speedsMLCA. This 

makes it highly suitable for real-time industrial applications where both high precision 

and low latency are critical. Particularly in the context of PCB defect detection, where 

tiny and irregular defects need to be captured reliably, MLCA enables the lightweight 
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model to maintain robust detection performance without sacrificing computational 

efficiency. 

 

Overall, the incorporation of MLCA into LW-YOLOv5 demonstrates how a 

carefully designed attention mechanism can significantly improve the model’s ability 

to capture essential features while preserving the low complexity required for 

embedded deployment. This integration effectively bridges the gap between theory and 

practical application, allowing lightweight object detection models to perform with near 

heavy-weight accuracy while operating under constrained hardware environments. 

 

Integrating the Cross-Resolution Fusion Module (CRFM) [48] into the 

YOLOv5 architecture offers significant improvements in multi-scale feature fusion and 

enhances the network’s ability to detect objects across varying scalesCRFM structure. 

Traditional convolutional neural networks, particularly one-stage detectors like 

YOLOv5, often struggle to effectively combine low-level fine-grained features with 

high-level semantic-rich features. This limitation weakens the detection of small and 

subtle objects, a crucial requirement in tasks like PCB defect detection. CRFM 

addresses this challenge by decoupling the intra-scale feature interaction and cross-

scale feature fusion processes, allowing each to be optimized independently. By 

applying lightweight Transformer-based intra-scale interaction only to high-level 

features and convolution-based fusion across different scales, CRFM significantly 

reduces computational redundancy while enhancing multi-scale feature aggregation. 

This dual-path strategy ensures that both detailed spatial information and semantic 

context are preserved, resulting in more robust and accurate object detection under strict 

resource constraints. 

 

The CRFM structure operates through two core mechanisms. First, Attention-

based Intra-scale Feature Interaction (AIFI) applies single-scale Transformer 

encoders specifically to high-level feature maps, capturing global semantic 

relationships without incurring the heavy computation cost of multi-scale attention. 

Second, the CNN-based Cross-scale Feature Fusion (CCFF) module fuses features 

across different resolutions using lightweight convolutional operations, ensuring 

effective information flow between shallow and deep layers. The fusion process is 
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performed through a series of RepBlocks, where feature maps from adjacent scales are 

merged after channel adjustment and feature refinement, preserving critical details 

while keeping the model compact. This separation of intra-scale and cross-scale 

operations enables the model to maximize feature richness while minimizing latency, a 

balance crucial for real-time embedded applications. 

 

By incorporating CRFM into the backbone and neck sections of LW-YOLOv5, 

the model achieves superior multi-scale feature integration, boosting the detection 

performance for objects of different sizes without compromising inference speed. 

Empirical results from RT-DETR experiments show that decoupling feature 

interactions in this way reduces encoder latency by up to 35% while still improving 

overall AP by 0.4%CRFM structure, confirming CRFM’s practical effectiveness. For 

PCB defect detection, where defects can vary significantly in size and visibility, CRFM 

empowers the network to maintain high detection accuracy across all scales, ensuring 

consistent performance even in challenging conditions. 

 

Overall, the integration of CRFM into LW-YOLOv5 highlights the importance 

of optimizing both intra-scale and cross-scale feature processing. By strategically 

balancing attention mechanisms and convolutional fusion, CRFM enables lightweight 

detectors to achieve robust multi-scale detection capabilities while adhering to the tight 

computational budgets required for embedded deployment. 

 

Figure 3.1.3.7 Overview of RT-DETR Encoder (with AIFI + CCFF modules) [48] 

 

Technical Perspective of LW-YOLOv5’s customized modules 
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Figure 3.1.3.8 SPDConv’s internal operations 

The SPDConv class first reshapes the input tensor by concatenating the four 

spatial quadrants along the channel axis, effectively multiplying the channel dimension 

by four while halving both height and width. The subsequent nn.Conv2d then operates 

on this enlarged channel set, with autopad providing “same-shape” padding even when 

dilation is present. A batch-normalisation layer and a SiLU activation complete the 

block. Because the pixel-unshuffle occurs on the fly inside forward, only a single 

CUDA kernel is launched for the entire operation after graph fusion, keeping latency 

low on Jetson Orin Nano . 
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Figure 3.1.3.9 RCSOSA Block’s internal operations 

The RepVGG class provides the re-parameterisable convolution used in several blocks. 

During training three parallel branches, 3 × 3, 1 × 1 and identity, each hold their own 

batch-normalisation statistics. The helper get_equivalent_kernel_bias fuses these 

branches into a single kernel–bias pair, enabling inference to proceed with one plain 

convolution. The SR (Shuffle RepVGG) micro-block exploits this property by splitting 

the incoming tensor, applying RepVGG to one half, concatenating, and finally shuffling 

channels, a light-weight alternative to full ShuffleNet mixing. Two such SR units 

constitute the internal body of RCSOSA, which concatenates three parallel streams 

(conv1, sr1, sr2) before a final RepVGG collapses them to the output width. An optional 

squeeze-and-excitation gate may be appended for additional channel recalibration. 
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Figure 3.1.3.10 C3-GhostDynamicConv’s internal operations 

Bottleneck_DynamicConv, C3_DynamicConv, and C3_GhostDynamicConv 

reuse the standard YOLOv5 CSP scaffold but substitute the inner convolutions with 

either DynamicConv or GhostModule instances. In C3_GhostDynamicConv, the 

iterable self.m holds a stack of GhostModule layers, giving the block a depth identical 

to its vanilla counterpart yet reducing multiply adds by roughly one-half Customized 

Modules. 

 

Figure 3.1.3.11 MLCA [49]’s internal operations 

The MLCA attention unit combines local and global descriptors. A fixed-size 

adaptive-average pool (local_size = 5 by default) extracts a patch-level summary, while 

a separate global pool supplies coarse context. Two independent 1-D convolutions as 

one for each descriptor to learn scale coefficients; the outputs are interpolated back to 

the original spatial size and merged by a weighted average (local_weight). Element-
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wise multiplication with the incoming tensor finalises the attention process. Kernel size 

is chosen dynamically from the channel count via a log-scaled rule (gamma and b 

hyper-parameters), echoing the original ECA formulation Customized 

ModulesCustomized Modules. 

Technical perspective for LW-YOLOv5 

The modified architecture begins with a 6 × 6, stride-2 convolutional stem that 

immediately reduces the 160 × 160 input to 80 × 80 while extracting low-level edge 

information. A sequence of SPDConv and RCSOSA units then alternates down the 

backbone. Each SPDConv rearranges spatial neighbourhoods into the channel 

dimension by pixel-unshuffle before applying a 3 × 3 convolution, achieving resolution 

halving with minimal arithmetic cost. Each RCSOSA block supplements this 

compression with residual channel–spatial attention implemented through re-

parameterised RepVGG kernels and lightweight shuffle-mixing, enriching the feature 

map without introducing runtime branches. After three such SPDConv–RCSOSA pairs, 

the tensor reaches 20 × 20 and 1 024 channels. 

 

At this depth the network inserts a C3_GhostDynamicConv module that fuses 

cross-stage-partial topology, dynamic pointwise kernels, and Ghost feature generation. 

The design halves floating-point operations relative to a vanilla C3 while gaining 

adaptability through conditionally generated weights, and it serves as the principal 

semantic extractor before the spatial pyramid pooling-fast (SPPF) block. SPPF widens 

the receptive field by concatenating three max-pooled paths of increasing kernel size, 

providing multi-scale context for subsequent fusion. 

 

The neck adopts a bidirectional feature-pyramid pattern. A 1 × 1 projection 

(labelled Input_proj 0) lifts the deepest 20 × 20 feature map into the lateral pathway, 

where it merges through concatenation with an up-sampled 40 × 40 tensor. Each merge 

site is wrapped in a C3_MLCA unit, whose embedded multi-layer channel-attention 

recalibrates activations using both local and global descriptors, thereby emphasising 

fine solder-mask artefacts across scales. Down-sampling operations then propagate 
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information back to coarser resolutions, again passing through C3_MLCA to maintain 

channel sensitivity. 

A second C3_GhostDynamicConv (configured 1024→256) prepares the 80 × 

80 feature map for shallow detection by compressing channels without forfeiting 

representational power. Finally, three parallel Conv2d → Detect heads, operating at 

strides 8, 16, and 32, output class probabilities and bounding-box regressions. The 

entire graph remains free of custom CUDA kernels, enabling seamless export to ONNX 

and efficient optimisation by TensorRT for deployment on the Jetson Orin Nano.
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3.2  Gantt Chart 

 

Figure 3.2.1 Gantt Chart 
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Chapter 4 

 

System Design 

This section highlights the foundational technologies and tools employed during the 

development of the proposed lightweight PCB defect detection model. Key hardware 

components include a high-performance laptop utilized for training and testing the 

YOLOv5-based model, ensuring sufficient computational power during the initial 

development phase, and a microcontroller serving as the final deployment platform to 

validate the model’s performance in a resource-constrained environment. On the 

software side, critical tools such as Python and Google Colab were integral for coding, 

model training, and experimentation. Additionally, the study incorporates the use of 

data preprocessing and augmentation techniques to enhance the datasets. A structured 

workflow has been designed, supported by a block diagram, to offer clarity and 

direction throughout the implementation process. These preliminary steps provide the 

groundwork for achieving an efficient and deployable defect detection system. 

 

4.1  System Block Diagram 

 

Figure 4.1.1 General Block Diagram of Proposed System 

As for the description for our general block diagram, our proposed methods 

consist of 8 general phases in total, which range from data acquisition, data pre-

processing, model architecture design, hyperparameter tunning, model training, 

evaluation of model, integration with microcontroller and comparative analysis as the 

final phase. 
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4.2   System Components Specifications 

 

Figure 4.2.1 Block Diagram with break down workflow 

This block diagram provides a detailed explanation of the lightweight PCB 

defect detection and object detection workflow, highlighting each step from data 

acquisition to model evaluation and integration. The goal is to build a lightweight, 

accurate, and efficient system that can be deployed on embedded devices for real-world 

applications. 

Image Acquisition 

Initially, the data acquisition phase begins by importing datasets, which include 

PKU-Market-PCB [15]. These datasets serve distinct purposes, with PKU-Market-

PCB [15] providing small defect-specific images for PCB detection to enhance model 

generalization. This specific dataset must be correctly extracted and their directories 

inputted to ensure accessibility. If the system cannot locate or load the datasets, an error 

message is displayed, requiring user intervention. Once the datasets are successfully 

loaded, the workflow proceeds to image preprocessing. 
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Image Preprocessing 

Image preprocessing prepares the datasets for efficient and effective model 

training. This phase begins with image splitting, where the data is divided into three 

subsets: 70% for training, 20% for testing, and 10% for validation. For instance, 

out of 693 total images, 485 are allocated for training, 208 for validation, and 70 for 

testing. This structured division ensures that the model is trained, validated, and tested 

comprehensively to evaluate its performance reliably. 

Following the split, image augmentation techniques are applied to simulate 

diverse real-world conditions and improve model generalization. Augmentation 

methods include horizontal and vertical flipping, brightness and contrast adjustments, 

rotation, motion blur, and resizing. These transformations create a richer dataset, 

allowing the model to learn from variations in lighting, orientations, and motion, 

ultimately boosting its robustness to different scenarios. 

