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ABSTRACT 

 

This project aims to develop an intelligent inspection model capable of detecting defects in 

small electrical connector pins, which are critical components in many electronic systems. The 

work is structured into two primary components: data preparation and model development. In 

the data preparation phase, a custom dataset will be generated, featuring images of electrical 

connectors with three common types of pin defects: missing, shifted, and rotated pins. High-

quality image data is essential for accurate model training and reliable detection outcomes. The 

model development phase leverages the YOLOv8 object detection algorithm, selected for its 

balance of speed and accuracy in real-time applications. Image processing techniques are 

employed to enhance dataset quality, and the dataset is annotated manually to ensure precision 

in model training. Performance evaluation will be conducted using several key metrics—

accuracy, recall, precision, and F1 score—to assess the model's capability in identifying 

defective pins effectively. This project ultimately seeks to offer a practical and automated 

solution for improving quality control in electrical connector manufacturing processes, 

reducing the need for manual inspection and minimizing human error. 

 

Area of Study: Image Processing, Data preparation 

 

Keywords: Data Generator by OpenCV function, Electrical Connector Pin Region Detection 

Model, Defect Electrical Connector Model, Machine learning, Yolov8 Algorithm. 
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Chapter 1 

Introduction 

This chapter presents the problem statement, motivation, research objectives, project scope and 

direction, contributions, and report organization. The aim is to provide a clear and 

comprehensive understanding of the project, highlighting the underlying challenges, the 

significance of the research, and the intended outcomes. By outlining these key elements, this 

chapter aims to ensure that the project’s purpose, approach, and significance are clearly 

conveyed and fully understood. 

 

1.1  Problem Statement and Motivation 

With the expansion of high-tech manufacturing facilities, the demand for electrical connectors 

is steadily increasing in modern society. Electrical connectors are essential components in 

various industries, playing a crucial role in both power and data transmission. These connectors 

consist of several key elements, including leads or pins, frames, and housings. Among these, 

the pins are particularly important, as they establish the necessary connections between 

different components. However, due to their inherent fragility, pins are susceptible to damage 

during transportation or production processes. This vulnerability often requires additional 

inspections before the connectors can be used in assembly or shipped to customers, thus 

complicating the overall process. Such inspections are critical, as defective connectors can lead 

to a range of issues, from minor connectivity problems to severe hazards, including potentially 

fatal electrocutions [1]. 

The inspection process of electrical connectors typically involves two primary methods: visual 

examination and electrical testing. While visual inspection is commonly employed, it is subject 

to limitations such as human error and missed detections. As a result, the integration of artificial 

intelligence (AI) image processing technology in electrical connector inspection has emerged 

as a promising trend. Existing literature demonstrates the significant potential of AI in this 

domain, with research showing its capacity to automate the inspection process effectively, 

thereby confirming the feasibility of AI-based solutions. Despite this progress, much of the 

current research has predominantly focused on inspecting larger connectors, as exemplified in 

Figure 1.1 (a). In contrast, the inspection of smaller electrical connectors with pin spacing of 
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approximately 0.5mm, as shown in Figure 1.1(b), has received relatively less attention, 

resulting in limited advancements in this field. Consequently, there is a clear need for the 

development of a high-accuracy and high-efficiency model specifically designed for the 

inspection of small electrical connectors. Such a model would not only offer superior accuracy 

and efficiency compared to human visual inspection but also significantly reduce labor costs 

for manufacturing companies. 

(a)  (b) 

 

 

 

 

 

Figure 1.1 Electrical Connector Show (a) Normal Size Electrical Connector (b) Small Size 

Electrical Connector 

 

1.2  Project Objectives 

This section will describe the aims and objectives of the project.  The main objectives aim to 

achieve are as follows: 

I. Dataset preparation 

This objective focuses on collecting and labelling electrical connector images to create 

a complete and clean dataset for training, testing, and validation. The benefit of a self-

prepared dataset is that it ensures high quality, including factors such as image 

resolution, capturing angle, capturing environment, and more. 

II. High accuracy model 

The goal of this project is to develop a model that achieves a minimum accuracy of 

85%, demonstrating its ability to fully replace human-based inspection for defect 

detection. This will provide strong evidence of the model's capability to accurately and 

efficiently perform electrical connector inspections, offering a reliable alternative to 

manual inspection methods.  

III. Reduce the processing time 
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The goal is for the trained model to achieve a detection speed of one image per second. 

This is because, in practical scenarios, the detection speed of the trained model must 

align with the speed of the conveyor belt used in the system. Therefore, a faster 

detection speed directly translates to improved efficiency, allowing for real-time 

inspection of electrical connectors without delays, thus enhancing the overall 

performance of the inspection process. 

 

These three main objectives will help address the challenges in electrical connector inspection 

and achieve project goals, such as reducing accidents caused by faulty electrical connectors, 

decreasing reliance on human resources in the inspection process, and minimizing time and 

costs for the company. 

 

1.3  Project Scope and Direction  

The project scope outlines the deliverables and objectives to be achieved by the end of the 

study. The primary goal of this project is to develop a highly accurate and efficient electrical 

connector inspection model. In addition to this, the project will involve the creation of a new 

dataset specifically for small electrical connectors. This dataset will consist of images of 

defective electrical connector pins, accompanied by labeled position text files, which will serve 

as a foundation for training and validating the inspection model. 

 

Deliverables 

I. Electrical Connector Dataset 

The dataset will be created using a pre-installed webcam to capture images of electrical 

connectors. Following this, OpenCV will be utilized to modify the pins of the 

connectors in the images, thereby generating defective connector data. The purpose of 

this approach is to obtain high-quality and comprehensive data that can be used for 

training the model inspecting real-world cases. This dataset will enable the model to 

effectively learn and detect defects in electrical connectors during the inspection 

process. 

II. Electrical Connector Inspection Model 

The electrical connector inspection model will be trained using the custom-made 

electrical connector dataset. The deploy model should be of high accuracy and 

efficiency which can overcome the problem and issue faced in the real world. 



Chapter 1 

Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    4 
 

1.4  Contributions 

This project will provide a new approach to inspect the defect pins. Additionally, this study 

emphasizes the model’s ability to analyze small objects, with each pin measuring less than 1 

cm—an uncommon focus in traditional model training. Such applications reflect a significant 

technological trend in the current development of the tech industry. 

Beyond the model analysis, meticulous attention has been given to dataset preparation. The 

setup of the webcam, including aspects such as angle, lighting, and background, is detailed to 

ensure optimal image capture. For generating defect images, innovative methods have been 

employed using OpenCV, such as pixel manipulation to simulate misaligned pins and 

parameter adjustments to create rotated pins. These techniques not only enhance the realism of 

the defect dataset but also contribute to a more robust and versatile model for real-world 

applications. 

 

1.5 Report Organization 

This report is organized into seven chapters: Chapter 1 introduces the project, Chapter 2 covers 

the literature review, Chapter 3 outlines the proposed method and approach, Chapter 4 

discusses the system design, Chapter 5 serves as the system implementation, Chapter 6 presents 

the system evaluation and discussion, and Chapter 7 concludes the report. 

 

Chapter 1 presents the problem statement, motivation, project objectives, scope, direction, 

contributions, and overall project framework. It provides a foundation for understanding the 

significance and direction of the project. 

 

Chapter 2 focuses on the literature review, analyzing the strengths and weaknesses of similar 

projects while introducing the technologies and methods they employ. This section aims to 

highlight the current state of research and the relevance of the chosen approach. 

 

Chapter 3 outlines the proposed method and approach, covering the system specifications, 

including the project methodology diagram, activity diagram and use case diagram. 

 

Chapter 4 presents the system design. This part covers the logic used in the project, including 

the system block diagram, system component specifications, circuit and component design, 

and the interaction between system components. 
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Chapter 5 serves as the system implementation, which covers the hardware and software setup 

activities required to build the system. 

 

Chapter 6 presents the system evaluation and discussion, showing the testing results, model 

performance, project challenges, and objective evaluation. 

 

Finally, Chapter 7 concludes the report, summarizing the project's challenges, motivation, and 

proposed solutions, offering a reflection on the work accomplished and recommendations for 

future improvement. 
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Chapter 2 

Literature Review 

This chapter focuses on literature review, do pre-research before starting the project and 

analyzing the strengths and weaknesses of similar projects while introducing the technologies 

and methods they employ. 

2.1 Review of technology 

This section shows the technology research conducted before starting the project; the goal is to 

assess these papers to ensure the idea can work. 

 

2.1.1 Dataset Preparation 

Diaz, Kushibar, Osuala, et al., 2021 [2] provide data preparation guidelines for artificial 

intelligence in medical imaging. In the paper, it highlights the data acquisition flow, which 

offers a good view on dataset generation. There are five steps used in dataset preparation: (i) 

image acquisition at clinical sites, (ii) image de-identification to remove personal information 

and protect patient privacy, (iii) data curation to control for image and associated information 

quality, (iv) image storage, and (v) image annotation. Although this project is not focused on 

electrical connectors, it still provides a valuable reference on how to build a standard dataset 

and points out which aspects need to be considered when developing a dataset. 