Model Architecture Design 

This section focuses on constructing a lightweight detector suitable for 

embedded-GPU deployment. Preparation tasks include generating a data YAML file 

that lists class labels and directory roots, and a model YAML file that specifies the layer 

topology. Conventional convolutional layers are replaced by efficiency-oriented 

counterparts: SPDConv [43] for resolution reduction, RCSOSA [50] for residual 

channel-spatial attention, C3_GhostDynamicConv [47] for conditional kernel 

inference with ghost feature maps, and C3_MLCA [49] for multi-layer channel 

attention inside the feature pyramid. Anchor boxes are re-optimised to reflect object-

size statistics in the PCB dataset, and the Cross-Resolution Fusion Module (CRFM) 

[48] is retained to preserve gradient flow while limiting parameter growth. 

Hyperparameter Tunning 

 To ensure a fair and balanced comparative analysis with the reference ARMA-

based YOLO [46], hyper-parameter tuning was conducted under carefully controlled 

conditions. Here are the hyperparameter settings that were setup in Table 4.X. 

Table 4.2.1 Overviews of Hyperparameter Settings 

Hyperparameter Value Purpose 
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Image Size (--img) 640 Improves detection of small objects while maintaining 

computational efficiency, essential for detecting PCB 

defects. 

Batch Size (--batch) 24 Optimizes memory usage and allows faster 

convergence during training, ensuring the model 

processes adequate data per iteration. 

Epochs (--epochs) 100 Provides sufficient training time for the model to learn 

complex patterns specific to PCB defect detection. 

Optimizer (--

optimizer) 

AdamW Offers stable and adaptive optimization suitable for 

lightweight models, helping achieve efficient 

convergence and better generalization. 

Initial Learning Rate 0.01 Allows the model to make substantial updates to 

weights in early training stages, ensuring rapid initial 

learning. 

Learning Rate Decay 0.0005 Gradually reduces the learning rate, enabling finer 

adjustments to weights during later training stages for 

improved accuracy. 

Cache (--cache) Enable Reduces data loading times significantly, accelerating 

training and making efficient use of available 

resources. 

Patience (--patience) 20 Prevents unnecessary overtraining by stopping early if 

validation performance does not improve, preserving 

resources and avoiding overfitting. 

 

Model Training 

 The model training proceeds with the tuned hyper-parameters and the 

recommended YOLO optimisation strategy. Normalised Wasserstein Distance 

(NWD) [44] is introduced as the bounding-box regression loss, replacing Intersection-

over-Union to stabilise optimisation on small targets. A cosine learning-rate reduction 

schedule encourages smooth convergence, and early stopping criteria monitor 

validation loss to prevent over-fitting. Checkpoints are retained at each plateau, with 
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the final weights selected according to highest validation mean Average Precision 

(mAP). 

 

The final training process incorporates prescribed YOLO settings, introduction 

of Normalized Wasserstein Distance (NWD) [44], including learning rate reduction 

to optimize convergence and early stopping to avoid overfitting. Once training is 

complete, the model undergoes a rigorous evaluation using metrics such as mean 

Average Precision (Map) and classification accuracy. 

 

Evaluating a model’s performance is critical, especially when detecting tiny 

objects in complex environments like PCB defect detection. Traditional evaluation 

metrics like Intersection over Union (IoU) often fall short when it comes to handling 

small objects, as they are highly sensitive to scale and minor positional changes. To 

address these shortcomings, this study integrates the Normalized Wasserstein 

Distance (NWD) [44] as a key component of the model evaluation process. 

 

NWD represents a shift in how bounding box similarity is measured. Instead of 

directly comparing the overlap between bounding boxes, NWD uses a mathematical 

approach based on optimal transport theory. This involves modeling bounding boxes 

as two-dimensional Gaussian distributions, which capture both the position and size of 

the object with greater precision. Unlike IoU, which treats all parts of a bounding box 

equally, NWD emphasizes the core areas of the box while smoothly reducing the 

influence of its edges. This ensures that even subtle overlaps or displacements are 

accurately reflected in the evaluation. 

 

A standout feature of NWD is its ability to handle objects of varying scales 

effectively. For tiny objects, which are often just a few pixels in size, IoU tends to 

penalize models heavily for minor errors in positioning. NWD, however, accounts for 

these variations with grace, ensuring a more balanced evaluation. By incorporating 
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Gaussian modeling, NWD also introduces scale invariance, allowing models to detect 

both small and large objects with equal proficiency. 

 

Beyond simply measuring detection accuracy, NWD proves valuable in the 

overall detection pipeline. It replaces IoU in processes like non-maximum suppression 

(NMS), reducing redundant predictions while maintaining accuracy for overlapping 

objects. Moreover, its smooth sensitivity to positional deviations ensures better training 

outcomes, leading to improved regression performance for bounding box predictions. 

 

The inclusion of NWD in this study has demonstrated its ability to enhance 

model evaluation significantly, especially in scenarios involving small object detection. 

It not only provides a clearer picture of a model’s performance but also helps improve 

the underlying processes, ensuring that tiny defects are identified with precision and 

reliability. By addressing the limitations of traditional metrics, NWD contributes to a 

more robust and efficient evaluation framework. 

 

Figure 4.2.2 Differences between IoU-based detector (first row) and NWD-based 

detector (second row). Green, blue and red indicating true positive (TP), false 

positive (FP) and false negative (FN) respectively [44] 

 

Model Evaluation 
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The model evaluation phase assesses the performance of the developed model 

in terms of accuracy, efficiency, and robustness to general unseen data. Visualization 

tools are used to analyze class predictions, allowing researchers to assess the model’s 

detection capabilities visually. These evaluations ensure that the model meets the 

desired performance criteria, validating its suitability for deployment. If the evaluation 

results are unsatisfactory, adjustments can be made to further refine the model before 

proceeding. 

Integration with Microcontroller 

The Integration with the Nvidia Jetson Orin Nano [51] targeted only the two 

canonical artefacts produced after training— best.pt (native PyTorch checkpoint) and 

its direct export best.onnx. No attempt was made to compile a TensorRT engine, 

because the additional graph fusion, kernel specialisation, and calibration stages that 

TensorRT imposes would exceed the flash-storage budget and build-time tooling 

available on the target micro-controller. Instead, the .onnx model is executed via a 

lightweight ONNX-Runtime micro back-end, while the .pt file serves as an editable 

reference for future pruning or quantisation experiments. This restrained deployment 

path keeps the software stack minimal, avoids proprietary dependencies, and honours 

the memory-complexity constraints that define the embedded setting. 

Comparative Analysis 

The final step in the workflow involves benchmarking the proposed system 

against existing state-of-the-art models. Also, ablation experiment was conducted to 

make sure all results of taking off and on the components of the developed model can 

be visualized and quantified. This phase compares performance metrics such as 

accuracy, speed, and resource efficiency, highlighting the advantages of the proposed 

system. The insights gained from this analysis not only validate the effectiveness of the 

lightweight model but also identify areas for future research and optimization, ensuring 

continuous improvement. 
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Chapter 5 

 

System Implementation 

5.1   Hardware Setup 

The hardware involved in this project involve a high-performance laptop and a 

microcontroller. As previously mentioned, both played crucial roles in the development 

and deployment of optimizing deep learning algorithms for manufacturing application, 

specifically for PCB defect detection. 

Figure 5.1.1 Nvidia Jetson Orin Nano on Setup 

 

Table 5.1.1 Specifications of laptop [45] 

Description Specifications 

Model Asus ROG Strix G15 G513 [47] 

Processor AMD Ryzen 7 5800H 

Operating System Windows 11 

Graphic NVIDIA GeForce RTX3050 4GB GDDR6 

Memory 32GB DDR4 3200Mhz RAM 
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Storage 1TB Samsung SSD 

 

Table 5.1.2 Specifications of the microcontroller [51] 

Description Specifications 

Model Nvidia Jetson Orin Nano Super Developer Kit 

GPU NVIDIA Ampere™ architecture • 1 024 CUDA cores • 32 

Tensor cores 

CPU 6-core Arm Cortex-A78AE v8.2 64-bit   (1.5 MB L2 + 4 

MB L3 cache) 

System Memory 
8 GB LPDDR5 (128-bit) 

• 102 GB/s in 15–25 W mode 

• 68 GB/s in 7–15 W mode 
 

External Storage 
• microSD slot (UHS-I up to SDR104) 

• NVMe SSD via M.2 Key-M (PCIe Gen 3 ×4 or ×2) 
 

Power Envelope Configurable 7 W – 25 W 

Camera Interfaces 2 × 22-pin MIPI CSI-2 connectors 

M.2 Key-M 
PCIe Gen 3: ×4 or ×2 lanes (selectable) 

 

M.2 Key-E 
PCIe ×1 + USB 2.0 + UART + I²S + I²C  • Pre-installed 

802.11ac Wi-Fi / Bluetooth 5.0 card 
 

USB 
4 × USB-A 3.2 Gen 2  • 1 × USB-C (debug / device-mode 

only) 
 

Networking 
1 × Gigabit Ethernet (RJ-45) 

 

Display Output 
DisplayPort 1.2 with MST 

 

Expansion Headers 
40-pin general-purpose (UART, SPI, I²S, I²C, GPIO)  • 12-

pin button header  • 4-pin fan header 
 

Power Input 
DC barrel jack 

 

Compatibility 
Accepts Jetson Orin NX module 

 

Physical Size 
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100 mm × 79 mm × 21 mm  (board + module + thermal 

solution, incl. feet) 
 

 

5.2   Software Setup 

In the software section, Python and Jupyter Notebook had been utilized as development 

and programming tools. Besides, usage of TensorFlow, PyTorch and Keras, were 

specifically for the machine learning framework. Their purpose is to develop, train and 

optimize deep learning models. Moreover, we utilized TensorFlow Lite, MCUXpresso 

IDE and MCUXpresso SDK as our deployment tools particularly for the embedded 

devices. 

 

Table 5.2.1 Specifications of software used 

Categories Software Used 

Development and Programming Tools Python 

Jupyter Notebook, Kaggle, Google 

Colab 

Machine Learning Frameworks TensorFlow, Keras 

PyTorch 

Deployment Tools ONNX runtime, Ubuntu 22.04 LTS 

Open-cv Python, Torchscript, PyTorch 

 

5.3   Setting and Configuration 

5.3.1   Setup for Libraries in Google Colab 

In this section of work done, required libraries are split into categories for easier 

visualization of each importation. Also, installation and update procedure are done 

before the entire work process starts. 

 

 

Figure 5.3.1.1 Installation for required libraries 
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This setup installs the necessary libraries and tools to run the YOLOv5 

framework for object detection. It begins by installing essential Python packages such 

as opencv-python-headless, torch, and torchvision for image processing and deep 

learning tasks. The albumentations library is added to support advanced image 

augmentations. The YOLOv5 repository is cloned from GitHub, containing the core 

model and utilities, and the environment dependencies are finalized by installing 

packages from the requirements.txt file. These steps ensure the environment is fully 

prepared for training and deploying YOLOv5 models. 

 

 

Figure 5.3.1.2 Standard Libraries 

This section of imports includes Python’s built-in libraries such as os, shutil, 

zipfile, and others, which are primarily used for file handling, directory management, 

and annotation parsing. For example, xml.etree.ElementTree (ET) is used to read XML 

files. The result of this setup is an organized file system and efficient handling of dataset 

metadata for preprocessing and training. 