 

2.1.2 A Brief Introduction to OpenCV 

Culjak, D., Abram, et al., 2012 [3] provide a concise yet informative overview of OpenCV, 

emphasizing its powerful capabilities in the field of image processing. The paper outlines key 

functions and commonly used methods within OpenCV, demonstrating how the library can be 

applied effectively in various computer vision tasks. An experimental section is also included, 

showcasing the results of local image processing methods, as illustrated in Figure 2.1.1. This 

practical demonstration reinforces OpenCV’s usefulness in real-world applications. Although 

the paper does not directly focus on electrical connector inspection, it builds a strong 

foundation and provides confidence that OpenCV-based techniques are appropriate for defect 

pin detection tasks. The features and flexibility of OpenCV make it a suitable choice for 

preprocessing and dataset generation in this project, ultimately supporting the model training 

process for accurate inspection. 
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Figure 2.1.1 Local Method Result 

 

2.1.3 Deep Learning in Image Recognition 

Y. Li, 2022 [4] provides an overview of the application of deep learning in image recognition. 

It first outlines the development of image recognition technology and introduces the main deep 

learning models used, including convolutional neural networks (CNNs), recurrent neural 

networks (RNNs), and generative adversarial networks (GANs). The paper then summarizes 

the achievements of deep learning in various application fields such as face recognition, 

medical image recognition, and remote sensing image classification. It also analyzes the 

shortcomings in the research process and discusses the future development trends of deep 

learning in image recognition, including the effective recognition of video images and the 

theoretical strengthening of models. 

About the different types the deep learning, the paper concludes the strength of the different 

algorithm. The CNN model simplifies image preprocessing by eliminating extensive manual 

feature extraction, leveraging local connectivity and feature repetition to reduce the number of 

parameters. The RNN model, with its memory capability, is ideal for sequential data as earlier 

inputs significantly influence later outputs. GAN introduces a game-theoretic training method 

between a generator and discriminator, improving efficiency through backpropagation and 

offering a more rigorous loss function than traditional methods, making it widely applicable in 

image processing. 

This paper demonstrates that deep learning performs effectively in image recognition, despite 

some challenges that still need to be addressed. Nevertheless, it offers a significantly improved 

approach compared to traditional methods. 
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2.1.4 YOLO model review 

Terven J, Córdova-Esparza DM, et al., 2023 [5] provides a comprehensive review of the 

evolution of the YOLO (You Only Look Once) object detection framework, from the original 

YOLOv1 to the latest YOLOv8 and YOLO-NAS models. The review examines the key 

innovations and contributions in each YOLO iteration as figure 2.1.2 show, discussing the 

changes in network architecture, training techniques, and performance tradeoffs between speed 

and accuracy. The paper also covers the standard object detection metrics, such as average 

precision (AP) and non-maximum suppression (NMS), and how they are computed for 

different datasets like PASCAL VOC and Microsoft COCO. Finally, the review highlights the 

potential future research directions to further enhance real-time object detection systems. 

 

Figure 2.1.2 Timeline of YOLO versions 

In the paper, the operation logic of the YOLO model is divided into two main steps: detecting 

possible regions containing objects (region proposals) and applying a classifier to these 

proposed regions. Additionally, the paper highlights that the YOLO model adopts a more 

streamlined output structure, using two separate outputs—one for classification to determine 

object probabilities and another for regression to predict bounding box coordinates. All 

versions of the YOLO model’s performance are shown in Figure 2.1.3. The YOLO family 

focuses on balancing speed and accuracy, aiming to deliver real-time performance without 

sacrificing the quality of detection results. 
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Figure 2.1.3 YOLO Family Comparison 

In conclusion, this paper presents the function and workflow logic of the YOLO models. It also 

compares the performance of different YOLO versions. 

 

2.2 Review of the Existing Systems 

This section focuses on researching cases similar to this project and studying their methods and 

approaches to identify possible improvements. 

 

2.2.1 Machine Vision Inspection of Electrical Connectors Based on Improved Yolov3 

W. Wu, Q. Li et al., 2020 [6] proposed a research paper inspired by an improved YOLOv3 

(You Only Look Once, version 3) algorithm for detecting electrical connector defects, such as 

solder spots on solder cups. The key innovations include using K-means clustering to obtain 

better anchor boxes, fusing feature maps from different layers to improve the detection of small 

objects and modifying the network architecture to enhance feature reuse and acquisition. 

In their work, the YOLOv3 network is optimized for detecting small targets, although the initial 

prediction results did not meet expectations. The anchor box mechanism, a set of predefined 

candidate boxes with fixed height and width, directly affects the accuracy and speed of the 

network model. Since the size of the anchor boxes generated by the dataset does not meet the 

defect size requirements, K-means clustering is applied. The paper uses Average Intersection 

over Union (Avg IOU) as the criterion for evaluating the clustering results, as shown in formula 

(1).  
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(1) 

 

In the experiments, the number of clusters k is selected within the range of 1 to 20. The 

conclusion is that as the number of clusters increases, the Avg IOU also increases. 

The traditional YOLOv3 uses an 8-fold downsampled feature map, which struggles with 

detecting very small targets. To address this, the method proposes using a 2-fold downsampled 

feature map that contains more detailed information, making it better suited for detecting small 

defects. Additionally, the method simplifies the network by focusing only on the 2-fold 

downsampled feature map for small targets, eliminating the need for larger scales, which 

reduces computation and improves detection speed and accuracy. 

Moreover, the method modifies the residual structure by adding two residual units and reducing 

the number of DBL units, as shown in Figure 2.1. This helps capture more low-level details 

and prevents gradient disappearance. This approach enhances the model's ability to accurately 

detect small defects, making it more suitable for the specific task of electrical connector 

inspection. 

 

Figure 2.2.1 Residual structure 

 

2.2.2      Simultaneous Detection of Defect in Electrical Connectors Based on Improved 

Convolution Neural Network 

Y. Zhao, J. Li, Q. Zhang et al.,2022 [7] proposed a study on simultaneous detection of defects 

in electrical connectors using an improved convolutional neural network (CNN) architecture, 

specifically ResNet-152. ResNet-152 was chosen due to its ability to deliver satisfactory 
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detection accuracy on public datasets and its smaller parameter size compared to the Visual 

Geometry Group (VGG) series. The ResNet-152 model consists of five stages, as shows in 

figure 2.2, with the first stage involving a 7x7 convolution to downsample the input image 

while preserving as much original information as possible. Stages 2-5 consist of bottleneck 

layers that utilize residual networks to prevent gradient disappearance and enhance feature 

extraction. 

 

 

Figure 2.2.2 Five Stages in ResNet-152 

 

To address the challenge of detecting small targets, the original 7x7 convolution kernel was 

replaced with three 3x3 convolution kernels in the first layer, expanding the receptive field 

(RF) and increasing sensitivity to small features. The study also introduced the SMU (Smooth 

Maximum Unit) activation function (Formula 2) to replace the ReLU function (Formula 3), 

which, although computationally efficient, can lead to feature masking due to sparse 

processing. The SMU function enhances feature extractability and reduces overfitting. 

 

              (2) 

 

  

   (3) 

 

In addition, traditional fixed-sized convolution kernels were replaced with Deformable 

Convolution Networks (DCNs), which adapt to geometric changes in the image, improving the 

detection of small, irregular features. This approach significantly enhances the model's ability 

to extract key geometric information, thereby improving defect detection accuracy. Dropout 

regularization was also employed to mitigate overfitting by randomly discarding neurons 

during training, ensuring robustness in the deep network. 
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Figure 2.2.3 Improvements to the model 

 

2.2.3 Vision-based Adaptive Stereo Measurement of Pins on Multi-type Electrical 

Connectors 

 

D. Zhao et al., 2019 [8] presented a study inspired by Faster R-CNN to address the challenges 

of defect detection in electrical inspections, particularly focusing on the difficulties of detecting 

small area ratios using deep learning. The proposed approach involves a two-step identification 

strategy that integrates prior knowledge constraints derived from the manufacturing 

information of products. The process is divided into two tasks: prior knowledge loading and 

pin recognition, with each task using a separate Faster R-CNN model. The first model is 

responsible for classifying electrical connectors and identifying the pin region, while the 

second model targets the pins within this region, effectively minimizing background 

interference. 

The Faster R-CNN framework utilizes two branch modules and a shared convolutional layer 

for object detection. The Region Proposal Network (RPN) generates candidate regions, and the 

Fast R-CNN detector performs target detection within these regions. The shared convolutional 

layer, based on ZF-Net, allows for the joint training of the RPN and Fast R-CNN detectors 

during the training phase. During inference, the pre-trained RPN and Fast R-CNN detectors 

process images sequentially to produce the final detection results. 
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Figure 2.2.4 Principal Structure of Target Recognition based on Faster-RCNN 

 

In the registration process, four control points are selected from the vertices of the pin region. 

The registration strategy, inspired by iterative correction of point pair correspondence and 

configuring weight to minimize the objective function, involves calculating the rotation matrix 

and translation vector. The initial state of the algorithm is crucial, as it aligns the template 

corners with the obtained corners, providing an excellent initial scaling factor and ensuring 

stable registration. 

After identifying the connector model and pin positions, a hierarchical extraction strategy is 

implemented to search for expected position characterization points within the rectangular 

boxes of different pin types. This strategy accommodates potential imaging diversity and 

ensures robust pin recognition. 

To address common issues such as background variation, region adhesions, and noise, an 

adaptive binarization strategy based on shape and structure constraints is designed. This 

strategy uses a shape scoring criterion to evaluate the aspect ratio of bounding rectangles and 

other factors, effectively distinguishing the desired features. Polynomial fitting and feature 

quality conditions are applied to ensure consistency in 3D point reconstruction. The 

hierarchical analyzer performs structural analysis to distinguish elements and extract target 

points that describe the pin position. The analysis is guided by the consistency of pixel 

extraction and the correctness of point-pair relationships, ensuring reliable pin recognition even 

in the presence of noise or structural deviations. 
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2.2.4 Detection of Defect in the Manufacturing of Electrical Motor Stators using Vision 

System: Electrical Connectors 

 

BCF de Oliveira, ALS Pacheco, RC C Flesch et al., 2016 [9] conducted a study inspired by 

LabVIEW® and its Vision Development Module, focusing on the automated inspection of 

electrical connectors. The first step in the methodology involves locating the connector in a 

captured image using a pattern detection function that compares the image to a database of 

connector images taken under various lighting conditions. Once the connector is identified, its 

coordinate system is used to position the inspection tools. 