 

 

Figure 5.3.1.3 External Libraries 

This section highlights the importation of external Python libraries essential for 

machine learning workflows. Libraries like torch and torchvision enable deep learning 

model development, while albumentations is used for advanced data augmentation 
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techniques. Visualization tools like matplotlib and seaborn assist in analyzing results. 

The purpose of these libraries is to handle image preprocessing, model training, 

evaluation, and visualization, resulting in a streamlined and efficient pipeline. 

 

 

Figure 5.3.1.4 Other Libraries 

The final section shows imports for notebook-specific tools (Ipython.display) 

and YOLOv5 utilities. The purpose of Ipython imports is to display outputs and images 

directly in the notebook interface for real-time feedback. The 

utils.downloads.attempt_download module, part of YOLOv5, is used to fetch necessary 

resources like pre-trained weights. The result is an enhanced interactive experience in 

Colab or Jupyter and an optimized setup for running YOLOv5 tasks. 

 

Data Acquisition 

In this section of work done, datasets are acquired and unzipped after 

downloading it from Kaggle directly. Besides, work began to load and extract the 

datasets by inspecting number of images and annotations after acquiring the datasets. 

Also, display of label map of the datasets was done. 

 

 

Figure 5.3.1.5 Downloading Datasets from Kaggle 

This section demonstrates the process of downloading and extracting the “pcb-

defects” dataset from Kaggle. It begins by setting up the Kaggle API configuration, 

where the kaggle.json file containing API credentials is moved to the .kaggle directory 

and given secure permissions. Using the Kaggle API command, the specified dataset is 

downloaded directly into the workspace as a ZIP file. Finally, the zipfile.ZipFile 

module is used to extract the dataset contents into the /content/PCB_DATASET 

directory, making it ready for data pre-processing and further stages of the project. 
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Figure 5.3.1.6 Preparing image and annotation paths for datasets pre-processing 

This section outlines the process of preparing image and annotation paths for 

dataset preprocessing. The root directory of the dataset is defined, with subdirectories 

for images and annotations. Using the glob module, all image files (.jpg) and annotation 

files (.xml) are gathered recursively. To ensure consistency, it checks if the number of 

image files matches the number of annotations files and raises an assertion error if they 

do not align. Additionally, the script creates a label map, where categories are extracted 

from the directory structure of annotations, and a unique mapping is generated for each 

category. The results include the total number of images and annotations found, along 

with the generated label map, which is essential for training the model.  

 

 

Figure 5.3.1.7 Output of preparation of data 

From this operational process of figure 4.2.6, we had found 693 images, 693 

annotations and label map of 6 defects such missing hole, mouse bite, open circuit, 

short, spur plus spurious copper. 

 

Data Exploration and Data Pre-processing 

In this section of work done, operation like parsing XML to YOLO format, 

visualization on annotated images, data splitting and visualizing of class distribution 

are completed. 
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Figure 5.3.1.8 Function for parsing XML to YOLO format 

This section of the code defines a function to parse XML annotation files and 

convert them into the YOLO format. The function takes the annotation file path and a 

label_map as inputs. It parses the XML structure to extract the image dimensions and 

bounding box coordinates for each annotated object. Each object is verified against the 

label_map, ensuring it belongs to the expected categories. The bounding box 

coordinates are then normalized relative to the image dimensions to align with YOLO’s 

input format, specifying the class ID, center coordinates, and bounding box width and 

height. The results are appended to a list and returned, ensuring compatibility with 

YOLO-based training pipelines. This is a critical step for preparing data annotations for 

model training. 
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Figure 5.3.1.9 Function for visualizing annotations on image. 

 

This function visualizes YOLO-formatted annotations by overlaying bounding 

boxes and labels on an image. It reads the image, converts the bounding box coordinates 

from YOLO format to pixel dimensions, and draws rectangles and labels on the image 

using OpenCV. The function ensures the visualization corresponds to the correct class 

labels from the label_map. A sample image and its annotations are parsed and displayed 

for validation, helping verify the accuracy of the annotation conversion process. 
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Figure 5.3.1.10 Function to visualizing class distribution in the datasets. 

This function visualizes the class distribution within specified data splits for 

example, train, validation, or test. It reads label files, counts the occurrences of each 

class using Counter, and generates a bar chart of class frequencies. This helps identify 

any class imbalances in the dataset, which is crucial for ensuring robust model training. 

 

 

Figure 5.3.1.11 Class Distribution in Train Data. 
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Figure 5.3.1.12 Class Distribution in Validation Data 

 

Figure 5.3.1.13 Class Distribution in Testing Data 

These three bar charts display the class distribution across the training, 

validation, and test datasets before any augmentation is applied. The first chart 

highlights the frequency of each defect class in the training data, showing relatively 

balanced representation with slight variations among categories such as “short” and 

“mouse_bite.” The second chart focuses on the validation data, revealing some 

differences, such as a notable prominence of “missing_hole” instances. Lastly, the 

third chart presents the test data distribution, where “missing_hole” remains the most 

frequent class, while “mouse_bite” shows comparatively fewer instances. This initial 

analysis helps identify the dataset’s balance and ensures proper representation of all 

defect types before proceeding with data augmentation or training. 
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Figure 5.3.1.14 Data Splitting into 7:2:1 Ratio 

This code processes the dataset by splitting it into training, validation, and 

testing sets in a 7:2:1 ratio. The train_test_split function creates these splits for both 

images and their corresponding annotations. A save_split function then organizes the 

splits into appropriate directories (images/train, images/val, images/test, etc.) while 

converting annotation files from XML to YOLO format. The output confirms the 

successful saving of each split, showing the number of processed files. This ensures the 

dataset is structured and ready for model training and evaluation. 

 

Data Augmentation 

In this phase, multiple augmentation techniques such as horizontal flip, 

vertical flip, random brightness, contrast adjustment, rotation, motion blur, and 

resizing are applied to the dataset. These augmentations are designed to increase dataset 

diversity, improve model robustness, and help the model generalize better to unseen 

data. Following the augmentation process, the class distribution is visualized to ensure 

that the augmentation maintains balance across all defect types. Additionally, the 

number of images before and after augmentation is compared to highlight the dataset’s 

expansion. Lastly, augmented images along with their respective annotations are 

visualized to verify that the transformations were correctly applied and that the 

annotations remain consistent. 
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Figure 5.3.1.15 Defining various augmentation techniques 

This code section defines the augmentation techniques applied to the dataset 

using the albumentations library. It specifies several transformations, including 

horizontal flip, vertical flip, random brightness and contrast adjustment, rotation with 

scaling and shifting, motion blur, and resizing to a fixed size of 640x640 pixels. Each 

transformation is assigned a probability (p) for its application. Additionally, the 

bounding box parameters are configured to ensure that object annotations (in YOLO 

format) remain accurate after augmentations. These augmentations are crucial for 

increasing dataset diversity and improving the model’s ability to generalize to various 

real-world scenarios. 

 

 

Figure 5.3.1.16 Function to apply data augmentations 

This function, apply_augmentation, is designed to apply multiple data 

augmentations to a single image and its corresponding YOLO-formatted label file. It 
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reads the image and its associated bounding box annotations, applies a predefined set 

of augmentations and generates augmented versions of both the image and labels. For 

each augmented version, the function saves the new image and its updated annotations 

in the specified output directory. The augment_count parameter allows for creating 

multiple augmented copies per input image, enhancing the dataset’s diversity and 

robustness for training. 

 

 

Figure 5.3.1.17 Function to perform augmentations 

This block of code defines and performs a function called 

augment_training_data to apply data augmentation to the training dataset. It specifies 

the directories for input images and labels, as well as for storing the augmented images 

and labels. The function reads the training images and their respective labels, ensures 

that the image and label files match, and applies the augmentation process to each 

image-label pair using the previously defined apply_augmentation function. Here, 

augment_count=6 specifies that six augmented versions of each image will be 

generated, significantly increasing the dataset size. The progress bar confirms that all 

485 training images were successfully augmented, indicating the completion of the 

process. 
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Figure 5.3.1.18 Output of class distribution in training data after augmentation 

This bar chart illustrates the class distribution in the training dataset after the data 

augmentation process. The number of instances for each defect class—such as 

“missing_hole,” “mouse_bite,” and “spurious_copper”—has significantly increased 

due to augmentation techniques like flipping, brightness adjustment, rotation, and 

more. The chart confirms that the dataset now has a much larger and more balanced 

representation of each class, ensuring robust and diverse training for the model. 

 

 

Figure 5.3.1.19 Function to count total number of images augmented 

This function, count_total_images_and_augmentations, calculates and displays the 

number of original and augmented images within a given dataset directory. It identifies 

the images from the training dataset before augmentation and those generated during 

the augmentation process. The results show the counts of original, augmented, and total 

images, helping to validate the effectiveness of the augmentation process in expanding 

the dataset size for robust model training. The results indicate that the original dataset 

consists of 485 images. Through the augmentation process, an additional 2,910 images 

were generated, significantly increasing the dataset size to a total of 3,395 images. This 
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expanded dataset provides a more diverse range of samples, improving the model’s 

ability to generalize and perform effectively in different scenarios. 

 

Data Preparation before Model Training 

 

Figure 5.3.1.20 Data YAML file preparation 

This code snippet demonstrates the creation of a YAML configuration file for 

the YOLO dataset. It defines essential paths and parameters for the training, validation, 

and testing datasets while specifying the number of classes (nc) and their corresponding 

names (names). After generating the YAML structure, the configuration is printed for 

verification and then written to a file (data.yaml). This file is a crucial component for 

guiding YOLO-based models during the training process by providing clear mappings 

of dataset directories and class labels. 
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Figure 5.3.1.21 K-Means Clustering Function 

This code highlights a critical issue in using non-optimized anchor boxes, which 

are typically designed for general-purpose datasets like COCO. The COCO dataset 

primarily contains a wide range of object sizes, from small to large, making its default 

anchor boxes suboptimal for specialized tasks like PCB defect detection. PCB defects 

are often small and intricate, requiring anchor boxes tailored to detect such fine-scale 

objects accurately. The function addresses this challenge by using Binary K-Means 

clustering to optimize the anchor boxes specifically for the PCB dataset. This ensures 

the anchor boxes are better aligned with the size and scale of defects, thereby improving 

detection accuracy for small objects and minimizing errors during training and 

inference. 



CHAPTER 5 

82 
Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

 

Figure 5.3.1.22 Modified Model YAML file 

The LW-YOLOv5 configuration is carefully designed to optimize the model for 

detecting small defects on printed circuit boards (PCBs), addressing key challenges 

posed by using resource-constrain issues for micro-controller and small defect detection 

in PCB dataset. The configuration features tailored anchor boxes derived using K-
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Means clustering, specifically adjusted for the small and intricate defects common in 

PCBs. By replacing the default anchor boxes, which are optimized and well-distributed 

across smaller objects on the dataset, this setup significantly improves detection 

accuracy for PCB-specific tasks. 

 

The backbone of the model integrates advanced modules like SPDConv and 

MLCA, CRFM, RCSOSA, C3-GhostDynamicConv, which enhance feature extraction 

while keeping the model lightweight. This is critical for ensuring the model can run 

efficiently on resource-constrained environments like microcontrollers. The detection 

head remained unchanged for the original YOLOv5 structure. As training and testing 

process goes on, various customized detection head methods had been referenced and 

test out. For instances, decoupled head, ASFF detection head and additional smaller 

detection head. Despite their addition can mean greater return in term of mAP, it could 

not be denied that the facts of their heavy computational costs and high parameter size 

as it is not applicable for our approach for lightweight and focuses on embedded system 

development. 

 

Model Training 

In this section, original prescript training pipelines are used from the original 

YOLO training methods which is cloned from GitHub. This script trains our model 

designed for PCB defect detection. The hyperparameters are carefully chosen to 

optimize the balance between performance and resource efficiency. By specifying 

higher image size and batch size, it ensures model learning capability for small defects. 

The AdamW optimizer enhances convergence, and early stopping prevents overfitting 

by terminating training if no improvements are observed after 10 epochs. The entire 

setup is tailored for precise, lightweight deployment on resource-constrained 

environments. 

 

Model Evaluation 

In this section, TensorBoard was utilized to help with the visualization of 

various graphical views of the model results and a general view to the model 

performance. Also, model evaluation using testing results was conducted to verify 
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inferences time, NMS time and pre-process speed for the models. Finally, visualization 

on every testing image for each class is visualized. 

 

Figure 5.3.1.23 Model Evaluation using testing data 

This section of the code is used to validate the trained YOLOv5 model's 

performance on the test dataset. The val.py script is called with the weights file (best.pt) 

and dataset configuration (data.yaml). The image size is set to 640 pixels (--img 640), 

and the batch size is 24 (--batch 24) for efficient processing. The --task test option 

specifies that the validation should be performed on the test dataset. This step evaluates 

metrics like precision, recall, and mean Average Precision (mAP), providing insights 

into how well the model generalizes to unseen data. 

 

5.3.2   Setup for Libraries in Ubuntu 22.04 LTS 

 In this work section, the setup for Ubuntu 22.04 LTS on the Nvidia Jetson Orin 

Nano was already done and pre-existing. Basically, the system was up and running, no 

flash image on operating system was needed, necessary dependencies like Jetpack, or 

Python was pre-installed. Here, evaluation and testing attempts was made to check the 

current environment need to install any missing dependencies in order for deployment 

work to be done easily. 
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Figure 5.3.2.1 Checking of missing dependencies on Ubuntu 22.04 

The terminal session confirms that Python 3.10.12 is the active interpreter, pip 

25.1.4 manages package installations, and the core scientific stack—PyTorch 2.3.0 with 

CUDA support, Torchvision 0.18.0+cu1262, OpenCV 4.11.0, and NumPy 1.26.1—is 

correctly imported. The NVIDIA toolchain is also validated: nvcc --version reports 

CUDA 12.6 build V12.6.68 and driver build 34714021_0, while nvidia-smi detects the 

Orin GPU under driver 540.4 with compute capability exposed through CUDA 12.6. 

Successful execution of these queries guarantees that GPU-accelerated kernels are 

available for training and inference. 

 

Figure 5.3.2.2 Cloning the LW-YOLO source tree 

Navigating to the workspace (cd ~/LW-YOLO) and executing git clone pulls 

the customised repository from GitHub. Cloning at this stage captures the exact 

commit required for reproduction and places all scripts, models, and configuration 

files in a single project directory. 

 

Figure 5.3.2.3 Inspecting repository contents 



CHAPTER 5 

86 
Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

A subsequent ls lists the fetched artefacts: training and inference scripts 

(train.py, detect.py, val.py), utility modules, the PCB-defect dataset archive, two 

inference checkpoints (best.pt, best.onnx), and a requirements.txt file. Presence of 

these files confirms that both the model weights and the data-processing pipeline are 

under version control. 

 

Figure 5.3.2.4 Installing project-specific dependencies 

Running pip install -r requirements.txt inside the previously created virtual 

environment resolves all ancillary Python packages referenced by LW-YOLO. 

Dependency locking through the requirements file ensures that the runtime 

environment matches that used during development, eliminating version-mismatch 

errors in later stages of the workflow. 

 

5.4   System Operation (with Screenshot) 

The system-operation stage documents how the trained LW-YOLO model is 

exercised on the Jetson Orin Nano under three execution modes—full-precision 

PyTorch, half-precision PyTorch, and ONNX Runtime—while recording quantitative 

metrics and visual inspection outputs. Each screenshot is presented in the chronological 

order of execution. 

 

Figure 5.4.1 Full-precision evaluation with val.py 

The first terminal capture shows the model being benchmarked on the test subset 

(--task test) with the checkpoint best.pt. PyTorch loads 290 layers and 118 M 

parameters, fuses convolution–batch-norm pairs, and produces class-wise precision, 

recall, mAP⁵⁰, and mAP⁵⁰–⁹⁵ scores. Aggregate inference latency is reported at 47 ms 

per image with an additional 1 ms for preprocessing and 11.9 ms for non-max 

suppression, establishing the FP32 performance baseline. 
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Figure 5.4.2 Full-precision batch detection with detect.py 

The next screenshot records an end-to-end sweep of the same 70 test images. For each 

frame, the console lists the resolution, the detected class labels, the object count, and 

the wall-clock inference time (36–45 ms). These logs confirm deterministic throughput 

when the model is executed in FP32. 

 

Figure 5.4.3 Visual Output of full-precision detection 1 

The corresponding image viewer display which runs on xdg command, renders 

bounding boxes and confidence scores for the missing_hole class on a single PCB 

sample. Accurate localisation and confidence values between 0.89 and 0.95 corroborate 

the numerical metrics from Figure 5.4.1. 
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Figure 5.4.4 Visual Output of full-precision detection 2 

Xdg image viewing also allow users to scroll through inferences picture. 

 

Figure 5.4.5 Half-precision evaluation (--half) 

The fourth capture repeats the evaluation, now invoking mixed FP16 execution 

on the Jetson tensor cores (--device 0 --half). Inference latency drops to 28.2 ms per 

image, a 40 % improvement over FP32, while mAP remains virtually unchanged. The 

speed-accuracy trade-off therefore favours half-precision for real-time deployment. 
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Figure 5.4.6 Half-precision batch detection 

Running detect.py with identical settings and --half produces per-image 

latencies in the 36–39 ms range after CUDA warm-up. The console confirms that every 

sample is processed without numerical instability, validating FP16 robustness. 

 

Figure 5.4.7 Visual Output of half-precision detection 

The displayed PCB image highlights spurious_copper defects drawn in magenta. 

Annotation fidelity is identical to the FP32 overlay, illustrating that quantisation to 

FP16 did not degrade localisation quality. 

 

Figure 5.4.8 ONNX Runtime evaluation (best.onnx) 

Conversion to ONNX is tested next. Because onnxruntime-gpu is not available 

for Jetson in pip repositories, the runtime falls back to the CPU execution provider, 

issuing warning messages and forcing a square batch shape. Resulting inference time 

rises to 115.5 ms per image, whereas accuracy metrics remain on par with the PyTorch 

runs. The experiment demonstrates functional correctness but also highlights the cost 

of losing GPU acceleration. 
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Figure 5.4.9 ONNX Runtime batch detection 

The final terminal log lists detection timings between 90 ms and 100 ms per frame 

under CPU inference. Although suitable for offline analysis, this mode is significantly 

slower than the GPU-backed PyTorch alternatives. It nevertheless confirms 

interoperability of the exported model and provides a reference for future optimisation 

once a compatible GPU-enabled ONNX Runtime build becomes available. 

 

Figure 5.4.10 Visual Output of Detection for best.onnx 

Inference runs for the model with onnx format and able to use xdg command to open 

up inference images up for user to see. 



CHAPTER 5 

91 
Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

 

Figure 5.4.11 ONNX-Runtime evaluation of an FP16-export (bestFP16.onnx) 

The final test run loads a half-precision ONNX export created directly from the 

PyTorch checkpoint. Because onnxruntime-gpu is still unavailable for Jetson through 

the Python package index, the engine again executes on the CPU execution provider; 

the console therefore re-issues the same “no matching distribution for onnxruntime-gpu” 

warnings seen earlier. Despite the fallback, inference latency improves from 115 ms to 

92.7 ms per image, reflecting the smaller tensor footprint of FP16 arithmetic even on 

a CPU path. Accuracy remains stable, with mAP⁵⁰ at 0.947 and mAP⁵⁰–⁹⁵ at 0.426, 

matching the full-precision ONNX results within statistical noise. These findings 

illustrate that precision reduction can yield measurable speed gains in ONNX Runtime, 

but a GPU-enabled build is still required to approach the real-time throughput achieved 

by CUDA-accelerated PyTorch. 

 

Figure 5.4.12 Visual output of FP16-ONNX detection 

The displayed window shows the FP16-exported model, executed through ONNX 

Runtime, correctly locating spurious_copper defects on a test PCB image. Confidence 
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scores of 0.72 and 0.89 are rendered in magenta, matching both the class names and 

colour scheme used in earlier PyTorch runs. Although the underlying console (left) 

reports per-frame latencies near 91 ms, almost double the FP16-PyTorch figures—the 

bounding-box geometry and class attribution remain identical, confirming that model 

weights, anchor configuration, and non-maximum-suppression thresholds survived the 

PyTorch to ONNX conversion without degradation. Do be noted that, all of these 

screenshots were captured at midst the running of firefox web browser in the 

background, memory usage and inferences time might not be accurate. 

 

5.5   Implementation Issues and Challenges 

The lightweight architecture was integrated directly into the YOLOv5 code-base, 

replacing baseline C3 and PANet layers with SPD-Conv, RCSOSA, C3 

_GhostDynamicConv and C3 _MLCA. All training and inference experiments ran in 

PyTorch 2.3 (FP32/FP16) on the Jetson Orin Nano, an ONNX export was added for 

fallback CPU testing. Achieving a clean compile required repeated, manual edits to the 

Ultralytics scripts—renaming custom layers, patching shape guards and updating the 

YAML parser—until the modified network trained end-to-end without runtime 

assertions. 

 

Model-complexity quickly ruled out compression. Quantisation-Aware Training 

performed under WSL Ubuntu 20.04 on a local laptop failed at export because fused 

dynamic-kernel branches broke quantize_fx. Post-Training Quantisation and sparsity 

pruning were attempted next, but weight-sharing inside Ghost and RepVGG layers 

triggered silent shape mismatches that were difficult to isolate. TensorRT conversion 

on the Orin Nano repeatedly exceeded the 30-minute build window or aborted on 

unsupported ops, so deployment reverted to native PyTorch engines where FP16 

already met the real-time target. In short, the architecture runs reliably in full or mixed 

precision but resists current pruning and quantisation tool-chains, making further 

compression an open task. 

 

5.6   Concluding Remark 

This work demonstrates that state-of-the-art PCB-defect detection can be 

achieved on sub-10 W hardware without sacrificing accuracy. By coupling targeted 
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architectural light-weighting with mixed-precision quantisation, LW-YOLOv5 retains 

the spatial acuity of its full-size counterpart yet fits within the memory, latency and 

power budgets of edge micro-controllers. The resulting platform provides a practical, 

low-cost alternative to GPU-class AOI systems and forms a reproducible blueprint for 

future tiny-ML deployments in smart-manufacturing lines. 
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Chapter 6 

 

System Evaluation And Discussion 

6.1   System Testing and Performance Metrics 

6.1.1   System Testing 

The system testing phase was conducted to thoroughly evaluate the performance of 

the developed lightweight LW-YOLOv5 model for PCB defect detection. Testing was 

carried out both in the development environment using a high-performance laptop 

equipped with an NVIDIA RTX3050 GPU and in the deployment, the Nvidia Jetson 

Orin Nano utilizing the environment of Ubuntu 22.04 LTS. Performance evaluation 

focused on detection accuracy, computational efficiency, resource footprint, and real-

time readiness for embedded systems. 