To enhance the contrast in the region of interest, specifically around the holes where clips are 

located, a thresholding technique is applied with a default value of 127, which has proven 

effective in preliminary tests. The study introduces several defect detection techniques to 

ensure reliable inspection. 

One technique involves circumference detection, which identifies circles in the thresholded 

image using Danielsson’s distance mapping. Any deviation from the expected diameter of these 

circles indicates a potential defect. Another technique focuses on edge detection and distance 

measurement, where the edges of the holes are detected, and the distance between them is 

measured. If this distance is smaller than the expected diameter, a defect is flagged. 

Additionally, the methodology includes an inspection of the connector’s upper part, 

particularly in cases where the clip might be out of position due to cable tension. By measuring 

the width of the clip and comparing it to the expected width, the technique identifies any 

defects. 

After individual testing of these techniques, they are integrated into a software tool that 

automates the inspection process. The methodology ensures reliable detection of defects by 

employing redundant techniques that complement each other. Although the electrical 

connector model used in this study differs from that in the current paper, it offers alternative 

methods for image analysis, providing valuable insights into detecting electrical leads or holes. 
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2.2.5 Research on Ai-Based Gold Removal Technology for Aviation Connector Cup 

Cavity Surface 

 

YZ. Yong, Deru. Song, JC. Li, TY. Qin, ZM. Qie, RZ. Zhang et al., 2023 [10] conducted a 

study using YOLOv8 to detect aviation connectors, which are similar to electrical connectors 

composed of leads and housing. The study demonstrates that YOLOv8 outperforms other 

versions of YOLO in terms of accuracy for this task. 

To create an effective dataset for aviation connector inspection, the study emphasizes capturing 

images from various angles, accurately labelling them, and including both part images and 

empty environment images to reduce environmental interference. For parts that are difficult to 

recognize, additional images are necessary to prevent overfitting. Consistent and precise 

labelling is crucial for the network's performance in tasks like object detection and 

segmentation, forming the basis for the AIC algorithm's accurate identification and 

localization. 

In data preprocessing, the study ensures that the dataset is standardized for effective training. 

Data enhancement techniques, such as rotation, flipping, scaling, translation, and noise 

perturbation, are applied to increase the training set size and improve the model's 

generalization. 

The paper also introduces a weighted algebraic distance least squares ellipse fitting algorithm 

to ensure precise positioning of the aviation connector solder cup's center and opening 

direction, which is critical for preventing errors in processes like tinning or gold removal that 

could damage or scrap the connector. 

 

2.2.6 Summary of the Existing Function 

 

In the above paper, deep learning techniques are used to train a model to solve this problem. 

The model techniques provided include YOLO, CNN, and Faster-RCNN. We will compare 

and analyze the advantages and disadvantages of different model techniques to find the most 

suitable approach for training our model. Since the paper by BCF de Oliveira, ALS Pacheco, 

and RC C Flesch et al., 2016 [9] offers ideas on image processing, it will not be included in the 

model analysis. We will conduct our analysis based on accuracy, efficiency, complexity, and 

the model's requirements for the dataset. 
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In most cases, Faster-RCNN provides higher accuracy. Known for its high precision, Faster-

RCNN can effectively locate and classify multiple objects within an image. D. Zhao et al., 

2019 [8] demonstrated the robustness and high accuracy of Faster-RCNN in image analysis. 

Compared to Faster-RCNN, CNN and YOLO generally exhibit lower accuracy. Different 

versions of YOLO can also result in varying accuracy outcomes; for instance, YOLOv8 

typically offers higher accuracy than YOLOv3. CNN is generally not well-suited for object 

localization, leading to lower accuracy. However, due to CNN’s relatively simple architecture, 

its accuracy can be improved by incorporating various techniques, as mentioned by Y. Zhao, 

J. Li, Q. Zhang et al., 2022 [7]. 

In terms of image processing speed and efficiency, YOLO performs better, and its performance 

improves with newer versions. Due to its suitability for making quick decisions, YOLO is often 

used in video processing or autonomous driving applications. To achieve faster processing 

efficiency, YOLO sacrifices some accuracy. On the other hand, Faster-RCNN is the slowest in 

image analysis. Although it is faster than its predecessors, RCNN and Fast RCNN, the 

complexity of the model and its high resource demands mean that it takes longer to analyze 

images to ensure accuracy. Research by W. Wu, Q. Li et al., 2020 [6] also highlights the 

differences between YOLO and Faster-RCNN. The efficiency of CNN in handling tasks 

depends on the added techniques and the specific CNN design for the task. This makes its 

image processing and analysis speed difficult to predict, but in general, it is faster than Faster-

RCNN. 

Model complexity indicates the capacity and resource requirements needed to drive a model. 

The complexity of CNNs is lower compared to YOLO and Faster-RCNN because CNNs have 

relatively simple architectures. This simplicity provides the best scalability, but it also means 

that adjustments can be more complex. The simpler architecture also implies lower demands 

on training hardware. YOLO strikes a balance between complexity and speed, performing well 

in real-world applications. YOLO's architecture can also be enhanced by adding techniques to 

achieve better speed and accuracy, as suggested in the research by W. Wu, Q. Li et al., 2020 

[6]. Faster-RCNN is complex and resource-intensive, which contributes to its outstanding 

performance in challenging detection tasks. 

All three models require large-scale annotated datasets, but Faster R-CNN has higher 

requirements and dependencies on the quality of the dataset. Both YOLO and Faster R-CNN 

need precise bounding box annotations, whereas CNNs, if used solely for classification tasks, 
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have relatively lower annotation requirements. This also highlights that the quality and 

diversity of the data are crucial components in training a model. 

In conclusion, Faster R-CNN has the highest accuracy, while the YOLO model offers a more 

balanced approach. CNN, on the other hand, provides the best operability in model design. 

However, due to the operability of YOLO and CNN, they can also achieve faster speeds and 

higher accuracy with effective design improvements such as the proposed method in paper [6] 

and paper [7]. 

 

 

 

 

 

 

 

 

Table 2.1 Conclude Result in Proposed Solutions 

Model Accuracy Efficiency Complexity Data Requirement 

YOLO Good High Moderate High 

CNN Normal Low Less High 

Faster-

RCNN 

Excellent Very Low Most High 
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Chapter 3 

System Methodology/Approach  

This section outlines the methodology and approach adopted in the project. Methodology refers 

to the structured framework or systematic process applied to guide research, project 

development, and problem-solving. It defines how tasks are organized, executed, and evaluated 

throughout the project. A suitable methodology ensures that each stage of development is 

approached consistently, leading to more reliable outcomes and better overall project 

management. 

 

3.1 Agile Development 

Agile development is a software development methodology that emphasizes iterative progress, 

flexibility, and continuous improvement through short, manageable cycles known as sprints 

[11]. Unlike traditional linear approaches, Agile allows teams to adapt to change quickly, 

respond to ongoing feedback, and continuously refine their work. Each sprint typically includes 

planning, design, development, testing, deployment, and review phases, allowing for frequent 

reassessment and rapid evolution of the system or model being developed. 

This methodology is particularly suitable for this project, which involves developing a machine 

learning model for electrical connector pin defect detection. The project requires frequent 

experimentation, dataset adjustments, and model tuning to enhance accuracy and performance. 

Agile’s iterative approach aligns well with this need for continuous refinement. Each 

development cycle focuses on improving specific weaknesses—such as rotated or missing pin 

detection—and evaluating the results before planning the next improvement. The flexibility to 

update model parameters, modify data labelling, and deploy improved versions supports an 

efficient and structured development process. 

The six main steps in Agile development used in this project are:  

- Plan: 

 Define the sprint goal, such as improving detection accuracy for specific pin   defects. 

- Design:  

Prepare the structure of the solution, including selecting model algorithms, defining 

labelling strategies, or adjusting preprocessing techniques. 

- Develop: 
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Implement the design through coding, dataset preparation, and training processes, for 

example, training a new model version with augmented data. 

- Test:  

Evaluate model performance using metrics such as accuracy, precision, recall, or F1 

score, and compare results with previous versions. 

- Deploy: 

Launch the improved version by saving the model, testing it on new datasets, or 

integrating it into the full inspection pipeline. 

- Review:  

Analyze the results to determine what improvements were successful and identify areas 

for further enhancement, feeding into the next sprint cycle. 

 

Figure 3.1.1 Agile Methodology 

 

3.2 Dataset Strategy and Model Development 

This section presents the core components of the system design, divided into two main parts: 

data preparation and model development. It explains the rationale behind using a custom-

generated dataset and the selection of the YOLOv8 algorithm for object detection, both of 

which are essential to achieving the goals of this project. 
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3.2.1    Data Preparation 

The collection of a custom dataset is necessary because this project addresses a highly 

unique case for which no publicly available datasets exist. As real-world data collection is 

not feasible in this scenario, the dataset is generated using image processing techniques. 

Although the data does not represent actual real-world cases, the method used introduces 

an innovative approach for addressing similar problems. This development demonstrates a 

novel way to simulate data for training purposes when real samples are difficult or 

impossible to obtain. 

 

3.2.2 Model Development 

YOLOv8 algorithm is selected for model training due to its strong learning capabilities and 

high performance in object detection tasks. YOLO (You Only Look Once) is a real-time 

object detection algorithm that performs both object classification and localization in a 

single pass through a neural network. It is widely recognized for its balance of speed and 

accuracy. YOLOv8, the latest version, offers further improvements in detection 

performance, flexibility, and deployment efficiency compared to earlier versions. These 

advantages make it a suitable choice for this project’s requirements. 