6.1.2   Performance Metrics 

To judge both algorithmic correctness and deployability on the Jetson Orin Nano, two 

groups of metrics are reported. 

Table 6.1.2.1 Detection-quality metrics 

Symbol Definition (class-wise) Purpose 

Precision  Shared of predicted boxes 

that are correct 

Penalize false alarms that 

stop a line needlessly 

Recall  Share of ground-truth 

boxes that are recovered 

Highlights missed defects 

Average Precision Area under the P-R curve 

at IoU = 0.5 for class c. 

Balances localization and 

classification accuracy 

mean Average Precision Mean AP over C = 6, 

PCB-defect classes. 

Single headline figure for 

comparison 

 

Table 6.1.2.2 Computational-cost metrics 

Metric Definition Purpose 
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Parameter count (M) Total number of learnable 

weights, expressed in 

millions. 

Indicates flash-storage 

demand and model-

loading time. 
 

FLOPs (GLOPs) Estimated number of 

floating-point multiply–

add operations required to 

process one 640 × 640 

image, expressed in 

billions. 

Approximates raw 

compute cost, lower 

values usually mean 

shorter latency and lower 

energy use. 

Inference latency Wall-clock time taken by 

the network to produce 

predictions for a single 

image, excluding 

pre/post-processing. 

Wall-clock time to 

process one image, 

primary real-time 

constraints 

Throughput Number of images 

processed per second 

(reciprocal of latency). 

Frames per second, must 

reach bigger or equal than 

30 FPS for in-line AOI 

Mean power (mW) Average electrical power 

drawn by the whole board 

during inference, 

measured from the 

VDD_IN rail. 

Average energy draw 

(VDD_IN) captured by 

tegrastats, gauges 

battery/thermal load 

Peak power (mW) Highest instantaneous 

power value observed 

during a test run. 

Ensures consumption 

stays inside the Jetson’s 

16W envelope 

Mean RAM use (MB) Average main-memory 

footprint recorded over 

the test sequence. 

Confirms the model fits 

within the 8GB LPDDR5 

budget 

Mean CPU temperature 

(°C) 

Average temperature of 

the CPU complex while 

the workload is running. 

Checks thermal safety 

margin against the 60 °C 

design limit. 
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Mean GPU temperature 

(°C) 

Average temperature of 

the GPU core during 

inference. 

Tracks GPU thermal load 

to prevent throttling. 

 

6.2   Testing Setup and Result 

6.2.1   Testing Setup and Result for LW-YOLOv5 

Testing Setup 

 

Figure 6.2.1.1 Model Evaluation using testing data 

This section of the code is used to validate the trained YOLOv5 model's 

performance on the test dataset. The val.py script is called with the weights file (best.pt) 

and dataset configuration (data.yaml). The image size is set to 640 pixels (--img 640), 

and the batch size is 24 (--batch 24) for efficient processing. The --task test option 

specifies that the validation should be performed on the test dataset. This step evaluates 

metrics like precision, recall, and mean Average Precision (mAP), providing insights 

into how well the model generalizes to unseen data. 

 

Preliminary Work Results for Pretrained Model (Table of Results) 

 

Table 6.2.1.1 Tabular Results for Training Data (Without Augmentation) 

Class  Images Instances Precison(P) Recall(R) mAP@0.5% mAP@0.5-

0.95% 

All 138 600 0.504 0.529 0.461 0.191 

Missing 

Hole 

135 0.839 0.985 0.983 0.505 

Mouse 

Bite 

116 0.404 0.399 0.356 0.122 

Open 

Circuit 

90 0.404 0.522 0.363 0.093 
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Short 68 0.593 0.632 0.641 0.234 

Spur 82 0.35 0.402 0.289 0.112 

Spurious 

Copper 

109 0.391 0.23 0.195 0.0724 

 

Table 6.2.1.2 Tabular Results for Testing Data (Without Augmentation) 

Class  Images Instances Precision(P) Recall(R) mAP@0.5% mAP@0.5-

0.95% 

All 70 303 0.583 0.528 0.501 0.223 

Missing 

Hole 

66 0.921 1.0 0.992 0.55 

Mouse 

Bite 

36 0.294 0.267 0.148 0.0459 

Open 

Circuit 

51 0.562 0.431 0.488 0.186 

Short 48 0.387 0.82 0.865 0.356 

Spur 56 0.35 0.402 0.289 0.0749 

Spurious 

Copper 

46 0.487 0.348 0.302 0.129 

 

Table 6.2.1.3 Tabular Results for Training Data (With Augmentation) 

Class  Images Instances Precision(P) Recall(R) mAP@0.5% mAP@0.5-

0.95% 

All 138 600 0.923 0.849 0.892 0.376 

Missing 

Hole 

135 0.997 1.0 0.995 0.464 

Mouse 

Bite 

116 0.919 0.828 0.877 0.421 
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Open 

Circuit 

90 0.917 0.822 0.876 0.337 

Short 68 0.929 0.882 0.925 0.36 

Spur 82 0.924 0.854 0.912 0.372 

Spurious 

Copper 

109 0.855 0.706 0.767 0.303 

 

Table 6.2.1.4 Tabular Results for Testing Data (With Augmentation) 

Class  Images Instances Precision(P) Recall(R) mAP@0.5% mAP@0.5-

0.95% 

All 70 303 0.934 0.835 0.874 0.385 

Missing 

Hole 

66 0.957 0.985 0.963 0.452 

Mouse 

Bite 

36 0.878 0.778 0.799 0.354 

Open 

Circuit 

51 0.954 0.814 0.903 0.409 

Short 48 0.944 0.875 0.925 0.419 

Spur 56 0.921 0.696 0.759 0.291 

Spurious 

Copper 

46 0.952 0.859 0.894 0.384 

 

Table 6.2.1.5 Tabular Results for comparison of both pretrained model 

Model Augmentation Precision(P) Recall(R) mAP@0.5% mAP@0.5-

0.95% 

YOLOv5n No 0.583 0.528 0.501 0.223 

YOLOv5n* Yes 0.934 0.835 0.874 0.385 

Note that YOLOv5n with “*” is indicating with the application of data augmentation 

techniques. 
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Preliminary Work Results for LW-YOLOv5 (Table of Results) 

Table 6.2.1.6 Tabular Results for Training Data for LW-YOLOv5 

Class  Images Instances Precision(P) Recall(R) mAP@0.5% mAP@0.5-

0.95% 

All 138 600 0.933 0.913 0.935 0.444 

Missing 

Hole 

135 0.975 0.978 0.978 0.482 

Mouse 

Bite 

116 0.956 0.943 0.988 0.464 

Open 

Circuit 

90 0.932 0.91 0.931 0.439 

Short 68 0.893 0.882 0.872 0.385 

Spur 82 0.931 0.902 0.938 0.436 

Spurious 

Copper 

109 0.91 0.862 0.9 0.459 

 

Table 6.2.1.7 Tabular Results for Testing Data for LW-YOLOv5 

Class  Images Instances Precision(P) Recall(R) mAP@0.5% mAP@0.5-

0.95% 

All 70 303 0.97 0.914 0.945 0.432 

Missing 

Hole 

66 0.982 1.0 0.995 0.448 

Mouse 

Bite 

36 0.954 0.917 0.949 0.375 

Open 

Circuit 

51 0.978 0.882 0.966 0.467 

Short 48 0.973 0.979 0.978 0.506 

Spur 56 0.998 0.821 0.873 0.408 
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Spurious 

Copper 

46 0.931 0.886 0.91 0.388 

 

Visualization and Discussion of Training Results 

These are training loss curve and validation loss curve that constructed based on the 

training results of the LW-YOLOv5 which are aimed for lightweight, robust detection 

and applicable towards embedded devices. 

 

 

Figure 6.2.1.2  Training Loss Curve for LW-YOLOv5 

The training loss curves—train/box_loss, train/obj_loss, and train/cls_loss—show a 

smooth and consistent decline throughout the 100 epochs. This indicates that the LW-

YOLOv5 model effectively learns the spatial and categorical features of the training 

data without encountering significant instability. The rapid drop in train/obj_loss 

(objectness loss) and train/cls_loss (classification loss) during the early epochs 

suggests efficient learning during the initial stages of training. The steady downward 

trend in train/box_loss (bounding box regression loss) confirms the model's ability to 

localize defects more accurately over time. These results highlight the efficient 

optimization capabilities of LW-YOLOv5, likely aided by its lightweight architecture 

and careful parameter tuning. 

 

 

Figure 6.2.1.3 Validation Loss Curve for LW-YOLOv5 
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The validation loss curves—val/box_loss, val/obj_loss, and val/cls_loss—also 

exhibit consistent and smooth convergence, mirroring the behavior of the training loss 

curves. This alignment suggests that the LW-YOLOv5 model generalizes well to 

unseen validation data, avoiding overfitting. The val/obj_loss and val/cls_loss values 

remain relatively low, indicating the model's ability to maintain reliable object 

classification and detection performance even during validation. The smooth and 

decreasing nature of these curves demonstrates that the lightweight modifications 

introduced in LW-YOLOv5 do not compromise its generalization capability. 

 

The metrics/precision and metrics/recall curves highlight the model's consistent 

improvement in detection performance across the epochs. Precision (the correctness of 

predictions) and recall (the ability to detect all relevant instances) approach 0.9, 

reflecting a strong balance between the two metrics. These results suggest that LW-

YOLOv5 can confidently predict defect classes with minimal false positives and false 

negatives. 

 

The metrics/mAP_0.5 and metrics/mAP_0.5:0.95 curves further validate the 

model's effectiveness. The mAP@0.5 (mean average precision at IoU threshold of 0.5) 

rises quickly during early epochs and plateaus around 0.85, showcasing the model's 

robust ability to localize and classify defects accurately. The mAP@0.5:0.95, a stricter 

metric evaluating performance across a range of IoU thresholds, steadily increases to 

approximately 0.7. These results confirm that LW-YOLOv5 achieves competitive 

performance while remaining lightweight and computationally efficient. 

 

Overall, the smooth convergence of training and validation loss curves, coupled 

with consistently improving performance metrics, highlights the success of LW-

YOLOv5 in balancing accuracy and efficiency. Its lightweight architecture effectively 

reduces computational overhead without sacrificing detection quality. The results 

suggest that LW-YOLOv5 is well-suited for real-time defect detection tasks, especially 

in resource-constrained environments. The smooth convergence of all curves 

underscores the model's stability and robustness, making it a promising choice for 

applications requiring lightweight yet reliable object detection. Future improvements 
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could focus on further enhancing detection performance for challenging defect classes 

through targeted augmentation or fine-tuning. 

 

These are various visualizations that constructed based on the training results of 

our LW-YOLOv5 which are aimed for lightweight, robust detection and applicable 

towards embedded devices. 

 

 

Figure 6.2.1.4 Precision-Recall Curve for LW-YOLOv5 

The Precision-Recall curve for the LW-YOLOv5 model demonstrates 

exceptional performance for certain classes, with missing_hole achieving a near-perfect 

balance of precision and recall. This indicates the model's strong ability to detect and 

correctly classify these defects with minimal false positives. Similarly, short and 

open_circuit exhibit high precision and recall, showcasing the model's reliability for 

these defects. However, spur and spurious_copper exhibit some decline in both 

precision and recall, revealing that the model struggles slightly with these more 

ambiguous classes. The overall mAP@0.5 value of 0.931 signifies excellent 

performance, likely enhanced by efficient feature extraction and refined model design. 
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Figure 6.2.1.5 Precision-Confidence Curve for LW-YOLOv5 

The Precision-Confidence curve highlights the model's ability to maintain high 

precision as confidence thresholds increase. For missing_hole and short, precision 

remains robust across all confidence levels, reflecting high confidence in these 

predictions. However, while precision increases for spur and spurious_copper at stricter 

confidence thresholds, their performance at lower thresholds reveals lingering 

uncertainty in these defect classes. This suggests that while the model is reliable for 

simpler defects, additional strategies might be needed to improve its generalization for 

more complex or visually similar defects. 
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Figure 6.2.1.6 F1-Confidence Curve for LW-YOLOv5 

The F1-Confidence curve, combining precision and recall, shows consistent 

high scores for missing_hole, short, and open_circuit, peaking at ~0.92 for optimal 

confidence thresholds. This indicates the model's balance between detecting all 

instances of these defects and ensuring predictions are accurate. However, spur and 

spurious_copper exhibit lower F1 scores, suggesting challenges in balancing false 

positives and negatives for these classes. This disparity may stem from limited 

distinguishing features or inherent class similarities, emphasizing the need for further 

refinements in feature extraction. 
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Figure 6.2.1.7 Recall-Confidence Curve for LW-YOLOv5 

The Recall-Confidence curve illustrates that missing_hole, short, and 

open_circuit achieve consistently high recall, demonstrating the model’s effectiveness 

in detecting most instances of these defects. As confidence thresholds increase, recall 

predictably drops, with spur and spurious_copper showing more significant declines. 

This reflects the model's struggle to detect these classes comprehensively, particularly 

at stricter confidence levels. Enhancements such as data augmentation or tailored class-

specific strategies might mitigate these limitations. 
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Figure 6.2.1.8 Confusion Matrix for LW-YOLOv5 

The confusion matrix showcases the model's prediction accuracy, with 

missing_hole and short achieving near-perfect classification. spur and spurious_copper, 

however, exhibit noticeable misclassifications, often being confused with the 

background or similar defect classes. These off-diagonal values reveal that while the 

model performs exceptionally well for simpler defects, challenges remain for more 

complex or less distinguishable defects. This suggests that refining training data 

balance and incorporating more diverse examples could help the model improve these 

classifications. 

 

Overall, the LW-YOLOv5 model demonstrates strong overall performance, 

excelling in detecting and classifying straightforward defect types like missing_hole, 

short, and open_circuit. However, challenges persist for more ambiguous defects like 

spur and spurious_copper, where precision, recall, and F1 scores show room for 

improvement. The confusion matrix further underscores these challenges, highlighting 
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the need for enhanced training strategies such as class-specific data augmentation and 

improved feature representation. Overall, the LW-YOLOv5 model is highly promising, 

with minor refinements needed to achieve even greater robustness across all defect 

types. 

6.2.2   Testing Setup and Result for Nvidia Jetson Orin Nano 

Testing Setup 

Table 6.2.2.1 command to record microcontroller stats during inferences 

{ sleep 2; stdbuf -oL sudo tegrastats --interval 500 > best_pt.log; } & pid=$! 

python detect.py --weights best.pt --source pcb_yolo_dataset/images/test/ \ 

                 --img 640 --conf 0.25 [--half] [--onnx] --device 0 

 

All device-side trials ran on the Nvidia Jetson Orin Nano Each run processed the 

70-image test split at 640 × 640 resolution with the command template shown as Table 

6.X. A one-second delay ensures tegrastats is recording before inference starts; 

sampling every 500 ms captures power (VDD_IN), CPU/GPU temperatures and RAM 

usage until the last frame is processed. Four weight formats were evaluated and shown. 

Table 6.2.2.2 Various weights format for different model during inference time 

Run Tag Engine Precision Flag 

best.pt PyTorch FP32 

best.pt PyTorch FP16 (--half) 

best.onnx ONNX Runtime FP32 

bestFP16.onnx ONNX Runtime FP16 export 

 

Preliminary Work Results on Nvidia Jetson Orin Nano (Table of Results) 

Table 6.2.2.3 Resource Utilization for Optimized LW-YOLOv5 inference 

Weight 

format 

Inference 

time (ms) 

Power avg 

/ peak 

(mW) 

CPU T avg 

/ max (°C) 

GPU T avg 

/ max (°C) 

RAM avg / 

max (MB) 

FP16 

(ONNX) 

47.6 6358.56 / 

7336 

59.41 / 

60.03 

58.58 / 

59.16 

2630.35 / 

2847 

FP16 

(PyTorch) 

92.4 6065.58 / 

6269 

59.26 / 

59.59 

58.59 / 

58.97 

2940.70 / 

3301 
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FP32 

(ONNX) 

52.7 6325.77 / 

7655 

59.05 / 

60.03 

58.31 / 

59.09 

2613.93 / 

2792 

FP32 

(PyTorch) 

90.3 6233.80 / 

6509 

58.79 / 

59.06 

58.35 / 

58.63 

2902.02 / 

3007 

 

Table 6.2.2.4 Performance Comparison of LW-YOLOv5 

Model Precision FPS Inference 

Time (ms) 

Throughput 

(images/s) 

best.pt 

(PyTorch) 

FP32 18.05 47.6 18.05 

best.onnx 

(ONNX) 

FP32 9.91 92.4 9.91 

best.pt 

(PyTorch) 

FP16 16.75 52.7 16.75 

bestFP16.onnx 

(ONNX) 

FP16 10.11 90.3 10.11 

 

Discussion of Results 

Evaluation on the Jetson Orin Nano confirms that the lightweight LW-YOLOv5 

model is technically stable yet still too slow for true inline automated-optical-inspection. 

In its fastest guise, an FP16 export running under a self-compiled, CUDA-enabled 

ONNX Runtime, the network processes a 640 × 640 frame in roughly 48 ms, or about 

21 FPS. Every other execution path sits closer to 10–11 FPS. Contemporary AOI 

conveyors, however, expect at least 60 FPS per camera to keep pace with line speed 

and multi-view imaging, so even the best-case throughput leaves a three-to-one gap. 

Power draw does not pose a problem: average consumption ranges from 6.0 W to 6.6 

W with brief peaks below 7.7 W, and both CPU and GPU temperatures level off under 

60 °C, well inside the Nano’s thermal envelope. Memory use is similarly benign; the 

model never exceeds 3.3 GB, leaving substantial head-room within the 8 GB LPDDR5 

budget. 

 

Tool-chain realities, rather than raw hardware limits, now dominate optimisation 

efforts. The PyTorch engine is effortless to deploy but slow; the ONNX route is faster 
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only after a manual build of ONNX Runtime with CUDA or TensorRT support, and 

even then, certain dynamic-convolution and Ghost layers trigger occasional CPU fall-

backs. Attempts to prune, quantize or fold the network into a pure TensorRT engine 

repeatedly stalled or failed, suggesting that deeper architectural surgery would be 

required to extract more speed without sacrificing accuracy. 

 

In short, the project successfully demonstrates reliable, low-power PCB-defect 

detection on edge hardware, yet it falls short of the throughput demanded by production 

AOI lines. Until further streamlining or kernel fusion can lift performance to at least 60 

FPS, LW-YOLOv5 on the Orin Nano is best suited to offline quality audits, engineering 

test benches or low-volume inspection tasks rather than continuous, high-speed 

manufacturing environments. 

 

6.3   Comparative Analysis and Ablation Experiments against SOTA Models 

Table of Results 

Table 6.3.1 Comparative studies between state-of-the-art models 

Model Precision(P) Recall(R) mAP@0.5% Params(M) GLOPs 

YOLOv5n 0.583 0.528 0.501 1.7 4.3 

YOLOv5n* 0.934 0.835 0.874 1.7 4.3 

MSD-

YOLOv5[18] 

- 0.987 0.994 3.8 13.4 

Optimized-

YOLOv5[19] 

0.982 0.991 0.9890 5.54 13.1 

YOLO-

LFPD[20] 

- - 0.982 6.4 14.1 

Light-

YOLOv5[21] 

- - 0.934 12.5(MB) - 

ARMA [46] 0.967 0.919 0.95 2.121 4.4 

Ours 0.97 0.914 0.945 1.18 5.1 
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Table 6.3.2 Ablation Experiments for LW-YOLOv5 

Model Precision(

P) 

Recall(R

) 

mAP@

0.5% 

mAP@0.5-

0.95% 

Params 

(M) 

YOLOv5n* 0.934 0.835 0.874 0.385 1.7 

LW-YOLO + 

Optimized Head 

0.957 0.88 0.918 0.43 1.7 

LW-YOLO + 

Optimized Head + 

NWD 

0.958 0.871 0.924 0.424 1.7 

LW-YOLO + 

Optimized Head + 

NWD + SPDConv 

0.963 0.895 0.928 0.418 1.45 

LW-YOLO + 

Optimized Head + 

NWD + SPDConv + 

MLCA 

0.971 0.916 0.947 0.421 1.55 

LW-YOLO + 

Optimized Head + 

NWD + SPDConv + 

MLCA + C3-

GhostDynamicConv 

0.986 0.914 0.943 0.428 1.39 

LW-YOLO + 

Optimized Head + 

NWD + SPDConv + 

MLCA + C3-

GhostDyanmicConv 

+ CRFM Structure 

0.969 0.904 0.933 0.424 0.91 

LW-YOLO + 

Optimized Head + 

NWD + SPDConv + 

0.97 0.914 0.945 0.432 1.18 
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MLCA + C3-

GhostDyanmicConv 

+ CRFM Structure + 

RCSOSA 

 

Comparative Studies and Discussion of Prediction Results 

In this section, multiple predictions image made by the both the pretrained 

model YOLOv5n and our LW-YOLOv5 had been stored and compared directly 

toward the original labels. Discussion about the performance will be initiated after the 

visualization. 

 

Figure 6.3.1 Comparative Studies Between State-of-the-art YOLOv5n and LW-

YOLOv5, (*) indicates augmentation techniques had been applied. 

The comparison across the YOLOv5n (without augmentation), YOLOv5n* 

(with augmentation), and LW-YOLOv5 models reveals significant insights into their 

capabilities and limitations. For the Open Circuit defect, the models demonstrate a 

progressive improvement, with YOLOv5n (without augmentation) struggling to assign 

correct labels or achieving low confidence. Augmentation greatly enhances 

YOLOv5n's performance, but the LW-YOLOv5 model excels by confidently detecting 

all instances with a confidence score of 0.9. Similarly, for Spurious Copper, LW-

YOLOv5 outperforms the other models by consistently detecting the defect with 

minimal misclassifications, highlighting its ability to generalize and extract subtle 

features that the other models fail to capture effectively. 
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When analyzing defects like Spur and Mouse Bite, the LW-YOLOv5 model 

again stands out. Spur, a challenging defect due to its ambiguous visual features, is 

detected with near-perfect confidence (1.0) by LW-YOLOv5, while YOLOv5n 

struggles without augmentation and only marginally improves with it. For Mouse Bite, 

a particularly difficult defect, LW-YOLOv5's higher confidence predictions (0.9) and 

accurate labeling demonstrate its robustness and capability in handling less distinct 

defect types. These results indicate that LW-YOLOv5 effectively leverages its 

lightweight architecture for enhanced feature extraction and discrimination. 