Compared to traditional object detection algorithms such as RCNN and other CNN-based 

methods, YOLOv8 demonstrates more comprehensive capabilities and faster inference 

times.  

 

3.3 System Design Diagram 

This section will present the logical and functional architecture of the system. It`s often 

broader and may include multiple views such as architecture, behavior, data flow, and 

interactions. 

 

3.3.1 Use Case Diagram and Description  

This section presents the use case diagram, which illustrates the various functions that can 

be performed by the developer. Since this project is focused solely on model development 

and is not intended to be deployed as an application, the only actor involved is the developer. 

The diagram highlights several key operations available to the developer, including 
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generating the dataset, annotating images, preprocessing data, configuring and training the 

model, evaluating its performance, and exporting the final trained model. 

Figure 3.2.1 Use case Diagram 

3.3.2 Activity Diagram 

This section presents the activity diagram which illustrates the workflow of the project, 

starting from inserting raw images to model exploration. It shows how different defect 

types (missing, rotated, and shifted pins) are generated, followed by data augmentation, 

dataset creation, model training, evaluation, model combination and final exploration. The 

process ends once the model is fully explored. 
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Figure 3.2.2 Activity Diagram 
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Chapter 4 

System Design 

To provide a clear and structured understanding of the system`s development, this chapter 

presents the system design through diagrams and design evolution. The system was not built 

in a single step, it underwent several updates as testing and evaluation revealed opportunities 

for refinement. These design versions reflect the effort to enhance system reliability, data flow, 

and model training efficiency. 

 

4.1 System Iteration 

 4.1.1 Version 1: Initial Design 

The first version of the system block diagram organizes the workflow into three main 

sections: Data Annotation (red zone), Data Preprocessing (green zone), and Trained Model 

Operation (blue zone). These sections represent the core operational structure of the project. 

In the Data Annotation phase, pin positions are manually labelled to provide accurate 

reference points for model training. The Data Preprocessing phase generates various defect 

scenarios—such as missing, rotated, and shifted pins—by manipulating the raw images 

accordingly. These images, along with their corresponding label files, are stored in the 

training dataset to simulate real defect conditions. 

The Trained Model Operation section outlines how the model behaves in practice. In 

Version 1, it includes a single-stage model focused on defect pin detection. After receiving 

a test image, the model detects pin positions and classifies defects, outputting the results to 

the user. 

While this version establishes the essential logic and workflow, a key limitation emerged: 

the model often misinterpreted empty areas or background space as defect locations. This 

issue revealed the need for improved data handling and more robust preprocessing 

strategies, which informed the development of future versions. 
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Figure 4.1.1 First Version System Flow Chart 

 

 4.1.2 Version 2  

In the second version of the system, a new section is introduced: Dataset Generation & 

Model Training (purple zone). This version prepares two separate datasets—one for pin 

region detection and another for defect pin detection. The addition of a pin region detection 

model addresses the misdetection issue observed in the previous version, where the model 

frequently identified empty or background areas as defective pins. 

This issue was likely caused by the YOLOv8 algorithm’s limitations in detecting small 

objects. By incorporating a region detection model, the system first identifies the precise 

area containing the pins. The coordinates of this region are then passed to the defect pin 

detection model, allowing it to focus specifically on analyzing the relevant area, thus 

reducing false detections. 

This version significantly improves labelling accuracy and minimizes incorrect detections. 

However, new challenges emerged during testing. When images were captured under 

variable lighting conditions—such as brightness shifts, reflections, or glare—the model’s 

ability to detect defects declined. This highlighted a new limit that would be addressed in 

the next version. 
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Figure 4.1.2 Second Version System Flow Chart 

 

4.1.3 Version 3  

In the third version of the system, an enhancement is introduced within the Data 

Preprocessing section (green zone). To address the challenge of detection failures under 

varying lighting conditions, this version incorporates a data augmentation step. This step 

generates additional training samples by simulating diverse visual conditions, such as 

brightness variation and reflections, to improve the model's robustness in real-world 

environments. 

The introduction of data augmentation proved to be essential. As a result, both the pin 

region detection and defect pin detection datasets were expanded to include these 

augmented samples. This improvement significantly enhanced the model’s accuracy when 

applied to real-world images captured under different lighting scenarios. 

However, this version still encountered a limitation: it could not reliably detect electrical 

connectors that appeared rotated in the image. Although adding rotated connector images 

to the dataset was considered, the wide range of possible rotation angles would introduce 

excessive variability. This would increase dataset complexity and potentially add noise 

during training, negatively impacting overall model performance. As such, the rotation 

issue is planned to be addressed more strategically in the following version. 
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Figure 4.1.3 Third Version System Flow Chart 

 

4.1.4 Final Version 

This final version of the project addresses a crucial real-world challenge: in practical 

industrial environments, not all companies can guarantee that electrical connectors are 

positioned in a fixed orientation during defect detection. To solve this, a rotation correction 

function is introduced at the beginning of the Trained Model Operation section (blue zone). 

This function ensures the connector is aligned properly before being passed to the pin’s 

region detection model, improving detection accuracy under various rotational angles.  

The project explores two rotation correction solutions: 

- Angle Brute-Force Rotation: The entire testing image is rotated in 10-degree 

increments. Each rotated image is then passed to the pin’s region detection model, 

and the model’s confidence score is recorded. The rotated image that produces the 

highest confidence is selected and forwarded to the defect pins detection model for 

further analysis. While this method improves reliability, it is inefficient as it 

requires up to 36 image rotations per test case. 

- Edge-Based Alignment using Canny Detection: This solution uses edge detection 

to identify the connector’s alignment. A horizontal reference line is applied, and the 

image is rotated until the connector aligns horizontally. The rotation degree is 
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accurate to two decimal places. This method is significantly more efficient and 

accurate, making it the preferred solution 

Although the brute-force approach is computationally heavier, it serves as a fallback when 

the edge-based method fails. Together, these two methods ensure robust and reliable 

detection regardless of the connector’s orientation. 

The final version demonstrates a comprehensive and practical solution that effectively 

overcomes key challenges faced in real deployment scenarios. It enhances system 

reliability and adaptability, making it suitable for use in real company operations. 

 

 

Figure 4.1.4 Final Version System Flow Chart 
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4.2 System Block Diagram 

This section presents the core phases of the project’s development process using a 

workflow diagram. The diagram outlines the fundamental stages involved, including data 

acquisition, data annotation, data pre-processing, data augmentation, dataset generation, 

model tuning, model training, model evaluation, and model exploration. Each phase is 

essential in shaping the model’s foundation, providing a clear understanding of the 

technical workflow and the key operations carried out during the development of the defect 

detection system. 

 

 

Figure 4.2.1 Project Methodology Diagram 

 

4.2.1 Data Acquisition 

This part represents the project's initial step, where the raw electrical connector image will 

be captured by webcam show in Figure 4.2.2(a). After that, this raw image will be stored 

in a file. Webcam will be positioned at a consistent angle relative to the vehicle to ensure 

uniform environmental conditions, such as lighting, capture distance, and other factors. 

Figure 4.2.2(b) and Figure 4.2.2(c) shows this project`s camera setup. In this setup, the 

electrical connector is positioned on a black platform to minimize background noise and 
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enhance image clarity. The camera, measured from its lens, is placed at a height of 7.1 cm 

above the platform. The pins of the electrical connector are elevated 1.6 cm above the 

platform, resulting in a 5.5 cm distance between the camera lens and the pins. This precise 

configuration ensures consistent image quality and accurate pin detection, providing 

optimal conditions for both dataset creation and model training. 

 

(a)  

 

 

 

 

 

 

 

(b)  (c) 

 

 

 

 

 

 

 

 

Figure 4.2.2 (a) Logitech Webcam, (b) Front View of Webcam Setup, (c) Side View of 

Webcam Setup 

 

4.2.2 Data Annotation 

This step focuses on labelling images by placing bounding boxes around the pins of the 

electrical connector. To facilitate this process, the OpenCV library is employed, providing 

precise tools for defining and annotating pin locations efficiently. The bounding box data, 

including coordinates and dimensions, is systematically stored in a text file for further 

processing.  
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There are two different labelling methods applied to address different problems and model 

training requirements. 

The first labelling method involves labelling the entire pin region for the dataset used to 

train the pin region detection model. In this method, the entire pin region is labelled with a 

single bounding box, as illustrated in Figure 4.2.3(a). The position is recorded in the YOLO 

format, for example: (0 0.535156 0.722917 0.629687 0.229167), 

where the values represent the class and normalized center coordinates, width, and height 

of the bounding box. 

The second labelling method involves labelling each pin individually, with one bounding 

box per pin. This approach is used for the defect pin generation and defect pin detection 

model training. The electrical connector in this project consists of 120 pins, with 60 pins in 

both the upper and lower rows. Each pin’s labelled data is recorded in a format such as: 

Pin1: (149,304) to (155,323), ensuring precise localization for subsequent model training, 

as shown in Figure 4.2.3(b). 

This meticulous labelling process is crucial for producing a high-quality dataset, 

significantly enhancing the model’s ability to detect and classify defects with greater 

accuracy and reliability. 

 

 

Figure 4.2.3 Labelling Pins Show (a) Pins Region Labelling (b) Pin per 1 box 

 

Figure 4.2.4 illustrates the codding logic workflow. After the raw image is processed 

through the PinLabeler() function, the program presents an interactive interface where 

users can draw rectangles to label the pins. The labelling is achieved by recording the x and 

y coordinates of the rectangle’s starting and ending points, with the rectangles drawn using 
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a click-and-drag method. The PinLabeler() tool also offers various support features, such 

as zoom and undo functions, to enhance the labelling accuracy and efficiency. Once all pins 

are labelled and the process is confirmed and saved, a text file containing the pin position 

data is generated. 

For the pin region labelling process, the same technique used for individual pin labelling is 

applied. After manually labelling the pin region in the image, the corresponding label text 

file is passed into the convert_to_yolo_format() function. This function converts the 

annotated data into YOLO format, resulting in a new text file that aligns with the required 

input structure for training the YOLOv8 model. 

 

 

Figure 4.2.4 Label Function Code Workflow 

 

4.2.3 Data Preprocessing  

In this step, various OpenCV functions are utilized to generate a defect electrical connector 

dataset. Building upon the previous step, where the positions of 120 pins were labelled 

from the original image, this project will manipulate these positions to create new layers. 

By altering, rotating, or removing these layers, defect pin data is generated and collected. 
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Background Removing 

To avoid image distortion caused by manipulating small layers on the original image, the 

project employs a technique that removes all areas outside the 120 labelled bounding boxes, 

replacing them with a black background and retaining only the pins of the electrical 

connector such like figure 4.2.5 shows.  

 

Figure 4.2.5 Background Remove Result Show 

 

Figure 4.2.6 illustrates the workflow of the background removed. Initially, the 

read_pins_position() function identifies the labeled positions of the connector's pins. The 

main function, apply_black_background, then utilizes np.zero_like() to convert all non-

labeled areas to black. This function is necessary because it can avoid the distortion 

problem at the next step. 

 

Figure 4.2.6 Background Remove Workflow 
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4.2.4 Defect Pins Generation 

Three types of defective connector pins are created and generated for this project: 

misaligned pins, rotated pins, and missing pins. These defect types were chosen because 

they are among the most observed in real-world scenarios. By including these variations in 

the dataset, the model can be trained to recognize and handle a wider range of potential 

defects, thereby improving its reliability and applicability in practical inspection tasks. 

Figure 4.2.7 illustrates the workflow for generating defective pins. The process begins by 

inputting key parameters, such as the number of pins to be modified and the total number 

of images to be generated. It starts with the loadImage() function, which loads the 

background-removed images. This is followed by the read_pin_position() function, which 

reads and records the labelled positions of the pins from the existing annotation files. These 

initial steps set the foundation for applying controlled modifications to simulate different 

types of pin defects. 

For missing pin generation, the generate_missing_pin() function is used, where random 

pins are selected and their pixel values are set to (0, 0, 0), effectively making them 

disappear. This simulates missing pins. The adjusted data is then processed by 

batch_generate_missing() to create the defect pin images and log their positions in a text 

file. 

For rotated pin generation, the generate_rotate_pin() function is invoked, which randomly 

selects pins to be marked as defective. Each selected pin is rotated by an angle between 5 

and 15 degrees to simulate realistic misalignment. This rotation is performed using 

OpenCV functions: cv2.getRotationMatrix2D to calculate the transformation matrix and 

cv2.warpAffine to apply the rotation. After rotation, the adjusted images are processed by 

the batch_generate_rotate() function, which generates the final defective pin images and 

logs their updated positions in a corresponding text file. 

For shifted pin generation, the process triggers the generate_shift_pin() function, which 

uses a random function to select pins for displacement. Given that the distance between 

electrical connector pins is approximately 0.5mm, any minor deviation is critical. 

Therefore, in this project, the shift value is set to exceed 1 pixel (approximately 0.12mm). 

The selected pin’s position is adjusted by adding 1 to its coordinates. The 

batch_generate_shift() function then generates defect pin images and records the shifted 

pin positions in a text file. At Figure 4.2.8 showcases the results for each type of defect pin 

generation. 
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Figure 4.2.7 Defect Pins Generation Workflow 

 

(a)       (b) 

 

 

 

(c) 

 

 

 

 

Figure 4.2.8 Defect Pins Result Show 
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4.2.5 Data Augmentation 

In this step, the project ensures that the dataset already includes three types of categories 

within the dataset file. The Albumentations library is integrated to assist with image 

augmentation. Albumentations is recognized as one of the most powerful libraries for 

performing data augmentation. The objective of applying data augmentation is to generate 

a more diverse and robust dataset for model training. 

In this project, five augmentation parameters are modified, which are as follows: 

1. RandomBrightnessContrast: Adjusts the brightness and contrast of the image. 

2. GaussNoise: Adds Gaussian noise to simulate sensor noise or environmental 

interference. 

3. MotionBlur: Applies a slight motion blur to simulate movement during image 

capture. 

4. Perspective: Applies a perspective shift to simulate changes in the camera angle. 

5. ColorJitter: Modifies the colors to enhance dataset variability. 

 

 

Figure 4.2.9 Augmented Result Show 

Figure 4.2.10 illustrates the augmentation workflow. The Transform() function uses the 

Compose method to apply a series of augmentation parameters, as previously described. 

When a defective pin image undergoes augmentation, its corresponding label file is also 

updated to reflect any changes in pin positions caused by transformations such as scaling 

or flipping. This ensures that the dataset remains accurate and consistent for training 

purposes. 
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Figure 4.2.10 Augmentation Workflow 

 

4.2.6 Dataset Generate 

After the data augmentation process is completed, the project generates and modifies two 

dataset files. These two datasets are used for training with the YOLOv8 algorithm model. 

Both datasets are organized in the standard YOLO format, where each contains separate 

folders for images and labels, and each folder is divided into training and validation sets, 

as illustrated in Figure 4.2.11. 

The first dataset is the pins region detection dataset, which is used to train the pins region 

detection model. This dataset contains a total of 2000 images, with 1600 images allocated 

for training and 400 images allocated for validation. The dataset is evenly divided between 

1000 real-world images and 1000 augmented images. This distribution is intentional, as 

real-world images are prioritized to ensure the model performs well under practical 

conditions, while the augmented images are used to strengthen the model’s robustness. 

The second dataset is the defect pins detection dataset, which is used to train the defect pin 

detection model. This dataset consists of a total of 3600 images, with 3000 images used for 

training and 600 images used for validation. Like the first dataset, it is balanced with half 

real-world images and half augmented images. 

The reason the defect pins detection dataset requires more data than the pins region 

detection dataset is due to the higher complexity of the defect detection task. Detecting 

individual defects demands the model to learn finer details and variations, thus 

necessitating a larger and more diverse dataset to achieve better performance. 
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Figure 4.2.11 Dataset File Structure 

 

 

4.2.7 Model Tunning 

In this project, the YOLOv8 algorithm is selected for model training due to its strong 

learning capabilities and high performance in object detection tasks. However, one known 

limitation of YOLOv8 is its reduced accuracy when detecting very small objects, such as 

individual pins on an electrical connector. 

To address this challenge, the project adopts a dual-model training approach. The first 

model is designed to detect the overall pin region, while the second model is trained 

specifically to identify defective pins. This separation of tasks enhances detection accuracy 

and ensures better performance when dealing with small-scale features in high-resolution 

images. 

 

4.2.8 Model Training 

This step involves training the model by adjusting various parameters. These training 

parameters are key factors that directly influence the model’s ability to produce accurate 

detection results. In this project, the modified parameters include epochs, batch size, and 

image size (imgsz). The epoch defines how many times the entire training dataset is passed 

through the model during training. A higher number of epochs allows the model to learn 

more deeply but may increase the risk of overfitting. The batch size determines how many 
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images are processed at once during each training step, affecting both training speed and 

memory usage. The image size (imgsz) refers to the dimensions to which all input images 

are resized before being fed into the model, ensuring consistency and improving 

computational efficiency.  

For the pins region detection model the train parameter is set like: 

1. Epoches  =  50 

2. Batch =  16 

3. Imgsz  =  640 

For the defect pins detection model the train parameter is set like:  

1.  Epoches  =  50 

2.  Batch  =  16 

3.  Imgsz =  640 

These three parameters serve as the basic startup configuration, while other training 

parameters will be further explored and optimized during the model evolution phase. Figure 

4.2.12 illustrates the model training workflow. Both models follow the same training logic. 

An essential component in YOLO-based training is the YAML file, which defines key 

configuration details such as the dataset directory and the category classes. For instance, in 

a YOLO-formatted annotation like (0 0.1111 0.1222 0.123 0.1444), the first number 0 

indicates the class label, followed by normalized values for the bounding box’s center 

coordinates, width, and height. After importing the YOLO model, training can be initiated 

using the model.train() function, which handles the training process based on the provided 

dataset and configuration. 

 

 

 

Figure 4.2.12 Model Training Workflow 
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4.2.9 Model Evaluation 

This step involves setting performance metrics to evaluate the effectiveness of the trained 

model. In this project, the selected evaluation metrics include precision, recall, and mean 

average precision (mAP), specifically mAP@50 and mAP@50–95. Precision measures the 

proportion of correctly identified positive predictions out of all positive predictions made 

by the model, reflecting the model’s accuracy in detecting true positives without producing 

false alarms. Recall indicates the proportion of actual positive cases that were correctly 

identified by the model, showing how well the model captures relevant instances. Mean 

Average Precision (mAP) is a comprehensive metric that combines both precision and 

recall across different thresholds. mAP@50 calculates average precision using an 

Intersection over Union (IoU) threshold of 0.5, while mAP@50–95 provides a more 

detailed evaluation by averaging the results over multiple IoU thresholds ranging from 0.5 

to 0.95 in steps of 0.05. These metrics collectively offer valuable insight into the model's 

performance and help determine whether further adjustments to training parameters are 

necessary to improve results. 