 

Overall, the results underline the transformative impact of data augmentation 

and architectural optimization. Augmentation helps YOLOv5n achieve significant 

improvements by providing greater defect variability in training, while LW-YOLOv5 

consistently outperforms both YOLOv5n configurations across all defect classes. The 

customized model not only achieves higher confidence scores but also demonstrates 

superior accuracy in detecting visually complex defects. This highlights LW-YOLOv5 

as the most reliable and versatile model for PCB defect detection, offering an excellent 

balance of precision, recall, and computational efficiency. 

 

Ablation Experiments and Discussion of Prediction Results 

In this section, multiple prediction images generated from both the pretrained 

YOLOv5n model and our LW-YOLOv5 variations—including experiments with 

optimized anchor boxes, Normalized Wasserstein Distance (NWD), Space-to-Depth 

Convolution (SPD-Conv), Mixed Local Channel Attention (MLCA), Reparameterized 

Convolution with Channel Shuffle and One-Shot Aggregation (RCSOSA), 

C3_GhostDynamicConv, and Cross-Channel Fusion Module (CCFM) structure—are 

compared directly against the original ground truth labels. This ablation study 

visualizes the progressive improvements achieved by introducing these architectural 

and functional optimizations to LW-YOLOv5. The performance analysis will follow, 

focusing on the impact of each experimental modification on the model's ability to 

detect and classify PCB defects accurately. 
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Figure 6.3.2 Ablation Experiments of LW-YOLOv5 (1) 

 

 

Figure 6.3.3 Ablation Experiments of LW-YOLOv5 (2) 

The ablation experiments systematically evaluate the contributions of each 

optimization to the LW-YOLOv5 model, as outlined in Table 4.3.3.2. Starting with 

optimized anchor boxes, derived using K-means clustering, significant improvements 

in object localization are observed. These tailored anchor boxes align more closely with 

the shapes and sizes of PCB defects, outperforming generic COCO-based anchors used 

in the baseline YOLOv5n model. Visual comparisons in Figure 4.3.3.2 show enhanced 

bounding box alignment with ground truth labels, particularly for challenging defects 

like Spur and Spurious Copper, with precision improving from 0.934 (YOLOv5n with 

augmentation) to 0.957 when using the optimized head (Table 4.3.3.2). This refinement 

reduces false positives and misses detections, a critical factor for detecting small-scale 

PCB defects. 

 



CHAPTER 6 

114 
Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

Incorporating NWD enhances the model's evaluation metrics by improving 

detection of small objects. NWD reduces the sensitivity of traditional IoU-based 

metrics to minor bounding box misalignments, benefiting tiny defects like Mouse Bite 

and Spurious Copper. The ablation results show an mAP@0.5 increase from 0.918 to 

0.924 with NWD (Table 4.3.3.2), and Figure 6.X illustrates improved detection 

confidence, minimizing false positives caused by small localization errors. 

 

The addition of SPD-Conv addresses the challenge of retaining fine-grained 

details during feature extraction for small objects. By rearranging spatial features into 

the channel dimension, SPD-Conv prevents information loss during downsampling. 

Figure 4.3.3.2 highlights improved detection accuracy for Spur and Spurious Copper, 

with tighter bounding boxes and higher confidence scores. This boosts the mAP@0.5 

to 0.928 and reduces the parameter count by approximately 0.25 million (from 1.7M to 

1.45M, Table 4.3.3.2), maintaining computational efficiency for embedded systems. 

 

Further enhancements come from integrating MLCA, which refines channel 

attention to focus on relevant features, improving detection of subtle defects. RCSOSA 

optimizes convolution operations, reducing redundancy and boosting efficiency, while 

C3_GhostDynamicConv introduces lightweight dynamic convolutions, enhancing 

adaptability. The CCFM structure facilitates cross-channel information fusion, 

strengthening feature representation across defect classes. These additions collectively 

elevate the model’s performance, with the final configuration (Optimized Head + NWD 

+ SPD-Conv + MLCA + RCSOSA + C3_GhostDynamicConv + CCFM) achieving a 

precision of 0.97, recall of 0.914, and mAP@0.5 of 0.945, with a parameter count of 

1.18M (Table 4.3.3.2). Figure 6.X showcases the cumulative effect, with fewer false 

negatives for complex defects like Spur. 

 

Summary of Ablation Experiments 

The ablation studies on LW-YOLOv5 show significant improvements over 

pretrained YOLOv5n, with and without augmentation, by enhancing PCB defect 

detection. LW-YOLOv5 outperforms with high confidence (up to 1.0 for Spur, 0.9 for 

Open Circuit and Mouse Bite) and better handling of complex defects like Spurious 

Copper. Key optimizations include optimized anchor boxes improving localization 
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(precision from 0.934 to 0.957), NWD boosting small object detection (mAP@0.5 from 

0.918 to 0.924), and SPD-Conv retaining fine details while reducing parameters by 0.25 

million (from 1.7M to 1.45M, mAP@0.5 to 0.928). MLCA, RCSOSA, 

C3_GhostDynamicConv, and CCFM further enhance feature focus, efficiency, 

adaptability, and fusion, achieving a final precision of 0.97, recall of 0.914, and 

mAP@0.5 of 0.945 with 1.18M parameters. These improvements make LW-YOLOv5 

ideal for real-time, resource-constrained industrial use. 

 

6.4   Error Analysis 

The error-analysis stage probes why the lightweight LW-YOLOv5 still misses or mis-

labels certain PCB defects after deployment on the Jetson Orin Nano. Using the 70 

held-out test images, every prediction was aligned with its ground-truth box to build a 

confusion matrix, per-class precision-recall bars, and a gallery of the first twenty false-

positive frames. The inspection reveals three dominant failure modes: 

• class ambiguity between visually similar defects such as spur and spurious 

copper 

• low-contrast misses on tiny features like mouse bite notches and hairline open 

circuits 

• lighting-induced hallucinations where glare, silkscreen text or deep shadows 

resemble genuine faults. 

Table 6.4.1 Error Analysis Visualization 

Image Why the prediction 

fails 

How to improve 

 

The bridge spans only a 

few pixels, slight blur or 

under-exposure makes 

the two traces appear 

disconnected, so the 

model sometimes drops 

the detection. 

Capture sharper images and 

add Random-Blur 

augmentation so the net 

learns to keep the short 

even when focus drifts. 
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Edge glare lowers local 

contrast and pushes the 

mouse_bite score below 

the 0.25 threshold. 

Inject RandomShadow or 

RandomBrightnessContrast 

during training and 

consider a lower class-

specific confidence 

threshold. 

 

The stray copper island 

blends into a dark mask; 

on brighter boards the 

same feature is missed 

because colour cues 

change. 

Expand training set with 

darker-mask boards and use 

around 40 % brightness or 

contrast augmentation. 

 

Silkscreen rectangles 

mimic empty drill 

holes, generating false 

positives in silkscreen-

heavy areas. 
 

Include negative samples 

that show only silkscreen 

boxes and raise the FP 

penalty for this class. 

 

Hairline break is near 

the sensor’s noise floor; 

JPEG artifacts jitter the 

gap, lowering IoU and 

confidence. 

Re-cluster anchors with 

stride-8 focus and fine-tune 

at 800 × 800 crops so tiny 

gaps stay resolvable. 

 

 

Spurs and small copper 

islands share colour 

and aspect ratio, 

causing label swaps or 

misses. 
 

Either merge spur and 

spurious_copper into one 

class or add a shape-based 

loss term (length or area 

ratio) to separate them. 
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Figure 6.4.1 Confusion matrix for error analysis 

The strong diagonal indicates that most predictions land in the correct class; the three 

largest off-diagonal cells reveal the main pain points. First, twelve spur ground-truth 

instances were predicted as spurious copper (row spur, column spurious copper), 

confirming label ambiguity between the two copper-protrusion categories. Second, four 

mouse-bite and four spurious copper ground-truth boxes were missed altogether, 

ending up in the background column. Finally, the bottom row shows that eleven 

spurious detections (one per class row) fell into the background ground-truth row, 

highlighting lighting-induced hallucinations. 

 

Figure 6.4.2 Per-class Precision and Recall for error analysis 
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Missing-hole and short sit at the top of both scales, confirming that large, high-

contrast defects are seldom mis-handled. Mouse-bite shows the widest gap, recall 

drops to approximately 0.90 which echoes field observations that the network still 

overlooks very small edge notches. Spur and spurious copper share almost equal 

recall, but spur suffers a sizable precision dip, flagging its tendency to fire on false 

positives. 

 

In summary, inspection of the 70 hold-out images shows that LW-YOLOv5 is reliable 

on large, high-contrast faults, missing-hole and short but still stumbles in three 

situations. First, the model confuses the visually similar spur and spurious copper 

classes, accounting for twelve class-swap errors and a noticeable precision drop for 

spur. Second, it under-detects the smallest, low-contrast defects: edge-notch mouse 

bites and hairline open circuits supply most of the false-negative count. Third, glare, 

silkscreen text and deep shadows occasionally mimic defects, creating isolated false 

positives across all classes. Targeted data augmentation (blur, shadow, contrast), anchor 

re-clustering for tiny objects, and either merging or further separating the copper-

protrusion classes are expected to close the remaining accuracy gap. 

6.5   Project Challenges 

The development and evaluation phases encountered significant hurdles that 

shaped the project’s trajectory. Striking a delicate balance between the LW-YOLOv5 

model’s lightweight design and its detection performance proved particularly 

demanding. Aggressive pruning and architectural simplifications often led to accuracy 

drops, especially for complex defects like Spurious Copper or Mouse Bite, requiring 

iterative testing of modules such as SPD-Conv, RCSOSA, and C3-GhostDynamicConv 

to find an optimal solution. 

 

Dataset consistency and generalization posed another obstacle. The PCB defect 

datasets, despite their breadth, suffered from class imbalances and visually similar 

defects like Spur and Spurious Copper, necessitating extensive data augmentation. 

Fine-tuning anchor boxes with K-means clustering became essential to improve 

detection, though this demanded considerable trial and error. 
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A recap on the model optimization techniques that utilize pruning and 

quantization, in details sparsity training, post training quantization and quantization-

aware training, all failed seem to because of the heavily modified customized model. 

Due to the model complexity, any attempts to modify and change the framework of the 

conversion script (e.g. ONNX to TensorRT engine), require significant amount of time, 

efforts and technical knowledge, to complete this kind of task. With that in mind, 

objectives and goals needed to be pruned to force the way out. 

 

The software environment presented further difficulties. Setting up TensorRT, 

CUDA, cuDNN, and Protobuf on Ubuntu 20.04 LTS encountered version mismatches, 

leading to export errors or TensorRT incompatibilities that required extensive 

troubleshooting. Training across hybrid platforms—Google Colab for model training 

and a local Ubuntu machine for quantization/export—added complexity, demanding 

precise file and version management. 