 

4.2.10 Model Evolution 

Based on the performance results from the evaluation phase, this step focuses on adjusting 

the model's hyperparameters until the desired performance is achieved. In addition to the 

initial parameters, more advanced settings are introduced, such as the learning rate 

parameters (lr0 and lrf), which control the learning rate schedule throughout training. These 

learning rate values play a crucial role in determining how quickly or gradually the model 

learns from the data. This iterative process of tuning and refinement allows for continuous 

improvement of the model’s performance, ensuring it becomes more accurate and reliable 

with each training cycle. 

 

4.2.11 Model Explore 

This final step confirms that the parameter adjustments have been identified, and the model 

has matured to meet the predefined objectives. At this stage, the model is fully optimized, 

demonstrating the required accuracy and efficiency, thus validating its readiness for real-

world deployment in electrical connector defect detection. 
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4.3 Models Combination 

The previous section presented the logic and workflow behind dataset preparation and the 

development of each individual model. Building upon that, this section outlines the integration 

logic and workflow for combining the pins region detection model with the defective pins 

detection model. This combined approach allows the system to first localize the pin region and 

then perform detailed analysis to identify specific defects within that region, enabling a more 

accurate and efficient inspection process. Figure 4.3.1 illustrates the model combination 

workflow, highlighting the specific functions used to execute the integration between the two 

models.  

 

Figure 4.3.1 Model Combination Workflow 

Rotation Function 

The reason for incorporating a rotation correction function has been previously discussed in 

the system iteration section. Two rotation correction methods were explored: brute-force angle 

rotation and edge-based alignment using Canny edge detection. In most cases, the system 

adopts an edge-based alignment method due to its higher efficiency and accuracy in aligning 

the connector horizontally. However, the brute-force rotation approach serves as a fallback 

solution when the edge-based method fails to detect suitable contours or cannot perform the 

alignment correctly. 

The rotate_to_horizontal() function takes an image input and optionally applies Canny edge 

detection. It begins by converting the image to grayscale if it's not already. To reduce noise and 

improve edge detection accuracy, a Gaussian blur is applied. Then, Canny edge detection is 

used to extract the edges from the image, helping to outline objects or regions of interest. 

Next, contours are identified from the edge-detected image. If no contours are found, the 

function returns the original image and its processed versions to maintain consistency in output 

structure. 
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If contours exist, the function selects the largest contour, assuming it represents the main object 

in the image. It calculates the minimum area bounding rectangle around this contour and 

extracts the angle of rotation. If the rectangle is taller than it is wide, 90 degrees is added to the 

angle to ensure horizontal alignment. 

Using this angle, a rotation matrix is created, and the image is rotated around its center. The 

new width and height of the image are calculated to accommodate the entire rotated image 

without cropping. Finally, OpenCV's warpAffine() function is used to apply the rotation, and 

the rotated image along with the rotation angle is returned.  

 

 

Figure 4.3.2 Rotation information workflow 

Combination 

The logic behind the integrated detection system is as follows: when a rotated image is passed 

to the pins region detection model, the system first checks whether the model can successfully 

detect the pins region. If detection is successful, the position of the pins region is recorded. On 

the other hand, if the model fails to detect the region, the system notifies the user with the 

message: "Detection failed. Please make sure your image is of an electrical connector." This 

workflow is illustrated in Figure 4.3.3. 

Once the pins region is successfully detected, the system maps the position data and passes it 

to the defect pins detection model. If the defect detection model identifies any defective pins, 

it returns a labeled image showing the defects. Otherwise, it displays the message: "No 

defective pin detected." Since the pins region detection model has already verified that the 

input image is an electrical connector, this ensures that all images passed into the defect 

detection stage are valid connector images, improving the reliability of the final output. 
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Figure 4.3.3 Model Combination Detail Workflow 
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Chapter 5 

System Implementation 

This chapter outlines the system implementation, covering all components involved in the 

development. It includes details on the hardware setup, software configuration, system 

operation, and challenges encountered during implementation. 

 

5.1 Hardware Setup 

Hardware is the important part in develop and implement our proposed system. There are two 

hardware which is laptop and webcam. Laptop will be responsible for model development and 

generating defect images through image processing. It will serve as the primary platform for 

training and fine-tuning the model, as well as utilizing image processing techniques to simulate 

various defect scenarios in electrical connector pins, ensuring the creation of a comprehensive 

and high-quality dataset for model training and validation. Table 3.1 shows the specifications 

of laptop.  

 

Table 5.1 Specifications of laptop 

 

The webcam will play a crucial role in capturing both the raw images and testing images for 

this project. Its ease of setup ensures consistent positioning and angle throughout the image 

acquisition process. This stability enhances the efficiency and accuracy of image extraction, 

contributing to the creation of a reliable dataset and ensuring uniform conditions for model 

testing and validation. Table 3.2 shows the specifications of webcam. 

 

 

Description Specifications 

Model MSI Katana GF66 

Processor Intel Core i7-12700H 

Operating System Windows 11 

Graphic NVIDIA GeForce RTX 3050 Ti 

Memory 32.0GB RAM 

Storage 512GB 
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Table 5.2 Specifications of webcam 

 

5.2 Software Setup 

This section presents the software and libraries utilized in this project to support the 

development process. 

I. Visual Studio Code (version 1.95) 

A popular and free code editor developed by Microsoft. It offers a powerful and 

versatile coding environment that can be used for a variety of development tasks. 

II. Jupyter Notebook 

Free software, open standards, and web services for interactive computing across all 

programming languages. It provides cloud 

III. OpenCV 4.0 

OpenCV, short for Open-Source Computer Vision Library, is an open-source computer 

vision and machine learning software library. 

  

Description Specifications 

Model Logitech Webcam C615 

Resolution HD 1080P 
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5.3 System Operation  

This section presents how the project performs model performance evaluation, outlining the 

steps and procedures used to test the model's functionality and reliability within the system 

such as Figure 5.3.1 show. 

 

Figure 5.3.1 System Operation 

 

5.4 Implementation of Issues and Challenges 

This section describes the implementation challenges and issues encountered during the 

project. Since the primary objective of this work is model development, the main goal is to 

deliver highly accurate and efficient inspection models that can be adopted by the company. 

However, several challenges were faced throughout the development process, including: 

I. Captured Camera Ability 

The camera plays a critical role in the operation of the entire system, as image capture 

marks the beginning of the inspection process. In this project, an HD 1080P resolution 

camera is used as the minimum requirement to ensure the model can accurately detect 

and analyze the tiny electrical connector pins. Since these pins are very small, low-

resolution or blurry images can severely hinder the model's ability to recognize pin 
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positions or identify defects. As a result, the clarity, sharpness, and overall quality of 

the captured images have a direct impact on the system’s accuracy and reliability. 

This dependency on camera quality introduces both hardware and performance-related 

challenges. If the camera used is of poor quality, suffering from issues like motion blur, 

poor focus, or inadequate lighting sensitivity—the model's performance will be 

compromised, reducing overall system stability. Conversely, using a high-end camera 

that captures images rapidly can create a different problem: the model may not be able 

to keep up with the high input rate, resulting in data processing bottlenecks. In such 

cases, images may queue up, causing input jams and slowing down the inspection 

process. This highlights the need to balance camera capability with the model’s 

processing speed to maintain smooth and efficient system operation. 

II. Model Implementation Device 

The computing device used for running the inspection system is another critical factor 

that directly influences the model’s performance and overall system efficiency. Since 

the deep learning models used in this project involve complex computations, especially 

during inference and training—a device with sufficient processing power is essential. 

Systems equipped with a GPU are strongly preferred, as they significantly accelerate 

the model’s performance, allowing for faster image processing and real-time defect 

detection. 

Without adequate hardware, particularly in terms of graphics processing capability, the 

system may experience delays or reduced accuracy due to longer inference times. This 

becomes a bottleneck when processing high-resolution images or when handling large 

volumes of image data, especially in environments where rapid inspection is necessary. 

Therefore, to ensure the reliability and responsiveness of the system in practical 

deployments, the model must be implemented on a machine with appropriate 

computational resources, ideally one that includes a modern GPU. 

III. System Combination with Inspection Model 

Since this project focuses primarily on model development, integrating the trained 

models into a complete, functional system presents its own challenges. One key issue 

is ensuring compatibility between the developed models and other system components, 

such as the user interface or backend services. Differences in software versions, model 

formats, or runtime environments can cause unexpected errors or failures during 

integration. 
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For example, the user interface must be designed to support the input and output formats 

of the model, including image uploads, prediction visualizations, and real-time 

feedback. Additionally, the model’s dependencies and framework versions must align 

with the system’s runtime environment to avoid compatibility issues. These integration 

challenges highlight the importance of coordinated development between the model 

and system components to ensure seamless operation in real-world applications. 

 

5.5 Concluding Remark 

In summary, this chapter presented the complete implementation of the electrical connector 

inspection system, including both the hardware and software components. The integration of 

camera capture, image processing, and machine learning models was successfully executed to 

support automated defect detection. Despite some challenges related to hardware limitations 

and system integration, the implementation provided a solid foundation for real-world 

application. The outcomes of this chapter demonstrate that the system is functional, and its 

performance can be further improved through hardware optimization and model fine-tuning in 

future work. 
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Chapter 6 

System Evaluation and Discussion 

This chapter outlines the system evaluation, presenting the performance and results of the 

trained model. In addition, it highlights the challenges encountered during the model 

development process. 

 

6.1 Model Testing & Performance Metrics 

This section outlines the performance metrics used to evaluate the detection model in this 

project. The goal is to assess the model's accuracy, effectiveness, and overall capability. Several 

standard metrics are applied during model training and evaluation, including:  

• Precision: 

Precision measures the accuracy of positive predictions. It is the ratio of correctly 

predicted positive observations to the total predicted positives. A high precision 

indicates that the model returns more relevant results than irrelevant ones. 