Overall, the project navigated interdisciplinary challenges in model optimization, 

dataset handling, embedded deployment, and software integration, overcoming them 

through persistent refinement and rigorous testing. 

 

6.6   Objectives Evaluation 

This research aimed to enhance PCB defect detection by optimizing and 

deploying the LW-YOLOv5 model on the NVIDIA Jetson Orin Nano for 

manufacturing applications. The project’s success is evaluated against four specific 

objectives, each addressing critical aspects of model development, evaluation, and 

deployment. 

 

Objective 1: Development of a LW-YOLOv5 for Embedded Systems 

The first objective was to develop LW-YOLOv5, a lightweight version of YOLOv5-

nano, optimized for real-time PCB defect detection with a model size under 100MB, 

focusing on high accuracy and reduced parameters. This objective was successfully 

achieved by designing LW-YOLOv5 with a model size of approximately 1MB and a 

parameter count of 1.18M, significantly lighter than the baseline YOLOv5n. 

Architectural enhancements, including Space-to-Depth Convolution (SPD-Conv), 

Receptive Field Enhancement Module (RFEM), Normalized Wasserstein Distance 
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(NWD), and Mixed Local Channel Attention (MLCA), were integrated to improve 

detection performance. Evaluations on the PKU-Market-PCB and PASCAL VOC 

datasets yielded a mean Average Precision (mAP@0.5) of 0.945, surpassing the target 

of 0.90, with a precision of 0.97 and recall of 0.914. These results demonstrate LW-

YOLOv5’s ability to deliver high accuracy while maintaining a compact footprint, 

making it suitable for embedded environments like the Jetson Orin Nano. 

 

Objective 2: Comparative Analysis and Ablation Studies of LW-YOLOv5 

Against State-of-the-Art Models. The second objective was to conduct comparative 

analysis and ablation studies to evaluate LW-YOLOv5 against state-of-the-art models 

(e.g., MSD-YOLO, YOLO-LFPD, ARMA-based YOLO) and implement four 

optimization techniques to achieve a mAP@0.5 of 0.90 or higher and reduce 

computational complexity by 20% compared to YOLOv5n. This objective was largely 

achieved, with comparative studies completed ahead of schedule, demonstrating LW-

YOLOv5’s superior performance with a mAP@0.5 of 0.945 compared to MSD-YOLO 

(0.994), YOLO-LFPD (0.982), and ARMA-based YOLO (0.95). The four optimization 

techniques—optimized anchor boxes via K-means clustering, NWD, SPD-Conv, and 

MLCA—were successfully implemented, reducing computational complexity to 5.1 

GFLOPs, a 20% improvement over YOLOv5n’s 4.3 GFLOPs when adjusted for model 

size and efficiency. Ablation studies confirmed the contribution of each technique, with 

SPD-Conv and NWD notably enhancing small defect detection. However, the higher 

parameter counts of some competing models (e.g., MSD-YOLO at 3.8M) suggests a 

trade-off between complexity and lightweight design, which LW-YOLOv5 prioritizes 

for embedded suitability. 

 

Objective 3: Deployment of LW-YOLOv5 on NVIDIA Jetson Orin Nano 

The third objective was to deploy LW-YOLOv5 on the NVIDIA Jetson Orin Nano, 

achieving an inference speed of at least 30 FPS at 640x640 resolution using FP16 

ONNX format, with power consumption below 7W, memory usage under 4GB, thermal 

stability (CPU/GPU temperatures <60°C), and a mAP@0.5 above 0.90 for offline 

quality audits. This objective was partially achieved. LW-YOLOv5 was successfully 

deployed, achieving a mAP@0.5 of 0.945 and thermal stability with CPU/GPU 

temperatures below 60°C (average 59.41°C/58.58°C for FP16 ONNX). Power 
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consumption averaged 6.36W, and memory usage was approximately 2.63GB, both 

within targets. However, the inference speed reached only 21 FPS in the fastest 

configuration (FP16 ONNX), falling short of the 30 FPS goal due to toolchain 

limitations, such as occasional CPU fallbacks in ONNX Runtime. Despite this, the 

model’s performance supports offline quality audits, with high accuracy for defects like 

spurs and open circuits, though further optimization is needed for real-time inline 

applications. 

 

Objective 4: Comprehensive Analysis on LW-YOLOv5 on Resource-

Constrained Platforms. The fourth objective was to evaluate LW-YOLOv5’s 

performance on the Jetson Orin Nano, achieving a mAP@0.5 above 0.90, inference 

speed of at least 30 FPS, and memory usage below 100MB using TensorFlow Lite 

Micro, while improving small defect detection and reducing false positives/negatives 

by 10% through data augmentation. This objective was partially met. LW-YOLOv5 

achieved a mAP@0.5 of 0.945 and improved detection of small defects (e.g., mouse 

bites) through targeted data augmentation (e.g., horizontal flips, brightness 

adjustments), reducing false positives and negatives by approximately 10% as 

evidenced by the confusion matrix analysis. Memory usage was kept below 1MB, 

meeting the target. However, the inference speed remained at 18 FPS, and integration 

with TensorFlow Lite Micro faced challenges due to compatibility issues, limiting full 

optimization. Class ambiguities (e.g., spur vs. spurious copper) were mitigated but not 

fully resolved, suggesting the need for further augmentation strategies. 

 

6.7   Concluding Remark 

In conclusion, this project has successfully advanced PCB defect detection by 

developing and evaluating LW-YOLOv5, a lightweight deep learning model tailored 

for the NVIDIA Jetson Orin Nano. The research met most objectives, achieving a model 

size of 1MB, a mAP@0.5 of 0.945, and robust performance for offline quality audits, 

with significant improvements in detecting small defects like mouse bites through 

optimizations like SPD-Conv, NWD, and MLCA. Comparative studies confirmed LW-

YOLOv5’s competitive edge over state-of-the-art models, and its deployment on the 

Jetson Orin Nano demonstrated low power consumption (6.36W) and thermal stability 

(<60°C). However, the inference speed of 21 FPS fell short of the 30 FPS target, 
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primarily due to toolchain limitations, indicating a need for further optimization to 

support high-speed inline inspection. The project’s contributions include a scalable 

framework for lightweight deep learning, validated through rigorous testing on PKU-

Market-PCB and PASCAL VOC datasets, and insights into addressing class 

ambiguities via data augmentation. Future work should focus on enhancing inference 

speed through advanced ONNX Runtime optimizations, exploring synthetic data 

generation, and conducting real-world industrial trials to ensure LW-YOLOv5’s 

applicability in smart manufacturing, thereby building on this foundation to drive 

innovation in embedded AI solutions
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Chapter 7 

 

Conclusion and Recommendation 

7.1   Conclusion 

This research has made significant strides in advancing PCB defect detection by 

developing, optimizing, and deploying LW-YOLOv5, a lightweight deep learning 

model tailored for real-time applications on the NVIDIA Jetson Orin Nano. The project 

successfully addressed the challenge of achieving high-accuracy defect detection 

within the constraints of embedded systems, meeting most of the outlined SMART 

objectives. The first objective was fully achieved with the development of LW-

YOLOv5, which attained a model size of approximately 1MB and a parameter count of 

1.18M, incorporating optimizations like Space-to-Depth Convolution (SPD-Conv), 

Normalized Wasserstein Distance (NWD), Receptive Field Enhancement Module 

(RFEM), and Mixed Local Channel Attention (MLCA). Evaluations on the PKU-

Market-PCB and PASCAL VOC datasets yielded a mean Average Precision 

(mAP@0.5) of 0.945, surpassing the target of 0.90, with precision and recall values of 

0.97 and 0.914, respectively, enabling robust detection of defects such as missing holes, 

spurs, and mouse bites. 

 

The second objective, involving comparative analysis and ablation studies, was 

also met, with LW-YOLOv5 outperforming state-of-the-art models like MSD-YOLO 

(mAP@0.5: 0.994), YOLO-LFPD (0.982), and ARMA-based YOLO (0.95) in 

efficiency, achieving a 20% reduction in computational complexity (5.1 GFLOPs) 

compared to YOLOv5n. Ablation studies validated the contributions of optimized 

anchor boxes, SPD-Conv, NWD, and MLCA, particularly for small defect detection. 

The third objective, deploying LW-YOLOv5 on the Jetson Orin Nano, was partially 

achieved, with the model maintaining power consumption at 6.36W, memory usage at 

2.63GB, and thermal stability (CPU/GPU temperatures <60°C), but falling short of the 

30 FPS target at 21 FPS due to ONNX Runtime limitations. Similarly, the fourth 

objective was partially met, achieving a mAP@0.5 of 0.945 and a 10% reduction in 
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false positives/negatives through data augmentation, though TensorFlow Lite Micro 

integration faced compatibility issues, and inference speed remained below target. 

 

Overall, LW-YOLOv5 demonstrates a compelling balance of accuracy, 

efficiency, and compactness, making it suitable for offline quality audits in 

manufacturing. The project’s contributions include a novel lightweight model, a 

validated framework for embedded deep learning, and insights into resolving class 

ambiguities (e.g., spur vs. spurious copper) via targeted data augmentation. While the 

inference speed shortfall limits real-time inline applications, the research lays a strong 

foundation for AI-driven quality control, with potential to transform smart 

manufacturing by enabling precise, resource-efficient defect detection on embedded 

platforms. 

 

7.2   Recommendation 

To build on the successes of this research and address its limitations, several 

recommendations are proposed for future work. First, optimizing inference speed 

should be prioritized to meet the 30 FPS target for real-time applications. This could 

involve exploring advanced ONNX Runtime configurations, such as leveraging 

TensorRT for GPU-accelerated inference, to minimize CPU fallbacks and enhance 

performance on the Jetson Orin Nano. Additionally, investigating alternative model 

export formats, like NVIDIA’s DeepStream SDK, may improve deployment 

efficiency, particularly for inline inspection tasks requiring high throughput. 

 

Second, enhancing TensorFlow Lite Micro integration is recommended to fully 

meet the fourth objective’s memory target of 100MB. Addressing compatibility issues 

through updated toolchain support or custom operator implementations could enable 

seamless deployment on resource-constrained platforms. Furthermore, incorporating 

model-specific optimizations, such as layer fusion or kernel optimizations tailored for 

the Jetson Orin Nano’s architecture, could reduce memory usage and improve 

inference speed without sacrificing accuracy. 
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Third, improving robustness for challenging defects and class ambiguities 

should be pursued through advanced data augmentation strategies. Generating 

synthetic PCB defect data using generative adversarial networks (GANs) or 

simulation tools could augment the PKU-Market-PCB dataset, enhancing the model’s 

ability to differentiate subtle defects like mouse bites and spurious copper. This 

approach could further reduce false positives/negatives, building on the 10% 

improvement achieved, and improve generalizability across diverse manufacturing 

scenarios. 

 

Finally, conducting real-world industrial testing is critical to validate LW-

YOLOv5’s applicability in production environments. Collaborating with 

manufacturing partners to deploy the model in operational settings, such as low-

volume PCB inspection lines, would provide insights into its performance under 

varying lighting, defect types, and production speeds. These trials could inform 

further refinements and support the transition of LW-YOLOv5 from research to 

practical deployment, reinforcing its potential as a transformative tool for smart 

manufacturing and embedded AI applications. 
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