• Recall: 

Recall evaluates the model’s ability to find all relevant instances. It is the ratio of 

correctly predicted positive observations to all actual positives. A high recall means the 

model detects most of the true cases. 

• F1 Score: 

The F1 Score is the harmonic means of precision and recall. It balances the two metrics 

and is useful when you need a single measure that accounts for both false positives and 

false negatives. 

• mAP50: 

mAP@50 calculates the average precision across all classes with a fixed Intersection 

over Union (IoU) threshold of 0.50. It provides a general sense of how well the model 

detects objects at a moderate level of overlap. 

• mAP50-95:  

This metric is a more comprehensive version of mAP, averaging the AP over multiple 

IoU thresholds (from 0.50 to 0.95 in steps of 0.05). It offers a deeper insight into the 

model’s performance across various levels of detection difficulty. 
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Pins Region Detection Model 

Following this, the performance of the pin region detection model is discussed. In this project, 

two versions of the model were developed: one trained without data augmentation and another 

trained with augmented data. 

 

 

Figure 6.1.1 Region Detection V1 - Model Performance Metrics 

 

Figure 6.1.1 illustrates the performance metrics for the non-augmented model. This version 

demonstrates high scores in precision, recall, F1 score, mAP50, and mAP50-95, indicating 

strong detection performance. The reason behind this result is likely due to the simplicity of 

the dataset, where all validation images closely resemble the training images—consisting of 

black backgrounds and clearly visible pins. Detecting the entire pin region in such uniform 

conditions is relatively straightforward, allowing the model to achieve high accuracy. 

 

 

Figure 6.1.2 Region Detection V1 - Training vs Validation Box Loss Curve 

 

Figure 6.1.2 presents the training versus validation box loss curve, which is used to assess the 

model’s learning behaviour and identify potential overfitting or underfitting. Both the training 
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and validation losses exhibit a consistent downward trend throughout the epochs, indicating 

that the model is learning effectively. Although the validation loss shows some fluctuations 

between epochs 10 to 30, this is expected due to the variability in unseen data. The overall low 

loss values and the close alignment between the training and validation loss curves suggest that 

the model generalizes well to the validation set. 

These results demonstrate a promising direction for the project. However, the strong 

performance is currently limited to simple and controlled scenarios. Therefore, in the 

subsequent model version, efforts were focused on expanding the dataset to better reflect real-

world cases and increase model robustness under more diverse conditions. 

 

 

Figure 6.1.3 Region Detection V2 - Model Performance Metrics 

 

Figure 6.1.3 illustrates the performance metrics of the augmented version of the pin region 

detection model. These results indicate that the model retains a strong ability to detect pin 

regions, despite the increased complexity of the validation dataset. In this version, the 

validation images include challenges such as blur and visual noise. As a result, a slight decrease 

in performance metrics is observed when compared to the non-augmented version (Version 1). 

However, the metrics still demonstrate that the model performs reliably under more realistic 

conditions. 

Figure 6.1.4 Region Detection V2 - Training vs Validation Box Loss Curve 
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Figure 6.1.4 presents the training versus validation box loss curve for the augmented model. 

The training and validation loss curves both show a consistent downward trend, with the 

validation loss exhibiting more fluctuation due to the increased complexity of the dataset. 

These fluctuations are considered normal and indicate the model is learning to generalize 

across a broader range of real-world variations. 

Given its improved robustness in handling real-world cases, this model will be selected for 

deployment in the following system stages. 

 

Defect Pins Detection Model 

For this model, there are three versions of the defect pin detection model that were 

developed, using two different labelling strategies. The first strategy involved labelling the 

entire pin region and classifying it as missing, rotated, or shifted, as shown in Figure 6.1.5(a). 

The second strategy involved labelling only the specific defective area of the pin, illustrated 

in Figure 6.1.5(b). Two models were trained using this second strategy: one without data 

augmentation and one with augmented data. 

 

(a)  (b) 

 

Figure 6.1.5 Label Methods (a) Full Region (b) Specific 

 

The first model version, which used full region labelling, demonstrated very poor performance. 

As shown in Figure 6.1.6, the confusion matrix indicates extremely low accuracy, with the 

model only showing capability in detecting rotated defect cases. It failed to identify rotated and 

shifted pins effectively. This limitation revealed that the full region labelling method does not 

offer sufficient information for the model to learn precise defect patterns. Consequently, 

changing the labelling strategy was necessary. 
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Figure 6.1.6 Defect Detection V1 - Confusion Matrix 

The second model version applied specific defect area labelling and demonstrated significantly 

improved results. Figure 6.1.7 displays its performance metrics, showing separate results for 

missing, rotated, and shifted defects. These metrics indicate strong performance when tested 

on clean, controlled images. However, as reflected in the confusion matrix (Figure 6.1.8), some 

incorrect predictions occurred, likely due to the model misclassifying parts of the background 

as defect areas. Despite this, the model successfully recognized distinct defect categories with 

high confidence. 

The training versus validation loss curve, shown in Figure 6.1.9, confirms that the model did 

not experience overfitting. Both curves exhibit a stable downward trend, which suggests that 

the model is learning effectively and generalizing well on unseen validation data. This version, 

like the earlier region detection model, demonstrates solid performance in simplified 

environments but requires further enhancement to handle real-world scenarios with higher 

variability. 

Figure 6.1.7 Defect Detection V2 - Performance Metrics 
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Figure 6.1.8 Defect Detection V2 - Confusion Matrix 

 

 

Figure 6.1.9 Defect Detection V2 - Training vs Validation Box Loss Curve 

 

The final version of the defect pin detection model was trained using an augmented dataset. 

This dataset introduced more complex and realistic conditions, including blurred areas and 
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noisy backgrounds, which made the defect identification process more challenging. As shown 

in Figure 6.1.10, the performance metrics of this version declined slightly compared to the 

previous model. This decrease is expected due to the increased complexity of the dataset, 

particularly in identifying small or visually cluttered defect areas. The mAP50-95 metric falls 

below 0.8, which, while lower than the previous version, still meets an acceptable threshold for 

real-world application. Importantly, the use of data augmentation is essential for improving 

model robustness in varied environments. 

The confusion matrix in Figure 6.1.11 indicates that this model misclassified more instances 

as background compared to the earlier version. This suggests that the model sometimes 

struggles to differentiate between actual defect regions and complex background noise in more 

realistic images. 

The training versus validation loss curve, presented in Figure 6.1.12, shows no signs of 

overfitting. Both loss curves follow a consistent trend, suggesting that the model maintains 

good generalization despite the increased dataset complexity. 

 

 

 

Figure 6.1.10 Defect Detection V3 - Performance Metrics 
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Figure 6.1.11 Defect Detection V3 – Confusion Matrix 

 

 

Figure 6.1.12 Defect Detection V3 – Training vs Validation Box Loss Curve 
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6.2 Testing Setup and Result 

This section presents the inspection results for both synthetically generated defect pins and 

real-world defective pin connectors. Additionally, it outlines the testing setup employed during 

the evaluation process. 

 

Generated Defect Pin Result 

This section presents the inspection results of synthetically generated defect pins. Figure 6.2.1 

displays a sample of the generated test image, which was processed using the defect detection 

function. The model successfully identified the simulated defects, demonstrating its 

effectiveness in detecting predefined anomalies under controlled conditions. 

 

 

Figure 6.2.1 Testing image sample (Generate Case) 

 

Figures 6.2.2 illustrate the result of testing sample after inspected by the region detection 

model. 

 

Figure 6.2.2 Region Detection Result (Generate Case) 
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Figures 6.2.3 illustrate the result of testing sample after inspected by the defect pins detection 

model. 

 

Figure 6.2.3 Defect Pin Detection Model (Generate Case) 

 

Figure 6.2.4 illustrate the result message of the testing image. 

 

Figure 6.2.4 Function Message Show (Generate Case) 

 

Real-world Defect Pin Result 

This section presents the inspection results for real-world defective electrical connectors. 

Figure 6.2.5 illustrates an electrical connector exhibiting defective pins, captured under varying 

rotational angles to simulate practical inspection scenarios. The image was processed using the 

trained defect detection model, which successfully identified the defective pins despite the 

complexities introduced by rotation and real-world conditions. 

 

Figure 6.2.5 Testing Image Sample (real-world case) 

 

Figure 6.2.6 illustrates the result of testing samples after being rotated and inspected by the 

region detection model. 
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Figure 6.2.6 Region Detection Result (real-world case) 

 

Figure 6.2.7 illustrate the result of testing sample after inspected by the defect pins detection 

model. 

 

Figure 6.2.7 Region Detection Result (real-world case) 

 

Figure 6.2.8 illustrates the result message of the testing image. 

 

Figure 6.2.8 Function Message Show (real-world case) 

 

After the testing phase, the project confirms that the dataset is suitable for addressing real-

world defect detection challenges. The model demonstrates strong performance in identifying 

defective pins under practical conditions, validating the dataset's applicability for real-world 

scenarios. 
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Real-world Defect Pin Result with No Region Detection Model 

This section highlights the necessity of incorporating a region detection model in the defect pin 

detection process. Figure 6.2.9 illustrates the outcome of testing an image without utilizing the 

region detection model. The absence of region detection leads to decreased accuracy in 

identifying defective pins, as the model lacks the ability to focus on specific areas of interest. 

Implementing a region detection model enhances the precision of defect detection by 

narrowing down the search area, thereby improving the overall performance of the inspection 

system. 

 

Figure 6.2.9 Region Detection Result (real-world case with no region detection) 

 

6.3 Project Challenges 

This section describes the project challenges after evaluating the project model. There are some 

challenges faced, such as: 

 

▪ Low Confidence in Detecting Defective Pins 

 

This problem occurred when the model was applied to real-world defective pin 

electrical connector inspections. The possible cause is the discrepancy between the 

generated dataset and real-world cases, leading the trained model to have low 

confidence in detecting defective pins. However, collecting and labeling real-world 

cases was not feasible in this project. To address this issue, the generated defective pins 

can be modified to more closely resemble real-world cases or the model's confidence 

threshold can be adjusted. This adjustment may cause the model to mislabel defective 

pins. 
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Figure 6.3.1 shows the result when the confidence threshold is set higher than 0.5. The 

red rectangles indicate areas that the model failed to inspect. 

 

 

Figure 6.3.1 Detection Fail with High Confidence 

 

▪ Rotation Function Wrong Rotate the Input Image 

This problem has a probability of occurring, but identifying the exact trigger is 

challenging. It can lead to the region detection model failing to detect pin regions. The 

solution implemented in the project is the preparation of a backup rotation method, 

specifically Angle Brute-Force Rotation, which has been applied in the project code. 

An alternative solution involves training another model to handle rotation tasks. 

However, since this project already utilizes two models, adding a new model may 

increase processing time. Therefore, this solution was not incorporated into the project. 

 Figure 6.3.2 illustrates a case of incorrect rotation. 

 

Figure 6.3.2 Wrong Rotation Sample 
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6.4 Objectives Evaluation 

This section outlines the evaluation results and assesses whether the initial objectives of the 

project were achieved. 

I. Developing a High-Quality Dataset 

The project successfully achieved this objective. The generated dataset effectively 

covers real-world cases and encompasses the three categories of defect situations: 

missing, rotated, and shifted pins. 

II. Achieve High Model Accuracy 

The initial goal was to attain at least 85% accuracy. Evaluating the model's 

performance: 

▪ mAP50: Achieved, indicating strong performance in detecting defects at a 

50% Intersection over Union (IoU) threshold. 

▪ mAP50-95: Not achieved, as the model's performance declined when 

evaluated across a range of IoU thresholds from 50% to 95%. 

This suggests that while the model performs well under certain conditions, its 

accuracy diminishes with stricter evaluation criteria. 

III. Reduce Processing Time 

This objective was met. As illustrated in Figure 6.4.1, the processing times for both 

models are significantly reduced, demonstrating efficient performance suitable for 

practical applications. 

 

 

Figure 6.4.1 Model processing show 
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6.5 Concluding Remark 

In summary, this chapter presents the performance metrics of different model versions, testing 

results, project challenges, and objective evaluations. 

The evaluation metrics for the region detection model are detailed in Table 6.1, and those for 

the defect pin detection model are provided in Table 6.2. 

 

Pins Region Detection Model Performance Metrics 

Version Precision Recall F1-score mAP50 mAP50-95 

Model_v1 0.99987 1 0.99994 0.995 0.994 

Model_v2 0.99987 1 0.99993 0.995 0.994 

 

Table 6.1 Pins Regions Detection Model Performance Metrics 

 

Defect Pins Detection Model Performance Metrics 

Version Precision Recall F1-score mAP50 mAP50-

95 

Model_v1 0.98 0.62 0.37 1 1 1 0.99 0.76 0.54 0.76 0.76 

Model_v2 0.99 0.99 0.95 0.98 0.95 0.94 0.98 0.97 0.94 0.98 0.83 

Model_v3 0.98 0.95 0.93 0.95 0.85 0.86 0.97 0.90 0.90 0.96 0.77 

 

Table 6.2 Defect Pins Detection Model Performance Metrics 

 

The testing results encompass generated defect pin detections, real-case detection outcomes, 

and real-world defect pin detections without utilizing the region detection model. 

Project challenges include low confidence in detecting defective pins and incorrect rotation 

functions affecting input image orientation. 

Lastly, the objective evaluation assesses whether the three initial objectives were achieved. 
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Chapter 7 

Conclusion and Recommendation 

 

7.1 Conclusion 

In conclusion, this project successfully applied computer vision techniques to inspect defect 

pins in electrical connectors, aiming to develop a high-accuracy and efficient inspection 

method to reduce the time companies spend on defect pin inspections. The project 

encompassed two main tasks: dataset preparation and model development. 

Due to the uniqueness of the defect pin inspection case and the lack of available open-source 

datasets, a custom dataset was generated using OpenCV to create synthetic images representing 

three categories of defect pins: missing, rotated, and shifted. For model development, the 

YOLOv8 algorithm was employed to train two models: one for detecting the pin regions and 

another for identifying specific defects within those regions. This two-model approach was 

adopted because YOLOv8, while powerful, has limitations in detecting small objects. By first 

narrowing down the area of interest with the region detection model, the defect detection model 

can focus more precisely, enhancing overall detection accuracy. 

The models demonstrated strong performance across various metrics, including precision, 

recall, F1-score, mAP50, and mAP50-95, indicating their effectiveness in accurately detecting 

defects in both synthetic and real-world scenarios. However, challenges such as low confidence 

in detecting defective pins and incorrect rotation functions affecting input image orientation 

were encountered. These issues were addressed by carefully designing the synthetic dataset to 

closely resemble real-world conditions and implementing appropriate preprocessing 

techniques. 

Overall, the project achieved its objectives by developing a reliable and efficient method for 

defect pin inspection in electrical connectors. The combination of custom dataset generation 

and a two-model YOLOv8 approach provided a robust solution, demonstrating the potential 

for real-world application in industrial settings. 

 

 

 

 

 



Chapter 7 

Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    64 
 

7.2 Recommendation 

To enhance the effectiveness and applicability of the defect pin inspection project, several 

improvements are recommended. Firstly, refining the synthetic dataset to more accurately 

reflect real-world conditions—particularly by incorporating realistic rotation scenarios—can 

improve the model's ability to generalize and increase detection confidence. Secondly, 

exploring alternative machine learning algorithms beyond YOLOv8, such as ensemble 

methods or transformer-based models, may offer comparative insights and potentially 

enhance detection accuracy. Lastly, developing an integrated platform that connects the 

trained models can provide a user-friendly interface, facilitating easy input of connector 

images, real-time defect detection, and visualization of results, thereby streamlining the 

inspection process and making the technology more accessible to end-users. 

 

 

 

 

 

 

 

 

 

 

  



REFERENCES 

Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    65 
 

REFERENCES 
 
[1] admin, “PAVE Technology,” Pave Technology Co, Feb. 22, 2024. 

https://www.pavetechnologyco.com/how-are-electrical-connectors-tested-for-safety 

[2] O. Diaz et al., “Data preparation for artificial intelligence in medical imaging: A comprehensive 

guide to open-access platforms and tools,” Physica Medica, vol. 83, pp. 25–37, Mar. 2021, doi: 

https://doi.org/10.1016/j.ejmp.2021.02.007. 

[3] I. Culjak, D. Abram, T. Pribanic, H. Dzapo and M. Cifrek, "A brief introduction to OpenCV," 2012 

Proceedings of the 35th International Convention MIPRO, Opatija, Croatia, 2012, pp. 1725-1730. 

[4] Y. Li, “Research and Application of Deep Learning in Image Recognition,” IEEE Xplore, Jan. 01, 

2022. https://ieeexplore.ieee.org/abstract/document/9718847 

[5] J. Terven, D.-M. Córdova-Esparza, and J.-A. Romero-González, “A Comprehensive Review of 

YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS,” Machine 

Learning and Knowledge Extraction, vol. 5, no. 4, pp. 1680–1716, Dec. 2023, doi: 

https://doi.org/10.3390/make5040083. 

[6] W. Wu and Q. Li, “Machine Vision Inspection of Electrical Connectors Based on Improved Yolo 

v3,” IEEE Access, vol. 8, pp. 166184–166196, 2020, doi: https://doi.org/10.1109/access.2020.3022405. 

[7] Y. Zhao et al., “Simultaneous Detection of Defects in Electrical Connectors Based on Improved 

Convolutional Neural Network,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–10, 2022, doi: 

10.1109/TIM.2022.3169535. 

[8] D. Zhao, F. Kong, and F. Du, “Vision-based adaptive stereo measurement of pins on multi-type 

electrical connectors,” Meas. Sci. Technol., vol. 30, no. 10, p. 105002, Oct. 2019, doi: 10.1088/1361-

6501/ab198f. 

[9] B. C. F. De Oliveira, A. L. Schalata Pacheco, R. C. Costa Flesch, and M. B. Demay, “Detection of 

defects in the manufacturing of electric motor stators using vision systems: Electrical connectors,” in 

2016 12th IEEE International Conference on Industry Applications (INDUSCON), Curitiba: IEEE, Nov. 

2016, pp. 1–6. doi: 10.1109/INDUSCON.2016.7874551. 

[10] Z. Yongzhong, S. Deru, L. Jiachang, Q. Tianyi, Q. Zhimin, and Z. Ruizhe, “Research on AI-Based 

Gold Removal Technology for Aviation Connector Cup Cavity Surface,” in 2023 24th International 

Conference on Electronic Packaging Technology (ICEPT), Shihezi City, China: IEEE, Aug. 2023, pp. 

1–6. doi: 10.1109/ICEPT59018.2023.10491936. 

[11] S. Roy, “Agile Development Methodologies: An Essential Guide,” BrowserStack, Nov. 11, 2022. 

https://www.browserstack.com/guide/agile-development-methodologies 

 
 

 

 

 

 

 
 
  

https://www.pavetechnologyco.com/how-are-electrical-connectors-tested-for-safety
https://doi.org/10.1016/j.ejmp.2021.02.007
https://ieeexplore.ieee.org/abstract/document/9718847
https://doi.org/10.3390/make5040083


POSTER 

Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    66 
 

POSTER 
 

 


